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Abstract

This thesis introduces and analyzes a collection of string algorithms that are at
the core of several biological problems.

First. it presents the Grammar Transform Analysis and Compression (GTAC)
entropy estimator. the first entropy estimator for DNA sequences that has both
proven properties and excellent entropy estimates. Additionally. the estimator uses
a novel data structure to recpeatedly solve the Longest Non-overlapping Pattern
Problem in linear tine. GTAC beats all known competitors in running time. in the
low values of its entropy estimates. and in the number of properties that have been
proven about it.

Second. it presents the Distinguishing String Problem. which has many biolog-
ical applications such as creating diagnostic probes. universal primers. unbiased
consensus sequences. and discovering potential drug targets. All these applications
reduce to the task of finding a pattern that. with some error. occurs in one set of
strings (the Closest String Problem and the Closest Substring Problem) and does
not occur in another set (the Farthest String Problem and the Farthest Substring
Problem). The NP-hardness of approximation properties of these problems are

characterized. and approximation algorithms are presented.

v
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Chapter 1

A Tale of Two Subjects

In the twentieth century. two areas of study have grown tremendously. molecu-
lar biology and computer science. In one sense these two areas are quite differ-
cnt: molecular biology is concerned with understanding natural processes: whercas
computer science is concerned with solving problems using a machine. However. in
another sense these areas are quite similar: they both deal with the processing of

information. Moreover. throughout their history they have faced similar challenges.

1.1 A Brief History

While the idea that information is inherited through genes was developed by Mendel
in the mid 1800s. it was not until 1502 that Sutton and Boveri noticed the par-
alle] between Mendel's notion of genes and the action of chromosomes during cell

division. They articulated this parallel in their Chromosomal Theory of Inheri-
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tance!. This theory proposed that chromosomes were the cellular structures behind
Mendel's observations. Two years after these cellular components were recognized.
the electronic components that would become essential elements in the first elec-
tronic computers began to be invented. First. Fleming patented the diode vac-
uum tube. followed by de Forest's modification to create a three-electrode version.
Next. Eccles and Jordan developed the flip-flop electronic switching circuit. These
simple elements were soon followed by larger components such as Shannon's elec-
tronic adder for binary encoded numbers and Stibitz’s binary circuit that performed

Boolean algebra.

1.1.1 The Big Picture Emerges

By the late 1930s and early 1940s both areas made major strides in seeing how
the basic components fit together. In molecular biology. Beadle and Tatum related
genes to proteins saying that one specified the structure of the other in what is
known as the One Gene. One Enzyme Hypothesis. Later. Avery and others per-
formed a series of experiments that suggested that DNA was the material in which
the gene was encoded: the path between chromosomes. DNA. and protein had be-
gun to emerge. In the computer world. the bigger picture was materializing as
the various components of the previous era were combined to create the first elec-
tronic and electro-mechanical computers. These first computers were developed by

rescarchers such as Atanasoff, Zuse. Aiken. and the team of Turing. Flowers. and

'The source of thé¢ molecular biology mentioned in this section comes from [10. 37] and the
computer science information from [26].
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Newman?. The developments in these two different areas actually crossed paths to
a certain extent. Only a few years after Caspersson had shown that DNA was a
very long molecule, Turing introduced the concept of a Turing machine which had

as one of its components an infinitely long one-dimensional tape.

1.1.2 Information Storage is Considered

In the late 1940s. and throughout the 1950s. both areas began to research how
information could be stored. In molecular biology. Watson and Crick proposed
a double helix model for the structure of DNA. realizing not only how genetic
information was stored. but also how it could be replicated as well. In computer
scicnce. von Neumann suggested a design for computational devices that not only
stored data. but also had stored program control. creating a practical. but limited.
implementation of a universal Turing machine. In terms of hardware. besides the
invention of the transistor. various forms of bulk storage such as the magnetic drum

memory. matrix core memory. and hard disk drives were developed.

1.1.3 Information Encoding is Investigated

In the 1950s and early 1960s both areas looked at how information was encoded.
While the genetic code was being worked out by researchers such as Crick and
Nirenberg. who looked at which sequences of DNA corresponded to which amino

acids. Monod and Jacob were proposing a model of gene expression. to explain

*Note that this was M.A.H. Newman. not J. von Neumann the mathematician who introduced
the idea of stored program control.
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how it was regulated. In computer science. researchers were creating machine-
independent ways of encoding algorithms by creating high level languages like the
Short Order Code. Fortran. and Cobol. In another direction. the American National
Standards Institute accepted ASCII and a standard for encoding English characters

during this period.

1.1.4 The Interrelationship

As research continues today. computers are getting more complex. and biologists are
understanding more of the complexity of life. Surprisingly. while both areas deal
with information and computation. there has been very little interplay between
them. Recently. however. the idea of genetic algorithms has been introduced into
computer science. These algorithms model the way that information evolves in
biological systems to solve computer science problems.

Another recent development. of particular importance. is the area of computa-
tional biology. This area of research uses the power of computers to solve complex
problems in biology. Indeed. biology is currently facing a problem that computer
programmers faced in the early 1950s. As the capacity of computers increased
and the programs became more complex. it became more difficult for the program-
mers to work with the low level machine languages. so they developed higher level
languages such as Fortran. Similarly. one of the key problems currently facing bi-
ologists. given the wealth of genetic information being generated by programs such
as the Human.Genome Project, is how to understand all the low.level sequence

data contained in genetic databases and put it into higher level constructs. The
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| The Electronic Computer

The Living Cell

Mass storage is on a tape or hard drive.

Mass storage is in DNA.

Information 1s stored in a magnetic
medium.

Information is stored in a molecular
structure.

Information is represented using the al-

phabet {0.1}.

Information is represented using the al-
phabet {a. c. g. t}.

The reliability is enhanced by storing
redundant information.

The reliability is enhanced by also stor-
ing the reverse complement of the data.

Mass storage is broken up into a num-
ber of similar structures called platters.

Nuclear DNA is broken up into a num-
ber of similar structures called chromo-

somes.

Table 1.1: Analogy Between Cells and Computers-Mass Storage

challenge of using this information beneficially presents a new series of problems to
be solved and the biological compounds at the center of this challenge—and also
at the center of most living organisms—are DNA. RNA. and protein.

Since both organisms and computers process information. an excellent way to
understand these classes of genetic compounds is through an extended analogy with

computers.

1.2 DNA is Analogous to a Hard Drive

In a computer system. the largest and most permanent store of information is
called the mass storage unit, which is typically a hard disk drive. As outlined
in Table 1.1. analogously, in a living cell. the largest and most permanent store

of genctic information (the traits of the organism that are inherited) is a class of

chemicals called deoxyribonucleic acid or DNA.
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1.2.1 Information Is Stored in a Molecular Structure

In a hard drive. a thin circular aluminum alloy surface called a platter acts as a
support base on which the information is stored. This support base is coated with a
thin layer of a hard metal alloy that is capable of being magnetized. Information is
stored by creating magnetized patterns in one of two orientations. Using a method
called flux reversal. a change in the magnetic pole direction represents a one. and
a continuation of the same polarity represents a zero.

In living cells. long chains comprised of alternating molecules of deoxyribose (the
D in DNA) and phosphate are chemically linked together to provide the support
base. or backbone. on which the information is stored. DNA more closely resembles
maguetic tape than a hard drive in the sense that the information is encoded along
the length of the molecular backbone rather than in concentric circles.

Each deoxyribose in the backbone can have one of four different chemicals at-
tached to it. namely adenine (a). guanine (g). cytosine (c) or thymine (¢) and it is
a sequence of these four different bases that encodes genetic information. Hence a
DNA molecule can be thought of as a string in the alphabet {a.c.g.t}. If unwound.
the strands of DNA in a single cell of a human being would be about 5 feet long

and only 50 trillionths of an inch wide.

1.2.2 Reliability is Enhanced Using Reverse Complements

One way to enhance a system s reliability is to duplicate its information. Computers
can store redundant information on separate drives. such as the Redundant Arrays

of Independent Disks (RAID) family of techniques. A living cell also duplicates
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its information in the following manner. A DNA molecule has the property that
if reversed. that is rotated 180 degrees. two slightly polar regions with opposite
charges align nicely on the chemicals a and ¢ to form a more stable structure. With
c and g. three slightly polar regions align. Because of this property. a and t are
called the complements of each other. and likewise ¢ and g are complements. For
example. the complement of catgg is gtacc. Furthermore. orientation is important
for a DNA molecule. The beginning of a sequence is labeled 5°. and the end 3". so
given a sequence 3’ — catgg — 3'. the reverse complement is 5 — ccatg — 3'. Here.
the 3" and the 5’ refer to carbons in the deoxyribose component of the nucleotide.

When two strands are exactly the reverse complement of each other. they can
hybridize. or twist together. to form a structure that is more stable than just a
single strand. In fact. cellular DNA is typically found as two strands. each the
reverse complement of the other. twisted together to form a double helix. The
dcoxyribose and phosphate backbone forms the sides of the twisted ladder. and the
at and gc base pairs form the rungs. As noted by Watson and Crick. this structure
also suggests a mechauism for the replication of DNA. each existing strand acting

as a template for a new strand.

1.2.3 Chromosomes are Subunits

While reverse complementation enhances reliability. there is also a need to increase
capacity. The capacity of hard drives is increased by having several platters to-
gether on a single shaft. called a disk stack assembly. Likewise a cell can have

several molecules of DNA. each called a chromosome. in the nucleus of the cell.
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| The Electronic Computer

The Living Cell

I/0 is the process of transferring infor-
mation between permanent storage and
temporary storage.

Transcription is the process of transfer-
ring information from permanent stor-
age to temporary storage.

Temporary storage uses electrical sig-

nals in RAM.

Temporary storage uses molecular

structure in mRNA.

Information now represented as voltage
levels. for example {0 v. -5 v}.

Information is now represented as the
bases {a. c. g. u}.

Table 1.2: Analogy Between Cells and Computers-Temporary Storage

A strand of DNA is rather delicate. so breaking it up into many structures allows

the amount of information to grow yet keeps each individual strand from growing

past a certain size. Chromosomes can also be used to enhance reliability in another

sense. Organisms that undergo sexual reproduction can contain two copies of each

chromosome in each cell. one which came from the father and the other from the

mother. Thus. redundancy enhances reliability.

Another parallel between the two subjects is that the information in both hard

drives and in a human cell's chromosomes are a similar order of magnitude: the

human genome contains roughly three billion base pairs of information. Cells and

hard drives are different, however. in the sense that all the platters in a hard drive

arc exactly the same size. but chromosomes can differ in size. Another difference

is that DNA is predominantly a WORM (write once, read many) storage device.

whereas hard disks are write many. read many.
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1.3 mRNA is Analogous to RAM

Table 1.2 illustrates that both computers and cells have to deal with the problem
of getting information from unwieldy mass storage into a size more amenable to
processing. Compnuters copy the information in fixed sized blocks from the hard disk
into faster and transient storage. RAM. The cell transcribes a portion of the DNA
of varying lengths into an intermediate compound called messenger ribonucleic
acid (mRNA). For both computers and cells. the transient storage uses a different
representation than the bulk storage. Computers use differing voltage levels in
RAM rather than magnetic field. and cells use a different chemical. messenger
ribonucleic acid (mRNA). The polymer mRNA is different from DNA in two ways:
the backbone has been modified so that it is chemically less stable by adding an
extra oxygen molecule to deoxyribose (the D in DNA) to create a new compound
called ribose (the R in RNA). and there is a modification of one of the bases.
thymine. creating a new chemical uracil (x). Uracil. like thymine. binds to adenine.
So mRNA. like DNA. can be thought of as a string but in a slightly different
alphabet {a.c.g.u}.

Because DNA and mRNA are similar molecules. DNA can act as a template
for the creation of mRNA. The process of transcription. much like the process of
replicating DNA., involves individual nucleotides lining up across from their corre-
sponding reverse complements in the DNA template strand as the cell's transcrip-
tion machinery moves along the growing strand polymerizing the new nucleotides
into a growing mRNA chain. Another similarity that also involves quite a bit of

extra machinery is the process of accessing the information in mass storage. For
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| The Electronic Computer

| The Living Cell

A fundamental unit of programming
is the function. which takes input and
converts it to an output.

The basic functional units of the cell
are proteins.

Functions are made up of a sequence of
elementary instructions or statements.

Proteins are made up of a sequence of
amino acids.

Voltage levels encode CPU instruc-
tions.

The mRNA sequence codes for amino
acids.

Table 1.3: Analogy Between Cells

and Computers-Functional Units

hard disks. reading process involves head stack assembly. rotary positioning as-
sembly and read/write heads. For DNA. the process involves chemicals like RNA

polymerase.

1.4 Protein is Analogous to the ALU

Table 1.3 outlines the analogy between functional units. The basic functional units
of a computer are either the machine language commands into which the software 1s
compiled. or the logic gates that implement these commands in the hardware. Both
accept input. and generate output. The basic functional units of cells are proteins.
but rather than operating on data. proteins operate on chemicals. combining them.
modifying them. or breaking them down. However. proteins have a wider range of
roles in organisms. Besides catalyzing chemical reactions in the cell. proteins make
up a vital component of an organism'’s support structure. such as collagen. which
provides the tensile strength of ligaments, tendons. and cartilage. Proteins can also
facilitate communication, such as insulin which controls the absorption of sugar by

cells of the human body.
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1.4.1 Amino Acids are the Building Blocks

While a computer program is composed of a sequence of elementary statements.
proteins are composed of a sequence of amino acids. This sequence of amino acids is
specified by an mRNA sequence. An mRNA sequence in the alphabet {a.c.g.u} is
read three bases at a time. and this triplet. also called a codon. either specifies the
next amino acid (out of 20 possible amino acids) to be added to the growing chain
that will eventually comprise the protein or it specifies one of three stop codons
which signifies the end of the protein sequence. The stop codons play the same
role as the control-D character in UNIX. which signifies the end of a text string or
text file. Although the protein is initially a linear structure. typically those that
catalyze biochemical reactions fold up into a three dimensional globular structure.
This process of using the information coded in mRNA to create a protein is called
translation. Since the genetic code is based on triplets. this feature allows for the
possibility of the cell translating in one of three different reading frames for any
scquence. depending if the cell starts at positions one. two or three. Typically in
protein coding regions. there are many stop codons occurring in the non-coding

reading frames. but only one in the reading frame that codes for protein.

1.4.2 Genetic Sequences Exhibit Redundancy

Because there are 64 possible codons and only 20 amino acids. more than one
codon can correspond to the same amino acid. Because of potential for more than
one codon to specify the same amino acid, the genetic code is called redundant.

and because of this redundancy, different sequences can code for the same protein.
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When this multiple correspondence occurs. the synonymous codons usually differ
in the third position (except for those amino acids which have six codons in which
case they differ in both the third and either the first or second position).

Both genetic sequences and programming languages display two types of re-
dundancy. First. different statements can mean exactly the same thing. In C++.
the statements ++4i; i+=1; and i=i+1; are all synonymous for incrementing the
value of ¢ just like the codons uuna. uug. and cuu are all synonymous for leucine.
Second. redundancy can also occur at a higher level. For example. the following

two programs below produce the same output.

Program 1

#include<iostream.h>
main() {

for ( int i=1; i<3; cout << i++);

Program 2

#include<stdio.h>
main() {
long j=0;
while (j<=1) {

printf("%14d", j+=1);
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Likewise two proteins. such as human insulin and bovine insulin can be very similar
in their action to stimulate the metabolism of carbohydrates. but have different

amino acid sequences.

1.5 Genetic Sequences Have A Specific Format

Promoter Region Transcribed Region
—L caat mlg—{a | [atgl [gt agl —[tga}-—
CAAT TATA Start of Start of Stop
Box Box Transcription Translation Exon Intron Exon Codon

Figure 1.1: A Sample Format of Gene Coding Region

While the electronic computer and the living cell have many similarities in
terms of information processing. they also have notable differences. In particular.
how information is organized in DNA is less well-defined than that of a traditional
computer file system. Figure 1.1 illustrates the format of one example of a protein
coding region for a eukaryote.

In general terms. the region of DNA that codes for a protein. also called a gene.

consists of two major sections:

1. The promoter region. This is the region of DNA which determines how much.
in what time period. and in what tissue the protein is created. Some proteins
are highly expressed: others may only be expressed at a certain stage of the

organism’s development. or under certain conditions. This region can be
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thought of as a control region that determines when and how often a gene is

expressed.

&)

The transcribed region. This is the region of DNA which actually gets tran-

scribed into mRNA.

1.5.1 The Promoter Region

Uufortunately. it is not easy to predict the location of the promoter region in rela-
tion to the transcribed region. It can be at varying distance and either upstream.
downstream or actually in the transcribed region. As well. the actual sequences are
short. and may differ slightly from each other. In the case illustrated in Figure 1.1.
the promoter region occurs before. which is referred to as upstream from. the tran-
scribed region. This region. in this case. cousists of two major signals. namely the

CAAT box and the TATA box.

1. CAAT box. The signal is named after the substring that most likely occurs
at this position. This is the area of the promoter region that controls how
likely transcription is to start. The more this region resembles the substring

5" — gg(t/c)caattct — 3'. the more frequently the downstream region will be

transcribed. Here (t/c) refers to the fact that either ¢t or ¢ can occur in

the third position. Typical CAAT boxes will differ from the prototype. or
consensus sequence, in one or two bases. The sequence usually occurs about

75 bases upstream of the start of transcription, but can vary in location by

as much as a dozen bases.



CHAPTER 1. A TALE OF TWO SUBJECTS 15

2.

1.5.

TATA box. Like the CAAT box. this signal is named after the substring
that most likely occurs here. It is the region just upstream from the start of
transcription that indicates where transcription starts. This region is typically
rich in a’s and ¢’s with the most likely sequence being 5’ — tata(a/t)a(a/t) -3’

and it usually occurs about 25 bases upstream of the start of transcription.

2 The Transcribed Region

Like the promoter region. the transcribed region is currently not completely under-

stood. For higher cukaryotes. such as animals and plants. there are typically four

components.

o

. Start of transcription. The first base to be transcribed is an a (or occasionally

a g) surrounded on both sides by a ¢ or a £. This region can be represented

as (c¢/t)(a/g)(c/t)-

Start of translation. Occurring a short distance downstream from the start
of transcription. the triplet atg marks the start of translation. which is the

scection of mRNA that encodes amino acids.

Exons. The exons are the part of the DNA region that gets transcribed and

is eventually translated into a protein.

Introns. The introns. or intervening sequences. are the part of the transcribed
region that does not get translated into protein. In fact, they are removed

sometime between the end of transcription and the start of translation.
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After the transcribed region is copied onto mRNA. the intron regions of the
RNA are removed and the exon regions are spliced together so that they appear
in the same order as on the DNA. The number of introns can vary from none
to a few dozen. Exons can sometimes be mixed and matched in a certain sense.
For example. a protein may exist in one of two variants: one consisting of exon 1

combined with exon 2. and another consisting of exon 1 combined with exon 3.



Chapter 2

Estimating DINA Sequence

Entropy

2.1 The Challenge

Traditional Methods Perform Poorly

With the wealth of genetic information being generated. a key challenge is to use
that information effectively. such as being able to distinguish introns from exons.
One possible approach for identifying these regions is by characterizing their en-
tropy. Since the alphabets of DNA and mRNA have four symbols each. the naive
method of encoding them would take two bits per symbol. which would be the
shortest possible encoding on average for a random sequence whose symbols were

. chosen uniformly and independently.! However, only a minuscule fraction of all the

'Here the term random is being used in the sense of Kolmogorov complexity: that is. a random
string is an incompressible one.

17
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possible DNA sequences result in a viable organism. therefore there are powerful
constraints on the sequences which correspond to a living organism. These pow-
erful constraints should be reflected in a lower entropy for the essential regions of
DNA 2. since not all sequences are possible. Indeed. Grumbach and Tahi [22] tried
to compress a variety of DNA sequences. listed in Table 3.1. using some standard
compression algorithms. The algorithms they tried included both static and adap-
tive Huffman. static and adaptive arithmetic coding of orders one, two. three. and
four. and a variety of Lempel-Ziv based algorithms including LZ77 [73]. LZ78 [74].
LZSS [60]. LZW [65]. and the UNIX utility compress.

Surprisingly. they found that these standard algorithms performed rather
poorly. generally worse than the naive algorithm. The Lempel-Ziv family of al-
gorithms performed worse than the naive method. encoding the sequences between
2.07 to 2.79 bits per symbol. Their data for UNIX compress is presented in Ta-
ble 3.1. The Huffman approaches also compressed poorly. encoding the sequences
at between 2.08 to 2.24 bits per symbol. However. the arithmetic approaches gen-
crally encoded the sequences with less than two bits per symbol with the best
performance given by dynamic arithmetic encoding of order two. with compression
rates varying from 1.84 to 1.97 bits per base. With only 61 of the 64 possible mRNA
triplet combinations being used to code for protein, that property alone suggests
an encoding of 1.977 bits per symbol for exons, so the arithmetic encoding of order
two provides only a slight improvement for the sequences that consist mostly of

exons.

>The two definitions of entropy that are used in this thesis are presented in Equations 2.2
and 2.1
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2.2 Previous Work

2.2.1 Biocompress

Recognizing the poor performance of traditional algorithms. Grumbach and Tahi
sought to create custom algorithms that would perform better on genetic sequences.
The principle that motivated their approach was the observation of the previous
scction: sometimes compression algorithms make the sequence larger because the
overhead of the compression algorithm adds more than is saved. They created two
algorithms. Biocompress [21] and Biocompress-2 [22]. which centred around the idea
that compression would be used on a particular substring only if the compression
plus the overhead of using that method performed better than the naive method.

guarantecing that the encoding would never take more than two bits per symbol.

Biocompress Combines Two Approaches
Biocompress is a combination of two approaches:

1. Literal encoding. where each symbol is coded as a two bit number.

o

Lempel-Ziv LZ77 style encoding. where a substring is encoded as a pair of
integers. one representing the length of the match. and the second representing

the position of the match somewhere to the left of the current position.

Biocompress checks to see which method is more efficient to encode a small
portion of the input. First. it tries LZ77 compression which works as follows. Given
a position ¢, find that longest substring starting at ¢ that matches a previously

occurring substring in the range 1 to i — 1. Biocompress then compares the cost of
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encoding the string as a LZ77 phrase (start point and length) compared with using
literal encoding and picks the shortest approach. Finally. Biocompress encodes the

type of encoding. the length of the phrase. followed by the actual encoding.

Biocompress Recognizes Reverse Complements

Another feature that Biocompress has is that it not only recognizes a pattern that
occurs twice. but it also recognizes patterns that appears both in the normal di-
rection and as the reverse complement. So. Biocompress not only has to encode
the LZ77 phrasc as described above. but also has to encode whether it occurs in
the forward direction or as a reverse complement. Grambach and Tahi found that
a pattern and its reverse complement occur more often than would be expected
by chance. which suggests that encoding this feature would pay off with better

conipression results.

Biocompress-2 Also Uses Arithmetic Encoding

Biocompress-2 is an extension of Biocompress that not only tries literal encoding
and LZT77 style encoding. but also arithmetic encoding of order two. and then
decides which of these three methods encodes the given phrase in the shortest space.
The entropy estimates provided by Biocompress-2 are presented in Table 3.1. and
in general Biocompress-2 compresses between two and seven percent better than
Biocompress. So the extra compression gained by using three different methods

compensates for the overhead.
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2.2.2 Match Length Entropy Estimator

Farach et al. [16] developed a novel algorithm to estimate the entropy of DNA
sequences called a match length entropy estimator. Unlike the Biocompress ap-
proach. the match length entropy estimator calculates the entropy directly rather
than using the compressed size of the file (which includes some overhead) as an

upper bound on the entropy.

Match Length Uses a Sliding Window

The match length entropy estimator works as follows. Letting L; represent the
match length at the i*" character in a sequence. the value of L; is the length of the
longest substring that occurs in two places: 1) starting at position { + 1. and 2)
anywhere in a sliding window consisting of the previous N, characters (where N,
1s a fix parameter describing the window size).

More formally. letting z[i. j] represent the substring of z that starts at the /"
character and ends at the j*#. and using the relation z € y to represent the condition

z is not a substring of y. the match length at position ¢ is defined as:

Li=min{k:z[i + L.i + k+ 1] & z[t ~ N, + 1. ]}

For example. setting N,, = 16, with the 16 characters in the sliding window as
z[i — 15. i] = tttagcatttcccgea. and the next five characters as z[i + 1. i +5] = catce.
since the first three characters of (i + 1. i+ 5] are a substring of the sliding window.

but the first four characters are not. this means L; = 3. Letting L be the mean of
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all the L; values, the entropy. H. can be estimated using the following equation:

_ log, N,

H
L

Sliding Window of Growing

Previous Characters | Substring
>
tgacaltttagcatttcccgecalcatccggt

Figure 2.1: The Match Length Entropy Estimator

Match Length’s Convergence

Martin Farach et al. argue that their entropy estimator converges quicker than
algorithms like LZ77. because while both algorithms perform the routine of growing
a substring until there is a mismatch. LZ77 algorithms do this routine once per
shortest unique substring in the input. whereas the match length estimator does this
once per character. However. although they argue that their estimator converges
quickly. they do not provide any standard datasets or comparison tests with other
entropy estimators. so that the relative speed of their convergence can be compared

with benchmark algorithms.

Match Length Results

There are a couple of curious features about their data. First, when the dataset

is originally introduced (page 51). there are 659 introns, but in the results section.
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579 introns are used in one experiment (page 54) and 574 are used in another (page
55). but the authors fail to mention any reason for not using all the intron data.
Second. the authors failed to identify which sequences they used.

While the identity of their data is not clear. the motivation for their results
is quite clear. Generally random changes in the sequence are thought to be more
deleterious if they take place in an exon (which codes for protein) rather than in an
intron (which gets removed before translation into protein). Hence these two regions
should have different information-theoretic entropy. because the modifications have
different consequences. Farach et al. used the match length estimator to distinguish
introns from exons. In particular. they set the window size to 16. and ran their
estimator on a dataset of 303 intron-exon pairs. To create an intron-exon pair.

sth

they used the z !

exon with the :** intron from a complete coding sequence: that
is. the exon and intron pair in their dataset occur adjacent to each other in the
original DNA sequence. Using a signed rank test with these pairs. which compares
the entropy of the exon to the intron to determine which was greater. they found
that the average match length for introns was larger 73% of the time and that the
variance of match length for introns was larger 80% of the time. As a result. they
concluded that their findings support the hypothesis that the entropy of introns
and exons are different with probability greater than 0.9999.

Finally. from a theoretical perspective. Farach et al. also proved that their
algorithm was universal. that is. that their entropy estimate will approach the true

entropy of the sequence as the length of the sequence increases assuming that the

sequence is generated by a Markov process, which is when the probability of any
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future state is independent of past states and depends only on the present state.

2.2.3 CDNA

Loewenstern and Yianilos [41. 72] developed CDNA. a program that estimates the
entropy of DNA sequences. The motivation for CDNA comes from the observation
that naturally occurring DNA sequences contain many more near repeats then
would be expected by chance. Here nearness is measured by Hamming distance.
that is. the number of mismatches between two substrings of the same length.
Two parameters that CDNA uses to capture the inexact matches are w. which
represents the substring size. and h. which represents the Hamming distance. These
parameters are used to create what they called a panel of predictive experts. py .
cach collecting information about the sequences of length w and allowing for h
mismatches. CDNA then lecarns the weightings of these various experts. using
Expectation Maximization. so that their ability to predict the next symbol in the

scquence is maximized when combined into a single prediction.

CDNA’s Approaches

CDNA has been implemented in two different ways. In the cross validation ap-
proach. the sequence is partitioned into 20 equal segments. the algorithm is trained
on 19 of the segments and predicts the remaining segment. This approach is re-
peated 20 times using a different segment as the test segment each time. The value
reported is the average of the 20 iterations. -

While the cross validation estimate is used to remove the overhead associated
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with compression. a simple example will illustrate how this approach can severely
underestimate the entropy of a genetic sequence. Let the input be a tandem repeat.
say rr. where r is a random genetic sequence and hence has an entropy of two bits
per symbol. The cross validation approach will report an entropy of close to zero.
yet the entropy of rr is one bit per base. How likely is such an example? Both
tandem repeats. such as the one above. and dispersed repeats are known to occur
in DNA and comprise a substantial fraction of the human genome [37]. Since this
method can severely underestimate the entropy. its results are not presented in
Table 3.1.

The second method that Loewenstern and Yianilos use is called CDNA com-
press. in which the algorithm uses cverything to the left of a nucleotide as the
learning set to predict the next nucleotide’s identity. The average entropy over all
positions is calculated and this value is presented for various benchmark sequences

in Table 3.1.

CDNA'’s Results

Since CDNA compress reports an entropy estimate. rather than the actual size of
a compress file as Biocompress does. their results are. not surprisingly. generally
better than Biocompress-2. Of the 12 standard sequences that Biocompress and
Biocompress-2 used. CDNA was run on only ten of them. Loewenstern and Yianilos
did not provide a reason why the other two sequences were omitted. Of the ten
_that Loewenstern and Yianilos did consider, CDNA compress beats Biocompress-2
on six of them. ties on one, and does worse on three test sequences. Two of the

three that CDNA does worse on. namely CHNTXX and VACCG. and the two that
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Loewenstern and Yianilos left out are known to contain long inverted repeats. The
size of a single repeat in each of these sequences is between 5-15% of the size of the
whole file. so dealing with them explicitly is probably what gives Biocompress-2
the advantage.

In addition to dealing poorly with inverted repeats. another disadvantage of
CDNA compress is that its convergence properties have not been characterized.
They do state how they define entropy. Given a DNA sequence z, and a predictive

model x. the sequence entropy is as follows:
21211_ —log, P(z4|xy. za. ... 2e_1. X) (2.1)

However. they do not prove that their algoriths are guaranteed to converge to this
entropy estimate. In fact they state their purely compressive estimate probably
overstates the source’s entropy. and as pointed out above. their cross validation

entropy estimate can severely underestimate the source entropy.

2.3 A Comparison

This dissertation proposes a novel entropy estimator of DNA sequences. Grammar
Transform Analysis and Compression (GTAC). This entropy estimator is based on
an approach developed by Kieffer and Yang [30] regarding the design and analysis
of grammar based codes. and additionally. it recognizes the reverse complement
property of DNA sequences. The GTAC entropy estimator is universal in the sense

that it does not assume any source model and works for any individual sequence.
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Moreover. GTAC is well justified from the information-theoretic point of view.
Before presenting GTAC. and grammar based codes in general. its basic properties
will be compared with the approaches of the previous sections.

In Table 2.1. GTAC is compared with the best known entropy estimators using

three criteria:

e Universality: A code is universal with respect to any stationary source (that is.
the source is homogeneous which means the statistics do not change over time)
if the entropy estimate will converge to the actual entropy if the sequence is

long enough. of being in any particular state does not change over time.

A less general code. such as the Match Length entropy estimator. must make
the additional assumption that the source is a Markov process for the code

to be universal.

e Run time: A linear run time is important because genetic sequences can be

quite long. millions or even billions of base pairs.
e Entropy Estimates: This is the goal of designing the algorithm.

Since compression algorithms such as UNIX compress and Biocompress-2 were
designed as compression algorithms. they tend to overestimate the entropy for short
sequences because they include overhead necessary for compression. so it is not
surprising that they provide the worst entropy estimates. An example of overhead
would be an online arithmetic encoder which initially assumes that each character
occurs with equal probability, only to discover at the end of the sequence that this

is not the case. CDNA was designed as an entropy estimator, but no convergence



CHAPTER 2. ESTIMATING DNA SEQUENCE ENTROPY 28

Linear Entropy
Algorithm Universal | Run Time | Estimate
UNIX compress | yes yes worst
Match Length | limited yes -
Biocompress-2 | yes yes 3rd best
CDNA no no 2nd best
GTAC yes yes best

Table 2.1: Features of Various Entropy Estimators

properties have been proven about its entropy estimates. As well. its run time is
inferior to GTAC's. Overall. GTAC is good as or better than every other estimator

for cach factor.

2.4 Grammar Based Codes

A context-frec grammar (CFG) is a quadruple G = (V.T. P.S) where V is a finite
noun-cmpty set of variables. T is a finite non-empty set of terminal symbols that is
disjoint from V. S is a distinguished element of V called the start symbol. and P
is a set of production rules which map elements of V into (V UT)".

Context free grammars have been used in a number of data compression ap-
plications and their use can be classified into two broad approaches. In the first
approach (for example {9]. [28]. [32]). the grammar between the compressor and
deccompressor is fixed. To compress an input, find a derivation of the input from
the grammar and compress the derivation. The second approach (for example [52].
[60]) uses a different grammar for each string. The compressor creates a grammar

that generates the string and the decompressor reconstructs the string by deriving
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it from the grammar.

Arithmetic

o Coder
Input Grammar Context-free a
String x Transform Grammar G, .
- Entropy

Estimator

Figure 2.2: The Components of Grammar Based Codes

The Structure of Grammar Based Codes

Compressed
Output

Entropy

Estimate

A recent development of particular importance in this second approach is a class

of CFG based compression algorithms developed by Kieffer and Yang [30] called

Grammar Based Codes (GBC). This class of compression algorithms are both nni-

versal and lossless and provide a general framework for both practical compression

of files. as well as directly reporting entropy estimates. Figure 2.2 illustrates the

general components of the framework. First. the input string is converted to a

context free grammar using a grammar transform. This is the key step. and much

of the rest of the chapter will explain the ideas behind a grammar transform. Next.

given a CFG. two different steps can be taken. First the CFG can be converted

into a compressed file using an arithmetic encoder. or it can be used as a basis to

calculate an entropy estimate.
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2.4.1 Admissible Grammars

One of the goals of a grammar transform is to develop a grammar that represents
a unique string: that is, given an input string z. create a grammar G, such that
G derives z and only z. One way of achieving this is for the CFG G, to have an

additional property called admissibility [30].

Definition 1 A CFG. G, = (V.T.P.S). is admissible if it satisfies the following

constraints:

1. Any variable in V appears only once on the left hand side of the production

rules. P.
2. The empty string does not appear on the right hand side of any rule in P.

3. G has no useless rules. so when z is dertved from S each rule is used at least

once.

The language generated by G, is nonempty.

*

Example 1 The following is an ezample of an admissible grammar G, with » =

tagcatacatacattag.
S — BCCAB
A — cat
B — tag
C — Aa
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Admissible Grammars Have a Canonical Form

Admissible CFGs with terminal symbols contained in an alphabet A can be put in
a canonical form referred to as G(.A). by creating a set of variables {A4y. A;. A2....}

none of which are in 4 and rewriting the grammar G in the following format.

o

The start symbol of G is Ag.

3. The variables make their first appearances in the order Ay. A;. A,. . ... Avi-1

when the following string is scanned left to right:
fO(Ao) * fH(Ao) % f2(Ao) % ... = fVI7H (Ay).

Here the = operator represents concatenation and the function f( ) represents
the rewriting process. For example. f%(Ao) = Aq. f1(Ao) represents rewriting each
variable that appears in Ag with its corresponding right hand side as specified in
P.and f(Ao) represents repeating this rewriting ¢ times. Intuitively. the canonical
form i1s when the variables are rewritten as Ag. A;. Aa.... so that Ay is the first
variable to appear. A; is the second one to appear. and so on. as the start symbol

1s rewritten until it derives z.

Example 2 Continuing on with FEzample 1. the grammar for r =
tagcatacatacattag consisted of four non-terminals {S.A.B.C} and the order

that they first appear in the listing of the grammar is {S, B.C. A}. So setting S to
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Ay. B to Ay and so on. the following grammar is created for G.:

Ao — A1AAA;A
A; — cat

A, — tag

A — Aaa

Putting the rules in their order of first appearance results in the following:

Ao e AlAgAzAsAl
Al — tag
A, — Asa

Ay — cat

In the case of creating an actual compressed file. the right hand side of all the

rules would then be concatenated together as follows:

AlAgAgA;,AltagA;;acat

where an extra symbol (in this case. a space) is added as a separator and then an

arithmetic encoder would create a file based on this input string.

2.4.2 Entropy Estimates

For genetic sequences,- the issue that is of particular concern is not the actual

compressed file but the entropy estimates that result from the Grammar Based
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Code approach. In order to characterize the entropy. let G, = (V.T.P.S) be a
CFG. Next. let w(G.) represent the string that is obtained from G, in the following
manner. First. concatenate together the right hand side of all the production rules.
P. Second. reniove the first occurrence of each of the non-terminals. V. Considering
Example 2 above. this process would remove the first occurrence of A,.A,. As.

resulting in the following:

w(G:) = AsAtagAzacat

The entropy of G.. or more specifically. the unnormalized entropy of the gram-

mar G.. is specified by the following equation

- o(5) log, —H3)
H(Gz) = — 3 n(s)log, oG] (2.2)

se(VUT)

where the convention that 0log0 = 0 is followed. |w(G.)| represents the length of
w(G:). and n(s) represents the number of times that the symbol s occurs in the

string w(G:). In the example above. n(a) = 3. n(c) = 1. and n(A,) = 0.

Overhead and Entropy

One of the strengths of the Grammar Based Codes is the ability to separate out
the unnormalized entropy estimate from the overhead involved in compressing the

grammar. The theorem that achieves this result. which is from [30]. is as follows:
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Theorem 1 Let G; = (V.T. P.S) be an admissible grammar and let |B(G.)| rep-

resent the size of the string representing G.. then

[B(G.)| < H(G:) +5|G.| + |T| (2.3)

where |T'| is the number of terminal symbols. and |G.| is the total size of the right
hand sides of the rules in P. and B(G.) is a specific method for encoding all infor-
mation about the grammar (including the number of terminals. number of nonter-

minals. a way to separate between each rule).

Since the cntropy estimates are being used solely for DNA and mRNA sequences.
|T'| = 4. The above theorem is proved by construction. actually creating an encod-
ing of the grammar and showing that the terminals. non-terminals and production
rules can be encoded in a binary sequence whose length in bits is bounded by
H(G:) + 5|G;| + |T|. Theorem 1 also suggests a way of breaking up the size of
the codeword into the unnormalized entropy. H(G.). and the compressive overhead

due to the encoding of the grammar’s components. 5|G.| + |T|.

2.4.3 Irreducible Grammars
Inefficiency is Still a Problem

While Theorem 1 suggests how to separate out the grammar entropy from the

overhead. it does not guarantee that either 5|/G.| or H(G.) is particularly small.
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Consider the following example:

R A
oy

Q & » O

aa

It takes four non-terminals to represent two terminals. so the grammar is actually

expanding the size of the sequence.
3 |

Irreducible Grammars Deal with Inefficiency

In order to deal with the possibility of inefficiency. some sort of restriction on the
grammar is needed so that it does not expand unnecessarily. In order to achieve this
end. Kieffer and Yang identified a subclass of admissible grammars called irreducible
grammars [30]. Letting R(P) represent the set of strings consisting of the right hand

sides of all rules in P. the definition is as follows:

Definition 2 An irreducible grammar is an admissible grammar G, = (V.T. P. S)

with the following additional properties:

1. Every vartable in V other than the start symbol is used more than once in

R(P).

2. There are no patterns in R(P). Here. a pattern refers to a substring of length

at least two that appears at least twice.

3. Each variable in V represents a distinct substring of the original input z.
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Essentially. an irreducible grammar ensures a measure of efficiency in dealing
with patterns. The first property ensures that each variable represents a pattern.
the second property ensures that every pattern has been removed. and the third
property ensures that each represented pattern is unique. The admissible grammar
presented in Examples 1 and 2 is also irreducible. In essence. an irreducible gram-
mar does not restrict the CFG to only one particular algorithm but allows for a
number of different approaches to creating a CFG. each of which must deal with

patterns efficiently.

Irreducible Grammars and Compression

The main advantage of creating irreducible grammars is that they lead to efficient
universal compression algorithms and entropy estimators. However. Theorem 1
only characterizes the length of the codeword that represents z. namely B(G.). in
terms of the size of the grammar. G,. rather than the size of the input. z. The
approach that was taken by Kieffer and Yang in [30] was to provide a bound over
G(z) where G(z) is the set of all irreducible grammars G, representing z. The

theorems they proved are as follows:

Theorem 2 There is a constant c. which depends only on the cardinality of the

alphabet A. such that for any sequence z. which is long enough.
clz|

max |G | <
G.—GG(:)| zl—logla,-l

where |z| denotes the length of z.
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They also proved the following result:

Theorem 3 For any stationary. ergodic source { X;}, with entropy H. the quan-
tity
B(G.
max{ll—(—)l - H‘ : Gz € G(X, "'Xn)}
n

goes to 0 with probability one as n — oco.

A source is ergodic if the temporal statistics (statistics over time) is the same
as the ensemble statistics (statistics over a certain position of occurrence). Since
both theorems consider the maximum for all G € G(z). they characterize the worst
case performance of Irreducible Grammars. Clearly the results can only improve for
particular implementations of an Irreducible Grammar or for particular stationary

crgodic sources.

Justification of Grammar Entropy

Using the previous two theorems. and assuming z is generated by a stationary
ergodic sequence. the use of H(G.) as an entropy estimator can now be justified.
Recall that by Theorem 1. |B(G.)|. the length of the codeword representing the

input z. is bounded in the following manner:
|B(G:z)| < H(G:) +5|G.| + |T|

Dividing each term by n and taking the limit as n. which is the length of z.
approaches infinity, |B(G:)/n| approaches the entropy of the stationary. ergodic

source of z and the 5|/G.| term approaches zero because of the bound on |G.|
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presented in Theorem 2. and |T'| is a constant. so the normalized entropy estimate
H(G.)/n approaches the true entropy of the ergodic source. Hence the 5|G:| + |T|
represents overhead and including it generally causes an overestimate of the true
entropy. so the normalized entropy for a grammar based code is simply defined as

H(G.)/n.

Optimality and Ergodic Processes

Wihile H(G.)/n provides a good estimate of the sequence entropy there is no guar-
antee that it provides the best. Indeed. finding the irreducible grammar which
results in the least grammar entropy estimate is probably NP-hard. so there is no
guarantee that another irreducible grammar cannot perform better. Another point
of hesitation is the nature of genectic sequences. They are not generated by station-
ary ergodic sequences. Certain regions. such as those that contain a lot of tandem
repeats. are highly compressible and other regions are not. As well. viruses and
other organisms can integrate their genetic material into the host DNA. changing
the properties in regions where the DNA has been inserted. Additionally. highly
cxpressed genes have codon bias. which is the property that among codons that
code for the same amino acid. some occur more frequently that others. This bias
is believed to be present because the compounds that carry the amino acids to the
growing protein chain, tRNAs. are not available in equal numbers. so the codon
bias adjusts to correspond to the most available tRNAs. Hence there are several
mechanisms that upset the notion that DNA is generated by a stationary ergodic

process.
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Grammars Never Severely Underestimate

At this stage. it is not clear what the underlying model is for the generation of
DNA sequences. One approach for dealing with this uncertainty is to show that
whatever the model. with high probability. the irreducible grammar approach will
never underestimate the actual entropy by a large amount. This result is achieved

in the following theorem by Yang [30].

Theorem 4 Letting {X;}X, be any data source. and letting P(X™) denote the

probability of X™ = X, --- X,. then for any constant d > 0. the following holds with

probability at least 1 — n=4:
[H(Gxn)| > —llog P(X™) — 5Gxn + |T| B dlogn
n n n n

for any irreducible grammar transform G, that represents z.

The term (—log P(X"™))/n can be interpreted as the information-theoretic en-
tropy in bits per symbol of X™ and the (5Gx» + |T|)/n term is bounded by
O(1/log n) from Theorem 2. Therefore the entropy estimate from a reducible gram-

mar will never underestimate the actual entropy by a large amount.

2.4.4 Actual Implementations

Kieffer and Yang not only provided a theoretical framework for Grammar Based
Codes. they also developed several practical implementations for both compres-
sion and entropy estimation. Among them are the Yang-Kieffer greedy sequential

transform [70] which like Lempel-Ziv compressors moves along a sequence finding
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the longest match between the input stream and a growing dictionary. or gram-
mar. of previously detected patterns. However. the Yang-Kieffer greedy sequen-
tial transform outperforms such Lempel-Ziv style of algorithms as UNIX compress
and Gzip [70]. Another greedy approach that Kieffer and Yang developed is the
longest matching substring grammar transform. and it is this algorithm that has
been adapted for DNA sequences and for which I have developed a linear time

algorithm.



Chapter 3

The GTAC Algorithm

3.1 The Grammar Transform Analysis and Com-
pression Algorithm

The Grammar Transform Analysis and Compression (or GTAC) is an example of
a Grammar Based Code. The core of GTAC is to repeatedly solve the longest

non-overlapping pattern problem.

Definition 3 The longest non-overlapping pattern (LNP) problem is as follows:
Given a set of strings. P. find the longest substring 3 such that 3 occurs in at least

two non-overlapping positions somewhere in P.

The LNP problem can appear in the context of a grammar. G = (V. T. P. S). by
letting P be the set of all right hand sides of the production rules P. and adding

the additional constraint that the length of 3 is at least two. GTAC’s goal is to

41
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repeatedly find the LNP and reduce it. creating a new rule. To achieve this end.

GTAC has two rewrite rules.

Definition 4 Rewrite Rule 1: If an LNP 3 appears in the following form (both
in the same right hand side of a rule) with a;.as.as possibly equal to the empty
string. and |B] > 1

A—a B apa;

then rewrite the previous rule as two rules.

A-—."QIBC!'_)BC!:;

B—-p

Definition 5 Recwrite Rule 2: If an LNP 3 appears in the following form (in the
right hand side of two or more different rules) with a,.as. as. ay possibly equal to
the empty string. and |B| > 1

A-—>a1/3ag
B — a; B ay

then rewrite the previous rules and introduce a new one. as follows.

A—>a10a2

B—)Q3CC!4

C—-p
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GTAC Optionally Recognizes Reverse Complements

GTAC can optionally recognize reverse complements. Recall from Section 1.2.2.
that in DNA sequences. the symbols a and ¢ are the complement of each other. and
the symbols g and ¢ are the complement each other. The following terminology
will be used throughout this chapter. A string 3" is the reverse complement of 3 if
37 is the reverse of B with each character complemented. As Section 3.2 will make
clear. the ability to detect reverse complements is an important feature of a DNA
entropy estimator.

The GTAC algorithm deals with reverse complements by having two sets of non-
terminals. regular non-terminals A4,. A..... and reverse complement non-terminals
Ry.Rs..... These non-terminals come into play as follows. Given an input. z.
the algorithm first creates the trivial grammar S — z. Next. GTAC finds the
LNP. If there are two or more occurrences of 3. create a rule A; — g ignoring any
occurrences of B7. If there is only one occurrence of 3 and one of 37. then create
a rule using one of the reverse complement non-terminals. R; — 3. which means
interpret the second occurrence of the non-terminal as the reverse complement of

the rule.

An Example

For example, given the input z = aatactgagtaaa. GTAC first creates the trivial

gramiar.

S — aatactgagtaaa
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Next GTAC finds the largest LNP, which is tact and its reverse complement agta.

GTAC reduces this substring using Rewrite Rule 1 and creates a new rule

S — aaRogRoaa

RO — tact

Next. any remaining LNPs are rewritten. In this case there is one. aa.

S — AQR()gRvo

Ry — tact
Ag — aa

Next. the grammar is put in canomnical form. which means relabeling the non-
terminals in order of appearance with the reverse complement non-terminals start-

ing with symbol Ry. and the normal non-terminals with symbol A,.

Ao = A1RogRoA,

Ro — tact
A, - aa

When the last LNP of size two or more has been found. the rewriting process

is complete. The right hand sides of the rules are concatenated together in the



CHAPTER 3. THE GTAC ALGORITHM 45

following order: the start rule is first. followed by any reverse complement rules.

followed by any normal rules. The results. G.. is as follows.

G: = AiRogRo A tactaa

Next w(G.) is obtained by removing the first occurrence of each non-terminal.

w(G;) = gRy A tactaa

Finally. the entropy is calculated based on the frequency of appearance of each

symbol using Equation 2.2.

Efficient Run-time is Important

Trivial implementations of this algorithm requires O(n®log n) time. where the size
of the input. n. is often in the order of a million or more. For this size. even an
O(n?) algorithm becomes intolerable. Since a key feature of the GTAC algorithm
is to repeatedly look for the LNP. the generalized suffix tree (a suffix tree that
contains more than one string [23]) is a natural data structure to consider because
it can find the LNP in time that is linear in the total length of the right hand sides
of the grammar. Given an input string z. a suffix tree that encodes z is a tree where
each path from the root to a leaf represents a different suffix of z. Each interior
node represents a substring that is in common with more than one suffix. hence it
also represents a pattern (or repeated substring) in z. Finding the longest pattern

is achieved merely by traversing the tree and finding the deepest interior node.
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While suffix trees are a natural data structure for the LNP problem. the imple-
mentation is not straightforward. GTAC continually rewrites the rules. reducing

the size of the grammar. so a key challenge is keeping the suffix tree up-to-date.

Original Input

- tactag - -tag -—- cat - caract

After creating the rule A — tact
- Aag tag——- cat - - -caA

Figure 3.1: Destroying Patterns in a String

3.1.1 Keeping a Suffix Tree Up-To-Date is Challenging

Consider the example illustrated in Figure 3.1 where tactag is a substring in the
input with tag. cat. and catact appearing elsewhere. When an LNP is discovered. in
this case tact. replacing it with a non-terminal affects any patterns that overlap the
substring tact anywhere else in the input. such as cat or tag. Generally. the patterns
could be arbitrarily long. and so GTAC would have to check an arbitrary distance
from each occurrence of the LNP. However, since GTAC is a greedy algorithm.
working from the largest LNP to the smallest, when GTAC is rewriting an LNP of
length I. then the longest pattern that can overlap the LNP is at most [ symbols
long. So in general. if an LNP occurs n times and is of length [. then when it is

rewritten, at most O(nl) other patterns may be affected.
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Overlapping Patterns Can Cause Problems

Another complicating factor is that a generalized suffix tree directly reports the
longest pattern (LP). but the algorithm requires the longest non-overlapping pat-
tern. For example. if the string aaaaaaaa appears in the input at position k. the
suffix tree will report it as two substrings of length seven occurring at positions k
and k& + 1. whereas GTAC needs to interpret it as two substrings of length four. oc-
curring at positions k and k +4. The following lemma gives a process for obtaining

this result. and provides a bound for the size of the LNP given the LP.

Lemma 1 If the length of the LP is l. then an LNP can be found with length at
least [1/2].

Proof. Although this lemma is almost obvious. the proof takes a bit of work.
Let the reported LP start at positions k and k47 and end at k+/—~1and k+i+1—1
respectively. In order to determine the locations of the corresponding LNPs. there
are two cases: 1) ¢ > [1/2] or 2) ¢ < [1/2].

The first case is easy. Let the first LNP start at & and end at k+ ¢ — 1. and let
the second occurrence run from k + ¢ to k +2i — 1. and both are at least [I/2] long.

In the second case. illustrated in Figure 3.2. since the two substrings are over-
lapping. the pattern is a periodic string; that is. the prefix from &k to k& + i — 1
matches the substring from k + ¢ to k + 2{ — 1, and also matches from &k + 2i to
k + 3i — 1, and so on. Hence the second LNP can start some suitable multiple
of ¢ characters after k. Since the two substrings are distinct. that is ¢ > 0, there
is a positive multiple of ¢. call it m, such that (m + 1)i > [I/2] but mz < [1/2].

This value is used to determine the start of the second LNP. The first LNP will
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Case 2:
LP

ko _k+l-1
k+i ki1

LNP

k k+11721-1 k+(m+ly
k+(m+1)i + ll/21-1

Figure 3.2: Dealing with Overlapping Patterns

run from k to Ak + [I/2] — 1. and the second one will run from k& + (m + 1)i to
k + (m +1)i + [1/2] — 1. It is clear that both substrings are [{/2] long. and that
they do not overlap. so the only fact that needs to be verified is that the second

LNP does not extend beyond the bounds of the original second LP. that is.

k+(m+1)i+(l/)2) -1 <k+i+l-1.

The value of m was chosen so that m¢ < [[/2]. Adding [l/2] and k+¢—1 to both

sides of i < |1/2] yields the required bound. O

The Greedy Approach Can Be Inefficient

The above greedy approach of dealing with overlapping substrings can create islands

of terminals. For example. given a substring acgtacgtacgta, the above strateg
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would rewrite this portion of the grammar as the following.

A;cgt A;

A; — acgta

A second approach would be to rewrite the grammar as follows.

A;‘A,‘A,’a

A; — acgt

Perhaps the second approach. which does not take the longest pattern. is more
desirable because a larger portion of the string has been captured by the non-
terminals. Another difference is that the cgt in the center of the suffix in the first
approach can only match other cgt substrings. This is because acgta is. at that
point in time. the longest pattern. so there is no longer pattern that will include
Aicor tA; Inthe second approach the a is available to be part of a larger substring
to the right of a. In spite of these two observations. the first approach was chosen
because it is consistent with the greedy approach of taking the LNP. as opposed
to other greedy approaches. such as taking the pattern with the largest product of
length and frequency.

While Lemma 1 characterizes the situation when the LP occurs twice. the next

lemma is needed when the LP occurs three or more times.

Lemma 2 Given an LP that occurs three times in a string. at least two of those
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occurrences do not overlap with each other.

Proof. Proof by contradiction. Assume that any two of the three substrings
overlap with each other. Without loss of generality let the three substrings start at
k. k +i. and k + j respectively with 0 < ¢ < j < [. where [ is the length of the LP.
Since the string that starts at & matches the string that starts at k + ¢. then the
pattern is periodic with period of i. So. if any two symbols are ¢ apart. they match.
In particular the symbols that occur one past the end of the first and second LPs.
at & + [ and k + ! + ¢ respectively. match. This match contradicts the fact that

these two substrings are the longest pattern. o

With these two lemmas. a subroutine for dealing with overlapping matches can
be outlined. If an LP has just two occurrences. check for overlap. and if necessary
create non-overlapping substrings. Given three or more matches. then at least two

of those occurrences will be non-overlapping so the LP will also be an LNP.

3.1.2 Observations

The data structures for GTAC are a suffix tree. along with a copy of the original
mmput. and an array of queues. In order to understand how they interrelate. a few

observations are necessary first.

Observation 1 Since GTAC always considers the longest pattern at each iteration.
if it 1s currently looking at an LNP of length I. the longest path in the tree is at most
2l long. reflecting the fact the tree may contain a length 2! LP that corresponds to

a length { LNP. Hence the most number of symbols that the algorithm will have
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to search down the tree before uniquely identifying a suffix is 2/ + 1. because at
that point it is guaranteed to be in a leaf. So if the LNP starts at position k. only
suffixes in the range [k — 2I,k + I — 1] need to be checked to see if they contain a

pattern that overlaps the LNP.

Observation 2 No rule will contain a non-terminal from a previous iteration. For
example. if a substring 3,8, ...0; is being replaced by a non-terminal A;. then
there will never be a pattern containing cA; or A;c. for some c. found later on in
the grammar. because 3,3, ...3; was the longest pattern at that point of time.
Since an LNP will never straddle over the beginning of non-terminal after it has
been introduced. the suffix can be considered to end at that point in the suffix tree.
For example. if a path from the root is pypsp3313- . . .. then that path could be edited
as pyp2p3A; or simply as pyp.p3S. where $ is the end of file symbol. For convenience.
this latter approach will be followed. However the rewrite from 3,3, ... 3; to A; has
to be reflected somewhere. so the original input string is rewritten. rather than the

suffix tree.

[ , ® p,
[ p2 L] xl
a .* a *
B' X X3 X3... B X2X3...
Situation A Situation B
Don't Edit Edit Tree

Figure 3.3: When GTAC Edits the Tree
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Observation 3 Since GTAC is only concerned with repeating patterns. just the
interior nodes and the first character of the leaves of the suffix tree need to be con-
sidered and kept up-to-date. A search need not continue beyond the first character
of a leaf. Say for example. that GTAC is checking a suffix p;p, ... to see if the
pattern overlaps the current LNP. say z,z,...z;. If the situation is like Situation
A in Figure 3.3 then there is no need to edit the tree since the substring p;p» occurs
twice. but the substring pyp.z; only occurs once. so rewriting the LNP, z,z,...z;
will not destroy the pattern p;p.. However in Situation B. the pattern p;p,z; does
overlap the LNP. so when the LNP is removed from the tree. this branch will need

updating.

3.1.3 A Linear Time Algorithm

With the above observations in mind. a more relaxed version of the generalized
suffix tree can be used to implement the GTAC algorithm. In all. GTAC uses three

data structures:
1. T - a generalized suffix tree. which provides information about the LPs:

2. @Q - an array of doubly linked lists. which provides the data structure used
to bucket sort the LNP information by length and remove items in constant

time

3. z - an array holding the original input, which provides information about the

LNP and the substrings that occur to the left of a given LNP.
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First T is built from the original input. and then as it is traversed. information
about the LNPs are stored in Q. Consequently. the LNPs are read from @ in
descending order of size. and Q. z and T are kept up-to-date as the LNPs get
rcmoved. The whole algorithm is outlined and explained below. In the pseudo
code below. suffix(y) refers to the path in the suffix tree that corresponds to the

suffix y.

GTAC(x) begin
1. createrule: § — x:
T = new suffix_tree(x):
md = max_depth(T):

Q[ ] = new array _of lists(size = md):

to

for each interior node n of T do
if (n is an non-overlapping pattern)
add n to Q[depth(n)]:
end for:
3. for ! = md downTo 2 do
while (Q[!] is non-empty) do

n = next element of Q[I]:

B = new non_terminal:
4. for each [ ] = path to node n do
p[ ] = 2l chars to left of B[] in x;
fori=1to 2l do
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if (suffix(p[i]) contains B[1] in T)
remove suffix in T after p[2[]:

[S4]

end for:
6. fori =1toldo
if (suffix(3[i]) goes beyond g3[!] in T)
remove suffix in T after S[{]:
end for:

replace 3 with B in rules:

~1

end for:
8. create rule: B — g3:
end while:
end for:

estimate entropy based on grammar:

end alg:

1. Initialize Data Structures: Given an input string. z. create the trivial
rule S — z. a generalized suffix tree T. and an array of lists Q. with Q[¢]

representing a list of LNPs of size i.

8]

Fill Q: Traverse the tree. T'. keeping track of the depth. At each interior
node 7. which represents a pattern. check to see if it also represents an non-
overlapping pattern and if so create a pointer to that node. and add it to .
the list that corresponds to its depth. namely Q[depth(n)]. Also include a

back-pointer from the interior node to its corresponding entry in the list. and
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also include the positions where this match occurs in the string x.

3. Get pBs: Work through the @Q array starting at the largest value md.
Given an LNP. say 3. from Q[l]. for each occurrence of 3. consider the
substring that extends up to 2! characters on either side of 3. namely
P1P2 - - . paf1Pa2 ... [is182 ... sa where p represents the prefix. and s the suffix
of 3. This substring can be determined by consulting T to get the list of
locations of 3. and then consulting the input string z to get p and s for that

occurrence.

1. Find Suffixes: For each suffix starting at p;p. ... and ending at G;s;s2. ...
perform Steps 4 to 7. Descend down the tree on the path p,p,... with two
pointers. d-ptr and z-ptr. The d-ptr will point to the leaf that corresponds to
the unique suffix that GTAC is seeking and will eventually delete: the i-ptr
will point to the node where GTAC inserts the end-of-string marker (which
is always the node between ps_; and ;). Search down this path for the
beginning of the LNP. 3,. Consistent with Observation 3 above. a search will

only go as far as the first character in the leaf.

5. Remove Suffixes Starting in p: If. while searching down a path. 3, is
encountered. then the algorithm will begin modifying the tree. First the i-ptr
stays at the node between py;; and ;. A node may have to be created here
and a corresponding suffix link and entry made in the Q array. The d-ptr
continues down the path to the leaf corresponding to this unique suffix. If

this leaf has more than one sibling. then delete the leaf that d-ptr points to.
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¢ p21-2 ¢ pZI-Z
* Py ¢ Py
*B * B
a é QN@/Q

Figure 3.4: Removing a Suffix

If the parent node has only two child leaves. then delete the two leaves. and
convert the parent node to a leaf corresponding to the sibling of the leaf that
is being deleted. For example. as illustrated in Figure 3.4. check this if the
path into the parent node is labeled 3.5 and the two leaves are labeled g; . ..
and d then the parent node becomes the leaf corresponding to the suffix 3./354.
Wherever a node is deleted. the back-pointer from this node is followed. if it
exists. and its corresponding entry in the Q array is removed. As well. the
end-of-string marker. $. is added to where the i-ptr points to (representing
the new place where this suffix ends. as explained in Observation 2). When
finished with the current suffix and moving to the next one. suffix links are
used. A suffix link is a pointer from the interior node that represents the suffix
starting with ca to the one representing the suffix starting with a. where c is
a single character and a is a possibly empty string. Both the i-ptr and the
d-ptr independently take the suffix links from their current node to move on

to the next suffix, or go up at most one node. and use that suffix link instead.
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6. Remove Suffixes Starting in (: A similar process is followed for the suf-
fixes that start in 3. except that the entire suffix is eliminated with no need to
insert an end-of-string marker anywhere. If the path is 3;8i4,...315182 ... 5
then the leaf corresponding to that suffix is eliminated from the tree entirely.
and if necessary the parent node of that leaf becomes a leaf. and the corre-

sponding entry in Q eliminated. The final suffix to be considered is B;s;ss . . ..

. Edit Rules: Finally. the rule containing 3 is updated by deleting that oc-

-1

currence of 8 and adding the appropriate non-terminal in its place.

8. Create New Rule: A new rule is created and the right hand side of that
rule. 3. is added to the suffix tree (actually the last occurrence of 3 in the

tree 1s converted to this new entry).

With only a few modifications. this algorithmn also deals with reverse comple-
ments. In the first step both the string = and " are added to the suffix tree. and
when removing a suffix both the forward and the reverse complement occurrences
must be removed. As well. two sets of non-terminals are used. one to represent
patterns that occur left to right and one to represent patterns that occur as the
reverse complement. The decision about when to include a reverse complement
non-terminal takes place between Steps 3 and 4.

With the description of the algorithm complete. the next step is to characterize

the running time. which is as follows.

Theorem 5 The GTAC entropy estimator runs in time linear in the size of its

input.



CHAPTER 3. THE GTAC ALGORITHM 58

Proof. Assume that the input has m characters in it. In step 1. each statement
can be performed in linear time. such as building the suffix tree [63]. Step 2 is to
build and maintain Q. the array of lists. There are two aspects: the size of the
array. and the number of elements in a list. The size of the array is at most m /2.
The number of entries is bounded by the number of interior nodes in T. because
every interior corresponds to a repeated pattern. Since each interior node in T has
between two and five children. and a suffix tree built from a string of m characters
has m leaves. then. picking the worst case. where each node has only two children.
T will have at most m nodes. Placing and traversing at most m entries in at most
m./2 lists can be done in linear time.

Steps 3-7 of the algorithm are removing an LNP and taking care of all the

patterns that overlap the LNP. For this situation. there is the following lemma.

Lemma 3 Given an occurrence of an LNP of length |. GTAC removes all possible

patterns that overlap that occurrence in time O(l).

Proof. GTAC removes all the overlapping substrings for a given occurrence of
an LNP in steps 4 to 7. During these steps. the i-ptr and d-ptr go down a few nodes
in the tree. a leaf is possibly deleted. an internal node is converted to a leaf. and an
entry in a list is deleted. The 7 and d pointers may go up a node before following
a suffix link. and then begin dealing with the next suffix. Of these operations. the
only one that may take more than constant time is when the i-ptr and d-ptr go
down the tree a few nodes.

The following is an argument for the d-ptr. with the argument for the i-ptr

being similar. While the d-ptr can travel as much as 2/ + 1 nodes to get to the
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leaf representing a single suffix. its amortized cost for dealing with all 3/ suffixes
is constant. When the d-ptr moves up one node. and over one suffix link. it loses
depth at most two nodes in the suffix tree. This is because the node depth of the
suffix ca is at most one more that the node-depth of a and a pointer can travel
from one node to the next in constant time [23]. So in order to look for 3! suffixes.
it loses depth up to 6l nodes due to following suffix links. moves forward at most
5! characters to cover all the overlapping substrings on 2/ characters on either side

of LNP. Thus GTAC moves forward O(l) nodes to remove 3! suffixes. O

For a single iteration of step 3. say an LNP of length [ with n occurrences is
found. It requires O(l) time to remove each one of them. After n — 1 of them
are removed. a new rule is created and so the remaining occurrence of the LNP is
converted to correspond to this rule. So to reduce the size of the original input by
O(nl) characters takes time O(nl). and the amount that gets removed can never
cxceed the original size of the input m. so this phase is O(m) as well. Thus the

theorem is proved. a

3.2 Implementation and Experimental Results

Other works in the area of estimating the entropy of genetic sequences have
used the same benchmark sequences to compare their estimates. These standard
sequences (available at [51]) come from a variety of sources and include the complete
genomes.of two mitochondria and two chloroplasts. the complete chromosome III

from yeast. five sequences from humans. and finally the complete genome from two
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Sequence Sequence | UNIX Bio- CDNA

name length compress | compress-2 | compress | GTAC
PANMTPACGA | 100314 2.12 1.88 1.85 1.74
MPOMTCG 186609 2.20 1.94 1.87 1.78
CHNTXX 155844 2.19 1.62 1.65 1.53
CHMPXX 121124 2.09 1.68 - 1.58
SCCHRIII 315339 2.18 1.92 1.94 1.82
HUMGHCSA 66495 2.19 1.31 0.95 1.10
HUMHBB 73308 2.20 1.88 1.77 1.73
HUMHDABCD | 58864 221 1.88 1.67 1.70
HUMDYSTROP | 38770 2.23 1.93 1.93 1.81
HUMHPRTB 56737 2.20 1.91 1.72 1.72
VACCG 191737 2.14 1.76 1.81 1.67
HEHCMVCG 229354 2.20 1.85 - 1.74

Table 3.1: Comparison of Entropy Values in Bits Per Symbol

viruses. The complete descriptions are as follows:

o PANMTPACGA the complete mitochondrial genome of Podospora anse-
rina. a fungus (also called MIPACGA)

e MPOMTCG the complete mitochondrial genome of Marchantia polymor-

pha. commonly known as liverwort. which is related to mosses

o CHNTXX the chloroplast from Nicotiana tabacum. commonly known as the

tobacco plant

o CHMPXX the chloroplast from Marchantia polymorpha. (also called
MPOCPCG)

o SCCHRIII the complete third chromosome from Saccharomyces cerevisiae.

commonly known as baker’s yeast (also called YSCCHRIII)
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e HUMGHCSA the human growth hormone (GH-1 and GH-2) and chorionic

somatomammotropin (CS-1. CS-2 and CS-5) genes

e HUMHBB the human beta globin region on chromosome 11

e HUMHDABCD the human DNA sequence of a contig comprising 3 cosmids

e HUMDYSTROP the human dystrophin gene

e HUMHPRTB the human hypoxanthine phosphoribosyltransferase gene

e VACCG the complete genome of the Vaccinia virus

e HEHCMVCGthe complete genome from cytomegalovirus strain AD169.

commonly known as herpes (also called HS5SHCMVCG)

On these test sequences. GTAC always beats Biocompress-2. As well. GTAC

beats CDNA on seven out of the ten sequence results (and ties on one) that are

available for CDNA. The entropy estimates of all four algorithms are presented in

Table 3.1.
Sequence Sequence | without with
name length reverse complements | reverse complements
CHNTXX 155844 1.83 1.53
CHMPXX 121124 1.75 1.58
VACCG 191737 1.76 1.67
HEHCMVCG | 229354 1.85 1.74

Table 3.2: Recognizing Reverse Complements

When GTAC completely ignores reverse complements, the values are

only

slightly worse (about 0.01-0.02 bits/symbol) for eight of the twelve sequences. but.
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as Table 3.2 illustrates. dramatically different for four sequences: the two chloro-
plasts. CHNTXX and CHMPXX. and the two viruses. VACCG and HEHCMVCG.
The results get worse by between 0.09 - 0.30 bits per symbol. This difference hap-
pens because these sequences are known to contain long reverse complements. So
for most sequences the overhead of recognizing reverse complements lowers the en-
tropy estimate slightly. but for others it has a more dramatic difference. The ability
to recognize reverse complements may also be an issue for CDNA. Two of the se-
quences in Table 3.2 are ones for which Biocompress-2 beats CDNA. and CDNA's

cutropy estimates for the other two were not available.

3.3 Conclusion

While the idea of using Context Free Grammars in compression algorithms has been
around for a while. the recent results have shown that if these grammars have the
addition property that they are asymptotically compact then they are universal.
This result has created a whole new family of approaches. One such algorithm in
this family. namely GTAC. beats all known competitors for estimating the entropy
of a set of standard genetic sequences. and has the additional property that it has
linear running time, and has been proven to be universal without assuming an

Markov source.



Chapter 4

Distinguishing String Problems

While one of the key problems of the previous chapter was to identify the longest
pattern that occurs in a set of strings. the next set of problems concerns finding
a pattern that occurs in one set of strings but does not occur in another set. The
motivation for this problem is based on the idea of discovering and using genetic
information that distinguishes one set of closely related species from another set
of species. For example. one application would be to create a drug that would
kill several closely related pathogenic bacteria yet would be relatively harmless to
humans. A way of approaching this problem is to consider the genes that encode
essential proteins. Of these essential genes. try to discover ones that have sequences
that are very similar among the bacteria but different from that of humans. This
distinguishing feature could then become a potential target for drug design. It is
the goal of this and the next chapter to formulate and systematically study the set

of optimization problems that underlie this task.
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4.1 Hybridization

To understand this approach. one must first understand. in a bit more detail. the

in two strands are the exact reverse complement of each other. the strands can
hybridize. or twist together. to form a structure that is more stable than just a
single strand. This form of hybridization is called Watson-Crick base pairing and
the conditions under which it occurs have been well studied [67]. In fact. under
many conditions the two strands do not have to be the exact reverse complement
of each other for the double-stranded form to occur. These inexact pairings have
been classified into two basic categories whose properties have been investigated.
Oue category is substitutions [6. 42] (also called mismatches). where a base in
one strand is not the Watson-Crick pair of the base on the other strand: another
category is gaps [43] (also called bulges). where there is at least one extra base in
onc strand that is not paired with any bases in the other strand. For example. the
exact complement of 5 — aaacaaa — 3’ is 5’ — tttgttt — 3. A mismatch would be
5’ —tttattt — 3'. while both 5 —tttttt —3'. caused by a deletion. and 5 —tttgecttt — 3.
caused by two insertions. would be bulges.

The destabilizing effect of gaps and substitutions have been tabulated and are
quantified in terms of Gibbs free energy. For example. at body temperature and in
a 1 M NaCl solution {62] a substitution. the free energy. G¢. is about 0.8 kcal/mol.
and for a bulge Gj. it is about 3.3 kcal/mol. However. this does not mean that
substitutions are four times more likely to occur than bulges. In fact, substitutions

are 58 times more likely to occur in hybridization than are bulges. This difference is
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because Gibbs free energy is related exponentially to the difference in probability of
occurrence of possible structures. Given two short sequences in equal concentrations
that could either hybridize with one bulge or with one substitution (assuming that
the rest of the base pairing would be the same). then the ratio of substitutions to

bulges. K. relates to free energy in the following manner [47]:

-1
Kg:b — CAG /RT

where T is the temperature and R is a constant.

Mismatch: cost 0.8 kcal/mol

Bulge: cost 3.3 kcal/mol

00900,
;- 08 Se ..

Figure 4.1: The Geometry of Mismatches and Bulges

Just looking at the geometry of the situation adds intuitive support to the larger
thermodynamic penalty for bulges as compared to mismatches presented above.

Figure 4.1 illustrates that a bulge actually results in a crook in the helix whereas a
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mismatch results in less of a distortion in the geometry of the sequences. Because
gaps are destabilizing and cause greater distortions in the double stranded helix. if
the goal is to design an oligomer (short strand of DNA) to bind tightly to another
strand. one may use the Hamming distance metric. which considers only substi-
tutions. rather than edit distance. which considers both gaps and substitutions.
The use of the Hamming distance metric to estimate the strength of hybridization
will be formalized as follows: Given two sequences z and y. with lengths I, and [,
respectively. if I; = [,. then the Hamming distance d(z.y) is the number of times
z[i) #Fyli]. forall 1 <: < I,. If [, <, then the Hamming distance is the minimum
of the Hamming distance between z and each substring of y of length .. Addition-
ally. = and y are said to hybridize or bind together if d(z.y) < t for some threshold
t > 0. Obviously. the smaller the Hamming distance is between two sequences. the

better the match. resulting in a stronger binding between the two strands.

4.1.1 Justification for Hamming Distance

The rationale behind using Hamming distance to model binding is threefold. First.
the goal is to create either a drug or a probe that is highly specific. tolerating as
few mismatches as possible. By the nature of the way nucleic acids hybridize. an
insertion or a deletion is much more destabilizing to the double stranded structure
than mismatches [62].

Second. the strategy to find targets in related species is based on the fact that
there is a similarity between the coding regions for the same protein in different

species. Typically two closely related organisms have similar DNA sequences for
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similar proteins. For example. the percentage of sequence identity between some
mammals is as follows: two humans are 99.63% identical in their DNA. the coding
regions between humans and great apes share about 98 — 100%. and the coding
region identity between man and mice is between 70 — 90% [59]. There are some
exceptions. such as the highly conserved protein ubiquitin. which is identical in
humans. mice and even Drosophila [59]. Because of the sequence similarity between
orthologous proteins (the same protein in different species). there are potentially
many candidates for targets in closely related species. Hence Hamming distance is
not so restrictive that solutions are unlikely.

Third. Hamming distance also has a role in describing mutations in the protein
coding regions of DNA: edit distance is more suitable to measure the amount of
change that has happened. whereas Hamming distance is more suitable to measure
the effect of that change. To illustrate this consider the frameshift mutation. As
explained in Section 1.4.1. since both DNA and mRNA strings are comprised of four
different bases. and protein molecules are comprised of 20 different acids. it takes
three consecutive bases in mRNA to code for each amino acid. Although more than
one codon can specify the same amino acid. an insertion or deletion of one or two
bases in the DNA sequence drastically changes the resulting protein because it shifts
the reading frame of translation. For example. the sequence 5’ — aaa ccc ggg ttt ~ 3’
(which codes for lysine, proline, glycine and phenylalanine) is completely different
from 5’ — ata acc cgg gtt — 3’ (which codes for isoleucine, threonine, arginine and
valine). yet the latter only has an additional ¢ in the second position (as reflected by

an edit distance of one) while the amino acids it codes for has changed completely
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(as reflected by the Hamming distance).

4.1.2 Additional Considerations

In addition to mismatches and bulges. other factors can influence the likelihood
that two strands will hybridize together. many of which can be explained by simple
geometric considerations. There are two aspects to the change in hybridization
potential due to individual differences in the base pairs: size and hydrogen bonding.
The bases ¢ and ¢ are single-ringed structures. and so are less bulky than a and g.
which are two-ringed structures. So the mismatch between an a and a g creates a
larger deviation in structure than a mismatch between a ¢ and a ¢t. Another factor
is the number of hydrogen bonds between base pairs. a — t pairs associate with
less strength than do g — ¢ pairs [62] because a — ¢ pairings share two hydrogen
bonds whereas g — ¢ base pairings share three. so more accurate modeling would
take the differing bonding strengths into consideration. Additionally. more accurate
modeling can consider doublets of base pairs because the strength of the hydrogen
bond is very sensitive to the distance between the Watson-Crick pairs: neighbouring
bases can affect this distance by moving the bases closer or farther away from
the ideal distance. For example. 5’ — gc — 3’ binds to 5 — gc — 3’ more tightly
than 5 — gg — 3’ binds to 5’ — cc — 3’ even though they both consist of two g-c
bonds [62. 4. 18]. Other factors that influence the binding include the location of a
mismatch: being near the middle has a different effect than being near the end [24].
which allows the ends to float freely apart. Finally the ability of a sequence to

hybridize with itself. forming a stem-loop structure (as illustrated in Figure 4.2).
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can decrease the likelihood of anything else binding to that area of the genetic

sequence [24. 39].

5- -3’

Figure 4.2: The Geometry of a Stem Loop Structure

4.1.3 Some Simplifications

While Section 4.1.2 introduced additional factors that could be included for a
more accurate model. from a computational point of view. most (except self-
hybridization) can be calculated in constant time. since these differences are func-
tions of each base’s individual position. identity. and the identity of its two imme-
diate neighbours. So in the analysis that follows. they will be ignored. with the
understanding that it would be simple to add them if the application warrants the
additional accuracy.

Another simplification concerns the variety of formats the answer can be pro-
vided in. Biological applications occur in two varieties: some require that a region of

similarity be discovered. for example consensus sequences. and other applications



CHAPTER 4. DISTINGUISHING STRING PROBLEMS 70

use the reverse complement of that region. such as designing probes or primers.
The algorithms described in this analysis report the region directly with the un-
derstanding that the reverse complement of the region can be easily calculated if
required. With this in mind, a formulation of the problems to be solved plus several

applications using this formulation will be discussed.

4.2 Formulation

The applications that will follow in Section 4.3 all have as a common theme the

following two constraints. A string must be found that is both:

1. close or similar to one set of strings. S,

2. far or different from another set of strings Sy.

Since there are two constraints. it is natural to break the problem up into two
subproblems: first. the Closest String Problem. where the distance between the set
and the target is less than some value. and second. the Farthest String Problem
where the distance between the target and the set is greater than some value. More

formally these two problems are as follows:

Closest String Problem
INSTANCE: Given a set S of strings of length n over an alphabet A.
OBJECTIVE: Find a string z of length n over A minimizing k. such that for every

string s in S.. the Hamming distance d(z.s) < k.,

Farthest String Problem
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INSTANCE: Given a set S; of strings of length n over an alphabet A.
OBJECTIVE: Find a string z of length n over A maximizing ks such that for any s

i Sy. the Hamming distance d(z.s) > ky.

While sometimes the task is to find a string z that is close to or far from a
string s. another possibility is that z must be close to or far from a substring of s.

This observation leads to two more problems:

Closest Substring Problem
INSTANCE: Given a set S, of strings of length at least n over an alphabet A.
OBJECTIVE: Find a string z of length » minimizing k. such that for every string s

in S,. the Hamming distance d(z.y) < k.. where y is some length n substring of s.

Farthest Substring Problem
INSTANCE: Given a set Sy of strings of length at least n over an alphabet A.
OBJECTIVE: Find a string z of length » maximizing k; such that for every string

s in Sy. and every length n substring y of s, the Hamming distance d(=z.y) > ky.

An additional consideration is that sometimes it is impossible to find a string
that is far or close to every member in a set. so the next best constraint is to be as
far or close to as many members of that set as possible. These leads to two more
problems:

Close to Most String Problem
INSTANCE: Given a set S. of strings of length n over an alphabet A and a threshold

k. > 0.
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OBJECTIVE: Find a string z of length n maximizing the number of strings s in S,

satisfying the constraint that the Hamming distance d(z.s) < k..

Far from Most String Problem

INSTANCE: Given a set Sy of strings of length n over an alphabet A and a threshold
ks > 0.

OBJECTIVE: Find a string z of length n maximizing the number of strings s in Sy

satisfying the constraint that the Hamming distance d(z.s) > k.

Finally. the Distinguishing String Selection Problem (DSSP) can be formalized

as the following.

Distinguishing String Selection Problem

INSTANCE: Given two sets of strings S, and Sy. all of length at least n. and two
positive integers k. and ky.

OBJECTIVE: Find a string z such that for each string s. in S.. there exists a
substring y. of s. such that d(z.y.) < k. and the length cf y. is n. and for any

string sy in Sy. d(z.syg) > ky.

Certainly there are other combinations possible. such as the Closest to Most
Substring Problem and Farthest from Most Substring Problem. as well as various
combinations of string and substring constraints on the DSSP. but the problems
listed above provide the framework for solving the DSSP, which is the ultimate goal

of the next two chapters.
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4.3 Applications

4.3.1 Finding Targets for Therapeutic Drug Design

Distinguishing String Selection Problems have the potential to help out in thera-
peutic drug target selection. Given a dataset of sequences of orthologous genes (the
same gene from different species) from a group of closely related pathogens. and a
host (typically humans. livestock. or crops). the goal is to find a substring that is
fairly well conserved in all or most of the pathogens’ sequences (these are the set
Sc) but not as conserved in the host’s (which would be the set Sy). Information
encoded by this fragment then can be used for novel antibiotic development. For
example. the conserved region suggests biological importance. since the region is
resisting the natural tendency to mutate. This resistance could possibly imply that
any mutation is fatal. so chemicals could be screened to identify those that bind
to the peptide encoded by the conserved regions of the pathogenic DNA. These
chemicals could then be tested as potential broad-range antibiotics. Wareham et
al. have also looked at this problem. however they use Gibbs sampling to identify
the drug targets [64]. Their approach was based on an approach by Rocke and

Tompa [56] which in turn was based on an approach by Lawrence et al. [36].

4.3.2 Finding Targets for Antisense Drug Design

Using the same information as is used to discover targets for therapeutic drug
design. another strategy would be to attack the mRNA that encodes the protein,

rather than the protein itself. This approach is called antisense drug design and
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it represents a new strategy in designing highly specific drugs that inhibit the
production of the targeted disease-related proteins while not interfering with other
proteins [13]. They work by impeding the translation of targeted genes when they
hybridize to the portion of the mRNA corresponding to that gene after the mRNA
has been transcribed but before it can be translated into a protein. The mRNA
to which they bind is called sense mRNA because it is the template for making
protein. hence it makes sense: the drug that binds to the sense mRNA is the
reverse complement of the sense mRNA and is called antisense. The composition
and structure of antisense drugs is similar to mRNA and they hybridize to the target
mRNA using the same base pairing mechanism: however. they have been modified
to resist degradation in the cell in order to increase potency and durability. In
genceral. these drugs must be at least 15 nucleotides long in order to bind tightly to
target sites and avoid associating with non-target sites [12]. Like therapeutic drug
approaches. by identifying a sequence fragment that distinguishes the pathogens
from thie host. the potential exists to create a drug that harms several pathogens

with minimal effect on the host.

4.3.3 Creating Diagnostic Probes for Bacterial Infection

Besides having a potential application in the treatment of disease. the problem of
finding a substring that is close to one set of strings and far from another set can
also be used for diagnosis, such as the task of creating diagnostic probes. Probes
are strands of either DNA or RNA that have been modified (such as being made

radioactive or fluorescent) so that their presence can be easily detected. These
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probes can be used to determine if specific sequences occur in a sample of DNA.
For example. a probe has been developed to see if a patient has the sickle cell
mutation. which causes them to have sickle cell anemia [59].

Another application is to use a probe for the diagnosis of bacterial infections [7].
A methodology for using a bacterial probe works as follows [46]. First a sequence
fragment is found which occurs in the bacterial genome but does not occur in the
host’s genome. Next a radioactive reverse complement of that substring is synthe-
sized and mixed with genetic material from the sample which is being diagnosed.
The sample is then washed so that any probe that has not hybridized to the sample
is removed. Finally the sample is tested to see if it contains a significant amount
of the radioactivity. A significant amount provides an indication that the bacteria
1s present in the host.

While probes currently exist for single species of bacteria [7]. since many bac-
teria are treated by the same antibiotic. a useful extension would be to create a
probe that would recognize a family of bacteria that would all be treated with the
same antibiotic. This is exactly the DSSP. The problem of designing DNA probes
to rccoguize a family of bacteria was introduced into the computational biology
literature by Ito et al. [27] under the name the characteristic string problem (CSP).
They formalized the CSP in a slightly different manner than DSSP: Given a set of
strings S and a subset T C S. the k-characteristic string of T under S is a substring
occurring in all the strings in T and that is at least distance k away (using edit
distance) from any substrings of strings in § — T. More formally. using the zCt

to signify that z is a substring of ¢, and d, to signify edit distance, then z is a
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k-characteristic string of T under S, if foral t € Tand all s € S—T.z C ¢t and
d.(z.s) > k. The DSSP set S. is represented by T in this problem and the set Sy

corresponds to S — T'.

CSP Compared to DSSP

Since the characteristic string is a substring of each string in T'. there is a polynomial
time solution to this problem [27]. The DSSP studied here is computationally more
difficult than the CSP. because whereas CSP requires that all strings in T contain a
common substring. the DSSP only requires that all strings in T contain a substring
that is within a constant Hamming distance from the characteristic string (which

is called the distinguishing string in the DSSP terminology).

4.3.4 Creating Universal PCR Primers

Polymerase chain reaction (PCR) primer design is another area related to the DSSP.
PCR is a laboratory technique for amplifying. that is creating many copies of. a
portion of DNA [24]. For example. given a small sample of DNA at a crime scene.
using PCR this sample can be amplified a million-fold and sequenced to determine
from whom it came.

An algorithmic challenge associated with PCR concerns primer design [24]. For
the PCR to initiate. two small fragments of DNA. called primers. must be synthe-
sized with the property that each of these primers hybridizes somewhere within a
very specific region. Given a region z of DNA to be amplified. the first primer must

hybridize somewhere on the 5’ side of z on one strand (call this side p) and the
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Figure 4.3: The Location of PCR Binding Sites

second primer must hybridize on the 5 side of the opposite strand (call this region
s). The PCR process then amplifies the DNA fragment between the two areas
where the primers hybridized. If the first primer binds anywhere else in addition
to binding in p. or if the second primer binds anywhere else in addition to s. then
this secondary binding reduces both the amount and purity of z that is produced.

The binding requirements can be formulated as two separate target selection
problems where. in one case. p is the target region and everything else is to be
avoided. and in the second case. s is the target region and everything else is to be
avoided. This constraint is called the specificity of the primer. The DSSP occurs
when trying to design a single pair of primers to amplify several different regions
siinultaneously. More formally. given n different regions. z;.z,..... z, find a pair
of primers. called universal primers [31]. such that the first primer will bind in each
of the prefix regions p;.pa2....p, and nowhere else (in DSSP terminology the prefix
regions represent S, and everything else is Sy). and the second primer will bind in
cach of the suffix regions s;. s2,...s, and nowhere else. In each case, given a region
z;. the prefix regions, p;. and the suffix regions. s;, occur on opposite sides. and

opposite strings of ;. An example for the case n = 3 is illustrated in Figure 4.4.
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Figure 4.4: The Universal Primer Binding Problem

Of the existing programs that deal with primer design. three of them only
consider the relatively simple case where there is only one region to be amplified {5.
44.57]. Other programs. such as Primer [45]. PCRPROF [14] and Prime Master [55]
also deal with the more challenging case of universal primers.

Of the programs that search for universal primers: the Primer paper does not
state the algorithm by which the targets are selected [45]: PCRPROF assumes
that the sequences have already been aligned by another program [14]; and Primer
Master uses an unspecified search to find variable and conserved regions and then
picks the primer candidates from the conserved regions [55]. None of the programs
surveyed do an analysis of the complexity of their algorithms. As with hybridization

in genecral. there are other factors, such as GC content and self-hybridization. that
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are part of primer design; but again. all of these can be calculated in linear time

with respect to the size of the primer.

4.3.5 Creating Unbiased Consensus Sequences

Another application of DSSP is determining consensus sequences. Given a set of
related sequences. a consensus sequence is the single sequence that best represents
the set. A consensus sequence is determined by aligning the group of closely re-
lated sequences. such as a promoter site. and making the i*" base in the consensus
sequence the majority element in the :*" column of the related sequences. As such.
the consensus sequence is the sequence which minimizes the total distance from the
consensus string to each of the other strings. More formally. given a set of strings

S. find a string z minimizing the following sum:

Z d(z.s)

ES

Figure 4.5 illustrates a consensus sequence generated from six related sequences.
Note that 5" — tataat — 3’ does not actually occur in any of the sequences. but is
the consensus sequence of the set.

A challenge associated with creating consensus sequences is sample bias. For ex-
ample. given a dataset of sequences of orthologous genes from many closely related
species and a few more distantly related ones. the resulting consensus sequence
could be biased towards sequences from the over-represented species. A common
way of dealing with this situation is by assigning weights to the sample, so that

over-represented sequences would be given a lower weight. Ben-Dor et al. [7] re-
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5'-TATATT-3"
5'-TCTAAT-3"
Related 5'-GATCAT-3"
Sequences 5'-TAATAT-3"
5'-TATAAC-3"
5'-TACACT-3"

5'-TATAAT-3"

Consensus
Sequence

Figure 4.5: An Example of a Consensus Sequence

view six of these weighting schemes. and then propose a method that minimizes
the bias by creating a consensus sequence that minimizes the maximum distance
from r to any sequence rather than minimizing the total distance from z to each
of the sequences. Ben-Dor et al.’s approach of minimizing the maximum distance
1s a special case of the DSSP where tlere are no strings to be distant from. that is
Sy is empty. which is the Closest String Problem.

Ben-Dor et al. [7] also investigated a problem that is very similar to the DSSP.
but with a different formulation: Given a set of strings S and a subset T C S. using
Hamming distance. d( ). find a target z that maximizes a distance k such that

min d(z.v) — max diz.w) =k

That is. that every element in § — T is at least k further away from the target ¢
than any element in T'. This contrasts with the DSSP formulation. presented in
Section 4.2, which uses two parameters, k. and Ky, in place of k. The DSSP case is

more general. and simplifies to Ben-Dor et al.’s formulation by setting k; = k. + k.
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As well. Ben-Dor et al. provide an approximation to the Closest String Problem

which with probability less than e they get

k+ V3klogm
€

where & is the optimal distance and m is the number of strings. However. a small
k is critical for practical applications and the straightforward linear programming

relaxation method as used in [7] does not work well for small k.

4.4 Related Work

The Closest String Problem also occurs in non-biological applications such as coding
theory. and has been proven NP-hard for binary codes [17]. Again in the context of
coding theory. Gasieniec et al. [20] independently claimed a (3 + €)-approximation
to the Closest String Problem.

Another non-biological problem. similar to the Closest String Problem is the
hitting string problem: Given a set S of strings of length n over {0.1.+}. the
hitting string problem is to find a string over {0.1} that has at least one match
with each string in § [19]. Such a problem was proved to be NP-hard by Fagin [15].
This problem is a special case of the Closest String Problem in which the Hamming
distance bound is » — 1 and the sought string lies over {0. 1} rather than over the

original alphabet {0.1.+}.
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Distinguishing String Properties

5.1 The Complexity of Farthest String Problem

This section characterizes the complexity of the Farthest String Problem. which is
NP-hard. The proof is broken up into two cases. The first case deals with alphabet
sizes greater than two and the second case considers alphabet sizes exactly equal
to two. From a biological point of view. the cases where the alphabet size is four
(for nucleic acid sequences) or twenty (for peptide sequences) are the most relevant:

however. this chapter will present a complete characterization of the problem.

Theorem 6 The Farthest String Problem is NP-hard for strings over any alphabet

whose size is greater than two.

Proof. The proof of NP-hardness is approached by reducing the strong 3-SAT
problem [19] (that is, it cannot consist of trivial clauses like: z or z or z) to the

Farthest String Problem. First consider the case where the alphabet size is three.

82
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that is |A] = 3.

Let I,. be an arbitrary instance of the 3-SAT problem with m clauses
{C:.Cs.---.Cn} and n variables {v,.va,....v,}.

Construct m + 9 strings each of length n + 2. The first = characters of the first
m strings will encode the clauses of I,,, and the rest will encode constraints to
ensure that the answer is a valid solution to the 3-SAT problem. As well. the *"
string will be referred to as s; and the j*" character of the ¢*" string will be called
Sij-

Let the first m strings be formulated as follows:

0 v; € C,'.
1 v; € C;.
= v; does not appear in C;.

* g=n+lory =n+2.

For the last nine strings. the first n characters will always be = and the last two
characters will be a different one of the nine possible strings of length two on three
characters. namely {0.1.«}. that is #7{0.1.+}?. See Figure 5.1 for an example of
the encoding of I>4 = (v1 VT2 V v3) A (va V T3 V vy). Here, the upper left 2 x 4
sub-matrix represents the two clauses of I 4 and the rest ensures that the answer
will be in {0,1}.

With the reduction set up. what remains to be shown is that the instance I, ..
is satisfiable if and only if there is a string z of length n 4 2 on {0, 1.} such that

d(z.s;) >nforevery 1 <i<m+9.
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Figure 5.1: Encoding of (vy V @5 V v3) A (v2 V T3 V v4)

First. suppose [, , is satisfied by an assignment z € {0.1}". Define £00 =
z12a - -+ £,00. For the first m strings. if £ makes C; true. then the following three

points hold.

1. There is at lecast one mismatch between z00 and s; where a 1 mismatches a 0

in the first n characters.

(S

There are n — 3 mismatches in the first n symbols where cither a zero or a

one in z00 mismatches a  in s;.

3. There are two more mismatches because the last two characters of z00 and

s; are different.

For the last nine strings. since £ does not contain a * anywhere, d(z00, s,,4;) > n

for every 1 < 5 < 9. Hence, d(z00, s;) > = for all 7 such that 1 < i < n.
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Conversely. suppose thereis astring £ = ;3 -+ Zp41Zns2 such that d(z.s;) > n
for every 1 <7 < m + 9. Then z does not contain any +'s in the first n positions.
otherwise it would match at least three characters in at least one of the last nine
strings. making the distance between that string and z less than or equal to n — 1.
Since z does not contain any +'s in the first n positions. it induces an assignment
to the variables v;. Such an assignment is a satisfying assignment for I,, , since at
least one variable in each clause is true because it mismatches.

This is the case for an alphabet of size three. For alphabet sizes p. where p > 2.
(p — 2)p® extra strings must be added to the m strings. which can be grouped into
p — 2 groups of p? characters. where each group consists of the first n characters
being one of the characters in the alphabet other than {0.1}. and the last two
characters being every possible combination ot two characters in the alphabet.

Hence the theorem is proved. o

The binary case of the Farthest String Problem requires careful encoding. Since
at least three different characters are needed for the proof to work. the basic idea
behind the next theorem is to encode these three characters in pairs of binary
characters. namely {0.1}. with ‘00" representing "0". "11° representing "1°. and ‘01’

representing “x.’
Theorem 7 The Farthest String Problem is NP-hard even for binary strings.

Proof. Again, the 3-SAT problem will be reduced to the Farthest String Prob-
lem. Let I,,, be an arbitrary instance of the 3-SAT problem with m clauses

{C1.C5.---.C,} and n variables {v;,v,s....,v,}.
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For each clause C;, construct a string s; = s;18i3 - - - s;, Of length 2n from the set

{00.01.11}". where s;; is in the following format:

00 v; € C;.
S$i; = 11 79;¢ C;.

01 v; does not appear in C;.

Let p(z. ) represent the string (10)*"*z(10)"*. and let P.(z) represent the set of
n strings {p(z.%)]1 < i < n}. As well. let g(z.¢) represent the string (01)*~'z(01)~*
and let Q,.(z) represent the set of strings {g(z.7)|1 < ¢ < n}. Then the correspond-

ing instance of the Farthest String Problem is

St... = P.(00)U P.(11) U P,(01) U {(10)"} U

QA(00) U Qn(11) U Qa(10) U {(01)*} U {s:]l <i < m}

with the distance bound as n — 1. Clearly the instance Sy, ., is computable in
polynomial time. and like the non-binary instance. the purpose of including the
various P, (). Qn().(10)".(01)" sets is to force the solution of Sy, to be a string in
{00.11}".

With the reduction set up, it remains to be shown that the instance I, , is
satisfiable if and only if there exists a string z that is at least n — 1 away from every
string in the set Sy, ..

First assume that there is a solution to the 3-SAT problem. Then a string

T = 1,T5--- T, over the alphabet {00,11}" can be constructed so that there is at
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least one mismatch between z and each string s; causing the Hamming distance to

be at least n — 1. in the following manner:

11 if v; is true.

- 00 if v; is false.
Since = is an element of {00.11}". then by construction it is at least n — 1 away
from any other string in Sy, .

Next let z be a solution to the Farthest String Problem. In order to prove that
z is in {00.11}". assume the contrary. Factor z into the concatenation of pairs of
binary symbols. that is. £ = z;z5---z, where z; € {00.11.10.01}. Since z is not
in {00.11}". z is in the form {00.11}"(10[01){01.11.10.01}".

Let ny0 and ng; denote the numbers of 10s and 01s in the factorization. Without
loss of generality. assume that n;9 < ng;. There are two cases to consider.

Case 1: If 0 < ny0 < mo;. then let the first 10 occur in the i** position in the
factorization. that is. z; = 10. Then d(z.q(10.{)) = (n — ny9 —~ noy) + 2(n10 — 1) <
n — 2. which contradicts the requirement that z is at least n — 1 units away from
all strings.

Case 2: If njo = 0 and no; > 0. then. d(z.(01)") = n —ng; > n— 1. Thus.
ng; = 1. Let the i*? position be a location where 01 does not occur. If z; = 11 then
d(z.q(11.7)) = n — 2, and if z; = 00 then d(z.¢(00.7)) =n — 2.

Hence z is a string in the alphabet {11.00}" that is at least n — 1 away from
any string in {s;|1 < ¢ < n}, and this string can be used ta find a satisfying truth

assignment for the 3-SAT problem because a mismatch of 00 to 11 in each string
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will correspond to a satisfying assignment for at least one term in each clause.

5.2 The Farthest String Problem

Although the Farthest String Problem is NP-hard. through the use of a linear pro-
gramming relaxation technique. a polynomial time approximation scheme (PTAS)
for the Farthest String Problem can be presented. The first step towards this goal

is to prove a lower bound.

Lemma 4 Let S be a set of m strings. S = {s;.54.....: Sm }. each of length n over
an alphabet A of t symbols. If n > 61In(2m/3)/8* where B3 is a constant such that
0 < 3 < 1. then there ezists a string z such that the Hamming distance between s;

and z is at least (1 — ﬂ)@ for every s; € S.

Proof. The theorem can be proved by a probabilistic argument. Let s; be a
string in S. Given a random string £ € A". the expected value of the Hamming

distance between s; and z is "‘—-‘-t———” Thus. by a Chernoff bound [50].

(t—1 -1
Pr(ld(z's‘.) - = tt )I > ﬁn(tt )) S 035322—!"—)'" ‘c—l
e

By requiring n > 6In(2m/3)/3?, and substituting this value for n in the above
inequality. the results yield that the right hand side is bounded from above by 3/m.

Hence,
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n(t — 1)
t

n(t — 1)

| > B ;

Pr(Ui<icmld(z. si) — )< B

Thus. there exists a string z such that d(z.s;) > (1 — ,B)# for all strings s;.

a

5.2.1 Formulation of Hamming Distance

With the lower bound established. the next step is to set up a formulation of the
Farthest String Problem. Towards this end. let S = {s;.s,..... Sm} be a set of m
strings. cach of length n over an alphabet A = {a;.a.....a,} of t symbols.

Let 3 > 0 be any small number. If n < 61n(2m/3)/8>. perform an exhaustive
search to find an optimal solution. Otherwise. set up the following zero-one integer
programming formulation of the problem. Let s = s;s5---5, € S and let z =
I Ia---I, be an arbitrary string over the alphabet A. The Hamming distance
between s and any z can be calculated as follows. For each character position z;.
introduce ¢t variables z;; with 1 < j < t. so the distance between s and z is of the

following form.

n

d(s.z) = %Z(Z ChijTij + 1)

i=1 j=1
such that if the i*" symbol in s; is a;, that is sxi = a;. then
~1 if 8; = ay

Chij =
+1 otherwise.
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As well. z is of the following form:

1 if:c;za,-

Zi; =
0 otherwise.

When solving for each z;;. there are two additional constraints. First. require that

r;; € {0.1} for 1 <i¢<mand 1< 3 <t. and also that
t
Z:!:;jzl VISLSTI
j=1

These two constraints capture the fact that if the " character in z is the ¢*® symbol

in the alphabet. (that is. z; = a;). then z;; = 1 and z;; = 0 for j # q.
5.2.2 Formulation of Farthest String Problem
With this formulation. the Farthest String Problem is stated as:

find z that maximizes ky

subject to the constraints :

%Z?:l 2;‘:1 ChijZij + 1 = k, Vi<h<m: (5.1)
Yim1 T =1 V1i<i<n;
z;; € {0.1} Vi<i<n1l<j<t

For example. if the set S = {ca. ga} in the alphabet A = {a.c, g} then the linear
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program would be the following.

find z that maximizes ky

subject to the constraints :

s(Eu+1l—zio+Tia+ 1 — Ty + Toa + Tg) > ky

HZu 4212+ 1 =213+ 1 — Zoy + Toa + Ta3) 2> by (5.2)
Znu+zi2+zr3=1

I21+ZTon+Toz =1

z;; €{0.1} V1<i<nl1l1<j<t:

5.2.3 Solving the Integer Program

To solve this set of equations. first relax the integrality constraints on each =x;.
replacing them with the constraints 0 < Z;; < 1 and solve the resulting lincar
program. Let T = (Z;;) be the solution vector of this resulting linear program and
let the objective function have the value ky.

Now apply randomized rounding [49] to restore integrality: for each :. inde-
pendently set each character place holder to a specific symbol in the alphabet. say
zip, = 1 and set the remaining place holders to zero. z;; = 0 for j # p. according to

the probability distribution Z;; for 1 < j <t. Thus. for each z,
Pl‘(:!:.'j =1)= T

The randomized rounding process has the property that the integer solution.
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k¢. is related to the continuous solution. k. in the following manner [49]:

ky > ky — eO(y/nlogn)

where ¢ > 0 is an arbitrary constant (related to 3).

Letting ks ope be the unknown optimal distance. by Lemma 4.

n(t — 1)

k!-ozrt>(1—/3) ¢

hence kg e is O(n).

Counsider the ratio between ky and ky .. for large n.

kt > ks - €O(v/nlog ) > 1—€e0(\/(logn)/n) > 1 —c¢.

k’f_opg - kf.opt k!.opt

The third inequality was obtained from the second in two steps:

1. Replace ks ope by ks in the first denominator. Since &y was obtained using real
values and kg .pe was obtained using integer values. the inequality is preserved

because ks > ky.opt-
2. Replace the kjope by O(n) in the second denominator.

With this bound achieved, the above algorithm can result in a PTAS after
de-randomization. One approach to de-randomizing would be with conditional
probabilities, (see (1] or [50]). These results can-be generalized into the following

result.
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Theorem 8 There is a PTAS for the Farthest String Problem.
With this theorem. the next corollary is straightforward.
Corollary 1 The Farthest Substring Problem is NP-hard and has a PTAS.

Proof. The Farthest Substring Problem can be broken down to the Farthest
String Problem in the following manner. Let S = {s,.54..... Sm} be a set of strings.
cach of length greater than or equal to n over an alphabet A of t symbols. Given the
i*" string. s;. has length p > n. break s; up into p —n + 1 overlapping strings each

of length n. Use the algorithm for the Farthest String Problem on these substrings.

a

5.3 The Closest String and Substring Problems

With the foundation laid by the investigation of the Farthest Strings Problems.
much of the work of characterizing the Closest String Problems is fairly straight-

forward.

5.3.1 Hardness Results
Theorem 9 The Closest String Problem is NP-hard.
Proof. Reduce the Farthest String Problem to this problem. First consider the

case of |A| = 2. Given an integer k. and a set of m strings S = {s;.55....5,} each

of length n. the following statements are all equivalent for 1 < i < m.
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e There is a string z such that d(z.s;) > k..
e There are at least k. mismatches between z and s;.

e There are strictly less than k; = n — k. mismatches between s; and Z. the

complement of z.

o d(Z.s;) < k!.

The binary case can be reduced to the case |A| > 2 in the following manner.
Given an instance of the binary Closest Substring Problem. [, . over the alphabet
A,. use the non-binary algorithm to solve I, , to the distance bound k.. Then take
that non-binary solution. convert cach letter that is not in A, to one of the symbols
in A, arbitrarily. This step will only improve the quality of the solution. yielding
a binary solution within distance k.. By this reduction. the case [4| > 2 is also

NDP-hard. )

Since the Closest String Problem is a special case of the Closest Substring
Problem where the length of all strings in S is n. Theorem 9 leads to the following

corollary.
Corollary 2 The Closest Substring Problem is NP-hard.

With the NP-hardness of these problems determined, the next step is to establish

the hardness of approximation. First. consider the following.

Lemma 5 Both the Closest String Problem and the Closest Substring Problem can

be approrimated within a ratio of two in polynomial time.
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Proof. Consider the following special case of the star alignment approximation
algorithm(23]. Let /.., be an instance of the Closest Substring Problem. consisting
of aset S = {s;.55..... sm} each of length at least n over an alphabet A. Let z
be an optimal solution such that for each string s; € S. including s,. there exists
a substring p; of s; such that d(z.p;) < k.. For every other string in S. say s;. by
the triangle inequality. there exists a substring p; of s; such that d(p;.p;) < 2k..
To find this string p,. just try each substring of length n in s,.

Since the Closest String Problem is just a special case of the Substring Problem.

the results apply to both. a

The next theorem improves the previous approximation.

Theorem 10 The Closest String Problem can be approzrimated within % + € in
polynomial time for any small constant € > 0 and for any alphabet A whose size is

two or more.

Proof. Let S = {5;.52....5m} be a set of strings each of length n over an alphabet

A. Without loss of generality. assume the following:
1. d(s;.8:) = k > d(s;. s;) for any s;.s5; € S.
2. The k mismatches between s; and s, occur at the first & positions.

These assumptions are valid because the characters and strings of S could be per-
muted to this format. the problem solved. and then the characters permuted back

to their original positions without affecting the validity of the solution.
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To simplify things. consider the following notation. Given a string z of length
n. let z’ represent the first &k characters and let z” represent the rest of the string.

1N /4

For example. s; = s}s] where s, = s;15i2- - - sit and s¥ = s;k41)Si(k+2) = * * Sin-

With this notation. consider the following integer program for s;

find z that minimizes &’

subject to the constraints :

Ly S enE + k<K -k Y1I<h<m: (5.3)
Cizhi=1 V1<i<k:
z;; € {0.1} V1<i<kl1<j<t

where ' 1s an unknown string of length k. and for each ¢. &! is the constant
d(sy.s?) and the cuij’s encapsulate the Hamming distance as specified in Subsec-
tion 5.2.1.

The constraints are similar to Theorem 8 except the length is now k instead of
n. the goal is to minimize rather than maximize. and the bounds are &’ — &} instead
of ky

Let the optimal bound for integer program 5.3 be k[, with solution z,,. It
is impossible to compute k,, efficiently. Therefore, approximate it by considering

two cases.

1. If ¥ < 61n(2m/B3)/B* where B is a constant such that 0 < B < 1. then use

an exhaustive search to find the optimal solution.

2. Otherwise. since k' > 61n(2m/3)/32. follow the same process as outlined in

Theorem 8: linear relaxation, solving for Z’' and . followed by randomized
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rounding. letting the resulting solution be z’. Finally, output either s; or z's/

depending on which has the minimal distance from the rest of the strings in

S.

Analysis of Algorithm

For case one above. the solution is exact: for case two. some analysis needs to be
performed.

Recall from Subsection 5.2.3 that the randomized rounding process has the
property that the integer solution. A’. is related to the continuous solution. % . in

the following manner [49]:

K> F + eO(y/klog k)

Where the error is now an overestimate because we are minimizing rather than
maxinuzing.

In Theorem 8. since the solution was O(n) and the error was O(1/nlog n) the
result was a PTAS because. in the limit. the error is small compared to the answer.
In this case. the two strings s} and s, are k apart and so the final answer A’ must
be greater than or equal to k/2 since this is the best that can be done with these
two strings. So with this formulation the solution is also O(k). Now consider the

ratio of k' to k.

¥ ook OWVEIoeR) 5 co(flogh/k) 21— .
kopt kopt kopt
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Hence. again a PTAS is obtained for z’ and &'

However. the relationship between the solution for the original problem (with
parameters z and n) and this formulation (with parameters z’ and k) has not been
determined and determining this relationship is the goal of the rest of the proof.

Let zo,e be the solution string with optimal distance bound £, for the original

instance of S.

If d(s;.82) < 3kope. then the solution given by the algorithm satisfies the required

- i 47,
distance bound. 3Kope.-

Otherwise. d(s].s}) = d(s1.52) > 3kop. By the triangle inequality.
I 14 14 4 4
d(s]. Tone) + d(:z:opt.s._,) > 51»'(4,;

Thus. cither d(s}.z,,,) > 2kepe or d(s5.z,) > 2koy,.
Without loss of generality. assume the first holds. Then d(sy.z;,) < Fhopt-

Next. consider the following. For any ¢ < n.
d(Z5pe- 57) = d(Zope- 8i) — d(ziyy. 7).
Since d(Zope- $i) < Kope-

d(Zepe- 5i) < Kope — d(z5p,. 57)-

By rearranging the triangle inequality, d(sy.s”) < d(s%.z”,) + d(z".,.s") the fol-
=} g 1-93) 1 opt opt* Vi
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lowing is obtained:

d(Zope- 57) < kope — (d(s7-87) — d(sgp,. 57))

opt- Si op

which finally yields

4 14 n
d(z,,.s;) < §k°"‘ — d(s].s?).

Thus. this results in &, < 3k.,,. which implies
’ 4 n n
d(z'.s;) < (5 + €)hope — d(s7. ;).

Thus.
4
d(z's).s;) = d(&'.sl) + d(s).s) < (5 + €)kope.

This implies that the algorithm outputs a solution with distance bound at most

(% + €)kope- d

5.3.2 Heuristic for Closest Substring Problem

Theorem 10 can be used to design an efficient heuristic for the Closest Substring
Problem. Let S = {s1.52.....5m} be a set of strings where the length of each string

is at least n. Without loss of generality. assume s, is either shorter than. or the

same length as any other string in S. The heuristic takes two steps.
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1. For each p;. a substring of s;. and for each s;. a string in S such that j # 1.

find a substring of s; with length n that is closest to p;. call it g;. such that
max  d(p:.q;)

1s minimized.

SV

Apply the algorithm in Theorem 10 to improve the solution.

5.4 Distinguishing String Selection Problem

Let (A.n.S.. k.. Sy. ky) be an instance of the Distinguishing String Selection Prob-
lem (DSSP). The DSSP requires a string z of length n such that for each s. € S..
d(z.p) < k. for some substring p of s.. and for each q € Sy. d(z.q) > ky. By sctting
cither k. = n or ky = 0 respectively. both the Farthest String and Closest Substring
Problems are special cases of the Distinguishing String Selection Problem (DSSP).
Hence the DSSP is NP-hard.

When &. is a small constant. a solution can be found by exhaustive search. This

is because. if s. is the shortest string in S.. there are at most
O((lsc] — n + 1)n*<(JA| — 1)**)

candidates and each candidate can be tested to determine if it is a solution in time
that is polynomial in terms of the size of tlie instance. When k. is relatively large.

the following approximation result is obtained.
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Theorem 11 Let (A.n.S.. k.. Sy, ky) be an instance of the Distinguishing String
Selection Problem. If there is a solution for the instance. an approzimate solution
z can be obtained in polynomial time such that for each s. € S.. d(z.p) < 2k. for

some substring p of s.. and for each sy € Sy. d(z.sy) > ky — k..

Proof. Suppose z, is a solution. and z is a substring of a sequence in S, such
that d(z,.z) < k.. For any s. € S.. there is a substring p of s. such that by the

triangle inequality d(z.p) < 2k.. For any sy € Sy. since d(z,.ss) > ky. then

d(z.57) 2 d(z,.5¢) — d(zZo.7) 2 ky — ke

Hence the theorem is proved. O
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Conclusion

6.1 GTAC

It has been established that the GTAC entropy estimator converges under relatively
modest assumptions. and experimental work suggests that it converges quickly rel-
ative to other algorithms. However. the difficult task of establishing its theoretical
convergence rate remains open.

As well. GTAC's greedy approach is to take the longest pattern at any given
time. rather than the pattern that has the largest product of length and frequency.
For example. given a choice between a pattern of length 20 that occurs twice. and
a pattern of length 18 that occurs 20 times. picking the second pattern may result
in lower entropy estimates.

Finally. a challenging modification of GTAC is to include some of the approaches
that other methods use, such as recognizing inexact matches. which its competitor

CDNA does. Such work has recently begun with the paper by Chen et al. [11].

102
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6.2 Distinguishing String

There is still work remaining with the Distinguishing String Selection family of
problems. The Distinguishing String Selection Problem. the Far From Most Prob-
lem. and Close To Most Problem have String and Substring variations which have
not been fully explored. Additionally. the Close To Most String Problem is an open
problem. Others are continuing in the area. such as the recent paper by Li et al.
which presents a PTAS for the Closest String Problem.

As well. although these problems fit well with the one-dimensional genetic se-
quence framework. perhaps they could be extended into three-dimensional protein-
ligand interactions which are a fundamental part of the therapeutic drug mecha-

1IsS1.

6.3 Computational Biology

Computational biology is a young and vibrant area of research with many promis-
ing avenues of investigation. More than any other time in the history of science.
biologists are in the enviable position of being faced with a wealth of biological
information. more than any single researcher can hope to understand. Clearly. a
next step is to use existing computational tools—and to create new ones—in order
to use this information effectively. Hopefully this thesis will serve as a step in that

direction.
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