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Abstract

Modular and Reconfigurable Robots (MRRs) are those designed to address the increasing
demand for flexible and versatile manipulators in manufacturing facilities. The term, modularity,
indicates that they are constructed by using a limited number of interchangeable standardized
modules which can be assembled in different kinematic configurations. Thereby, a wide variety
of specialized robots can be built from a set of standard components. The term, reconfigurability,
implies that the robots can be disassembled and rearranged to accommodate different products
or tasks rather than being replaced.

A set of MRR modules may consist of joints, links, and end-effectors. Different kine-
matic configurations are achieved by using different joint, link, and end-effector modules and by
changing their relative orientation. The number of distinct kinematic configurations, attainable
by a set of modules, varies with respect to the size of the module set from several tens to sev-
eral thousands. Although determining the most suitable configuration for a specific task from
a predefined set of modules is a highly nonlinear optimization problem in a hybrid continuous
and discrete search space, a solution to this problem is crucial to effectively utilize MRRs in
manufacturing facilities.

The objective of this thesis is to develop novel optimization methods that can effectively
search the Kinematic Configuration (KC) space to identify the most suitable manipulator for
any given task. In specific terms, the goal is to develop and synthesize fast and efficient algo-
rithms for a Task-Based Configuration Optimization (TBCO) from a given set of constraints and
optimization criteria. To achieve such efficiency, a TBCO solver, based on Memetic Algorithms
(MA), is proposed. MAs are hybrids of Genetic Algorithms (GAs) and local search algorithms.
MAs benefit from the exploration abilities of GAs and the exploitation abilities of local search
methods simultaneously. Consequently, MAs can significantly enhance the search efficiency of
a wide range of optimization problems, including the TBCO. To achieve more optimal solutions,
the proposed TBCO utilizes all the solutions of the Inverse Kinematics(IK) problem.

Another objective is to develop a method for incorporating the multiple solutions of the IK
problem in a trajectory optimization framework. The output of the proposed trajectory opti-
mization method consists of a sequence of desired tasks and a single IK solution to reach each
task point. Moreover, the total cost of the optimized trajectory is utilized in the TBCO as a per-
formance measure, providing a means to identify kinematic configurations with more efficient
optimized trajectories.

The final objective is to develop novel IK solvers which are both general and complete.
Generality means that the solvers are applicable to all the kinematic configurations which can be
assembled from the available module inventory. Completeness entails the algorithm can obtain
all the possible IK solutions.
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Chapter 1

Introduction

1.1 Modular and Reconfigurable Robots

Industrial robot manipulators are the primary building block of many automated manufacturing
plants. Most industrial robots consist of a fixed joint and link configuration, and are designed to
perform a general set of tasks such as assembly, pick and place, and welding. Although these
robots can perform well in many specific workspaces, the robots have a limited adaptability to
changes in the environment. In case of a change in the task space or product, numerous prob-
lems can occur as a result of the robot singularities, saturation of the torques in the actuators, or
mechanical limitations of the joint modules. Consequently, conventional fixed-configuration in-
dustrial robots cannot satisfy the increasing demand for Reconfigurable Manufacturing Systems
(RMSs).

According to the Visionary Manufacturing Challenges for 2020 by the USA National Re-
search Council, RMSs are the most vital of all priority technology area in manufacturing [1].
One type of robot manipulators whose design is based on this technology is called the Modular
and Reconfigurable Robot (MRR) [2, 3, 4]. Modular refers to robots that are constructed by
using a limited number of interchangeable standardized modules which can be assembled in dif-
ferent kinematic configurations. Thereby, a wide variety of specialized robots can be built from
a set of standard components. Reconfigurable implies that the robot can be disassembled and
rearranged to accommodate a different product or task, rather than being replaced. Therefore,
an MRR can be used as a tool for designing versatile RMS facilities.

Typically, the set of modules consists of joints, links, and end-effectors. Joint modules are
the actuators that provide the degrees of freedom (DOF) of each robot. Each joint module can
include embedded actuators, optical encoders, torque sensors, Hall-effect sensors, gear trans-
mission mechanisms, and controllers. Link Modules of varying lengths connect the joints to
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(a) (b)

Figure 1.1: WMRR modules: (a) joint module; and (b) link module

each other. The end-effector module consists of the tools required to interact with the robot
environment. Fig. 1.1 shows the joint and link modules of the Waterloo Modular and Reconfig-
urable Robot (WMRR) designed and developed at the University of Waterloo. Fig. 1.2 depicts
the connection of the two links and one joint module.

The MRRs, in RMS facilities, allow for a more efficient execution of complex tasks than
fixed-configuration manipulators. The advantages of the MRR can be summarized as follows:

• Fast and cheap conversion of a manufacturing line to produce another product: An
MRR in the manufacturing line can be easily and rapidly reconfigured to perform a new
task. Therefore, changes in the product, assembly line, or manufacturing process can be
accomplished more conveniently and with less cost.

• Simplified repair, maintenance, and upgrade: Since the joint and link modules are
standardized, repairs, maintenances and upgrades can be performed by simply replacing a
specific module. This translates to lower overall operating costs and faster troubleshoot-
ing.

• Optimal shaping in a greater number of circumstances: Modularity bestows the MRR
with the ability to perform a certain task with a kinematic configuration(KC), which is
optimized according to a set of operational performance measures. Instead of using just
one robot configuration for all tasks, a robot configuration that is specifically optimized
for the task can be realized through the use of MRRs.
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Figure 1.2: Connection of two links to a joint module in WMRR

1.2 Problem Definition

The number of configurations that can be obtained from a set of modules that consists of a
joint, capable of generating rotational and pivotal movements, and three types of links, straight,
L-shape, and U-shape is expressed as follows

x = 2×
n−1∑
k=0

4k × (n− 1)!

k!(n− 1− k)!
, (1.1)

where x and n are the number of configurations and the number of joints, respectively [5].
According to (1.1) , as many as 6250 configurations can be realized for six serial joint modules.
It is evident that by considering more links with different sizes or more joint modules, capable
of generating different types of movement, this number increases.

For a specific task, only a subset of all the configurations are capable of reaching all the
given set of task points. Moreover, from the set of robot configurations that can actually reach
all task points, some perform better than others in terms of meeting a set of specific performance
criteria. As a result, for the assessment of the suitability of each KC, numerous constraints and
performance criteria for all the desired task points must be examined. This process is demanding
in terms of computational power and time. Therefore, development of efficient methods for
seeking robotic configurations that are capable of performing a certain task is critical in the
utilization of RMSs and their advantages in flexible manufacturing [2, 3].
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The large number of possible configurations and the complexities of the KC space neces-
sitates employing highly efficient, intelligent, and automated search methods for determining
the most suitable KC in performing a task. Such methods, called Task-Based Configuration
Optimization (TBCO), should search, synthesize, and determine an optimum KC which can be
assembled from the available MRR modules.

1.3 Objectives

This thesis addresses the development of novel algorithms for the utilization of advanced mod-
ular robotic systems. The objectives of this thesis are as follows:

• Developing computationally efficient and fast TBCO algorithms for finding the most suit-
able MRR configuration for performing a desired task.

• Developing novel algorithms for incorporating multiple solutions of the inverse kinematic
(IK) problem into TBCO algorithms. The goal is to identify precise kinematic solutions
which can be utilized to efficiently execute a task, while concurrently minimizing a set
of performance measures such as shortest collision-free path, minimum required torque,
minimum required power, fastest time of performing the task, and the most dexterous path
of performing the task.

1.4 Overview of the Approach

In Fig. 1.3, the block diagram of a generic TBCO algorithm is illustrated [6]. The inputs to
the algorithm are the module inventory, the optimization criteria, and the task objective. The
inputs are encoded before entering the algorithm. The approach to encode these parameters
significantly depends on the chosen optimization algorithm.

The first set of inputs, the module inventory, is a set of available joint, link, and end-effector
modules. The modules must be modelled and represented mathematically to be used in the
TBCO algorithm. In this thesis, a novel representation which includes the joints types, the
relative orientation of the assembly of two consecutive joints, and the length of the links, is
presented for describing KCs.

The optimization criteria, which consist of the set of considered performance measures are
another group of inputs to the algorithm. The adopted optimization criteria are application-
dependent.
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Figure 1.3: Generic block diagram of the Task-based Configuration Optimization Algorithm

The task objective is the last input to the algorithm. The task objective is the operation or
the process that the manipulator should perform and is typically based on the product or object
which is manipulated by the robot. From the task objective, a task consisting of a set of more
dominant task points, is extracted. For example, if the objective is to assemble a car seat, the
task of the robot might consist of picking up the bolts and tightening them in a specific place
on the product. Thus, the location of the bolts and the holes constitutes the task points. In this
thesis, it is assumed that a task consists of a series of task points which are available as the input
to a TBCO. The inputs to the TBCO and the corresponding encoding approach are discussed in
more detail in Chapter 2.

An optimization algorithm is the core of the TBCO. In this stage, the inputs are analyzed
in order to find an optimized KC. In the TBCO literature, Brute-Force, Simulated Annealing
(SA), and GAs have been used as optimization algorithms. However, because of the capability
of GAs in searching highly nonlinear discrete or continuous spaces, they are the most common
optimization methods used in this stage.

The optimization algorithm evaluates the performance of the KCs in executing the desired
task according to the considered optimization criteria. It is evident that computing the optimiza-
tion criteria requires that the IK problem be solved.

Depending on the KC representation, a decoding stage is then needed to convert the output
of the algorithm to a KC. The output should be organized such that assembling the manipulator
can be achieved easily.
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In this thesis, to achieve the objectives the following goals should be established:

• A novel TBCO algorithm which uses the MAs is proposed. MAs are GA and local search
hybrids which have been shown in the literature to outperform GAs in terms of the com-
putational speed and the accuracy of the solution reached. The proposed MA based TBCO
algorithm is introduced in Chapter 6.

• Novel algorithms for obtaining multiple solutions of the IK problem are proposed. In
Chapters 3 and 4, two algorithms are introduced to obtain multiple solutions of the IK
problem for MRRs.

• A novel methodology for incorporating multiple solutions of the IK problem in the TBCO
algorithm is presented. The proposed methodology enhances the accuracy of the achieved
KC solutions. The algorithm is discussed in Chapter 5.

In Fig. 1.3, the research is represented in terms of the chapters of the thesis.

1.5 Contributions

The contributions of this research are grouped into three main category:

1.5.1 Memetic Algorithm Approach for Solving the TBCO Problem

An efficient TBCO algorithm, based on the MAs, is developed. The prominent contributions of
the TBCO algorithm are as the following:

• The MA employs the GA to efficiently search the KC space, whereas the numerical lo-
cal search algorithm seeks the most suitable dimensions of the manipulators. This strategy
utilizes the strengths of both methods. To enhance the convergence and global search capa-
bilities of the algorithm, an application-specific elitism and a niching strategy is proposed.
It is shown that, compared to the existing GA approaches, the proposed MA increases the
efficiency of the TBCO algorithm in terms of convergence speed, and accuracy.

• The length of the links are considered to be adjustable, allowing an optimal length of the
links to be determined as a part of the TBCO algorithm. This assumption increases the size
and complexity of the search space and necessitates the use of more efficient algorithms
than the existing methods.
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• A novel numerical local search method for determining the link dimensions of a manipula-
tor is developed. The resultant manipulator is resized such that it can perform a prescribed
task. The numerical algorithm constitutes the local search stage of the MA.

• A novel kinematic structure-aware elitism and population restart strategy is proposed to
decrease the probability of having the algorithm converge prematurely.

1.5.2 Novel Methods for Obtaining Multiple Solutions of the Inverse Kine-
matic Problem

In order to incorporate the multiple solutions of the IK problem in the TBCO algorithm, compu-
tationally efficient IK solvers, capable of obtaining all the solutions of the problem, are required.
Two distinct IK solvers are proposed. The first algorithm utilizes a niching Genetic Algorithm
in conjunction with a filtering, a clustering, and a numerical algorithm. The second method is a
generalization of numerical techniques for determining the multiple solutions of the IK problem.
The advantages of the developed IK solver algorithms are summarized as follows:

• Both algorithms solve for multiple IK solutions of manipulators with rotational type joints.

• Both algorithms are capable of finding multiple IK solutions of a manipulator, even when
a closed-form solution does not exist.

• The only requirement of both of the algorithms is the forward kinematic equations of the
manipulator. The algorithms do not require knowledge of the number of solutions of the
IK problem.

1.5.3 Trajectory Optimization Using the Multiple Solutions of the Inverse
Kinematic Problem

The contribution of this part can be listed as follows:

• A novel formulation for considering multiple IK solutions in the trajectory optimization
problem is presented. Furthermore, an efficient algorithm for finding the exact solution of
the proposed formulation is developed.

• The proposed algorithm can be used for trajectory optimization by using a large number
of distinct criteria such as shortest collision-free path, minimum required torque, mini-
mum required power, fastest time of performing the task, or the most dexterous path of
performing the task.
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• The trajectory optimization algorithm is developed to incorporate the cost of the optimized
trajectory as a performance measure in the TBCO.

1.6 Dissertation Organization

The organization of the thesis is described in this section.

Chapter 2 provides the necessary background and the fundamental concepts in this thesis.
The existing MRRs in the literature are reviewed and the newly developed Waterloo Modular and
Reconfigurable Robot (WMRR), which is designed and implemented as a part of this research
project, is introduced. Furthermore, a framework for representing MRRs is devised. The TBCO
problem is explored in more detail and a literature review on the existing methods is presented.
The IK problem, another focus of this thesis, is reviewed and the existing approaches to solve
this problem are summarized. Moreover, the necessity of considering multiple solutions of the
IK in the TBCO and the trajectory optimization are discussed. In the final part of the chapter, a
brief review of Genetic Algorithms is conducted.

In Chapter 3, a niching GA for solving the IK of serial robotic manipulators is introduced.
The algorithm can find multiple solutions of the IK. An enhanced filtering and clustering phase
is responsible for identifying and processing the outputs of the proposed GA. For the post-
processing stage, a numerical IK solver is used to achieve convergence to the desired accuracy.
The algorithm is validated numerically on several distinct KCs.

Chapter 4 introduces another novel solver for obtaining multiple solutions of the IK problem.
The proposed algorithm employs a known IK solution to determine the rest of the solutions.
The first step of the algorithm is to obtain all the positioning IK solutions. To solve for such
solutions, a Joint Reflection Operator(JRO) is proposed. The JRO reflects the joint pairs of the
known solutions to new solutions. The joint reflection operator is used iteratively to find all
of the positioning IK solutions. Then, the newly acquired positioning solutions are applied to
obtain the combined positioning and orienting IK solutions.

A method for utilizing the multiple solutions of the IK in a trajectory optimization is de-
scribed in Chapter 5. The method has the additional benefit of finding the optimal order of
performing the tasks. To include multiple solutions of the IK in the trajectory optimization, a
novel formulation is presented which converts the problem into a Generalized Traveling Sales-
man problem. The resulting problem is solved with a Mixed Integer Programming algorithm
to reach the desired solutions. The results are compared with an exhaustive search method to
validate the effectiveness and superiority of the proposed algorithm.

In Chapter 6, an MA-based TBCO is proposed. It employs a novel elitism and restart method
to prevent premature convergence. Furthermore, a method, for determining the dimensions of
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a manipulator to enable it to perform a task, is proposed. The TBCO algorithm, adopts the
trajectory optimization algorithm in Chapter 5 to incorporate the multiple solutions of the IK.
For solving the IK problem for all the existing solutions, the JRO method, proposed in Chapter 4,
is employed. The performance of the algorithm is validated by several numerical analysis.
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Chapter 2

Background and Preliminaries

2.1 History of Modular and Reconfigurable Robots

Based on functionality, Modular and Reconfigurable Robots are categorized as: Industrial Mod-
ular and Reconfigurable Robots (MRRs), which are the topic of this literature review, and Self
Reconfigurable Robots (SRRs).

Several MRRs have been designed, manufactured and presented in the literature. Since the
structure and application of link modules are relatively simple, the differences of these robots
stem from the joint module design and the controller architecture. The rest of this section is a
review of the prominent MRR designs.

Fukuda proposed a generic architecture and framework applicable to MRRs and SRRs [7].
A centralized controller in addition to the local controllers in each joint has been described. As
denoted in Fig. 2.1(a), three different module classes have been manufactured: bending joints,
rotational joints, and wheel joints.

Also, design and implementation of pivotal and rotational joints for a Reconfigurable Mod-
ular Manipulator System (RMMS) has been reported [8]. The controller architecture is based
on a central controller that communicates with the actuator drives of the joint modules through
an 8-bit data/address bus and a 4-bit ID bus. The forward kinematics of the robot is obtained
by an automatic Denavit-Hartenberg(DH) calculation algorithm. It calculates the DH param-
eters from a description of the joint and link modules as well as the sequence in which they
are connected. A modified numerical method to solve the IK with singularity avoidance is also
introduced. Paredis improved the RMMS by allocating a local controller to each of the joint
modules [9, 10]. The architecture provides the flexibility of adopting either a centralized or a
distributed control scheme. Fig. 2.1(b) reflects a joint and a link of the RMMS.
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(a) (b)

Figure 2.1: Joint and link modules: (a) bending, wheel, and rotational joint modules; and, (b)
joint and link modules design

(a) (b)

Figure 2.2: Rapidly reconfigurable robotic workcell: (a) workcell in a manufacturing line; and,
(b) prismatic and rotary joints

Chen demonstrated a rapidly reconfigurable robotics workcell consisting of several MRRs
[11, 12, 13]. Fig. 2.2(a) depicts the application of the workcell in a manufacturing line. The MRR
is assembled from a module inventory, consisting of link, rotational, pivotal, and prismatic joint
modules. In Fig. 2.2(b), a prismatic and a rotational joint are portrayed. The control architecture
is based on a host controller for the coordination between the modules and local controllers of
the modules. The communication is provided by a Controller Area Network (CAN) bus.

In another article, an MRR for experimental studies in grasping, manipulation, and force
control is explained [14]. The layout of the system includes two manipulators, each with four
rotary joints. One type of joint module for producing both rotational and pivotal movements has
been constructed.

The Toshiba Modular Manipulator System (TOMMS) can be assembled from one kind of
joint module, capable of rotational and pivotal movements, to form a robot with a maximum 3
DOF [15]. A central controller scheme supervises the operation of the joints. The inputs to the
controller are derived from a joystick, and the control algorithm depends on the inverse Jacobian
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Figure 2.3: Schematic diagram of TOMMS

Table 2.1: Joint types achievable by connecting the links to distinct mechanical ports

Joint type Input Port Output Port Figure
1 Rotational 1 1 Fig. 2.4(b)
2 Pivotal 2 2 Fig. 2.4(c)
3 Perpendicular Rotational 1 2 Fig. 2.4(d)

Matrix to find the desired joint variables. The joint modules are designed to be used as rotational
or pivotal. Fig. 2.3 is a schematic of the TOMMS.

2.2 Waterloo Modular and Reconfigurable Robot (WMRR)

An MRR, called the Waterloo Modular and Reconfigurable Robot (WMRR) has been developed
at the University of Waterloo. In Appendix B, the architecture and controller node specifications
of the WMRR are explained in detail. Three types of rotary joints with different power produc-
tion capabilities are designed and implemented [16]. The generic design of the joint modules
is shown in Fig. 2.4(a). The links are connected to the joint module by its different mechanical
connections, providing distinct types of DOF. Table 2.1 lists the combinations of the connec-
tions to the ports and the resulting joint types. Figs. 2.4(b), 2.4(c), and 2.4(d) denote the distinct
achievable joint types. Fig. 2.5 reflects the WMRR, when it is assembled in a 3DOF PUMA
arm.
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(a) (b)

(c) (d)

Figure 2.4: WMRR Mechanical design principles: (a) mechanical input and output ports on the
joint modules; (b) joint in the rotational configuration: mechanical input 1, mechanical output
1; (c) joint in the pivotal configuration: mechanical input 2, mechanical output 2; and, (d) joint
in the perpendicular rotational configuration: mechanical input 1, mechanical output 2
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(a) (b)

Figure 2.5: WMRR assembled in a 3DOF PUMA configuration

2.3 MRR Representation

The WMRR joint modules can be assembled to provide three types of DOF. On this founda-
tion, it is possible to define three distinct classes of joint modules: Rotational, Pivotal, and
Perpendicular-rotational as depicted in Fig. 2.6. The set of three joint classes is called the stan-
dard modular joint set. It can be shown that a wide range of existing industrial manipulators
can be represented by a KC, consisting only of the standard modular joints. Also, an n-DOF
manipulator, which only includes standard modular joints is represented by mn.

To represent the joint modules kinematically, all the joint classes are considered as a generic
joint module with an input and an output port, called the mechanical ports. They are attached
to the top and bottom of the generic joint module as shown in Fig. 2.6(a). An input mechanical
port should be connected to the link closer to the base of the robot, whereas the output port is
connected to the link closer to the end-effector. By attaching a coordinate frame to the input
and output port, each joint module can kinematically be modelled by the relative location and
orientation of the input and output port frames. The input and output frames of the modular joint
set are illustrated in Fig.2.6.

A manipulator mn can be fully described by the joint types, the relative assembly orientation
of two consecutive joints, and the length of the links. These characteristics are conveniently
expressed in a (n+ 1)× 3 array as
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Table 2.2: Permissible values for the variables of the manipulator representation matrix

Name Permissible value Description
1 φi 0 0 Radians

π/2 π/2 Radians
2 mi P Pivotal joint

R Rotational Joint
PR Perpendicular-rotational joint

3 li li ∈ [lmin, lmax] Length of the link (cm)

mn =


0 0 l0

φ1 m1 l1

φ2 m2 l2
...

φn m3 ln

 . (2.1)

In this matrix, the elements of the first column, φi, represent the orientation of joint i relative
to joint i − 1. This orientation is determined by the angle between the xout axis of joint i − 1

and xin axis of joint i. In the second column, the joint types mi are stored. The third column
represents the length of the links, li. Although li can be a continuous variable (for telescopic
links and custom made links) or a discrete variable (for fixed size modular links), in this thesis
it is assumed that the link lengths are continuous variables such that li ∈ [lmin, lmax]. The
permissible values for each variable are shown in Table 2.2.

The first row of the matrix represents the first link of the robot. This link is perpendicular to
the ground and can connect the first joint to the base of the robot. The last element of the matrix,
at row n+ 1 and column 3, corresponds to the length of the last link which can be a tool.

For instance, the matrix representation of the 2-DOF manipulator in Fig.2.7 is

msample
2 =

 0 0 L0

0 P L1

π/2 P L2

 . (2.2)

2.4 Definitions

To establish the preliminaries of this research, the following concepts are defined:

Task Point Tdes: A Task point is a desired position and orientation in the Cartesian space which
the robot should reach. Task points are defined with respect to a reference frame which
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(a)

(b) (c) (d)

Figure 2.6: Standard modular joint set and the corresponding mechanical input and output
frames: (a) box representation of joint modules; (b) rotational joint; (c) pivotal joint; and, (d)
perpendicular-rotational joint
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Figure 2.7: Manipulator described by the matrix representation of msample
2

is usually positioned at the base of the manipulator. A task point can be a location on the
manipulated object, a point in space that the manipulator should reach, or a point that the
robot should pass in order to avoid an obstacle. In this work, the position and orientation of
the i-th task point, with respect to the reference frame, is represented by the Homogenous
Transformation, T ides as follows

T ides =


Ri
des P i

des

0 0 0 1

 , (2.3)

where Ri
des and P i

des represent a 3× 3 rotation matrix representing the desired orientation,
and a 3× 1 translation matrix representing the desired position of the i-th task point in the
Cartesian space, respectively.

End-Effector’s Position and Orientation Tee : The position and orientation of the end-effector
of an n-DOF manipulator is a function of its joint variables. The position and orientation
of the end-effector, with respect to the reference frame, is represented by a Homogenous
Transformation (Tee) as a function of the joint variables [q1 q2 · · · qn]. For a mn manip-
ulator the joint variables are all angles and represented by Θ = [θ1 θ2 · · · θn], as shown
in
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Tmn
ee (Θ) =


Ree(Θ) Pee(Θ)

0 0 0 1

 . (2.4)

Ree and Pee are the rotation and translation matrices representing the orientation and po-
sition of the end-effector in the Cartesian space, respectively.

Task Tt: A Task is a set of the task points which should be reached by the manipulator to
accomplish an objective. For example, all the task points which a robot should reach in
order to assemble a car seat, form a task. In this research, a Task with t task points is
represented by Tt , or simply T, and is defined as

Tt = { T1
des, T

2
des, · · · Tt

des } , (2.5)

where Ti
des represents the i-th task point of the task T.

Kinematic Configuration: Kinematic Configuration(KC) refers to the chained arrangement of
the joints in a robot. It is defined by the number of DOFs, the joint types, dimension
of the links, and the angle between the rotation axes of two consecutive joints. KCs are
categorized as: serial, parallel, and hybrid. Serial manipulators with structures similar to
the WMRR are the most common robots in industry, and are the focus in this thesis.

In the most general case, the configuration is defined by the Denavit-Hartenberg parame-
ters. For the MRR, the configuration can also be described as the sequence of the assem-
bled modules and their relative orientation. As mentioned in Section 2.3, an n-DOF KC,
assembled only from the standard modular joints, is represented by mn. In Fig .2.8, two
distinct m6 KCs and the corresponding axes of the joints are illustrated.

n-DOF Kinematic Configuration Space: The space that includes all the distinct KCs which
can be assembled by using n joint modules of the standard modular joints is called an
n-DOF KC Space, that is, each member of such a space corresponds to an mn. n has a
direct impact on the size, dimension, and characteristics of this space. For MRRs with a
set of fixed links of different sizes, this space is a discrete space. If the length of the links
are considered continuous, this space is a hybrid continuous-discrete space (continuous
with respect to the link lengths and discrete with respect to the joint types and relative
orientation of the joints). In this thesis, an n-DOF KC space is represented by Mn such
that
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(a) (b)

Figure 2.8: Two members of the KC space M6: (a) 6-DOF PUMA type configuration; and, (b)
sample 6-DOF configuration

Mn =
⋃

i=1,2,···

mi
n . (2.6)

Manipulator Workspace: The workspace of a manipulator is the region in the Cartesian space
which can be reached by the manipulator end-effector. The dexterous primary workspace
is the region which the manipulator can reach with any orientation of the end-effector.
The secondary workspace is the volume, reachable by the manipulator from a limited
number of orientations [17]. In this thesis, the secondary workspace is simply called the
manipulator workspace, WT , and is defined as

WT (mn) = {Tmn
ee (Θ) | ∀Θ : Θmax ≥ Θ ≥ Θmin } . (2.7)

Here, the workspace of a manipulator includes all the position and orientations of the
end-effector which can be reached with joint angles within the feasible range.

2.5 Task-Based Configuration Optimization

2.5.1 Analysis and Mathematical Representation

The goal of a TBCO is to find a KC that is capable of performing a certain task T more effi-
ciently than other KCs. Therefore, the capability of performing T is a necessary condition for a
manipulator to be the solution of the TBCO.
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The TBCO determines an mn, which is capable of performing the desired task T, while
simultaneously, minimizing the efficiency measure fobj . Thus, the TBCO is mathematically
formulated as


arg min

mn∈Mn

fobj(mn,Tt)

subject to : T ⊂ WT (mn)

. (2.8)

It is assumed that fobj is derived such that lower values are preferable, hence converting the
optimization problem into a minimization. The constraint in (2.8) states that the desired task
should be a subset of the reachable workspace of any solution of the TBCO. Determining the
workspace of all the mn manipulators is a computationally expensive process. Therefore, the
TBCO is expressed by using the following alternative formulation


arg min

mn∈Mn

fobj(mn,Tt)

subject to : { ∃Θs
i for mn | Tmn

ee (Θs
i ) = Ti

des , for ∀i = 1..t }
. (2.9)

The difference between (2.8) and (2.9) is that, according to the former, the workspace of
each mn, WT (mn), should initially be determined, whereas in the latter, each mn is examined
for performing all the task points. In this thesis, (2.9) is utilized as the approach.

In essence, the idea of a TBCO is to find an mn, which can perform the desired task, T,
with an fobj lower than all the other members of Mn. Since Mn is represented by the MRR
representation in Section 2.3, the TBCO can be viewed as determining all the elements of the
matrix representation of an mn to satisfy the constraints while minimizing the objective function.

The TBCO problem can be considered as a mapping from the Cartesian task space, a space
that consists of positions and orientations of task points, to Mn. As in Fig. 2.9(a), depending
on T and n, a mapping could exist which maps every task point in the Cartesian space to KCs
capable of reaching the task point. Generally, this mapping has more than one solution for any
task point in the Cartesian space, i.e., more than one KC is capable of reaching a certain task.

Three possible cases can occur if the mapping is applied to the set of task points in a task:

• No common point in the configuration space exists: Here, no single KC exists that
can reach all the task points. Fig. 2.9(b) shows an instance of this case. To solve the
TBCO, n should be increased. Since the configurations with higher DOFs are capable
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of performing more complex tasks, the chance of finding a KC for such a task increases.
With the increase in n, the dimension of the search space also increases and a larger set of
KCs becomes realizable.

• One common point in the configuration space exists: This case is shown in Fig. 2.9(c).
Since only one KC is capable of reaching all the task points, the TBCO is irrelevant, and
the single KC capable of executing the task is the solution of the TBCO problem.

• More than one common point in the configuration space exist: Among all the config-
urations for achieving the task, the one which performs most efficiently, according to the
set of considered optimization criteria, is the solution of the TBCO. Fig. 2.9(d) illustrates
such a case.

By obtaining the mapping from the Cartesian space to the KC space, the most suitable KC
for a task is found. However, this mapping is highly nonlinear with a large number of mixed
discrete and continuous variables. Furthermore, the mapping varies as the number of DOFs, n,
changes.

Therefore, the general approach to solving the TBCO is not to find the mapping itself, but to
conduct an extensive search of Mn for KCs capable of performing the task. Among those con-
figurations, the one that can minimize the considered optimization criteria becomes the solution.

2.5.2 Design Variables

In the TBCO, the goal is to find the optimum KC to achieve a certain task, given a set of opti-
mization criteria. KC of an MRR consists of the number of DOFs of the robot, the length of the
links, and the type and relative orientation of the joints, as defined in the matrix representation of
MRRs. In this section, the design variables in the TBCO problem are discussed in more detail.

Degrees-of-Freedom(DOF) Since most of the industrial robotic joints have only 1-DOF, the
DOF of a robot is equal to the number of joints. The DOF of a manipulator has significant
effect on the workspace. For instance, for pick and place applications in a 2D plane, a
4DOF SCARA robot is sufficient, whereas for a general-purpose spatial task in the 3D
space a PUMA robot with 6-DOF is required. Under normal circumstances, robots with
fewer DOFs are preferred, since they offer less complexity in control, less mass and less
power consumption. The DOF of a robot is the first design parameter that should be
determined in the TBCO.

To reduce the complexity of the search in Mn for all n, the size of the search space is
reduced by executing the search in Mn with a fixed n. When n is changed iteratively for
all the viable values of n, the best overall KC inMn for all n is attained.
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(a)

(b)

(c)

(d)

Figure 2.9: Mapping from the cartesian task space to the kinematic configuration spaceMn: (a)
mapping for one task point; (b) no common solutions in Mn; (c) one common solution in Mn;
and, (d) numerous common solutions inMn
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Type and relative orientation of the joints Typically, joints of robotic manipulators are grouped
into prismatic, spherical, cylindrical, and revolute joints. The standard modular joints of
the WMRR consists of only revolute joints.

In the TBCO, the type of all the joints should be obtained. Furthermore, most MRR joints
can be connected to links in different orientations, producing distinct types of DOF. These
orientations should also be obtained in the TBCO.

Length of the links The length of the links is another set of design parameters that should be
obtained by the TBCO. In this research, only rigid links are considered. In MRR, the link
length is considered as a discrete or continuous variable. When discrete link lengths are
considered, a set of links with different lengths are designed to provide more flexibility in
terms of the reach of the robot. However, since the links are the least complicated parts of
an MRR, they can easily be manufactured specifically for each application. Therefore the
length of the links can also be considered as continuous variables. In addition, telescopic
links are a type of link usable in MRRs which provide a continuously variable link length
within a minimum and a maximum limit.

2.5.3 Optimization Constraints

As mentioned in Section.2.5, the TBCO can be converted to a constrained minimization problem.
The constraint states that all the solutions of the TBCO should be capable of performing the
desired task. In other words, every solution should reach all the task points of the desired task.
To formulate the constraints, a mathematical measure for determining whether a KC can reach
a task point is required. For a manipulator to reach a task point, it must put the end-effector at
the position of the desired task, while assuming the same orientation as that of the desired task
point. Moreover, the manipulator should reach the task points with a physically feasible pose.
The optimization constraints of the TBCO are summarized as follows:

Position Reachability Error (fprch,i): The position reachability error is a measure of how close
a KC can position its end-effector from the spatial coordinates of the task point. When Tee

is as close to the i-th task point as the manipulator permits, the distance between the posi-
tions of Ti

des and Tee is the position reachability error. The smaller the fprch,i, the closer a
robot can position the end-effector to the task point. When a KC can reach a task point, the
position reachability error is zero fprch,i = 0. fprch,i for the i-th task point, mathematically
represented as

fprch,i = min
Θ
‖Pi

des −Pee(Θ)‖ , (2.10)
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where Pi
des and Pee correspond to the position of the task and the position of the end-

effector, respectively. Θ is the joint angle in which the end-effector is positioned as close
as possible to the desired task.

Orientation Reachability Error (f orch,i): In the TBCO, a KC is desired which can assume the
same orientation as that of the task point. Since, by itself, the orientation reachability error
does not convey a measure of how well a manipulator can perform a task, the orientation
reachability error does not have a substance independent of the position reachability error.

Euler angles (α, β, γ) which give the same orientation as (α+π,−β, γ−π), are commonly
reported in the literature to represent the orientations of the end-effector and the task point.
Therefore, f orch,i is expressed as

f orch,i = min(‖(αides, βides, γides)−(αe, βe, γe)‖, ‖(αides, βides, γides)−(αe+π,−βe, γe−π)‖),
(2.11)

where (αe, βe, γe) and (αides, β
i
des, γ

i
des) represent the Euler angles of Ree(Θ) and Ri

des,
respectively. Ree(Θ) is the rotation matrix of the Homogenous Transformation of the end-
effector, when it is as close as possible to the desired task point in terms of the orientation.

In this thesis, the quaternions, which provide a more convenient method for mathemati-
cally expressing the orientation reachability error, are applied. Quarternions are explained
in more detail in Section.2.6.3.

Total Reachability Error (frch,T): The total reachability error for task T is the weighted sum
of the position and orientation reachability errors for all of the desired task points and is
written as

frch,T =
∑
i=1···t

(
wpi .f

p
rch,i + woi .f

o
rch,i

)
. (2.12)

To guarantee that both the orientation and the positioning reachability errors contribute
equally to the total reachability error for each task, wpi and woi are written as


wpi = 1

woi =
‖Pides‖
π
√

3

. (2.13)

wpi and woi are calculated by scaling the orientation reachability such that the maximum
possible orientation reachability error, which occurs in α = π, is large enough to compete
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Table 2.3: Common constraints in TBCO

Constraint Parameter Symbol Mathematical Expression

1 Position Reachability Error fprch,t minΘ ‖P t
des − Pee(Θ)‖

2 Orientation Reachability Error f orch,t min (‖(αt, βt, γt)− (αe, βe, γe)‖,

‖(αt, βt, γt)− (αe + π,−βe, γe − π)‖)

3 Total Reachability Error frch,T
∑

i=1···t
(
wpi .f

p
rch,i + woi .f

o
rch,i

)
4 Total Joint Limit f iJL,t

∑t
i=1 fJL,i

with the positioning reachability error which is a function of the distance of the task points
from the base of the robot (‖Pi

des‖).

Joint Limit (fJL,i): Most of the robotic joints have a mechanical limitation on the joint angles.
A KC should be able to reach the task points without violating these limits. The i-th task
point joint limit constraint, is given by fJL,i and can be expressed as

fJL,i =
1

2

n∑
j=1

(
θi,j − θj,mid
θj,max − θj,min

)2

, (2.14)

where θi,j is the angle of the j-th joint, where the manipulator has reached the i-th task
point [18]. θj,min, θj,max, and θj,mid are the minimum, maximum, and the midpoint of the
permissible range, respectively. Small values of fJL,i, which correspond to the joint angles
far from the limits, are desired. The total joint limit constraint of a manipulator for task T
is represented by fJL,T and can be expressed as

fJL,T =
t∑
i=1

fJL,i . (2.15)

Table 2.3 summarizes the TBCO constraints and the corresponding mathematical formula-
tion.

With the TBCO constraints defined, the mathematical formulation of (2.9) can be written as


arg min

mn∈Mn

fobj (mn,Tt)

subject to :

{
frch,T (mn,Tt) = 0

fJL,T (mn,Tt) = 0

. (2.16)
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2.5.4 Optimization Criteria

As discussed in Section 2.5.1, for a KC to be selected as a TBCO solution, it should first satisfy
the constraints, and then prove to be the best according to a set of optimization criteria. In the
following, the more common optimization criteria are explained.

Dexterity Measures ( W , Mr ): Numerous dexterity measures have been introduced in the
literature [19, 20, 21, 22, 23]. Most of these measures quantify the performance of the
robot at the end-effector. Typically, these measures are functions of the Jacobian of the
robot. The most common dexterity measure is the Measure of Manipulability (simply
Manipulability) which is defined as

W =
√

det(JJT ) . (2.17)

Because of the dependency on the Jacobian matrix, the dexterity measures also vary with
the dimension of the robot. However, in the TBCO a dexterity measure independent of
the size of the robot is required. Relative manipulability is a dexterity measure that is
independent of the dimensions of the robot [24]. Relative manipulability is defined as


Mr =

m
√

det(JJT )

fM

fM =
(∑n

i=1

√
a2
i + d2

i

)2
, (2.18)

where m and n are the number of rows in the Jacobian matrix ( the dimension of the task
space) and the number of joints, respectively. ai and di are the link length and joint offset
of the i-th joint. Larger values of the relative manipulability are preferred.

Robot Dimension (faDIM ): Usually, it is desirable to have the smallest possible manipulator.
So, a robot with smaller link sizes, rather than larger robots are preferred. This optimiza-
tion criterion is formulated as

faDIM =

√√√√ n∑
i=1

li . (2.19)

where li is the length of the i-th link.

Links Relative Dimension (f rDIM ): According to this parameter, the robots that have smaller
links closer to the end-effector are preferred. The length of each link is compared to the
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length of the previous link, and if the link is smaller, it receives a bonus. f rDIM can be
expressed as

f rDIM =
n+1∑
i=2

max ( 0 , li − li−1 ) . (2.20)

Degree-of-Freedom (fDOF ): With the addition of each joint to a robot, the complexities in
control and modeling increases. In addition, more joints can be translated to more total
mass and power consumption. Hence, the tendency is to choose a robot with fewer number
of joints and DOF [24, 25].

Power Consumption: Since, in most applications, the manipulator performs a certain task
numerous times, a manipulator, which consumes the minimum possible power to perform
the task, is beneficial. In Chapter 5 this criteria is discussed.

Task Completion Time: In a wide range of applications, the time for performing a certain task
is crucial. Therefore, the required time to finish a task can be considered as an optimization
criterion.

Obstacle Avoidance: In some applications, the robot should be able to reach a task point with-
out violating the obstacles in the workspace. The obstacles can be parts of the machinery
in the workspace or parts of the product in the manufacturing line. This criteria can also
be categorized as constraint parameters. In the literature, different approaches to represent
this criterion are introduced. For instance, Paredis defines a penalty function, to be mini-
mized [26]. When a robot intrudes the space of an obstacle, this penalty function increases
proportional to the depth to which the robot is inside the obstacle.

Self Collision: When a manipulator is performing a task, it should be verified that the robot
links and joints are not colliding with each other. This criteria can be represented as
another type of obstacle avoidance with the position of the obstacles varying with respect
to the KC and joint angles of the manipulator. This parameter is specially important in
redundant robots, where the high dexterity of the robot can cause collisions.

Table 2.4 is a summary of the optimization criteria.

2.5.5 Tasked-Based Configuration Optimization: A Literature Review

In this section, the existing TBCO approaches in the literature are reviewed.
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Table 2.4: Common optimization parameters in TBCO

Optimization Parameter Symbol Mathematical Expression

1 Manipulability W
√

det(JJT )

2 Relative Manipulability Mr

m
√

det(JJT )

fM

3 Robot Dimension faDIM
√∑

i(a
2
i + d2

i )

4 Links Relative Dimension f rDIM
∑n

i=2(li − li−1)

5 DOF Number fDOF n

6 Power Consumption —— ——

7 Task Completion Time —— ——

8 Obstacle Avoidance —— ——

9 Self Collision —— ——

The works in this field can be categorized into two approaches. I-Ming Chen et al. have
modelled a modular robot as a sequence of modules with distinct characteristics, and Khosla et
al. have represented the manipulators with the Denavit-Hartenberg parameters.

Chen has introduced a representation for MRRs, where the links of a modular robot are con-
sidered as squared prisms or cubic boxes with ports on each side [27, 28, 29]. These ports are
used to connect two links to each other through a joint. In Fig. 2.10(a), the links and their corre-
sponding ports ( the numerated circles ) are illustrated. The joints are considered as connectors
for attaching the different ports of two neighbouring links as in Fig. 2.10(b). A kinematic graph
is chosen to express the configuration of a robot, and from the graph an Assembly Incident Ma-
trix (AIM) is extracted. In these works, the AIM is translated to a string and used in a GA, with
the reachability error and manipulability as the optimization criteria. An IK solver, based on
Products-of-Exponentials (POE) for the proposed AIM representation is introduced [30, 31, 32].
POE of AIM representation is also used to implement a closed-form IK solver [33].

The same approach is expanded to modify the AIM to incorporate the port vectors [25, 34].
The mutation and crossover operators are also modified such that they can directly be applied
to the AIMs. In these works, the reachability error, joint limits, manipulability, mechanical
constructibility, and the minimum DOF are considered as the objective functions.

Ramachandran has utilized a distributed agent-base method to use the idle time of the com-
puters connected to a network to speed up the TBCO [35]. Simulated Annealing is the chosen
optimization algorithm.
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(a)

(b)

(c)

Figure 2.10: Robot representation in Chen’s work: (a) link modules; (b) joints; and, (c) kine-
matic graph and AIM matrix of a robot
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Leger’s approach can be categorized in Chen’s group [36, 37, 38]. The links and joints are all
considered to be modular with specific shapes and dimensions. An object-orientated structure to
represent a robot in C++ is defined. The algorithm can search inMn for all n, where the dynamic
behaviour of the robot is also considered. In some cases, the algorithm relies on a human expert
to redirect the search. The algorithm is run on a network of 10-30 computers for 9-15 hours to
produce the desired results.

In Khosla’s approach, the manipulators are modelled by the DH parameters. Paredis and
Khosla have obtained the mapping from the task space to the configuration space for a 2-DOF
planar robot analytically and numerically [39]. The method has been expanded to include obsta-
cle avoidance and applied to a more general 3-DOF robot [26].

Kim has solved the TBCO with the addition of numerous new constraints and optimization
criteria [24, 40]. A multi-population GA is used as the optimization engine. The IK problem is
solved numerically, and provisions are made to prevent the robot from reaching two consecutive
task points by passing through singularities. The method is used to design a manipulator for
servicing the ceramic tiles of the space shuttle [41]. Since the mentioned manipulator is assumed
to be mounted on a mobile robot, the position of the base of the mobile robot is also considered
as a design parameters.

Paredis and Khosla have enhanced the method by implementing an Agent-Based software.
They have applied their method to design a fault-tolerant redundant manipulator for satellite
docking aboard the space shuttle [10, 42].

Fukuda has proposed an algorithm to search for KCs, capable of performing a task, by ex-
tending a link from the base to the task point and then adding joint modules when the connection
between the two points was not possible [7]. A similar approach has been employed with GA to
find an optimized KC [43].

Bi has examined the application of the GAs in the TBCO [44]. Furthermore, a comprehen-
sive list of the most important constraints and optimization criteria for industrial applications has
been presented.

A two level GA approach has been adopted by Chocron. The upper level GA searches for
the most suitable configuration, and the lower GA solves the IK problem [45, 46].

Park has proposed a method for finding the optimized dimensions of a manipulator in per-
forming a task using a variation of the Grid Method, which is used in the finite difference and
heat transfer/fluid analysis [47, 48]. The grid method is used to find the optimized dimensions
for a handicapped assisting robotic arm [49].

A method for obtaining the dimensions of the links of a manipulator to minimize the required
torque, and consequently, power, has also been proposed [50]. The method employs a GA as
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the optimization engine and utilizes a Dynamic analysis package (DADS) to calculate a fitness
value for the GA individuals. DADS is employed to find the dimensions of a manipulator for
minimizing the required torque and the end-effector deflection [51]. The algorithm is tested and
compared with a simple GA, a Differential evolutionary technique, and an elitist GA.

Although the objective of another group in the literature is automated kinematic design, they
do not approach the problem with the desired task as the main input of the algorithm. Pattersson
has reported an optimization method for the design of the industrial robots in the conceptual
design phase [52]. The length of the links and the gearbox size of the joints are the design
variables. A “Complex Optimization Algorithm” is the optimization algorithm.

Other literature discuss methods to optimize the working volume of the robotic manipulators.
The focus is designing a robot that has the largest dexterous work space [53, 54]. Kircanski has
proposed an analytical approach to finding the dimensions of a manipulator to maximize the
condition number [55].

Rout has utilizes a Differential Evolutionary algorithm to obtain the optimal dimension and
mass of the links to decrease the sensitivity of the manipulator to noise [56].

A summary of the prominent literature is shown in Fig. 2.5 and the deficiencies of the existing
methods are listed as following.

• In the existing methods, a lack of performance in terms of computational requirements
and speed is tangible. Most of the algorithms rely on multi-agent architectures to use a
network of computers for several hours.

• Although IK is a problem with multiple solutions, most of the existing methods rely on
single solution numerical algorithms to solve the IK problem. One reason for such an
approach is the lack of computationally efficient multi-solution IK solvers.

• Since most of the existing algorithms use single solution IK solvers, no optimization cri-
teria exist to incorporate multiple IK solutions in the related literature.

2.6 Inverse Kinematics

Chapters 3 and 4 are allocated to the development of efficient multi-solution IK solvers for
MRRs. Therefore, in this section, the IK problem is discussed in more detail and a review of the
existing approaches is provided.

The nonlinear mapping from end-effector Cartesian space coordinates into corresponding
joint positions is referred to as the IK of a robot. Finding the position and orientation of the
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end-effector from the joint angles is called the Forward Kinematics problem. The FK of a
robot manipulator can be conveniently formulated if the link parameters and joint variables of a
robot are known. However, the IK is a nonlinear KC-dependent problem that can have multiple
solutions [57].

To calculate the position and orientation reachability errors of a manipulator for a desired
task point, the set of joint angles, in which the end-effector of a manipulator is closest to the
position and orientation of the task point, should be calculated first. Furthermore, it is necessary
to determine if the pose of the manipulator at a task point is physically feasible in terms of the
mechanical joint limits. Therefore, to ensure the constraints of the TBCO problem ( as defined
in (2.9) ) are satisfied, solving the IK problem is unavoidable. Similarly, a solution to the IK
problem is necessary for calculating a large number of TBCO optimization criteria, including the
Manipulability, power consumption, task completion time, obstacle avoidance, and self collision
check.

2.6.1 Forward and Inverse Kinematics

The FK problem can be solved by specifying the position and orientation of each link with re-
spect to the previous link as a function of the joint variable. This relative position and orientation
of two consecutive links (according to the Denavit-Hartenberg(DH) convention) is described by
the Homogenous Transformation of a coordinate frames attached to the end of the link with
respect to a fixed frame that is connected to the origin of the frame [57]. The Homogenous
Transformation has the following form

Ti−1,i(θi) =


Ri−1,i(θi) Pi−1,i(θi)

0 0 0 1



=


cos (θi) − cos (αi) sin (θi) sin (αi) sin (θi) ai cos (θi)

sin (θi) cos (αi) cos (θi) − sin (αi) cos (θi) ai sin (θi)

0 sin (αi) cos (αi) di

0 0 0 1

 ,

(2.21)

where Ri−1,i(θi) and Pi−1,i(θi) describe the relative orientation and position of frame i with
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respect to frame i − 1. αi, ai, di, and θi are the twist angle, link length, offset length, and joint
angle, respectively. These parameters are extracted from the physical shape and KC of a robot.

To calculate the position and orientation of the end-effector (Tee), with respect to the base of
the robot, for an arbitrary set of joint angles, Θ = [θ1, θ2, · · · θn], the transformation is:

Tee =


Ree Pee

0 0 0 1


=

n∏
i=1

Ti−1,i(θi) . (2.22)

The FK transformation of joint angles, Θ = [θ1 θ2 · · · θn], are represented by K(Θ) as
follows

Tee = K(Θ) , (2.23)

where K is defined as follows

K(Θ) =
n∏
i=1

Ti−1,i(θi) . (2.24)

The inverse problem of the FK, the IK, is the problem of finding Θ from an arbitrary Tee.
This problem is expressed as

Θ = K−1(Tee) . (2.25)

This problem is a mapping from the 3D task space, usually presented in a desired Homoge-
nous Transformation, Tee = Tdes, to the joint angle space and usually has more than one solu-
tion. For example, a 6-DOF PUMA robot can have four or eight IK solutions, depending on the
mechanical limitations of the joints [57].

2.6.2 Inverse Kinematics : A Literature Review

The approaches for solving the IK problem can be categorized into three prominent groups [18]:
closed-form, numerical, and meta-heuristics algorithms.
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For a handful of robotic manipulators, closed-form solutions of the IK exist (e.g. PUMA and
FANUC) [57, 58, 59, 60]. In the case of 6-DOF manipulators, the sufficient condition of having
a closed-form solution is that three joint axes intersect at a point1 [61, 62]. When closed-form
solutions exist, finding all of the solutions of the IK is convenient and fast. For many other serial
manipulators, an analytical solution does not exist.

Geometric methods [63, 64] can be considered as a subcategory of closed-form techniques.
Although the geometric methods seem promising in dealing with the IK problem of manipulators
with fewer complex kinematic structures, geometric methods are not as robust as the rest of the
existing methods in solving the IK for more complicated KCs.

Another approach is to use numerical methods to solve the IK problem. The advantage of
numerical methods is that they are applicable to all KCs. The disadvantage is that numerical
methods are usually slower than closed-form solutions. The numerical methods can be divided
into the categories of symbolic elimination, continuation methods, and iterative methods.

Symbolic elimination methods employ analytic manipulations to reduce the set of nonlin-
ear kinematic equations to a smaller set of equations. The set of kinematic equations can be
systematically reduced to a single high degree polynomial of just one joint variable. The final
polynomial has a degree of 16 for general 6-DOF manipulators. By back-substitution of the so-
lutions of the polynomial into other equations, the remainder of the IK solutions are determined
[65]. The same approach can be formulated into an eigenvalue problem to improve the numeri-
cal properties of the technique [66]. Also a symbolic elimination technique can be employed for
redundant manipulators to find six of the joint angles of the general 7-DOF manipulators as a
function of the 7-th joint [67]. In such methods, since the degree of the resulting polynomials is
higher than four, numerical algorithms are required to solve the equations. Due to the extensive
analytical manipulation required, the elimination methods can be categorized as closed-form
techniques. The reason that here the symbolic elimination techniques are included in the nu-
merical methods is that the final polynomial is solved by numerical means. It is noteworthy that
symbolic elimination methods can turn into high complexity problems, introducing extraneous
roots and can only be applied to relatively simple systems of equations. Moreover, such methods
can require the solution of a high-degree polynomial, which can be a numerically ill-conditioned
problem [68]. Elimination methods require extensive symbolic manipulation of the kinematic
equations, specific to each type of KC prior to solving the actual problem. They are not suitable
for use as a generic technique for the TBCO due to the fact that in the TBCO the IK problem
should be solved for a wide range of manipulators with distinct KCs.

The second class of IK solvers, continuation methods, tracks a set of solution paths from an
initial system with the known solutions to the system for which the solutions are sought [69]. The

1Since three parallel vectors intersect in infinity, three parallel joint axes are considered as a set of intersecting
joint axes.
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continuation method was first introduced as the Bootstrap method [70]. The continuation method
has been responsible for the first solution of many long-standing problems of kinematics. The
properties of polynomial systems can be exploited to obtain all the IK solutions [71]. Compared
to the continuation methods, elimination algorithms tend to be faster and to have acceptable
accuracy, when the number of roots is moderate. However, the continuation methods tend to be
faster and more accurate when the number of roots is larger [72]. Although continuation methods
are more efficient than elimination methods, in terms of speed in more complex manipulators,
their computational performance is still one of their limiting factors.

Another category of numerical methods are iterative algorithms. Most of these depend on a
class of hill climbing or a gradient descent strategy to reach a solution [73, 74, 75]. In most of
the iterative methods, the algorithm converges on a single solution closest to the initial starting
point. Wang has used a cyclic coordinate descent(CCD) method to rapidly find a feasible point
that is close to the true solution. Then a Broyden-Fletcher-Shanno(BFS) variable metric method
has been utilized to obtain a solution at the desired degree of precision [76]. Chen proposed
algorithms to numerically solve the IK for MRRs represented in the AIM format [31, 32]. Also,
a method for analytically solving the IK for a number of MRR KCs has been presented [12]. The
algorithm is based on the Product-of-Exponentials formula and is developed with the intention
of finding a single solutions of the IK. The solver can cope with the IK of all robots with 4-
DOF or fewer, 90 percent of the 5-DOF robots, and 50 percent of the 6-DOF robots. Also the
problem of solving IK for two task points with priority orders for a redundant manipulator is
addressed[77].

The numerical iterative algorithms are the most common approaches for solving the IK prob-
lem of redundant manipulators. Most of the approaches involve the Jacobian matrix in an iter-
ative method for converging to a solution of the IK problem. In pseudoinverse IK solvers, the
pseudo-inverse of the Jacobian is utilized to iteratively decrease the distance of the end-effector
of the manipulator from the desired task [78]. Since redundant manipulators have infinite IK so-
lutions, in redundancy null space methods, the idea is to find joint angles which optimize certain
criteria in addition to reaching the desired task point. Most of the null space algorithms use the
pseudo-inverse of the Jacobian. The null space method can be used for maximizing the manip-
ulability [22]. The same method can be employed for obstacle avoidance [79]. Damped least
square methods provide a more resilient approach for negotiating the singularities of the manip-
ulator [80, 81] . In damped square methods, by using a damping factor, a trade-off between the
accuracy and the feasibility of the solutions are achieved. In Jacobian transpose techniques, the
transpose of the Jacobian, instead of its inverse, is adopted [82]. The extended Jacobian tech-
nique, is considered as a more sophisticated null space method [83, 84]. It enforces an appro-
priate number of functional constraints to be fulfilled, along with the original end-effector task
to identify a single solution among the infinite possible ones. Another approach, the task-space
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augmentation, introduces a constraint task to be fulfilled, along with the end-effector task. Then,
an augmented Jacobian matrix is formed. The inverse of the augmented Jacobian is adopted to
determine the joint velocity solution [85, 86, 87].

Interval Analysis [88, 89, 68] is an iterative technique which is not based on the concept
of Gradient descent. Although interval analysis can be used to find all the solutions of the
IK problem, it proves to be slow for manipulators, in which the maximum number of the IK
solutions are unknown or variable with respect to the desired task [90]. As a result, interval
analysis can take a very long time to find all the solutions for MRRs.

A compromise between the closed-form and the numerical methods can be reached by hybrid
approaches. Grudic has described an algorithm which converts the IK of an n-DOF manipulator
into a bounded three dimensional problem [91]. Another algorithm decouples the manipulator
into a positioning and orienting modules and then solves each separately [92]. Balkan has re-
ported a method for making the common numerical methods more resilient to singularities [93].
All of the mentioned hybrid IK solvers are only applicable for a specific class of manipulators
and should be revised when the KC of the manipulator they are designed for changes.

Metaheuristics algorithms such as GAs are another approach to solving the IK. To solve
the IK for a redundant robot, a GA has been used by Parker, where the focus is on finding the
solution that minimizes the joint displacements among all the possible solutions [94]. The IK
problem of a 12-DOF redundant robot has also been solved. According to the article, even after
the addition of heuristics to the algorithm, the results are still not completely satisfactory [95].
A GA in conjunction with fuzzy systems and hybrid immune algorithms has been used to solve
the FK of a Stewart platform [96]. A GA and a Neural Network can also solve the IK for the
optimal joint motions [97]. Chapelle has used a Genetic Programming algorithm to produce an
estimate analytical formula for the IK [98]. The extracted formula is then applied to solve for
an approximate solution to the IK at a high speed. Chocron employed a GA to find the opti-
mized kinematic structure and the pose of a manipulator capable of performing a certain task
[99]. The IK has been solved by using the same GA for resolving the kinematic optimization
problem to find the optimized structure and pose of a manipulator for the prescribed task, si-
multaneously. Karla has reported a fitness sharing niching GA to find multiple solutions of the
IK for positioning of a 2-DOF planar robot [100, 101]. A drawback of these works is that they
require numerous unknown parameters. These parameters significantly depend on the nature of
the search space, and differ from one robot configuration to another. More important, in these
works, no consideration has been made for robots with more than 3-DOF. The identification of
the solutions among the outputs of the GA is not possible with further observation for robots
with more than 3-DOF. This is viewed as a major drawback, since most articulated industrial
robots use at least a 3-DOF arm for end-effector positioning and at least one more DOF for
orienting the end-effector. Moreover, in GA based IK solvers, the obtained solutions lack the
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desired accuracy and resolution for precise position control of the end-effector.

Fig.2.11 is a diagram of the categorization of the existing IK solvers. In Table 2.6, a summary
of the characteristics of the existing IK solvers is shown. In the first column, the generality
expresses the ability of the algorithm to be applied to all possible KCs. Completeness of a
method shows if it can return all the solutions of the IK problem. The third column indicates if
a method requires a priori knowledge of the number of IK solutions. In the fourth column, if
an IK solver is manipulator specific, the algorithm should be modified for each manipulator it
is used for. In the last column, the relative speed of the algorithms are indicated. It should be
mentioned that the speed of the methods, indicated in this column, is a rough estimation at best,
and for an accurate comparison, the methods should be implemented and compared in similar
conditions and cases.

As observed from the table, an unaddressed niche for IK solvers, specifically suitable for
MRRs and the problem of TBCO, exists. Such an IK solver should have the following features:

• It should be general. Such an algorithm should be applicable to all the possible KCs
which can be assembled from the inventory of modules.

• It should be complete. In order to incorporate all the IK solutions in the TBCO and for
the optimum trajectory generation of MRRs, the desired solver must be able to find all the
solutions of the IK problem.

• It should obtain the IK solutions without any prior knowledge of the number of so-
lutions. Since the number of possible KCs is very large, there is no information about the
number or approximate locations of the IK solutions in the joints space.

• It should be applied to distinct KCs with minimum modifications. Since such an IK
solver is used for solving the IK problem of a wide range of distinct KCs, modifying the
algorithm symbolically or analytically each time it is being applied to a new KC can prove
to be an obstacle.

• It should be fast. Since, in the TBCO problem, the IK problem should be solved numer-
ous times, a higher speed of IK solver is directly translated into a faster TBCO. Hence, the
speed of such an algorithm is crucial to this application.

2.6.3 Objective Function of the Inverse Kinematic Problem

In closed-form IK solvers, the goal is to obtain exact algebraic solutions of the IK problem,
whereas in numerical iterative methods, the approach is to formulate IK as a minimization
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Figure 2.11: Categorization of the existing IK solvers

Table 2.6: Comparison of the existing IK solvers
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problem, and then obtain the solution by employing a minimization algorithm. Therefore, the
first step is to determine an optimization measure which represents the positioning/orienting
error of the manipulator, when the joint angles change. For an arbitrary set of joint angles,
Θ = [θ1 θ2 · · · θn], this measure is defined as the difference between the end-effector position
and orientation and those of the desired task point.

In Section 2.5.3, the concepts of position and orientation reachability errors are introduced,
and similar measures can be employed as the objective function in the IK problem. In solving
the IK problem, a set of joint angles must be found to minimize the position and orientation
reachability errors of a manipulator in performing a task. In the TBCO, a manipulator must be
found to minimize the reachability errors. Therefore, the IK problem is solved as an intermediate
stage in TBCO to determine the reachability errors of the manipulators. In the IK problem, the
differences between the position and orientation of the end-effector from that of the desired task
are called the positioning and the orientating error, whereas in the TBCO, they are called the
positioning and orienting reachability error.

In the IK, the positioning and orienting difference of the end-effector, with reference to the
task point produced by the joint angles Θ, can be used as the fitness measure. If the Homogenous
Transformation of the task point in the cartesian space is represented by

Tdes =


Rdes Pdes

0 0 0 1

 , (2.26)

and if the Homogenous Transformation of the end-effector of the manipulator at the arbitrary
joint angle Θ is represented by

Tee (Θ) =


Ree (Θ) Pee (Θ)

0 0 0 1

 , (2.27)

the Euclidean norm of the difference between the end-effector position of the manipulator at Θ

and that of the desired point in the Cartesian space can be used as a measure of the positioning
error, i.e.,

EP (Θ,Tdes) = ‖Pdes −Pee (Θ) ‖ . (2.28)
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The error in the end-effector orientation is defined by the rotation matrix, Rerror, which
rotates the end-effector of the manipulator at Θ to the desired orientation Rdes . Rerror can be
calculated by

Rerror = Rdes .R
−1
ee (Θ) = Rdes .R

T
ee (Θ) . (2.29)

In this thesis, the quaternion representation of frame’s rotation is used for calculating the
orientation error. Quaternions provide a convenient mathematical mean for representing the
orientations of objects in three dimensions. Compared to Euler angles, quaternions are simpler
to compose, more numerically stable, and more efficient in some situations [102], [103].

If the quaternion coordinate of a point in the Cartesian space is represented by V, it can be
shown that the quaternion product QVQ−1 yields the vector V rotated by an angle α around
the axis of the quaternion vector U. Here, Q is the rotation vector and can be represented as
Q = [ cos(α/2) sin(α/2).U ].

In the IK formulation, the rotation matrix, required to rotate the end-effector Homogenous
Transformation to the desired orientation, can be conveniently converted to the quaternion for-
mat. The α can then be extracted from the quaternion to represent the orientation error.

If Rerror is defined in the quaternion representation by [qw qx qy qz], where [qw qx qy qz] =

[ cos(α/2) sin(α/2).U ], and operator Q is defined as

Q (Rerror) = α , (2.30)

The orientation error can then be written as

EO (Θ, Tdes) = Q (Rerror) . (2.31)

By using (2.28) and (2.31), the objective function of the manipulator at Θ, consisting of both
positioning and orienting errors with reference to a desired task point Tdes can be written as

Fobj (Θ,Tdes) = wpEP (Θ,Tdes) + woEO (Θ,Tdes) , (2.32)

where wp and wo are the positioning and orienting weighting factors. These weighting factors
are used to normalize the corresponding values of EP and EO. Following the same course of
reasoning for (2.13), wp and wo are considered as follows:
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wp = 1

wo =

√
λKC .‖Pdes‖

π

, (2.33)

where λKC is a coefficient that depends on the dimension of the robot. Total length of all the
links of the robot can be used as λKC .

The goal of the numerical IK algorithms is to solve for Θm such that

Θm = arg min
Θ
Fobj(Θ, Tdes) . (2.34)

In a manipulator capable of reaching Tdes, if Fobj(Θm,Tdes) is not zero, Θm is a local
optimum of the function Fobj , and is not a solution to the IK problem. A manipulator pose,
Θs = [θs1, θ

s
2, · · · , θsn], is an IK solution, if and only if

Fobj (Θs, Tdes) = 0 , (2.35)

which implies that

EP (Θs, Tdes) = 0 , (2.36)

and

EO (Θs, Tdes) = 0 . (2.37)

2.6.4 Multi-Solution Versus Single-Solution IK Solvers

In this section, the two fields that benefit the most by employing multi-solution instead of single
solution IK solvers, are discussed.

Manipulator Kinematic Design

Typically, all industrial manipulators have specific kinematic designs such that closed-form IK
solutions can be developed [104]. In other words, one of the reasons that almost all the existing
serial manipulator designs are minor variations of a few well known KCs such as PUMA and
Stanford is to make a closed-form IK solution possible. To guarantee closed-form solutions,
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almost all of the existing industrial manipulators are designed to have three intersecting or par-
allel consecutive joint axes [61, 62]. Since, in the manipulator design, the main limitation is
the existence of closed-form solutions, only a fraction of all the possible KCs are synthesized,
designed, and developed. Hence, a large number of KCs which can offer better performance are
neglected.

Although numerical IK solvers provide a competitive replacement for substituting closed-
form solutions, especially for KCs without closed-form solutions, the numerical IK solvers lack
the capability to find all the IK solutions. The single solution nature of numerical IK solvers
results in new limitations in terms of joint mechanical limitation avoidance, obstacle avoidance,
trajectory planning, and trajectory optimization. This limitation has restricted the practical ap-
plication of numerical IK solvers such that the closed-form still remains the preferred approach
for solving the IK problem.

Therefore, an IK solver algorithm that is not restricted by the limitations of closed-form and
numerical solvers, i.e. one which is capable of obtaining multiple IK solutions for all KCs,
provides the designers with the required tools to create manipulators which can perform more
efficiently in general tasks or manipulators which are optimized for certain tasks.

Trajectory Optimization

Industrial robotic manipulators are designed to perform a certain task numerous times during
their operational age. Consequently, any change to these manipulators, which might improve
the performance has considerable rewards in terms of decreasing operations, maintenance, and
repair costs, as well as the manufacturing time.

Different approaches and solutions can be found for optimizing the performance of robotic
manipulators. The least costly, in terms of material and time, is probably to modify the robot
trajectory such that a set of operational performance parameters of the robot can improve. For
instance, the trajectory of the manipulator can be optimized in order to minimize the required
torque, power consumption, and operation time.

Multiple solutions of the IK can lead to more optimal solutions to the trajectory generation
problems. The effect of considering multiple IK solutions in the trajectory optimization, are
illustrated through the following cases:

Example 1: For each task point in the Euclidean space, the 6-DOF PUMA manipulator in
Fig.2.12 has eight distinct IK solutions. For the purpose of comparison, a task for the
manipulator consisting of moving from task point 1 (T1

des) in the Euclidean space to task
point 2 (T2

des) is assumed. Fig.2.12(a) and Fig.2.12(b) show two out of the eight distinct
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IK solutions for T1
des, called elbow-up and elbow-down poses. Fig.2.12(c) and Fig.2.12(d)

demonstrate the elbow-up and elbow-down poses for T2
des. It can be observed that four

cases occur, when a trajectory from T1
des to T2

des is generated.

1. The manipulator moves from the elbow-up pose in T1
des to the elbow-up pose in T2

des.

2. The manipulator moves from the elbow-down pose in T1
des to the elbow-down pose

in T2
des.

3. The manipulator moves from the elbow-up pose in T1
des to the elbow-down pose in

T2
des.

4. The manipulator moves from the elbow-down pose in T1
des to the elbow-up pose in

T2
des.

For each of these cases, a 7-degree polynomial trajectory with the constant length of four
seconds is created. The required joint torque and power consumption of each trajectory
is calculated for the PUMA560 manipulator by using the Matlab Robotics Toolbox [105].
This toolbox utilizes the recursive Newton-Euler formulation to solve the Inverse Dynam-
ics problem.

Table 2.7 and Table 2.8 show the maximum and the average required torque for each joint
of the PUMA560 to follow the trajectory. Table 2.9 shows the average power required for
each joint and the total required power for the manipulator.

It can be seen that the maximum and average required torque and the average required
power change drastically from case to case. This change in the performance measure,
caused by choosing different IK solutions for a unique task, suggests that the performance
of the manipulator can be improved by a suitable selection of the IK solutions for each
task. The selection of the best IK solutions depends on the application and whether the
goal is minimizing power, maximizing the payload, maximizing the speed, identifying the
optimal sequence to pass through the intermediate points of a given task, or a combination
of them. Generally, the desired optimization measure should be evaluated and multiple
options for the path planning should exist, i.e., more than one solution to the robot IK
problem. If the manipulator has s IK solutions for each of t task point, st different cases
exist. Thus, a search algorithm is required to examine such cases in order to find the IK
solutions that optimize the trajectory for a given set of goals. In Chapter 5, an efficient
algorithm to perform this search is proposed and tested.

If minimizing the power consumption of the manipulator is the goal, as seen from Ta-
ble 2.9, choosing the trajectory of Case 2 offers the best improvement. Case 2 corresponds
to the trajectory from the elbow-down pose of T1

des to the elbow-down pose of T2
des.
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Table 2.7: Example 1: Average required torque for the PUMA560 to follow the trajectories
(N.m)

Torque(N.m) Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
Case 1 26.2323 28.0785 10.9776 0.8712 1.8214 1.6948
Case 2 26.2350 25.0806 1.1347 1.9331 0.5412 0.8107
Case 3 26.4836 35.4458 5.2365 2.0909 1.2226 0.8327
Case 4 26.2316 53.9799 12.3313 0.9127 2.6467 1.9210

Table 2.8: Example 1: Maximum required torque for the PUMA560 to follow the trajectories
(N.m)

Torque(N.m) Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
Case 1 49.8973 40.4988 12.9466 1.7768 3.4713 3.3710
Case 2 48.5416 39.3951 13.0186 4.1371 1.1043 1.6374
Case 3 55.9225 71.1438 9.9031 4.4306 1.8467 1.2812
Case 4 56.5868 68.1273 24.6538 1.8695 4.7908 3.7374

As a result, multiple solutions of the IK comprise a first step in creating trajectories that
are capable of optimizing the operation of a robotic manipulator. In Chapters 3 and 4, two
novel algorithms, for obtaining multiple solutions of the IK problem for serial manipula-
tors with revolute joints, are proposed.

Example 2: A common approach to trajectory optimization is to choose IK solutions such that
the elbow-up or down stance of the manipulator does not change. Although this approach
might prove to provide correct solutions in some cases, this example shows that such a
method does not always produce the desired solutions.

A 6-DOF PUMA manipulator with an offset between the second and third joint for per-
forming a two task point trajectory is considered. The PUMA is illustrated in Fig. 2.13.
The eight IK solutions of the manipulator, when it reaches the task points, are computed,
and the 64 combinations of moving from an IK solution of the first task to the second task
are examined. The result of the comparison is shown in Fig. 2.13 in which the optimal
pose at the initial and end tasks are shown in Fig.2.13(a) and Fig. 2.13(b), respectively.

Table 2.9: Example 1: Average required power for the PUMA560 to follow the trajectories (W)

Power(W) Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
∑

Case 1 24.9752 12.3913 2.6832 0.7107 5.3727 3.7535 49.8866
Case 2 26.4819 16.7639 0.1891 4.8971 0.3554 0.6260 49.3135
Case 3 24.1281 73.1677 11.4001 5.4981 0.6969 0.3513 115.2422
Case 4 24.5108 48.0250 37.0315 0.8285 10.9475 4.8569 126.2002
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(a) (b)

(c) (d)

Figure 2.12: Example 1: Start and end point of a certain task considering two distinct solutions
of the IK for a 6-DOF spatial manipulator: (a) start pose with IK solution 1; (b) start pose with
IK solution 2; (c) end pose with IK solution 1; and, (d) end pose with IK solution 2
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(a) (b)

Figure 2.13: Example 2: Optimized start and end pose of the 6-DOF PUMA manipulator in
moving from T1

des to T2
des: (a) start pose with IK solution 1; and, (b) start pose with IK solution

2

At the initial task point, the pose is elbow-up, and at the end, the pose is elbow-down.
Therefore, preventing the manipulator from passing through singularities, by preventing
it from changing its elbow-up or down stances, is not enough for optimizing trajectories.
Consequently, a more comprehensive method for considering all the possible cases, and
finding trajectories from one task point to another is required.

2.7 An Introduction to Genetic Algorithms (GAs)

Genetic Algorithms (GAs) are the most commonly used optimization algorithm in the TBCO
literature. In this thesis, two distinct classes of GAs are employed for solving two different
but related problems. In Chapter 3 a niching Genetic Algorithm is used to solve for multiple
solutions of the IK problem. A Memetic Algorithm (MA) which is a hybrid of local search and
genetic algorithms, is employed in Chapter 6 to solve the TBCO problem. Therefore, in this
section, simple GAs are introduced. In the respective chapters, the complementary detail of the
selected GA classes are presented.
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2.7.1 Genetic Algorithms

According to Goldberg’s most cited text book2 [106]:

Genetic algorithms are search algorithms based on the mechanics of natural selec-
tion and natural genetics. They combine survival of the fittest among string struc-
tures with a structured yet randomized information exchange to form a search algo-
rithm with some of the innovative flair of human search. In every generation, a new
set of artificial creatures (strings) is created using bits and pieces of the fittest of the
old; an occasional new part is tried for good measure. While randomized, genetic al-
gorithms are no simple random walk. They efficiently exploit historical information
to speculate on new search points with expected improved performance.

In GAs, the design parameters are translated to a string. Each string, called an individual,
represents a point in the search space. Unlike other optimization algorithms, GAs manipulate
a group of individuals (called a population) to reach a solution. The individuals in the initial
population are generated randomly. A fitness value for each individual is calculated according
to the criteria that need to be optimized. This fitness value is a measure of the suitability of
each individual as a solution. For instance, in TBCO, each string represents an encoded KC in
the Mn space, and the fitness value that should be minimized can be reachability errors or an
optimization criterion. In this thesis, the i-th individual and its fitness value are represented by
Xi and Ffv (Xi), respectively, where X is substituted with the corresponding representation of
the optimization variable. For instance, in the TBCO, each individual is a KC and Xi = Ri,
while in an IK solver, each individual is a set of joint angles, Xi = Θi.

GAs use the genetic operators to find the individual that can produce the lowest(highest)
fitness value for a minimization(maximization) problem. The genetic operators consist of selec-
tion, crossover, and mutation. In Selection (also called reproduction), the algorithm selects the
individuals with the best fitness values to form a parent pool. The parent pool is a group of the
individuals with a high fitness value. The individuals in the parent pool are given the chance of
producing offsprings. The members of the parent pool are called parents.

After selection, a simple Crossover can proceed in two steps. First, members of the parent
pool are mated at random. Secondly, two new individuals are created by swapping the strings
of the parents at a randomly selected position. Crossover produces a new population from the
promising individuals of the previous generation. In doing so, by inheriting good genes from the
parents, the average fitness value of the new generation usually decreases.

2www.citeseer.com, in artificial Intelligence category.
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The mutation operator is then applied to a small percentage of the offsprings. Mutation
changes a random part of the string. For example, in binary strings, simple Mutation changes
one bit of the string (from 0 to 1 or vice versa). Mutation is needed because, “even though
reproduction and crossover effectively search and combine extant notions, occasionally they
may become overzealous and lose some potentially useful genetic material. In artificial genetic
systems, the mutation protects against such irrecoverable loss” [106].

After mutation, a new generation of individuals is formed. Now, the GA operators are applied
to the new generation, and this process continues, until the termination criteria is satisfied or the
maximum number of the generation is reached.

Fig. 2.14 shows the schematics of a simple GA.

2.7.2 Genetic Algorithms in Task-Based Configuration Optimization

The current literature on optimization identifies three main types of search methods: calculus-
based, enumerative, and random [106]. Calculus-based methods use the derivative of the ob-
jective function to find the optimized solutions. Enumerative methods look at the objective
function values at each point in the space, one at a time. Though, these methods are simple
and very effective in finding the optimums, they lack the efficiency required for searching large
multi dimensional spaces. On the other hand, random search methods (including GAs) improve
the efficiency of enumerative methods by sampling the search space to locate the optimums.
For applications that demand high efficiency, the random methods are the logical choice. The
drawback of random search methods is that a formal mathematical proof for their convergence
rarely exists. Moreover, random search algorithms are usually slower than the other methods in
converging to the solution.

Another approach to categorize the optimization algorithms is grouping them into local or
global algorithms. Local optimization algorithms converge on the minimum which is closest to
the initial search point. If the found minimum is not the minimum of the function in all of the
search space, it is called a local optimum. A global optimization algorithm is independent of
the initial starting point, and finds the absolute minimum of the objective function. Although in
some applications, finding only a local minimum might suffice, in most applications, the global
optimum is the desired point. Most enumerative methods are categorized in the local optimiza-
tion groups. Calculus-based and random search algorithms are typically global optimization
algorithms.

The characteristics and relevance of GAs to the TBCO can be summarized in the following
[106].
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Figure 2.14: Block diagram of an iteration in Genetic Algorithms
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1. GAs work with a coding of the parameter set, not the parameters themselves. This char-
acteristic enables a search in a space that consists of points with numerous types of param-
eters. For instance, each of the individuals can include continuous, discrete, and binary
parameters at the same time. This is an asset in formulating a complex problem such as
the TBCO which includes different types of variables.

2. GAs search from a population of points, not a single point. In many optimization methods,
each point is selected according to the fitness value of the last point. This makes the
method susceptible to convergence on local optima. On the other hand, GAs produce
individuals that climb multiple hills, simultaneously. This feature enables GAs to find
the global optimums more conveniently. The TBCO is a highly nonlinear problem with
numerous local optima. Hence, this feature of GAs is crucial in avoiding the local optima
and moving toward the global optima.

3. GAs use an objective function, not derivatives or other additional knowledge. In the
majority of complex optimization problems, including the TBCO, no information of the
search space such as derivatives exists. Since GAs only require a fitness value correspond-
ing to each of the individuals in the population, working in an unknown search space
is convenient. However, for other methods, especially calculus-based methods, lack of
derivatives is a huge obstacle.

4. GAs use probabilistic transition rules, not deterministic rules. GAs use random choice
to guide the search towards regions of the search space with likely improvements. This
feature increases the chance that GAs can avoid the local optimums.

Due to the advantages of GAs for solving optimization problems, in this thesis they are
adopted as the preferred optimization algorithm for solving the TBCO problem. Furthermore, a
class of GAs is employed for solving the IK problem for all of its solutions.
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Chapter 3

Multi-Solution Inverse Kinematics Solver
Based on Adaptive Niching Genetic
Algorithms

3.1 Introduction

In this chapter, an adaptive niching GA method is proposed to find multiple solutions of the IK
problem. This algorithm is based on a minimizing GA to find the joint angles that produce the
least positioning and orientation error of the end-effector from those of the desired task point.

Each individual of the GA is encoded such that it represents a set of joint angles. For an
n-DOF manipulator, the i-th individual of the GA, Θi, is expressed as follows

Θi =
[
θi1 θ

i
2 · · · θin

]
. (3.1)

For an individual, Θi, a fitness value, Ffv (Θi), representing the suitability of the individual
for being an IK solution, is calculated. The goal of the proposed algorithm is to find a group of
individuals with Ffv within the permissible threshold. The weighted sum of the position and ori-
entation error is adopted as the fitness value of each individual. According to Section 2.6.3, the
fitness function of the i-th individual Θi with respect to the desired Homogenous Transformation
Tdes can be written as:

Ffv (Θi) = Fobj (Θi,Tdes) = wp.EP (Θi,Tdes) + wo.EO (Θi,Tdes) (3.2)

Since a requirement for the algorithm is to find multiple solutions of the IK problem, a special
class of GA called niching GA is employed.
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The development of the proposed niching GA involves the following:

• By using the niching GA, the method can yield multiple solutions of the IK problem. The
proposed method requires only a few parameters based on prior knowledge of the problem.
Consequently, the method can be applied to a wide range of distinct KCs.

• A real coded Simulated Binary Crossover (SBX) is chosen. It enables the algorithm to
search in a continuous joint space, not a discrete binary one.

• A novel formulation for incorporating the joint mechanical limits in the simulated binary
crossover is introduced.

• An enhanced version of the adaptive niching via coevolutionary sharing method is adopted
to increase the speed of the algorithm without sacrificing the performance.

• A post processing stage, consisting of filtering, clustering, and numerical IK is proposed.
The filtering and clustering stages allow the algorithm to be used for robots with more
than 3-DOF through a methodical identification of the solution regions. The numerical
IK solver then achieves convergence at any desired joint angle accuracy. In addition, the
numerical stage enables the algorithm to distinguish the global optimums from the local
optimums in the output of the niching GA.

The performance of the algorithm is verified by finding multiple solutions of the IK problem
for four distinct KCs. The algorithm is applied to instances of m3, m4, m6, and m7 manipulators
for two distinct task points.

This chapter is organized as follows. In Section 3.2, the existing niching GA algorithms are
reviewed. The niching GA algorithm for solving the IK problem is introduced in Section 3.3.
Section 3.4 provides a discussion of the post processing stage to extract the IK solutions from
the output of the niching GA algorithm. In Section 3.5, the results of employing the proposed
method to solve the IK of four distinct KCs are presented. Section 3.6 is a summary the chapter.

3.2 Niching Techniques

A GA, through Selection, Cross-over, and Mutation operations, finds the individuals that have
the best fitness values, and combines them to produce individuals that offer better fitness values
than those of their parents. This process continues until the population converges around an in-
dividual that has the best fitness value. However, in a large number of applications with multiple
global (or local) optimums, the identification of more than just one promising point is necessary.
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For this purpose, niching methods are adopted to modify the simple GA by changing the fitness
value such that a convergence to multiple solutions are encouraged [107]. In this section, the
conventional niching techniques are reviewed. Then, the adaptive niching via the coevolutionary
sharing technique is explained in detail.

3.2.1 Conventional Techniques

The sharing method, which is probably the most well-known niching technique, decreases the
fitness value of the individuals in densely populated areas, decreasing their chance of being se-
lected [108]. In sharing methods, a priori knowledge of the problem is required to tune the
numerous parameters of the algorithm, including niche radius, σs [107]. Moreover, the algo-
rithm is more suitable for problems with equidistant niches. Its limitation as an IK solver is that,
prior to solving the IK problem, no knowledge of the relative proximity of the solutions exists.
In addition, the number of niches, which represent the IK solutions, changes for different KCs.
Also, these solutions change with the position of the end-effector, and are completely different
from one robot configuration to another. Crowding methods, another approach to niching, in-
cludes standard crowding, deterministic crowding, and restricted crowding. These methods do
not have the robustness of sharing methods [107].

3.2.2 Adaptive Niching via Coevolutionary Sharing

As mentioned, one of the disadvantages of fitness sharing is the need to set the niche radius σs
accurately. This requires a priori knowledge of the proximity and distances between the solutions
of the problem, a luxury which is not available in IK problems.

To address this drawback of sharing methods, Goldberg and Wang have introduced the adap-
tive coevolutionary shared niching (CSN) algorithm [109]. It is loosely based on the economic
model of the monopolistic competition, in which businessmen try to position themselves, subject
to a minimum distance among geographically distributed customers, to maximize their profit. In
the CSN two populations, businessmen and customers, work to maximize their separate inter-
ests.

These two populations interact with each other according to the economic model. Business-
men try to maximize their profit by finding locations with more customers, whereas customers
try to shop from businessmen with better service, that is, the closest businessman who is least
crowded.

For the customer population, the fitness function modification resembles that of the standard
fitness sharing. If, at any generation t, customer c is being served by the businessman b who is
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the closest businessman, and that b is serving a total Cb,t customers, the shared fitness of c is
calculated by

Fshared(c) =
Ffv(c)

Cb ,t

∣∣∣∣∣
c∈Cb

, (3.3)

where Cb denotes the customer set, whom businessman b serves, that is, each customer shares its
fitness value with the other customers of the same businessman. A stochastic universal selection
scheme and single point crossover have been used in the original paper.

The tendency of the businessmen is to place themselves in regions that are more densely
populated by customers, subject to keeping a minimum distance of dmin from the other busi-
nessmen. The fitness value of the businessmen is simply the sum of the fitness values of its
customers such that

Fshared(b) =
∑
c∈Cb

Ffv(c) . (3.4)

Goldberg and Wang have used only a mutation operation for the businessmen population. If
a mutated individual is at least dmin far from other businessmen, and is an improvement over the
original businessman, the individual replaces the original one. If not, the mutation operation is
repeated up to a multiple of the businessman population. Also, an imprint operation has been
suggested. It chooses a new businessman randomly from the customer population instead of
producing it by mutation. With the imprint, the evolution of the businessman population benefits
from knowledge of the search space acquired by customers, and is not completely random. If the
chosen customer can satisfy the aforementioned two conditions it replaces the businessman. To
investigate if the selected customer is an improvement, the assignment of the customers to the
businessmen must be repeated. To accomplish the assignment, the calculation of the customer’s
distance from the members of the new set of businessmen is required.

The sensitivity of CSN to dmin is less than the sensitivity of sharing techniques to σs. Nev-
ertheless, choosing an appropriate dmin is still of considerable importance.

The CSN has been applied to a multi-objective softkill-scheduling problem with the im-
print operation [110]. Rank-based selection, elitism, and non-dominated sorting are some of the
prominent features of that work.
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3.3 Adaptive Sharing to Solve the IK Problem

To solve the IK problem, the algorithm must be fast enough to evaluate the solution for a very
large space (e.g. a six dimensional space for a 6-DOF PUMA or general purpose articulated
robots). Furthermore, the algorithm must be capable of not only finding multiple solutions for
all the poses of the end-effector, but also solving the IK for any KC. In this section, the proposed
algorithm for solving the IK problem is introduced.

3.3.1 Niching GA for Solving the Inverse Kinematic Problem

An overview of the proposed algorithm is displayed in Table 3.1. A detailed explanation of each
step follows.

1. Initialization: Two independent populations of customers and businessmen are randomly
created. Each individual, Θi, consists of n joint angles corresponding to the n DOF of the
robot such that

Θi = [θ1
i θ

2
i · · · θni ] , (3.5)

where θ1
i , θ

2
i , · · · , θni are real numbers.

To allow more individuals to be associated with the IK solutions which are close to
the reachable joint space borders, [θmin,θmax], an extended range of permissible angles,
[θmin−ψ,θmax +ψ], is used. θmin and θmax are the joints’ rotational limitations which are
usually dictated by the mechanical design and manufacturing.

After the customer and businessmen populations are randomly generated, the initial dmin
is calculated as follows

dminstart =
κ( θmax − θmin)

1 + n
√
b

, (3.6)

where n, b, and κ correspond to the DOF ( i.e., number of joints ), the number of busi-
nessmen, and the fitting index, respectively. Equation (3.6) uses κ > 1, multiplied by the
distance between any two businessmen, if they are spread equidistantly over the n dimen-
sional joint space, that is, dminstart should be greater than the average distance between
any two businessmen.

2. Fitness Value Calculation: The fitness values, Ffv(c) and Ffv(b), of the customers and busi-
nessmen are calculated by using (3.2). Then, the customers are assigned to the closest
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businessman, where the closeness is measured by using the Euclidean distance between
the customers and businessmen. If, at any generation g, customer c is served by business-
man b who is the closest businessman, and that b is serving a total Cb,t customers, the
shared fitness of c, Fshared(c), is calculated by

Fshared(c) = Ffv(c) · Cb ,g . (3.7)

This equation is the counterpart of (3.3) in the original maximization CSN algorithm,
which has been modified for minimization. By using the niched fitness value, Fshared(c),
in the GA, the tendency of the selection operator is to form the parent pool from individ-
uals with a smaller Cb ,g, that is, individuals in less dense locations. The niched selection
scheme preserves the diversity of the individuals, and prevents the individuals from con-
verging to one single solution of the problem.

3. Selection: A tournament selection is adopted to create the parent pool. From the customers,
ntour individuals are selected at random. From this subset, the customer with the least
fitness value (error) is transferred to the parent pool. A Binary Tournament Selection, in
which ntour = 2, is used for the proposed algorithm.

4. Elitism: It has been demonstrated that elitism can speed up the performance of the GA sig-
nificantly [111, 112]. Also, elitism can help prevent the loss of good solutions once they
have been found. A drawback of using elitism is a premature convergence of the algo-
rithm due to one elite, which is not the global optimum, dominating the parent pool, and
therefore after a few generations the entire population.

In simple GAs, the elitism is performed by transferring a number of the customers with
the best fitness values to the next generation directly. But in niching GAs, by applying
the same elitism method, there is the chance that all the elites are chosen from only a
few well developed niches. This can decrease the diversity of the population quickly and
cause premature convergence of the algorithm. In this thesis, a method is developed to
profit from elitism while avoiding its potential drawbacks. The proposed elitism scheme is
performed as follows. Instead of simply choosing the best customers from the entire pool
of customers, one customer, belonging to each businessman, is selected. This customer has
the lowest fitness value over all the other customers belonging to the same businessman.
As a result, each businessman contributes one elite, unless the businessman does not have
any customers. If the number of elites is odd, a randomly selected customer is added
to the list of elites. Then, the elite list is transferred to the next generation population.
The crossover operator is used to find the rest of the customers in the next generation
population.
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5. Customer Crossover: In this step, a new generation of customers is produced from the par-
ent pool of the previous step. Simulated Binary Crossover (SBX)[113] is adopted for the
crossover operation. In Section 3.3.2 the SBX and the proposed modifications are pre-
sented to accommodate joint angles with physical limits.

6. Businessmen Imprint: Each businessman is compared with an individual, randomly se-
lected from the newly formed parent pool. If this individual is an improvement over the
businessman and is dmin away from all the other businessmen, the individual replaces the
corresponding businessman. For each businessman, the process of comparison is repeated
nlimit times, or until the businessman is replaced by a better candidate. Here nlimit is a
multiple of the population number of businessmen.

7. Updating dmin : The value of dmin is closely related to the accuracy of the end solutions.
Lower values of dmin bring flexibility to the businessmen to locate regions with better
fitness values and higher concentration of solutions. The drawback of having a small dmin
is an increase in the probability of losing some niches, because of the tendency of the
businessmen to converge at the regions with the highest customer concentration.

In the initialization of the algorithm, dmin is set at its maximum value to prevent the GA
from converging immaturely on only one niche. As the iterations continue, the niches
begin to establish themselves around the solution points. Then, the difference between
their fitness values and the number of individuals in different niches decreases.

In this step of the algorithm, dmin is decremented in small step sizes until it reaches a
certain lower limit. In the GA proposed here, the following function is used for updating
dmin :

dmin = dminstart(1− λ
g

gmax
) , (3.8)

where g and gmax correspond to the current iteration and maximum iteration number. λ is
the coefficient that defines how small dmin can become.

8. Checking the Termination Criteria: In this stage, the output of the algorithm is compared
to a termination criteria. If the average fitness value of the businessmen population,
Favg,g(b), in generation g can satisfy the following criterion, the algorithm is interrupted,
and the results are entered into the post-processing phase. Favg,g(b) is computed as follows


Favg,g(b) ≤ µFlimit

Flimit = wp .‖Pdes‖+ wo .Q (Rdes)

, (3.9)
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Table 3.1: Niching GA for solving the IK problem

Step Description

1 Randomly Initialize the Customer Population

Randomly Initialize the Businessman Population

Initialize dmin with dminstart
2 Customers Raw Fitness Value Calculation

Businessmen Raw Fitness Value Calculation

Assignment of Customers to the Closest Businessman

Customers Shared Fitness Value Calculation

3 Forming the Customers Parent Pool by Tournament Selection

4 Transferring the Elite Customers to the Next Generation

5 Customer Crossover

6 Businessmen Imprint

7 Updating dmin

8 If the Termination Criterion Is Not Reached Return to Step 2

where ‖Pdes‖ and Q (Rdes) represent the norm of the position and the quaternion repre-
sentation of the orientation of the task Tdes, respectively. Flimit is considered as an upper
bound on the fitness value, Ffv, that depends only on the position and orientation of the
task point. 0 ≤ µ ≤ 1 is a coefficient that represents how small the average businessmen
fitness value should be before terminating the algorithm. According to the termination
criteria, the algorithm is stopped when the businessmen produce robot postures with end-
effector positions and orientations that can reach an average distance of µFlimit from the
task point.

In the first generations of the algorithm, the businessmen are randomly spread over the
search space, and their average fitness value is high. With the progress of the algorithm and
the decrease in dmin, the businessmen begin to converge at the locations with better fitness
values, while keeping their distance. This results in the decrease in their average fitness
value. Further decrease in dmin and discovery of better locations decreases the average
fitness value of the businessmen even more. Therefore, with the termination criterion of
(3.9), it is guaranteed that the algorithm stops only when the businessmen have positioned
themselves in the vicinity of the solutions of the IK problem.
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3.3.2 Continuous Crossover Operation

The crossover operation randomly selects two parents, P1 and P2, from the parent pool, and pro-
duces two children, C1 and C2 from them. It has been shown that for continuous search spaces,
real coded GAs are more suitable than binary coded algorithms [113]. In the proposed algorithm,
an SBX crossover [113] is chosen to apply the variable-by-variable crossover. The idea behind
the SBX is to create a random distribution of offsprings in the domain of real numbers. This
distribution matches the distribution of the common binary crossovers, that is, the SBX uses a
randomly generated number, uβ(i), to produce a random expansion ratio β(i) that defines how
similar the offsprings are to their parents, and is represented by

β(i) =

∣∣∣∣C2(i)− C1(i)

P2(i)− P1(i)

∣∣∣∣ . (3.10)

In order to incorporate the joint angle’s mechanical limitations, the crossover is carried out
as follows

1. From the n joints, l joints ( l ≤ n ) are randomly selected for the crossover operation. The
rest of the joint angles are transferred from the parents to the children, unchanged. In the
implementation, l = 0.5n [114].

2. For each of the l joint angles selected in the last step, a random number, uβ(i), is generated.
The expansion ratio, β, is then calculated by using

β(i) =


(2uβ(i))

1
η+1 if uβ(i) ≤ 0.5

(
1

2(1−uβ(i))

) 1
η+1

otherwise

, (3.11)

where η denotes the distribution index and can be any nonnegative real number. For the
small values of η, points far away from the parents, have higher probability of being cho-
sen, whereas with large values of η, points closer to the parents are more likely to be
chosen. A value of 2–5 produces a good estimate of the binary coded crossover [114]. In
the proposed algorithm, η initially has a small value ( equal to two ). With the progress of
the algorithm η increases ( to around 5 ) so that the solutions can fine-tune to the center of
each solution region.

When the joint angles have physical limits (as commonly found in industrial robots) (3.11)
must be modified to produce offsprings that are located inside the joint limits. To accom-
plish this, the following method is developed. First, the lower and upper bound of the
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expansion ratio, βL and βH , are calculated from the following equation for each of the
joint variables as follows


βL(i) = 0.5(P1(i)+P2(i))−qmin

|P1(i)−P2(i)|

βH(i) = −0.5(P1(i)+P2(i))+qmax
|P1(i)−P2(i)|

, (3.12)

where P1(i) and P2(i) denote the i-th variable of the two parents. Since the expansion
ratio of the children to parents is limited by the joint variable limits, (3.12) calculates the
maximum allowable value of this parameter, corresponding to each limit. The value of uβ
is then updated as

uβ(i) =
uβ(i)

k(i)
, (3.13)

where

k(i) =
1

1− 0.5
βlimit(i)η+1

, (3.14)

and

βlimit(i) =


βL(i) if βL ≤ βH

βH(i) otherwise
. (3.15)

By changing the probability distribution of β(i), the modification guarantees that the chil-
dren are within the variable range. uβ is modified by (3.13), (3.14), and (3.15) such that
the probability of choosing a β less than βlimit(i), is equal to one, that is, for an arbitrary
uβ , the resultant children are in the range [qmin , qmax].

Finally, β(i) is calculated from (3.11) by using the updated uβ(i).

3. In the last step, the children are produced from the following equation:


C1(i) = 0.5[ (1 + β(i))P1(i) + (1− β(i))P2(i) ]

C2(i) = 0.5[ (1− β(i))P1(i) + (1 + β(i))P2(i) ]

, (3.16)

and are then placed in the new generation population.

61



Figure 3.1: Block diagram of the proposed GA post-processing algorithm

3.4 Processing the Output

The output of the GA is a set of n dimensional vectors, representing the joint angles, with high
population density around the regions with high fitness values and lower concentration in the rest
of the search space. Since the local optima have higher fitness values than the regions around
them, the local optima also attract a concentration of the individuals. In order to distinguish the
solution regions ( Global optima ) from local optima, a mechanism is necessary to detect the
regions with a high concentration of individuals and low error.

If the robot has 2-DOF, identifying the results in the 2D space is accomplished by obser-
vation, which is not convenient if the GA is intended to be used as a subroutine in a larger
algorithm or software. For robots with more DOFs (for example, a 6-DOF PUMA), identifying
these solution regions must be done in a six dimensional space, which is not possible by visual
inspection. Consequently, a robust algorithm is required for clustering the results. In addition,
a method is needed to increase the accuracy and resolution of the solutions for more precise
applications. When the solutions converge within the desired tolerance, the local optimums are
easily identified from the global ones.

In this section, the filtering, clustering, and the numerical IK post-processing stages are
explained. Fig. 3.1 shows a block diagram of the proposed post processing algorithm.

3.4.1 Filtering

The fitness function of each individual is the orientation/position error from the desired value. It
is easy to use the fitness function as a measure of filtering the results before the clustering.

In the filtering phase, the individuals with high fitness values ( errors ) are rejected and
individuals with lower fitness values are transferred to the clustering step. The threshold of the
filtering is represented by εfilter. It should be noted that choosing a small εfilter can lead to
selecting fewer more accurate individuals. Also, some of the less established niches might be
lost.
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3.4.2 Clustering

Since no prior knowledge of the number of solutions of the IK exists, the number of solution
niches or clusters is unknown. To deal with this issue, subtractive clustering [115] is employed
to find the niches. Subtractive clustering is a one-pass algorithm for estimating the number of
clusters and their centres for a set of data, when the number of the clusters is unknown.

In subtractive clustering, each point in the data set is a potential cluster centre. This algorithm
measures the potential of each of the points, according to the density of the data set around it and
assigns the point with the highest potential a cluster centre. Then, removes all the other points
in the rcluster from the cluster centre, and repeats the process until all the points in the data set
are within the radius of a cluster.

Choosing rcluster has a substantial effect on the number of clusters that are detected by the
algorithm. The larger the rcluster, the fewer the clusters detected. Because the GA has filtering
and runs until a relatively good convergence is achieved, rcluster can be set to small values to
detect all the solution regions with a good precision.

In the GA, all the joint angles are mapped into [−π, π]. If some of the solutions of the IK are
close to the border limits, −π or π, two concentrations of the individuals that represent only one
solution forms close to both of the border limits. The reason is that, although the angles close to
these border are at the two limits, from a mechanical point of view the angles are close to each
other. As a result, the clustering stage detects two different clusters close to the borders, both
belong to the same cluster. To overcome this problem, in the proposed algorithm, the clustering
is applied to the joint angles, where they are mapped into [−π, π]. Then the solutions of the
previous clustering are mapped into [0, 2π] and undergo subtractive clustering again.

3.4.3 Numerical Improvement of the Inverse Kinematic Solutions

The outputs of the previous two stages are the centres of the niches, detected by the clustering
algorithm. Although these centres represent the location of the solutions in the joint angle space,
the centres might not have the required accuracy and resolution for a precision control of the
robotic manipulator. As a result, the necessity of improving the accuracy of the solutions arises.

To increase the accuracy of the solutions to any desired order, a Quasi-Newton algorithm is
utilized. The numerical IK uses the outputs of the clustering stage as the initial search point and
then converges to within the desired positioning and orienting tolerances.

If a solution in the output of the numerical error still yields errors greater than the admitted
tolerances, the solution is identified as a local optimum and eliminated from the final set of
solutions. However, to clarify the achieved results, the local optima are not eliminated.
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Adopting numerical methods after the GA, has the additional benefit that the GA, which is
computationally demanding, can be stopped even when the niches are formed on the approxi-
mate location of the solutions, that is, the GA can be stopped earlier, and the responsibility of
further convergence to the solutions can be transferred to the much faster numerical algorithm.
Consequently, the overall speed of the convergence of the IK algorithm is enhanced.

3.5 Results

Four distinct KCs, each with different number of joints, are applied for validating the proposed
algorithm.

In the rest of this section, the results of running the algorithm for the tested KCs are pre-
sented. First, the results of running the algorithm for an m3 manipulator to visualize the output
of each post processing stage is presented. Then, the performance of the algorithm in finding all
the IK solutions for an m4 and an m6 PUMA robot for two different task points are analyzed.
Finally, the solutions that are found by the algorithm for an m7 robot are given. The results are
achieved on Matlab on a 2GHz AMD64 processor with 1.5GB of RAM.

The GA is a stochastic method such that numerous runs of the algorithm are required to
examine the performance and the repeatability of the algorithm. Consequently, for each of
the selected task points, the algorithm is executed five times. The parameters that are used
in the algorithm remain fixed for all the runs and all of the configurations. The parameters
are summarized in Table 3.2. It is noteworthy that the expression for the population size of
the businessmen and the customers represents an approximate upper bound. Therefore, the
algorithm appears to perform well, even with smaller sizes of the population. In the table, n
represents the DOF of the robot.

3.5.1 3-DOF Planar Robot

Fig.3.2 depicts the m3 planar robot when a task point is reached with two distinct IK solutions.
The matrix representation of the tested 3-DOF manipulator is

m3 =


0 0 60

0 PR 30

0 P 30

0 P 30

 . (3.17)

Table 3.3 summarizes the results of running the algorithm for the tested 3-DOF KC. In the
table,NGA andNNM are the number of solutions before and after the numerical IK, respectively.
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Table 3.2: Parameters used in the Genetic Algorithm

Parameter Value

Businessman Population (b) 2n.2n−2

Customer Population (c) 2n.b

κ 1.2
λ 0.5
θmin −π
θmax π

ψ π

η 2-5
rcluster 0.0796
εfilter µFlimit

nlimit 3.b

ntour 2
µ 0.5

gmax 500
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Figure 3.2: Solutions of the m3 planar KC
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Table 3.3: Output of the algorithm for the m3 planar. N represents the number of niches.
EP , EO, and EJ represent the positioning error, orienting error, and error in the joint angle
space respectively. Parameters with GA and NM as the subscript represent the values after the
clustering phase and after the numerical method, respectively. t represents the run time of the
algorithm in each case.

Run 1 Run 2 Run 3 Run 4 Run 5

NGA 7 11 7 6 5

NNM 2 2 2 2 2

EGA
P (cm) 0.1490 0.0997 0.4320 4.0835 0.5998

EGA
O (degree) 1.4957 0.0197 0.0716 4.7478 0.0231

ENM
P (cm) 0.0001 0.0001 0.0548 0.0002 0.0214

ENM
O (degree) 0.0000 0.0000 0.1496 0.0000 0.0470

EGA
P and ENM

P are the minimum positioning error (cm) before and after the numerical IK, and
EGA
O and ENM

O are the minimum orientation error (degrees) before and after the numerical IK,
respectively.

The algorithm is stopped in generation 484, when the termination criteria is satisfied. As
can be seen from the table, the algorithm can find the two solutions in all of the runs. It should
be noted that the number of clusters are higher before entering the numerical algorithm phase.
The reason is that the algorithm is stopped before all the niches converge at the exact solution
locations. By doing so, the GA is interrupted earlier and further convergence is demanded from
the numerical method in order to achieve a better computational efficiency. If the GA is allowed
to run for more generations, the number of niches found after the clustering phase are likely to
be closer to the number of niches after the numerical method’s phase.

To further investigate the effect of the post processing phase, the joint angles are used to vi-
sualize the outputs of each stage. Fig.3.3(a) reflects the output of the niching GA, which consists
of the customer and businessman populations. At this stage, the individuals are scattered around
the entire search space with high concentrations around the solution locations. Furthermore, the
population of the businessmen is concentrated around the solution locations, while keeping the
distance dmin from each other. As shown in Fig.3.3(b), only those from the original popula-
tion that have fitness values better than the threshold of filtering remain after the filtering phase.
Clustering phase is then applied to the filtered population to find the niche centres. A numerical
method further converges the solutions of the clustering phase to the actual solutions. The output
of the clustering and the numerical method is shown in Fig.3.3(c). Here, more than one niche
can converge to the same numerical solution.
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It is evident that the post processing stage accepts the original population of the GA and then
extracts the solutions of the IK with the required degree of accuracy.

3.5.2 4-DOF Spatial Manipulator

The tested m4 KC has two distinct IK solutions for any reachable task point. The 4-DOF ma-
nipulator is a planar manipulator, attached to a rotational joint at the base to produce spatial
movements. The matrix representation of the manipulator is as

m4 =


0 0 90

0 R 45

0 P 40

0 P 40

0 P 30

 . (3.18)

Fig.3.4(a) and Fig.3.4(b) show m4 when it reaches the first analyzed task point with two
distinct IK solutions, and Fig.3.4(c) and Fig.3.4(d) portray the distinct solutions for the second
task point. Table 3.4 and Table 3.5 lists the results of 5 runs of the algorithm for each of the
task points. EJ is the per joint difference of the joint angles before the numerical IK to the
respective value after applying the numerical method and reaching a solution. t is the run time
of the algorithm for each experiment.

For the first task point, the algorithm runs for an average of 82 iterations and 40 seconds
before convergence. The corresponding values for the second task point are 24 iterations and 19
seconds. In all of the runs, all of the solutions of the IK are found. Typically, the GA stage ends
with more niches than the actual number of the solutions. After the numerical method is applied
to the solutions, more than one of the niche centres converge at the same solution. As a result,
at the output of the numerical stage, the final number of the solutions is typically less than the
number of niche centres.

3.5.3 6-DOF PUMA

An m6 manipulator, resembling the KC of a PUMA manipulator is chosen as the next test bed
of the algorithm. m6 is represented by the following
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Figure 3.3: Output of the post processing stages for the m3 planar KC: (a) customer and busi-
nessman populations; (b) filtered population; and, (c) detected niches and numerical algorithm
solutions
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Figure 3.4: Solutions of the m4 spatial KC: (a) and (b) IK solutions for reaching task point 1;
(c) and (d) IK solutions for reaching task point 2
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Table 3.4: Output of the algorithm in reaching task point 1 for the m4 spatial. N represents the
number of niches. EP , EO, and EJ represent the positioning error, orienting error, and error in
the joint angle space respectively. Parameters with GA and NM as the subscript represent the
values after the clustering phase and after the numerical method respectively. t represents the
run time of the algorithm in each case.

Run 1 Run 2 Run 3 Run 4 Run 5

NGA 18 30 15 17 21

NNM 2 2 2 2 2

EGA
P (cm) 1.2184 10.4490 12.5175 15.5401 23.3084

EGA
O (degree) 1.9098 0.4613 0.3554 1.0181 1.9905

ENM
P (cm) 0.0000 0.0001 0.0001 0.0001 0.0000

ENM
O (degree) 0.0001 0.0001 0.0001 0.0000 0.0000

EJ(degree) 3.7007 3.5954 3.2532 1.9500 7.1817

t(seconds) 39 30 45 36 48

Table 3.5: Output of the algorithm in reaching task point 2 for the m4 spatial. N represents the
number of niches. EP , EO, and EJ represent the positioning error, orienting error, and error in
the joint angle space respectively. Parameters with GA and NM as the subscript represent the
values after the clustering phase and after the numerical method, respectively. t represents the
run time of the algorithm in each case.

Run 1 Run 2 Run 3 Run 4 Run 5

NGA 47 17 30 19 10

NNM 2 2 2 2 2

EGA
P (cm) 17.6113 7.0731 4.0406 1.0563 34.3000

EGA
O (degree) 0.6621 5.0517 0.5007 2.3897 1.3140

ENM
P (cm) 0.0002 0.0001 0.0002 0.0001 0.0001

ENM
O (degree) 0.0002 0.0001 0.0003 0.0001 0.0000

EJ(degree) 7.8336 3.8397 3.6875 4.8561 10.3207

t(seconds) 18 14 21 27 16
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Table 3.6: Output of the algorithm in reaching task point 1 for the m6 PUMA. N represents the
number of niches. EP , EO, and EJ represent the positioning error, orienting error, and error in
the joint angle space respectively. Parameters with GA and NM as the subscript represent the
values after the clustering phase and after the numerical method, respectively. t represents the
run time of the algorithm in each case.

Run 1 Run 2 Run 3 Run 4 Run 5

NGA 216 214 214 219 229

NNM 8 9 8 8 8

EGA
P (cm) 6.2119 9.4829 9.3211 7.6261 12.0384

EGA
O (degree) 3.3087 3.9755 3.9423 3.4848 1.8421

ENM
P (cm) 0.0001 0.0000 0.0000 0.0001 0.0000

ENM
O (degree) 0.0000 0.0001 0.0001 0.0001 0.0000

EJ(degree) 7.2211 4.7227 7.6433 9.7832 5.5340

t(seconds) 1638 2240 2295 3263 1536

m6 =



0 0 90

0 R 90

0 P 90

0 P 90

0 R 30

0 P 30

0 R 30


. (3.19)

Fig.3.5 and Fig.3.6 display all the solutions of the IK, when the robot reaches the two task
points. In the figures, visual handles are attached to links connected to the output of joints 1, 4
and 6 to differentiate between the two possible values of joint angles q1, q4 and q6 in producing
multiple IK solutions. As observed in Fig.3.5, since the only reason for running the algorithm
is to find multiple solutions of the IK, all of the solutions of IK, regardless of self collision, are
shown. The results of five runs of the algorithm are summarized in Table 3.6 and Table 3.7. The
algorithm achieves these results after 61 and 86 iterations (36 and 42 minutes) for task points 1
and 2, respectively.

For the first task point, although the correct number of the IK solutions is eight, the algorithm
reports nine distinct solutions in one of the runs. Further investigation reveals that two of the
solutions differ only in the third joint value, which is θ3 = 0 in one of the solutions and θ3 = 2π

for the other solution.
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Figure 3.5: Solutions of the m6 PUMA KC for task point 1
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Figure 3.6: Solutions of the m6 PUMA KC for task point 2

73



Table 3.7: Output of the algorithm in reaching task point 2 for the 6-DOF PUMA. N represents
the number of niches. EP , EO, and EJ represent the positioning error, orienting error, and error
in the joint angle space respectively. Parameters with GA and NM as the subscript represent
the values after the clustering phase and after the numerical method, respectively. t represents
the run time of the algorithm in each case.

Run 1 Run 2 Run 3 Run 4 Run 5

NGA 107 154 146 59 124

NNM 8 8 8 8 8

EGA
P (cm) 3.9693 3.6407 3.1639 4.1705 4.8595

EGA
O (degree) 2.4588 6.8048 3.8925 1.7206 3.0407

ENM
P (cm) 0.0000 0.0006 0.0000 0.0001 0.0004

ENM
O (degree) 0.0000 0.0001 0.0001 0.0001 0.0001

EJ(degree) 1.4597 3.9952 4.7653 5.8982 6.4299

t(seconds) 5421 5453 5276 5381 5695

3.5.4 7-DOF Spatial Robot

An m7 spatial manipulator is chosen for further verification of the algorithm in finding multiple
solutions of the IK. The matrix representation of the manipulator is as follows:

m7 =



0 0 20

0 R 0

0 P 0

π/2 P 200

0 P 200

0 P 0

π/2 P 0

0 R 20


. (3.20)

In Fig.3.7, it is evident that the KC of the robot closely resembles that of the Canada Arm
2 of the International Space Station. The length of the links 1, 2, 5 and 6, are assumed to
be zero, indicating that the joints are directly connected without any links between them. The
algorithm achieves the termination criteria in iteration 530, after running for about 42 hours. The
algorithm converges slowly in this example due to the fact that the 7-DOF spatial manipulator
is a redundant robot. Thus, the objective function has numerous local and global optima. In
addition, the complexity of performing a search in the solution space of an m7 manipulator
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Figure 3.7: m7 spatial robot

Table 3.8: Output of the algorithm in reaching the task point for the m7 Spatial Robot. N
represents the number of niches. EP , EO, and EJ represent the positioning error, orienting error,
and error in the joint angle space respectively. Parameters with GA and NM as the subscript
represent the values after the clustering phase and after the numerical method, respectively. t
represents the run time of the algorithm.

NGA NNM EGA
P (cm) EGA

O (deg) ENM
P (cm) ENM

O (deg) EJ(deg) t(hour)

69 28 2.87 1.33 0.0003 0.0000 7.79 42

increases exponentially, compared to that of the m6 system of the previous example.

The output of the algorithm after the numerical stage consists of 28 niches. From these 28
niches, 16 were local solutions of the problem, and 12 are the global and correct solutions of the
IK. The summary of the results of the run for the m7 KC is provided in Table 3.8.

3.6 Summary

In this chapter, an enhanced version of an adaptive niching strategy is proposed and applied to
extract multiple solutions of the IK problem for spatial robots. Since this algorithm uses few
preset parameters, it can be generalized to solve the IK of a robot with an unknown number of
DOF and kinematic configuration. The algorithm incorporates real coding, adaptive minimum
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distance for businessmen, elitism, and adaptive real coding distribution index. To process the re-
sults, a subtractive clustering algorithm is chosen. It is demonstrated that the algorithm performs
with superior precision for random task points, independent of the KC of the robot.

By using the GA niching algorithm in conjunction with a numerical method, the resolution
and precision of the results are significantly improved. The niche centres that are detected in the
GA are applied in the numerical method as the initial search points to achieve solutions with the
required level of precision.

The convergence speed of the algorithm , especially for 6-DOF manipulators, can prove to
be an obstacle in using the algorithm effectively in the practical applications. Although the
proposed method is slower than some multi-solution IK solvers, it is more general, that is, a
wide range of constraints can be used, and the algorithm provides a solution which is still valid
[116].

In the next chapter, a multi-solution IK solver is proposed which is faster than the niching
GA IK solver.
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Chapter 4

A Multi-Solution Inverse Kinematics
Solver Based on the Joint Reflection
Operator

4.1 Introduction

In this chapter, a method is proposed to efficiently obtain multiple solutions of the IK prob-
lem. The method is developed for non-redundant MRRs, yet, the approach is generic enough
to be used for all mn, where n = 1 · · · 6. The algorithm requires no symbolic or analytical
modifications, when the robot configuration changes. Also, the novel algorithm is proven to be
computationally efficient and fast.

The approach is a generalization of numerical IK solvers, designed to incorporate the results
of analytical methods for m2 manipulators to obtain multiple solutions of the IK problem. The
solver operates by finding all the positioning solutions and utilizing these solutions to determine
the desired positioning/orienting IK solutions. The performance of the algorithm is verified by
solving for multiple solutions of the IK problem for three distinct 6-DOF KCs. For one of the
tested KCs, no closed-form IK solutions exists.

The proposed method has the following features.

• The proposed algorithm can be used for all the possible KCs, which can be assembled
from the MRR standard modular joint set.

• The algorithm obtains all the solutions of the IK problem.

• The only requirement of the algorithm are the FK equations of the manipulator. No prior
knowledge of the number and/or proximity of the solutions is required.
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• No symbolic or analytical modification is needed when the algorithm is applied for solving
the IK problem of a new KC.

• The proposed algorithm is proven to be computationally more efficient than some of the
existing IK solvers in the literature.

This chapter is divided into four sections. Section 4.2 provides the background for the rest of
chapter. In Section 4.3, the Joint Reflection Operator, the cornerstone of the proposed method,
is explained. In Section 4.4, the results of applying the proposed algorithm to three 6-DOF
manipulators are presented. Section 4.5 summarizes the findings of this chapter.

4.2 Background

4.2.1 Approach

According to (2.36) and (2.37), a manipulator pose Θs is an IK solution, if and only if the
following conditions are satisfied:

EP (Θs, Tdes) = 0 , (4.1)

and

EO (Θs, Tdes) = 0 . (4.2)

A set which includes all the IK solutions of a certain n-DOF manipulator, mn, for a specific
task are represented byQs (mn). If the set of all the manipulator poses, in which Ep(Θ) = 0 and
its counterpart, in which Eo(Θ) = 0 are defined as Qp (mn) and Qo (mn) respectively, Qs (mn)

can be obtained by Qs (mn) = Qp (mn) ∩Qo (mn), by solving such that

Qp (mn) = {Θ|EP (mn,Θ, Tdes) = 0} (4.3)

and

Qo (mn) = {Θ|EO (mn,Θ, Tdes) = 0} (4.4)
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and

Qs (mn) = {Θ|Θ ∈ QP ∧ Θ ∈ QO} (4.5)

To find all the solutions to the IK problem, the approach of the Joint Reflection Operator-
based method is to find all the members of Qp. Since they all satisfy the condition of (4.3), they
can be examined for satisfying (4.4). The set of joint angles which satisfies both (4.3) and (4.4)
then constitutes Qs.

Consequently, the proposed method is used to find all the members of the set in (4.3). By
using (2.34), each of the solutions are then used as the initial search point for a numerical algo-
rithm that finds arg minFobj (Θ, Tdes). If a Θ which minimizes Fobj (Θ, Tdes) has EP and EO

within an acceptable tolerance from zero, Θ is added to Qs.

The goal of the newly developed algorithm in this chapter is to find all the solutions of the
positioning and orienting IK for serial multi-DOF robot manipulatorsMn. It is assumed that by
using any current IK solver, one solution of the IK, Θs, is found. The proposed algorithm uses
Θs as an initial point for finding the remaining IK solutions.

4.2.2 Classification of the m2 Manipulators

Since the cornerstone of the proposed method is reducing mn to m2 manipulators, the m2 KCs
are examined in more detail. In Fig.4.1(a), the joints of an m2 manipulator are illustrated. z1,
z2, are the axes of rotation of the joints, and P12 is the vector representing the relative position
of the two joints in the Cartesian space. n1 and n2 are the common normals of vectors z1 and
P12, and z2 and P12, respectively, such that

{
n1 = P12 × z1

n2 = z2 × P12

. (4.6)

According to the relative position and orientation of the joint axes, z1 and z2, 2-DOF manip-
ulators ofM2 are grouped into three distinct classes.

Class 1: Intersecting Joint Axes: This class is represented by M×,2. In the members of this
class, n1 and n2 are parallel, whereas a non-zero angle exists between z1 and z2. A sample
manipulator for this case together with the joint axes and corresponding norms, are shown
in Fig. 4.1(b). The condition that all the members of this class should have is written as

M×,2 = {m2 | (n1 × n2 = 0) ∧ (z1 × z2 6= 0)} . (4.7)
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(a) (b)

(c) (d)

Figure 4.1: Relative position and orientation of joint axes of a m2: (a) m2 ∈ M2; (b) m2 ∈
M×,2; (c) m2 ∈Mq,2; and, (d) m2 ∈M,2

Table 4.1: Denavit-Hartenberg parameters of a 2-DOF manipulator with two intersecting joints

Joint αi ai di θi
1 α1 0 0 θ1

2 0 l2 d2 θ2

According to the modified DH convention, when two joint axes are intersecting, the origin
of the link frames should be moved to the point of intersection, i.e, a1 = 0, d1 = 0, and
α2 = 0. Table 4.1 shows the DH parameters of a manipulator in this class. Fig. 4.2 shows
all the configurations ofM×,2.

Class 2: Parallel Joint Axes: Mq,2 represents this class of 2-DOF manipulators. The joint axes
and the corresponding norms of a member of Mq,2 are illustrated in Fig.4.1(c). For a 2-
DOF manipulator to be a member of this group, in addition to n1 and n2 being parallel,
z1 and z2 should also be parallel. Consequently, the condition that all the members of this
class should have is written as

Mq,2 = {m2 | z1 × z2 = 0 } . (4.8)

For all the manipulators of this class, α1 = 0, d1 = 0 and a1 6= 0. The DH parameters of
the members ofMq,2 are listed in Table 4.2. In Fig.4.3, the configurations in this group are
illustrated.

Class 3: Non-Intersecting and Non-Parallel Joint Axes: This class is represented by M,2.
The joint axes and the corresponding norms of a member ofM,2 are shown in Fig.4.1(d).
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Figure 4.2: Non-redundant 2-DOF manipulators with intersecting joint axes which can be as-
sembled from the considered joint types
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Figure 4.3: Non-redundant 2-DOF manipulators with parallel joint axes which can be assembled
from the considered joint types

Table 4.2: Denavit-Hartenberg parameters of a 2-DOF manipulator with two parallel joints

Joint αi ai di θi
1 0 l1 0 θ1

2 0 l2 0 θ2
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Figure 4.4: Non-redundant 2-DOF manipulators with no parallel nor intersecting joint axes
which can be assembled from the considered joint types

Table 4.3: Denavit-Hartenberg parameters of a 2-DOF manipulator with joint axes which are not
intersecting nor parallel

Joint αi ai di θi
1 π

2
0 d1 θ1

2 0 l2 0 θ2

For a 2-DOF manipulator to be a member of this group, n1 and z2 or n2 and z1 should be
parallel. Therefore, the condition that all the members of this class is written as

M,2 = {m2 | (n1 × n2 6= 0) ∧ (z1 × z2 6= 0)} . (4.9)

Fig.4.4 exhibits all the manipulators of this class. The joint axes in the manipulators of this
class lie in two parallel planes, but an angle α1 6= 0 is between them. It is observed from
Fig.4.4, that for all the members of this class, the joint axes are perpendicular. Therefore,
only the case, in which α1 = π

2
is considered. As a result, the manipulators of this group

share these DH parameters: α1 = π
2
, α2 = 0, and d2 = 0. The complete list of the DH

parameters of manipulators of this group is shown in Table 4.3.
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4.3 Joint Reflection Operator

In this section, the Joint Reflection Operator (JRO), which is the basis of the proposed multi-
solution IK solver, is explained. First, the approach to find all the members of Qp for M2, M3,
andMn manipulators is explained. Then, the approach is generalized to find the members ofQs,
that is, the solutions to the combined positioning/orienting IK problem.

4.3.1 Finding Multiple Positioning IK Solutions

Finding Multiple Positioning IK Solutions forM2 Manipulators

Assume a 2-DOF manipulator with the link frames assigned according to the DH convention.
According to (2.22), the Homogenous Transformation of the end-effector Tee, with respect to
the reference frame at the base of the robot, is written as the following:

Tee (θ1, θ2) =


Ree(θ1, θ2) Pee(θ1, θ2)

0 0 0 1


= T0,1 (θ1) .T1,2 (θ2) . (4.10)

Since the DH parameters are chosen according to the modified DH convention, the last
frames of the manipulator (the frame of the end-effector) are always chosen such that α2 = 0.
If the Homogenous Transformation of the desired frame is represented by (2.26), in which the
desired end-effector position of the task Pdes is expressed as

Pdes =

 Px

Py

Pz

 . (4.11)

Then, the set of the solutions of the positioning problem QP is written as:

QP = {Θ = [θ1 θ2] |Pee(θ1, θ2) = Pdes} . (4.12)

As a result, to find the members of QP , the following equation should be solved for [θ1 θ2]

as follows
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Pee(θ1, θ2) = Pdes . (4.13)

For all the manipulators of M2, an operator, called the Joint Reflection Operator (JRO) rep-
resented by ΨJRO, can be found such that an unknown positioning solution Θ∗ = [θ∗1 θ

∗
2] can be

reached from a known one Θs = [θs1 θ
s
2] through Θ∗ = ΨJRO(Θs). ΨJRO is applied in two steps:

1. θ∗i , the angle of one of the joints of Θ∗ is determined by linear operator κ(Θs) from the
known solution Θs by computing

θ∗i = κ(Θs) = a · θsi + b . (4.14)

2. A θ∗j is obtained by minimizing EP when θi has a constant value equal to θ∗i as follows

θ∗j = arg min
θj

Ep(θ1, θ2)|θi=θ∗i . (4.15)

The minimization problem for finding θ∗j is solved with any of the existing minimization
algorithms such as Gradient descent, pattern search, or GAs. In this research, a pattern search
algorithm is used for this stage [117, 118].

The existence of the linear operator (4.14) is proven in Theorem.1. The uniqueness of the
solution of (4.15) is confirmed in Theorem.2.

Theorem 1. Existence of the linear operator κ: Given a manipulator m2 ∈ M2, a known
solution of the IK problem Θs, a linear operator κ(Θs) exists such that:
I. θ∗i = κ(Θs) = a · θsi + b.
II. θ∗i = κ(Θs) ⇔ θsi = κ(Θ∗).
where θ∗i is the angle of one the joints of another solution Θ∗.

Proof. To prove the theorem, (4.13) is solved in each of the three defined classes of M2 for θ1

and θ2 to identify the corresponding operator κ(Θs).

Class 1: Intersecting Joint Axes: The result of solving (4.13) for the manipulators of this group
is written as the following two solution sets:
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[
θ1

θ2

]
1

=

 arctan

(√
−d22+Px

2+Py
2Py+Px d2

Px
2+Py

2 ,

√
−d22+Px

2+Py
2Px−Py d2

Px
2+Py

2

)
arctan

(
Pz
a2
,

√
P 2
x+P 2

y−d22
a2

)
 ,

=

[
f×1 (Pdes)

f×2 (Pdes)

]
[
θ1

θ2

]
2

=

 arctan

(
−
√
−d22+Px

2+Py
2Py−d2Px

Px
2+Py

2 ,−Py d2+
√
−d22+Px

2+Py
2Px

Px
2+Py

2

)
π − arctan

(
Pz
a2
,

√
P 2
x+P 2

y−d22
a2

)


=

[
f×3 (Pdes)

π − f×2 (Pdes)

]
. (4.16)

Table 4.4 summarizes the solutions in (4.16) for the manipulators of this class. The non-
linear trigonometric terms of the solutions are represented by f ij(Pdes) to show that they
are functions of the desired end-effector position of the manipulator. The table indicates a
linear relationship θ∗2 = a.θs2 +b, when a = −1 and b = π. Therefore, for the manipulators
of this class, to find a new solution Θ∗ from an already known solution Θs, operator ΨJRO

is applied as follows:

1.
θ∗2 = κ(Θs) = a.θs2 + b = −θs2 + π . (4.17)

2.
θ∗1 = arg min

θ1
Ep(θ1, θ2)|θ2=θ∗2

. (4.18)

A new solution for the positioning problem is achieved, and κ satisfies the second condi-
tion of the theorem.

For example, Fig.4.5(a) depicts a m2 manipulator with two intersecting joint axes. Also,
the corresponding DH frame assignment is illustrated in the figure. Here, the frame of the
first joint is moved to the point of intersection of the two joint axes, and therefore, a1 = 0.
Fig.4.5(b) illustrates the pose of the manipulator after (4.17) is applied. Fig.4.5(c) shows
the pose produced in the second stage of when (4.18) is applied.

Class 2: Parallel Joint Axes: The solution of (4.13) for the manipulators of this group are ex-
pressed as
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Table 4.4: Positioning IK solutions of a m2 with intersecting joint axes

θ1 θ2 Stationary Point Type
1 f×1 (Pdes) f×2 (Pdes) Solution
2 f×3 (Pdes) π − f×2 (Pdes) Solution
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Figure 4.5: Steps involved in operator ΨJRO in an m2 with intersecting joint axes: (a) original
pose at joint angle Θs; (b) second joint at θ∗2; and, (c) pose with both joints reflected at joint
angle Θ∗
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Table 4.5: Positioning IK solutions of a m2 with parallel joint axes

θ1 θ2 Stationary Point Type
1 f q

1(Pdes) f q
2(Pdes) Solution

2 f q
3(Pdes) −f q

2(Pdes) Solution

[
θ1

θ2

]
=

[
f q

1(Pdes)

arccos
(

1
2

P 2
x+P 2

y−a21−a22
a1.a2

) ] =

[
f q

1(Pdes)

f q
2(Pdes)

]
, (4.19)[

θ1

θ2

]
=

[
f q

3(Pdes)

− arccos
(

1
2

P 2
x+P 2

y−a21−a22
a1.a2

) ] =

[
f q

3(Pdes)

−f q
2(Pdes)

]
,

where f 1
q and f 2

q represent the non-linear trigonometric expressions of the solutions of θ1.
Table 4.5 summarizes the positioning solutions of the manipulators. A linear relationship,
θ∗2 = a.θs2 + b with a = −1 and b = 0, exists. For the manipulators of this class, ψ is
performed as the follows

1.
θ∗2 = κ(Θs) = a.θs2 + b = −θs2 . (4.20)

2.
θ∗1 = arg min

θ1
Ep(θ1, θ2)|θ2=θ∗2

. (4.21)

For this class of 2-DOF manipulators, operator κ exists and satisfies the second condition
of the theorem.

For example, consider m2 manipulator shown in Fig.4.6(a) and its corresponding DH
frames. To find a new positioning solutions for the illustrated pose, θ∗2 is determined by
(4.24) to reach the pose of Fig.4.6(b). In the second step, by using (4.25), θ∗1 is calculated.

3. Class 3: Non-Intersecting and Non-Parallel Joint Axes: Solving (4.13) for this class re-
sults in four distinct sets of joint angles. However, unlike the previous cases, only one of
the joint angle sets yields the positioning error zero. This joint angle is

[
θ1

θ2

]
=

 arctan
(
Py
Px

)
arctan

(
Pz−d1
a2

,
+
√
P 2
x+P 2

y−a1
a2

)  =

[
f1 (Pdes)

f2 (Pdes)

]
. (4.22)
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Figure 4.6: Steps involved in operator ΨJRO in an m2 with parallel joint axes: (a) original pose
at joint angle Θs; (b) second joint at θ∗2; and, (c) pose with both joints reflected at joint angle Θ∗

Further investigation of the rest of the results of (4.13) indicates that in addition to the
mentioned solution in which EP becomes zero, a local minimum exists. In the local
minimum, although EP is not zero, it has a value which is less than all the other points in
its vicinity. The joint angle of the local minimum is found by computing

[
θ1

θ2

]
=

 π + arctan
(
Py
Px

)
arctan

(
Pz−d1
a2

,
−
√
P 2
x+P 2

y−a1
a2

)  =

[
π + f1 (Pdes)

f3 (Pdes)

]
. (4.23)

The solution and the local minimum are summarized in Table 4.6. As can be seen, a linear
relationship, θ∗2 = a.θs2 + b with a = +1 and b = π, exists. Thus, the steps involved to find
a local optimum from a solutions and vice-versa through operator ψ are written as follows

1.
θ∗1 = κ(Θs) = a.θs1 + b = θs1 + π . (4.24)

2.
θ∗2 = arg min

θ2
Ep(θ1, θ2)|θ1=θ∗1

. (4.25)

Fig.4.7(a) shows an m2 with joint axes which are not parallel nor intersecting with the
link frames, assigned according to the DH convention. To reach the local minimum of the
positioning error, first the angle of joint 1 is moved by π radians as in Fig.4.7(b). Then an
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Table 4.6: Positioning IK solutions of a m2 with joint axes which are not intersecting nor parallel

θ1 θ2 Stationary point type
1 f1 (Pdes) fnpi2 (Pdes) Solution
2 π + f1 (Pdes) fnpi3 (Pdes) Local Minimum
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Figure 4.7: Steps involved in operator ΨJRO in an m2 with joint axes which are not intersecting
nor parallel: (a) original pose at joint angle Θs; (b) first joint at θ∗1; and, (c) pose with both joints
reflected at joint angle Θ∗

angle for the second joint in which the positioning error is minimum is found to achieve
the pose in Fig.4.7(c).

Table 4.7 shows operator ΨJRO and the linear operator κ for all the three possible cases of
the manipulators of classM2. There is a linear operator κ for eachM2 class manipulator.

The next theorem guarantees that the second step of the operator ΨJRO, defined in (4.15),
always has a unique solution reachable by any local search algorithm.

Theorem 2. Uniqueness of the minimum of Ep: Given the class of manipulators m2 ∈ M2, a

Table 4.7: Summary of the ψ operator for the considered cases

class θ∗1 θ∗2 a b

1 × arg minθ1 Ep(θ1, θ2)|θ2=θ∗2
κ(Θs) -1 π

2 q arg minθ1 Ep(θ1, θ2)|θ2=θ∗2
κ(Θs) -1 0

3 ` κ(Θs) arg minθ2 Ep(θ1, θ2)|θ1=θ∗1
+1 π
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known solution Θs, and θ∗i = κ(Θs) with κ defined as in Theorem.1, arg minθj Ep(θ1, θ2)|θi=θ∗i
has only one minimum.

Proof. When joint i of a 2-DOF manipulator is considered fixed, the manipulator is transformed
into a 1-DOF manipulator with only joint j providing the DOF. To prove that EP has only one
minimum, the critical points of EP are calculated by equating the derivative of EP with respect
to θj , to zero and solving for θj . The second derivative test at the critical points can then be used
to determine if a critical point is a maximum or a minimum. If only one minimum exists, the
theorem is proven.

According to which of the two joints are assumed to be fixed at the corresponding θ∗i , the
relationship of the end-effector of the manipulator, as a function of the joint angles ( defined in
(4.10) ), is written in one of the following forms

T0,1(θ∗1) = Tdes.T1,2(θ∗2)−1 = Tf
des , (4.26)

or

T1,2(θ∗2) = T0,1(θ∗1)−1.Tdes = Tf
des , (4.27)

where Tf
des is a newly desired position in the task space, including the Homogenous Transfor-

mation of the fixed joint i, and is written as

Pf
des =

 P f
x

P f
y

P f
z

 . (4.28)

The left sides of (4.26) and (4.27) represent a 1-DOF manipulator with one joint. According
to (2.21), if the angle of the single joint of this manipulator is represented by θj , the position of
the end-effector of the resulting 1-DOF manipulator is then

Pee =

 a1. cos (θj)

a1. sin (θj)

d1

 . (4.29)

By using (2.28), the positioning error of the manipulator, with respect to the newly defined
task Tf

des is expressed as follows
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Ep (θj) = ‖Pf
des −Pee (Θ) ‖

=

√
−2 a1 cos (θj)P

f
x + P f

x
2 − 2 a1 sin (θj)P

f
y + P f

y
2

+ d1
2 − 2 d1P

f
z + P f

z
2

+ a1
2 .

(4.30)

To find the critical points of Ep, with respect to θj , the following is solved

d Ep

dθj
=

1

2

2 a1 sin (θj)P
f
x − 2 a1 cos (θj)P

f
y√

−2 a1 cos (θj)P
f
x + P f

x
2 − 2 a1 sin (θj)P

f
y + P f

y
2

+ d1
2 − 2 d1Pz + P f

z
2

+ a1
2

= 0 , (4.31)

where (4.31) has two solutions, θj,1 and θj,2, written as

θj,1 = arctan

(
P f
y

P f
x

)
, (4.32)

θj,2 = π + arctan

(
P f
y

P f
x

)
. (4.33)

Since Ep at θj,1 and θj,2 can be a maximum as well as a minimum, the second derivative test
is utilized to determine the type of critical point. The second derivative of Ep at θj,1 and θj,2 is
denoted by
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d2Ep
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(4.34)
d2Ep

dθj
2 (θj,2) =
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xy√
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in which

P f
xy =

√
P f
x

2
+ P f

y
2
. (4.36)

It is obvious that the second derivative at θj,1 and θj,2 is positive and negative, respectively.
As a result, θj,1 is a minimum whereas θj,2 is a maximum.

Therefore, by keeping one of the joint angles fixed, Ep has only one minimum. In addition,
(4.15) with θ∗i defined as in Theorem 1 has a unique solution.

The process of finding new solutions forM2 class manipulators is called the Joint Reflection
Operator, and is represented by ΨJRO. JRO consists of two stages; applying the linear operator
κ, and the minimization problem for finding the combined positioning and orienting minimum.
Finding a new solution Θ∗ from a known solution Θs, through the Joint Reflection Operator of
M2 manipulators, is expressed as follows for manipulator m2

Θ∗ = ΨM2
JRO (m2,Θ

s) . (4.37)

Part II of Theorem 1 states that applying the κ operator twice to pose Θs, consecutively,
results in the same pose Θs. When the ΨJRO is applied to pose Θs two times, joint θi which has
undergone the κ operator stays the same. According to Theorem 2, the angle of the other joint
θj is unique for each θi, that is, θj has a one to one relationship with θi. When two ΨJRO are
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applied to pose Θs, consecutively, θi does not change, and because of the one to one relationship,
θj remains the same. Thus, the following characteristic for ΨJRO is deducted:

Θ∗ = ΨM2
JRO (m2,Θ

s) ⇔ Θs = ΨM2
JRO (m2,Θ

∗) . (4.38)

Finding Multiple Positioning IK Solutions forM3 Manipulators

Any member of M3 can be reduced to a member of M2, when one joint is assumed to be fixed
and only two of the joints are rotating. An operator Λ(m3,Θ

s, i, j), is defined for the conversion
from an m3 manipulator at pose Θs = [θs1 θ

s
2 θ

s
3] to a m2, when all the joints, except the i-th and

j-th joints, are fixed. Then,

Λ(m3,Θ
s, i, j) = {m3 |θk = θsk for all k 6= i, j } . (4.39)

Mm3
2 represents the set of m2 manipulators which can result from applying Λ(m3,Θ

s, i, j)

to manipulator m3 at pose Θs for all i and j, and is expressed as

Mm3
2 (Θs) =

⋃
i=1,2,···3
j=1,2,···3
j 6=i

Λ (m3,Θ
s, i, j) . (4.40)

For example, Fig.4.8 shows an m3 at pose Θs and its correspondingMm3
2 (Θs). In Fig.4.8(b),

the first joint is assumed to be fixed and the manipulator is reduced to a Mq,2 class manipulator.
In Fig.4.8(c), by keeping the second joint fixed, the resulting m2 is aM,2 class manipulator. In
Fig.4.8(d), the third joint is assumed to be fixed and the resulting manipulator is a class M×,2.
As is illustrated, the last link of Λ(m3, θ

s, 1, 2) is modified such that the resulting m2 can reach
the same position in the task space as the original m3.

In the previous section, an operator ΨM2
JRO for M2 manipulators is introduced to find a new

solution Θ∗ from a known solution Θs. In m3, any two joints, i and j, belong to one of the three
classes of M2 manipulators, including M×,2, Mq,2, and M,2. It is found that a new positioning
solution Θ∗ ( or a local minimum in the case of M,2 class ) is reachable from Θs by the ΨM2

JRO

operator when it is applied to Λ (m3,Θ
s, i, j). Therefore, by keeping one joint angle constant

and allowing motion in the i-th and j-th joints (i, j), a new solution, represented by Θ∗ij can be
calculated by using the ΨM2

JRO operator ofM2 manipulators as follows

Θ∗ij = ΨM2
JRO (Λ (m3,Θ

s, i, j) ,Θs) (4.41)
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(a)

(b) (c) (d)

Figure 4.8: Example 1: Sample m3 and corresponding Mm3
2 manipulators: (a) original m3 at

pose Θs; (b) Λ(m3,Θ
s, 2, 3); (c) Λ(m3,Θ

s, 1, 3); and, (d) Λ(m3,Θ
s, 1, 2)

with the following characteristics.

1. Characteristic 1: When the ΨJRO operator is applied to a solution Θs twice, according to
part.II of Theorem.1, the angle of the joint which undergoes the κ operator twice remains
the same. As for the angle of the other joint, since the solution of the minimization problem
is unique ( according to theorem.2 ) it does not change either. Consequently, the following
characteristics is defined

Θij = ΨM2
JRO (Λ (m3,Θ

s, i, j) ,Θs)

m
Θs = ΨM2

JRO (Λ (m3,Θij, i, j) ,Θij) . (4.42)

2. Characteristic 2: When the ΨJRO operator is applied to the joint couple (i, j), according to
the definition of ΨJRO, the i-th and j-th joint angles are determined such that the position
of the end-effector remains the same and Λ (m3,Θ

s, k, l) for all (k, l) 6= (i, j) does not
change. Therefore, when a new ΨJRO operator, with respect to a new joint couple (k, l) is
applied, it does not affect the result of the first ΨJRO. As a result, in the ΨJRO operator the
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order which the joint couples (i, j) and (k, l) undergo the ΨJRO operator does not change
the final result. It is concluded that the ΨJRO operator is a commutative operator, such
that

{
Θij = ΨM2

JRO (Λ (m3,Θ, i, j) ,Θ)

Θij,kl = ΨM2
JRO (Λ (m3,Θij, k, l) ,Θij)

, (4.43)

and:

{
Θkl = ΨM2

JRO (Λ (m3,Θ, k, l) ,Θ)

Θkl,ij = ΨM2
JRO (Λ (m3,Θkl, i, j) ,Θkl)

, (4.44)

then

Θij,kl = Θkl,ij . (4.45)

If a new solution, Θ∗ij , is achieved by using (4.41), Θ∗ij can also undergo the ΨM2
JRO operator.

By considering another 2-DOF manipulator of m3, consisting of a new joint couple, (k, l), to
reach yet another new positioning solution ( or local minimum )

Θ∗ij,kl = ΨM2
JRO

(
Λ (m3,Θ

∗
kl, k, l) ,Θ

∗
ij

)
. (4.46)

This process continues until all of the joint couples that can form a m2 from the three classes
of M2, is examined. This process is converted to and implemented as a tree structure with
the original solution Θs as the root. Fig.4.9 depicts such a tree for an m3 manipulator. In the
tree, each node represents a new positioning solution. An edge from node Θ∗ij to node Θ∗ij,kl is
obtained by (4.41). In the tree, by iteratively applying (4.41) each time considering a different
joint couple, new solutions can be reached. The greyed out nodes represent the solutions which
have already been found through the other branches of the tree due to characteristics 1 or 2 of
(4.41). Therefore, in the m3 manipulators, finding the new solutions facilitates as a search in the
branches of the shown tree.

Finding Multiple Positioning IK Solutions forMn Manipulators

Any manipulator with more than 3-DOF is considered redundant for positioning tasks. For
redundant manipulators, a common practice is to assume that the redundant joints lack any
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Figure 4.9: Tree structure resulting from applying ΨM2
JRO operator to all the joint couples

DOF, reducing the manipulator to a non-redundant manipulator, and then solving the resulting
IK problem [119].

Since the cornerstone of the joint reflection operator is to find the positioning solutions,
the same method can be used to reduce the positioning-redundant n-DOF manipulators to a
positioning-non-redundant 3-DOF manipulator, and then applying the operator to the reduced
manipulator. Therefore, in mn manipulators, by using a similar method to m3 manipulators,
new solutions are extracted from a known solution. Specifically, the tree of the joint couples
which can produce new positioning solutions is created layer by layer. Then, the ΨM2

JRO is applied
to each of the nodes.

4.3.2 Finding Multiple Positioning and Orienting IK Solutions

When a new positioning solution is found using the operator ΨM2
JRO, a numerical algorithm with

the objective function of (2.32) is used to achieve convergence to the minima of the combined
positioning/orienting IK problem. For m2 and non-redundant m3 manipulators, only one posi-
tioning/orienting IK solution exists, and the rest of the solutions of EP cannot satisfy the second
condition of the IK solution, EO = 0. However, in manipulators with a DOF higher than three,
the newly found positioning solution can be used as an initial point for a numerical search for
a positioning/orienting solution. The result of such a search includes joint angles capable of
satisfying both EP = 0 and EO = 0.

In this thesis, the numerical search algorithm is implemented by a BFGS Quasi-Newton
method [120, 121, 122, 123] with a mixed quadratic and cubic line search procedure in conjunc-
tion with a Jacobian-based IK solver [73, 74].

Table 4.8 shows the pseudo-code of the proposed algorithm for finding the positioning/orienting
IK solutions. The inputs of the algorithm consist of the manipulator mn, the desired task in the
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Table 4.8: Pseudocode of the algorithm for finding all the solutions of the IK

Θall = Find all IK solutions(mn, Tdes,Θ
s)

1 IF (Θs is already processed)
2 END
3 ENDIF

4 FOR (i = 1 to (dof − 1))
5 FOR (j = i to dof)

6 IF ( (i, j) unprocessed, based on characteristics 1 and 2)

7 Θ∗ = ΨM2
JRO (Λ (mn,Θ

s, i, j) ,Θs)
8 ΘLS = Numerical IK(mn, Tdes,Θ

∗)

9 IF (ΘLS is a solution and not in Θall)
10 Θall = add to solution list(Θall,ΘLS)
11 ENDIF

12 Θall = Find all IK solutions(mn, Tdes,Θ
∗)

13 ENDIF

14 ENDFOR
15 ENDFOR

Cartesian space, defined as a Homogenous Transformation Tdes, and a known IK solution Θs,
where the output is a list of all the IK solutions Θall. In lines 1–3, Θs is checked to confirm
that it has not already undergone the joint reflection operator. Lines 4–5 are a nested loop which
iterate through all the joint couples (i, j) of the manipulator. In line 6, the selected joint cou-
ple (i, j) are examined, by using characteristics 1 and 2, in relation to the joint couples already
processed. Only if the couple (i, j) can produce new solutions, are they allowed to undergo the
rest of the nested loops. With the progress of the algorithm, the number of unexplored joint
couples decreases, and the conditional statement of this line expresses the termination criteria of
the recursive algorithm. In line 7, ΨM2

JRO is applied to Θs to reach a new positioning solution. In
line 8, the newly found positioning solution Θ∗ is employed as the initial point for obtaining the
combined positioning/orienting IK by a Numerical IK algorithm. In lines 9–11, ΘLS is added
to the list of the found solutions, Θall, if it is a solution (and not a local minimum), and has not
already been found. Line 12, calls the Find all IK solutions algorithm, recursively, to find
new solutions from the newly found positioning solution Θ∗.
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4.4 Results

In this section, the results of applying the proposed Joint Reflection Operator based IK solver
for solving the IK problem of three distinct 6-DOF KCs are given. In the numerical analysis,
since the intention is to verify the ability of the algorithm in finding multiple-solutions of IK,
no collision detection or joint angle limits are incorporated. In practical applications, the IK
solutions, which violate collision detection or joint angle limitations, can be easily separated
after all the IK solutions are found.

The processing time of the multi-solution IK solver of Chapter 3 is approximately 40 min-
utes for a 6-DOF PUMA manipulator. The run time of the same experiment, under the computer
setup used for the analysis of this chapter is around 25 minutes. The worst processing time,
encountered in the numerical analysis of the algorithm of this chapter, is less than 30 seconds.
Therefore, the proposed algorithm is, by far, more time efficient than the algorithm of the previ-
ous chapter.

As mentioned in Section 2.6.2, continuation methods (CMs) are proven to be efficient and
robust multi-solution IK solvers. Moreover, continuation methods are more accurate and faster
than elimination methods, when the complexity of the manipulators increases. Therefore, CM is
selected as one of the comparison references for JRO-based IK solvers. One of the subroutines of
the Matlab toolbox implementation of CM, called HomLab 10, which is specifically developed
to solve the IK problem is utilized [124]. HomLab 10 has been developed as companion software
of [125]. For solving the IK problem, CM is utilized in two fashions. In the first, which is used
in this analysis, the algorithm follows 320 distinct paths. This method is suitable for cases
in which no prior knowledge of the solutions of the manipulator exists. On the contrary, if
enough information about the characteristics of the IK solutions exists prior to running the CM
algorithm, the known information is applied to initialize the algorithm and limit the number of
considered trajectories in order to significantly enhance the speed of the algorithm.

As another comparison reference for the convergence speed of the proposed approach, a sin-
gle solution IK solver, based on numerical iterative IK solvers is utilized. To enable the single
solution algorithm to find multiple solutions of IK, it is iteratively initialized with a random
starting point, until all the solutions of the IK are found. No guarantee exists that the randomly
initialized algorithm can find all the solutions within a reasonable time or iteration number.
Therefore, if the algorithm cannot find all the solutions within 1000 iterations, the run is termi-
nated under the assumption that the algorithm cannot to find all the solutions. Because of the
stochastic nature of the randomly initialized local search, the algorithm is run five times for each
test, and the minimum, maximum, and average time of the runs are recorded for comparison.
The randomly initialized local search algorithm is referred to as the RI.

It is noteworthy that both the JRO and CM algorithms search the entire joint space for all
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the possible IK solutions without requiring the exact number of solutions. However, the RI
algorithm needs the number of solutions, as the termination criteria. Therefore, in the conducted
numerical analysis, the RI has the advantage of termination of the operation as soon as all the
solutions were found, while the other two methods performed their search regardless of the
number of solutions found and until no further search options exist.

4.4.1 6-DOF Kinematic Configuration 1

The matrix representation of the first tested 6-DOF KC is

m6
1 =



0 0 60

0 PR 60

0 P 60

0 R 60

0 P 60

0 P 0

0 R 0


. (4.47)

Since the manipulator does not have three intersecting joint axes, there is no guarantee that
closed-form IK solutions exist [61, 62]. Depending on the desired position and orientation of
the end-effector, the manipulator can have either four or eight IK solutions, making the inter-
val methods difficult to apply. Fig.4.10 reflects all the solutions, where four IK solutions exist,
and Fig.4.11 shows the solutions where eight IK solutions exist. Ten desired end-effector posi-
tion/orientation, reachable by the manipulator, are generated randomly. The RI, CM, and JRO
algorithms are applied to find the IK solutions corresponding to each test case. In all the cases,
all the algorithms can find all the IK solutions. The number of IK solutions s, run times of CM
and JRO, in addition to the maximum, minimum, and average run times of RI are shown in
Table 4.9. As seen from the table, the run time of the RI algorithm is less than that of the JRO
algorithm. In all of the tested cases, the run time of JRO is significantly less than that of the CM.
In the 7-th test case, in which the JRO algorithm exhibits its worst performance, the run time is
still 24.6% of the run time of the CM.

4.4.2 6-DOF Kinematic Configuration 2

In this numerical analysis, a 6-DOF manipulator with the following KC is tested
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Figure 4.10: Tested m6
1 in a pose with four IK solutions.

Figure 4.11: Tested m6
1 in a pose with eight IK solutions.

Table 4.9: Time comparison of the RI, CM, and JRO methods for m6
1. Unit of time is seconds.

Processing Case Case Case Case Case Case Case Case Case Case
Time (s) 1 2 3 4 5 6 7 8 9 10

s 4 4 4 4 4 8 4 4 8 4
RI (min.) 5.0 3.2 2.8 2.3 5.3 13.2 9.9 1.5 7.0 9.0
RI (avg.) 7.7 5.6 5.0 4.9 6.0 16.6 15.6 5.1 19.4 10.2
RI (max.) 13.4 8.3 8.6 11.6 7.1 20.2 20.5 12.9 26.3 12.9

CM 143.5 141.9 143.7 143.7 136.4 138.0 147.0 129.5 143.8 121.5
JRO 21.29 22.4 14.1 18.4 33.1 29.5 36.2 20.9 33.6 23.3
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Figure 4.12: Tested m6
2 in a pose with four IK solutions.

Table 4.10: Time comparison of the RI, CM, and JRO methods for m6
2. Unit of time is seconds.

Processing Case Case Case Case Case Case Case Case Case Case
Time (s) 1 2 3 4 5 6 7 8 9 10

s 4 4 8 4 4 4 8 4 4 8
RI (min.) 3.1 2.5 4.1 8.3 4.7 4.0 14.5 2.6 1.8 14.2
RI (avg.) 6.1 4.4 18.1 16.4 10.3 10.0 23.3 4.6 2.2 22.3
RI (max.) 9.6 6.3 34.9 21.5 21.5 13.4 30.1 7.0 2.8 25.8

CM 118.6 131.6 130.9 131.5 139.9 132.6 131.9 124.0 131.1 135.8
JRO 18.6 13.7 31.6 25.2 15.4 24.0 49.6 14.7 15.8 45.9

m6
2 =



0 0 60

0 PR 30

π/2 P 30

0 P 30

0 R 10

0 P 10

0 R 30


. (4.48)

Depending on the desired position and orientation of the end-effector, either four or eight
IK solutions for this manipulator can be found. Fig.4.12 and Fig.4.13 illustrate the two cases
in which the manipulator has four and eight IK solutions, respectively. In Table 4.10, a time
comparison of RI, CM and JRO is shown. The JRO algorithm seems to be slower than the RI
method and faster than the CM in all the test cases. In the 12-th case, in which the JRO has its
worst performance, the run time is still 36% of the run time of the CM.
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Figure 4.13: Tested m6
2 in a pose with eight IK solutions.

4.4.3 6-DOF PUMA Manipulator

In this experiment, the JRO-based algorithm is tested on the 6-DOF PUMA manipulator in
Fig.4.14. The KC representation of the PUMA is

m6
P =



0 0 60

0 PR 10

0 PR 60

0 P 60

0 R 0

0 P 0

0 R 0


. (4.49)

In Fig.4.14, the four IK solutions of a test case for PUMA type manipulator are shown.
The other four solutions of the PUMA are similar to the shown solutions in the first three joint
angles, and differ only in the angle value of the three distal joints. For the PUMA experiment,
40 randomly generated task points are created. In all of the test cases JRO, CM, and RI can find
all the IK solutions. The processing time of the JRO, CM as well as the minimum, maximum,
and average run time of the RI are plotted in Fig.4.15. Fig.4.16 reflects the scaled version of the
same graph to clarify the comparison of JRO and RI. In Fig.4.15, the run time, averaged over all

103



Figure 4.14: Tested 6-DOF PUMA type manipulator at four of the possible eight IK solutions

Tested 6-DOF PUMA type manipulator at four of the possible eight IK solutions - The other
four solutions are similar to the shown poses with different the wrist angles

the tested cases, is around 11 seconds for the JRO. The same measure for the CM is 130 seconds.
Fig.4.16 shows that although the minimum run time of the RI for each case is lower than the run
time of the JRO, the differences between the run times of the JRO and the average run time of
the RI are not considerable. Although the RI proves to be slightly faster than the JRO, due to it
requiring a priori knowledge of the number of IK solutions, the RI is not suitable for solving the
IK problem of the manipulators in which the number of the IK solutions is unknown or variable
with respect to the coordinates of the end-effector.

4.5 Summary

In this chapter, a multi-solution IK solver for MRRs is proposed. The algorithm is capable of
finding multiple positioning solutions of the manipulator. The positioning solutions are used as
initial points for solving the combined positioning/orienting IK problem. To find the multiple
positioning solutions, the algorithm iteratively applies the Joint Reflection Operator to the joint
pairs, capable of producing multiple solutions, until all the positioning solutions are found.

The performance of the algorithm is compared with a continuation method and a randomly
initialized local search algorithm. It is shown that, although the run time of the proposed algo-
rithm is in the same range as of the average run time of the randomly initialized local search
algorithm, the run time of the proposed algorithm was considerably less than the run time of the
continuation method.

The JRO-based algorithm searches all the possible joint combinations, i.e., it has a predefined
termination criteria. Thus, when the termination criteria is reached, it can be concluded that no
more solutions exists. Therefore, similar to the continuation method, the proposed algorithm
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Figure 4.15: Comparison of the JRO, CM and RI for m6
P

Figure 4.16: Comparison of the JRO and RI for m6
P
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can be used for the manipulators in which the number of the IK solutions is unknown or changes
with respect to the desired position/orientation of the task. However, in the case of the randomly
initialized local search algorithm, a prior knowledge of the number of solutions is needed in
order to terminate the algorithm when and if this number is reached. This can be viewed as a
disadvantage of the RI algorithm. Therefore, the JRO is a more advantageous tool for solving
the IK problem of MRRs.

106



Chapter 5

Trajectory Optimization Using Multiple
Solutions of the Inverse Kinematic
Problem

5.1 Introduction

As shown in Section 2.6.4, dynamic performance of manipulators changes, when the utilized IK
solution in reaching a task point varies. This characteristic implies that by choosing a suitable
IK solution for performing each task point, the performance of a robotic manipulator can be
enhanced.

The approaches for solving the trajectory optimization problem can be categorized into two
categories. In the first group, the point-to-point trajectory optimization, the goal is to find the
most optimized trajectory in the joint angle space to connect two task points in the cartesian
space, i.e., the objective is to find the least costly trajectory in the joint space from task point
T ides to T jdes. In the following section, the most prominent works are discussed.

Algorithm have been developed to find the minimum time trajectory of a manipulator to
move from one task point to the next [126, 127, 128]. A modified version of the aforementioned
algorithm has been used for the trajectory planning with moving obstacles [129]. Joint torque
limitations have been considered as the constraints of the algorithm. Saramago has proposed
strategies for both moving through a certain set of task points, and for moving from a starting
point to an end point [130]. The goal of the algorithm is to find the minimum time and minimum
required energy trajectories in the presence of obstacles. An algorithm has been developed for
trajectory optimization with the path following and obstacle avoidance, as constraints [131].
Also, algorithms for trajectory optimization in kinematically redundant manipulators have been

107



presented [132, 133]. In the former, the goal is to minimize the consumed energy, and in the
latter, the idea is to avoid the workspace singularities. Furthermore, a GA has been utilized for
obstacle avoidance in the trajectory optimization of a robotic manipulator [134].

To minimize the cost function, the methods in the point-to-point trajectory optimization
group search for a trajectory in the joint angle space of the manipulator to connect two task
points T1

des and T2
des. They are defined in the Cartesian space for a one-to-one mapping be-

tween the two spaces. However, most robotic manipulators have multiple IK solutions. As a
result, the mapping from each task point in the Cartesian space into the joint angle space is not
unique, that is, the problem of connecting a start point to an end point in the cartesian space
should be mapped into a problem in the joint angle space in which the start and end points can
be chosen from any of their corresponding IK solutions.

In addition, the operation of the industrial manipulators consists of repetitively reaching
numerous task points. In a wide range of applications such as spot welding, inspection, and
measurement the sequence that the robot reaches the task points is of no importance [135]. Con-
sequently, another addressable problem in trajectory optimization is how to arrange the sequence
of task points Ti

des to achieve a performance boost.

The second group of algorithms, multi-goal path planners, addresses both. In multi-goal
trajectory optimization, the goal is to find a sequence of reaching the task points, coupled with
the respective IK solution, such that the result is a collision free shortest path. An algorithm is
proposed to solve for approximate solutions of the multi-goal path planning [136]. The multi-
goal path planning algorithm considers multiple solutions of the IK. Collision free point-to-
point paths are generated with a best-first search on a regular grid in the joint angle space. A
GA solves the resulting Traveling Salesman Problem (TSP). Since the algorithm tries to avoid
solving the point-to-point path planning problem for as long as possible, the result of algorithm
improves, when the time allocated to it increases. An algorithm for solving for near-optimal
solutions of the multi-goal path planning problem is also proposed in the literature [135]. A
bi-directional tree-expansion PRM planner is used for the point-to-point path planning. The
approach is based on the assumption that finding a point-to-point optimized trajectory is more
expensive than finding a complete tour of the task points. Thus, a greedy algorithm is devised
to prevent solving the point-to-point trajectory until it is absolutely necessary. The aim of both
multi-goal path planners is finding a near-optimal solution for the collision free shortest path
problem, and no other optimization criteria is considered.

In multi-goal path planners, the point-to-point trajectory optimization should be performed
for calculating the cost of moving from one task point to the other. Therefore, point-to-point
trajectory optimization can also be considered as a special case of the multi-goal path planners,
in which the number of the considered task points is two.

108



In this chapter, a formulation for finding the exact solution of the trajectory optimization
problem is proposed. The formulation incorporates all the solutions of the IK problem, and can
be used in conjunction with any of the existing point-to-point trajectory optimization algorithms.

The rest of this chapter is organized as follows. Section 5.2 introduces the new formulation
of trajectory optimization into a Generalized Traveling Salesman Problem (GTSP). Section 5.3
explains the proposed algorithm for solving the formulated problem. In Section 5.4, the em-
ployed method for converting the resulting GTSP to a TSP is introduced. Finally, in Section 5.5,
the result of using the algorithm for trajectory optimization of a 3-DOF planar and a 6-DOF
PUMA manipulator, is presented. Section 5.6 summarizes the achievements of this chapter.

5.2 Trajectory Optimization with Multiple IK Solutions

5.2.1 Problem Definition

In many applications, the sequence of reaching the task points is not important. Thus, the se-
quence of reaching the task points can also be considered as an optimization variable, i.e., the
trajectory optimizer finds the sequence which the task points are reached.

Assume a task Tt = {T1
desT

2
des · · ·Tt

des} consists of t task points in which each task point
has s distinct IK solutions. s depends only on the manipulator’s kinematic characteristics and
remains the same for all possible Ti

des. S
i
j denotes the j-th IK solution for the i-th task point.

In this chapter, the problem of selecting the most suitable IK solution for each task point,
Ti
des, coupled with the sequence of performing the tasks, Ti

des, i ∈ [1, t], to minimize the cost
of reaching the entire task points is visited. Mathematically, this problem is expressed as

argmin
[S
i1
j1
, S
i2
j2
, ···Sinjn ]

C(Si1j1 , S
i2
j2

) + C(Si2j2 , S
i3
j3

) + · · ·+ C(S
in−1

jn−1
, Sinjn) (5.1)

s.t.

i1 ∪ i2 ∪ · · · ∪ in = Tt

j1, j2, · · · , jn ∈ [1, s]
,

where C(x, y) represents the cost of moving from pose x to pose y.

Fig.5.1 is a schematic of the multi IK solution trajectory optimization. The top block, which
consists of the inputs, includes the IK solutions of the manipulator for all the task points. The
multi solution trajectory optimization algorithm (TOA) is depicted by an arrow that connects the
input and output blocks. The outputs of the algorithm are a sequence of the desired task points,
and the corresponding IK solution that should be used in accomplishing each task.
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Figure 5.1: Conceptual block diagram of the Trajectory Optimization Algorithm
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5.2.2 Size of the Search Space

To develop a method for solving the multi-goal path planning problem, it is beneficial to have
an understanding of the size of the search space. For a task set with t task points t! ways of
performing the tasks in different sequences exist. If a manipulator has s distinct IK solutions
for each of the task points, there are st ways of choosing the IK solutions for the task sequence.
As a result, there are t!st distinct sequences of task points with the corresponding multiple IK
solutions. For instance, a PUMA type robot with 6-DOF produces eight distinct IK solutions. If
a simple operation of performing six task points is considered, then the size of the search space
is 188,743,680. For the same manipulator and for ten task points, the search space size is in the
order of 3.8964e+015. The sheer size of the search space calls for an efficient and fast method
that replaces the impractical exhaustive search method.

5.2.3 Optimization Criteria

The optimization criteria are the operational metrics of the manipulator and can be translated to a
cost function that should be minimized or maximized. The optimization criteria can include one
or more of the following measures: shortest collision-free path, minimum required torque, mini-
mum required power, fastest time of performing the task, the most dexterous path of performing
the task, and so on.

The cost of moving from the j1-th IK solution of the i1-th task to the j2-th solution of the i2-
th task is denoted as C(Si1j1 , S

i2
j2

). C(Si1j1 , S
i2
j2

) should be calculated prior to running the proposed
trajectory optimization algorithm for all i1, i2 ∈ [1, t] and j1, j2 ∈ [1, s]. For each pair of
task points, the cost of moving from all of the IK solutions of the first task point to all of the
IK solutions of the next should be determined. Thus, for each pair of task points, the cost
calculations should be performed s2 times. The cost calculation is performed after finding the
IK solutions of the manipulator for all task points by using one of the algorithms of Chapters 3
or 4.

If the transition costs are stored in an array C for a task consisting of t task points in a ma-
nipulator with s IK solutions, C have ((t−1).s)2 cells and the same number of cost calculations
are needed ( the cost is not required for moving among the different IK solutions of the same
task ).

5.2.4 Formulating the Problem

Fig.5.2 is a visual representation of a task with four task points in a manipulator with three
distinct IK solutions. Each ellipse represents a task point, and each circle inside the ellipse
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Figure 5.2: Solution of the algorithm

represents a solution of the IK for the task point.

The path, indicated by the arrows, represents a solution of the trajectory optimization prob-
lem. In this particular example, the solution path is shown as [S1

2 S
2
3 S

4
2 S

3
1 ], i.e., the manipulator

should start from the second IK solution of the first task point and move to the third IK solution
of the second task point, and so forth. The cost of moving along the arrows is indicated by
C(Si1j1 , S

i2
j2

) for moving from Si1j1 to Si2j2 .

It can be observed that the solution path has the following characteristics.

• The path is a closed cycle.

• There is a cost allocated to each move.

• The path passes through all of the task points only once, and on passing through each task
point, only one of the IK solutions is visited.

• The desired path has the minimum total cost,
∑

Ci∈cycleCi, among all of the possible paths.

By considering these characteristics and assuming that each of the IK solutions is a node in a
graph, the problem is reformulated as a graph G = (V,A), where V is the set of nodes and A is
the set of arcs. V is clustered into subsets V1, V2, · · · , Vt, where Vi is the set containing all of the
IK solutions for task point i. Each arc (Stisi , S

tj
sj) represents a trajectory from the si-th member

112



Figure 5.3: Architecture of the proposed algorithm

of Vti to the sj-th member of Vtj , i.e., from the si-th solution of ti-th task to the sj-th solution of
tj-th task. Associated with each arc (Stisi , S

tj
sj) is a cost (or distance) defined as ct1,s1t2,s2. The goal is

to find a closed path (tour) that visits all Vi just once, and upon visiting each Vi passes through
just one of the nodes of Vi.

The new formulation and representation of the trajectory optimization problem is now similar
to the Generalized Traveling Salesman Problem (GTSP) in the combinatorial optimization and
is a well researched variant of the famous Traveling Salesman Problem (TSP). To reach the
solution of the trajectory optimization problem, the resulting GTSP should be solved.

5.3 Trajectory Optimization Algorithm

In this section, a method for solving the trajectory optimization problem in the newly formulated
GTSP form is described. Fig.5.3 reflects the block diagram of the algorithm. The inputs to the
algorithm are a set of desired task points. The algorithm consists of three stages.

1. Multi Solution IK Solver: The first step in multiple IK solution trajectory optimization is
to find the IK solutions. In the first block, the IK problem of the manipulator for all the task
points is solved. If there is a closed-form IK solution for the robotic manipulator, all of
the solutions can be easily extracted. If the closed-form IK solutions are not conveniently
accessible, any of the multi-solution IK solvers in Chapters 3 or 4, can be applied.

It is noteworthy that even though all of the solutions of the IK are more desirable, by no
means, are they all needed. If not all of the solutions of the IK are used, the algorithm
finds the best path by using only the available IK solutions.

2. Cost Calculator: The solutions of the IK problem are entered into the cost calculator.
At this stage, the costs of moving from the IK solutions of all the task points to the IK
solutions of the rest are calculated, i.e., C(Si1j1 , S

i2
j2

) for all i1, i2 ∈ [1, t] and j1, j2 ∈ [1, s]

is calculated. The costs are calculated according to the selected optimization criteria and
constitute the matrix C.
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3. GTSP Solver: By forming the C matrix, the foundation for solving the GTSP is laid. In
this stage, the formulated GTSP is be solved by using one of the many current methods.

The GTSP solvers are categorized into two groups. In the first group, the idea is to solve
the GTSP directly. An exact algorithm has been developed for the GTSP by formulating it
into an integer programming problem and finding the shortest Hamiltonian circuit [137].
A Lagrangian relaxation algorithm has also been proposed for solving the GTSP [138].
A branch and cut algorithm for the asymmetric version of the problem has also been
developed in [139].

The approach of the second group in solving the GTSP is to transform the GTSP to a
TSP, and then solve the resulting TSP by one of the current algorithms. Therefore, a
GTSP solver of this approach consists of three phases. In the first phase, the GTSP is
transformed to a TSP. Next, the TSP is solved by one of the existing methods such as
linear programming [140], Genetic Algorithms [141], Simulated Annealing [142], or Tabu
search [143] to name a few. The results of the TSP solver is then converted back to the
original GTSP. The GTSP to TSP transformation was first introduced by Lien, in which
the number of nodes of the transformed TSP is relatively large, in fact, more than three
times the number of nodes in the associated GTSP [144]. Later, another transformation
to decrease the size of the corresponding TSP has been presented. In the method, the
number of nodes of the TSP is twice the number of the nodes of the original GTSP [145].
Finally, Behzad proposed a transformation in which the number of the nodes are kept
constant, hence making the complexity of the transformed GTSP equal to a TSP of the
same number of nodes [146].

The transformation of a GTSP to a TSP with Behzad’s method needs negligible processing
power and does not change the number of nodes. Furthermore, considering the wealth of
easily accessible code for solving TSP, the transformation approach is more attractive. As
depicted in Fig.5.3, in the proposed algorithm the second approach is adopted.

5.4 GTSP to TSP Conversion

In this section, Behzad’s transformation method, chosen for solving the trajectory optimization
problem, is described. As mentioned in Section 5.2.4, G = (V,A) represents a graph with nodes
clustered into t distinct subsets of V . Each subset Vi includes the distinct IK solutions of the i-th
task point. To convert the original GTSP problem to a TSP, a directed graph G′, associated with
G, is defined as follows.

1. The nodes of G and G′ are the same.
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2. All the IK solutions of a certain task ti in G are connected in a closed cycle in G′. In the
directed closed cycle of each task ti, the successor to the si-th IK solution of task ti, Stisi ,
is represented by Stisi (s).

3. The elements of the cost matrix of G′, represented by C ′, are extracted from the original
cost matrix C of G as follows



C ′
(
Stisi , S

ti
sj (s)

)
= 0

C ′
(
Stisi (s), S

ti
sj

)
=∞

C ′
(
Stisi , S

tj
sj

)
= C

(
Stisi (s), S

tj
sj

)
+M

, (5.2)

where

M >
∑

∀ti,tj ,si,sj

C
(
Stisi , S

tj
sj

)
. (5.3)

When a minimum cost TSP tour is found on G′ by an existing solver, the solution of the
desired GTSP is extracted by connecting the first solution in each cluster which the tour visits.
In Fig.5.4, the TSP tour that represents the GTSP solution in Fig.5.2 is illustrated.

5.5 Results

The proposed algorithm is tested on a 3-DOF planar and a 6-DOF PUMA type manipulator. As
a reference for validating the results and comparing the performance of the algorithm in term of
speed, an exhaustive search method is considered. The exhaustive algorithm finds the minimum
cost path by examining all the possible cases one-by-one. The algorithm proposed in Chapter 4
is used as the IK multi-solution solver.

The power required to move from an IK solution of a task point to the next is considered as
the cost function. To calculate the cost, seven degree polynomial trajectories are used to connect
the starting pose to the end pose. The trajectories are created such that the duration of the motion
from the initial point to the end point is constant for all the task point pairs. With the recursive
Newton-Euler formulation, the inverse dynamic problem is solved to reach the required torque
for the manipulator to follow the trajectory. Finally, from the required torque and the trajectory
acceleration, the required power, and thus the cost is calculated.
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Figure 5.4: TSP tour of G′, corresponding to the GTSP tour of G shown in Fig.5.2

To solve the transformed GTSP problem, the TSP is first formulated as an integer program-
ming problem and then a subroutine of the GNU Linear Programming Kit (GLPK) [147] is
utilized to solve the resulting problem. GLPK uses the branch-and-bound algorithm as well as
Gomory’s mixed integer cuts for integer problems [148]. Finally, the results of the TSP are
transformed back into the GTSP form, and the final solution of the trajectory optimization is
extracted.

5.5.1 3-DOF Planar Manipulator

The 3-DOF planar manipulator is shown in Fig.5.5. A robot with 3-DOF is selected to allow the
exhaustive search to perform the search completely and within a reasonable time. The planar
robot has two distinct IK solutions for each task point in the Cartesian space. Three distinct
tasks, each with three task points are considered. The first four columns in Table 5.1 display
the results of the proposed algorithm in relation to the exhaustive search. The end results of
both methods are the same, whereas the proposed algorithm is considerably faster. The last two
columns indicate how poor performance can be, if multiple IK solutions are not considered. If
the absolute worst combination of IK solutions and task sequences are used, the power require-
ment to complete the task set is at a maximum (column five). Averaged over all the possible
IK solution combinations and task sequences, the expected power requirements are provided in
column six. The algorithm selects a combination of IK solutions, coupled with task sequences
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Figure 5.5: Tested 3DOF planar robot

Table 5.1: Comparison between the Exhaustive search and the proposed algorithm

Proposed Algorithm Exhaustive Search Possible Cases
Maximum Average

Time Power Time Power Power Power
(s) (KW) (s) (KW) (KW) (KW)

1 6.42 53 44.62 53 181 104
2 6.53 48 47.51 48 150 105
3 7.87 27 44.56 27 139 75

that result in much lower power requirements than both the average and worst case.

The time indicated in the table does not include the time spent on solving the IK for multiple
solutions, and only consists of the time spent on calculating the cost and solving the resultant
GTSP.

5.5.2 6-DOF PUMA Robot

A 6-DOF PUMA robotic manipulator, similar to the manipulator in Fig.2.12, is considered for a
performance comparison of the proposed algorithm, and the exhaustive search when the number
of the task points increases. A PUMA robot has eight distinct IK solutions. Table 5.2 lists the
run time of the proposed algorithm, and the exhaustive search, in conjunction with the size of
the search space as the number of task points increases. The proposed algorithm is significantly
faster than the exhaustive search, and the difference between the two methods increases expo-
nentially with the increase in the dimension of the problem. In cases of four or more task points,
the exhaustive search algorithm fails to reach a solution within a reasonable time and is stopped.
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Table 5.2: Comparison of the run time for the proposed algorithm and the exhaustive search

Number Run time (minutes) Size of
of Proposed Exhaustive search

tasks Algorithm Search space
2 1.3 2.7 128
3 4.3 103.5 3072
4 8.8 >420 98304
5 14.8 – 3e+6
6 23.5 – 188e+6

5.6 Summary

In this chapter, a method, based on the GTSP model for incorporating multiple IK solutions into
the trajectory optimization problem, is presented. The resulting problem is converted to the TSP
and solved. It is shown that for a manipulator with eight IK solutions and three task points,
the proposed algorithm takes 4% the processing time of an exhaustive search and provides the
same solution. In the case of a 3-DOF planar manipulator, a 60% reduction in the average power
consumption is achieved compared to the case where only one IK solutions is considered.

All the experiments are performed on Matlab on a 2.4GHz pentium mobile platform. The
speed of the algorithm can significantly be improved by implementing the algorithm in a lower
level programming language such as C/C++.

To incorporate different optimization criteria, the proposed method is used in conjunction
with any point-to-point trajectory optimization algorithm. By formulating the multi IK solution
trajectory optimization problem into a GTSP, it benefits from numerous existing TSP solver
algorithms. For instance, the resulting TSP can be solved with approximate methods instead
of the exact solution method, presented in this work, for a higher speed. The necessity of such
an approach is conceivable, since the size of the search space increases exponentially with the
increase in the number of task points and IK solutions.

The total cost of the optimized trajectory in performing a certain task is used as a performance
measure to compare the two manipulators. Therefore, the optimized total cost can be applied as
an optimization criterion in the TBCO in order to seek manipulators which can perform a task
with lower costs.
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Chapter 6

A Memetic Algorithm for Solving the
Task-Based Configuration Optimization
Problem

6.1 Introduction

In this chapter, a Memetic Algorithm (MA) for solving the TBCO problem is proposed. In
addition to using a numerical local search method, the proposed MA utilizes an elitism and
a kinematic structure-aware restarting scheme to further enhance the efficiency of the search.
Furthermore, a local search algorithm is proposed to iteratively search for the dimensions of
a manipulator with a certain kinematic structure that is capable of performing a certain task.
The local search algorithm uses the new Jacobian matrix notation, called the Task Embedded
Jacobian, to produce the results.

The rest of this chapter is organized as follows. In Section 6.2, MAs are introduced. Sec-
tion 6.3 defines the framework of the proposed MA for solving the TBCO problem. A local
search algorithm for finding the link dimensions of the manipulators to enable them to perform
a set of tasks is proposed in Section 6.4. The proposed MA-based TBCO algorithm is explained
in detail in Section 6.5. In Section 6.6, the results of utilizing the proposed TBCO algorithm are
given. Section 6.7 summarizes the findings of the chapter.

6.2 Memetic Algorithms

As mentioned in Section 2.7, GAs work on the principle of natural evolution. Specifically, the
individuals, which are the coded variables of the problem, evolve to new individuals with better
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fitness values due to the operations of crossover, mutation, and selection.

GAs, complemented with the local search algorithms, create a new class of metaheuristics
algorithms called Memetic Algorithms (MAs) [149]. The word, Memetic, comes from the term,
meme, which was coined by Dawkins [150] to denote an analogous to gene in the context of
cultural evolution [151]. The central philosophy of MAs is individual improvement as well as
population cooperation and competition, as they are present in many social and cultural sys-
tems. In the literature, MAs can be found under a large variety of names such as Hybrid Genetic
Algorithms, Genetic Local Searchers, Lamarckian Genetic Algorithms, Baldwinian Genetic Al-
gorithms.

In numerous articles, it has been suggested that the efficiency of a search in pure GAs can
be significantly improved by hybridizing them with other techniques [152, 153, 154]. The No-
Free-Lunch (NFL) theorem [152], states that a search algorithm strictly performs in accordance
with the amount and quality of the problem knowledge it incorporates. Consequently, it can be
concluded that an MA, which incorporates the information of the landscape of the proximity of
each of the individuals through a local search, performs better than a pure GA without a local
search. In essence, the success of MAs can be seen as the tradeoff between the exploration
abilities of the GA, and the exploitation abilities of the local search algorithms [155].

Fig. 6.1 and Fig. 6.2 show the pseudocode of a pure GA and an MA in the simplest form,
respectively [156]. It is evident that one difference between the two algorithms lies in the fact
that MAs have a local search stage. It accepts an individual as the input and produces a new
individual in the neighbourhood of the original solution, provided that the new solution has a
better fitness value. In the literature, a wide range of distinct local search algorithms have been
reported. The application requirements and the problem characteristics affect, and sometimes
dictates the algorithms for the local search. The wealth of different arrangements and methods
for local search and genetic operators in the literature, have given rise to taxonomy methods for
classifying the existing MAs [155].

Another difference between the GA and MA, as depicted in Fig. 6.1 and Fig. 6.2, is the
Restart population element in the MA. Consider a case in which the population is not able
to produce new individuals through the genetic operators. Such a situation might occur if the
individuals of the current population are very similar to each other. In such a case, the restart
stage introduces new individuals into the population. The method for the detection of such
a situation and the process of introducing new individuals into the population are application
dependent [151].

Although MAs have proven to be effective tools in solving some optimization problems, the
process of designing efficient MAs, currently, remains fairly ad-hoc and application dependent
[157]. The class of problems in which the fitness function is decomposable, in the sense that
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// Initialization
Randomly generate a population;

while termination criteria is not reached do

// Genetic operators
Calculate fitness value ;
Selection ;
Crossover ;
Mutation ;

end

Figure 6.1: Pseudocode of a Genetic Algorithm

// Initialization
Randomly generate a population;

while termination criteria is not reached do

// Genetic operators
Calculate fitness value ;
Selection ;
Crossover ;
Mutation ;

// Local search operator
if population converged then

Restart population ;
end
Local search ;

end

Figure 6.2: Pseudocode of a simple Memetic Algorithm
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computing the fitness of a solution given the fitness of another solution that is close to it is sig-
nificantly less computationally expensive than computing the fitness of a solution from scratch,
are considered suitable for MAs. The measure of closeness between two individuals can, in-
formally, be defined as the number of common genetic materials they share. Since, in most
applications, the calculation of the fitness function accounts for almost all the time spent in a
generation of a GA, it seems that MAs have the upper hand when the fitness function is decom-
posable. This holds true if the improvement of the individuals is performed gradually in small
steps [158].

6.3 Framework of the Proposed MA for Solving TBCO

As mentioned in Section 2.5.1, the TBCO can be formulated as a minimization problem in
which all the elements of the matrix representation of a manipulator, mn, should be determined.
The solution mn should minimize an objective function, and simultaneously satisfy a nonlinear
constraint. Therefore, each individual of MA, which represents an mn manipulator, can be
expressed with the MRR matrix representation as follows

mn =


0 0 l0

φ1 m1 l1

φ2 m2 l2
...

φn m3 ln

 . (6.1)

The MRR matrix representation can be decomposed into two characteristically distinct, but
interconnected, segments to further investigate the most suitable elements of the matrix rep-
resentation to undergo a local search. Consequently, the elements which should be identified
through the genetic operators can be determined. The matrix is expressed as follows

mn =
[

Σ ∆
]
, (6.2)

where Σ and ∆ are the kinematic structure and the link dimension matrices of mn respectively.
The Kinematic structure and the link dimension matrices are defined as follows
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Σ =


0 0

φ1 m1

φ2 m2

...
φn m3

 , (6.3)

and

∆ =


l0

l1

l2
...
ln

 . (6.4)

In the TBCO, the primary goal is to find both kinematic structure and link dimension matri-
ces, Σ and ∆ respectively. Due to the distinctive characteristics of Σ and ∆, the TBCO can be
decomposed into a search in two interconnected spaces with distinct characteristics as follows:

Σ search: The kinematic structure matrix, Σ, consists of the first two columns of the MRR
representation and includes discrete variables, φi and mi for i = 1..n. Σ specifies the
kinematic structure of the manipulator. If one element of Σ changes, the resulting ma-
nipulator can display fundamentally different kinematic characteristics. The reason can
be explained by using the concept of manipulator workspace. When the orientation of
two consecutive joints or the type of the joints are altered, the workspace of the manip-
ulator might change shape. Since the kinematic parameters of the manipulator changes
when Σ changes, the IK of the manipulator, and consequently the optimization criteria
and constraints should be computed from scratch.

∆ search: The link dimension matrix, ∆, comprises of the third column of (6.1) with variables
li for i = 0..n which are bounded continuous variables within the range, li ∈ [lmin, lmax].
∆ defines the dimensions of the links of the manipulator. When ∆ of a manipulator is
changed, the shape of the workspace is preserved and only the volume is altered, i.e., if ∆

is slightly altered, the change in the kinematic parameters of the manipulator is small. As
a result, the change in the solutions of the IK problem is small. Therefore, the IK solution
of the pre-change manipulator can be used as an initial guess for the IK of the post-change
manipulator, enabling the solver to converge faster.

Computing the fitness values, which consist of the optimization criteria and the constraints,
requires solutions to the IK problem. Small changes in ∆ result in small changes in the IK solu-
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tions. Therefore, when ∆ changes in a robot, the IK problem of the new manipulator is solved
relatively fast by utilizing the IK solutions of the original manipulator as an initial guess. That
is, solving the IK problem of a manipulator, given the IK solutions of another manipulator which
has a similar Σ but different ∆, is less computationally expensive than computing the IK solu-
tions of the manipulator from scratch. This implies that the fitness function in the TBCO can be
considered decomposable. The decomposable fitness function entails that the efficiency of GAs
can be improved in solving the TBCO when they are hybridized with local search algorithms.

In summary, a local search can provide an effective means for conducting the search in the
continuous part of the TBCO, which is ∆. Therefore, in the proposed TBCO, the principal
burden of the search in the continuous space of ∆ is carried out by the local search operators.
The intention of the ∆ search is to enhance the reachability error of the manipulator, enabling it
to satisfy the constraints. Primarily, the Σ search is conducted by the Genetic Operators. In the
next section, the ∆ search is mathematically formulated, and a method for solving it is proposed.

6.4 Local Search Operator

In MAs, the responsibility of the local search is to gradually improve the fitness value of an
individual. In the TBCO, the local search modifies the dimension of the links of an individual
(manipulator) in order to decrease its reachability error. Since the local search operates on
the ∆ part of the individuals, it is conducted in the continuous search space. The ∆ search is
mathematically expressed as follows

{
∆s = arg min∆ frch,T (mn,T)

mn = [ Σ | ∆ ]
, (6.5)

where ∆s represents the solution of the ∆ search problem. ∆ is the variable of the problem,
and Σ and T are the parameters. In this section, a method for solving the ∆ search problem is
proposed.

6.4.1 ∆ Local Search

The reason for applying a ∆ search to a manipulator is to determine ∆, when Σ is fixed such
that the resulting manipulator exhibits an enhanced capability in satisfying the reachability con-
straints for the desired task T. The reachability error for the i-th task point is a function of the
kinematic structure Σ, the link dimensions ∆, and the joint angles of the manipulator Θi when
the manipulator reaches for the task point. The search for link dimensions is always entangled
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(a) (b)

Figure 6.3: Sample m3 manipulator and the corresponding 7-DOF revolute-prismatic joint ma-
nipulator, where the links are considered as prismatic joints: (a) original manipulator; and, (b)
resulting 7-DOF manipulator with 3 revolute joints and 4 prismatic joints

with the search for the set of joint angles required to reach the task points. Therefore, with the
assumption that Σ is fixed, the variable vector of the ∆ search, represented by qT, is defined as
follows

qT =


Θ1

Θ2

...
Θt

∆

 . (6.6)

To solve for qT, the approach in this thesis is to model each link of the manipulator as a
prismatic joint, and then determine the prismatic and rotational joint variables of the new manip-
ulator that allow it to reach all the task points. With this assumption, an mn manipulator which
consists of n revolute joints is converted to a (2n + 1)-DOF manipulator with n revolute and
(n + 1) prismatic joints. In Fig. 6.3, an m3 manipulator and the corresponding post conversion
7-DOF manipulator with 3 revolute and 4 prismatic joints are shown.

Applying this transformation effectively converts the problem of finding the link dimensions
and the corresponding t sets of joint angles in an n-DOF manipulator to the IK problem of a
redundant (2n+ 1)-DOF manipulator for t tasks.

Although a wide range of approaches for solving the IK of redundant manipulators exists
( Section 2.6.2 contains a review of the prominent methods ) , none involves solving the IK
problem for numerous task points simultaneously. The majority of methods rely on solving
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the first order differential kinematic equations of the manipulator. In the next section, two of
the most common approaches to solve this problem, when one task point is considered, are
reviewed.

6.4.2 Solving the Inverse Kinematics of Redundant Manipulators

If a task is represented by the desired position of the end-effector in the Cartesian coordinates
and a minimal representation of the orientation ( such as the Euler angles ) as follows

xdes =



Px,des

Py,des

Pz,des

φx,des

φy,des

φz,des


, (6.7)

the mathematical formulation of the FK, expressed in (2.23), is written as follows

x = K (q) , (6.8)

where q represents the joint variables of a manipulator with both prismatic and revolute joints.
(6.8) closely resembles the general FK formulation of (2.23). By differentiating (6.8) with re-
spect to time, the first order differential kinematics equations are obtained, and expressed as

ẋ = J (q) q̇ , (6.9)

where ẋ is the task-space velocity vector, q̇ is the joint-space velocity vector, and J (q) = ∂K/∂q

is the 6 × n Jacobian matrix of the manipulator, where n is the number of the joints of the
manipulator. For serial manipulators, the i-th and j-th columns of J (q), corresponding to a
revolute and a prismatic joint, respectively, are calculated as the follows

J (q) =

 · · · zi × Pi,ee · · · zj · · ·

· · · zi · · · 0 · · ·

 , (6.10)

where zi and zj represent the axes of the i-th and j-th joint. Pi,ee represents the vector which
connects the coordinate frame of joint i to the end-effector. In Fig. 6.4, the z2 and z3 the joint
axes of the second and third joint, rotational and prismatic, respectively, with P2,ee are illustrated.
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Figure 6.4: z2, z3, and P2,ee vectors illustrated on a 4-DOF manipulator with revolute and
prismatic joints for the second and third joint

If J is nonsingular, (6.9) can be solved for q̇ with the following equation:

q̇ = J (q)−1ẋ . (6.11)

Under the assumption that the manipulator is kinematically redundant, (6.9) can be solved
by resorting to the pseudo-inverse J† of the Jacobian matrix defined as follows [22]:

q̇ = J† (q) ẋ+
(
I− J† (q) J (q)

)
q̇0 . (6.12)

The pseudoinverse, J†, is a unique matrix which satisfies the Moore-Penrose conditions[159].(
I− J† (q) J (q)

)
represents the orthogonal projection matrix into the null space of J , and q̇0 is

an arbitrary joint space velocity. Consequently, the second part of solution is a null space veloc-
ity. The particular solution, in which q̇0 = 0 produces the pseudoinverse solution of (6.9) which
is [78]

q̇ = J† (q) ẋ . (6.13)

To solve (6.13) , a numerical method which updates the value of q in each iteration with the
following rule is applied
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qk = qk−1 + J† (qk−1) 4xk−1 , (6.14)

where J† (qk−1) is the pseudoinverse of the Jacobian matrix at qk−1, and 4x is the distance of
the position/orientation of the end-effector at qk−1 from the desired task.

Another method for solving the kinematic equations for redundant manipulators, which is
more resilient to singular poses, is the damped-least-square method [80, 81]. In this method,
instead of solving (6.13), the following first order differential equation is solved:

q̇ = JT
(
JTJ + λ2I

)−1
ẋ , (6.15)

where JT is the transpose of J , and I is the identity matrix. λ is called the damping factor. It
can be recognized that if λ is zero, (6.15) and (6.11) become identical. The update formula for
solving (6.15) iteratively is as follows

qk = qk−1 + JT (qk−1)
(
JT (qk−1) J (qk−1) + λ2I

)−1 4xk−1 . (6.16)

When the links of a manipulator are converted to prismatic joints, their lengths are trans-
formed into prismatic joint variables. The length of the links of the manipulator remain constant
regardless of which task point the robot is reaching. Consequently, the prismatic joint variables
which represent the length of the links should remain equal regardless of the task point. There-
fore, in the utilized IK solver, an equality set of constraints for the prismatic joints should be
considered. Furthermore, the pseudoinverse and damped-least-square methods are developed to
solve the IK problem, when only one task point is considered. In the next section, a method
for solving the multi-task IK problem with an implicit implementation of the prismatic joint
constraints is described.

6.4.3 Task Embedded Jacobian Matrix

When the link dimensions are considered as prismatic joints, the joint variables of the IK of the
resulting manipulator, in reaching the i-th task point, is expressed as

qi =

[
Θi

∆i

]
, (6.17)
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where Θi and ∆i represent the revolute and prismatic joint angles of the converted manipulator,
respectively. When only the i-th task point is considered, the pseudoinverse solution of (6.17) is
written as

q̇i = J†i (qi) ẋi , (6.18)

where Ji is the Jacobian of the converted manipulator at qi, and is written as follows

Ji (qi) =
[
JRi (Θi,∆i) JPi (Θi,∆i)

]
, (6.19)

where JRi represents the Jacobian matrix of the manipulator at qi where only the revolute joints
are considered, and is equal to the Jacobian matrix of the original n-DOF manipulator at Θi.
JPi is the Jacobian matrix of the manipulator at qi, when only the (n+ 1) prismatic joints,
representing the links of the manipulator, are considered.

For obtaining a solution of the ∆ search problem, (6.18) should be concurrently solved for
all qi, when i = 1..t . i.e., the set of the following equations should be simultaneously solved

{
q̇i = J†i (qi) ẋi for all i = 1..t

∆i = ∆j for all i, j = 1..t
, (6.20)

where q̇i and ẋi represent the velocity vectors in the joint space and the task space, respectively.
The second set of equations stipulates that the prismatic joint variables, which represent the link
dimensions of the manipulator, should be the same for all the tasks.

To solve (6.20), a Jacobian matrix, called a Task Embedded Jacobian matrix, JT, is formed
as follows

JT =



JR1 (Θ1,∆) 0 · · · 0 | JP1 (Θ1,∆)

0 JR2 (Θ2,∆) · · · 0 | JP2 (Θ2,∆)

...
... . . . ... | ...

0 0 · · · JRt (Θt,∆) | JPt (Θt,∆)


. (6.21)

By using JT, (6.20) is written as follows
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q̇T = J†T ẋT , (6.22)

where qT is defined as (6.6). ẋT includes all the minimal representation task velocities of the t
task points and is defined as follows:

ẋT =


ẋ1

ẋ2

...
ẋt

 . (6.23)

By solving (6.22) for q̇T, the link dimensions ∆ and the joint angles of the manipulator Θi

when the i-th task is reached, are computed concurrently.

Although the Task Embedded Jacobian matrix is explained by applying the pseudoinverse
method, to solve (6.22), any of the existing methods in the literature can be utilized. In this thesis,
the damped-least-square method is chosen for solving (6.22), due to its resilience to matrix
singularities. The ∆, found through the iterative Task Embedded Jacobian matrix method, is the
closest solution to the initial guess with which the algorithm is initialized. In more specific terms,
depending on T, the ∆ search might not have a unique solution. In such a case, the proposed ∆

search algorithm converges to one of the solutions that is closest to the initially adopted guess.

6.4.4 Applying the Task Embedded Jacobian Method for Solving the ∆

Search

To verify the proposed approach in Section 6.4.3 through numerical analysis, the dimensions of a
6-DOF PUMA type manipulator are determined by using the proposed ∆ search. Three distinct
tasks, each consisting of 50 task points, are randomly generated with a manipulator with the Σ

of a PUMA, but a random ∆. The Task Embedded Jacobian method is selected to determine the
dimensions of a manipulator capable of performing the tasks.

The positioning and orienting reachability errors are plotted with respect to the iteration
number in Fig.6.5(a) and Fig.6.5(b), respectively. It is evident that, in all the test cases, the posi-
tioning and orientation errors converge to within a small margin of zero in the first 40 iterations.
To converge to the desired accuracy of 0.1 cm and 0.05 radians, more iterations are needed.
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(a) (b)

Figure 6.5: Mean position and orientation reachability errors of the test cases plotted with re-
spect to the iteration number: (a) positioning reachability error (cm) with respect to the iteration
number; and, (b) orientation reachability error (rad) with respect to the iteration number

6.5 Memetic Algorithm-Based Task Based Configuration Op-
timization

The pseudocode of the proposed algorithm is displayed in Fig. 6.6.

The algorithm starts by randomly initializing the population, Rpop, in line 1. In line 2, the
high priority fitness values of the individuals, which consists of the constraints Fcons, are com-
puted. The low priority fitness values, which are the optimization criteria Fobj , are calculated in
the selection operator as needed. Thewhile loop of line 3 causes the algorithm to iterate between
lines 4 to 14, when the termination criteria is not satisfied. In line 4, a kinematic structure-aware
elitism method selects a fraction of the fittest individuals to form the population of elites Epop.
The population of the elites is added to the next generation of the population without any change.
In line 5, the Restart Population subroutine computes a measure of the occurrence of each
individual. Then, the individuals with excessive occurrence measures are replaced with fresh
randomly generated individuals in order to preserve the diversity of the population. In line 6, the
parent pool, Ppop, is formed through the selection operator. A new generation is created in lines 7
– 8 from the parent pool by using the crossover and mutation operators. The population of the
elites are then added to the new population in line 9. In lines 10 – 13, a part of the population,
represented by Npop, is selected to undergo the numerical improvement stage. The individuals,
after being improved by the local search (∆ search), are added to the original population, Rpop.
In line 14, the fitness value of the new population is computed.

Each stage of the pseudocode is explained in more detail in the following section. Table 6.1
lists the name and description of the variables used. Each individual of the population represents
a manipulator coded into the matrix representation.
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Rpop = Random Population Generation;1

Ffv = Fitness Calculation (Rpop) ;2

while termination criteria is not reached do3

Epop = Elitism (Rpop, Ffv);4

Rpop = Restart Population (Rpop) ;5

Ppop = Selection (Rpop, Ffv);6

Cpop = Crossover (Ppop);7

Cpop = Mutation (Cpop);8

Rpop = Cpop
⋃
Epop ;9

Npop = Selection For Local Search (Rpop) ;10

Rpop = Rpop −Npop;11

Npop = Local Search (Npop) ;12

Rpop = Rpop

⋃
Npop ;13

Ffv = Fitness Calculation (Rpop) ;14

end15

Figure 6.6: Pseudocode of the proposed TBCO Memetic Algorithm
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Table 6.1: Description of the the variables of the proposed MA

Variables Description

Rpop Population of manipulators

r size of population Rpop

Epop Population of elites

e number of elites

Ppop Population of parents

p size of the parent pool

Cpop Population of children (Offsprings)

Npop Population of the selected individuals to undergo lo-
cal search

gmax Maximum number of iteration after satisfying the
constraints

ci number of individuals with the same Σ as the i-th
individual

Λi Probability of the i-th individual to undergo local
search

Pm Mutation probability

Pc Crossover probability

f icons Optimization constraint of the i-th individual

f iobj Optimization criteria of the i-th individual
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6.5.1 Random Population Generation

In this stage, a population of mn manipulators is created randomly. This population, represented
byRpop, acts as the initial population of the MA. The number of individuals inRpop, which is the
population size r, for search in the space of n-DOF manipulators, is selected using the following
equation:

r = max { rmin , κr size (Mn) } , (6.24)

where the population size is set at a fraction κr < 1 of the total number of KCs inMn, stipulating
that the population size should be, at least, rmin.

The initial population is formed such that it has the following characteristics.

• Each individual represents a feasible mn manipulator. The relative orientation of the joints
and the link dimensions are within the permissable ranges, and the joints are selected from
the standard modular joint set.

• The population consists of only one individual from each kinematic structure. i.e., two
individuals with the same kinematic structure, Σ, can not be found in the initial population.
This feature provides the initial population with a more diverse sampling of the KC space.

• The individuals are created such that all are non-redundant. For instance, in an initial
population consisting of m4 manipulators, no manipulator with four parallel joints axes
exists.

6.5.2 Fitness Calculation

In this stage, the fitness values of all the individuals are computed. Since, in the proposed
algorithm, a priority-based selection scheme is adopted, the computation of the optimization
criterion fobj,T, with lower priorities can be postponed until they are required by the selection
scheme. On the contrary, the optimization constraints, fcons,T, should be calculated in each
iteration of the algorithm.

6.5.3 While loop

The while loop iterates, until the termination criterion is satisfied. In the proposed method,
the loop is repeated for gmax generations, after the reachability error is decreased within the
desired tolerance, εcons. i.e., after the first KC capable of performing the task is found, the
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algorithm continues for gmax generations in order to reach a KC capable of performing the task
and minimizing the optimization criteria.

6.5.4 Elitism

Elitism is the process in which the fittest individual(s) of a population are directly transferred to
the next population. It has been shown that elitism can improve the efficiency of GAs signifi-
cantly [111, 112]. Furthermore, for optimization problems in which prior information about the
fitness value does not exist, the use of an elitism scheme in MAs has been recommended [160].

In the proposed TBCO algorithm, a kinematic structure-aware elitism scheme is employed.
In the elitism scheme, a population Epop with size e, consisting of the fittest individuals, is
formed. The individuals of Epop are selected such that Epop would have the following character-
istics.

• The members of Epop are the fittest individuals of the population. That is, the individuals
of Epop have the lowest fcons,T among the population. Between two individuals which
satisfy the TBCO constraints, i.e., fcons,T ≤ εcons, the one with a lower fobj,T is adopted
for Epop. εcons represents the permissable tolerance for the constraint violation.

• Epop consists of individuals with different kinematic structure, Σ. The fittest e individuals
with distinct kinematic structure are preserved for the next population. This feature pre-
vents individuals with the same Σ to be transferred to the next population. Consequently,
the chance of the population being dominated by a few kinematic structures decreases.

6.5.5 Restart Population

In MAs, keeping the population diverse is always an issue [157]. It has been suggested that by
computing a measure of the diversity for the population and injecting new individuals into the
population when the diversity drops below a certain threshold, the problem of maintaining the
diversity can be addressed [151].

In the proposed TBCO, the inverse of the number of manipulators with a similar kinematic
structure, Σ, is adopted as a diversity measure. i.e., when in a population, the number of the
manipulators with the same Σ increases, the diversity of the population decreases.

Therefore, the following restart scheme is devised, where ci (for i = 1 · · · r) represents the
number of manipulators with similar kinematic structures to that of the i-th individual.
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1. A list of the individuals with ci ≥ κc.r, where κc < 1 is a constant, is created. Therefore,
the list consists of the manipulators which have repeated occurrences, in terms of the
kinematic structure Σ, with a total number of occurrences of κc.r or more.

2. Half of the individuals on the list which are less fit are replaced by individuals created
from scratch ( using Random Population Generation ), and the other half which
are fitter are returned to the population.

To summarize, the proposed Restart Population scheme can replace the more recurred
individuals of the population in terms of the kinematic structure with randomly generated new
individuals.

6.5.6 Selection

In the selection, a group of individuals are chosen to form a parent pool. The members of the
parent pool then have the chance to produce a new population through crossover, mutation, and
the local search operators.

In TBCO, the optimization criteria and the constraints are mapped into two sets of fitness
values with different priorities. Then, the selection can be formulated into a priority-based se-
lection in which two individuals are compared such that the constraints have more impact than
the optimization criterion.

To implement a priority-based selection scheme, a binary tournament selection is chosen.
In the tournament selection, to select a parent, ntour individuals are selected randomly. From
these individuals, the fittest individual is transferred to the parent pool. If the parent pool, Ppop,
consists of p individuals, a total of p tournaments should be performed for forming Ppop.

An advantage of the binary tournament, in which ntour = 2, is that it produces a larger
selection variance than that of the ranking selection scheme, which is a more commonly used
selection method in the GA literature. Choosing ntour ≥ 2 decreases the chance of weaker
individuals being selected, and subsequently, decreases the diversity of the parent pool, but
increases the convergence speed [161].

Another advantage of using the binary tournament selection in the TBCO is that it reduces
the process of selection into a simple comparison between two individuals. The winner of the
tournament can be decided by comparing any characteristic or measure of the individuals in-
volved in the tournament. This feature can be exploited for developing priority-based selection
operators. In such an operator, the individuals are compared according to a set of fitness values
with different priorities.
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Fig. 6.7 reflects the pseudocode of the proposed priority-based selection scheme, where δ1,
δ2, and ζ are constants such that δ1 < δ2. R1 and R2 are two individuals randomly selected
from the population for the binary tournament, and Rout is the winner of the tournament which
is added to the parent pool. F 1

cons,T and F 2
cons,T represent the optimization constraint computed

for the task, T, and F 1
obj,T and F 2

obj,T represent the computed optimization criteria for R1 and R2,
respectively.

According to the pseudocode, when R1 and R2 are being compared, three distinct cases
occur.

1. If the optimization constraints of R1 and R2 are very close to each other, within δ1, the
one with the better Fobj,T is the winner.

2. If the optimization constraints of R1 and R2 are fairly close, within δ2, the one with the
better Fobj,T with a certain probability ζ is the winner.

3. If the difference between the optimization constraints of R1 and R2 is large, the one which
can better satisfy the optimization constraints, with a smaller Fcons,T, is selected as the
winner.

It can be observed that the priority-based scheme considers fobj,T, only if R1 and R2 have
approximately the same fcons,T, considering fobj,T with a lower priority. Moreover, since the
computation of fobj,T is not required in the third case, its computation is postponed, until it is
absolutely necessary.

6.5.7 Crossover

To produce two new individuals, called offsprings, two parents are randomly selected from the
parent pool to undergo the crossover. The two parents are crossed with a probability of Pc, and
otherwise, are transferred, unchanged, to the new population. This process is repeated until a
new population with (r − e) individuals is created.

In the TBCO, each individual consists of two segments, kinematic structure Σ and link di-
mension ∆, and three types of variables, corresponding to the three columns of the MRR matrix
representation, namely the relative orientation of the joints φi, joint types mi, and link lengths
li. The methods by which the crossover is applied to each of the variables, differ due to the dif-
ferences in the variable type and the permissible bounds. For φi and mi, the crossover is applied
in a discrete space with two distinct permissible bounds, and for li, the crossover is applied in a
bounded continuous space.
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Input: R1 and R2: Randomly selected individuals for tournament
Output: Rout: Winner of the tournament selection

if
(
|F 1
cons,T − F 2

cons,T| ≤ δ1

)
then1

if F 1
obj,T ≤ F 2

obj,T then2

Rout = R13

else4

Rout = R25

end6

else if
(
|F 1
cons,T − F 2

cons,T| ≤ δ2

)
and rand ≤ ζ then7

if F 1
obj,T ≤ F 2

obj,T then8

Rout = R19

else10

Rout = R211

end12

else13

if F 1
cons,T ≤ F 2

cons,T then14

Rout = R115

else16

Rout = R217

end18

end19

Figure 6.7: Pseudocode of the proposed priority-based selection scheme
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Since GeneAs framework [114] provides a method for performing the crossover in individ-
uals, consisting of distinct variable types, the framework is adopted as the crossover scheme.
According to GeneAS, the crossover operator is applied to approximately 50% of the variables
constituting the individuals. The utilized crossover operator is consistent with the corresponding
variable type.

Fig. 6.8 denotes the pseudocode of the crossover scheme. P1 and P2 are the selected parents
from the parent pool, whereas C1 and C2 are the offsprings produced from crossing P1 and P2.
The variable at the i-th row and j-th column of the MRR matrix representation is expressed by
X (i, j) , for all i = 1..n and j = 1..3, where X can be P1, P2, C1, or C2. Each X(i, j) has a
50% chance of undergoing the crossover. The crossover is applied to each element, according to
the variable type of the element. The crossover operator used for the link lengths, l crossover
is the bounded SBX operator, as explained in Section 3.3.2, and φ crossover and m crossover
uses a discrete version of the bounded SBX which creates only the permissible values of φ and
m.

Input: P1 and P2: Randomly selected individuals for crossover
Output: C1 and C2: The offsprings

forall i = 1..n, j = 1..3 do1

if rand ≤ 0.5 then2

switch j do3

case j = 14

// X(i, j) is joint relative orientation

[C1(i, j) C2(i, j)] = φ crossover( P1(i, j) P2(i, j) )5

end6

case j = 27

// X(i, j) is joint type

[C1(i, j) C2(i, j)] = m crossover( P1(i, j) P2(i, j) )8

end9

case j = 310

// X(i, j) is link length

[C1(i, j) C2(i, j)] = l crossover( P1(i, j) P2(i, j) )11

end12

end13

end14

end15

Figure 6.8: Pseudocode of the GeneAS-based crossover scheme
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6.5.8 Mutation

With a probability of Pm, the crossover results may undergo the mutation operator. In the pro-
posed TBCO, the mutation is performed as depicted in the pseudocode of Fig. 6.9, whereRin and
Rmutated represent a selected individual to undergo mutation and the mutated individual, respec-
tively. According to the pseudocode, first, an element of individual Rin is randomly selected.
Based on the type of the selected element, the appropriate type of mutation is employed.

If the selected element is a link length li, a continuous mutation operator [114] is performed.
In order to mutate the link lengths such that the mutated value li,mutated remains in the bound,
[ lmin , lmax ], the mutation is carried out by the following steps.

1. A random number u in the range [0, 1] is created.

2. 4max is computed by using the following equation:

4max =

{
|li − lmin| , if u < 0.5

|lmax − li| , if u ≥ 0.5
. (6.25)

3. δ is calculated as follows:

δ =

{
(2u)

1
η+1 − 1 , if u < 0.5

1− [2 (1− u)]
1
η+1 , if u ≥ 0.5

. (6.26)

4. The mutated link length is determined by computing:

li,mutated = li + δ4max . (6.27)

The aforementioned process produces a mutated link length by using a polynomial probabil-
ity distribution with the mean at the original link length and the variance a function of η. The
maximum and minimum of the mutated value are dictated by ∆min and ∆max. An η between
two and five produces a mutation which simulates the binary mutation [114].

If the selected variable is a joint relative orientation φi or a joint type mi, a discrete version
of the mutation operator used for link lengths is used.

6.5.9 Selection For Local Search

In the stage, Npop, the list of the individuals that are selected to undergo the local search, is
formed. The number of individuals in Npop depends on the desired frequency, which the local

140



Input: Rin: Individual to undergo mutation
Output: Rmutated: Mutated individual

i = Random integer(1..n) ;1

j = Random integer(1..3) ;2

switch j do3

case j = 14

// X(i, j) is joint relative orientation

Rmutated (i, j) = φ mutation(Rin (i, j))5

end6

case j = 27

// X(i, j) is joint type

Rmutated (i, j) = m mutation(Rin (i, j))8

end9

case j = 310

// X(i, j) is link length

Rmutated (i, j) = l mutation(Rin (i, j))11

end12

end13

Figure 6.9: Pseudocode of the mutation operator
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search should be applied to the population. For the proposed TBCO algorithm, an adaptive
local search frequency scheme, called the complete method [160], is adopted. The goal of the
adaptive local search frequency methods is to reduce the number of local searches, and hence the
computational cost. To do so, the chance of undergoing the local search for similar individuals,
or the individuals which are clustered close to each other, is reduced. In the complete method,
the i-th individual is added to Npop with a probability, Λi. Λi is computed as follows:

Λi =
Λ

Ni

, (6.28)

where Ni is the number of individuals in the population which represent identical solutions to
the problem. In the proposed TBCO, Ni represents the number of individuals with the same Σ

as the i-th individual, and therefore, Ni = ci. Λ is a constant which represents the probability of
the local search, when Ni = 1.

6.5.10 Local Search

In this stage, the ∆ search is applied to the members of Npop. Since a gradual local improvement
of the individuals decreases the computational cost of the local search in each generation, and
simultaneously, increases the resilience of the algorithm to premature convergence, a method for
limiting the number of iterations of the ∆ search is employed.

As shown in the numerical analysis of Section 6.4.4, in the first few iterations of the ∆

search, the reachability error decreases substantially. After the initial fall, the reachability error
decreases gradually. To achieve a tangible decrease in the reachability error, if the reachability
error is small, more iterations are required than if the reachability error is high. Therefore, the
number of iterations ρ is determined, adaptively, for each individual according to its reachability
error as follows

ρi =

{
ρL , If F i

rch,T ≤ δLS

ρH , else
, (6.29)

where the number of iterations of the local search for individual Ri is equal to constant ρL, if
the reachability error is less than or equal to a threshold, δLS , otherwise the number of iterations
is equal to ρH , where ρL ≤ ρH . By using this scheme, the local search is applied to individuals
with smaller reachability errors more aggressively.
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Table 6.2: MA parameters in the numerical analyses of the results section

Parameter Value

rmin 30

p b0.5rc

e b0.1pc

κr 1/8

gmax 20

εcons 0.1t

κc 1/3

δ1 102

δ2 103

ζ 0.2

η 2

Λ 1

ρL 20

ρH 50

δLS 103εcons

6.6 Results

In this section, the results of the numerical analysis of the proposed TBCO algorithm are dis-
cussed. In all the test cases of this section, the total reachability error is considered as the
optimization constraint. The minimum required power to execute the task, as calculated by the
trajectory optimization method of Chapter 5, is defined as the optimization criterion. Since the
trajectory optimization algorithm requires all the solutions of the IK problem, the IK solver of
Chapter 4 is used to determine the solutions.

Table 6.2 lists the value of the parameters of the MA for the numerical analysis of this section,
where bxc represents the nearest integer less than or equal to x.
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6.6.1 Performance Test

Test Case 1: MA versus GA for solving the TBCO

In this test case, the TBCO problem in the M3 space for five tasks, each consisting of four task
points, is solved by the proposed MA and a pure GA version of the algorithm. The GA version
shares the genetic operators ( Crossover and Mutation), and the elitism ( Elitism ) subrou-
tines with the MA, but does not include Restart Population, Selection For Local Search,
and Local Search subroutines. Since the idea is to compare how fast each algorithm finds a
manipulator capable of satisfying the constraints, no optimization criteria are considered, and
only the third case of the selection operator, in which the constraints are compared, is imple-
mented.

In Fig. 6.10, the minimum and average reachability errors of the population, with respect to
the generation number for MA and GA are plotted. In both algorithms, the maximum permissible
generation number is 40. The MA can find a manipulator capable of performing the task in all
the test runs. In three of the runs, such a manipulator is found in the first generation of the MA.
For the GA, none of the runs reaches a manipulator capable of satisfying the constraints.

Table 6.3 summarizes the operational measures of the test runs for the MA and GA. For the
GA, the lowest reachability error belongs to a manipulator in the last generation of the third
test run. Since the reachability error for the manipulator is 8.7758, the manipulator cannot
perform the task with the desired precision. The MA finds a manipulator with a reachability
error within the permissible tolerance, εcons, in all the test runs. However, the average generation
run time of the MA is approximately three times the generation run time of the GA. The reason
is that in each generation of the MA, a fraction of the population undergoes the local search
algorithm. Although the generation run time of the GA is smaller than that of the MA, at the
final generations, the total run time of the MA is less than the GA. The fact that, in the final
generation, the MA has already found a good solution, whereas the GA is unable to determine a
manipulator, capable of performing the task, shows the superior performance of the novel MA
in finding manipulators capable of satisfying the constraints, i.e., performing the task.

Test Case 2 : The Effect of the Number of Task Points

To investigate the effect of increasing the number of task points on the performance of the pro-
posed MA, the TBCO in theM3 andM5 space with varying number of tasks are solved.

Fig. 6.11 shows the minimum and average reachability errors, plotted with respect to the
generation number for each search in M3, when the number of task points varies from 5 to 20.
Since, in the ten task point case, a solution is reached in the first generation, the minimum and
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Table 6.3: Performance measures of the MA and GA

Test Run Final Minimum Average Total

Method Number Generation Reachability Generation Time Time

Number Error (minutes) (minutes)

GA

1 40 111.7028 4.93 197.41

2 40 46.9296 4.38 175.40

3 40 8.7758 2.99 119.62

4 40 54.0351 4.48 179.40

5 40 48.6138 3.98 159.22

MA

1 1 0.0643 14.66 14.66

2 1 0.0254 13.52 13.52

3 1 0.0204 13.57 13.57

4 8 0.0334 11.43 91.45

5 5 0.0369 12.73 63.67

(a) (b)

(c) (d)

Figure 6.10: Comparison of the MA and GA: (a) MA minimum reachability error; (b) GA
minimum reachability error; (c) MA average reachability error; and, (d) GA average reachability
error
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Table 6.4: MA generation number in which a KC, capable of performing the task, is reached

Search Space 5 Task 10 Task 15 Task 20 Task
Points Points Points Points

M3 2 1 3 5
M5 9 6 4 16

(a) (b)

Figure 6.11: Effect of the number of task points in M3 TBCO: (a) minimum reachability error
of the population; and, (b) average reachability error of the population

average reachability errors of the test are not visible on the plot. It is obvious that the algorithm
finds a KC, capable of performing the task, In all the test cases.

In Fig. 6.12, the results of the same test for a search in M5 are plotted. Here, the algorithm
has reached a solution in generation 9 for the 5 task point case, and a solution in generation 2 of
the 15 task point case.

Table 6.4 summarizes the generation numbers in which a KC, capable of performing the task
is reached. It seems that the generation, in which a manipulator capable of performing the task
is found, is directly affected by the following factors:

• The closeness of the individuals of the initial population to a KC capable of perform-
ing the task. The measure of the closeness can be considered as the number of genetic
operators needed to produce a KC with a kinematic structure which can be improved by
the ∆ search to perform the task.

• The generation number in which the local search is applied to a potential solution.
In each generation for all the individuals, the probability for undergoing the ∆ search is
computed. Even though an individual close to a solution might exist in the population, it
might not have the chance to undergo the ∆ search until further generations.
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(a) (b)

Figure 6.12: Effect of the number of task points in M5 TBCO: (a) minimum reachability error
of the population; and, (b) average reachability error of the population

6.6.2 TBCO inM5

Test Case 1

In this test case, the proposed TBCO algorithm is applied for conducting the search in the M5

space for manipulators that are capable of performing a T2 task. To ensure that the all the task
points are reachable with an m5 manipulator, the task points are selected randomly from the
workspace of the following mref

5 manipulator:

m5
ref =



0 0 60

0 R 30

0 P 30

0 R 10

0 P 10

0 R 10


. (6.30)

The minimum and average reachability errors, and the generation run time of the TBCO, ap-
plied to this problem are plotted with respect to the generation number in Fig. 6.13. According
to Fig. 6.13(a), the first manipulator capable of performing the task is found in the first gener-
ation, but the run is not terminated in order to search for KCs with lower power requirements
for executing the task. Fig. 6.13(b) illustrates the run time of the algorithm in each generation.
The variation, which can be observed in the run time from one generation to another, is due to
the stochastic nature of the genetic selection operator and the selection for numerical operators.
The generations, in which the selection operator needed to compute Fobj more often, require
more time. Another factor affecting the run time is the number of individuals in the generation
which undergo the ∆ search operator. In diverse populations, in which ci is relatively small, Λi

is higher, and the numerical search is applied to a higher fraction of the individuals, increasing
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(a) (b)

Figure 6.13: Minimum and average reachability errors of the population and the generation run
time for a M5 search using the proposed MA, test case 1: (a) minimum and average population
reachability errors; and, (b) generation run time

the run time of the generation.

In the last generation of the MA, two KCs, mKC1
5 and mKC2

5 , capable of performing the
task, exist. The KC of mref

5 with mKC1
5 and mKC2

5 , when they reached the first task point, are
signified in Fig. 6.14. The matrix representation of the solutions are as follows:

m5
KC1 =



0 0 17.8

0 R 101.6

0 P 14.5

0 R 41.0

0 P 20.6

π/2 P 10.0


, (6.31)

and

m5
KC2 =



0 0 28.7

0 P 6.4

0 R 42.1

0 P 32.7

0 R 13.7

0 P 36.8


. (6.32)

Table 6.5 summarizes the operational measures of the two KCs. Although the position and
orientation reachability errors of both manipulators indicate that they can reach the task points
with a high precision, mKC1

5 is the final solution of the TBCO due to the lower power require-
ments in performing the task.
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(a) (b) (c)

Figure 6.14: KCs of mref
5 and the two outputs of the MA-based TBCO algorithm in test case 1:

(a) mref
5 ; (b) mKC1

5 ; and, (c) mKC2
5

Table 6.5: Results of the MA-based TBCO inM5, test case 1

Kinematic
Configuration

Position
Reachability
Error

Orientation
Reachability
Error

Required
Power

(cm) (Rad) (KW)

mKC1
5 0.0006 0.0000 0.143

mKC2
5 0.0007 0.0000 0.301
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(a) (b)

Figure 6.15: Minimum and average reachability errors of the population and the generation run
time for a M5 search using the proposed MA, test case 2: (a) minimum and average population
reachability errors; and, (b) generation run time

Test Case 2

In this test case, the proposed TBCO algorithm is used to determine a manipulator capable of
performing a T10 task. The task points are randomly selected from the workspace of mref

5 .

In Fig. 6.15(a) the minimum and average reachability errors of the population are plotted
with respect to the generation number. According to the minimum reachability error, the first
manipulator, capable of performing the task, is found in generation six. To perform the search
for the manipulators with a higher performance, in terms of the required power, the algorithm
is not terminated in 20 more generations. As illustrated in the figure, in generation 22, the
restart population subroutine has substituted a part of the population with new individuals.

Fig.6.16(a) shows the KC of mref
5 for the first task point. In the final population of the

MA, two KCs mKC3
5 and mKC4

5 , that are capable of performing the task are found. The matrix
representation of mKC3

5 and mKC4
5 are

m5
KC3 =



0 0 21.3

0 R 68.6

π/2 P 17.7

0 R 22.2

0 P 3.8

0 R 16.1


, (6.33)

and
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Table 6.6: Results of the MA-based TBCO inM5, test case 2

Kinematic
Configuration

Position
Reachability
Error

Orientation
Reachability
Error

Required
Power

(cm) (Rad) (KW)

mKC3
5 0.0094 0.0004 2.2007

mKC4
5 0.0068 0.0006 3.0350

m5
KC4 =



0 0 61.2

0 R 28.7

0 P 1.7

0 R 38.2

π/2 P 16.6

0 R 3.3


. (6.34)

Table 6.6 lists the reachability errors and the required power to perform the task for mKC3
5

and mKC4
5 . The position and orientation measure for both manipulators are within the permissi-

ble tolerance. Therefore both manipulators are capable of performing the testedT10. Fig. 6.16(b)
and Fig. 6.16(c), show mKC3

5 and mKC4
5 , respectively. Although the kinematic structure matrix,

Σ, of mref
5 , mKC3

5 and mKC4
5 are distinct by changing the joint reference angle of the rota-

tion joints 1 and 3, it can be shown that they all refer to a similar kinematic structure, i.e., the
workspace of all the three manipulators has the same shape. Furthermore, although the ∆ of the
three manipulators are not equal, since the sum of the links connected to the input and output
mechanical ports of rotational joints 1, 3, and 5 are equal, the volume (size) of their workspace
is also equal. This could be an indication that only a KC with a workspace similar to mref

6 can
perform the desired T10 task. In such a KC, although the general kinematic structure should
remain the same to perform all the tasks, the length of the links, connected to input and out-
put mechanical ports of the rotational joints, can be changed such that the total length remains
constant. The required power for performing the task are 2.2 KW and 3.0 KW for m5

KC3 and
m5

KC4 respectively. Therefore, the final solution of the TBCO is m5
KC3 which can perform the

task with the least required power.

6.6.3 TBCO inM6

In this test, the TBCO is applied for finding an m6 manipulator for performing a T5 task. The
task points are generated randomly by the following manipulator
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(a) (b) (c)

Figure 6.16: KCs of mref
5 and the two outputs of the MA-based TBCO algorithm in test case 2:

(a) mref
5 ; (b) mKC3

5 ; and, (c) mKC4
5

m6
ref =



0 0 60

0 R 30

0 P 30

0 P 30

0 R 10

0 P 10

0 R 10


. (6.35)

Fig. 6.17(a) portrays the plot of the minimum and average reachability errors of the popu-
lation with respect to the generation number. It is evident that in generation 1 a manipulator
capable of performing the task is found. The MA iterates for 20 more generations in order to
search M6 for manipulators that perform better in executing the task. Fig. 6.17(b) reflects the
run time of each generation.

In the final generation of MA, eight KCs, mKCi
6 with i = 1..8 , capable of performing the

task, are found. In Fig. 6.18 the KCs of the aforementioned manipulators are illustrated. Ta-
ble 6.7 summarizes the operational performance measures of the manipulators. The reachability
errors of all the manipulators are within the permissible tolerance range. However, since mKC1

6

can perform the task with lower power requirements, mKC1
6 is selected as the solution to the

TBCO problem.
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(a) (b)

Figure 6.17: Minimum and average reachability errors of the population and the generation run
time for aM6 search using the proposed MA: (a) minimum and average population reachability
errors; and, (b) generation run time

Table 6.7: Results of the MA-based TBCO inM6

Kinematic
Configuration

Position
Reachability
Error

Orientation
Reachability
Error

Required
Power

(cm) (Rad) (KW)

mKC1
6 0.0041 0.0007 1.247

mKC2
6 0.0032 0.0002 1.286

mKC3
6 0.0020 0.0001 10.558

mKC4
6 0.0055 0.0000 3.178

mKC5
6 0.0070 0.0004 4.985

mKC6
6 0.0061 0.0010 3.681

mKC7
6 0.0094 0.0001 7.862

mKC8
6 0.0013 0.0000 2.262
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.18: KCs of the outputs of the MA-based TBCO algorithm inM6: (a) mKC1
6 ; (b) mKC2

6 ;
(c) mKC3

6 ; (d) mKC4
6 ; (e) mKC5

6 ; (f) mKC6
6 ; (g) mKC7

6 ; and, (h) mKC8
6
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6.7 Summary

In this chapter, an approach for solving the TBCO problem by using an MA is introduced. The
proposed algorithm is a hybridization of the GA and local search algorithms. The novel al-
gorithm benefits from a kinematic structure-aware elitism scheme, kinematic structure-aware
restart scheme, priority-based selection operator, and adaptive local search frequency. It is
demonstrated that in an M3 TBCO , the proposed MA finds a manipulator capable of satis-
fying the task faster than the GA. Moreover, the search in M5 shows that when the number of
the task points t in the desired task Tt increases, the set of manipulators, capable of performing
Tt, shrinks. For instance, in one of the test cases, it is shown that the algorithm only found one
m5 kinematic structure, capable of performing the desired T10 task. The proposed MA-based
TBCO algorithm is applied to find an optimized m6 manipulator for performing a T5 task.

Furthermore, a novel method is proposed for conducting the ∆ search, for the link dimen-
sions of a manipulator to enable it to reach a set of task points. The method is based on converting
the ∆ search to the IK problem of a redundant manipulator, and solving it for all the task points
concurrently. The proposed method is verified for three distinct cases, each consisting of a task
with 50 task points.

Although for the verification of the algorithm, only the total reachability error as constraint
and the required power as the optimization criterion are considered, the algorithm can accommo-
date any number of constraints and optimization criteria. In a case with more criteria, a weighted
sum of constraints and optimization criteria can be adopted as the high and low priority fitness
values, respectively.
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Chapter 7

Conclusions

7.1 Summary of Contributions

The primary contributions of this thesis are the development of novel efficient Task-based Con-
figuration Optimization (TBCO) algorithms for Modular and Reconfigurable Robots (MRRs).
Furthermore, new methods are proposed for incorporating the multiple solutions of the inverse
kinematic (IK) problem in the TBCO to increase the optimality of the solutions.

First, an algorithm is proposed to obtain multiple solutions of the IK problem. The algorithm
is an enhanced version of an adaptive niching Genetic Algorithm (GA) in conjunction with a
clustering and numerical improvement stage, to detect and converge on multiple solutions of
the IK problem with the desired precision. Although the method might be slower than some
multi-solution IK solvers, it provides more flexibility in terms of incorporating any number of
constraints and still yields valid solutions.

Another method is developed for obtaining multiple solutions of the IK problem. The method
requires no closed-form solution or prior knowledge of the number of solutions. Also, the algo-
rithm is applicable to all the possible KCs, which can be assembled from the standard modular
joint set without any symbolic or analytical modifications. In addition, it is confirmed that the
proposed algorithm is faster than the continuation method which is one of the most efficient
algorithms for solving the IK problem.

Thirdly, an algorithm is proposed for incorporating multiple solutions of the IK in the tra-
jectory optimization problem. The optimum sequence of performing the tasks, in conjunction
with the IK solutions to reach each task, are obtained from the new algorithm. Also, the method
can be applied to produce optimized trajectories, when any quantifiable performance measure
is considered. The total cost of the optimized trajectory can then be adopted as a performance
measure of TBCO.
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Furthermore, a Memetic Algorithm (MA) for solving the TBCO problem is proposed. The
algorithm benefits from an elitism scheme, a kinematic structure-aware restart process, and adap-
tive local search frequency. Although it is reported in the literature that MAs are superior to pure
GAs for solving a wide range of optimization problems, MAs are not commonly used. The
reason can be traced back to the fact that, unlike GAs, no general outline exists for design-
ing competitive and efficient MAs. In specific terms, the architecture of MAs depends on the
application.

Lastly, an application-specific local search method for determining the optimal link dimen-
sions of a manipulator for a certain task is developed. The method converts the problem into the
IK of a redundant robot, and solves it by a so-called Task Embedded Jacobian matrix of the new
manipulator. The performance of the algorithm is verified by several numerical analyses.

7.2 Future Research

The contributions of this thesis can be extended by future research in three areas: (1) Task-
Based Configuration Optimization algorithm, (2) Multi-solution IK solvers, and (3) Trajectory
optimization algorithms.

7.2.1 Task-Based Configuration Optimization

• The TBCO algorithm can be further improved by the implementation of a multi-meme
MA. In the proposed MA, only one meme ( a Local search algorithm ) is implemented.
By developing a multi-meme MA, a set of local search algorithms with distinct charac-
teristics can be incorporated in the MA to enhance the efficiency of the search. The set
of local search algorithms can even include a method for performing a kinematic struc-
ture, Σ, search. A scheduler stage can then select the most appropriate meme, based on
the characteristics of the individuals, the desired task, and the specifications of the local
searchers such as the computational speed, solution accuracy, and considered optimiza-
tion criteria. The use of multi-meme scheme can enable the MA to achieve advantages of
a range of distinct local search approaches, instead of only one.

• In the proposed algorithm, the search is conducted in the space of Mn with a specific,
constant n. If no manipulator is capable of performing the task, n should be increased
and the search conducted again. The TBCO method can be generalized to accommodate
the search in the kinematic space of manipulators with any DOF. In such an algorithm,
each individual can represent manipulators from any DOF, and the result of the algorithm
may have an optimized DOF. This development, requires new individual representations,
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genetic operators, restarting processes, and new optimization criteria to incorporate the
DOF as a fitness value.

• The ∆ search algorithm ( manipulator dimension search ) developed in this thesis, con-
verges to the solution which is closest to the search point with which the algorithm is
initialized. The ∆ search algorithm is based on converting the link dimension search to a
redundant manipulator IK problem. In solving the IK of redundant manipulators, infinite
solutions exist, and the redundant DOFs can be utilized to optimize a desired criteria, i.e.,
Among all the poses of the manipulator that produce a zero reachability, the one which op-
timizes a criteria is determined. Therefore, by using the same principles, a future direction
of the current research should focus on extending the ∆ search to identify the dimensions
of the robot which, in addition to enabling the manipulator to perform the task, optimizes
the performance measure.

7.2.2 Multi-Solution Inverse Kinematic Solvers

Adaptive Niching Genetic Algorithm-Based Inverse Kinematic Solver

• The population of the adaptive niching-based IK solver converges on potential solution
regions in the joint space. Since the redundant manipulators have infinite IK solutions, the
algorithm arranges the individuals as efficiently as it can in the proximity of any solution
it determines. This arrangement can be dense around some solutions and leave some
solutions with just a few individuals. A future direction for the niching GA based IK solver
may be to enhance the method for attaining a set of IK solutions which are optimized
according to the desired measure.

Joint Reflection Operator-Based Inverse Kinematic Solver

• A future development of the JRO-based IK solver should focus on the improvement of the
speed of the algorithm by an enhanced intelligent method for selecting the joint couples
with the potential of producing multiple positioning IK solutions. Such a method can
analyze the entire kinematic structure of the manipulator, and produce a smaller list of
joint couples to undergo the JRO operator, hence increasing the speed of the algorithm.

• The JRO-based algorithm can be used to find self-motion manifolds of the IK solutions
in the joint space for redundant manipulators. By devising a recognition method for the
solutions located in a common manifold, the JRO-based algorithm can be used to find a

158



representative IK solution from each of the manifolds. The set of the manifold represen-
tatives may then be used to find the most optimized IK solutions of each manifold. This
facilitates the selection of the best overall solution for an application.

7.2.3 Trajectory Optimization Algorithms

• The proposed trajectory optimization algorithm is used for a multi-goal path planning of
non-redundant manipulators. In redundant manipulators, the pose of the manipulator can
change within the self-motion manifold without the end-effector departing from the task
point. This characteristic, translated into the GTSP formulation, can be seen as a GTSP
in which the location of each city, and the distance (or cost) of moving between cities can
change within a predefined locus. A potential direction for further research is to solve this
GTSP problem in redundant manipulators to reach the sequence of performing the tasks,
optimizing the self-motion manifold for each task point, and a single IK solution within
the self motion manifold to perform a task with the least task execution cost.
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Appendix A

Positioning Inverse Kinematic Solutions
forM2

In this section, the positioning IK problem for M2 manipulators is solved. The results of this
section are utilized in the proof of Theorems 1 and 2 in Section 4.3.

A.1 Forward Kinematics ofM2 Class Manipulators

The Homogenous-Transformations of the link frames of a 2-DOF manipulator which are ex-
pressed with reference to the previous link frame are as follows:

T01 =


cos (θ1) − cos (α1) sin (θ1) sin (α1) sin (θ1) a1 cos (θ1)

sin (θ1) cos (α1) cos (θ1) − sin (α1) cos (θ1) a1 sin (θ1)

0 sin (α1) cos (α1) d1

0 0 0 1

 (A.1)

T12 =


cos (θ2) − cos (α2) sin (θ2) sin (α2) sin (θ2) a2 cos (θ2)

sin (θ2) cos (α2) cos (θ2) − sin (α2) cos (θ2) a2 sin (θ2)

0 sin (α2) cos (α2) d2

0 0 0 1

 (A.2)

where αi, ai, di, and θi represent the twist angle, link length, link offset, and joint angle according
to the Denavit-Hartenberg(DH) convention. M2 manipulators exclusively consist of revolute
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joints. Therefore, the variable link parameters are the joint angles θi, and the rest of the DH
parameters only vary with the kinematic configuration of the manipulator.

The forward kinematic mapping ofM2 manipulators can now be written as the following:

Tee (θ1, θ2) = T01 (θ1) .T12 (θ2) (A.3)

The homogenous transformation Tee can be formatted as the following:

Tee =


Ree Pee

0 0 0 1

 (A.4)

where Ree is a 3 × 3 rotation matrix representing the orientation of the end-effector and Pee is
the 3× 1 translation matrix representing the position of the end-effector in the Cartesian space.

Using (A.3), and (A.4), Pee is written as the following:

Pee =

 Px,ee

Py,ee

Pz,ee


=

 cos (θ1) a2 cos (θ2)− cos (α1) sin (θ1) a2 sin (θ2) + sin (α1) sin (θ1) d2 + a1 cos (θ1)

sin (θ1) a2 cos (θ2) + cos (α1) cos (θ1) a2 sin (θ2)− sin (α1) cos (θ1) d2 + a1 sin (θ1)

sin (α1) a2 sin (θ2) + cos (α1) d2 + d1


(A.5)

A.2 Inverse Kinematics ofM2 Class Manipulators

The IK inM2, is the problem of finding θ1 and θ2 such that Tee is equal to a desired homogenous
transformation Tdes. i.e. a solution for θi in the following equation is needed:

Tee (θ1, θ2) = Tdes (A.6)

In positioning IK problem, which is the focus of the current appendix, a solution to the
positioning part of (A.6) is required:
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Pee (θ1, θ2) = Pdes (A.7)

where Pdes can be written as the following:

Pdes =

 Px,des

Py,des

Pz,des

 (A.8)

In the rest of this section, (A.7) is solved for θ1 and θ2, in all the considered classes of M2

manipulators.

A.2.1 Class 1: Intersecting Joint Axes

Table A.1 shows the DH parameters of manipulators of this class. By substituting the DH pa-
rameters into (A.7), the positioning IK problem for the manipulators of this class is as follows:


cos (θ1) a2 cos (θ2) + sin (θ1) d2

sin (θ1) a2 cos (θ2)− cos (θ1) d2

a2 sin (θ2)

 =

 Px,des

Py,des

Pz,des

 (A.9)

The result of the addition of the square of the first two rows is as follows:

d2
2 + a2

2. cos2 (θ2) = P 2
x,des + P 2

y,des (A.10)

Using (A.10) and the third row of (A.9), two values for θ2 can be calculated:

[θ2]1 = arctan

Pz,des
a2

,

√
P 2
x,des + P 2

y,des − d2
2

a2


[θ2]2 = π − arctan

Pz,des
a2

,

√
P 2
x,des + P 2

y,des − d2
2

a2


(A.11)

Substituting (A.11) into (A.9), θ1 is determined:
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Table A.1: Denavit-Hartenberg parameters of a 2-DOF manipulator with two intersecting joints

Joint αi ai di θi
1 α1 0 0 θ1

2 0 l2 d2 θ2

[θ1]1 = arctan


√
−d2

2 + Px ,des
2 + Py,des

2Py,des + Px ,des d2

Px ,des
2 + Py,des

2 ,

√
−d2

2 + Px ,des
2 + Py,des

2Px ,des − Py,des d2

Px ,des
2 + Py,des

2


[θ1]2 = arctan

−
√
−d2

2 + Px ,des
2 + Py,des

2Py,des − d2Px ,,des

Px ,des
2 + Py,des

2 ,

−
Py,,des d2 +

√
−d2

2 + Px ,des
2 + Py,des

2Px ,des

Px ,des
2 + Py,des

2


(A.12)

A.2.2 Class 2: Parallel Joint Axes

The DH parameters of manipulators of this class are shown in Table A.2. Substituting the DH
parameters into (A.7), the following positioning IK equations are obtained:


cos (θ1) a2 cos (θ2)− sin (θ1) a2 sin (θ2) + a1 cos (θ1)

sin (θ1) a2 cos (θ2) + cos (θ1) a2 sin (θ2) + a1 sin (θ1)

0

 =

 Px,des

Py,des

Pz,des

 (A.13)

The result of the addition of the square of the first two rows is as follows:

a2
2 + 2 a2 cos (θ2) a1 + a1

2 = P 2
x,des + P 2

y,des (A.14)

from which θ2 can be derived as:
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cos (θ2) =
1

2

− a2
2 − a1

2 + Px ,des
2 + Py,des

2

a2a1

(A.15)

Based on (A.15) two values for θ2 can be calculated:

[θ2]1 = arccos

(
1

2

− a2
2 − a1

2 + Px ,des
2 + Py,des

2

a2a1

)

[θ2]2 = − arccos

(
1

2

− a2
2 − a1

2 + Px ,des
2 + Py,des

2

a2a1

)
(A.16)

Substituting (A.16) into (A.13), two solutions for θ1 are obtained as follows:

[θ1]1 = − arctan

(
Px ,des

√
Pm + Py,des

(
−a2

2 + a1
2 + Pxy

2
)

Pxy
2a1

,

−
Px,des

(
Pxy

2 + a1
2 − a2

2
)
.
√
Pm + Py,des.Pm

a1
2.
√
Pm.Pxy

2

)

[θ1]2 = arctan

(
Px ,des

√
Pm + Py,des

(
−a2

2 + a1
2 + Pxy

2
)

Pxy
2a1

,

−
Px,des

(
Pxy

2 + a1
2 − a2

2
)
.
√
Pm + Py,des.Pm

a1
2.
√
Pm.Pxy

2

)
(A.17)

where Pm and Pxy are defined as follows:

Pxy
2 = Px,des

2 + Py,des
2 (A.18)

Pm = −
(
Pxy

2 − (a1 + a2)2
) (
Pxy

2 − (a1 − a2)2
)

(A.19)
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Table A.2: Denavit-Hartenberg parameters of a 2-DOF manipulator with two parallel joints

Joint αi ai di θi
1 0 l1 0 θ1

2 0 l2 0 θ2

Table A.3: Denavit-Hartenberg parameters of a 2-DOF manipulator with joint axes which are
not intersecting nor parallel

Joint αi ai di θi
1 π

2
0 d1 θ1

2 0 l2 0 θ2

A.2.3 Class 3: Non-Intersecting and Non-Parallel Joint Axes

Table A.3 shows the DH parameters of the members of this class. Substituting the DH parame-
ters into (A.7) results in the following positioning IK equation:


cos (θ1) a2 cos (θ2) + a1 cos (θ1)

sin (θ1) a2 cos (θ2) + a1 sin (θ1)

a2 sin (θ2) + d1

 =

 Px,des

Py,des

Pz,des

 (A.20)

Dividing the second equation by the first results in:

tan (θ1) =
Py,des
Px,des

(A.21)

From (A.21), the values for θ1 can be calculated as:

[θ1]1 = arctan

(
Py,des
Px,des

)
(A.22)

[θ1]2 = π + arctan

(
Py,des
Px,des

)
(A.23)

sin (θ2) and cos (θ2) can be calculated from the third equation and the addition of the square
of the first and second equations of (A.20), respectively. Hence, the expression for θ2 can be
obtained as follows:
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[θ1]1 = arctan

Pz,des − d1

a2

,
−a1 +

√
−d2

2 + Px,des
2 + Py,des

2

a2

 (A.24)

[θ1]2 = arctan

Pz,des − d1

a2

,
−a1 −

√
−d2

2 + Px,des
2 + Py,des

2

a2

 (A.25)
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Appendix B

Waterloo Modular and Reconfigurable
Robot (WMRR)

In this section, the general architecture of WMRR is explained. Moreover, the specifications of
the joint modules control nodes are presented.

B.0.4 Architecture

The architecture of the WMRR is shown in Fig. B.1. Each joint module includes an actuator.
The actuator’s electrical drives are located on the base of the robot in order to decrease the total
mass of the joints. Cables rated at 380V transfer the power to the actuators from the drives. In the
future phases, using smaller and lighter drives will enable the robot to have the drive embedded
inside joints.

Joint modules have Micro-Controller Unit boards (called MCU Node) embedded inside.
Each node has three primary functions: controlling the joint actuator, communicating with other
nodes and the host computer, and synchronization of operation. Each Node is connected to the
drives through two main signals. It reads the Encoder Signal (A standard quadrature signal) from
the drive and sends the desired Torque, velocity, or joint angle signal (10V Analogue signal) to
the drive. The communication and synchronization between the nodes are achieved through a
Controller Area Network (CAN) bus. A separate bus provides the 24/5V power to the controller
boards. A host computer for uploading the trajectories to the nodes, debugging and performance
analysis is connected to all the MCU nodes through the CAN bus.

168



Figure B.1: Architecture of the Waterloo Modular and Reconfigurable Robot

B.0.5 MCU Node Design

Fig B.2 shows the electrical architecture of the MCU nodes. Modularity and the ability to man-
age multiple duties were the main objectives in the MCU node design. More specifically, the
board is designed such that it can be used as a joint controller, a CAN logger, as well as a
processor for other peripherals such as torque/force sensors.

The MCU board consists of the following components:

1. Micro-Controller: A PIC18F6680 Micro-Controller is used as the core processing unit of
the nodes. Characteristics of the PIC Micro-Controller is shown in Table B.1.

2. Power Regulation Unit: This unit provides the necessary electrical energy for the board.
To provide more flexibility in industrial environments this unit can be supplied from a 5V
or 12V unregulated voltage source.

3. ADC - Analogue to Digital Converter: This converter is the main input port of the board.
Most of the sensors, including force-torque and hall-effect sensors, produce analogue sig-
nals. Hence a fast noise free ADC is provided in the design to convert the inputs to digital
signals usable by the Micro-controller.

4. DAC - Digital to Analogue Converter: This unit is the primary output port of the board.
Digital signals are converted to analogue signals before being sent to the peripheral sys-
tems. Since the communication with the motor drive of each joint is conducted through a
+10/-10V signal, the main application of this unit is to convert the desired torque, velocity,
or joint angle to a +10/-10V analogue signal usable by the motor drive.
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Figure B.2: Block diagram of the MCU board
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Table B.1: Specifications of the Micro-Controller used in the MCU node design

Specification Description
Micro-Controller PIC18F6680

Programming Memory 64KB (32768 word instructions)
SRAM Memory 3328B

EEPROM Memory 1KB
Performance Up to 10 MIPS, 40MHz

5. 256Kb RAM chip: All the desired task points in the operational trajectory of the joints are
stored in the corresponding MCU board. Therefore, a memory expansion to complement
the internal memory of the micro-controller is necessary. The RAM chip provides an
additional storage of 256Kb.

6. DIP Switches: Three rotary DIP switches are provided in each board. Each of these
rotary switches can be set at 16 different positions/numbers. Therefore, 4096 unique ID
numbers can be assigned to the boards. The ID numbers will be used on the CAN bus for
communication between the nodes.

7. RS232 Module: This unit is a serial communication port. Programming and debugging
the PIC Micro-Controllers are accomplished through this port. This module can also be
used to connect each of the boards to an external computer for data acquisition.

8. Controller Area Network(CAN) Module: This module provides the means of forming net-
works with the other nodes through CAN bus. The network is used in the synchronous
operation of all the joints. Another possible application for this bus is automatic configu-
ration detection (providing Plug and Play capability for Modules). CAN bus is also used
to provide communications between a host computer and the MCU nodes.

9. Buffer and Surge Protection: The main task of this unit is protection of the ADC and DAC
units from unexpected and harmful electrical interferences.

10. SPI Serial Connection: The SPI Serial Connection provides the means of connecting two
controller boards to exchange data directly (not through the CAN bus). Using the SPI
connection, it becomes possible to perform more processing intensive tasks with parallel
processing. For instance, the data processing of the force-torque sensors could be car-
ried out on one MCU node and the results could then be transferred to another node for
incorporation into the control algorithm.

In Fig.B.3 a photo of the MCU node populated with the electrical components is shown.
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Figure B.3: The populated MCU node printed circuit board
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