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Abstract 

This thesis brings together a variety of new and evolving technologies in an attempt to 

characterize spatial variability in highly complex near shore areas of the Laurentian Great Lakes in 

order to provide methods and mechanisms of answering ecological questions in the presence of 

dynamic and heterogeneous environmental conditions. 

 A high frequency echosounder was used to detect and characterize the nuisance macroalgae 

(Cladophora) that currently blooms along many of the lower Great Lakes shorelines. Detection of 

algal stands that were of high biomass and therefore likely to be considered a nuisance was largely 

successful and robust. Detection of short stands and those of low biomass were limited by the 

acoustic resolution of the system. Attempts to use average backscatter strength and integrated 

scattering volume as predictive metrics to estimate standing crop were largely unsuccessful, likely 

due to the inability of completely excluding reverberation from the substrate and the presence of 

invertebrates within the algal mats. 

 This acoustic system was subsequently used during near shore mobile surveys to map the 

distrubtion of Cladophora at several locations in Lakes Ontario, Erie and Huron. Cladophora was 

detected with the acoustic unit at all sites in Lakes Ontario and Erie, including at offshore shoals, far 

removed from catchment influence. Cladophora was not detected at any of the Lake Huron sites and 

visual observation combined with underwater camera work confirmed that Cladophora did not 

accumulate to levels that would be detecable with acoustics, or was absent entirely. Nutrient 

conditions varied surprisingly little among sites, and did not readily explain the differences in 

Cladophora distribution from site to site. In contrast, dreissenid mussel abundance was significantly 

associated with Cladophora biomass, likely due to their effects on water clarity and nutrient 

regeneration in the benthos.  

 Despite the strong association between dreissenid abundance and Cladophora biomass 

observed during the multi-lake surveys, urbanized catchments contain a multitude of potential 

shoreline nutrient sources which may contribute to the current patterns of Cladophora growth. No 

compelling evidence for nutrient supply from shoreline sources or municipal waste water treatment 

plants was observed, and although some degree of spatial association between Cladophora growth 

and tributaries was observed at one of the study sites, the widespread nature of Cladophora growth in 
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conjunction with a lack of nutrient enrichment evidence argues against shoreline sources as a 

significant cause. 

 Although much of the spatial variation of water masses and phytoplankton in the near shore is 

structured by hydrodynamic processes, some evidence exists that the extensive beds of Cladophora 

may have some ability to affect the overlying water chemistry and water quality. Patterns of dissolved 

gases in the near shore were largely consistent with the demand for CO2 and the release of O2 by 

Cladophora in the summer months when biomass and areal cover were high. Furthermore, changes in 

phytoplankton photosynthetic efficiency were consistent with changes in nutrient and CO2 levels, 

suggesting that perhaps the interplay between benthic algae and pelagic phytoplankton may be 

important in the shallow waters.  

 Although Cladophora is a major component of the lower Great Lakes benthic community, it 

does not reach comparable levels in Lake Simcoe despite comparable water clarity, phosphorus 

concentrations and dreissenid mussel abundance to the lower Great Lakes. The difference in physical 

size between Lake Simcoe and the Great Lakes may partly explain the relative lack of Cladophora 

growth in Lake Simcoe, perhaps through reduced turbulence or reduced physical disturbance that 

allows for invertebrate grazers to maintain high abundances relative to the Great Lakes where mussel 

shells are pulverized to fine grained material that eliminates invertebrate refuge. Differences in water 

chemistry may also be important; dissolved silica concentrations in Lake Simcoe are comparable to 

those measured in the upper Great Lakes and do not drop below the threshold for silica limitation of 

phytoplankton or benthic algae. This may prevent Cladophora from outgrowing its epiphyte coating, 

leaving Cladophora in a state of nearly continuous light limitation. 

 Although Cladophora did not respond in Lake Simcoe as it did in the lower Great Lakes to 

dreissenid invasion, macrophyte growth has clearly increased. Macrophyte growth covered nearly 

100% of Cook’s Bay to a depth of 8 m, and macrophytes were observed at depths of up to 10 m. It 

appears that while historical nutrient loading as provided the nutrient rich sediment in Cook’s Bay, 

dreissenids have supplied the significant increase in water clarity, that has allow for the expansion of 

macrophytes into deeper water. 
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Chapter 1 

General Introduction and Overview 

In the decades since the initiation of the Great Lakes Water Quality Agreement 

(GLWQA), the Great Lakes, in particular the lower Great Lakes have experienced ecological 

destabilization as a consequence of a variety of stressors. For example, much of the land 

immediately adjacent to the lakes has become increasingly urbanized over the last 10 to 15 years 

(Wolter et al. 2006) and a nearly continuous stream of exotic species has become established in 

the Great Lakes (Ricciardi and MacIsaac 2000). The effects of these and other stressors are often 

manifested in the near shore areas, since this is where the majority of people interact with the 

lakes. Near shore areas of the Great Lakes have and continue to experience chemical pollution, 

organic enrichment, physical alterations, degraded beaches, changes in aquatic community 

structure, and in some areas, increasing frequency of algal blooms (Edsall and Charlton 1997).  

There is increasing recognition that the conditions in the near shore zones are maintained 

by the dynamic interactions among environmental, biological, hydrological features (Mackey and 

Goforth 2005). Effective management strategies for long term maintenance therefore are 

dependent not only on understanding these processes, but also characterizing the near shore 

habitats themselves. Yet, this is not a simple task, as the spatial and temporal scales at which 

organisms interact with their environment on a day to day basis are typically different than the 

spatial scales at which environmental change may occur (Mackey and Goforth 2005). For 

example, near shore substrates may change on a day to day basis in areas where hydrodynamic 

energy is sufficient to erode and transport sediments across underlying immobile substratum 

(Mackey and Leibenthal 2005). The rapidly changing nature of the texture and quality of the 

substratum may have substantial impacts on the use of near shore areas as nursery grounds and 

habitat for near shore fish communities.  

Spatial studies focusing on such environmental and ecological phenomena require a 

properly and carefully designed strategy for data collection (Stein and Ettema 2003). Data can be 

logistically difficult or prohibitively expensive to collect, and both the sampling design and the 

quality of the data may affect the accuracy and precision of the estimates (Cochran 1977). 

Intensive sampling is expensive but gives a clear picture of spatial variability of a given 

parameter, while on the other hand sparse sampling may be more economical but miss important 

spatial features. Field sampling methods such as videography and substrate sampling via benthic 

grabs are labor intensive and cost prohibitive for highly resolved large scale sampling (Vis et al. 
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2003). This is particularly true for the Great Lakes near shore areas that are dominated by hard 

substrate, which are not effectively sampled using a grab device but must be sampled using 

quadrat or other manual collection methods (e.g., Barton and Hynes 1978). Large scale synoptic 

methods that are used for terrestrial studies such as remote sensing (Wezernak and Lyzenga 1975) 

and aerial photography (Fitzgerald et al. 2006,  Zhu et al. 2007) can provide a better spatial 

synopsis of aquatic environments, but are subject to interference from cloud cover, wave action 

and turbidity that are not readily controllable (Vis et al. 2003). Therefore, the facilitation of 

inexpensive, robust data collection at high resolution over large spatial scales is advantageous to 

managers since aquatic communities are influenced by processes operating at small to large 

scales, and better characteriziation is needed to fully appreciate the complexities of the near shore 

ecosystems in these large Lakes (Mackey and Goforth 2005).  

Since much of the previous scientific programs were focused on offshore regions, near 

shore areas remain poorly studied. A major difficulty for site–specific management in the near 

shore at present is to obtain enough information about the site to produce reliable estimates for 

mapping and visualization. In the following sections, I will introduce some novel and evolving 

technologies that have been adapted for high resolution spatial surveys in the near shore areas of 

the Laurentian Great Lakes. 

1.1 Acoustics 

Acoustic transducers are comprised of multiple piezoelectric elements that function by 

converting electrical energy into acoustic energy to generate a pressure wave. The piezoelectric 

elements transmit identical acoustic pulses at a specific frequency (usually in the kHz range) for a 

specific duration (usually 0.1 to 0.5 milliseconds depending on the object of study). The 

configuration of the piezoelectric components influences the interaction of the transmitted 

acoustic pulses, and through constructive and destructive interference, a characteristic beam 

pattern specific to the transducer is created (Figure 1.1). The acoustic beam is generally conical in 

shape with the apex angle referred to as the beam angle. The shape of the beam can be altered by 

controlling the energy to certain elements (Simmonds and MacLennan 2005).  

The pressure waves emitted by the transducer are transmitted by the periodic 

compression and expansion of particles in the transmission medium (Simmonds and MacLennan 

2005). For water, sound speed (c; which refers to the movement of the pressure peaks, not the 

local oscillations of particles) is typically in the range of 1450 to 1550 m sec-1, depending on 

water temperature, ambient pressure and salinity (Medwin and Clay 1998). The wavelength of the 

transmitted pulse is also important because it sets the fundamental limit on the resolution of 
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targets (Simmonds and MacLennan 2005). For a 430 kHz transducer, and a sound speed of 1500 

m s-1, the wavelength of the acoustic pulse is on the order of 3.5 mm. As the sound waves travel 

through the water, some energy is reflected back to the transducer. The reflected energy is 

received by the same piezoelectric elements, converted back into electrical energy, amplified and 

recorded (Simmonds and MacLennan 2005).  

Reflected acoustic energy (hereafter referred to as echoes) arises from the density 

contrasts between the transmission media (water) and the target. For example, gas filled swim 

bladders contribute ~ 90% of the reflected echoes from fish (Simmonds and MacLennan 2005). 

Some invertebrates also have gas inclusions and reflect acoustic energy quite well (Kubecka et al. 

2000). Likewise, submerged aquatic vegetation (e.g., macrophytes) containing gas vacuoles or 

structural tissues also reflect acoustic energy (Sabol et al. 2002a, Hohausova et al. 2008). For 

organisms that do not contain such obvious density contrasts within their bodies (e.g., 

zooplankton, jellyfish, macroalgae) the reflection of acoustic energy derives mostly from the ratio 

of the sound speed in the scattering body to that in the water, and the ratio of compressibility of 

the body of the organism to that of the water (Holliday and Pieper 1995).
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Figure 1.1. Schematic image of a single beam transducer beam pattern (scaled in dB). Image 
adapted from http://www.acousticsunpacked.org. The full beam angle is the -3 dB beam angle, 
which is defined as the angle between the lines that represent the half-intensity direction on either 
side of the main axis. 
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The transducer beam pattern determines the way the elements receive the echoes and 

allows for measurements on reflective targets.  Acoustic waves are returned in different phases, 

which vary by the angle of return (Medwin and Clay 1998). The difference in phases can be used 

to determine angle and direction of the reflected target in specially designed transducers. A 

single-beam transducer transmits and receives energy in the same area of the transducer, and 

produces a single echo signal. Range (or distance) can be determined from travel time of the 

incident transmission to return of the reflected echo. Single-beam transducers, however, cannot 

be used to determine the direction of the reflected signal, only the distance. Dual beam 

transducers transmit the signal on the narrow beam and reiceive the echo on both the narrow and 

wide beams. The ratio between the two echo levels (narrow and wide) can then be used to 

determine the distance from the target to the center of the beam (Simmonds and MacLennan 

2005). Split beam transducers receive the echo in four quadrants. This allows for phase deviations 

of the returned echo to be compared and these are used to determine the location of the target 

within the acoustic beam. Split beam transducers also allow for compensation of directivity, 

calculation of target strength and in situ estimation of fish swimming speed (e.g., Arrhenius et al. 

2001). 

The patterns within the received echoes are used to derive information of interest. For 

example, in fisheries acoustics, target strengths (TS; echo associated with an individual fish) are 

used to derive estimates of fish abundance and density (Rudstam et al. 2003). Substrate 

characteristics can be determined by comparing the shape of the returned echo and its energy to 

known echo patterns for distinctive substrates (Hamilton 2001), and the acoustic reflectivity of 

submerged aquatic vegetation (SAV) is used to derive measurements of macrophyte 

characteristics (e.g., height, percent cover) from acoustic echoes (Sabol et al. 2002a). Acoustic 

measurements are generally reported in decibel (dB) units rather than the formal SI units for 

pressure or intensity (Simmonds and MacLennan 2005). The principal reason for this is that the 

measures can span many orders of magnitude, and the decibel is simply a logarithmic measure of 

the ratio of two pressures or intensities, the measured pressure (P0) and reference pressure (Pref) or 

the measured intensity (I0) and the reference intensity (Iref), expressed as 

)/log(20

)/log(10

0

0

refdB

refdB

PPr

or

IIr

=

=

    (1.1) 

and a change in acoustic levels covering several orders of magnitude can be expressed as 

a change in dB (Simmonds and MacLennan 2005). For hydroacoustics, the reference level for 

pressure is generally 1 µPa (Simmonds and MacLennan 2005).  
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Compared to single or multiple point sampling techniques such as quadrat or knotted line 

sampling, acoustic surveys can provide increased data richness and spatial coverage by offering 

continuous and high resolution observations throughout the water column. Acoustic methods 

have a distinct advantage in that sound can be transmitted over long distances at high speeds in 

water (typically 1500 m s-1) (Simmonds and MacLennan 2005). In this way, the entire water 

column can usually be scanned in less than half a second. During an acoustic survey, the vessel 

usually navigates along predefined transect lines which cover the survey area in a way that the 

data collected can be used to provide statistically robust estimates of the obect of interest. Most 

often, acoustic methods are used to evaluate fish stocks (Simmonds and MacLennan 2005), but 

increasingly, acoustics have been applied to evaluate substrate characteristics and the distribution 

of substrate types (Chivers et al. 1990) and the distribution of submerged aquatic vegetation (e.g., 

Sabol et al. 2002a, Valley et al. 2007).  Despite the obvious benefits of acoustic methods, there 

are some limitations in that one cannot differentiate between species and targets close to the 

bottom generally cannot be resolved (Ona and Mitson 1996). Therefore hydroacoustics must still 

be accompanied by more traditional methods of sampling, but ultimately, when properly 

calibrated and used in an appropriate manner, acoustical techniques can greatly enhance the 

spatial richness of data collected.  

1.2 Fluorimetry 

  The first measurement of in vivo fluorescence was made by Lorenzen (1966) and applied 

as a proxy for phytoplankton biomass. By the 1970s, commercial instruments were available to 

measure in situ fluorescence, and these have become increasingly common on oceanographic and 

limnological investigations (Falkowski and Raven 1997). Recent technological advances and 

progress in understanding in vivo fluorescence have provided an array of tools to assess the 

biomass and physiology of phytoplankton, particularly as it relates to the primary site of 

photochemistry; photosystem II (PSII) (Falkowski 1992). Located in the thylakoid membrance of 

plants, algae and cyanobacteria, PSII is the first protein complex in the light dependent reactions 

of photosynthesis (Hopkins 1999). Electron transport begins with the arrival of excitation energy 

at the PSII reaction center chlorophyll, P680. The excited form of P680, (P680
*) is rapidly photo-

oxidized (10-12 s) as it passes an electron to pheophytin (Pheo). This initial photochemical act 

results in the formation of P680
+ and Pheo-, a charge separation. This charge separation effectively 

stores light energy as redox energy and represents the actual conversion of light energy to 

chemical energy (Hopkins 1999). The charge separation is subsequently stabilized by the passing 

of an electron from Pheo to a primary quinine acceptor (QA) and then to plastoquinone (PQ) that 
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binds transiently to the QB binding site on the D1 protein. The reduction of PQ to PQH2 reduces 

its affinity to the binding site (QB). Platoquinol (PQH2) is subsequently released and replaced by 

another PQ molecule. The initial charge separation that created P680
+ is stabilized by the 

extraction of electrons from a molecule of water (H2O), supplied by the adjacent oxygen evolving 

complex (OEC). Each excitation of P680 is followed by withdrawal of one electron from the OEC. 

When four successive positive charges have accumulated, two molecules of H2O are oxidized, 

resulting in the expulsion of 4 H+, and evolution of one O2.  

Fast repetition rate fluorometry (FRRF) was developed to measure the above process in 

phytoplankton and derive photosynthetic parameters, in situ, in a rapid and non-destructive 

manner. The mechanistic model and operational protocols for the FRRF have been developed and 

discussed in detail in Kolber and Falkowski (1993) and Kolber et al. (1998). While primarily used 

to estimate phytoplankton photosynthesis, the FRRF provides the ability to measure several 

physiological parameters that may be useful in determining physiological responses of 

phytoplankton communities to environmental factors. The ratio of Fv/Fm (where Fv = Fm- F0; F0 is 

the minimum level of fluorescence, and Fm is the maximum level of fluorescence) is a measure 

the maximum quantum efficiency of photosystem II (Kolber et al. 1998). For the purpose of 

FRRF work, when Fv/Fm is equal to 0.65, it is assumed that 100% of PSII reaction centers are 

functional (Kolber et al. 1998). Variability in Fv/Fm is associated with the physiological state of 

the phytoplankton (Olaizola et al. 1994) and has been linked to nitrogen and iron availability in 

the oceans (Kolber et al. 1990,  Greene et al. 1994) and nitrogen, silicate and phosphorus 

limitation in cultures (Berges et al. 1996, Lippemeier et al. 1999, Beardall et al. 2001). The 

measurement frequency of the FRRF allows for an estimation of the functional absorption cross 

section of photosystem II (σPSII), which is mathematically described as the slope of the 

fluorescence induction curve F0 to Fm by fitting an exponential curve to the data (Kolber and 

Falkowski 1993; Figure 1.2). σPSII indicates the efficiency with which light is intercepted by the 

phytoplankton. Higher values of σPSII are associated with phytoplankton which have been 

growing at low light intensities, as the phytoplankton increase their photochemical ‘target size’ to 

maximize light absorption (Kolber et al. 1988). In contrast, σPSII has been shown to decrease at 

higher growth irradiance, which has been linked to an increase in the proportion of pigments that 

absorb, but do not transfer energy to PSII (Ley and Mauzerall 1982, Kolber et al. 1988). σPSII has 

also been shown to increase under both nitrogen (Berges et al.1996, Kolber et al. 1988) and iron 

starvation (Greene et al. 1991). The increase in σPSII under nutrient limiting conditions has been 

linked to a decline in the number of functional reaction centers, causing a more rapid saturation of 

operational reaction centers from the antenna complex (Falkowski 1992).  



 

  

 

8 

 The principal advantage of the FRRF is that it provides a high resolution method to 

characterize vertical, horizontal and temporal scales of variability of photosynthetic processes 

(Kolber and Falkowski 1993). FRRF can resolve small spatial (on the order of meters) and 

temporal (on the order of seconds) scales of variability compared to tens of meters and hours to 

days for more traditional methods of assessing photosynthesis (e.g., C14 or 18O2) or nutrient stress. 

When deployed on a towed sensor platform or connected to an online water stream, the FRRF can 

measure photosynthetic efficiency of phytoplankton continuously. This capability is particularly 

useful for areas such as estuaries or near tributaries where strong gradients in environmental 

conditions may exist. 
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Figure 1.2. Kinetic profile of a single turnover flash as induced and detected by a FRR 
fluorometer. Parameters of interest to this thesis; F0, Fm, Fv, σPSII are noted on the figure. Adapted 
from Kolber et al. (1998).
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1.3 Geostatistics 

Geostatistical methods have been a staple of the mining communities for several decades 

(Journel and Huijbergts 1978), but have been increasingly applied to ecological studies to 

examine population distributions of fish (Maravelias et al. 1996, Mello and Rose 2005), 

invertebrates (Rufino et al. 2005), protozoa (Bulit et al. 2003), soft sediment communities (Hewitt 

et al. 2004), and vegetation (Kendrick et al. 2008). Until recently, the most common factor 

limiting the application of geostatistical methods to ecological data was simply the relatively low 

ratio of samples collected to study area size (Rufino et al. 2005). With the advent of GPS 

technology, it is possible to generate high resolution geo-referenced data which provides a near 

continuous data stream when combined with certain instrumentation with a high rate of data 

acquisition (Sabol et al. 2002a). Accordingly, this type of data often exhibits small scale variation 

that can be modeled (structural analysis and variograms) as spatial correlation. This information 

can then be incorporated into estimation procedures (kriging) to estimate the variables of interest 

and create maps of spatial distributions (e.g., Guan et al. 1999, Valley and Drake 2006).  

1.3.1 Geostatistical theory 

In their basic form, all geo-statistical methods assume some form of stationarity in order 

to comply with the underlying theory of regionalized variables (Journel and Huijbergts 1978). A 

regionalized variable is one whose value is dependent on its position. The variation in the 

regionalized space is generally random, but some regularity (e.g., spatial structure) is imposed on 

it, reflecting a certain amount of continuity that exists in the spatial distribution of that variable 

(Matheron 1963). The assumption of stationarity implies that the sample values observed in a 2 or 

3 dimensional space are simply different realizations of the same random variable (e.g., the 

sample values come from the same distribution). Different types of stationarity may be assumed 

depending on the data in question (for a definition and complete presentation of the theory of 

regionalized variables and intrinsic random functions see Journel and Huijbergts (1978) and 

Matheron (1963)). Stationarity is however, a rather ambiguous concept and the presence of 

stationarity may be dependent on the circumstances of the study itself (e.g., small vs large study 

area), and may indeed be violated in the presence of any ecologically important gradient in the 

landscape (Cressie 1986). For example, due to physical forcing by wind and wave action, 

sediments are likely to be distributed in a gradient in an inshore to offshore direction with coarser, 

more stable sediments close to shore (such as rocks and pebbles), and smaller, fine-grained 

sediment in deeper water (such as silt and mud). Langmuir circulation cells can distribute 
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phytoplankton in elongated patches that are of similar sizes to the Langmuir cells (Checkley 

2000), and lake currents and upwelling can distribute zooplankton in heterogeneous patches (e.g., 

Megard et al. 1997). These examples violate the assumption of stationarity, which implies a 

spatially constant mean and variance.  

Even if stationarity is not clearly violated, spatial autocorrelation may be stronger and 

extend further in a particular direction. As a result, the variation can be considered anisotropic 

(e.g., not uniform in all directions). More complicated problems arise when standard distance 

metrics are not appropriate, for example, in the presence of landscape barriers (e.g., stream 

networks or embayments; Jensen and Miller 2005). Strictly speaking, the assumption of 

stationarity concerns the underlying process and not the observed pattern, thus stationarity 

cannot be tested directly (Cressie 1986). Nonetheless, checking for possible violations of 

stationarity is an integral part of performing geostatstical analyses.  

1.3.2  Structural Analysis 

In order to assess the degree of spatial autocorrelation and evaluate the potential for non-

stationary data, the first step is to compute the experimental semivariongram. The semivariogram 

γ(x,x+h) or γ(h), is defined as half the average squared difference between points separated by a 

distance vector (h) (Cressie 1991). The classical empirical semivariogram is described as in 

equation (1.1); 
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where γ(h) is the semivariance at each lag (separation distance), h, N(h) is the number of point 

pairs separated by the given lag, and Z(xi) and Z(xi+h) are data values at locations (xi) and (xi + h) 

respectively. By definition, the semivariogram value at zero lag should be zero, but in practice it 

usually intercepts the y axis at a positive value known as the nugget variance (C0). The nugget 

represents measurement error and unexplained or random spatial variation at distances smaller 

than the shortest sampling interval. The semivariance value where the semivariogram plateaus is 

called the sill (C), and the lag distance (α), at which the semivariance levels off, is called the 

range, beyond which there is no longer spatial correlation, and thus, no longer spatial dependence. 

A finite constant variance will always result in the presence of a sill, whereas continued increase 

in the semivariance with distance may indicate a spatial trend in the mean, possibly coupled with 

dependence of the variance on the mean, resulting in a non stationary process (Cressie 1991). The 

difference between the nugget (C0) and the sill (C) is called the structural variance, representing 

the variance accounted for by the spatial dependence. 
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The classical variogram is the most widely used in geostatistical applications, yet it has 

many weaknesses (Emery and Ortiz 2007). Perhaps the most critical is that it uses squared 

increments and is not resistant to the presence of outliers or highly non-normal data distributions 

(Cressie and Hawkins 1980). Numerous authors have proposed a variety of solutions; Cressie and 

Hawkins (1980) advocate the use of the “robust” variogram estimator, which is based on the 

fourth power of the square root of absolute differences as in equation (1.2); 
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This particular semivariogram estimator is robust to contamination by outliers, greatly enhances 

semivariogram continuity and has been successfully used to model spatial distributions of animal 

densities, which often have data sets characterized by overdispersion and non-normal 

distributions (Maravelias et al. 1996, Rufino et al. 2005). Other authors advocate transformation 

of the data (e.g., to normal scores, indicator data, or logarithmic transforms) to solve the problem 

of outliers and non-normal distributions. However, in applied studies, log transformed or normal 

score data are difficult to back transform to the original scale of measurement, and can generate 

unrealistic negative values when back transformed, rendering interpretation difficult (Rufino et al. 

2005). 
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Figure 1.3. Idealized spatial covariance model depicting semivariance (γ) as a function of lag 
distance (h). Nugget (C0) indicates the nugget effect, the sill (C) indicates the maximum 
semivariance, and (α) indicates the range of autocorrelation. The curved line represents a valid 
semivariogram model. 
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1.3.3  Variogram model fitting 

 Once the experimental semivariogram has been constructed, then next step is to fit a valid 

model to the experimental data, in order to characterize the semivariance at lag distances that are 

not covered by the data themselves. There are a number of valid models, and depending on the 

scope of the work and desired outcome, there are methods by which to test which model is most 

appropriate (e.g., n-fold cross-validation). Two of the three more common models are the 

spherical and exponential model. These two models in terms of the semivariogram are given in 

equation (1.3; spherical model) and equation (1.4; exponential model); 
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 Here, C is the sill of the semivariogram that represents the maximal variation (Cs for the 

spherical model and Ce for the exponential model), α is the range of the semivariogram beyond 

which data are no longer autocorrelated (αs and αe as before), and C0 is the nugget effect. A 

semivariogram model can also be nested, i.e. it can be a combination of two or more component 

models such as nugget and exponential. Most semivariograms are nested in this manner, although 

more complex models (e.g., a double spherical with nugget) are sometimes used. Semivariogram 

models are generally fit using a weighted least squares (WLS) method of Cressie (1991), though 

other options are available (Pebesma 2004). The WLS method applies more weight to lags close 

to the origin and to semivariance estimates that have a large number of point pairs. The WLS 

procedure thus ensures that a good fit is achieved near the origin, an important precursor to using 

the semivariogram model for prediction in kriging.  

1.3.4 Kriging  

Kriging is a generalized least squares regression technique that makes optimal, unbiased 

predictions at un-sampled locations by accounting for the spatial dependence between 

observations, relying on a weighting scheme where closer samples have more weight on the final 

prediction (Webster and Oliver 2001). In kriging, the weights are chosen so that the estimate of 

the true value of Z(x) is unbiased and the prediction variance σ2
(xi) is minimized. That is; 

0)]()(ˆ[ =− ii xZxZE         (1.5) 



 

  

 

15 

and  

min)]()(ˆvar[)(2 =−= iii xZxZxσ       (1.6) 

The weighting scheme is dictated by the semivariogram, which defines the spatial 

structure of the data (Cressie 1991). To ensure that the prediction is unbiased, the weights placed 

on each neighboring point must satisfy 
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And their unique combination for which the variance σ2
(xi) is minimized can be obtained when  
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where ω is a Lagrange multiplier. The values γ(xi-xj) and γ(xo-xj) are the semivariances between 

the observation points xi and xj and between the point to be interpolated and the jth observation 

point respectively. The solution of equations 1.6 and 1.7 provide the weights for estimating Z(xo) 

from the following equation; 
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The prediction error variance can be determined by solving  
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The function γ(h) (See equations 1.3 and 1.4) from which values are used in equation (1.8) are 

derived from the fitted semivariogram model (Cressie 1991).    

Within the kriging equations, each measurement Z(xi)  is interpreted as a particular 

realization of a random variable Z(x), or more simply, estimating an unknown value of Z at the 

un-sampled location xi as a linear combination of neighboring points (Isaaks and Srivastava 

1989). Different kriging variants can be distinguished according to whether the mean component 

µ(x) is assumed constant or spatially variable. The simplest kriging method is when the mean is 

constant and known (Simple kriging; SK, Webster and Oliver 2001). When the mean is constant 

and unknown, ordinary kriging (OK) is used to estimate the unknown value of x at any location 

(equation 1.11). 
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Alternatively, the mean component can be modeled as spatially variable by expressing it 

as a function of auxillary variables (predictors) that vary in space. Universal kriging (UK; 
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Webster and Oliver 2001), kriging with external drift (KED; Goovaerts 1999), regression kriging 

(RK; Hengl et al. 2004), and cokriging (CK; Webster and Oliver 2001) are all methods that allow 

for spatial modeling steps. Universal kriging can be applied when the predictors form a linear 

relationship with the target variable, though most authors agree that UK should be reserved for 

the case where the drift is modeled as a function of coordinates only (Hengl et al. 2004). Kriging 

with external drift refers to the case where the drift is provided by external predictors. Both UK 

and KED have the same formulation, such that the trend and residuals are modeled and solved 

concurrently (Minasny and McBratney 2007).  

Regression kriging (RK) or “kriging after detrending” is a hybrid technique that involves 

regression on auxiliary information and then simple kriging (SK) with known mean 

(0) to interpolate the residuals from the regression model (Odeh et al. 1995, Hengl et al. 2004). 

RK assumes only that there is a linear relationship between the target variable and the covariate 

(Hengl et al. 2004). Several studies have shown that these hybrid techniques can give better 

predictions than single approaches (Bishop and McBratney 2001, Yemefack et al. 2005). Hybrid 

interpolators have been used to model spatial variability in tropical rainforest soils (Yemefack et 

al. 2005), abundance of fish in the ocean (Rivoirard 2002) and rainfall erosivity (Goovaerts 

1999). The explicit advantage of RK is the ability to extend the method to a broader range of 

regression techniques, including generalized linear models, and to allow separate interpretation of 

the two interpolated components (Hengl et al. 2007). Hengl et al. (2004) provide a generic 

framework for regression kriging, which involves modeling the trend function using ordinary 

least squares (OLS), and ordinary kriging is performed on the residuals of the trend function. The 

assumption is that where the trend function and its residuals are uncorrelated, they can be 

modeled independently (Odeh et al. 1995). Gotway and Stroup (1997) extend this method to 

Generalized Linear Models (GLM), where the trend can be defined as a generalized linear model. 

However, this assumption in the method also gives rise to the principal disadvantage of RK and 

KED; the assumption that the trend function and residuals are independent (Hengl et al. 2004). 

For unbiased model coefficients, the regression model should be estimated from a generalized 

least squares (GLS) method that accounts for autocorrelation of the residuals. To do so, however, 

requires the covariance function of the residuals, which can only be estimated after the model 

coefficients are defined, thus creating a “chicken or egg” problem. Fortunately, a single iteration 

using ordinary least squares (OLS) is often satisfactory, provided enough data exists and the 

sample spacing is somewhat regular (Minasny and McBratney 2007).  

UK, KED and RK are essentially equivalent methods, and should yield the same 

predictions (Hengl et al. 2004). Cokriging (CK) is often used when a more numerous (and 
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inexpensively sampled) variable is used to aid in predicting the distribution of a second, less 

numerous (and likely more costly) variable. CK in the presence of exhaustive ancillary data can 

not only be awkward, but requires heavy computation for large data sets (Minasny and 

McBratney 2007). UK, KED and RK are less computationally intensive, but require full data 

coverage.  

It is important to note that kriging is normally done at the level of data support (i.e. 

points). However, there is often a need or a desire to scale up to a specific sized unit (Gotway 

Crawford and Young 2005). Changing the support of the variable (typically by averaging or 

aggregation) creates a new variable, related to the original one, but that has different statistical 

and spatial properties, and methods have been developed to incorporate changes of support since 

the early 1960s (e.g., Matheron 1963). Most practical applications that use them have data of 

point support, and the goal is to upscale and predict the average value Z for a specific block size. 

If the block size is rectangular, integrations can be done quickly and simply (Gotway Crawford 

and Young 2005).   
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Here, Z(B) is the prediction of the average value of Z over a discrete block of size D from the n 

observations of Z(xi) using the weights λi (Webster and Oliver 2001). Importantly, the variability 

in Z(B) decreases as the size of B increases. Therefore, prediction and estimation procedures must 

take this into account.  

1.4 Organization of the thesis 

This thesis is comprised of six data chapters, each written as a discrete study. In Chapter 

2, the ability of a high frequency echosounder to detect and characterize the filamentous alga 

Cladophora was evaluated. The principal objective for this chapter was to define a method that 

could be used to rapidly sample and adequately characterize Cladophora growth in the Great 

Lakes near shore areas to answer research questions posed in subsequent chapters. The contents of 

this chapter have been published in Limnology and Oceanography Methods.  

In Chapter 3, the hydroacoustic methodology was utilized to map the distribution of 

Cladophora along selected shorelines of the Great Lakes. Due to the geographical location of the 

sites and the time needed to survey a representative segment of shoreline, only two visits per site 

could be completed, one during the spring, and one during the summer. The objective of this 

chapter were to contrast the patterns of Cladophora growth along shorelines characterized by a 

range of catchment and coastal land uses, nutrient conditions and dreissenid mussel abundance to 
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assess the relative importance of these factors to contemporary patterns of Cladophora growth in 

the Great Lakes.  

In Chapter 4, similar acoustic surveys were conducted at two highly urbanized shorelines 

in Lake Ontario. The objective of this chapter was to characterize the spatial patterns of 

Cladophora growth on a finer scale along these highly urbanized shorelines. I hypothesized that, 

if increased nutrient input from urbanized areas was responsible for driving Cladophora growth, 

consistent and coherent patterns of Cladophora growth should present near potential shoreline 

sources of nutrients such as tributaries and storm sewers. Relationships between Cladophora 

growth and municipal outfalls was also examined given the recent concern over increasing 

nutrient loading from municipal waste water treatment plants (WWTP) as urban populations 

increase in size and density. Repeated surveys of these shorelines at a much higher spatial 

resolution than was used in chapter 3 allowed for a description of seasonal patterns as well.   

 In Chapter 5, spatial surveys at the Oakville site were undertaken to evaluate spatial 

patterns of variability in a near shore area of Lake Ontario. Such work has not yet been done for 

near shore zones, and the methods employed were designed to characterize relevant scales of 

variation of phytoplankton photosynthetic efficiency, attendant nutrient status and elucidate some 

potential controls of spatial variation. Additionally, I hypothesized that the seasonal development 

of Cladophora would also impart a characteristic signal on the water column and further structure 

spatial variability. Tracers for water masses, phytoplankton physiology and composition (FRRF, 

Floroprobe) and algal metabolism (O2 and pCO2), in addition to acoustic measures of Cladophora 

cover and height were used to assess the patterns of spatial variation at two contrasting times of 

low and high Cladophora cover. 

In Chapter 6, the acoustic survey methods developed in Chapter 2, 3 and 4 were applied 

to selected littoral areas of Lake Simcoe. Lake Simcoe was invaded by dreissenid mussels in the 

mid 1990’s and based on the similarities between the nutrient chemistry, dreissenid colonization 

and subsequent monitoring conducted by the MOE, I hypothesized that Cladophora would reach 

comparable biomass in Lake Simcoe as in the lower Great Lakes as shown in chapters 3 and 4. A 

finding of excessive Cladophora growth at these sites would provide further support for the near 

shore shunt hypothesis developed for the Great Lakes (Hecky et al. 2004). 

In Chapter 7, a further analysis of benthic plant growth in Lake Simcoe was undertaken. 

Here, two acoustic surveys were conducted in Cook’s Bay to assess the response of the 

macrophyte community to the dreissenid invasion. Previous acoustic surveys were conducted in 

the 1980s, prior to reductions in nutrient loading and dreissenid invasion. This therefore provided 
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a unique opportunity to assess changes that could be directly attributed to dreissenid mussels, 

rather than the additive effects of mussels and nutrient loading.
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Chapter 2 

Pushing the envelope: detection and characterization of a filamentous 

alga (Cladophora sp.) on rocky substrata using a high frequency 

echosounder 

2.1 Overview 

A high frequency echosounder was used to detect and characterize percent cover and 

stand height of the benthic filamentous green alga Cladophora on rocky substratum of the 

Laurentian Great Lakes. Comparisons between in situ observations and estimates of the algal 

stand characteristics (percent cover, stand height) derived from the acoustic data show good 

agreement for algal stands that exceeded the height threshold for detection by acoustics (~ 7.5 

cm). Backscatter intensity and volume scattering strength were unable to provide any predictive 

power for estimating algal biomass. A comparative analysis between the only current commercial 

software (EcoSAVTM) and an alternate method using a graphical user interface (GUI) written in 

MATLAB® confirmed previous findings that EcoSAV functions poorly in conditions where the 

substrate is uneven and bottom depth changes rapidly. The GUI method uses a signal processing 

algorithm similar to that of EcoSAV but bases bottom depth classification and algal stand height 

classification on adjustable thresholds that can be visualized by a trained analyst. This study 

documents the successful characterization of nuisance quantities of filamentous algae on hard 

substrate using an acoustic system demonstrates the potential to significantly increase the 

efficiency of collecting information on the distribution of nuisance macroalgae. This study also 

highlights the need for further development of more flexible classification algorithms that can be 

used in a variety of aquatic ecosystems.
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2.2 Introduction 

The attached filamentous green macroalga Cladophora is a well-known indicator species of 

cultural eutrophication in the Laurentian Great Lakes (Shear and Konasewich 1975). During the 

1950s through 1970s, Cladophora growth in the rocky littoral areas and other submerged hard 

surfaces in the lower lakes (Michigan, Erie, and Ontario) was prolific and supported mainly by 

elevated lake-wide nutrient concentrations. In the upper lakes (Huron and Superior) ambient nutrient 

concentrations were not sufficient to support extensive growth, and Cladophora was principally 

associated with point source discharges of nutrients (e.g., sewage treatment plants, tributaries; Auer et 

al. 1982). Extensive research into the controlling factors of Cladophora growth (Auer et al. 1982) and 

subsequent phosphorus control legislation introduced in the late 1970s was largely successful at 

reducing the growth of Cladophora to levels that were no longer considered a nuisance (Higgins et al. 

2008). In recent years, however, Lakes Erie (Higgins et al. 2005a), Ontario (DeJong 2000, Malkin et 

al. 2008) and Michigan (Olapade et al. 2006) have all experienced an increase in shoreline fouling by 

Cladophora and recent studies have found that biomass in many areas can exceed 100 g m-2 of dry 

mass (Higgins et al. 2005a, Malkin et al. 2008).  

The many problems associated with nuisance Cladophora growth and the desire for effective 

management, have triggered renewed interest into the ecology of Cladophora in the Great Lakes 

(Higgins et al. 2008). In particular, little is known about the spatial distribution of nuisance crops of 

Cladophora in the littoral zones of the Great Lakes except that which is collected by SCUBA diving 

or shoreline sampling to wading depths. Although quadrat sampling by SCUBA tends to be more 

accurate than other quantitative methods, it remains a costly and time consuming effort (Duarte 1987) 

and does not provide enough data for large scale synoptic assessments of spatial patterns, especially 

in large systems (Wezernak and Lyzenga 1975). Remote sensing and other optical methods such as 

aerial photo interpretation (Zhu et al. 2007) can provide a more spatially extensive assessment, but 

image interpretation and the accuracy of spatial characterization depend heavily on uncontrollable 

factors such as water clarity, surface roughness and cloud cover (Vis et al. 2003). In the Great Lakes, 

the invasion by dreissenid mussels in the mid 1980s to 1990s has been credited with greatly 

increasing water clarity (e.g., Binding et al. 2007), and shell material from both live and dead mussels 

has created additional hard substrate for Cladophora attachment (Hecky et al. 2004). The net effect of 

these changes has been to dramatically increase the potential depth range and areal coverage for 

Cladophora to colonize and grow (Higgins et al. 2005a, Malkin et al. 2008). Furthermore, since 
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Cladophora growth mostly occurs in high energy, exposed near shore areas, excessive surface 

roughness and the presence of tributary plumes and sediment resuspension renders the use of remote 

sensing technology difficult (Budd et al. 2001).  

 One method that is not encumbered by limitations inherent to the time-consuming, laborious 

manualt methods or limitations and incertainty imposed by environmental conditions is the use of 

hydroacoustics to measure the amount of acoustic energy scattered by vegetation (Sabol et al. 2002a). 

Coupled with recent advances in GPS technology and acoustic signal processing, hydroacoustics 

provide a rapid and efficient means to collect data over large areas with significant spatial resolution 

(Sabol et al. 2002a). Such information would be of considerable value for delineating the spatial 

distribution of Cladophora or other unwanted vegetation, particularly for evaluating growth patterns 

as they relate to potential nutrient sources, or important infrastructure such as water intakes or public 

beaches.  

Proper interpretation of acoustic data requires an understanding of the scattering processes 

occurring within the water column and at the lake bottom. In addition to vegetation, other scattering 

sources are often present in the water: fish (Rudstam et al. 2003), zooplankton (Gal et al. 1999), 

bubbles (Ostrovsky 2003), currents (Pawlowicz 2002), and gradients of salinity or temperature 

(Medwin and Clay 1998). The reflection of acoustic energy by vegetation arises from the density and 

speed of sound contrasts as the acoustic wave crosses the medium. For example, many species of 

vascular macrophytes (e.g., Myriophyllum spicatum), marine macroalgae (e.g., Laminaria sp.) and 

seagrasses (e.g., Zostera sp.,) contain gas vacuoles or inclusions within the tissues that strongly 

scatter acoustic energy (Hohausova et al. 2008). Consenquently, this has been exploited in freshwater 

(Duarte 1987, Thomas et al. 1990) and marine (Sabol and Burczynski 1998, Warren and Peterson 

2007) systems.  Considerably less information exists about the scattering properties of vegetation that 

do not contain gas inclusions (e.g., filamentous macroalgae such as Cladophora), yet their presence 

has been recorded in acoustic surveys (Riegl et al. 2005).  

For vegetation that does not contain such sharp density contrasts within their tissues, the critical 

acoustical properties likely depend on the density and elasticity contrasts between the organism and 

the medium, similar to zooplankton (Holliday and Pieper 1995). Formation of oxygen bubbles during 

photosynthesis will also greatly influence the scattering of sound (Hermand 2006). So far, only one 

controlled laboratory study (Carbó et al. 1997) has empirically examined the acoustical properties of a 

macroalga. This study confirmed that while the density (g mL-1) of the sesquipedale seaweed 
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Gelidium is only marginally greater than that of water, stands of Gelidium scattered acoustic energy 

in proportion to the stand thickness, allowing for detection at frequencies exceeding 200 kHz.   

 The objectives of this study are twofold. First, I sought to evaluate the ability of a high-

frequency echo sounder to detect nuisance stands of Cladophora commonly found growing on rocky 

substratum in the lower Great Lakes. Second, I sought to evaluate the performance of the only 

commercially available software (EcoSAV; BioSonics) and an alternate method of acoustic data 

analysis and classification via a graphical user interface (GUI) written in MATLAB, based on the 

processing algorithm of EcoSAV (e.g., Stevens et al. 2008) for generating estimates of percent cover 

and algal stand height. Processed acoustic data are compared with corresponding ground truth data 

collected by SCUBA or snorkeling from selected locations in Lake Ontario. The system and data 

processing steps are discussed and accuracy and performance examined by comparison with the 

physical data. 

2.3 Materials and Procedures 

2.3.1 Study sites 

Surveys to assess algal abundance were conducted at two sites in western Lake Ontario in 

water depths ranging from 1 to 10 m during the summer months of 2007 and 2008 (Figure 2.1). The 

substratum at the Oakville site was primarily rock, but varied in composition and size from flat 

bedrock expanses to boulders and small cobble/gravel mixtures. The Pickering site was characterized 

by a more diverse substrate assemblage that included fine grained sand and consolidated clay in 

depositional areas near tributary mouths and embayments. At Pickering, acoustic data collection was 

restricted to areas with rocky substratum, as Cladophora is rarely found growing attached to soft 

substrate (Whitton 1970).  

2.3.2 Acoustic data collection 

Acoustic data were collected during daytime hours (0900 - 1800) using a downward looking 

BioSonics single beam echosounder mounted on a 2-m adjustable aluminum sliding mount affixed to 

the side of the vessel by a series of clamps and bolts. The transducer was positioned 0.2 – 0.25 m 

below the surface of the water. The transducer had a beam angle of 10.2˚ (full beam angle) and a 

working frequency of 430 kHz (Source Level = 213 dB re 1 µPa at 1 m). A BioSonics DTX system 

running Visual Acquisition 5.1 was used to control the echosounder with a pulse width of 0.1 ms, and 
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a ping rate between 5 and 8 Hz at full power transmission. The ping rate was increased to allow 

characterization of the bottom roughness. Full power transmission was required for depths beyond 7-

8 m, as the decline in the signal-to-noise ratio caused background noise to approach the desired 

threshold for analysis. Due to the use of full power transmission, some saturation of the acoustic 

signal in shallow depths (< 2 m) was noted, but this was not severe enough to interfere with 

characterization of the SAV signal. Acoustic data were recorded from 0.4 to 0.5 m from the 

transducer face (e.g., outside the transducer nearfield) to 50 % beyond the bottom depth as 

determined by an on board depth sounder (Garmin Fishfinder 90). Positional data were provided by a 

JRC 212 DGPS with positional accuracy of better than 5 m and a fix update interval of 1 s. Both the 

acoustic and GPS data were stored on a laptop PC. Algal canopy height and percent cover were 

quantified during post processing using two signal processing techniques described in the next 

section. The acoustic transducer was calibrated prior to this study with the use of a 17 mm tungsten 

carbide sphere with a target strength (TS) of -46.2 dB with a sound velocity in water of 1440 m s-1. 
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Figure 2.1. Map of Lake Ontario showing the sites of acoustic ground truthing. Inset panel A: 
Oakville, Inset Panel B: Pickering. Hatched boxes indicate approximate locations of ground truth 
stations and transects.
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2.3.3 Ground truthing sample collection   

  Direct measurements of algal canopy height, percent cover, and biomass were made by 

divers, sampling quadrats for stand cover, height and biomass at select locations for comparison 

with acoustic estimates (these were also collected during daylight hours). The first approach was 

similar to methods described in Sabol et al. (2002a) and Valley and Drake (2006). Acoustic 

methods are not immune to environmental conditions affecting the quality of data collected. In 

large systems, a common source of acoustic interference is entrained air (Kubecka 1996). Bubble 

induced acoustic noise can mask the presence of submerged vegetation by raising the ambient 

noise level to that used to characterize the canopy tops (Sabol et al. 2002b). Because the near 

shore areas of the Laurentian Great Lakes are high energy environments, excessive water column 

noise is a potential concern. To minimize this, acoustic data were collected on days when wind 

speed and/or direction were favorable for quiescent conditions. 

Acoustic data were collected while the transducer (and vessel) remained at anchor over a 

fixed position. A distinct area of the bottom was ensonified for ~ 100 - 200 pings while slowly 

sweeping the transducer back and forth and holding the transducer at a horizontal level. After 

ensonification was complete, divers placed a 0.25 m2 or a 0.0625 m2 quadrat over the centroid of 

the ensonified area, measured the height of the algal mat at three random locations (to the nearest 

0.01 m), visually estimated the percent cover to the nearest 10%, and harvested all the biomass 

from within the quadrat using an airlift suction device (Barton and Hynes 1978) or by hand. 

These quantitative quadrat methods have been employed in the Great Lakes for numerous studies 

(e.g., Higgins et al. 2005a).  

Acoustic data for estimating vegetation abundance are typically collected over continuous 

distances with the vessel underway. Therefore, a second approach incorporating vessel motion 

was adopted to complement the data collected while the vessel was at anchor.  Several short 

randomly selected transects (50 – 200 m) were surveyed acoustically at a low speed (~ 1-3 m s-1), 

and weighted buoys were dropped at 3 – 4 locations along the transect. The weights were dropped 

as close to the transducer beam path as possible without interfering with the data collection, and 

the approximate ping window (± 50 pings) where the buoy was dropped was recorded. Upon 

completion of the transect, divers measured algal bed characteristics and harvested algal biomass 

at each buoy location as outlined above. Upon return to the laboratory, algal material was washed 

in a mesh sieve (pore size ~ 500 µm) to remove debris and invertebrates and dried in a drying 

oven at 65 °C for one week. Dried algal material was weighed to the nearest 0.01 g and the 

biomass per unit area in each quadrat was calculated as g m-2. All of the ground truth data were 
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compiled into a single database for comparison against acoustic data regardless of the method of 

collection. 

2.3.4 Acoustic Data Analysis  

 A single-beam echosounder functions by emitting a short burst of sound (ping) and 

recording the sound that is reflected back to the receiver (echoes). The intensity of the reflected 

sound (backscatter intensity) is recorded at a series of time intervals, resulting in a profile of 

acoustic backscatter intensity versus time. The distance between the transducer and the objects in 

the water (range) is calculated based on the elapsed time and the speed of sound in water. As the 

vessel navigates along survey lines, data from successive pings are recorded, resulting in a two-

dimensional (ping number, or distance along transect, and range, or depth below the echosounder) 

record of backscatter intensity (Figure 2.2). 

Detection of vegetation in echosounder data relies on distinct differences in the acoustic 

signal between vegetated and unvegetated surfaces. Vegetation in single-beam acoustic data is 

generally visible as a contiguous vertical echo return immediately above the bottom, which is 

characterized by backscatter intensity weaker than the backscatter from the substrate but stronger 

than the backscatter of the water column. The basic algorithm is straightforward. For each ping, 

the range (depth) of the first strong return is determined using a user-specified threshold. Next, 

the algorithm finds the bottom depth, which is typically the strongest return in the backscatter 

profile. The region between the first strong return and the bottom is considered the bottom 

envelope. A ping is classified as “vegetated” or “bare” based on the thickness of the bottom 

envelope.  If the bottom envelope for a given ping is wider than a user-specified minimum plant 

height, the ping is classified as “vegetated”, otherwise the bottom is considered “bare”. This 

process is repeated for a series of pings that are bounded by GPS records. Once complete, 

summary statistics are computed for the cycle of pings, percent cover is determined by the 

number of vegetated pings divided by the total pings in the cycle, and the average height of the 

canopy estimated from those positively classified pings is computed. This process is repeated 

until the end of the file is reached. 

2.3.5 Estimation of percent cover and canopy height 

The presence and height of vegetation at the two study sites were quantified from the 

acoustic data using a pre-release version of the commercial software EcoSAV v2.0 (BioSonics 

Inc. 2004a), and a graphical user interface (GUI) created in Matlab (Stevens et al. 2008). The pre-

release version of EcoSAV was necessary because the first version (v1.0) does not allow 
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thresholds for vegetation detection to be set lower than -80 dB (BioSonics Inc. 2001, see below). 

Unfortunately, the pre-release version of EcoSAV v2.0 is not yet configured to process data from 

multiplexed transducers, thus the performance between the two systems when only one 

transducer was connected (19 July 2007; Oakville site only) could be used to compare output 

from both software. The EcoSAV v2.0 algorithm classifies acoustic data that are corrected for 

one-way transmission loss (20 log R) time varied gain (TVG) to the raw acoustic data before 

analysis. The GUI was configured to allow for analysis of both raw data or TVG corrected data 

(20 log R or 40 log R) as specified in BioSonics Inc. (2004b). For comparisons with EcoSAV, all 

analyses were conducted using 20 log R TVG, and hereafter, backscatter intensity shall refer to 

20 log R corrected backscatter intensity unless otherwise explicitly stated.  

The quantification of plant abundance and height in both algorithms is controlled largely 

by two adjustable parameters: the classification threshold (noise level above ambient where plant 

canopy is detected) and the minimum plant height. A classification threshold for Cladophora 

canopy between -86 to -88 dB was selected for three reasons. First and principally, this value was 

selected based on visual inspection of echograms which suggested a value in this range would be 

appropriate to identify the algal canopy without substantial interference from water column noise 

(~ -100 to -120 dB). Second, due to the absence of gas inclusions in Cladophora tissue, it was 

hypothesized that the acoustic backscatter associated with stands of Cladophora would be of 

lower energy than that associated with vascular macrophytes, for which a value of -65 dB has 

been successfully applied (Sabol et al. 2002a,  Valley and Drake 2006;  Istvanovics et al. 2008). 

Third, a controlled laboratory experiment with the sesquipedale seaweed Gelidium estimated the 

target strength of a single plant at -70 dB re 1 m2 (Carbó and Molero 1997). Mats of Gelidium  

are morphologically similar to mats of Cladophora  on a macroscopic level, averaging 20 cm in 

height (Carbó and Molero 1997), although the filament diameter of Gelidium (~2 mm; Carbó and 

Molero 1997) is at least an order of magnitude larger than that reported for Cladophora (~ 0.04 – 

0.1 mm; Johnson et al. 1996). 

The minimum plant height was selected based on acoustic resolution of single targets (for 

example, two separate fish, or a fish and the bottom), determined according to R = cτ/2 (i.e. speed 

of sound in medium, c, [~1500 m s-1] x pulse length, τ, [0.1ms] / 2 = 0.075 m; Simmonds and 

MacLennan 2005). Mitson (1983) termed this distance R the “acoustic dead zone” based on the 

difficulty of discriminating fish echoes from bottom echoes (Ona and Mitson 1996). How suitable 

this method is for interpreting echoes from vegetation is unclear, as plants tend to occupy the 

entire area from the canopy top right to the substrate and thus are not spatially separated from the 

bottom as a fish would be. The EcoSAV algorithm does, by default, utilize the separation distance 
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rule when setting the minimum height that must be met before the signal is classified as “plant”. 

However, the primary purpose of this is to minimize the rate of false detections as EcoSAV is 

intended to be used in an un-supervised mode (B.M. Sabol, Environmental Laboratory (EE-C), 

U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Rd., Vicksburg, MS  

39180, pers. comm.). Lacking sufficient precedent and evidence that signals from vegetation 

shorter than ~ 7.5 cm could be detected, the same level of caution was incorporated into the 

analysis of acoustic data with the GUI. Other adjustable parameters are available to control the 

extraction of vegetation information in both EcoSAV and the GUI, but their importance is not 

crucial to the results described herein. Summary output data from the GUI are identical to those 

provided by EcoSAV and consist of a record combining georeferenced location information, mid-

ping number of the cycle sequence, and the average stand height and percent cover (e.g., the 

number of plant pings in a cycle) from classified pings. The reader is referred to the previously 

mentioned literature for more details. 

2.3.6 Prediction of biomass 

 To evaluate the ability of acoustic data to predict the biomass of attached Cladophora, 

average backscatter intensity and the volume backscatter (Sv; dB) within the plant canopy for 

each classified ping was computed following BioSonics (2004b). Both measures were then 

compared against the dry biomass harvested from each quadrat.
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Figure 2.2. Sample echogram from the Oakville site in Lake Ontario showing 20 Log R corrected 
backscatter as a function of range across a 500 ping segment of a data file. Range here is 
equivalent to depth (in m), and ping number represents sequential ping numbers in a file, or 
simply, distance along a transect. 500 pings is equivalent to a distance of ~ 250 m. The lake 
bottom is the darkest feature on the echogram. Note the structural differences between flat rock 
bottom, and areas with boulders. Algal stands are represented by a weaker (lighter grey) 
scattering layer immediately above the lake bottom, but still stronger than background scattering 
(water column noise).
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2.4 Results 

A typical echogram collected in mid summer in Lake Ontario is displayed in Figure 2.2. 

Distinct differences in the acoustic signal from the substrate can be observed. Generally, the 

acoustic signal from rocky substrate ranged from moderately smooth to rough, randomly 

changing the “thickness” of the echo envelope for the bottom signal (Figure 2.2; pings 2500 to 

2800). Large expanses of bedrock sheets were also encountered, and generated a very strong 

return characterized by a very smooth, along-track bottom signal (Figure 2.2; pings 2800 to 

2850). More structurally complex substratum usually consisted of larger rocks or boulders sitting 

on top of cobble or bedrock expanses (Figure 2.2; pings 2900 to 2950), and these produce highly 

variable shaped echo envelopes.  Acoustic backscatter profiles from this area (Figure 2.3) 

revealed that the strongest acoustic return always occurred at the substratum-water interface. For 

pings classified as “bare”, minimal backscatter occurred in the water column and the bottom 

appears as a distinct peak in the backscatter profile (Figure 2.3a). For pings that were classified as 

“plant”, a distinct backscatter peak was evident above the bottom ranging in height from ~ 8 to 25 

cm (Figure 2.3b). Comparing ‘bare’ to ‘plant’ profiles shows that the plant material along this 

transect was characterized by elevated backscatter  relative to ambient backscatter in the water 

column (Figure 2.3c).  

Thirty eight ground truth samples and associated echogram files were collected between 

2007 and 2008. In 12 of the 38 cases, in situ estimates of bed height were < 7.5 cm; these cases 

were not included in subsequent analyses because the minimum allowable detection height was 

set to ~ 7.5 cm (see Materials and Methods). For the remainder of the data set, close agreement is 

evident between diver measured stand height and stand heights estimated using acoustic data and 

GUI processing (Figure 2.4a). The GUI under-estimated diver-measured bed heights by an 

average of 0.2 ± 3.9 cm (mean ± SD), but they were not significantly different from in situ 

measured heights (paired t-test, t=0.323, p>0.5, df = 25). Conversely, based on the limited 

number of comparisons with EcoSAV, EcoSAV significantly overestimated algal bed heights by 

an average of 12.5 ± 7.0 cm (paired t-test, t= -7.03, p<0.01, df=12).  For EcoSAV, height 

overestimation increased significantly as bottom depth increased (Figure 2.4b).  
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Figure 2.3. Profiles of acoustic backscatter intensity from the data displayed in Figure 2 showing 
A, profiles classified as bare rock, B, profiles classified as containing Cladophora, and C, the 
average difference between the backscatter profile of bare and vegetated bottom signals (all units 
in dB). For both A and B, the mean profile is given by the solid line.   
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Figure 2.4 a) Relationship between algal stand height estimated from acoustic data and diver 
measured stand height from the corresponding ground truth samples. Note: data recorded as zero 
acoustic height along the x-axis indicate measurable bed height in situ, but were not detected by 
EcoSAVor the GUI because they failed to meet the minimum height requirement. Dotted line 
represents 1:1 line, regression line (solid line) is StandHeightGUI=0.014 ± 0.009 + 0.83 ± 
0.056[StandHeightDiver], r

2= 0.87, p <0.0001. Regression line (dashed line) is 
StandHeightEcoSAV=0.13 ± 0.02 + 0.92 ± 0.11[StandHeightDiver], r

2=0.75, p<0.0001. Note that 
stand heights below detection limit were excluded from regression. b) Plot of residuals of 
acoustic vs ground truth stand heights as a function of site depth.  Dashed line is regression for 
EcoSAV® generated residuals (y=0.05 ± 0.019 + 0.018 ± 0.01[Depth], r2=0.37, p<0.05), solid 
line is regression for GUI residuals (y=0.012 ± 0.014 – 0.005 ± 0.003[Depth], r2=0.04, p = 0.12) 
Note: The depth values (x axis) are taken as the reported depth from the GUI output.
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Correlations between percent algal cover from quadrats were poor when compared to 

percent algal cover estimated from the acoustic methods (Pearson r = 0.51 for EcoSAV and r = 

0.49 for GUI). This is likely due to the preponderance of high algal coverage in the quadrat data 

(mean algal cover 84%).  

The minimum biomass detection limit was estimated to be 31 ± 18 g m-2 (Figure 2.5a). 

The largest biomass value that went undetected was 28 g m-2 (Figure 2.5a). This sample had a 

mean bed height of 6 cm, below the threshold allowed for detection. The minimum biomass value 

that was detected was 41 g m-2, on a relatively flat bottom with an average stand height of 7.5 cm. 

Detection rates increased rapidly for higher biomass stands. Success of detection also was 

influenced by stand height, but this may be due to the strong correlation (Pearson r = 0.86, p 

<0.01) between stand height and biomass (Figure 2.5b).  

To examine the ability of the classified data to predict algal biomass, diver-estimated 

biomass with the average and integrated backscatter intensity from the plant canopy for each ping 

in the successful classifications were compared (Figure 2.6a). A positive relationship does appear 

to exist between biomass and 20 Log R backscatter intensity, but its predictive power is poor due 

to the large standard deviation between pings in the cycle sequence (Figure 2.6a). Integration of 

the acoustic signal (volume backscatter; Sv) between the canopy top and the declared bottom is 

considerably worse, showing differences only for the two highest biomass samples (Figure 2.6b). 

Sub-setting the data into classes of biomass (low <100 g m-2, medium 100-300 g m-2, moderate 

300-500 g m-2, and high >500 g m-2) did not yield much improvement, as significant differences 

in average backscatter intensity were observed only for the “high” bin when compared to the 

other bins (ANOVA, F3,22=8.413, p <0.05; Tukey-Kraemer post hoc test  p<0.05).
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Figure 2.5 a) Detection rate (# of positive pings in a cycle sequence) vs dry biomass of 
Cladophora sp. Regression line (Equation; DetectionRate =  -31.88 ± 18.6 + 123.55 ± 10.15(1-e(-

0.0089 ± 0.001 x Biomass)), r2=0.72, p< 0.0001) and 95% confidence intervals and 95% prediction 
intervals are also shown and (b) Detection rate vs in situ bed height as measured by divers. The 
solid line denotes the GUI classification threshold of 7.5 cm. 
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Figure 2.6. a) Mean 20 log R TVG backscatter intensity (dB) within the algal canopy, and b) 
volume backscatter (Sv; dB) computed for the echo envelope form the top of the algal canopy to 
the declared bottom depth vs Dry Biomass of Cladophora. Average values and standard 
deviations for backscatter intensity in a) and volume backscatter in b) were computed by taking 
the antilog of the 20log R TVG corrected data, averaging and then expressing as dB.  
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2.5 Discussion 

2.5.1 Detection of algal presence  

Acoustic detection of Cladophora at the two study sites was especially challenging 

because the areas are characterized by uneven rocky and boulder bottoms. For example, during 

early spring surveys at the Oakville location, Cladophora growth was confirmed with the use of 

an underwater drop video camera to be either absent or growing only in very short (< 5 cm) tufts. 

When the echograms were inspected, a short, weak echo directly above the stronger bottom return 

in the range of -50 to -60 dB was observed when passing over moderately rough cobble (pings 

2850-2900; Figure 2.2). This feature is not observed over flat rocky bottoms (pings 2800-2850; 

Figure 2.2) or over softer depositional substrata (e.g. sand or silts – data not shown). This 

moderate backscatter intensity may be related to the varying perturbations of the echo associated 

with the highly variable surface orientation common on rocky bottoms (Hamilton 2001). 

Additional problems were encountered with reflection of sidelobe energy. Boulders and other 

vertically distinct substrata not directly in the transducer beam path often returned an echo 

characterized by backscatter intensity similar to that of algae, causing the unsupervised EcoSAV 

algorithm to falsely classify these areas as “vegetated”. During supervised classification with the 

GUI, the rocky areas were easily distinguished by a trained analyst from the algal signal based on 

their curved shape and obvious height difference compared to the algal canopy and/or bottom.  

2.5.2 Estimation of algal stand height 

Estimation of algal stand height was significantly better with the use of the GUI when 

compared to estimated stand heights from EcoSAV. While the GUI underestimated stand heights 

by and average of 0.2 ± 3.9 cm, EcoSAV overestimated stand height by an average of 12.5 ± 7.0 

cm. This is far greater than the overestimation reported by Sabol et al. (2002a) of 1 ± 4.8 cm for 

vascular submerged aquatic vegetation. Other studies have found larger and more variable 

disagreements between acoustically estimated and in situ plant heights, but these discrepancies 

are likely the result of different methods of comparison between ground truth data and acoustic 

data (Valley and Drake 2006).  

The overestimation of stand height reported by EcoSAV is almost entirely due to the 

differences in algorithm logic in defining the bottom depth. Although the signal processing 

algorithms used in EcoSAV and the GUI are based on the rationale described in Sabol et al. 

(2002a), EcoSAV was primarily built to work in shallow, soft bottom estuaries and systems that 

would be conducive for the growth of seagrasses and macrophytes Sabol et al. (2002a). In 
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systems with soft substrate and strongly scattering vascular vegetation, the strongest scattering 

may occur in the plant canopy rather than at the substrate – water column interface (Sabol et al. 

2002a). Therefore, to correctly track the bottom, a two feature bottom tracking algorithm was 

implemented in EcoSAV so that the declared bottom depth did not occur in the plant canopy 

(Sabol et al. 2002a,b). Simply speaking, the EcoSAV algorithm associates the sharpest rise in 

acoustic backscatter with the bottom unless the sharpest rise occurs well above the trailing edge 

of the bottom echo envelope. In the latter case, EcoSAV assumes that the sharpest rise occurs 

within the plant canopy, and not at the water column – substrate interface, and implements a 

depth adjustment to place the bottom depth deeper in the water column (BioSonics 2004a).  

In contrast to EcoSAV, the GUI was configured to place the bottom at a user specified 

backscatter intensity threshold. This configuration was chose for two reasons. First, because all 

data were collected over rocky substrate with an overlying canopy of weakly scattering algal 

stands, the strongest backscatter always occurred at the water column – substrate interface. 

Second, the presence of rocks and uneven substrate may generate wide echo envelopes that 

exceed the threshold for positive classification, even if there is no growth of algae on the 

substratum, and in an unsupervised mode, generates a false positive. To illustrate this, two 

echograms and associated classification results are provided in Figure 2.7 and Figure 2.8. The 

MATLAB GUI classification of the two echograms is provided in Figure 2.7a and Figure 2.8a. 

The first case, moving slowly over a relatively shallow area (depth ~ 2 m), extreme variability in 

algal stand height is observed in addition to large variations in the GUI declared bottom depths, 

primarily due to the presence of rocks. Both EcoSAV and the GUI track the bottom reasonably 

well (Figure 2.7b) but EcoSAV® appears to always place the bottom depth deeper than the GUI. 

This is likely caused by the two point bottom tracking feature (see above). While the depth of the 

algal canopy is generally close between the two (Figure 2.7c; but note that EcoSAV appears to 

classify excessive surface noise as plant canopy, pings 1850-2100), the deeper placement of the 

bottom depth (mean 0.08 ± 0.06 m) results in the subsequent overestimation of algal canopy 

height by EcoSAV because canopy height is computed as top of plant canopy minus the declared 

bottom depth (BioSonics 2001). This deeper bottom depth placement by EcoSAV appears to 

increase as the acoustic range (or bottom depth) increases, so while the classifications in Figure 

2.7 are reasonably close (~ 2 m depth) those generated for Figure 2.8 indicate that the bottom 

depth declared by EcoSAV is nearly double that in Figure 2.7 (0.16 ± 0.05 m) (Figure 2.8b). The 

depth of the algal canopy identified by both platforms, however, appears to be reasonably close 

(Figure 2.8c), but the corresponding estimates of algal stand height here were ~ 0.16 m greater 

than those produced by the GUI.  
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The tendency for EcoSAV to increase the overestimation of algal stand height as depth 

increases likely results from the use of non-normalized echo envelopes. The time to ensonify to a 

given angle increases with depth, causing a lengthening of the echo signal (Hamilton 2001). This 

phenomenon has been observed to influence substrate classification accuracy (Hamilton 2001, 

Dommise et al. 2005), and is most simply described as a “thickening” of the echo envelope as 

depth increases. The width of the echo envelope associated with the bottom is a function of pulse 

length, spreading time of the wave front, and the travel time in the substrate. On hard substrate at 

the working frequency, there should be negligible penetration of the acoustic wave into the 

substrate (Hamilton 2001). Since the pulse length is constant (0.1 ms), the spreading time of the 

wave front is the only quantity that can influence the width of the returned echo. Because the 

BioSonics system samples the returned echo at a constant rate (41.67 kHz; BioSonics 2004b), the 

width of the returned echo envelope from a ping  in deep water will appear “thicker” than the 

width of the echo envelope from a ping in shallow water. Although newer bottom classification 

software (e.g., QTCView®) can correct this by normalizing the echoes to a reference depth, this 

feature is not implemented in EcoSAV, perhaps because it is not useful when surveying shallow 

estuaries for submerged vegetation.  

Based on the processing algorithm in EcoSAV, such errors will increase on structurally 

complex bottoms where large boulders or other debris are present, as the trailing edge of the echo 

envelope will determine the placement of the bottom rather than the sharpest rise feature. This 

will lead to increasingly worse performance over very rocky bottoms, or those that produce 

“thick” echo envelopes (e.g., very soft silt; Valley and Drake 2006). Although the distance from 

the transducer to the lake bottom was not routinely measured in this study, and cannot comment 

on the agreement between depths predicted by EcoSAV or the GUI in relation to the true bottom 

depth, the deeper depth placement is the most likely cause for the disagreement between the two 

platforms when determining the height of the algal canopy. 
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Figure 2.7. Sample echogram showing  a) classification as done in Matlab GUI, b)declared bottom depths from Matlab Classification in (a) and EcoSAV® 
v2.0, c) estimated canopy height from Matlab GUI classification in (a) and EcoSAV® v2.0. The depth of the algal canopy was computed by adding the 
estimated algal canopy height to the declared bottom depth.
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Figure 2.8. Sample echogram showing a) Matlab GUI classification, b) Matlab GUI and EcoSAV® v2.0. declared bottom depth from classified data in a), c) 
Matlab GUI and EcoSAV® v2.0. classified canopy top from data in a). The depth of the algal canopy was computed by adding the estimated algal canopy 
height to the declared bottom depth. 



 

  

 

42 

 

2.5.3 Estimation of percent cover 

 I observed poor correlations between percent cover estimated by acoustic methods and 

percent cover estimated by divers in the quadrats. Percent cover as computed by the algorithms is 

based on the number of plant pings divded by the total number of pings in the summary cycle. 

This is obviously a different quantity than percent of a quadrat covered by Cladophora. 

Furthermore, the range of percent cover values in the ground truth data set (80% to 100%; typical 

conditions in the study areas) were not likely of sufficient range to rigorously evaluate the ability 

of the acoustic method to assess percent cover. Prior work with EcoSAV using towed underwater 

geo-referenced video has indicated that EcoSAV reliably estimated percent cover when compared 

over short distances (Sabol et al 2002a, Stevens et al. 2008) or longer transects (Winfield et al. 

2007) across a range of acoustic frequencies (e.g., 200 kHz – 420 kHz). Lacking access to a video 

system comparable to those used in previous studies, and because the nature of the ground truth 

data set (80% to 100% cover) makes comparisions against previous studies difficult, future work 

should incorporate a similar means of assessing percent cover that better relates to the nature of 

the percent cover as computed by the algorithms. Nevertheless, the GUI proved to be robust at 

characterizing the algal stand height on rocky substratum, and by extension, the estimation of 

percent cover should achieve a similar level of sensitivity, since a ping must be classified as plant 

before the stand height is computed.  

2.5.4 Estimation of Biomass 

Estimation of biomass or standing crop is a frequently desired endpoint in many surveys 

and management programs (Vis et al. 2003). Previous studies have found a linear relationship 

between backscatter strength and biomass (Sabol et al. 2002a), but the predictive capacity tends 

to be poor due to high variability of lacunae in difference species of vascular plants and the 

presence of epiphytic algae and/or organisms (Sabol et al. 2002a). Summation of backscatter has 

also been examined, but appears to suffer from a saturation effect at high biomass values (Haga et 

al. 2007). It is probable that for high densities of strongly scattering vegetation, acoustic 

shadowing becomes a factor, making the accurate determination of biomass a difficult task 

(Simmonds and MacLennan 2005). 

The comparison of the average backscatter and biomass (Figure 2.6a) and volume 

backscatter and biomass (Figure 2.6b) in this study yielded poor relationships. Variability is 

particularly high at the low to moderate biomass levels, which are most commonly observed in 

the Great Lakes (e.g., Higgins et al. 2005a); thus such relationships are not likely to be of any 

practical value. The high variability in both the average backscatter and volume backscatter may 
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be due to several factors; first, although much care was taken to exclude backscatter from the 

substrate, the high degree of bottom roughness and the vertical resolution of the sampled echo (~ 

1.8 cm) may have nonetheless included some contribution from the substratum (Ona and Mitson 

1996). Second, stands of Cladophora are often inhabited by benthic invertebrates such as the 

amphipods Echinogammarus ischnus, Gammarus fasciatus and midge larvae (Chironomidae) 

(Barton et al. 2005, Malkin 2007). These invertebrates are characterized by target strengths (TS) 

that are strong enough to produce backscatter within the range used to classify Cladophora (-76 

to -65 dB TS for chironomids [Kubecka et al. 2000] and -76 dB TS for a single amphipod 

[Wiebe, et al 1990]). Furthermore, the area abundances of these organisms in stands of 

Cladophora is extremely variable and can be appreicable (E. ischnus at up to 2,900 m-2 [Dermott 

et al. 1998 and G. fasciatus up to 680 m-2 [Haynes et al. 2005] and chironomids from 2 to 12,000 

m-2 [Barton et al. 2005]). Because I did not attempt to quantify the numbers or types of 

invertebrates in the ground truth samples, the possible contribution (if any) of these animals to the 

backscatter measured from Cladophora is not known. Third, Cladophora growing in the lower 

Great Lakes is commonly encrusted with epiphytic diatoms (Stevenson and Stoermer 1982, 

Malkin et al. 2009). Because the density of diatom silica is ~ 2.6 g cm-3 (Blanc et al. 2000), it is 

likely that the epiphytic coating acts to increase the acoustic impedence of Cladophora filaments, 

leading to an increase in measured acoustic backscatter. The degree to which this may have 

affected the measures of acoustic backscatter is not easily assessed since the ground-truth data 

was collected during the growing season (June – August), and the abundance of epiphytic 

diatoms in the ground-truth samples was not determined. Last, as mentioned in the introduction, 

production of oxygen bubbles during photosynthesis (Hermand 2006) may significantly affect the 

measured backscatter, particularly at depths where light saturation is sufficient.  

2.5.5 Conclusion 

Acoustic methods have proven to be effective tools for estimating the abundance and cover of 

submerged aquatic vegetation in various habitats (Sabol et al. 2002a, Valley and Drake 2006,  

Warren and Peterson 2007, Winfield et al. 2007, Zhu et al. 2007) using frequencies ranging from 

70 kHz (Zhu et al. 2007) to 600 kHz (Warren and Peterson 2007). Here, I show that detection and 

estimation of nuisance filamentous algal stand height was successful for algal stands that 

exceeded 7.5 cm in height, suggesting that this approach could be useful in environments 

previously thought to be incompatible with acoustic surveys (Sabol et al. 2002b). There are, 

however, some shortcomings of the acoustic method that must be noted. First, in areas where 

Cladophora is present, but at low biomass or insufficient stand height, acoustic methods will fail 

because of the inability to detect algal stands shorter than 7.5 cm. While this would undoubtedly 

be problematic for surveys designed to examine absolute presence or absence of Cladophora, it is 



 

  

 

44 

far less of a problem for those designed to characterize the distribution of nuisance growths 

where stand heights often exceed 7.5 cm. In the Laurentian Great Lakes, the majority of the algal 

fouling problems occur when algal biomass accrues to nuisance levels (e.g., Higgins et al. 2005a). 

A tool, therefore, that has the ability to characterize Cladophora (or other macroalgal) stands 

would be of great value for monitoring programs. Second, the nature of the algorithm in the GUI 

is based on interpretation of vegetated and unvegetated surfaces, and therefore requires a trained 

operator to interpret the collected echograms and supervise the classification procedure. Although 

this may seem an onerous task, the visualization of the acoustic data and classification in the GUI 

provides a functionality not yet available in commercial software. The analyst can observe the 

classification and adjust relevant parameters to achieve the best possible classification. The GUI 

additionally contains the ability to manually remove improperly classified data (for example, 

schools of fish, large boulders, logs, or steep bottom slopes) much in the same manner as other 

acoustic analysis programs (e.g. EchoView®) can do for data collected during fisheries surveys.  

Despite the challenges of acoustic detection of Cladophora, I believe that this method can 

be a valuable addition to current research and monitoring programs. The combination of robustly 

characterized acoustic signals and geo-referenced position data allows for rapid mapping of the 

spatial distribution of nuisance algal growth; information that is important for designing and 

assessing effective management strategies. Although in situ sampling is still needed for species 

identification and ground truthing, acoustic survey data provide much better spatial resolution 

than can be obtained from more laborious manual methods. The combination of acoustic and in 

situ methods will ultimately provide a much better tool for characterizing benthic algal growth in 

shallow water environments than has been available previously.
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Chapter 3 

The distribution of nuisance Cladophora in the Laurentian Great Lakes; 

Influence of land use, water quality and dreissenid mussels 

 

3.1 Overview 

 Selected shorelines in Lakes Erie, Huron and Ontario in addition to two offshore shoals 

(Lake Erie and Lake Ontario) were surveyed with a high frequency hydroacoustic system to 

assess how current spatial patterns of nuisance benthic filamentous algal (e.g., Cladophora) 

growth and biomass relate to current distributional patterns of water quality, land use and 

dreissenid abundance. Results from these surveys indicate that Cladophora grows to nuisance 

amounts in Lakes Erie and Ontario where suitable substrate exists, but does not accumulate to 

similar biomass in Lake Huron or Georgian Bay. Remarkable similarity between lakes and study 

sites with respect to nutrient concentrations suggest that the present day distribution of nuisance 

Cladophora growth is not simply determined by measures of near shore phosphorus. In contrast 

to differences in coastal land use and near shore nutrient regimes, abundances of dreissenid 

mussels appear to be key determinants governing the contemporary distribution of nuisance 

Cladophora in the Great Lakes.  
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3.2 Introduction 

In the 1960s and 1970s, many areas in the Great Lakes, including most of Lakes Erie and 

Ontario supported excessive production of both planktonic and benthic algae as a result of 

decades of eutrophication (Glooshenko et al. 1974, Shear and Konasewich 1975). Luxuriant 

growths of benthic algae (dominated by the filamentous green alga Cladophora) were commonly 

observed in the rocky littoral areas (Neil and Owen 1964, Herbst 1969) and in close proximity to 

tributary mouths or waste water treatment plant outfalls (Auer et al. 1982, Ontario Ministry of the 

Environment 1982). These excessive growths of benthic algae tended to detach in mid-summer, 

frequently fouling municipal and industrial water intakes and generally interfering with 

recreational use of nearshore areas of the lakes, mainly through the deposition of vast 

accumulations of rotting algal material (Higgins et al. 2008a). These nuisance blooms of 

Cladophora were a key driver for the Great Lakes Water Quality Agreement (GLWQA) first 

signed in 1972. Phosphorus abatement programs were implemented to reduce the phosphorus 

emitted from point sources such as sewage treatment plants. These strategies were effective at 

reducing both near shore (Nicholls et al. 2001) and open lake phosphorus concentrations (Lean et 

al. 1990), and there is evidence that the phosphorus control strategies contributed to the decline in 

nuisance Cladophora growth in the Great Lakes (Auer et al. 1982, Painter and Kamaitis 1987).  

Beginning in 1995, reports of shoreline fouling in Lake Erie were increasing (Higgins et 

al. 2008), and in subsequent years (1999 to 2004), areas in Lake Erie (Higgins et al. 2005a), 

Ontario (DeJong 2000, Malkin et al. 2008) and Michigan (Bootsma et al. 2005) were all 

experiencing a resurgence of fouling by filamentous algae, again dominated by Cladophora. The 

proximal causes of increased benthic algal fouling were not immediately clear. Between 1981 and 

the mid 1990s, total phosphorus loading to Lakes Superior, Michigan and Huron were at or below 

targets as were the offshore total phosphorus concentrations (Neilson et al. 1995). In Lakes Erie 

and Ontario, total loads and open lake concentrations were also generally at levels set by the 

International Joint Commission (Neilson et al. 1995). Although diffuse non-point sources of P 

remain difficult to characterize and accurately estimate (Dolan and McGunagle 2005), the 

apparent stability of measured P loads coupled with the continued maintenance of near or below 

target TP concentrations in offshore waters (e.g. Kelly 2009, Malkin et al. submitted), the 

symptoms of eutrophication in the near shore were rather contradictory, and have led to questions 

whether the renewed frequency of shoreline fouling by Cladophora in the Great Lakes are driven 

by changes to the lake ecosystems or by an increased nutrient load from poorly characterized 

catchments and municipal sources that are closely coupled to the near shore waters. 
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During the last 15 years, the arrival and establishment of a number of exotic species have 

impacted the ecology of the Great Lakes. Dreissenid mussels (e.g., Dreissena polymorpha and D. 

bugensis) are arguably the species that have affected the greatest changes, especially in the rocky 

near shore regions which are conducive to heavy colonization (Vanderploeg et al. 2002). Even in 

areas with soft substrate, mussels are able to colonize and form druses (Haltuch et al. 2000) and 

shell material from expired mussels can also expand the habitat for colonization (Hecky et al. 

2004). As sessile benthic filter feeders, mussels feed primarily on phytoplankton and suspended 

detritus and expell fully and partially digested material as feces and pseudofeces (Vanderploeg et 

al. 2002) in addition to soluble PO4 and NH4
+ released through excretion (e.g., Arnott and Vanni 

1996, Conroy et al. 2005). The filtration of suspended matter from the water column not only 

increases water clarity (Howell et al. 1996), but re-locates particulate nutrients from the pelagic 

environment to the benthos (Hecky et al. 2004) where they may be remobilized and are available 

for use by benthic organisms such as detritivores (Stewart et al. 1998a). Due to their high biomass 

and resultant filtration capacity, mussels have been implicated as key agents altering near shore 

nutrient dynamics in the Great Lakes, such that while total nutrient loads may not have changed, 

the distribution of the nutrients within the system may have (Hecky et al. 2004).  

Changes to the ecology of near shore environments as a result of exotic species invasions 

are not the only stressors acting on the coastal areas. Much of the land immediately adjacent to 

the lower lakes has experienced drastic changes in recent years, to the point where the pace of 

land use – land cover change in these areas has exceeded that predicted on the basis of population 

growth alone (Wolter et al. 2006). In particular, conversion of un-developed land to urbanized, 

impervious developed land within a relatively narrow band (10 km) of the lake shores has 

increased between 1992 and 2001 (Wolter et al. 2006). Because the GLWQA mainly addressed 

the P loading issue by regulating P concentrations at point sources rather than non-point sources, 

increases in the impervious surface area adjacent to the waterways and lakes have the potential to 

increase the non-point source load from increasingly urbanized watersheds to the nearshore areas 

of the lakes. Moreover, the increasing population in expanding urban areas generates increased 

waste loads. Waste water treatment plants must manage this increased load to keep effluent 

concentrations at mandated levels. But mandated levels are based on concentrations and not total 

loads. Consequently, the total load may increase unless treatment efficiencies are imposed by the 

plants. Urban areas also must deal with problems of combined sewer overflows (CSOs) as a result 

of increased discharge volumes from impervious landscapes (Marsalek and Rochfort 2004). This 

has led to concern that increased urbanization especially in coastal areas may be causing 
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increased point and non-point loadings from these urban areas which may be fueling a resurgence 

of Cladophora and nuisance algal growth. 

To date, much of the success of P control programs has been evaluated through the 

monitoring of offshore concentrations and the response of the phytoplankton community. In 

contrast, there is a relative dearth of data on benthic algal growth in the nearshore zone despite its 

proximity to human uses. At least part of this paucity of information is related to the inherent 

spatial variability of the near shore benthic environment which requires sampling of extensive 

areas to ensure that results are meaningful and representative of different shoreline types, but the 

primary reason for the disparate levels of information is due to the direction of monitoring 

objectives implemented with the GLWQA which directed the research foci to offshore processes 

and effects of eutrophication on fisheries.  

Chapter 2 reports the development of a hydroacoustic method that enables rapid sampling 

and mapping of Cladophora distributions over large areas that overcome the uncertainties that 

arise from undersampling with point sampling methods. The objectives of this chapter were to 

utilize the hydroacoustic methodology presented in Chapter 2 to assess the current state of benthic 

algal growth in the near shore zones of the Great Lakes and generate accurate maps to describe 

the spatial patterns of benthic algal (mainly Cladophora) cover and bed height along selected 

shorelines in the Lower Great Lakes. Shorelines in Lakes Ontario, Erie and Huron were chosen to 

allow evaluation of Cladophora growth along contrasting shorelines with differing land use types 

(urban and rural/agricultural). Two offshore shoals that should represent open lake nutrient and 

light conditions were also surveyed. 
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3.3 Materials and Methods 

3.3.1 Site Selection and Descriptions 

This study examines spatial patterns in nuisance benthic algal (Cladophora) cover and 

bed height, associated water quality parameters and dreissenid mussel abundance in the lower 

Great Lakes (Erie, Ontario and Huron) during 2005 along shorelines that provided contrasting 

coastal land use types (Figure 3.1, Figure 3.2, Figure 3.3 and Table 3.1). Two offshore shoal sites 

(Nanticoke Shoal in Lake Erie and Dobb’s Bank in Lake Ontario) were selected to represent open 

lake nutrient conditions while retaining enough area with suitable light and substrate for 

Cladophora growth. Sites were chosen on the basis of having a dominant underlying substratum 

primarily composed of rock, and where possible, had been previously sampled for Cladophora 

and/or dreissenid mussels.  

Coastal land use was characterized using NRVIS (Natural Resources and Values 

Information System) data from SOLRIS (Southern Ontario Land Resource Inventory System 

v.1.2; Ministry of Natural Resources 2002) land use / land cover inventory. SOLRIS provides a 

comprehensive, landscape level inventory of natural, rural and urban areas in Southern Ontario 

following the standardized ecological land classification for southern Ontario for the years 2000-

2002 on a 25 m2 raster format for most of Southern Ontario (Lee et al. 1998). Land use / land 

cover of the coastal areas immediately adjacent to the surveyed shorelines was characterized by 

creating a polygon that extended up to five kilometers inland along the length of the shoreline 

surveyed. Land use / land cover of the watershed draining into the lake at the study areas was 

characterized by clipping with the watershed boundaries for the respective study sites. This 

information is summarized in Table 3.1.  

Provincial Water Quality Monitoring Network (PWQMN; Ontario Ministry of the 

Environment; Figure 3.4) data were used to assess trends in TP, NO3
- and Cl- concentrations in 

the closest monitored major tributaries to the study sites (Figure 3.4). Loadings were not 

computed as discharge data was not available for all stations and years, however, trends in 

tributary concentrations may provide a proxy for increases in loading from the respective 

catchments. Temporal trends in annual median concentrations (TP, NO3
-, Cl-) between 1964 and 

1984 (pre-P control to post-P control) and between 1985 and 2008 (post-P control) were assessed 

using a Mann-Kendall trend test. 
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Table 3.1. Summary of the survey sites visited in 2005 with land cover characteristics. Site names as in Figures 3.1 to 3.3. Survey dates; date of 
acoustic survey, WQ date; date of water quality sampling, Coastal Land Use indicates the % of land use type within 5 km of the shoreline adjacent 
to the survey area, Watershed Land Use indicates the % land use of the quaternary watershed for the surveyed shoreline extent. Land Use types are 
denoted as; AG: Agricultural/Rural, CF; Coniferous Forest, DF: Deciduous forest, M: Marsh, MF: Mixed forest, UR: Urban/developed, SW: 
Swamp. 

Site Lake Survey Dates WQ Dates Coastal Land Use* Watershed Land Use** 

Peacock Pt  Erie May 25 
July 19 

April 29,  
July 12 

AG (76.2%), SW (7.1%), UR (6.7%) AG (84.5%), SW (4.8%), DF (2.7%) 

Grand River  Erie May 21 
July 14 

May 11, 
 July 15 

AG (66.4%), SW (10.4%), UR (9.9%) AG (66.2%), UR (11.1%), SW (9.3%) 

Nanticoke Shoal Erie May 26, 
July 12 

May 5, 
 July 12 

None None 

Oakville Ontario May 30, 
July 25 

June 1, 
 July 25 

UR (83.5%), AG (7.7%), DF (2.7%) AG (50.9%), UR (23.7%), DF (10.8%) 

Port Credit Ontario May 31, 
July 21 

June 2, 
July 21 

UR (89.6%), AG (2.9%), CF (1.9%) UR (50.3%), AG (33.1%), DF (4.4%)  

Presqu’ile Prov Pk. Ontario June 7, 
July 27 

June 8,  
July 27 

SW (32%), UR (21.6%), M (8.9%) AG (52.7%), SW (15.7%), DF (6.7%) 

Dobbs Bank Ontario June 7, 
July 27 

June 8,  
July 27 

None None 

Southampton Huron August 4 August 4 AG (46.9%), SW (30.4%), MF (7.5%) AG (61.6%), SW (17.5%), DF (6.5%) 
Pike Bay Huron  June 13 June 13 CF (77.3%), AG (19.0%), MF (9.3%) CF (40.5%), AG (14.9%), DF (14.6%) 
Cape Chin Georgian Bay June 15, 

August 8 
June 15,  
August 8 

CF (34.7%), DF (24.1%), AG (11.9%) CF (42.4%), DF (15.8%), AG (15.4%) 

*Coastal Land Use data was summarized using SOLRIS data (25m grid raster) and digitizing a polygon the length of the survey area extending 5 
km inland.**Watershed land use was computed using SOLRIS data and quaternary watershed boundaries that drained into the study area.
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  The Georgian Bay site (Cape Chin – Dyers Bay; Figure 3.1) was located on the 

submerged portion of the Niagara escarpment, approximately 40 km south of the tip of the Bruce 

Peninsula. The shoreline here is characterized by the limestone cliffs of the Niagara Escarpment, 

and is predominantly forested with minimal development (Table 3.1). The steeply sloping 

boulders and rocks continue underwater to a depth of 20 m before changing to softer depositional 

silt (Duthie and Jones 1990).   

The first of two Lake Huron sites (Pike Bay) was located on the west coast of the Bruce 

Peninsula (Figure 3.1b).  The shoreline at this site is characterized by mostly forest cover (Table 

3.1). The second site (Southampton; Figure 3.1c) was split into two parts; the first was located at 

MacGregor Point, and the second adjacent to the mouth of the Saugeen River (Figure 3.1c). Land 

use along this section of shoreline is mostly agricultural, and the Saugeen River drains a large, 

agriculturally intensive watershed. Urban development is relatively low on this portion of Lake 

Huron shoreline, with the towns of Southampton and Port Elgin the most obvious developed 

areas. The substratum at both these sites is predominantly glacial till and bedrock in the littoral, 

changing to glaciolacustrine clay and mud in deeper profundal waters (Thomas et al. 1973). The 

bottom topography at Pike Bay is more complex with many shallow shoals and ridges (Figure 

3.1b).  

The three sites in Lake Erie were situated in the East Basin. The northern shoreline of the 

East Basin of Lake Erie is dominated by bedrock, with smaller areas of glacial till and sand 

(Rukavina 1976). Nanticoke shoal (42 44.4° N, 80 04.2° W) is located ~ 6.1 km offshore (Figure 

3.2a), and provides a site with suitable substrate and light conditions, but nutrient conditions that 

are primarily driven by open lake processes. The first of two shoreline sites extended from 

Peacock Point to Hoover Point (Figure 3.2b), while the second was located where the Grand 

River enters the lake (Figure 3.2c). Both the Peacock Point and Grand River sites are 

characterized by land use dominated by agriculture (Table 3.1).  

The western end of Lake Ontario is highly urbanized forming a near continuous urban 

landscape from Oshawa, east of Toronto westward to St. Catharines near the Niagara River. 

Home to over 4 million residents (Rao et al. 2003), municipal water intakes and discharges are 

situated in a narrow band of the lake, extending at most, a few kilometers offshore (Rao et al. 

2003). The shoreline contains numerous tributaries, creeks and storm sewers that discharge a 

mixture of both urban and agricultural runoff to the nearshore waters. The first site in lake 

Ontario, adjacent to the town of Oakville (Figure 3.3a) features moderately steep bathymetry with 

a substratum composed of bedrock and cobble. Within the study site there were two active waste 

water treatment plant (WWTP) outfalls (Southeast WWTP; situated 300 m from shore at a depth 
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of 4 m and Clarkson WWTP; situated ~ 1 km from shore at a depth of 16.5 m) and 20 storm 

sewers discharging at the lake shore (Figure 3.3a). An additional 49 storm sewers discharged into 

a tributary or creek that eventually discharged into the near shore waters (Figure 3.3a). The main 

tributary for this segment of shoreline (16 Mile Creek) discharges at the approximate middle of 

the survey area.  

The second heavily urbanized site in Lake Ontario was located north east of Oakville at 

the town of Port Credit (Figure 3.3b). Similar to the Oakville site, substratum here is 

characterized by bedrock and cobble, but softer substrate such as sand and compact clay comprise 

appreciable portions of the bay at the northeast end of the survey area. While the numbers of 

storm sewers and municipal water outfalls appears similar to that at the Oakville site, the largest 

concentration of storm sewers was at the easternmost end of the survey area, and only one 

WWTP was operational (Lakeview WWTP) during the time of the survey. The Credit River is the 

largest tributary within the study site and drains a heavily urbanized watershed (Table 3.1).  

The remaining two sites in Lake Ontario were located toward the east end of the lake. 

Presqu’ile peninsula is a Provincial Park and has minimal urban development (Figure 3.3c). This 

peninsula is a tombolo (depositional landform) that grows approximately 2 m each year as eroded 

material from the bluffs along the northern Lake Ontario shoreline is deposited in Popham Bay 

(Martini and Kwong 1985). The substrate on the lakeward side of the Presqu’ile peninsula is 

mostly comprised of bedrock and glacial till, but areas of sand and softer substrate are present in 

the lee of High Bluff and Gull Island (Rukavina 1970). The last site was located approximately 7 

km southeast of Presqu’ile peninsula, on a long, southwesterly trending bedrock ridge (Figure 

3.3d). There are a number of these forms in Presqu’ile – Wellington Bay that protrude onto the 

shelf as shoals and islets, intersecting the softer, sandy deposits in the bay (Martini and Kwong 

1985). Similar to Nanticoke shoal, this site provided a suitable substrate and light environment, 

but nutrient conditions more similar to open lake conditions.
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Figure 3.1. Map of the Pike Bay (a), Cape Chin – Dyers Bay (b) and Southampton (c) study sites showing locations of water quality and 
underwater camera sampling stations and associated bathymetry where acoustic surveys were conducted. Inset panel denotes location of the study 
site in Georgian Bay or Lake Huron. Water quality and underwater camera stations denoted by (A). Station labels are noted on figures. 
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Figure 3.2. Map of Nanticoke shoal (a), Peacock Point (b) and Grand River (c) study sites showing locations of water quality and underwater 
camera sampling stations and associated bathymetry where acoustic surveys were conducted. Inset panel denotes the location of the study site 
(arrow) within Lake Erie. Water quality and underwater camera stations denoted by (A). Station labels are noted on figures. 



 

  

 

55 

 

Figure 3.3. Maps of Oakville (a), Port Credit (b), Presqu’ile Provincial Park (c) and Dobb’s Bank (d) study sites showing locations of water 
quality and underwater camera sampling stations (A) and bathymetry where acoustic surveys were conducted. Inset panel denotes the location of 
the study site (arrow) within Lake Ontario. Storm sewers discharging to tributaries or directly to the lake are denoted by (.), industrial and 
municipal outfalls with (,).Locations for storm sewers and outfall locations from Griffiths (1990). Note that UTM zone differs between upper and 
lower panels.  
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Figure 3.4. Map of Lake Huron, Lake Erie and Lake Ontario showing the approximate locations 
of the acoustic and water quality surveys and the locations of provincial water quality monitoring 
network (PWQMN) stations nearby the acoustic survey sites. Locations of acoustic and water 
quality surveys are denoted by (%) and locations of PWQMN sites are denoted by (,). PWQMN 
Station IDs as in Table 3.5.
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3.3.2 Physical and Chemical Measurements 

 At each survey location, three transects consisting of three stations on each transect were 

placed at approximately the middle and end of the survey grids (see Figure 3.1 to Figure 3.3), 

giving an inter-transect spacing of ~ 3 km. Stations were located at the 2, 5 and 10 m depth 

contours. At each station, CTD profiles were taken using aYSI-6600 profiler or an RBR CTD. 

Photosynthetically active radiation (PAR) profiles were measured with a LI-COR quantum sensor 

at 0.5 m to 1 m intervals from the surface to the lake bottom. Water samples to characterize 

nutrient conditions were collected at pre-selected stations (see Figure 3.1 to Figure 3.3) during the 

days of the acoustic surveys (Lake Huron, Lake Ontario) or within 1-2 days of the acoustic 

surveys (Lake Erie, Nanticoke Shoal excepted; see Table 3.1). A 6 L Niskin bottle was used to 

collect ~ 15 L of water at a depth equal to 50% of the mixed layer depth (determined from CTD 

cast). Water was transferred to covered carboys and stored in coolers until transported to the 

laboratory (Univ. Waterloo). Samples for total dissolved P (TDP) and soluble reactive P (SRP) 

were filtered through a 0.2 µm polycarbonate filter,  particulate P (Part P) by filtering 500 mL of 

lake water onto acid soaked (5% HCl ~ 4 hr) Whatman GF/F filters (nominal pore size ~ 0.8 µm). 

Total P (TP) and all composite fractions (TDP, SRP, Part P) were determined according to 

Stainton et al. (1977). Samples for other particulate nutrients (carbon – Part C, nitrogen – Part N) 

were determined by filtering 500 mL of lake water onto pre-combusted (500 C ~ 4hr) GF/F filters 

and assayed using a CEC-440 Elemental Analyzer (Exeter Analytical, MA). Phytoplankton 

chlorophyll a was measured in triplicate on extracts of GF/F filters (22 hr in 90% acetone @ -20 

°C) after filtration of 500 mL of lake water using a Turner Designs 10-AU fluorometer (Smith et 

al. 1999). Additional ions (NO3
-, Cl-, SO4

-) were determined using ion chromatography (Dionex 

DX 500, Dionex AS17 and AG17 guard column). Ammonium was determined following the 

method of Holmes et al. (1999) on a Turner Designs TD-700 fluorometer. Total suspended solids 

(TSS) were determined by filtering 2 to 5 L of lake water onto pre-combusted (500 °C for 4 hr) 

pre-weighed GF/F filters, drying at 65 °C to a constant weight and re-weighing. AFDW was 

determined after combustion at 500 °C for 4 hrs. 

3.3.3 Dreissenid Mussel abundance  

 A drop video camera (SplashCam) fitted in an aluminum frame was used to estimate 

dreissenid abundance and qualitative information on substrate at all sites where water chemistry 

and physical measurements were made. This system and methodology is described in detail in 

Ozersky et al. (2009). At each site, the camera frame was allowed to rest at 8 to 10 randomly 
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selected areas. After the video was complete, screen captures of the 8 to 10 areas of the bottom 

were extracted and processed using Adobe Photoshop 5.0. Dreissenids were enumerated by 

counting mussel valves as outlined in Ozersky et al. (2009). Unfortunately, the spring sampling 

period did not allow us to capture unobstructed views of the bottom and dreissenid community in 

Lakes Erie and Ontario as Cladophora growth obscured the bottom. Consequently, dreissenid 

abundances for Lake Erie site from Patterson et al. (2005) and Lake Ontario sites from Wilson et 

al. (2006) and Ozersky et al. (2009) have been substituted. Abundances at Peacock Point, and the 

Grand River site were determined by averaging data from 2, 5 and 10 m depths from Patterson et 

al. (2005). Abundances for Nanticoke shoal were determined by averaging data from 5 and 10 m 

depths from Patterson et al. (2005). Dreissenid abundance reported for Oakville was the mean 

abundance reported by Ozersky et al. (2009) for depths between 2 and 15 m. Abundances for Port 

Credit, and Presqu’ile and Dobb’s Bank were estimated by averaging abundances from 5 and 20 

m depths from Wilson et al. (2006).  

3.3.4 Acoustic Surveys 

Acoustic surveys to assess the spatial patterns of Cladophora abundance were conducted 

using a BioSonics® DTX system connected to two single beam transducers. Both transducers 

were mounted on 2 m adjustable aluminum sliding mounts attached to the side of a 21 ft vessel 

with a series of clamps and bolts. The first transducer was used to characterize the algal canopy 

(430 kHz, 10.2° full beam angle, source level 213 dB re 1 µPa at 1 m) while the second 

transducer (120 kHz, 7° full beam angle, source level 216 dB re 1 µPa at 1 m) was used to 

characterize substrate. Both transducers were set to ping at 5 Hz, with pulse lengths of 0.1 ms 

(430 kHz) and 0.4 ms (120 kHz) using the software Visual Acquisition 5.0 (BioSonics Inc, 

Seattle, WA).  

Acoustic surveys were conducted on hydroacoustic line transects that ran perpendicular 

to shore, from the 1.5 m depth contour to the 10 m depth contour, with an inter-transect spacing 

of ~ 50 - 90 m. At a cruising speed of 1.8 to 2.3 m s-1 between 10 and 15 hours were needed to 

survey ~ 6 km of shoreline with the transect spacing employed. Saturation of the acoustic signal 

was observed for all data collected with the 120 kHz transducer at depths < 6 m making accurate 

separation of bottom substrate classes using standard classification methods (i.e. RoxAnn) nearly 

impossible, therefore these data are not reported here nor discussed further. Analysis of the 

acoustic data to determine percent cover and bed height of Cladophora was conducted using a 

graphical user interface (GUI) written in MATLAB v7.2 (see Chapter 2).  
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3.3.5 Geostatistical Methods 

The fundamentals of geostatistical analysis, with emphasis on the assumptions and 

methodology involved are thoroughly explained in several publications (e.g., Isaaks and 

Srivastava 1989, Cressie 1991, Webster and Oliver 2001) and summarized in Chapter 1, so only a 

brief summary will be provided here. In this study, a spatial correlation function called the 

“semivariogram” (Cressie 1991) was employed to characterize the spatial autocorrelation of the 

data collected. The semivariogram is derived from the experimental data, taking into account the 

spatial position of the samples by the following equation; 
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where Z(xi) is the value of the variable Z at location xi, h is a lag distance over which the local 

average is taken and N(h) is the number of point pairs at the lag distance (h) (Cressie 1991). The 

semivariogram is the average of the Euclidean distance between pairs of samples (h) plotted 

against average variance at distance h.  

For prediction, a function (the spatial covariance function or semivariogram model) is fit 

to the empirical semivariogram through an automated fitting procedure. The weighted least 

squares method (WLS) of fitting the semivariogram model was used as it typically defines the 

behavior of the semivariogram model at the origin most clearly, which is essential for prediction 

(Cressie 1991). Either spherical or exponential semivariograms were fit to the data as given by 

the following equations; 
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  These spatial covariance models are defined by three essential parameters: the nugget 

(C0) (indicating the variance not explained by the spatial model), the sill Cs (indicating the 

variance explained by the spatial model) and the range α (distance beyond which spatial 

autocorrelation is no longer significant). After computation of the semivariogram models for each 

of the respective variables, block kriging was used to predict the value of algal cover and stand 

heights for grid cells of size 25 m by 25 m.  

Exploratory data analysis was conducted on the acoustic data prior to spatial modeling 

using scatter plots, histograms and correlations to assess the presence of possible predictive 
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trends. With a sampling frequency of 5 Hz, a summary cycle output every 10 pings, and an 

average survey area size of 5 km2, a full day of surveying (0600 to ~ 2000 hrs) yielded an average 

of 8,000 to 10,000 individual geo-referenced datum reports. The frequency distributions of the 

percent cover and stand height variables derived by acoustic analysis displayed some tendency 

for overdispersion, but it was generally not severe. Relationships between depth and percent 

cover were strong and generally linear in nature (r2=0.31 to 0.74). Strong correlations were 

evident between percent cover and height (r2 > 0.7) when coverage was moderate or high. To 

account for these potentially non-stationary processes, block regression kriging (RK; see Hengl et 

al. 2004) was performed for the percent cover data using a Generalized Linear Model (e.g., 

Gotway and Stroup 1997) to model the relationship with depth. Briefly, a quasi-Poisson family of 

probability distributions was used with a log-link function to account for the overdispersion in the 

data distributions. The model trend was subtracted from the percent cover data and SK was 

performed on the residuals (i.e. the mean of the residuals should be “0”). The trend was then 

added back to the kriged residuals to generate the predicted surface maps. Algal stand height was 

interpolated using KED, with percent cover as a predictor. While both percent cover and height 

variables are characterized by skewed distributions, the residuals from the relationship were not. 

Bathymetric grids for each survey site were generated using universal kriging of acoustically 

determined bottom depths from the individual surveys (Peacock Point and Dobb’s Bank 

excepted; spatial re-sampling of NOAA bathymetric data was used). All bathymetric survey grids 

were clipped using the lake shorelines and the 10 m depth contour for each lake as downloaded 

from the National Geophysical Data Center Great Lakes Bathymetry ArcIMS web server 

(http://map.ngdc.noaa.gov/website/mgg/greatlakesbathy/viewer.htm).  

Experimental residual semivariograms were computed for interpolation onto 25 m by 25 

m grids. Directional semivariograms were computed by limiting all point pairs within a 

directional tolerance (0° to 135°, 45° ± 22.5° step tolerance) in addition to the omni-directional 

semivariogram to assess the degree of anisotropy. All exploratory data analysis, regression and 

variogram modeling, and subsequent kriging computations were performed using the statistical 

software R (R Core Development Team 2007) and the R package gstat (Pebesma 2004).  

3.3.6 Estimation of Cladophora biomass 

 Estimation of standing crop is a frequently desired endpoint in many surveys of benthic 

vegetation (Vis et al. 2003). Previous attempts with acoustic methods to use echo integration 

(Sabol et al. 2002a) or summing of acoustic backscatter (Haga et al. 2007) have shown limited 

success due to mixed species assemblages and high variability due to variations in gas vacuoles 
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and epiphytic organisms. While better success with these methods might be envisioned for a 

monospecific assemblage of Cladophora, attempts to estimate Cladophora biomass from 

integrated signal voltage or volume backscatter were largely unsuccessful (Chapter 2). A strategy 

similar to that described by Duarte (1987) was therefore employed, using the height of the algal 

canopy as a predictor of biomass. Quantitative data from recent studies in Lakes Erie and Ontario 

where measurements of algal stand height were also recorded were compiled and dry biomass as 

a function of algal stand height was plotted. Since most of the quantitative data was derived from 

mid summer maximal biomass measured on quadrats with >80% algal cover, I was unable to 

derive relationships for non-maximal biomass time periods. A linear model of sqrt (DryMass) as 

a function of canopy height produced apparent linear relationships across the range of canopy 

heights encountered in the quadrat data set (Figure 3.5). Although a linear model with an 

intercept term initially yielded a non zero intercept (4.41 ± 0.62, t=7.01, p <0.001) I used a linear 

model that forces the regression through the origin. The reasoning for this was that biomass 

should not be present when bed height is zero. The non-zero intercept was likely due to inflation 

by the inclusion of quadrat data from very shallow depths ( < 1.5 m), some which were 

characterized by  very high biomass (> 200 g m-2). The high biomass relative to bed height at 

these wave zone sites may be due to compression of biomass by wave action, thus inflating the 

estimated intercept. The resulting model (√Biomass = 0.877 ± 0.034 x BedHeight(cm), r2=0.73, 

df=234, p<0.0001) was used to estimate the biomass in each grid cell from the kriged surfaces of 

canopy height. These “biomass” cells were then multiplied by the percent cover surfaces to 

account for the fact that the biomass vs stand height relationship was derived from quadrats that 

were primarily > 80% cover. In addition to Cladophora, macrophytes were also present at several 

sites (Peacock Point, Rock Point (Grand River), Presqu’ile and Dobb’s Bank). Because the 

macrophytes rarely occurred in extensive mono-specific stands, but rather as isolated groups of 

plants growing with Cladophora, I assigned a single biomass value of 100 g m-2 DW for 

macrophyte dominated cells to represent a compromise between low areal biomass of 

macrophytes found in the nearshore areas of the Great Lakes (< 50 g m-2; Makarewicz and 

Dilcher 1988) and the much higher areal biomass of Cladophora. Macrophyte dominated cells 

were identified as those that exceeded 0.35 m in height based on comparisons of echograms 

where macrophytes were clearly present. 

Approximate standard errors for percent cover and canopy height were computed by 

adding the kriging standard errors (residual standard errors) to the trend standard errors. 

Propagation of error through the equations used to estimated biomass was estimated following the 
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procedures outlined in Heuvelink (2002) to estimate approximate standard errors for the predicted 

biomass. 

3.3.7 Statistical analysis 

Testing for differences in water chemistry among sites and within lakes is complicated by 

the unbalanced nature of the study. For example, offshore shoals were only accessible in Lake 

Erie and Ontario, not in Lake Huron or Georgian Bay, and neither shoal reached depths shallower 

than ~ 3.5 m, thus the shoal sites lacked a 2 m isobath equivalent sampling sites that were 

available along shorelines. Furthermore, sampling at Pike Bay and Southampton was limited to 

one site visit each (spring and summer respectively), this results in further losses of degrees of 

freedom in standard parametric analyses. Initial two-way ANOVA (log10 transformed variables, 

season and depth as factors) did not show significant differences among depth for any of the 

variables sampled except kPAR, which was significantly higher at 2 and 5 m depths at Peacock 

Point (Lake Erie) during the summer and Pike Bay (Lake Huron) during the spring (p<0.05). 

Therefore, for comparisons among sites and lakes, water chemistry and physical data were 

aggregated and simple correlation analysis was performed using the site means within both the 

spring and summer periods. Correlations among water chemistry and physical parameters, 

dreissenid mussel abundance, land use percentages (Table 3.1) and data from the hydroacoustic 

surveys were assessed using a non parametric correlation coefficient (Spearman’s ρ).  
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Figure 3.5. Relationship between quadrat biomass (g DM m-2) and algal canopy height (cm). 

Data sources include East Basin Lake Erie (•;Higgins 2005, T. Howell; unpubl. data) and Lake 
Ontario (□; S. Malkin 2007, Malkin et al. 2008, D.Depew, upubl.data). Equation of the linear 
model is √Biomass (g m-2) = 0.877±0.034 x BedHeight(cm); r2=0.73, df=234. 
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3.4 Results 

3.4.1 Dreissenid abundances 

Logistical problems delayed the spring acoustic surveys in 2005 until the latter part of 

May, and water quality sampling at some sites was pushed into June (Table 3.1). As a result, 

underwater video from Lakes Erie and Ontario was not suitable for analysis for mussel 

abundances as outlined in the methods section, because the majority of the bottom was already 

covered by Cladophora and other filamentous algae (Spirogyra and Ulothrix). Although the 

underwater camera method was not suitable to estimate dreissenid abundance at the sites in Lake 

Erie and Ontario due to overlying algal cover, qualitative observations mostly confirm the results 

of other studies (e.g., Patterson et al. 2005; Lake Erie, Wilson et al. 2006; Lake Ontario, Ozersky 

et al. 2009; western Lake Ontario), that mussel densities on hard substrates in the lower lakes 

remain high (Table 3.2). In contrast, the sites in Lake Huron and Georgian Bay afforded an 

unobstructed view of the substratum therefore estimates of dreissenid abundance using the 

underwater video camera system were feasible. Dreissenid abundance in Lake Huron and 

Georgian Bay is much lower than abundances reported for Lakes Erie or Ontario. Mean 

abundance at Lake Huron sites was lowest at 2 m and increased at depths of 5 m and 10 m. 

Mussels were distributed in clumps mostly between rocks and along the sides of larger boulders, 

with very few attached to the upper surface of rocks. In Georgian Bay, the transect at the south 

end of the survey area had the highest number of mussels, and average abundances were similar 

across the range of depths sampled (Table 3.2). The patchy distribution was similar to that 

observed in Lake Huron sites, with mussels often colonizing sides and indentations in large rocks 

and boulders rather than flat surfaces. As the substrate changed from large rocks to smaller cobble 

toward Dyer’s Bay, mussels became less abundant.   
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Table 3.2. Table of dreissenid abundances used in this study. Year represents year data collected, 
site indicates site where abundances assigned. Dreissenid abundance indicates mean abundance 
(± standard deviation) if specified. Source denotes data source. 

Year Site Depth Dreissenid 

abundance (# m
-2

) 

Source 

2002 Lake Erie (mean of all transects) 2 14,401 ± 10,158 Patterson et al. 20051 

  5 9,311 ± 6,042  
  10 8,228 ± 7,059  
2006 Lake Ontario (Oakville) 2 95 ± 93 Ozersky et al. 20092 

  5 4,580 ± 2,788  
  10 4,585 ± 930  
  15 3,918 ± 920  
2003 Lake Ontario (Port Credit) 5 2,124  Wilson et al. 20063 

  5 268  
  20 8,445  
2003 Lake Ontario (Presquile) 5 24,271  Wilson et al. 20063 

  20 13,466  
2003 Lake Ontario (Wellington Bay) 5 7,655 Wilson et al. 20063 
  20 3,862  
2005 Lake Huron (Southampton) 2 42 ±47 This study4 

  5 449 ± 549  
  10 340 ±186  
2005 Georgian Bay (Cape Chin) 2 381 ± 255 This study4 

  5 357 ± 277  
  10 229 ± 391  

Note 1Mean abundances of triplicate quadrats sampled at depths of 2, 5 and 10 m at 3 transects 
within the East basin of Lake Erie, 2Mean abundances from 3 – 10 camera frames sampled at 17 
sites at 2, 5, 10 and 15 m, 3Mean abundance of triplicate quadrats (0.15 m2) sampled at 5 and 20 
m.4Mean of 8 to 10 camera frames sampled at each of 2, 5 and 10 m depths at 3 transects.
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3.4.2 Near shore physical and chemical conditions  

The staggered water quality sampling makes comparisons among all lakes somewhat 

ambiguous, but several trends were evident in the water quality data. During the early season 

sampling (April to early June), concentrations of most parameters were far more variable at 

shoreline sites in Lake Erie and Ontario than at the shoal sites in those lakes or the shoreline sites 

in Lake Huron and Georgian Bay (Table 3.3 and Table 3.4). Conductivity was highest and most 

variable at the Grand River site in Lake Erie (Table 3.3). Lake Erie sites (both shoreline and 

shoal) had relatively higher phosphorus concentrations (TP, TDP and SRP) compared to other 

sites, but these rarely exceeded 10 µg L-1 (Table 3.3). NO3
- concentrations were high and far more 

variable in Lakes Erie and Lake Ontario compared to Lake Huron and Georgian Bay (Table 3.3). 

In contrast to Lakes Erie and Ontario, light attenuation (kPAR) was quite low in Lake Huron and 

Georgian Bay, consistent with the low concentrations of suspended solids and chlorophyll a 

(Table 3.3). Regrettably, the NH4
+ samples collected after June appeared to have suffered 

contamination likely due to atmospheric invasion, thus the data are not reported here as average 

concentrations were 10 fold higher than those reported in prior years (see North 2008). 

In the summer sampling, variability in many parameters was reduced, except at sites that 

had major tributaries. For example, although conductivity had dropped from spring levels, 

variability in conductivity was highest at the Grand River, Port Credit and Southampton sites, 

each of which are in close proximity to a major tributary (Table 3.4). Only sites near urban 

centers had increased variability in Cl- during the summer (Table 3.4). Concentrations of P were 

again remarkably low during the summer sampling, with the highest concentration occurring at 

the Southampton site just above 10 µg L-1. SRP concentrations were not detectable in Lake Erie at 

this time, but were detectable in Lake Ontario and Lake Huron though concentrations generally 

remained between 1.5 and 3 µg L-1 (Table 3.4). NO3
- concentrations also appeared to have 

declined from spring concentrations, but concentrations in Lake Ontario remained near those 

measured in Lake Huron and Georgian Bay (Table 3.4). Despite considerable variability in 

chlorophyll a concentrations, total suspended solids rarely exceeded 1 mg L-1, and corresponding 

measures of light attenuation indicated water clarity in the near shore sites was comparable to that 

observed in the offshore (shoals) unless in proximity to a major tributary (e.g., Grand River, 

Oakville, Port Credit) (Table 3.4).   

Significant correlations among average water quality parameters and % land use were 

rare at the coastal level (e.g., ~ 5 km inland from the lake; Table 3.5). Only spring Cl- 

concentrations were significantly associated with % coastal agricultural land use (Table 3.5). 
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Coastal urban land use was significantly associated with higher spring NO3
-, and higher light 

attenuation in the summer (e.g., kPAR, TSS). At the watershed scale, % agriculture was 

associated with high spring NO3
-, and % urban land use was again associated with increased 

summer light attenuation, spring NO3 and spring chlorophyll a (Table 3.5). No significant 

associations were found among land use percentages for TP or SRP. 
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Table 3.3. Summary of relevant physical and water chemistry data for the study sites during the early season sampling (April 29 – June 13). Mean 
values are bolded, standard deviations in brackets, n denotes number of samples. Surface temperature (Temp; °C) and conductivity (Cond; µS cm-

1) are taken from 1 m below surface from the CTD casts. Light attenuation coefficient (kPAR; m-1), phytoplankton chlorophyll a (chl a; µg L-1), 
total suspended solids (TSS; mg L-1), total phosphorus (TP; µg L-1), total dissolved phosphorus (TDP µg L-1), soluble reactive phosphorus (SRP; 
µg L-1), dissolved silica (SiO2; µg L-1), nitrate (NO3

-; µg L-1) and chloride ion (Cl-; mg L-1). 

Season Lake Site Temp Cond kPAR Chl a TSS TP TDP SRP SiO2 NO3
- 

Cl
- 

Spring Erie Peacock Point 8.16 309 0.57 1.84 2.56 12.11 7.44 3.67 223 516 29.7 

 n=9  (0.67) (16) (0.38) (0.29) (2.06) (6.81) (4.39) (2.23) (114) (294) (7.9) 
 Erie Grand River 11.82 357 0.46 4.09 2.04 8.74 4.93 3.95 144 759 24.9* 
 n=9  (1.04) (80) (0.24) (4.68) (2.24) (3.30) (1.30) (1.84) (52) (545) nd 
 Erie Nanticoke Shoal 4.50 280 0.21 1.64 1.00 7.06 3.25 3.52 362 168 16.1 
 n=4  (0.77) (1) (0.03) (0.31) (0.40) (0.74) (0.42) (0.68) (60) (67) (1.2) 
 Ontario Oakville 11.26 301 0.31 1.64 0.75 6.28 3.31 0.54 234 647 22.2 
 n=9  (0.59) (12) (0.06) (0.54) (0.09) (1.58) (0.45) (0.39) (42) (265) (4.3) 
 Ontario Port Credit 14.98 nd 0.34 1.97 0.98 6.85 3.41 0.66 278 552 25.0 

 n=9  (0.92) nd (0.06) (0.21) (0.39) (1.41) (0.82) (0.49) (118) (119) (7.6) 
 Ontario Presqu’ile 12.57 275 0.37 3.20 0.89 6.89 3.99 1.18 253 360 13.6 

 n=9  (1.67) (13) (0.10) (0.86) (0.35) (1.52) (1.09) (0.76) (23) (23) (2.05) 
 Ontario Dobb’s Bank 16.39 295 0.46 1.98 0.46 6.43 3.72 0.76 261 344 19.5 
 n=4  (0.66) (15) (0.08) (0.18) (0.20) (2.48) (1.29) (0.11) (24) (59) (1.2) 
 Huron Pike Bay 21.05 253 0.17 0.94 0.50 3.16 1.48 <0.35 1004 342 nd 
 n=9  (1.38) (20) (0.09) (0.18) (0.20) (0.80) (0.54) 0 (94) (55) nd 
 Huron Cape Chin 14.94 124 0.14 0.47 0.41 4.02 1.81 1.09 1144 376 nd 
 n=9  (0.55) (43) (0.09) (0.10) (0.12) (2.05) (0.56) (0.39) (57) (29) nd 

Note: nd indicated no data available, *only one measurement available. 
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Table 3.4. Summary of relevant physical and water chemistry data for the study sites during the summer season sampling (July 12 – August 8). 
Mean values are bolded, standard deviations in brackets, n denotes number of samples. Surface temperature (Temp; °C) and conductivity (Cond; 
µS cm-1) are taken from 1 m below surface from the CTD casts. Light attenuation coefficient (kPAR; m-1), phytoplankton chlorophyll a (chl a; µg 
L-1), total suspended solids (TSS; mg L-1), total phosphorus (TP; µg L-1), total dissolved phosphorus (TDP µg L-1), soluble reactive phosphorus 
(SRP; µg L-1), dissolved silica (SiO2; µg L-1), nitrate (NO3

-; µg L-1) and chloride ion (Cl-; mg L-1). 

Season Lake Site Temp Cond kPAR Chl a TSS TP TDP SRP SiO2 NO3
- 

Cl
- 

Summer Erie Peacock Point 23.20 nd 0.29 1.10 1.11 5.62 2.08 <0.35 83 250 14.6 

 n=9  (0.46) nd (0.06) (0.48) (0.19) (0.94) (0.82) 0 (37) (120) (2.0) 
 Erie Grand River 24.65 279 0.40 2.68 1.15 3.74 0.88 <0.35 160 204 16.3 
 n=9  (0.55) (49) (0.17) (1.21) (0.72) (2.24) (0.92) 0 (115) (74) (3.5) 
 Erie Nanticoke Shoal 24.25 nd 0.27 1.84 0.73 5.37 1.95 <0.35 113 262 13.5 
 n=4  (1.63) nd (0.09) (1.27) (0.34) (1.57) (1.01) 0 (52) (124) (2.5) 
 Ontario Oakville 16.37 302 0.50 2.16 1.04 7.24 3.03 0.77 76 392 21.3 
 n=9  (1.59) (4) (0.23) (0.58) (0.16) (1.70) (0.89) (0.29) (43) (140) (1.56) 
 Ontario Port Credit 22.93 308 0.46 1.01 1.15 7.49 2.69 0.71 108 371 24.6 

 n=9  (1.66) (8) (0.07) (0.22) (0.76) (1.40) (0.63) (0.28) (52) (111) (11.3) 
 Ontario Presquile 19.42 302 0.35 1.30 1.05 5.08 2.33 1.54 111 318 18.5 

 n=8  (1.19) (4) (0.04) (0.30) (0.28) (0.67) (0.86) (0.45) (33) (78) (1.7) 
 Ontario Dobbs Bank 18.31 301 0.26 1.38 0.47 5.21 2.61 1.57 96 303 23.2 
 n=4  (0.18) (1) (0.04) (0.11) (0.26) (0.61) (1.03) (0.23) (19) (64) (2.1) 
 Huron Southampton 24.32 245 0.23 0.51 0.52 10.38 3.43 1.26 1293 335 4.81 
 n=9  (0.81) (87) (0.07) (0.19) (0.15) (1.61) (0.92) (0.26) (555) (61) (1.55) 
 Huron Cape Chin 18.59 nd (0.27) 0.46 0.39 8.09 4.17 1.37 754 311 4.40 
 n=9  (3.32) nd (0.10) (0.07) (0.17) (3.79) (1.56) (0.27) (125) (38) (0.36) 

Note: nd indicates no data available. SRP concentrations below 0.35 µg L-1 are below the analytical detection limit.
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Table 3.5. Spearman correlation coefficients (ρ) for mean water chemistry parameters and % land use at 
the coastal margin (~5 km inland) and the watershed scale. Bolded values are significant at the p<0.05 
level. 

Variable Coastal % 

Agricultural 

Coastal % Urban Watershed 

%Agricultural 

Watershed % 

Urban 

Spring TSS 0.27 0.37 0.59 0.43 

Summer TSS 0.32 0.77 0.57 0.75 

Spring kPAR 0.14 0.31 0.56 0.34 

Summer kPAR 0.13 0.83 0.25 0.81 

Spring TP 0.13 0.24 0.54 0.27 

Summer TP 0.25 -0.05 -0.07 0 

Spring SRP 0.20 -0.06 0.46 0 

Summer SRP -0.48 -0.19 -0.38 -0.22 

Spring NO3 0.49 0.73 0.73 0.81 

Summer NO3 -0.29 0.49 -0.19 0.49 

Spring Cl
- 

0.85 0.27 0.48 0.41 

Summer Cl
- -0.41 0.61 -0.14 0.55 

Spring Chl a 0.48 0.56 0.56 0.67 

Summer Chl a -0.15 0.19 0.02 0.22 

.
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3.4.3 Trends in tributary concentrations 

Significant increases in Cl- concentration are seen in tributaries that drain urbanized watersheds 

(Table 3.6; Figure 3.6). Increases in Cl- concentrations are also apparent in more agricultural areas, but 

these are generally of lower magnitude, and may reflect the urban expansion into agricultural areas. 

Increases in NO3
- concentrations are seen for the period 1964 to 1984 for some tributaries, but the lack of 

data makes broad generalizations difficult. In contrast to NO3
- and Cl-, large declines in annual median TP 

concentrations occurred in the 1964 to 1984 period for all the tributaries in Lake Ontario, but not for Lake 

Erie. Annual median TP concentrations appeared to increase in Lake Huron tributaries before declining in 

the 1985 to 2008 period. Further declines of TP in the 1985 to 2008 period are also observed in Lake 

Ontario tributaries, but not in Lake Erie tributaries (Figure 3.6, Table 3.6). Concentrations in recent years 

still frequently exceed the PWQMN target of 0.030 mg L-1, particularly in Lake Erie and some Lake 

Ontario tributaries (Figure 3.6).
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Table 3.6. Mann-Kendall trend tests for annual median TP, NO3, Cl- concentrations in selected tributaries. τ denotes the strength and direction of 
the trend. Significant trends are bolded. ND* denotes not enough data to compute a trend. PWQMN station id’s are noted below the tributary name 
and correspond to figure 3.4. Number in brackets beside the variable denotes the numbers of years included in the analysis. 

Location Station Variable τ (1964 – 1983) P Variable τ (1984 – 2009) P 

Pike Bay (Huron) Stokes River TP (9) 0.048 0.99 TP (12) -0.487 <0.05 

 08014300102 NO3 (9) 0.724 0.06 NO3 (12) 0.493 <0.05 

  Cl- (9)  0.238 0.55 Cl- (12) .405 0.06 
Southampton (Huron) Saugeen River TP (9) 0.592 <0.05 TP (25) -0.579 <0.01 

 08012303002 NO3 (5) 0.40 0.46 NO3 (1) ND  
 08012303082 Cl- (0) ND  Cl- (20) 0.56 <0.01 

Southampton (Huron) Little Sauble TP (7) 0.611 <0.05 TP (13) -0.565 <0.05 

 08012303002 NO3 (7) 0.500 0.07 NO3 (13) -0.364 0.11 
  Cl- (7) 0.370 0.21 Cl- (13) 0.204 0.43 
Peacock Point (Erie) Nanticoke TP (20) 0.138 0.416 TP (19) -0.07 0.699 
 16016400102 NO3 (20) 0.61 <0.01 NO3 (1) ND  
  Cl- (20) 0.11 0.53 Cl- (19) 0.563 <0.01 

Peacock Point (Erie) Sandusk TP (11) 0.273 0.243 TP (2) ND  
 16017000102 NO3 (11) 0.164 0.53 NO3 (0) ND  
 16017000202 Cl- (11) -0.154 0.53 Cl- (2) ND  
Grand River (Erie) Grand River TP (4) -0.333 0.73 TP (25) -0.152 0.289 
 16018403502 NO3 (4) ND  NO3 (0) ND  
 16018403583 Cl- (3) -0.333 0.99 Cl- (25) 0.586 <0.01 

Oakville (Ontario) 16 Mile Creek TP (20) -0.565 <0.01 TP (23) 0.018 0.92 
 06006300102 NO3 (20) 0.681 <0.01 NO3 (1) ND  
  Cl- (19) 0.645 <0.01 Cl- (23) 0.703 <0.01 

Port Credit (Ontario) Etobicoke Creek TP (20) -0.744 <0.01 TP (13) -0.462 <0.05 

 06008000102 NO3 (19) -0.263 0.12 NO3 (1) ND  
  Cl- (17) 0.17 0.36 Cl- (13) 0.538 <0.05 

Presquile (Ontario) Proctor Creek TP (20) -0.649 <0.01 TP (12) -0.255 0.263 
 06015100102 NO3 (20) 0.828 <0.01 NO3 (1) ND  
  Cl- (19) 0.582 <0.01 Cl- (12) -0.103 0.669 
Presquile (Ontario) Consecon Creek TP (9) 0.686 <0.05 TP (20) -0.06 0.715 
 06015700302 NO3 (6) 0.552 0.181 NO3 (0) ND  
  Cl- (6) 0.61 <0.01 Cl- (17) 0.429 0.229 
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Figure 3.6. Plots of annual median Cl- concentration (mg L-1) (top panel), NO3 concentration (mg 
L-1) (middle panel), and TP concentration (mg L-1) (bottom panel) for PWQMN stations nearest 
the study sites. Blue lines represent Lake Huron sites, green for Lake Erie, and red for Lake 
Ontario.
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3.4.4 Distribution of nuisance Cladophora  

Example semi-variograms for percent algal cover and stand height determined by the 

acoustic surveys are shown in Figure 3.7 and summarized in Table 3.7. The degree of spatial 

dependency for semivariogram models (1 – C0 / C0 + C) was generally high for percent cover 

residuals, being > 50 % for most sites. This indicates the presence of a moderately strong spatial 

structure even after accounting for the trend with depth. Spatial dependency of the height 

residuals was generally weaker than that observed for percent cover, owing primarily to the fact 

that most of the variance in stand height appears to be accounted for by percent cover rather than 

spatial variation. 

Kriged maps of percent algal cover, stand heights and estimated biomass for Lake Erie 

and Lake Ontario sites are presented in Figure 3.8 to Figure 3.14. Maps for Lake Huron and the 

Georgian Bay site are not shown, since Cladophora was not detected using acoustic methods at 

these sites. Underwater video did reveal sparse, short (< 5 cm) tufts at the Southampton site at 

most stations and at one station in Georgian Bay (station 800) where dreissenid mussels were 

relatively abundant compared to other Lake Huron sites. Weather conditions prevented any 

sampling of the Southampton site during the “spring” surveys and the Pike Bay site during the 

“summer” surveys. In addition, acoustic data from the Pike Bay spring survey were contaminated 

with excessive water column noise as a result of heavy rainfall. Acoustic noise extended down ~ 

6 m in the water column, making separation of ambient noise from potential algal signal difficult, 

and nearly impossible in shallow waters. Visual observations of the substratum in shallow waters 

(< 5 m) and underwater video revealed that the substrate was mostly devoid of any filamentous 

algae. 

In contrast to the sites in Lake Huron and Georgian Bay, nuisance Cladophora growth 

was observed at all shoreline sites in Lake Erie and Lake Ontario. In general, moderate to strong 

anisotropy (direction of strongest autocorrelation) existed in these data sets, and appeared to be 

primarily driven by the orientation of the shoreline. West to east oriented shorelines (e.g., 

Presqu’ile Provincial Park, Grand River; Rock Point portion) typically had directions of maximal 

correlation in the west to east direction (i.e. 90°) and southwest to northeast oriented shorelines 

(e.g., Port Credit, Oakville, Grand River; Grant Point portion) had a direction of maximal 

correlation in the same direction (e.g., 45°), presumably because of the strong effect of depth on 

light availability. No obvious anisotropy was present at either of the shoal sites, likely because 

these were relatively smaller areas with a limited amount of area at shallow depths.  
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Because shoreline sites typically have greater areas at shallow depths compared to the 

offshore shoals, larger average patch sizes might be expected to occur along shoreline sites. 

However, the data here do not suggest this is that case (e.g., range (α); Table 3.7). The large 

variation in range (α) is likely due to a combination of factors. For example, the large range in 

percent cover at the Rock Point portion of the Grand River site is primarily due to the large 

shallow shoal that extends southeastward from Mohawk Island (Figure 3.10). In contrast, the 

large range at Presqu’ile is due to the large area of heavy cover in the lee of Big Bluff and Gull 

Island, which act to shelter the adjacent embayment area from wind and wave action (Figure 

3.13). Smaller ranges were observed at exposed shorelines (e.g. Peacock Point, Grant Point, 

Oakville, and Port Credit) where large sheltered areas are not present (Figure 3.9, Figure 3.10, 

Figure 3.11, Figure 3.12). 

In general, sites with a low sill (C) value for percent cover, had relatively low variability 

in Cladophora sp. cover, and sites with a low sill (C) for height had low variability in observed 

canopy heights. The putative cause of the low variability in cover likely varies from site to site. 

For example, the low sill at Nanticoke shoal is due to the depth range (3.5 m to 11 m depth) being 

deeper than those encountered at the shoreline sites. As a consequence, algal biomass likely does 

not reach comparable levels that might occur in shallower water along the shoreline sites where 

light is not limiting. In addition, lower exposure to physical disturbance probably leads to large 

areas of moderate growth over areas which are exposed to frequent wave action. In contrast, the 

low sill at Peacock Point is partly due to the smaller area surveyed, but also to a major 

detachment event that was observed to occur on the 12th of July (personal observation) in the 

vicinity of Peacock Point. Since much of the algal biomass appeared to have detached from the 

bottom, there were very few areas of heavy cover remaining at the time of the survey, and the 

resultant large areas with little to no cover contributed to the low sill.  

Large sill values tended to occur at the larger shoreline sites (e.g., Oakville, Port Credit, 

Presqu’ile) and displayed a high degree of patchiness (e.g., varying degrees of shoreline 

exposure), although the high sill observed at Grant Point and Dobb’s Bank may have been due to 

a combination of a) a small survey area (< 2km2) and b) appreciable variation in cover, although 

at Dobb’s Bank, much of this was imparted by stands of macrophytes that showed heavy cover at 

deeper depths compared to Cladophora. Isolated stands of macrophytes were also observed at the 

Rock point portion of the Grand River site, but these were mostly restricted to the north side of 

Mohawk Island, and toward the east where the substrate changed from rock to sand and gravel 

(Figure 3.10). The large heavily covered shallow shoal (near Mohawk Island) may have helped to 

moderate the sill at this site. 
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The principal cause for a high sill (C) in canopy height was the presence of a) 

macrophytes in the survey area (e.g. Peacock Point, Rock Point, Presqu’ile and Dobb’s Bank) or 

b) considerable variation in observed canopy heights of Cladophora (Rock Point and Grant 

Point). Trends in the nugget variance (C0) also reflect this, though the variable sizes of the survey 

areas may obscure such relationships (see for example, Chapter 4). 

 In order to estimate the approximate depth detection limit at each site, average estimated 

biomass values were binned according to depth strata (1 m depth bins) and averaged. The 

resultant profiles (Figure 3.15 and Figure 3.16) were then examined to see at what depth the 

estimated biomass fell below the apparent detection limit for the acoustic system (31 ± 18 g m-2; 

Chapter 2).  The depth distribution of estimated biomass in Lake Erie suggested that detectable 

(and therefore biomass approaching nuisance levels occurred to depths of 5-6 m at the shoreline 

sites, and to ~ 7 m at Nanticoke Shoal (Figure 3.15). In the western basin of Lake Ontario, the 

depth range was slightly deeper, extending to 7 m for west basin sites, but appeared to extend to ~ 

9 m at Presqu’ile and at Dobb’s Bank (Figure 3.16).  
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Figure 3.7. Residual semivariograms for a) percent cover at Nanticoke Shoal (July 12 2005), b) 
algal stand height at Nanticoke Shoal (July 12 2005), c) percent cover at Presqu’ile Provincial 
Park (July 27 2005), and d) algal stand height at Presqu’ile Provincial Park (July 27 2005). Note 
the differences total semivariance for panels a) (offshore shoal site) and c) (nearshore site high 
exposure) and the difference in the sill between panels b) (no macrophytes present) and d) 
(macrophytes present). 
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Table 3.7. Semivariogram parameters and kriging cross validation results for 2005 surveys. Date and site give the location of the acoustic 
surveys. C0 denotes the nugget variance, C denotes the sill, and α the range (m). Sp% is the degree of spatial dependence described by the fitted 
semivariogram model. Model Type indicates the form of model fitted to the experimental semivariogram.“Exp” denotes exponential model, and 
“Sph” denotes spherical model. 

Date Site Variable C0 C α Sp% Model Type Anisotropy 

July 12 Nanticoke % Cover 266.96 314.70 177.16 54 % Exp None 
July 12 Nanticoke Height 8.5 x 10-4 3.0 x 10-4 16.6 30 % Exp None 
July 14/15 Rock Pt %Cover 323.15 390.53 205.14 54 % Exp 90° 
July 14/15 Rock Pt Height 1.0 x 10-3 9.6 x 10-4 47.07 48 % Exp 90° 
July 15 Grant Pt %Cover 377.84 522.89 58.93 58 % Exp 45° 
July 15 Grant Pt Height 9.0 x 10-4 3.5 x 10-4 84.93 26 % Exp 45° 
July 19 Peacock Pt % Cover 228.04 308.06 91.64 58 % Exp 45° 
July 19 Peacock Pt Height 5.3 x 10-3 4.6 x 10-3 1127.55 46 % Sph 45° 
July 21 Oakville %Cover 272.86 553.53 48.99 66 % Exp 45° 
July 21 Oakville Height 1.7 x 10-3 7.1 x 10-4 171.13 29 % Exp 45° 
July 25 Port Credit %Cover 399.45 573.64 65.28 59 % Exp 45° 
July 25 Port Credit Height 1.2 x 10-3 3.5 x 10-4 57.5 63 % Exp 45° 
July 27 Presqu’ile %Cover 392.58 734.65 245.7 65 % Exp 90° 
July 27 Presqu’ile Height 8.2 x 10-4 1.2 x 10-3 81.10 27 % Exp 90° 
July 27 Dobb’s Bank % Cover 407.47 537.66 68.93 57 % Exp None 
July 27 Dobb’s Bank Height 2.2 x 10-3 4.2 x 10-3 269.61 66 % Sph None 
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Figure 3.8. Kriged maps showing a) percent cover, b) stand height, c) estimated dry biomass and d) estimated biomass standard error for 
Nanticoke shoal, July 12, 2005. The black line denotes the outline of the 11 m depth contour of the shoal. Arrow denotes approximate location of 
Nanticoke Shoal in Lake Erie (inset box in panel d). Note that the scale for stand height (panel b) and estimated biomass (panel c) are of different 
range than following figures. 
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Figure 3.9. Kriged maps showing a) percent cover, b) algal stand height, c) estimated dry biomass and d) estimated biomass standard error for 
Peacock Point, July 19, 2005. Arrow denotes approximate location of Peacock Point in Lake Erie (inset box in panel d). Note that the scale for 
stand height (panel b) and estimated biomass (panel c) are of different range than following figures. 
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Figure 3.10. Kriged maps showing a) percent cover, b) stand height, c) estimated biomass and d) approximate standard errors for biomass 
estimates for the Grand River sites July 14-15, 2005. Note that the scale for stand height (panel b) and estimated biomass (panel c) are of different 
range than following figures. 



 

  

 

82 

 

Figure 3.11. Kriged maps showing a) percent cover, b) stand height, c) estimated biomass and d) approximate standard errors for biomass 
estimates for Oakville, July 25 2005.  
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Figure 3.12. Kriged maps showing a) percent cover, b) stand height, c) estimated biomass and d) approximate standard errors for biomass 
estimates for Port Credit, July 21 2005. Note that the scale for stand height (panel b) and estimated biomass (panel c) are of different range than 
following figures. 
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Figure 3.13. Kriged maps showing a) percent cover, b) stand height, c) estimated biomass and d) approximate standard errors for biomass 
estimates for Presqu’ile Provincial Park, July 27 2005.  
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Figure 3.14. Kriged maps showing a) percent cover, b) stand height, c) estimated biomass and d) approximate standard errors for biomass 
estimates for Dobb’s Bank July 27 2005. 
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3.4.5 Relationships of Cladophora biomass to land use, water quality and dreissenid mussel 

abundance  

For comparative purposes, mean biomass as estimated from acoustic methods was chosen 

to compare individual sites among land uses, average water chemistry and dreissenid abundance. 

Grid cells with an estimated biomass value exceeding 50 g m-2 (above the apparent detection limit 

of the acoustic unit) were selected. Using only cells that exceed the threshold of estimated 

biomass allows for site specific trends to be expressed more clearly, since averaging over large 

and variably sized survey areas (particularly where an over abundance of zeros is present) will 

obscure differences that are imparted by differences in bathymetry, substrate types and light 

climate. In addition, since a common value of 100 g m-2 was assigned to all macrophyte stands 

(e.g., bed height > 0.30 m), inclusion of areas with macrophytes would artificially inflate the 

estimated mean biomass, therefore, to eliminate the effects of the presence of macrophytes, cells 

with an estimated stand height > 30 cm were discarded.  

No correlations were observed with spring water chemistry variables (Figure 3.17).  A 

strong negative correlation was observed between summer TP and mean biomass (Spearman’s 

ρ=-0.83, p<0.01). No significant relationships were observed between mean biomass and spring 

or summer SRP (Spearman’s ρ=0.36, p>0.3 and Spearman’s ρ=-0.04, p>0.9) or spring or summer 

NO3 (Spearman’s ρ=0.47 and -0.20, p >0.2 respectively). Mean biomass did not show a 

significant correlation with % coastal agricultural land use or % coastal urban land use, though 

the relationship with % coastal urban land use was only marginally non significant (Spearman’s 

ρ=0.55, p=0.10). In contrast, a strong positive correlation was observed with dreissenid mussel 

abundance (Spearman’s ρ=0.76, p<0.05).



 

  

 

87 

 

Figure 3.15. Depth profiles of average estimated biomass from acoustic methods for a) 
Nanticoke Shoal, b) Peacock Point, c) Rock Point (Grand River) and d) Grant Point (Grand 
River). Error bars are one standard deviation. Note x axis scale is different for panels a and b.
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Figure 3.16. Depth profiles of average estimated biomass from acoustic methods for a) Oakville, 
b) Port Credit, c) Presqu’ile and d) Dobb’s Bank. Error bars are one standard deviation. Note x-
axis scale in panels a and b is different.
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3.5 Discussion 

This study describes the application of a non-invasive hydroacoustic system to rapidly 

sample large areas and map the distribution of nuisance Cladophora biomass. Operationally, the 

definition of nuisance Cladophora biomass is largely dependent on the objective of the study, and 

the biases of the observer; what is a nuisance in one case may not be considered a nuisance in 

another case. In this study, nuisance biomass is defined as that which exceeds 50 g m2 DW. This 

value is well above the estimated detection limit of the hydroacoustic system as determined in 

Chapter 2, and close to the level observed by Canale and Auer (1982) when SRP concentrations 

declined < 2 µg L-1. Like any remote sampling method, there are inherent limitations. First and 

foremost, the detection of algae or macrophytes on the lake bottom is limited by both biomass 

and height of the canopy (Chapter 2; Sabol et al. 2002a). In this study, a minimum detection 

height of 7.5 cm was used to characterize the algal canopy. This distance corresponds to one half 

the pulse width which is considered the minimum distance between two targets for reliable 

separation (Simmonds and MacLennan 2005), and is used in this purpose to limit the rate of false 

positive detections. Clearly algal stands with canopy heights less than this threshold will not be 

adequately characterized and corresponding estimates of percent cover, stand height and biomass 

are likely conservative. Moreover, the distribution of nuisance Cladophora biomass is more likely 

to be of interest to managers and shoreline residents. Additional limitations to successful 

detection of algal mats are imposed by environmental factors such as wind and waves which act 

to entrain air in the form of bubbles that strongly scatter acoustic energy (Kubecka 1996). These 

bubbles can obscure the presence of an algal signal on the bottom, particularly if bubbles are well 

distributed in the water column. Such interference was minimized by conducting the acoustic 

surveys on calm days when environmental conditions (e.g., wind and waves) were not conducive 

to bubble formation or excessive vessel pitch and roll.   

The use of kriging as applied in this study was to build a reliable representation of the 

spatial structure of nuisance Cladophora distribution along sections of the Great Lakes 

shorelines. The ultimate result of this process is a smoothing of more ragged sample dataset. 

Acoustically generated data corresponding to Cladophora cover and height proved to be suitable 

for kriging provided appropriate caution is exercised. In particular, the results illustrate the 

importance of checking the assumptions of stationarity, as significant, although variable trends 

with depth were found for percent cover, and strong relationships between stand height and 

percent cover existed for all datasets where Cladophora was detected with the acoustic system. 

The choice of semivariogram models and fitting methods with “messy” biological data (c.f. 
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Rufino et al. 2005) continues to be a topic of considerable discussion in the literature (Rufino et 

al. 2005, Sullivan 1991) and while the goal of this study was not to contrast the multitude of 

different methodological options for exploring and validating spatial models, it is important to 

identify areas where improvements can be made. 

 In this study, creation of maps of algal distribution and stand height were possible when 

trends with depth were accounted for, particularly for areas where Cladophora was the only 

target. Improvements could likely be made through the use of additional predictors. For example, 

stratified kriging could be employed had accurate maps of substrate type been generated from the 

120 kHz system, as trends between percent Cladophora cover and depth are not likely to be 

similar on soft substrates compared to hard substrates. Furthermore, removal of acoustic data 

associated with macrophytes may facilitate better kriging estimates (both of predicted values and 

error variance) as trends between percent cover and depth and percent cover and stand height are 

much different for macrophytes than for filamentous algae such as Cladophora. However, these 

study sites were dominated by hard substrate, and in areas where macrophyte growth was present, 

it was generally minor in nature, and isolated. Improvements are likely to be minor in these cases, 

but may offer improvement for other study sites with more variable substratum.   

3.5.1 Current distribution of nuisance Cladophora growth in Lake Huron, Erie and Ontario 

Nuisance Cladophora growth was evident at all sites in Lake Erie and Ontario, including 

the offshore shoals in each lake. The maximum depth where consistent detection of Cladophora 

was possible with the acoustic system was ~ 5 - 6 m at Lake Erie shoreline sites, 6 - 7 m for 

western Lake Ontario, and up to 9 m at Presqu’ile Provincial Park in eastern Lake Ontario and the 

offshore shoal sites in Lake Erie and Ontario. These ranges of depths where nuisance biomass 

occurred are consistent with results of surveys in 1995 and 2001-02 reported by (Higgins et al. 

2005b) where nuisance biomass of Cladophora (e.g., > 50 g m-2) were widespread to depths of 5 

m at a variety of sites along the East Basin of Lake Erie. While a data set with similarly intensive 

depth sampling is not available for western Lake Ontario, the depth specific extent is consistent 

with modeled peak biomass from 2004 and 2005 for a site at Oakville (Malkin et al. 2008). The 

apparent greater depth of detection at Presqu’ile is difficult to reconcile given the relatively lower 

water clarity measured at this site, and the tendency for long shore transport of eroded bluff 

material from western Lake Ontario that often results in turbid waters in Wellington Bay (e.g., 

Martini and Kwong 1985). Nonetheless, these results are consistent with the limited quantitative 

data available for this site. For example, biomass reaching 84 g m-2 at depths of 9.1 m was 

recorded in July of 1999 (DeJong 2000). While data are not available for comparison with either 



 

  

 

91 

of the shoal sites (Nanticoke or Dobbs Bank), the depth limits for detection of nuisance 

Cladophora with the acoustic system is in general agreement with available quantitative studies. 

In contrast to the lower lakes, nuisance Cladophora growth was not detected with the 

acoustic system at any of the sites in Lake Huron or Georgian Bay during this study. This does 

not mean that the lake bed at these sites were entirely devoid of Cladophora growth. On the 

contrary, small quantities of Cladophora were observed at 6 of 9 stations at the Southampton site 

and at stations 800 and 801 at the Cape Chin site with the aid of the underwater camera. These 

small growths of Cladophora were generally short (i.e < 5 cm in length) and of limited areal 

extent (approx. 10s of cm2). While quantitative data on Cladophora biomass at these sites is 

lacking, it is likely that the attached biomass at the time of study was well below the detection 

limit for the acoustic system. The failure to detect nuisance Cladophora biomass at these sites 

may be due in part to the comparatively fewer surveys conducted at these sites relative to those in 

Lake Erie and Ontario, but also the later seasonal timing of the surveys may have not been ideal 

to capture peak biomass conditions. However, recent work along the Ontario shore of Lake Huron 

produced estimates of Cladophora biomass ranging from 0 to 15 g m-2 at depths ranging between 

0.5 and 3 m (S.N. Higgins, University of Wisconsin, unpubl. data) well below “nuisance” 

quantities. Furthermore, shoreline surveys by the Ontario Ministry of the Environment between 

2003 and 2005 found only localized nuisance growth of Cladophora in proximity to known 

nutrient sources (Howell 2004). The combination of the survey results and the observations 

discussed previously do suggest that at the current time, Cladophora does not reach nuisance 

biomass levels in Lake Huron. 

3.5.2 Distribution of nuisance Cladophora in relation to water chemistry, land use and 

dreissenid mussels 

The upper limit of Cladophora biomass in the Great Lakes has historically been and 

continues to be set by P supply and light availability (Auer and Canale 1982a, Higgins et al. 

2005a, Malkin 2007, Higgins et al. 2008a). Prior to the implementation of the GLWQA and 

mandated P control strategies, high P concentrations were characteristic of many near shore areas 

of the Great Lakes (Gregor and Rast 1982). In Lakes Erie and Ontario, TP concentrations 

routinely exceeded 15 µg L-1 (Gregor and Rast 1982; Ontario Ministry of Environment 1975, 

Ontario Ministry of Environment 1986). In contrast, few near shore areas in Lake Huron were 

characterized by TP concentrations in excess of 10 - 15 µg L-1  and these were mainly limited to 

Saginaw Bay (Gregor and Rast 1982) and areas near the Ausable and Maitland Rivers along the 

Ontario coast of southern Lake Huron (Stevens et al. 1985) where proximity to major tributaries 
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and municipal effluent discharges ensured persistent high nutrient concentrations (Stevens et al. 

1985,  Jackson et al. 1985, Ross and Chatterjee 1977). The resultant patterns of Cladophora 

growth during this time period were generally consistent with the trends in nutrient 

concentrations; nuisance biomass was often locally associated with known point or shoreline 

sources in Lake Huron (Auer et al. 1982, Jackson 1988) whereas in the lower lakes (Erie and 

Ontario) nuisance Cladophora growth was widespread, in concordance with widespread elevated 

nutrient concentrations (Taft and Kishler 1973).  

Considerable strides reducing nutrient loads to the Great Lakes were made in the 1970s 

and 80s in part by controlling point source discharges of P such as waste water treatment plant 

effluent (Stevens and Neilson 1987, Neilson et al. 1995). These improvements were possible due 

in part to the ease in identifying point sources, but also in implementing effective controls. On the 

other hand, the control of point sources of P did not necessarily end the eutrophication problem 

(Schindler 2006). It was widely recognized that diffuse non-point sources of nutrients such as 

agricultural runoff and internal recycling of P persisted in some areas (Schindler 2006). As far 

back as the 1970s, the International Joint Comission (IJC) estimated that ~ 50 % of the nutrient 

load originated from non-point sources (IJC 1980). The effectiveness of non-point source controls 

is difficult to determine because a) it is difficult to identify the exact source of nutrient pollution 

within a watershed (Sharpley and Rekolainen 1997) and 2), reductions often require changes to 

agricultural practices or revitalization of wetlands and riparian areas, which can take several years 

to implement and therefore demonstrate a measureable effect. Compounding such efforts is the 

fact that the pace of land use change (often from natural cover to agricultural or urban cover) is 

rapidly changing, exceeding that predicted by population growth in the Great Lakes basin (e.g., 

Wolter et al. 2006). 

While it is well recognized that the conversion of forested land to agricultural land (even 

pastured land) is known to increase the nutrient fluxes from the watershed (Dillon and Kirchner 

1975), the dynamics of land use has changed dramatically. For example, prior to the 1940s, most 

farming communities were self sufficient, producing enough feed locally to meet animal 

requirements and recycling animal nutrients to meet crop needs (Sharpley et al. 2001). The advent 

of mechanized farming and concentrated farming systems has lead to a transfer of P from areas of 

grain production to animal production, effectively creating regional surpluses of P inputs 

(fertilizer and feed) over outputs (crop and animal produce) (Sharpley et al. 1998). These regional 

P imbalances are further exacerbated by the inefficient utilization of P in feed by by many 

animals (~30%; Sharpley et al. 1998). As a result much of the P entering livestock operations 

ends up in animal manure which is often applied locally and designed to meet crop N needs. This 
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results in a build-up of soil P above the amount needed by crops and increases the potential for P 

loss in runoff as well as leachate to subsurface systems. The net result of these changes withing 

agricultural lands has been a gradual evolution from net sinks of P to net sources of P (Sharpley et 

al. 2001).  

  Conversion of natural land or agricultural land to urban land can also increase the flux 

of nutrients from the watershed. In general, developed lands, (residential, commercial or 

industrial) increase the amount of impervious surface area which promotes high runoff during 

precipitation events and reduces the potential attenuation of nutrients in these areas (Sorrano et al. 

1996). Sewage inputs can also be a key source of P inputs from urban areas, particularly if the 

sewage infrastructure (e.g., combined sewer overflows; CSO) are not able to accommodate the 

increased volume of water that results from expansion of impervious surface area (Marsalek and 

Rochefort 2004).  

In this study, significant relationships between land use and NO3
- concentrations were 

found at differing spatial extents. The relationship observed between NO3
- concentrations and 

agricultural land use is well documented and is thought to result from the high loadings and low 

retention of nitrogenous fertilizers in cultivated fields (Howarth et al. 1996). The significant 

relationship observed between % urban land use and NO3
- concentrations at the coastal scale (~ 5 

km) likely reflects the fact that many of these highly urbanized shorelines are still situated within 

primarily agricultural watersheds (see for example, Table 3.1). This is largely consistent with the 

findings of Danz et al. (2007) who found a strong relationship between agricultural stress and TN 

in Great Lakes coastal areas and the findings of Peterson et al. (2007) who found N15 of benthic 

organisms closely resembles the N15 of the adjacent watersheds. Upward trends in NO3
- 

concentration observed in tributaries within these urban watersheds around Lake Ontario (Ontario 

Ministry of Environment 1999) are also consistent with these patterns. 

The lack of strong relationships between land use type and near shore P concentrations 

observed in this study does not exclude the possibility that catchment loading has not increased. 

The strong correlations between urban land use and summer TSS and kPAR are certainly not 

inconsistent with increased connectivity of the urban areas to the lake (Sorrano et al. 1996). 

Associations between P concentrations in receiving waters and land use are less universal than 

those typically described for N (Sorrano et al. 1996, Vanni et al. 2007). Watersheds with 

comparable land uses can vary greatly with respect to nutrient fluxes or instream conditions 

(Vanni et al. 2007, Fraterrigo and Downing 2008). Further compounding this variation is the 

observation that nutrient fluxes can show appreciable temporal variation, often corresponding to 

precipitation mediated changes in discharge. Simple sampling regimes such as the one employed 
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in this study are insufficient to characterize such events and their subsequent effects on near shore 

nutrient chemistry.  

The nutrient concentrations measured in the near shore are a function of biological 

processes (Edsall and Charlton 1997), the magnitude of loads from the catchment (Gregor and 

Rast 1982), dynamics of hydrologic transport to the lake (Harremoes 1988) and the mixing and 

dispersion created by hydrodynamic forces (see Rao and Schwab 2007 for a review) which will 

determine the distribution of nutrients once in the lake. Although the open near shore areas (such 

as the ones sampled in this study) are thought to be sufficiently well mixed such that specific 

sources of nutrient pollution can be difficult to identify (Peterson et al. 2007), given the 

limitations of such a limited temporal sampling regime, the lack of response for P concentrations 

and land use classes may simply reflect the fact that P remains the limiting nutrient for algal 

growth in the Great Lakes and is therefore subjected to high biological demand, particularly 

during the summer months. The strong negative correlation that was observed between estimated 

Cladophora biomass and TP during the summer supports this interpretation. 

The widespread nature of Cladophora growth in Lakes Erie and Ontario suggests that 

shorelines with differing land uses (e.g., urban and rural/agricultural; Lake Ontario, and 

agricultural; Lake Erie) can experience nuisance Cladophora biomass accumulation. While this is 

certainly not inconsistent with historical patterns, the current patterns in water chemistry and 

nuisance Cladophora growth in near shore areas are not easily reconciled. For example, 

phytoplankton chlorophyll a remains low in both near shore and offshore waters and in many 

places (e.g., this study, Depew et al. 2006, Hall et al. 2003) and compelling evidence for 

increasing nutrient concentrations in Lakes Erie or Ontario is lacking (e.g., North 2008, Malkin et 

al. submitted). In this study, TP only exceeded the GLWQA concentration of 10 µg L-1 at Lake 

Erie shore line sites during the spring and at Southampton (Lake Huron site) during the summer. 

TP measured at the remainder of the sites was often less than 10 µg L-1, and SRP was low, even 

falling below the detection limit (~ 0.35 µg L-1) in Lake Erie during the summer. These patterns 

are consistent with the hypothesis that near shore water chemistry can be strongly affected by 

biological activity. For example, nuisance Cladophora growth was lacking along the Lake Huron 

shoreline at Southampton where one of the most heavily farmed watersheds in Ontario (Saugeen 

River) drains into the lake. The Saugeen River watershed is ranked 6th in the country for N 

production from manure (35 kg ha-1) and 7th in the country for P production from manure (10 kg 

ha-1) (Statistics Canada 2001). This site had the highest measured nutrient concentrations (TP and 

NO3) in this study, but also had low dreissenid abundance and nuisance Cladophora growth was 

absent. In contrast, the upper Grand River watershed is ranked 3rd in the country for N production 
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from manure (46 kg ha-1) and 4th in the country for P production from manure (12 kg ha-1) 

(Statistics Canada 2001). At the Grand River site, luxuriant Cladophora growth was clearly 

widespread, yet some of the lowest P concentrations (summer) were measured at this site. This is 

clearly a change when contrasted against historical studies and is remarkably consistent with the 

near shore shunt hypothesis (e.g., Hecky et al. 2004) that attributes these paradoxical patterns 

(excessive benthic algal growth and unremarkable water chemistry) to alterations of nutrient and 

energy cycling mediated by mussels. The high densities and biomass of dreissenids in near shore 

areas of Lakes Erie and Ontario are well documented (e.g., Patterson et al. 2005, Wilson et al. 

2006, Ozersky et al. 2009), although the abundances of mussels in the east basin of Lake Erie is 

likely lower than the numbers reported here for the year 2002 due to predation by round gobies 

(e.g., Barton et al. 2005). Less well known are the abundances of mussels in Lake Huron or 

Georgian Bay, and their potential impact on the ecology of the upper lakes. The estimates of 

mussel abundance for Lake Huron and Georgian Bay from this study are low compared to Lake 

Erie and Ontario, but comparable to densities observed by Pothoven and Nalepa (2006) and 

Nalepa et al. (2007) at deeper depths (31 to 50 m) in Lake Huron. When dreissenids are present at 

high abundances, numerous studies have documented their ability to filter large amounts of 

particulate matter and increase water clarity (Howell et al. 1996), reduce phytoplankton 

chlorophyll a concentrations (Hall et al. 2003, Depew et al. 2006), generate large quantities of 

fecal material (Stewart et al. 1998a) and recycle N and P (e.g. Arnott and Vanni 1996, Ozerksy et 

al. 2009). At lower abundances, however, such effects may not be as large, and on the surface the 

differences in dreissenid abundance appears to explain the pattern of nuisance Cladophora 

growth well. Although Barbiero et al. (2009) suggest that even mussels have had a profound 

effect on nutrients and the pelagic food web in Lake Huron, the bulk of dreissenid biomass 

appears to be located at depths > 30 m (e.g., Pothoven and Nalepa 2006, Nalepa et al. 2007) and 

the positive effects of enhanced nutrient supply from profundal dreissenids to Cladophora in the 

littoral areas is likely inconsequential. 

Further support for the dreissenid link is provided by observations of nuisance growth at 

offshore shoals (e.g. Nanticoke Shoal and Dobb’s Bank). Although these were not studied 

historically, given the relatively restricted depth of colonization observed in Lake Erie and 

Ontario durig the 1970s and 1980s, it is unlikely that these shoals were heavily overgrown by 

Cladophora. These shoals are also well removed from the local influences at the shoreline, and 

are characterized by nutrient conditions that closely resemble offshore conditions. The results of 

this study clearly demonstrate that even the low nutrient conditions that have been measured in 
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the offshore (e.g., North 2008, Malkin et al. submitted) are sufficient to support Cladophora 

growth, which is clearly a change from conditions in the 1960s and 1970s. 
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Figure 3.17. Scatterplots of mean nuisance Cladophora biomass estimated from acoustic 
methods with a) Spring total P, b) summer TP, c) Spring SRP, ) summer SRP, e) spring NO3

-, f) 
summer NO3

-. Significant (p <0.05) Spearman correlation coefficients are given in the upper right 
corner of panel.
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Figure 3.18. Scatterplots of mean nuisance Cladophora biomass estimated from acoustic 
methods with a) % agricultural land use, b) % urban land use, c) dreissenid mussel abundance. 
Significant (p < 0.05) Spearman correlation coefficients are given in the upper right corner of 
panel.
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3.6 Summary and Conclusions 

The ambient nutrient conditions and differences in land use measured among sites do not 

readily explain the regional differences in nuisance Cladophora growth and biomass, nor do they 

offer much insight into the nature of Cladophora growth within Lakes Erie and Ontario. These 

results show a stronger correlation between nuisance Cladophora biomass with dreissenid mussel 

abundance than with ambient near shore nutrient concentrations, or land use types at the coastal 

or watershed level.  

 These results also suggest that nuisance Cladophora growth extends into waters 6 to 9 m 

deep. Although comparable data from the 1960s and 70s are scarce, this is deeper than historical 

depths determined from modeling studies (e.g., Higgins et al. 2005b, Malkin et al. 2008). The 

expansion of Cladophora into deeper waters is also consistent with the results of a recent bi-

national modeling study (Auer et al. submitted) that concluded the gains made through 

phosphorus loading reduction have been offset by the dreissenid mediated changes in water 

clarity and phosphorus cycling that increase the depth of colonization of Cladophora, thereby 

increasing the total production. Lacking a demonstrable increase in nutrient loading from 

catchments or point sources (e.g., Ontario Ministry of the Environment 1999, Medieros and 

Molot 2006), the patterns of Cladophora growth and water chemistry observed in this study are 

better explained by the patterns of dreissenid mussel abundance and the near shore shunt 

hypothesis (Hecky et al. 2004). 
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Chapter 4 

Distribution of nuisance benthic algae (Cladophora) along urban 

shorelines: Can the resurgence be linked to nutrient sources?  

4.1 Overview 

 Two shorelines in the heavily urbanized western basin of Lake Ontario were surveyed 

with a high frequency hydroacoustic echosounder to assess the spatial patterns of water quality 

and the nuisance benthic filamentous algae (e.g., Cladophora) to evaluate whether potential point 

sources (e.g., municipal waste water treatment plant outfalls) and shoreline point sources of 

nutrients (e.g., tributaries and storm drains) contribute to the patterns of nuisance algal growth. 

Results from these surveys indicate that nutrient concentrations are spatially heterogeneous in the 

near shore areas of Lake Ontario but do not regularly exceed GLQWA target concentrations 

during the summer growing period of Cladophora. Nuisance biomass (> 50 g m-2) of Cladophora 

is widespread along large areas of these heavily urbanized shorelines and these accumulations are 

not spatially associated with identifiable point sources (e.g., WWTP outfalls) of nutrients. While 

some degree of spatial association was observed between nuisance Cladophora biomass and 

tributaries at one site, the widespread nature of nuisance Cladophora growth indicated that 

autochthonous recycling of P is likely important. These results are consistent with prior surveys 

in Lakes Huron, Erie and Ontario that suggest dreissenid mussels are a key link governing the 

contemporary distribution of nuisance Cladophora in the Great Lakes.  
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4.2 Introduction 

Historically, nutrient loading to the Great Lakes occurred primarily via point sources 

such as municipal waste water treatment plants and industrial discharges, and non-point sources 

such as agricultural and urban runoff, that are derived from a multitude of catchment sources 

(Neilson et al. 2003). For Lake Ontario, nearly 60 % of the P load to the lake in the mid 1960s 

was attributed to municipal sources (International Lake Ontario - St Lawrence River Water 

Pollution Board 1969), with the remaining 30% attributed to the Niagara River, and upstream 

Lake Erie (International Lake Ontario - St Lawrence River Water Pollution Board 1969). 

Approximately 70 % of the total P load to Lake Ontario was estimated to be derived from 

detergent phosphates, and due to the locations of the discharges, these primarily occurred in 

shallow near shore areas as direct discharge to surface waters via municipal WWTP outfalls or 

tributary discharge at the shoreline (Stevens and Neilson 1987). As a result, both the production 

and biomass of phytoplankton increased (Glooshenko et al. 1974, Stadelmann et al. 1974), 

particularly in near shore areas near nutrient inputs where nutrient concentrations were the 

highest. In addition to high phytoplankton biomass, excessive amounts of the filamentous green 

algae (Cladophora) were commonly observed across large areas of the Lake Ontario shoreline 

where hard substrate dominated ( Neil and Owen 1964, Wezernak and Lyzenga 1975, Painter and 

Kamaitis 1987).   

Intensive research on Cladophora in Lake Huron (see Auer et al. 1982a for a review) and 

in Lake Erie (Neil and Jackson 1982) concluded that phosphorus was the key nutrient controlling 

Cladophora growth in the Great Lakes. Phosphorus abatement programs were implemented in the 

early 1970s to reduce the phosphate content of detergent from 20 % to ~ 5 % (Municipal 

Abatement Task Force 1983). In addition, the signing of the Great Lakes Water Quality 

Agreement (GLWQA) in 1972 outlined additional remediation measures necessary to control P 

input to the Lakes; including regulating the effluent concentrations from municipal waste water 

treatment plants (WWTP) discharging in excess of 1 million gallons day-1 to 1 mg L-1 of P 

(Stevens and Neilson 1987). These strategies were largely effective at reducing both near shore 

(Nicholls et al. 2001) and open lake phosphorus concentrations in Lake Ontario (Lean et al. 

1990). Although less intensively monitored, there is evidence that P control contributed to a 

decline in Cladophora biomass and tissue P content in Lake Ontario (Painter and Kamaitis 1987).  

Over the last two decades, Lake Ontario has experienced significant reductions in 

phosphorus loading with a concomitant shift to oligotrophy and a dramatic increase in water 

clarity resulting from both nutrient reduction and after the mid-1990’s a proliferation of the filter 
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feeding dreissenid mussels (Mills et al. 2003). In the late 1990s and into the early 2000s, reports 

of shoreline fouling by Cladophora were increasing in the western basin of Lake Ontario (Malkin 

et al. 2008), despite off shore nutrient concentrations remaining at or below the levels set in the 

GLWQA (Malkin et al. submitted). Similar reports of increased Cladophora growth in Lakes Erie 

(Higgins et al. 2005) and Michigan (Bootsma et al. 2005) suggested that this was not a localized 

phenomenon, and may be a result of extensive dreissenid mussel colonization (Hecky et al. 

2004). Due to the high biomass that dreissenid mussels have attained in the lower Great Lakes, 

mussels have been credited with increasing water clarity and re-distributing nutrients and organic 

matter from the pelagic environment to the benthic environment (Hecky et al. 2004). These 

effects are thought to be particularly strong in the shallow near shore waters of the Great Lakes 

underlain by hard substratum, which is suitable for dreissenid and Cladophora colonization, and 

the perception that increased benthic algal growth has resulted from dreissenid colonization has 

become widespread.  

The degree to which this perception is accurate, however, is unclear. Phosphorus flux 

from catchments is known to increase with land disturbance, soil erosion, and increases of 

impervious surface area (Byron and Goldman 1989). While agricultural and urban areas may be 

quantitatively similar in the magnitude of P loading, they are qualitatively different in their 

linkage to receiving surface waters. Many urban landscapes consist of a mosaic of land uses 

varying at a fine spatial scale, ranging from impervious surfaces to pervious landscapes like 

parks, lawns, athletic fields and golf courses. Urban areas are often tightly coupled to surface 

waters via storm sewers, and impervious surfaces that increase runoff to waterways, thus urban 

areas may export P during relatively small precipitation events that agricultural land would 

attenuate. Urban areas are also known to export a larger fraction of dissolved P compared to 

agricultural areas where the majority of P is transported in particulate form (Stone and English 

1993). This dissolved P is presumably more readily available for uptake by Cladophora, unlike 

particulate nutrients which may sink out of the water column (Sonzogni et al. 1982). 

For heavily urbanized areas of the Lake Ontario catchment, this has naturally lead to 

questions whether the resurgence of Cladophora in Lake Ontario might be driven by increased P 

loading in runoff from urbanized areas. Additionally, increased P loading from municipal waste 

water treatment plants (WWTP) is of concern as population continues to increase in urban areas, 

because WWTP must manage this increased load to keep effluent concentrations at mandated 

levels. But, mandated effluent concentrations are set for the effluent discharging from the end of 

the outfall pipe and not the total load. Consequently, the total load may go up unless increased 

treatment efficiencies are imposed by the WWTP. For example, the total volume of waste water 
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discharged by the city of Toronto increased 4 % from 1987 to 1999, even though per capita waste 

water discharge was declining, indicating that rising populations can lead to increased discharge 

volumes (Sahely et al. 2003).  

In this study I use a high frequency hydroacoustic method (Chapter 2) to map nuisance 

benthic algal (Cladophora) cover and stand height along two segments of Lake Ontario shoreline 

in 2006 and 2007 to assess the patterns of nuisance algal growth. A regression model developed 

in Chapter 3 is used to estimate attached Cladophora biomass, and the spatial patterns of 

Cladophora growth in relation to potential nutrient sources are examined for spatial associations. 

Specifically, if nuisance Cladophora growth is directly related to known nutrient sources (e.g. 

municipal WWTP outfalls) or potential nutrient sources (e.g. tributary and storm sewer locations) 

then management strategies for specific problem areas can be investigated. In contrast, if 

nuisance Cladophora growth is ubiquitous, then this indicates that ambient conditions are 

adequate to support nuisance Cladophora growth and alternative strategies are needed. 

Preliminary surveys in 2005 at Oakville and Port Credit (Chapter 3) suggest that Cladophora 

growth may be widespread during mid summer periods along urbanized shorelines. In 2006, 

monthly surveys from May to October were conducted at high spatial resolution at the Oakville 

site sampled in 2005. In 2007, a similar survey protocol was followed on a bi-weekly schedule at 

a site near Pickering from May to October.  
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4.3 Materials and Methods 

4.3.1 Site Selection and Descriptions 

The western end of Lake Ontario is a near continuous urban landscape that stretches from 

Oshawa, east of Toronto, all around the west end of Lake Ontario to St. Catharine’s near the 

Niagara River. With a population of approximately 4 million (Rao et al. 2003), this highly 

urbanized part of the Lake Ontario watershed features extensive areas of impervious land cover, 

often extending right to the shoreline of the lake. Municipal water intakes and waste water 

treatment plant discharges are situated in a narrow band of the lake, extending at most, a few 

kilometers offshore (Rao et al. 2003). In addition, the shoreline features numerous tributaries, 

creeks and storm sewers that discharge a mixture of both urban and agricultural runoff to the near 

shore waters.  

The first site, adjacent to the town of Oakville (Figure 4.1) features moderately steep 

bathymetry with a substratum composed primarily of bedrock and cobble. Within the study site 

there are two active waste water treatment plant (WWTP) outfalls (Southeast WWTP; situated 

300 m from shore at a depth of 4 m and Clarkson WWTP; situated ~ 1 km from shore at a depth 

of 16.5 m) and 20 storm sewers discharging at the lake shore (Figure 4.1a). An additional 49 

storm sewers discharged into a tributary or creek that eventually discharged into the near shore 

waters (Figure 4.1a; Griffiths 1990). The main tributary for this shoreline (16 Mile Creek) has a 

mean annual discharge (1960 – 2008) of 2.76 m3 s-1 and discharges into Lake Ontario at ~ the 5 m 

contour because of the harbour channel breakwalls. 16 Mile Creek is in the approximate middle 

of the survey area (Figure 4.1a).  

The second site in Lake Ontario was located 32 km east of Toronto in the vicinity of the 

Pickering Nuclear Generating Station (PNGS) and the outflow of the Rouge River (Figure 4.1b 

and c). Substrate at this study site was considerably more diverse than at Oakville, and consisted 

of a mixture of compact clays, sand and gravel in Frenchman’s Bay, changing to larger cobble 

and rock overlying a primarily sandy substrate east of the PNGS. Further east from where 

Duffin’s Creek entered the lake, substrate was a mixture of rock at moderate depths (2 to 10 m) 

and a mixture of sand and gravel in the shallows (< 2 m). The accumulations of softer substrate 

here are likely a conseuquence of depositional material from the tributaries (e.g., Rouge River 

and Duffins Creek) but also settled material that had eroded from bluffs further west (e.g., 

Scarborough Bluffs; Rukavina 1976). One major WWTP outfall (Duffins WWTP) is located to 

the east of PNGS, and Duffins Creek is the major tributary at this study site with a mean annual 
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discharge (1947 – 2008) of 2.82 m3 s-1 and dischares directly at the shoreline. Several storm 

drains are present along the shoreline, but at a lower density that at Oakville (Figure 4.1a). 

Substrate at the Rouge River survey site was dominated by sand and silt, but areas of hard 

substrate were present northeast of the river outflow (personal observation).  



 

  

 

106 

Table 4.1. Summary of the surveys in 2006 and 2007. Survey data indicated date of acoustic survey, WQ date; date of water quality sampling. 

Year Site Survey Dates WQ Dates 

2006 Oakville April 11 April 11 
   April 13 
   April 20 
   April 27 
  May 8 May 8 
   June 8 
  June 23 June 23 
  July 11 July 11 
  August 1 August 1 
  September 14 September 14 
  October 15 October 15 
2007 Pickering  May 14 
  June 11 June 6 
  June 22 June 20 
  July  17 July 12 
  July 25 July 24 
  August 8 August 10 
  September 17 September 6 
   October 22 



 

  

 

107 

 

Figure 4.1. Map of the sites surveyed for this study; a) Oakville b) Pickering (main portion) and c) Rouge River area (west of Pickering). Maps 
show water sampling stations (A), storm sewers (.), municipal outfalls (,), and major tributaries are labeled.  Bathymetric contours delineate 
the area covered by the acoustic surveys. Inset panel denotes the location of the study site (arrow) within Lake Ontario. All labeled municipal 
outfalls are currently active. Note: transect labels (e.g., OA1 – OA4, and PI1 – PI4) indicate transect number. 
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4.3.2 Physical and Chemical Measurements 

In 2006, sampling and surveys were conducted exclusively at the Oakville site (Figure 

4.1a). In addition to the regular transect sampling program (described below), surface waters were 

sampled during the spring runoff period to assess the conditions in the near shore of an urban area 

during the thermal bar period. From 13 April to 27 April, surface waters (nominal depths 0.5 m) 

were sampled along the Oakville shoreline on a weekly basis. Surface grab samples were 

collected in 4 L carboys at selected near shore locations along the Oakville shoreline in proximity 

to tributaries, storm sewers and along the axis of the turbidity plume that emanated from 16 Mile 

Creek. The plume was easily spotted due to the high levels of turbidity. Water samples were 

processed for TP, SRP, TDP, NO3, Cl-, TSS, and chlorophyll a as described below. 

In 2006, water sampling was conducted exlusively at the Oakville site. Sampling 

transects were located near 14 Mile Creek (OA1), 16 Mile Creek (OA2), Wedgewood Creek 

(OA3) and the Portland Cement Pier (OA4). In 2007 water sampling was conducted exclusively 

at the Pickering site. Although I again used a similar sampling strategy as in previous years, a 

greater number of offshore sampling stations to characterize the offshore region for modelling 

studies necessitated two separate days for water sampling and acoustic surveys (see Table 4.1). 

For comparative purposes to the Oakville study, I only use the data from the 4 transects at 

Pickering. Transects for this study were located near the Rouge River (PI1), PNGS (PI2), Duffins 

Creek (PI3) and Simcoe Point (PI4) (Figure 4.1b and c). 

Water quality stations were located at each transect at the 2, 5 and 10 m depth contours 

(Figure 4.1). At each station, CTD profiles were taken using aYSI-6600 profiler to characterize 

the physical structure of the water column. Photosynthetically active radiation (PAR) profiles 

were measured with a LI-COR underwater cosine quantum sensor (LI-COR, Lincoln, NB, USA) 

at 0.5 m to 1 m intervals from the surface to the lake bottom, and light attenuation coefficients 

were calculated as from linear regressions of the natural logarithm of irradiance vs depth. A 6 L 

Niskin bottle was used to collect ~ 15 L of water at a depth equal to 50% of the mixed layer depth 

(determined from CTD cast). Water was transferred to covered carboys and stored in coolers until 

transported to the laboratory (Univ. Waterloo). Samples for total dissolved P (TDP) and soluble 

reactive P (SRP) were filtered through a 0.2 µm polycarbonate filter, particulate P (Part P) by 

filtering 500 mL of lake water onto acid soaked (5% HCl ~ 4 hr) Whatman GF/F filters (nominal 

pore size ~ 0.8 µm). Total P (TP) and all composite fractions (TDP, SRP, Part P) were 

determined according to Stainton et al. (1977). Samples for other particulate nutrients (carbon – 

Part C, nitrogen – Part N) were determined by filtering 500 mL of lake water onto pre-combusted 



 

  

 

109 

(500 C ~ 4hr) GF/F filters and assayed using a CEC-440 Elemental Analyzer (Exeter Analytical, 

MA). Phytoplankton chlorophyll a was measured using a Turner Designs 10-AU fluorometer 

(Smith, et al 1999). Additional ions (NO3
-, Cl-) were determined using ion chromatography 

(Dionex DX 500, Dionex AS17 and AG17 guard column). Ammonium was determined following 

the fluorometric method of Holmes et al. (1999) on a Turner Designs TD-700 fluorometer. Total 

suspended solids (TSS) were determined by filtering 2 to 5 L of lake water onto pre-combusted 

(500 C for 4 hr) pre-weighed GF/F filters, drying at 65 °C to a constant weight and re-weighing. 

AFDW was determined after combustion at 500 °C for 4 hrs.   

4.3.3 Acoustic Surveys 

Acoustic surveys to assess the spatial patterns of Cladophora growth were conducted 

using a BioSonics® DTX system with a 430 kHz 10.2° beam width (full beam angle, source level 

213 dB re 1µPa at 1 m) and a 120 kHz 7° beam width (full beam angle, source level 216 dB re 

1µPa at 1 m) single beam echo sounders. Both transducers were set to ping with pulse lengths of 

0.1 ms (430 kHz) and 0.4 ms (120 kHz) using the software Visual Acquisition 5.1 (BioSonics Inc, 

Seattle, WA). The ping cycle was increased from 5 Hz (Chapter 2) to 8 Hz, to better characterize 

the uneven nature of the rocky substrate that dominated the bottom. Due to signal saturation, data 

from the 120 kHz transducer could not be used for substrate classification. Analysis of the 430 

kHz acoustic data was performed using a graphical user interface (GUI) written in Matlab v7.2 

(see Chapter 2). In 2006 and 2007, acoustic surveys were conducted by running acoustic transects 

approximately parallel to shore, with a inter-transect spacing of  ~50 – 75 m, from ~ the 1.5 m 

depth contour to the 10 m depth contour. The change in survey transects was necessitated since 

the focus of the 2006 and 2007 surveys was primarily geared toward delineating the patterns of 

Cladophora growth that could result from a potential shoreline source of nutrients (e.g., 

tributaries and storm sewers) and other point sources (municipal WWTP outfalls), a dense, but 

regularized series of data points in the vicinity of the sources would help to better characterize the 

resultant spatial patterns of algal growth. During the 2006 surveys at Oakville, schools of baitfish 

(possibly emerald shiner) were commonly observed between 23 June and 1 August, occasionally 

swimming under the boat (and subsequently into the beam path of the transducer), generating 

strong echoes that obscured the presence of Cladophora on the lake bottom. Because it was 

impossible to tell where the fish echoes ended and the algal canopy began, these data were 

manually removed prior to geo-statistical analysis and mapping. Similar interference from 

schools of fish was not a common phenomenon during the 2007 study at Pickering, however, 

excessive water column noise was imparted by the high velocity of  water from the thermal 
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discharge on the east side of PNGS (Figure 4.1b). These data was also removed prior to geo-

statistical analysis.  

4.3.4 Geostatistical Methods 

The fundamentals of geostatistical analysis, with emphasis on the assumptions and 

methodology involved are thoroughly explained in several publications (e.g., Isaaks and 

Srivastava 1989, Cressie 1991, Webster and Oliver 2001) and summarized in Chapter 1, so only a 

brief summary will be provided here. In this study, I employed a spatial correlation function 

called the “semivariogram” (Cressie 1991) to characterize the spatial autocorrelation of the data 

collected. The semivariogram is derived from the experimental data, taking into account the 

spatial position of the samples by the following equation; 
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where Z(xi) is the value of the variable Z at location xi, h is a lag distance over which the 

local average is taken and N(h) is the number of point pairs at the lag distance (h) (Cressie 1991). 

The semivariogram is the average of the Euclidean distance between pairs of samples (h) plotted 

against average variance at distance h. The presence of extreme values or outliers can seriously 

distort the real variation patterns present in the data, especially when biological data are 

considered (Rufino et al. 2005).  The robust semivariogram method was originally developed to 

reducing the effect of outliers without removing them from the dataset (Cressie and Hawkins 

1980). The robust estimation method is based on the fourth power of the square root of absolute 

differences as in equation (4.2); 
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This particular semivariogram estimator is robust to contamination by outliers, greatly enhances 

semivariogram continuity and has been successfully used to model spatial distributions of animal 

densities, which often have data sets characterized by overdispersion and non-normal 

distributions (Maravelias et al. 1996, Rufino et al. 2005). 

  Once a semivariogram estimator is chosen and semivariances for all point pairs computed 

either by equation 4.1 or 4.2, a function (the theoretical spatial covariance function or 

semivariogram model) is fit to the empirical semivariogram through an automated fitting 

procedure. In this study, the weighted least squares method (WLS) of fitting the semivariogram 

model was employed as it typically defines the behavior of the semivariogram model at the origin 
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most clearly, which is essential for prediction (Cressie 1991). I used either spherical or 

exponential semivariograms for all data given by the following equations; 
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  These spatial covariance models are defined by three essential parameters: the nugget 

(C0) (indicating the variance not explained by the spatial model), the sill Cs (indicating the 

variance explained by the spatial model) and the range α (distance beyond which spatial 

autocorrelation is no longer significant). After computation of the semivariograms for each of the 

respective variables, the spatial models were used with block kriging to predict the value of algal 

cover and stand heights for grid cells of size 10 m by 10 m for 2006 surveys and 20 m by 20 m 

for 2007 surveys.  

Exploratory data analysis was conducted on the acoustic data prior to spatial modeling 

using scatter plots, histograms and correlations to assess the presence of possible predictive 

trends. With a sampling frequency of 8 Hz, a summary cycle output every 16 pings, a full day of 

surveying (0600 to ~ 2000 hrs) yielded an average of 13,000 to 19,000 individual geo-referenced 

datum reports. Unlike the data from the 2005 surveys, the frequency distributions of the percent 

cover and stand height variables derived by acoustic analysis were strongly overdispersed. This 

was likely a function of 1) the increased ping frequency that generated more data, 2) the change 

in survey design which collected more data at deeper depths where detection of Cladophora with 

acoustics was difficult, and 3) surveys at times of the year when biomass was not maximal often 

generated a large number of zeros. To rectify this, the geo referenced data were condensed by 

averaging records within 5 m of one another, thereby increasing the average spacing of data from 

3-5 m apart to 8 to 13 m apart. This was primarily done to reduce the computational effort 

involved in solving large kriging matrices, but also to reduce the degree of overdispersion of the 

acoustic variables (percent cover and height). 

Experimental semivariograms were computed using the robust estimator (Cressie and 

Hawkins 1980) with a 10 m lag for interpolation onto grids of 10 m by 10 m for 2006 surveys, 

and 20 m by 20 m grid for 2007 surveys. Preliminary comparisons suggested that the classical 

semivariogram estimator did not perform as well as the robust estimator (data not shown), though 

I could not determine a threshold for use of one or the other. I computed both directional 
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semivariograms by limiting all point pairs within a directional tolerance (0° to 135°, 45° ± 22.5° 

step tolerance) in addition to the omni-directional semivariogram to assess the degree of 

anisotropy.  

Relationships between depth and percent cover when biomass was detectable with 

acoustics (in the summer months) for all years (2006, 2007) were moderately strong and 

generally linear in nature (r2 0.3 to 0.7). Strong correlations were evident between percent cover 

and height (r2 > 0.64) when coverage was moderate or high. To account for these potentially non-

stationary processes, I performed block regression kriging on percent cover using depth as a 

predictor. Briefly, a Generalized Linear Model (GLM; Gotway and Stroup 1997) was used with a 

quasi-Poisson family of probability distributions due to the over dispersion in the data 

distribution. The GLM model trend was subtracted from the percent cover data and simple 

kriging (SK) was performed on the residuals (i.e. the mean of the residuals should be “0”). The 

GLM model trend was then added back to the kriged residuals to generate the predicted surface 

map. Algal stand height was interpolated using KED, with percent cover as a predictor. 

Bathymetric grids for each survey site were generated using universal kriging (coordinates as 

predictors) of the acoustically determined bottom depth from the individual surveys. All 

bathymetric survey grids were clipped using the lake shorelines and the 10 m depth contour as 

downloaded from the National Geophysical Data Center Great Lakes Bathymetry ArcIMS web 

server (http://map.ngdc.noaa.gov/website/mgg/greatlakesbathy/viewer.htm). All exploratory data 

analysis, regression and variogram modeling, and subsequent kriging computations were 

performed using the statistical software R (R Core Development Team 2007) and the R package 

gstat (Pebesma 2004).  

4.3.5 Nuisance Cladophora biomass and association to nutrient sources 

Kriged surfaces of percent cover and stand height were used to estimate Cladophora 

biomass as outlined in Chapter 3. Approximate standard errors of biomass estimates were 

computed following Heuvelink (2002). Cladophora polygons were created from the estimated 

biomass maps using the following procedure. The Cladophora biomass grids were imported into 

SAGA-GIS (http://www.saga-gis.org/en/index.html) and contours delineating estimated 

Cladophora biomass were created at intervals of 50 g m-2, starting at 50 g m-2. Each contour line 

was then closed, converted to a polygon, and the centroid (center of mass) of the polygon 

determined. For each date where polygon centroids were successfully computed, proximity to the 

nearest waste water treatment plant outfall, storm sewer and tributary mouth were determined by 

computing the minimum Euclidean distance to the nearest respective potential nutrient source.  
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Spatial associations between Cladophora polygon centroids and proximity to potential 

nutrient sources were assessed using a partial Mantel test. The partial Mantel test is a 

nonparametric partial regression approach based on dissimilarity matrices of the predictor and 

response variables (Smouse et al. 1986). The advantage of the partial Mantel test is that it can 

explicitly account for spatial autocorrelation in both predictor and response variables as well as 

inter-correlations among possible predictor variables. While Mantel and partial Mantel tests have 

been used for causal modelling (Legendre and Trousselier 1989), in this study, results from the 

partial Mantel tests served to test alternative hypotheses governing the spatial patterns of 

excessive Cladophora growth (e.g., polygon centroids), environmental controls (e.g., depth and 

bathymetric slope) and proximity to potential nutrient sources (tributary mouths, storm sewers 

and municipal outfalls). The locations of tributary mouths were determined by selecting the 

coordinates where the tributary entered the lake from the Ontario Basic Mapping ArcIMS data 

layer (http://www.geographynetwork.ca/website/obm/viewer.htm). Storm sewer and municipal 

outfall locations for Oakville and Pickering were provided by the Ontario Ministry of 

Environment (Griffiths 1990) and Gary Bowen (Toronto Region Conservation Authority).  

Euclidean distances were computed for the geographic distance matrix (Universal 

Transverse Mercator Zone 17 N, NAD 1983) as well as the matricies for depth, slope and 

distances to nutrient sources. The Manhattan distance was used to construct the distance matrix 

for the biomass polygon centroids since these were effectively converted to classes of 50 g m-2 

intervals. Partial Mantel tests were performed using the package ecodist (Goslee and Urban 2007) 

in the statistical software “R” (R Core Development Team 2007). The significance of the partial 

Mantel tests was assessed using a permutation procedure using 10,000 permutations (Jackson and 

Somers 1989) as outlined in Legendre (2000). The p value was adjusted for the number of tests 

conducted (e.g., Bonferroni adjustment, α/6 = 0.0083). 

4.3.6 Statistical Analyses 

Early season surface water sampling was assessed using Kendall’s τ to detect trends as a 

function of distance from source. Source locations were the same as outlined above. Distances 

were computed as the minimum Euclidean distance from the nearest respective source. For the 

remainder of the water chemistry data, analysis was performed using two-way ANOVA (station 

depth and date as factors) on log10 transformed variables for each year. Transects were treated as 

replicates, since the null hypothesis for these tests was that there would be no differences in 

parameter concentrations across the range of depths (i.e., distance from shore). If the interaction 

term (e.g., depth x date) was not significant, Tukey’s multiple comparison procedure was used to 
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compare within the main effects. If the interaction term was significant, multiple comparison tests 

were done at the individual level (e.g., date x depth) to assess where the patterns changed. All 

statistical calculations were performed using the base stats package in ‘R’ (R Core Development 

Team 2007). Separate two way ANOVAs were run for each site due to the differences in 

sampling frequency. 
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4.4 Results 

4.4.1 Physical and Chemical conditions during thermal bar at Oakville 

 The early season sampling in 2006 (April 13 to April 27) was designed to reveal spatial 

patterns in water quality at the Oakville site during the period of spring runoff and thermal bar 

formation. Although a CTD failure prevented a complete characterization of the water column at 

all sampling sites on each date, based on the profiles collected surface temperatures along the 

shoreline range between 5.5 °C and 10 °C (data not shown), and suggested that all of the sites 

(within 1 m to 15 m depth) were on the inside of the thermal bar. Concentrations of total 

phosphorus (TP) ranged from 4.75 µg L-1 to 13.95 µg L-1 and did not show a strong relationship 

with distance from the nearest tributary (Figure 4.2a, Kendall’s τ = 0.04, p = 0.59). No 

relationships were observed between total dissolved phosphorus (TDP) or soluble reactive 

phosphorus (SRP) concentrations and distance to a tributary (Figure 4.2b and c, Kendall’s τ = 

0.002, p = 0.51 and τ = 0.04, p = 0.73 respectively).  

In contrast to phosphorus concentrations, a stronger influence of distance to tributaries 

was observed for chloride (Cl-), nitrate (NO3
-), as evidenced by their negative relationship with 

distance from the nearest tributary (Figure 4.2 d and e, Kendall’s τ = -0.27, p<0.0001, τ = -0.25, 

p<0.0001). Total suspended solids (TSS) (Figure 4.2 f) appeared to also decline as distance from 

tributaries increased, however the relationship was not significant (Kendall’s τ = -0.02, p = 0.78), 

but this may reflect the changing nature of the turbidity plume between sampling dates, as it was 

observed to be flowing northward on two of the three sampling dates. Of the tributaries along the 

section of surveyed coastline, 16 Mile Creek appeared to generate the strongest signal compared 

to the smaller tributaries, and the zone of influence appeared to extend upwards of 500 m away.  

No significant spatial associations were found for the two municipal water treatment 

plant outfalls (Figure 4.3a through f). Kendall’s correlation analyses were all non significant for 

TP, SRP, Cl-, NO3
- and TSS (p> 0.2). A marginally significant association was observed for TDP 

(Kendall’s τ = -0.18, p = 0.11), but this appears to be the result of a single sample (Figure 4.3b). 
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Figure 4.2. Scatter plots of a) Total Phosphorus (TP; µg L-1) , b) Total dissolved Phosphorus (TDP; µg L-1), c) Soluble Reactive Phosphorus (SRP; µg L-1), 
d) Chloride (Cl; mg L-1), e) Nitrate (NO3; µg L-1), and f) Total suspended solids (TSS; mg L-1) as a function of distance to the nearest tributary mouth 
along the Oakville shoreline. Note: Data collected 13 April 2006 to 27 April 2006. Distance here is computed as the minimum Euclidean distance.
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Figure 4.3. Scatter plots of a) Total Phosphorus (TP; µg L-1) , b) Total dissolved Phosphorus (TDP; µg L-1), c) Soluble Reactive Phosphorus (SRP; 
µg L-1), d) Chloride (Cl; mg L-1), e) Nitrate (NO3; µg L-1), and f) Total suspended solids (TSS; mg L-1) as a function of distance to the nearest 
outfall along the Oakville shoreline. Note: Data collected 13 April 2006 to 27 April 2006. Distance here is computed as the minimum Euclidean 
distance.
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4.4.2 Physical and chemical conditions at Oakville during the growing season 

Much of the variability in water chemistry and physical conditions is imparted by 

seasonal variation (Figure 4.4; Table 4.2). The effects of upwelling were clearly evident on at 

least two of the sampling dates as water temperatures fell from ~ 18 °C on 8 June to 

approximately 10 to 15 °C on 23 June and 11 July (Figure 4.4a). Total suspended solids were 

lowest soon after the upwelling event on 23 June, and again on 14 September when downwelling 

of low chlorophyll offshore water occurred (Figure 4.4b). Despite relative stability in TSS, the 

variability in light attenuation (kPAR) was primarily governed by depth (e.g., distance from 

shore; Figure 4.4c and Table 4.2), with significantly higher light attenuation always occurring at 

the 2 m isobath (Table 4.2). Significant seasonal variation was also observed for kPAR, with 

higher light attenuation in October (Table 4.2). Cl- was also significantly related to depth and 

date, with higher concentrations observed closer to shore (Figure 4.4d; Table 4.2), particularly 

during the early part of the season (8 May and 8 June; Table 4.2). Concentrations of chlorophyll a 

displayed a markedly reverse pattern; significantly higher concentrations were observed at the 10 

m stations compared to the 2 and 5 m stations (Figure 4.4e; Table 4.2), but seasonal variation was 

much larger than the variation among depth (Table 4.2). Concentrations of TP did not vary across 

the range of station depths sampled (Table 4.2) but did show appreciable seasonal variation, with 

the highest concentrations observed during September and October (Figure 4.4f; Table 4.2). TDP 

and SRP followed much the same pattern as TP (Figure 4.4g and h) with appreciable seasonal 

variation in TDP and SRP. The interaction term in the ANOVA for SRP was significant (p<0.05), 

and is likely a result of the higher concentrations closer to shore in September and October 

(Figure 4.4h). NO3
- showed a significant seasonal decline until October (Figure 4.4i; Table 4.2) 

and did not vary significantly across the range of station depths (Table 4.2). 

Although seasonal patterns strongly influenced the concentrations of chemical parameters 

during this study, some spatial patterns are noticeable. Variability in surface temperatures was 

indistinguishable across the four transects (Figure 4.5a). TSS did not show consistent patterns 

across transects at Oakville (Figure 4.5b), but kPAR appeared to show the greatest variability at 

transects closest to the major tributary (16 Mile Creek) for the study region (transects OA1 and 

OA2) (Figure 4.5c). Spatial trends in Cl- (Figure 4.5d) and chlorophyll a concentrations (Figure 

4.5e) were not evident across transects, but displayed diverent patterns with distance from shore; 

Cl- was generally higher at 2 m sites, while for chlorophyll a, clear increases with distance from 

shore are apparent (Figure 4.5d). TP concentrations were most variable at the 2 m site on transect 

OA1 and the 5 and 10 m sites on transect OA2 (Figure 4.5e). Similar spatial patterns were evident 
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for TDP and SRP (Figure 4.5g and h). These transects bracket the major tributary to this study 

site (16 Mile Creek), and the increased variability at these transects may reflect the periodic 

reversals of along shore currents where the tributary plume from 16 Mile Creek is discharged and 

mixed. Comparable spatial patterns were not observed for NO3
- concentrations (Figure 4.5i).    
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Figure 4.4. Seasonal boxplots of a) surface temperature (°C), b) TSS (mg L-1), c) light attenuation (kPAR; m-1), d) chloride (Cl; mg L-1), e) 
Chlorophyll a (Chl a; µg L-1), f) total phosphorus (TP; µg L-1), g) total dissolved phosphorus (TDP; µg L-1), h) soluble reactive phosphorus (SRP; 
µg L-1) and i) nitrate (NO3; µg L-1) for the 2006 study at Oakville. Legends as in panel a).
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Figure 4.5. Spatial boxplots of a) surface temperature (°C), b) TSS (mg L-1), c) light attenuation (kPAR; m-1), d) chloride (Cl; mg L-1), e) 
Chlorophyll a (Chl a; µg L-1), f) total phosphorus (TP; µg L-1), g) total dissolved phosphorus (TDP; µg L-1), h) soluble reactive phosphorus (SRP; 
µg L-1) and i) nitrate (NO3; µg L-1) for the 2006 study at Oakville. Legends as in panel a). 
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Table 4.2. Results from the two-way ANOVA for 2006 Oakville surveys. Note: superscripts on multiple comparison tests indicate not 
significantly different at the p <0.05 level. 

Variable Factor df F p Post hoc  tests     

TSS Depth 2 2.73 0.07        

 Date 6 10.78 <0.001 8 Mayb 8 Junb 23 Juna 11 Julb 1 Augb 14 Septa 15 Octb 

 Date x Depth 12 0.78 0.66        

kPAR Depth 2 24.25 <0.001 2 5a 10a     

 Date 6 7.83 <0.001 8 Maya 8 Juna 23 Juna 11 Jula,b 1 Auga 14 Septa 15 Octb 

 Date x Depth 12 0.73 0.71        

Cl- Depth 2 3.48 <0.05 2a 5a,b 10b     

 Date 6 14.05 <0.001 8 Maya 8 Juna,b 23 Junb,c 11 Juld 1 Augc,d 14 Septc,d 15 Octb,c,d 

 Date x Depth 12 0.94 0.51        

Chl a Depth 2 12.21 <0.001 2a 5a 10     

 Date 6 34.74 <0.001 8 Maya 8 Junb 23 Juna 11 Julb 1 Augb 14 Septa 15 Octa 

 Date x Depth 12 1.59 0.11        

TP Depth 2 0.83 0.44        

 Date 6 29.42 <0.001 8 Maya 8 Juna 23 Jun 11 Jula 1 Auga 14 Septb 15 Octb 

 Date x Depth 12 1.35 0.22        

TDP Depth 2 0.88 0.41        

 Date 6 37.42 <0.001 8 Mayb 8 Juna,b 23 Juna 11 Jula,b 1 Auga,b 14 Septc 15 Octc 

 Date x Depth 12 1.46 0.16        

SRP Depth 2 0.68         

 Date 6 51.99         

 Date x Depth 12 2.22 <0.05        

NO3
- Depth 2 1.25 0.29 8 Maya 8 Juna,b 23 Juna,b 11 Julb,c 1 Augc 14 Septc 15 Octa 

 Date 6 13.48 <0.001        

 Date x Depth 12 1.26 0.26        
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4.4.3 Physical and chemical conditions at Pickering during the growing season 

Much like at Oakville, upwelling appeared to be a prominent feature here based on 

surface temperatures (Figure 4.6a). Compared to Oakville, significant depth dependent variability 

in TSS was observed at Pickering, with higher concentrations at the 2 m stations (Figure 4.6b; 

Table 4.3). kPAR at Pickering transects nearly replicated the pattern for TSS, with highest 

attenuation observed at the shallow 2 m sites (Figure 4.6c; Table 4.3). Date of sampling was also 

a significant determinant in light attenuation, but the seasonal variation was far less than that 

associated with depth (Table 4.3). Cl- varied significantly only with date, with the highest 

concentrations observed in May. The effect of depth on Cl- was only marginally significant 

(Figure 4.6d; Table 4.3). Chlorophyll a concentrations displayed strong seasonal variation (Figure 

4.6e) but unlike Oakville did not show a significant relationship with depth (Table 4.3). Total P 

concentrations showed no significant relationship with depth, and only a marginally significant 

relationship with date (Figure 4.6f; Table 4.3). TDP and SRP varied strongly with date, but not 

with station depth (Figure 4.6g and h; Table 4.3), and highest values for both were recorded in 

October (Table 4.3). NO3
- appeared to follow a similar seasonal decline as observed at Oakville 

before rebounding to higher concentrations in October (Figure 4.6i; Table 4.3).  

Like Oakville, seasonal variation strongly influenced the variability in parameter 

concentrations through the growing season. This is further supported by data from offshore 

reference stations (ranging in depth from 15 m to 40 m) that displayed comparable patterns for 

nearly all water chemistry variables (data not shown). Despite this, some spatial patterns were 

evident at Pickering, and several of these differed from the pattern observed at Oakville. Surface 

temperatures did not appear to vary systematically by transect (Figure 4.7a), somewhat suprising 

given the proximity of transect PI2 to the warm water discharge at PNGS, and the proximity of 

transects PI1, PI3 and PI4 to major tributaries (Rouge River, and Duffins Creek respectively). 

TSS and kPAR were distinctly elevated at 2 m sites at transects PI1 PI3 and PI4 (Figure 4.7b and 

c). Although re-suspension of sediment or along shore transport of eroded material from the 

bluffs west of the study site can contribute to high turbidity here, the high turbidty is most likely 

attributable to high suspended sediment loads from the tributaries. Transect PI2 did not show the 

same variation in either TSS or kPAR, and the substratum at transect PI4 is comprised of > 90% 

rock. Both these observations can be explained by a predominantly eastward migration of the 

turbidity plumes. Despite evidence that both the Rouge River and Duffins Creek imparted 

significant suspended sediment signals at near shore sites, Cl- concentrations were frequently 

higher at the 2 m site for transect PI1 (Figure 4.7d), and may reflect differing degrees of 
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urbanization within the separate watersheds. A similar pattern was observed for chlorophyll a 

(Figure 4.7e) and may be a result of the marsh near the outflow of the Rouge that can contribute 

phytoplankton to transect PI1 during high flow periods (spring or during heavy precipitation 

events). TP concentrations were also generally elevated at transect PI1, but these concentrations 

were not significantly greater than those measured at the other transects further east. The patterns 

of spatial variability (greater variation at transects PI2 and PI3 at all depths) do suggest that 

tributaries can contribute considerably to TP concentrations (Figure 4.7f). TDP was most variable 

at transects PI2 and PI3 (Figure 4.7g). Whether this is a result of the proximity of these stations to 

the Duffins Creek WWTP outfall is not known, but Duffins Creek itself cannot be ruled out. In 

contrast to TP and TDP, SRP varied relatively little at all transects (Figure 4.7h) except for 22 

October when concentrations increased dramatically (Figure 4.6h). Much like Oakville, 

concentrations of NO3
- did not display great spatial variation among transects (Figure 4.7i).
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Figure 4.6. Seasonal boxplots of a) surface temperature (°C), b) conductivity (µS cm-1), c) light attenuation (kPAR; m-1), d) chloride (Cl; mg L-1), 
e) Chlorophyll a (Chl a; µg L-1), f) total phosphorus (TP; µg L-1), g) total dissolved phosphorus (TDP; µg L-1), h) soluble reactive phosphorus 
(SRP; µg L-1) and i) nitrate (NO3; µg L-1) for the 2007 surveys at Pickering. Legends as in panel a).
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Figure 4.7. Spatial boxplots of a) surface temperature (°C), b) TSS (mg L-1), c) light attenuation (kPAR; m-1), d) chloride (Cl; mg L-1), e) 
Chlorophyll a (Chl a; µg L-1), f) total phosphorus (TP; µg L-1), g) total dissolved phosphorus (TDP; µg L-1), h) soluble reactive phosphorus (SRP; 
µg L-1) and i) nitrate (NO3; µg L-1) for the 2007 surveys at Pickering. Legends as in panel a).
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Table 4.3. Results from the two way ANOVA for 2007 Pickering surveys. Note: superscripts on multiple comparisions tests indicate not 
significantly different at the p <0.05 level. 

Variable Factor df F p Post hoc Tests      

TSS Depth 2 13.39 <0.001 2a 5b 10b      

 Date 7 2.13 0.057         

 Date x Depth 13 0.78 0.67         

kPAR Depth 2 31.26 <0.001 2a 5b 10b      

 Date 7 3.33 <0.005 14 Maya 6 Junb 20 Junb 12 Jula,b 24 Julb 10 Augb 6 Septb 22 Octa,b 

 Date x Depth 13 0.66 0.80         

Cl- Depth 2 2.84 0.06         

 Date 7 4.98 <0.001 14 Maya 6 Juna,b,c 20 Juna,b 12 Julb,c 24 Jula,b 10 Augc 6 Septa,b 22 Octa,b 

 Date x Depth 13 0.73 0.73         

Chl a Depth 2 2.89 0.06         

 Date 7 39.16 <0.001 14 Maya 6 Junb,c 20 Junc 12 Julc 24 Julc 10 Augb 6 Septa,b 22 Octd 

 Date x Depth 13 0.89 0.57         

TP Depth 2 1.58 0.21         

 Date 7 1.88 0.08         

 Date x Depth 13 0.69 0.77         

TDP Depth 2 0.19 0.82         

 Date 7 32.63 <0.001 14 Mayb 6 Juna 20 Junb 12 Julb 24 Julb 10 Augb 6 Septa,b 22 Octc 

 Date x Depth 13 0.74 0.73         

SRP Depth 2 0.16 0.85         

 Date 7 19.25 <0.001 14 Mayd,e 6 Juna 20 Junb,c,d 12 Julb,c,d 24 Julb,c 10 Augb,c,d 6 Septa,b 22 Octe 

 Date x Depth 13 0.63 0.83         

NO3
- Depth 2 1.57 0.21         

 Date 7 29.89 <0.001 14 Mayb,c 6 Junb 20 Junb,c 12 Jula,b 24 Jula,b 10 Aug 6 Septa 22 Octc 

 Date x Depth 13 0.80 0.66         
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4.4.4 Structural analysis and semivariograms 

 By repeating acoustic surveys over a period of time at the two survey sites, changes in the 

spatial structure of Cladophora growth can be appreciated on a seasonal dynamic. Semi-

variogram models and associated parameters for each survey where detection and 

characterization of Cladophora with acoustics was successful are summarized in Table 4.4. Initial 

modeling of directional semivariograms for the Oakville surveys indicated strong anisotropic 

behavior at 45°. This is geometric anisotropy expressing the same degree of spatial continuity for 

different ranges. In its simplest form, this is akin to elliptically shaped zones wherein the data 

values are correlated; that is, zones that are “stretched” in the direction of maximum range. This 

elliptical “stretching” of the spatial correlation may be due inpart to the survey design (transects 

running approximately 45°, e.g. parallel to shore) but also may reflect a strong influence of 

bottom depth (e.g., light availability) in structuring algal growth patterns. Directional 

semivariograms computed for the Rouge River site were also anisotropic at 45°, despite the 

survey transects having a more regular grid pattern than truly parallel to shore. In contrast, 

directional semivariograms at the main Pickering site were not strongly anisotropic, but surveys 

toward the latter part of the summer (e.g., July and August) generated semivariograms that 

displayed weak anisotropy at 90° (parallel to shore). While also potentially resulting from 

primarily shore parallel transects or the effect of depth (e.g., light availability), the weaker 

anisotropy here may be due to a more diverse substratum (e.g., sand, gravel, silt) in the shallow 

areas where shoreline irregularities allow for deposition of softer susbtrates in protected locations 

that do not typically support Cladophora attachment. Furthermore, areas that are structurally 

complex (e.g., characterized by large boulders and rapidly fluctuating bottom depths) pose 

diffilculties for acoustic detection of Cladophora due to the interaction of the acoustic beam with 

a complex substrate. These features (diverse substratum composition or substratum complexity) 

were generally not present at the Oakville site, but did occur in areas near at the main portion of 

the Pickering site, particularly around the Duffins WWTP (sand and presence of large boulders) 

and from PNGS eastward to Duffins Creek (predominantly sand bottom with scattered boulders). 

Semivariograms for percent cover from the main Pickering site indicated the presence of mild 

non-stationarity. This increased toward August 8, and is due to the large area of macrophyte 

growth that developed over the summer in outer Frenchman’s Bay (see Figure 4.8 and Figure 

4.12 to Figure 4.19). No improvement was observed by including easting (e.g., X coordinate) as a 

coavariate in the semivariogram model (data not shown).  
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Semivariogram model parameters at Oakville were generally similar across all three 

surveys. The range parameter varied little, and the sill reached a maximum on 11 July before 

declining on 1 August for both percent cover and height residuals. The high sill on 11 July for 

both percent cover and height residuals indicates that the greatest variability was observed on this 

date. The degree of spatial dependency (1 – C0 / C0 + C) for percent cover and height residuals 

declined from 11 July to 1 August, and is consistent with a decline in spatial variability, perhaps 

as biomass is gradually detached from the lakebed. At Pickering, semivariogram parameters were 

generally similar to those observed at Oakville, but displayed greater variability, perhaps owing 

to a more frequent sampling interval (bi-weekly as opposed to monthly). The higher nugget 

variance and sill values observed consistently at Pickering were likely due to the presence of 

macrophytes within the survey area growing despositional areas dominated by soft substrate (e.g., 

outer Frenchman’s Bay; see figures below). The influence of macrophytes is much more evident 

in the sill parameter for the height residuals, which displayed a consistent increase from the first 

survey (11 June) to the last (8 August) to values far exceeding those observed at Oakville. The 

decline in spatial dependence that was observed at Oakville was not observed at Pickering (Table 

4.4), because much of the Cladophora biomass had yet to slough from the lakebed, but also 

because areas of macrophyte growth continued to increase through the study period. Major 

sloughing at Pickering occurred on 9 August, the day after the acoustic survey (C. Gregoris, 

Ontario Power Generation, Picking Nuclear, personal communication).  

Semivariogram models for the smaller survey area at the Rouge River outflow featured a 

similar if not smaller range of autocorrelation, but a much higher nugget variance and sill than 

observed at Oakville or the main Pickering site (Table 4.4). This is characteristic of data that 

present a highly clustered patch surrounded by areas with little variability, which at this site was 

induced by large areas characterized by sand substrate, which was not suitable for attachment of 

Cladophora.  Although not directly comparable with parameters from the Pickering site, the 

temporal pattern of semivariogram parameters at the Rouge River site suggested that height (e.g., 

a proxy of biomass) peaked on July 17, approximately 2 weeks prior to that at the Pickering site.
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Figure 4.8. Sample residual semivariograms for percent cover (a) and canopy height (b) at 
Oakville, June 23 2006 and percent cover (c) and canopy height (d) at Pickering, July 25 2007. 
Note the oscillation in the semivariance for percent cover at Oakville as discussed in text. Note 
also the difference in scale for the semivariance in the height residuals at Pickering. 
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4.4.5 Patterns of nuisance algal growth at Oakville 

Although short tufts of Cladophora growth were visually observed on the lake bottom 

during the May 8 survey, these were clearly < 5 cm in height and far too short to be detected with 

acoustics. Similarly, acoustic surveys on 14 September and 15 October failed to detect 

Cladophora biomass with the acoustic unit, and observations of the lake bottom generally 

confirmed the substrate was devoid of significant Cladophora cover and the remaining filament 

tufts were only a few centimeters in height.  

Kriged surfaces of percent Cladophora cover, Cladophora stand height, estimated 

biomass and approximate biomass standard errors for three of the survey dates (23 June, 11 July 

and 1 August) when Cladophora biomass was sufficient for successful detection and 

characterization with the acoustic system are presented in Figure 4.9 to Figure 4.11. On 23 June, 

percent Cladophora cover varied widely and exceeded 80 % in several places along the Oakville 

shoreline (Figure 4.9a). Expansive areas of high percent cover were observed south of 16 Mile 

Creek, midway between 16 Mile Creek and Morrison Creek, and between Wedgewood and 

Joshua Creek (Figure 4.9a). Percent Cladophora  cover ranged between 30 and 60 % for much of 

the rest of the shoreline at depths < 4 m. Cladophora stand heights were generally < 15 cm for 

much of the shoreline (Figure 4.9b), but did exceed 20 cm in several areas, most notably in the 

three areas previously identified where Cladophora cover was high (Figure 4.9b). At one 

location, stand height exceeded 30 cm (midway between 16 Mile Creek and Wedgewood Creek) 

but only for a limited area (~ 800 m2) (Figure 4.9b). Estimated biomass at this point reached a 

maximum of ~ 685 g m-2, but for the rest of the survey area, biomass was generally estimated to 

be < 150 m-2, and only exceeded this in areas with tall Cladophora stands (Figure 4.9c). The 

partial Mantel test revealed significant spatial associations between Cladophora biomass and 

storm sewers, as well as bathymetric slope. No spatial associations were observed for tributary 

mouths or municipal outfalls (Table 4.5). 

On 11 July, percent Cladophora cover varied widely but appeared to be much more 

spatially variable than on 23 June, and reached values > 30 % at deeper depths (~ 6 to 7 m) 

(Figure 4.10a). The expansive areas with very high percent cover (e.g., > 80%) observed on 23 

June had either reduced in size or to levels of percent cover < 80% (Figure 4.10a). Cladophora 

stand heights reached maximum values of 20 cm (Figure 4.10b) but these appeared to be widely 

scattered. Areas with very tall stands (e.g., > 30 cm) were not observed (Figure 4.10b). Estimated 

biomass reached > 150 g m-2 in some shallow areas, but several areas exceeded 50 g m-2 at depths 

up to 6 m (Figure 4.10c). Partial Mantel tests failed to find significant spatial associations 
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between Cladophora biomass and storm sewers, tributaries or outfalls, but did detect significant 

effects of depth (Table 4.5).  

By 1 August, percent Cladophora cover was declining along much of the shoreline, but 

did remain moderately high (>60 %) at the three areas where expansive heavy cover was first 

observed on 23 June (Figure 4.11a). Cladophora stand heights during this survey were much 

more uniform, and did not exceed 15 cm (Figure 4.11b). Accordingly, estimated Cladophora 

biomass was generally below 100 g m-2 for much of the shoreline, but did exceed 100 g m-2 at the 

three areas where cover had increased relative to 11 July (Figure 4.11c). Partial Mantel tests 

again indicated that strong spatial associations between algal biomass and distance to storm 

sewers, but again failed to find any relationship to tributary mouths or outfalls. Interestingly, the 

areas where Cladophora cover remained high occurred in the same locations where cover was 

extensive on 23 June (Table 4.5).  
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Table 4.4. Semivariogram parameters and kriging cross validation results for 2006 and 2007 surveys. Date and site give the location of the 
acoustic surveys. C0 denotes the nugget variance, C denotes the sill, and α the range (m). Sp% is the degree of spatial dependence described by the 
fitted semivariogram model. Model Type indicates the form of model fitted to the experimental semivariogram.“Exp” denotes exponential model, 
and “Sph” denotes spherical model. 

Site Date Variable C0 C α % Sp Model 

Oakville June 23 Cover 127.3 346.31 93.98 73 % Exp 
Oakville June 23 Height 8.8 x 10-4 2.2 x 10-4 113.22 20 % Exp 
Oakville July 11 Cover 77.94 366.47 87.37 83 % Exp 
Oakville July 11 Height 7.6 x 10-4 3.2 x 10-4 39.75 29 % Exp 
Oakville August 1 Cover 90.28 119.87 90.16 57 % Exp 
Oakville August 1 Height 7.5 x 10-4 1.8 x 10-4 155.06 27 % Exp 
Pickering June 11 Cover 162.94 27.34 244.65 14 % Sph 
Pickering June 11 Height 1.2 x 10-3 8.7 x 10-4 136.04 41 % Exp 
Pickering June 22 Cover 89.03 231.86 93.25 72 % Exp 
Pickering June 22 Height 6.3 x 10-4 4.9 x 10-4 52.10 44 % Exp 
Rouge Area June 22 Cover 222.32 360.70 58.75 62 % Sph 
Rouge Area June 22 Height 1.1 x 10-3 3.8 x 10-4 41.85 26 % Exp 
Pickering July 17 Cover 132.48 433.48 52.46 76 % Exp 
Pickering July 17 Height 8.6 x 10-4 1.3 x 10-3 67.05 60 % Exp 
Rouge Area July 17 Cover 314.50 755.00 119.14 71 % Exp 
Rouge Area July 17 Height 2.0 x 10-3 1.7 x 10-3 55.22 46 % Exp 
Pickering July 25 Cover 166.54 461.37 105.51 73 % Exp 
Pickering July 25 Height 6.0 x 10-4 2.5 x 10-3 58.58 80 % Exp 
Rouge Area July 25 Cover  370.81 1003.48 116.57 73 % Exp 
Rouge Area July 25 Height 1.4 x 10-3 7.0 x 10-4 47.93 33 % Sph 
Pickering Aug 8 Cover 157.40 437.41 76.58 74 % Exp 
Pickering Aug 8 Height 1.8 x 10-3 1.5 x 10-2 213.78 89 % Exp 
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Figure 4.9. Kriged maps showing a) percent cover b) stand height c) estimated biomass, and d) approximate standard error of the biomass estimate 
for Oakville, June 23 2006. Note the difference in scale for biomass (panel c) in the following figures.
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Figure 4.10. Kriged maps showing a) percent cover b) stand height, c) estimated biomass and d) approximate standard error of the biomass 
estimate for Oakville, July 11 2006.



 

  

 

136 

 

Figure 4.11. Kriged maps showing a) percent cover b) stand height, c) estimated biomass and d) approximate standard error of the biomass 
estimate for Oakville, August 1 2006. 
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Table 4.5. Results of partial Mantel tests for Oakville surveys in 2006. rsp|env denotes pure partial 
Mantel correlation coefficient, p denotes significance of permuted Mantel correlation coefficient, 
ns denotes not significant at the p = 0.0083 level. Covariates indicate covariate tested against 
while all others are paritaled out. X + Y are Easting and Northing (m) (e.g., geographic location), 
Sewer indicates minimum distance to storm sewer (in m), Slope indicates bathymetric slope 
(degrees), Tributary indicates distance to nearest tributary mouth (in m), Outfall indicates 
distance to nearest municipal WWTP outfall (m), and depth indicates depth of lake where 
polygon centroid resides (m). Number in brackets below the date denotes the number of polygon 
centroids available. 

Covariate June 23 

(106) 

  July 11 

(167) 

  Aug 1 

(35) 

 

 rsp|env p  rsp|env p  rsp|env p 

X + Y 0.004 ns  0.19 0.003  0.04 ns 

Sewer 0.26 0.0001  0.08 ns  0.29 0.001 

Slope 0.12 0.0081  -0.06 ns  0.04 ns 

Tributary 0.00 ns  0.01 ns  -0.16 ns 

Outfall -0.03 ns  -0.15 ns  0.06 ns 

Depth -0.05 ns  -0.03 ns  -0.23 ns 
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4.4.6 Distribution of nuisance Cladophora at Pickering 

 Attached Cladophora growth during the 11 June survey was generally at or below the 

detection limit of the acoustic system. Percent Cladophora cover was generally < 30 % along 

much of the shoreline, though small, localized areas exceeded 40 % in some areas (Figure 4.12a). 

These localized areas characterized by higher percent cover (e.g., 40 – 50 %) and stand height 

(e.g., 10-15 cm) were observed near the outflow of Carruthers Creek, the thermal discharge of 

PNGS and the inner Frenchman’s Bay (Figure 4.12a and b). Some detached algal material was 

observed in the shallow water on sandy substrate, but this was later confirmed to be Spirogyra. 

Based on inspection of the echograms and underwater video, the area in Frenchman’s Bay 

characterized by relatively high percent cover was primarily macrophytes rather than algal 

(Figure 4.12a,b) though Cladophora was observed to be growing within the macrophyte beds 

where hard substrate existed. Estimated biomass at this time was generally low (< 60 g m-2) for 

much of the shoreline where Cladophora was dominant (except where macrophytes were 

growing in outer Frenchman’s Bay) (Figure 4.12). Partial Mantel tests did not find any significant 

associations with storm sewers, tributary mouths or the Duffins WWTP outfall (Table 4.6). 

By 22 June, percent Cladophora cover continued to increase in the areas where early 

season growth was noted, but additional growth was evident along much of the shoreline (Figure 

4.13a). Percent Cladophora cover exceeded 60 % adjacent to the PNGS thermal outflow and at 

the outflow of Carruthers Creek (Figure 4.13a). The area of macrophyte growth in outer 

Frenchman’s Bay continued to expand, and estimated stand height reached 0.4 m (Figure 4.13b). 

Cladophora also appeared to grow reasonably well in outer Frenchman’s Bay, particularly toward 

the shallow portion where the substrate changed to gravel, but also in among the macrophytes. 

Estimated biomass did not exceed 100 g m-2 except in outer Frenchman’s Bay where macrophyte 

growth was more common, and much of the biomass was restricted to depths < 5 m (Figure 4.13c 

and d). Partial Mantel tests again failed to find any significant spatial associations between 

estimated biomass and potential nutrient sources (Table 4.6).  

On the same date, a smaller survey at the Rouge River site revealed percent Cladophora 

cover ranging between 20 to 70 % out to a depth of ~ 5 m, comparable to levels observed at the 

Pickering site (Figure 4.14a). Detached algal material was noted on the predominantly sandy 

bottom near the outflow of the Rouge River (Figure 4.14a), but macrophytes were not observed in 

this limited survey area. Estimated stand heights were consistently < 14 cm (Figure 4.14b), and 

estimated biomass at the Rouge River site was comparable to that estimated for the Pickering site 

(outer Frenchman’s Bay excluded, Figure 4.14c and d).   
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On 17 July, percent cover continued to increase in previously identified areas, reaching 

coverage values in the high 80 to 90 % for many of the larger patches, and formed a nearly 

continuous band of heavy Cladophora cover from Duffins Creek eastward to Carruthers Creek at 

depths of 2 - 3 m. (Figure 4.15a). Some changes in the size of the patches were noted adjacent to 

the thermal discharge and next to Carruther’s Creek (Figure 4.15a). Percent cover also increased 

to 40 to 50 % at depths of 5 to 6 m. Cladophora stand height generally remained below 20 cm for 

most of the shoreline east of PNGS, but the continued growth and expansion of macrophytes in 

outer Frenchman’s Bay produced stands heights close to 1 m (Figure 4.15b). Estimated biomass 

remained below 150 g m-2 for much of the shoreline, except in outer Frenchman’s Bay (Figure 

4.15c). Here, Cladophora was observed growing epiphytically on macrophyte stems, but also 

interspersed among macrophytes and in larger aggregations where hard substratum predominated.  

Unlike the previous surveys, the partial Mantel tests detected a significant association between 

estimated biomass and depth, and estimated biomass and location (Table 4.6), likely induced by 

the large and expanding macrophyte stands in outer Frenchman’s Bay.  

At the Rouge River site, heavy Cladophora cover (> 70 %) was observed to depths of ~ 7 

m (Figure 4.16a), and Cladophora stand height reached to nearly 40 cm in the shallows. Stand 

heights between 10 and 20 cm were widespread (Figure 4.16b). Estimated biomass reached a 

maximum of ~ 550 g m-2 in a localized spot where the stand heights were tallest, but in general, 

biomass appeared to be greater here than at the Pickering site (except in outer Frenchman’ Bay) 

(Figure 4.16c).  

By July 25, percent Cladophora cover at Pickering reached moderate values (~ 40 %) at 

depths of 8 m (Figure 4.17a) and remained above 80 % in many areas. Estimated stand heights 

suggest that much of the growth east of PNGS remained below 25 cm, while in outer 

Frenchman’s Bay, macrophyte growth continued to expand, reaching stand heights of 0.5 to 1 m 

(Figure 4.17b). Estimated biomass at this time appeared somewhat lower in the shallow depths, 

but large patches of biomass in excess of 150 g m-2 were observed near the outflow of Duffin’s 

Creek and midway between Duffins and Carruthers Creek (Figure 4.17c). Partial Mantel tests 

found a significant spatial association with location, and also detected a significant association 

with distance to the nearest tributary mouth (Table 4.6). 

Percent Cladophora cover remained high at the Rouge River site, but was less uniform 

than on 17 July (Figure 4.18a), although it did extend to depths of  7 m. Cladophora stand heights 

were lower than observed on 17 July, but still frequently exceeded 15 cm (Figure 4.18b). 

Estimated biomass was comparable to that observed at the Pickeirng site, but did not reach very 

the high values observed on 17 July (Figure 4.18c). 
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 On 8 August, percent Cladophora cover remained high along much of the shoreline 

although cover was reduced in shallow waters and areas east of PNGS (Figure 4.19a). Areal 

cover in outer Frenchman’s Bay reached a maximum at this time, and based on stand heights and 

underwater video, macrophytes dominated much of the area (Figure 4.19b). Tall stands of 

Cladophora (e.g., ~ 20 cm) were still present along the shore, but some of these areas also 

supported occasional macrophytes, particularly in the shallows adjacent to Carruthers Creek 

(Figure 4.19b). Estimated biomass did not reach comparable levels as on July 25, though values > 

150 g m-2 were observed near Carruthers Creek (Figure 4.19c). Much like the prior survey, partial 

Mantel tests indicated a strong spatial association with location and distance to a tributary mouth 

(Table 4.6). 
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Figure 4.12. Kriged maps showing a) percent cover b) stand height, c) estimated biomass and d) approximate standard error of the biomass 
estimate for the Pickering site June 11 2007.
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Figure 4.13. Kriged maps showing a) percent cover b) stand height, c) estimated biomass and d) approximate standard error of the biomass 
estimate for the Pickering site June 22 2007.
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Figure 4.14. Kriged maps showing a) percent cover b) stand height, c) estimated biomass and d) approximate standard error of the biomass 
estimate for the Rouge River site June 22 2007.
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Figure 4.15. Kriged maps showing a) percent cover b) stand height, c) estimated biomass and d) approximate standard error of the biomass 
estimate for the Pickering site July 17 2007.
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Figure 4.16. Kriged maps showing a) percent cover b) stand height, c) estimated biomass and d) approximate standard error of the biomass 
estimate for the Rouge River site, July 17 2007.
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Figure 4.17. Kriged maps showing a) percent cover b) stand height, c) estimated biomass and d) approximate standard error of the biomass 
estimate for the Pickering site, July 25 2007.
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Figure 4.18. Kriged maps showing a) percent cover b) stand height, c) estimated biomass and d) approximate standard error of the biomass 
estimate for the Rouge River site, July 25 2007.
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Figure 4.19. Kriged maps showing a) percent cover b) stand height, c) estimated biomass and d) approximate standard error of the biomass 
estimate for the Pickering site, August 8 2007. 
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Table 4.6. Results of partial Mantel tests for Pickering surveys in 2007. rsp|env denotes pure partial 
Mantel correlation coefficient, p denotes significance of permuted Mantel correlation coefficient, 
ns denotes not significant at the p = 0.0083 level. Covariates indicate covariate tested against 
while all others are paritaled out. X + Y are Easting and Northing (m), Sewer indicates minimum 
distance to storm sewer (in m), Slope indicates bathymetric slope (degrees), Tributary indicates 
distance to nearest tributary mouth (in m), Outfall indicates distance to nearest municipal WWTP 
outfall (m), and depth indicates depth of lake where polygon centroid resides (m).Number in 
brackets below the date indicates the number of polygon centroids available. 

Covariate June 11 

(16) 

  June 22 

(46) 

  July 17 

(164) 

  July 25 

(221) 

  Aug 8 

(282) 

 

 rsp|env p  rsp|env p  rsp|env p  rsp|env p  rsp|env p 

X + Y 0.11 ns  0.15 ns  0.18 0.0001  0.28 0.0001  0.10 0.0001 

Sewer 0.03 ns  0.04 ns  -0.08 ns  -0.04 ns  0.03 ns 

Slope -0.13 ns  -0.06 ns  -0.01 ns  0.05 ns  0.00 ns 

Tributary 0.24 ns  -0.03 ns  0.04 ns  0.17 0.0001  0.06 0.0001 

Outfall -0.17 ns  -0.14 ns  -0.06 ns  -0.08 ns  0.00 ns 

Depth -0.16 ns  -0.08 ns  0.09 0.002  -0.05 ns  0.03 ns 
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4.5 Discussion 

The primary advantage of the hydroacoustic survey method as employed in this study is 

the rapid sampling and characterization of benthic algal growth (in this case, primarily 

Cladophora) over moderately large to large areas with good spatial coverage. The subsequent 

geostatistical analyses employed here extend the utility of the collected data to delineate the 

spatial distribution and pattern of Cladophora growth, and provide spatially explicit estimates of 

Cladophora biomass, which cannot be derived from quadrat sampling without considerable 

effort. The geostatistical analyses demonstrated that considerable spatial structure is apparent in 

nuisance Cladophora growth at these study sites, and the high degree of spatial dependence 

observed for percent Cladophora cover and stand height underscores the variability inherent in 

the near shore areas that may not be adequately characterized even by an intensive quadrat 

sampling design.  

A model was used to calibrate the measures of Cladophora stand height to areal biomass 

in the previous chapter (Chapter 3). This provides a biologically meaningful measure that is 

comparable to previous studies which use more traditional sampling methods. These spatial 

estimates of Cladophora distribution and biomass can them be examined to investigate patterns 

that are suggestive of physical or biological factors that influence the distribution of excessive 

Cladophora growth. In this study, the patterns of principal interest were those related to the 

spatial distribution of nuisance Cladophora biomass and relationships to known nutrient sources 

(e.g., municipal WWTP outfalls) and potential shoreline point sources of nutrients (e.g., 

tributaries and storm sewers).  

The response of Cladophora growth and biomass accrual to point sources of nutrients or 

localized inputs of non-point source nutrients is strongest when ambient nutrient concentrations 

are low (Canale and Auer 1982). The kinetics of limiting nutrient uptake (for Cladophora in the 

Great Lakes, this is almost always P; see references in Higgins et al. 2008a) are well documented 

(e.g., Auer and Canale 1982x, Rosmarin 1982), and clearly show that growth rate potential is 

hyperbolic in nature with respect to P content of the algal tissue (Gerloff and Fiztgerald 1976, 

Auer and Canale 1982y). Thus, at high nutrient availability, nutrient uptake rates tend to decline 

as nutrient content of the tissue increases. Above a threshold level (for Cladophora, this is ~ 0.16 

% by DW; c.f. Higgins et al. 2008a) growth potential is high, and providing other environmental 

factors are sufficient, high biomass accrual can result. This effectively describes the situation in 

Lakes Ontario and Erie during the 1960s through 1970s when elevated nutrient concentrations 

(compared to current nutrient concentrations) were widespread (e.g., Kwiatkowski 1984, Ontario 
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Ministry of Environment 1982) and supported excessive Cladophora growth on much of the 

available substrate when light availability did not limit growth (Wezernak and Lyzenga 1975). 

Conversely, at low nutrient availability, nutrient uptake rates are generally high, but tissue P 

content may remain low. Growth potential is therefore very sensitive to changes in external P 

concentration that drive changes in internal P content (Gerloff and Fitzgerald 1976, Auer and 

Canale 1982y). Relationships between excessive Cladophora biomass and known nutrient 

sources were well defined in Lake Huron, where ambient nutrient concentrations were not nearly 

as high as those found in the lower Lakes (e.g., Auer et al 1982a). In Lake Huron, nuisance 

Cladophora biomass declined with increasing distance from the nutrient source, both in an 

alongshore and offshore direction, and the range where clearly defined gradients in water column 

SRP and Cladophora tissue P content existed was ~ 250 to 500 m (Auer et al. 1982a). 

An assessment of whether such spatial patterns in relation to point sources or shoreline 

sources of nutrient might occur in present day near shore Lake Ontario is therefore predicated on 

establishing that both current water column nutrient concentrations and Cladophora tissue P 

content are indeed lower than historical levels. In the 1970s, near shore and offshore TP 

concentrations in Lake Ontario were high, ranging from 18 to 30 µg L-1, while SRP ranged 

between 3 and 10 µg L-1 (Ministry of Environment 1980, Haffner et al. 1984, Malkin et al. 

submitted). During this study, concentrations of TP in the near shore at Oakville averaged close 

to the 10 µg L-1 GLWQA target (mean 10.62 ± 4.96 µg L-1), and SRP was below 3 µg L-1 (mean 

2.25 ± 2.82 µg L-1) for much of the growing season (May to September), with higher 

concentrations observed during spring or late fall months. At Pickering, TP tended to be slightly 

higher, ranging from 6 to 22 µg L-1, but average concentrations (mean 11.59 ± 4.31 µg L-1) were 

comparable to those at Oakville. SRP concentrations at Pickering also followed a comparable 

seasonal trend as at Oakville, but were more variable, and generally did not exceed 3 µg L-1 

during the May – August period (mean 1.92 ± 2.47 µg L-1). Interestingly, P concentrations 

observed in the months of September and October at both study sites are consistent with 

enrichment of the coastal zone, but the proximate cause remains unknown and is difficult to 

determine. That such enrichment is not observed during the June – August period may reflect the 

biological demand for P by Cladophora and the trapping of particulate material by dreissenid 

mussels. 

Much like the reduced nutrient concentrations in Lake Ontario, measured Cladophora 

tissue P content also declined from lakewide averages of 0.49 % in 1972, to 0.20 % in 1983 (as 

ash free dry weight; Painter and Kamaitis 1987). Current estimates of tissue P at Oakville rarely 

exceeded 0.16 % (by dry weight; Houben 2007) unless at depths of 10 m. Although not reported 
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in this chapter, tissue P (by dry weight) at Pickering averaged 0.17 % (n=80) and exceeded 0.16 

% only at depths of 5 m or greater, or in the months of September and October (Leon et al. 2009). 

The decline of tissue P during the summer months in shallow waters indicates that dilution 

through growth exceeds supply at that time. Given the relatively low nutrient and tissue P 

concentrations observed during the summer months when Cladophora is actively growing, this 

suggests that spatial associations between nuisance Cladophora and potential nutrient sources 

might well occur at the study sites.      

4.5.1 Patterns of nuisance Cladophora growth and municipal WWTP outfalls 

Although this study did not find strong evidence that WWTP outfalls could impact water 

chemistry on a local scale (e.g., < 1 km), follow-up studies at Pickering in 2008 were able to 

detect a considerable influence of the Duffins WWTP on local water quality, primarily through 

the effect of higher TP and SRP concentrations (Leon et al. 2009). However, it is important to 

note that this effect is not constant; rather it seems to vary depending on the ambient conditions at 

the time of sampling. The primary goal of a WWTP outfall diffuser system is to rapidly mix the 

discharged effluent stream with the lake water, thereby minimizing any potential localized 

enrichment (Rao et al. 2003). Mixing of effluent from a WWTP diffuser is generally 

accomplished by two processes 1) intense mixing and dilution created by the turbulence from the 

diffuser and 2) the mixing of the waste field by the hydrodynamic forces generated within the 

lake. Depending on the density of the effluent and the density of the receiving lake water, this 

waste field may boil to the surface or remain trapped at a depth of neutral buoyancy (Murthy and 

Csanady 1971, Rao et al. 2003). For most outfalls, studies have shown that at distances of < 1000 

m, water quality and bacteriological parameters are comparable to background concentrations, 

and suggest that mixing is generally thorough (Murthy and Csanady 1971, Rao et al. 2003). Rao 

et al. (2003) determined the optimal depth for outfall placement in the western basin of Lake 

Ontario to be 14 m depth and 1200 m from shore to achieve efficient dilution and mixing. 

The lack of a consistent outfall effect during the surveys at Oakville and Pickering likely 

results from a) stations situated beyond the 1000 m distance which translates into a low 

probability of “detecting” a waste plume, and b) the observation that infrequent sampling 

(monthly at Oakville, bi-weekly at Pickering) may not be of sufficient to fully characterize the 

dynamics. In both study sites, the WWTP have been identified as the largest local source of P to 

the immediate study areas (e.g., Aquafor Beech 2006, Leon et al. 2009). Despite this, the 

concentrations of P that were measured in this study averaged close to the GLWQA target of 10 

µg L-1, and rarely exceeded 15 µg L-1 during the summer months (June – August) when 
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Cladophora growth is most prominent. Very high P concentrations (15 – 30 µg L-1) were 

observed, however, during September and October at both study sites, but this does not 

necessarily implicate WWTP as the proximate source. It is entirely possible that P discharged by 

the WWTP outfalls is quickly assimilated by phytoplankton, but the chlorophyll a concentrations 

measured in this study do not provide compelling evidence for this.  

In this study, no spatial association between nuisance Cladophora biomass and WWTP 

outfalls was found for either the Oakville site or the Pickering site. Based on the depths of the 

outfalls at the Oakville site (Southeast WWTP outfall; ~ 4 m depth, 300 m from shore, Clarkson 

WWTP outfall; ~ 16 m depth; 1.4 km from shore) stronger patterns might be expected to occur in 

relation to the Southeast WWTP outfall, as it is closer in proximity to shore and large piers at the 

north end of the study site likely disrupt along shore currents commonly observed in this area. 

However, much of the excessive biomass occurred at distances in excess of 2 km away, and was 

clearly not locally restricted to the vicinity of either the Southeast or Clarkson WWTP outfall. At 

Pickering, the Duffins WWTP outfall is the major outfall influencing this study site. Although 

nuisance Cladophora biomass was found not to be spatially associated with this outfall at any of 

the survey periods, the lack of suitable substrate immediately adjacent to the diffuser complicates 

interpretation. Cladophora growth within a 1.5 km radius of the outfall is substrate limited, as 

much of the lake bottom between Duffin’s Creek and the WWTP outfall is sand, particularly in 

the shallow depths (< 5m) (D. Depew, unpubl. data). Some hard substratum does exist, primarily 

in patchy aggregations of large rocks and boulders. If more suitable substratum were available in 

close proximity to the outfall, accumulation of Cladophora at distances closer than 1000 m might 

well occur, especially given the high P concentrations that have been periodically measured in the 

vicinity of the outfall (Leon et al. 2009).  

4.5.2 Nuisance Cladophora biomass and shoreline nutrient sources   

In contrast to the placement and mixing conditions at WWTP outfalls, mixing and 

dispersion of effluent is much less efficient for shoreline based discharges such as storm sewers 

and tributaries. Both numerical and experimental evidence suggests that a given effluent plume 

will tend to closely follow the shoreline in response to flow patterns influenced by lake wide 

circulation (Csanady 1970). With high nutrient loading, this can ultimately result in a situation of 

coastal entrapment, creating gradients in nutrient and contaminant concentrations that increase 

toward shore. Depending on the discharge volume and concentration, this can form a widespread 

zone of enrichment (Csanady 1970). Seasonal changes also influence these processes, the prime 

example being the coastal entrapment of nutrients by the thermal bar (Rao et al. 2004). With the 
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thermal bar, an additional impediment to horizontal mixing is provided by the presence of the 

dense band of 3.98 °C water that gradually moves offshore as the near shore waters warm in the 

spring (Rao et al. 2004). Combined with the high discharges that are characteristic during the 

spring, the potential for a highly enriched near shore zone is high. The early spring sampling at 

Oakville in April 2006 was designed to evaluate the thermal bar period. Parameters that can be 

considered tracers of tributary input (e.g., NO3
- and Cl-) displayed strong gradients in 

concentration that decreased as distance from the tributary increased. Not surprisingly, the highest 

concentrations were generally observed for the largest tributary (16 Mile Creek) and were 

observed within 500 m of the tributary mouth. However, P concentrations did not comparable 

spatial gradients and concentrations were generally unremarkable (mean TP 8.31 ± 1.91; range 

4.75 - 13.95 µg L-1). The lack of a similar pattern for concentrations of TP, TDP and SRP 

suggests either that tributary input of P during the spring were not characterized by high 

concentrations, or that P inputs quickly sink out of the water column or are quickly taken up. The 

observation that P concentrations in tributaries in these urbanized catchments are decreasing or 

remaining stable while concentrations of Cl- and NO3
- are increasing (e.g., Ontario Ministry of 

Environment 1999) support the former. 

For much of the growing season (May – October) patterns in near shore water quality can 

vary considerably. Hydrodynamic features common to the Great Lakes (e.g., upwelling and 

downwelling) can and do periodically disrupt the formation of near shore enrichment zones (Rao 

and Schwab 2007). In general, dilution of effluents discharged directly at the shoreline by 

currents is generally quite poor due to the friction imparted by the bottom on very near shore 

currents (Csanady 1970). This low frequency of mixing with offshore waters was likely the cause 

of widespread near shore enrichment in the lower Great Lakes during the 1950s and 1960s, when 

nutrient loading from point sources and non-point sources to the lake via tributaries was high 

(Gregor and Rast 1982). If tributaries and storm sewers are providing a considerable nutrient load 

from non-point sources, higher nutrient concentrations in shallow waters should be a reasonable 

expectation along these urban shorelines. 

Patterns of water chemistry suggestive of chronic near shore nutrient enrichment were 

generally not evident at the two study sites. Other parameters such as Cl- at Oakville, and TSS at 

Pickering were elevated at 2 m sites relative to 5 and 10 m sites, and are consistent with the near 

shore trapping of discharge from storm sewers and tributaries and such patterns are detectable up 

to several hundred meters away form the source(s). This is consistent with a similar study 

conducted at the outflow of Cooksville Creek (near Port Credit, ONT; see Chapter 3) during the 

summer of 2004. Here, strong spatial patterns demonstrating elevated concentrations of TSS, Cl- 
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and TP up to 500 m away from the mouth of the creek were evident across much of the season 

(Hiriart-Baer et al. 2009). Although the patterns observed for Cl- and TSS at these sites were 

consistent with those observed by Hiriart-Baer et al. (2009) at Cooksville Creek, similar trends 

for TP, TDP or SRP at Oakville and Pickering were not apparent. These contrasting patterns may 

arise from differing geomorphology of the shorelines and the subsequent effects on currents that 

disperse tributary discharge. For example, a large man-made harbor is adjacent to Cooksville 

Creek. This provides a moderately protected area inset from the main portion of the lake (e.g., see 

Figure 3.3b), while the Oakville and Pickering sites are much more exposed and subjected to 

wind and wave action (Pickering) and un-impeded along shore flow (Oakville). Cooler, wet 

summers with heavy precipitation can also result in continued measures of high P concentrations 

near tributaries (e.g., Malkin 2007). 2004 was also identified as an abnormally cool and wet 

summer with higher discharge from 16 Mile Creek (Oakville, May – September mean discharge 

= 1.71 ± 1.63 m3 s-1, Water Survey of Canada stations 02HB004 and 02HB005) and higher 

concentrations of TP were measured at the Oakville site in 2004 compared to 2005 (which was 

warmer and drier, May – September mean discharge = 0.95 ± 0.53 m3 s-1) (e.g., Malkin 2007; 

Malkin et al. submitted). Given the close geographical proximity of Cooksville Creek and 16 

Mile Creek (~ 16 km) it is likely that Cooksville Creek experienced comparable regional 

meteorology as Oakville, and therefore higher tributary discharge and presumably nutrient 

loading in 2004. The limited sampling conducted at Oakville and near Cooksville during an 

earlier study in 2005 (Chapter 3) demonstrated low P concentrations and is consistent the trends 

in tributary discharges observed at Oakville. Unfortunately, discharges for 2006 are not available 

for 16 Mile Creek. Inter-annual differences in meteorology may therefore affect nutrient 

concentrations in near shore waters by increasing (wet) or decreasing (dry) discharge.  

Other local phenomena may also influence the patterns of near shore water quality at 

Oakville and Pickering. At Pickering, the re-suspension of sand and softer substrate via wind and 

wave action, the transport of eroded sediments from the Scarborough bluffs in an eastward 

direction (e.g., Martini and Kwong 1985) may also influence water quality. The degree to which 

this occurred during this study is not easily assessed. However, the lack of comparable variation 

in TSS at PI2 as compared to the other transects in addition to the general lack of soft substratum 

at transect PI4 suggest the high TSS measured at these transects is likely derived from tributaries 

(e.g., Rouge River at PI1, and Duffins Creek at PI3 and PI4) rather than re-suspension or long 

shore transport of eroded sediments At Oakville and Pickering, the influence of upwelling was 

evident in water temperatures, but less so on water chemistry. Historically, upwelling of cooler 

metalimnion or hypolimnion water often increased P concentrations as remineralized P was 
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injected into near shore regions (Haffner et al. 1984b, Lean et al. 1990). However, as early as the 

late 1980s, upwelling of hypolimnion water was characterized by low nutrient concentrations 

(e.g., Lean et al. 1990). Without samples collected within minutes of upwelling it is difficult to 

assess the potential for P inputs from upwelled water, but based on recent offshore water 

chemistry trends (e.g., Malkin et al. submitted) and limited near shore sampling conducted soon 

after upwelling (e.g., Malkin 2007), P inputs via upwelling can be assumed to be negligible. 

Despite a generally widespread distribution of nuisance Cladophora biomass, on 23 June 

and 1 August, Cladophora biomass did show significant spatial association with storm sewers at 

the Oakville site. Stom sewers are known to transport both particulate and soluble forms of P 

(Bannerman et al. 1993, Sorrano et al. 1996) and the significant association between nuisance 

Cladophora biomass and proximity to storm sewers may suggest some influence of storm sewers 

as contributing to the spatial patterns of Cladophora growth. However, significant association 

between nuisance Cladophora biomass and bathymetric slope was also observed on 23 June and 

complicates the interpretation. Partial Mantel tests conducted for these dates explicitly to examine 

relationships between bathymetric slope and proximity to storm sewers also revealed a highly 

significant relationship for 23 June and 11 July, but not 1 August (partial Mantel r = 0.18 and r = 

0.08, p<0.0005 and p<0.05 respectively). This suggests that areas adjacent to storm sewers at 

Oakville often had relatively flat bathymetry. Such flat areas may support excessive Cladophora 

biomass by slowing the loss of Cladophora biomass by attenuating wave energy or allowing for 

deposition of detached biomass. The lack of a significant relationship between proximity to storm 

sewers and slope in August may be a reflection of the small sample size (Table 4.5) or it may 

indicate a potential importance of periodic discharges of nutrients by storm sewers during the 

summer for localized areas.  

At Pickering, significant relationships between nuisance Cladophora biomass and 

proximity to storm sewers were not obseved. The lack of a relationship at Pickering may simply 

be due the general lack of suitable substratum in proximity to storm sewers. Much of the 

substratum in depths of 1- 2 m along the shoreline where storm sewers are numerous is composed 

of sand and the maps indicate that these areas generally remained devoid of growth for much of 

the study period (see Figures 4.11 to 4.19). However, it is clear from the maps that Cladophora 

does grow well at distances far removed from storm sewers, and these do not appear to be 

contributing to growth patterns at this site. 

Despite the obvious presence of a large patch of heavy cover and high biomass 

immediate south of 16 Mile Creek, Cladophora biomass did not show significant relationships in 

proximity to tributaries at Oakville. This may be due to a non-linear pattern in biomass 
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distribution when examined as a function of proximity to tributary mouth. This would not be 

inconsistent with the patterns of growth induced by a tributary plume that generates persistent 

highly turbid water immediately adjacent to the tributary mouth. Here, light is limiting and the 

tributary plume likely has a negative effect on Cladophora growth, even in the presence of excess 

nutrients. Further from the tributary mouth, as heavier particles settle and finer particles are 

further diluted, light limitation is likely alleviated. Therefore, a strongly linear relationship 

between Cladophora biomass and proximity to tributaries is not necessarily expected. However, 

it is difficult to infer the stability and persistence of such turbidity plumes since tributary plumes 

are generally transient. Tributary plumes are subjected to flow reversals and hydrodynamics once 

in the lake (Rao and Schwab 2007). This may include changes in direction on the order of 5 -8 

days (Rao and Schwab 2007) or trapping near surface during and after an upwelling event (Fong 

and Geyer 2002).   

At Pickering, significant relationships between Cladophora biomass and proximity to 

tributaries were observed on three of the survey dates. Interestingly, these relationships were only 

observed during the surveys when macrophyte growth in outer Frenchman’s Bay had expanded to 

near maximum coverage. Repeating the partial Mantel tests with the Frenchman’s Bay tributary 

source removed, the partial Mantel tests were all non significant for all surveys, including the 

three dates where Frenchman’s Bay induced a significant result (July 25, r = -0.04, and August 8, 

r = -0.04, p > 0.9 respectively). This suggests that the significant association between Cladophora 

biomass and proximity to tributaries at Pickering was induced largely by the large area of 

macrophyte and Cladophora growth west of PNGS in outer Frenchman’s Bay.  

4.6 Summary and Conclusions 

The current distribution of nuisance Cladophora growth at two highly urbanized 

shorelines in Lake Ontario (Oakville and Pickering) is widespread and not well explained by 

proximity to known point sources or shoreline nutrient sources. At these study sites, the local 

WWTP are the largest P contributors in terms of seasonal nutrient load (Aquafor Beech 2006, 

Leon et al. 2009), followed by the major tributaries (e.g., 16 Mile Creek at Oakville, Aquafor 

Beech 2006, and Duffins Creek at Pickering; Leon et al. 2009) and storm sewers as the smallest 

(Aquafor Beech 2006, Leon et al. 2009). Near shore water chemistry measured during the typical 

Cladophora growing season (May – August) does not appear to have returned to levels measured 

during the 1970s and early 80s (e.g., Ontario Ministry of Environment 1980), and the current 

patterns of widespread growth are difficult to reconcile with recent measures of P concentrations. 

The absence of strong consistent patterns of Cladophora growth at these sites in relation to these 
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known and potential nutreint sources does not necessarily preclude the dependence of 

Cladophora growth on nutrients from theses sources, but rather that there is no compelling 

evidence that these known nutrient sources are contributing to current growth patterns of 

excessive Cladophora biomass. There is little evidence that WWTP in the west basin of Lake 

Ontario have significantly increased their loading of P to the lake with the discharge of treated 

effluent because of improvements to treatment facilities (Medeiros and Molot 2006), and 

monitored tributaries and calculated loads from the major tributaries at these study sites appear to 

have declined relative to loads experienced in the 1970s and early 1980s (Malkin et al. submitted) 

when high P concentrations were widespread along much of the Lake Ontario near shore. A 

companion study of Cladophora nutrient content conducted at the Oakville site is consistent with 

the results of this study; little spatial variation in Cladophora tissue P or N existed, except that 

which was imparted by depth (e.g., light limitation). This suggests that along the shoreline, the 

nutrient content (and thus general availability of nutrients) was homogeneous and did not indicate 

localized areas of continued enrichment (Houben 2007). 

Dreissenid mussels could account for the current pattern of Cladophora growth, largely 

because they are relatively ubiquitous on hard substrate at these sites (e.g., Ozersky et al. 2009, 

T.Ozerksy unpubl. data) and the rates of in situ nutrient supply have been estimated to be 

sufficient to meet Cladophora demand for P (Ozersky et al. 2009). Yet, it is not a simple task to 

determine whether or not Cladophora is solely dependent on dreissenid supplied nutrients, nor is 

it simple to determine wether or not dreissenids can influence the mobility of catchment derived 

nutrients once they enter the lake form tributaries or storm sewers. During the thermal bar period, 

high P concentrations were not commonly observed at Oakville, despite clear patterns in NO3
- 

and Cl- that could be attributed to 16 Mile Creek. The thermal bar has been hypothesized to be 

important for Cladophora by providing conditions suitable for luxury uptake and storage of P by 

Cladophora for later growth in the summer (Rao et al. 2004). However, there are two 

fundamental problems with this assumption. First, Cladophora biomass must be sufficiently large 

in order to sequester enough P to support the nuisance growths that occur in the summer months. 

Second, since internal P content of Cladophora during the early spring is generally already high 

(e.g., Higgins 2005, Malkin 2007), further uptake is not likely to occur without an increase in 

growth (which is likely temperature limited at the ambient temperatures observed in the thermal 

bar; Hoffmann and Graham 1984) because slow growing, P rich tissue is already saturated and 

unable to sequester significant P (Auer and Canale 1982b). Therefore, P inputs from the 

catchment during the thermal bar are unlikely to directly benefit Cladophora. Wether or not 

dreissenid mussels might be effective at trapping and retaining such P inputs during this time 
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period remains unanswered, but does provide one mechanism for the retention of spring runoff 

derived nutrients in the near shore. 

Unfortunately, it is not possible to discern from the data in this study if a particular 

shoreline nutrient source might be problematic (see for example the storm sewers and high 

biomass at Oakville). Exposure to transient P sources such as periodic urban runoff and tributary 

plumes may provide sufficient P to support a ten fold increase in Cladophora biomass (Auer and 

Canale 1982b) but further site specific work with more frequent temporal sampling and a finer 

spatial scale analysis would be required to elucidate such effects and quantify their importance to 

the seasonal pattern of growth (if any). This study does, however, provide a starting point by 

identifying potential areas of interest where such work could be done.  

The results of this study do not support the hypothesis that the current patterns of 

nuisance biomass of Cladophora along these urban shorelines in Lake Ontario is driven by 

nutrient loading from known point or shoreline based sources. These results are consistent with 

previous surveys both at the same location (Oakville), other urbanized areas (Port Credit) and 

other sites in Lake Ontario and Lake Erie that show widespread accumulation of nuisance 

Cladophora at sites that are characterized by high abundance of dreissenid mussels. Future work 

at finer temporal and spatial scales would be beneficial for conclusively separating the effects of 

near shore nutrient sources and dreissenids to Cladophora in the Great Lakes.  
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Chapter 5  

Spatial structure in a complex coastal zone: New methods for 

elucidating controls on water quality and phytoplankton 

5.1 Overview 

 Nighttime surveys of a 4 to 6 km long section of western Lake Ontario shoreline were 

conducted with a small boat equipped with instruments configured to sample at high spatial 

resolution to assess the spatial patterns of benthic algal distribution, phytoplankton photosynthetic 

efficiency, dissolved gases (e.g., CO2 and O2) and water masses in the shallow areas of the littoral 

zone (1 to 10 m depth).  In early September, after the sloughing of benthic algal growth, 

downwelling of offshore waters dominated, resulting in a spatially homogeneous water mass 

characterized by warm surface temperatures, high concentrations of TP (mean 17.71 ± 5.60 µg L-

1) and a phytoplankton community with high photosynthetic efficiency (mean Fv/Fm = 0.62). In 

contrast, during a mid-summer period characterized by exstensive heavy cover of benthic algae, 

upwelling of cooler metalimnetic waters in the near shore combined with warmer tributary 

discharge, resulted in a significantly higher spatial variability of water quality, phytoplankton 

community composition, and phytoplankton photosynthetic efficiency (mean Fv/Fm ~ 0.43), with 

much of the spatial pattern oriented along shore. Patterns driven by both seasonal variability and 

physical processes are apparent in the near shore of Lake Ontario. Signals in water column 

dissolved gases (e.g., CO2, O2) at times of high benthic algal cover suggest that patterns in the 

near shore may be further influenced by biota. Results from this study provide a unique method 

for characterizing the relevant spatial scales of ecosystem processes in a highly dynamic, complex 

costal zone.  
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5.2 Introduction 

Coastal ecosystems, both freshwater and marine, are under serious threat from many 

human related stressors (Niemi et al. 2007). The Great Lakes coastal regions are highly dynamic 

ecosystems which link the terrestrial and aquatic environments, facilitating the exchange of 

energy and materials between coastal and pelagic ecosystems (Edsall and Charlton 1997). The 

coastal regions of the Great Lakes provide a vital role in many ecosystem processes that have lake 

wide importance. Coastal regions may be important for primary and secondary production 

(Mackey and Goforth 2005), provide crucial habitat for fish (Randall and Minns 2002), resources 

for anthropogenic uses (e.g., potable water and cooling water for industry; Edsall and Charlton 

1997), and areas with intrinsic recreational value for the near 35 million residents of the costal 

regions of the Great Lakes (Niemi et al. 2007). These near shore regions are therefore of much 

greater importance than their relatively limited spatial extent would suggest (Mackey and Goforth 

2005). Although much of the previous scientific attention has primarily focused on the open 

waters of the Great Lakes, there has been a renewed emphasis to include coastal components in 

lake wide monitoring programs (Neilson et al. 2003), but much of the ecology and dynamics 

remain poorly understood, especially in the exposed near shore areas (Randall and Minns 2002). 

This limited understanding of near shore ecology and the processes controlling the variability is 

therefore a serious impediment to coastal zone management and restoration.  

A recurring challenge to ecologists is to understand, and ultimately predict, the factors 

that determine structure in natural and managed communities (Menge et al. 1997). At present, the 

understanding of near shore ecology in the Great Lakes is based largely on research at relatively 

small spatial scales (e.g., transects, or single sampling sites). However, the influence of biotic and 

physical factors can vary across spatial scales, and the interpretations based on small scale studies 

often need modification when large scales are considered. Therefore, further elucidation of the 

determinants of near shore spatial patterns will depend on the study of links between small scale 

and large scale processes. Presently, the limited understanding of near shore ecology in the open 

near shore of the Great Lakes is due to the historical bias toward offshore sampling, logistical 

difficulty conducting adequate surveillance, and the inherent spatial and temporal variability 

imposed by climate and meteorologically driven physical processes that dominate in the near 

shore environment (Rao and Schwab 2007). Moreover, the perception of many open near shore 

environments as “wet deserts” (Brazner and Beals 1997) that support little biodiversity in 

comparison with other more productive areas (e.g., embayments, wetlands) ultimately makes the 

definition of the near shore, measurement and interpretation of patterns within it extremely 
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challenging. Robust assessment and monitoring methods are therefore needed to characterize near 

shore areas. Without comprehensive knowledge of the spatial variability, conditions in the near 

shore, and linkages to the open waters of the lake, it is difficult to effectively devise management 

strategies that lead to demonstrable improvements in near shore conditions.  

In this study, methods to systematically sample tracers for water masses (e.g., 

temperature, conductivity), biological processes (dissolved gases CO2, O2), phytoplankton 

community structure and condition (e.g., spectral fluorescence and active fluorescence), and 

benthic algae cover and canopy height at high resolution in a highly complex coastal zone were 

evaluated. Geostatistical methods are employed to evaluate and characterize the spatial structure 

of the data collected, create snapshot maps of the distribution of the above parameters in the near 

shore, and test hypotheses about factors that may control the spatial structure in a highly dynamic 

near shore zone. Specifically, this work seeks to define the relevant scales of spatial variability in 

phytoplankton community structure and condition in the near shore, and evaluate the potential for 

recognizable spatial patterns to be imparted by nuisance crops of benthic algae at times of high 

biomass and cover. To date, such data are not available for the open near shore of the Great 

Lakes. Consequently, the tools and methods employed in this study may be adapted and applied 

to other areas to assess the linkages between near shore biological communities and the physical 

characteristics of the near shore environments. 
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5.3 Materials and Methods 

5.3.1 Study site and sampling design 

 Nighttime (2200 hrs to 0600 hrs) surveys were conducted along the Oakville shoreline in 

western Lake Ontario (Figure 5.1) on two dates (September 14-15 2006, and June 25-26 2007). 

This site is underlain by boulder and cobble substrate and supports moderate abundances of 

dreissenid mussels (~ 3500 m-2; Ozersky et al. 2009) and heavy growth of Cladophora is 

common during the summer months (Chapter 2, Chapter 3, Malkin et al. 2008). 

Surveys were performed on a 21 ft aluminum vessel outfitted with two acoustic 

transducers and a flow through system set up to measure surface water (~ 0.3 m below surface) 

pCO2, conductivity, temperature, dissolved O2, and both spectral and variable chlorophyll a 

fluorescence. In 2006, the acoustic survey was completed during daylight hours. The night time 

survey covered a greater range of depths (to 30 m) and transects were run perpendicular to shore, 

spaced between 75 and 150 m apart. In 2007 both the acoustic and night time survey were 

conducted concurrently, running transects parallel to shore, spaced ~ 50 to 75 m apart. All 

surveys were conducted with the vessel traveling between 1.8 and 2.3 m s-1. Acoustic data to 

characterize benthic algal growth was analyzed using a Matlab based GUI (Chapter 2). 

5.3.2 Flow through system and set-up 

 All underway data (acoustics excluded) were measured on inflowing water from a 12 V 

pump (Cyclone pump, Proactive Environmental Products, Bradenton FL, USA, 10 L min-1) 

attached to an intake pipe (18 mm diameter), mounted on the bow of the vessel. The intake pipe 

was located ~ 0.3 m below the surface and ~ 0.5 m in front of the vessel so as to sample water 

that was not disturbed by boat passage. The intake pipe and was covered with nylon screen (~ 2.3 

mm aperture size) to prevent large clumps of detached Cladophora and other detritus from 

fouling the system. Lake water was pumped through 10 mm ID opaque polyethylene tubing to a 

stainless steel pre-filter (124A-SC, 100 µm mesh, Spraying Systems Co. Chicago IL, USA) 

before being diverted to a three way splitting valve for diversion to a series of probes and other 

instruments (Figure 5.2). During the surveys, a DGPS (JRC212, Japan Radio Co.) provided fix 

updates at 1 second intervals (positional error < 5 m; Japan Radio Co.). Because of different 

sensitivities and reporting cycles with different GPS units, I elected to use the DGPS data to co-

locate all data collected by other instrumentation. All instrument clocks and laptop clocks were 

synchronized to the clock time from the DGPS satellites using NMEATime v1.2 (VisualGPS 

LLC, Orange, CA).  
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Figure 5.1.Map of the study site at Oakville, ON. Inset panel denotes location of the study site in 
Lake Ontario. Sites sampled for water chemistry in 2006 are denoted by (A). Sites sampled for 
water chemistry in 2007 include transects OA1, OA2, and two additional transects (OA5, and 
OA6) denoted by (/). Storm sewers are represented on the map by (.) and municipal waste 
water treatment plant outfalls by (,).Note only active municipal WWTP outfalls are labeled. 
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Figure 5.2. Schematic diagram of the flow through system employed during the study. Note that 
for the 2006 survey, the Fluoroprobe and YSI-6600 were not online due to logistical problems. 
Blue arrows indicate incoming lake water (intake pipe located ~ 0.3 m depth, 0.5 m in front of 
vessel). Red arrows indicate outflowing water that was diverted back into the lake. Note that the 
peristaltic pump for the IRGA also contained an air inlet for measuring atmospheric CO2 prior to 
commencing water flow.
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pCO2 

Measurements of atmospheric, surface pCO2 and water temperature were made using an 

apparatus designed by Morris Holoka and Ray Hesslein (Department of Fisheries and Oceans, 

Winnipeg, Canada). This unit consisted of a datalogger (CR10X, Campbell Scientific, Edmonton, 

Alberta), a peristaltic pump, and a non-dispersive infra-red gas analyzer (IRGA; Li-820, Li-Cor, 

Lincoln, Nebraska, USA). Inflowing water from the intake pump flowed first past a thermistor 

(P107, Campbell Scientific) then through a membrane contactor (Liqui-Cel, Membrana, 

Charlotte, NC, USA). The membrane contactor extracted the dissolved gas by increasing the 

pressure of the air stream, and the extracted gas was circulated using an air pump via a separate 

system, first through Nafion tubing (PermaPure Toms River, NJ, USA) to remove moisture, then 

via tygon tubing through the IRGA which measured the molar fraction of CO2 (xCO2) of the gas 

stream and gas pressure (atm). Gas removed from the water, once passed through the IRGA was 

returned to the outflowing water stream before being pumped over the side of the vessel. 

Measurements of water temperature, gas pressure and xCO2 were recorded on the data logger at 

20 second intervals. The data logger was also connected to a solenoid which directed either 

atmospheric air or the airstream from the membrane contactor into the IRGA, a reverser which 

designated the direction of water flow, and a pair of mechanical switches to control these 

components. The peristaltic pump pushed water through at a rate of 1.2 L min-1, varying slightly 

with battery charge. The water volume housed in the tubing was never more than 0.02 L. The 

IRGA analyzer was calibrated for a range of 0 to 1000 ppm on a bi-weekly basis using a CO2 

standard gas (Praxair Inc., Cambridge, ON.). 

 

Conductivity, dissolved O2, water temperature 

Measurements of conductivity, temperature (YSI 6560), and dissolved O2 (YSI-6150 

ROX DO) were measured using a YSI-6600 multiprobe. The YSI probe sensors were immersed 

into a 33 cm long cylinder of ABS pipe (closed at the bottom end; 14 cm diameter) and connected 

to one inflowing water line. The displacement volume of the YSI probes and instrument body was 

sufficient to keep the volume of water contained in the ABS pipe to less than 1 L, allowing for 

complete flushing within 15 seconds. Recorded data were therefore averaged over 15 second 

intervals prior to analysis and merging with the DGPS string.   

Spectral Fluorescence measurements 

Measures of phytoplankton pigment fluorescence were made at 5 wavelengths using a 

Fluoroprobe (bbe Moldaenke, GmbH). The fluoroprobe contains five light emitting diodes (450, 

525, 570, 590 and 610 nm) for excitation of pigments present in phytoplankton and a UV-blue 
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LED (370 nm max, range 350 to 440 nm) for the differential excitation and correction for 

fluorescence emitted by dissolved organic matter (DOM). The excitation spectrum is compared to 

fingerprint curves for four different phytoplankton groups based on their response to multi-

wavelength excitation, and is reported as chl a (µg L-1) equivalents (Beutler et al. 2002). Although 

there are conflicting reports on the efficacy of the Fluoroprobe at distinguishing phytoplankton 

taxa in the Great Lakes (e.g., Ghadouani and Smith 2005, Pemberton et al. 2007), the use of the 

Fluoroprobe in this study was not specifically to evaluate the accuracy of the measurements, but 

to monitor substantial changes in spectral fluorescence that may indicate significant changes in 

community composition. In addition, I hypothesized that the UV-blue LED would be moderately 

effective at identifying fluorescent compounds of terrestrial origin near substantial tributaries 

(bbe Moldaenke, 2004). The Fluoroprobe was immersed into a pail (volume of water ~ 2.3 L) and 

the flow rate into the pail was adjusted to provide a flushing time of ~ 15 to 20 seconds. The 

Fluoroprobe was programmed to measure every 5 seconds, and data aggregated over 15 second 

intervals prior to merging with the DGPS string.   

Active fluorescence measurements 

Measurements of active fluorescence of phytoplankton were made using a fast-repetition 

rate fluorometer (FRRF; Chelsea Technologies Group, UK). Maximal and minimal fluorescence, 

Fm and F0 respectively, were measured on water from the flow through system (Figure 5.2) 

passed through darkened tygon tubing (3/4” ID) into the dark chamber of a FRR fluorometer 

(Mark I, Chelsea Technologies Group, SN 182055) operated in benchtop mode. The FRRF 

measurement protocol consisted of a gradient of pump flashes that delivered 100 excitation 

flashes within 280 µs, and 20 relaxation flashes within 50 µs. A series of 8 flash sequences were 

internally averaged and repeated every 5 seconds. The dark chamber under normal use has a 

flushing time of 0.2 to 1 second, depending in configuration and profiling speed. The three way 

valve system was used to adjust the flow rate so that complete flushing occurred within ~ 2 

seconds, which is sufficient time for 8 acquisition sequences before complete flushing occurs. 

The ratio Fv/Fm (where Fv =Fm - F0) measures the maximal quantum efficiency of photosystem II 

(PSII) (Kolber and Falkowski 1993). Fv/Fm is considered to reach a theoretical maximum value of 

0.65 when all PSII reaction centers are open (Kolber and Falkowski 1993). Variability in Fv/Fm is 

associated with the physiological condition of the phytoplankton (Olaizola et al. 1996) and has 

been linked to nutrient limitation in some waters (Geider et al. 1993). The functional absorption 

cross section of PSII (σPSII) is a measure of photochemical target size of PSII and is the product of 

absorption by the suite of PSII antennae pigments and the probability that an exciton within the 

antenna will cause a photochemical reaction (Kolber et al. 1998). Considerable taxonomic 
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variability of σPSII is observed; and, in addition, other factors such as photoacclimation and 

nutrient status can also affect this parameter (Greene et al. 1991, Kolber et al. 1998, Suggett et al. 

2004). During daylight hours, dark adapted fluorescence may be affected by the activation of 

non-photochemical pathways, depending on the duration of the dark adaption period. Because 

these surveys were conducted at night, phytoplankton were considered to be already dark 

adapted, and measures of Fv/Fm reported in this study are somewhat unique since they represent 

“true” dark adapted (ie. night-time) measures of photosynthetic efficiency because phytoplankton 

are not containerized for the purposes of dark adaption prior to measurement. Downloaded FRRF 

data were analyzed using the V6 software (run in Matlab; provided by Sam Laney), which 

represents an updated version of the V5 software (Laney 2003). Raw data were quality controlled 

by eliminating any data collected on gains higher than 16, and during times when the DGPS unit 

was not recording. Fv/Fm was calculated on data processed to account for instrument noise (IRF) 

but not for blanks (see below).  

Effect of blanks 

Determination of an appropriate fluorescence blank, i.e. the signal associated with the 

absence of chlorophyll a, is recognized as an important issue in oceanographic research, 

particularly in low chlorophyll waters (Cullen and Davis 2003). Because this study had a 

significant spatial component to it, collecting an equivalent number of sample blanks was not 

possible. I therefore sought to evaluate the effect of blanks on survey data by collecting blanks at 

transect stations (Figure 5.1), which cover a range of depths and presumably the conditions 

encountered during the survey. Samples for blanks were collected from the outflow of the FRRF 

dark chamber into 60 mL dark polycarbonate bottles, and stored in a cooler. Upon return to the 

laboratory, blanks were filtered using a peristaltic pump and a pleated cartridge filter (polysulfone 

membrane, pore size 0.2 µm; Pall Corporation, Ann Arbor MI, USA). Filtered lake water blanks 

were run on the same instrument gain as the survey data was collected on (gains 4 and 16; except 

in the mouth of 16 Mile Creek, where the FRRF was ranged to a gain of 1). No significant 

differences in baseline or maximal fluorescence were found between the cartridge filtration 

procedure described above at pressures below ~ 3 mm Hg, and gravity filtration with a 0.2 µm 

polycarbonate filter (D. Depew, unpubl. data). Fluorescence from the filtered lake water blanks 

averaged between 3.6 and 32.5 % of the measured fluorescence signal, and increased at levels of 

low sample F0 and Fm (Figure 5.3). This dependence was similar to that observed by (Suggett et 

al. 2006) and has been observed in Lake Erie as well (G.M. Silsbe, University of Waterloo, 

Waterloo, ON, pers, comm.). Values of F0 and Fm were corrected using the equation from Figure 

5.3 prior to computation of Fv/Fm.  
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5.3.3 Water chemistry 

 Water samples to characterize the ambient chemical and nutrient conditions at the time of 

the survey were collected and analyzed for total and soluble phosphorus (TP and SRP), nitrate 

(NO3
-), chloride (Cl-), ammonium (NH4

+), phytoplankton chlorophyll a (chl a), particulate carbon, 

nitrogen and phosphorus (Part C,N,P). These samples were collected in 4 L polyethylene carboys 

at the same transect stations where the FRRF blanks were collected (see Figure 5.1). Upon return 

to the laboratory, samples were processed as described in Chapters 3 and 4. 
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Figure 5.3. Blank fluorescence as a percentage of sample fluorescence from the surveys in 2006 
and 2007. One equation was fit to the data, %BlankF = 5.084 + 57.38e-1.13SampleF, n=28, p<0.0001.  
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5.3.4 Geostatistical Analyses 

The fundamentals of geostatistics, with emphasis on the assumptions and methodology 

involved are well explained in several publications (e.g., Isaaks and Srivastava 1989, Cressie 

1991, Webster and Oliver 2001), so only a short summary will be provided here. In this study, I 

employed a spatial correlation function called the “semivariogram” (Cressie 1991) to characterize 

the spatial autocorrelation of the data collected. The semivariogram is estimated from the data, 

taking into account the spatial position of the samples by the following equation; 
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where Z(xi) is the value of the variable Z at location xi, h is a lag distance over which the local 

average is taken and N(h) is the number of point pairs at the lag distance (h). The semivariogram 

is the average of the euclidean distance between pairs of samples (h) plotted against average 

variance at distance h. Once the semivariogram is computed, a function (the theoretical spatial 

covariance function or semivariogram model) is fitted to the empirical semivariogram through an 

automated fitting procedure. In this study, I employed the weighted least squares method of 

fitting the semivariogram model as it typically defines the behaviour of the semivariogram model 

at the origin most clearly, which is essential for prediction (Cressie 1991). I used either spherical 

or exponential semivariograms for all data given by the follwing equations; 
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  These spatial covariance models are defined by three essential parameters: the nugget 

(C0) (indicating the variance not explained by the spatial model), the sill Cs (indicating the 

variance explained by the spatial model) and the range α (distance beyond which spatial 

autocorrelation is no longer significant). After computation of the semivariograms for each of the 

respective variables, the spatial models were used with kriging (either ordinary kriging; OK, or 

kriging with external drift; KED; see Chapter 1 for a discussion of the different kriging variants).  

 Mantel test 

In addition to characterizing the spatial structure of the data collected to produce maps, I 

sought to assess the degree of correspondence between FRRF derived photosynthetic parameters 
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(e.g. Fv/Fm and σPSII) and other data collected during this study (e.g., % algal cover, algal stand 

height, phytoplankton classes as measured by Fluoroprobe, water temperature, conductivity, 

pCO2 and dissolved O2). To accomplish this, a partial Mantel test (Smouse et al. 1986) was 

employed. The partial Mantel test is a nonparametric partial regression approach based on 

dissimilarity matrices of the predictor and response variables rather than the variables themselves. 

The advantage of the partial Mantel test is that it can explicitly account for spatial autocorrelation 

in both predictor and response variables as well as inter-correlations among possible predictor 

variables. While Mantel and partial Mantel tests have been used for causal modelling (Legendre 

and Trousselier 1989), in this study, results from the partial Mantel tests served to test alternative 

hypotheses governing the spatial patterns of Fv/Fm and σPSII. Euclidean distances were computed 

for the geographic distance matrix (Universal Transverse Mercator Zone 17N, NAD 1983) and 

the Manhattan distance was used to construct distance matrices for biological and environmental 

variables (as recommended in Legendre and Legendre 1998). Partial Mantel tests were performed 

using the package ecodist (Goslee and Urban 2007) in the statistical software “R” (R Core 

Development Team 2007). The significance of the partial Mantel tests was assessed using a 

permutation procedure using 10,000 permutations (Jackson and Somers 1989) as outlined in 

Legendre (2000), and the p value was adjusted for the number of tests conducted (e.g., Bonferroni 

adjustment, α/n).  
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5.4 Results 

September 2006 survey 

September 2006 was characterized by relatively warm surface temperatures (18 to 20 °C) 

(Figure 5.4a) with little spatial variability, as noted by the very low sill value and large range 

parameter (nearly 4 km) (Table 5.2). A weak gradient of cooler temperatures toward the shore is 

consistent with more rapid cooling of shallow waters expected to occur seasonally at this time. 

Surface pCO2 varied little across the survey area, but was generally above atmospheric saturation 

(atmospheric ~ 394 to 407 ppm) for much of the area surveyed (Table 5.2; Figure 5.4b). Surface 

pCO2 appeared to increase toward the Southeast WWTP outfall, and was also higher than at the 

outflow of Wedgewood and Morrison Creeks (Figure 5.4b), and within the mouth of 16 Mile 

Creek (Figure 5.4b).   

Despite the apparent low spatial variability in surface temperatures, considerable 

variability was observed for concentrations of TP and SRP. TP and SRP were generally elevated 

across all four transects (OA1, OA2, OA3, OA4) but the highest TP (26.02 ± 2.12 µg L-1; mean 

and stdev) and SRP (9.70 ± 2.50 µg L-1) concentrations were measured at transect OA4 which is 

near two WWTP outfalls and Joshua Creek (Figure 5.1). Concentrations of Cl- and NO3
- 

displayed considerably less variability than P, but NO3
- concentrations still spanned a range of 

nearly 150 µg L-1 along this relatively small segment of shoreline. Although nutrient 

concentrations were high (Table 5.1) chlorophyll a was not, averaging 0.43 µg L-1 (Table 5.1). 

Particulate nutrient ratios (e.g. C:P and N:P) indicated that despite this relatively low biomass (chl 

a), phytoplankton communities did not appear to be strongly P limited based on the thresholds 

defined by Guildford and Hecky (2000) (Table 5.1).  

Spatial variation was present in both Fv/Fm and σPSII (Figure 5.4c and d). The 

semivariogram parameters for both Fv/Fm and σPSII indicated the presence of a large nugget 

variance (Table 5.2). I interpret this high proportion of unexplained variance as a result of the low 

chlorophyll a concentration that was present at this time (Table 5.1). As a result of the high 

nugget variance, there was little spatial variation in Fv/Fm and σPSII beyond the mouth of 16 Mile 

Creek (Figure 5.4c and d). The lowest values of both Fv/Fm and σPSII were measured in the mouth 

of 16 Mile Creek (Fv/Fm ~ 0.31, σPSII ~ 121 x 10-20 m-2 photon-1; Figure 5.4c and d), but quickly 

increased beyond the harbor to average values for Fv/Fm of ~0.62 and σPSII of ~ 365 x 10-20 m-2 

photon-1. A small decline in Fv/Fm to values near 0.55 was observed toward transects OA3 and 

OA4, in the vicinity of the WWTP outfall and nearby tributaries, which may have been due to a 

higher level of pheophytin:chlorophyll a (Figure 5.6). σPSII appeared to increase in the same area, 
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but the relatively high nugget variance (Table 5.2) obscures much of the spatial variation in σPSII 

(Figure 5.4d).  

The acoustic survey for Cladophora was completed during the preceding daylight hours, 

and covered a more restricted area (only from 1 m depth contour to 10 m depth contour) than the 

nighttime survey (out to 30 m contour). Attached biomass of Cladophora was below the detection 

limit for the hydroacoustics at this time because much of the algal material that was present in 

earlier surveys (e.g., Chapter 4) had detached (personal observation). Accordingly, maps showing 

the absence of any benthic algae have not been created.  

 

June 2007 survey 

 In contrast to conditions the previous September, heavy cover of Cladophora was evident 

along much of the shoreline in June, and covered much of the lakebed between 1.5 m depth and 7 

m depth, before falling below the detection limit of the acoustic system in deeper waters. In some 

areas, Cladophora sp. mats exceeded 30 cm in thickness (Figure 5.5 a and b). Surface 

temperatures measured during the June survey present a far more complex pattern than that 

observed in September, with cooler temperatures (11 to 16 °C; Figure 5.5c) and a far greater 

spatial variability (much higher sill parameter, and a much lower range; Table 5.3). The higher 

spatial variance appears to be related to two factors; 1) warm water entering the lake from the 

mouth of 16 Mile Creek and possibly other tributaries along the shore, and 2) cooler water 

immediately adjacent to shore (Figure 5.5c). This pattern of surface temperature is highly 

suggestive of warmer water trapped near the surface overlying cooler water that is present after 

an upwelling event. Conductivity generally showed the same response as temperature (i.e. high 

sill indicating high spatial variance, and a range parameter similar to that observed for 

temperature; Table 5.3 and Figure 5.5d), and there were pockets of low conductivity associated 

with areas of cooler water (Figure 5.5d). The pattern of UV fluorescence from the Floroprobe 

(Figure 5.5c) also suggests some influence of tributaries, but the spatial patterns are not coherent 

with those of temperature and conductivity (Figure 5.5c).  

Surface pCO2 was far more variable that the prior September, although the range of 

variation between the two surveys was comparable (Table 5.3). In contrast to pCO2 during the 

September 2006 survey, here, pCO2 was widely undersaturated, particularly in shallow areas, 

although it once again peaked in the mouth of 16 Mile Creek as in September (Figure 5.5f). 

Dissolved O2 displayed an opposite pattern to pCO2, remaining above saturation for much of the 

survey area (except in the mouth of 16 Mile Creek), but was particularly elevated along shore, at 

depths less than 3 m (Figure 5.5h). Dissolved O2 also varied over much shorter distances 
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compared to pCO2 (see Table 5.3), and interestingly displayed no correspondence with chl a (a 

proxy of phytoplankton biomass).  

Nutrient conditions were significantly different during this survey when compared to the 

previous September survey (Table 5.1). Concentrations of TP and SRP were significantly lower 

and did not show an increasing trend toward the northeast as in September, although the survey 

area was smaller than that in 2006. Despite lower P concentrations that in September, 

phytoplankton chlorophyll a was on average 4 fold higher during the June survey, and 

stoichiometric ratios (C:P and N:P) indicated a state of moderate P deficiency in the 

phytoplankton. NO3
- concentrations, although higher than the previous September, varied by a 

nearly identical amount (Table 5.1; CV ~ 15%).  

 Fv/Fm and σPSII displayed less overall variability than in September (as estimated by the 

sill; Table 5.3).  Part of the reduced variability is due to a higher chlorophyll a concentration 

which reduced the nugget variance to 0 for Fv/Fm and to 525 for σPSII (Table 5.3), but also the 

range of Fv/Fm and σPSII was more constrained than that observed in September (Figure 5.5h and 

i). Average Fv/Fm throughout much of the survey area was ~ 0.43. Unlike the previous September, 

Fv/Fm in the mouth of 16 Mile Creek was higher (~ 0.58) than values measured in the lake. 

Several shore parallel streaks of low Fv/Fm were observed, some in the vicinity of tributaries, but 

one area near the 10 m contour at the northeast edge of the survey grid. σPSII was generally higher 

than values measured in September (mean 413 x 10-20 m-2 photon-1). σPSII in 16 Mile Creek did not 

fall below 300 x 10-20 m-2 photon-1, and generally appeared to be higher toward the outer edge of 

the survey area (Figure 5.5i).  

 Spectral fluorescence signatures from the Floroprobe indicated the presence of a 

alongshore plume of increased chlorophyll a that originated at the north edge of the survey area 

and extended down the coastline at depths ranging from shore to the 5 m contour (Figure 5.5j). 

Based on the taxonomic differentiation assessed by the Floroprobe, the algal taxa within the high 

chlorophyll plume were mainly chlorophytes (Figure 5.5k) diatoms (Figure 5.5l) and cyanophytes 

(Figure 5.5n). Algal taxa that were not abundant within the plume consisted primarily of 

cryptophytes (Figure 5.5m). 

 

Factors affecting spatial variability of Fv/Fm and σPSII 

The partial Mantel tests found significant associations between Fv/Fm and σPSII with 

surface temperature in 2006 (Table 5.4). For Fv/Fm, this indicated that Fv/Fm declined toward 

shore, where surface temperature was cooler. For σPSII, this indicated a decline in σPSII areas of 

cooler water (e.g. near the shore). In 2007, partial Mantel tests again found a significant 
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association between Fv/Fm, σPSII and temperature. This indicates that water masses (in this case, 

shore parallel parcels) were characterized by similar values of Fv/Fm and σPSII. A significant 

association between Fv/Fm, σPSII and depth also confirms the similar values were oriented in a 

shore parallel pattern. A significant association was found between Fv/Fm and pCO2, but the same 

pattern did not exist for σPSII. Both Fv/Fm and σPSII were also significantly associated with UV 

fluorescence (Table 5.5). No significant associations were observed between Fv/Fm and σPSII with 

percent algal cover, algal canopy height, phytoplankton classes (as measured by the Fluoroprobe) 

conductivity or dissolved O2 (Table 5.5). 
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Table 5.1. Summary of environmental characteristics at the study site during the night surveys. 
Bolded variables indicate significant differences between the two surveys (two-way ANOVA; 
depth + year factors, p <0.05). Note that significant differences were not detected between 2, 5 or 
10 m station depths for any variables, thus significant differences refer to differences between 
September 2006 and June 2007 only. Note samples size “n” is 12 for both 2006 and 2007. 

Year Variable min mean max CV 

2006 Chl a (µg L
-1

) 0.29 0.43 0.67 30 % 
 TP (µg L

-1
) 11.80 17.71 27.93 32 % 

 SRP (µg L
-1

) 2.95 7.55 12.24 29 % 
 NO3 (µg L

-1
) 187.30 237.93 323.50 17 % 

 Cl- (mg L-1) 20.28 21.35 22.90 10 % 
 Part_C (µg L

-1
) 181 231 304 19 % 

 Part_N (µg L
-1

) 26 35 54 26 % 
 Part_P (µg L

-1
) 2.95 4.45 7.68 29 % 

2007 Chl a (µg L
-1

) 0.37 1.32 1.99 35 % 
 TP (µg L

-1
) 7.72 11.66 14.74 19 % 

 SRP (µg L
-1

) 0.99 1.64 2.47 32 % 
 NO3 (µg L

-1
) 234.21 307.36 397.09 15 % 

 Cl (mg L-1) ND ND ND  
 Part_C (µg L

-1
) 358 454 557 13 % 

 Part_N (µg L
-1

) 57 72 80 9 % 
 Part_P (µg L

-1
) 4.69 5.96 7.94 16 % 

*Note ND implies No data available
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Figure 5.4. Kriged surfaces of a) Water Temperature, b) pCO2, c) Fv/Fm and d) σPSII during the September 2006 survey. 
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Figure 5.5. Kriged surfaces of a) % algal cover, b) algal canopy height , c)surface temperature, and d) Conductivity during the June 2007 

survey. 
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Figure 5.5.cont Kriged surfaces of e) UV LED fluorescence (from Fluoroprobe), f) pCO2 , g) dissolved O2 saturation , h) Fv/Fm during the 
June 2007 survey. 
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Figure 5.5. cont.. Kriged surfaces of i) σPSII, j) floroprobe estimated total chlorophyll a, k) floroprobe estimated chlorophyte algae, l) 
floroprobe estimated diatom algae during the June 2007 survey. Note that panels j,k and l represent pigment responses suggestive of the algal 
taxa. 
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Figure 5.5 cont. Kriged surfaces of m) floroprobe estimated cryptophyte algae, n) floroprobe estimated cyanophyte algae during the June 
2007 survey. Note that panels m and n represent pigment responses suggestive of algal taxa. 
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Figure 5.6. Bar plots of phaeophytin :chlorophyll a ratio for the transect stations in 2006 (a) and 
2007 (b). Note: transects names correspond to those in Figure 4.1. and proceed from southwest to 
northeast. Solid line denotes a ratio of 30% above which corrections to Fv/Fm are suggested. 
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Table 5.2 Semivariogram model parameters and cross validation statistics for variables measured 
during the September 2006 survey. Covariate identifies the trend variable if KED was used, 
otherwise implies OK. C0 is the nugget, C is the sill, α is the range (m), Sp is the spatial 
dependency, and model defines the semivariogram function. 

Variable Covariate C0 C α Sp Model 

Temperature  0.003 0.06 3820 94% Exp 
pCO2 Easting + 

Northing 
0 3362 1043 100% Exp 

Fv/Fm  2.5 x 10-3 3.2 x 10-3 239 56 % Exp 
σPSII  3006 1235 109 29 % Exp 
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Table 5.3. Semivariogram model parameters and cross validation statistics for variables 
measured during the June 2007 survey. Covariate identifies the trend variable if KED was used, 
otherwise implies OK. C0 is the nugget, C is the sill, α is the range (m), Sp is the spatial 
dependency, ME is the mean error, MSPE is the mean prediction error, Z is the normalized 
residual error, and model defines the semivariogram function. 

Variable Covariate C0 C α Sp Model 

Temperature  0.016 0.901 219 99 % Exp 
pCO2  0 19948 1158 94 % Exp 
Conductivity  0 2233.50 343 100 % Exp 
DO  0 55.06 119 100% Exp 
Fv/Fm  0 0.001 227 100% Exp 
σPSII  525.46 739.24 901 58 % Sph 
%Cover Depth 210.36 880.56 566 81 % Sph 
Height Cover 0.0006 0.0012 373 67 % Sph 
Green algae  0.003 0.030 143 97 % Sph 
Blue Green  0.008 0.123 254 98 % Sph 
Diatoms  0.009 0.130 185 98 % Sph 
Cryptophyte  0.002 0.142 187 99 % Sph 
Total Chl a  0 0.103 278 100 % Sph 
UV   0.25 2.89 337 92 % Exp 
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Table 5.4.  Partial Mantel test results for variable fluorescence measurements and other 
environmental variables. rsp|env denotes pure partial Mantel correlation (accounting for space and 
inter-correlations among variables). p denotes significance at the α= 0.01 level, ns denotes not 
significant. 

FvFm rsp|env p σPSII rsp|env p 

Depth ns ns Depth ns ns 
pCO2 ns ns pCO2 ns ns 
Temperature 0.107 0.0001 Temperature 0.080 0.0001 
% cover ns ns % cover ns ns 
height ns ns height ns ns 
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Table 5.5.  Partial Mantel test results for variable fluorescence measurements and other 
environmental variables from the June 2007 survey. rsp|env denotes pure partial Mantel correlation 
(accounting for space and inter-correlations among variables). p denotes significance at the 
α=0.0042 level, ns denotes not significant. 

FvFm rsp|env p σPSII rsp|env p 

Depth 0.12 0.0001 Depth 0.20 0.0001 
Temperature 0.07 0.0001 Temperature 0.07 0.0001 
Conductivity ns ns Conductivity ns ns 
DO ns ns DO ns ns 
pCO2 0.15 0.0001 pCO2 ns ns 
UV 0.11 0.0001 UV 0.094 0.0001 
Greens ns ns Greens ns ns 
BlueGreens ns ns  BlueGreens ns ns 
Diatoms ns ns Diatoms ns ns 
Cryptophytes ns ns Cryptophytes ns ns 
% Cover ns ns % Cover ns ns 
Height ns ns height ns ns 
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Figure 5.7. Time series plots of a) Fv/Fm and b) σPSII for 2006 survey, and c) Fv/Fm and d) σPSII for 
the 2007 survey. Solid bar denotes sampling of 16 Mile Creek. Note: the larger scatter evident in 
2006 data (left panels) is presumably due to the lower biomass present at the time of the survey 
(see Table 5.1). Note upward drift in Fv/Fm in panel c) occurred 5 to 10 min prior to sunrise.
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5.5 Discussion 

 Apparent scales of spatial pattern observed here varied among variables and sampling 

periods, from 100 to >1000 meters, while both physical and biological controls on spatial patterns 

appeared to be operating. This is the first resolution of such spatial pattern in the coastal zone of 

any large lake, but interpretations depend on a number of factors including the non-instantaneous 

nature of the surveys, as this study attempts to provide a spatial description of a moving water 

body. Taylor’s Frozen Turbulence Approximation (Taylor 1938) essentially links spatial data to 

time series data, and is frequently used to deduce spatial information from time series 

measurements of single probes (Tennekes and Lumley 1999). It is based upon the hypothesis that 

a time series from a stationary probe can be regarded as a spatial series due to the advection of a 

“frozen” pattern past the probe with a mean speed UT (m s-1). In this case, the probe(s) are not 

stationary, but rather moving through a turbulent field (the water mass), and this presents a case 

where the opposite condition applies; that is, if the measurement location (i.e. the probe attached 

to the boat) is moving, then the speed of a probe [UP (m s-1)] traversing the turbulent field (the 

lake surface) must be large compared to the velocity of the turbulent field (e.g the lake) [UT (m s-

1)] for the data collected to be considered a stationary “snapshot” of the spatial field. This is made 

possible by the substitution of t=x/U where t is time (s) and x is position (m) (Tennekes and 

Lumley 1999; p253). Given that the current velocities in the coastal regions of Lake Ontario are 

generally in the range of 0.05 to 0.25 m s-1 (Simons and Schertzer 1987) and the speed of the boat 

during the surveys was between 1.8 and 2.3 m s-1, this approximates the condition of UP>>UT.  

5.5.1 Physical structure and differences in hydrodynamic regimes 

The range and distribution of surface temperatures observed between the two surveys 

indicate the presence of two very different hydrodynamic regimes. In 2006, the near shore was 

characterized by widespread, warm (e.g. > 18 °C) surface temperatures which displayed little 

spatial variation. A Fluoroprobe cast at a control station located at the 35 m contour earlier in the 

day indicted that the entire water column was well mixed to a depth of 35 m, with a change in 

temperature across the entire water column of 1.1 °C. Because the seasonal thermocline in Lake 

Ontario is generally between the 15 to 20 m depth (Simons and Schertzer 1987), the presence of 

near surface temperatures at the lake bottom is strongly suggestive of a period of downwelling. In 

contrast, the surface temperatures in 2007 suggest this survey took place some time after a recent 

upwelling event. Upwelling and downwelling are common phenomena along the northern and 

northwestern shores of Lake Ontario (Rao and Murthy 2001, Rao and Schwab 2007; Wilson et al. 

2006). Satellite imagery (e.g., Mortimer 1988) indicates that periods of strong offshore winds 
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induce upwelling of deep coastal water in all the Laurentian Great Lakes and that upwelling 

usually persists between 2 to 6 days afterwards. In contrast, downwelling during the summer 

months tends to occur with strong on-shore winds, and can last longer than upwelling due to 

strong westward flowing shore parallel currents (Rao et al. 2003). Records from the Lake Ontario 

meteorological buoy (C45139; 43° 15’ 36” N, 79° 32’ 24”W) indicate that moderate (20 to 35 km 

h-1) winds from the east to southeast direction dominated in the days leading up to the September 

14 2006 survey (September 11 to September 13) and winds 15 to 35 km h-1 from a west to 

northwest direction dominated prior to the June 25 2007 survey (June 19 to June 23), and strongly 

suggest that much of the differences in spatial structure that I observed in the near shore zone 

during this study may have in fact been driven by these two physical processes.  

5.5.2 Factors affecting Fv/Fm and σPSII 

Before interpreting the patterns of Fv/Fm and σPSII observed in this study, it is important to 

consider potential factors which may influence the quantities of the measured parameters. 

Variability in Fv/Fm and σPSII in coastal waters has typically been attributed to variations in the 

degree of nutrient limitation (e.g., Kolber et al. 1988, Kolber et al. 1990, Greene et al. 1994), 

differences in taxonomy (Moore et al. 2003, Moore et al. 2005) and photo adaptive status (Moore 

et al. 2006). Multiple lines of laboratory work (e.g., Greene et al. 1991, Berges et al. 1996, 

Lippemeier et al. 1999, Beardall et al. 2001) suggest that nutrient limitation (Fe, N, Si and P) 

induces a decline in Fv/Fm, as the relative fluorescence per unit Chl a increases in response to 

nutrient stress (Cleveland and Perry 1987). Upon the addition of the limiting nutrient, recovery of 

Fv/Fm to near maximal values within a matter of hours is commonly observed (Greene et al. 1991, 

Sylvan et al. 2007), thus low values of Fv/Fm co-occurring with high values of σPSII in the field are 

not inconsistent with the hypothesized relationship to nutrient limitation. However, some 

laboratory studies (e.g., Parkhill et al. 2001, Kruskopf and Flynn 2006) suggest that Fv/Fm is not a 

valid indicator of nutrient stress, particularly under balanced growth conditions (Parkhill et al. 

2001).  

In addition to nutrient stress, other factors may also produce a decline in Fv/Fm. These 

include photoinhibition, photoprotection, diel variability, changes in community composition, 

dissolved fluorescence, and fluorescence from chlorophyll a degradation products (e.g. Geider et 

al. 1993, Olaizola et al. 1996, Fuchs et al. 2002, Moore et al. 2005). As the surveys were 

conducted at night, photoinhibtion and photoprotective mechanisms are not likely to exert a 

significant effect on the measured values of Fv/Fm since the surveys were initiated at least 2 h 

after sunset, and photo protective processes (e.g. xanthophyll cycle) are likely to be reversed 
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within 30 minutes of dark adaptation (Kolber et al. 1990). Likewise, diel effects should be 

minimized, since the surveys occurred during the natural dark period for phytoplankton.  

Changes in community composition can alter the measured values of Fv/Fm and σPSII 

(Suggett et al. 2009). A recent review (e.g., Suggett et al. 2009) found that among laboratory and 

field data, a unique taxonomic signature is often superimposed on physiological variability, which 

suggests that measures of Fv/Fm and σPSII on natural communities cannot be interpreted on the 

basis of nutrient stress alone. Under nutrient replete conditions, Fv/Fm and σPSII are known to vary 

considerably among algal taxa (Suggett et al. 2009), with high values (~ 0.50 to 0.70) observed 

for diatoms and chlorophytes (Koblizek et al. 2001), and lower values (0.1 to 0.4) observed 

mainly for cyanobacteria (Campbell et al. 1998). The low values of Fv/Fm and σPSII associated 

with cyanobacteria may be due to the presence of phycobilisomes as the primary light harvesting 

antennae for PSII (Suggett et al. 2009). For cyanobacteria that contain appreciable amounts of 

phycocyanin, the poor overlap between the FRRF excitation light and the absorbance by 

phycobilisomes can lead to very low values of σPSII (Raateoja et al. 2004). Low values of Fv/Fm 

can also result from fluorescence emission from phycocyanin, or chlorophyll a fluorescence 

originating from PSI in cyanobacteria (Campbell et al. 1998).  

Other non-physiological interferences may also influence the computation of Fv/Fm but 

these do generally not affect the computation of σPSII (Fuchs et al. 2002). The coastal regions of 

the Great Lakes receive allochthonous dissolved organic matter (DOM) from the surrounding 

catchments (Hiriart-Baer et al. 2008). This terrestrial DOM is often highly aromatic (fulvic or 

humic acids) and has a strong absorbance in the UV and blue wavebands (Kirk 1994), and may 

thus be stimulated to fluoresce with the FRRF excitation light (blue). The comparisons of sample 

blank fluorescence against UV fluorescence from the Fluoroprobe (Figure 5.8) suggest that the 

filtered lake water blanks are relatively constant and low, across the range of UV fluorescence 

encountered during this study. Similar insensitivity of sample blanks has been noted by (Bibby et 

al. 2008) who found that the FIRe instrumentation (similar to FRRF) was insensitive to 

background fluorescence when compared to fluorescence measured by a Turner Designs 10-AU. 

However, even with a relatively stable and constant blank the contribution of the sample blank to 

measured fluorescence increases as the magnitude of fluorescence declines (Figure 5.3). I was 

able to characterize this response sufficiently and correct measures of F0 and Fm prior to 

computing Fv/Fm. Since both F0 and Fm are reduced by the same amount, this should have no 

effect on the value of σPSII (Fuchs et al. 2002).  

While dissolved fluorescence appears to contribute little to variability in Fv/Fm here, the 

presence of chlorophyll a degradation products (e.g. pheopigments) can also reduce the value of 
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Fv/Fm when the ratio of pheopigments to total chlorophyll a exceeds 30% (Fuchs et al. 2002). 

During this study, phaeophytin:total chlorophyll a ratios were generally below 30 %, similar to 

values reported for this region in the 1970s (Glooschenko et al. 1972). The prevalence of 

pheophytin:chlorophyll a ratios below the 30% value suggests that for most of the areas sampled, 

correction of Fv/Fm is not likely to be necessary. In the few areas where pheophytin:chlorophyll a 

ratios were high (Figure 5.8) in 2006, applying the correction factor in Fuchs et al. (2002) mostly 

raises the value of Fv/Fm to levels seen in the surrounding waters (e.g. at transects OA3 and OA4). 

In contrast, the correction of the low Fv/Fm values observed at approximately the 5 m contour 

during the 2007 survey only increased from 0.33 to 0.36, which does not account for the low 

values here. The proximate cause of high pheophytin:total chlorophyll a ratios is not immediately 

obvious, but there are a number of possibilities that will be discussed in the following sections.  

Other factors that may affect Fv/Fm on a more local scale in the study area include the 

presence of waste water treatment plant (WWTP) effluent which has been demonstrated to be 

toxic to natural phytoplankton assemblages in Lake Ontario (Munawar et al. 1993), contaminants 

from urban watersheds such as metals (West et al. 2003), herbicides (Devilla et al. 2005) and 

PAH’s  (Marwood et al. 1999). In most cases, these substances act to reduce Fv/Fm, even though 

nutrients supplied form WWTP effluent may increase Fv/Fm. These effects should be strongest in 

proximity to the source (e.g., tributaries, storm sewers, WWTP outfalls), yet characteristic 

patterns pointing to such effects were not apparent during either survey.  

5.5.3 Spatial patterns during downwelling 

For downwelling events, the structure and flow of water within the coastal boundary 

layer in Lake Ontario is strongly westward due not only to the nature of the on shore winds, but 

also the propagation of internal Kelvin waves in a counter-clockwise direction (Rao and Murthy 

2001). For relatively open areas of shoreline (such as the one sampled in this study) downwelling 

may therefore thoroughly mix the waters in the coastal boundary layer, smoothing the spatial 

variability over large areas. The results for the most part tend to confirm this, as September 

surface temperatures varied little and maximal variability was encountered at scales close to 4 

km. Although the ranges of variation for pCO2, Fv/Fm and σPSII are clearly less than that for 

surface temperature (Table 5.2), this is mostly due to changes in these parameters across the 

gradient established by the inflow of 16 Mile Creek into the lake. For example, the largest 

magnitude of changes in pCO2, Fv/Fm and σPSII on a short spatial scale were clearly seen at the 

transition from 16 Mile Creek into the lake. Once in the lake, variability of Fv/Fm and σPSII 

dropped considerably, with only a gentle decline toward transects OA3 and OA4 at the north 

boundary of the survey area. Variability in pCO2 within the lake appeared to be similar to that 
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observed across the transition from 16 Mile Creek. However, the presence of potential sources of 

CO2 enriched water within the study area (municipal waste water treatment plant outfalls, storm 

sewers and tributaries) may influence the patterns of pCO2 on a finer scale than temperature, 

Furthermore, the presence of the large piers at the northeast end of the study site may serve to 

disrupt shore parallel flow, creating a quiescent area where CO2 rich water can accumulate. 

 Nutrient conditions during the period of downwelling were characterized by unusually 

high TP and SRP concentrations. Data collected from a reference station at the 35 m contour (~ 3 

km offshore) also revealed comparable TP (20.6 µg L-1) and SRP (7.5 µg L-1) concentrations. 

Offshore total P concentrations in the western basin of Lake Ontario at this time of year are 

usually close to 15 µg L-1 (Gouvea et al. 2006, Bocaniov 2007) and SRP concentrations are 

generally close to 2 µg L-1 (Pemberton et al. 2007). While the exact cause of such high TP and 

SRP concentrations is difficult to resolve, the widespread nature of high P concentrations 

combined with low tributary discharge and precipitation (Sept 11 – 15 2006, 19.3 mm, Climate 

ID# 6155PD4) suggests that nutrient loading from the catchment is not likely the cause. Effluent 

from the numerous WWTP outfalls that discharge within 2 to 3 km of the lake shore is another 

possibility (Rao et al. 2003), but regular sampling at Oakville over several years has not detected 

such effects on a consistent basis (Chapter 4; Malkin 2007), and high concentrations (when 

present) are generally confined to distances within 0.5 km of the outfall (Pickering 2007 and 2008 

data, S. Malkin, unpubl. data). High concentrations of TP and SRP are often also found along the 

southern shore of Lake Ontario where the Niagara River discharges into the lake (e.g., Malkin et 

al. submitted), but advection of this nutrient rich water toward the western shore from the 

southern shore seems unlikely. Re-mineralized P from decaying Cladophora tissue (e.g., Paalme 

et al. 2002) and fecal matter from dreissenids are a more likely explanation. Further support for 

this hypothesis is provded by the data from the Pickering surveys in 2007, where September and 

October TP and SRP were comparably high, after the majority of Cladophora had sloughed from 

the lake bottom.   

The variability of Fv/Fm and σPSII was high in September primarily because of a larger 

range in measured values, but also because of a noisy data set, due to low chlorophyll a 

concentrations at this time (Table 5.1). This is clearly illustrated by the high nugget variance for 

both Fv/Fm and σPSII during the September survey (Table 5.2). Spatial dependence for Fv/Fm and 

σPSII was generally low (59% for Fv/Fm and 29 % for σPSII) and combined with a high nugget 

variance yielded a scenario with very little spatial variability (Figure 5.4c and d) which is 

consistent with strong controls mediated by downwelling regimes. The moderate to high values of 

Fv/Fm (0.50 to 0.80, mean ~ 0.62) observed in during the September survey are consistent with a 
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high maximal photosynthetic efficiency under conditions of adequate nutrients as reflected by 

indicators of phytoplankton nutrient status (e.g., C:P and N:P; Guildford and Hecky 2000) and 

measures of nutrient concentrations. A recent study by Pemberton et al. (2007) in the offshore 

waters of Lake Ontario (including the western basin) reported Fv/Fm in the range of 0.45 to 0.50 

during late August to early September in 2004 and attributed the near optimal condition of the 

phytoplankton communities to a mild degree of P stress (Pemberton et al. 2007). Similarly, a 

study in Lake Erie suggested that by September, the deepening mixed layer and lower light levels 

mark the beginning of a period where phytoplankton are no longer severely P stressed (Rattan 

2009).  

Strong taxonomic variation from 16 Mile Creek into the lake may indeed exist, but I lack 

the data to confirm this. The generally widespread and relatively high values of Fv/Fm coupled 

with moderate values of σPSII suggest that strong taxonomic variation at this time is not likely. 

While I do not have spatial data on taxonomic distribution, vertical Floroprobe casts at the near 

shore sites and the offshore reference site revealed chlorophyll a concentrations that were 

uniformly low, and estimated the community composition to be dominated by cryptophytes. This 

is not inconsistent with data from Pemberton et al. (2007) for offshore Lake Ontario, where 

cryptophytes were abundant, Fv/Fm was moderately high, and σPSII was comparable. 

5.5.4  Spatial patterns during upwelling 

During periods of upwelling, along shore flow in the coastal boundary layer is much 

weaker and generally toward the east. These weak flows may also reverse in direction soon after 

an upwelling event (Rao and Murthy 2001). The advection of cooler water from the metalimnion 

or hypolimnion into the near shore, coupled with weak along shore flow, can therefore allow for a 

large increase in spatial variability in water masses in the near shore. Spatial variation may be 

further exacerbated by input of warmer tributary water, as this warmer water mass will become 

trapped near the surface and remain buoyant (Masse and Murthy 1992). Water Survey of Canada 

discharge records for 16 Mile Creek indicate that flows were above base flow conditions of 0.3 

m3 s-1 for the period 19 June to 30 June 2007 (range 1.3 to 0.55 m3 sec-1) so surface plumes 

originating from local tributaries may have been responsible for the part of the significant 

patchiness observed during this survey. Mixing of these surface trapped plumes is usually 

enhanced as the plume migrates toward the offshore, becoming thinner and closer in temperature 

to that of the underlying water (Fong and Geyer 2001), however, these results suggest that these 

surface trapped plumes were not migrating offshore, but rather flowing toward the west in an 

alongshore direction, consistent with a possible flow reversal in the post-upwelling period (Rao 

and Murthy 2001). The much shorter range of variability in surface temperatures (219 m), far 
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higher spatial variance, and overall cooler temperatures compared to the conditions during the 

September downwelling strongly support this hypothesis.  

Nutrient conditions during the upwelling period were moderate, with TP and SRP more 

comparable to summer conditions commonly observed along this section of shore line (e.g. 

Malkin et al. 2008, Chapter 3, Chapter 4). Historically, upwelling often injected nutrient rich 

waters into the near shore of Lake Ontario (Lean et al. 1990), but no evidence of this is apparent 

from these data, which is consistent with the results of Malkin (2007) and supports the evidence 

of continual declines in offshore nutrients (Malkin et al. submitted). Chlorophyll a concentrations 

were higher than the prior September, and interestingly, the water sample values displayed a 

similar variability in concentration despite the obvious changes in spatial variability of the lake 

surface. Higher chlorophyll during the June survey may have been partly facilitated by the thick 

overstory of benthic algae that could reduce grazing efficiency of dreissenids.  

With the increased chlorophyll a concentrations, there was far less noise in the measured 

fluorescence, and Fv/Fm and σPSII were characterized by a much lower nugget variance and sill 

(Table 5.3). Spatial dependence of Fv/Fm and σPSII was nearly double that observed during the 

lower chlorophyll a, downwelling regime, and resulted in a highly structured pattern of variation, 

as shown in Figure 5.5h and i. The highly structured patterns of Fv/Fm and σPSII displayed 

significant associations with other variables that indicated a strong along shore variation. For 

example, partial Mantel tests indicated significant associations for Fv/Fm and σPSII with depth, 

surface temperature and UV fluorescence that displayed patterns consistent with dominant along 

shore flow, and indicates that spatial organization was oriented in this manner. Despite these 

significant associations, the patterns of variability in Fv/Fm and σPSII still suggest the interplay of 

several factors. The values of Fv/Fm and sigma measured in the June survey were on average 

lower (mean ~ 0.43) and more consistent with values typically observed in offshore waters of 

Lake Ontario (e.g. Pemberton, et al 2007). Coupled with moderate nutrient availability, higher 

stochiometric ratios (e.g. N:P, C:P) and a significant negative correlation between Fv/Fm and σPSII, 

these are not inconsistent with a greater degree of nutrient limitation.  

Low Fv/Fm occurred in elongated patches along the shore near the 5 m contour. I also 

observed high pheophytin:chlorophyll a ratios in at least one of these areas (e.g. transect OA5). 

The proximity to 16 Mile Creek strongly suggests that the low Fv/Fm was a characteristic of the 

plume emanating from 16 Mile Creek, yet Fv/Fm within the harbor was high (~ 0.58). Explaining 

the higher pheophytin:chlorophyll a ratio here is difficult without additional data, but might 

indicate enhanced grazing by zooplankton (Carpenter et al. 1986). Zooplankton are known to 

migrate into surface waters to feed at night (McNaught and Hasler 1966), although many pelagic 
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species may also avoid the near shore areas (c.f. Wetzel 2001). Pelagic species however, can be 

advected into near shore areas by the tilting of the thermocline during an upwelling event 

(Megard et al. 1997). In Lake Ontario, the displacement of the surface layer by upwelling changes 

the composition of near shore zooplankton temporarily, with copepods becoming more abundant 

(Haffner et al. 1984). Coupled with the physical changes during upwelling (e.g., trapping of 

tributary plumes near surface) this can result in significant spatial variability in zooplankton 

biomass (Pinel-Alloul and Ghadouani 2007). In marine systems, tributary plumes create frontal 

boundaries where river and ocean water meet. These areas are frequently populated by high 

zooplankton abundances, presumably for feeding (Peterson and Peterson 2008) or in response to 

density gradients (Woodson et al. 2005). Whether such a phenomenon occurs in Lake Ontario is 

not known, but does at least provide a plausible hypothesis why Fv/Fm appears to be low in these 

elongated patches relative to Fv/Fm closer to shore or in deeper waters. Applying the correction 

factor suggested by Fuchs et al. (2002) however, does not adequately compensate (8 % increase 

from 0.33 to 0.36) suggesting other factors may be involved.   

Although the partial Mantel test failed to find a significant relationship with taxonomic 

classes as estimated by the fluoroprobe, the spectral florescence signatures from the Fluoroprobe 

clearly indicated the presence of an alongshore high chlorophyll a plume, occupied by a more 

diverse assemblage than observed during the previous September. In some parts, Fv/Fm appeared 

to be low where cyanophyte biomass (as chlorophyll a equivalents) was high, but the patterns 

were largely inconsistent. The putative cause for the lack of a significant result from the partial 

Mantel test with Fv/Fm and σPSII and the Fluoroprobe data is not known, but may be related to the 

meandering nature of the chlorophyll plume. As the kriged surfaces show (Figure 5.5 j to n), 

adjacent transects were often characterized by very different spectral and active fluorescence. 

This would not be inconsistent with a meandering plume along the shore, drifting close to shore 

over time. Because I did not use a pre-set navigation system for transects, occasional overlapping 

at a later time lead to awkward, streaked patterns suggesting major changes to community 

composition, water chemistry and active fluorescence variables, yet these are still predominantly 

consistent with a dominant along shore flow pattern.  
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Figure 5.8. Relationship between FRRF fluorescence of 0.2 um filtered lake water (blanks) vs 
UV (370 nm) excited fluorescence as measured by the Fluoroprobe for samples collected in 2007. 
Data plotted are the mean (error bars; standard deviation) of 50 replicate F0 and Fm measurements 
for sample blanks. Neither relationship was significant (F0 = 0.001*UV + 0.186, r2=0.038, 
F=0.319, p=0.59 and Fm=0.002*UV + 0.202, r2=0.18, F=1.81, p=0.21). 

 

Figure 5.9. Relationship between Fv/Fm and % pheophytin. Note the higher sensitivity in 
September when phytoplankton biomass (measured as chlorophyll a) is lower.
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5.5.5 Potential for benthic-pelagic interactions in near shore Lake Ontario 

Although it appears that hydrodynamics and tributary influence play key roles in 

structuring the patterns of spatial variability of phytoplankton communities in the near shore 

environment, in this study, the extensive crops of benthic algae (e.g., Cladophora) that colonize 

the substrate during the summer may also exert a structuring effect on the spatial distribution of 

water quality variables, particularly in shallow waters where biomass is high. At times of 

appreciable Cladophora biomass, the potential for competitive interactions with phytoplankton 

exists. The absence of nuisance Cladophora biomass during the September survey in combination 

with the downwelling regime do not allow for elucidation of such patterns But, in June, 

Cladophora was approaching the typical midsummer biomass peak (Malkin et al. 2008) and I did 

observe some evidence that Cladophora can impart a signal on the water column. For example, 

the spatial distribution clearly shows a band of water with supersaturated dissolved O2 along the 

shore, at depths < 3 m. This is consistent with the observations of Malkin (2007) and Davies and 

Hecky (2005) that Cladophora can achieve high photosynthetic rates, particularly at shallow 

depths where light is not limiting for much of the photoperiod. Once a significant biomass of 

benthic algae has accumulated, it may exert strong effects on dissolved O2 saturation. A partial 

Mantel test on dissolved O2 saturation did suggest a marginally significant association with 

percent Cladophora cover (r=0.032, p=0.06). The lack of correlation with total chlorophyll a and 

the proximity to the shore suggest that Cladophora rather than phytoplankton are responsible for 

the elevated dissolved O2. The weak correlation with percent Cladophora cover is likely affected 

by the smearing of this highly saturated band of water by along shore currents into areas that are 

low in Cladophora cover.  

 With potential effects on dissolved O2 saturation seemingly evident in shallow waters 

where Cladophora cover is high, by extension, a similar pattern with respect to pCO2 might be 

expected, since Cladophora is thought to dominate the C flux at depths < 6 m (Malkin 2007). The 

distribution of surface pCO2 during the June survey is not inconsistent with this, as pCO2 was 

widely undersaturated, down to levels approaching 100 ppm in the shallow areas near the shore. 

An increase in pCO2 was clearly observed toward the offshore, and into the mouth of 16 Mile 

Creek, suggesting a drawdown in the shallow waters was present. Although upwelling normally 

injects metalimnetic or hypolimnetic that is super saturated with pCO2 along this shoreline 

(Malkin 2007, D. Depew unpubl. data.) the widespread under saturation of pCO2 so soon after an 

upwelling event implies that the C demand by Cladophora in the near shore is substantial. Unlike 

dissolved O2 saturation, no significant association was observed between percent algal cover and 

surface pCO2 (partial Mantel test, r=-0.04, p >0.9), however, once pCO2 is drawn down to low 
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levels, Cladophora may switch to other forms of inorganic C (e.g. HCO3
-) (Choo et al. 2002). 

The pH and buffering capacity of the alkaline waters of Lake Ontario yields a nearly endless 

supply of total dissolved inorganic C (Malkin 2007) and at the low concentrations observed 

during the June survey (100 ppm ~ 5 uM) Cladophora probably switches to other forms of 

inorganic C, particularly in shallow waters where the energetic costs of HCO3
- uptake are likely 

to be met by light availability (Malkin 2007).   

Because Cladophora attaches primarily to hard substrate, sequestration of nutrients from 

the water column is the primary means of nutrition (Whitton 1970). If competition between 

Cladophora and phytoplankton is important in the near shore, I expected to see some patterns that 

would be consistent with nutrient stress of the phytoplankton communities, either over areas with 

heavy growth of Cladophora or perhaps along a depth gradient. While distinct signals in Fv/Fm 

and σPSII were not observed over short spatial scales that could be interpreted as competitive 

interactions, the possibility of competitive interactions for P cannot be ruled out. The ability of 

macroalgae to sequester large quantities of nutrients has been primarily linked to light availability 

(McGlathery et al. 1997, McGlathery and Pedersen 1999). For example, increased light 

availability has been shown to boost NH4 uptake in Chaetomorpha linum (McGlathery et al. 

1997) and P uptake kinetics in periphyton (Hwang et al. 1998). The increase in water clarity 

associated with dreissenid filtering activity (Howell et al. 1996) and the potential for nutrient 

supply from the benthos (Ozersky et al. 2009) may have effectively tipped the balance toward 

benthic algal dominance in the Great Lakes (Hecky et al. 2004).  

Without a detailed analysis of the phytoplankton community present during each survey, 

I cannot conclusively link the differences in Fv/Fm between September and June solely to 

differences in nutrient sufficiency, though the responses are generally consistent with those 

described in the literature (e.g., Geider et al. 1993, Kolber et al. 1990). It is apparent from the 

results of this study that physical forcing plays a large role in structuring the variability of water 

quality and phytoplankton communities in the near shore. Super-imposed on these dynamic 

processes are seasonal variations driven by differences in nutrient supply and species interactions. 

Seasonal variation aside, distinct differences between alternating periods of downwelling and 

upwelling lead to very different circumstances of spatial structure and variability in measured 

paramters. Downwelling appears to be strong enough to successfully homogenize conditions over 

large areas of the near shore, while upwelling tends to produce high spatial variability, largely 

due to the slowing of current speeds and the injection of cooler water into the near shore where it 

must intereact with often much warmer tributary waters.  



 

  

 

200 

While further work is required to confirm the regularity of such responses, this study 

provides a framework on which to move forward with such studies. Geostatistical methods and 

partial Mantel tests were able to detect significant spatial variability in many parameters during 

the surveys. The semivariance modeling and subsequent kriging produced spatial snapshots that 

capture much of the spatial variability in physical (e.g., temperature), biological (e.g., benthic 

algal cover, phytoplankton pigment groups), chemical (e.g., conductivity), and perhaps 

physiological parameters (e.g., variable fluorescence, dissolved gases) along an open coastline of 

Lake Ontario. These results suggest that physical forcing plays a large part in structuring the 

spatial variability in the near shore, and provide a means to quantify and characterize such 

conditions. In addition, these results suggest that benthic algae may exert a significant effect on 

water column properties, further compounding the spatial variability in an already complex 

ecosystem. 
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Chapter 6 

Cladophora in Lake Simcoe: Why does it not reach nuisance 

proportions? 

6.1 Overview 

 In recent years, a resurgence of filamentous benthic algae (e.g., Cladophora) in the 

Laurentian Great Lakes has been perceived as a consequence of dreissenid mussel invasion and 

subsequent alterations to ecosystem nutrient and energy cycling. Here, I conduct high resolution 

hydro-acoustic surveys at two sites in Lake Simcoe to assess the presence and extent of excessive 

benthic algal growth on hard substrate in the post dreissenid mussel period. Despite comparable 

dreissenid abundance, water clarity and phosphorus concentrations to sites in the lower Great 

Lakes known to suffer extensive Cladophora fouling during the summer months, only trace 

amounts of Cladophora were found in the surveyed areas. While the proximal cause for the lack 

of excessive Cladophora growth in Lake Simcoe remains elusive, distinct differences in water 

chemistry and top down pressure from potential algal grazers separate Lake Simcoe from the near 

shore areas of the lower Great Lakes, and these factors may be relatively more important for 

structuring the benthic algal communities in Lake Simcoe. Overall, the results of this study and 

other recent studies in Lake Simcoe are not inconsistent with the near shore shunt hypothesis that 

predicts dreissenid mussels enrich the benthic environment, but the manifestation of the shunt in 

Lake Simcoe is vastly different than the manifestation observed in the lower Great Lakes.    
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6.2 Introduction 

Excessive growth and biomass of the ubiquitous filamentous green alga Cladophora is 

generally considered to be symptomatic of eutrophication (Dodds and Gudder 1992). Perhaps one 

of the better known North American cases occurred in the Laurentian Great Lakes, where 

Cladophora reached nuisance proportions due to cultural eutrophication in the 1950s and 1960s 

(Shear and Konasewich 1975) and public complaints over shoreline fouling by decaying mats of 

Cladophora were a major driver for phosphorus (P) abatement programs that were implemented 

in the Great Lakes Water Quality Agreement (GLWQA) (Painter and Kamaitis 1987). Lake 

Simcoe also underwent considerable ecosystem degradation during the 1960s and 1970s due to 

excessive nutrient loading (Evans et al. 1996). P loading during pre-settlement years (~1800s) 

was estimated at approximately 30 T yr-1 (Johnson and Nicholls 1989), and by the early 1980s, 

external P loading had effectively tripled to over 100 T yr-1 (Evans et al. 1996, Winter et al. 

2007), before stabilizing near the 75 T yr-1 target since the early 2000s (Winter et al. 2007). 

In contrast to the lower Great Lakes, historical records of Cladophora growth in Lake 

Simcoe are scarce. While Cladophora has been recorded in qualitative surveys (Jackson 1982, 

Jackson 1985, Sheath et al. 1988) quantitative data for Lake Simcoe are limited to one report, 

summarized by Jackson (1982). Jackson (1982) surveyed multiple locations in 1976 and 1980 and 

found that while Cladophora was present at many sites (particularly in the splash zone), 

accumulation of excessive biomass was consistently found only at one location, adjacent to the 

sewage discharge from the town of Orillia, in Shingle Bay. This is in stark contrast to conditions 

in Lakes Erie and Ontario where accumulation of excessive Cladophora biomass was widespread 

(Neil and Owen 1964, Taft and Kishler 1973, Neil and Jackson 1982), but such a sporadic 

occurrence as seen in Lake Simcoe was consistent with patterns of nuisance growth in Lake 

Huron at that time (Auer et al. 1982a).  

In the lower Great Lakes there is widespread perception that since the establishment of 

the invasive dreissenid mussels over the past 15 years, benthic algal (in particular Cladophora) 

biomass and extent has increased (e.g., Higgins et al. 2005a, Malkin et al. 2008). Due to the high 

biomass achieved by dreissenids in the lower Great Lakes (e.g., Patterson et al. 2005, Wilson et 

al. 2006, Ozersky et al. 2009), mussels have been credited with altering nutrient distributions by 

filtering suspended matter and excreting re-mineralized nutrients, and depositing mucus-bound 

particulate nutrients in the benthos (Hecky et al. 2004). The clearing of the particles from the 

water column enhances water clarity (e.g., Howell et al. 1996) and solar energy flux to the 

benthos, potential importance of benthic producers, and therefore, potential energy flow through 
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benthic organisms (Vanderploeg et al. 2002). Yet, attributing these remarkable changes observed 

in the Great Lakes near shore regions solely to dreissenids has been difficult due to the paucity of 

data for the time period immediately before as after their successful invasion, and is further 

complicated by concurrent P abatement strategies to reduce the P loads to the lakes. Decreased 

nutrient loading can also act to decrease phytoplankton biomass and increase water clarity 

(Nicholls and Hopkins 1993, Nicholls et al. 2001) and therefore have a similar net result of 

enhancing the relative importance of benthic primary producers.  

Lake Simcoe provides a unique opportunity to examine the response of the benthic 

producer community to changes induced by dreissenid invasion. In particular, water quality in 

Lake Simcoe has been consistently and continually monitored since the 1980s (Eimers et al. 

2005) well before the invasion of dreissenid mussels, which began in 1995 (Nicholls 1998). 

Consequently the additive effects of mussel grazing and nutrient regeneration can be appreciated 

relative to the impact of nutrient reductions that were well underway. In this study, a novel hydro-

acoustic method (Depew et al. 2009) is employed to survey the littoral areas adjacent to the two 

largest islands in the lake, Georgina and Thorah Island. These areas are exposed to the open lake, 

and are characterized by small to moderately sized cobble and gravel substrate, suitable for the 

attachment of dreissenid mussels (Ozersky et al. submitted) and Cladophora (Whitton 1970). 

These surveys were designed to be comparable to surveys conducted in the near shore regions of 

Lakes Ontario, Erie and Huron in 2005 to assess the extent of Cladophora growth and biomass 

accumulation (Chapter 3).  

Current estimates of dreissenid abundance on areas of hard substrate in Lake Simcoe 

(e.g., Ozersky et al. submitted) are similar to those reported in Lake Ontario (e.g., Wilson et al. 

2006, Ozersky et al. 2009) and less than those reported for Lake Erie (e.g., Patterson et al. 2005), 

but higher than those reported for Lake Huron (Nalepa et al. 2007). Dreissena polymorpha rather 

than Dreissena bugensis is the numerically dominant species in Lake Simcoe (Ozersky et al. 

submitted) whereas D. polymorpha has become a relatively minor member of the dreissenid 

assemblages in the lower Great Lakes (Patterson et al. 2005, Wilson et al. 2006, Ozersky et al. 

2009). Nonetheless, I hypothesized that given a suitable time since dreissenid invasion, a similar 

abundance of dreissenids, and an environment with suitable environmental conditions, excessive 

Cladophora growth should manifest itself on hard substrata on which they dominate in the lower 

Great Lakes.  
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6.3 Materials and Methods 

6.3.1 Study Locations  

 Lake Simcoe has a surface area of 722 km2, and is the fifth largest inland lake in Ontario 

(Evans et al. 1996). The main basin of the lake is the largest, and has a maximum depth of 33 m 

(Evans et al. 1996). Kempenfelt Bay is a narrow, deep bay with a maximum depth of 42 m 

oriented in a southwest to northeast direction. Cook’s Bay is a relatively shallow (maximum 

depth 15 m), soft bottom bay at the south end of the lake near the Holland Marsh, that is carpeted 

by macrophyte growth to depths up to 9 m (Chapter 7). The lake generally stratifies in areas 

deeper than 15 m, however, parts of the lake are shallower than 15 m; including most of Cook’s 

Bay and the east portion of the main basin. Consequently, these parts of the lake are well mixed 

to the bottom for the ice free season. Agriculture is the dominant land use in the catchment (47 %; 

Lake Simcoe Conservation Authority 2009) and consists mainly of livestock and crop production, 

but urban areas have been expanding rapidly (~ 8 km2 per year since 1985; Winter et al. 2002) 

and comprise ~ 6% of the catchment (Lake Simcoe Region Conservation Authority 2009). P 

loading to the lake is well monitored, and has declined in recent years to a relatively stable annual 

load of 68 ± 7 T yr-1 (Winter et al. 2007), with more recent estimates of loading between 70 and 

75 T yr-1 (Lake Simcoe Region Conservation Authority 2009). Dreissenid mussels were first 

identified in the lake in 1993, and were widely established in 1996 (Nicholls 1998). Since the 

establishment of mussels, phytoplankton biovolume has declined, and water clarity has increased 

(Eimers et al. 2005). Recent water quality data indicate that the main basin of the lake can be 

described as oligo-mesotrophic (e.g., Eimers et al. 2005; Guildford et al. submitted).  
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Figure 6.1. Map of Lake Simcoe showing sampling sites. Kempenfelt Bay stations denoted by 
(,), Cooks Bay stations denoted by (") and main lake stations denoted by ()). Transect stations 
at Georgina Island (&), Thorah Island (.) and Pefferlaw (A) are show in the inset panel (upper 
right). Bathymetric contours generated via universal kriging of echosounder depth records 
(easting and northing as covariates) for the acoustic survey areas at Georgina and Thorah Island 
are shown in the lower inset panel. Note that stations in Cook’s Bay, Kempenfelt Bay and the 
main basin of the lake are long term MOE stations (station 900 excluded). 
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6.3.2 Physical and Chemical conditions 

Physical and chemical conditions were monitored at long term Ministry of Environment 

(MOE) stations (e.g., Eimers et al. 2005; Figure 6.1) and at 9 additional stations located in the 

southeast quadrant in 2006 (May 16 and August 8) and 2007 (May 22-23, July 4-6 and August 

21-23) (Figure 6.1). At each station, CTD profiles were taken using aYSI-6600 profiler, and 

analyzed to determine the depth of the mixed layer. Photosynthetically active radiation (PAR) 

was measured with a LI-COR cosine sensor at 0.5 m to 1 m intervals from the surface to the lake 

bottom. The vertical attenuation coefficient for PAR (kPAR) was determined by linear regression 

of the natural logarithm of irradiance vs. depth (Kirk 1994).  

A 6 L Niskin bottle was used to collect ~ 15 L of water at a depth equal to 50% of the 

mixed layer depth as determined from CTD cast. Hypolimnion samples were collected ~ 2 m off 

bottom during summer months when a thermocline was confirmed to be present. Water was 

transferred to covered carboys and stored in coolers until transported to the laboratory (OMNR 

fisheries assessment unit; Sibbald Provincial Park) for processing and storage. Samples for total 

dissolved P (TDP) and soluble reactive P (SRP) were filtered through a 0.2 µm polycarbonate 

filter,  particulate P (PartP) by filtering 500 mL of lake water onto acid soaked (5% HCl ~ 4 hr) 

Whatman GF/F filters (nominal pore size ~ 0.8 µm). Total P (TP) and all composite fractions 

(TDP, SRP, Part P) were determined according to the molybdate blue method (APHA 1998). 

Samples for other particulate nutrients (carbon – Part C, nitrogen – Part N) were determined by 

filtering 500 mL of lake water onto pre-combusted (500 C ~ 4hr) GF/F filters and assayed using a 

CEC-440 Elemental Analyzer (Exeter Analytical, N. Chelmsford, MA). Phytoplankton 

chlorophyll a was measured using a Turner Designs 10-AU fluorometer calibrated yearly against 

pure chlorophyll a (Smith et al. 1999). Additional ions (NO3
-, Cl-) were determined using ion 

chromatography (Dionex DX 500, Dionex AS17 and AG17 guard column). Ammonium was 

determined on a Turner Designs TD-700 fluorometer following the methods of Holmes et al. 

(1999). Total suspended solids (TSS) were determined by filtering 2 to 5 L of lake water onto 

pre-combusted (500 °C for 4 hr) pre-weighed GF/F filters, drying at 65 °C to a constant weight 

and re-weighing. AFDW was determined after combustion at 500 °C for 4 hrs.  

6.3.3 Acoustic Surveys and Data Processing 

Acoustic surveys at Georgina and Thorah Island were conducted on May 16 2006 and 

August 8 2006 (Figure 6.1) during daylight hours (0800 – 2000 hrs) using a 7 m aluminum 

vessel. Acoustic data were collected using a BioSonics Inc. (Seattle WA, USA) DTX deck unit 
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connected to two single beam transducers that were mounted on 2 m long adjustable sliding 

mounts attached to the side of the vessel with a series of clamps and bolts. The first transducer 

(430 kHz, 10.2° full beam angle, source level 213 dB re 1 µPa at 1m) was set to ping at a 

frequency of 5 Hz with a pulse length of 0.1 ms, and was used for detection of filamentous algae 

(see Chapter 2). The second transducer (120 kHz, 7.1° full beam angle, source level 216 dB re 1 

µPa at 1m) was also configured to ping at 5 Hz with a pulse length of 0.4 ms and was intended to 

be used for substratum characterization. Unfortunately, the high transmission power of the 120 

kHz transducer caused near complete saturation of the returned acoustic signal at depths < 6 m, 

thus separation of substratum types using standard echo analysis algorithms (e.g., RoxAnn) was 

not possible.  

Acoustic survey transects were run in a back and forth pattern from the 1.5 m depth 

contour to the 10 m depth contour, approximately parallel to the shoreline of the islands. 

Transects were spaced ~ 50 m apart. During the acoustic surveys vessel speed was kept between 

1.5 to 2.3 m sec-1. Differentially corrected GPS locations were provided at a fix update interval of 

1 sec from a JRC DGPS212 (Japan Radio Company). 

Acoustic data from the surveys were processed using a Graphical User Interface (GUI) 

written in MATLAB® 7.2 (Chapter 2). A threshold setting of -88 dB was used to characterize the 

top of the algal canopy, and a threshold setting of -56 dB was used to characterize the substratum. 

Although the threshold settings used for detection of filamentous algae (e.g., Cladophora) are of 

lower energy than that used for vascular macrophytes (~ -65 dB), lower acoustic thresholds will 

still correctly classify macrophytes if they are present (Sabol et al. 2002b). The minimum height 

of a Cladophora canopy that can be detected by acoustics is theoretically determined from the 

acoustic resolution of single targets (for example, two separate fish, or a fish and the bottom). 

This is calculated according to R = cτ/2 (i.e. speed of sound in medium, c, [~1500 m s-1] x pulse 

length, τ, [0.1ms] / 2 = 0.075 m; Simmonds and MacLennan 2005). This distance R is often 

referred to the “acoustic dead zone” based on the difficulty of discriminating fish echoes from 

bottom echoes (Ona and Mitson 1996). How this affects the detection of vegetation is not clear, 

as plants tend to occupy the entire area from the canopy top right to the substrate and thus are not 

spatially separated from the bottom. However, this method has been extensively tested and 

validated in the lower Great Lakes (Chapter 2, 3 and 4) where excessive Cladophora growth is a 

seasonal occurrence during the summer months. It is, however, important to note that Cladophora 

stands that do not reach the height threshold for acoustic detection (~7.5 cm) will be missed 

entirely, but characterization of algal stands in excess of this threshold are well characterized. 
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6.3.4 Geostatistical Analysis 

The recent availability of high resolution data from acoustic systems has allowed 

exploration of various methods to interpolate between data points to provide a surface of 

predicted values. Guan et al. (1999) and Valley et al. (2005) have evaluated different methods and 

concluded that kriging provides the most robust method for regularly spaced data collected using 

acoustic methods. The prediction of spatial variation from point measurements over surface areas 

requires some realistic interpolation techniques. Deterministic and geo-statistical methods are the 

two main groupings of interpolation techniques to produce a continuous surface from point 

measurements. Deterministic interpolations create surfaces from measured points using 

mathematical functions which are based on the extent of similarity (inverse distance weighting) 

or the degree of smoothing (radial basis functions). Geostatistical methods (i.e. kriging) utilize 

both the mathematical and statistical properties of the measured points (Isaaks and Srivastava 

1989). For a detailed and in depth discussion of geostatistics and the underlying theory, the reader 

is referred to Journel and Huijbergts (1978) and Isaaks and Srivastava (1989). The basic 

assumption required for geostatistics is that the process under study is stationary, and that the 

observed values are simply one of many possible random realizations of the process (Webster and 

Oliver 2001). In addition, spatial autocorrelation must be present (i.e. one point should be able to 

provide some information about neighboring points).  

The initial step in geostatistical analysis is the construction of the semivariogram. The 

semivariogram is a graphical representation of half the average squared variance between sample 

points as a function of separation distance (h) and is defined in equation 1 
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where γ(h) is the semivariance for lag (h), Z(xi) is the measured value at location xi, Z(xi+h) is the 

measured value at location (xi+h) and N(h) is the total number of paired samples for a given lag 

(h) (Cressie 1991). The experimental semivariogram has important characteristics that reveal the 

kind of spatial variation present in an area, for the variable under study. Generally, the 

semivariance increases as the lag distance (h) increases to a maximal value, after which the 

semivariance is frequently flat. This lag distance is known as the range and it represents the limit 

of spatial autocorrelation. By definition, γ(h)=0 when h=0, however any smooth curve that 

approximates values of γ as h approaches 0 is unlikely to pass through the origin. This value (i.e 

when h=0) is termed the nugget variance. The nugget variance is a combination of measurement 

error and variation at distances smaller than the shortest sample spacing which cannot be 
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resolved. The value of γ where γ reaches its maximum is called the sill (C), and represents the 

maximum semivariance. 

 To describe the spatial variation at distances other than just the lag distances, a 

mathematical function is fit to the experimental semivariogram data, usually using weighted least 

squares (Cressie 1991). Two of the three more common models were used: the spherical and 

exponential model. These two models in terms of the semivariogram are given in equation (2; 

spherical model) and equation (3; exponential model); 
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 where C is the sill of the variogram that represents the maximal variation (Cs for the spherical 

model and Ce for the exponential model), α is the range of the variogram beyond which data are 

no longer autocorrelated (αs and αe as before), and C0 is the nugget effect. A variogram model can 

also be nested, i.e. it can be a combination of two or more component models such as nugget and 

exponential. Most variograms are nested in this manner, although more complex models (i.e. a 

double spherical with nugget) are sometimes used. Once the semivariogram function has been 

defined and fit, it can be used to weight predictions in the kriging system of equations to yield the 

best linear unbiased estimator of the target variable. For more information on the various forms of 

kriging the reader is referred to Webster and Oliver (2001). 

 Exploratory data analysis was conducted on raw acoustic data before variogram modeling 

and analysis. Data from the preliminary surveys in May 2006 were comprised of nearly all zeros, 

as there was insufficient growth for characterization with the acoustic unit. Strong relationships 

between percent cover and bottom depth were observed for data collected in August at both sites. 

Following the general framework provided in Hengl et al. (2004), block regression kriging was 

used to provide interpolated surfaces of percent cover and stand height for blocks of nominal size 

25 m by 25 m. Breifly, this involved using generalized linear models (GLM) to characterize the 

relationship between percent cover and bottom depth, and stand height and percent cover. GLM 

with a poisson distribution (log-link function) were used as the data sets displayed non-normal 

distributions with over dispersion (Gotway and Stroup 1997). Block kriging was conducted on the 

model residuals, and the GLM trend was then added back to the interpolated surface of the 

residuals to generate the interpolated surfaces. All regression modeling, semivariogram 
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calculations, variogram model fitting, and subsequent kriging computations were performed in 

the statistical software R (R Core Development Team 2007) using the base stats package and the 

gstat package (Pebesma 2004). 

6.3.5 Cladophora sampling and internal nutrient analyses 

 Samples of benthic algae were collected at stations 901, 902, 904 and 905 during May 

and July of 2007 during follow up water quality surveys. Additional samples collected during an 

additional survey in Cook’s Bay on August 9 2006 are also compared here. Samples were 

collected via snorkeling or with the assistance of a sampling rake for deeper stations. Samples 

were placed in a small Ziploc bag, and stored in coolers until returned to the laboratory. Upon 

return to the lab, samples were washed in a mesh sieve (mesh size ~ 1 mm) to remove debris and 

sediment. Invertebrates were removed with forceps. A representative algal sample was placed in a 

20 mL scintillation vial and fixed in 2 % glutaraldehyde solution for later identification and the 

remaining tissue was frozen at -20 °C pending analysis at the University of Waterloo. Algal 

material was examined under a dissecting microscope (magnification 4 to 25 x) to confirm that 

the sample was indeed primarily composed of Cladophora and not other filamentous 

chlorophytes. Prior to analysis, algal tissue was freeze dried (Modulyo D, ThermoSavant, 

Holbrook, NY) at -50 °C for 48 hours. Dry tissue was then ground using a ball and mill grinder, 

and homogenized sub-samples were combusted at 450 °C for 1 hour and then autoclaved for 30 

minutes in distilled water with 4% potassium persulfate solution added to a final concentration of 

0.16%. Following digestion, solubilized P was measured spectrophotmetrically using the 

molybdate blue method (APHA 1998). Tissue content of C and N was assayed using an elemental 

analyzer (CEC-440, Exeter Analytical, N. Chelmsford, MA). 

6.3.6 Statistical Analyses 

The resulting unbalanced design of the sampling for water quality variables (variable 

number of stations in each region) complicates statistical comparisons. Nonetheless, to contrast 

conditions in Lake Simcoe with those encountered in the Great Lakes, a one way ANOVA was 

used to compare average water chemistry and physical parameters of interest. Data were log10 

transformed to equalize variances and stations were binned into corresponding “site” groupings. 

In Lake Simcoe, groupings consisted of Cook’s Bay (C1, C6, C9), Kempenfelt Bay (K39, K42, 

K45) and the main lake stations (S15, E50, E51, 900, N31, N32). Additional stations to 

characterize near shore variability were composed of the transect stations at Georgina (901, 902, 

903), Thorah Island (904, 905, 906) and near Pefferlaw River (907, 908, 909). For comparative 
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purposes, data from near shore areas of the Great Lakes sampled in 2005 (Chapter 3) were used to 

characterize differences between the Great Lakes and Lake Simcoe nutrient chemistry. Great 

Lakes sites comprised of a site in Georgian Bay (Cape Chin), two sites in Lake Huron 

(Southampton and Pike Bay), three sites in Lake Erie (Nanticoke shoal, Peacock Point, and Grand 

River) and four sites in Lake Ontario (Oakville, Port Credit, Presqu’ile Provincial Park, Dobb’s 

Bank). Data were further binned into seasonal groupings based upon the month of sampling and 

thermal regime of the water body in question. Spring covered the period from mid April to early 

June in the Great Lakes data, but only May samples were classed as spring for the Lake Simcoe 

data. Summer covered the months of July and August for both Lake Simcoe and the Great Lakes 

sites. While recognizing that these are somewhat crude classifications, obvious differences in 

nutrient and chemical conditions should nonetheless be apparent. ANOVA was run using the base 

stats package in the statistical software R (R Core Development Team 2007). Post-hoc 

comparisons were conduced using a Tukey-Kraemer test with an α level set to 0.05. 
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6.4 Results 

6.4.1 Water chemistry and physical conditions 

 Considerable variability in thermal structure is imparted by the variability in basin 

morphometry and the seasonal thermocline in Lake Simcoe appears to be between 12 and 15 m 

deep (data not shown). Patterns of surface temperature varied predictably within the lake and 

within the months of sampling, with shallow areas of the lake (e.g., Cook’s Bay, eastern portion) 

warming more quickly than deeper areas (e.g., Kempenfelt Bay). Surface temperatures measured 

at the Island transects and Pefferlaw transect stations in May 2006 were ~ 10 °C, with 

temperatures at bottom ranging from 6 to 8 °C. Surface temperatures in the summer months (July 

and August) were generally quite stable with one exception. Surface temperatures in August 2007 

were considerably lower and more variable among the stations (19.16 ± 1.18 °C) than in August 

2006 (24.44 ± 0.71 °C). Strong north easterly winds during the August 2007 sampling may have 

caused upwelling of cooler water from the main basin hypolimnion into the east portion of the 

lake.  

 Light attenuation in Lake Simcoe is comparable to that in Lakes Erie and Ontario during 

both spring and summer (Figure 6.2a, Figure 6.3a). Higher PAR attenuation in Cook’s Bay and at 

Pefferlaw during the spring was due to re-suspended sediment, as the macrophyte overstory was 

not yet fully developed. The main lake and other shallow areas (< 10 m) in Lake Simcoe have 

similar attenuation coefficients for near shore Great Lakes areas. In Simcoe, these shallow areas 

(e.g. Georgina, Thorah and Pefferlaw transects) can also experience high turbidity (and thus high 

light attenuation) due to re-suspension of material from the lake bottom even in the summer when 

accompanied by strong winds in August 2007 (Figure 6.3a; see Thorah and Georgina Island 

transects).  

Concentrations of chlorophyll a in Lake Simcoe were remarkably similar to Great Lakes 

sites during both spring and summer (Figure 6.2b, Figure 6.3b). Patterns of variation were not 

consistent among sites, or within lakes, however higher chlorophyll was observed in Cooks Bay 

and Kempenfelt Bay during the summer compared to the main lake and the transect sites which 

are located in shallow waters over dreissenid colonized substrate.  

 Spring TP in Lake Simcoe was generally similar to concentrations in the Great Lakes 

sites, but were higher than concentrations measured in Georgian Bay and Lake Huron (Figure 

6.2c). In contrast, summer TP in Lake Simcoe was generally the same as at the highly agricultural 

Southampton site in Lake Huron, but was higher than all sites in Lake Erie and Ontario (Figure 
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6.3c). Spring soluble reactive P (SRP) did not vary considerably within areas of Lake Simcoe, 

and was comparable to SRP measured at all the Great Lakes sites (Figure 6.2dFigure 6.3). In the 

summer, SRP in Lake Simcoe was comparable to concentrations in Georgian Bay, Lake Huron 

and Lake Ontario. Lake Erie SRP was not detectable in any of the samples (Figure 6.3d). 

  In contrast to weak variation among sites with respect to P concentrations, there were 

remarkable differences between NO3
- and SiO2 concentrations (Figure 6.2e and f, and Figure 6.3e 

and f). NO3
- concentrations in the spring in Lake Simcoe were remarkably low (< 10 µg L-1 to 

70.8 µg L-1), and dropped to concentrations at or below the detection limit (~ 10 µg L-1) in the 

summer (Figure 6.2e, Figure 6.3e). This is in stark contrast to the Great Lakes sites, where NO3
- 

concentrations were significantly higher in both spring and summer (Figure 6.2e, Figure 6.3e). 

Spring SiO2 concentrations in Lake Simcoe are similar to those observed in Georgian Bay and 

Lake Huron, and greatly exceed concentrations found in Lakes Erie and Ontario (Figure 6.2f). 

This pattern continues into the summer, although the magnitude of concentrations differs, SiO2 is 

still quite high in Lake Simcoe (Figure 6.3f). 

6.4.2 Acoustic surveys  

Maps displaying the kriged surfaces for percent cover and estimated canopy height 

derived from the analysis of acoustic data at Georgina and Thorah Island are shown in Figure 5. 

During the spring survey at these sites, I failed to detect any growth of either filamentous algae or 

macrophytes using the acoustic system. Observations made during the survey with under water 

video (SplashCam; Ocean Systems, Everett, WA, see Ozersky et al. submitted) at each of the 

water quality sites (Figure 6.1) and randomly selected locations along survey transects showed a 

substratum comprised of small to medium sized cobble, colonized by dreissenid mussels. Based 

on visual examination of the underwater video, the substratum was not heavily colonized by 

periphyton, and the presence of filamentous algae could not be confirmed visually. Isolated stems 

of macrophytes (mostly Myriophyllum spicatum) were observed growing in areas underlain 

predominantly by hard substratum, perhaps rooting between rocks or interstitial spaces created by 

dreissenid shells. Many of these single macrophytes probably escaped detection by acoustics due 

to a sparse distribution, low biomass, and close association with the substratum.  

The August surveys were far more successful for detection of submerged vegetation with 

acoustics. Isolated patches of moderate to high percent cover were evident along both islands but 

the areal extent of growth at Thorah Island was significantly larger due to the much gentler 

bathymetric slope when compared to Georgina Island (Figure 6.4 and Figure 6.1). Nearly all the 

growth in these areas was characterized by bed heights in excess of 20 cm, and was confirmed to 
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be largely due to macrophyte growth with the aid of the underwater camera system. Some growth 

of Cladophora was observed at Thorah Island, but it did not reach sufficient height for detection 

with the acoustic system. Similar conditions were encountered during follow-up water quality 

surveys during 2007.  

In the few areas where Cladophora was confirmed to be present either by visual 

observation or with the underwater camera, samples were collected for tissue nutrient analysis via 

snorkeling or rake sampling. Compared to Cladophora collected from Cook’s Bay and Shingle 

Bay where it was growing epiphytically on macrophytes, Cladophora from the Island sites in 

May and July of 2007 appeared to be heavily encrusted with epiphytic diatoms. These samples 

also had the lowest tissue nutrient content (both P and N) (Figure 6.5a), yet did not appear to be 

greatly P deficient when compared to samples from near shore areas of the Great Lakes (Figure 

6.5b,c,d). Low tissue N and P content (as a % of AFDW) may have been due to a high inorganic 

content, as these samples were characterized by low organic content (LOI ~ 41-47 %) when 

compared to samples found elsewhere in Lake Simcoe and the Great Lakes (LOI ~ 65 – 89 %).
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Figure 6.2. Plots of average a) light attenuation (kPAR; m-1), b) Chlorophyll a (µg L-1), c) TP (µg 
L-1) , d) SRP (µg L-1), e) NO3 (µg L-1), f) SiO2 (µg L-1) in Lake Simcoe and selected nearshore 
areas of the Great Lakes for spring periods (April – early June). Lake Simcoe data are compiled 
from 2006 and 2007, Great Lakes data from 2005. Note color of bar denotes the water body as in 
panel a).Superscript letters denote values not significantly different at p=0.05. 
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Figure 6.3. Plots of average a) light attenuation (kPAR; m-1), b) Chlorophyll a (µg L-1), c) TP (µg 
L-1) , d) SRP (µg L-1), e) NO3 (µg L-1), f) SiO2 (µg L-1) in Lake Simcoe and selected nearshore 
areas of the Great Lakes for summer periods (July to August). Lake Simcoe data are compiled 
from 2006 and 2007, Great Lakes data from 2005. Note color of bar denotes the water body as in 
panel a). Superscript letters denote values not significantly different at p=0.05. 
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Figure 6.4. Maps of kriged surfaces showing percent cover at Georgina Island (a),  canopy height 
at Georgina Island (b) and percent cover at Thorah Island (c), and canopy height at Thorah Island 
(d) on August 9 2006.
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Figure 6.5. Bar plots of a) % tissue P b) tissue C:P ratio ,c)tissue C:N ratio and d) tissue N:P ratio  
of Cladophora tissue samples from Lake Simcoe and other locations in the Great Lakes. Data 
from Lake Ontario, Erie and Huron were collected during 2005 and 2006 and are summarized 
from Houben (2007) and Higgins et al. (2008). Data below upper specification line in panel a) 
indicate P limit growth ( < 0.16% P DW) and below the lower specification indicate levels 
corresponding to zero net growth (< 0.06% DW). Data above upper line in panel b) and d) 
indicate C:P > 1550 and N:P > 74 determined by Houben (2007) to correspond to zero net 
growth. Data above the lower line in panel b) and d) indicate C:P > 550 and N:P > 42 determined 
by Houben (2007) to correspond to P limited growth.  
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6.5 Discussion 

The initial goal of this study was to apply the hydroacoustic survey methodology 

developed in Chapter 2 to areas in Lake Simcoe with conditions that were hypothesized to be 

conducive to Cladophora growth. Although other filamentous chlorophytes such as Ulothrix 

zonata (Weber and Mohr) Kützing, Stigeocolonium tenue (Ag.) Kützing and Spirogyra are 

common members of the benthic algal assemblage in the Great Lakes rocky littoral areas, their 

occurrence as nuisance blooms is less well documented (Graham 1982). The dominance of 

Cladophora in these highly turbulent environments is thought to arise by virtue of its physical 

attributes (e.g., tenacious holdfasts and robust mature thalli) as well as its rapid growth rate 

(Garwood 1982). Finer, un-branched filamentous algae (e.g., Stigeocolonium tenue, Spirogyra 

and Ulothrix) have delicate filaments and lack the robust holdfasts characteristic of Cladophora, 

and therefore may not be able to withstand the physical turbulence common in rocky littoral areas 

(Rosemarin 1982, Garwood 1982, Lowe and Pillsbury 1995). Recent work using molecular 

markers (e.g., Ross 2006) has confirmed that the dominant filamentous alga of the dreissenid 

infested littoral zones of the Great Lakes is indeed Cladophora glomerata (L.) Kützing, and this 

particular species is responsible for the excessive nuisance blooms in recent years in Lakes Erie 

(e.g., Higgins et al. 2005a), Ontario (e.g., Malkin et al. 2008) and Michigan (e.g., Bootsma et al. 

2004).  

As mentioned in the introduction, the apparent resurgence of shoreline fouling by 

Cladophora in the Great Lakes occurred in the mid 1990s, approximately 5 to 8 years after 

dreissenid mussels became established (Higgins et al. 2008a and references therein). Reconciling 

the return of excessive Cladophora growth to the near shore regions of the Great Lakes in the 

presence of continued declines in offshore nutrient concentrations (e.g., Malkin et al. submitted) 

is complicated by the lack of data on Cladophora biomass and distribution in the intervening 

periods between P control and the invasion of dreissenid mussels (Higgins et al. 2008a). 

However, the apparent response of Cladophora biomass and distribution to P control in Lake 

Ontario in the early 1980s (Painter and Kamaitis 1987) coupled with lake wide declines in near 

shore P concentrations (Nicholls et al. 2001) suggest that reductions in Cladophora biomass were 

likely to have occurred elsewhere, and that the current resurgence is perhaps best explained by the 

shunt hypothesis that links the Cladophora resurgence to ecosystem changes mediated by 

dreissenids (Hecky et al. 2004). 

Part of the rationale for this study was that the extensive annual monitoring conducted by 

the Ministry of Environment since 1980 (Eimers et al. 2005) covered time periods of high 
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nutrient loads, declining nutrient loading, dreissenid invasion, and currently a period of 

established mussels and relatively stable P loadings (Winter et al. 2007). Therefore, trends in 

water clarity and nutrients are characterized sufficiently during periods of P loading reduction and 

the subsequent invasion of dreissenid mussels to attribute some obvious changes to mussels rather 

than nutrient reductions (Eimers et al. 2005). For example, while improvements in phytoplankton 

bio-volume and water clarity were noted prior to the establishment of dreissenid mussels, major 

increases in water clarity were noted in the following years (Nicholls 1998). Phytoplankton bio-

volume declined and became much less variable than prior to the dreissenid period (Eimers et al. 

2005). Such changes are consistent with observations from water intake monitoring in the Great 

Lakes before and after dreissenid colonization (e.g., Nicholls et al. 1999) and support the 

hypothesis that dreissenids are having a significant impact on the ecology of Lake Simcoe. 

Likewise, major increases in water clarity were noted in 1996 and 1997 on a lake wide basis (e.g., 

Eimers et al. 2005) and are more consistent with the effects of dreissenid filtering, as nutrient 

loading during that time did not decline significantly compared to prior years (Winter et al. 2002). 

Although Cladophora has historically been a shoreline nuisance in Lake Simcoe (Jackson 

1982), these surveys failed to detect significant amounts of Cladophora with the acoustic system 

during the surveys. While it must be acknowledged that Cladophora at low biomass (e.g., < 31 ± 

18 g m-2 the estimated detection limit from Chapter 2) or not of sufficient height for detection 

with acoustics ( < 7.5 cm) will escape detection, in my experience, underwater video and visual 

observations in shallow water can frequently confirm the presence or absence of Cladophora in 

these cases.  

Despite surface temperatures during the May 2006 survey near 10 °C and temperatures at 

10 m depth ranging from 6 to 8 °C, the substratum remained mostly devoid of filamentous algal 

growth. Vegetative growth of Cladophora generally begins as water temperatures exceed 5 °C 

(Graham et al. 1982) and optimal photosynthetic rates are not achieved until water temperature 

exceeds 15 °C (Graham et al. 1982), so excessive biomass of Cladophora is not expected to be 

found so early in the season. In Lake Ontario, growth of the first cohort of Cladophora is 

generally underway at these temperatures, and although areal biomass is low (< 20 g m-2; c.f. 

Malkin 2007), the growing Cladophora covers nearly 100% of the substratum with the 

characteristic dark green filaments (Malkin 2007). Moreover, other filamentous chlorophytes 

(e.g., Ulothrix zonata, Spirogyra) are known to colonize areas with hard substrate during early 

season (e.g., April and May) when water temperatures are cooler (Graham et al. 1985, 1995, 

Higgins et al. 2005a), yet such growths were conspicuously absent in Lake Simcoe during this 

study. 
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As the water temperature warms, Ulothrix and Spirogyra generally suffer reduced rates 

of photosynthesis (Graham et al. 1985,1995) and their relative contribution to the total macroalgal 

biomass during summer months appears to be low (e.g., Sheath et al. 1988, Jackson et al. 1990, 

Higgins et al. 2005, Malkin et al. 2008). The inability of Ulothrix and Spirogyra to maintain high 

rates of positive net growth during warm water periods (> 15 °C; Graham et al. 1985, 1995) may 

create an opportunity for Cladophora to become the dominant filamentous alga during summer 

months. In temperate lakes and rivers, Cladophora generally reaches maximal biomass in mid-

summer (e.g., Higgins et al. 2005a, Malkin et al. 2008), sometimes followed by a second peak in 

the autumn (Whitton 1970). Cladophora was indeed observed during the August 2006 survey, 

and again during follow up water quality surveys in July and August of 2007, but Cladophora did 

not accrue to excessive biomass. This suggests that either biomass simply does not accumulate to 

excessive amounts in Lake Simcoe, or that perhaps biomass had detached and washed ashore 

prior to the surveys.  

In the Great Lakes, sloughing (detachment of Cladophora filaments from substratum) is a 

common occurrence following the mid-summer biomass maxima, with much of the algal material 

deposited on shore (Higgins et al. 2008a). Such a phenomenon was indeed noted by Jackson 

(1982) during his seasonal study in Lake Simcoe in 1976 and 1980. While debate continues on 

the exact mechanism responsible (Higgins et al. 2008b), it is generally recognized that sufficient 

biomass must accrue prior to major sloughing events. While it is possible that the failure to locate 

nuisance biomass of Cladophora at the Island sites may be due to prior detachment of algal 

biomass, significant shoreline accumulations along the island shorelines were not obvious at the 

time (personal observation) and the lack of complaints from shoreline residential communities (J. 

Winter, Ontario Ministry of Environment, personal communication) do not support this 

hypothesis. Furthermore, no mention of excessive Cladophora growth was made during 

invertebrate sampling in the fall of 2005 at multiple shoreline sites around the lake (e.g., Kilgour 

et al. 2008), suggesting that Cladophora probably does not currently achieve nuisance levels in 

Lake Simcoe at the present time.  

Causes for the apparent lack of nuisance biomass of Cladophora are unknown, but 

several possible explanations exist. The proximate factors controlling benthic algal biomass can 

be categorized into those regulating the process of biomass accrual and those regulating the 

processes that lead to biomass loss (Biggs 1996). The factors that lead to biomass accrual are 

generally at the level of resources (e.g., nutrients and light), while the main factor leading to 

biomass loss is disturbance related (e.g., excessive turbulence, abrasion, or grazing).  
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6.5.1 Nutrient control of Cladophora 

Phosphorus and nitrogen are the most commonly limiting nutrients for benthic algae, 

although carbon limitation can be a factor in soft water lakes (Turner et al. 1995). Because Lake 

Simcoe is a hard water system with pH and total alkalinity comparable to shallow near shore 

areas in Lakes Ontario and Erie (Lake Simcoe mean pH = 8.3 ± 0.1, mean total alkalinity 2.10 ± 

0.05 meq L-1; c.f. Houben 2007, Lake Ontario mean pH = 8.3 ± 0.3, mean total alkalinity 1.77 ± 

0.09 meq L-1; c. f  Houben 2007, and mean Lake Erie pH = 8.2 ± 0.4, mean total alkalinity 1.86 ± 

0.11 meq L-1; c.f. Depew 2003), and the observation that Cladophora is able to utilize HCO3
- 

(Choo et al. 2002), carbon limitation of Cladophora growth is not likely.  

Although there are reports of nitrogen limitation of Cladophora growth in the literature 

(e.g., Millner et al. 1982), nearly all studies on Cladophora in freshwaters indicate that 

phosphorus is the principal growth limiting nutrient (Auer and Canale 1982a, Painter and 

Kamaitis 1987, Parker and Maberly 2000). Concentrations of both TP and SRP measured during 

this study in Lake Simcoe are similar to concentrations measured in 2005 in near shore areas of 

Lakes Ontario and Erie, where excessive Cladophora growth is a seasonally recurrent 

phenomenon (e.g., Chapter 2, Chapter 3, Higgins et al. 2005, Malkin et al. 2008). Yet, NO3
- 

concentrations in Lake Simcoe are far lower than those measured in the Great Lakes (Figure 6.2 

and Figure 6.3). While perhaps somewhat peculiar given the dominance of agricultural land use 

in the catchment (Eimers et al. 2005) and the well defined trend of increasing NO3
- concentrations 

in the geographically close water bodies of the Great Lakes (e.g., Millard et al. 2003, Finlay et al. 

2007), these values are comparable to those collected since 1980 on an annual basis by the MOE 

(A. Landre, Ontario Ministry of Environment, personal communication) and are not likely 

erroneous. The low NO3
- concentrations may reflect the ability of smaller lakes to denitrify or 

bury most external NO3
- or DON inputs (e.g., Molot and Dillon 1993, Lepisto et al. 2006) better 

than large lakes (Finlay et al. 2007).  

The small number of Cladophora tissue samples collected in this study makes statistical 

comparisons to other areas difficult, but current measures of tissue P are generally lower than 

historical data (tissue P range 0.03 to 0.65 % DW; Jackson 1982), and remain between the 0.06 % 

DW and 0.16 % DW values suggested for zero growth (Gerloff and Fitzgerald 1976) and P 

limited growth (Wong and Clark 1976). Tissue N from the Lake Simcoe samples were generally 

above the 1.1 % DW critical level defined by Gerloff and Fitzgerald (1976). Based on the nutrient 

ratio thresholds determined by Houben (2007) for Great Lakes Cladophora, Lake Simcoe 

Cladophora can be considered P limited (Figure 6.5), although perhaps to a lesser extent than 

some areas in the Great Lakes. This is not inconsistent with Lake Simcoe’s status as a 
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mesotrophic water body. Historical N:P ratios averaged between 10 and 17 (Jackson 1982), 

which are far lower than current N:P ratios (mean N:P = 39, range 26 – 74, n = 11), further 

confirming that Cladophora in Lake Simcoe remains P limited at present.  

Despite comparable P concentrations to near shore areas of the Great Lakes and an 

apparent state of P limitation in Lake Simcoe Cladophora, other factors such as turbulence can 

affect the transport of limiting nutrients to the cell surface (Vogel 1994). For epilithic algae such 

as Cladophora, their attachment to chemically inert substratum necessitates the acquisition of 

nutrients from the water column, and thus they are susceptible to physical controls on the 

thickness of the benthic boundary layer (Whitton 1970). The diffusion of nutrients across the 

benthic boundary layer is dependent on the thickness of the boundary layer, which may vary from 

mm to cm depending on the velocity of the overlying water and turbulence (Riber and Wetzel 

1987) and the concentration gradient from the water column to the cell surface (Vogel 1994). 

Although SRP concentrations in Lake Simcoe are similar to concentrations measured in the lower 

Great lakes, Lake Simcoe is considerably smaller, and may not experience sufficient turbulence 

to overcome nutrient demand in the lack of a considerable concentration gradient. SRP 

concentrations in Lake Simcoe during the 1970s and early 1980s were generally in the 4 to 8 µg 

L-1  range, but concentrations >150 µg L-1 were observed at the site adjacent to the Orillia sewage 

treatment plant discharge where nuisance growth was most common (Jackson 1982). Insufficient 

turbulence was cited by Jackson (1982) as the primary reason for the sudden cessation of 

nuisance Cladophora growth beyond a depth of 3 m in Shingle Bay. While insufficient 

turbulence may explain the lack of nuisance Cladophora growth in sheltered shoreline areas of 

Lake Simcoe, the two locations surveyed in this study were far more exposed that the site Jackson 

(1982) sampled in Shingle Bay. The average fetch distance for the exposed portions of the island 

sites was 16 km, and measurements of current velocity in 2005 from an ADCP moored due west 

of the study sites suggest that surface currents averaged between 5 and 10 cm sec-1, and 3 to 10 

cm sec-1 at a depth of 10 m, with maximal values ~ 25 cm sec-1 during high wind events (Baird 

2006). These current velocities are comparable to those measured in the near shore regions of the 

Great Lakes (Rao and Schwab 2007) and suggest that at least for these study sites, physical 

turbulence was likely sufficient for Cladophora growth at the attendant nutrient conditions.  

Additional consideration of benthic boundary layer dynamics must consider the effects of 

nutrients excreted by dreissenids or re-mineralized in the benthos. In Lake Simcoe, dreissenid 

abundance and nutrient excretion rates measured in situ are comparable to those observed in Lake 

Ontario (Ozersky et al. submitted, Ozersky et al. 2009), and dreissenids appear to excrete at an 

N:P molar ratio of 19, which is close to the optimal ratio for benthic algae (Hillebrand and 
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Sommer 1999; Kahlert 1998). Even if turbulence was insufficient to maintain a supply of 

nutrients to Cladophora from the overlying water column, insufficient turbulence would 

conceivably prolong the duration that nutrients are available for uptake in the benthic boundary 

layer. Visual observations of the substratum in Lake Simcoe suggest that there is an extensive 

epilithic algal film present, comprised mainly of diatoms. Such epilithic biofilms are often 

enmeshed with hydrated glycocalyx and other mucopolysaccharides that are excreted by bacteria 

and other algae which can enhance nutrient retention of ammonium and phosphorus (Avnimelech 

et al. 1982). Reduced C:P and N:P ratios of benthic diatoms growing on dreissenids compared to 

bare substrate in Lake Erken (Kahlert and Pettersson 2002) are also consistent with the hypothesis 

that nutrients excreted by dreissenids can be assimilated by benthic algae close to the substratum 

surface. Based on the tissue P and nutrient stoichiometry, Cladophora in Lake Simcoe does not 

appear to be more severely P limited than Cladophora from the Great Lakes and suggests that 

perhaps other factors may be more important in controlling the accumulation of nuisance 

Cladophora biomass in Lake Simcoe. 

6.5.2 Light availability 

Control of Cladophora biomass at the resource level can also be influenced by the 

availability of light. Since one of the major ecosystem changes attributed to dreissenid mussel 

filtering activity is a substantial increase in water clarity (e.g., Howell et al. 1996, Zhu et al. 

2006), an expanded habitat range and enhanced light availability at depth could reasonably be 

hypothesized to result in an increase in Cladophora biomass accrual (Higgins et al. 2008a). 

Although I lack direct measures of photosynthetic capacity for Cladophora growing in Lake 

Simcoe, experimental work from Lakes Erie (e.g., Higgins et al. 2008b) and Huron (e.g., Graham 

et al. 1982) suggest that photosynthesis is light saturated at intensities ranging from 205 to 300 

µE m2 s-1. Based on the PAR attenuation coefficients measured at the Island transects (average ~ 

0.35 m-1), an average surface irradiance of 807 µE m2 s-1 (Lorenz et al. 1991), light limitation of 

growth would occur around a depth of 2.8 to 3.9 m. This approximates the depth of light 

limitation of growth in both Lakes Erie (Higgins et al. 2008b) and Ontario (Malkin 2007), and 

suggests that comparable levels of light energy are reaching the benthos.  

The amount of light available to benthic algae is not solely dependent on the attenuation 

and scattering within the overlying water column, but also by the attenuation and scattering 

induced by the presence and quantity of epiphytic colonization (Sand - Jensen and Søndergaard 

1981). The cellulosic cell wall of Cladophora and upright growth form provides a suitable 

substrate for a diverse epiphyte flora which often becomes structurally complex with populations 
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of bacteria, prostrate and adnate diatoms, and multicellular filaments of green algae (Lowe et 

al.1982, Stevenson and Stoermer 1982). A modest diversity of epiphyte species has been found 

on Cladophora in the Great Lakes (e.g., Lowe et al. 1982, Stevenson and Stoermer 1982, Malkin 

et al. 2009) and the dominant group is often primarily siliceous diatoms (e.g., Cocconeis) that 

adhere to the Cladophora filaments and are thus able to stay attached in high energy 

environments (Bergey et al. 1995, Malkin et al. 2009). Since light must first pass through the 

epiphyte layer, competition for light between Cladophora and its epiphytes is therefore a strong 

possibility (Dodds and Gudder 1992). Dodds et al. (1999) estimated the maximal extinction 

coefficient for a 30 µm thick layer of Cocconeis to be ~ 4500 m-1, and heavy coatings of 

epiphytes have been shown to reduce Cladophora photosynthesis at light intensities < 500 uE m-2 

s1 (Dodds 1991). Whether the negative effects of a heavy epiphyte coating is due to direct 

competition for light (e.g., Sand-Jensen 1977) or by infilling between the filaments that acts to 

impede current flow and presumably nutrient transport to the filaments (Nowell and Jumars 

1984), is not known. While other factors obviously affect the light dependency of photosynthesis 

(e.g., current velocity, nutrient supply, temperature, etc), a heavy encrustation of diatom 

epiphytes may significantly reduce photosynthesis and restrict the ability of Cladophora to 

achieve maximal growth rates at all but very shallow depths.    

The potential importance of epiphytes to Cladophora biomass accrual in Lake Simcoe 

becomes more important with the observation that silica concentrations in Lake Simcoe are 

significantly higher than silica levels measured in the lower Great Lakes (e.g., Lake Erie and 

Ontario). In Lakes Erie and Ontario, dissolved silica concentrations generally fall well below the 

threshold thought to limit siliceous alga (e.g., diatoms and chrysophytes) of 0.4 mg L-1 (Schelske 

et al. 1986) during the summer months (Figure 6.3). No such mid-summer decline was observed 

during the two years in this study, and silica concentrations never dropped below 0.5 mg L-1. The 

scarcity of silica during the summer months in the lower Great Lakes may therefore allow 

Cladophora to outgrow its epiphyte layer (Malkin et al. 2009). Further support for this hypothesis 

is provided in a study of Danish lakes where filamentous green algae (e.g., Oedogonium, 

Ulothrix, Spirogyra, Zygnema) were dominant only in lakes with low silica concentrations or did 

not flourish until the spring diatom bloom had exhausted the available silica (Sand-Jensen and 

Søndergaard 1981). The few samples of Cladophora collected in this study appeared brownish 

and heavily encrusted by epiphytes. This is in remarkable contrast to the description of samples 

collected at the Orillia sewage treatment plant by Jackson (1982) of “dark green and healthy”, and 

those that I observed at numerous locations in Lake Ontario and Lake Erie in previous years. 

While I did not attempt to enumerate the epiphytes or assay the silica content (Malkin et al. 
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2009), these samples had a much lower organic content (LOI: 41 to 47 %) compared to 

Cladophora collected in Cook’s Bay and Shingle Bay (LOI: 65 to 86 %). While not a direct 

measure of epiphyte colonization, LOI will be lower when siliceous epiphytes are present and it 

does indirectly suggest that Cladophora growing at the Island sites may been heavily encrusted 

by epiphytes and experiencing strong light limitation. 

6.5.3 Grazer control of Cladophora 

The principal mechanism controlling biomass removal of Cladophora in the Great Lakes 

is physical turbulence that tears the elongated filaments from the substratum during wind and 

wave action (Higgins et al. 2008a). Top down control of Cladophora by grazers is thought to be 

limited because Cladophora is generally considered to be a poor, non-preferred food source 

(Dodds and Gudder 1992). Compared to diatom rich periphyton, Cladophora has a much lower 

content of amino acids and essential fatty acids (Dodds and Gudder 1992), and may contain toxic 

fatty acids (e.g., LaLonde et al. 1979). Further deterrence to grazing may be provided by the large 

size of the filaments relative the size of the grazer (Dodds and Gudder 1992). Despite this, many 

species from varied taxonomic groups do graze Cladophora in freshwaters (reviewed in Dodds 

and Gudder 1992), although Dodds (1991) notes that accidental ingestion of filaments during 

epiphyte consumption cannot be ruled out. Grazers may also indirectly increase algal biomass by 

selectively removing epiphytes (e.g., Sarnelle et al. 1993) and by recycling nutrients within the 

algal mat (e.g., Hillebrand 2002). However, when the abundance of grazing animals is high 

enough, consumptive losses will far outweigh any potential benefits produced by the grazers 

themselves (Hillebrand 2002).  

The importance grazers as controlling agents of Cladophora biomass in Lake Simcoe is 

particularly relevant since the biomass of macro-invertebrate grazers appears to have nearly 

quadrupled (D.R. Barton, Dept. of Biology, University of Waterloo, unpubl. data) since the 

period prior to the invasion by dreissenids (e.g., Rawson 1930). The significant increase in 

macro-invertebrate abundance, biomass and diversity (138 taxa, including sensitive species such 

as mayflies (e.g., Hexagenia, Ephemerella, Caenis) and caddisflies (e.g., Helicopsyche borealis); 

Kilgour et al. 2008) is likely related to the observation that Dreissena appear to be key structuring 

agents of benthic macro-invertebrate communities in freshwater habitats (Stewart et al. 1998a,b). 

While Dreissena are known to negatively impact certain taxa through competition for food and 

space (e.g., indigenous bivalves and amphipods (Diporeia hoyi)) (Howell et al. 1996, Dermott 

and Kerec 1997), colonization by dreissenids generally results in an increase in macro-

invertebrate biomass, density and diversity of co-occuring taxa by providing habitat enhancement 
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and food resources (e.g., Stewart et al. 1998a,b). Shell material from live and dead mussels acts to 

increase the structural complexity and surface area available for colonization by periphyton and 

other sessile invertebrates (Stewart et al. 1998b). The interstitial spaces between the shells can 

also provide refuge from predators and other disturbances (Stewart et al. 1998b, Barton 2004). 

Moreover, organic matter, pseudofeces and other detritus that would otherwise be washed away 

by currents and wave action can become trapped in these interstitial spaces and become available 

for use within the benthos (Roditi et al. 1997).  

The amphipods Gammarus lacustris, Echinogammarus ischnus and Gammarus fasciatus 

were reported in considerable numbers during 2005 and 2008 (Kilgour et al. 2008, D. R. Barton, 

Department of Biology, University of Waterloo, Waterloo, Ontario, Canada, personal 

communication). Gammarus fasciatus has recently been observed to feed directly on Cladophora 

filaments in Lake Erie (Johnson 2004) and Lake Ontario (Malkin 2007), while G. lacustris and E. 

ischnus are thought to graze mainly on detritus or epiphytic organisms rather than Cladophora 

(Stevens et al. 1997). However, comparable abundances of G. fasciatus were reported for eastern 

Lake Erie in the 1970s (~ 2500 to 4500 m-2; Barton and Hynes 1978) when Cladophora readily 

achieved excessive biomass (e.g., Neil and Jackson 1982), suggesting that grazing by amphipods 

may be of little consequence.  

Caddisfly and mayfly larvae (e.g., Feminella and Resh 1991, Harrison and Hildrew 2001) 

also graze Cladophora in stream and lake environments, but such activity can be species specific 

and vary on seasonal cycles ( Feminella and Resh 1991). Larger omnivores such as crayfish (e.g., 

Orconectes propinquis and Orconectes virilis) have also been observed to crop Cladophora in 

stream and pond environments, even at low densities (< 10 m-2) (Creed Jr. 1994, Dorn and 

Wojdak 2004). Currently, three species of crayfish are found in Lake Simcoe at comparable and 

higher densities (> 10 m-2) (O. propinquis, O. virilis, and the invasive Orconectes rusticus), yet 

the N15 signatures of these crayfish indicated a predisposition to carnivory rather than omnivory 

(T. Ozersky, University of Waterloo, unpubl.data). The abundance of net spinning caddisflies and 

crayfish in the Great Lakes declined precipitously after the arrival of dreissenids, but this may be 

more related to the elimination of suitable refuge habitat by infilling of crushed dreissenid mussel 

shell material, pseudofeces and detritus (Ratti and Barton 2003). This does not appear to be the 

case in Lake Simcoe, but whether or not grazer abundance is sufficient to control Cladophora 

biomass remains to be tested explicitly. 
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6.6 Conclusion 

The absence of nuisance Cladophora growth on areas of hard substrate in Lake Simcoe is 

strikingly different from the situation in the Lower Great Lakes (e.g., Higgins et al. 2005a, 

Malkin et al. 2008). It is possible that a number of the above mentioned factors act in synergistic 

manner to constrain Cladophora biomass in Lake Simcoe. The high availability of silica in Lake 

Simcoe may allow for continued epiphyte growth on Cladophora filaments. As a result, 

Cladophora may remain in a state of perpetual light limitation at all but the shallowest depths, 

resulting in reduced growth rates and biomass accrual. With a slow accumulation of Cladophora 

biomass, control via an abundant grazer community becomes more plausible, though the 

availability of other more palatable benthic algae is probably the preferred food source for many 

invertebrate grazers. The availability of silica may also influence the natural succession of the 

community as a whole. For example, Carrick and Lowe (2007) found that with continued 

enrichment of growth substrate with N, P and Si, diatoms continued to dominate the benthic algal 

community in Lake Michigan, effectively utilizing the additional N and P. Without the added Si, 

the benthic algal community progressed to one dominated by chlorophytes and blue green algae 

when diatom growth declined (Carrick and Lowe 2007).  

In Lake Erken (Sweden), despite the establishment of dreissenid mussels in 1975, the 

benthic algal assemblage on hard substrate is considerably more diverse than the current mono-

specific assemblage of Cladophora observed in the lower Great Lakes (e.g., Kahlert and 

Pettersson 2002). Lake Erken is also characterized by water chemistry that is remarkably similar 

to Lake Simcoe (Petterson 1990). 

Further experimentation is clearly required to confirm the mechanism(s) responsible for 

the lack of excessive Cladophora development in Lake Simcoe. There are, however, multiple 

lines of evidence that the ecosystem changes induced by dreissenids are present in Lake Simcoe. 

There has clearly been a diversion of energy and suspended materials to the benthos as predicted 

by the near shore shunt hypothesis (e.g., Hecky et al. 2004). In particular, significant increases in 

water clarity (e.g., Eimers et al. 2005) and the dramatic increase in macrophyte cover in Cook’s 

Bay (Chapter 7) is attributable to the filtering activity of dreissenid mussels. Increased abundance 

and biomass of benthic invertebrates (e.g., Kilgour et al. 2008) suggests an increase of food 

resources which cannot be linked to increased nutrient loading (e.g., Winter et al. 2007), but 

would be consistent with a diversion of energy flow to and the retention of nutrients in the 

benthos. 
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Chapter 7 

Submerged Aquatic Vegetation in Cook’s Bay, Lake Simcoe: Assessment 

of changes in response to dreissenid mussel invasion. 

7.1 Overview 

 A high frequency echo sounding method was employed to assess the extent of 

macrophyte growth in Cook’s Bay, Lake Simcoe during the late summer of 2006 and 2007. 

Results from this study are compared against historical hydroacoustic surveys in Cook’s Bay 

conducted prior to major P loading reduction efforts (1984) and before the period of dreissenid 

mussel invasion (1987). While the historical studies suggest some expansion of macrophytes in 

response to a moderate increase in water clarity, the results of the recent surveys reveal a major 

increase in macrophyte cover, extending to a depth of ~ 10 m, into the middle portion of the Bay. 

Tissue nutrient content of the macrophytes growing in the Bay did not show major changes when 

compared to historical levels except in shallow waters (< 5 m) suggesting a possible relaxation of 

light limitation. These results suggest that macrophytes have responded to the large increase in 

water clarity mediated by dreissenid mussel grazing. While bio-deposition of particulate matter 

may be important in more nutrient poor environments, the historically enriched sediments of 

Cook’s Bay appear to be sufficient to maintain excessive macrophyte biomass. These results are 

comparable to other shallow macrophyte dominated systems and indicate dreissenids as strong 

regulator of water clarity.  
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7.2 Introduction 

Freshwater macrophytes are a diverse group of aquatic plants that include charophytes, 

bryophytes and angiosperms that comprise a major component of submerged aquatic vegetation 

(SAV) in aquatic ecosystems (Chambers et al. 1999). The importance of SAV to ecosystem 

processes is particularly evident in shallow lakes and embayments where SAV can play a 

significant role in structuring not only the physical and chemical environment, but also the 

biological components of aquatic ecosystems (Carpenter and Lodge 1988). For example, dense 

beds of SAV can attenuate water flow (Fonseca et al. 1982), enhancing the trapping and 

deposition of sediment and other particulates (Fonseca and Fisher 1986). SAV can alter the 

thermal structure by shading and affect dissolved oxygen levels in the water column through 

photosynthesis and respiration (Moore et al. 1994). SAV can provide substrate for epiphytic algae 

(Cyr and Downing 1988), and zooplankton and small fish can avoid predation by hiding within 

the plant canopy (Crowder and Cooper 1982, Timms and Moss 1984). Extensive SAV coverage 

in lakes therefore has the potential to affect not just biogeochemical cycling of nutrients and 

dissolved gases, but also the dynamics of pelagic and benthic food webs. Consequently, a change 

in the quantity and extent of SAV cover has the potential to affect significant change on the entire 

aquatic ecosystem (Carpenter and Lodge 1988). 

The distribution of SAV in aquatic ecosystems is fundamentally determined by the 

complex interplay of numerous abiotic and biotic factors (Lacoul and Freedman 2006). These 

include; light quality and quantity (Chambers and Kalff 1985), nutrient availability (Barko and 

Smart 1998), water temperature, pH and alkalinity, sediment composition (Hutchinson 1975), 

disturbance by benthivorous fish (Painter et al. 1988), wind and ice scour (Crowder and Painter 

1991), losses to herbivory (Søndergaard et al. 1996) and inter-specific competition for resources 

(Madsen et al. 1991). The quantitative role of SAV in lakes is largely coupled to their areal 

distribution, which is regulated by the morphometry of the lake and the maximum depth of 

colonization (Middelboe and Markager 1997). Previous studies have largely confirmed that the 

maximum depth of colonization is strongly linked to water clarity (Chambers and Kalff 1985, 

Hudon et al. 2000) thus changes in water clarity have the potential to expand or contract the 

extent of SAV cover (Sand-Jensen et al. 2008).  

In lakes or embayments shallow enough to support SAV growth, nutrient enrichment 

generally leads to a decline in water clarity and subsequent loss of SAV (Sand-Jensen et al. 

2008). In contrast, nutrient reductions can lead to improvements in water clarity (Jeppesen et al. 

2005) though in some cases high levels of turbidity may remain; fueled by internal nutrient 
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loading or re-suspension of unstable sediments by benthivorous fish or wind and wave action 

(Scheffer 1990). Increased light availability in lakes is also attributed to filter feeding by the 

invasive dreissenid mussels (Dreissena polymorpha and D. bugensis; Karatayev, et al. 1997, 

Karatayev et al. 2002). Consequently, it is expected that the increased water clarity associated 

with dreissenid mussel invasion will lead to increased coverage of SAV in invaded lakes 

(Karatayev et al. 1997). Furthermore, the egestion of filtered particles and partially digested 

phytoplankton that remain bound in mucus can settle to the bottom, thus potentially enriching the 

benthos and promoting the growth of SAV or benthic algae (Vanderploeg et al. 2002, Hecky et al. 

2004).  

Studies in North American lakes have for the most part been unable to separate changes 

in water clarity related to nutrient reductions, and those attributable to dreissenid mussel filtration 

(but see Zhu et al. 2006) partly because of the paucity of data for the time period after P controls 

but prior to dreissenid invasion, and the fact that mussels invaded while nutrient reductions were 

still being manifested. Assessing the response of SAV in these ecosystems is further complicated 

by the lack of historical data on SAV distribution for the appropriate time periods (Zhu et al. 

2007). Much like the Great Lakes, Lake Simcoe has been subjected to a long history of 

anthropogenic activity that has affected water quality, primarily through cultural eutrophication 

(Winter et al. 2007). Water quality problems in the lake since the 1970s have been attributed to a 

three fold increase in phosphorus (P) loading from pre-settlement rates (Evans et al. 1996). 

Recruitment failure of the native cold water fish populations and excessive growth of 

macrophytes and algae are among the principal concerns since water related recreational activities 

are of major economic importance to the region, bringing in nearly 200 million per year to the 

local economy (LSEMS 2003). These symptoms of eutrophication and potential economic losses 

prompted the development of the Lake Simcoe Environmental Management Strategy (LSEMS) in 

1980 with the objective of reducing P loads to the level necessary to re-establish a naturally 

reproducing cold water fishery and mitigate aesthetic effects (Eimers et al. 2005).  

In contrast to areas in the Great Lakes, Lake Simcoe provides a unique opportunity to 

compare changes in SAV cover through time periods associated with P loading reductions and the 

subsequent dreissenid mussel invasion. Dreissenid mussels were first observed in Lake Simcoe 

during 1993 but did not become widespread until 1995 (Eimers et al. 2005). Although dreissenid 

mussels preferentially attach to hard substrate (Karatayev et al. 1997), their ability to colonize 

soft substrates and macrophytes has also been documented (Haltuch et al. 2001). While early 

invasion studies estimated abundances of > 100,000 m-2 in Lake St. Clair (Griffiths et al. 1991) 

and European lakes (Musko and Bako 2005), estimates of dreissenid abundance on macrophytes 
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in Cook’s Bay are closer to 2000 m-2 (Ozersky et al. submitted). Long term monitoring data on 

water chemistry and general physical limnological conditions have been routinely collected for 

over 20 years by the Ontario Ministry of Environment (e.g. Eimers et al. 2005), and provide 

context for historical changes to lake conditions during these periods. Prior hydro acoustic 

surveys in Cook’s Bay, the first in 1984 (baseline) and second in 1987 (P reduction period, pre 

dreissena period) provide an estimate of SAV cover and nutrient content within the bay and can 

therefore serve as comparative points relative to the current distribution of SAV (2006 and 2007).  

In this study, the distribution of SAV in the inner portion of Cook’s Bay is assessed using 

a high frequency hydro-acoustic method (see Sabol et al. 2002a). These results are compared to 

the prior hydro-acoustic surveys in 1984 (Neil et al. 1985) and 1987 (Neil et al. 1991) to evaluate 

the changes in SAV cover during these three time periods. Additionally, the nutrient content of 

the SAV assemblage in 2006 is compared to nutrient content of the SAV assemblage in1984 and 

1987 to assess the potential for dreissenid bio-deposits to enhance the nutrient content of the 

sediments in Cook’s Bay.  
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7.3 Materials and Methods 

7.3.1 Study Location  

 Cook’s Bay is a shallow, soft bottom bay located at the south end of Lake Simcoe (Figure 

7.1). The maximum depth of Cook’s Bay approaches 15 m in the outer part toward the main basin 

of the lake, but much of the inner bay is characterized by depths < 6 m (Millard and Veal 1971; 

Figure 7.1). Most of the major rivers in the Lake Simcoe basin rise in the interlobate moraine 

south of Lake Simcoe and drain northward through clay plains, drumlin fields and large areas of 

organic soils (Johnson and Nicholls 1988). Agriculture is the dominant land use in the Lake 

Simcoe basin (43%; Eimers et al. 2005) consisting of mainly livestock and crop production 

(Winter et al. 2002). The Lake Simcoe catchment is also experiencing rapid urban growth (~ 8 

km2 per year since 1985; Winter et al. 2002). Cook’s Bay receives drainage from the largest river 

in the Lake Simcoe basin (east and west branches of the Holland River). Treated sewage effluent 

from the towns of Aurora and Newmarket was diverted southward in mid 1984 via the York – 

Durham trunk sewer to the Duffins Waste water treatment plant on Lake Ontario, but urban 

runoff from these areas continues to flow northward through the east Holland River, to Cook’s 

Bay. The largest area of organic soils along the lower Holland River was dyked and drained in the 

1930s as a series of polders occupying ~ 30 km2 (Johnson and Nichols 1988). Before the 1930s, 

the Holland River meandered though a large marsh but flow is now diverted to the Holland River 

by a series of canals (Figure 7.1). Water within the Holland River has historically been high in 

phosphorus (Nicholls and MacCrimmon 1975) and recent data indicate that the concentration of P 

in the Holland River remains well above the Provincial Water Quality of Ontario guideline of 

0.03 mg L-1 on a regular basis (Winter et al. 2007). Consequently water quality data indicate that 

outer Cook’s Bay remains in the mesotrophic range (seasonal average TP ~ 13 µg L-1) while the 

lower part of Cook’s bay remains nearly eutrophic, with TP often exceeding 20 µg L-1 (Eimers et 

al. 2005). 

7.3.2 Acoustic Surveys and Data Processing 

Acoustic surveys of Cook’s Bay (Figure 7.1) were conducted on 9 August 2006 and 24 

August 2007 on a 21 ft aluminum boat equipped with a BioSonics Inc. (Seattle WA, USA) DTX 

deck unit and two single beam transducers (430 kHz, 10.2° full beam angle, SL=213 dB re 1 µPa 

@ 1m and 120 kHz, 7.1° full beam angle, SL 216 dB re re 1 µPa @ 1m). Both transducers were 

mounted on adjustable aluminum poles attached to the side of the vessel with welded brackets. 
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Transducers were submerged ~ 30 cm below the surface of the water. Survey transects were 

aligned across the bay from east to west, with an average inter transect spacing of 150 to 170 m. 

The transducers were configured to ping a rate of 5 Hz, with a pulse width of 0.1 ms for the 430 

kHz (standard for acoustic sensing of vegetation; Sabol et al. 2002a) and a pulse width of 0.4 ms 

for the 120 kHz transducer. Vessel speed was kept between 1.5 and 2.3 m sec-1, separating the 

differentially corrected GPS reports from a JRC DGPS212 (Japan Radio Company) receiver by 3 

– 5 m. Acoustic data were processed using the commercial software EcoSAVTM v1.0, after 

adjusting analysis parameters for proper receiver sensitivity (BioSonics Inc. 2001) and increasing 

the depth of maximum plant growth from 7 m to 12 m. Inspection of the echograms from Cook’s 

Bay confirmed two common problems inherent to acoustic detection and characterization of 

vascular macrophytes (Sabol et al. 2002b); the first is due to areas of very dense vegetation that 

obscure the acoustic signal from the lake bottom. In this case, the peak of acoustic backscatter 

intensity falls within the plant canopy rather than at the bottom-water column interface. Because 

EcoSAV v1.0 functions as a bottom-up algorithm and classifier, the depth at which the peak 

backscatter occurs is therefore incorrectly indentified as the bottom. The second problem 

condition occurs when areas with very tall vegetation (i.e. vegetation growing close to or at the 

surface) are encountered. In this case, EcoSAV v1.0 classifies these pings as excessive noise in 

the water column, as the algorithm expects a minimum noise-free distance of ~ 18 cm between 

the transducer near field and the top of the plant canopy (Sabol et al. 2002b). 

  To evaluate the degree to which these conditions contaminated the acoustic data, 

preliminary processing was conducted using the default settings for EcoSAV v1.0. Output from 

the default run of EcoSAV v1.0 was then compared against the corresponding echogram file, and 

ping sequences where either of the above problem conditions was encountered were identified, 

recorded and removed from the data set. The most common form of failure was loss of the bottom 

signal due to dense macrophyte growth. Files where the problem conditions were identified were 

reprocessed using the same settings, but the trailing edge feature (B1; BioSonics 2001) was set to 

a lower backscatter intensity threshold (-55 dB from -50 dB).  This enabled the EcoSAV v1.0 

algorithm to search deeper in the echo envelope and place the bottom depth closer to the actual 

bottom depth, rather than placing the declared bottom within the plant canopy. Reprocessed 

output files were compared against the previous output files and the associated echogram. If the 

re-classified bottom depth was within ± 0.1 m of the observed depth for the ping sequences on the 

echogram and the preceding bottom depths, these pings were added back to the final data set 

otherwise they were deemed unrecoverable. Using this method, the number of discarded pings 

was reduced from 11.1% and 12.6% to 4.9% and 5.4% (2006 and 2007 respectively).  
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7.3.3 Geostatistical Analysis 

The recent availability of high resolution data from acoustic systems has allowed 

exploration of various methods to interpolate between data points to provide a surface of 

predicted values. Guan et al. (1999) and Valley et al. (2005) have evaluated different methods and 

concluded that kriging provides the most robust method for regularly spaced data collected using 

acoustic methods. The prediction of spatial variation from point measurements over surface areas 

requires some realistic interpolation techniques. Deterministic and geostatistical methods are the 

two main groupings of interpolation techniques to produce a continuous surface from point 

measurements. Deterministic interpolations create surfaces from measured points using 

mathematical functions which are based on the extent of similarity (inverse distance weighting) 

or the degree of smoothing (radial basis functions). Geostatistical methods (i.e. kriging) utilize 

both the mathematical and statistical properties of the measured points (Isaaks and Srivastava 

1989). For a detailed and in depth discussion of geostatistics and the underlying theory, the reader 

is referred to Journel and Huijbergts (1978) and Isaaks and Srivastava (1989). The basic 

assumption required for geostatistics is that the process under study is stationary, and that the 

observed values are simply one of many possible random realizations of the process (Webster and 

Oliver 2001). In addition, spatial autocorrelation must be present (i.e. one point should be able to 

provide some information about neighboring points).  

The initial step in geostatistical analysis is the construction of the semivariogram. The 

semivariogram is a graphical representation of half the average squared variance between sample 

points as a function of separation distance (h) and is defined as 
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where γ(h) is the semivariance for lag (h), Z(xi) is the measured value at location xi, Z(xi+h) is the 

measured value at location (xi+h) and N(h) is the total number of paired samples for a given lag 

(h) (Cressie 1991). The experimental semivariogram has important characteristics that reveal the 

kind of spatial variation present in an area, for the variable under study. Generally, the 

semivariance increases as the lag distance (h) increases to a maximal value, after which the 

semivariance is frequently flat. This lag distance is known as the range and it represents the limit 

of spatial autocorrelation. By definition, γ(h)=0 when h=0, however any smooth curve that 

approximates values of γ as h approaches 0 is unlikely to pass through the origin. This value (i.e 

when h=0) is termed the nugget variance. The nugget variance is a combination of measurement 

error and variation at distances smaller than the shortest sample spacing which cannot be 
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resolved. The value of γ where γ reaches its maximum is called the sill (C), and represents the 

maximum semivariance. 

 To describe the spatial variation at distances other than just the lag distances, a 

mathematical function is fit to the experimental semivariogram data, usually using weighted least 

squares (Cressie 1991). Two of the three more common models were used with the acoustic data: 

the spherical and exponential model. These two models in terms of the semivariogram are given 

in equation (2; spherical model) and equation (3; exponential model); 
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 where C is the sill of the variogram that represents the maximal variation (Cs for the spherical 

model and Ce for the exponential model), α is the range of the variogram beyond which data are 

no longer autocorrelated (αs and αe as before), and C0 is the nugget effect. A variogram model can 

also be nested, i.e. it can be a combination of two or more component models such as nugget and 

exponential. Most variograms are nested in this manner, although more complex models (i.e. a 

double spherical with nugget) are sometimes used. Once the semivariogram function has been 

defined and fit, it can be used to weight predictions in the kriging system of equations to yield the 

best linear unbiased estimator of the target variable. For more information on the various forms of 

kriging the reader is referred to Webster and Oliver (2001). 

 Exploratory data analysis was conducted on raw acoustic data before variogram modeling 

and analysis. Strong relationships between percent cover and bottom depth were observed for 

data collected in Cook’s Bay. A non-linear, confounding effect of depth was also observed for the 

height variable from Cook’s Bay. I therefore performed kriging with external drift for the percent 

cover variable with depth as a predictor, and used regression kriging for the height variable with 

depth as a predictor. To remove the non-linear depth trend from the height variable, I followed a 

similar procedure outlined in Valley et al. (2005). Briefly, a non-parametric regression smoother 

(generalized additive model; GAM) using the default settings in the mgcv package (Wood 2008) 

in the statistical software R (R Core Development Team 2007) was used to determine the trend in 

macrophyte canopy height with depth. The smoothed relationship between depth and height was a 

9th order polynomial (Figure 7.2). Trend fits for depth were highly significant in both years (Chi 

square; p<0.0001) and explained greater than 50% of the variation in plant height (adjusted r2, 
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0.599 and 0.655 in 2006 and 2007 respectively). Residuals from the macrophyte height vs depth 

relationships were kriged using block kriging (following the framework of Hengl et al. 2004) and 

the trend was added back to the interpolated residuals to provide the grid of plant height. 

7.3.4 Macrophyte sampling and internal nutrient analyses 

 Qualitative samples of macrophytes were obtained at 26 locations in Cook’s Bay during 

the acoustic survey on 9 August 2006 by snorkeling and with the use of a rake in deep water 

(Figure 7.1). Samples were placed in large garbage bags and stored in coolers until returned to the 

laboratory. Upon return to the lab, samples were washed to remove debris, sediment and other 

organisms (including attached dreissenid mussels) and sorted for identification to genus and 

species before drying at 65 °C for one week. Dry tissue was then ground using a ball and mill 

grinder prior to analysis. Homogenized sub-samples were then combusted at 450 °C for 1 hour 

and then autoclaved for 30 minutes in distilled water with 4% potassium persuphate solution 

added to a final concentration of 0.16 %. Following digestion, solubilized P was measured 

spectrophotometrically using the molybdate blue method (APHA 1998). Tissue C and N content 

was assayed using an elemental analyzer (CEC-440, Exeter Analytical, N. Chelmsford, MA) 

7.3.5 Estimation of macrophyte biomass 

Estimation of biomass is a commonly desired endpoint in surveys of benthic vegetation 

(Vis et al. 2003). Previous attempts at estimating standing crop of macrophyte biomass from 

echosounder data have generally followed two approaches; the first relies upon the range 

information (e.g., estimated height of the macrophyte canopy) to predict the standing crop of 

macrophyte biomass (Duarte 1987). More recent efforts have attempted to exploit characteristics 

of echosounder data stored in digital format, and allow for computation of standard echo 

integration techniques (e.g., Sabol et al. 2002a) or other measures of echo intensity (e.g., Haga et 

al. 2007). Yet, these newer approaches have not resulted in significant improvements, perhaps 

due to different acoustic reflectivity from different species of plants (e.g., Hoshauva et al. 2008), 

presence of epitphytic organisms (Sabol et al. 2002a) or acoustic shadowing at very high biomass 

(Haga et al. 2007). I therefore chose to use the method outlined by Duarte (1987), utilizing the 

estimates of canopy height that can be related to the growth form of the species present, and 

subsequently the biomass density (Duarte 1987).  

The biomass density (g m-3) of macrophytes can vary appreciably in mixed assemblages 

of freshwater macrophytes and has been demonstrated to depend on the growth form of 

macrophyte species (Duarte and Kalff 1987). The relationship; 
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 Biomass = -343 + 37.7[height]3 + 953[growth form x height], r2=0.89  (7.4) 

 developed by Duarte (1987) for temperate lakes relies on division of macrophyte species into 3 

classes based on the growth form of the dominant species. Tall canopy forming species (e.g., 

Myriophyllum spicatum, Potomogeton crispus, Potomogeton richardsonii) that grow to the 

surface to flower have some of the lowest biomass density values and are classes as growth form 

1 (Duarte 1987). Intermediate biomass density is found in species that produce relatively short 

understory and develop flowers that float to the surface on a short peduncle (e.g., Utricularia sp., 

Vallisneria americana) and these are classed as growth form 2 (Duarte 1987). The class with the 

highest biomass density (growth form 3), include the species with submerged flowers (e.g., 

Ceratophyllum demersum, Chara sp., Elodea canadensis) (Duarte 1987).  

Two approaches were used to provide a spatially explicit estimate of macrophyte 

biomass. I used the growth form classification scheme suggested by Duarte (1987) for species of 

plants that were identified during this study (via snorkel sampling, n=6) and a second study that 

took place during 22-23 August 2006 where a ponar grab was used (Stantec 2006; n=121). The 

first approach was based on the rationale that the environmental conditions determine the growth 

form of the dominant species (Chambers 1987) and that echosounder tracings can estimated the 

growth form of the dominant species (Duarte 1987). Provided that nutrient content of the 

sediments is sufficient, in temperate latitudes, tall canopy producing species replace shorter 

understory forms as depth increases and the shorter understory forms become light limited 

(Chambers 1987). I set arbitrary limits on canopy heights for each growth form class; growth 

form 3 (most dense) was assigned to canopies < 0.5 m, growth form 2 (moderate biomass 

density) was assigned to canopies between 0.5 and 1.5 m in height, and class 1 (lowest biomass 

density) was assigned to canopies > 1.5 m in height. The equation specified by Duarte (1987) for 

mixed assemblages was then used to estimate the wet mass of macrophytes in each grid cell as a 

function of kriged canopy height and the assigned growth form. Wet mass was converted to dry 

mass by multiplying by a wet/dry conversion factor (0.162) empirically derived from the data in 

Stantec (2006). 

The second approach consisted of a more complex geostatistical procedure called 

sequential indicator simulation.  As before, the data provided in Stantec (2006) formed the bulk 

of the input data. For the sites within Cook’s Bay sampled by Stantec (2006), the dominant 

growth form class was assigned to a location by determining the growth form of the species that 

contributed to the total biomass at each site (using the guidelines in Duarte 1987).  The generation 

of maps depicting vegetation species or types often display non-overlapping polygons of different 

classes indicating the presence or absence of species (Miller and Franklin 2002). Such maps can 
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also be viewed as continuous distributions mapped with a given probability of occurrence if 

indicator transforms are used (Miller and Franklin 2002). Use of the more common geostatistical 

methods described above can be problematic when mapping species distributions (or in this case, 

growth form of the dominant species) because they assume positive autocorrelation between 

nearby observations to interpolate nearby values at un-sampled locations. This may be 

problematic for delineating vegetation because the ways in which SAV reproduces or propagates 

may not necessarily produce smooth surfaces. For example, although asexual or clonal 

reproduction via rhizomes or tubers is a common feature in some macrophytes such as Vallisneria 

sp. (Barrat-Segretain 1996) that theoretically might produce a smooth surface, the ability of many 

macrophytes to reproduce via fragmentation of above ground tissues, overwintering turions or 

seeds probably will not produce a smooth surface of species distributions as these are subjected to 

dispersal by water currents and biota (Lacoul and Freedman 2006).  

To generate such maps, indicator kriging (IK; a non-linear kriging variant; see Goovaerts 

2001) is often used. IK aims to evaluate the probability for the target variable to exceed a defined 

threshold (or in this case, the presence or absence of a particular growth form) at a specific 

location. However, IK also has a smoothing effect and the conditional cumulative distribution 

function (ccdf) obtained by IK can only provide a measure of local uncertainty related to a single 

location, while the spatial uncertainty (multi-location uncertainty) of mapping at several locations 

simultaneously cannot be assessed using IK (Juang et al. 2004). Sequential simulation, also called 

stochastic interpolation was proposed to overcome this limitation inherent in IK (Deutsch and 

Journel 1998). The simulation methods are based on probabilistic models; systematically adding a 

stochastic noise component into the kriging model (Juang et al. 2004). Unlike kriging, where the 

focus is on minimizing the error variance, simulation focuses on reproduction of statistics such as 

the sample semivariogram and the honoring of original data values (Goovaerts 2001). 

Consequently, realizations generated by sequential simulation look more realistic and these are an 

effective way of describing the variability in spatial fields (Juang et al. 2004). Sequential 

simulation yields not one but n numbers of realizations, each of which is an equally likely 

outcome.  

The sequential simulation method involved the following steps. The first step involves 

coding each growth form observation into a vector of indicator values by indicator transforms as 

follows:  

3,2,1
,0

)(,1
);( =



 =

= c
otherwise

zxz
zxI

c

c       (7.5) 



 

  

 

240 

Where zc is a desired classification. In this study the classification was simply the presence or 

absence of the particular growth form in question (1, 2 or 3). For each growth form, the 

experimental indicator semivariogram was computed as above and a valid semivariogram model 

(e.g., spherical or exponential) fit and the parameters of the fitted model determined – the nugget, 

the sill and the range.  Next, the prior distribution estimation is done by defining a random path to 

unsampled locations and visit each location to simulated only once. At each unsampled location, 

the indicator variogram is used to estimate the probability of the presence of each growth form. 

)]|,([]|)([Pr]|,[ nzxIEnzxzobnzxF ccIKc ===      (7.6) 

 where F(x,zc|n) is the ccdf of Z(x)=zc and E[I(x,zc|n)] is the expected value of I(x,zc) which is 

obtained via indicator kriging. The prior distribution is then built with calculated probability of 

growth form presence. All original data and values that are simulated previously within a local 

neighborhood are included in the simulation. Multiple realizations are produced, each following a 

random path representing equiprobable spatial distribution of growth form presence. Therefore 

numerous realizations can be used to evaluate the variation and uncertainty of the 

presence/absence of each growth form following: 

m
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 where the sequential indicator simulation was carried out m times and n[z(x)] is the number of 

realizations where each growth form was simulated to be present. For the generation of indicator 

growth form maps, 500 sequential indicator simulations were conducted using a local 

neighborhood determined by the range of the indicator semivariogram. Each simulation was then 

compiled and converted to a single map representing the probability of occurrence for each 

growth form in each grid cell. A composite growth form map was then created by assigning the 

growth form with the highest probability of occurrence to the grid cell in question. Sequential 

indicator simulation was performed using the gstat package (Pebesma 2004) in the statistical 

software ‘R’ (R Core Development Team, 2007). Biomass was then subsequently computed using 

the Duarte (1987) equation as above. 

.



 

  

 

241 

 

Figure 7.1. Map showing the location of Cook’s Bay in Lake Simcoe. Zoomed rectangle 
indicates the approximate location of the acoustic surveys. Bathymetry of Cook’s Bay was 
generated using universal kriging with northing as the covariate and is shown in the zoomed 
portion. Note that the inner portion of the bay (blank) is too shallow for vessel passage and is 
characterized by heavy growths of emergent vegetation.(") denotes the locations of rake based 
macrophtye sampling from this study and (,) denotes the locations of ponar samples taken by 
Stantec (2006).
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Figure 7.2. Boxplots of acoustically estimated plant height (binned into 1 m depth intervals) in 
Cook Bay in 2006 (a) and 2007 (b). Black lines are the fitted GAM models for each year.
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7.4 Results 

7.4.1 Acoustic Surveys – Patterns of macrophyte growth and biomass in Cook’s Bay  

Empirical semivariograms for percent cover and stand height residuals and indicator 

semivariograms for the three different growth form classifications are shown in Figure 7.3 a-g 

and summarized in Table 7.1. Anisotropy was not detected when directional semivariograms 

were computed, therefore the omnidirectional semivariograms were used for kriging. Much of the 

spatial dependency (1 – C0 / C0 + C) in the residuals for percent cover and stand height was 

accounted for by the semivariogram models chosen (Table 7.1). Sill and range parameters for 

percent cover and canopy heights in both years were comparable (Table 7.1) and indicate that the 

pattern of macrophyte cover and canopy height was relatively consistent between 2006 and 2007. 

In Cook’s Bay, macrophyte growth covered nearly 100% of the bottom out to a depth of 

8 m (Figure 7.4a and b). Some areas near the shoreline near the southeast end of the bay had 

negligible macrophyte cover, however these areas are close to a heavily developed shoreline that 

experiences excessive boat traffic (personal observation). In general, taller (e.g., > 1.5 m), canopy 

forming species occupied depths between 4 and 8 m, with shorter, understory species colonizing 

shallow depths (Figure 7.4c and d). The maximum depth where I observed a plant-like acoustic 

signature was 10 m, and while underwater video indeed confirmed macrophytes at these depths, I 

cannot confirm whether the plants were rooted here or simply transient material that had been 

uprooted and drifted to these locations.  

The majority of the locations sampled by Stantec (2006) (74 %) were dominated by 

species of class 3 (e.g., highest biomass density), even in relatively deep water. Samples 

dominated by class 1 species were considerably less (14 %), and samples dominated by species of 

class 2 comprised a mere 6 %. Indicator semivariograms for macrophyte growth forms (Figure 

7.3 e -g) displayed ranges of autocorrelation on the range of ~ 500 m (Table 7.1) and, at least for 

growth form 1 and growth form 3 displayed comparable nugget and sill values. The low spatial 

dependence observed for these indicator semivariograms is suggestive of a relatively connected 

pattern of autocorrelation (Figure 7.4 e-g). The absence of a nugget value for growth form 2 

likely reflects the low frequency of this growth form as a dominant component in the data set.   

Estimates of standing crop as dry biomass using the first method (using acoustically 

estimated canopy height to classify the dominant growth form) resulted in a total dry biomass of 

3706 T for the area surveyed (data not shown). Expressed on a per m2 basis, this is equivalent to 

186 g m-2. Estimated standing crop from the indicator simulation maps of species growth form 
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yielded a total of 6028 T for the same area (Figure 7.4h). This is equivalent to 303 g m-2 on an 

average areal basis.
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Figure 7.3. Semivariograms and fitted models for percent cover residuals in Cook’s Bay in 2006 (a) and 2007 
(b) and for height residuals in 2006 (c) and 2007 (d) 
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Figure 7.3. cont.. indicator semivariograms and fitted models for growth form 1 (e); growth form 2 (f); and growth 
form 3 (g) in Cook’s Bay. 
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Figure 7.4. Kriged maps of percent cover August 9 2006 (a) and August 24 2007 (b) and stand height August 9 2006 (c) and August 24 2007 (d) 
for acoustic surveys in Cook’s Bay.  

 



 

  

 

248 

              

Figure 7.4 continued e) probability of occurrence for growth form 1, f) probability of occurrence for growth form 2, g) probability of occurrence 
for growth form 3, and h) estimated biomass from the growth form composite map. 
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7.4.2 Comparison of current macrophyte distribution to historical macrophyte distribution 

The historical surveys conducted in 1984 and 1987 employed an analog echosounder and 

data was recorded on chart paper rather than stored digitally on a computer as ours was. 

Comparison to the historical data is therefore limited by interpretation of chart paper recordings. 

In the previous surveys, the authors categorized macrophyte cover as “continuous” or 

“discontinuous”. Based on inspection and interpretation of these chart recordings and the digital 

echograms and subsequent classifications for these surveys, I approximated the “continuous” 

cover tracings to be equivalent to > 80 % cover as determined by EcoSAV v1.0, and 

“discontinous” to be < 80% cover as determined by EcoSAV v1.0.  

From 1984 to 1987, the increase in “continuous cover” was modest (~ 16 %) and 

comparable to the increase in “discontinuous” cover (~ 24 %) observed between the two years 

(Table 2). In total, the estimated increase in colonized area was ~ 20 % (Table 7.2). From 1987 to 

the years 2006 and 2007, “continuous cover” (e.g., >80% cover) increased dramatically (mean 

107 %) while “discontinuous cover” (e.g., < 80% cover) increased only by 21 %. Combined, the 

total area covered by SAV in Cook’s Bay has increased ~ 65 % since 1987 (Table 7.2). 

7.4.3 Macrophtye assemblage and tissue nutrients 

 Rake and snorkel sampling identified ten different species in Cook’s Bay. The ten species 

were; coontail (Ceratophyllum demersum), Eurasian milfoil (Myriophyllum spicatum), wild 

celery (Vallisneria americana), common waterweed (Elodea canadensis), flat stemmed 

pondweed (Potamogeton zosteriformis), clasped leaf pondweed (Potamogeton richarsonii), big 

leaf pondweed (Potamogeton ampifolus), common bladderwort (Utricularia vulgaris), the 

macroalgae (Chara sp. and Cladophora sp.), and one unidentifiable (Potamogeton spp). The most 

commonly observed species from sampling was Ceratophyllum demersum, appearing in 50 % of 

the samples across a range of depths. Myriophyllum spicatum was the second most commonly 

observed species, (46 %) followed by Elodea canadensis and Vallisneria americana at 25 % 

each. Other species generally had less than 10 % occurrence in the rake samples.  

P and N concentrations in macrophyte tissue displayed positive correlations with depth 

(Pearson correlation coefficient, r = 0.56 and 0.62 for P and N respectively in 2006; Figure 7.5), 

perhaps indicating that macrophytes growing in shallow waters may no longer be light limited, 

but light limitation in deeper water (e.g., > 5m depth) may persist. Although a negative 

correlation did exist between depth and % N and % P for samples from 1984, the samples taken 

from a depth of 1 m in 1984 were sampled directly at the mouth of the Holland River, and tissue 
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nutrient content is probably biased high as a result of the high nutrient loading and turbid light 

regime. Eliminating these samples removes the negative correlation associated with depth, but 

significant positive correlations with depth after are still lacking. %P (as AFDW) was 

significantly lower in 2006 than in 1984 (t-test, t=-2.84, p<0.005), but %N (as AFDW) was 

equivalent (t-test, t=0.59, p<0.6). The N:P ratios for 2006 samples are in the same range as those 

observed in 1984, but were significantly higher than those observed in 1984 (t-test, t=-2.95, p 

<0.005). N:P in 2006 were generally above the limit suggested by Duarte (1992) to indicate P 

limitation for freshwater macrophytes (Figure 7.6).  
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Table 7.1. Summary of semivariogram model parameters for the nugget (C0), sill (C), and range (α) and model denotes the form of 
semivariogram model fitted to the residuals where “Exp” is exponential form. 

Location Variable C0 C α %Sp Model 

9 August 2006 Cook’s Bay % Cover 130.00 313.81 313.43 71 % Exp 
 Height 0.043 0.067 228.83 61 % Exp 

 Cook’s Bay Form 1 0.079 0.056 711.59 41 % Exp 
  Form 2 0 0.074 485.27 100 % Exp 
  Form 3 0.118 0.076 564.95 39 % Exp 
24 August 2007 Cook’s Bay %Cover 89.06 244.20 281.52 73 % Exp 
  Height 0.016 0.060 180.62 79 % Exp 

 

 

Table 7.2 Summary of the area covered by macrophytes in Cook Bay as estimated by hydroacoustic surveys during 1984, 1987 and 2006 and 
2007. Discontinuous cover is defined as cover < 80%, while continuous cover is defined as > 80%. Mean tissue P and N are averages for all 
samples taken within the Bay. 

Year Discontinous Area (km
2
) Continuous Area (km

2
) Total Area (km

2
)   P (% AFDW)  N (% AFDW) 

1984 4.46 5.07 9.53 0.36 2.87 
1987 5.51 5.88 11.39 0.21 2.20 
2006 6.86 12.79 19.65 0.29 2.85 
2007 6.42 11.49 17.91 ND ND 
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Figure 7.5. a) %N vs depth and b) %P vs depth for macrophytes collected in 1984 (red) and 2006 
(blue) in Cook Bay. Pearson correlation coefficents are given for relationships in each year. 
Species names as in Figure 7.6. 
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Figure 7.6 N:P molar ratio as a function of % tissue P (AFDW) for macrophyte samples collected 
in 1984 (red) and 2006 (blue). Solid line is N:P of 24, suggested by Duarte (1992) to indicated P 
limitation. 
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Table 7.3 Summary of studies on lake or embayments containing macrophytes that were colonized by dreissenid mussels. Change in parameters 
(e.g., change in TP, light penetration and macrophyte cover) refers to the percent change in mean parameter values from the time period post P 
control but prior to dreissena invasion to post dreissena invasion.  

System Change in TP Change in light 

penetration 

Change in macrophyte 

cover 

Reference 

Oneida Lake, NY -43 % +35 % + 23 % Zhu et al. 2006 
Bay of Quinte, ONT -25 % +60 % +260 % Sefried 2002 
Chaumont Bay, NY ND ND +35 % Zhu et al. 2007 
Sodus Bay, NY ND ND +198 % Zhu et al. 2007 
Saginaw Bay, MI ND No change to + 60 %b +15 % Skubbina et al. 1995 
Cook’s Bay, ONT dNo change to -35% c+30 to + 60 % +65 % This study 
aND implies no data for the time period, bbased on changes over a number of different transects, cNicholls 1998, dEimers et al. 2005.
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7.5 Disscussion 

Information on the areal distribution and biomass of SAV are essential for the 

monitoring, management and understanding of shallow aquatic ecosystems (Vis et al. 2003). 

Large scale synoptic assessments are becoming increasingly common in the literature, and are 

helpful for assessing and reconciling the spatial and temporal heterogeneity inherent in SAV 

communities (Vis et al. 2003, Zhu et al. 2007). Vis et al. (2003) review a number of these 

methods, and I therefore refrain from discussing the benefits and drawbacks of different 

approaches, but rather focus on the interpretation of this data. In this study, I used a combination 

of echo sounder surveys and geostatistical methods to assess the degree of SAV cover and to 

estimate the standing crop of SAV in Cook’s Bay, Lake Simcoe.  

Acoustics have been used to assess SAV distribution both in other systems (e.g., Fortin et 

al. 1993, Sabol et al 2002a, Winfield et al. 2007, Zhu et al. 2006, 2007, Istanovics et al. 2008) and 

in Lake Simcoe (e.g., Neil et al. 1985,1991), yet few studies have examined the wealth of 

information collected in a geostatistical framework to create accurate maps that can be used to 

make informed decisions regarding the management and monitoring of SAV (but see Guan et al. 

1999, Valley et al. 2005). One of the drawbacks of the acoustic method is that it cannot 

adequately sample transition areas where the water depth is too shallow for either vessel 

navigation or the water column is in the near field of the echosounder (Vis et al. 2003). In this 

study, depths < 1.5 m were systematically under-sampled due to this restriction. However, the use 

of geo-statistical methods allows for and estimation and extrapolation into these un-sampled 

areas. Further limitations are imposed by the method of processing the acoustic data. SAV that 

grows to the surface is by default excluded by the EcoSAV processing algorithm, and very dense 

SAV may obscure the reflection of the substrate, making accurate determination of the plant 

canopy difficult. I was unable to eliminate the the problem with canopies that were classified as 

“too-tall” and thus excessive noise, but these comprised a small percentage of the input data (see 

Materials and Methods). Furthermore, I was able to develop a work around to the problem of 

excessively dense SAV obscuring the bottom depth by relaxing the trailing edge feature in the 

EcoSAV algorithm. Therefore, I believe that the interpolations of SAV cover and canopy height 

are a reliable representation of the current SAV distribution in Cook’s Bay.  

The methods chosen to estimate the standing crop of SAV in the area surveyed is 

modeled after the work of Duarte (1987) who showed that use of macrophyte growth forms could 

improve the estimation of biomass determined from echosounder tracings (Duarte 1987). Other 

methods to estimate SAV biomass from acoustic data have either provided estimates that are 
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poorly unconstrained due to variability in scattering strength (e.g., Sabol et al. 2002a), or have 

suffered from acoustic shadowing at high biomass (Haga et al. 2007). Although I lacked growth 

form data at the same spatial resolution in this study, determination of growth form from 

echosounder tracings is advocated by Duarte (1987). The first method was based on observations 

that taller canopy forming plants tended to occupy intermediate depth ranges (e.g., > 4 m), and 

shorter understory forms occupied shallower waters (e.g., < 4m). This is not inconsistent with 

observed distributions of these growth forms in temperate lakes (e.g., Chambers and Kalff 1985, 

Chambers 1987). This method of estimating standing crop (as dry weight) produced a bay wide 

estimate of 3.71 x 103 kg of total SAV mass, equivalent to 186 g m-2.  

 The second approach relied on conditional simulation to reproduce 500 simulations of 

species growth form distribution based on the data of Stantec (2006). This approach relies on 

honoring the input data and modeling the distribution of growth forms in a probabilistic 

environment. Using this method, the SAV standing crop was estimated to be 6.03 x 103 kg, 

equivalent to 303 g m-2. The overwhelming preponderance of growth form 3 in the data set 

compared to growth forms 1 and 2 suggests that perhaps the ponar grab does not adequately 

sample tall canopy forming species particularly well. This would inflate the estimated biomass 

because it assigns a high biomass density value (from growth form class 3) to an area with a tall 

canopy. However, the 2006 study which I culled the dominant macrophyte growth form data from 

Stantec (2006) provided an average dry biomass of 233 g m-2, which is close to the estimates for 

both approaches if the standard error for the Duarte (1987) equation (± 68 g m-2 expressed as dry 

weight) is considered, suggesting the estimates of biomass may not be unreasonable. However, 

further and more intensive calibration and evaluation is recommended before such approaches 

can be confirmed as robust methods for estimating SAV biomass.  

This study demonstrates an unequivocal increase in SAV cover and in the maximum 

depth of SAV colonization in Cook’s Bay since the last survey in 1987, prior to the invasion of 

dreissenid mussels. Luxuriant growth of SAV has been a seasonal occurrence in Cook’s Bay for 

several decades; Millard and Veal (1971) conducted the first SAV survey in Cook’s Bay and 

found extensive heavy growth in the lower portion of the bay (e.g., > 80% cover) where water 

depth was < 4 m. In subsequent years, hydro-acoustic surveys in 1984 (Neil et al. 1985) and 1987 

(Neil et al. 1991) found that SAV growth extended to depths of 6 m. Currently, SAV in Cook’s 

Bay grows continuously to a depth of ~ 9 m, and I observed SAV on echograms and underwater 

video at depths of 10 m, though I cannot confirm that plants were actually rooted at these depths. 

I estimated that “continuous cover” (e.g., > 80%) has increased substantially since 1987, while 

“discontinuous cover” has increased by a smaller percentage (Table 7.1).  
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Underwater irradiance has been identified as the primary factor controlling the 

distribution of SAV (Spence 1982, Chambers and Kalff 1985). Long term (20 + years) 

monitoring of Lake Simcoe by the Ontario Ministry of Environment has documented changes in 

water clarity since the early 1980s when nutrient loading reduction programs were implemented 

(Eimers et al. 2005). The 1984 and 1987 surveys were designed to assess the response of SAV to 

a reduction in P loading that occurred with diversion of ~ 6 T yr-1 of sewage effluent from Aurora 

and Newmarket out of the Lake Simcoe watershed in 1984 (Evans et al. 1996). Water quality in 

the lower Holland River was expected to improve after the diversion of sewage effluent in 1984, 

and there is some evidence of immediate reductions in SRP and TP concentrations at monitoring 

stations in the River (Nicholls 1998). Accordingly, the total area of Cook’s Bay covered by SAV 

growth in 1987 (post effluent diversion) was estimated to have increased ~ 20 % from 1984 (pre 

effluent diversion), a change that was attributed to a modest improvement in water clarity (mean 

secchi depth increased from 1.7 to 2.1 m; Neil et al. 1991). Nicholls (1998) attributed the modest 

change in water clarity in Cook’s Bay after 1984 to “legacy P” that is stored in the sediments in 

the Holland River. During the summer months, the lower reaches of the Holland River become 

stagnant, and considerable P in the form of PO4 is released back into the water column, fueling 

phytoplankton growth (Nicholls 1998). This increase in phytoplankton biomass subsequently 

affects the water clarity in the receiving waters of the Bay (Nicholls 1998). Further declines in TP 

concentration and calculated P loads were estimated to continue for the main tributaries draining 

into |Cooks Bay (Holland River and upper Schomberg River) well into the early 1990s (Winter et 

al. 2007) which is after the 1987 hydro acoustic survey. However, water clarity both in Cooks 

Bay and elsewhere in Lake Simcoe did not change significantly (Eimers et al. 2005). Water 

clarity dramatically increased in 1996, approximately one year after the establishment of a lake 

wide population of dreissenids. Changes in phytoplankton bio-volume and TP concentration were 

also consistent with this, declining at all stations in the lake (Eimers et al. 2005).  

The observed temporal changes in SAV cover in Cook’s Bay observed from 1984 to this 

study are largely consistent with the temporal changes in water clarity for observed in Lake 

Simcoe (Eimers et al. 2005). Similar sequences of change have been noted in other systems 

where data is of sufficient temporal resolution. For example, in Oneida Lake, NY Zhu et al. 

(2006) clearly document that the largest changes in water clarity during times of nutrient 

reductions were associated with the arrival of dreissenid mussels. In the Bay of Quinte, a mild 

increase in water clarity (kPAR declined from 0.67 to 0.61 m-1, c.f. Millard et al. 2003) was 

observed between 1972 and 1977 after point source P controls were implemented (Millard et al. 

2003). However, the resultant increase in SAV cover in the shallow upper bay was modest, and 
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increases into the deeper, outer bay did not occur (Bristow et al. 1977, Crowder and Bristow 

1986). Following invasion of Lake Ontario and the Bay of Quinte by mussels in the late 1980s – 

early 1990s, water clarity increased and expansion of SAV into the deeper outer bay occurred 

invasion (Seifried 2002). Similar changes in SAV cover and depth of colonization have been 

inferred from historical collections of aerial photographs for other bays in Lake Ontario (e.g., 

Sodus Bay, and Chaumont Bay; Zhu et al. 2007) during the same time period.   

These results are consistent with these previous studies that have recorded an increase in 

areal coverage and depth distribution of SAV in systems that have been invaded by dreissenid 

mussels after or during a period of nutrient reduction (Table 7.3), and confirms that a common 

theme among these studies implicates the increased water clarity (and by extension, the quantity 

of light reaching the bottom) as the causative factor governing the distribution of SAV in these 

systems. Consequently, I argue that mussel filtration has had a stronger effect on water clarity in 

Cook’s Bay than reductions in nutrient loading. 

 While water clarity appears to exert a primary control governing the distribution of SAV 

in Cook’s Bay, the nutrient content of the sediment likely sets the upper limit on the biomass 

yield. Because rooted macrophytes generally acquire nutrients such as N and P from the sediment 

(Barko and Smart 1981, Carignan and Kalff 1980), any additional input of nutrients to the 

sediment may act to increase SAV cover and biomass. Dreissenids may therefore augment the 

nutrient content of the sediment by depositing undigested algae and other particulate matter in the 

benthos (Vanderploeg et al. 2002). Pseudofecal aggregations (e.g., Stanczykowska and 

Lewandowski 1993) are generally produced at food concentrations above 200 µg C L-1, and 

production increases with increasing food concentration (Walz 1978). The amount of deposited 

material is likely to be a function of dreissenid density, temperature, seston concentration and 

degree of exposure to re-suspension (Klerks et al. 1996). For example, (Madenjian 1995) 

estimated that the mussel population in western Lake Erie consumed 5 million T of 

phytoplankton and deposited 1.4 million T on the bottom in the form of feces and pseudofecal 

matter. In Cook’s Bay, dreissenids are found largely attached to macrophyte stems and near the 

base of the plants, but dreissenid densities are relatively low (~2000 m-2; Ozersky et al. 

submitted) compared to areas of hard substrate (Ozersky et al. submitted). The elemental 

composition of the feces and pseudofeces can be altered due to different assimilation efficiencies 

(Sterner and Elser 2002). For example, in oligotrophic Lake Constance, dreissenids excrete fecal 

matter that is depleted in P relative to the seston (Gergs et al. 2009). For a shallow eutrophic 

system such as Cook’s Bay, production of pseudofecal material is likely to be significant, and 
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dreissenid mussels have the potential to augment the sediment nutrient content, and thereby affect 

the growth of SAV (Vanderploeg et al. 2002, Hecky et al. 2004). 

  The tissue N and P concentrations reported here, however, do not indicate that major 

changes have occurred that would support the hypothesis that dreissenids are enriching the 

sediment to the benefit of SAV in Cook’s Bay. While many of the samples I collected in 2006 

exceeded the 0.13 % P (DW) critical value suggested by Gerloff and Krombholz (1966) for 

maximum yield limitation of freshwater macrophytes, these often fall below the species specific 

growth rate threshold (Colman et al. 1987). The interplay of many abiotic (e.g., light availability, 

sediment type, pH) and plant related factors (e.g., taxonomy, presence of epiphytes) render 

generic statements about the occurrence or lack thereof of nutrient limitation at a given site 

uncertain in the absence of laborious and time consuming sediment fertilization experiments 

(Moeller et al. 1998), but there is no support for the hypothesis that macrophyte growth has 

increased due to increased nutrient supply from dreissenid bio-deposits in Cook’s Bay. Factorial 

experiments with macrophytes and manipulated sediment P levels designed to test this hypothesis 

in mesocosms (Zhu et al. 2008) concluded that increased biomass is primarily in response to 

changes in light climate rather than sediment nutrient content (Zhu et al. 2008). 

The excessive biomass of SAV in Cook’s Bay is likely a result of decades of nutrient 

loading from the watershed that created a soft sediment bottom rich in nutrients. Sediment TP in 

Cook Bay in 2005 ranged from 0.7 to 1 mg g-1 dry sediment (Kilgour et al. 2008) and more recent 

spatially explicit estimates are consistent with these values (V. Hiriart-Baer, Environment 

Canada, pers. comm.). These values of sediment TP are near the upper end of the range for other 

temperate meso-eutrophic systems (0.3 to 1.2 mg g-1 dry sediment; Carignan and Kalff 1980, 

Rooney et al. 2003). Cook’s Bay receives nutrient input from ~ 25 % of the Lake Simcoe 

watershed (Nicholls 2001). Prior to European settlement, P loading to the sediment of Cook’s 

Bay was estimated to be approximately 1.5 T yr-1 (Johnson and Nicholls 1989). This represented 

~ 5 % of the P retained in the lake sediments each year (Johnson and Nicholls 1989). In the 

1930s, the marshes at the end of the Holland River were channelized and removed, leading to 

dramatic increases in P sedimentation in Lake Simcoe, particularly in Cook’s Bay (Johnson and 

Nicholls 1989). P loading to the sediment of Cook Bay in the 1980s was estimated to be 

approximately 20 T yr-1 (~ 26 % of the total load to the lake sediments; Johnson and Nicholls 

1989). Assuming that the retention of P has not dramatically changed since 1982 (~ 48 % in 

1982; Johnson and Nicholls 1989), based on recent loading estimates to Cook’s Bay (27 T yr-1 for 

1990-98; Nicholls 2001) this equates to a sediment P load of nearly 13 T yr-1. For comparative 

purposes, dreissenid mussels at similar densities to those in Cook’s Bay were estimated to 
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generate ~ 783 T of fecal and pseudofecal matter over a 6 month period in shallow eutrophic 

Lake Mikoljaske (Poland) (Stanczykowska and Lewandowski 1993). Assuming a constant P 

content of the fecal matter (0.1 %; Stanczykowska et al. 1975) this is equivalent to 0.78 T yr-1 of 

P directed to the sediments, or about 6 % of the P load derived form the catchment each year. 

Although the estimate of P diverted by mussels is likely conservative, since they were derived 

from a 6 month period of active feeding in a Polish lake, filtration and pseudofecal production is 

not likely to continue during the winter months, as mussels attached to macrophytes will likely be 

transported elsewhere with scenescent macrophyte material, or fall to the bottom and perhaps be 

covered by decaying SAV. Furthermore, the increase in SAV cover and biomass that is apparent 

since the late 1980s has likely further enhanced P retention mechanisms by reductions in 

hydraulic flow in the inner portion of the bay and reducing re-suspension of sediment (e.g., Barko 

and James 1998).   

7.6 Conclusions 

 The expanded distribution of macrophytes is an expected outcome in systems where light 

penetration has increased significantly (Sand-Jensen et al. 2008). The increase in macrophyte 

cover and biomass in Cook Bay since 1987 is likely due to the arrival and colonization of Lake 

Simcoe by dreissenid mussels and portends a similar response in other areas of Lake Simcoe 

where macrophytes are known to grow. In particular, expansion of macrophyte growth into areas 

formerly unsuitable for rooted plants may occur as shell material and soft substrate comprised of 

re-suspended sediments and mussel fecal and pseudofecal matter accumulate. Although 

nutritional subsidies via bio-deposition of dreissend fecal and pseudo-fecal matter are unlikely to 

be of importance to macrophytes in Cook’s Bay, their importance cannot be discounted in other 

more nutrient poor areas. For example, some of the rocky areas in the lake where insufficient 

sediment accumulation formerly inhibited macrophyte growth now is characterized by high 

mussel abundance (e.g., Ozersky et al. submitted) and in some areas heavy cover of macrophytes 

(Chapter 6, personal observation). The expansion of macrophytes associated with dreissenids into 

areas formerly unsuitable for macrophyte growth may be partly facilitated by insufficient wave 

energy that appears to be unable to pulverize empty dreissenid shell material into fine fragments 

(D.R. Barton, Biology Dept. University of Waterloo, personal communication). This 

accumulating shell material creates a complex three dimensional structure that allows for fecal 

and pseudofecal matter to accumulate in interstitial spaces, and provide a potential rooting 

medium for macrophytes.  
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Because much of the nutrients sequestered by macrophytes are unavailable for much of 

the growing season, macrophytes represent a potential, although poorly characterized mechanism 

for nutrient storage and mobilization (Barko and Smart 1981). For example, using the bay wide 

biomass estimates from 2006 and the average tissue nutrient content, the macrophyte community 

in Cook’s Bay is estimated to contain between 7.0 and 11.4 T of P and 68.6 and 111.7 T of N 

(assuming a DW to AFDW conversion of 0.65; D. Depew, unpubl. data). Considering the target 

loading budget for the lake of 75 T yr-1 (c.f. Winter et al. 2007), the extensive SAV growth 

present in Cook’s Bay and likely elsewhere in the lake represents a significant albeit poorly 

characterized nutrient reservoir. Since SAV beds are generally considered to be a long term sink 

for both sediment and P (e.g., Rooney et al. 2003), the importance of macrophytes to nutrient 

dynamics in Lake Simcoe is likely to increase. Furthermore, given the relatively shallow nature of 

Lake Simcoe, the potential impact of an increased SAV community on nutrient and oxygen 

dynamics merits further study.  
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Chapter 8 

Summary of Conclusions 

 

 Throughout the littoral areas of much of the lower Great Lakes, the filamentous alga Cladophora 

accumulates to nuisance proportions. The depth of colonization for Cladophora appears to have increased 

in recent years, largely due to the establishment of dreissenid mussels which can clarify the water column, 

provide expanded substrate for algal attachment and potentially provide a nutrient subsidy to benthic 

algae (Hecky et al. 2004). Previous work on Cladophora in the Great Lakes has relied primarily on labor 

intensive quadrat sampling to derive estimates of algal biomass (e.g., Higgins et al. 2005). These labor 

intensive methods may be accurate on a point by point scale, but are largely insufficient for characterizing 

the spatial extent of nuisance algal growth over larger scales. In Chapter 2, the utility of high frequency 

echosounder to detect and characterize nuisance algal growth was explored. Ground truthing at two 

different locations in Lake Ontario revealed that for algal stands that exceeded the minimum detection 

threshold, detection and characterization was largely successful. While it must be acknowledged that algal 

stands below the height threshold will not be detected either because the classification algorithm excludes 

them completely, or they are not distinguishable from bottom reverberation, the presence of algal stands 

below this height threshold are not likely to be the most problematic from a shoreline resident or lake 

manager viewpoint. With higher frequencies and further experiementation, it may be possible to reduce to 

minimum detectable stand height. However, such attempts must balance the need or desire to gain 

additional information on areas with low biomass against the inevitable increase in energy absorption that 

comes with using higher frequencies or the increased signal to noise ratio that comes with shorter pulse 

lengths.  Both these problems will limit the effective survey depth, but it may be worth exploring if a 

moderate increase in acoustic frequency is beneficial. 

 

In Chapter 3, the hydroacoustic methodology was applied to map the spatial distribution of 

Cladophora along selected shorelines in the Great Lakes. These shorelines were selected to encompass 

varying land use types, dreissenid mussel abundances and ambient water quality conditions. In addition to 

the shorelines, two offshore shoals were surveyed to provide conditions that more closely resemble open 

lake nutrient conditions. The results of this study showed clearly that nuisance Cladophora grew quite 

well in Lakes Erie and Ontario, but failed to achieve comparable levels in Lake Huron. Nuisance 
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Cladophora biomass appeared to be unrelated to land use types and near shore nutrient concentrations, 

but did show a significant relationship with dreissenid mussel abundance. These results are consistent 

with the shunt hypothesis (e.g., Hecky et al. 2004) and the presence of significant nuisance Cladophora 

growth at offshore shoals in Lake Eire and Ontario suggests that even in the absence of adjacent 

catchment loading, nuisance Cladophora growth can occur given suitable substrate and light conditions. 

This is perhaps the strongest evidence that dreissenids are a key link in the return of nuisance Cladophora 

growth to the lower Great Lakes.  

To further build on the evidence from Chapter 3, in Chapter 4, a modified survey approach with 

the hydroacoustic surveys was undertaken at two heavily urbanized shorelines in Lake Ontario. The 

rationale for this study was principally to determine whether patterns of nuisance Cladophora growth 

displayed any spatial association with shoreline sources of nutrients such as storm sewers and tributaries, 

or from municipal sewage treatment plant outfalls. The working hypothesis was that if these potential 

nutrient sources were responsible for the resurgence of nuisance Cladophora growth, then excessive 

biomass should manifest itself in patterns that indicate the proximal importance of a nutrient source, as it 

did in Lake Huron in the 1970s (e.g., Auer et al. 1982). However, this hypothesis is predicated on the 

assumption that nutrient conditions in the near shore had not returned to historical levels, when 

concentrations were high enough to support widespread growth on much of the available substrate 

(Wernezak and Lyzenga 1975). It was apparent during this study that some symptoms of near shore 

enrichment were present (e.g., Cl- and turbidity) but that the same patterns did not extend to P 

concentrations. Yet, at both study sites, the fall months (September and October) presented extremely 

high concentrations of P that are characteristic of nearshore enrichment. The lack this pattern during the 

May – August period may reflect P sequestration though biological activity, and this complicates 

determination of whether or not catchment sources are increasing their nutrient loads. Nuisance 

Cladophora growth was widespread at both study sites, but appeared to be substrate limited at Pickering. 

Relationships between nuisance Cladophora biomass did not display strong spatial relationships with the 

municipal sewage treatment plant outfalls or tributaries at Oakville, but did show significant associations 

with proximity to storm sewers.However, these relationships are confounded by complimentary 

relationships with low bathymetric slope, which may act to reduce Cladophora biomass loss, or perhaps 

enhance sloughed biomass deposition. At Pickering, no significant relationships were observed between 

nuisance Cladophora biomass and storm sewers or the Duffins Creek sewage treatment plant outfall, and 

significant relationships with proximity to tributaries were largely explained by excessive 

macrophyte/Cladophora growth in outer Frenchman’s Bay. Further research at a site specific level with 
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finer temporal sampling is required to fully confirm the impact such features would have on Cladophora 

growth, but this study provides the identification of where such studies might be performed. 

Studies in estuaries and other semi enclosed systems have indicated that benthic algae and 

phytoplankton may interact in complex ways, potentially competing for resources, despite the obvious 

disadvantages that encumber benthic algae at the lake bottom. In Chapter 5, two contrasting time periods 

were examined at high spatial resolution during night time surveys of the Oakville site in Lake Ontario, to 

look for spatial patterns and potential influences. The first survey took place during the post-slough period 

when much of the Cladophora biomass had detached from the bottom. Downwelling appeared to 

dominate the hydrodynamic regime, and patterns of water temperature, pCO2, and phytoplankton 

photosynthetic efficiency (Fv/Fm) were characterized by little spatial variation, and indicated thorough 

mixing in the horizontal plane. Nutrient concentrations at this time were high, and the near optimal 

photosynthetic efficiency of the phytoplankton measured at this time is not inconsistent with this. In 

contrast, during the period of near maximal Cladophora growth, upwelling dominated the hydrodynamic 

regime, and tributary influence was evident as warmer water trapped at the surface of the recently 

upwelled lake water. Spatial variability was far greater during this time due to the interaction of tributary 

discharge and cooler upwelled water, and patterns of water temperature, conductivity, phytoplankton 

taxonomy, photosynthetic efficiency (Fv/Fm) all displayed significant spatial variation that was primarily 

oriented in an along shore pattern. Nutrient conditions during this time were moderate and consistent with 

other seasonal data from this location (Malkin 2007, Chapter 4). Further support for the dominance of 

long shore flow was provide by patterns of super-saturated O2 and under-saturated pCO2 in shallow 

waters that are consistent with the influence of benthic algal metabolism in the shallow depths, but are 

smeared by water movement along shore. Although no direct association between benthic algae and 

phytoplankton photosynthetic efficiency was found in this study, this does provide a framework and basis 

for future research. Given the dynamic nature of the near shore environment, high resolution studies are 

likely to further enhance the knowledge of these complex systems. 

 

In Chapter 6, hydroacoustic surveys were undertaken in Lake Simcoe. This study focused on two 

areas where hard susbtrate dominated, along with dreissenid mussels (Ozersky et al. submitted). The 

rationale for this work was to see if nuisance Cladophora would manifest itself given comparable nutrient 

chemistry, light climate and dreissenid mussel abundances to the Great Lakes. Suprisingly, nuisance 

growth of Cladophora was not a seasonal occurrence in Lake Simcoe. While the exact cause for the lack 

of such nuisance algal growth is not known, there are several distinguishing characteristics that separate 



 

  

 

265 

Lake Simcoe from the near shore areas of the Great Lakes. First, many areas of the near shore of Lake 

Simcoe may not experience sufficient turbulence to support nuisance Cladophora accumulation in the 

absence of exceedingly high nutrient concentrations. This was cited as a plausible cause for the lack of 

Cladophora growth beyond the splash zone in many of the other areas of Lake Simcoe in the 1980s 

(Jackson 1982). Currently, Lake Simcoe has comparable P concentrations to near shore areas of the Great 

Lakes, and insufficient turbulence may limit the growth of Cladophora in many shoreline sites, but 

limited measures of current speeds near the study sites did not appear to differ greatly from current speeds 

in the Great Lakes, suggesting that other factors may be important in controlling nuisance Cladophora 

accumulation in Lake Simcoe. Cladophora collected from the survey sites appeared to be heavily 

encrusted with epiphytic diatoms, and is not inconsistent with the greater availability of silica in Lake 

Simcoe as compared to Lakes Erie and Ontario. This higher availability of silica may allow for continued 

growth of epiphytes, such that Cladophora cannot outgrow its epiphyte coating as it appears to do in Lake 

Ontario (Malkin et al. 2009). This effectively leaves Cladophora in a state of perpetual light limitation 

except at the shallowest of depths, where physical disturbance may prevent significant accumulation of 

biomass. Additional control of Cladophora biomass accumulation may arise from the abundant 

invertebrate grazer community that currently exists in Lake Simcoe (Kilgour et al. 2008, Ozersky et al. 

unpubl.data), which has increased significantly coinciding with the dreissenid invasion. Further research 

is needed to verify the proximal cause(s) of why Cladophora does not accumulate to nuisance biomass in 

Lake Simcoe, for example, by using grazer exclusion experiments or with the use of artificial substrates to 

alter nutrient regimes.  

In the last chapter, acoustic surveys were conducted in Cook’s Bay, Lake Simcoe. Here, the 

objective was to assess the current distribution of submerged aquatic vegetation (SAV) and infer changes 

in distribution as a result of the invasion of dreissenids. Historical acoustic surveys were performed in 

Cooks Bay during the 1980s to assess the response of the SAV community to reductions in nutrient 

loading that occurred when treated sewage effluent was diverted out of the Lake Simcoe watershed. These 

surveys were conducted prior to the invasion of dreissena, thus the current distribution of SAV in Cook’s 

Bay can be appreciated against the historical changes due to nutrient loading reductions. In this study, 

SAV was demonstrated to have dramatically increased in areal cover, and expanded into waters 9 to 10 m 

deep. Long term monitoring conducted by the MOE (Eimers et al. 2005) clearly show that the largest 

changes in water clarity, TP concentrations, and phytoplankton biovolume occurred in the years 

immediately following invasion by dreissena. Taken together, these unequivocally implicate dreissenids 
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as the principal factor governing the penetration of light to the benthos, and thus determine the 

distribution of SAV in Lake Simcoe.  

In summary, these chapters bring together new and evolving technologies and through the 

application of spatial data analysis techniques, provide a framework to answer ecological questions in 

environments that are complex and dynamic. The research in this thesis provides support for the 

hypothesis that the resurgence of nuisance algae in the Great Lakes is closely linked to dreissenid 

mussels. Furthermore, the research from Lake Simcoe supports that idea that mussels are effective 

ecosystem engineers (Zhu et al. 2006) and have fundamentally altered the dynamics of aquatic 

ecosystems as predicted by the near shore shunt (Hecky et al. 2004) and the benthification hypotheses 

(Zhu et al. 2006). 
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