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Abstract 

This research is about a typeface for implementing Persian calligraphy called 

Nastaliq. The main purpose for developing this font was to handle stretching of letters in 

order to achieve line justification through a dynamic font. Therefore, a PostScript Type 3 font 

was developed. However, as the research progressed, it came clear that Nastaliq‟s stretching 

cannot be implemented in a dynamic font. Therefore, the research‟s purpose changes to 

implementing a font containing all the needed glyphs of all needed stretchings of all 

stretchable letters to allow achieving line justification. For this propose a mathematical 

formulation to model handwritten Nastaliq was necessary. The result was a PostScript font 

containing more than 1200 glyphs. To make it possible to use this font in the future, a regular 

expression grammar was developed to identify and name each glyph as a positioned letter in 

a particular context. This thesis describes all the steps taken to build the font. 
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Chapter 1 

Introduction 

1.1 Persian Writing 

The spread of computers around the world has resulted in the need for word-processing 

software in many languages. One of these languages is Persian, which is widely spoken in Iran, 

Afghanistan, Tajikistan, Uzbekistan, and Bahrain, and has a status of official language in the first 

three countries under different names [1]. The Persian alphabet has 32 letters and it is written 

from right to left. Some of the vowels are shown as letters, such as و (o, u), ا (a), and ی (i, y) and 

some others are not written. Each Persian letter can have up to four different shapes according to 

the position it has in its word. These shapes are mainly known as: “Stand Alone”, “Connecting 

Previous”, “Connecting Following” and “Connecting Both”. Some letters have fewer than four 

shapes. Figure 1shows all the four different shapes for letter  in different words. The fact (Be) ب 

that every word can have up to four different shapes makes Persian typography a big challenge. 

 

Figure 1- Different shapes of letter ب (Be) in different words shown within in the red 

rectangles. A) stand alone, B) connect previous, C) connect both, and D) connect following  



 

 2 

Similar to other languages, Persian also has several typefaces. The regular Book-Typing 

typeface which is the type face already used in Figure 1, is written on a horizontal line. Other 

typefaces may differ.  

1.2 Persian Calligraphy 

The best known Persian typeface, which is also a kind of calligraphy, is Nastaliq. 

Nastaliq has some properties which differentiate it from other typefaces. Each letter has both a 

vertical and a horizontal shift from its neighbours; in most other languages, each letter is 

positioned either horizontally or vertically with respect to the previous one. Even in regular 

Persian book typefaces, we just see a horizontal shift. Figure 2 illustrates an instance of a 

Chinese Text. To write Chinese, traditionally letters are arranged in vertical columns, read from 

top to bottom down a column, and right to left across columns. As can be seen in this figure, 

each letter only has a vertical movement from its neighbors in the same column. Figure 3 shows 

a sample of a Hebrew text. Hebrew language is written on horizontal baselines, the same as 

English, but is from right to left. As can be seen in this figure, each letter has only a horizontal 

movement from its neighbors on the same baseline. Figure 4 illustrates an example of two words, 

written in Book-Typing typeface on the left and their Nastaliq versions. As shown in the figure 

the Book-type typeface is written on a horizontal baseline; However for the Nastaliq versions the 

letters have both vertical and horizontal movement. The rectangles in this figure show the first 

letters in each word and the circles show the last letter in the words. As can be easily seen each 

rectangle is positioned both vertically and horizontally different for the circle in the same letter, 

which means there exists both horizontal and vertical movements. 
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Figure 2- A sample of Chinese Text- Each Letter Has a Vertical Movement From Its 

Previous One on The Baseline. 

 

Figure 3- A sample of Hebrew Text- Each Letter Has a Vertical Movement From Its 

Previous One on The Baseline 
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Figure 4- A Sample of Two Words in Persian Written in Book-Typing Typeface on 

the Left Side and Nastaliq on the Right Side. 

Another issue, that makes Nastaliq different from many typefaces but still similar to 

others, is stretching. The same as Arabic Naskh and Hebrew, some letters can be stretched in 

Persian Nastaliq. Figure 5 shows stretching in different languages such as Hebrew, Arabic Naskh 

and Nastaliq. This stretching can be used for several reasons; the most important one is to 

replace the extra space at the end of lines to achieve line adjustment, which is a common 

typography technique. In English this justification can be achieved by increasing the distance 

between the words in order to align the along the margins. This method does not work for 

Nastaliq, since in Nastaliq words should have a constant distance from each other.  

As stretching could be implemented respecting several calligraphic rules, the main stage 

of this research was to prepare a set of rules for stretching in Persian Nastaliq. In addition, while 
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Nastaliq has up to four shapes for each letter, the shape of these shapes can change as a function 

of the letters before and after them. Therefore, a simple Persian Nastaliq typeface might contain 

hundreds of glyphs in order to be able to handle all possible letter combinations. 

 

Figure 5- Different Examples of Stretching in A) Hebrew, B) Arabic Naskh, and C) 

Nastaliq 

1.3 Problems with Automating Persian Writing and Persian Calligraphy  

This work was originally focused on enhancing ditroff/ffortid [2] to be able to handle 

Persian Nastaliq calligraphy by using a technique for implementing stretching developed by 

Abdelouahad Bayar and Khalid Sami [3] and by using a dynamic font [4] to implement the 

stretching. The reason ditroff/ffortid was chosen as the main editor for typing Nastaliq is that, its 
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modular architecture described in  2.1.1. For example if we need to make changes to the program 

handling right to left typing, no other program should be touched. This makes it easier for the 

developers to add new feature to the editor. 

For this purpose, we would need a font containing all the shapes of all glyphs with every 

possible stretching amount achieved dynamically during printing. For this purpose the user 

manual for a program called NasTroff was prepared to serve as a requirements specification. 

However as the research advanced, it became apparent that Nastaliq is much more complicated 

than other typefaces, and that a dynamic font could not be used to achieve the needed stretching. 

This complexity can be categorized into existence of both vertical and horizontal movement of 

the letters, existence of tens of different glyphs for each letter and at last, existence of 

exceptional cases for most of the glyphs. Therefore, the focus shifted to developing only a font 

with all stretching amounts of all shapes of all glyphs rather than also making the changes to 

ditroff /ffortid to handle this font. As a result the user‟s manual for NasTroff was left incomplete. 

However, the developed font was designed to meet the requirements of being used in NasTroff. 

Since the font is written in PostScript, it can be used even without any word-processor.  

1.4 Notational Conventions 

In order to make the content of this thesis easier to understand, here, I provide the list of 

notational conventions. Different fonts have been used to show different concepts.  

 Times New Roman is used for the body of the article. 

 Bold Arial is used for chapters and sections names. 

 Cambria Italic is used for mathematical formulae and variables 

 Palatino Linotype is used for showing rules in Persian Nastaliq. 



 

 7 

 Comic Sans is used for the formal grammar of the regular languages. 

 Calibri is used for Algorithms. 

 Each Persian Letter is first shown in Persian, followed by its English name in 

parenthesis.  

 For two points K1, K2, the notation K1< K2 means K1 is located at the left side of 

K2, K1> K2 means K1 is located at the right side of K2, and K1= K2 means K1 is 

located in the same horizontal location as K2. Also K1 >= K2 means that K1 is 

either located on the right side of K2 or in the same horizontal location as K2, and 

K1 <= K2 means that K1 either located on the left side of K2 or in the same 

horizontal location as K2.. 

The following chapters include Chapter 2 - Related and previous work on this subject, 

Chapter 3 - Rules and Instructions for Persian Calligraphy and Nastaliq,Chapter 4 - Research 

leading to this thesis, Chapter 5- Modeling the Stretching, Chapter 6 – The Nastaliq Font, and 

Chapter 7 – Future Work. 
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Chapter 2  

Related and Previous Work 

2.1 Formatting Bi-Directional Text  

There are several programs that handle both right-to-left and left-to-right typesetting. We 

restrict our attention to programs that handle Arabic, Persian and related languages. Almost any 

program that can typeset Arabic can also typeset Persian. The following subsections describe 

programs for general bidirectional typesetting or for typesetting Persian.  

2.1.1 Ditroff/ffortid 

The bidirectional version of ditroff, ditroff/ffortid, was built in a modular manner by 

adding a post-processor, ffortid, to an unchanged ditroff[2]. ffortid is responsible for printing 

right-to-left text from right to left, while ditroff treats all text as if it were written from left to 

right. Because ditroff was not modified at all, all ditroff pre-processors and macro packages work 

for ditroff/ffortid. Moreover, since ffortid output looks like ditroff output, all ditroff 

postprocessors work for ditroff/ffortid. Johny Srouji and Daniel Berry describe an Arabic 

extension to ditroff/ffortid that can handle much of Persian as well [5]. The algorithm they use 

for reversing left to right text to achieve right to left text in ditroff/ffortid, is as given below.  

To understand this algorithm better, Daniel Berry and Johny Srouji, first explain how 

ffortid works. The main job of ffortid is to reorganize the characters so that the text is in visual 

order, in which the text of each language is written in its own direction and the flow of the 

single-directional chunks in each line is consistent with the current document direction. The 
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current document direction is left to right or right to left as the user decides. To be more specific, 

current document direction is usually the direction of the main language used in the document. 

For example, typically, an English book is a left-to-right document even if it contains a lot of text 

in right-to-left text. ffortid works by totally reformatting each line as a function of the current 

document direction and the direction of each character. At the top level of abstraction, it reads 

the characters of each line, delimited by the end-of-line marker, and permutes characters so that 

the uni-directional chunks of a line flow in the current document direction while the characters in 

each chunk flow in the chunk‟s own internal direction. 

for each line in the file do 
if the Current-Document-Direction is left to right  then 

reverse each contiguous sequence of right-to-left characters in the line 
 else /* (the current document direction is right to left)*/ 

reverse the whole line; 
reverse each contiguous sequence of left-to-right characters in the line 

 fi 
od 

 

2.1.2 TEX/XET 

The most ambitious TEX-based project aimed at formatting Arabic is the TEX/XET 

program developed by Pierre MacKay by modifying TEX itself to be bidirectional [6]. The 

program does the same reversal of text in designated right-to-left fonts that ffortid does, but 

inside the modified TEX using the internal data structures of the program rather than the dvi 

output. It assumes separate letters but does nothing about stretching. 
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2.1.3 Microsoft Word 

The 2002 Microsoft Office system provided a right-to-left functionality and features for 

entering, editing and displaying right-to-left or combined right-to-left and left-to-right text [7]. 

Microsoft Word 2007 provides support for many more languages and has solved many of the 

bugs. On Windows XP, MirEmad [8] allows Microsoft Word to typeset Nastaliq, making 

Microsoft Word one of the few applications so far handling typesetting Nastaliq and bi-

directional formatting at the same time. However, the amount of stretch is constant and there is 

just one stretched version of each letter. 

2.1.4 Persian Only Programs 

There are programs that can typeset Persian with several fonts. However, these 

applications do not also typeset left-to-right languages. Therefore, they are not bi-directional. 

NameNegar [9], and Maryam [10] are examples of this kind of program. 

2.2 Keshideh 

In Persian, stretching is commonly known as keshideh. Keshideh has different types as 

explained next. 
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2.2.1 Different Versions of Stretching 

2.2.1.1 Stretching the Letters 

This case occurs when we stretch the stand-alone and connecting-previous version of the 

letters. This case happens for letters ,(Be) ب  ,(Pe) پ  ,(Te) ت  ,(Sin) س ,(Se) ث  ش   (Shin),  ,(Fe)ف 

 .(Gaf)گ and ,(Kaf)ک

2.2.1.2 Stretching the Connections 

This case occurs when we have connected letters in a word. In this case, respecting the 

rules introduced in Chapter 3, we can stretch at most one connection in a word.  

2.3 Pre-complied Variations and Dynamic Stretching 

There are two ways considered in this research to implement stretching. First, in the 

dynamic fonts, each glyph is described by a parameterized procedure that draws the glyph‟s 

outline in a variation determined by the values of the parameters passed to the procedure.  Notice 

that there can be an infinite number of versions for each glyph since each parameter can be any 

value. This technique is called dynamic stretching. The other solution is to construct a finite set 

of stretched versions for each letter. In this case, we can design all the stretched amounts of the 

letter and select the correct glyph.  

2.4 Dynamic Font for stretching letters 

Daniel Berry has implemented stretching of letters in Arabic, Persian, and Hebrew[2]. 

Although the Persian typeface he uses is different from Nastaliq, many parts of this work are 
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useful for stretching Nastaliq. The outline of any character is a series of elements, each of which 

is a line, a cubic Bézier curve, a circle, or an arc. Daniel Berry stretches the Bézier curves which 

do not affect the nature of the letter. Figure 6 illustrates the stretching of a cubic Bézier curve. 

 

Figure 6- Stretching a Four Point Curve Using the Method of Daniel Berry[2] 

To stretch a 4 point Bézier curve by A units, simply add A to the x values of the two right-

hand points and to all points to the right of the left-hand one of these.  

It is a problem to stretch through the shared end point of two Bézier curves whose 

tangents are the same at the shared point. As shown in Figure 7, adding A to the x values to the 

three rightmost points of the right-hand curve in order to stretch between the first and second 

point introduces a corner into what was a smooth meeting at the shared point. 
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Figure 7- Cornered Shared End Point Caused by Stretching 

As shown in Figure 8, the corner can be avoided by preserving the slope in the left-hand 

tangent of the right-hand curve by increasing both the x and y values by amounts consistent with 

the slope of the tangent. However, now the right end of the combined curve does not have the 

same y value as before. A proper solution requires redesign of the two adjacent Bézier curves 

into one or three adjacent curves so that the place of stretch is in the middle of one cubic Bézier 

segment. 
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Figure 8-Fixing the Corner 

 

One special case of stretching through a shared end point works, specifically when the 

tangents through the shared end points are completely horizontal, as suggested by Figure 9. 
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Figure 9-Special Case, Horizontal Tangents 

2.5 Problem with Daniel Berry's Solution 

Although this kind of stretching works and provides a stretched letters, it still has some 

problems. As can be seen in Figure 10, Daniel Berry provides some various attempts to stretch 

the Stand-Alone Alif Maksura in Arabic which is the same as the letter Ye in Persian.  
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Figure 10 Various Attempts to Stretch the Stand-Alone Alif Maksura 

 

Daniel Berry has manually made some different version of letter Alif Maksura in Arabic. 

As can be seen in Figure 10, the thickness of the horizontal part of the letter "ی" (Alif Maksura) 

shown in the right side of the figure, differs in all variations. These different looking versions of 

stretching are symptoms of a single fundamental problem described in the next section, namely 
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that Daniel Berry‟s implementation of stretching does not model the way stretching is done in 

hand-written Persian or Arabic writing.  

2.6 Abdelouahad Bayar and Khalid Sami’s Observations 

Abdelouahad Bayar and Khalid Sami [3] describe the problem that Daniel Berry‟s 

method faces. Daniel Berry‟s system offers the possibility of stretching characters horizontally to 

a degree. However in Persian and Arabic calligraphy a vertical stretching might also be required.  

In each of  Persian and Arabic calligraphy, some parts of letters are written, directly with 

the nib head and other parts are drawn in a way that the contour is set first, with the right up 

corner of the nib head (the “Qalam‟s tooth”) and afterwards, it is darkened with a brush[11, 12, 

13]. The following three figures show an instance of letter Reh. The whole nib head is used for 

the black part, and a corner of the nib head is used for the other part. 

 

Figure 11 – An Example of Different Uses of the Nib Head in One Letter 
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Figure 12- a) Sample Nib Head, b) The Stand-Alone ر (Reh) Using the Nib Head, c) 

The Written Part of the Letter ر (Reh), d) The Drawn Part of the Letter ر (Reh) 

The  problem with Daniel Berry‟s method is illustrated in Figure 13 andFigure 14. The 

thickness of the stretched letter changes and does not respect the constant size of the nib head. In 

some places, it is more and in some places the thickness is less than the nib head. Thus Daniel 

Berry‟s method does not model hand-written Arabic writing. 
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Figure 13- Unstretched Stand-Alone ق (Qaf) 

 

Figure 14- Long Stretching of the Stand-Alone ق (Qaf) in Daniel Berry’s Method 
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In the Arabic Naskh style, the nib head behaves as a rectangle of length l and width 

l/6[3].  This rectangle moves with a constant inclination angle of about 70 degrees from the 

baseline. A nib‟s lead with l= 12mm is shown in Figure 15:  

 

Figure 15-Nib Head in Naskh Style 

Figure 16 shows how a correct stretching should look. As can be seen, the thickness of 

the stretched letter is constant and equal to the length of the nib head. Notice that this thickness is 

not calculated vertically, but along lines that have a 70 degree angle from the baseline. 
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Figure 16- A Sample of Correct Stretching in Arabic Naskh Respecting the 

Constant Thickness of the Nib Head 
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Chapter 3 

 Rules and Instructions for Persian Calligraphy and Nastaliq 

3.1 Persian Nastaliq and Different rules for typesetting 

In order to make a model for handwritten Nastaliq, it is necessary to provide a set of rules 

that should be respected. In this chapter, many rules have been gathered which would be useful 

in order to typeset Persian. It is important to know that there are also many other rules existing 

for Nastaliq, but the ones provided in this chapter are the only ones important for the purpose of 

this thesis. Another important point to mention is that the master calligraphers of Nastaliq have 

provided exceptional cases for each rule they have mentioned in order to make the text look 

better, and this responsibility for the judgment of the choosing what is more beautiful is given to 

the author. In order to make these rules applicable I had to make a set of strict rules and 

therefore, I simplified them to make them implementable in a software application. 

3.2 Rules 

These rules are derived from several instructions and tutorials [12, 13, 14, 15, 16].  

Rule 1: 

For regular lines, up to 3 stretchings in a line of text is always acceptable. More 

than 3 stretchings is possible at the writer’s discretion to help keep balance in the line.  

Rule 2: 

 It is not desirable to have two adjacent stretched letters.  
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Rule 3:  

The space between two adjacent letters that are not connected should be one dot. 

Figure 17   shows the Stand-Alone letter ب (Be), which contains a typical dot which is 

identified by a rectangle .  

 

Figure 17-Stand-Alone Letter ب (Be). The Typical Dot is Shown in the Rectangle. 

Rule 4:  

There are three reasons to stretch letters of which only the third is important for 

typesetting software, since the each of the first two needs a human to choose what is 

more beautiful and the second one needs a human to distinguish the letters by the 

meanings of the whole words containing them: 
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I –  look more beautiful,  

II-  avoid confusing between similar words, and 

III-  justify lines and fill spaces 

Rule 5:   

Different amounts of stretching are allowed by different master calligraphers. We 

adopt the convention that a letter can be stretched by an amount of from one to five 

dots. 

Rule 6: 

A letter stretched by an amount of two to five dots should not appear at the 

beginning or end of a sentence. 

Rule 7:  

No two stretchings in two neighboring lines should be located vertically close to 

each other. If there are no other choices, it is permitted to disobey this rule. 

Rule 8:  

No stretches may appear at the beginning and end of a line. However, if there is 

no other choice and we really need to stretch, we can stretch in these situations. 

Rule 9:  
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Stretching is acceptable in the following eight conditions and not in other 

contexts: 

a) after (He) or (He)  as in  and  , 

b) after (Sad) or (Ta) as in , , , and

, 

c) after (Ein) or (Ein) as in  and , 

d) after  (Fe or Ghe) or (Fe or Ghe) as in  and , 

e) after (Mim) as in , 

f) after  (Ha) as in , 

g) after  (Ha) as in , , and , and 

h) after  (Ha) as in , , and . 

 

Rule 10:  

The letters س and ش cannot be stretched in the following conditions: 
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a) before (Jim, Che, He or Khe), (Jim, Che, He or Khe), or (Jim, Che, He or 

Khe-Re), 

b) before another stretched version of the same letter, 

c) before (Mim), (Mim-Alef), or (Mim), 

d) before (Ha), 

e) before  (Ye), 

Rule 11: 

In every line, it is suggested by Nastaliq Masters to have 1 stretched letter or two 

half-stretched ones, instead of having many stretched letters. A half stretched letter is a 

letter which is not stretched by the maximum permitted amount. Sometimes in order to 

make achieve line alignment, we may decide to put more than one stretched letters in it.  

Rule 12: 

It is important to check each stretchable letter’s location in its line before 

stretching it. When there is more than one stretchable letter in a line, it is required that 

there be some distance between every two stretched letters. To be more specific, divide 

each line into 5 equal-width sections from right to left. If one letter ends up in two 

sections, it must be considered as a member of the section that contains a larger portion 
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of the letter. If the letter is equally in two sections, it can be considered to be in either 

section.  

If there is to be one stretched letter in a line, the best place for it to be is Section 3. 

If no letter in Section 3 is stretchable, the next candidate is Section 4, and if no letter in 

Section 4 is stretchable, the next candidates are Sections 2, 5 and 1, in that order.  

If there are to be 2 stretched letters in a line, the preferred places are Sections 3 

and 5. If neither section has a stretchable letter, or they have stretchable letters but some 

rules might be violated by stretching these letters, the next candidates are the couples of 

Sections 2 and 5, Sections 2 and 4, and Sections 4 and 1 in that order.  

3.3 How to stretch a letter in Persian Nastaliq 

As discussed in Section  2.2.1, there are two kinds of stretching in Persian. We can either 

stretch the connection between two letters or a letter itself respecting the rules introduced in 

Section  Chapter 3. Note that the amount of stretching is a multiple of the width of a dot. Figure 

18 shows a  stand-alone version of letter ب (Be), with a size of 5 dots. A dot is shown at the 

bottom of the letter in this figure. Note that for the font used in this research, the initial size of 

the unstretched version of many letters such as  is a little more (Se) ث and ,(Te) ت ,(Pe) پ ,(Be)  ب

than 5 dots. In order to calculate the exact size of a dot used in this font, I divided the total length 

of such a letter by 5 and calculated the exact amount of the dots used in this font which is 135 

points in PostScript. Therefore, a letter's length might not look exactly equal to the size we 
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expect. Figure 19 also shows a stand-alone version of letter Be that is stretched by the amount of 

four dots.  

 

Figure 18- Unstretched Stand-Alone Letter ب (Be) with Size 5 Dots. The Typical Dot 

Can Be Seen in the Bottom of the Letter. 
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Figure 19- Stretched letter ب (Be) of Figure 18 by the Amount of 4 Dots. 

  Use of the nib head in Persian Nastaliq, is not the same as in Arabic Naskh. There are 

two different styles of writing with the nib. First is called the weak style, which is seen mostly in 

the beginnings and the middles of some letters and in the ends of most of the letters like  ب  (Be), 

,(Re) ر س   (Sin),and ح(He), in which not all of the nib head is placed on the paper. Only part of 

the nib is used to draw the weak part of the letter. The rectangle in Figure 20, show the usage of 

nib head in weak mode. As shown in Figure 20, the nib head is using the weak style everywhere 

inside the larger rectangle at top of the figure. In this area the nib head is larger than the drawn 

letter‟s width which means that not the whole head is used to draw some part of the letter. To 

achieve using just some part of the nib head, one places enough of the corner of the nib head on 

the paper and moves it on the paper. The smaller rectangles stands for the nib head.   
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Figure 20- Use of the Weak Style for Letter ج (Jim) - Shown within the Rectangle.  

The second style is called the power style in which the entire nib- head is placed on the 

paper. There are also two modes for the angle of the nib head for this style. In solid mode which 

is used in letters such as ک (Kaf), گ (Gaf), ب (Be), پ (Pe), ت    (Te), ث (Se), and ف (Fe), the nib 

head‟s angle does not change, and stays almost the same in order to write the letters. However in 

practice it may rotate by 20 degrees. Figure 21 shows a version of letter ت (Te) stretched by the 

amount of 3 dots. The section within the larger rectangle is drawn using the solid mode. The 

other mode is called rotate mode in which the nib head rotates as in letters ج (Jim), چ (Che), ح 

(He), خ (Khe), ق (Ghaf), and ن (Ne). This rotation occurs to draw the curved shape of the letter. 

Figure 22 shows letter He. As shown in the figure, the nib head rotates up to 20 degrees. 
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Figure 21- Nib Head Using the Power Style and Solid Mode in Letter ت (Te)  

 

Figure 22- Nib Head Using Power Style and Rotate Mode in Letter ح (He).  

Stretching a letter is done using the power style and in the solid mode and as for the 

Arabic Naskh style, the angle of the nib head is about 70 degrees from the horizontal axis. It is 
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also necessary to mention that in Nastaliq, the part of the letters that are written using rotate 

mode never get stretched, however this might happen in Arabic Naskh 

  



 

 33 

Chapter 4   

Research Leading to this Thesis 

4.1 Original Goal: 

Our main purpose was to modify ffortid in order that it could support Nastaliq writing, 

obeying calligraphic rules, with dynamic stretching, respecting both vertical and horizontal 

movements of letters. 

4.2 Method to Achieve Goal 

For this purpose I decided first to write a user's manual for a new version of ffortid called 

NAS that would handle the Nastaliq writing. This user‟s manual would serve as a requirements 

specification. 

4.3 The Process of Preparing the User’s Manual for NAS 

It was first a little bit unusual for me to start with just writing the user‟s manual, but after 

many discussions with my supervisor, who played the customes and insisted on preparing the 

user‟s manual first, I decided to start with working on three issues: 

 The rules for Persian Nastaliq  

 The available Nastaliq fonts 

 Reading and understanding the code for ffortid 

First, in order to prepare the rules for Nastaliq, I had to find reliable sources. For this 

purpose, I took advantage of a trip I had made to Iran. I met Mr. Majid Hosseinzadeh, the Head 

of the Association of Calligraphers in Iran, and explained to him what my research is about and 
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asked him for the best available resources to find and learn rules for Nastaliq. He suggested that I 

buy a book written many years ago which is known as the bible of Nastaliq for calligraphers 

[11]. My problem was that this book was no longer sold in public stores for some political 

reason. At last, I found the book in Tehran‟s University Library and copied all the pages of that 

book. I also found and purchased all the other available books for learning Nastaliq in Iran. The 

next stage was to find out if any other software applications handled the features of Nastaliq that 

I was studying. The next stage was to find and purchase all the available Nastaliq typesetting 

software applications. By installing and using all of them I found out that none of them could 

handle the features I wanted to implement. The next step was to read the references I found and 

gather all the rules which would affect my software. I had also to find out which available font 

would best be useful for my purpose. As mentioned in Section  6.2, the IranNastaliq font was the 

one chosen to proceed with.  As explained in the next section, I had to stop and rescope the 

whole idea of my research before starting to read the code for ffortid.  

I learned the importance of writing some requirements document before starting to code. 

In this case, the user‟s manual served as my requirements document. If I had started coding 

before preparing the manual, I would have wasted a lot of time writing and changing code before 

I ended up learning that it was impossible to reach my goal. Therefore, spending about 6 months 

of working on gathering information for and preparing the user manual, saved me about one year 

of reading the entire ditroff/ffortid code, getting familiar with any already existing processors 

handling the features that I am interested in, and writing new classes and methods. 
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4.4 Rescoping the Research 

In the middle of writing the manual, I realized that the goal could not be achieved in a 

time reasonable for a Masters thesis. I learned that stretching could not be achieved entirely by 

use of a dynamic font. The reason was that human‟s interaction was necessary for many glyphs 

in order to recognize which part of the glyph and which Bézier curves had to be stretched. 

Therefore, hundreds of particular instances of stretched letters would have to be pre-compiled 

into the font. As a result, I, with my supervisor‟s approval, rescoped my thesis to implementing 

only the font. 

The development of a new ffortid processor was therefore abandoned and the project 

changed to that of developing a PostScript font with hundreds of glyphs, including up to five 

different amounts of stretching of several glyphs, a PostScript font that eventually could be used 

with a modified ffortid to be written in the future to work with this font. 

The requirements of the new font are derived from the requirements of the modified 

ffortid. Note that it implements many but not all rules of Persian calligraphy and Nastaliq as 

mentioned in Section 3.1.  
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Chapter 5 

Modeling the stretching 

It is necessary to describe the work of Abdelouahad Bayar and Khalid Sami[3] in detail, 

since it is the basis for the research of this thesis. 

Abdelouahad Bayar and Khalid Sami first developed a model of the way the Persian 

characters are written by hand. They determined that the outlines have to follow the path 

determined by the four edges of the nib head. This means that the thickness of the letter along 

any axis parallel to the angle of the nib head must be equal to the height of the nib head. 

Therefore, a mathematical modeling is needed for the software to achieve the correct simulation 

of Nastaliq handwriting. 

For example, In Figure 23 there are two curves B1 and B2, which is a translation of B1 by 

vector  𝑢   .  
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Figure 23- Surface Rased with Edge l1 Shown in Grey 

In Figure 23, B1 is a Bézier curve with 4 control points M10, M11, M12, and M13. Consider 

B2, the Bézier curve with the four control points M20, M21, M22, and M23  such that: 

M2i = t 
𝑢
 (M1i), I  ∈  {0,1,2,3} where t 

𝑢
  is the translation of vector 𝑢    such that 𝑢   =  

(𝑙. cos ∝ , 𝑙. sin ∝ )                                             

This thesis provides a review on Abdelouahad Bayar and Khalid Sami‟s work on 

modeling and supporting keshideh in Arabic calligraphy: 

5.1 Keshideh, the Mathematical Model: 

I use the  notation [M0, M1, M2, M3] to denote  the Bézier curve with control points M0, M1, 

M2, M3. 

Figure 24 shows the set 𝛽1,  the set of Bézier curves [M0, M1, M2, M3] with an invariant 

concavity  verifying: 
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𝑀2𝑀3
            = 𝜆 𝑖 , 0 ≤ Ang(𝑀2𝑀3

            , 𝑖  )≤  
𝜋

2
, Where 𝑖  is the axis x director vector and the 

Ang(𝑢  , 𝑣 ) function gives the angle between vectors 𝑢  , 𝑣  in terms of parameters respecting the 

positive orientation of the coordinate system. 

 

Figure 24-Curves of Type 1, 𝜷𝟏 

Figure 25 shows the set 𝛽2, the set of Bézier curves [M0, M1, M2, M3] with an invariant 

concavity  verifying: 

𝑀0𝑀1
            = 𝜆 𝑖 , 0 ≤ Ang( −𝑖,      𝑀2𝑀3

                      )≤  
𝜋

2
  

 

Figure 25-Curves of Type 2, 𝜷𝟐 
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Keshideh is a juxtaposition of two Bézier curves, B1 and from the set 𝛽1 and B2  from the 

set 𝛽2. If L0, L1, L2, L3 are control points of B1 and R0, R1, R2, R3 are the control points of B2 then 

L3 and R0  are equal. So, the definition of 𝐸𝑏𝑒  that stretches the curves in 𝛽1 and  𝐸𝑎𝑓  that 

stretches the curves in 𝛽2 are:  

𝐸𝑏𝑒 : 𝛽1 ×  0,ℎ𝑚  ×  0, 𝑣𝑚   𝛽1 

(𝐵,ℎ, 𝑣)   𝐸𝑏𝑒 (𝐵,ℎ, 𝑣) 

Note that h represents the horizontal stretching amount and let v represents the vertical 

stretching amount. 

The transformation 𝐸𝑏𝑒  stretches curves in 𝛽1. The details of its definition are given 

below:  

Let 𝐵1 = [𝑀10 ,𝑀11 ,𝑀12 ,𝑀13] and 𝐵2 = [𝑀20 ,𝑀21 ,𝑀22 ,𝑀23] be two curves in 𝛽1. Let 

(ℎ, 𝑣) 𝜖  0, ℎ𝑚  ×  0, 𝑣𝑚  .  

5.1.1 𝑬𝒃𝒆 Transformation: 

𝐵2 =  𝐸𝑏𝑒 (𝐵1,ℎ, 𝑣) if and only if  the control points of 𝐵2 are: 

𝑀20 = 𝑀10 −  ℎ, 0  

𝑀23 = 𝑀13 −  0, 𝑣  

𝑀21 =  1 − 𝑐1 𝑀20 + 𝑐1𝐽 

        𝑀22 =  1 − 𝑐2 𝐽 +  𝑐2𝑀23 , 

with 𝑐1, 𝑐2 satisfying ∶ 

𝑀11 =  1 − 𝑐1 𝑀10 + 𝑐1𝐽 

        𝑀12 =  1 − 𝑐2 𝐼 + 𝑐2𝑀13 , 
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where :  𝐼 =  𝑀10𝑀11 ∩  𝑀12𝑀13  

and    𝐽  =  ∆1 ∩ ∆2 with: 

∆1 being the parallel to  𝑀10𝑀11  passing through the point 𝑀20  and ∆2  being the parallel 

to  𝑀12𝑀13  passing through the point 𝑀23 . 

An example of a stretching using the function 𝐸𝑏𝑒  is presented in Figure 26. 

 

Figure 26- Stretching a Curve Belonging to the Set 𝜷𝟏 with 𝑬𝒃𝒆(𝑩𝟏) = 𝑩𝟐 

5.1.2 𝑬𝒂𝒇 Transformation: 

Let 𝐸𝑎𝑓  be the stretching function defined as follows: 

𝐸𝑎𝑓 : 𝛽2 ×  0,ℎ𝑚  ×  0, 𝑣𝑚   𝛽2 

(𝐵,ℎ, 𝑣)   𝐸𝑎𝑓 (𝐵,ℎ, 𝑣) 

The transformation 𝐸𝑎𝑓  stretches curves in 𝛽2. The details of its definition are given 

below:  

Let 𝐵1 = [𝑀10 ,𝑀11 ,𝑀12 ,𝑀13] and 𝐵2 = [𝑀20 ,𝑀21 ,𝑀22 ,𝑀23] be two curves in 𝛽2. Let 

(ℎ, 𝑣) 𝜖  0,  ℎ𝑚  ×  0, 𝑣𝑚  . 
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 𝐵2 =  𝐸𝑎𝑓 (𝐵1,ℎ, 𝑣) if and only if  the control points of 𝐵2 are: 

𝑀20 = 𝑀10 −  ℎ, 𝑣  

𝑀23 = 𝑀13  

𝑀21 =  1 − 𝑐1 𝑀20 + 𝑐1𝐽 

𝑀22 =  1 − 𝑐2 𝐽 +  𝑐2𝑀23 , 

with 𝑐1, 𝑐2 satisfying: 

𝑀11 =  1 − 𝑐1 𝑀10 + 𝑐1𝐽 

𝑀12 =  1 − 𝑐2 𝐼 + 𝑐2𝑀13 , 

where∶  𝐼 =  𝑀10𝑀11 ∩  𝑀12𝑀13  

and    𝐽  =  ∆1 ∩ ∆2 with: 

∆1 being the parallel to  𝑀10𝑀11  passing through the point 𝑀20  and ∆2  being the parallel 

to  𝑀12𝑀13  passing through the point 𝑀23 . 

An example of 𝐸𝑎𝑓 stretching is given in Figure 27: 

 

Figure 27 -Stretching a Curve Belonging to the Set 𝜷𝟐 with 𝑬𝒂𝒇(𝑩𝟏) = 𝑩𝟐 
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Abdelouahad Bayar and Khalid Sami divide the total stretch value of a letters into two 

parts  and pass each half to one of the two functions 𝐸𝑎𝑓 , and 𝐸𝑏𝑒 . 

5.2 Stretching a Letter in Persian Nastaliq 

Abdelouahad Bayar and Khalid Sami talk about how to stretch a Bézier curve with its 

control points and an amount of stretch so that we respect the constant size of the nib head. For a 

quick review, Assume that B1 is a Bézier curve with four control points M10, M11, M12, M13.  

 

They provide a formula which gives us B2 which is a curve respecting the constant size of 

the nib head. 

Given four initial control point M10, M11, M12 and M13, we can get the stretched curve‟s control 

points. 

𝑀20 = 𝑀10 −  ℎ, 0  

𝑀23 = 𝑀13 −  0, 𝑣  

𝑀21 =  1 − 𝑐1 𝑀20 + 𝑐1𝐽 

𝑀22 =  1 − 𝑐2 𝐽 +  𝑐2𝑀23 , 

with 𝑐1, 𝑐2 satisfying: 

𝑀11 =  1 − 𝑐1 𝑀10 + 𝑐1𝐽 

𝑀12 =  1 − 𝑐2 𝐼 + 𝑐2𝑀13 , 

where:  𝐼 =  𝑀10𝑀11 ∩  𝑀12𝑀13  

and    𝐽  =  ∆1 ∩ ∆2 with: 

∆1 being the parallel to  𝑀10𝑀11  passing through the point 𝑀20  and ∆2 being the parallel to 
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 𝑀12𝑀13  passing through the point 𝑀23 . 

They conjectured that the new curve, with its four Bézier control points, respects the 

spacing issue of respecting the constant size of the nib head between the curves in letters or in 

other words, if we stretch the curves in the original glyph using the transformations they have 

provided, the resulting glyph containing the new stretched curves would have the same thickness 

as the original one.  The proof of this conjecture was not supplied by Abdelouahad Bayar and 

Khalid Sami. So, I provide this proof as a part of the research for this thesis. Mona Mojdeh has 

also derived an independent proof that is not presented here.  To prove this claim, assume there 

are two curves spaced l from each other along the line having a 70 degree angle from the 

baseline. It is necessary show that after applying the formula, the resulting curve‟s control points 

are spaced the same distance.  

Step 1)   Simplifying the formula 

Assume that current curves are made with control points [𝑀10 ,  𝑀11 ,𝑀12 ,𝑀13] 

and [𝑀20 ,𝑀21 ,𝑀22 ,𝑀23]. Denote the variables for the shifted version of the curve with a t 

notation at superscripted at the top of its metric variable. So 𝑀20 = 𝑀10
𝑡

 ,
 𝑀21 = 𝑀11

𝑡
 ,
 𝑀22 =

𝑀12
𝑡

 ,
 , 𝑀23 = 𝑀13

𝑡
 
 

By considering just the x value of each Mij we get:  

X11=(1-C1)X10+C1Ix 

X12 =(1-C2)Ix+C2X13 

              𝐶1 =
𝑋11 − 𝑋10

𝐼𝑥 − 𝑋10
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 𝐶2 =
𝑋12−𝐼𝑥

𝑋13−𝐼𝑥
 

M11 = (1- 
𝑋11−𝑋10

𝐼𝑥−𝑋10
) (X10 – h, Y10) +(

𝑋11−𝑋10

𝐼𝑥−𝑋10
) (Ix, Iy ) 

M12 = (1- 
𝑋12−𝐼𝑥

𝑋13−𝐼𝑥
) (Ix, Iy ) + 

𝑋12−𝐼𝑥

𝑋13−𝐼𝑥
 . (X13, Y13) 

Step 2)  Calculating I for the shifted curve 

Denote again that the variables for the shifted version of the curve with a t notation at 

superscripted at the top of its metric variable. So, For I
t
x: Translate every x to x + l.cos (𝛼) and y  

to y + l.sin 𝛼 . So we get: 

It
x’=   

 𝑋10 +𝑙.𝑐𝑜𝑠 𝛼  
𝑌11−𝑌10
𝑋11−𝑋10

− 𝑋12 +𝑙.𝑐𝑜𝑠 𝛼  
𝑌13−𝑌12
𝑋13−𝑋12

−𝑌10 +𝑌12

𝑌11−𝑌10
𝑋11−𝑋10

−
𝑌13−𝑌12
𝑋13−𝑋12

 = l.cos (α)+Ix 

With the same result, we can get: I
t
y = Iy . sin (𝛼)+Ix 

Step 3)  Calculating the metrics for the stretched curve, Denote that single apostrophe 

stands for the stretched version.  

M10’ = M10 – (h, 0)            

M13’ =  M13 − (0, v) 

M11’=(1- C1 ) M10’+ C1J 

M12’=(1- C2 ) J + C2 M13’ 

Presenting the control points of the shifted curve by vector 𝑈    =(l .cos(𝛼), l .sin(α)) with Xt and 

Yt, we know that:     

Xt11= X11+l .𝑐𝑜𝑠(𝛼)   Xt12 = X12+l . 𝑐𝑜𝑠(𝛼) 

Yt11 = Y11+l .𝑠𝑖𝑛(𝛼)   Yt11 = Y11+l .𝑠𝑖𝑛(𝛼) 
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Xt12= X12+l .𝑐𝑜𝑠(𝛼)   Xt13 = X13+l . 𝑐𝑜𝑠(𝛼) 

Yt12 = Y12+l .𝑠𝑖𝑛(𝛼)   Yt13 = Y13+l . 𝑠𝑖𝑛(𝛼) 

M10=(X10, Y10), M11=(X11, Y11), M12=(X12, Y12), M13=(X13, Y13) 

M20=(X10+ l .cos(𝛼),Y10+l .sin(𝛼)), M21=(X11+ l .cos(𝛼), Y11+l .sin(𝛼)), 

 M22=(X12+ l .𝑐𝑜𝑠(𝛼), Y12+l .sin(𝛼)), M23=(X13+ l .𝑐𝑜𝑠(𝛼), Y13+l .sin(𝛼)) 

Step 4)  Calculating Metrics for the stretched curves. Note again that XI means the x value 

of I and YI means the y value of I. 

Now the stretched version of curve 1 is (remind that in the following formulae, a single 

apostrophe stands for a new stretched point): 

M’10 =(X10-h, Y10) 

M’13 =(X13, Y10-v) 

The line from M10 to M11 is: 
𝑦−𝑌10

𝑥−𝑋10
=

𝑌11−𝑌10

𝑋11−𝑋10
  

The line from M12 to M13 is: 
𝑦−𝑌12

𝑥−𝑋12
=

𝑌13−𝑌12

𝑋13−𝑋12
  

{𝐼}= 
𝑀10𝑀11  
      ∩  

𝑀12𝑀13  
        

 
𝑌11−𝑌10

𝑋11−𝑋10
(𝑥 − 𝑋10) + 𝑌10 =  

𝑌13−𝑌12

𝑋13−𝑋12
  𝑥 − 𝑋12 + 𝑦12 

 XI = 
(𝑋10  

𝑌11−𝑌10
𝑋11−𝑋10

 − 𝑋12
𝑌13−𝑌12
𝑋13−𝑋12

− 𝑌10 +𝑌12 )

𝑌11−𝑌10
𝑋11−𝑋10

−
𝑌13−𝑌12
𝑋13−𝑋12

 
 

 YI =(
𝑌11−𝑌10

𝑋11−𝑋10
)  

 𝑋10  
𝑌11−𝑌10
𝑋11−𝑋10

 – 𝑋12
𝑌13−𝑌12
𝑋13−𝑋12

− 𝑌10 +𝑌12 

𝑌11−𝑌10
𝑋11−𝑋10

−
𝑌13−𝑌12
𝑋13−𝑋12

 
−𝑋10 + 𝑌10  

{J} = ∆1 ∩  ∆1  with: 

∆1 :being the parallel to (𝑀10𝑀11) passing through the point 𝑀20 . 
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∆2: being the parallel to (𝑀12𝑀13) passing through the point 𝑀23 . 

 
𝑦−𝑌10

𝑥−𝑋10 +ℎ
=

𝑌11−𝑌10

𝑋11−𝑋10
 

&  
𝑦−𝑌13 +𝑣

𝑥−𝑋13
=

𝑌13−𝑌12

𝑋13−𝑋12
 

 XJ = 

𝑌11−𝑌10
𝑋11−𝑋10

 𝑋10 +ℎ −𝑌10−
𝑌13−𝑌12
𝑋13−𝑋12

.𝑋13 +𝑌13−𝑣

𝑌11−𝑌10
𝑋11−𝑋10

−
𝑌13−𝑌12
𝑋13−𝑋12

 

& YJ = 
𝑌11−𝑌10

𝑋11−𝑋10
(

𝑌11−𝑌10
𝑋11−𝑋10

 𝑋10 +ℎ −𝑌10−
𝑌13−𝑌12
𝑋13−𝑋12

.𝑋13 +𝑌13−𝑣

𝑌11−𝑌10
𝑋11−𝑋10

−
𝑌13−𝑌12
𝑋13−𝑋12

-𝑋10 + ℎ) + 𝑌10  

Step 5)  Calculating Metrics for the stretched version of shifted curve. Note again that XI 

means the x value of I and YI means the y value of I. 

Now we shift the result curve with the space equal to l and angle α, and replace X1i  by Xt
1i 

to get the metrics of the shifted curve with 𝑈   .  

Xt
11= X11+l . 𝑐𝑜𝑠(𝛼) Xt

12 = X12+𝑙 . 𝑐𝑜𝑠(𝛼) Yt
11 = Y11+𝑙 . 𝑠𝑖𝑛(𝛼) Yt

11 = Y11+𝑙 . 𝑠𝑖𝑛(𝛼) 

Xt
12= X12+𝑙 . 𝑐𝑜𝑠(𝛼) Xt

13 = X13+𝑙 . 𝑐𝑜𝑠(𝛼) Yt
12 = Y12+𝑙 . 𝑠𝑖𝑛(𝛼) Yt

13= Y13+𝑙 . sin(𝛼) 

The resulting Xt
J   will be: 

Xt
J= 

𝑌11 +𝑙 .𝑠𝑖𝑛  𝛼 −𝑌10−𝑙 .𝑠𝑖𝑛  𝛼 

𝑋11 +𝑙 .𝑐𝑜𝑠  𝛼 −𝑋10−𝑙 .𝑐𝑜𝑠  𝛼 
 𝑋10 +𝑙 .𝑐𝑜𝑠 𝛼 +ℎ −(𝑌10 +𝑙 .𝑠𝑖𝑛(𝛼))−

𝑌13 +𝑙 .𝑠𝑖𝑛  𝛼 −𝑌12−𝑙 .𝑠𝑖𝑛  𝛼 

𝑋13 +𝑙 .𝑐𝑜𝑠  𝛼 −𝑋12−𝑙 .𝑐𝑜𝑠  𝛼 
.(𝑋13+𝑙 .𝑐𝑜𝑠  𝛼 )+𝑌13 +𝑙 .𝑠𝑖𝑛(𝛼)−𝑣

𝑌11 +𝑙 .𝑠𝑖𝑛  𝛼 −𝑌10−𝑙 .𝑠𝑖𝑛  𝛼 

𝑋11 +𝑙 .𝑐𝑜𝑠  𝛼 −𝑋10−𝑙 .𝑐𝑜𝑠  𝛼 
−
𝑌13 +𝑙 .𝑠𝑖𝑛  𝛼 −𝑌12−𝑙 .𝑠𝑖𝑛  𝛼 

𝑋13 +𝑙 .𝑐𝑜𝑠  𝛼 −𝑋12−𝑙 .𝑐𝑜𝑠  𝛼 

 

= XJ + l. 𝑐𝑜𝑠(𝛼) 

And the resulting YtJ will be:  
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Remember: YJ = 
𝑌11−𝑌10

𝑋11−𝑋10
(

𝑌11−𝑌10
𝑋11−𝑋10

 𝑋10 +ℎ −𝑌10−
𝑌13−𝑌12
𝑋13−𝑋12

.𝑋13 +𝑌13−𝑣

𝑌11−𝑌10
𝑋11−𝑋10

−
𝑌13−𝑌12
𝑋13−𝑋12

-𝑋10 + ℎ) + 𝑌10  

= 
𝑌11−𝑌10

𝑋11−𝑋10
(𝑋𝐽 −  𝑋10 + ℎ) + 𝑌10   

 Yt
J =

𝑌11 +𝑙 .𝑠𝑖𝑛   𝛼 −𝑌10−𝑙 .𝑠𝑖𝑛(𝛼)

𝑋11 ++𝑙 .𝑐𝑜𝑠   𝛼 −𝑋10−+𝑙 .𝑐𝑜𝑠(𝛼)
(𝑋𝐽 + 𝑙 . 𝑐𝑜𝑠(𝛼) −  𝑋10 − +𝑙 . 𝑐𝑜𝑠(𝛼) + ℎ) + 𝑌10  + l 

.sin(𝛼) = YJ + 𝑙 . 𝑠𝑖𝑛(𝛼) 

The new Xt
I  will be: 

XI’= 

 (𝑋10 +𝑙.𝑐𝑜𝑠   𝛼  
𝑌11 + 𝑙 .𝑠𝑖𝑛   𝛼 −𝑌10− 𝑙 .𝑠𝑖𝑛 (𝛼)

𝑋11 +𝑙 .𝑐𝑜𝑠  𝛼 −𝑋10− 𝑙 .𝑐𝑜𝑠  𝛼 
 – 𝑋12 + 𝑙 .𝑐𝑜𝑠   𝛼  

𝑌13 + 𝑙 .𝑠𝑖𝑛  𝛼 −𝑌12− 𝑙 .𝑠𝑖𝑛  𝛼 

𝑋13 + 𝑙 .𝑐𝑜𝑠  𝛼 −𝑋12− 𝑙 .𝑐𝑜𝑠  𝛼 
− 𝑌10 + 𝑙 .𝑠𝑖𝑛(𝛼)+𝑌12 )− 𝑙 .𝑠𝑖𝑛 (𝛼)

𝑌11−𝑌10
𝑋11 + 𝑙 .𝑐𝑜𝑠   𝛼 −𝑋10− 𝑙 .𝑐𝑜𝑠 (𝛼)

−
𝑌13−𝑌12

𝑋13 + 𝑙 .𝑐𝑜𝑠   𝛼 −𝑋12−𝑙 .𝑐𝑜𝑠 (𝛼)
 

 

= XI + 𝑙. 𝑐𝑜𝑠(𝛼) 

The new Yt
I  will be: 

Remember YI = (
𝑌11−𝑌10

𝑋11−𝑋10
)  

 𝑋10  
𝑌11−𝑌10
𝑋11−𝑋10

 – 𝑋12
𝑌13−𝑌12
𝑋13−𝑋12

− 𝑌10 +𝑌12 

𝑌11−𝑌10
𝑋11−𝑋10

−
𝑌13−𝑌12
𝑋13−𝑋12

 
− 𝑋10 + 𝑌10  =  

(
𝑌11−𝑌10

𝑋11−𝑋10
) 𝑋𝐼  − 𝑋10 + 𝑌10  

 Yt
I=(

𝑌11 +𝑙 .𝑠𝑖𝑛   𝛼 −𝑌10−𝑙 .𝑠𝑖𝑛(𝛼)

𝑋11 +𝑙.𝑐𝑜𝑠   𝛼 −𝑋10−𝑙 .𝑐𝑜𝑠(𝛼)
) 𝑋𝐼 + 𝑙. 𝑐𝑜𝑠  𝛼 − 𝑋10 − 𝑙. 𝑐𝑜𝑠(𝛼) + 𝑌10 + 𝑙 . 𝑠𝑖𝑛(𝛼) 

 Yt
I = YI + 𝑙 . 𝑠𝑖𝑛(𝛼) 

Now Remember: 

Mt10= (X10+ l .𝑐𝑜𝑠(𝛼), Y10+𝑙 . 𝑠𝑖𝑛(𝛼)), Mt11= (X11+ l .𝑐𝑜𝑠(𝛼), Y11+l . 𝑠𝑖𝑛(𝛼)), 

 Mt12= (X12+ 𝑙 . 𝑐𝑜𝑠(𝛼), Y12+𝑙 . 𝑠𝑖𝑛(𝛼)), Mt13=(X13+ 𝑙 . 𝑐𝑜𝑠(𝛼), Y13+l .𝑠𝑖𝑛(𝛼)) 

and : M10’ = M10 – (ℎ, 0)           M13’ =  M13 − (0, 𝑣) 

M11’= (1- C1 ) M10’+ C1J  M12’= (1- C2 ) J + C2 M13’ 
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Step 6)  Proving that the stretch shifted version is the same as shifted stretched version 

Now we need to check if the stretched curves have the same distance from each other. In 

this case we need to check if the control points of the stretched curves also respect the 𝑈    

transformation or not.  

Mt10’= Mt10 − (ℎ, 0)     

Mt13’= Mt13 −(0, 𝑣) 

Mt11’ =(1-Ct1) Mt10’+ Ct1’.J 

Mt12’ =(1-Ct2) J + Ct2 .Mt13’ 

 Mt10’=(X10+ l .𝑐𝑜𝑠(𝛼), Y10+𝑙 . 𝑠𝑖𝑛(𝛼)),−(ℎ, 0)     

 

Mt13’=(X13+ l .cos(α), Y13+𝑙 . 𝑠𝑖𝑛(𝛼)) – (0, 𝑣) 

Mt11’ =(1- Ct1 ) Mt10’+ Ct1 .J’ 

Mt12’ =(1- Ct2 )J’ + Ct2 Mt13’ 

 Xt10’= X10+ l . 𝑐𝑜𝑠(𝛼) –h = X10 + l .𝑐𝑜𝑠(𝛼) -h 

 Yt10’= Y10+ l . 𝑠𝑖𝑛(𝛼) = Y10 + l .𝑠𝑖𝑛(𝛼) 

 Xt13’= X13+ l . 𝑐𝑜𝑠(𝛼)  = X13 + l .𝑐𝑜𝑠(𝛼) 

 Yt13’= Y13+ l . 𝑐𝑜𝑠(𝛼) –v = Y13 + l .𝑠𝑖𝑛(𝛼) -v 

Xt11’ = (1- Ct1 ) Xt10’+ Ct1XtJ 

and remember:  

𝐶1  =  
𝑋11−𝑋10

𝐼𝑥−𝑋10
 

𝐶2= 
𝑋12−𝐼𝑥

𝑋13−𝐼𝑥
 

So Ct1 = 
𝑋11 +𝑙 .𝑐𝑜𝑠   𝛼 −𝑋10−𝑙 .𝑐𝑜𝑠(𝛼) 

𝐼𝑥+𝑙 .𝑐𝑜𝑠   𝛼 −𝑋10−𝑙 .𝑐𝑜𝑠(𝛼) 
 =  𝐶1, 
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and, Ct2 = 
𝑋12 +𝑙 .𝑐𝑜𝑠   𝛼 −𝐼𝑥−𝑙 .𝑐𝑜𝑠   𝛼 

𝑋13+𝑙 .𝑐𝑜𝑠   𝛼 −𝐼𝑥−+𝑙 .𝑐𝑜𝑠   𝛼 
 =  𝐶2 

So,  Xt11’ =(1- Ct1 ) Xt10’+ Ct1XJ’= (1- C1 )(X10+𝑙 . 𝑐𝑜𝑠  𝛼 − ℎ)+ C1(XJ + 𝑙 . 𝑐𝑜𝑠  𝛼 )=(1- 

C1) (X10−ℎ)+ C1(XJ )  + 𝑙 . 𝑐𝑜𝑠  𝛼  = X11’ +𝑙 . 𝑐𝑜𝑠  𝛼  

With the same approach Yt11’ = Y11 + l . 𝑠𝑖𝑛(𝛼). 

At last, Mt12’ = (1- Ct2 )J’ + Ct2 Mt13’ 

So Xt12’ = (1- Ct2 )XtJ + Ct2 Xt13’ = (1- C2 )(XJ + 𝑙 . 𝑐𝑜𝑠  𝛼 )+ C2(X13 + 𝑙 . 𝑐𝑜𝑠  𝛼 ) = (1- C2 

)XJ + C2X13 + 𝑙 . 𝑐𝑜𝑠  𝛼 = X12’ + 𝑙 . 𝑐𝑜𝑠  𝛼  

With the same approach: Yt22’= Y22 + 𝑙 . 𝑐𝑜𝑠  𝛼  

The proof shows that, for every Bézier curve, if you stretch it and then shift it with 

𝑈   =(l.cos  𝛼 , 𝑙. 𝑠𝑖𝑛  𝛼 ), the result is the same as shifting with U first and then stretching it, 

using the stretching technique of Abdelouahad Bayar and Khalid Sami. This result proves that 

with this method, even after the stretching, the stretched curves of a glyph maintain the initial 

distance between parallel curves according to the size of the nib head, its angle α with the 

horizontal axis, and its length l. It is important to mention that even when adding or decreasing 

constants to the x or y value of the points in the initial stage of stretching, Abdelouahad Bayar 

and Khalid Sami`s method continues to be valid. A similar proof shows that the 𝐸𝑎𝑏  

and 𝐸𝑎𝑓 transformations end in the desired results. 

The stretching for Persian Nastaliq uses almost the same method. However, for the 

IranNastaliq font used in this research, it was concluded that the vertical shift would not be 

necessary. So we can set v to be zero and work just with h.  
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Chapter 6 

The Nastaliq Font: 

6.1 Why Develop a PostScript Type 3 Font? 

Recall that the main purpose of this research was to make it possible to typeset 

Nastaliq using ditroff/ffortid and a dynamic font. The main point is that ditroff/ffortid uses 

fonts in PostScript Types 3 and 1. But only Type 3 fonts are able to handle dynamic 

stretching. This difference occurs because the Type 3 PostScript code of a glyph can contain 

parameters, while for type one there can only be constants. Dynamic stretching means that 

only a single parameterized outline per stretchable character is needed; the actual outline of 

any stretching of a letter can be determined at printing time by the PostScript interpreter. A 

Type 1 font has a fixed outline for each character. A separate outline is needed in the font for 

each stretching amount of each stretchable form of each letter.  

  Therefore, I developed a PostScript Type 3 font; however I did not make it dynamic, 

but containing all the pre-compiled variations of all stretched glyphs. To build this font, I had 

to find an existing Nastaliq font and convert it to Type 3.  

6.2 The Font Used in this Research 

The Nastaliq font used in this research is called IranNastaliq. It is a TrueType font 

and is free to download and use in Microsoft Word under Windows. However, when using 

this font in other applications or operating systems, several problems exist. For instance, 

when using Microsoft Office with Mac OS X, only the stand-alone version of each letter 

shows up and letters cannot connect. Several fonts were reviewed in order to chose the best 
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to be converted to a PostScript font. These fonts include the IranNastaliq, WM_Nastaliq by 

Maryam [8], and NamehNegar[9]. The reason that IranNastaliq was chosen is that this font 

uses absolute values for coordinates when converted to PostScript, unlike the other two fonts. 

It is easier to understand absolute coordinates and see how to modify them. Also, as 

mentioned in the next section, the conversion failed for the NamehNegar font.  

6.3 Conversion Tools 

I needed to convert the TrueType IranNastaliq font to a PostScript font. To convert 

this font, I used a program called ttf2pt1that converted its input TrueType (.ttf) font to a  

PostScript Type 1 font, together with a .afm file, which contains standard font metrics. The 

ttf2pt1 program was applied to all three fonts mentioned above. The result was that only 

IranNastaliq and WM_Nastaliq were successfully converted. The resulting font metrics file 

gives only horizontal movements, which is for each character the distance to the next. For 

normal Latin fonts, only the horizontal movement is needed since all lines of text are 

horizontal. In a font for slanted baseline writing, the vertical movement of the next character 

might also be needed. One big problem was that no font conversion program would generate 

the vertical movement for the metrics file. Even FontForge which is one of the most well 

known applications for font conversion in Mac OS X, does not compute vertical movements.  

6.4 Converting t1a to Type 3 

It was necessary then to convert each Type1 font to a Type3 font. This conversion 

required changing the commands and getting rid of the hinting commands, which provide 
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information that is useless for Type 3 fonts. In order to be able to see what I was doing, I 

converted the Type 3 font into a PostScript program that displayed all its defined glyphs. 

6.5 Glyph Identification 

I was able to see that the initial font contained about 1366 glyphs which had nothing 

to do with Nastaliq. I had to remove all the unnecessary non-Persian letter glyphs. I 

mentioned in the first chapter that, Persian has 32 letters and at most 4 positions per letter in 

normal typography, Therefore, there should not be more than 128 glyphs. After removing 

unnecessary glyphs, there remained 878 glyphs from the original 2244 glyphs. Thus, in 

Nastaliq, every letter has about 27 different glyphs. Some of these shapes were so similar to 

each other that it was hard to determine if all but one of a set of similar glyphs could be 

thrown out or each similar but not identified glyph served different purpose. Figure 28, 29, 

and 30 show the letter ق in three very similar shapes. The first shape is when ق (Ghaf) is 

connected following to م (Mim), while م (Mim) itself is not connected to anything else. The 

second shape is when the ق (Ghaf) is connected to following م (Mim) and the following after  

 is connected (ghaf) ق is connected to another letter, and the third shape is used when (Mim) م

following to any of  ج (Jim), چ (Che), ح (He), and  خ (Khe). Figure 31 shows letter  ق  (Ghaf) 

in the three combinations described in the previous three figures. 

Next I had to rename the 878 glyphs. The glyphs in the original fonts had random 

names which make it hard to use them normally to write PostScript programs that would 

print Persian text. A sample of naming in the original file has been shown in Figure 31. As 

can be seen the name provides no information about the glyph. Therefore, I had to identify 
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each glyph and its possible context. The name of any glyph is an encoding of its letter, its 

position and all of the possible contexts. I defined a regular expression for naming the glyphs 

by this encoding. It was easy to envision either a person or a software application choosing 

any glyph by determining its name, given its letters, connectivity, and current context. 

 

Figure 28- Connect Following Letter  ق (Ghaf) Followed by One of the Letters ج 

(Jim), چ (Che), ح (He), خ (Khe)  

 

 

Figure 29- Connect Following Letter ق (Ghaf) Followed by Letter م (Mim) Which 

is Not Followed by Anything 
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Figure 30 Connect Following Letter ق (Ghaf) Followed by Letter م (Mim) Which 

is Followed by Another Letter 

 

              

 

Figure 31 - Different Combinations of Letter Ghaf  
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Figure 32- Random Naming for Glyphs in the Original Font- Letter ی (Ye) 

The possible connectivities are SA for stand alone, CB for connecting both, CP for 

connecting previous, and CF for connecting following.  

6.6 Naming the Glyphs 

To help understand the naming process, Figures 33, 34, and 35 provide three 

examples of letters with their complete names. 

Figure 33 shows the connecting-previous position of letter پ (Pe) stretched by 1 dot 

to the total amount of 6 dots that is written after one of the letters ج (Jim), چ (Che), ح (He), خ 

(Khe), س (Sin), ش(Shin), ص(Sad), ض(Zad), ط(Ta), ظ(Za), ع (Ein), غ (Ghein), م(Mim), or ه(Ha). 

First comes CP for “connecting-previous”. Then comes the previous context 
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“Jim|Che|He|Khe|Sin|Shin|Sad|Zad|Ta|Za|Ein|Ghein|Mim|Ha”, then comes the letter “Pe”, 

Finally comes the stretch amount “6”. If the glyph had a following context, it would come 

after the “6”. 

 

Figure 33- A Sample Naming for Stretched connecting-previous پ (Pe)  

Figure 34 shows the shape of the connecting-following ب (Be) with no stretch that is 

followed by one of the letters ب (Be), پ (Pe),  ت(Te), or ث (Se) which is itself followed by one 

of the letters ب (Be), پ (Pe),  ت(Te), or ث (Se). 

Figure 35 Shows the shape of the connecting-both Te with no stretching amount that 

is placed after any letter and followed by a م (Mim) that is not connected following to 

anything. Its name is CB_All_Te_MimQNone. The “All” here means that the Te follows any 

letter, and the “MimQ none” means that the Mim which comes after the Te is not connected 

following to any letter.  
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Figure 34- Non-Stretched Letter ب (Be), Which is Followed by One of the Letters 

(Be), پ (Pe),  ت(Te), or ث (Se) Which is Also Followed by One of the Letters (Be), پ (Pe),  

 .(Se) ث or ,(Te)ت

 

Figure 35- Non-Stretched Letter ت (Te), Which is Followed by a Letter م (Mim) 

Which is Not Connected Following to Any Other Letters. 
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The naming process contains the following Grammar:  

| is for "or" 

O and C are for grouping – O is „(„ and C is „)‟ 

"{x}" means  " x | ε " 

* is for zero or more occurrences of what * is applied to 

ε is empty string. 

Nonterminals are in Comic Sans Ms. 

Terminals are Calibri. 

There are no spaces in the strings generated by this grammar; spacing in these rules is 

for the readability of the grammar. 

GlyphName → Connectivity_{ContextPrevious_}Glyph{_ ContextFollowing} 

Connectivity → SA | CP | CF | CB 

Glyph → Letter {Length} O- Letter {Length}C* 

Length →  NumeralAtLeastOne | K 

NumeralAtLeastOne → 1 | 2 | 3 | 4 | ... | 9 

Letter → UpperCaseLetter LowerCaseLetter OLowerCaseLetterC* 

Digit → 0 | 1 | 2 | 3 | 4 | ... | 9  

UpperCaseLetter → A | B | C | D | ... | Y | Z 

LowerCaseLetter → a | b | c | d | ... | y | z 
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ContextPrevious → Context 

ContextFollowing → Context 

Context → Any | Rest | ListOfChoices | Null 

ListOfChoices → Choice ORSign OChoiceC* 

Choice →  LettterOrNone OQ LetterOrNoneC* 

LetterOrNone → Letter | None 

ORSign → ‘|’ 

 

 

This Grammar was developed to generate strings that encode glyphs in Nastaliq .  

Since “(“, ”)”, ”{“, ”}”, ”[“, and ”]” are meaningful characters in PostScript, they 

cannot be used in the naming of glyphs. Therefore, I have used “O” instead of ”(“ and “C” 

instead of “)” for grouping. The Letter Q means that the current letter is followed by another 

letter or group of letters. Since the or sign “|” is not a meaningful character in PostScript, it 

can be used to denote “or” in a glyph name. 

6.7 Calculating Font Metrics 

The next step was to calculate each glyph‟s bounding box and movements. This was 

important because without these information the font could not be used as expected. To 

calculate a glyph‟s bounding box it is necessary to determine the minimum and maximum 
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values of both the x and y coordinates. The horizontal movement was taken from the .afm file 

that was generated by ttf2pt1. As discussed in Section  6.3, the vertical information was not 

given by any conversion tools. Therefore, all work on the vertical movement of each glyph is 

postponed until the time that, a conversion tool handling both vertical and horizontal 

information is developed. 

To help me determine bounding boxes, I modified the font definition so that it would 

draw a small circle at the start and end points of each curve and line. It drew the first circle in 

each glyph larger than the others. I could trace the path to draw the glyph. 

6.8 Identification of Stretchable Curves 

Next, I had to identify the stretchable glyphs. There are two conditions here. 1) The 

glyph contains 2 curves that can be stretched and 2) the glyph contains four curves that can 

be stretched.  Figure 36 and 31 show examples of the two conditions. I had to first identify 

the condition of each glyph. I had to examine the code for each glyph, identify its stretchable 

curves, and find their start and end points. For some of the glyphs, each condition should be 

considered. For these glyphs either condition would have worked, and I had to choose the 

one that would look better.  It is important to mention that this stretching is not dynamic. 

There is a separate glyph in the font for each stretch amount. I should notice that the font 

initially contained at most one stretched sample of stretchable glyphs, but these glyphs could 

not be accessed with an editor and just existed in the font with no use. At this stage, I learned 

that the glyph for some specific amounts of stretching do not exist in the original font. So, I 



 

 61 

had to make some glyphs manually. The process involved copying each part of a glyph from 

a similar glyph and binding these parts together to get the required glyph.  

6.9 Implementing the Font: 

To implement this font, I developed several Java programs, which helped me to do 

various tasks in order to save my time and simplify the work for me. One program translated 

the original names of each glyph  in the font to its new name which encodes the purpose of 

the glyph. For this purpose, I had to implement a parser, that parses the font file, and finds  

each instance of a glyph name while leaving everything else untouched. 

Abdelouahad Bayar and Khalid Sami‟s formula had to be implemented to generate 

the stretched glyphs from the existing ones. This program is given the control points of each 

curve as input and outputs the control points of the stretched glyph. For this purpose, two 

conditions have to be taken care of. First, the start point of the curve which is going to be 

stretched must be is on the right side of the end point and second, the start point must be on 

at the left side of the end point. I refer to curves of the first kind as Type 1 and the second 

kind as Type 2. Here is the algorithm my program uses to stretch a glyph. As mentioned 

previously, each letter can be stretched minimum by the amount of from one to five dots. 

 

Let call the file containing the glyphs PostScript code, fontFile.Ps, 

Read from fontFile.Ps and get condition and number of control points from the user: 

If there are four points, this means two points are located at the left side and two 

are located at the right side as shown in Figure 36. X1, X2 are left and X3 and X4 are right. 
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If a current point is at the left side of X1 and X2, leave the curve or line starting at 

current point untouched. 

 If the current point is either X1 or X2, then we need to check where the curve ends.  

 

 

Figure 36- A 4-Point-Stretchable Curve Glyph 

 

1. Let Cp be the current control point 

2. If Cp <X1 or Cp < X2 then do nothing /*don‟t move the curve or line starting Cp*/ 

3. Else If Cp=X1 or Cp=X2 then  

4. Call the end point of the curve starting at Cp, Ep 

5.       If Ep <=X1 or <=X2 then do nothing /*don‟t move the curve or line starting 

Cp*/ 

6.       If Ep=X3 or Ep=X4 then apply stretch 1 

7. Else If Cp >X3 or Cp > X4 then add the stretch amount to the x value of start and 

end point of the curve. /*move the curve‟s or line‟s starting at Cp by stretch 

amount horizontally*/ 

8. Else If Cp=X3 or Cp=X4 then  

9.       Let Ep  be the end point of the curve starting at Cp 

10.       If Ep >=X3 or >=X4 then add the stretch amount to the x value of start and 

end point of the curve or line /*move the curve or line starting Cp by stretch 

amount*/ horizontally. 

X

1 

X

2 

X

4 

 

S

2 
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11.       If Ep=X3 or Ep=X4 then stretch 2 

12. Else if {𝐶p<X3 or X4} add the stretch amount to the x value of the start and end 

point of the curves /*move the curve or line starting Cp by stretch amount*/ 

 

Method Stretch 1: Add the stretch amount just to the end point of the curve. /*the 

start point does not get shifted but the end point gets shifted by the stretch amount 

horizontally*/ 

 

Method Stretch 2: Add the stretch amount just to the start point of the curve. /*the 

start point gets shifted by the stretch amount horizontally but the end point does not move.*/ 

There are several cases to consider. For example, what happens if a glyph contains 

more than one closed paths? How does the program know which path is the main path. What 

happens to the other closed paths after stretching? 

To write this code, I had to come up with a profile for different characters. It is 

amazing that almost every character has its own properties so I need to consider all of them 

in order to let the user handle them. This issue is explained completely after the 6 point 

glyphs are introduced. 
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Figure 37- A 6-Point-Stretchable Curve Glyph 

Stretching a 6-point glyph is the same as stretching a 4-point glyph. There are more 

cases that need to be considered. 

1. Call the current point Cp 

2. If Cp <X1 or Cp < X2  then don’t move the curve or line starting Cp 

3. Else If Cp=X1 or Cp=X2  then  

4.       Call the end point of the curve starting at Cp, Ep 

5.       If Ep <=X1 or <=X2 then don’t move the curve or line starting Cp 

6.       If Ep=X5 or Ep=X6 then stretch 3 

7. Else if Cp >X3 or Cp > X4 then move the curve or line starting Cp by the stretch 

amount horizontally 

8. Else If Cp=X3 or Cp=X4 then  

9.        Call the end point of the curve starting at Cp, Ep 

10.        If Ep >=X3 or >=X4 then move the curve or line starting Cp by the stretch 

amount horizontally. 

11.        If Ep=X5 or Ep=X6 then stretch 4 

12. Else if((Cp<X3) or(Cp<X4)) and ((Cp!=X5) or(Cp!=X6)) then move the curve 

or line starting Cp by the stretch amount horizontally. 

13. Else if Cp=X5  or Cp=X6 then  

14.       Call the end point of the curve starting at Cp, Ep 

15.       If Ep =X3  or Ep=X4 then stretch 5 

16.       Else Stretch 6 

Now let us see how these stretch methods are different.  

From Sections  5.1 and 5.2 we remember Bayar-Sami’s transformation: 
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Given 4 initial control point M10, M11, M12 and M13 we can get the new stretched 

curve Control Points: 

For stretch 1: Apply these changes to Bayar-Sami Formula: 

M20= M10  

M23 = M13 + (StretchAmount, 0) 

M21= (1-C1)M20+C1J 

M22= (1-C2)J+C2M23 

For stretch 2: Apply these changes to Bayar-Sami Formula: 

M20= M10 + (StretchAmount, 0) 

M23 = M13  

M21= (1-C1)M20+C1J 

M22= (1-C2)J+C2M23 

 For stretch 3: Apply these changes to Bayar-Sami Formula: 

M20= M10  

M23 = M13 + (StretchAmount/2, 0) 

M21= (1-C1)M20+C1J 

M22= (1-C2)J+C2M23 

For stretch 4: Apply these changes to Bayar-Sami Formula: 

M20= M10 + (StretchAmount, 0) 

M23 = M13 + (StretchAmount/2, 0) 

M21= (1-C1)M20+C1J + (StretchAmount/2, 0) 
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M22= (1-C2)J+C2M23 + (StretchAmount/2, 0) 

For stretch 5: Apply these changes to Bayar-Sami Formula: 

M20= M10 + (StretchAmount/2, 0) 

M23 = M13 + (StretchAmount, 0) 

M21= (1-C1)M20+C1J + (StretchAmount/2, 0) 

M22= (1-C2)J+C2M23+ (StretchAmount/2, 0) 

For stretch 6: Apply these changes to Bayar-Sami Formula: 

M20= M10 + (StretchAmount/2, 0) 

M23 = M13  

M21= (1-C1)M20+C1J 

M22= (1-C2)J+C2M23 

6.9.1 Exceptional Cases: 

i)  ب (Be),  ,(Ye)ی ,(Ne) ن  and not stand-alone version of (Se)  ث and ,(Te) ت ,(Pe) پ 

and ئ (Ee): 

 When stretching such a letter, the dot or Hamza that is shown in letter ئ and makes it 

to look different from leter ی, should be shifted by half of the total stretch amount to the 

right. This shift should always place the dot or Hamza at the horizontal middle of the 

stretched part of the glyph. 
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Figure 38- Stretching and Component Shifts, Letter  ب (Be) 

ii)  Letters ک (Kaf), گ (Gaf): 

X 
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Figure 39- Stretching and Component Shifts, Letter Kaf 

As shown in Figure 39, there are two closed paths in this glyph which are connected 

to each other at point R. The closed path located at the left side of R is the main part that 

needs to be stretched and the right path is just the identifier shape for this letter which 

identifies if this letter is  In this case, the identifier just needs to be .(Gaf)گ or (Kaf) ک  

shifted by the amount of the stretched letter. For the letter گ (Gaf), as shown in Figure 40, 

the identifier shape contains two parts which means both of them should be shifted. 

R 
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Figure 40- Stretching and Component Shifts, Letter gaf 

The stand-alone version of letter ک has a Hamza that needs to get shifted by the 

stretch amount. It is important to notice that for the stand-alone Letter ک (Kaf), there exists 

no rule explaining how much the Hamza should be moved and the decision is left for the 

writer to where to place it horizontally above the letter. 

 

Figure 41- Stand-Alone Letter ک (Kaf), Not stretched 
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Figure 42- Stretched Letter ک (Kaf) 

For letters خ (Khe), ج (Jim), چ (Che), ق(ghaf), ف (Fe), ظ (Za), ط(Ta), ش (Shin), and غ 

(Ghein), the dots need to get shifted by the stretch amount. 

  

Figure 43- Connecting-Both Letter ف (Fe) of the Size 5 Points 
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Figure 44-The Connecting-Both Letter ف (Fe), Stretched Version of Figure 43 by 

the Amount of 4 Points. 

I used the BlueJ [12] programming environment to implement this software. Table 1 

presents a list of the programs and their descriptions. 

Program Name Description 

Parse This file gets a font and a list of useful glyph names and parses the fonts 

PS code and drives the code for the mentioned glyphs.  

Update Update gets a list of new names for glyphs as input and updates all the 

glyphs names derived from Parse 

ShowCurves This program goes over the glyphs in the font and identifies the start 

point of each curve or line in each glyph which a small circle. The very 

first circle, which is the start position of drawing the glyph and the 

second one are respectively shown with a larger and smaller circle. 
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BoxCalculator This program goes over each glyph in the font and calculates its font 

bounding box coordinates. These coordinates are needed when 

assigning memory to each glyph. Also this program finds the FontBBox 

which is the minimal bounding box which can contain all the glyphs. 

Stretch This program gets the control points of a Bézier curve and the amount 

of stretch size of the curve as input and returns the control points of the 

stretched curve. 

StretchGlyph4 This program gets the PostScript code of a glyph together with the 

coordinates of the four points of the stretchable Bézier curve, identifies 

two stretchable curves in the glyphs, and stretches the glyphs using the 

Class Stretch and returns the code for the stretched glyph. 

StretchGlyph6 This program gets the PostScript code of a glyph together with the 

coordinates of the six control points of the stretchable Bézier curve, 

identifies four stretchable curves in the glyphs and stretches the glyphs 

using Class Stretch and returns the code for the stretched glyph. 

Table 1 - List of All Programs Developed to Make the PostScript Font 

Containing All Stretched Glyphs. 

In the end, the font had 1247 glyphs which look very good to any Persian reader. I 

added 369 glyphs to the 878 glyphs that were already in the font.  
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6.10 The Problem of Misplaced Curves 

One other problem that came up in this research was stretching any glyph that did not 

have proper curves. I define a proper curve, as one whose start and end points are positioned 

in its glyph‟s path so that it is easy to decide if the glyph is a 6-point or a 4-point stretchable 

glyph. For instance, the glyph پ (Pe), shown in Figure 45, can be easily determined as a 6-

point stretchable glyph. Curves A, B, C, and D are the four proper curves in this figure. Also, 

the glyph ف, shown in Figure 46, can be easily determined as a 4-point stretchable glyph, 

with curves A and B in the figure being the two stretchable curves. 

 On the other hand, the glyph ک in Figure 47 is one for which it is not easy to decide 

what type of stretchable glyph it is. As a result, due to the unsuitable position of the two 

control points of the curves showed within the larger circles in the outline, neither of the two 

decisions would look perfect after stretching the letters. Figure 48 and 49 show the two 

decisions made. The problem with Figure 48 is that the curves A and C are located higher 

than where they should be. In Figure 49, curves B and D are too close to each other. 

As can be seen, the start and end points of a curve in a glyph are proper when their 

vertical vector is small in comparison to their horizontal vector. There is no fixed ratio to 

define this comparison. Therefore, human interaction is needed to define whether the curve is 

a proper one or not by choosing which one looks more beautiful.  
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Figure 45- A 6-Point-Stretchable Letter پ (Pe), an Easily Decidable 6-Point-

Stretchable Glyph 

 

Figure 46- A 4-Point-Stretchable Letter ف (Fe), an Easily Decidable 4-Point-

Stretchable Glyph 

A C 

B D 

A 

B 
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Figure 47-Letter ک (Kaf) a Glyph with Misplaced Start Points of Curves Shown 

in Larger Circles 

A B 

D C 
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Figure 48-Stretched Stand-Alone Version of Letter ک (Kaf) introduced in Figure 

41 with Curves A and C Stretched 

 

Figure 49-Stretched Stand-Alone Version of Letter ک (Kaf) introduced in Figure 

41 with Curves B and D Stretched 
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Chapter 7 

Conclusions and Future Work 

7.1 Summary  

The research described in this thesis has focused on the problem of stretching for 

Persian calligraphic typography. The first intention was to implement a dynamic font which 

would work with ditroff/ffortid modified as necessary to allow formatting of calligraphic 

Persian language. However, after attempting to specify the software for the task, it became 

clear that due to the complexity of Nastaliq, it would be impossible to implement its 

stretching in a dynamic font. So the goal of the research was changed to provide a PostScript 

font which would contain all the allowed variations of stretching of each stretchable glyph so 

the font would be usable on its own. Several TrueType Nastaliq fonts were converted to 

PostScript to find out which one would include all the features I needed. I ended up working 

with a free font called IranNastaliq. Due to the complexity of the calligraphy, the font 

contains about 900 glyphs which are used in writing. Then, each glyph was named by its 

letter, position, stretch amount, and previous and following contexts. This naming process 

was necessary to make the identification process of each glyph easier. It was necessary to 

prove Abdelouahad Bayar and Khalid Sami‟s conjecture[3]. Also, their formulations for 

Arabic Naskh Stretching had to be changed so that they would work for Persian Nastaliq. 

The last stage was to implement this formulation to achieve all the desired stretched sizes of 

each glyph. There are still some problems left for future work.  
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7.1.1 List of Contributions 

The contributions achieved in this thesis can be summarized to four categories: 

i)  Development of a new regular language for naming Glyphs in a Nastaliq Font 

As explained in Section  6.6, a regular expression was developed to name each glyph 

in the font to make it easier for the user to identify it and use it in the right context. 

ii)  Proof of the validity of Abdelouahad Bayar and Khalid Sami‟s stretching model 

Another achievement of this research was proving the validity of Abdelouahad Bayar 

and Khalid Sami‟s conjecture about modeling the handwritten Arabic Naskh. This 

proof was necessary to make sure a similar process would be valid for modeling 

Nastaliq. 

iii) A stretching model for Nastaliq 

A stretching formulation based on Abdelouahad Bayar and Khalid Sami‟s model was 

developed in this research to model handwritten Nastaliq. 

iv)  A Nastaliq Type3 font containing all the stretched version of stretchable glyphs. 

A PostScript Type3 font was developed containing 1247 glyphs including all the 

possible stretched versions of all possible stretchable letter.  

7.2 Lessons Learned 

There were lessons that I learned in this research. Most important, before starting any 

software development, first, prepare a software specification or a user‟s manual for it. The 

main reason as mentioned earlier is that a good software requirements specification, in my 

case a user‟s manual, is always a good way to discover flaws in one‟s software earlier. I also 
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learned that I had to trust my supervisor, because if it wasn‟t because of his insisting on 

writing the manual, I would have wasted a lot of time on coding without getting any result. I 

also learned that research takes more time than what we expect. This is because we do not 

know all the aspects and therefore, at any stage you might find important issues neglected 

that would need to be considered. 

7.3 Future Work and Existing Problems 

A remaining problem is that no available program for working with TrueType fonts 

can handle fonts with both vertical and horizontal movements. As mentioned earlier many 

convertors can be used to work with TrueType fonts such as ttf2pt1, FontForge, CrossFont, 

TransType, etc. None of them could handle horizontal and vertical movement at the same 

time. For future work it is recommended to work on a program that can handle both vertical 

and horizontal movements in TrueType fonts. 

Another important issue is handling the problem misplaced start and end points of 

curves in the glyph as mentioned in Section  0.  The solution for this problem is changing the 

stretchable Bézier curves so that the start and end position of each curve is in a suitable place 

for stretching. This change requires cutting a Bézier curve into two new curves given a break 

point or combining two adjacent Bézier curves. The combination is usually helpful to reduce 

the number of curves in the layout of the glyph in order to achieve a better look. Figure 50, 

illustrate two proper curves B2 and D2 .As shown in this figure, by breaking the curves B and 

D in Figure 47, we can achieve two curves, B2 and D2, which their start points and end points 

have much less vertical distance. 
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Figure 50-Breaking Curves B and D in Figure 47 to Achieve Proper Curves in 

letter ک (Kaf) 

7.4 Breaking a Bézier curve into Two Bézier Curves Given its four Points and a Point 

Placed on the Curve: 

 

It would be enough to show that if any Bézier curve is broken at any point into two 

curves, these two curves would be Bézier curves. It is clear that if you break any polynomial 

curve, the two curves are still polynomials with the same degree. We know that every Bézier 

curve is a polynomial of degree 3. Since every polynomial curve of degree at most 3 can be 

expressed as a Bézier curve [10], by breaking this polynomial into two polynomial curves of 

the same degree, we can get two Bézier curves. This process also needs direct human 

intervention to choose the right break point on the glyph‟s layout to achieve a more beautiful 

glyph after stretching. 
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7.4.1  Combining Two Bézier Curves in Order to Get a New Curve: 

As a matter of fact, it is not possible to combine two Bézier curves of the same degree 

and get a single Bézier curve covering the same points with the same degree in general. But 

there are special cases in which this can be done. For instance, if the starting curve is the 

result of the splitting operation descried in Section  7.4, it would be possible to combine the 

curves.  

More generally, we can divide every curve into many break points. Assume we have 

n break points, K1, K2, K3,  …, Kn. The trick is to calculate a polynomial P(n) of degree 3, which 

would minimize the sum of the square distances between P(n) and every Ki for  

𝑖 𝜖 {1, 2,… ,𝑛}. This method is called the least squares method and is applied extensively in 

optimization models. The resulting curve might not be exactly what we want, but it might 

still be useful improving the appearance of stretched glyphs. 
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Appendix A  

NAS Troff User’s Manual 
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This Document contains the User Manual for NAS , a modification to ffortid to let Troff support 

the Persian calligraphy called Nastaliq and also support its stretching mode.  
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1 Introduction:   

1.1 Product Overview 

NAS is a Troff postprocessor for handling the Persian calligraphy called Nastaliq. 

NAS lets Troff documents contain Nastaliq as well as automatically handling 

the stretching problem while both right and left justification. In Chapter 2, the 

required rules for Persian Nastaliq as well as the rules handling the stretching 

problem are described. Chapter 3 describes some basic use cases about stretching. 

Chapter 4 provides the algorithms and procedure NAS uses to stretch letter. This 

software is meant to run on an Apple’s Mac OS X. We assume the user uses the 

free editor program called Textedit which is pre-installed on all Mac OS X 

systems and will build the result using Troff, the plan 9 version- modified by the 

author of this article.  

 NAS was decided to handle these as follows: 

1. A Persian font would provide the different forms of each letter as independent 

characters and each character that is to be connected on any side would be 

designed to be flush to the bounding box on that side at precisely the same place 

relative to the baseline.  

2. A pre-processor, called ptrn, would do letter form and ligature identification 

on letter-only input to yield output with each glyph to be printed, be it a form of a 

letter or a form of a ligature. The letter-only input would be according to a 

standard encoding for the language being processed, and the output would be 

according to the font’s encoding for the glyphs. Thus, ditroff would format input 

consisting of the glyphs to be printed. If the input to the pre-processor has 

diacritical marks, then they will be translated into their glyph codes surrounded by 

instructions to place them in the proper vertical position with respect to the 

character with which it is associated. 
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3. The ffortid postprocessor would be modified to stretch connections to last 

letters of words and/or lines in order to achieve one kind of Keshidah.  

Figure 1 describes the flow of how this software works. The user inputs Unicode 

text in the editor. The next state is ptrn’s turn which would do letter form and 

ligature identification on letter-only input to yield output with each glyph to be 

printed. Also shape changes which may occur are handled in this section. The 

result which is Unicode together with some ligatures will be delivered to 

ditroff/ffortid. Now with the changes implied to the ffortid class, the 

software calculates where to places each letter and also how much each letter 

should be stretched. The last step before the output is generating the post script 

code first and then applying the change in shapes which will be done to the post 

script code of each letter.  Figure 2 also provides a big picture of the flow of data 

in the software. 

 

 

 

 

 

Figure 1- The flow of data from keyboard to output result 
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Figure 2- High level view of NAS and troff Processors 

 

1.2 A sample Run 

Writing Nastaliq can be easily achieved by using NAS. First, you need to run the 

Textedit on your Mac OS X. NAS not only handles documents only in Nastaliq but it 

also handles making documents containing both left to right and right to left languages. 

In order to write Nastaliq, we first need to change the language of the keyboard. This can 

be easily done be clicking on the language bar at the top left side of the screen and choose 

Persian – ISIRI 2901 from the menu. If this language does not exist in the menu, simply 

click on the system preferences on the dock at the bottom of the page and choose 

international-Input Menu – Persian-ISIRI 2901.   

Below you can see a sample Troff file handling Persian Nastaliq. 

Here is a sample set of Troff command you need to start typing Persian. /F PN marks 

the beginning of using Nastaliq font. \fP Marks its end. .OA means “other abstract 

header”, .lp means “left adjusted paragraph”. 

.OA  

.lp  

\f(PN مقالً ایه یک مثال است برای امتحان ووشته زبان فارسی بً کمک  

 f\ در ایه بروامً ما از یک وگارودي بً وام f  \Hditroff/ffortid\fPN\  بروامً 

Troff 
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(Textedit)\fPN کً در سیستم ٌای \f (Apple Mac OS X)\*PN  استفادي میکىیم 

وجود دارد،  \fP 

It is severely hard to show the time sequence in the editor used to type this manual for a 

text containing both right to left and left to right languages. So it is just enough to remind 

that Farsi, unlike English is right-to-left. 

گقرندهلهبهلهناملهلهلهلهلهلهلهلهلهلهلهلهلهلهditroff/ffortidیله  تحقنلهنوشتهلهزبقنلهفارسیلهبهلهکمکله لهنامهلهلهلهلهله مقاله اهله یله مقاله اسله  له  کهلهدرلهسیستملههایلهلهلهلهلهلهلهلهلهلهلهلهلهTextedit)له(درله اهله نامهلهمقله زلهبیلهن

(Apple Mac Os X)  وجودلهد ردله ستفقدهله یکنیملهلهلهلهلهلهلهلهلهلهلهله. 

Figure 3 Sample Persian-Nastaliq editing with Troff 

 

 

 

2 Chapter 2 

Conventions 

 

2.1  User assumption 

2.1.1 •The User of NAS is assumed to have a good knowledge of Troff. If not please 

refer to the user manual of Troff Plan 9[5]. 

2.1.2 •Nastaliq has many different rules used by different Masters in Iran. Here we 

obey mainly the rules from the sources we mention in the bibliography[1,2,3,4]. 

2.2 National Conventions 

 Times is used for regular text, Headings 

 Times Italic is used for Terms and emphasis. 
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 Comic Sans is used for program names and code. 

 Tahoma is used for Sample Input. 

 Century is used for sample output. 
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2.3 Terms  

NAS – The name of the program 

You - The person who uses NAS, addressed by “you”. 

Dot - A square shape found in some Persian alphabet such as several letters in the 

alphabet such as "،ق، ف، ب...”. The size of a dot is defined to be √2 * (side of a dot) . 

Keshidah- A procedure applicable to some letters in Persian alphabet which will result in 

stretching of the letter. A stretched letter’s length should be between 7 to 11 dots , giving 

the author the right to choose what is the most proper length. 

Persian : (Also known as Farsi) The language spoken in Iran , Tajikistan  and Afkanistan.  

Contains 32 letters:   ذ ،ر ،ز ،ژ ،س ،ی ،ص ،ض ،ط ،ظ ،ع ،غ ،ف ،  آ ،ب ،پ ،ت ،ث ،ج ،چ ،ح ،خ ،د،

 ق، ،گ ،ل ،م ،ن ،و ،ه ،ی

Most of the Persian letters have up to 4 different shapes: 

 Stand alone 

 Connected before 

 Connected after 

 Connected both before and after 

Nastaliq – an Old Persian calligraphy style. 

Spacing – The required space we need between not connected letters and also words in 

Persian Nastaliq. It is mainly equal to one dot. 

Base line- In Nastaliq the baseline of each character is determined according to the 

position of the character in the word containing it and whether it is going to be connected 

or not. As a necessity, it is the case that we start every maximal group of connected 
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letters from a height higher than the original baseline and we come down while writing 

on a slanted line so that the last letter in this group is either tangent to the baseline or 

under it due to the nature of the letter. 

Shape Changes: In Nastaliq , Letters “س” and “ش” might change shapes to a shape 

different from the four ones already introduced. When applying Keshidah, most letters 

will become just a little bit more stretched, but some letters, such as letter “س”, lose all 

their teeth. This case happens only to letters “س” and “ش”. The Iran Nastaliq font used 

in this software does not support the stretch glyph; however, by a modification to the 

PostScript code of existing letters, it is possible to produce the desired shaped. 

Ptrn- A pre-processor, which would do letter form and ligature identification on letter-

only input to yield output with each glyph to be printed. Also shape changes which may 

occure are handles in this sections.  

 

ditroff – troff’s processor which handles the left to right languages 

 

ffortid – troff’s post-processor which handles the right to left languages including 

stretching.  

psdit – converts the ditroff or ffortid output to PostScript. 
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Unicode : A standard encoding allowing computer based systems to consistently 

represent and manipulate almost any existing character in many language or formula. 

There are several versions of Unicode as follows: 

UTF-8 : uses 1 byte for all ASCII characters, which have the same code values as in the 

standard ASCII encoding, and up to 4 bytes for other characters 

UCS-2 : uses 2 bytes for all characters, but does not include every character in the 

Unicode standard  

UTF-16 : extends UCS-2, using 4 bytes to encode characters missing from UCS-2 

Textedit – The default text editor on Mac OS X Systems which uses Unicode with 

UTF-8 and UTF-16.
[5]

 

MAC OS X: The current (2009) version of operating system implemented on Apple 

Macintosh machines. 
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2.4  Rules in Persian Nastaliq (This section just contains the actual rules in 

Persian Nastaliq- Chapter 4 is about what I will and can implement!) 

Rules needed to be taken care of: 

Rule 1: Page 23 Rules of Calligraphy by Amirkhani -Adaabol khatte Amikhani
[2]

 

For regular lines, up to 3 stretches can be still acceptable (leaving the decision for the 

author) and can help to keep the balance of the text. Stretched letter should not be 

selected from the beginning of each line. It is also not desirable to have stretched letters 

beside each other.  

Rule 2 : Page 9 Learning Nastaliq , selected parts of secrets of Nastaliq 
[4]

 

For not connected letters, which come after each other in a line, we should consider a 

space of a dot between them.  

If the ending part of the previous letter or the starting part of the next letter is thin, they 

can be shifted/ closer to each other until they look connected.  

Rule 3: Page 92- Learning Persian Calligraphy
[1]

 

There are three reasons to stretch letters which the third one is important for us in NAS 

since the first two needs human interaction to choose what is more beautiful: 

I – To look more beautiful 

II- To avoid confusing between similar words 

III- To justify lines and fill empty spaces 

Rule 4:  Learning Persian Calligraphy 

 A full stretch is between 9 to 11 points and a short one is from 4 to 5 points.  

Rule 5 : Learning Persian Calligraphy 
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 A Full stretch does not appear in the beginning or the end of a sentence. 

Rule 6: Learning Persian Calligraphy 

 No two stretches in two neighbor lines should be located vertically close to each other. 

Rule 7: Learning Persian Calligraphy 

 Neither full nor short stretches may appear at the beginning and end of the line.  

Rule 8: Learning Persian Calligraphy 

Stretching is acceptable in the following 7 conditions: 

After  as in,  

After  as in,  

After as in,  

After  as in,  

After  as in,  

After  as in,  and  as in,  
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After  as in,  

Rule 9: Learning Persian Calligraphy 

We also are not allowed to stretch letters”س” and” ش “in following conditions: 

Note: The slanted line drawn on the stretched letter means that it is a mistake to 

stretch it. 

Before  as in,  

Before another stretched same letters, as in,  

Before , as in  

Before , as in  

Before , as in  

 

 

 

Rule 10:Page 14 , A look into cheminstry in Nastaliq[3] 

In every line it is better to have 1 stretched letter or 2 half stretched ones. Sometimes in 

order to make the line look better we may decide to put more than one stretched letters in 
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every line. It is better to not decide the stretched letters in lines so that they do not locate 

beneath each other. This helps the text to not look more crowded in some parts of a page 

than other parts.  

 

For a letter, even it is stretchable, it is important to check its location in the line before 

stretching it, due to calligraphy rules in Persian. It is important that in every line we 

consider at least one stretched letter, and with respect to the kind of the letters, we can put 

more stretches in each line; however, it is required that we consider some space between 

every two stretched letter. To be more specific, let’s divide each line into 5 sections as 

shown below. We can divide every line to five sections just considering the line, not 

caring about the words in it. Also if one letter is in two sections (when we divide the text 

into 5 sections, it is possible that a dividing line divides a letter into two sections. In the 

following figure, letter “ظ” faces such a condition, but since it is mostly contained in 

section 4 than section 3, we assume it is in section 4, not 3.), it can be considered as a 

member of the section which contains a larger vertical portion of the letter. If the letter is 

equally in two sections, it can be considered to be in any of those two.  

 

                                                   

 

 

 

 

When we just want to have one stretched letter in a line, the best place to choose its 

location is section 3. If the letters in this section are not stretchable, our next candidate is 

4 5 3 1 2 
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section 4, and again if section 4 does not contain such a letter, the next candidates are 

section 2, 5 and 1 in that order.  

If we want to choose 2 stretched letters in one line, the preferred situations are (3,5). If it 

is not possible to choose stretched letters from those sections the next candidates are 

(2,5),(2,4) and (4,1) in that order.  

Rule 11:When fully stretched, for some letters such as "ب" the beginning of the letter 

should be replaced one dot higher than usual. 

 

3 Chapter 3 - Basic Use Cases: 

3.1  – An overview of stretching 

In this section the instruction for stretching letters is provided. This software provides 

two different Ways to stretch letters: Automatic and Manual.  

 

3.1.1 – Automatic: 

 To obtain an automatic stretching, the user has to choose the both side-justified 

paragraph by the “.ad .p” command. In this way, the software automatically 

chooses the suitable letters to stretch using the provided rules in chapter 2 and 

stretches them automatically by the algorithm and amount explained again in 

chapter 2. 

 

3.1.2 – Manual :   

In this way the user has to exit the automatic mode  by the “.na command” and 

enter the Manual mode. Then by the .strm command before any word, the user 

can ask for the maximum stretch of the last possible letter in the word. The user 

has to use the .nstrm command to cancel the manual stretching mode.     
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Note: Entering the Manual stretching mode would also turn off the automatic stretching 

mode automatically. 

 

 

 

 

 

4 Design Decision 

4.1 Overview 

In this chapter a set algorithms will be provided which are already implemented in the 

NAS. These algorithms are included in this manual to help the user understand the rules 

of Nastaliq together with the functionality of NAS better. 

4.2 Algorithms 

4.2.1 Automatic Calculating 

 

1- Calculating the length of existing line: The length of the existing line would be 

the addition of the width of all Maximal connected group of letters plus the space 

between the not connected letters or Maximal connected group of letters. The 

default size of this space is known to be √2 * side of a dot.  

2- Calculating the available amount for stretching 

The amount to calculate the free space we have in a line would be equal to : 

 Default Length of a line – length of the current line 

3- When the available amount is calculated we need to find out which letters are 

stretchable. According to the font we use in NAS, most of the letters are 

stretchable. Letters such as “ ،س،شب،پ،ت،ث،ک،گ،ف ” are stretchable if it is either in 

the stand-alone, the connect-before or connect-both position. Letters such as 
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 ate stretchable only in connect both and connect  ”ج،چ،ح،خ،ص،ض،ط،ظ،ع،غ،ق،ل،م،ن،ه،ی“

after positions. These letters are stretchable if they obey rule 2.4.8. 

4- Since we prefer to have not many stretched letters, and according to rules 10 in 

2.3 , we would rather to have stretched letters in specific places in a line, we also 

need an algorithm to find the suitable letters and stretch them. 

1- If the existing line is the last line in a paragraph, i.e. it contains a 

period and there is nothing after the period, automatic stretching would 

not apply to this line; if not move to next step. 

2- Divide the length of line into 5 section, call them S1,S2,S3,S4,S5 from 

left to right, which means that the most left section is S1 and the most 

right one is S5. 

3- If the majority of a letter is in one section, but some of it is also in 

another section. We would consider the section containing the majority 

as the main section containing the letter. If it is the case that a letter is 

equally in two sections, we would consider it to be in the first one. 

4- Check Section S3, if there exists a stretchable letter which would not 

contradict rule 8 in 2.3, stretch it to the maximum amount up to 11 

points so that the line is aligned. If there still exists spare space in the 

line. If there are no stretchable letters in section S3, check sections S4, 

S2, S5 and 1 in the given order. If the line still has spare amount, we 

would undo any changes done in section S3. (NAS first checks if it is 

possible to make the changes, if so it makes the changes, if not it will 

move forward to the next step without any changing in order to save 

time. There is a golden rule provided here to make our job easier to 

find the suitable letter for stretching in a section containing more than 

one stretchable letter. This golden rule is just a pseudo code for 

implementing rule 6 in chapter 2.4. The golden rule says: if there are 

more than one stretchable letters in a section and we need to choose 

one to stretch, we would stretch the first stretchable one. The only 

case this does not apply is if on the above line in the same 

paragraph, there exists a stretched letter exactly located at the top of 
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our choice. If this is the case we move forward the next choice in the 

section. If the next choice also is problematic or there is no other 

choice in the following sections, we will move forward with the 

choice we made first. 

5- Now we know that for the line we are in, more than one stretch is 

needed. So by rule 10 in 2.3, check sections (S3, S5), find the 

stretchable letters respecting 4.2.1.3 and 2.8 – rule 8 in these two 

sections (each should contain at least 1 stretchable letter), if there 

exists such letters in these 2 sections, choose them using the golden 

rule and stretch them by the equal amount up to 11 points so that the 

line is filled. If these two sections do not both contain the suitable 

letters, check section (S2, S5), (S2, S4), (S4, S1) respectively. If the 

stretching in none of the group of sections given above would not fill 

the line, it will mean than we need more than 2 stretches. 

6- Check sections S1, S3, S5. If each contains a stretchable letter, by the 

golden rule, choose a stretchable letter in each section and stretch them 

by the equal amount up to 11 point as much as the line is filled. If the 

line cannot be filled and there is still spare space, there is nothing more 

we can do. So we move to the next line. 

4.2.2 Manual calculating 

In manual calculating, the user will have the choice to ask for a maximum stretching 

mode. The applied rules and uncommon cases and have been introduced in chapter 3 

already. Notice that manual stretching can still be applied to stretchable letter defined in 

4.2.1.3. 
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