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Abstract

Every contractive n-tuple of operators has a minimal joint isometric dilation to
isometries acting on a larger space. Each of these dilations decomposes into a
Cuntz part and a pure part. The Cuntz part determines a representation of the
Cuntz C"-algebra. When an n-tuple acts on finite dimensional space, its dilation
is completely described in terms of the original n-tuple. This is accomplished by
classifying the associated Cuntz representations. In fact, simple complete unitary
invariants for the representations are obtained. The pure part of a dilation 1s
determined by copies of the left regular representation of the free semigroup on n
letters. The number of copies can be computed directly in terms of the original n-
tuple. Davidson and Pitts have shown that the non-selfadjoint WOT-closed algebras
generated by the pure isometries or ‘left creation operators’ are the appropriate non-
commutative analytic Toeplitz algebras. Factorization problems in these algebras
are investigated. Positive results are obtained when norm conditions are placed
on possible factors; however, over the full algebra deep factorization pathologies
are exposed. This leads to information on the left ideals in these algebras. Finally.
non-commutative versions of Arveson'’s curvature invariant and Euler characteristic
for a commuting n-tuple of operators are developed. They are sensitive enough to
detect when an n-tuple is free. The curvature invariant is shown to be upper semi-
continuous. A new class of examples is introduced and is used to obtain information

on the ranges of the invariants.
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Chapter 1

Introduction

The basic goal of this thesis is to understand the behaviour of non-commuting
n-tuples of operators by using dilation theory. The dilation theory utilized here
derives from a theorem of Frahzo, Bunce and Popescu. Every contractive n-tuple
of operators acting on the same Hilbert space has a unique minimal joint isometric
dilation to isometries with pairwise orthogonal ranges acting oo a larger space. The
general relationship between an n-tuple and its dilation is investigated. In particu-
lar. using non-selfadjoint operator algebra techniques, a complete characterization
is obtained when the n-tuple acts on finite dimensional space. Recently, David-
son and Pitts showed that the n-tuples of isometries arising from the left regular
representation of the free semigroup on n letters determine the appropriate non-
commutative analytic Toeplitz algebras. The structure theory for these so called
‘left creation operators’ is considered. Finally, the completely positive map defined
by an n-tuple is used to obtain pon-commutative versions of Arveson's curvature

invariant and Euler characteristic of a commuting n-tuple.



The dilation of an n-tuple is closely linked to the original n-tuple. Popescu’s
Wold decomposition shows that every n-tuple of isometries with pairwise orthogonal
ranges decomposes into a direct sum of isometries which determine a representation
of the Cuntz C=-algebra, together with copies of the left creation operators. Thus
every contractive n-tuple determines a Cuntz representation and copies of the left
regular representation through its dilation.

When the n-tuple acts on finite dimensional space, the WOT-closed non-selfadjoint
algebra generated by the dilation is completely described in terms of the properties
of the origin.al n-tuple and the algebra it generates. This provides complete unitary
invariants for the corresponding C*-representations. including a simple character-
ization of irreducibility. The algebra determined by the dilation is also shown to
be hyper-reflexive, adding to the short list of algebras known to have this property.
Further, the number of copies of the left regular representation in the dilation can
in general be computed directly from the original n-tuple. This is the content of
Chapter 2, and is joint work with Davidson and Shpigel from [16].

The non-commutative analytic Toeplitz algebra is the WOT-closed algebra gen-
erated by the left regular representation of the free semigroup on n letters. Chapter
3 contains a detailed analysis of operators in these algebras from the paper [27].
The structure theory of contractions is examined. Each is shown to have an H>
functional calculus. The isometries defined by words are shown to factor only as
the words do over the unit ball of the algebra. This turns out to be false over
the full algebra. The natural identification of wOT-closed left ideals with invariant

subspaces of the algebra is shown to hold only for a proper subcollection of the



subspaces.

Finally, there is a completely positive contractive map determined by every
contractive n-tuple of operators. Recently, Arveson used this map to introduce the
notion of a curvature invariant and Euler characteristic for a commuting n-tuple of
operators. Chapter 4 contains the development, from [28], of the non-commutative
versions of these invariants. They possess some of the basic properties analogous to
those from the commutative setting. Most importantly, the invariants are sensitive
enough to determine if an n-tuple is free. Moreover, the curvature invariant is
shown to bé upper semi-continuous. A new class of examples is used to illustrate
the differences encountered in the non-commutativesetting. The examples provided
vield information on the ranges of the invariants. In particular, the range of the
curvature invariant is shown to be the entire positive real line.

The reader may find some slight overlaps in the preliminary sections of the
different chapters since they are taken from three different papers. I have attempted
to minimize these overlaps. A note on the major objects of study, the notation and
the tools used in the thesis is included below. Finally, I would like to thank my
advisor Ken Davidson for his assistance. Without his help this thesis would not

have been possible.

1.1 Notation and Nomenclature

An operator refers to a continuous linear operator which acts on a finite or infinite
dimensional Hilbert space H. There are three important topologies which can be

placed on the collection of operators B(H) acting on ‘H. The strongest of these is



the norm topology which is determined by convergence in the operator norm:
ll4]] = sup{|{4zll : llzll £ 1, = € H}.

Next is the strong operator topology (SOT), which is simply point-wise convergence.
The weakest is the weak operator topology (WOT), which amounts to convergence
on all of the inner product functionals (Az,y), for z, y in H.

This thesis is concerned with analyzing the behaviour of n-tuples of operators
A = (A,,...,An), with 4; € B(H) where the A; are pairwise non-commuting in
general. Such an n-tuple can be thought of as a 1 X n row matrix mapping H™ to

H. Hence its norm is given by

Al = (AT = 1Y A2

1=1

The n-tuple is said to be contractive if |[4]|[ < 1. Thus a contractive n-tuple really
is the multi-variable analogue of a contraction.

Much of the theory is motivated by the situation for an n-tuple of isometries
S = (S1,....5n). Since S; is an isometry. the operator S;S; is the orthogonal
projection onto the range of S;. Hence S is contractive precisely when the §; have

pairwise orthogonal ranges. That is.

§5* =Y 8557 <1 ifandonlyif Si5j =4l

=1

Recall that a Ce-algebra is a norm closed self-adjoint subalgebra of B(H). For a



contractive n-tuple of isometries there are only two possible C"-algebras which the
Si can generate.

When the ranges of the S; span the whole space (X5, S:S; =1I), the C--algebra
generated by the S; is the Cuntz algebra O, . This is the simple universal C*-algebra
generated by such an n-tuple of isometries and examining its representation theory
is important in several areas of mathematics. Namely. there has been recent inter-
est in classifying subclasses of Cuntz representations because of a correspondence
between these representations and endomorphisms of B(H) (see [36, 29, 8, 9]).
There is a.lsé) a connection with wavelet theory, as certain Cuntz representations
give rise to wavelets [11]. The link with this thesis comes from the connection with
dilation theory, which is discussed below.

The other possible C=-algebra generated by the S; is when the ranges span
a proper subspace (3 i, 5iS7 < I). This is the Cuntz-Toeplitz algebra &,. the
universal C=-algebra generated by such an n-tuple of isometries. It is the extension
of the compact operators by On. For, the projection I — 3", S:iS; is minimal in
&. and the ideal it generates determines a copy of the compacts. The prototypical
example in this case comes from the left regular representation A of the unital
free semigroup Fn on n letters {1,... ,n} which acts on n-variable Fock space
H,, = £*(F,). The pure isometries Li = A(i) arise in theoretical physics as the left

creation operators. They also form a contractive n-tuple of isometries and in fact
n
I-Y LiL;=P.
i=1

where P, is the rank one projection onto the span of the vacuum vector, the basis

(S]]



vector corresponding to the unit or empty word in Fa.

The wOT-closed unital (non-selfadjoint) algebras generated by the L; form the
appropriate non-commautative analytic Toeplitz algebras and are denoted by L, (see
[1, 17, 18, 19]). They are so named since for n = 1 one obtains the analytic
Toeplitz algebra and for n > 2 there are analogues of Beurling’s Theorem and inner-
outer factorization in particular. In general it can be advantageous to consider the
wOT-closed. non-selfadjoint setting. Indeed, using the WOT-closure can preserve
a strong spatial link with the associated representation. Further, non-selfadjoint
algebras gen.erated by an n-tuple S often possess wandering subspaces. That is.
subspaces W for which the ranges S,W and S,W are pairwise orthogonal for
distinct words v, w (for v € F,, Sy is the isometry v(S1, ... . Sn))-

The basic idea of dilation theory is to view objects of concern as pieces of larger
objects for which much more is known. One of the most well known operator-
theoretic dilation theory results is Sz.-Nagy’s unique minimal isometric dilation of
a contraction [40]. Every contraction A € B(H) is the compression of an isometry
acting on a larger space to a co-invariant subspace. The minimal dilation is unique
up to unitary equivalence fixing H. The multi-variable analogue of this theorem
has recently been developed. It derives from the work of Frahzo [22]. Bunce [12]
and Popescu [31]. Every contractive n-tuple A = (Ay,....As) with A; € B(H)
has a unique minimal joint isometric dilation to isometries 5 = ( Si....,S,) with
pairwise orthogonal ranges acting on a larger space which contains H as a co-
invariant subspace. Again, the uniqueness is up to unitary equivalence fixing H.

One also has a Wold decomposition in this setting. Recall that the original



Wold decomposition shows that every isometry decomposes into an orthogonal di-
rect sum of a unitary operator together with copies of the unilateral shift. Popescu’s
non-commutative multi-variable version is proved in the same way. It shows that
an n-tuple of isometries with pairwise orthogonal ranges decomposes into a joint
orthogonal direct sum of a Cuntz n-tuple and copies of the pure isometries. Equiv-
alently, this says that every representation of En decomposes into the direct sum of
a Cuntz representation and copies of A. A key difference between the two settings is
that there is a good structure theory for unitary operators from the Spectral Theo-
rem; wherea.; relatively little is known about Cuntz representations. In any event,
from the dilation theory and Wold decomposition, it follows that associated with
every contractive n-tuple is a Cuntz representation and copies of the left regular
representation through its minimal dilation.

Lastly. a particular completely positive map is important in the thesis. A map-
ping ¥ : A — B between C"-algebras is said to be completely positive if the nat-
ural amplifications ¥%) : Mi(A) — Mu(B) are positive for £ > 1. This is a
strong notion and ome that is pervasive through much of operator theory and op-
erator algebras. For an excellent introductory treatment see the text [30]. Let
A =(A;,...,A,) be a contraction on H. The completely positive map of concern

here is defined for X € B(H) by,
B(X) =) AXA;=AXMA
=1

In fact this map is also completely contractive (||@®|| < 1fork > 1)since ®(/) < 1.

It turns out that the decreasing sequence of positive operators ®*(I) can yield

-



information on the determining n-tuple.

In this thesis, generally n will be taken to be a finite integer with n > 2.
However, Popescu’s version of the dilation theorem is valid for n = oc, as are the
results of {17, 18] on the structure of £, which are used. So the results of Chapters
2 and 3 go through for n = oo with only a few minor changes in notation, not in
substance. On the other hand. in Chapter 4 the n = co case cannot be considered
by the very nature of the invariants defined there. For ease of presentation, the

entire thesis has been written as though n were finite.



Chapter 2

Isometric dilations of finite rank

n-tuples

In [17, 18], Davidson and Pitts studied a class of algebras which they called free
semigroup algebras. These are the WOT-closed non-selfadjoint unital operator alge-
bras generated by an n-tuple of isometries with pairwise orthogonal ranges. When
these ranges span the whole space, the associated norm-closed self-adjoint alge-
bra is a representation of the Cuntz algebra On. This non-selfadjoint algebra can
contain detailed information about the unitary invariants of the corresponding C*-
algebra representation. Indeed, in [17] the set of atomic representations of the
Cuntz algebra is completely classified. On the other hand. when the ranges span
a proper subspace. a representation of the Cuntz-Toeplitz algebra &, is obtained.
Such a representation contains a multiple of the left regular representation of the
free semigroup on n letters. The WOT-closed algebra determined by the left reg-

ular representation is called the non-commutative analytic Toeplitz algebra. This



terminology is justified by an analogue of Beurling’s Theorem [34, 1, 17], hyper-
reflexivity [17] and the relationship [18] between its automorphism group and the
group of conformal automorphisms of the ball in C". The structure theory of these
algebras is particularly useful in Chapters 3 and 4.

The connection with dilation theory derives from a theorem of Frahzo. Bunce
and Popescu [22, 12, 31]. If A = (4,,... ,A,) is an n-tuple of operators such
that A4" = 3°0, A; A7 < I, then there is a unique minimal joint isometric dilation
to isometries S; on a larger space with pairwise orthogonal ranges. Popescu [31]
establishes ti:xe analogue of Wold’s decomposition which splits this into a direct sum
of a multiple of the left regular representation and a representation of the Cuntz
algebra. Moreover, Popescu [33] obtains the non-commutative analogue of von
Neumann’s inequality in this context.

On the other hand, representations of the Cuntz algebra correspond to endo-
morphisms of B(H) [36, 29, 8, 9]. This has created new interest in classifying
these representations up to unitary equivalence. There is a theorem of Glimm [25]
which shows that this classification is ‘non-smooth’ because O, is anti-liminal (or
NGCR). Nevertheless, interesting classes of representations do lend themselves to a
complete analysis. In [10], Bratteli and Jorgensen introduced a class of representa-
tions which turned out to be a special case of the atomic representations classified
in [17] using non-selfadjoint techniques. In [9] they introduce a different class asso-
ciated to finitely correlated states. There are a lot of parallels between their results
and those here. though the approach is quite different. In the end. they specialize to

the subclass of diagonalizable shifts in order to obtain a classification theorem. In
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this chapter, simple unitary invariants for the class of all of these finitely correlated
representations are obtained.

This chapter has two broad goals. The first is to understand the structure of
the free semigroup algebra generated by the dilation of an n-tuple A in terms of
information obtained from the n-tuple itself (and the algebra it generates). In par-
ticular, unitary invariants for the associated C=-algebra representation are sought.
Secondly, it is desirable to determine if these algebras are reflexive and even hyper-
reflexive. In this chapter, the focus is on the case in which the n-tuple A acts on
a finite dimensional space. A complete description of the algebra is obtained here.
This enables one to decompose the associated representation as a direct sum of ir-
reducible representations and leads to complete unitary invariants. These algebras

all turn out to be hyper-reflexive.

2.1 Preliminaries

Let ., denote the unital free semigroup on n letters {1,2,...,n}, and let H, =

#2(F,) denote the Hilbert space with basis {£w : w € Fa}. which is known as n-

variable Fock space. The left regular representation A of F, is given by AMv)éw :
L.Ew = Eww- In particular, the generators of F, determine isometries L; for 1 <
i < n with orthogonal ranges such that Sr  LiL; = I — P. where Pe = §&&§ is
the rank one projection onto the basis vector for the empty word e, which is the
identity of F,. The algebra £, is the woT-closed algebra generated by the n-tuple
L = (Ly....,L,) of ‘left creation operators’. See [17, 18, 19, 27, 32, 34] for

detailed information about this algebra.
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More generally if S;, for 1 < i < n, are isometries with > ©_ 557 < I.let &
denote the unital woT-closed non-selfadjoint algebra generated by them. Let S,
be the isometry v(S) := v(S1,...,Sn) for each v € Fn. A subspace W is said to
be wandering for the n-tuple § = (&i,..., S,) provided that the subspaces S.W
are pairwise orthogonal for all v € F,. Thus the smallest S-invariant subspace
containing a wandering space W is S[W] = 3_ ¢z, ©S.W. The restriction of S to
this subspace is evidently a multiple of the left regular representation algebra L.
where the multiplicity is given by dim W. Popescu’s Wold decomposition [31] works
as follows: t‘he subspace W = Ran(l — Y 7., 5:S7) is easily seen to be wandering.
Moreover, the complement H. = G[W]|* is also invariant for &, and the restriction
to H. vields isometries T; = Si|x,. satisfying ST TITT = I

Suppose A = (Aj,....Aa) is an n-tuple of operators on a Hilbert space V such
that AA" = S°7, A;A; < I. Frahzo [22] (for n = 2), Bunce [12] (for n < oc) and
Popescu [31] (for n = oc) show that there is a joint dilation of the A; to isometries
S; on a Hilbert space H = V £ V* which have pairwise orthogonal ranges. Popescu
observes that if this dilation is minimal in the sense that H = span{S,V : v € F.}.
then the dilation is unique (up to a unitary equivalence which fixes V). This minimal
isometric dilation will always be the dilation considered throughout the thesis.

Popescu also observes [33] that the norm-closed non-selfadjoint algebra A,
spanned by {L, : w € Fa} is the appropriate non-commutative analogue of the
disk algebra for a version of von Neumann’s inequality. Namely. if A is a contractive
n-tuple as above. then ||p(4)]| < {{p(L)|| for every non-commuting polynomial in n

variables. This is immediate from the dilation theorem and the fact that thereis



a contractive homomorphism of &, onto O,, the two possible C*-algebras for the
dilation. However, it turns out that this quotient map is completely isometric on
A,.. So this norm estimate is an equality for any contractive n-tuple of isometries.
This shows that @, is the C*-envelope of A,.

This presents a rather precise picture of the norm-closed algebra generated by
an n-tuple of isometries with orthogonal ranges. However. the woT-closed algebras
can be quite different. They can detect the unitary invariants of the representation.
The case n = 1 is familiar, where the WOT-closed algebra depends on the spectral
invariants of the unitary part and the multiplicity of the shift. from the original
Wold decomposition.

When 30, S:S; = I, the C*-algebra generated by the isometries S; is the
Cuntz algebra O,; and when 3o, S:5; < I, this C*-algebra is =-isomorphic to
the Cuntz-Toeplitz algebra £, generated by the left regular representation A. This
algebra is an extension of the compact operators £ by O,. To each n-tuple §;
there is an associated representation o of €, given by o(s;) = Si. where s; are
the canonical generators of £&,. When 3 [_, S:S] = [. this may be considered as a
representation of O, instead. Let S, derote the WOT-closed non-selfadjoint algebra
determined by the representation 0. One can view the Wold decomposition as the
spatial view of the C=-algebra fact that every representation o of &, splits as a
direct sum o = A® & r of a representation A®), which is faithful on R and thus
is a multiple of the identity representation ). and a representation 7 which factors
through O,.

A representation is called atomic if there is an orthonormal basis {&;} which

13



are permuted up to scalars by the generating isometries S;. That is, for each :
there is an endomorphism 7; : N - N and scalars );j of modulus 1 such that
Si€; = Mijémy(j)- These representations decompose as a direct integral of irreducible
atomic representations [17], and these irreducible atomic representations are of
three types. The first is just the left regular representation; which is the only one
which does not factor through O,. The second type is a class of inductive limits
of the left regular representation, and are classified by an infinite word (up to tail
equivalence) that describes the imbeddings. The third type fits into the context of
this chapter.a.nd is also important in Chapter 4, hence it is described here in more
detail. See [17] for a complete description.

The third type is given by a word u = i;22... igin F, and a scalar A of modulus
1. A finite dimensional space V of dimension d is formed with a basis e;,....eq4.

Operators A4;, for 1 < 7 < n, are partial isometries defined by

.4]'8/; = Jj;,‘ek.}.l for 1< k<d

Ajeq = Adjizer.

The minimal isometric dilation of this n-tuple yields isometries S, acting on a space
# =V = V+. The isometry S;, maps ex to ek (or Aey when k = d) and the other
n — 1 isometries send ex to pairwise orthogonal vectors which are all wandering
vectors for &. Thus V* is determined by a wandering space W of dimension
d(n — 1), and therefore Vi = (W] =~ H@n=1)  The associated representation
ou. is irreducible precisely when the word u is primitive, meaning that it is not a

power of a smaller word. In this case, & can be completely described as the sum
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of B(#H)Py and a multiple of £, acting on V* via its identification with A1),

The invariant subspaces of this algebra are readily described, and it turns out to
be hyper-refiexive (see below).

The algebra which occurs here is important to this chapter. Let B, 4 denote
the woT-closed algebra on a Hilbert space H =V & H{A"1)) where dimV = d

given by
Bna=B(H)Py + (0v & gldln=1)y

Another class of representations which have been studied are the finitely cor-
related representations [9]. A representation of O, is finitely correlated if there is
a finite dimensional cyclic subspace V which is invariant for each S7. Likewise. a
finitely correlated state is a state @ such that in the GNS construction, the invariant
subspace for the S7’s generated by the cyclic vector £, is finite dimensional. It is
evident that these representations are exactly those which will be studied here from
the viewpoint of dilation theory. In this chapter, a complete classification of these
representations up to unitary equivalence is obtained. A note will be made later
on how this classification relates to the work of Bratteli and Jorgensen.

If 2 is an algebra of operators, then Lat 2 denotes the lattice of all A-invariant
subspaces. Further, if £ is a lattice of subspaces, then Alg L denotes the WOT-
closed unital algebra of all operators which leave each element of £ invariant. The

algebra 2 is reflexive if it equals Alg Lat 2. For each reflexive algebra. there is a



quantitative measure of the distance to 2 given by
Ba(T) = sup [IPLTPL|.
LeLatA
The inequality Ba(T) < dist(T,2) is always satisfied since
|PFT Pl = | PH(T — A)Pefl < [T = All-

for all L € Lat? and A € A. The algebra is called hyper-reflezive if in addition
there is a constant C such that dist(T,2) < C3a(T). The optimal C, if it is finite,
is called the distance constant for 2.

The list of algebras known to be hyper-reflexive is rather short. Arveson [2]
showed that nest algebras have distance constant 1, so that equality is achieved.
Christensen [13] showed that AF von Neumann algebras have distance constant at
most 4. Concerning the algebras studied in this chapter. Davidson [15] showed that
the analytic Toeplitz algebra has distance constant at most 19, while Davidson and
Pitts [17] proved that all atomic free semigroup algebras have distance constant
at most 51. The worst case for these estimates was the algebra £,. However. a
recent general result of Bercovici [6] applies to show that £, actually has a distance

constant no greater than 3.
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2.2 Main Results

Consider a contractive n-tuple A = (A4;,...,4n,) acting on a finite dimensional
space V of dimension d; i.e. AA4™ = ToAAr < L The Frahzo-Bunce-Popescu
minimal dilation vields isometries S; acting on a larger space H. Let A denote the
algebra generated by the A;’s, and let & be the wWOT-closed algebra generated by

the S;’s. The associated completely positive contractive map on B(V) is given by

®(X)= i 4;X4; = AXA%
i=1
The operator ®<([) := limkseo ®*(I) will also be useful. This map is of course
completely positive and contractive for any contractive n-tuple A, and it plays an
integral role in Chapter 4.
The first fairly easy observation is that the dilation is of Cuntz type or Sor,SiST =

I if and only if 3.7, A; A7 = I. This is equivalent to the condition ®(I) = 1. In
general, define the pure rank of & (or of A) to be the multiplicity of the left
regular representation in the Wold decomposition of &. This is the dimension of
the wandering space W = Ran(I— Y, 5:5;). It is easy to see that this wandering
space need not be contained in V, and that even when the pure rank is one, the
pure part may have large intersection with V. Nevertheless, it turns out that this

pure rank may be readily computed in terms of A as
pure rank(A4) = rank(l — ®(I)) = ra.nk([ - Z .-l.-.-i;) .

=1l

The irreducible summands of Cuntz type are determined by the minimal 2*-

17



invariant subspaces M of V on which 30 | A;A]|uw = I«. Such a subspace gener-
ates an invariant subspace Hu = S[M]| for & which is necessarily reducing. The
restriction Sy, of & to this subspace is isomorphic to the algebra Bnm. where
m = dim M, described in the Preliminary section. A crucial feature is that the
projection Py belongs to this algebra. This makes it possible to show that the
restriction of the n-tuple A to M is a unitary invariant for the dilation.

The subspace y spanned by ‘all the minimal A--invariant subspaces of this type
completely determines the Cuntz part of the dilation. The restriction of A" to %
is a finite dimensional C=-algebra. The standard invariants for a finite dimensional
C=-algebra allow one to compute the multiplicities of each irreducible subrepre-
sentation. In general, this information may be used to completely decompose the
representation into a direct sum of finitely many irreducible representations of the
tvpes given above. This vields complete unitary invariants: the pure rank and the
unitary equivalence class of the restriction of 4= to V.

For example, one can show that & is irreducible if and only if either
(1) rank(I — ®(I)) =1 and &>=(I) = 0, the pure case, or
(2) {X: ®(X) = X} = CI. the Cuntz case.

The algebras £, and B, 4 were shown to be hyper-reflexive in [17]. This analysis
can be used to show that all of these algebras & determined by a finite rank n-
tuple are hyper-reflexive. The constant 51 of that paper may be improved to 5
using recent results of Bercovici [6] which show that the distance constant for £,
is at most 3.

It is worthwhile to note there is further work in [16] which the author did
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not participate in. For instance, a tight characterization of when two contractive

n-tuples are similar is obtained.

2.3 Wandering Subspaces

Let V be a d-dimensional space (possibly infinite), and let A;,.... 4, be an n-
tuple of operators in B(V) such that >, A;4; < I. The Frahzo-Bunce-Popescu
minimal dilation yields isometries S; on a larger space H. Let Py denote the
projection of H onto V. Further, let 2 denote the algebra generated by the A;’s
and & be the WOT-closed algebra generated by the S;’s. First, the subspace V*

will be identified.

Lemma 2.3.1. The subspace W = (V + 5., S;iV) &V is a wandering subspace
for S, and ¥ . r SS,W = V*.

Proof. W is contained in V+, which is invariant for S. Thus S,W is orthogonal to
V for every word u € F,,. Consequently, when [u| > 1. S,W is also orthogonal to
S;V.1 < j < n. It follows that S,W is orthogonal to V+3° ", SiV. which contains

W. Therefore W is wandering. Minimality ensures that
H = span{S.V : u € F,} = span{V,S.W : u € F,.}.

Since W lies in the invariant subspace V*, this can only occur because 3 . SS.W =
VL. ]

Thus V1 is unitarily equivalent to a multiple H of Fock space, where a =
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dim W, and Si|y. =~ Lg"). Hence decomposing H = V @ V*. one can write each S;

. A, ©
as a matrix §; = [x- L ] .

Remark 2.3.2. The range of 3., 5:S7 includes 37, SiV* = (V + W)t as well
as S°% S;V. Hence 37, 5:57 = I if and only if 3% . SiV contains V. Since V is
invariant for S7 and STy = A;],

i A4; =) PSPSIlv= Py 35Sty
=1

i=1 =1

Therefore "7, 5:S7 = I if and only if its range contains V if and only if >0, Aid]

L.

Let d = dim V be finite. and let o = dimW. Then a can be as large as nd and
as small as (n —1)d. This is easily seen since S.n . SiV is an orthogonal direct sum
and thus has dimension nd, so that W = (V + 3_7; SiV) &V can have no larger
dimension than nd, and is at least (n — 1)d.

When 3.7, 447 = Iy. it was shown above that > ., SiS7 =1I. Then

V= z": 5:51V = Z S:Av C i“ S:V.
i=1 =1 i=1

Hence W = (321, SiV) & V has dimension (n — 1)d.
The case dim W = nd occurs, for example, if 4; = 0for1 <: < n. The minimal

dilation is just Lf-d). Indeed. if z.y € V. then

(Siz.y) = (2. 57y) = (z.4jy)=0 for l<isn



Thus V is orthogonal to Y ., SiV. Therefore W = Sn_, SiV has dimension nd.

It is easy to combine these examples to obtain any integer in between.

The n-tuple of isometries S is called pure if it is unitarily equivalent to a
multiple of the left regular representation. A contractive n-tuple is pure if its
dilation is as well. These contractions are investigated further in Chapter 4. Bunce
[12] shows that whenever ||A|| < 1, the dilation S is pure. Popescu [31] shows that
the dilation is pure if and only if W(?‘E;Hm AGNES wcgz;lim I-Ek A4 =0.

Frequently reducing subspaces of & will be constructed from 2 -invariant sub-

spaces. This procedure preserves orthogonality as well.

Lemma 2.3.3. Suppose that V contains an A"-invariant subspace V). Then H, =
S[Vy] reduces &.

IfV contains a pair of orthogonal A" -invariant subspaces V, and V,, then H; =
S[V,] for j = 1.2 are mutually orthogonal.

If in addition V =V, & Vs, then H decomposes as H, © Ha and H; N V=Y;

for 7 =1.2.

Proof. Since V; is invariant for Aj, it is also invariant for 5;. The &-invariant
subspace H,; = S[Vi] is spanned by vectors of the form S,z where z € V; and
w € F,.. Notice that S7S,z equals Sz if w = iw', 0 if w = i'w’ for some i’ # 1.
and Sz if w = e. Since Vi is invariant for &°. each of these possibilities belongs
to H,;. Thus H; reduces G.

Likewise, if V; and V, are orthogonal A=-invariant subspaces, it follows that
H, and H, are orthogonal. For if v; € V;, the inner product (S,vi.Swt2) can be

reduced by cancellation of isometries until either u or w is the identity element.
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Then, for example when w = e,
(Suvl=v2) = (v, 5;02) =0

by the A -invariance of V; and orthogonality.
Now suppose that V =V, S V2. Since H, contains V; and is orthogonal to V2.
it follows that H; NV = V,. Finally, H; & Hzis an S-reducing subspace containing

V. so it is all of H by the minimality of the dilation. |

2.4 Finite Dimensional n-tuples

This section specializes to the case when V is finite-dimensional. In general, the S;
decompose into a pure part and Cuntz part. Let X be the range of I — 3, 5:57.
which is the wandering space for the reducing subspace H, = Y er, ©S.X. The
restriction of the S; to this space yields a multiple of the left regular representation,
where the multiplicity is dim X. This quantity will be called the pure rank of the
representation. In section 2.6, it is shown how to compute the pure rank directly in
terms of 4. This invariant also plays a crucial role in Chapter 4. On the complement
H. = H; . the restrictions of S; vield a representation of the Cuntz algebra. Let P,
and P. denote the projections onto Hp and H. respectively. It is important to note
that the projection P, does not commute with Py in general. An example of this
phenomena is provided in section 2.6 which helps illustrate this point.

The key technical tool in the analysis shows that H. is determined by V. :=

#.NV. This is not the case for H,. Let Ri denote the projection onto ik S5V
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where W = (V+ £, S;V) ©V; and Qi = 35, R;. Notice that

Qu= Y SuPySi.

|wi=k

On any G-invariant subspace M on which the restrictions T; of S; are pure, one

has for every z € M

lim >~ [|PuSizl® = Jim |Z |TzzI? = o0.

|wi=k w|=k

In particular, this applies to H, and V+. While for z € H.. one has

S iSizl? = |lz|f* forall k0.

jw|=k
Lemma 2.4.1. Suppose that H, is a reducing subspace for S contained in H.. Let
r be a vector such that Py, # 0. Then the subspace M = &*[z] contains a vector

v in M NV, with Py, v #0.

Proof. Let P, denote the projection of H onto H;. Fix ¢ > 0: and let r; = Pir.
By applying the preceding remarks to both V+ and H,, one may choose an integer

k sufficiently large that

S IPESLelP = [1Qezll? < &

lwl=k

ST IPESLzl? = 1Qen|l? < &°

jw|=k
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and

SRSl = Y ISiRerlt <&

|wi=k lwi=k

Since 3=k SwSePr = P,

S IBSLzl? = Y (15zll® = 1Py SLzll?)

jwi=k lwi=k

= [lz.|* = |Qez1[* > [lzall* = %
Let &, denote the set of words w of length k such that
|1PySizil* > e I PrSozll®
Likewise let £ denote the set of words w of length k such that
|PySezi* > MBSl
The set £ N &, is relatively large in the sense that

S iBvSiall® > lzdf - - S IPSLzl? = Y 1RSIl

we& L NE2 wg&y wg&>

>z =& = 3 P SLal? = Y <M IBSul
w(& W¢52

>lnlf? - —c—e > llzll*/4



for small €. Notice also that 3~ e ne, | PySsz||? < llz||>. Therefore there is a word

w in & N &, for which

. llz4l] .
”Pv wzlu > 2“2“ “PVSwz”'

In this way, construct a sequence of words wi corresponding to £x = 1/k. Hence

define unit vectors yx = S, z/||Sz, zll with the properties that

| RSt Pzll . 1 |PvRSLel
lim || Pyyel < Ui — = e =
fo I1Byuell < B 2 s, 2 e VR [15a2
Similarly, limg— 0o || Poyll = 0. Also
[ Pusill = 5oz ll/1S5.2ll = IPvSL /182, 2]
lzl 1PvSazll =il
k = Pyyi||-
ozl Toeal ~ 2hel el

By the compactness of the unit ball in V, there is a subsequence of the yi's
which converges to a unit vector v in V. Clearly, P,uv = 0, and thus v belongs to
V.N &"[z]; whence this subspace is non-zero. By construction. [|Piz|l > [lz.]l/2l|z]].

and therefore is also non-zero. |

Corollary 2.4.2. Every non-zero subspace of Hc which is invariant for &7 has

non-zero intersection with Ve. In particular H. = S[Vi|.

Proof. Let M be any non-zero &"-invariant subspace contained in H.. If z is any
non-zero vector in .M, the previous lemma applied to z and H, = H. shows that

S-[z] intersects V. non-trivially.

N
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By Lemma 2.3.3, N = S[V.] reduces &. The claim is that V' = H.. For
otherwise, let H; = H. N N+, By the first paragraph, this reducing subspace for
S must intersect V. non-trivially. So H,; is not orthogonal to A, contrary to fact.

Therefore H, must be zero. [

Corollary 2.4.3. Suppose that 3.7, AiA] =1 and A = B(V). Then every invari-

ant subspace of & contains V..

Proof. Since H = H.. any S"-invariant subspace M intersects V in a non-trivial

subspace. This subspace is invariant for 5"y = A~ = B(V). Henceitisallof V. B

Let B denote the WOT-closed operator algebraon H =V & HE spanned by

B(H)Py and 0y 5 £57.

Lemma 2.4.4. Every weak-x continuous functional on B s given by a trace class

operator of rank at most d + 1.

Proof. An element B of B is determined by BPy and BPjy. Ife;.....eqis a basis
for V. the former is determined by the vectors Be;. The latter term is unitarily
equivalent to Al®) for some A € €.. Any functional ¢ is thus determined by a
functional ¢ on ol axzd by d functionals on # given by the Riesz Representation
Theorem by a vector y;. From [17]. the functional on £, is given by a rank one
functional o(A4) = (An,¢). Whence

d

¢(B) = >_(Bej,y;) + (Bn. Q). =

j=t
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Corollary 2.4.5. The WOT and weak-x topologies coincide on B. and thus also

on &. In particular, the weak-» closed algebra generated by the S;’s coincides with

S.

2.5 The Cuntz Case

This section considers the Cuntz case: Y .., AiA] = [, for which the isometric

dilation yvields a representation of the Cuntz algebra.

Example 2.5.1. The starting point is a description of the case in which V is one

dimensional. A special case of a finite correlated state is a Cuntz state. This
is determined by scalars n = (M1,-.-,7n) such that 3 7 7> = 1. The state is

determined by
En(Siy - - 'siks;l .- -5;,) =iy - My - - T

The cyclic vector &, from the GNS construction (H,, 7. §n) spans a one-dimensional

space invariant for every m,(S;). Indeed,

|7 (S57)En — ﬁiénuz = (Tn(S7)n: 7n( 57 )En) — Ni7a(S57)n- &n)
— 7i{&n- ™a(S7)En) + |77iI2

= ¢n(S:S7) = m:l? = Imil* = |ml* = 0.

The restrictions 4] = ST |span{e,,} = 7 satisfy .-, 4,47 = 1. They may be dilated

to their minimal isometric dilation, which is necessarily the original S; since £, is a

nN
=1



cyclic vector.

Specializing to the case of n = (1,0,...,0), one has A, =1 and 4; = 0 for
2 < i < n. This yields the atomic representation 1,1 mentioned in the Background
section. In particular, the algebra & is unitarily equivalent to B, ;.

The various Cuntz states are related by the action of the gauge group U(n)
which acts as an automorphism group on O, and on the Cuntz-Toeplitz algebra
£.. Indeed, if one writes Fock space H, as a direct sum CskK.sK32=K%s....
where K, is an n-dimensional Hilbert space. then each unitary matrix U € U(n)
determines 2‘!. unitary operator U=IslUcU®slU® 5... on H,. Conjugation
by [7 acts as an automorphism Oy of £,. Moreover, it maps the ideal of compact
operators onto itself. So it also induces an automorphism 8y of On. If U = [uij} is

an n X n unitary matrix, this automorphism can also be seen to be given by

Ou(L;) =Y uiLi for 1<j<n.

i=1l

Given 7, let U be any unitary with u;; = n;. Then it follows that
@a(A) = ¢10..0)(0u(A)) for all A€O0,.

So the corresponding representations are equivalent up to this automorphism. In
particular, the algebras S, generated by these representations are unitarily equiv-
alent even though the representations are not.

A crucial step in the analysis of atomic representations was to show that certain

projections lie in the algebra S. Indeed, this is a major advantage of & over the



C=-algebra, which does not contain these projections, and over the von Neumann
algebra it generates, which contains too many projections. As a case in point, the
projection P, = £,£; belongs to &,. In fact, it is the only non-trivial projection in

the whole algebra G,,.

Integral to the analysis here is the identification of projections in S in greater

generality. The starting point is the irreducible case.

Theorem 2.5.2. Assume that 3o A;A; = I and A = B(V). Then & contains

the projectio'n Py.

Proof. Both & and Py belong to B. If Py were not in &, Lemma 2.4.4 would
provide a weak-* continuous functional ¢ which annihilates & such that ¢(Py) = 1.
Represent ¢ as a functional of rank d + 1 in the form ¢(B) = Z‘]LO(BJ:,-, y;). This
then may be realized as a rank one functional on the d + 1-fold ampliation of ‘B.
Indeed. form the vectors z = (zq,...,zq4) and ¥ = (Yo....,¥a).- Then ¢(B) =
(B@ g, y).

Now the fact that » annihilates & means that r is orthogonal to the subspace
M = &"@+1[y]. The algebra &@*!) is generated by isometries 5@+ which form
the minimal dilation of the .-'1f-d“)'s. So Corollary 2.4.2 applies. and shows that .\
intersects V@+1) in a non-zero subspace Mo which is invariant for &*(#*!), and thus
for A=(d+1),

By hypothesis, A4+ = B(V)@d+1) ~ B(V)@C*!, which is a finite dimensional
C*-algebra. The invariant subspace M is thus the range of a projection Q in the

commutant C¢ ® 9Mys1. Let Q denote the operator in Cly O 9441 acting on
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2/(d+1) with the same matrix coefficients as Q. That is, Q is the unique operator in
(B(H) ® C3*1) such that P{*VQ = Q.
The projection Q yields a decomposition of H@+1D) into S&-reducing subspaces

#, & H, where M, = kerQ and H, = Ran Q: and likewise V4+1) =V, & V; where
Vi :=H, NV =kerQ and V;:=H,N yé+l) = Ran Q.

Observe that Mo is contained in H,. For if there was a vector z € M such that
Py, z # 0, then Lemma 2.4.1 implies that there would be a non-zero vector v in
M O V@) = Mg such that Py, v # 0. But by definition of Q and Q. Mo is
orthogonal to H;, a contradiction.

In particular, as y € M, one has y = Qy. Thus
P‘(;H-l)y — P{,-d“)Qy = QP{,dH)y

belongs to QY@+ = M. Since z is orthogonal to M and hence to .My, one sees

that
@(Py) = (P8 z.y) = (z, PF*Vy) = 0.

Consequently Py belongs to &. [

This immediately vields a structure theorem for &. Note that this does not
classify the associated representations, as they depend on the specific generators:.

not just the algebra.
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Corollary 2.5.3. Assume that Y .., AiA] = I and A = B(V). Then
S =~ B(H)Py + (0y & £{"~V9) ~ B, 4.

Proof. By Theorem 2.5.2, Py belongs to &. Therefore, & contains PyS = B(V).
Moreover, it contains S;Py =~ Oy & LE"’, where a = (n — 1)d. Thus & contains
the WoT-closed algebra that these operators generate, which is evidently Oy & el
Finally, if v is any non-zero vector in V, &[v] contains V by hypothesis. So it is all
of H by minimality of the dilation. Therefore for any z € #, there are operators
T. € G such that Tiv converges to z. Thus & contains Tivv™, which converge to
the rank one operator zv*. So B(H)Py belongs to &. This is the whole WOT-closed
algebra which was denoted B, and which trivially contains &. It is clear that B is

unitarily equivalent to By, 4. [ ]

Now suppose that 2 is a more general subalgebra of B(V). The next step is to

determine the structure of & from information about 2.

Lemma 2.5.4. Assume that 5.~ , A;47 = I. Suppose that V contains a minimal
A*-invariant subspace Vo of dimension do which is cyclic for . Then & contains

B(H)Py,. and is unitarily equivalent to Bn 4,

Proof. By Burnside’s Theorem [37, Corollary 8.6], since 2"|y, has no proper in-
variant subspaces, it must equal all of B(Vp). Let Ho = S[Vo]. This is a reducing
subspace for & by Lemma 2.3.3. The point is that Ho = H.

Indeed, suppose that z is a non-zero vector orthogonal to Ho. By Corollary 2.4.2.

G*[z] NV contains a non-zero vector v. Moreover since Hy reduces &. v is orthog-
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onal to Ho. Therefore &°[v] = A"[v] is an A -invariant subspace orthogonal to Vo.

Since AV, = V, there is an 4 € A and vo € Vp such that Ave = v. Hence
IIsz = (Avg, v) = (v, A"V) = 0.

This contradiction establishes the claim.

Now consider the compressions A; = Py Ailv, = (A7lv,)"- Then 30, L4 =
Iy, follows from the 2A"-invariance of Vo. Also by hypothesis, the algebra 2A gener-
ated by the A,’s is B(V,). The minimal dilation of this n-tuple must be precisely
the restriction of S; to &[V,o] = H, which is Si. So by Corollary 2.3.3. it follows

that & is unitarily equivalent to B, 4,- [ ]

The following corollary is almost immediate from the structure of By, Itis

pointed out in order to obtain some non-trivial consequences.

Corollary 2.5.5. Assume that S A4l = I. IfV contains a subspace Vo which

is cyclic for A and is a minimal invariant subspace for A, then V, is the unique

minimal U™ -invartant subspace.

Proof. Recall that A~ = &°|y. So by the previous lemma. A" contains Py, B(V).

Consequently. Vy is contained in every non-zero A"-invariant subspace. |

Remark 2.5.6. This puts constraints on which subalgebras 2 of B(V) can be
generated by A;’s which satisfy -7, Aid] = [. For example, the semisimple
algebra of matrices of the form 2, = [(b."a), 2] for a.bin C and a fixed t # 0 is
similar to the 2 x 2 diagonal algebra. Note that 2, has two independent vectors

which are cyclic for 2, and eigenvalues for ;. namely e; and fo» = —te; + e2. By
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the corollary above, this cannot equal the algebra 2. For, if the generators of the

algebra were 4; = [(,,..f;_.), ,?'_] , then a computation would show that }°7 |a;[* = 1.

i=1
Likewise considering the matrix with respect to an orthonormal basis {fi, f2} would
show that > &, |i|*> = 1. This then forces Sor  lai — bil*[t|* = 0. Since t # 0, this

forces all the A;’s to be scalar, and hence they do not generate A,.

Example 2.5.7. Consider a special case of the previous corollary: if 2 has a cyclic
vector e which is an eigenvalue for A*. Then & is unitarily equivalent to B, ;-
The algebra 2 decomposes as A = B(V)F. + JU, P+ where P. is the orthogonal
projection onto Ce, J is the injection of Vi = {e}* into V, and 2, is a unital

subalgebra of B(V,). It is easy to see that
LatA = {V,JM : M € Lat A, }.
Hence if B, = Alg Lat2,, then
B:=AlgLat A =B(V)P. + JB,P-.

It follows that 2 is redexive if and only if A, is.
Thus if dimV; > 1, there are non-reflexive examples. For example, consider the

non-reflexive algebra 2; = {[§9]: a,b € C}. Take n =3 and let

- - . -
1 0 0 0 0 0 0 00
A1=1{0 1/v2 O 4=|0 o0 ol As=|1/V2 00
0 0 1/V2 L1/2 1/2 0 0 00
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This can be seen to satisfy Zf;l A;A; = I; and to generate the algebra 2% =
{ [‘3 % §] :a,b,c.d,e € C} . This is not reflexive.

Nevertheless, 2* has a unique minimal invariant subspace, and thus & is unitar-
ily equivalent to B3 ,, which is hyper-reflexive. So there is no direct correspondence

between the reflexivity of A and &.

Lemma 2.5.8. Let A = (A;,...,A,) be an n-tuple on a finite dimensional space
V such thaty" " A;A] = 1. Let A be the unital algebra that they generate. Let S =
(S1:---,Sn) be the minimal isometric dilation, and & the WOT-closed algebra they
generate. Then & is irreducible if and only if A* has a unique minimal invariant

subspace Vy.

Proof. If V, is unique, then it must be cyclic for 2 since V S A[Vy] is an invari-
ant subspace of A" orthogonal to V,. So Lemma 2.5.4 applies. Since & contains
B(H)Py,, it is evidently irreducible.

Indeed. this conclusion follows if there is any minimal A"-invariant subspace
Vo which is cvelic for A. By Corollary 2.5.5, Vo is necessarily the unique minimal
A--invariant subspace.

Finally suppose that there is a minimal 2A-invariant subspace Vo which is not
cvclic. Then as in the first paragraph, V = 2[V,] is an invariant subspace of A~
orthogonal to Vy. Let V; be a minimal A"-invariant subspace contained therein.
Notice that G[V;] are pairwise orthogonal reducing subspaces for & by Lemma 2.3.3.

Hence H contains proper reducing subspaces, and so & is reducible. [

Now the case when more than one minimal 2"-invariant subspace is present will

be addressed. In the following lemma, questions of uniqueness are not pertinent.
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Lemma 2.5.9. Assume that > ., AiA7 = I. There is a family of minimal A"-
invariant subspaces Vj of V, 1 < j < s, such that H decomposes into an orthogonal

direct sum of H; = S[V;]; and the algebras S|y, are irreducible.

Proof. This is just a matter of choosing a maximal family of pairwise orthogonal
minimal A*-invariant subspaces, say V; for 1 < j < s. By Lemma 2.3.3, the
subspaces H; = S[V;] are pairwise orthogonal and reducing for &. Moreover a
direct application of the previoﬁs lemma applied to H; and V; shows that &|y; is
irreducible. ‘Finally, it is required to show that 3 °_| &H; = H. Take any vector
r orthogonal to this sum. By Corollary 2.4.2, &*(z] intersects V in a non-zero
A"-invariant subspace orthogonal to all of the H;’s, and thus orthogonal to all of

the V;’s. This is contrary to construction, and so yields a contradiction. [ ]

Given an n-tuple 4 = (4;,...,4,) such that Y| 4;4; = I, choose a maximal
family of mutually orthogonal minimal A"-invariant subspaces V; of V,1 < j < st
and let P; = Py,. From the minimality of each V; as an A"-invariant subspace, we
know that PjA"P; = B(V;). Set V = $5_, SV,. Let A; = Py Al = (A]l)" be the
compression of A; to V; and let 2 denote the algebra they generate in B (V).

-

Notice that the minimal isometric dilation of A = (.Il, ...,A4,) is precisely S.
It is evident that S is a joint isometric dilation of A. To show that it is minimal,
it suffices to show that S[V] = H. But this is established above in Lemma 2.5.9.

The goal now is to show that Ais a C>-algebra. For the moment, observe that it
is semisimple. Note that 2 is contained in le j<s ©B(V;). Moreover the quotient

map g¢; of compression to V; maps 2 onto B(V;). Thus the kernel of this map is a

maximal ideal. Since Y $¢; = id is faithful, the intersection of all maximal ideals
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is {0}. Hence 2 is semisimple.

Indeed, there is a minimal family G so that 3 .; ©4 is faithful. By the Wed-
derburn theory, the minimal ideal 2, = kerY_,cc\ (s} ©9n is isomorphic to B(Vy).
But this kernel will, in practice, be supported on several of the V;’s. This yields a
partition V = 2 _gec SWy where W, = 2 jec, €Vjisasum of those V;’s equivalent
to V,. Because B(V,) is simple, it follows that there is an algebra isomorphism o;

of B(V,) onto B(V;) for each j € G, such that
Alw, ~ {Z soi(X): X € B(vg)}.
JEGy

It is well-known that every isomorphism between B(V,) and B(V;) is spatial: ¢;(X) =
T,-XT;'1 for some invertible operator T, which is unique up to a scalar multiple.

There is also the associated unital completely positive map ¢ on B (V) given by
(X)) =Y AXA
=1

Suppose that two blocks V, and V; are related by a similarity as above. Let B; :=

Pv1 .-1,'Ivl and C; := PV;"L'IV; = TB.'T—I. Since
S BB;=1k, and Y GCl =,
i=1 i=1

a computation shows that
n

Iy, = Y (TBT)TBI™) =T&(T™'T"7"T",

=1
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where ®,(X) = S_r, B XB; = PL®(PIXP)y,. Therefore
& (T 'T"Y=T"'T""".

An analysis of this completely positive map yields information on the structure

of A.

Lemma 2.5.10. Let (X) = S0, A:XA] be a unital completely positive map on
B(V), where V is finite dimensional. If there is a non-scalar operator X such
that ®(X) = X, then A" = Alg{A},..., AL} has two pairwise orthogonal minimal

invariant subspaces.

Proof. Since ® is self-adjoint and unital, there is a positive non-scalar X such that
&(X) = X. Let |X|| = 1 and let u denote the smallest eigenvalue of X. Then
M = ker(X —I) and N = ker(X —ul[) are pairwise orthogonal non-zero subspaces.

For any unit vector £ € M,

2] = (B(X)z.2) = ) _(XA7z. A[7T)

=1

< D (Aiz Aiz) ==l

This equality can only hold if each Ajr belongs to .M. Hence .M is invariant for
A
This argument worked because 1 is an extreme point in the spectrum of X.

This is also the case for u. Hence a similar argument shows that A is invariant for
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The following is a partial converse to the previous lemma.

Lemma 2.5.11. Let (X) = Y., A;XA] be a unital completely positive map on
B(V). where V is finite dimensional. Suppose that A; = B; & C; with respect to
an orthogonal decomposition V = V|, & V,. Moreover, suppose that Alg{B;} =
B(V,) and Alg{C;} = B(V,). If there is an operator X such that $(X) = X and
X2 := Py, X Py, #0, then there is a unitary operator W such that C; = W BV

Moreover the fized point set of ® consists of all matrices of the form [Z‘;ll,‘{,‘ :;;‘[C ]

Proof. Since P is self-adjoint, it can be assumed that X = X*. Then normalize

so that || Xz = 1. Let M = {v € V, : [|[Xav] = [[¢ll}. Also let N = XM
denote the corresponding subspace of V,. Write B = [Bx Bn] and C =
[Cx . C"] , so that

Xpv=8(Xa)v=CX\PBv for veM.

Since C and B* are contractions, and X3, achieves its norm on v, it follows that B v
belongs to the subspace M(™) on which Xé'l‘) achieves its norm. Consequently each
B; leaves M invariant. But as Alg{B;} = B(V,). this forces M = V;. Similarly.
consideration of X2 = X, shows that N =V,. Thus X;; and X3, are isometries:
so W = X,|y, is a unitary map from V, onto V,.

Further, the identity above now shows that W = CW (") B=. Hence for all v € V,
o]l = [[Wol| = [CW™B || < [WMB || < 2.

In particular, C acts as an isometry from the range of W(")B" onto the range
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Ran W = V,. Since C is contractive, it must be zero on the orthogonal comple-

ment of Ran W™ B*. This implies that C~ is an isometry of V, onto Ran W B=.

Consequently, C*W = W™ B*; or equivalently, C7 = WB;W~" for 1 <1 < n.
Finally, if Y € B(V,, V2) and [ ¢ 3] is fixed by ®, then

Y=Y CYB= S WBWYB; = W, (WY)
=1 =1
where &,(X) = 3.7, BiX B} acts on B(V:). By Lemma 2.5.10, W*Y is scalar; so

Y is a multiple of W. A similar analysis works for the other coordinates. n
Example 2.5.12. Let

1/V2 O 0 1/vV2 o 0
A= |1/2v2 172 1/2v2| and A2 = |-1/2V3 1/2 —1/2V2]-
0 0 1/V2 0 0 1/V2

Then the matrix X = [é 122 §] satisfies #(X) = X. A calculation shows that the
fixed point set of ® is the set of matrices X = [zi;] such that z2 = T2y = T23 =
r32 = 0 and z,; + T13 + ZT31 + T3z = 2T22- In particular, this is not an algebra.
The algebra 2" has two minimal invariant subspaces, Ce; and Ces. Note that the
compression of A to span{e, e3} consists of scalar matrices, and the fixed point set

of the restricted completely positive map is the full 2 x 2 matrix algebra.

The detailed information about the map ¥ can now be utilized to determine

the algebra 2.
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Theorem 2.5.13. Let ®(X) = Y " A, X A] be a unital completely positive map
on B(V), where V ts finite dimensional. Suppose that V is the orthogonal direct
sum of minimal A"-invariant subspaces. Then A is a C*-algebra and the fized point

set of ® coincides with the commautant of A.

Proof. Let V = }_.<©V; be an orthogonal decomposition into minimal A*-invar-
iant subspaces. The restriction of A to V; is all of B(V;) by Burnside’s Theorem.
Thus the restriction of @ to B(V,-) maps onto the scalars by Lemma 2.5.10. By
the earlier analysis, 2 splits into an algebraic direct sum of minimal ideals which
are isomorphic to full matrix algebras. These are determined by certain spatial
intertwining relations between some of the summands. If the restriction of A;’s
to V; and V, are related by an intertwining operator T, then it was shown that
&, (T-'T""!') = T-1T="!. But this is scalar by Lemma 2.5.10. So after scaling T,
it becomes a unitary. It follows that 2 is a C™-algebra.

Evidently, ® fixes the commutant of 2 = 2A*. Suppose that ®(X) = X. If
Vi and V; are not related by a unitary intertwining map, then by Lemma 2.5.11.
P.XP = 0. While if they are related by a unitary Wy, then P. XP, = zuWy
belongs to A’. It now follows that the fixed point set of ® is precisely the commutant

of 2. _, m

Now it is possible to provide a complete description of the algebra & in the

Cuntz case.

Lemma 2.5.14. Let P, for g € G denote the minimal central projections in 2.

These projections belong to &.

Proof. The proof follows the lines of Theorem 2.5.2. The setting will be in the
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algebra B = B(H)Py + (0y & £{)) which contains & and each projection P,. If
a central projection P of A were not in S, by Lemma 2.4.4 it could be separated
from & by a functional of rank d + 1, which as before can be written as ¢(A) =
(A€+z y). Let M = &"W*[y] and Mo = Y@+ 0 M. This subspace My is
invariant for the C*-algebra A*(@+1) = A+ and thus is the range of a projection
Q in its commutant.

Now PW+1 ljes in the centre of A(4+1)  and thus commutes with Q as well.

Therefore V(d+1) decomposes as

P(d+1)Q§(d+1) S PJ.(d+1)Qg(d+x) e P(a'+l)Q.Li}(d+1) 3 P.L(d+1)qJ.§(d+1)

=: /Mpq 5 J\AP.Lq & AANL & J'MPJ.QJ..

This determines an orthogonal decomposition of V@+1) into four reducing subspaces
for U@+ Note that Mo is the sum of the first two. Recall the remarks following
Lemma 2.5.9 that S is the minimal isometric dilation of A. So by Lemma 2.3.3,
Sld+1)

#(4+1) has an orthogonal decomposition into the four reducing subspaces for

generated by these subspaces of Y@+ say
HO) = Hypy © Hpry S Hpgr S Hpege-

Voreover, Lemma 2.4.1 shows as in the proof of Theorem 2.5.2 that y belongs to

Hpq = HP‘Lq = G(d+l)[J\Ao].
It is evident from this construction that each of these four subspaces H,;j is

mapped onto the corresponding M;; by the orthogonal projection Péd“) onto
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V(d+1) Therefore, since P{4+1) is dominated by this projection, it is clear that
it maps y into Mp,, which is contained in M. As before, it follows that z is
orthogonal to My, and therefore »(P) = 0. Hence one concludes that P belongs

to 6. |

Theorem 2.5.15. Let A,,..., A, be operators on a finite dimensional space V such
that i AiAr =1, and let S,,...,Sn be their joint isometric dilation. Let V be the
subsp::e of V spanned by all minimal A*-invariant subspaces. Then the compression
A of A to Visa C*-algebra. Let 2A be decomposed as dec EMy, QC™ with respect

to a decomposition V= dec ;’5V$m’), where V, has dimension dy and multiplicity

mgy. Let P, denote the projection onto V4. Then the dilation acts on the space

H=) o™ =VaH

g€G

where Hg =V, S H?) and ag =dg(n —1) and

a= Zagmg =(n-1) Z d,mg.
geG geG
The algebra & decomposes as
=Y e(B(Hy)P)™ + (05 2 £).

9geG

Proof. This is now just a matter of putting the pieces together and clearing up
some final details. Let V,, 1 < g < s, be any maximal family of pairwise orthogonal

minimal A=-invariant subspaces. Let V = Zl(g(s &V,. (Do not worry at this stage
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about the uniqueness of the definition of V.) By Lemma 2.3.3, H, = &[V,] are
pairwise orthogonal reducing subspaces of &. Let M = 3 cyc, THg The claim is
that M = H. Indeed, if there was a non-zero vector in M=, then by Corollary 2.4.2,
ML NV would be a non-zero A*-invariant subspace orthogonal to V, contrary to
fact.

It now follows as above that if each A; is compressed to A; on V, then this new
n-tuple has the identical joint isometric dilation S;, and it is the minimal dilation
by the previpus paragraph. By Theorem 2.5.13, the algebra 2 that they generate
is self-adjoint. Then applying Lemma 2.5.14, one has that the projection onto %
belongs to &. and that P& = 2A.

The restriction of & to each reducing subspace H, is isomorphic to Bnd, More-
over, the restriction of & to V+ is canonically isomorphic to 2! where by canonical
it is meant that u(S)|y. =~ L{® when the natural identification of V+ with HY is
made as in Lemma 2.3.1.

Now the finite dimensional C*-algebra 2 may be decomposed as Z;Eec My, ©
C™s. The multiplicities reflect the fact that the restrictions of A] to different V,’s
may be unitarily equivalent. As before, choose a maximal subset G of pairwise
inequivalent subspaces V,. and let W, = 3 cq 2V be the sum of all subspaces
equivalent to V,. Then W, may be naturally identified with V, © C™"s so that
Azlw, = (A7ly,)"™). This identifies ¥ with 3" e ENls

By the uniqueness of the minimal isometric dilation, it also follows that there
is a corresponding unitary equivalence between ..o SH; and Hy D C™s) so that

the restriction of S; is identified with (S.-lug)(m’). By Lemma 2.5.14, the projection
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Py, =~ Pg(""’) belongs to &. Thus it is now apparent that &P; decomposes as
2_geG S(B(Hg)Pg)(m’). Combining all of the pieces. the desired structure theory
for & is obtained.

It remains to establish the uniqueness of V. Notice that P5 is the unique maxi-
mal finite rank projection in &. Indeed, every operator in & has a lower triangular
form with respect to the decomposition H = VaH. From [17], £, contains
no proper projections. Therefore all finite rank projections are supported by V.
Now suppose that Vp is any minimal A -invariant subspace. It may be extended to
a maximal family of pairwise orthogonal minimal 2A"-invariant subspaces, and the
construction may proceed as above. The same subspace y necessarily is obtained
by the uniqueness of this maximal projection. In particular, V must contain every

minimal 2 -invariant subspace. Thus it is the span of all such subspaces. .

2.6 The General Finite Dimensional Case

The problem posed in Section 2.4 will now be addressed. Starting with a contractive
n-tuple (A4;,..., 4,) with minimal joint isometric dilation (S;....,Sy). the goal is
to understand the structure of & = Alg{S),....Sa.} in terms of the structure of
the n-tuple A4 and the algebra A that it generates.

Recall from the discussion in Section 2.4 that H = H,SH.. where H,, is the pure
part determined by the wandering subspace of S. and H. is the Cuntz part: and
that P, and P. denote the orthogonal projections onto these subspaces. A method

of getting information about this decomposition from A is required. Corollary 2.4.2

shows that H. = &[V.]. so H. will be recovered if V. can be computed.
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Once again, consider the completely positive map

B(X) =) AXA] =AXA"

i=1

This is no longer unital, since &(I) = 44" = 3., 4id; < . But it is completely
contractive. Thus the sequence ®*(I) is a decreasing sequence of positive operators.
and therefore converges in the strong operator topology to a limit which will be

denoted as ®(I).
Lemma 2.6.1. (1) = PyP.Py. Hence V. = ker(I — ®>([)).

Proof. If z € H.. then

ST usiel? = li=lf.

lwi=k

On the other hand, any vector z in H, satisfies

. - 2 _
lim 3" |Isiel® =o.

lwi=k

Thus if z is any vector in H = H. © Hp,

lim Y (1S52))® = [Pz

fwi=k

Write A7 := w(A)" = Sylv- Now if v € V,

. - 2 _ 1 N | 12
lim 3 [l 450)? = lim lz:,kuswvn = [IP.l™.

lwi=k
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It is evident that &%([) = lel=k Ay A and thus

(& (v, v) = D (45>

lwl=k

Therefore
(&= (v, v) = || P.v|* = (PyP.Pyv.v).

It follows that (1) = Py P.P,. In particular, ker(I — ®=([)) =VNH.=V.. B

Now H. = S[V.], and thus the restriction of the S;’s to H. are the minimal
joint isometric dilations of the compressions of the A,’s to V.. By the previous
section, the algebra S|y, is determined by the restriction of A to the span V of
all A=-invariant subspaces contained in V.. It is desirable to give a definition that
is somewhat independent of the definition of V.. The space V is the span of all

A~-invariant subspaces W on which 3., AiAlw = Iw. Indeed. the condition

Iy = z_j Aidflw = g SiS7lw

implies that W is contained in H., whence in H. NV = V.. Thus W is contained

in V by Theorem 2.5.15. The converse follows from the description there of V.
Lemma 2.6.2. The projection Py belongs to S.

Proof. Assume that P; # 0. Suppose to the contrary that ¢ is a WOT-continuous
functional which separates Pj from &. Then as before, represent >(.X) = (X y)

on an algebra B containing & and Pj-
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Split £ = z.® z, and y = y. © y, corresponding to the decomposition of
HE+) = {9 o H4Y) | The functional ¢p(X) = (X, yp) acts on the pure
part G|y,. Since the Cuntz part is non-zero and contains wandering subspaces on
which the S;’s are unitarily equivalent to L;, it is easy to find vectors zo and yo in
H, such that ¢,(X) = (Xzo,yo)- Thus, by setting £’ = z. © zo and y' =y S yo in
H(4+2) one obtains vectors in H*?) for which #(X) = (X2 ).

Thus by restricting to H., one obtains a WOT-continuous linear functional which
separates Py from Sly,. This contradicts Lemma 2.5.14. Hence P; must belong

to G. |
Next the pure rank of the dilation is computed.
Lemma 2.6.3. The pure rank of A is computed as

pure rank(A) = rank(I — ®(I)) = ra.nk([ - f: .4.-.4;).

=1

Proof. The wandering space is X = Ran(/ — 3", S:S;) and the pure rank of A
equals dim X. The minimality of the dilation means that X does not intersect V-

Therefore Py, Py Py has the same rank as Py. However. it is easy to see that

PoPePyly = Py(Iu — Y SiS7) Pyl

i=1
n

=Iy— Y Ad] =L —3(Iy).

=1
Thus pure rank(A4) = rank (I — &(I)). ]
Notice that this proof works for any n-tuple A. The pure rank of a general
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contractive n-tuple plays an important role in Chapter 4.

Example 2.6.4. The subtlety of the preceding lemma is due to fact that &' is not,

in general, contained in V. To illustrate this, consider the following example. Let

100 0 0 0
A44=1000 and A= {1/2 0 1/2
0 0 0] 0 0 0
Then
1 0 O

AiA]+A24;=10 1/2 0

It is clear that Ce; and Cej are pairwise orthogonal minimal 2A*-invariant subspaces.
The vector e, generates the subspace H, = Ge; on which the representation is
equivalent to the atomic representation o ;. Furthermore, e3 is a wandering vector
generating a copy of the left regular representation on Hs = Ge;. However e,
is not orthogonal to H; & Hs. One can show that there is a second wandering
vector ¢ := ez — Py Sa(e; + €3). The subspace H; = &( vields the decomposition
H=H SH, S Has.

The point here is that this decomposition does not decompose V into orthogonal

pieces. In fact, H; has trivial intersection with V; and the vector e; has components

in all three pieces.

One can now completely describe the algebra & determined by the joint iso-
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metric dilation of a contractive n-tuple. There is nothing to do except combine the

information in Theorem 2.5.15 with the preceding two lemmas.

Theorem 2.6.5. Let (A;,...,A,) be a contractive n-tuple on a finite dimensional
space V with joint minimal isometric dilation (S1,...,5.) on H. The space H
decomposes as Hp & H. into its pure and Cuntz parts. The multiplicity of H, s
purerank(4) = rank(f — }"_, A;4]). The subspace V spanned by all minimal
A" -invariant subspaces W on wi.zich Yo AiATlw = Ly determines H, = G[g]
The compression A of A to V is a C*-algebra. Lét A be decomposed as ) .. €My, S

C™s with respect to a decomposition V= 2 _geG evg'"", where V, has dimension d,
and multiplicity mgy; and let P, denote the projection onto V,. Then the dilation

acts on the space

H=) sH™ aH,=VH

9€G

where Hg =V, & HED, ag = dg(n —1) and

a= Z agmg + pure rank(.A)

9€G

= (n~1)Y" dgmg + rank (1 - ‘Z A7)

g€G i=

The algebra & decomposes as

6= S(B(H)PR,) ™ + (054
geG

P

(¢!

Q
N
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Some of the consequences of this theorem will now be collected. First, simple

conditions for determining when the dilation of A is irreducible are obtained.

Corollary 2.6.6. The algebra & determined by the joint isometric diation of a
contractive n-tuple A on a finite dimensional space V is irreducible if and only if

either

(1) Ran(I — S50, Ai47) = Cv # 0 and v is cyclic for A. In this case, & is

=1

unitartly equivalent to £,,.

(2) S, AiA] = I and A" has a minimal invariant subspace Vo which is cyclic

for A. In this case, & is unitarily equivalent to B, 4, where do = dim V.
which are respectively equivalent to
(1) rank(I — ®(I)) =1 end ®=(I) = 0.
or
(2) {X:9(X)=X}=CI

Proof. & is irreducible if and only if either it is pure with pure rank 1, or it has
pure rank 0 and, by Lemma 2.5.8, has a unique minimal 2A"-invariant subspace.
By Lemma 2.6.3, the pure rank is 1 precisely when rank(/ — ®(I)) = 1. or
equivalently that Ran(l — 3_% | A:;.47) is a one-dimensional subspace Cv. Now & is
pure precisely when H. = {0}. which by Corollary 2.4.2 is equivalent to V. = {0}.

By Lemma 2.6.1, this is equivalent to #>(I) = 0, which establishes the equivalence
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with (1/). Now V, is A"-invariant and orthogonal to v, and therefore orthogonal to
Av. So if v is A-cyclic, then A[v] = V and V. = {0}. Conversely, if A[v] is proper,
then M = Av]* is A -invariant. But 3 7, 4;4]|.u = Lu because of the condition
on ®(I). So M is contained in H.. This verifies the equivalence with (1).

The Cuntz case is synonymous with the condition Sh, Ad; =1L IEMisa
minimal A"-invariant subspace, then A[M]* contains another. So if M is unique. it
must be cyclic. Conversely, if it is not unique, then by Theorem 2.5.15. V contains
at least two pairwise orthogonal minimal 2"-invariant subspaces, one of which may
be taken to be M; call the other M’. Then A[M] is orthogonal to M’ and thus it
is not cyclic for A. This establishes the equivalence with (2).

Condition (2') contains the fact that ®(I) = I, so this is the Cuntz case. If there
were more than one minimal 2A*-invariant subspace, then by Theorem 2.5.13 the
fixed point algebra contains non-scalar operators. Conversely. if & has non-scalar
fixed points, then Lemma 2.5.10 shows that there are two orthogonal 2A"-invariant

subspaces. So (2’) is equivalent to irreducibility. [ |

Corollary 2.6.7. The minimal isometric dilation of a finite dimensional n-tuple

= (A1.....A,) is pure if and only if AT = 2__, AiA])V =V or equivalently that

Proof. The dilation has a Cuntz part if and only if there is a A™-invariant subspace
M contained in ker(I — 3_%  4;4;). This is equivalent to having the proper A-

invariant subspace M*' containing
(ker(I =" 4;47))" =Ran(I =)~ A4:4)).
=1 =1
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The minimal such subspace is clearly A(/—>_1_, 4:A])V. Thus the dilation is pure

=1
precisely when 0(f — Y. A;AT)YV = V.

=1

Evidently, if there is a Cuntz part, then
o>(I) > ¢=(FP;) = Fy.

Conversely, if A4 is pure, then SOT-limMk o0 2yt SwSe = 0. The compression of

SwS, toVis AwAy, and thus

S RS.SLlv = D Audl = 85,

lwi=k lwi=k

Since V is finite dimensional, this converges to 0 in norm. ]

This theorem also provides simple complete unitary invariants for the associated

finitely correlated representations of &, (or of O, in the Cuntz case).

T = (T\,...,T,) be their joint minimal tsometric dilations on Hilbert spaces H 4 and
Hpg; and let o4 and op be the induced representations of &,. Let ]7_4 be the subspace
spanned by all minimal A*-invariant subspaces W on which 3 _, 4id]|lw = Iw:

and similarly define Vg. Then o4 and op are unitarily equivalent if and only if

1. rank(ly, — Som, Aid]) = rank(ly, — 2_1_, BiB}); and

=1

2. A, s unitarily equivalent to B*|g_.



Proof. The two representations are equivalent if and only if they have the same
pure rank and the Cuntz parts are unitarily equivalent. By Theorem 2.6.5, the
algebra & contains the projection onto V4. It is the unique maximal finite rank
projection in &. Therefore the restriction A°[;, is a unitary invariant. Conversely,
if these two conditions hold, then the unitary identifying A"[;, and B[, extends
to a unitary equivalence between the dilations S, of 4= Py Alp, and Sg of
B := P;_Bly, because of the uniqueness of the minimal isometric dilation. This
identifies the restriction of S to 6[?4] = ‘H 1, namely the Cuntz part of S, with
the corresponding Cuntz part of Sg. The pure rank condition allows a unitary

equivalence between the two pure parts. [

Bratteli and Jorgensen [9] give a detailed analysis of representations of the
Cuntz algebra which has a lot in common with these results. They look somewhat
different since they concentrate on the state and not on the restriction to the sub-
space V. In particular, their contractions are not the same as those here. They
point out the relationship in the discussion preceding their Theorem 3.3. Theyv
obtain Corollary 2.6.6 in the Cuntz case, and in particular recognize the role of the
completely positive map ®. Again however, their different normalization results
in a different map. But they do not appear to classify these representations up to
unitary equivalence. The reason they do not succeed is that they did not identify
the subspace which here is denoted V, and instead work with a subspace they call
Vi which is often strictly larger. The space V does not occur in their hierarchy of
invariant subspaces. Instead, they specialize in section 7 to a smaller class which

they call diagonalizable shifts. These they do completely classify up to unitary



equivalence. It is not determined in this case how their special invariants relate to

those here.

Corollary 2.6.9. The algebra S determined by the joint isometric dilation of a
contractive n-tuple on a finite dimensional space is hyper-reflezive with distance

constant at most J.

Proof. This follows immediately from [17, Theorem 3.14] since the algebra & is
unitarily equivalent to the algebra of certain atomic representations. Indeed. the
projection P = P; belongs to & and &P = 2P where 2 is a type I von Neumann
algebra containing the projection P. Thus by Christensen’s result [13] which shows
that type I von Neumann algebras have distance constant at most 4, the same is
obtained here. The upper bound for the distance constant of £, was improved by
Bercovici [6] to 3 from the original 51. Arguing as in [17]. one obtains a distance

constant no larger than (3% + 4?)1/2 = 5. [ |



Chapter 3

Factoring in non-commutative

analytic Toeplitz algebras

In [17] and [18], the algebraic and invariant subspace structures of the non-
commutative analytic Toeplitz algebras were developed extensively. Several ana-
logues of the analytic Toeplitz algebra were obtained. Many of these results came
from a lucid characterization of the WOT-closed right ideals of these algebras. Al-
though technical difficulties were encountered. a similar characterization of the left
ideals was expected. In this chapter, it is shown that. although it holds for a sub-
collection, the analogous characterization of the WOT-closed left ideals fails. The
reason for this failure is a deep factorization problem in these algebras. Reasonable
factorization results can be obtained when norm conditions are placed on possible
factors. Indeed, positive results concerning isometries in the unit ball are included.
However, in the general setting it turns out that even seemingly obvious unique

factorizations do not hold. The examples provided help illustrate the pathologies

(S]]}
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of factorization involved. Many of these examples rely on an understanding of the
structure theory of contractions in these algebras. The minimal isometric dilation of
these contractions is determined. Further, each is shown to have an H* functional

calculus.

3.1 Preliminaries

The terminology and notation used in this chapter is consistent with Chapter 2.
The left reéular representation of the unital free semigroup F, on n generators
acts naturally on n-variable Fock space Hn = €2(Fn) by A(w)ée = &ue. for v, w
in F,. The non-commutative analytic Toeplitz algebra £, is the unital, WOT-
closed algebra generated by the isometries L; = A(z) for 1 <: < n. The isometry
determined by a word w is denoted by L, = A(w). The case n =1 is the analytic
Toeplitz algebra. The algebra corresponding to the right regular representation
is denoted by R,. The generating isometries are defined by p(w) = R.s where
R.€, = Euu, and w’ denotes the word w in reverse order. It is unitarily equivalent
to £, and is precisely the commutant of £,. See [1, 17, 18, 19, 27, 34, 32] for
more detailed information on these algebras.

In the first section it is proved that the minimal isometric dilation of each non-
unitarv contraction in &, is a shift. This is accomplished by showing that the
powers of the adjoint of such a contraction converge strongly to zero. All of these
shifts have infinite multiplicity. Further, each of these contractions has an H™>
functional calculus.

The second section contains positive factorization results for isometries over the
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unit ball of £,. The isometries L, factor exactly as the words w. Hence, such
isometries are irreducible over the unit ball exactly when the length of the word
lw| = 1. A characterization of a broader class of irreducible isometries over the
unit ball is also included. Surprisingly, these isometries are reducible over the full
algebra. Particular factors are constructed using the structure of the orthogonal
complement of their ranges.

The last section contains a discussion of the WOT-closed ideals of these algebras.
Unlike right ideals, the left ideal generated by the isometry L is not WOT-closed.
The na.tural‘ identification of subspaces in LatR, with the WOT-closed right and
two-sided ideals is shown to only transfer over to a proper subcollection of Lat £,.

when considering left ideals.

3.2 Contractions

The inner-outer factorization in &, (see [1], [17] and [32]) shows that much of the
game in these algebras is played in the world of isometries (inner operators). Thus,
it is worthwhile to examine the structure theory of these operators in the more
general setting of contractions.

For notational purposes recall from [18] that given k > 1, every X In £, can

be uniquely written as a sum

X=) zolu + > LuXa, (3.1)

lwl<k lwl=k

where z, € C and X, € &, (for n = oc, the first sum belongs to ¢, and the

—l
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second sum is actually a wOT-limit). The scalars {zw}wer, are called the Fourier
coefficients of X. This notation is justified since they determine the operator.

Indeed, if e is the identity in F,,, then X& = Yz, and hence
-Xéu = X(Rufc) = Rv(-Yfe) = Z wawv-

One writes X ~ Y., ZwLy. The starting point is a simple result which is used
several times throughout the chapter. In [18] it was shown that the only normal
operators belonging to £, are the scalars. So the only unitaries in £, are scalar.

The proof of the latter is actually quite elementary.
Proposition 3.2.1. The collection of unitary operators in £, s the set T1I.

Proof. Let " be unitary in £,. Then there is a unit vector n in H, with Un = &..
The scalar A = (n.&.) satisfies |A\] < 1. Consider the Fourier expansion., U" ~
Y @wlw. Evidently,

1= “tj{cn2 = Z lawl2 > lae|2°

However. it is also true that

1=(Un.&)= D aw(lun.&)=ach

weF,
Whence, |a.| = |A] = 1. Thus n = A&.. so that
X = AUn = U€..
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Therefore U = X I, and the proof is finished. [

In the seminal text [40], it is shown that understanding the behaviour of the
powers of the adjoint of a contraction is a key issue. In particular, strong conver-
gence to zero yields information on the minimal isometric dilation of the operator.

This condition holds for every non-unitary contraction in £,.

Lemma 3.2.2. If L is a non-unitary contraction in <,,. then
Jlim [I(L)*¢ll = o,
— 00

for all € in H,.

Proof. The key is the unique decomposition of L. Using 3.1, write

L=\ + zn: L;A;,

=1

with each A4; in £,. Then by the previous proposition, |A| < 1since L is not unitary.
Hence if A = 3.5, L;4,, then [|4] < 2.
The lemma will be proved for basis vectors corresponding to words. Suppose

that w is a word of length [. For k > [,

(L)€, = (A + AT)FE,
. kY .. k -
- [,\"1-:- AT+ 1 X“(A')']Ew+0
11



where p;(k) = ;!!-k(k —1)---(k — j + 1). However, limi 'ﬁ; = 0 for any real

number m and a > 1 (see [38] p.57). It follows that for 0 < j < U,
Lim p,(k) (AP = 0.

Now given ¢ > 0, choose A* > [ such that k¥ > A implies p;(k) [Mf7 < & for

0 < j < l. Then for all sufficiently large k one has

l
HL*€all < Y pitR) A I(AT) Eull

=0

!
< Zs? = (2% = 1)e.

=0

Hence, limg o0 ||(L7)*€4]| = 0 for all words w.

That it is true in full generality follows from the boundedness of the sequence
{(L")*}. Indeed, any uniformly bounded sequence of operators {Ai} on H, which
satisfies lim—oc || Ak€w|| = O for all words w, must converge in the strong operator

topology to zero.

The minimal isometric dilation of these operators can now be determined.
Theorem 3.2.3. The minimal isometric dilation of any non-unitary contraction
in £, ts a unilateral shaft.

Proof. In [40] it is shown that every contraction has a minimal isometric dilation.
By the Wold decomposition for isometries, every isometry is the orthogonal direct
sum of a unitary and copies of the unilateral shift. It is further shown in [40] that

the powers of the adjoint of the contraction converging strongly to zero (in other
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words, belonging to the class C.o) is equivalent to the unitary part of its minimal

isometric dilation being vacuous. Hence the lemma yields the result. [ ]

Remark 3.2.4. This appears to be new for n = 1. The author could find no

references, but it is probably known in this case.

The multiplicity of these shifts is always infinite. This is shown below. First.
some consequences of the theorem will be pointed out. Recall that a contraction
is called completely non-unitary provided its restriction to any non-zero reducing

subspace is never unitary.
Corollary 3.2.5. Every non-unitary contraction L in £, is completely non-unitary.

Proof. Any non-zero reducing subspace for which the restriction of L to it is
unitary would be contained in the unitary summand of the Wold decomposition for

the minimal isometric dilation of L. However, by the theorem this space 1s vacuous.

Another important result which comes out of the Sz.-Nagy and Foiag machin-
erv is that every completely non-unitary contraction possesses an H> functional

calculus.

Corollary 3.2.6. Every non-unitary contraction in £, has an H functional cal-

culus.

Given a non-unitary contraction L in £,, the collection of operators defined
by this H™ functional calculus is denoted H>(L). See [40] for properties of this

functional calculus.
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The cardinality of the shift in the Wold decomposition of an isometry V' in B(H)
is given by the dimension of the wandering space H S V'H. For isometries in the
analytic Toeplitz algebra this cardinality can be both finite and infinite. In fact if
> belongs to H*®, the dimension of H? & ¢ H? is finite exactly when the analytic
inner symbol is continuous. That is, when ¢ belongs to the disk algebra (see [20]).
For the non-commutative algebras there is in general more room in the orthogonal
complement, and this cardinality turns out to always be infinite. To prove this,
first note thf: following result, the proof of which is actually contained in the proof

of Theorem 1.7 from [17].

Theorem 3.2.7. For n > 2, if A in £, has proper closed range, then Ran(4) has

infinite codimension.

Remark 3.2.8. For isometries L in £,, the infinite cardinality of H. & LH, Is
actually easy to see when (L&, £.) = 0. Indeed, let Pi be the projection of Hn onto

span{£, : |w| = k}. Then,

k-1
PiH, D Pc(Ran(L)) = P& (Z L(P.-H,.)) :

=0

nt-1

k
. Sum-

The former space has dimension n*, the latter has dimension at most

ming over k > 1 proves the claim.

In any event, it follows that the range of any non-cuter operator has infinite
codimension. Recall that A in £, is inner if it is an isometry and outer if Ran(A)

is dense in H,.
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Corollary 3.2.9. For n > 2, if A in £, is not outer, then Ran(Ad) has infinite

codimension.

Proof. Since A is not outer, by the inner-outer factorization it can be written as
A = LB for some non-scalar isometry L and outer operator B, both in £,. But

then,

AH, =LBH, = L(BH,) =LHn.

The latter space has infinite codimension by the theorem. |

The general result can now be proved. The proof makes use of Fredholm theory

in £,.

Theorem 3.2.10. Let L be a non-unitary contraction in £,, forn > 2. If V in

B(K) is its minimal isometric dilation, then dim(K & VK) = oc.

Proof. This multiplicity is given by the rank of the projection I — V'V*. From
the construction of the minimal isometric dilation, ] — LL" is the compression of
I—VV~toH,. Hence, I —VV* has infinite rank when I — LL" does. Suppose this
pumber is finite. Then L* has an essential left inverse, and hence ker L* = (Ran L)+
is finite dimensional. Thus by the previous corollary. L must in fact be outer.

It now follows that the operators L*L and LL*® are unitarily equivalent. For.
the partial isometry in the polar decomposition of L is really invertible and acts as

the intertwining unitary. Therefore,

rank(/ — L*L) = rank(f — LL") < oo,
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so that L is an essential unitary.

As a Fredholm operator, L has closed range and is thus surjective since it is
outer. From [17], every operator in £, is injective. Hence L is invertible. However,
it was also shown in [17] that the essential norm of every operator in Cn is the

same as its original norm. Since £, is inverse closed [17], this implies that
ILH =L e = IL7]le = 1.

As an invertible isometry in £,,, The contraction L must be scalar. This contradic-

tion completes the proof. [

The investigation of the structure of H, & LH, will be revisited next section
in the context of factoring. In many ways contractions satisfying ( LE.E) =0 are
easier to deal with. It is thus helpful to finish off this section by observing that
there is a large class of contractions in £, for which this inner product is non-zero,
however these operators are unitarily equivalent to contractions in £, which have

no scalar part. Observe that for any operator L in £,, the space ‘H,& LH, belongs

to Lat R;,.

Theorem 3.2.11. Suppose L is a contraction in £, for which Hn& LHn contains
an eigenvector of R;. Then L is unitarily equivalent to a contraction in £, which

has no scalar part. In addition, this unitary implements an automorphism of Ln.

Proof. In [17] the eigenvectors of PR}, are identified. Each scalar A in the unit ball
of n-dimensional Hilbert space defines an eigenvector va. Further, for each such

vector there is a unitary Uy on H, for which AdU, determines an automorphism
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of £, with U,va = &..
Thus, suppose some vy belongs to H, © LH,. Then the operator UxL U3 is a

contraction in £, and
(DZ\L D';gev fe) = (LUX7 v/\) = 07

which proves the result. ' u

3.3 Féctoring

In the analytic Toeplitz algebra £, = R, = T(H>), the associated function the-
orv vields a good factorization theory over the full algebra (see [20] and [26] for
example). When moving to several non-commutative variables, the strong link to
the function theory is lost and factorization becomes much more difficult to deal
with. Nonetheless, positive results such as inner-outer factorization can be ob-
tained. Other factorization results can be obtained when norm restrictions are

placed on possible factors.

Theorem 3.3.1. Let w € F,,. Over the unit ball of £n, the isometry L, factors

only in the same way as the word w, modulo scalars in T.

Proof. Suppose L, = BC with B and C belonging to b1(£,). It is clear that C
must in fact be an isometry. For each k > 1, consider the corresponding form of

( 3.1) for B and C.

Let {b,} be the scalars and let { B, } be the operators for B in this decomposition.
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Use similar notation for C. If w = e, then comparing coeflicients yields I = b,c. /.
Whence, |b.| = |c.] = 1 and the operators B and C are scalar unitaries.
Otherwise, put w = i; - - - ik and note that b.c. = 0. First suppose b. = 0. Then

B =Y " | L;B; and equating factorizations yields,
L,‘l (B.IC) = Lix (L.‘2 . -L,',,) and LJ(BJC) =0 for _] ’7"5 il.

In particular, B;C = 0 for j # i,. But every non-zero element of £, is injective
[17], so that B; = O for j # ¢,. Further, B;, is a contraction and B; C = L;, --- L,,.
Hence, by induction one has B;, = AL, and C = AL, where uv = i3---ix and A
belongs to T. Thus, B=AL; L, and C = AL,

Next suppose b. # 0, so that ¢, = 0. Note first that

(‘fuh Eix) = (BCEC' Eix)
= Zbucv (Euu:fil)
= beci + bice

= be cil

Hence if w = i,, one would have b.c;, = 1. As B and C are contractions it would
follow that |b.] = |c;,] = 1, and that B is a scalar unitary. Otherwise suppose

|w| > 1. Inductively, one can show in this case that
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To see this, observe that as above 0 = (&,,&;,) = beci,, and hence ¢;, = 0. Then
suppose 0 = ¢ = ¢, = ... = Ci.i, for some 2 < j < k. Equating Fourier

coefficients of L, = B C shows that

0= (Eun Eij-l"'fl.) = (BCEe, Ei,--l---i,.)
= bcct'j-x""'k <+ b.-j_lc.-j....-,‘ + ...+ bi,‘_x weiy Ce

= becij_.l....'..
Whence, ¢;;_, i, = 0 as claimed. But then,

1= (bw-bw) = (BC&.&w)
= b.cw+ b.‘l Cigoiy + .-+ bwce

= beCuw-

Thus, |b.] = |cw| = 1 and B is a scalar unitary. [

It is immediate that the generating isometries are irreducible over the unit ball.
Corollary 3.3.2. For n > 2, each L; is irreducible over the unit ball of £,,.

In fact, many more isometries are irreducible over the unit ball of .. Indeed.
one can work harder to obtain the next result which includes a large collection of
isometries. For example, the isometries L = Z=(L1+ L) and L = HLi+3L5+3L3

are irreducible.

Theorem 3.3.3. Suppose L ~3_ . awLe 18 an isometry in £, for which there is

an i with a; # 0 and R;R7(LE.) = a;&i. Then L is irreducible over the unit ball of
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A~ .

Proof. Suppose L = BC with B and C in b,(L,). The operator C must be an
isometry. As in the proof of the previous theorem, consider the expansions of B

and C determined by 3.1. Recall that

B=bI+Y L;B; and C=cl+) L,C;

j=1 j=1

By equating unique factorizations of L = BC, one obtains b.c. = 0. By hypothesis.
L; (a,-I) = L; (beC.' + B.C) .

First suppose b, = 0. Then, B;C = a;I # 0. Thus by the injectivity of all
elements in £,, the operator B; must be invertible. Hence C 1is also invertible.
Therefore, as an invertible isometry in £,, C is a scalar unitary.

Next suppose b, # 0 and so c. = 0. This corresponds to the case when B is a

scalar unitary. Indeed, note first from the Fourier expansions.
a; = (L. &) = (BCE., &) = beci + bice = beci.

As B is a contraction, |c;| > |a;|. By hypotheses one has

(L-al)é = Y RE(L-al)é
=1
= D _RRj(L&).

J#E
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Further. since L = BC,

B(C - CiL-')Ee

Y R;R;(L - «BL)&.
Jj=1

= ST R;R}(LE.) + RiRi(L - BL)E..
J#i

Evidently, ||B(C — ciL;) &|| = [[(L — aiLi)&||- Thus the following is true:

1=[ICE&I* = I(C—al)&ll® +lal’
> |[B(C - ciLi) &|I* + |ail?
> (L = aily) & + lail?
= el =1.
Therefore, |a;| = |¢| and |b.] = 1. which shows that B is a scalar unitary. |

Remark 3.3.4. This proof can be perturbed to include broader classes of isome-

tries. For example, any isometry L which satisfies,

R.R,-(L Ee) = awibwi,

for some ¢ and word w is irreducible over the unit ball of £,..

As it turns out, the unique factorizations over the unit ball of £, discussed
above do not hold over the full algebra. Remarkably, even the operator L. has

proper factorizations in £,. This comes out of an interesting result from function

theory.
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Lemma 3.3.5. The function f(z) defined on the unit disk by f(z) = Y ;50 &=
belongs to H* \ H*. However, 1/f defines a function which lies in H>.

Proof. Since f is analytic on the unit disk and the Fourier coefficients of f are

¢2-summable, the function belongs to H? with

L H
£l = (Z m) .

k>0

For |z| < 1,-f (=) is defined by the formula
2 () = —log(1 - 2) (3.2)

using the principal branch of the logarithm. Given r such that 0 < r < 1, let f, be

the function on T defined by f,(e*) = f (r ¢%). Then the identity

lim f(r) = mln_:_lo_g%:L)zoc

together with the continuity of f on the disk, shows that || f||g= := lim,~ || frll= =
oc. Hence the function f is not in H™.

To prove that 1/f defines a function in H*, it is sufficient to show that 1/f
defines an analytic function on the unit disk with [|[1/f[lec < oc. Now, 1/f is

analvtic on the unit disk by 3.2. To see that f is bounded below first observe the



identity 1 — e*® = (2sin &) e =i, Hence for |0 < 7 with 8 #0,
2

—log(1l — €' |

exO

F@)? = }

log [2sin &| + 7 (55%) ?

etf

2 N2
<log|2sin;§[> +<0—;—“> .

But (f’_-_")2 > T for —7 <9 < Fand [2sing| > v2for £ <6 < 7. Thus,

I

(log2)* =2 } _ (log2)?

6 2> . :_
If(e )l _m‘ln{ 4 ’16 4

for 8 # 0. It now follows that |[1/f[le < oc. a

This function theoretic result allows one to construct explicit factorizations

which are exclusive to the non-commutative setting.

Theorem 3.3.6. Suppose L is an isometry in £, for which Hn S L H, contains

the range of an isometry X in £,. Then L has proper factorizations in £,.

Proof. As the ranges of the isometries X*L are pairwise orthogonal for £ > 0. the

operator A = 3 ..o m7X*L belongs to £, with

1 2
14l = (E ——(Hl)z) -

Let ¢ = 1/f be the H*® function obtained in the previous lemma. By the H>

functional calculus for X (Corollary 3.2.6), g (X) defines an operator in £,. The
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claim is that g (X) A = L. This comes as a result of a more general fact.
Note that given h in H?, an operator h (X)L can be naturally defined in .

Indeed, one can set

h(X)L =Y h(k)X*L.
k>0
where the h(k) are the Fourier coefficients for k. Clearly, the map from H? to B(H,)
which sends h to k(X)L is isometric. The key is that this map is also continuous
from the tol;ology of weak vector convergence in H? to the weak operator topology
in £,. To see this, suppose h,, converges weakly to h in H?. Without loss of

generality assume h = 0. Then hoa(K) converges to 0 for each k and
sup ||Amilz = ¢ < o<,

for some constant c. Let z and y be unit vectors in H, and let Si be the orthogonal

projection onto Ran(X*L). Then

STUX*Lz.y)P = Y I(X*Lz. Se)l

k>0 k>0
< ) lISeyl?
k>0
< lwlP=1.

Thus, given ¢ > 0 one can choose N = N(¢) for which the Nth ¢, tail of the above



series is smaller than €. Then for each m the Cauchy-Schwarz inequality shows that

[(hm(X) Lz, 9)| = |D_ hm(k) (X*Lz,y)

k>0
b
< ) lhm(k)|+(2|hm(k)|2> B
0<k<N k>N
< D R +ee
0<k<N

As Am(k) converges to 0 for each k, it follows that the operators h,,(X)L converge
weaklyv to zero.

Recall that the analytic trigonometric polynomials are weak™ dense in H* [20].
Let g be such a sequence converging weak* to g. From the definition of this weak™
topology, the sequence g,, converges boundedly to g in H*. Thus, the sequence
gm f converges boundedly to gf = 1 in H?. Since each g is a polynomial, by the

functional calculus for X one has
gm(X) A = gm(X) (F(X)L) = (gmfUX)L =5 (g FUX)L = L.

On the other hand, again by the H® functional calculus for X, gm(.X) converges
in the weak operator topology to g(X) [40]. Therefore, WOT-limm gm(X) A =
g(X) A Whence, g(X)A=L.

[t remains to observe that g (X) and A are both not invertible. The invertibility
of g(X) in £, would imply the invertibility of g in H>, contradicting the previous
lemma. If 4 was invertible, it would be the scalar multiple of an invertible isometry

in £,.. hence scalar itself by Proposition 3.2.1. This completes the proof. [ ]
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Remark 3.3.7. The theorem really is exclusive to the non-commutative setting.
The hypothesis of the theorem cannot be satisfied when n = 1. For if > and ¢ are

inner functions in H*, then the function ¥ = ¥y belongs to ¢H? and Y H?.

As a surprising consequence of the theorem the reducibility of the generating

isometries is revealed in the non-commutative setting.
Corollary 3.3.8. For n > 2, each L; has proper factorizations in £,.

Proof. The isometry X can be taken to be L; for j # i. [ |

In fact, there is a large collection of isometries which can be seen to be reducible
in this manner. Note that by unique factorization, every operator L in £, with

(LE&..&) =0 can be written as

L= Z LoAw,

lw|=k
for some k > 1 and A4, in £,.

Corollary 3.3.9. Let L be an isometry in £, with L = le{=k LyAw, for some

k>1 and 4, in £,.. Suppose either one of the following conditions holds:

(i) There is an A, for which there ezists a B # 0 in £, with the range of B

orthogonal to that of A.
or
(ii) Some A, is a scalar multiple of an isometry.

Then L properly factors in ..



Proof. Let £ and 7 be vectors belonging to H,, throughout the proof. To prove (i),
set A = [, B. Write the inner-outer factorization for A as 4 = L4C. Since C 1s

outer, there are vectors (m such that n = limn—yoo C{m. It follows that

(LE, Lan) = lim (L€, LaCGn) = lim (L& LuB(n)
= lim (Ludut: LuBSm)

= lim (46 Bn) = 0.

Thus, L4 is an isometry with range orthogonal to the range of L.
Lastly, suppose A, is a scalar multiple of an isometry. Write Las L = LyAu+4.

Let A = L 4B be the inner-outer factorization of A. Since

.47'[,; = L4B 7‘{" = L,;Hn,
the ranges of L,, and L, are orthogonal. Further, one has
AA,+B"B=1.

So B is also a scalar multiple of an isometry. and it is therefore scalar since it is
outer. Suppose that AL 4, =a*l and B =3I. Let c = a®|3|7%, and let X be the

operator X = Ly Aw —c3L4. Then X is an operator with range orthogonal to the

nl
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range of L. Indeed,

(L6, X1) = (Ludwé LuAwn)—(A&c3Lan)
= a*(&n) —clBl*(& )
= 0.

As in the proof of (i), using the inner part of X vields a desired isometry. a

It is worthwhile to point out a striking special case of the first condition in the

corollary.

Corollary 3.3.10. Let L be an isometry in £, with L = > jwi=k LwAw, for some

k> 1 and Ay in .. If any A, = 0, then L properly factors in La.

Remark 3.3.11. Obviously there are many isometries which satisfy the first con-
dition. Further, all of the isometries shown to be irreducible over the unit ball of
the algebra in Theorem 3.3.3 and Remark 3.3.4 are reducible over the full algebra
since they satisfv the second condition. Other isometries which satisfy the second
condition include the collection of all operators which are the sum of pairwise or-
thogonal words. For, in this case every non-zero 4, would necessarily be a scalar
multiple of an isometry.

There are also other more specialized classes of isometries which can be factored
using this method. As an example. let f and g belong to H> with |[fl*+ [g]* =1

on T. Such functions can be found by using the logmodularity of H> [26]. Then

L=L,f(Li)+Lag(Ly)
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is an isometry in £; which apparently does not satisfy the conditions in the corollary.
Let a = f(0) and 8 = g(0) and choose A in T such that A(a3) = @5. Then L and

the isometry

1

X = GF e

(BLiL; — Aa L3)
have orthogonal ranges. Indeed, for £ and n in ‘H, one has

(laf + 1B (LEXN) = (fF(L)EBLen) —(9(L1)E, A Lan)
= aB (& Lyn)—3aX (€. Lan)

= 0.

The reducibility of this large collection of isometries, together with the fact
that the orthogonal complement of the range is always infinite dimensional (Theo-
rem 3.2.7), leads one to believe that perhaps the theorem can be applied to every
isometry L with (L&.,£&.) = 0. However, this is not the case. The trouble is that
difficulties arise when the space H, € LH, is too ‘thin’ at each level of the H,
tree. That is, the dimension of P, (H, S LH,) remains small as k increases (recall

Remark 3.2.8).

Theorem 3.3.12. There are isometries L in £, with (L&..&.) = 0 for which H, <

LH,, does not contain the range of an isometry in C,,.



Proof. For k£ > 0, put

Iy = leR2 Z wawv

lwl=k

and let z be the unit vector

—k—1
z= 277 el 7

k>0

Suppose y is in H, with (Riz,y) = 0 for all words u in F,. Now given k > 0,

choose a word u with |u| = k. Then

0 = (2% ||zl RLR; (R 2, y)

(R;( Z Rw{w)?y)

[w|=Fk

(§u-y) -

Therefore, y = 0.

Next, write ¢ as £ = Ln, where L is an isometry in £, and n is an R,-cyclic
vector (every vector in H, can be written in this form [17]). The claim is that
L is the desired isometry. As (n.£.) # 0 and (z,€) = 0, one has (L&.&) = 0.
Suppose X is an isometry in £, with range contained in H, & LH,,. Then the
vectors X&, = X(Ry€.) = Ru(XE&.) are orthogonal to Ln =z for every u in F,. In
other words, (X&., R;z) = 0 for every word u. Thus, by the above argument one

would have X¢, = 0, whence X = 0. This contradiction completes the proof. W

So this method cannot be applied to all isometries in £,. Nevertheless. with the
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large body of examples it is still reasonable to make the guess that every isometry

L in £, with (L., €.) = 0 properly factors over the full algebra.

3.4 Ideals and Invariant Subspaces

The characterization of the WOT-closed right and two sided ideals (Id.(£,) and
Id(£,)) in [17] and [18] is complete. The main theorem from [18] is stated as

follows.

Theorem 3.4.1. Let p : Id.(€n) — Lat(R,) be given by u (T) =T &. Then u is a
complete lattice isomorphism. The restriction of u to the set Id(£,) s a complete
lattice isomorphism onto Lat(L.) N Lat(R,). The inverse map t sends a subspace

M to
i(M)={J € & : J& € M}

The maps u and ¢ are still well defined when considering Id;(£,) and Lat(L,).
Although technical difficulties were encountered by the authors, a similar char-
acterization was expected for left ideals. The key observation for right and two-

sided ideals is that the subspace u (Z) is the full range of the ideal . Indeed.

TE =TL.E = ITH,- This is not true for left ideals. and is why the methods of
the authors cannot be applied in this setting.

Towards the identification of right ideals it is first proved that p¢ = id. It is
then shown that this leads to the conclusion, Z¢ = W)—{ for every vector £ in

H,.. The proof that iu = id exploits this fact together with the following more

9



general result about ideals in £,,.

Proposition 3.4.2. LetZ, and I, both be wOT-closed right, left or two-sided ideals
in Cn. IfTE= T:E for all € in H,, then I, =1,.

Proof. In [17] it was shown that the weak™ and weak operator topologies on £,
coincide. Suppose that ¢z is a WOT-continuous functional on £, which annihilates

Z,. Then again from [17)], there are vectors § and n in H, such that

@(J) = (J&n)

for J in C,. But then 7 is orthogonal to 7, = T, and hence ¢ annihilates I as
well. Repeating the argument by exchanging the roles of Z, and Z; shows that the

two ideals are identical. [ |

Remark 3.4.3. Now, let Z; and Z, be WOT-closed left ideals of £,. Notice that,
T, = I,€. implies Z.€ = I, when £ = R&, for some isometry R in R,.. Indeed.

one would have

Ilf = IIREc = RIlfe = RIZE: = I’_)Rfe = Igf

These vectors form a dense collection of vectors in H,. Whether this implies the
same is true for all vectors in H, is unclear. As Remark 3.4.13 points out. this
requires an understanding of unbounded WOT-convergence. Thus, it becomes ap-

parent that there are difficulties encountered when considering left ideals.

Upon further investigation concrete differences become evident. In particular.
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the WOT-closed right ideal generated by a finite collection of isometries with pair-
wise orthogonal ranges is exactly the algebraic right ideal they generate. For left
and two-sided ideals the corresponding result turns out to be false even for one

isometry with norm closure.

Theorem 3.4.4. The algebraic two-sided ideal in £, generated by L, is not norm

closed.

Proof. The operator

= 1 k
A=) =Ll

k>0

clearly belongs to the norm closure of the algebraic two-sided (in fact left) ideal

generated by L,. Suppose that A could be written as

A= z": B:L,C;

i=1

with each B; and C; in £,. Consider the Fourier expansions B; ~ Y_ 5! L, and

Ci~> . cf"Lw. Then the unique factorization in £, shows for each k& > 0.

1 P
—— = (A&.Ex2) = D (BiL:Cibe.Eix)
=1

k+1
p - -
= ) bfict.

=1

However. by compressing the operators B; to the subspace span{{;s : kK > 0}, one
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sees that each of the operators
hi(Ly) = Zb{.L'{ for 1<i<p
k>0
must be in H*®(L,) ~ H>*. Hence the function
k

-~ P .
2 FT1 =§C;h‘

k>0

would belong to H®, a contradiction (see Lemma 3.3.5). Therefore A does not

belong to the algebraic two-sided ideal generated by L.. a

As an immediate corollary of the proof, the corresponding fact about left ideals

is proved.
Corollary 3.4.5. The algebraic left ideal £,L- is not norm closed.

Proof. Consider the same operator A. Simply use the proof of the theorem with

Remark 3.4.6. It seems reasonable to expect that the norm and weak operator
topology closures of the preceding ideals are distinct. It also becomes apparent that
proving this would be quite subtle. Indeed. it is difficult to construct a bounded
operator belonging to the weak closure of £,L- without being in the norm closure

of £,.L,.

Even with these differences, it is still surprising that the analogous identification
of left ideals does not hold. It turns out that the subspaces .\ in Lat(<,) for which

pi(M) = M do not fill out the entire subspace lattice.
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Theorem 3.4.7. There ezists M # {0} in Lat(Ln) for which the associated left

tdeal i (M) is trivial.

Proof. Define an isometry R in R, by

R=) M RiRs,

k>0
where the scalars Ag satisfy 3,501 ]2 = 1 but 3,.,Az* is not in H*. For
example,
L
2

c 1 -
)\k=k+1 where c=<2§) .

k>1

Let .M be the subspace in Lat(£,) given by M = RH,. Actually, every cyclic
@,.-invariant subspace is of this form for some isometry in R, (see [1], [17]. [32]

and [34]). Recall that
i(M)={J € L,:JE € RH.}.

Suppose there is a non-zero J in £, and £ in H, for which J& = RE. Put £ =

S, @y and let v be a word of minimal length such that a, # 0. Since R¢ =
S, @wlw(RE,) one has

J~ Y awhLoLoLf.

lw|2lvl, k>0
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Let Q be the projection onto the subspace span{é;« : k > 0}. Evidently,

QL;L;JQ =a, »_ MLiQ,

k>0

incorrectly implying that J would be unbounded. Thus, it follows that 1 (M) = 0.
]

There is still a strong relation between Id;(£,) and Lat(£,). Essentially, it is
determined by those isometries in $R,, which do not have the qualities of those used

in the proof of the theorem.
Definition 3.4.8. Let R be an isometry in R,,. Then

(i) R is called a flip if there is 2 non-zero vector £ in H, and an operator J in

£, with R = J&..
and

(ii) R is called a cyclic flip if there are operators J, in £, such that Jo§. € RHn
and RE. = lim, Jafe-

The motivation for these definitions is when RE, = J&., for some J in £,. This

means that the Fourier coefficients of R can be ‘flipped’ into an element of €.

Proposition 3.4.9. Let R be an isometry in R, with M = RH,. The following

are equivalent:
(2) R is a flip,
(12) t (M) # 0.
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Proof. This is straight from the definitions of : (M) and flip isometries. [ ]

Remark 3.4.10. It should be noted that when R is a flip, the subspace ui (M)
is ‘large’. Indeed, suppose J # 0 belongs to i (M). Then there is a vector { in H,
with RE = JE.. Write € as £ = Sn, where S is an isometry in R, and 7 is an £,-
cyclic vector (this can be done for any vector in H,, [17]). Note that the set £.J

is contained in i (M). Thus,

RSH, = £,RSn = £,RE = £,JE C ur (M),

which shows that pi (M) contains the range of the isometry RS.

Proposition 3.4.11. Let R be an isometry in R,, with M = RH,. The following

are equivalent:

({) R is a cyclic flip,

(i) pr(M) =M.
Proof. It is always true that ui (M) C M. Suppose that R is a cyclic flip. so that
RE, = lim, J. €. with each J €. € M N £,€.. Then RE, lies in pi(.M), and hence

M = RH, = C.RE, C pi(M).

If this latter inclusion holds, then RE. is such a limit since it belongs to u: (.M). B

This gives a good one vector characterization of cyclic subspaces M in Lat(<,)

for which pi (M) = M. The following corollary shows that the above condition is
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satisfied for a wealth of examples. For instance, consider the situation below even

for £ = &.

Corollary 3.4.12. Let M = RH,, where R is an isometry in R,. If there is
an L, -cyclic vector £ such that RE = J&. for some J in Cn, then pi (M) = M.
Further, if J = Ly, for some word w, then i (M) is ezactly the WOT-closed left ideal

generated by L.

Proof. The condition in the previous proposition is satisfied since,

R§¢ (= RHn = San = SnJ§e7

which shows that R is a cyclic flip.

In general, given 4 in La.
AJE. = ARE = RAf € RH, = M.

Thus, the WOT-closed left ideal generated by J is contained in i (M). The other
inclusion is true for the words J = L. Indeed, in this case it is easy to see that

every A in i (M) has a Fourier expansion of the form

A~ Z QywLyw-

v€EFn

Actually. an analogous claim can be made for the right and two-sided WOT-closed
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ideals generated by L,. However, in [17] it was shown that the Cesaro sums for 4,

Sk(-‘l) = Z ( - 171;1) a,L, € Laly

lul<k

converge in the strong™ topology to A. Hence i (M) is contained in the WOT-closed

left ideal generated by L. o

It has been mentioned that every vector J £, with J in £, factors as J€. = R§
for some isometry R in R, and £,-cyclic vector £. As the corollary observes. one
has that i (RH,) always contains the WOT-closed left ideal generated by J. The
other inclusion holds for words J = L. Proving the other inclusion holds in full
generality would require an understanding of unbounded WOT-convergence in these

algebras. This is discussed further below.

Remark 3.4.13. The corollary shows that the image in Id;(£,) contains the left
ideals generated by the words L. It is not clear whether the image in Id;(£,) is sur-
jective. Given a WOT-closed left ideal Z, it is always true that Z C iu (Z). In gen-
eral, the other inclusion requires an understanding of unbounded WOT-convergence.
For example, suppose T belongs to 1di(£,) with u (Z) = Ha- It is not even known
if one must have T = £,,. For. one would like to say that the identity I belongs to
Z. but all that can be said is & = lim, Jo&. for some J, in Z. For bounded nets.
WOT-convergence amounts to strong convergence on the vector &, [18]. However.

this is not true for unbounded nets. Indeed. as an example consider the sequence



Jm of operators in £, given by Jn =30 o7 L7 It is clear that

1
lim Jm{e = __61“7
m—eo 0 k+1

but the latter vector does not represent the Fourier coefficients of any operator in

Nonetheless, it has been shown that the maps p and @ define a bijective corre-
spondence between the cyclic subspaces of Lat(£,) determined by cyclic flips on
the one hand, and the image under i in Id;(€n) of these subspaces on the other.
Concerning the lattice properties of these maps. it is not hard to show that u
sends closed spans to WOT-closed sums and i sends intersections to intersections.
However, the behaviour of u on intersections and : on sums again comes back to

requiring an understanding of unbounded wWOT-convergence.
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Chapter 4

The curvature invariant of a

non-commuting n-tuple

Recently the notions of a curvature invariant and Euler characteristic for 2 com-
muting n-tuple of operators were introduced by Arveson [4]. These invariants
were developed from two different perspectives, both dependent on commutative
methods. In the examples considered by Arveson. the two perspectives vield the
same invariant and it is always an integer. The goal of this chapter is to develop
non-commutative versions of these invariants. The non-commutative versions in-
troduced here possess some of the basic properties of their commutative cousins:
however, their are some fundamental differences. In particular. the two perspectives
vield distinct but related invariants. A new class of examples is included which help
illustrate these differences. Yet, as with Arveson’s invariant, the non-commutative
curvature invariant is sensitive enough to detect when the original n-tuple is free.

Continuity properties of these functions are also investigated.
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The first section contains requisite preliminary material. This includes a dis-
cussion of the completely positive map defined by every contractive n-tuple which
determines the invariants. The related dilation theory is also recalled. In the sec-
ond section, the existence of the non-commutative curvature invariant and Euler
characteristic is proved. The connection with dilation theory is used to provide
motivation and establish a hierarchy of the invariants.

The third section contains an analysis of how the invariants behave on pure
contractions. The basic property is that the curvature invariant can detect when
an n-tuple is free. That is, unitarily equivalent to copies of the left regular represen-
tation. This is analogous to Arveson’s basic property; however, different methods
must be used to prove the result here. For pure contractions, the Euler character-
istic can provide a measure of the freeness of an n-tuple.

In the fourth section, the curvature invariant is shown to be upper semi-continuous
with respect to the natural notions of convergence. The rigidity of the Euler char-
acteristic prevents any non-trivial continuity results. Stability properties of the
invariants are also considered.

In the last section. a new class of examples is introduced which illustrate the
differences in the non-commutative setting. These examples are finite rank pertur-
bations of a subclass of the atomic Cuntz representations originally considered by
Davidson and Pitts in [18]. The curvature invariant and Euler characteristic are
shown to be distinct in general. Two different collections of examples are used to

prove that the range of the curvature invariant is the entire positive real line.
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4.1 Preliminaries

To every contraction A = (A4;,...,A,) of operators A; acting on a Hilbert space

‘H, there is a corresponding completely positive map ®(-) on B(H) defined by
B(X) =) AXA]=AXA"

=1

When there is more than one n-tuple involved, the associated map will be written

® 4(-). This map is also completely contractive since

()= AA]=AA<L

=1

Given a word w = i ---ig in the unital free semigroup on n generators F,, define

the contraction A, = w(d) = A,, --- 4i,. For k > 1, the sequence

(1) = ARIDA = ) Aud]

=1 |wi=k

satisfies ®(I) > ®%(I) > ... > 0. Hence this sequence has a strong operator

topology limit which has been denoted by
o>=(I) = sokT—limQ“(I).

The two extreme cases are important.

Definition 4.1.1. Let 4 = (A4,,....4,) be a contractive n-tuple of operators

acting on H. Then
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({) Ais a pure contraction if ®*(I) =0
and
(ii) Ais a Cuntz contraction if (1) = I.

These definitions are motivated by the special case of an n-tuple of isometries.
The isometries have pairwise orthogonal ranges exactly when the rn-tuple is contrac-
tive. An important exampleis determined by the left regular representation A of F,
on n-variable Fock space Hn = £*(F,) which has orthonormal basis {£w : w € Fa}.
The isometries L; = A(:i) are defined by L;f, = &iw. and are also known as the
‘left creation operators’. Similarly, isometries determined by words w are denoted

Mw) = Ly,. The n-tuple L = (Ly,..., L,) satisfies
LL* =) LL;=1I-&¢E.
i=1

where £, is the vacuum vector determined by the identity e of F, (which corre-
sponds to the empty word). There has been extensive recent work related to this
n-tuple. In particular, the WOT-closed non-selfadjoint algebras £, generated by
the L; have been shown to be the appropriate non-commutative analytic Toeplitz
algebras [1, 17, 18, 34]. Also see [19, 27, 32] for more detailed information on
these algebras. The WOT-closed algebras corresponding to the right regular repre-
sentation are denoted by %R,. The generating isometries are defined by p(w) = Ru-
where R.&, = £vu. and w’ denotes the word w in reverse order. It is unitarily
equivalent to £, and is precisely the commutant of £,. Throughout this chapter.

for & > 1 let Qx be the orthogonal projection onto the subspace span{&w : lw| < k}.
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Notice that rk(Q) = 2=L. Evidently,

n-1

Qe=1I-)Y L,L,=1I-%}).
jwl=k
For an n-tuple of isometries § = (S, ..., Sa) with pairwise orthogonal ranges.

the subspaces
Hy:={zeH: kliglc(@k(l)x,x) =0}
and
H.:={zeH:®*(I)z =z, for k > 1}.

are easily seen to reduce the S; and are orthogonal complements of each other. This
fact leads to Popescu's Wold decomposition [31]. The S; simultaneously decom-
pose as a direct sum S; ~ T; & Lg"), where the T; = S;|. are isometries which
form a representation of the Cuntz C=-algebra O, since > | .T; = [y.. The
multiplicity of the left regular representation is given by the rank of the projection
I — 3" 5:S;. Although Cuntz and pure contractions are important. there is no
such decomposition for an arbitrary contraction. The point is that for a general
contractive n-tuple A, the subspaces H, and H. will not be orthogonal comple-
ments as they can be skewed when the A; are nct isometries. An example of this
phenomenon was provided in Chapter 2.

The connection with dilation theory is also important. Analogous to the minimal
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isometric dilation of a contraction to an isometry proved by Sz.-Nagy [40]. every
contractive n-tuple of operators has recently been shown to have a minimal joint
isometric dilation to an n-tuple of isometries with pairwise orthogonal ranges on a
larger space. This is a theorem of Frahzo, Bunce and Popescu [22, 12, 31]. Let A =
(Ai1,...,A,) be a contractive n-tuple on H, with minimal isometric dilation § =
(S1,...,5a) acting on K. Then each A; is the compression to H of S;. Minimality
means the closed span of the subspaces S, H is all of K. The condition of uniqueness
is up to unitary equivalence fixing H. In addition, from the construction of the
dilation, the subspace H of K is co-invariant for S. Indeed, recall from Lemma 2.3.1
that upon decomposing K = H 5 H', each S; may be written as a matrix S5; =
Ai 0

[x.- Lf-"’]’

Popescu’s Wold decomposition shows that every contractive n-tuple 4 deter-
mines a Cuntz representation and copies of the left regular representation through
its minimal isometric dilation S. Every Cuntz contraction has a Cuntz represen-
tation as its dilation. For, it is not hard to see that 3_7 A;A; = [ if and only if
S°n_,SiS7 = I. When an n-tuple .1 acts on finite dimensional space. the associ-
ated Cuntz representations have been completely classified [16]. As an aside. there
has been considerable interest recently in classifving Cuntz representations. For
instance, see [3, 8, 9, 10, 16, 29, 36]. This is due to the correspondence between
Cuntz representations and endomorphisms of B(H).

The strength of this chapter is in the information it vields for pure contractions.
The multiplicity of the left regular representation in the dilation S of A is given by

the rank of I — 3.7, S:S;. This quantity has been called the pure rank of 4. In

=1
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Chapter 2 it was computed directly in terms of A as
pure rank(A4) = rk (1 -3 .4,-.4;).
i=1

The pure rank is a key invariant in this chapter.
A valuable property of pure contractions is that they are compressions of mul-
tiples of the left regular representation. This was first observed by Popescu [31]

and is included here to illustrate the connection that the minimal dilation can have

with the original n-tuple.

Proposition 4.1.2. If A = (A,,... ,A,) s a non-zero pure contraction, then the
minimal isometric dilation of A s L := (L(la), cens Ls.a)), where a = pure rank(4).

Proof. Suppose A acts on H and its minimal dilation S acts on K. It suffices to
show that K = K,. If this is the case, then § ~ L* where a = pure rank(A).

Consider a vector of the form S,z for some z in  and v in F,. Then for k > |v|,

185D Suzl* = Y 1SwSeSuz|l?

lw|=k

= Y ISl

lul=k-|v|
= (857"(D)z, ),

which converges to zero since A is pure. By minimality it follows that ®F (/) =0,
so that K = K}, |

In [4]. Arveson considers commuting contractive n-tuples for which I — ®([) is

finite rank (ie: purerank(A) < oc). The invariants introduced in this paper are
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defined for any contractive n-tuple, however the greatest amount of information is

obtained in the finite rank case. In this case, the operators

k-1
I-85I) =) &' —2)

=0

form an increasing sequence of finite rank positive operators. The idea is to use
this sequence to obtain information on the associated n-tuple. Arveson defines
two invariants from different perspectives. The curvature invariant is defined by
integration of the trace of a certain defect operator which is defined on the range
of I —&(I). If Ais a commuting n-tuple acting on H, then a natural commutative
Hilbert A-module structure can be placed on H. The A-submodule determined
by the range of I — ®([) is finitely generated. hence from commutative module
theory this module has a finite free resolution. The ranks of the free modules
from the associated exact sequence are known as the "Betti numbers’. The Euler
characteristic is defined as the alternating sum of these ranks. An operator theoretic
version of the Gauss-Bonnet-Chern theorem is obtained from this point of view.

The following asymptotic formulae were obtained for the commutative curvature
invariant and Euler characteristic respectively:

(L= @YD) tk(l — (1))

" k—oo kn k—oc kn

In the examples considered by Arveson (those which vield graded Hilbert modules),
the invariants are always positive integers and equal. This is not the case for the

non-commutative versions. To obtain these new invariants. the traces and ranks of
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the operators I — ®*(I) must be re-normalized. The factors k”/n! turn out to be
specific to the commutative setting.

As mentioned in the introduction, throughout this chapter n is taken to be a
finite integer with n > 2. Although the results used from dilation theory and the
non-commutative analytic Toeplitz algebras go through for n = oo, the invariants
considered here are not defined in this case. However, there may be analogous

invariants in the n = oo setting.

4.2 The Non-commutative Invariants

In this section, the non-commutative versions of the curvature invariant and Euler
characteristic are developed. The connection with dilation theory is utilized to
provide motivation for the definitions and leads to a general hierarchy of the related

invariants. The starting point is an elementary lemma.

Lemma 4.2.1. If{ar}i>1 and {sc}i>1 are sequences of non-negative numbers with

are1 < ap + sk and DY ;5 Sk < oc, then limg_, o ar ezists.

Proof. Let a; = liminfa; and a; = limsupai. Suppose 0 < a; < ap, with
a2 —a; 2 6 > 0. Choose positive integers m; > n, such that Am, — An, > 6/2.

Then one has

6/2 < Gm; — Gm~1 + Gm;—1 — -o-tQp 41 — Qg

S s

n; <k<m; —1
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In a similar fashion obtain a sequence of positive integers n; < m; <nz <mz <...
for which 3, cx<m;-1 Sk = 8/2 for j > 1. This would contradict the summability

of the sequence s;. a

Note that this lemma does not hold if the sequence si simply converges to
zero. With this result in hand, the existence of the invariants in the general non-
commutative setting can be proved. The subtlety of the proof is clarified below by
considering n-tuples of isometries. The uniformity of the estimates obtained leads

to continuity results in Section 4.4.

Theorem 4.2.2. Let A = (A;,...,Aq) be a contractive n-tuple of operators acting

on H. Then the limits

(i) (n — 1)limgoeo to( — d*(I))/n*
and

(i1) (n — 1) limiseo tk(I — ®*(I))/n*,
both ezist.

Proof. The key identity used to prove the existence of both limits is
[—®YI) = I — &)+ &I — (D). (4.1)
To prove (i), note that if X is a positive operator on ‘H. then

tr(®(X)) = z": tr( 4 XA = ‘: tr( X2 AT X ?) < ntx(X).

=1 i=1
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Observe that since the sequence I — &*([I) is increasing, the limit of the normalized
traces is infinite when tr(f — ®(I)) = oo. Otherwise, equation (4.1) yields for k > 1.

< te(I — ®*+1(I)) < tr(I — ;P"(I)) + tr(l — tI’(I))'

nk+1 = n nk+1

0

Hence the lemma applies and the existence of the associated limit is proved.

The proof of (ii) proceeds in a similar manner. If

rk(I — ®([)) = purerank(4) = oc,

it follows that the limit of the ranks is infinite. In the finite pure rank case, the

subadditivity of rank on sums of operators yields as above

tk(I — ®*+1(I)) _ rk(I — ®*([)) , purerank(d)
0< R+l < nk + k1 .
The previous lemma applies again. [

Remark 4.2.3. These limits exist for any contractive n-tuple; however, this chap-
ter focuses on when the defect operator I — ®(I) is finite rank. These appear to be
the cases for which the most information can be obtained. The naive motivation for
considering these particular re-normalizations comes from an analysis of the words
on n letters. Consider the words on n letters of length less than & for large k. The
total number of words in n commuting letters is on the order of k”/n!, while the
number of words in n non-commuting letters is on the order of n*/(n — 1). This

motivation is clarified further below by considering the situation for an n-tuple of
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isometries with pairwise orthogonal ranges.

In keeping with Arveson’s nomenclature, the notation from the commutative
setting will be kept.
Definition 4.2.4. Let 4 = (A;,...,4,) be a contractive n-tuple of operators.

(i) The curvature invariant of A is defined to be the limit

K(4) = (n 1) lim == 250)

k—=oc n"

and

(ii) The Euler characteristic of A is defined to be the limit

X(4) := (n = 1) lim ”k(I'nfﬁ(”).

Since the operators I — ®*(I) are positive contractions, the inequality K(A) <
x(A) is apparent. Before considering n-tuples of isometries, a simple but helpful

lemma is presented.

Lemma 4.2.5. If.A and B are contractive n-tuples, then K(ASB) = K(A)+K(B)

and X(A S B) = X(A) + X(B), where the direct sums are taken coordinate-wise.

Proof. This is from the identity
tk(I — B¢ 5(1)) = k(I — ®4(1)) + k(I — B5(I)).

The same is true for the traces.
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If 2 contractive n-tuple consists of isometries, then the invariants are both equal

to the wandering dimension of the n-tuple.

Lemma 4.2.6. If S = (S1,..-,5a) s an n-tuple of isometries with pairwise or-

thogonal ranges, then
K(S) = x(S) = pure rank(5).

Proof. Recgll from Popescu’s Wold decomposition that the S; are unitarily equiv-
alent to T; & Lf-a), where the T; form a representation of the Cuntz algebra. The
multiplicity « is equal to rk(/ — Sr ., SiS;) = pure rank(S). The invariants
are clearly stable under unitary equivalence. Thus, from the previous lemma,
K (S) = pure rank(S) K(L) and X(S) = pure rank(S) X(L)-

However, Qu = I — ®%(I) = I = 3 = Lw L3, is the orthogonal projection onto

the subspace span{£. : [w| < k}. Hence,

-1
x(Qe) = k(@) = 1+ n+...+nt T = T
Evidently, K(L) = X(L) = limks ":—}1— = 1, finishing the proof. |

The characterization of pure rank from Lemma 2.6.3. together with the previous

lemma, vields an esthetically pleasing result.

Theorem 4.2.7. Let A be a contractive n-tuple with minimal isometric dilation

S. Then
(i) K(4) < K(S) = pure rank(4)
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and
(i) X(4) < X(S) = pure rank(4).

Proof. If A = (A;,... ,A4,) act on H and S = (S1,... ,5a) act on a larger space
K. then each A; is the compression to H of S;. Recall from the construction of the

dilation, H is co-invariant for the isometries S;. Thus.

Iy —5(In) = In— D Audl

[wi=k

= Py (1,c -y sws;,) »

jwi=k

= Py(Ic — ®5(Ix)) lu

which vields the inequalities. Further, from Lemma 2.6.3, the minimality of the

dilation guarantees that

purerank(S) = rk(lc — »_ Si5;)

i=1
= tk(fx — O AiAj) = pure rank(4).

i=1

An application of the previous lemma finishes the proof. [

The following immediate corollary establishes the hierarchy of these invariants.

Corollary 4.2.8. Let A be a contractive n-tuple of operators. Then

0 < K(4) < x(A4) < purerank(4).
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In Section 4.3, it is shown that these three numbers are equal precisely when

the n-tuple is free.

4.3 Detection of Freeness

In the commutative setting, the invariants are sensitive enough to detect when an
n-tuple is ‘free’. This is what Arveson calls the basic property of these functions.
The notion of freeness for non-commuting n-tuples can be expressed as proximity

of an n-tuple to the left regular representation.

Definition 4.3.1. A contractive n-tuple A = (Ay,..., A,) is called free if there
is a positive integer a for which 4 is unitarily equivalent to L* = (L(la), LS.

The a above is of course necessarily the pure rank of A. It turns out that
the non-commutative analogue of Arveson's result also holds. In fact, the non-
commutative invariants can be thought of as measuring the freeness of the n-tuple.
The key technical device in proving the detection of freeness is the lemma which
follows. It depends on the existence of a limit related to the curvature invariant.
If M is a subspace of H, which 1s invariant for &,. then a contractive n-tuple

4 =(A1,-..,An) is defined by

A= P_w; L;

= (Lilwe)™

From the structure of the Frahzo-Bunce-Popescu dilation. all pure contractive n-
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tuples are direct sums of such n-tuples. By Theorem 4.2.2 and Lemma 4.2.6,

L = K(L) = K(4) + (n — 1) lim EEM0E),

In particular, the latter limit exists.

Definition 4.3.2. Let M be a subspace of H, which is invariant for <,. Then

define

E(M):= (n —1) lim tr(PuQ@cPu)

k—oo n"

The lattice of £,-invariant subspaces has been determined by Davidson and
Pitts. These subspaces are infinite dimensional if they are non-zero. The important
observation here is that the limit A (M) is non-zero exactly when the subspace M

is non-zero.

Lemma 4.3.3. If M is a non-zero subspace of H, which is invariant for each L;,

then K (M) > 0.

Proof. From the decomposition theory for non-zero £,-invariant subspaces devel-
oped in [17], the subspace M has a unique decomposition into cyclic invariant sub-
spaces, M = ZJ- SR¢;Hn, where each R¢; is an isometry in Rn with £,.-wandering

vector R¢;€. = ¢;. Thus,
tr(P,kaP‘w) = Z tl‘(PijPj).
J

where P; is the projection onto R¢;Hn. Without loss of generality assume M =
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RH,,. for an isometry R = R¢ in R,,. Then the vectors R¢, = RL,E. = LG form
an orthonormal basis for M.
Suppose { = Y ,ex, @ufu and let v be a word of minimal length |v| = ko such

that a, = (¢,&) # 0. Then for k > ko and words w with |w| > k — ko, one has

QiREw = QiLuw( = Qr(f — Q) Lw( = 0.

Whence. (PuQiPumREw. REW) = 0. Conversely, for words w with lw| < k — ko,

(QeREw. REW) Y au(Qkun: Lul)

lul=ko

- Z au(waus Lu.C)

Iaulz-

[ul2ko. |wl+]ul<k

In particular, for words w with |w| < k— ko, the lower bound (Qx Rfw, Réw) 2 |ay|?

is obtained. Hence, computing the trace yields

,nk—k —1
tr( PruQiPu) 2 Iau|2(1+n+---+nk—k°-l) = |a.|° -1
Therefore, it follows that R(M) > ]%'f!,: > 0. a

The freeness condition associated with these invariants can now be proved.

Theorem 4.3.4. If A = (A;,...,4da) s a non-zero pure contraction with finite

pure rank, then the following are equualent:

(z) A is free



(ii) K(A) = x(A) = purerank(A).

Proof. If 4 is free, then the three invariants are equal by Lemma 4.2.6. Conversely,
let @ = purerank(A) and suppose A acts on H. Note that since A4 is pure, its
minimal isometric dilation is L® = (L, ..., Ly acting on K := H, which will
be regarded as containing H. However, recall from the construction of the dilation,

the space H is co-invariant for the isometries Lfa)- Thus,

tr(fx — ®5a (1)) = te(Pu(lc — ®La(1))Pu) + tr(Pys (Ix = ®Fa(1))Pys)

= to(lsy — B (1)) + tr( Py (Ix — ®5a (1)) Py ).

Co-invariance also means that H' is invariant for the algebra &) Hence H*
decomposes as a direct sum of a subspaces V;, each invariant for £,.. So the traces

decompose as

tr(Ix — ®5a (1)) = tr(Iy — 5(1)) + O _ tr(Py;QePy;)-

Jj=1
If Ht # {0}, then some V; # {0}. Hence by Lemma 4.3.3. one would have

a=K(L*) > K(A)+ KW)

> K(4) =a,

an absurdity. This shows that H = K. Hence A is its own minimal isometric

dilation L*, and the result follows. [ ]

In general these numbers can all be distinct for non-commuting n-tuples. Exam-
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ples are introduced in Section 4.5 which illustrate this. Nonetheless these invariants,
and in particular the curvature invariant, can be used to detect when an n-tuple
is free. A further investigation of the Euler characteristic allows one to view it as
a measure of the freeness of an n-tuple in certain cases. In fact, it can be used to
describe what a pure contractive n-tuple ‘looks like’ in a sense. Recall that such
an n-tuple A = (Ay,....4n), with each A: € B(H), has L* = (L(Ia),... L
as its minimal isometric dilation where a = pure rank(4). The n-tuple L% acts
on H'®), which contains H as a co-invariant subspace. For the sake of brevity, in
the followiné two theorems the pure rank(.4) = 1 case will be considered. Further,
the space H will be regarded as contained in H,.. so that the A; actually are the
compressions of the L; to H. To begin with, a necessary condition on the size of

the Euler characteristic is obtained when A possesses freeness.

Theorem 4.3.5. Let A = (4,,...,4,) be a pure contraction which acts on H
with pure rank(A4) = 1. Suppose H* is a cyclic £,-invariant subspace of Ha. If H

contains span{£, : |w| < k}, then
. 1

Proof. The inequality is trivial if H is all of Ha. Otherwise, the subspace H* can be
written as H* = R¢H., for an isometry R¢ in R,. The generating wandering vector
is Rc€. = ¢, and an orthonormal basis for H* is given by {L.{ = R¢bw : w € Fa}-

Let v be a word of minimal length |v| = ko such that (¢, &,) # 0. The hypothesis

guarantees that Py1&w = Py Qis16w =0 for |w| < k, so that ko > k. For I > ko
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and words w with |w| = { — ko, one has
QiRcéw = QuLu¢ = Qi — Qul+k) LuwC = 0.
Hence, the range of Py1QiPy. for | > ko is given by
Ran(Pqu(Pu;)_ = span{ Py QiRE, : |w| <! — ko}.
Thus, the following upper bound is obtained:

tr(Pu.LleuJ.) < rk(P'uJ.Q[P'uL)
ni=k —1
< l+n+...+n s —0o

Therefore. A (H+) < 1/n*. This finishes the proof since.

=K AL TP - 1 - 1
1 =K(4)+ K(H') S K(A) + —— <K(A) + 7.

This theorem does not hold when all subspaces H are considered. For example.

when H is finite dimensional and contains span{&, : |w| < k}. both invariants are

zero. Further, a converse of this theorem does not hold for the curvature invariant.

since the traces can in general be spread over the entire space. However, the rigidity

of the Fuler characteristic can be used to derive a related converse with more work.

Theorem 4.3.6. Let A = (A,,....A,) be a pure contraction which acts on H

with pure rank(A) = 1. Suppose that QIH & H for all sufficiently large |. Then the
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subspace H of Hn contains span{é, : |w| < k} when
1
X(.4) >1- ;I:

Proof. Suppose Ht decomposes as H* = Y i, &R Hn and ko is minimal for
which there is a word v with |[v| = ko and a j such that ((;, &) # 0. To prove the
result. it suffices to show that ko > k. If this is the case, then Py = 0 for words
w with |w| < k. Indeed, for such a word w and a typical basis vector R(§,. one

would have ’

(fw’ RC.’Eu) = (fun L.G)
= (Q+16w: (I — Qo) Luli)
= 0.

The point here is that for all sufficiently large [ > ko, the vectors QiR =
QiL¢; for 0 < |w| < I — ko are linearly independent. To see this, suppose b, are
scalars for which the vector z = ZOSle<l—ko bw@iLw(; = 0. Sincel > kg, the vector

£, satisfies Qi€, = €. Thus, by the minimality of the word v.

0= (:z:,fv) = Z bw(Lijva)

o<|wl<t—ko

= be(gjv fu)-,

so that b, = 0. Now assume b, = 0 for 0 < lw| < m < | — ko and let wo be a word
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of length m. Evidently, Qi€uw,v = §wov- Hence, again by minimality

0=(2,6us) = D bul(Lulis&uor)

0<|wl<l-ko

= Z bu(Lwlss Ewor)

|wl=m

= buy ({5 £u)-

Ergo, each b,, = 0. Thus for large ! such that Q/H* is contained in H*, this shows

that tk(Py+QiPyr) 2 "‘""_"l“. Since the projection @; reduces H for large [,

n

nt—1

L= tk(Q1) = rk(PuQiPx) + k(P QiPy).

It follows that

k(P P. 1
l1=x(A)+(n-1) lim - ( nL?l ) > x(A)+ —
l—oc n nko
1 1
> Tt
Therefore. ko > k as required. =

Analogous results can be derived for the general finite pure rank(.1) case. Notice
that the limiting case as k becomes arbitrarily large of the previous two theorems

is the statement of Theorem 4.3.4.

Remark 4.3.7. There are many examples which satisfy the hypothesis of the the-
orem. Let R be an isometry in R, of the form R = Zlul=k a,R,. Consider the cyclic

¢ _invariant subspace RH,. If H* is the orthogonal direct sum of the ranges of such

~T
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isometries, then the-contraction A = (4,,...,4,) acting on H by A; = Py Ll
fulfills the condition in the theorem. In fact, when the subspace H* is cyclic both of
the previous theorems apply. As an example, consider H+ = RH, for the isometry

R above. Then for [ > k and basis vectors £, one has

RE, ifl> |w|+k
Qlew = Z anl&wv =
lul=k 0 otherwise.

In this case, the Euler characteristic can be computed directly as X(4) =1 — .

and M contains the subspace span{§, : [w| < k}.

At the other end of the spectrum one has commutative n-tuples and finite

dimensional n-tuples.

Proposition 4.3.8. Let A = (Ay,...,4a) be a contractive n-tuple such that 4

acts on finite dimensional space or the A; commute. Then K(A4) = X(4) =0.

Proof. If the A; act on finite dimensional space, the traces and ranks of I — ®*(I)
are bounded above. The invariants are trivial when the A; commute simply because

Arveson’s invariant exists. For instance, for the curvature invariant,

er(I — ®(I))

K4) = (n-1)lm

k—o0 Tl’c
_ . kmto(I = ®%(D))
= (n-1)lim 7% kn =0 ]

It would be interesting to know if there is an enlightening characterization of

when these invariants are zero. For instance, it is not known if they are always zero
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at the same time.

4.4 Continuity and Stability

Any continuity result for these invariants must involve some sort of limit exchange,
hence uniform estimates are required. They are provided by the estimates obtained
in Theorem 4.2.2. The abstract framework for proving semi-continuity comes in

the form of the following elementary lemma.
Lemma 4.4.1. Suppose {sk}i>1, {ax}i>1 and {ak}k>1 for | > 1 are sequences of

non-negative real numbers which satisfy

k1 < Ak + Sk, a2+1§ai+sk for 1>1 and Zsk<oo.
. k>1

If iMi oo Gk = @, iMoo al = a forl>1 and lim,e al = ar fork>1, then

limsupa’ < a.
>1

Proof. The proof is by contradiction. Without loss of generality, by dropping to a
subsequence it can be assumed that there is an £ > 0 such that for [ > 1.
ad—a>:>0.

Then choose an integer A” > 1 for which 3~ 4 sm < /8 and |ax — a| < /4 for

k> A. Now fixlop > 1and ko > A. It will be shown that the sequence {aj, }i>1
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cannot converge to ai,.

There are two cases to consider. First, if a2 > a®, then

[} {
la —ak,| > |ag —a| — |ak, — al

> (al® —ab) + (a® —a) —c/4 > 3¢/4.

On the other hand, if ai‘: < a'o one can choose k > ko for which aﬁ < aﬁ’ and

lal — a| < ¢/8. From the uniform estimates provided by the sk,

lo _ lo _ lo lo lo la
< E S < 5/8.
ko <m<k~1

Hence,
|a£§) —a| < lat - aﬁ’l + |aﬁ’ —adl| < /4.

Thus the following estimate is obtained:

ol —ak| = lag, — | = |ag — a”|

> la—a"| —|ak, —a|—</4> /2

Therefore, Iaf:, — ax,| > £/2 for lo > 1. and an absurdity is realized. [

The notion of continuity here requires a spatial link with the associated n-tuples.

Thus a natural setting for considering the continuity of these invariants is with pure
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contractions, because of the strong spatial link provided by the dilations. Recall
that such a contraction A is the compression of L* to an (£:)@)-invariant subspace
where a = pure rank(A4). For a pure contraction, let P4 denote the projection onto

this determining co-invariant subspace.

Theorem 4.4.2. Suppose A = (A;1,...,4,) and A = (A1, . Atn) for 1 21

are pure contractions acting on the same space with
pure rank(.4), purerank(4;) < a < oc.
If woT-limy P4, = P4, then

limsup K(A;) < K(A).

I>1

Proof. The lemma is applied with ak = tr(J — ®% (I))/n*, o' = K(A), ax =
tr(I — ®%(I))/n* and a = K(4). The estimates are from Theorem 4.2.2:

ars1 < ak +a/n**' and ak,, <di+a/nftt for [2>1

Thus it suffices to show that limy_ec tr(f — @5 (1)) = tr(f — ®* (I)). for k > 1.
This follows from weak convergence. For instance, when o = 1 the operators can

be thought of as acting on Hn. so that

tr(I — ®% (1)) = tr(Pa,QuPa,) = tr(QePu,).
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for a fixed £ > 1, and hence

lim tx(1 - #5,(1) = lim D (Pabu, o)

oo
jwi<k

= 3 (Pabus ) = tx(( — #5(1).

lwi<k
This completes the proof. _ ]

Note 4.4.3. In the infinite pure rank case there are a couple of possibilities. When
tr(f — ®4(I)) = oo the theorem is trivial since K(A) = oc. Otherwise, it is unclear

at this point whether upper semi-continuity is satisfied.

The upper semi-continuity of the Euler characteristic is addressed below. Simple
examples show that neither invariant is lower semi-continuous with respect to this

convergence.

Example 4.4.4. For [ > 1 define contractions 4; = (An1.--- . Awa) by A =
QiLilon. = (Lilqma)" for 1 < i < n. Then certainly WOT-limi_ Q: = I. so the
associated limit is L = (Ly.--- , Ln). However, since Q1Q+Q: = Qi for k > [ one
has

nf—1

n—1

rk(f — ®%,(1)) = tk(QiQkQ1) =

Therefore,

nl—1

nk

K(4) < x(4) = lim = 0.
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Whereas the limit satisfies K(L) = x(L) = 1.

More general continuity results can be obtained for the curvature invariant.
It turns out to be upper semi-continuous with respect to coordinate-wise norm

convergence. This result can be proved without focusing on the pure setting.

Theorem 4.4.5. Suppose that A = (A1,...,Aqs) and A = (Any,..- . Ain) for
[ > 1 are contractions acting on H with pure rank(.4). pure rank(4;) < a < oc. If

limy o H.ﬁll,; — .4.'“ =0forl1< i < n, then
limsup K(4;) < K(4).
{

Proof. As in Theorem 4.4.2, an application of Lemma 4.4.1 is the key here. In
particular, it suffices to check that limy_,e tr(f — &5 (1)) = tr(f — &% (1)), for k > 1.

Fix k > 1. For ease of notation; let B = I — ®% (I), B = (I — % (I)) and
P be the projection onto Ran(B) = ker(B)*. The hypothesis guarantees that By

converges in norm to B. If {e1,... e/} is an orthonormal basis for ker(B)*+, then
tr(B) = i(Be,—, €i).
i=1
On the other hand, for 1 < ¢ < r the sequence Bye; converges to Be;. Further,
tr(By) = i(Bze,-,e,-) + tr( B P*).

i=1

However, the ranks of the B; are uniformly bounded above. Indeed, if @ is one
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of the associated completely positive maps, then
k-1
I-351) =) @ - %)
=0

Thus, tk(Bi)) L a+na+ ... + nk-la = a(-":—_"Tl-), for [ < 1. Hence, let m =
sup;>) tk(Bi) < oc. Let ¢ > 0 and choose K > 1 such that [ > A implies [|BiP+]] <

¢/m. Then since P+ B P+ is a positive contraction of rank at most m,
tr(BPt) = tr(P+*B/P+) < ¢,

for [ > K. It follows that limy_, tr(B;) = tr(B). and the lemma can be applied. B

This theorem is used in Section 4.5 to obtain information on the range of the
curvature invariant. Again, the validity of the infinite pure rank case in the theorem
is unsettled at this point. Concerning the Euler characteristic, continuity at infinity
in any natural topology is trivial. Indeed, if pure rank(A4) = k(I - S0, did]) =
oc. then the ranks of the increasing sequence I — &*(I) are infinite. However. the

rigidity of the Euler characteristic prevents non-trivial continuity results.

Example 4.4.6. Consider the sequences {zx}e>1 and {yetest of £,-wandering vec-

tors belonging to H3 given by
e = ok + Bk€2 and Yk = Bebe + axss.

where ag. Bk > 0, o + 82 = 1 and limioo B = 1. Let M, be the £3-invariant
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subspace

M = Sz \[ Saye V/ span{t.}.

with P the projection onto M. If P is the projection onto span{..§uz 1 u € Fs3}.
the first claim is that SOT-limg Px = P.

To prove this, it suffices to check convergence on basis vectors £,. Consider a
vector of the form &,1. Then &, is orthogonal to all of the determining vectors of

M, except Lyzi = aibun + Brfw2. Hence,
Pkéwl = (Ewls szk)wak = akLwIks

which converges to zero by hypothesis. Similarly, limg 0 Pibws = liMikaoo @k Luwye =
0 for all words w in F3. Next let £,2 be a basis vector in PHs. Then &, is perpen-
dicular to all the determining vectors in My except L,z and Loyk. Let = be the
unit vector orthogonal to zx obtained from the Gram-Schmidt process for which
span{zs, yr} = span{zs, = }. It follows that {Lyzi. Lyzi} forms an orthonormal

basis for span{LwZk, Lwyk}. A computation shows that

Pk§w2 = (§w27 Lwrk)szk + (€w2a Lw:k)Lw:k

275

BkLyzi + —m——=Lus.
V2—1/3¢

Therefore, limk—oc Pcfw2 = Ew2. The first claim follows.
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Hence the contractions 4 = (Ay,...,A,) and A = (Ax1:--- > Ak.n) defined by
A; = PLi|lpu, and A= P.Li|pu; for k>1

satisfy SOT-limi 00 P« = P. The second claim is that limi—oo || Ak; — Ail] = 0 for
1 < i < n. To see this let di = 75-3_%7‘? and suppose zx = aixé1 + bi&z + ci&s for
k > 1. Since z¢ is a unit vector, each of ai, bi and ¢ belong to the unit disk. If

is a unit vector in Hs, then a (long) computation yields for 1 <7< n

(Aks — Azl < 20k + |Beak + dear] + 8] + dicbe — 1| + |dick]

(I1Beax + diac|® + |82 + dicbe — 112 + ldkcklz)ln

In any event, this proves the claim since the upper bound converges to zero as k
becomes arbitrarily large.
Thus this example satisfies the hypotheses of the previous two theorems. But

it is easy to see that
k(I — @' (1) =1+2+2-3+...+2-37? =3t

and

-1 +1

k(I —@,(1)=1+1+3+...+37% ==

Therefore, X(Ax) = 2/3 for k > 1, while x(4) = 1/3.

This section finishes with a look at stability properties. It is obvious that the
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invariants are stable under unitary equivalences. There is at least one other stability

property.

Proposition 4.4.7. Let A = (Ay,...,4,) and B = (B, ... ,B,) be contractive
n-tuples of operators such that each A; is the compression of B; to a co-tnvariant

subspace of finite co-dimension. Then K(A4)= K(B) and X(A) = XxX(B).

Proof. Suppose B acts on H and A acts on a subspace Ho for which H; := H=Ho
is finite dimensional. By hypothesis, each A; = Py, Bilwu, = (Blu,)". Let Bx =

I — &%(I). Then by co-invariance,
rk(Be) < tk(I — ®%(I)) + rk(Py, BePu, ) + tk(Py, Br).

Thus, the associated Euler characteristics are evaluated as

tk(Be)  rk(I = ®4(1))

|x(B) = x(4)] = (rn—1) lim

Yy nk
. 2dimH
S (Tl o 1) lim —_k_—l = 0.
k—oo n
An easier computation works for the curvature invariant. [

This stability property is not true in general. not even if Ho is invariant for A.

Example 4.4.8. For1 <i < n, let 4; be the compression of L; to the £,.-invariant

subspace £+ := span{€, : [w| > 1}. Recall that K(L) = X(L) = 1. However. the
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contractive n-tuple A = (Aj, ... , Aa) satisfies

(I)fi(I)fw = Z AcAgée = Z LupgeJ-L;Ew

jvl=k jvl=k
0 ifil<|w|<Lk
Ew if lw| > k.

In particular, this shows that pure rank(A) = tk(/ — ®.4([)) = n. Further.

n+n2+...+n"]

K(4)=x(4) =(n - l)kliffo [ Tk

Thus by Theorem 4.3.4, A =~ L™ . This can also be observed by noting that £
decomposes as the direct sum of n subspaces which reduce A. The compression of

A to each of these subspaces is unitarily equivalent to L.

4.5 Examples

It is probably not reasonable to expect a tight characterization of pure contractive
n-tuples, since they are the multi-variable analogues of completely non-unitary
operators. Even in the n = 1 finite pure rank case, these operators are essential cc-
isometries. Nonetheless, this section contains a rich collection of examples for which
[ — ®(I) is finite rank. In particular, new classes of examples are introduced which
fill out the range of the curvature invariant and illustrate the fact that generally

the two invariants are not equal in the non-commutative setting.

Example 4.5.1. In [17], Davidson and Pitts described a class of representations
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of the Cuntz-Toeplitz C=-algebra £, which they called atomic free semigroup rep-
resentations. These representations decompose as a direct integral of irreducible
atomic representations, which are of three types. The first is the left regular rep-
resentation, and is the only one which does not factor through the Cuntz algebra
O,. The second type is a class of inductive limits of the left regular representation
which are classified by an infinite word up to tail equivalence. The third type can
be called atomic ring representations. These representations have the shape of a
benzene ring, with infinite trees leaving each node. The nodes correspond to basis
vectors a,nd.each tree swept out is a copy of the left regular representation. The
associated isometries with pairwise orthogonal ranges map ring basis vectors either
to the next vector in the ring, allowing for modulus one multiples of the image
vector, or to a top of the tree which lies below the original node.

These representations can be perturbed to obtain new examples which fit into
the context of this chapter. The idea is to preserve the structure of the ring repre-
sentations, with the proviso that the images of vectors lying in the ring are allowed
to be strictly contractive multiples, instead of just modulus one multiples. These
new representations can be thought of as possessing a certain decaying property as
one moves around the ring.

The construction proceeds as follows: Suppose u = 11iz2.. .14 is a word in F,.

Let H, be the Hilbert space with orthonormal basis,
{Eow:1<s<dand we€Fa\Fuis}
If X = (A1, ..., Aq) is a d-tuple of complex scalars with each |)\;| < 1, then define a
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contractive n-tuple A = (Ay,... , An) acting on H, by

.4.‘6,@ = A,§,+1'e if 1= i,, 1 S ) S d
Aif,e = & if i,
Aifow = Eiw If w#e

So the ring vectors are given by £, for1 < s < d. The associated representation of
Fn is denoted by o, 3. When some )\, is on the open unit disk, there is actual decay-
ing which occurs around the ring. Hence the associated representation will be called
a decaying atomic representation. The dimension of the subspace determined

by the central ring vectors is referred to as the dimension of the representation.

In general the pure rank of these representations is determined by the amount

of decaying which occurs.

Proposition 4.5.2. If o, 5 is the decaying atomic representation associated with
the word u = i, - - - iqg and vector X= (A1, --- s Ad), then the rank of I — ®(I) is equal

to the cardinality of the set {s : |A,| < 1}.

Proof. This is straight from a computation of I — ®(I) on the determining basis
for the representation. For ring basis vectors &, one has A7{,. = 0 when 7 # 1,1

VWhence
(I = ®(D)ye = (I = iy AL Vse = (1= At [*se-

On the other hand, every basis vector outside the ring is of the form &, .. for

some letter i, in u and ¢ # #,. If wi = jov, where1 < jo < n and v is a word in Fa.
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then 43¢, . = 0 for j # jo. Thus,
(I - Q(I))El.m = (I - -4jo'4;°)§s.1bu = 0’

and the result follows. a

These examples form a tractable class of pure contractions. This also shows

how a Cuntz n-tuple can be perturbed by a finite rank operator to become pure.

Theorem 4.5.3. Let A = (A4,...,4,) be a decaying atomic n-tuple. Then A is

a pure contraction.

Proof. Suppose A is determined by a word u = i, - - - 14 and vector X = (A1.-..,Aq)-
It is required to show that ®=(I) = 0. Equivalently, limi_ ®*(I)&,.. = 0, for all
basis vectors &, u-

Consider a fixed basis vector &, , where 1 < s < d and w € F, \ Fat,. For a
given k. there is only one word v of length k for which A; &, # 0. For sufficiently
large k. this word vy will pull &, back toward the benzene ring, and then move

around the ring. Such a word will be of the form
Vp = Wigy -~ -idu"‘il---imk. for some 1 <m < d.

Obviously [, becomes arbitrarily large as k does. Let r = max{|A;] : [A,;] < 1}
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Then,

N4 (Deawll = 11D AvAibuull
lvl=k
= ||AvA, Eowll
= [lAnAL, - 45 (A0 el
< (A *Eaell
< rix.
Hence, limi— oo || ®*(I)€,wl| = 0 as required. [ |

The Euler characteristic and curvature invariant of these decaying atomic n-

tuples can be computed directly. The general pure rank one proof of the Euler

characteristic is included.

Lemma 4.5.4. Let A= (A,,...,A4,) be a d-dimensional decaying atomic n-tuple

with pure rank(A) = 1 determined by a scalar A with0 < |[A] < 1. Then

1

Proof. Without loss of generality assume the n-tuple A is determined by the rep-
resentation o, 3 where u = #;---iq and X is the d-tuple X = (\1....,1). The

associated orthonormal basis is
{€ow:1<s<dand weF,\ Fais}-

Let r = |A]? and let Ry = [ — ®*(I) = I — 3 ;= AvA;. The action around the
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ring is given by A; €1 = A2 and A; L = Lotle for 2 < s < d(whered +1is

identified with 1).
=s—220.

Consider a typical basis vector £, with 2 < s < d+1 and put m
=k—-s+1.

Let k > d be a positive integer and let w be a word in F, with |w|

Then

4:2 R ‘4: .4;.53.1171'

kas.wi = Es.wl' - ‘4wﬁ,_1---i2. A,

Es.wi - o4wii,-1---i2§2.c = 0.

Similarly, Ri€ewi = 0 for |w| >k —s+ 1.
On the other hand let w be a word with |w| = k —s. Then

Awiiy_yis (Awiiyy i) Esowi

Rk{s.wi = Es,wi -
= (1 - r)és.wi-

Analogously, for k > d, every basis vector §s.wi with |w| < k — s will belong to the

range of Ry since Ri&ywi = (1 — '), wi. for some t depending on [w| and d. The

total number of such vectors is

l+(n=1)+(r=1n+...+(n~ 1)nk=* = pkotl
Therefore the rank of Ri for k > d is computed as
k=1 k-2 k-d nk 1
th(Re) =n""'4+n"""+...+n =n—1(1—7_17)
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which shows that X(4) =1 — =&, as desired. |

The formula for the curvature invariant of the one-dimensional n-tuples is readily

obtained.

Lemma 4.5.5. Let A = (A;,...,A,) be a one-dimensional decaying atomic n-

tuple determined by a scalar X with 0 < |A| < 1 (hence purerank(A) =1). Then

K(A4) = (n — 1)111 = ll:\\llz

Proof. Without loss of generality assume u = 1 so that the central ring vector is
£1.e, and define r and R as above. Then the ring action is given by A6 = YT

and A7, =0 for i # 1. Let k > 2 be a fixed positive integer. Then

Rk&l,e = fl,c—-'lilc(-'lz)kfl.e

(1 - rk)fl.e-

Further, if jw| = k — [ for some 2 < [ < k, then

Ri€iwi = Erwi — AwdidAl (AN T ATALE wi

= (1 =71 wi-

However, if w is a word of length at least k — 1, say wi = uv with |u| =k, then

Rksl.wi = El,wi - ‘40‘4;61,110 = 0.
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Therefore the traces can be evaluated as

tr(Rx)

1—rF + (n-1) [(l—r""‘) + n(l—r"'z) + ...+ nk'z(l—r)]
_ - -1 |T (r/n)k -1

= n"l—rk—(n—l)n" [;—__r/n—l ]

S R i’(‘n—‘—lg (n* = r%).

Thus the curvature invariant is given by

k n—1)r rk
K(4) = (p-1)fim [% - 517:1%(1 - n—k)]
n n—r
= (Tl—l):;::,
as claimed. |

Remark 4.5.6. For the commuting examples considered by Arveson in [4]. the
curvature invariant and Euler characteristic are always the same number and equal
to an integer. This is not the case for the non-commutative versions. For instance,
even consider the one dimensional decaying atomic 2-tuple associated with A =
1/v/2. The theorem tells us that K(A) = 1/3 and X(4) = 1/2 in this case. At this
point there does not appear to be a good general characterization of when the two
invariants are equal. It is possible to say things in special cases. For instance, one
can show for a decaying n-tuple A = (Ay, ..., An) determined by the representation
o, - the condition K(A4) = x(4) is satisfied exactly when one of the two extreme

cases occurs. That is, the vector X is either X = (0,....0) or X=(l....1):in
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other words, either there is full annihilation around the ring, or there is no decaying

at all and therefore o, 5 is a Cuntz representation.

The variety of even the one-dimensional decaying 2-tuples turns out to be ex-
tensive enough to obtain the entire positive real line in the image of the curvature

invariant.

Theorem 4.5.7. For every r > 0, there is a contraction A = (A, A;) for which

K(A4)=r.

Proof. By Lemma 4.2.5, it is sufficient to obtain an interval in the range of K(A)

which includes 0. This is just a matter of using the previous lemma and solving an

identity. For positive numbers r with 0 < r < 1/2, the number s = 11'2

—= belongs to

the unit interval. The one dimensional decaying 2-tuple A determined by A = /s

satisfies K(4) =r. [

Remark 4.5.8. There is not as much information available on the range of the
Fuler characteristic. It is easy to construct examples A which satisfy X(A) = 1/n.
Indeed. defining A by 4; = PumLi|m where M+t = 3", SRiH, suffices. Thus.
using direct sums, it follows that every positive rational number is in the range of
the Euler characteristic. It seems reasonable to make the guess that every positive

real is in the range of X(A), it would be surprising if this were not the case.

For decaying n-tuples with higher dimensional central rings the formulae for the
curvature invariant become particularly nasty. Nonetheless, the continuity results

from the previous section can allow one to avoid these computations.



Theorem 4.5.9. For every ¢ > 0 and integers k,n > 1, there is a contraction

A= (A...,An) for which purerank(A4) = k,
k—x(A4)<e and K(A)<ce.

Proof. It is sufficient to prove the purerank(A) = 1 case since direct sums can
then be used in the general case. The pure rank one d-dimensional decaying atomic
n-tuples provide the concrete examples here. The Euler characteristic is always
x(A) = 1 = &, independent of the decaying factor A\. Hence by choosing large
enough central rings, X(A) asymptotically approaches 1.

Given a fixed word u in F, of length d, consider the decaying atomic n-
tuple A, = (Air... . Any) acting on H, which is determined by the d-tuple
F=(r1,....1)for 0 < r <1l Whenr =1 the n-tuple forms a Cuntz repre-

saw.i a-’vw.ifs.wi 1S a

sentation, so that K(A4;) = 0. However, observe that if z = 3

unit vector in H,. then

(40— Aozl = 11D @ewilAia = Air)owill

saw.t

= ”al,c,e(-‘lj.l - AJ'.r)fl,c“
la1eelll =] ifj=10

0 if j# i

It follows that limq; [|4;1 — Ajrll =0 for 1 < j < n. Thus by the upper semi-
continuity of K proved in Theorem 4.4.5, one has limsup, K(4,) = K(4,;) = 0.

This finishes the proof. [
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Remark 4.5.10. Thus the invariants can be asymptotically as far apart as possi-
ble. It would be interesting to know if the extreme case can be attained. In other

words, is there an A with purerank(A4) = 1 such that K(4) =0 and X(A4) =17

There is another class of examples which in a sense are pervasive. If M is a
subspace of H, which is co-invariant for L = (Li,...,L,), then a contractive n-
tuple 4 = (4;,...,4,) is defined by A; = PuLilm = (L]|m)" forl <:i: < n.

Co-invariance shows that

I-@5() = Lu— Y Aud}
|wi=k
= Pu(l= ) Luly)lm
|w|=k

Thus, L is an isometric dilation of A4 which is minimal when £, belongs to M. Recall
from the structure of the Frahzo-Bunce-Popescu dilation that all pure contractions
can be obtained from direct sums of such n-tuples. It turns out that examples can
be constructed from this point of view which fill out the range of the curvature

invariant. The proof uses the invariant defined in Section 4.3.

Theorem 4.5.11. For every r > 0, there are positive integers n and k and a
subspace M in Lat(L;)*) for which the contraction A = (A,,... . An) defined by

A = PuL® | satisfies K(A) =r.

Proof. The case K(A4) = 0 is covered by M = {0}. Recall from the remarks

preceding Lemma 4.3.3 that for every £;-invariant subspace M,

1 =K(L) = K(4) + K(M*).
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Thus it suffices to capture every positive real number in the range of R

Consider 0 < r < 1/4. Choose n > 3 such that 1/n? <r <1/(n -1 A

computation shows that 1 —nr > 0 and ;2;(1 —nr) < 1. Let

agz\/ ke (1 —nr) and a; =4/1-a3
n—1

Define an isometry R in R, by R = a1 R; + a;R?. Let M+ = RH. Then for words

w with Juw| > k—1,
QuREw = QL RE = Qi(a1buwr + a2u22) = 0.

Thus the trace is computed as

tr(PusQePus) = D (QeRw. REu)

|wi<k—2
= 3 (@b RE)+ Y (Réw. RE)
|wi=k~2 [wi<k-2
_ nk-2 -1
= afrzk LI _n—:_l_

Another computation yields,

- . tt(P'MLQkP'\AL) (n — l)af 1 _
R(M*) = (n—l)kli’rr; y = ~ + =T

The examples constructed show that the interval (1/9.1/4] is obtained in the range
of A" with n = 3 and purerank(A) = 1. It follows that intervals of the form
(k/9.k/4] for k > 1 can be obtained with n = 3 and purerank(d) = k. [ |
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These examples are not as satisfying numerically as the decaying n-tuples since
arbitrarily large n and pure ranks must be used. However, in the pure rank one
case the associated C.-invariant subspace is always cyclic. They also show how the
connection with dilation theory can be used to derive information on the ranges of

the invariants.
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