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Abstract

We have studied the properties of molecular clouds and the stellar pop-

ulation associated with 10 H II regions. We used the James Clerk Maxwell

Telescope (JCMT) to make 12CO(2-1) maps in order to study the structure of

the cloud and to identify the dense clumps within the cloud. In half of our

sources we found that molecular gas appears to have been pushed and com-

pressed into the shells around the expanding ionized gas and fragmented into

clumps. Most of these clumps have higher temperature and density compared

to the other clumps within the mapped regions. We made pointed observa-

tions in 13CO(2-1) and CS(5-4) at the peak of 12CO(2-1) within each clump to

measure and calculate the physical properties of the clumps such as line width,

excitation temperature, density and mass. Two gas components were selected

in the cloud associated with S175 to investigate the influence of the H II region

on the molecular gas: S175A is adjacent to the ionization fronts and probably

affected by the expanding H II region while S175B is too distant to be affected.

Contrary to our expectation S175B was a turbulent region with broadened line

profiles. We made a sub-map in 12CO(3-2) using HARP at the JCMT to search

for the source of turbulence and identified a proto-stellar outflow in S175B.

We examined the relationship between gas parameters derived for the clumps

within the entire sample. The identified clumps were found to be divided into

two categories: “type I” sources in which we can find a relationship between

size and line width and “type II” sources where there is no relation. We found
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that the power law indices for type I sources are generally larger than the pre-

vious studies. Larger line widths and consequently larger indices seems to be

an initial environmental characteristic of massive star forming regions

We found that mass and column density increase with line width for both

type I and type II sources. We did not find any relation between the size

and column density. The influence of the H II region on temperature and

line widths was examined and we found that the temperature decreases with

distance from the ionized fronts but no change was found for the line width.

Although most of the clumps within the compressed shells around the H II

region have generally larger line widths, from this test we may conclude that

the internal dynamics of the cloud beyond the compressed shells is not much

influenced by the expanding H II region.

Finally, our near IR study of the stellar populations using 2MASS data,

shows that in half of the regions the exciting star belongs to a cluster. We also

found that star formation is consistent with triggering by the expansion of the

ionized gas in some of sources in our sample. At least two young embedded

clusters have been identified at the same position as the dense clumps within

fragmented shells around H II regions. These clumps have high temperature

and density and large line widths. We identify some other hot and dense clumps

very similar in molecular gas properties as candidates of cluster or massive star

formation.

Most of the active star forming regions associated with H II regions have a
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population of massive newborn stars compared to a star forming cloud which

is distant from the massive star and the ionized gas. We conclude that more

massive stars form in the molecular cloud at the peripheries of H II regions but

it is not clear f this is a result of the initial conditions that have formed the

massive, exciting star of the H II region or a feedback of the massive star itself

and the expanding H II region.
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Chapter 1
Introduction

Stars, these sparkling tiny points have been studied for thousands of years. In

ancient Greece, constellations were created after the gods, goddesses and other

mythological characters who were believed to govern our universe. They were

later used as guide points. Stargazing and astrometry, developed in the Islamic

astronomy period, became the most accurate method in navigation and thus

most of the bright stars are known by their Arabic names.

Modern astronomy was started by the Copernicus heliocentric model which

changed our image of the universe. Moving the centre of the universe from

the Earth to the Sun made it easier to explain the complicated movements

of the planets on the solid background of stars. It was the time for Kepler

to formulate the laws that govern the orbits of moving objects. It was all an

incredible achievement, but the nature of the universe and celestial objects
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within it remained a mystery until the optical revolution by large telescopes.

By the twentieth century our picture of the universe had expanded beyond the

borders of the Milky Way. New technology and instrumentation provided the

opportunity to look beyond the visible universe and discover the invisible face of

the nature in a wide range of electromagnetic wavelengths from radio emissions

to energetic gamma rays. Our knowledge of the universe through these new

windows increased dramatically and many new kinds of celestial objects and

features which could never be observed in optical wavelengths, were detected

in radio emission and infrared.

Most of the universe, such as hydrogen molecular clouds, is made up of

cold regions that do not emit in visible light. To study these regions we need

to use longer electromagnetic wavelengths such as radio or infrared. Figure

1.1 compares the Orion constellation area in visible light and infrared. These

images show a large amount of gas containing star-forming regions and many

proto-stars that cannot be seen by optical telescopes.

A new generation of ground based and space telescopes opened new eyes

on studying the cold gaseous regions in the Milky Way and other galaxies.

In addition, new instruments such as spectrometers in different wave bands,

made it possible to get detailed information about the physical properties and

chemical compositions of various regions in the universe from the atmosphere

of planets in solar system to the most distant galaxies.

This precious information brought us back to the essential questions: how

2



Figure 1.1 The visible light (left) and infrared (right) images of the constella-

tion Orion shown here are of the exact same area. These images dramatically

illustrate how features that cannot be seen in visible light appear very bright

in the infrared. (Credits: Visible light image: Akira Fujii; infrared image:

AKARI, infrared Astronomical Satellite)
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is the universe formed and how does it evolve? What makes the variety in

galaxies morphology? What is the origin of stars and how do they produce

energy? Thanks to both theoretical and observational astronomers we now

have developed models of the universe (rather than a turtle standing on the

back of four elephants!) and we are looking for the nature of the dark matter

and dark energy. We know stars originate in molecular hydrogen (H2) clouds

and that most of the elements in our planet and our body have been formed

through nuclear reactions in massive stars or during their dramatic death as

supernovae. Yet the complicated process of star formation remains as a basic

problem in astronomy.

The initial physical conditions of the molecular clouds determine the star

formation process, rate and efficiency. Stars may form individually or within

clusters. The process is strongly dependent on the mass of the star. Low mass

stars (a few solar masses or smaller) may form in isolation or within clusters

of stars. Massive stars (8 solar mass or larger) are believed mostly to form in

clustered environments (e.g Smith et al., 2009, Lada & Lada 2003). In different

studies, intermediate mass stars may be considered in a separate category or

just considered as low mass stars (Lada & Lada, 2003 and references therein).

Like massive stars, the process that produces intermediate mass stars is not

very well understood.

Theoretical models are more developed for isolated star formation and the

observation of individual collapsing cores is almost consistent with theory (Har-

4



tigan et al. 1995, Reipurth & Bally 2001). Clustered star formation is more

complicated and therefore less well understood theoretically. Massive stars are

believed to form in Giant Molecular Clouds (GMCs) in rich clusters formed

in dense, massive, turbulent clumps. Unfortunately such regions are much

less common than the low mass star-forming regions and consequently fewer

in number in nearby clouds. Therefore, the detailed study of high mass star

formation is demanding compared to the study of low mass stars.

It is not only the molecular clouds that govern star formation. Newborn

stars also affect their original environment by feedbacks. Low mass stars form

gently in more quiescent regions and do not significantly affect their environ-

ment during their slow formation and evolution process. By contrast, high

mass stars form in turbulent dense cores and evolve very quickly (e.g. McKee

& Tan 2003). They influence the environment through strong winds, jets and

outflows which change physical conditions such as the temperature and density

of the cloud. They also ionize the surrounding gas (forming an H II region)

around the stars. Expansion of the ionized gas affects further star formation

in the cloud and may cause the formation of more stars (e.g Deharveng et. al,

2005).

In this thesis we study the impact of H II regions on star formation in their

associated molecular clouds. Molecular hydrogen gas in young star-forming

regions is extremely cold and have no emission in optical wavelengths. Hydro-

gen is also a symmetric molecule and has no (electric/dipole) emission at low
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temperatures. Molecular clouds are best studied in radio and sub-millimeter

emission of other abundant tracers such as carbon monoxide (CO) which is

the most abundant molecule after H2 in star-forming regions. We use the 15

meter James Clerk Maxwell Telescope (JCMT) to investigate the structure and

physical conditions of molecular clouds associated with a selected sample of 10

H II regions. We aim to understand how these conditions have been affected by

the massive stars and how these conditions may affect future star formation.

The thesis is organized as follows. In the rest of this chapter I review the

basics about molecular clouds, the physical conditions in various star-forming

regions and current theories and observational results. Then I discuss the ques-

tions have been addressed in this thesis and how this work has improved our

knowledge about the star formation process. Chapter 2 contains the data reduc-

tion methods and calculations. This chapter which is a reprint of a published

paper, compares the physical characteristics of two identified components of

the molecular cloud associated with S175 H II region: one near the massive

star and partially over the H II region and the other distant enough that is

unlikely to be influenced by the massive star and the H II region. Chapter 3 is

a reprint of a paper being submitted which summarizes all derived parameters

for the entire sample. In this paper we discuss the relation between different

physical parameters and their variations within the sample. Stellar populations

in the near infrared are presented in Chapter 4. In this study I determine how

the stellar distribution is affected by the environmental conditions, especially
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under influence of the massive star and the H II region.

1.1 Molecular Clouds: Birthplace of Stars

Stars are not the only objects seen in the dark night sky. For many years it has

been noticed that there are some extended objects that could not be categorized

as stars. All of these extended astronomical objects were originally called

nebulae. Even galaxies beyond the Milky Way such as Andromeda were not

distinguished from the Galactic clouds before Edwin Hubble identified them as

huge complexes of stars and gas very far from us and moving away from us. Now

the term nebula is used for extended interstellar gas and dust in various forms of

size, mass, density and other physical conditions. The nebulae could be diffuse

low density interstellar gas, a high density star-forming region, an expanding

ring shape gas ejected by a red giant (planetary nebula) or remnants of a

supernova explosion. In this chapter we discuss the physical properties of the

Interstellar Medium (ISM) and its major components with special emphasize

on the physical conditions of star-forming regions.

1.2 Interstellar Medium

New technology and larger telescopes have enabled us to look deeper and detect

fainter objects in the universe. Yet there is lots of space between stars with
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particle density much smaller than the best possible laboratory vacuum on the

Earth, but still not empty. The ISM in the Milky Way is filled with mostly

hydrogen gas (≈90% of mass) mixed with helium (≈9%), and 1% of other ele-

ments, molecules and dust particles. Some candidates of dust grain materials

are silicates, carbonaceous material like graphite, amorphous or glassy carbon,

polycyclic aromatic hydrocarbons (PAHs), chain-like hydrocarbons, silicon car-

bide (SiC) and carbonates (Draine 2003).

The early models classified the gas in the ISM into three categories: cold

atomic hydrogen clouds, cold molecular hydrogen clouds and warm-hot ionized

gas (e.g. McKee & Ostriker 1977). Its density varies in a wide range from 10−6

particles cm−3 in the hottest ionized regions to ∼ 1010 particle cm−3 in dense

cores containing masers; these point to a very in-homogenous environment.

These phases are thought to be in approximate pressure equilibrium with one

another. Most of the ISM lies close to the galactic disc. It contains ∼ 10−15%

of the total mass of the Galactic disk but half of this mass is concentrated in

dense clouds that occupy only one to two percent of the total interstellar volume

(Ferriere 2001). Other authors have defined slightly different categories. Table

1.1 summarizes different types of the ISM and the property of each component,

as given by Stahler & Palla (2004). The first column in this table shows different

phases of interstellar medium and the second column is the volume particle

number density. Note that the cold molecular gas that forms into stars makes

up approximately 20% of the mass of the ISM but fills only one percent of the
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Table 1.1. Phases of Interstellar Medium (ISM)

Phase ntot T M f a

(cm−3) (K) (109M�)

Molecular > 300 10 2.0 0.01

Cold neutral 50 80 3.0 0.04

Warm neutral 0.5 8× 103 4.0 0.30

Warm ionized 0.3 8× 103 1.0 0.15

Hot ionized 3× 10−3 5× 105 — 0.50

af is the volume filling factor.

Note. — Table from Stahler & Palla (2004)

volume.

The Orion nebula is probably the most famous non-stellar object that is

easily recognized by the naked eye in the winter sky. The Orion nebula is a

cloud of hydrogen gas illuminated by a young embedded cluster of stars named

the Trapezium. Some of these newborn stars are recognized even with a small

telescope (Figure 1.2).

As discussed earlier, most of the stars, and especially massive stars, form in

clusters. A huge amount of molecular hydrogen is required to form a stellar clus-

ter such as the Trapezium. Thousands of such gas complexes known as Giant

Molecular Clouds (GMCs) have been detected in the Milky Way. Each complex
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Figure 1.2 Optical images reveal clouds of gas and dust in the Orion Nebula;

an infrared image (right) reveals the new stars shining within. Credit: C. R.

O’Dell-Vanderbilt University, NASA, and ESA.

has a total mass of ∼ 105 M� (although a few are known with masses approach-

ing 106 M�) which is mainly molecular hydrogen. These clouds are very cold

and cannot be observed in visible light. Some non-symmetric molecules like

CO which are highly abundant and strongly emitting, are therefore the best

tracers to investigate molecular clouds. Molecular clouds are mixed with tiny

particles of silicate or carbonaceous material known as interstellar dust. The

dust grains have typically a size of ∼ 0.1 µm and absorb any light with wave-

length smaller than their diameters. They radiate this absorbed energy in the

infrared and sub-millimeter (for example Figure 1.1).
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1.3 Molecular Clouds: Nature and Structure

The molecular cloud component of the ISM has a complicated structure and

exists in a wide range of size, mass, density and other physical characteristics.

Table 1.2 summarizes the physical properties of different Galactic molecular

clouds. In this table AV is the extinction caused by the gas in visible wave-

length, ntot gives the number of particles volume density, and L is the typical

size of the cloud. In some cases, a large fraction of the cloud might have

constant density and temperature while in most of the observed regions the

structure is a complex of various cloud types. For example it may have an

onion-like structure, with dense cloud material in the centre, surrounded by

translucent gas, which is surrounded by a halo of diffuse gas (Snow & McCall

2006).

Interstellar molecules and atoms can be identified through their emission

from orbital, vibrational, or rotational transitions. Typically, electronic transi-

tions of simple molecules emit photons in the ultraviolet (UV) or visible light;

vibrational transitions produce infrared wavelengths; and rotational lines are

seen at millimeter, sub-millimeter and radio wavelengths. Therefore a wide

range of observational techniques and instrumentation is required to study the

entire molecular gas portion of the ISM.

Diffuse clouds are relatively isolated regions that contain both atomic and

molecular hydrogen. The absorption of visible emission within diffuse clouds is
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Table 1.2. Classification of interstellar cloud types and their physical

properties.

Cloud Type AV ntot L T M Example

mag (cm−3) (pc) (K) (M�)

Diffuse 1 500 3 50 50 ζOphiuchi

Giant Molecular Clouds 2 100 50 15 105 Orion

Dark Clouds

Complexes 5 500 10 10 104 Taurus-Auriga

Individuals 10 103 2 10 30 B1

Dense Cores/Bok Globules 10 104 0.1 10 10 TMC-1/B335

Note. — Table from Stahler & Palla (2004)
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very small and they are mostly transparent to the background stars. Although

these regions are excellent laboratories to use a large number of absorption

lines, especially in the UV, to study the molecular abundances and chemical

reactions, their masses and densities are very small and they are not active

sites of star-forming regions.

GMCs are the largest known structures in the ISM which are gravitation-

ally bound. More than 3000 GMCs have been identified in the Galaxy. Their

sizes are typically tens of parsecs which represents only one percent of the ISM

volume but contains almost half of its mass. The typical mass of GMCs varies

between 104 and 107 M�. Self gravity is the dominant force in GMCs and

internal thermal pressure is not enough to keep the balance against gravita-

tional collapse, but there are other forces that should be considered. Turbulent

regions have an extra internal dynamics and therefore an extra kinetic energy.

Magnetic fields also can play an important role to support the cloud against

collapse. The stability of the cloud can be described by the Virial theorem:

2T + 2U +W +M = 0 (1.1)

where T is the total kinetic energy of the bulk motion, U contains the thermal

random motion of the molecules, W is the gravitational potential energy and

M presents the energy associated with magnetic fields. Except W , all other

energies are positive. If they all together can not compensate W , then the

cloud will gravitationally collapse and may also fragment during this process.

Figure 1.3 presents a schematic of a molecular cloud. Each cloud con-
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Figure 1.3 graphical presentation of a molecular cloud. Each cloud may con-

tain several dense clumps. While the whole cloud might be gravitationally

bound, most of the internal clumps are not. They fragment into smaller pieces

and produce several proto-stellar cores. The number and mass distribution of

resulted stars are determined by the physical conditions of the clumps.
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tains several dense “clumps” which may contain or produce several proto-stars.

While the total cloud might be in balance, internal clumps have higher densi-

ties and maybe unstable against gravitational collapse, as a result, the clump

may fragment into many pre-stellar “cores”.

The clumpy structure of molecular clouds has been well studied (e.g Jor-

genssen et al. 2008, Reid & Wilson 2005, 2006) and the physical characteristics

of the clumps such as clump mass function, have been derived in several re-

gions. However derived parameters are highly affected by the poor resolution

of observations in the sub-mm, the uncertainty in estimating source distances

and the identification of the edge of the clump. The space between the clumps

within a cloud is occupied by a cold low density gas. This low density molecular

gas has been mapped in different CO isotopes and emission lines, and found to

contain only a small fraction of the cloud mass.

Individual clumps may have large masses up to a few thousand solar masses,

but even more massive structures within molecular clouds have been identi-

fied as “dark clouds”. Most of these clouds are dark in wavelengths of 7-100

µm, presumably because they do not contain any young stellar objects or any

newly formed stars are very deeply embedded (Ragan et al. 2006). infrared

dark clouds (IRDC) might be quiescent intermediate or massive star-forming

potentials known as pre-proto-stellar cores.

Bok globules (Bok & Reilly 1947) are isolated molecular clouds with small

masses (2-100 M�), small sizes (0.1-1 pc) and high densities (104 cm−3). They
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are easily identified as dark compact clouds against a background of diffuse gas

or background stars (Fig. 1.4). They may form spontaneously from small local

fluctuations, or be triggered by an external source such as strong stellar winds,

or be a result of the fragmentation of a larger molecular cloud. Therefore they

may not be perfectly isolated and some connections to distant molecular clouds

has been found (Khanzadyan et al. 2002). Bok globules may form individual

low mass stars or small groups of stars.
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Figure 1.4 Bok Globules (two large dark clouds in top right corner) block the

emissions from a bright background H II region.

Credit: NASA and The Hubble Heritage Team (STScI/AURA)
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1.4 From Clouds to Stars

As discussed above, star formation may originate in molecular clouds with a

wide range of size and internal dynamics but similar temperature and density.

The environmental conditions and presence of external sources such as massive

stars affect the process of star formation and may change the star formation

rate, efficiency and mass distribution of the proto-stars. For example, warmer

regions are more stable against gravitational collapse and may produce more

massive stars. A simulation of the star formation process within two regions

with Jeans mass (the maximum mass that a clump can have and still be stable

against gravitational collapse) of 1 M� and 1/3 M� as initial conditions found

that the accretion time and consequently star formation rate and efficiency

is not similar in the two regions (Bate & Bonnell 2005). The mass function

(number of stars vs. mass) was also dissimilar for the two calculations: the

region with smaller Jeans mass had larger number of brown dwarfs and wider

range of stellar mass (Figure 1.5). The low-mass and high-mass cut-offs are

also different and slightly smaller and larger respectively for lower Jeans mass

regions.
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Figure 1.5 The Initial Mass Function of two simulated groups of stars. The

left panel had the larger initial Jeans mass (1 M� vs. 1/3 M� in the right).

The single shaded histograms show all of the objects and the double shaded

show only the regions that have finished accretion. Different IMFs have been

superimposed on the simulation (Salpeter 1955, Kroupa 2001 and Miller &

Scalo 1979). The vertical dashed line is the boundary between stars and brown

dwarfs. The region with smaller Jeans mass (right panel) has produced much

higher fraction of brown dwarfs. (Diagrams from Bate & Bonnel 2005)
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1.4.1 Isolated Low-Mass Star Formation

Low mass isolated star formation is the simplest mode that can be modelled.

The term “isolated” means that the individual forming star has not been af-

fected by external agents and is governed only by its own gravity and internal

pressure. In such conditions low mass stars are expected to form. These condi-

tions may also occur within a larger cloud while a small isolated clump collapses

on its own gravity and has negligible interaction with the parent cloud; many

low mass stars are formed within massive star-forming regions as well. Gravity

is the most important agent in all star formation processes but in an isolated

region this is the only “collapsing” force. Sometimes, collapse in a large cloud

causes fragmentation.

A simple isolated spherical model assuming a decreasing volume density

proportional to r−2 has been discussed by Shu (1977). This model provides a

simple analytical description of proto-stellar collapse, but it is far from reality

and especially faces the problem of a singularity at the core centre. In two

different studies Bonnor (1956) and Ebert (1955) assumed that an external

pressure helps gravity keep the isolated sphere bound. A detailed study of

the collapse of molecular cloud cores using a high-resolution three-dimensional

numerical simulation of the Bonnor-Ebert model shows that formation of both

low-mass and high-mass proto-stellar disks can be explained with this model

(Banerjee 2004). Adding rotation to this simulation produced solid disks that

do not fragment and ring disks that fragmented into two proto-stellar cores.
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However the Bonnor-Ebert model requires assumptions and can be solved only

numerically for selected circumstances. In a recent model, Dapp and Basu

(2009) considered a Bonnor-Ebert like sphere which is not in equilibrium. Their

model sphere has a flat density at a central region that declines with r−2 beyond

the small central part. In this model they can determine the dynamical state

(expansion, equilibrium, collapse) of the core. They showed that for example

L1689B pre-stellar core cannot be in equilibrium but instead appears to be

collapsing, while their model verifies that another pre-stellar core, B68, is close

to being in equilibrium.

Small dark clouds, or Bok globules, are the best places to look for isolated

star formation. Particularly the nearby clouds are ideal places where we can

measure the size and resolve the cores. However their distances are very uncer-

tain. A study of a sample of six typical globules in CS emission lines estimates

an average size of 0.33±0.15 pc (Launhardt et al. 1998). The same objects

mapped in C18O gave smaller average sizes of 2.9±1.6 (Wang et al. 1995). CS

and C18O have different opacities and CS traces higher densities. Therefore

the two different measured sizes show the internal density profiles.

The uncertainty in measuring size affects the calculated masses. For the

sample studied by Launhardt (1998), the CS(2-1) gave an average mass of

26±12 M� while C18O(2-1) data gave M = 10±6 M�. Other studies suggest

the same range of mass and dissimilarity using different tracers (e.g Onishi et

al. 1998) pointing out that larger cores may contain more than one proto-star.
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They are cold with an average kinematic temperature of ∼ 10 K and average

density of n ∼ 104 − 105 cm−3. Distinct cores may form individually or within

larger clouds.

1.4.2 Clustered Star Formation and Massive Stars

Individual low-mass star formation has been studied theoretically in detail and

is well described. Unfortunately, only a small fraction of stars form in individual

cores. Instead most of them originate in stellar clusters (Lada & Lada 2003).

The scenario for low-mass star formation may be valid for intermediate stars

with masses up to 10 M�, but more massive stars, up to 150 M�, seem to

exist. The simple accretion model fails to explain the formation of massive

stars because the radiation pressure of such stars will stop accretion before

their pre-stellar disk can collect such a large amount of mass. Another main

question in clustered star formation that yet remains to be investigated is:

what is the (minimum) sufficient mass and density to form clusters containing

massive stars, and how is the mass distribution of the forming stars affected by

the previously formed stars? A power-law mass distribution for stars has been

observed in many star forming regions and clusters as:

dN(M) ∝M−αdM. (1.2)
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Slightly different slopes have been reported (e.g Kroupa 2001, Scalo 1998),

but there is no evidence of variation in different star forming regions (Massey

1998) and different mass ranges (Elmegreen 2000). Some studies also derive

a clump mass function similar to the stellar IMF (Alves et al. 2006), while

others suggest a different slope, considering various collapse times for clumps

over a large mass range (Larson 2005). Brand & Wouterloot (1995) found 1.4

≤ α ≤ 1.8 for star-forming regions for both the inner and outer Galaxy. Why

the mass spectrum is almost universal and how the most massive stars can

form are still unanswered questions.

The observed mass distribution supports the idea that most stars form in

dense massive clumps (Evans 1999), with high column density (∼ 1023 cm−2)

and large velocity dispersions (∆V ≥ 6 km s−1) within scales smaller than 1

pc. However, the star formation rate per unit mass seems to be independent

of the cloud mass (Evans 1991).

The observations suggest two major scenarios for massive star formation.

That the most massive stars have been found within or close to forming clusters,

suggests that they are probably built by the collision and merger of smaller stars

and proto-stars (e.g. Bonnell et al. 1998). That requires high density rich

clusters, which have been frequently observed. The Orion nebula cluster is one

of the most famous ones. This model is known as the Competitive Accretion.

On the other hand a Turbulent Radiation-Hydrodynamic model suggests that

even radiation pressure or ionization cannot prevent massive stars forming from
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massive turbulent cores (Krumholz et al., 2007). Here we compare these two

models and the observational facts and predictions that support each model.

1.4.3 Competitive Accretion versus Turbulent

Radiation Hydrodynamic Models

The competitive accretion model simply explains the formation of massive stars

and massive binaries up to 30 M� that would be likely to merge using only

gravity and hydrodynamics.In the competitive accretion model all stars first

form in dense molecular clumps as small fragments or “seeds” in a mass range

of 0.003-0.5 M� (Bate & Bonnell 2005). The “seeds” accrete mass rapidly while

the clump is also collapsing to high stellar densities as large as 106 − 108 pc−3

(Krumholz 2006) at which the merging starts.

The model offers potential observational test and predictions. For example

mergers should produce infrared flares that can survive for centuries (Bally &

Zinnecker 2005). However there is no infrared data set available that shows

such flares. The mergers should also produce eruptive outflows with random

orientations, but there is no detailed modelling of how the outflow would form

and how common they are (Krumholz 2006a). Another direct observational

test is to look for high density embedded clusters which are required for merg-

ers. These objects should be rare as they evolve very fast but their high column

density would produce a specific spectral shape that might be observable with
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recent space telescopes (Krumholz 2006a). Finally, if massive stars form in

mergers, their accretion disks cannot survive the collision and therefore they

cannot produce highly collimated outflows. Contrarily, interferometric obser-

vations of early B stars confirm that they have highly collimated outflows.

The turbulent hydrodynamic model considers the possibility of forming

massive stars with roughly the same accretion scenario as for low mass stars but

adding turbulence to the initial conditions. The similarity between clump/core

mass function and the IMF suggests s that massive cores can form in frag-

mentation processes in turbulent regions; this has been confirmed analytically

(e.g. Li et al 2004 ) and observationally (Reid & Wilson 2005). Massive cores

need to be turbulent to stay in balance with gravitational collapse and exter-

nal pressure (McKee & Tan 2003). They must be very compact (≤ 0.1 pc)

with high column density (∼ 1024cm−2) which produces the accretion rates

of 10−3M� yr−1 to embedded pre-stellar cores, which may produce a massive

star in ∼ 105 yr (Krumholz 2006a). A simulation of turbulent massive cores

predicts that they fragment into smaller cores and form several low mass stars

instead of a few massive stars (Dobbs et al. 2005) but Krumholz (2006b) in-

cluded radiative transfer to the same simulation and concluded that the rapid

heating may prevent the fragmentation. The outflows from massive proto-stars

come from close to the hot core where most dust has vaporized; therefore the

outflows are dust-free and optically thin and can work as cavities to release the

radiation pressure and make it weaker than gravity even in a 50 M� proto-star
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(Krumholz 2005).

Competitive accretion and turbulent hydrodynamic models both give an

explanation of how massive star may form, but none of their simulations con-

sider the effect of magnetic fields in the process. They also do not predict a

cut-off for the highest possible mass for a star especially the merger scenario

which seems to be a scale free process; it is difficult to put an end to the colli-

sions while merging two 150 M� might produce a black hole rather than a star

(Krumholz 2006a).

1.5 Cloud Dynamics and Emission Line

Profiles

Various molecules and several transition emission lines are used to probe the

density of the gas in star forming regions. Each emission line has a specific

critical density which is defined as:

nc(jk) = Ajk/γjk. (1.3)

where Ajk is the Einstein coefficient for spontaneous emission rate and γjk is

the collisional de-excitation rate per molecule in level j. A list of common

density probes and their properties is given by Evans (1999). Detection of a

specific line indicates that the density of that region is higher than the critical

26



density of the detected emission, although it also depends on the observational

sensitivity, the frequency and the optical depth.

Analyzing the profile of various molecular emission lines provides informa-

tion about the internal dynamics of the cloud. Each emission line has a thermal

line width due to the thermal gas motion, but it is smaller than the line broad-

ening caused by strong internal motions or turbulence or even a proto-stellar

outflow. A rotating clump also have widened emission lines which are red-

shifted and blue-shifted on the opposite sides of the clump. Observing dense

cores in different density tracers may show signatures of in-fall motions or ex-

pansion. For example CS is a high density tracer while CO is optically thick

and traces only the low density gas of the envelope around the dense core.

A significant difference between the velocities where the emission line peaks

indicates a velocity gradient inside the cloud.

Sometimes the emission lines are complicated and have a double peaked or

multiple peaked structure. The multiple peaked profiles may be due to multiple

cores at different distances with different central velocities in the line of sight,

but there are several physical and dynamical conditions that may cause such

profiles. For example, a double peaked profile in an optically thick emission

line such as CO may occur by self absorption if the internal core is hotter than

the surrounding envelope. Observing the same core in higher density tracers

may show a peak at the same velocity/frequency of the absorbed portion of

the optically thick line (e.g Figure 2.6 in chapter 2, Brand et al. 2001).
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A double peaked profile may also indicate a contracting cloud. Myers et al.

(1996) simulated more complicated profiles in good agreement with observed

lines for various molecules. A simple model of inside-out collapse discussed

by Evans (1999) is shown in Figure 1.6. The outer static envelope emission

has no Doppler shift. The emission from the rear side of the core creates the

blue-shifted peak while the emissions from in-falling material at the front side

produce the red-shifted peak. This simple model fits a variety of profiles for

infall candidate cores.
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Figure 1.6 A simple diagram to show the origin of double peaked line profiles

in collapsing cores. The static envelope produces the central deep, The blue

peak comes from the infall of the back side materials and the red peak from

the front side. (picture from Evans 1999)
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1.6 Embedded Clusters in Molecular Clouds

Studies using 2MASS data (Carpenter 2000) suggest that a large fraction of

stars are formed in embedded stellar clusters (Lada et.al 1991, Li et.al. 1997).

Therefore the study of young clusters may answer fundamental questions about

the star formation process. These stellar systems are young enough that they

still have most of their massive stars and the low mass stars are mostly Pre

Main Sequence (PMS) stars and are therefore brighter than at any other time

in their lives. For these reasons dense cores are perhaps the best places to

study a complete initial mass function (IMF). infrared observations in such

regions can record the entire range of stellar masses from 0.01 to 100 M�

(Lada & Lada 2003). In the early stages of evolution young stellar objects are

embedded within dense gas and a large fraction of the visible light is absorbed

by surrounding dust and gas. Such young clusters can be detected only in near

infrared (NIR) emission which has a smaller extinction. For example, a photon

in the K band (at 2.22 mu m), has an extinction 10 times smaller that of a

V-band photon (at 0.55 µ m). Therefore, a T Tauri star of spectral type of K7,

with MV =+6.5 and MK=+2.2 at a distance of 200 pc in a cloud with AV > 12,

has an apparent magnitude of +25 which is fainter than the detection threshold

but the same star could be in a cloud with AV = 100 and still be detectable at

K band, considering a detection limit of +20 on ground base telescopes (Stahler

& Palla 2004, equation 2.12).
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Figure 1.7 The K-band luminosity function for members of embedded clusters

within NGC 7538 (filled histogram) compared to all stars in the field (open

histogram). The KLF for cluster members peaks at a magnitude smaller than

the total sample of stars in the field (Balog et al. 2004)
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Stars formed in a cluster share the same initial conditions and they prob-

ably have the same age. Therefore, they provide a good laboratory to test

different theoretical models. Embedded clusters evolve very fast, with signifi-

cant changes in observable properties, in only two or three million years, and

clusters older than 5 Myrs are probably not associated with molecular gas any

more (Leisawitz et al. 1989). Only approximately 7% of all clusters survive

to ages of ∼ 108 yr and these longer lived clusters are likely massive clusters

with a total mass larger than 500 M� (Lada & Lada 2003). The Pleiades is a

good example of such long lasting open clusters. Clusters older than 10 Myrs

may lose some of their original members due to evolution and dynamical inter-

actions. It is also important to consider that the cluster evolution depends on

the distance from the Galactic centre which contains more gas and stars. The

larger amount of mass causes larger tidal forces that can destroy the cluster.

Consequently most of the older open clusters lie in the outer Galaxy (van den

Bergh & McClure 1980).

The ages of clusters can be determined by luminosity function analysis.

Three broad band filters J (1.25 µm), H(1.65 µm) and K (2.16 µm) or Ks (2.17

µm) are common in NIR studies. Figure 1.7 presents the K band luminosity

function (KLF) of an embedded cluster in NGC 7538 compared to the field

stars. The open histogram shows all stars and the filled histogram the cluster

members. The KLF peaks at one magnitude brighter for cluster members. The

KLF is different from the field stars for young embedded clusters, but is not
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a unique function. Figure 1.8 presents the KLF for three different clusters:

Trapezium, IC 348 and NGC 2362. Even if the clusters start with the same

initial conditions and the same IMF, they may not have the same KLF at

different evolutionary stages. Muench et al. (2000) simulated the KLF for

embedded clusters at different ages. Figure 1.9 displays the model luminosity

function for clusters at ages of 1 Myrs, 3 Myrs and 10 Myrs. The younger

cluster has more young stellar objects which are brighter in K magnitude and

as they evolve they become fainter. Therefore the KLF peak shifts to fainter

magnitudes for older clusters.
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Figure 1.8 Observed KLFs for three young clusters adjusted to the same dis-

tance. The KLF peak trends to lower luminosity for older clusters (Trapezium,

106 yrs; IC 348, 3×106yrs and NGC 2362, 5× 106yrs.
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Figure 1.9 Model KLF for clusters originate from the same IMF but at different

evolutionary stages. The younger cluster has higher K luminosity peak which

is consistent with observations. The pre main sequence stars become fainter in

K band as they evolve to main sequence stars. (Lada & Lada 2003)
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1.7 Star Formation in Molecular Clouds

Associated with H II Regions

1.7.1 Questions to be Addressed

As discussed before, there are several agents that govern the star formation

process and variation of these parameters may result in totally different star

formation mechanisms. For example high mass stars in particular require spe-

cific initial conditions such as high density gas and turbulence to form while

the low mass stars can form through a more simple mechanism with initial con-

ditions (temperature, density, etc.) as found in molecular clouds. The presence

of massive stars itself highly influences the environmental conditions which may

favour further (massive) star formation or prevent it. Stellar winds from the

massive star and the expansion of the H II region may compress the gas in

dense shells which may collapse to dense clumps and trigger star formation in

a “Collect & Collapse” process (e.g. Elmegreen & Lada 1977, Deharveng et

al. 2005). They also may affect the molecular gas internal motions and even

initiate turbulence within the nearby gas. Radiation from the massive star and

the ionized gas is another important agent that influences the fragmentation

process in molecular clouds. As discussed before (section 1.4) a warmer en-

vironment is more stable against gravitational collapse and not only the star

formation rate (SFR) and the star formation efficiency (SFE) may change in

36



such environments, the stellar mass distribution may also be influenced and as

shown in Figure 1.5 a different initial mass function (IMF) might be expected.

In this work we investigate how the environmental conditions, and conse-

quently the star formation has been affected by the massive star and the H II

region. First we study the structure of the cloud. The molecular gas appears in

different shapes and structures as filaments or diffuse gas but in most regions

it has a clumpy structure with condensations that vary in size from < 0.1 pc

to > 100 pc. The clumpy structure has a hierarchal pattern and the size of

identified clumps is highly dependent on the distance and the telescope reso-

lution. In next step we measure and calculate the physical parameters such as

temperature, velocity dispersion, gas density, optical depth and mass for each

clump. The derived parameters in different regions will be compared to study

how they change and weather the variations are made because of the presence

of massive star or the H II region. For example is the number of clumps, their

size and distribution the same near the H II region and far from it? How is

the environment warmed up by the radiation from massive stars and the H II

region? Is the internal dynamics of the clumps affected by the H II region or

can we find any evidence of turbulence caused by the expansion of H II region?

Do the fragmentation process and the mass distribution of the clumps vary un-

der the influence of the H II region? Is there any relation between the derived

parameters, and if so, what does it mean? Do these relations vary in different

regions?

37



In the next step we look at the stellar population within the clouds. It is

expected that the process of star formation and especially the formation of high

mass stars originates in dense massive clumps. We study how the distribution

of stars is associated with the structure of the gas and related to the clump

distribution in each region. Where has the star formation been triggered? How

does the star formation rate and efficiency vary in different clumps and do they

agree with the global values? Are there any clumps that provides the required

conditions to form high mass stars? If so, do they contain massive proto-stars?

In next chapter we compare two selected regions within the same cloud;

one is nearby the H II region and likely affected by the radiation of massive

star and the second one distant enough which is unlike to be affected. Chapter

3 reviews the entire sample and examines the relation between the derived

parameters for the gas and how they have been affected by the H II regions.

Then we study the stellar distribution within the mapped regions using 2MASS

data and investigate how the stellar distribution is related to gas structure and

what are the star formation rate and efficiency within the investigated regions?

We also look for young embedded clusters, evidence of triggered star formation

and also candidates of massive proto-stars.

1.7.2 Sample Selection and Observations

H II regions are the signposts of particularly active star formation. Star forma-

tion properties (e.g. the rate, the efficiency of conversion of gas mass to stellar
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mass, and the resulting Initial Mass Function) are dependent on the properties

of the molecular clouds where the star formation occurs. Density, temperature,

turbulence and the presence of shocks are some of the major cloud parameters

that may affect the star formation process. The environments around H II

regions, are much hotter than in regions of low mass star formation. Differ-

ent initial conditions such as a higher temperature may cause different star

formation scenarios, and may finally result in different Initial Mass Functions.

We have selected 10 H II regions from the Sharpless (1959) catalog of visible

H II regions. The sources were selected to be in the outer Galaxy, to minimize

confusion with background sources and to provide the best estimate of kine-

matic distances. Figure 1.10 presents the position of most of the sources in

our sample in the Galactic plane. The selected H II regions have small enough

angular size (≤ 7′) to make it possible to completely map the molecular gas at

the edges of the ionized gas in 7′ × 7′ maps.

Observations were carried out at different stages with James Clerk Maxwell

sub-millimeter Telescope. In the first stage from August to November 1998,

six 12CO(2-1) maps were made of 7′ × 7′ area of molecular clouds associated

with H II regions. S192/S193/S104, S196, S212, S305 and two sub-clouds,

S175A and S175B associated with S175, were mapped in this period. We

used these maps to study the structure of the clouds and to identify the dense

clumps within the clouds. Pointed observations in 13CO(2-1) on peaks of

those identified dense clumps within each region were made from August 2005
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to February 2006. We also made some pointed observations in CS(5-4) at the

clumps with 12CO(2-1) antenna temperatures larger than 20 K. We use these

observations to measure and calculate physical properties of the clumps such

as excitation temperature (Tex), line width, density, opacity and mass. In this

observing period we also made a 7′ × 7′ 12CO(2-1) map of S104 with the same

observational settings as in 1998; but due to the large angular size of this H II

region we missed most of the associated molecular gas in our map. Therefore,

we decided to extend S104 map to a larger area.

Observations were followed with the new ACSIS system at the JCMT in

four different observing runs from October 2006 to January 2009. Four more

7′×7′ 12CO(2-1) maps were made around S148/S149, S152, S288 and S307 and

the S104 map was extended to 12′ × 12′. We also observed most of the peaks

identified in clumps within the maps in 13CO(2-1) . Details of observational

settings are given in chapters 2 and 3 (Paper I and Paper II).

Table 1.3 lists the selected sources in our sample. Column one gives the

name of the source and columns two and three give the coordinates at the

centre of each mapped region. Column four gives the distance based on the

known exciting star. No exciting star has been reported for S196 and therefore

we use the kinematic distance for this object. All distances are collected from

the literature and cited in the table. Column five shows the molecular gas

velocity from CO emission. Columns six and seven present the size of the H II

region. Finally, column eight gives the known exciting star for each region.
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The measured and calculated parameters of all the clumps identified within

the entire sample are listed in chapter 3.

Figure 1.10 Position of some sources in our sample on a schematic picture of the

Galaxy. Most of the objects have been selected at the outer Galaxy to minimize

confusion with the background sources and to have an estimation of the kine-

matic distance of our sources (for those which we do not have a direct distance

measurement). Background image credit: NASA/JPL-Caltech/R.Hurt(SSC)
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1.8 Summary

The physical conditions vary within star-forming regions in a large range. Al-

though some low-mass stars form within isolated dark clouds, the majority of

stars originate in stellar clusters. Massive stars in particular, are believed to

form in hot, dense, turbulent, massive clouds which fragment to several proto-

stars. Most of the known massive stars are found within young stellar clusters.

The theories to explain isolated star formation are well developed and tested

by various observations. Our understanding of massive star formation is not

as complete as low-mass stars. Current observations and models suggest that

massive stars form within clusters from hot, dense turbulent cores.

Magnetic fields may play an important role in dynamically active clouds.

To simplify this discussion we neglected the influences of magnetic fields in

this chapter. The stellar Initial Mass Function has been studied in several

star-forming regions and clusters and seems to have a universal shape. How-

ever slight variations have been observed and discussed theoretically. Studies

looking for a correlation between the clump mass function and the IMF have

had very different results. Almost all studies report a power law function, but

the power law index varies over a large range. New generation arrays such as

ALMA, which enable us to resolve the stellar mass cores and clumps within

molecular clouds, may provide more accurate clump mass functions. Knowing

the origin of the mass distribution of the star-forming cores will provides a

better understanding on the origin of IMF.
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Table 1.3. Properties of selected regions

Source RA Dec Distance VLSR Diameter Diameter Exciting Star

J(2000) J(2000) (kpc) (kms−1) (arcmin) (pc)

S104 20:17:42 36:45:30 3.3±0.3 0.0 7 6.7 O6V a

S148/S149 22:56:22 58:31:29 5.6±0.6 -53.1 1 1.6 B0V a

S152 22:58:41 58:47:06 2.39±0.21 -50.4 2 1.4 O9V b

S175A 0:27:04 64:43:35 1.09±0.21 -49.6 2 0.63 B1.5V b

S175B 0:26:25 64:52:36 1.09±0.21 -49.6 2 0.63 B1.5V b

S192/193 2:47:30 61:56:33 2.96±0.54 -46.3 1 0.86 B2.5V b

S196 2:51:41 62:12:19 4.7±1.0 -45.1 4 5.4 · · · d

S212 4:40:56 50:27:47 7.1±0.7 -35.3 5 10.3 O6 a

S288 7:8:39 -4:18:41 3.0±1.2 56.7 1 0.87 B1 c

S305 7:30:13 -18:31:50 5.2±1.4 44.1 4 6.1 O9.5 c

S307 7:35:33 -18:45:55 2.2±0.5 46.3 6 3.8 O9 c

aData about exciting star and distance from Caplan et al. 2000

bData about exciting star and distance from Russeil et al. 2007

cData about exciting star and distance from Moffat et al. 1997

dNo exciting star identified for this H II region. The kinematic distance is reported here. Note that

S196 is close to S192/S193 in position and velocity and is likely to be at the same distance.

Note. — Table reprinted from Paper II.
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Chapter 2
Molecular Clouds and H II Regions:

S175

This chapter is a reprint of the paper Molecular Clouds and H II Regions

I: S175 by Azimlu M., Fich M., and McCoey C. which was published in the

Astronomical Journal in June 2009 (Volume 137, Issue 6, pp. 4897-4910)
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2.1 Overview

We are studying the impact of H II regions on star formation in their associated

molecular clouds. In this paper we present JCMT RxA molecular line observa-

tions of S175 and environs. This is the first object within a sample of ten H II

regions and their surrounding molecular clouds selected for our study. We first

make 7′ × 7′ maps in 12CO(2-1), which are used to investigate the structure

of the cloud and to identify individual clumps. Single point observations were

made in 13CO(2-1) and CS(5-4) at the peak of the 12CO(2-1) emission within

each clump in order to measure the physical properties of the gas. Densities,

temperatures, clump masses, peak velocities, and line widths were measured

and calculated using these observations. We have identified two condensations

(S175A and S175B) in the molecular cloud associated with this H II region.

S175A is adjacent to the ionization front and is expected to be affected by the

H II region while S175B is too distant to be disturbed. We compare the struc-

ture and gas properties of these two regions to investigate how the molecular

gas has been affected by the H II region. S175A has been heated by the H II

region and partially compressed by the ionized gas front, but contrary to our

expectation it is a quiescent region while S175B is very turbulent and dynam-

ically active. Our investigation for the source of turbulence in S175B resulted

in the detection of an outflow within this region.
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2.2 Introduction

Molecular clouds are the birth place of stars, and it is essential to study the

formation, evolution and fragmentation of molecular clouds in order to under-

stand star formation. The star formation process in molecular clouds is driven

by a variety of mechanisms and is strongly affected by the presence of high-

mass stars. When massive stars form it is expected that they dominate the

formation process of other stars formed later in the same cloud. Heating of the

molecular cloud by high-mass stars is likely to inhibit further star formation

(Scoville et al. 87). On the other hand, compression of the cloud, by the action

of stellar winds or from the expansion of an H II region, will enhance star for-

mation (Lada & Wooden 1979) or even trigger star formation (via sequential

star formation or the collect and collapse process, e.g., Elmegreen & Lada 1977,

Zavagno et al. 2006, Deharveng et al. 2008). Alternatively, the expansion of

an H II region may even blow the cloud apart (Elmegreen & Lada 1976). These

different processes not only affect the rate of star formation within the cloud,

but might also be expected to have some effect on the Initial Mass Function

(IMF) of the newly forming stars. For example, the Jeans mass increases with

cloud temperature: consequently a warmer cloud is more stable against col-

lapse and the process of fragmentation may result in more massive stars with

different star formation rates or efficiencies [?].

It is instructive, therefore, to study the molecular gas associated with H II
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regions. Many studies have investigated the star formation process adjacent

to H II regions (e.g Deharveng et al. 2005, Kirsanova et al. 2008, Kerton

2008). Statistically, it has been shown that the most luminous proto-stars

form in molecular clouds associated with H II regions (Dobashi et al. 2001).

Other studies suggest that a large fraction of stars originate in clusters (Li et

al. 1997), mostly at the peripheries of H II regions (e.g. Zavagno et al. 2006,

Deharveng et al. 2008).

Embedded clusters are associated with clumps and dense cores within clouds,

where there is sufficient gas and dust available to form stars; therefore, the spa-

tial distribution of clumps and cores should reflect the stellar distribution of

recent or future star-forming regions. There is not a well-accepted unique def-

inition of cores and clumps. In this work, we call the whole molecular gas

associated with the H II region the cloud in which we have resolved three main

distinct regions: S175A, S175B and S175C. We define a clump to be condensed

material within each region that forms structures larger than the telescope

beam size. Each clump is expected to contain sub-structure and exhibits one

or more peaks in 12CO(2-1) emission: we refer to these simply as peaks as we

can not resolve proto-stellar cores within our maps. The 12CO(2-1) antenna

temperature of the brightest peak within each clump is reported as the clump’s

temperature and is used to calculate other parameters such as column density

and mass.

This is the first paper resulting from a study of ten molecular clouds as-
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sociated with H II regions which are selected from the Sharpless catalog of

H II regions (Sharpless 1959). We have selected objects in the outer Galaxy,

primarily along the Perseus arm, in order to minimize confusion with back-

ground stars and to provide the best estimate of the kinematic distance (for

those objects which have no direct distance determination). S175 is our closest

source and therefore provides us with the best linear scale resolution in our

sample. We used the James Clerk Maxwell Telescope (JCMT) to study how

the formation of a massive star in this molecular cloud may impact the for-

mation of future stars. Clumps within the molecular cloud are identified and

their physical characteristics, such as mass, column density and temperature,

are measured from the properties of 12CO(2-1) and 13CO(2-1) emission. We

look for the influence of shock fronts on the clumps and, from analysis of line

widths, study the possible effects of turbulence and dynamics around the H II

region.

We describe observation details in §2 and present the results in §3. In

§4 we present the calculations and the models that we applied to determine

physical parameters of the observed regions. §5 contains a discussion of how

the H II region has affected the cloud physical characteristics and the paper is

summarized in §6.

48



2.3 Target Selection and Observations

2.3.1 Investigated Region

At a distance of 1.09±0.21 kpc (Russeil et al. 2007), S175 is the closest source

in our sample and we are able to resolve smaller structures within the molecular

cloud associated with this H II region. The H II region has been excited by a

B1.5V star (M∼ 9.5 M�, Holmgren et al. 1997) at α(J2000) = 00h27m17.1s and

δ(J2000) = +64o42′18.0′′. Scaife et al. (2008) calculated a dust temperature

of Td = 27.9 K for S175 by fitting a modified Planck spectrum to IRAS 100

and 60 µm flux densities and, using optical recombination lines, also calculated

an electron temperature of Te = 7000 ± 200 K. Fich and Rudolph (in prep.)

recently calculated a density of 112 cm−3 and a total mass of 0.4 M� for this

ionized gas. Wouterloot & Habing (1985) also had reported a TCO(1-0)=2.5 K

and Tex=5.7 K toward the associated molecular cloud, but they had low spatial

and frequency resolutions.

Two components, S175A and S175B, in the molecular cloud have previously

been identified in an IRAS survey (of H II regions) by Chan & Fich (1995).

Both regions have the same VLSR ≈ 50 km s−1 and are connected by a recently

observed filament of molecular gas with the same velocity. Therefore it is

reasonable to assume that S175A and S175B lie at the same distance. Figure

2.1 shows the position of the cloud in an IRAS 12 µ m map (left panel).

The components of the molecular cloud associated with the S175 H II region
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cannot be resolved on the IRAS map but a recent study with the Arcminute

Microkelvin Imager (AMI) (Scaife et al. 2008) shows that S175A and S175B,

observed at 15.8 GHz, sit on a ring of an extended emission (Figures 2 and 3

in their paper). This ring, with a diameter of 14′ or 7 pc, is shown in green in

Figure 2.1 (right panel). A third condensation, which we label S175C, in the

North-East of the boxed region can be seen but it is not as intense as the two

mapped regions.

S175A is adjacent to the H II region and is likely to be affected by the

ionized gas while S175B, at a distance of ∼ 3 pc from the visible edge of the H II

region (ten times the Stromgren sphere radius), is too far away to be affected.

Therefore a comparison of these two regions may provide significant insight into

the effects of the formation of a massive star (and the subsequent expansion of

ionized gas) on the molecular cloud environment and on the physical properties

that may affect future star formation.

2.3.2 JCMT Observations

In August and November, 1998, we made JCMT observations in 12CO(2-1) of

the two selected regions, S175A and S175B, (Figure 2.1). We made a 12CO(2-1)

7′ × 7′ map for each of these regions, with the A3 heterodyne receiver. The

beam size at this frequency is 21′′. Data was taken by driving the telescope

in right ascension (sampling step of 7′′) with a 4 second exposure time at each

point. We made a mosaic of 12 sub-maps to complete each of the S175A and
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S175B maps. Eleven of the sub-maps consist of 5 rows and 59 columns, and

one consists of 4 rows and 59 columns to complete 59×59 pixel maps.

The 12CO(2-1) maps were used to study the structure of the S175A and

S175B molecular cloud and to search for the 12CO(2-1) peaks within the iden-

tified clumps (see the next section for clump identification rules). 12CO(2-1) is

optically thick and can not be used to detect the dense gas embedded within

the clumps. Therefore, the position of the brightest 12CO(2-1) emission in

each clump were observed in the optically thinner emission lines, 13CO(2-1)

and CS(5-4). We made pointed observations toward these positions in August

2005, December 2007 and July 2008. 13CO(2-1) was detected towards all po-

sitions but we failed to detect any CS(5-4) emission within S175A. The peaks

detected in S175B display lower temperatures; therefore, no CS(5-4) emission

was expected and accordingly no CS pointed observations were made for S175B.

We used a bandwidth of 267.5 MHz with 1713 frequency channels which

corresponds to a velocity range of about 350 km s−1 with a resolution of ∼0.2

km s−1 for 12CO(2-1). The 13CO(2-1) and CS(5-4) pointed observations in

S175A were made in frequency switching mode. We used a frequency switch of

8.3 MHz, a velocity resolution of ∼0.05 km s−1 and a velocity range of 225 km

s−1. Frequency switching mode was not available while observing S175B and

therefore we used a position switching mode to observe 13CO(2-1). The system

temperature, Tsys, was typically 300-600 K for 12CO(2-1) mapping and 400-500

K for pointed observations. The typical noise level was 2 K for 12CO(2-1) and
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0.3 K for 13CO and CS. We used SPECX and the Starlink SPLAT and GAIA

packages to reduce the data, make mosaics, remove baselines and fit Gaussian

functions to determine ∆V, the FWHM of the observed line profiles.

2.4 Structure in S175A and S175B

We used the 12CO(2-1) maps to study the structure and morphology of the

molecular cloud associated with S175, and to identify clumps within it. The

cloud consists of various clumps of gas that display one or more peaks of emis-

sion (typically towards the centre of the clump), see Figures 2.3 and 2.5. We

define any separated condensation as a distinct clump, if: 1) the brightest peak

within the region has an antenna temperature larger than five times the rms of

the background noise; 2) the drop in antenna temperature between two adjacent

bright peaks when moving from one to another is larger than the background

noise; and, 3) the size of the condensation is larger than the telescope beam size

(21′′ or 3 pixels). The edge of a clump is taken to be the boundary at which the

antenna temperature drops to below half of the highest measured temperature

within that clump. An ellipse that best fits to this boundary is considered for

clump size and integrated flux measurements. Note that this definition means

that clumps can contain several peaks of emission and, in fact, almost half of

the detected clumps contain more than one bright peak.
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2.4.1 S175A

We find the gas velocity in S175A to range from -48 km s−1 to -52 km s−1,

which is consistent with previous studies that found VLSR(CO)= -49.6 ± 0.5

km s−1 (Blitz et al. 1982) and -50.3 km s−1 (Wouterloot & Habing 1985). The

12CO(2-1) map (integrated between -48 km s−1 and -52 km s−1) overlaid on

the optical image of the H II region is presented in Figure 2.2 and shows that

S175A takes the form of a wedge, which lies partially over the H II region,

and a filament that leads to the North-West. The brightest 12CO(2-1) emission

peak lies at the centre of the region and at a velocity of -49.4 km s−1.

Figure 2.2 also reveals S175A to have a clumpy structure. We used the

clump selection method described above to identify thirteen clumps within

S175A, which are indicated in Figure 2.3 by ellipses and listed in Table 2.1.

S175A consists of a bright centre containing clumps C5, C6 and C9. Flank-

ing the central area to the East is a ring of clumps, of diameter ≈ 2′, consisting

of C1-4 and C7 (Figure 2.3 left panel). We find no evidence for expansion of

this ring; all the clumps display narrow single peaks at the same velocity (-49.5

± 0.5 km s−1) . A chain of clumps consisting of C10-13 lies to the West of the

centre (Figure 2.3 right panel). The C8 clump, south of the ring, is the only

clump in the same line of sight of the H II region. We are unable to determine

whether C8 lies in front of or behind the H II region.

12CO(2-1) is optically thick and can not be used to detect the dense gas
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within the clumps. Therefore, we observed the brightest peak within each

clump using single point observations of 13CO(2-1) and CS(5-4), in order to

further probe the properties of the clumps in S175A. The observed antenna

temperatures, T ∗a , at these points are listed in Table 2.1, and range from 9.6-

29.1 K for 12CO(2-1) and 2.26-17.34 K for 13CO(2-1). We failed to detect any

CS(5-4) emission within this cloud, indicating that the densities of the dense

centres are less than ≈ 106 cm−3.

As noted above, S175A is situated very close to the H II region and it

could be expected to exhibit signs of turbulence, which could manifest as a

large velocity dispersion between the clumps and/or as asymmetric line profiles

broadened significantly beyond the thermal line width. However, we find the

spread in velocity of the brightest peaks to be small: -49.0 to -50.8 km s−1 for

12CO(2-1) and -49.0 to -50.9 km s−1 for 13CO(2-1). Furthermore, both 12CO

and 13CO velocity profiles of the peaks are very narrow (0.78 < ∆V < 1.61

km s−1 for 12CO and 0.47 < ∆V < 1.08 km s−1 for 13CO - see Table 2.3)

and symmetric. Comparing these line widths with calculated thermal line

widths calculated from Tex found in §2.5.1 (0.51 < ∆V < 0.82 km s−1), and

assuming Tkin = Tex, we may conclude that S175A is a quiescent region and

not dynamically active.
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2.4.2 S175B

The S175B 12CO(2-1) map, which is integrated between -47 km s−1 and -53

km s−1, is shown in Figure 2.4. In comparison with S175A, S175B is more

uniform with an extended CO emission averaging ∼ 5-7 K covering more than

80 % of the observed region (Figure 2.4, left panel). Furthermore, a consistent

background noise of ∼ 2 K exists through the mapped region.

Clump identification was therefore more difficult in S175B and was re-

stricted to a region at the north-west that showed a greater degree of dynamical

activity than in the rest of the region. A particularly dynamically active area

is highlighted in the right panel (enlarged square) of Fig. 2.4. Twelve distinct

clumps have been resolved within S175B (Figure 2.5) and are indicated by el-

lipses, with corresponding positions listed in Table 2.2. Most of the clumps

are located in the northern part of the cloud and only three clumps (C4, C5

and C12) have been identified in the southern half. We are unable to resolve

these three clumps any further because the southern half of the cloud is espe-

cially uniform and the clumps have irregular shapes with edges that are hard

to distinguish from the extended 5-7 K CO emission.

As for S175A, single point observations in 13CO(2-1) were made at the peaks

within the clumps (C12 is yet to be observed in 13CO). The observed physical

parameters of each of these positions are listed in Table 2.2. We note here that

the observed T∗a are generally lower in S175B than S175A (12T ∗a=9.3-16.8 K
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and 13T ∗a=2.7 K to 6.3 K), while S175B shows a slightly wider velocity range

at the peaks, with -47.8 km s−1 < V(12CO) < -52.2 km s−1 and -47.7 km s−1

<V(13CO) < -52.0 km s−1.

In contrast to the narrow and uniform 12CO(2-1) line profiles (∆V ∼ 1 km

s−1) of the extended gas, the peaks within each clump have wide line profiles

(1.04 < ∆V < 8.68 km s−1 for 12CO and 0.59 < ∆V < 2.11 km s−1 for 13CO

- see Table 2.4). With the exception of C5, which lies in a somewhat isolated

position at the centre in the southern half of the region, the peak position 12CO

line profiles are asymmetric. S175B is clearly more dynamically active than

S175A. Comparing the emission line widths with thermal line widths, (0.51 <

∆V < 0.65 km s−1) confirms that the observed line widths are significantly

larger than the thermal velocity dispersion.

Furthermore, we see multiply-peaked profiles in 12CO(2-1), which are iden-

tified by letters in Table 2.4, in C1-C3, C7 and C9 (compare the line widths

and profile shapes in Figure 2.6). The multiple peak structure could be a re-

sult of self-absorption or multiple cores at different velocities along the line of

sight. In 13CO(2-1), we find that C1-3 and C7-11 appear to be either saturated

or self-absorbed. Signatures of self absorption and saturation in 13CO can be

an indication of warm gas inside the cores. Alternatively, multiple peaks in

13CO could support the possibility of multiple cores. Our recent observations

in 13CO(3-2) (Azimlu, McCoey & Fich, in prep.) at C1-C3 shows strong signa-

ture of an outflow located at C1, which could explain multiple peaked profiles
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for these peaks.

2.5 Physical Parameters Derived from CO Ob-

servation

12CO(2-1) maps have been used to study the morphology of the cloud, and

to identify the position of clumps and their size. These observations also are

used to determine the brightest peaks within each clump and measure the

physical parameters of each peak, such as antenna temperature, line width

and velocity profiles. Using these parameters we can calculate the mass of

the clumps assuming Virial equilibrium conditions or calculate the velocity

integrated (or “X-factor”) mass, using a known “X-factor” (an empirical ratio

of H2 column density to the velocity integrated 12CO(1-0) emission) to calculate

the H2 column density.

12CO is optically thick and not suitable to measure the properties of the

densest gas; therefore, we also calculated mass using observations of the bright-

est peak within each clump in 13CO(2-1). We measure the 13CO(2-1) antenna

temperature and line width directly from the observed spectrum. Then, as-

suming Local Thermodynamic Equilibrium (LTE), we determine the excitation

temperature, opacity and gas column density for the observed points. Assuming

that clumps are uniformly spherical, we calculate the average volume density,

LTE mass, and the Jeans Mass for each clump.
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2.5.1 Temperature and Opacity

The corrected antenna temperature, T ∗a , and line widths for both 12CO(2-1) and

13CO(2-1) emission lines were directly measured from spectra, after baseline

subtraction. For multiply peaked profiles, we determine a separate line width

for each peak only if the separation is greater than 1 km s−1 (five times of the

channel resolution of 0.2 km s−1). The brightest 12CO peak within a multiply

peaked spectrum is used in calculation.

Tb, the received brightness temperature, is related to the directly observed

antenna temperature through the beam efficiency and beam filling factor; T ∗a =

TbηmbfBEAM . The beam efficiency, ηmb, is 0.69 at the JCMT for the observed

frequencies, and fBEAM is the fraction of the telescope beam filled by the source

emission. Although our sources are larger than the beam size, we expect that

there will be sub-structure due to the hierarchical nature of the ISM. However,

we have no means to measure this and we take fBEAM = 1 in order to calculate

Tb. Strictly speaking, therefore we find a lower limit to Tb.

The opacity, τ , and excitation temperature, Tex, can be derived by com-

paring the 12CO(2-1) and 13CO(2-1) brightness temperatures:

Tb = T0 [f(Tex)− f(Tbg)]× [1− exp(−τ)] (2.1)

and f(T ) =
1

exp(T0/T )− 1
, (2.2)
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where Tbg is the microwave background temperature (2.73 K) and T0 = hν/k,

with ν12 = 230.538 GHz for 12CO(2-1) and ν13 = 220.399 GHz for 13CO(2-

1). We consider a Local Thermodynamic Equilibrium (LTE) model in which

12CO(2-1) and 13CO(2-1) have the same Tex and τ13 � τ12. The abundance

ratio of two isotopic species is also required in order to derive Tex and τ from

expression 2.1. This ratio varies from 24 at the centre of the Galaxy to a terres-

trial value of 89. We adopt the commonly used average value of 62±4 derived

by Langer & Penzias (1993) for molecular clouds in the solar neighbourhood.

Tex can be calculated from the optically thick 12CO line (e.g. Pineda et al.

2008). We can then solve equation 2.3 to obtain Tex,

Tex(
12CO) =

T 12
0

ln
[
1 +

T 12
0

Tb(12CO)+T 12
0 f(Tbg)

] , (2.3)

and then the opacity, using 13CO:

τ13 = − ln

1− Tb(
13CO)

T 13
0

{[
exp(

T 13
0

Tex
)− 1

]−1

− f(Tbg)

}−1
 . (2.4)

To derive these equations it has been assumed that τ12 � 1. The calculated Tex

varies from 15.9 K to 34.5 K for S175A and from 14.2 K to 22.1 K for S175B.

Observed and calculated parameters, such as T∗a, Tex, ∆V12 and ∆V13, τ13 and

τ12 = 62 × τ13, and the corresponding hydrogen column density are listed in

Tables 2.3 and 2.4 for S175A and S175B.
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2.5.2 Mass Estimation

In this Section, we describe how individual emission lines of 12CO and 13CO are

used to estimate the mass of individual clumps in S175A and S175B by several

means. We use line widths of 12CO and 13CO in order to calculate the Virial

mass, we have also calculated the 12CO velocity integrated mass (or “X-factor”

mass), and used an LTE model to determine the 13CO column density. We

also calculate the Jeans Mass for each clump. In the following we describe each

method individually and give the range of masses found for S175A and S175B.

The masses determined by each method for each clump can be found in Tables

2.5 and 2.6.

Virial Mass

According to the Virial theorem for a stable, self-gravitating, spherical distri-

bution of mass (excluding other agents such as external pressure and magnetic

fields), the kinetic energy must equal the half of the potential energy. Assuming

that our clumps are in Virial equilibrium, the Virial mass is calculated from

Mvir(M�) = 126×Re(pc)(∆V )2(kms−1), (2.5)

which assumes a spherical distribution with density proportional to r−2 (McLaren

et al 1988). If the calculated Virial mass is larger than the mass measured by

60



other techniques then the object has too much kinetic energy and is not sta-

ble. Most of the clumps have an irregular shape and an appropriate value

for the radius can not be taken from the 12CO maps. Instead, we calculate

the area of a clump from the 12CO maps and assumed the effective radius of

Re =
√
Area/π. We do not have any measurements of the clump size from the

13CO(2-1) pointed observations; therefore, we use the same measured radius

from 12CO maps for both lines.

There are uncertainties in measurement of the parameters in this equation

which carry through to the mass estimation. For example, our size estimation

relies on distance measurement that has an estimated uncertainty of ∼ 20%. In

addition, each CO isotopomer presents different line widths; ∆V12 is observed to

be on average larger than ∆V13 by a factor of 1.7. 12CO(2-1) is optically thick

and most of the observed lines are saturated and may show self-absorption;

hence, we cannot measure the correct ∆V .

In some cases the difference is much larger due to the presence of multiple

peaks, which are not resolvable in 12CO. For example S175B-C1 presents a

broadened spectrum in 12CO with ∆V12=8.68 km s−1. This spectrum is divided

into three peaks in 13CO with the main peak ∆V13=1.44 km s−1 which is six

times smaller than ∆V12. As a result, the calculated Virial mass using 12CO(2-

1) line width, Mvir(
12CO), is overestimated by a factor of ∼ 36. Mvir(

13CO),

which is calculated using ∆V13, then is the best estimation if the cloud is in

Virial equilibrium. However, we note that self-absorption can be seen in a few
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cases for the optically thinner line of 13CO. Mvir(
13CO) ranges between 3.5-24.9

M� for S175A, and between 17-62 M� for S175B. In the case of self-absorbed or

multiply peaked lines, we are measuring too large a line width and consequently

overestimating the Virial masses.

Velocity Integrated Mass

In the case of the optically thick 12CO emission we can calculate the column

density from the empirical relation N(H2) = X ×
∫
Tmb(

12CO)dv, with Tb =

T ∗a /ηb. For the JCMT, ηmb = 0.69 is the beam efficiency at the observed

frequency range. X is an empirical factor which gives the ratio of the H2

column density to the integrated intensity of 12CO(1-0). Both theory (Bell et

al. 1996) and observation (Pineda et al. 2008) indicate that the “X-factor” is

sensitive to variations in physical parameters, such as density, cosmic ionization

rate, cloud age, metallicity and turbulence. The “X-factor” also depends on

the cloud structure and varies from region to region. Studies (e.g. Pineda

2008, and references therein) have shown that the X value is roughly constant

for the observed Galactic molecular clouds, and is currently estimated at X '

1.9 ± 0.2 × 1020 cm−2(K km s−1)−1 for 12CO(1-0) (Strong & Mattox 1996).

We use 12CO(2-1) and so need to correct this factor. Using a 12CO(1-0) point

observation (Blitz et al. 1982) and the 12CO(2-1) smoothed to the 12CO(1-0)

beam size (2.3′), we calculated a ratio of 12CO(2-1)/12CO(1-0) = 0.8, which is

identical to the value found by Brand & Wouterloot (1998) in a larger sample.
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∫
Tmb(

12CO)dv is derived by integrating over all pixels within an ellipse

best-fitted to the half highest peak contour (Figures 2.3 and 2.5). About 90%

of the integrated flux lies within this ellipse for most of the individual distinct

clumps. Adjacent or combined clumps (C5, C6 and C9 within S175A and C10-

C11 within S175B) have overlaps and the common area between two fitted

ellipses has been integrated for both. For a few extended bright clumps (C5,

C6, C8 and C9 in S175A and C5 and C10 in S175B) we have considered the

ellipse fitted to the 3σ (∼5 K) contour to define the edges of the clump which

contains the ∼90% of the integrated flux.

The integrated mass is determined by:

M12
int = D2mHµ×X

∫
Tmb(

12CO)dvdA , (2.6)

where D is the distance, mH is the mass of a hydrogen atom, and µ= 2.33 is

the mean molecular weight for H2 with a 25% mass fraction of Helium. The

calculated Mint ranges from 4.1 to 19.4 M� for clumps in S175A, and from 8.9

to 31.4 M� for clumps in S175B.

LTE Mass

The column density can also be calculated from the optically thin 13CO(2-1)

line under the assumption of LTE (Rohlf & Wilson 2004):

63



N(13CO) = 1.5× 1014Texexp(T0(ν10)/Tex)
∫
τ 13(v)dv

1− exp(−T0(ν21)/Tex)
. (2.7)

where T0(ν10) = hν/k with ν10 = 110.201 GHz for 13CO(1-0) and ν21 = 220.399

GHz for 13CO(2-1). When using the LTE model, we assume that T 12
ex=T 13

ex

and that the excitation temperature is the same over the entire cloud. For

optically thin lines, integrals involving τ(v) can be approximated by integrated

line intensity

Tex

∫
τ(v)dv ' τ

1− exp(−τ)

∫
Tmb(v)dv. (2.8)

Assuming N(H) ' 106×N(13CO) (Pineda et. al. 2008), the clump mass using

the 13CO column density is then calculated as:

MLTE =
π

3
R2
emHµN(H). (2.9)

MLTE ranges from 0.6 to 14.8 M� for S175A clumps and from 1.9 to 13.1 M�

for S175B clumps.

Jeans mass

Assuming that the kinetic temperature, TK , of the gas is equal to Tex, the Jeans

mass is given by
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MJ = 1.0M�

(
TK

10K

)3/2 ( nH2

104cm−3

)−1/2

. (2.10)

Only the thermal pressure is considered in the calculation of the Jeans mass,

while some agent, such as turbulence and/or internal dynamics, and magnetic

fields may act to support the clump against gravitational collapse. If that is

the case, then MV ir and Mint will be larger than MJeans. The clumps in S175A

have a slightly larger MJeans than those in S175B (4.3-12.7 M� versus 2.8-10.2

M�). The Jeans masses for each region have been listed in Tables 2.5 and 2.6.

2.6 Discussion

The primary goal of this study is to investigate how the physical properties

of this molecular cloud have been affected by the S175 H II region. We have

selected two different areas: S175A, adjacent to the H II region, and S175B,

which is distant enough that it is unlikely to be affected by the ionized gas

around the exciting star. We have measured and calculated different physical

parameters for two regions and will compare them in this section and discuss

how they may have been affected by external sources of turbulence such as the

S175 H II region.
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2.6.1 Comparison of the Properties of S175A and S175B

Structure: The observed regions show significantly different structures. S175A,

which appears to be affected by ionized gas, has an elongated structure and is

fragmented into clearly identified distinct clumps, while S175B is very uniform

and the clumps within it are less easily identified due to an underlying ex-

tended 12CO emission. The extended gas in S175B displays uniformly narrow

lines (∆V ∼ 1 km s−1) of 12T ∗a ∼ 5− 7 K.

Temperature: S175A contains clumps with higher gas temperatures: 12T ∗a

and 13T ∗a range between 9.6-29.1 K and 1.86-17.34 K, respectively, for clumps

within S175A, versus 9.2-16.8 K and 2.65-6.42 K for clumps within S175B. Cal-

culated excitation temperature is larger for both regions; Tex varies between

19.1-47.7 K for clumps within S175A and 18.5-29.8 K for S175B. This temper-

ature range is higher than what we expected for S175B as this region is too

distant to be warmed up by the H II region. The hottest clumps within S175A

(C5, C6, C8 and C9) lie at the edge of the H II region and appear to have been

warmed by the star exciting the H II region. These clumps also have higher

column densities (105.9-290.4 ×1020 cm−2) than the rest of the S175A region

(13.28-82.4 ×1020 cm−2), and these densities are also larger than the column

densities of the clumps within S175B (33.83-100.9 ×1020 cm−2).
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Size and Mass: The clumps identified within S175B have larger sizes (0.14-

0.34 pc) than the S175A clumps (0.12-0.22 pc). It was more difficult to identify

the boundary of the clumps within S175B, especially for the colder ones (C3,

C4, C7, C8 and C11), because of the extended gas emission with the tem-

perature of the clumps’ defined edge temperature (∼ 5 K). Any inaccuracy

in boundary selection, which highly affects the estimated size of the clump,

can produce significant uncertainty in the mass estimation. It is common in

molecular clouds studies to define the edge of the clumps based on a detection

level above the background (see §2.6.3). We were unable to use this boundary

selection because of the extended 12CO(2-1) emissions in S175B, which cover

∼ 80% of the mapped region. Therefore we determine clump boundaries based

on the half of the peak temperature. This boundary selection accounts for up

to 90% of the total flux (where the boundary is selected to be the background)

of the clearly identified clumps within S175A.

We note that some of the clump masses might be overestimated for the

smallest clumps in our sample as the lower limit to our clump size is given by

our beam size (0.11 pc at 1.09 kpc) and therefore the masses found for these

clumps are upper limits. We note that less than one third of our clumps are

affected by this issue.

In addition, saturation and self-absorption, especially in 12CO(2-1) emission

lines which results in measuring larger line widths, are other sources of inaccu-

racy in the mass calculation. This effect leads to a significant overestimation
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of the Virial mass (up to a factor of 60 for M12
V ir compared to M13

V ir) and M12
V ir

is found to be much larger (up to a factor of 600) compared to the calculated

MLTE. The M12
V ir masses are therefore neglected in the rest of this study.

13CO(2-1) is an optically thinner line and consequently less saturated or

absorbed. However, it is also dependent on the (∆V )2 and thus is highly

dependent on internal dynamics. M13
V ir is consistent with Mint for S175A, in-

dicating that most of these clumps are close to Virial equilibrium, but it is

noticeably larger than Mint for S175B clumps. MLTE, which is independent of

the cloud dynamics and directly measures the column density, is the smallest

calculated mass. In following section we compare these masses to examine the

effect of the gas internal dynamics on mass estimation.

Reviewing the above, we can see that the properties of the clumps in the

molecular cloud, associated with S175 H II region, are different from what were

expected. We expected more turbulence and internal motion within S175A due

to the proximity of the H II region. Indeed, we find that S175A contains the

clumps with the highest temperature and the largest column densities (C5 and

C6); these clumps lie at the edges of the H II region and are likely to be material

that has been swept up by the expansion of the ionization front and has then

condensed. However, S175B displays the wider line profiles and appears more

likely to be subject to turbulent motion. Our recent studies of S175B-C1 in

12CO(3-2) (Azimlu, McCoey & Fich, in prep.) presents strong evidence of an

outflow within this clump. We discuss further outflow-driven turbulence and its
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observable affects in §2.6.3. Broadening this study to include the third region

at the northern part of the cloud, S175C, would give us insight on the impact

of the H II region on the molecular cloud associated with it.

2.6.2 Mass Distribution in the S175 Molecular Cloud

An FCRAO CO(1-0) Survey of the Outer Galaxy (Heyer et al. 1998) provides

us with a further opportunity to investigate the large scale structure and mass

within the region. This data covers an area much larger than the molecular

cloud associated with the S175 H II region which guarantees that we have not

missed edges of the cloud, but it has lower spatial (50′′) and frequency (∼1 km

s−1) resolution.

From the data of Heyer et. al. (1998) we find that the molecular material

associated with the H II region is reasonably compact and, with a velocity

range of -40 km s−1 to -60 km s−1, is distinct from the background emission,

which has a VLSR of ∼ 0−20 km s−1. Figure 2.10 shows a map of the molecular

cloud, integrated from the FCRAO data between -40 km s−1 to -60 km s−1 and

we calculate the integrated mass in this molecular cloud to be ∼ 550 M�. The

integrated mass condensed in clumps from JCMT observations within S175A

and S175B totals 355 M�, so 65% of mass in the cloud is in dense clump form.

This is higher than the typical star formation efficiency (∼ 30%, Alves et al.

2007) and is likely a consequence partly of the overestimation of the size of some

clumps but also of the overestimation of M12
int due to broadened line profiles.
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On the other hand only a fraction of the clump mass may end up in a proto-star

but we can not resolve stellar-mass cores within our data . Indeed, the total

MLTE for the region is 88 M�, which is 16% of the mass in the molecular cloud

and closer to the typical value.

It is possible that we have not accounted for all the material in the region, or

maybe part of the initial mass is missed. Fich & Rodulph (in prep.) calculated

a total mass of 0.4 M� for the ionized gas which accounts only for a very small

fraction of the total mass. We do not have any direct estimation of the atomic

hydrogen mass but the atomic hydrogen, which lies in a thin layer around the

ionized front, cannot contribute significantly (less than 1%) to the mass of the

cloud (Krco et al. 2008).

The velocity range within the S175 cloud is found to be -47 to -53 km s−1.

In comparison, Fich et al. (1990) measured the ionized gas toward the S175

H II region to be at -55 km s−1, indicating that the ionized gas is expanding

toward us with a velocity of ∼5 km s−1. Assuming that the ionized gas has

been expanding with the same velocity to its present size (0.63 pc in diameter)

it is ∼ 6× 104 years old. Since the expansion velocity decreases with time, this

age is an upper limit and swept up material cannot have been ejected from

the cloud within this short time scale. We conclude that the material around

the S175 H II region contains more massive clumps than is typical but cannot,

with this data, explain why.

As an aside, it is interesting to note that, contrary to the general belief that
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massive stars form within Giant Molecular Clouds (GMCs) with typical mass

of 104 − 105M�, here we find a ≈ 10 M� B1.5V star has been formed within a

relatively small cloud with total mass of only 550 M�.

2.6.3 The Effect of Line Width

Line width and mass estimates

Some mass estimation methods such as the Virial and 12CO velocity-integrated

masses depend on line profile and width, which are highly sensitive to cloud

kinematics. The LTE analysis directly measures column density and is inde-

pendent of line profile, and therefore of turbulence and internal dynamics. As

a result, comparing masses estimated by these different methods enables an

evaluation of turbulence and kinematics of the clumps.

In Figure 2.7 we compare M12
int and M13

V ir. The solid line is the linear least-

squares fit and the line of equality is marked by long dashes. In S175A M12
int

and M13
V ir are almost equal (left panel), indicating that clumps within S175A

are close to Virial equilibrium.

The clumps in S175B display larger line widths than those in S175A and

have larger velocity-integrated and Virial masses as a result. The right panel

in Figure 2.7 shows that there is a weak relation between Virial and velocity-

integrated mass in S175B.
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An important point to note from this figure is that S175B is clearly not in

Virial equilibrium.

We can investigate further this issue by plotting the LTE masses against

M13
V ir (Figure 2.8) and against M12

int (Figure 2.9). These Figures show that

the LTE masses found are slightly smaller than either the Virial or integrated-

velocity masses for S175A but noticeably smaller for S175B. In fact, the Virial

masses in S175B are up to a factor of 20 larger than MLTE. It is possible that

the LTE analysis may underestimate the mass because of self-absorption and

saturation of the line profiles, this is especially true in S175B where most of

the strongest emission lines are self-absorbed or distorted by internal dynamics,

even for 13CO(2-1). However, we note that the ratio of M12
int to MLTE for

S175B-C1, -C2 and -C3, which show evidence of infall and outflow, is the

greatest among all the clumps in the S175 region. We may conclude that M12
int

is overestimated for all dynamically active clumps.

Line width-clump size relation

Various studies of molecular cloud clump/cores have examined the relation

between line width and clump/core size (e.g., Larson 1981, Solomon et al.

1987, Lada et al. 1991, Simon et al., 2001) and a power law, often known as

the Larson relation, is reported:

∆V ∝ rα, 0.15 < α < 0.7. (2.11)
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This relation has been observed over a large range of clumps/cores, from smaller

than 0.1 pc up to larger than 100 pc, which suggests a natural origin. However,

the physical process that results in the relation is still undetermined.

In Figure 2.11 we plot the log of 12CO(2-1) and 13CO(2-1) velocity dispersion

versus the effective clump radius in order to investigate the Larson relation in

S175. A least square analysis shows a weak relation in S175A with α = 0.9 for

12CO and α = 0.7 for 13CO but no correlation is seen for S175B. This is not

unprecedented: Lada et.al. (1991) suggested that the existence of the relation

is highly affected by the way clumps are defined and selected. They identified

clumps from a survey in the Orion B molecular cloud as having 3σ and 5σ

boundary above the noise, and found a weak relation for the 5σ clumps, but

no apparent relation for 3σ clumps. More recent studies in the Galactic plane

have also indicated a weak or highly scattered relation (Simon et al. 2001).

Although we base our boundary selection on the peak temperature within a

clump rather than on a level above the background, we see a poor correlation

between size and line width for S175A clumps, however, no correlation is found

for S175B.

The possible impact of the broadened line profiles in S175B is intriguing.

In a study of cloud cores associated with water masers, Plume et al. (1997)

noted that the line width-size relation breaks down in massive cores which

systematically have higher line widths. Line widths larger than that expected

from thermal motions are thought to be due to local turbulence (Zuckerman &
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Evans, 1974). Matzner (2007) modelled outflow-driven turbulence from proto-

stars and found that at scales much smaller than the turbulent driving scale

the Larson relation is obtained. At larger scales, however, the line width-size

relation flattens in a similar way to that seen in the right panel of Figure 2.11.

Our recent observations in 12CO(3-2) of S175B-C1, show strong signatures of

an outflow in this clump (Azimlu, McCoey & Fich, in prep.). The feedback

from this outflow is a possible source of turbulence in S175B, at least in the

North-Western part of the cloud. Presence this outflow indicates that S175B is

an active star-forming region and older outflows of recently formed stars could

be responsible for the observed structure and kinematics of this cloud.

2.7 Summary and Conclusions

The CO observations presented here show the presence of a small molecular

cloud adjacent to the S175 HII region. We mapped two 7′×7′ areas in 12CO(2-1)

within the cloud. We selected these two regions, S175A and S175B, to investi-

gate the impact of the H II region on the physical properties of the molecular

cloud. Remarkably, these two regions have a very different morphology; S175A

is close to the HII region and has a clearly defined, clumpy structure that lies

over the HII region at South-East, while the more distant S175B is more uni-

form but with three clumps that show signatures of outflow. We studied the

clumpy structure of the cloud and identified 13 clumps within S175A and 12
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within S175B. We then used pointed observations in 13CO(2-1) at the bright-

est peak of 12CO(2-1) within each clump in combination with the 12CO(2-1)

spectrum parameters to measure and calculate the physical parameters of the

clouds. Our findings are summarized below:

1. S175A contains warmer clumps than S175B. The most likely explanation

for this is that S175A has been heated by the H II region. However S175B

is also hotter than might be expected, probably because of the on-going

star formation.

2. The line widths are much larger for clumps within S175B than S175A.

Comparison of ∆V13 with thermal line widths

shows that S175A has not been much disturbed by the H II region, while

S175B clearly displays non-thermal motions that are most likely the result

of an outflow. In addition to displaying broad line profiles in 12CO, the

13CO spectra from S175B are split into multiple peaks.

3. Clumps within S175B are generally larger. We suggest that clumps within

S175A may be partially a product of the “collect and collapse” effect of

ionization fronts from the H II region, while a source of turbulence, pos-

sibly the outflow, supports the gas within S175B against fragmentation

and gravitational collapse.

4. We determined the Virial, LTE and velocity integrated masses using both

12CO and 13CO lines. M12
V ir is over-estimated due to broadened line pro-
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files and is not included in our analysis. We find that M13
V ir > Mint >

MLTE in all clumps, which highlights the influence of line width on the

mass estimation. A clear relation between M13
V ir and M12

int in S175A indi-

cates that most of the clumps are in Virial equilibrium within this region.

No such relation is found for S175B.

5. We investigated the size-line width relationship for clumps and found a

weak relation for clumps within S175A. No relation was found for S175B

clumps, which may be a result of a local source of turbulence, due to the

outflow, or may be a consequence of the confusion of the clump edges

with underly extended gas in S175B.

6. Observations of massive star-forming regions indicate that massive stars

originate within Giant Molecular Clouds. However, the molecular cloud

associated with the S175 H II region is a small, distinct cloud with total

mass of 550 M� and it hosts a ∼ 10M� B1.5V star. Upto 65 percent of

the cloud mass is located within the condensed clumps.

We compare the structure and gas properties of these two regions to inves-

tigate how the molecular gas has been affected by the H II region. S175A has

been heated by the H II region and partially compressed by the ionized gas

fronts, but contrary to our expectation it is a quiescent region while S175B is

very turbulent and dynamically active. Consequently, we have been able to

investigate the influence of turbulence on commonly used mass estimates and
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line width-size relation. We detected an outflow within S175B which is likely

to be the source of turbulence that supports the cloud against gravitational

collapse and causes the observed uniform structure within S175B.
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Figure 2.1 Position of the S175 region in IRAS 12 µm map. Three condensations

along a ring (shown in green) have been identified. The ring structure has also

been observed at AMI 15.8 GHz (Scaife et al. 2008). Overlaid contours of

integrated 12CO(2-1), shows the two 7′×7′ observed regions. S175A is adjacent

to the H II region while S175B lies at a distance of ∼ 10′ (∼ 3 pc).

78



Figure 2.2 : S175A integrated molecular gas contours overlaid on an optical

image from the Digital Sky Survey of the H II region S175. The visible borders

of the H II region are shown in green and the central bright source is a B1.5V

star. The S175A molecular gas forms a wedge-shaped structure that overlays

the H II region at the South-East plus a filament that leads to the north-west.
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Figure 2.3 : S175A integrated over -48 km s−1 to -49.5 km s−1 (left), -49.5

km s−1 to -50.5 km s−1 (middle) and -50.5 km s−1 to -52 km s−1 (right). We

detected 13 distinct clumps within this cloud. The position and other observed

physical properties of each clump are listed in Table 2.1.
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Figure 2.4 : S175B 12CO(2-1) map integrated between -47 km s−1 and -53 km

s−1. Three dense clumps within the box show evidence of outflow (notice the

wide double peaked spectra for these clumps in Figure 2.6). The red contours

integrated over -47 to -48 km s−1 and blue contours over -53 to -54 km s−1.

Our recent observations in 12CO(3-2) (Azimlu, McCoey & Fich, in prep.) show

strong signature of an outflow in C1. The rest of the cloud is uniform and lies

on extended diffuse gas with a temperature of 12T ∗a ∼ 5− 7 K.
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Figure 2.5 S175B 12CO(2-1) map integrated over -47 km s−1 to -49 km s−1

(left), -49 km s−1 to -51 km s−1 (middle) and -51 km s−1 to -53 km s−1 (right).

It was more difficult to identify clumps in S175B because of extended gas with

12T ∗a ∼ 5−7K. We detected 12 distinct clumps within this cloud. The position

and other observed physical properties of each clump are listed in Table 2.2.
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Figure 2.6 12CO(2-1) (blue spectra) and 13CO(2-1) (red spectra). For clar-
ity, the 12CO(2-1) profile has been shifted upwards by 3 K. Note the broad,
distorted lines in C1-C3 which are representative of an outflow. Strong self
absorption is seen in C8 and C9. C12 is yet to be observed in 13CO(2-1) (see
Figure 7 for C11 and C12 ).
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Figure 2.7 13CO Virial mass versus velocity integrated mass, M12
int for S175A

(left) and S175B (right). The solid line is the least squares fit and the long-

dashed line indicates the line of equality. Most of the clumps within S175A are

in Virial equilibrium. Clumps within S175B are dynamically active and not in

a Virial equilibrium.
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Figure 2.8 13CO Virial mass versus LTE mass for S175A (left) and S175B

(right). The dashed line indicates the line of equality. Most of the clumps are

over-Virialized compared to LTE mass for both regions but within S175B M13
V ir

is noticeably larger than MLTE up to a factor of 20.
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Figure 2.9 Velocity integrated mass versus LTE mass. The dashed line indicates

the line of equality. M12
int mass is slightly larger than the MLTE for S175A but

noticeably larger for S175B.
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Figure 2.10 FCRAO 12CO(1-0) map integrated between -40 and -60 km s−1.

Black contours show the mapped regions in 12CO(2-1) in our study.
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Figure 2.11 Line width is weakly correlated with size for S175A clumps (left

panel) but no correlation is seen for S175B clumps (right panel).
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Table 2.1. Physical parameters measured for S175A clumps

ID Position RA DEC Re
12T ∗

a
13T ∗

a

(X,Y) (pc) (K) (K)

C1 (07,31) 00:27:29.63 +64:43:41.30 0.13±0.024 19.59 8.41

C2 (08,38) 00:27:27.47 +64:44:45.21 0.13±0.024 15.86 4.00

C3 (14,47) 00:27:22.02 +64:45:34.30 0.17±0.033 12.27 5.14

C4 (16,41) 00:27:19.81 +64:44:52.34 0.12±0.023 18.77 9.45

C5 (30,32) 00:27:04.62 +64:43:49.51 0.16±0.031 29.09 17.34

C6 (32,29) 00:27:02.30 +64:43:28.53 0.16±0.031 28.42 14.40

C7 (08,31) 00:27:28.53 +64:43:42.19 0.15±0.028 20.60 5.75

C8 (20,23) 00:27:15.40 +64:42:46.60 0.22±0.042 23.22 9.86

C9 (38,29) 00:26:55.74 +64:43:35.58 0.17±0.033 21.20 11.59

C10 (42,30) 00:26:51.37 +64:43:35.58 0.17±0.033 14.95 7.41

C11 (47,21) 00:26:41.53 +64:42:32.59 0.19±0.037 10.80 1.86

C12 (51,30) 00:26:41.53 +64:43.35.58 0.16±0.032 10.89 2.26

C13 (55,39) 0:26:37.153 +64:44:38.57 0.16±0.030 9.58 3.61
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Table 2.2. Physical parameters measured for S175B clumps

ID Position RA DEC Re
12T ∗

a
13T ∗

a

(X,Y) (pc) (K) (K)

C1 (48,45) 0:26:05.41 +64:54:20.87 0.18± 0.04 12.10 4.90

C2 (35,38) 0:26:19.70 +64:53:32.71 0.14± 0.03 13.81 2.65

C3 (43,34) 0:26:10.90 +64:53:03.86 0.11± 0.02 9.16 3.54

C4 (57,19) 0:25:55.52 +64:51:18.84 0.26± 0.05 9.87 4.28

C5 (37,19) 0:26:17.49 +64:51:18.84 0.24± 0.05 16.82 3.98

C6 (32,32) 0:26:23.00 +64:52:49.81 0.14± 0.03 10.42 3.46

C7 (22,32) 0:26:33.99 +64:52:49.71 0.25± 0.05 9.33 4.51

C8 (24,37) 0:26:31.80 +6:53:24.73 0.24± 0.05 9.53 6.16

C9 (23,46) 0:26:32.92 +64:54:27.72 0.26± 0.05 10.71 6.42

C10 (27,43) 0:26:28.51 +64:54:06.77 0.21± 0.04 12.87 5.76

C11 (16,50) 0:26:40.63 +64:54:55.63 0.17± 0.03 10.09 6.34

C12 (7,19) 0:26:50.44 +64:51:18.64 0.32± 0.06 10.38 ...
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Table 2.3. Physical parameters derived for S175A clumps

Clump Tex V12 V13 ∆V12 ∆V13 N(H) nint(H2) τ12 τ13

No. (K) (kms−1) (kms−1) (kms−1) (kms−1) (×1020cm−2) (×103cm−3)

C1 33.83 -49.39 -49.14 0.97 0.56 61.83 6.2 34.44 0.56

C2 28.36 -48.98 -49.03 0.78 0.47 19.38 4.3 17.85 0.29

C3 23.08 -49.39 -49.03 1.12 0.66 34.68 2.6 33.22 0.54

C4 32.63 -49.39 -49.14 0.92 0.56 72.12 6.2 42.99 0.69

C5 47.68 -49.39 -49.35 1.31 0.85 290.4 7.3 55.79 0.90

C6 46.70 -49.79 -49.67 1.61 0.95 243.4 10.5 43.52 0.70

C7 35.31 -49.39 -49.56 0.97 0.64 44.75 6.0 20.13 0.32

C8 39.13 -50.00 -49.99 1.12 0.74 105.9 3.7 33.99 0.55

C9 36.18 -50.20 -49.67 1.54 1.08 190.8 6.6 48.59 0.78

C10 27.03 -50.81 -50.52 1.59 0.93 82.41 4.0 41.94 0.68

C11 20.90 -50.81 -50.62 1.25 0.87 13.28 1.9 11.54 0.19

C12 21.04 -50.01 -50.84 1.15 0.71 13.50 3.3 14.21 0.23

C13 19.08 -50.01 -50.94 1.32 0.62 20.09 3.7 28.87 0.47
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Table 2.4. Physical parameters derived for S175B clumps

Clump Tex V12 V13 ∆V12 ∆V13 N(H) nint(H2) τ12 τ13

No. (K) (kms−1) (kms−1) (kms−1) (kms−1) (×1020cm−2) (×103cm−3)

C1-a 22.82 -52.03 -51.12 8.68 1.44 70.71 11.6 31.74 0.51

C1-b 22.82 ... -49.79 8.68 1.44 70.71 11.6 31.74 0.51

C1-c 22.82 -52.03 -48.77 8.68 1.72 70.71 11.6 31.74 0.51

C2-a 25.34 -51.62 -51.12 2.24 2.04 34.42 9.6 13.06 0.21

C2-b 25.34 -48.98 -49.29 2.77 1.40 34.42 9.6 13.06 0.21

C3-a 18.47 -52.23 -51.99 2..70 2.11 49.57 9.3 29.81 0.48

C3-b 18.47 -51.22 -50.05 3.11 1.57 49.57 9.3 29.81 0.48

C4 19.52 -52.03 -51.22 2.00 1.26 51.17 2.0 34.70 0.56

C5 29.77 -49.80 -49.75 1.04 0.75 31.58 2.5 16.57 0.27

C6 20.34 -49.39 -49.56 2.60 1.35 33.83 7.3 24.68 0.40

C7-a 18.71 -50.61 -49.57 2.77 1.32 57.44 3.3 40.29 0.65

C7-b 18.71 -47.76 -47.73 2.77 1.95 57.44 3.3 40.29 0.65

C8 19.02 -50.81 -49.49 3.30 1.22 85.83 4.5 63.01 1.02

C9 20.77 -50.61 -49.49 2.72 1.39 100.9 3.4 55.71 0.90

C10 23.95 -48.78 -49.22 1.94 1.51 71.87 4.9 36.30 0.59

C11 19.84 -48.78 -49.30 2.60 0.59 100.7 4.9 60.15 0.97

C12 20.27 -48.78 ... 1.13 ... ... 0.09 ... ...
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Table 2.5. Masses calculated for S175A clumps (all in M�)

Clump M13
vir M12

int M13
LTE MJeans

C1 4.9±1 5.6±2.1 1.9±0.7 7.9

C2 3.5± 0.7 4.1±1.5 0.6±0.2 7.3

C3 9.4±1.8 6.1±2.2 2±0.8 6.9

C4 4.7±0.9 4.7±1.7 2±0.8 7.5

C5 14.7±2.8 14.2±5.2 14.8±5.7 12.2

C6 18.1±3.5 19.4±7.1 12±4.6 9.8

C7 7.6±1.5 8.8±3.2 1.9±0.7 8.6

C8 15.2±2.9 18.3±6.7 10±3.9 12.7

C9 24.9±4.8 14.9±5.4 10.7±4.1 8.4

C10 18.6±3.6 9.3±3.4 4.7±1.8 7.0

C11 18.2±3.5 6.0±2.2 0.9±0.4 7.0

C12 10.4±2.0 6.7±2.5 0.7±0.3 5.3

C13 7.6±1.5 6.5±2.4 1±0.4 4.3
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Table 2.6. Masses calculated for S175B clumps (all in M�)

Clump M13
vir M12

int M13
LTE MJeans

C1 47±9.1 31±11.5 4.5±1.7 3.2

C2 42±8.1 18±6.6 1.9±0.7 4.5

C3 50±9.5 15±5.3 2.4±0.9 2.8

C4 52±10 16±5.8 6.7±2.6 6.1

C5 17±3.3 17±6.0 3.6±1.4 10.2

C6 21±4.0 9±3.3 1.3±0.5 3.4

C7 55±10.6 24±8.9 7.1±2.8 4.5

C8 45±8.7 29±10.7 9.8±3.8 3.9

C9 62±12 27±9.7 13.1±5.0 5.1

C10 37±7.1 22±7.9 6.4±2.5 5.3

C11 40±7.8 10±3.7 5.4±2.1 4

C12 ... 12±4.5 ... 9.8
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Chapter 3
Molecular Clouds Associated with H II

Regions

3.1 Overview

The properties of molecular clouds associated with 10 H II regions were studied

using CO observations. We identified 142 dense clumps within our sample and

measured and calculated physical properties of the clumps such as size, excita-

tion temperature, line widths, density and mass. We found that our sources are

divided into two categories: those that show a size-line width relation (“type

I”) and those which do not show any relation (“type II”). Type II sources have

larger line widths in general. Investigating the relation between the line width

and other parameters shows that while the MLTE increases with ∆V for both

12CO and 13CO lines in type I sources, no relation was found for type II sources.
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No relation between column density and line width was found for either cat-

egory. We also investigated how the characteristics of the clumps vary with

distance from the H II region. We found no relation between mass distribution

of the clumps and distance from the ionization front, but a weak decrease of

the excitation temperature with increasing distance from the ionized gas. No

relation was found between line width and distance from the H II region which

probably indicates that the internal dynamics of the clumps is not affected by

the ionized gas. Internal sources of turbulence, such as outflows and stellar

winds from young proto-stars may have a more important role.

3.2 Introduction

Massive stars are believed to form in giant molecular clouds in clusters which

themselves formed in dense, massive, turbulent clumps. Clustered star forma-

tion is more complicated compared to isolated star formation from individual

collapsing cores, and therefore less well understood theoretically. Massive star-

forming regions are not as common as low mass star-forming regions and con-

sequently, less populous in nearby clouds. Therefore, high mass star formation

has been far less studied in details compared to low mass stars. In regions of

high mass star formation it is not only the physical conditions of the molecular

clouds that govern the star formation. Newborn stars in these regions also

affect their original environment through various feedback mechanisms. Low
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mass stars form gently in more quiescent regions and do not significantly affect

their environment during their slow formation and evolution process. Contrar-

ily, high mass stars form in turbulent dense cores and evolve very quickly. They

influence the environment by strong winds, jets and outflows which change the

physical conditions such as temperature and density of the cloud. They also

ionize the gas (known as H II regions) that expands into the surrounding cloud.

All of these energetic processes near the young massive star affect further star

formation.

We are making a detailed examination of the dense gas properties in star-

forming regions associated with massive stars in order to investigate how the

physical parameters and consequently, star formation have been affected in

these environments. Our sample consists of 10 H II regions selected from the

Sharpless catalog of H II regions (Sharpless 1959). We have selected objects in

the outer Galaxy, primarily along the Perseus arm to minimize the confusion

with background sources and to have the best estimate of the kinematic dis-

tance for those like S196 which we do not have a direct distance determination

by spectrometric study of the exciting star. S104 is the only source with almost

the same Galactic orbit as the Sun, but we have direct distance measurement

for this object and it satisfies other requirements. All distances are collected

from literature and listed by references in Table 3.1.

Some of these regions have been investigated in previous studies and it

has been observed that they have complex spatial and kinematic structures
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(Hunter et al. 1990). Triggered star formation also has been observed at the

peripheries of two sources within our sample (S104 and S212; Deharveng et

al. 2003 , 2008). Here we study the properties of the molecular gas in higher

resolution and investigate how physical parameters varies due to the influence

of the H II region and the exciting star.

For each source we used the James Clerk Maxwell telescope (JCMT) to

make 7′ × 7′ 12CO(2-1) maps around the H II regions to study the clumpy

structure of the gas in the associated molecular clouds and to locate the dense

cores within the cloud. These maps can be made in poor weather conditions

at the JCMT as the emission is very strong. 12CO(2-1) is optically thick and

cannot trace the dense gas at the centre of the cores where the star forma-

tion actually takes place. Therefore, we need to use pointed observations of an

optically thinner emission line such as 13CO(2-1) in the cores to measure phys-

ical properties of the dense gas, such as density, temperature, clump masses

and velocity structure that affect the star formation process. In particular,

the velocity structure and line widths will provide information on the dynamic

forcing by the H II region and on the clumps’ support mechanisms. We can

also get a picture of internal dynamics inside the molecular cloud. Hot clumps

that show evidence of outflows can also be found and identified as candidates

for proto-stars.

We introduce the sample and present the observational details in §3.3. In

§3.4 the observational results and calculated parameters are presented. We
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discuss about the relationships between derived physical characteristics in §3.5

and conclusions are summarized in §3.6.

3.3 Sample Selection and Observation

3.3.1 Sample

Observed sources are listed in column one of Table 3.1. Columns two and three

present the approximate coordinates of the centre of the mapped region in

12CO(2-1). Column four shows the distance of the source based on the identified

exciting star; for S196 no exciting star has been detected and therefore we use

its s kinematic distance for this source. In column five we list the radial velocity

of each source from the catalog of CO radial velocities toward Galactic H II

regions by Blitz, Fich and Stark, (1982). We have selected H II regions with

small angular size to be able to map the molecular gas at the edges of the

region. Column six presents the angular diameter of optically visible ionized

gas. The angular diameter varies between one and seven arc-minutes. Our

sources lie at distances between ≈ 1 kpc (S175) and ≈ 7 kpc (S212). The

calculated diameters of the H II regions in our sample vary from smaller than

1 pc for S175 and S192 to 9 pc for S104. The calculated diameters are listed

in column seven. In column eight we list the identified exciting stars from the

literature.
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To investigate the effects of the massive exciting star and the H II region

on its environs we compare the molecular gas near the H II region with the

gas from parts of the cloud which are distant enough that they are unlikely

to be affected. We observed an excellent example of a second distinct and

distant component in the molecular cloud associated with S175 (Azimlu et al.

2009, hereafter Paper I). Two components, S175A and S175B, in the molecular

cloud have previously been identified in an IRAS survey of H II regions by

Chan & Fich (1995). Both regions have the same VLSR ≈ −50 km s−1 and

are connected by a recently observed filament of molecular gas with the same

velocity. Therefore it is reasonable to assume that S175A and S175B lie at the

same distance. We use the results from Paper I as a template to study the

properties of the presented clouds in this paper.

3.3.2 Observations with the 15 m JCMT Sub-millimeter

Telescope

The observations were carried out in different stages. In this first stage from

August to November 1998 we made 7′ × 7′ 12CO(2-1) maps of S175A, S175B,

S192/S193, S196, S212 and S305. The details of these observations have been

described in Paper I. Pointed observations in 13CO(2-1) on peaks of identified

dense clumps within each region were made from August 2005 to February

2006. In this period we also made a 7′ × 7′ 12CO(2-1) map of S104 with the

same observational settings as in 1998, but due to the large angular size of
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this H II region we missed most of the associated molecular gas in our map.

Therefore, we decided to extend the S104 map to a larger area.

Further observations were made with the new ACSIS system at the JCMT

between October 2006 and January 2009. We extended the S104 map to a

9′ × 9′ map and made four more 7′ × 7′ 12CO(2-1) maps: around S148/S149,

S152, S288 and S307. Most of the peaks identified in clumps within all sources

in our sample were also observed in 13CO(2-1) during four observation missions

in this period. In this new configuration with ACSIS, we used a bandwidth of

250 MHz with 8190 frequency channels, corresponding a velocity range of about

325 km s−1 for 12CO(2-1) and 340 km s−1 for 13CO(2-1) with a resolution of

∼0.04 km s−1. We used the Starlink SPLAT and GAIA packages to reduce the

data, make mosaics, remove baselines and fit Gaussian functions to determine

∆V, the FWHM of the observed line profiles.

3.4 Results

The physical properties of the clumps are derived from the 12CO(2-1) maps

and 13CO(2-1) pointed observations at peaks. We used the 12CO(2-1) maps

to study the structure and morphology of the molecular clouds and to identify

clumps within them. The cloud associated with each H II region consists of

various clumps of gas that display one or more peaks of emission (typically

towards the centre of the clump). We define any separated condensation as
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a distinct clump, if: 1) the brightest peak within the region has an antenna

temperature larger than five times the rms of the background noise; 2) the

drop in antenna temperature between two adjacent bright peaks on a straight

line in between, is larger than the background noise; and, 3) the size of the

condensation is larger than the telescope beam size (21′′ or 3 pixels). The edge

of a clump is taken to be the boundary at which the integrated intensity over

the line drops to below half of the highest measured integrated intensity within

that clump. An ellipse that best fits to this boundary is considered to calculate

the clump size and total integrated flux measurements.

The positions of the 12CO(2-1) peak of identified clumps in each region

and other observed parameters for each clump are listed in Table 3.6. Most

of the clumps do not have a circular shape, therefore an equivalent value for

the radius is calculated from the area covered by the clump in 12CO maps.

We define the effective radius for each clump based on the area of the clump

as Re =
√
Area/π. The corrected antenna temperatures for 12CO(2-1) and

13CO(2-1) , 12T ∗a and 13T ∗a and the peak velocities for each emission line, V12

and V13, are directly measured from spectra after baseline subtraction, and are

listed in Table 3.6.

We calculate the 13CO(2-1) optical depth and hydrogen column density

assuming local thermodynamic equilibrium (LTE) conditions. We use the

12CO(2-1) peak antenna temperature to calculate the brightness temperature

and estimate the excitation temperature, Tex, for each clump. The optical
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depth, τ , and 13CO column density can be derived by comparing the 12CO(2-1)

and 13CO(2-1) brightness temperatures. We convert the 13CO column density

to hydrogen column density, N(H), assuming an abundance factor of ' 106

(Pineda et al. 2008). Derived parameters are listed in Table 3.3. Column two

shows the excitation temperature. In columns three and four we present the

FWHM of the best Gaussian fitted to the 12CO and 13CO spectra. Column

five presents the hydrogen column density calculated from LTE assumption.

Calculated optical depth for 12CO and 13CO are listed in columns eight and

nine. Detailed discussion of the methods and the equations are given in Paper

I.

We used three different methods to estimate the clump masses. The Virial

mass was calculated by assuming that our clumps are in Virial equilibrium. We

used the 13CO line widths and assumed a spherical distribution with density

proportional to r−2 (McLaren 1988). In Paper I, we discussed the uncertainties

of this mass estimation method. For example, the line profiles are broadened in

many cases (for example strongly in S152 and S175B) due to internal dynamics

and probably turbulence. As a result, the Virial equilibrium assumption over-

estimates the mass of the clumps and especially is not an appropriate mass

estimation method for dynamically active regions.

We also calculated 13CO column density under the LTE assumption and

converted it to hydrogen column density in order to determine clump masses.

There are some uncertainties in the mass estimated this way from several fac-
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tors due to non-LTE effects. For example, in the LTE assumption the CO

column density directly varies with Tex. However the 12CO emission might be

thermalized even at small densities, while the less abundant isotopes may be

sub-thermally excited (Rohlf & Wilson 2004). LTE calculations assume that

the excitation temperature is constant throughout the cloud. Tex is calculated

from the observed 12CO line which is optically thick and only traces the enve-

lope around the dense cores; however, inside the envelope, the core might be

hotter or cooler. If the core is hotter than the envelope, the emission line might

be self absorbed and the measured antenna temperature will give too small a

Tex for most of the clumps. The MLTE is the smallest calculated mass for most

of the clumps in our sample.

In the case of the optically thick 12CO emission we can calculate the column

density from the empirical relation N(H2) = X ×
∫
Tmb(

12CO)dv, with the

brightness temperature, Tmb = T ∗a /ηmb. For the JCMT, ηmb = 0.69 is the beam

efficiency at the observed frequency range. However the “X-factor” is sensitive

to variations in physical parameters, such as density, cosmic ionization rate,

cloud age, metallicity and turbulence. The “X-factor” also depends on the

cloud structure and varies from region to region. Studies (e.g. Pineda 2008,

and references therein) have shown that the X value is roughly constant for the

observed Galactic molecular clouds, and is currently estimated at X ' 1.9 ±

0.2 × 1020 cm−2(K km s−1)−1 (Strong & Mattox 1996). Detailed calculations

on columnd density and mass can be found in Paper I. The velocity integrated
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mass Mint calculated for all the identified clumps and relevant volume density

are listed in columns six and seven of Table 3.3. In general Mint is intermediate

between Mvir which often overestimates the mass determinations and MLTE

which may underestimates the mass. Accordingly, we use Mint as the best mass

estimation for our clumps in the rest of this paper and discuss the estimated

masses relations further in §3.5.4.

3.5 Discussion

In this section we discuss the physical conditions of 142 clumps identified within

clouds associated with ten H II regions. We investigate the relationships be-

tween different measured and calculated parameters such as size, line widths,

density and mass in order to understand how they have been affected in differ-

ent regions. We also explore how these physical properties vary with distance

from the ionized fronts of the H II region. Since derived physical parame-

ters vary over a large range, we made logarithmic plots to examine the large

dynamical range of variations.

3.5.1 Size-Line Width (Larson) Relationship

Studies of the molecular emission profile and line width provides us with in-

formation of the internal dynamics and turbulence of the clumps and cores.
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Various studies of molecular cloud clump/cores have examined the relation be-

tween line width and clump/core size (e.g., Larson 1981, Solomon et al. 1987,

Lada et al. 1991 , Caselli & Myers 1995, Simon et al. 2001) and a power

law, often known as the Larson relation, has been proposed to describe this

relationship:

∆V ∝ rα, 0.15 < α < 0.7. (3.1)

This relation has been observed over a large range of clumps/cores, from smaller

than 0.1 pc up to larger than 100 pc. Different power law indices have been

observed within different samples. The observed relationship is presumingly

affected by the cloud physical conditions, clump definition, and dynamical in-

teraction with associated sources such as H II regions, newborn stars or proto-

stars. In their survey for dense cores in L1630 Lada et al. (1991) noticed that

the existence of the Larson relation is highly dependent on clump definition.

They found a weak correlation for clumps selected by 5σ detection above the

background but no correlation for clumps selected at 3σ. Kim & Koo (2003)

found a good correlation between size and line width for both 13CO and CS

observations with α = 0.35. However, some other studies show more scattered

plots (e.g. Yamamoto et al. 2006, Simon et al. 2001) or no relation at all (e.g

Azimlu et al. 2009, Plume at al. 1997). In a study of three categories of clumps

containing massive stars, containing stellar or proto-stellar identified sources,

and no identified source, a weak relation was found (Saito at al. 2008). In this
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study the clumps that contain massive stars had larger ∆V s.

In a study of cloud cores associated with water masers, Plume et al. (1997)

noted that the size-line width relation breaks down in their massive high density

cores which systematically have higher line widths. Line widths larger than

those expected from thermal motions are thought to be due to local turbulence

(Zuckerman & Evans, 1974). Larson (1981) noted that regions of massive

star formation such as Orion seem to have larger ∆V and probably show no

correlation with size. Plume et. al. (1997) concluded that a lack of the Larson

relation in their data indicates that physical conditions in very dense cores with

massive star formation are very different from local regions of less massive star

formation (the line widths may have been affected by star formation process).

They suggested that these conditions (denser and more turbulent than usually

assumed) may need to be considered in studying the massive portion of the

Initial Mass Function. This argument agrees with the conclusions of Saito et

al. (2007). In their study (Saito et al. 2007), note that most of the clumps

without massive stars, the cluster forming clumps classified by a previous study

(Tachihara et al. 2002) and the massive clumps observed by Casseli & Myers

(1995) al have a similar line width. These regions have in common that they

are all forming intermediate mass stars, suggesting that there is a close relation

between the characteristics of the formed stars and the line width. They also

mention that, although the line width might be influenced by feedback of young

stars, an extended line emission could be a part of the initial conditions of the
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cloud.

The index α seems to depend on the physical conditions of the cloud and

especially varies in turbulent regions (e.g Caselli & Myers 1995; Saito et al.

2006). Star forming regions are turbulent environments and the star formation

process is believed to be governed by supersonic turbulence (e.g. Padoan &

Nordlund 1999) driven on large scales. A turbulent cascade then transfers

the energy to smaller scales and forms a hierarchical clumpy structure (Larson

1981). Numeric analysis of decaying turbulence in an environment with a

small Mach number (the speed of moving object in a fluid divided by the speed

of sound) is consistent with the Kolmogorov law, but a supersonic magneto

hydrodynamic turbulence results in a steeper velocity spectrum (Boldyrev 2002

and references there in).

We investigated the Larson relation in our sample for both 12CO(2-1) and

13CO(2-1) lines. Size and line width are two parameters which are directly

measured from the observations. First we studied ∆V12 versusRe for the clumps

in each region individually. Because there are uncertainties in both ∆V and

Re, we calculated the slope of the fitted line with five different fitting methods

using the slope code by Isobe et al. (1990). We are looking for a possible

relation between two parameters and so we accepted the bisector least-squares

fit as the best fitting method in our study for all parameters as recommended

by the authors.

Different values were found for α varying between -1.6±0.4 and 3.0±0.5.
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We found four objects with α ≤ 0.06 with poor correlation coefficients (-0.36 -

0.002) and 6 objects with α ≥ 1.3 with higher correlation coefficients (0.45 for

S307 to 0.8 for S305). The slopes and uncertainties for both ∆V12 and ∆V13

are listed in Table 3.4.

There is a noticeable gap between these two α ranges and we therefore

divided our sources into two categories: the “type I” sources that show a size-

line width relation and “type II” sources with poor correlation, small values for

α and therefore weak or no Larson relation. The clumps within type II sources

have broader lines in general and have a scattered size-line width plot. Figure

3.2 shows ∆V plotted versus Re for these sources. No size-line width relation

is found. Figure 3.1 shows the plots of ∆V12 and ∆V13 vs Re and the derived

αs for both 12CO(2-1) (black dots) and 13CO(2-1) (red dots) lines. S288 has

only 4 identified clumps and therefore and we therefore excluded this region.

13CO has smaller line widths compared to 12CO but very similar relations for

both type I and type II sources.

The slopes we have calculated for type I regions are larger than the reported

values. The calculated values are partially dependent on the fitting method

which must be considered to compare different surveys. For example some

of fitting commands in plotting packages such as Super Mongo only calculate

ordinary least square based on “X” which is always smaller than the bisector

line fit. Our “X” least square slopes for type I sources vary between 2.1 and 0.7

for 12CO and 1.4 and 0.7 for 12CO line widths. On the other hand larger line
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widths and larger slopes might be a result of the gas properties in massive star

forming regions. Most of the previous works study the size-line width relation

in low mass and intermediate star forming regions. Larger line widths and

consequently larger power indices might be a cause by the massive star and

the H II region or the initial conditions of the molecular clouds that produce

massive stars. We discuss that issue n more details in section 3.5.6.

Considering all six type I sources together, we derived α = 0.76 ± 0.05 for

∆V12 vs. Re and α = 0.71 ± 0.05 for ∆V13 vs Re with correlation coefficients

of 0.7 and 0.62 respectively. These results are in agreement with the largest

reported slopes.

The type II sources have larger line widths in 13CO as well (Figure 3.2).

Such large line widths may originate from the initial conditions of the clump

or maybe caused by energy inputs such as proto-stellar outflows, radiation

pressure from massive stars, strong stellar winds, internal rotation and infall

to proto-stars within the clumps.

We have detected strong signatures of an outflow within S175B (Azimlu, et

al., in preparation) which has the largest line widths in our sample. S152 is the

other source in our sample with large line widths. This region has very active

star formation and contains a dense stellar cluster (detected in 2MASS data).

To provide enough gravitational energy to bind the clumps with larger internal

velocity dispersion, much higher densities are required than for the clumps

with smaller line widths (Saito et al., 2006). High gas density (n > 105 cm−3)
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is an essential factor in the formation of rich embedded clusters such as the

one detected in S152 (Lada et al. 1997). In addition, these clumps must be

gravitationally bound in order to survive longer than the star formation time

scale of ∼ 106 yr. In a massive star-forming model, McKee & Tan (2003)

suggest that the mass accretion rate in a core embedded in a dense clump

depends on the turbulent motion of the core and the surface density of the

clump. Therefore, to form a dense core that can produce a massive star, the

clump requires both a high gas density and large internal motion while it is

also gravitationally bound. External pressure may have an important role on

providing additional force to keep the clump stable during the star formation

process (Bonnor-Ebert model; Bonner 1956, Ebert 1955).

3.5.2 Size-Density Relation

We investigated the relation between column density and size for type I and

type II sources. In Figure 3.3 we plot N(H) versus clump effective radius

for both type I (top panel) and type II (bottom panel) sources. We found

no relation between the column density and size for our sources. We also

investigated the relation between velocity integrated volume density and size.

Results are presented in Figures 3.4 and 3.5. There is a weak relation for some

individual sources such as S175A and S175B but, in total, the density decreases

as size increases. The dashed line with a slope of -2.5 shows the limit below

which we have not found any clump. Simon et al. (2001) found different power
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law indices for their sample of four molecular cloud complexes varying between

-0.73 and -0.88, slightly smaller than the power law factor of -1.24 found by

Kim & Koo for molecular clouds associated with ultra compact H II regions.

These results may be due to the fact that the smaller clumps are probably more

evolved. The gas is more collapsed to the centre and therefore these clumps

have smaller size with larger volume densities. This also explains the lack of

a relation between size and column density. The smaller clumps have higher

volume density and integrating density through the clump centre may result

in a small or large column density dependent on the initial conditions and

the nature of the clumps. Sources within our sample are located at different

distances. We have detected the smallest clumps in S175A which is the closest

source to us at a distance of ≈ 1 kpc. If this source was at a five times larger

distance (approximately the distance of S305), clumps C1-C4 and C11-C13

could not be resolved and we measured smaller average volume density for

these groups of clumps as individual objects. Thus, our plot is likely to be

affected by the spatial resolution effect.

Saito et al. (2006) suggest that the mass and density must be larger for

turbulent clumps (they define a core turbulent if ∆V > 1.2 km s−1) compared to

non-turbulent ones for a given size to bind the turbulent clumps gravitationally.

For a similar density distribution, they found that turbulent clumps (those with

larger line widths) have densities twice the non-turbulent ones. We do not see

an excess for mass or column density in our type II sources. For a detailed
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discussion on different masses and equilibrium conditions of the clumps see

§3.5.4.

3.5.3 LTE Mass and Column Density-Line Width Rela-

tion

We find a weak relation between N(H) and ∆V s (Figure 3.6 and 3.7). The col-

umn density increases with ∆V for both 12CO and 13CO lines. The dashed lines

present the bisector least-squares fits with slopes of 2.3±0.25 and 2.1±0.35 for

12CO lines in type I and type II sources respectively but the correlation coeffi-

cient is poor (0.53 and 0.42 respectively). The slopes are similar (2.3±0.23 and

2.4±0.38) for ∆V13 for both type I and type II sources with similar correlations

(0.51 and 0.47 respectively).

Mvir and Mint both depend on the emission line profile and are expected to

increase for type II regions with larger line widths. The LTE mass is calculated

independent of the cloud dynamics and the emission line profiles. In Figures 3.8

and 3.9 we show how MLTE varies with ∆V for both 12CO and 13CO emission

lines. For type I sources MLTE increases with ∆V for both 12CO and 13CO

with least-square fit slopes of 4.2±0.28 and 4.2±0.24, but no relation is found

for type II sources. The mass range is not very different for type I and type II

clumps (1.1 - 350 vs 0.5 - 500 M�). The LTE mass is calculated by integrating

the LTE column density over the area of each clump assuming that it is a
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sphere with radius of Re. MLTE is proportional to R2
e; therefore, the fact that

the mass calculation depends on size might be the cause of the relation between

MLTE and ∆V in type I sources where the size-line width relation was found.

3.5.4 Equilibrium State of the Clumps

Virial mass is calculated as Mvir(M�) = 126 × Re(pc) (∆V )2(km s−1) assum-

ing that the gravitational potential energy is in balance with internal kinetic

energy. Mvir increases with (∆V )2; integrated mass, Mint is also line-profile

dependent and varies linearly with ∆V , while MLTE is independent of line

width and of the internal dynamics of the cloud. We plot Mvir/MLTE versus

MLTE in Figure 3.10 to investigate the virial equilibrium. Resolving the clumps

within clouds is highly dependent on the distance to the cloud. To decrease the

effect of resolution we have selected only objects at distances between 3 and 7

kpc. Closer sources are presented by crosses in the plot . Most of our clumps

have larger Virial masses and are far above the Mvir = MLTE line, indicating

that most of our clumps are probably not gravitationally stable. An external

pressure is required to keep the clumps with Mvir > MLTE bound.

It has been suggested that to bind the turbulent clumps they must have

larger masses and for similar size, the turbulent sources have possibly larger

densities (Saito et al. 2007). In our sample both type I and type II sources

have similar clump masses and we do not see an excess for either type, but we

do see the effect of mass. In Figure 3.10 more massive clumps tend to be closer
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to Virial equilibrium. The same pattern has been observed by Yamamoto et al.

(2003, 2006) for clumps within two different regions where only larger clumps

have Virial masses similar to the LTE mass.

Figure 3.11 shows the plot of velocity integrated mass, Mint, versus MLTE.

For most of the clumps, Mint is higher than the MLTE but mostly below the

line of the Mint = 10MLTE. Mint/Mvir is much larger for low mass clumps

and like Mvir, Mint tends to be equal to MLTE for higher masses; however, the

difference is smaller compared to Mvir, versus MLTE. The solid line shows the

best least-squares fit with a slope of 0.81.

In Figure 3.12 we compare Mvir versus Mint. Similar to MLTE, clumps have

larger Mvir for low mass clumps. At approximately M= 100 M�, Mvir 'Mint,

while for clumps larger than 100 M� Mvir < Mint. The solid line shows the

least-squares fit with a slope of 0.59. The higher mass clumps in our plot lie

within more distant sources where we cannot resolve smaller structures within

them. It suggests that probably the average density and temperature of larger

clumps results in a larger Jeans length while smaller dense structures resolved

as clumps have locally higher density and therefore smaller Jeans length. Anal-

ysis of cloud and clump equilibria in a study of four molecular clouds at different

distances shows that, while the whole cloud is gravitationally bound, the ma-

jority of the clumps within them are not (Simon et al 2001). We found that

the equilibrium appears for clumps larger than ∼ 100M�.
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3.5.5 Temperature-Line Width Relation

In Figures 3.13 and 3.14 we investigate the relation between the excitation tem-

perature and line widths. Part of profile line broadening is due to the thermal

velocity dispersion of the molecules and the thermal line width increases with

temperature. The observed ∆V s are more broadened due to internal dynamics

and turbulence within the clouds. We found no relation between Tex and ∆V

for both 12CO and 13CO emission lines which indicates that the emission line

profile is dominated by the internal dynamics of the clumps.

3.5.6 Effects of Distance from H II Region on Physical

Parameters

We are studying how H II regions and their exciting stars affect the physical

conditions of their associated clouds. One might expect more influence on

clumps that are closer to the H II region. To investigate these effects, we

examine how the environmental parameters vary with distance from the edges

of the ionized gas. Most of the H II regions in our sample are not perfect

spheres but we try to fit the best circle on visible edges of the ionized gas. To

determine the borders of the ionized gas we use Digital Sky Survey images in

the red filter in which the hydrogen ionized gas is bright with sharp edges. Our

sources have different angular sizes, different physical sizes and lie at different

distances from the Earth. They might also be at different evolutionary stages,
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with a mixture of ages. We need to re-scale the distances to a common distance

to be able to compare them. A normalized distance for each clump is defined

as the distance of the clump from the edge of H II region divided by the H II

region radius.

Temperature-Distance relation

In Figure 3.15 we investigate the variation of excitation temperature, Tex with

distance from the H II region. We expect clumps to be warmed up by the

radiation from the exciting star and to show a trend of decreasing temperature

with distance from the H II region. We can see that the clump temperature

decreases by distance from the ionized gas around some sources such as S175A

and S152. We observe a scattered relation for S305 and a weak relation (for

clumps at distances larger than 0.1R) for S104. The fact that we cannot see

the same relation for other sources might be due to internal heating sources

within the clumps such as proto-stars. C4 and C8 in S307 (noted in Figure 3.15,

top panel) are good examples of such compact clumps with high density and

temperature. On the other hand, we are measuring the projected distance of

the clumps which in general will be smaller than the true value. We check the

effect of distance projection by simulating numerically randomly distributed

clumps with heating from an external source. The luminosity of the heating

source, the power-law index of decrease in central heating with distance, and the

heating of the clump from the diffuse background are the input parameters of
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the simulation. We also set the number of clumps and the radial distribution of

the clumps’ positions. The output is temperature versus the projected distance

from the heating source.

Figure 3.16 shows plots of some selected simulations. Assuming the input

values are similar to observed parameters of our sample and assuming a R−α

decreasing power law for luminosity, (Figure 3.16) we see some scattering on

the plot for small distances, but a decrease in temperature as distance from

the heating source increases. We cannot have any distant hot clump that is

warmed by the heating source. Such distant but hot clumps like S307-C3 and

S307-C4 noted in Figure 3.15 are probably being warmed by an internal source

such as a proto-star. We see more scatter in the simulated plots for smaller

projected distances. Most of our mapped regions 7′ × 7′ are small compared

to the size of the H II region; consequently we did not map the molecular gas

at large distance from the edges of H II regions with larger angular size (e.g.

S104, S212 and S148/S149). The scattering of Tex versus normalized distance

for the clumps within these sources matches with the objects at the smaller

distances of the simulated plots. S175B is the only source in which all of the

clumps are too distant for it to have been influenced by the H II region.

Line Width-Distance Relation

We study the effect of the expanding ionized gas on the internal dynamics of

the molecular gas by investigating the variation of line widths with distance
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from the H II region. In Figure 3.17 we plot ∆V versus normalized distance

for 12CO (top panel) and 13CO (bottom panel). We cannot find a relation for

∆V12 or ∆V13 versus distance for any of type I or type II sources. The line-

width is very scattered at different distances even for S175A and S152 which

show a decrease of Tex with distance from the ionized gas. The expansion of the

ionized gas may cause the molecular gas in shells around the H II region slightly

larger line widths but we do not see a significant distance effect on the internal

motions of the clumps mostly beyond the collected shells. Physical conditions

of individual clumps and other internal sources of turbulence or dynamics such

as proto-stellar outflows, infall and rotation may have a more important role

on line profiles.

The noticeable point is that as we discussed in section 3.5.1, we have seen

larger line widths and larger Larson power law indices in our sample for type

I sources. But If the line profiles are not much affected by the H II region and

the exciting star, then the observed large line widths are more probable to be

a part of the initial characteristics of the cloud which already have formed at

least one massive star.

3.5.7 Mass Distribution

The number of clumps identified within each mapped region varies between 4

and 35 with an average of about 12 clumps per region. because this number was

not large enough to make an appropriate statistical study on mass distribution

119



for each mapped region, we investigated the characteristics of the largest clump,

the second largest clump and the third largest clump in each mapped region.

We expected to find the largest clumps within the collected shells of mass at

the peripheries of the ionized gas. This was the case for some sources such

as S192 and S175A, but not common for other objects. We did not find any

relation between the largest clump mass and its normalized distance from the

H II region.

We repeated the same procedure for the second and third largest clump

within each region. We saw no relation for the second largest mass as well,

but it was noticeable that the third largest clump has about 10% of the total

mass of the cloud in most of our sources. Only S104 did not follow this rule.

S104 has the largest angular size in our sample and we mapped only a small

fraction of the molecular gas associated with this H II region. We extended

the map from 7′ × 7′ to 9′ × 9′ to cover the edges of the ionized gas but may

have still a significant amount of the emission from the more distant parts of

the cloud. We only observed the fragmented clumps collected in layers around

H II region. The number of clumps in this mapped region was twice that of the

other sources and may explain why third largest clump in this region contains

only 5% of the total mass of the observed part of the cloud.
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3.6 Summary and Conclusions

We have studied the physical properties of molecular clouds associated with a

sample of ten H II regions. We mapped eleven 7′× 7′ areas in 12CO(2-1) at the

peripheries of the ionized gas and extended one of these maps (around S104

H II region, the largest of our H II regions) to 9′×9′ in order to understand the

molecular gas well beyond the edges of the H II region. We studied the clumpy

structure of the clouds and identified 142 distinct clumps within eleven mapped

regions. We also made pointed observations in 13CO(2-1) at the position of

the brightest 12CO peak within each clump for 117 clumps. We used these

observations to measure and calculate the physical characteristics of the clouds.

We summarize our findings below:

We investigated size-line width relation for our sources using both 12CO and

13CO emission lines and calculated effective radius. Our sources are divided

into two categories: those which do not show any size-line width relation and

those which show a power law relation. We labeled these group of sources as

type I and the other four sources with no relation as type II. Type II sources

have larger line widths in general.

The power law indices derived for size-line width relation in type I sources are

relatively larger than the previous studies, but they are not affected by the

exciting star or the ionized gas. We may conclude that larger line widths and

consequently larger indices are possibly the initial conditions of the massive
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star forming molecular clouds.

No relation was found between column density and size of the clump but,

for both type I and type II sources, the volume density decreases with size;

the larger clumps have smaller densities. The smaller clumps might be more

evolved, contracting to smaller size and higher densities.

We investigated the relationship between LTE column density and line width.

We found that the column density increases with both ∆V12 and ∆V13 for both

type I and type II regions but the relation is very scattered and difficult to fit

a line.

We estimated the mass of each clump in three different ways: the Virial mass

using ∆V13 determined from optically thinner 13CO lines (Mvir ∝ (∆V13)2),

12CO velocity integrated mass or X factor mass (Mint ∝ ∆V12), and LTE mass

(mass estimate independent of line width) using both 12CO and 13CO lines.

Mvir is larger than the MLTE for small clumps but tends to equal values for

large masses. Low mass clumps also have larger Mvir than Mint but Mvir

become approximately equal to Mint at M=100 M� and is smaller than Mint

for larger masses. We may conclude that the larger clouds are gravitationally

bound but the fragmented smaller clumps within them are not.

We investigated how MLTE varies with ∆V for both type II and type I sources.

While we see that MLTE increases with both ∆V12 and ∆V13 for type I sources,

no relation was found for type II regions.
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No relation was found between the excitation temperature and the line widths.

This suggests that the line widths for both 12CO and 13CO are determined by

the internal dynamics of the clump rather than the thermal velocity dispersion

of the molecules.

Excitation temperature decreases with distance from the edges of the ionized

gas for some clouds. However, the measured decrease is not significant because

of the projected distance effect especially for smaller distances.

The effect of the H II regions on the internal dynamics of the clumps was

investigated. The line widths for the clumps within collected shells around

H II regions are slightly larger, but no relation was found between ∆V12 and

∆V13 and normalized distance from the H II region. The expansion of the

ionized gas affects the internal dynamics of the collected mass but these effects

do not go beyond the shells. The plots of ∆V versus normalized distance are

very scattered for both type I and type II regions, even for those sources in

which temperature decreases by distance.

The third most massive clump in each region contains 10% of the total mass

of the observed part of the cloud in our sample. The only exception, S104, is

the largest H II region in our sample and due to its large size we have mapped

only a small fraction of its associated molecular cloud.

We have measured and calculated physical characteristics of molecular clouds

associated with H II regions. High density turbulent clumps are good candi-

dates for massive star formation. We have detected such clumps within type II
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sources in our sample. Our sources lie at large distances and we cannot resolve

individual embedded proto-stars within them, but we have detected signatures

of star formation such as proto-stellar outflows within our sample.
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Figure 3.1 Correlation between the 12CO(2-1) (black) and 13CO(2-1) (red) line

widths and the effective radius of the clumps for type I sources. The solid line

is the bisector least-square fit for 12CO(2-1) and dashed line shows the least-

squares fit for 13CO(2-1) lines. The slope derived for each line is shown in top

left corner of each panel.
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Figure 3.2 Same plot as Figure 3.1 for type II sources.
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Figure 3.3 LTE column density vs. effective radius for type I (top) and type II

(bottom) sources.
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Figure 3.4 Velocity integrated volume density vs. effective radius for type I

sources. The dashed line shows an approximate limit below which no clump

has been found in our rdata (nint = −2.5Re + 1.5). No strong correlation is

found between nint and Re but overall the volume density is smaller for larger

clumps.
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Figure 3.5 Same as Figure 3.4 for type II sources. Similar to type I sources, no

strong correlation is found between nint and Re but overall the volume density

tends to smaller values for larger clumps.
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Figure 3.6 LTE column density vs. ∆V12 for type I (top) and type II (bottom)

sources. The dashed line shows the bisector least-squares fits. The relation

for type I sources has a slope of 2.3; the relation for type II sources is slightly

weaker (correlation coefficient of 0.42 compared to 0.53 for type I sources) with

a slope of 2.06.
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Figure 3.7 Same plot as Figure 3.6 for 13CO(2-1) line widths. The relation for

type I sources has the same slope of 12CO(2-1) , 2.3; the relation for type II

sources is slightly weaker (correlation coefficient of 0.43 compared to 0.53 for

type I sources) with a slope of 2.43.
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Figure 3.8 MLTE vs. ∆V12 for type I (top) and type II (bottom) sources. The

dashed line shows the bisector least-squares fit to type I clumps with a slope

of 4.2. No relation is found for type II sources.
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Figure 3.9 Similar to Figure 3.8 for 13CO(2-1) line width. The dashed line

is the least-squares fits with the slope of 4.2, the same as the previous plot.

Similar to 12CO(2-1) , no relation is found between MLTE and ∆V13 for type

II sources.
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Figure 3.10 Mvir/MLTE vs. MLTE. Filled circles present type I sources and

open circles present type II sources. To decrease the effect of varying distances

and consequently the resolution effect we have considered only sources at nearer

distances between 3.3 and 7.1 k pc. Other sources are shown by crosses.
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Figure 3.11 Velocity integrated mass plotted vs. LTE mass. Filled circles

represent type I sources and open circles represent type II sources. The solid

line is the least-squares fit to all clumps together. The dashed lines are Mint =

MLTE and Mint = 10MLTE.
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Figure 3.12 Virial mass plotted vs. velocity integrated mass. Filled circles

represent type I sources and open circles represent type II sources. The solid

line is the least-squares fit to all clumps together. The dashed lines are Mvir =

Mint and Mvir = 10Mint. Virial mass tends to equal to Mint for massive clumps

and they are equal at M ∼ 100M�.
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Figure 3.13 Excitation temperature vs. ∆V12 for type I (left panel) and type

II (right panel) sources. No relation is found for type I or type II sources.

Lack of relation may indicate that the line widths (which are generally much

larger than the calculated thermal line widths) are dominated by the internal

dynamics of the clump.
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Figure 3.14 Same as Figure 3.13 for ∆V13. Similarly no relation is found.
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Figure 3.15 Excitation temperature vs. normalized distance from H II region

for type I (left panel) and 13CO(right panel) sources.

139



-1 -0.5 0 0.5 1

0.8

1

1.2

-1 -0.5 0 0.5 1

0.8

1

1.2

-1 -0.5 0 0.5 1

0.8

1

1.2

-1 -0.5 0 0.5 1

0.8

1

1.2

[Distance (pc)]

Figure 3.16 Simulated temperature variation from a heating source with similar

physical conditions as our cloud samples with different luminosity decrease

power law index, α.
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Figure 3.17 Line width vs. normalized distance from H II region for ∆V12 (top)

and ∆V13 (bottom).
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Table 3.1. Properties of selected regions

Source RA Dec Distance VLSR Diameter Diameter Exciting Star

J(2000) J(2000) (kpc) (kms−1) (arcmin) (pc)

S104 20:17:42 36:45:30 3.3±0.3 0.0 7 6.7 O6V a

S148/S149 22:56:22 58:31:29 5.6±0.6 -53.1 1 1.6 B0V a

S152 22:58:41 58:47:06 2.39±0.21 -50.4 2 1.4 O9V b

S175A 0:27:04 64:43:35 1.09±0.21 -49.6 2 0.63 B1.5V b

S175B 0:26:25 64:52:36 1.09±0.21 -49.6 2 0.63 B1.5V b

S192/193 2:47:30 61:56:33 2.96±0.54 -46.3 1 0.86 B2.5V b

S196 2:51:41 62:12:19 4.7±1.0 -45.1 4 5.4 · · · d

S212 4:40:56 50:27:47 7.1±0.7 -35.3 5 10.3 O6 a

S288 7:8:39 -4:18:41 3.0±1.2 56.7 1 0.87 B1 c

S305 7:30:13 -18:31:50 5.2±1.4 44.1 4 6.1 O9.5 c

S307 7:35:33 -18:45:55 2.2±0.5 46.3 6 3.8 O9 c

aData about exciting star and distance from Caplan et al. 2000

bData about exciting star and distance from Russeil et al. 2007

cData about exciting star and distance from Moffat et al. 1997

dNo exciting star identified for this H II region. The kinematic distance is reported here. Note that

S196 is close to S192/S193 in position and velocity and is likely to be at the same distance.
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Table 3.2. Physical parameters measured for the entire sample

ID RA DEC Re
12Tb

13Tb V12 V13

(pc) (K) (K) (km s−1) (km s−1)

S104

... C1 20:17:26.0 +36:42:34.0 0.40±0.04 13.3 3.2 0.81 0.58

... C2 20:17:34.4 +36:46:39.5 0.35±0.03 10.5 2.1 -2.85 -2.32

... C3 20:18:01.8 +36:45:10.1 0.38±0.03 20.5 · · · -0.1 · · ·

... C4 20:17:56.6 +36:45:23.8 0.45±0.04 44.7 18.6 0.61 -0.42

... C5 20:17:23.9 +36:45:56.8 0.28±0.03 12.6 · · · 1.83 · · ·

... C6 20:17:50.7 +36:46:54.5 0.29±0.03 11.4 3.7 -1.42 -1.33

... C7 20:17:53.6 +36:48:18.7 0.42±0.04 28.8 6.7 1.42 -0.66

... C8 20:17:57.8 +36:44:34.9 0.44±0.04 34.7 17.1 0 0.66

... C9 20:17:30.3 +36:47:49.3 0.39±0.04 22.3 10.7 0.91 0.66

... C10 20:17:57.2 +36:43:52.8 0.40±0.04 33.6 12.3 0.81 0.87

... C11 20:17:57.7 +36:48:11.9 0.40±0.04 27.0 8.4 0.4 0.54

... C12 20:17:29.9 +36:42:55.2 0.42±0.04 26.5 12.5 1.62 1.25

... C13 20:17:35.1 +36:42:34.6 0.36±0.03 32.0 12.9 1.22 1.37

... C14 20:17:40.9 +36:42:20.9 0.36±0.03 31.9 6.6 2.23 1.53

... C15 20:17:27.4 +36:47:21.1 0.44±0.04 22.6 8.2 1.62 1.7

... C16 20:17:30.3 +36:48:45.3 0.37±0.03 23.3 10.0 1.01 1.16

... C17 20:17:54.9 +36:43:17.7 0.37±0.03 26.4 4.3 1.32 1.45

... C18 20:17:36.1 +36:47:07.6 0.42±0.04 15.1 2.3 3.66 3.49

... C19 20:17:45.0 +36:42:35.2 0.4±0.04 23.9 5.1 4.98 4.9

... C20 20:17:46.7 +36:44:48.3 0.33±0.3 12.7 1.6 5.48 5.27

... C21 20:17:42.6 +36:42:56.0 0.26±0.02 22.1 4.1 5.99 6.52

... C22 20:17:42.1 +36:41:53.0 0.31±0.03 21.5 · · · 2.13 · · ·

... C23 20:17:51.3 +36:44:13.5 0.27±0.02 14.2 3.6 6.09 5.85

... C24 20:17:52.4 +36:45:02.6 0.32±0.03 17.7 3.9 5.89 6.02

... C25 20:17:50.1 +36:48:32.5 0.44±0.04 24.3 10.9 6.4 0.87
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Table 3.2—Continued

ID RA DEC Re
12Tb

13Tb V12 V13

(pc) (K) (K) (km s−1) (km s−1)

... C26 20:15:48.8 +36:31:52.9 0.35±0.03 22.1 · · · 2.34 · · ·

... C27 20:15:29.9 +36:35:31.2 0.32±0.03 11.8 · · · 2.34 · · ·

... C28 20:15:52.8 +36:40:26.0 0.55±0.05 13.1 · · · 0.2 · · ·

... C29 20:15:42.4 +36:41:00.1 0.32±0.03 13.3 · · · 0.92 · · ·

... C30 20:15:38.9 +36:40:24.2 0.6±0.05 13.2 · · · 0.61 · · ·

... C31 20:15:48.1 +36:40:40.7 0.52±0.05 8.7 · · · 2.54 · · ·

... C32 20:16:09.7 +36:39:02.6 0.39±0.04 22.4 · · · 0.51 · · ·

... C33 20:17:54.3 +36:41:40.4 0.38±0.03 9.0 · · · 0.61 · · ·

... C34 20:17:58.2 +36:41:54.7 0.60±0.06 11.2 · · · 0.71 · · ·

... C35 20:17:59.9 +36:47:02.7 0.46±0.04 18.6 · · · 0.71 · · ·

S148/S149

... C1 22:56:44.9 +58:30:06.24 $1.07±0.11$ 26.7 7.4 -55.05 -55.67

... C2 22:56:43.9 +58:28:14.88 1.03±0.11 22.3 9.8 -54.97 -54.26

... C3 22:56:18.8 +58:33:14.99 0.87±0.09 27.0 9.2 -55.08 -55.09

... C4 22:56:02.3 +58:33:13.90 0.94±0.1 25.8 10.6 -55 -55.46

... C5 22:56:17.2 +58:31:02.99 0.94±0.1 35.0 14.6 -52.58 -52.14

... C6 22:56:26.1 +58:30:55.00 1.06±0.11 24.8 9.1 -54.21 -54.05

... C7 22:56:19.1 +58:29:48.99 0.77±0.07 21.8 5.4 -51.67 -51.48

... C8 22:56:42.3 +58:31:51.89 0.90±0.1 18.8 2.5 -54.17 -54.33

... C9 22:56:21.6 +58:32:32.49 0.84±0.09 18.2 8.3 -53.94 -51.46

... C10 22:56:13.7 +58:33:15.98 0.86±0.09 23.8 2.6 -54.53 -54.66

... C11 22:56:03.9 +58:31:34.90 0.74±0.08 20.4 2.8 -53.7 -53.35

... C12 22:55:56.8 +58:29:11.84 0.75±0.08 20.4 5.8 -54.81 -54.8

... C13 22:56:13.5 +58:30:05.48 0.55±0.06 16.0 · · · -53.1 · · ·

S152

... C1 22:58:56.1 +58:46:29.27 $0.32±0.03$ 20.3 15.9 -50.68 -50.87

144



Table 3.2—Continued

ID RA DEC Re
12Tb

13Tb V12 V13

(pc) (K) (K) (km s−1) (km s−1)

... C2-a 22:58:44.3 +58:46:51.50 0.33±0.03 35.7 · · · -50.72 · · ·

... C2-b 22:58:40.6 +58:46:31.67 0.32±0.03 43.9 20.9 -49.85 -49.84

... C2-c 22:58:38.1 +58:46:44.50 0.33±0.03 35.3 · · · -49.77 · · ·

... C3 22:58:39.7 +58:48:15.50 0.37±0.03 30.0 20.5 -49.25 -49.79

... C4 22:58:47.7 +58:45:19.32 0.42±0.04 27.4 17.0 -50.84 -50.74

... C5 22:58:59.5 +58:45:32.08 0.31±0.03 21.0 12.1 -50.68 -50.71

... C6 22:58:59.7 +58:48:29.41 0.34±0.03 20.8 9.4 -50.92 -50.95

... C7 22:59:04.0 +58:49:54.53 0.37±0.03 18.9 9.0 -50.84 -50.58

... C8 22:58:31.8 +58:45:12.32 0.25±0.02 22.2 7.5 -51.79 -49.86

S175A

... C1 0:27:29.6 +64:43:41.30 0.13±0.024 28.4 12.2 -49.39 -49.14

... C2 0:27:27.5 +64:44:45.21 0.13±0.024 23.0 5.8 -48.98 -49.03

... C3 0:27:22.0 +64:45:34.30 0.17±0.033 17.8 7.4 -49.39 -49.03

... C4 0:27:19.8 +64:44:52.34 0.12±0.023 27.2 13.7 -49.39 -49.14

... C5 0:27:04.6 +64:43:49.51 0.16±0.031 42.2 25.1 -49.39 -49.35

... C6 0:27:02.3 +64:43:28.53 0.16±0.031 41.2 20.9 -49.79 -49.67

... C7 0:27:28.5 +64:43:42.19 0.15±0.028 29.9 8.3 -49.39 -49.56

... C8 0:27:15.4 +64:42:46.60 0.22±0.042 33.7 14.3 50 -49.99

... C9 0:26:55.7 +64:43:35.58 0.17±0.033 30.7 16.8 -50.2 -49.67

... C10 0:26:51.4 +64:43:35.58 0.17±0.033 21.7 10.7 -50.81 -50.52

... C11 0:26:41.5 +64:42:32.59 0.19±0.037 15.7 2.7 -50.81 -50.62

... C12 0:26:41.5 +64:43.35.58 0.16±0.032 15.8 3.3 -50.01 -50.84

... C13 0:26:37.2 +64:44:38.57 0.16±0.030 13.9 5.2 -50.01 -50.94

S175B

... C1 0:26:05.4 +64:54:20.87 0.18±0.04 17.5 7.1 -52.03 -51.12

... C2 0:26:19.7 +64:53:32.71 0.14±0.03 20.0 3.8 -51.62 -51.12
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Table 3.2—Continued

ID RA DEC Re
12Tb

13Tb V12 V13

(pc) (K) (K) (km s−1) (km s−1)

... C3 0:26:10.9 +64:53:03.86 0.11±0.02 13.3 5.1 -52.23 -51.99

... C4 0:25:55.5 +64:51:18.84 0.26±0.05 14.3 6.2 -52.03 -51.22

... C5 0:26:17.5 +64:51:18.84 0.24±0.05 24.4 5.8 -49.8 -49.75

... C6 0:26:23.0 +64:52:49.81 0.14±0.03 15.1 5.0 -49.39 -49.56

... C7 0:26:34.0 +64:52:49.71 0.25±0.05 13.5 6.5 -50.61 -49.57

... C8 0:26:31.8 +64:53:24.73 0.24±0.05 13.8 8.9 -50.81 -49.49

... C9 0:26:32.9 +64:54:27.72 0.26±0.05 15.5 9.3 -50.61 -49.49

... C10 0:26:28.5 +64:54:06.77 0.21±0.04 18.6 8.3 -48.78 -49.22

... C11 0:26:40.6 +64:54:55.63 0.17±0.03 14.6 9.2 -48.78 -49.3

... C12 0:26:50.4 +64:51:18.64 0.32±0.06 15.0 · · · -48.78 · · ·

S192

... C1 2:47:48.1 +61:55:41.67 0.35±0.06 16.9 7.9 -44.59 -44.67

... C2 2:47:48.0 +61:54:45.68 0.23±0.04 10.8 2.4 -45.4 -45.52

... C3 2:47:35.2 +61:56:59.35 0.33±0.06 20.8 3.6 -46.01 -46.05

... C4 2:47:35.3 +61:57:55.35 0.24±0.04 16.3 4.5 -46.01 -46.16

... C5 2:47:27.3 +61:57:27.73 0.35±0.06 18.5 7.7 -47.03 -47.54

... C6 2:47:26.3 +61:56:38.78 0.53±0.09 22.9 11.1 -46.83 -46.8

... C7 2:47:25.4 +61:59:05.82 0.33±0.06 12.9 3.4 -46.62 -46.8

... C8 2:47:12.4 +61:56:25.37 0.45±0.08 15.9 3.0 -47.44 -47.97

... C9 2:47:31.1 +61:54:46.55 0.35±0.06 10.8 2.1 -45.4 -48.71

... C10 2:47:15.5 +61:59:27.25 0.36±0.06 8.1 · · · -49.47 · · ·

S196

... C1 2:52:06.7 +62:09:58.04 0.56±0.12 15.1 · · · -42.56 · · ·

... C2 2:51:59.7 +62:09:30.46 57±0.12 16.5 · · · -43.98 · · ·

... C3 2:51:38.7 +62:09:31.56 29±0.06 15.1 1.3 -43.78 -43.72

... C4 2:51:14.8 +62:11:45.58 0.53±0.11 16.5 4.6 -44.59 -44.57
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Table 3.2—Continued

ID RA DEC Re
12Tb

13Tb V12 V13

(pc) (K) (K) (km s−1) (km s−1)

... C5 2:51:22.9 +62:13:44.27 0.45±0.1 7.0 1.0 -45 -44.67

... C6 2:51:28.0 +62:13:14.05 0.45±0.10 7.3 0.6 -45.41 -45.31

... C7 2:51:36.8 +62:10:27.70 0.51±0.10 13.1 4.4 -47.23 -47.54

... C8 2:51:44.8 +62:10:34.27 0.51±0.11 12.1 2.6 -46.62 -46.59

S212

... C1 4:40:34.2 +50:27:05.98 0.72±0.07 31.3 5.1 -33.05 -35.11

... C2 4:40:38.7 +50:27:05.73 0.9±0.09 29.3 10.2 -33.46 -33.51

... C3 4:40:42.4 +50:27:54.51 1.11±0.11 33.0 10.8 -32.85 -33.09

... C4 4:40:47.5 +50:27:40.21 1.0±0.1 23.2 6.0 -35.08 -35.42

... C5 4:40:50.4 +50:27:40.02 0.94±0.09 22.1 4.9 -35.29 -35.21

... C6 4:40:54.0 +50:27:04.75 0.97±0.1 20.6 2.9 -35.69 -35.74

... C7 4:41:01.4 +50:28:14.24 1.25±0.12 17.7 5.2 -35.49 -36.49

... C8 4:41:04.3 +50:27:04.03 1.35±0.13 15.6 2.9 -35.69 -36.49

... C9 4:40:48.3 +50:28:59.76 0.95±0.09 10.5 1.9 -39.15 -38.82

... C10 4:40:45.2 +50:26:30.33 0.86±0.09 12.6 2.0 -34.07 -34.26

... C11 4:40:43.1 +50:27:26.46 0.85±0.08 16.0 3.2 -34.68 -35

... C12 4:40:39.4 +50:26:23.69 0.73±0.07 15.7 2.5 -33.05 -35

S288

... C1 7:08:39.2 -04:19:21.80 0.55±0.22 24.9 · · · 58.38 · · ·

... C2 7:08:37.4 -04:18:53.80 0.54±0.21 28.0 · · · 56.16 · · ·

... C3 7:08:34.6 -04:17:15.80 0.61±0.25 9.9 · · · 56.56 · · ·

... C4 7:08:42.5 -4:18:46.80 0.35±0.14 11.3 · · · 56.95 · · ·

S305

... C1 7:30:04.7 -18:30:25.27 0.75±0.20 25.8 9.3 42.64 43.29

... C2 7:30:12.6 -18:32:03.82 0.86±0.23 33.0 9.6 43.66 42.87

... C3 7:29:59.3 -18:30:52.89 0.64±0.17 32.1 8.6 43.86 43.93
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Table 3.2—Continued

ID RA DEC Re
12Tb

13Tb V12 V13

(pc) (K) (K) (km s−1) (km s−1)

... C4 7:30:16.6 -18:31:15.08 0.61±0.17 26.1 11.0 44.88 44.14

... C5 7:29:59.8 -18:32:37.92 0.51±0.14 24.7 9.2 44.06 42.77

... C6 7:29:59.8 -18:32:37.92 0.63±0.17 20.2 2.8 44.67 44.46

... C7 7:30:00.3 -18:31:48.96 0.62±0.17 59.2 14.5 46.91 46.69

... C8 7:30:06.2 -18:32:59.38 0.57±0.15 23.6 3.0 46.3 46.69

... C9 7:30:00.3 -18:33:33.96 0.64±0.17 35.1 16.4 47.11 46.8

... C10 7:30:02.7 -18:33:34.13 0.57±0.15 16.8 2.7 47.72 48.39

... C11 7:30:14.0 -18:34:37.91 0.70±0.19 12.0 2.3 47.32 44.67

... C12 7:30:17.0 -18:33:56.11 0.85±0.23 16.3 · · · 44.07 · · ·

S307

... C1 7:35:33.3 -18:44:59.00 0.25±0.06 25.2 10.5 44.53 44.35

... C2-a 7:35:33.3 -18:45:20.50 0.28±0.06 28.1 9.1 45.26 44.68

... C2-b 7:35:33.2 -18:45:34.50 0.26±0.06 32.5 6.9 45.842 46.42

... C3 7:35:36.3 -18:46:25.83 0.43±0.1 38.0 11.2 46.6 46.55

... C4 7:35:38.7 -18:48:57.50 0.47±0.12 44.5 19.5 47.04 46.72

... C5 7:35:31.8 -18:46:23.50 0.32±0.07 28.2 5.0 46.78 46.88

... C6-a 7:35:41.7 -18:46:16.49 0.35±0.08 19.1 1.4 46.01 46.18

... C6-b 7:35:42.5 -18:46:30.49 0.34±0.08 12.7 1.7 48.22 48.25

... C7 7:35:37.4 -18:44:54.83 0.23±0.05 15.0 3.7 45.8 47.79

... C8 7:35:43.1 -18:48:35.32 0.37±0.09 26.9 8.4 47.11 47.21

... C9 7:35:43.7 -18:43:55.32 0.23±0.05 12.1 2.4 47.06 47.13

... C10 7:35:41.0 -18:44:59.49 0.32±0.07 14.3 3.6 47.29 47.34
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Table 3.3. Physical parameters calculated for all clumps

Clump Tex ∆V12 ∆V13 N(H) nint(H2) Mint τ12 τ13

No. (K) (km s−1) (km s−1) (×1020cm−2) (cm−3) (M�)

S104

...C1 18.46 2.37 1.02 18.13 34.5 53±9 17 0.27

...C2 15.631 2.81 3.05 31.77 11.9 13±2 13 0.21

...C3 25.844 3.56 · · · · · · 34.3 45±8 · · · · · ·

...C4 50.193 2.16 1.91 427.26 41.7 92±15.9 33 0.54

...C5 17.77 1.78 · · · · · · 14.4 8±1.3 · · · · · ·

...C6 16.483 3.52 1.55 31.81 16.3 10±1.6 24 0.38

...C7 34.219 2.62 0.79 42.39 33.5 59±10 16 0.27

...C8 40.132 2.47 0.71 131.53 42.1 85±15 42 0.68

...C9 27.714 2.71 2.15 190.27 35.9 51±9 40 0.64

...C10 39.111 3.55 2.07 243.36 44.2 65±11 28 0.45

...C11 32.405 2.49 1.48 100.94 36.3 52±9 23 0.37

...C12 31.932 2.12 1.87 210.72 35.4 65±11 39 0.63

...C13 37.462 2.57 1.19 146.19 46.1 51±9 32 0.51

...C14 37.352 2.69 1.87 102.59 41.6 46±8 14 0.23

...C15 27.957 2.05 1.26 78.92 21.2 44±8 28 0.45

...C16 28.711 2.47 1.97 159.49 28.0 34±6 34 0.55

...C17 31.784 2.13 1.63 51.45 15.8 19±3 11 0.18

...C18 20.363 2.99 1.67 21.06 13.1 23±4 10 0.16

...C19 29.326 2.85 2.02 73.27 24.2 36±6 15 0.24

...C20 17.82 1.87 1.31 10.42 9.5 8±1.4 8 0.13

...C21 27.45 2.31 1.89 51.04 39.6 17±2.9 12 0.20

...C22 26.855 2.77 · · · · · · 26.2 19±3 · · · · · ·

...C23 19.414 2.4 1.64 33.31 19.6 9±1.6 18 0.28

...C24 23.031 1.29 1.06 25.51 9.0 7±1.3 15 0.25

...C25 29.66 2.2 2.22 204.5 14.7 31±5 37 0.59
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Table 3.3—Continued

Clump Tex ∆V12 ∆V13 N(H) nint(H2) Mint τ12 τ13

No. (K) (km s−1) (km s−1) (×1020cm−2) (cm−3) (M�)

...C26 27.419 2.17 · · · · · · 32.3 32±6 · · · · · ·

...C27 16.936 2.34 · · · · · · 18.9 15±2.6 · · · · · ·

...C28 18.289 3.16 · · · · · · 15.0 59±10 · · · · · ·

...C29 18.468 1.53 · · · · · · 14.3 11±2 · · · · · ·

...C30 18.421 1.87 · · · · · · 9.9 51±9 · · · · · ·

...C31 13.665 2.01 · · · · · · 14.2 48±8 · · · · · ·

...C32 27.729 2.26 · · · · · · 28.1 40±7 · · · · · ·

...C33 14.057 1.98 · · · · · · 9.7 13±2.2 · · · · · ·

...C34 16.305 1.88 · · · · · · 6.7 35±6 · · · · · ·

...C35 23.883 2.8 · · · · · · 22.0 51±9 · · · · · ·

S149

...C1 32.079 4.21 2.62 152.34 47.9 1400±290 20 0.32

...C2 27.708 6.75 2.79 218.55 48.8 1280±260 35 0.57

...C3 32.395 1.86 0.92 69.01 27.3 435±89 25 0.41

...C4 31.238 1.67 1.36 122.4 20.9 412±84 32 0.52

...C5 40.48 3.27 2.42 361.84 48.1 960±196 33 0.54

...C6 30.229 3.83 1.04 76.15 31.3 900±184 28 0.45

...C7 27.16 3.71 1.57 58.08 35.7 900±77 17 0.28

...C8 24.099 2.19 1.65 25.16 18.5 386±67 9 0.14

...C9 23.551 2.19 1 60.59 10.3 328±30 37 0.60

...C10 29.216 2.15 1.65 28.16 29.0 440±90 7 0.11

...C11 25.703 2.38 1.53 26.79 21.4 211±43 9 0.15

...C12 25.727 1.39 0.9 34.43 11.6 118±24 21 0.34

...C13 21.24 2.27 · · · · · · 21.3 191±53 · · · · · ·

S152

...C1 25.647 5.28 1.37 508.99 156.0 117±18 93 1.51

150



Table 3.3—Continued

Clump Tex ∆V12 ∆V13 N(H) nint(H2) Mint τ12 τ13

No. (K) (km s−1) (km s−1) (×1020cm−2) (cm−3) (M�)

...C2-a 41.211 4.66 · · · · · · 207.0 176±28 · · · · · ·

...C2-b 49.415 4.35 1.75 456.5 233.0 175±28 40 0.64

...C2-c 40.782 4.87 · · · · · · 213.0 181±29 · · · · · ·

...C3 35.468 4.76 1.69 416.42 151.0 189±30 70 1.13

...C4 32.78 7.42 3.15 566.29 165.0 295±47 60 0.96

...C5 26.311 2.43 1.59 168.75 77.0 56±9 53 0.85

...C6 26.121 3.04 2.04 148.31 84.0 82±13 37 0.59

...C7 24.242 2.43 1.07 73.02 519.0 633±100 39 0.63

...C8 27.516 6.04 2.52 139.02 268.0 97±15 25 0.41

S175A

...C1 33.828 0.97 0.56 61.83 118.9 6±2.0 34 0.56

...C2 28.362 0.78 0.47 19.38 82.4 4±1.4 18 0.29

...C3 23.076 1.12 0.66 34.68 49.6 6±2.1 33 0.54

...C4 32.626 0.92 0.56 72.12 118.7 5±1.6 43 0.69

...C5 47.676 1.31 0.85 290.4 139.7 14±5 56 0.90

...C6 46.698 1.61 0.95 243.38 201.2 19±7 44 0.70

...C7 35.307 0.97 0.64 44.75 113.7 9±3.1 20 0.33

...C8 39.128 1.12 0.74 105.94 71.4 18±6.4 34 0.55

...C9 36.178 1.54 1.08 190.75 126.8 15±5.2 49 0.78

...C10 27.025 1.59 0.93 82.41 77.1 9±3.2 42 0.68

...C11 20.901 1.25 0.87 13.28 35.8 6±2.1 12 0.19

...C12 21.039 1.15 0.71 13.5 63.2 7±2.4 14 0.23

...C13 19.084 1.32 0.62 20.09 70.6 6±2.3 29 0.47

S175B

...C1 22.819 8.68 1.44 70.78 220.9 31±11 32 0.51

...C2 25.341 4.1 1.4 34.42 183.0 12±4.1 13 0.21
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Table 3.3—Continued

Clump Tex ∆V12 ∆V13 N(H) nint(H2) Mint τ12 τ13

No. (K) (km s−1) (km s−1) (×1020cm−2) (cm−3) (M�)

...C3 18.466 4.87 1.57 49.57 178.1 6±2.2 30 0.48

...C4 19.52 2 1.26 51.17 38.6 16±5.6 35 0.56

...C5 29.769 1.04 0.75 31.58 48.7 17±5.8 17 0.27

...C6 20.339 2.6 1.09 33.82 139.0 9±3.1 25 0.40

...C7 18.71 2.77 1.32 57.33 63.0 24±9 40 0.65

...C8 19.019 3.3 1.22 85.83 86.2 29±10 63 1.02

...C9 20.774 2.72 1.39 100.91 64.6 26±9 56 0.90

...C10 23.955 1.94 1.17 71.86 93.4 22±8 36 0.59

...C11 19.838 2.6 1.4 101.21 93.3 10±3.6 60 0.97

...C12 20.274 1.13 · · · · · · 16.4 12±4.3 · · · · · ·

S192

...C1 22.204 1.49 0.82 46.41 27.0 26±8 38 0.62

...C2 15.906 1.29 0.83 10.26 23.6 7±2 15 0.25

...C3 26.156 2.19 1.76 40.57 71.0 61±19 12 0.19

...C4 21.597 1.04 0.75 20.89 29.9 9±3.0 20 0.32

...C5 23.829 2.05 0.98 53.91 58.5 57±18 33 0.53

...C6 28.272 3.45 2.13 199.34 6.1 22±7 41 0.66

...C7 18.041 1.76 1.2 23.06 22.6 19±6 19 0.31

...C8 21.167 1.98 1.27 21.93 28.0 61±20 13 0.21

...C9 15.906 1.28 0.63 6.64 14.1 14±4.5 13 0.21

...C10 13.057 0.94 · · · · · · 6.6 8±2.4 · · · · · ·

S196

...C1 20.336 3.09 · · · · · · 42.9 179±73 · · · · · ·

...C2 21.804 2.83 · · · · · · 44.6 201±82 · · · · · ·

...C3 20.336 0.83 0.71 4.96 11.2 6±2.6 6 0.09

...C4 21.804 1.7 0.92 25.97 16.4 58±24 20 0.32
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Table 3.3—Continued

Clump Tex ∆V12 ∆V13 N(H) nint(H2) Mint τ12 τ13

No. (K) (km s−1) (km s−1) (×1020cm−2) (cm−3) (M�)

...C5 11.839 2.05 1.15 5.12 10.1 23±9 9 0.15

...C6 12.203 1.37 1.4 3.63 5.7 13±5.2 5 0.08

...C7 18.271 1.6 1.11 28.71 18.0 58±24 25 0.40

...C8 17.275 1.2 0.68 9.53 13.4 41±17 15 0.24

S212

...C1 36.717 3.29 1.48 60.59 53.5 479±90 11 0.18

...C2 34.708 2.91 1.58 139.7 38.0 671±125 26 0.42

...C3 38.483 3.81 1.8 178.81 31.0 1028±193 24 0.39

...C4 28.605 3.75 2.15 92.13 34.8 836±157 18 0.30

...C5 27.506 1.57 1.09 36.84 16.7 335±63 15 0.25

...C6 25.897 2.77 1.03 18.97 21.0 463±87 9 0.15

...C7 22.956 3.08 1.37 46 15.6 738±138 21 0.35

...C8 20.845 2.31 0.74 12.3 10.6 624±117 13 0.20

...C9 15.565 2.67 2.2 21.3 10.7 223±42 12 0.20

...C10 17.794 2 1.35 13.94 15.2 232±44 10 0.17

...C11 21.207 2.63 1.94 35.61 29.2 430±81 14 0.22

...C12 20.965 3.04 2.25 31.97 36.1 341±64 11 0.17

S288

...C1 30.282 3.84 · · · · · · 38.4 150±114 · · · · · ·

...C2 33.4 3.44 · · · · · · 44.4 164±125 · · · · · ·

...C3 14.967 1.43 · · · · · · 8.1 45±34 · · · · · ·

...C4 16.42 1.66 · · · · · · 15.9 17±13 · · · · · ·

S305

...C1 31.248 2.66 1.95 148.43 42.0 430±220 28 0.44

...C2 38.498 3.42 1.72 148.74 49.4 760±390 21 0.34

...C3 37.608 2.45 1.54 115.31 57.9 361±185 19 0.31
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Table 3.3—Continued

Clump Tex ∆V12 ∆V13 N(H) nint(H2) Mint τ12 τ13

No. (K) (km s−1) (km s−1) (×1020cm−2) (cm−3) (M�)

...C4 31.497 1.93 1.04 97.79 40.0 223±114 34 0.54

...C5 30.091 1.74 1.13 83.23 32.6 189±97 29 0.46

...C6 25.524 1.32 1.01 17.89 33.9 107±55 9 0.15

...C7 64.765 2.4 1.43 272.49 77.5 466±239 17 0.28

...C8 29.006 2.68 2.14 43.7 37.6 169±87 8 0.14

...C9 40.628 1.73 1.26 220.45 41.1 256±131 39 0.62

...C10 22.026 1.76 1.18 18.58 27.8 125±64 11 0.18

...C11 17.174 3.49 1.4 16.67 40.9 344±176 13 0.21

...C12 21.552 3.2 · · · · · · 27.5 407±208 · · · · · ·

S307

...C1 30.617 2.18 1.11 97.93 101.3 38±16 33 0.54

...C2-a 33.508 2.48 1.11 126.02 71.3 37±16 24 0.39

...C2-b 38.003 2.41 2.26 132.25 104.8 44±19 15 0.24

...C3 43.504 2.59 2.28 251.74 78.4 152±66 21 0.35

...C4 50.001 3.35 2.16 513.66 99.7 251±108 35 0.57

...C5 33.622 2.22 1.89 71.85 70.3 56±24 12 0.19

...C6-a 24.456 1.58 1.03 8.67 29.8 31±14 5 0.08

...C6-b 17.912 1 0.7 6.24 19.3 18±8 9 0.14

...C7 20.192 1.62 0.6 12.99 54.2 16±7 18 0.28

...C8 32.338 2.63 1.38 93.76 100.0 124±54 23 0.37

...C9 17.279 1.07 0.68 8.59 24.8 7±3.2 14 0.22

...C10 19.474 1.32 1 20.46 25.0 19±8 18 0.29
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Table 3.4. The Larson power law index for each region

Source α[∆V12] α[∆V13] 12CO Correlation Coefficient 13CO Correlation Coefficient Source type

S104 1.0 ± 0.04 -1.2 ± 0.4 0.007 -0.1 II

S148/S149 3.0 ± 0.5 2.5 ± 0.7 0.66 0.49 I

S152 -1± 0.9 -1.2± 0.8 0.019 -0.1 II

S175A 1.3 ± 0.3 1.4 ± 0.3 0.55 0.64 I

S175B -1.7 ± 0.4 -0.75 ± 0.2 -0.59 -0.38 II

S192/193 1.5 ± 0.2 1.5 ± 0.2 0.67 0.62 I

S196 1.9 ± 0.4 1.2 ±0.2 0.78 0.34 I

S212 -1.0± 0.1 -1.6 ± 0.4 -0.022 -0.48 II

S305 1.9 ± 0.2 1.6 ± 0.2 0.79 0.51 I

S307 1.4 ± 0.2 1.9 ± 0.2 0.44 0.53 I
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Chapter 4
Star Formation at the Borders of H II

Regions

Expansion of H II regions within molecular clouds forms dense envelopes around

the ionized gas fronts. The collected shells may not be gravitationally stable

and may collapse and initiate star formation. The “collect and collapse” model

of triggered star formation is now well developed theoretically (Elmegreen &

Lada 1977) and is confirmed observationally (e.g Deharveng et al. 2005). Many

observational studies have confirmed triggered star formation at the borders of

expanding H II regions. For example in an observational investigation of collect

and collapse candidates in a sample of 20 H II regions (Deharveng et al. 2005,

2006, 2008, 2009, Zavagno et al. 2006, Pomares 2009) young stellar clusters

embedded within dense molecular gas at peripheries of H II regions have been
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found. Dense clumps formed within the collected gas also may host massive

cores which produce the next generation of massive stars. Regions forming rich

embedded clusters require high densities (n > 105 cm−3) and they are more

fragmented. A lower density with less fragmentation may produce a smaller

number of stars (Lada et al. 1997).

Molecular gas emissions were used to study the structure and fragmentation

of the gas while the near infrared imaging provides the information of the stellar

components within the area and probably the sources embedded within the gas.

Luminous red point sources could be candidates for young massive proto-stars

or stellar groups.

In this chapter we investigate the stellar population within the areas we

have mapped around H II regions using near-IR data. We look at the spatial

distribution of stars and how that distribution relates to the cloud structure

and also look for candidates of Young Stellar Objects (YSOs). Two types of

clusters were identified in this study: young clusters embedded within dense

clumps at the peripheries of H II regions which probably have been triggered

by the expansion of the ionized gas, and open clusters with more main sequence

stars that contain the exciting star and overlap with the H II region.
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4.1 The Two Micron All Sky Survey (2MASS)

Data

The Two Micron All Sky Survey (2MASS) is the deepest uniform scan of the

entire sky in three near-IR J (1.25 µm), H(1.65 µm) and Ks (2.17 µm) bands to

a 3σ detecting threshold of 17.1, 16.4 and 15.3 mag for each band, respectively.

All point sources brighter than 1 mJy in each band with signal to noise ratio

(S/N) larger than 10, with a pixel size of 2.0′′ is detected and characterized.

We selected 2MASS point sources within our 11 mapped regions in 12CO(2-

1). Only sources with photometric quality of Qflg = AAA were selected. This

quality flag means a S/N greater than 10 and corrected photometric uncertainty

(cmsig)< 0.10857. This criterion reduces the confusion with background and

field stars with spectral types later than F0 while selecting the range for young

stellar candidates of high and intermediate mass stars.

Colour-colour and colour-magnitude diagrams help to identify the nature

of the sources in each sample. For example, point sources with red excess in

a (J-H) - (H-Ks) colour-colour diagrams could be candidates YSOs. We plot

(J-H) versus (H-Ks) diagrams for 2MASS sources detected within our mapped

regions. We study the stellar population in each region and discuss how it

might have been affected by the physical conditions of the cloud.
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4.1.1 Methods

We plot the (J − H) vs. (H − K) colour-colour diagrams to understand the

nature of the detected sources in 2MASS images. Stars in different evolutionary

stages stand at different portions of the diagram. We accept the reddening-free

quantity q, defined by Romero and Cappa (2009) following the previous works

(Comeron & Pasquali, 2005), to separate early type stars from background red

giants:
q = (J −H)− 1.8× (H −K). (4.1)

Main sequence stars have q values between -0.15 and 0.10. Object with red

excess have smaller qs (q < −0.15) and giant stars have q larger than 0.2. In

the case of S104 and S307 there is contamination between giants and the main

sequence stars on the colour-colour diagram. To keep the safe side, we accept

the sources with q > 0.25 as giants for S307 and q > 0.4 for S104.

We estimated the star formation efficiency (SFE) by counting the detected

sources in K band within the selected clumps. The clump edge was taken

as defined for clump mass estimation in Chapter 2. The total stellar mass

is estimated assuming an average of 1 M� for detected point sources within

each clump. The 2MASS data is not deep enough and it does not identify the

embedded faint sources, therefore the number of detected sources especially

for lower mass stars might be under-estimated. The total stellar mass is then

estimated just based on massive luminous stars. Deep NIR observations are

needed for more accurate SFE estimation.
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4.2 S104

Figure 4.1 shows 12CO(2-1) contours super-imposed on a 2MASS Ks band

image. The thick white curve presents the visible boundaries of the H II region

from Digital Sky survey red images. The molecular gas has been swept by the

expansion of the ionized gas and fragmented into dense clumps in shells around

the H II region. Such conditions favour triggered star formation.

A compact stellar cluster is detected in 2MASS data associated with the

hot dense clump C4, at the left side of the image. C4 has a high Tex of 36 K and

N(H)=334×1020 cm−2. The clump is gravitationally unstable in this condition

and will likely fragment to several smaller cores. This cluster is probably a

second generation of stars formed through the “collect and collapse” model.

The star formation efficiency (the fraction of total mass in stars to total mass

in gas plus total mass in stars) is about 35% which is higher than general star

formation efficiency in molecular clouds (less than 10% up to 20%, Jorgenssen

et al., 2008) Deharveng et al. (2003) introduced S104 as a prototype of massive

star formation triggered by the expansion of H II region. They have studied

the embedded cluster with deep CFHT infrared imaging. Figure 4.2 shows

the embedded cluster super-imposed on an integrated C18O(2-1) map from the

IRAM 30m telescope. The data reduction and results of these observations are

yet to be published.

In the right hand panel of Figure 4.1 we present the colour-colour diagram

of the stars within our 12CO(2-1) map using 2MASS data. The solid thick
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line shows the main sequence and the giant branch (Koornneef 1983). The

dashed lines show the reddening lines for B1V and late type M0V stars using

standard extinction curves (Stahler & Palla 2004) and show a reddening of

AV = 15 mag (dust changes the colours that we observe and the reddening line

shows the effect of this reddening on different colours). In total 687 sources

were detected within the 12′ × 12′ mapped area. The main sequence stars are

shown in dots and the giants with open squares. 44 of the detected sources,

shown as red open triangles, have an infrared excess and lie below the reddening

line. Uncertainty in magnitude determination may cause a shift for the sources

that lie close to the reddening line in colour-colour diagram but it is not very

large (the 2MASS photometry uncertainties is smaller than 0.1 mag). These

reddened objects could be candidates YSOs.

Figure 4.3 shows the K versus (J −K) colour-magnitude diagram for the

same sources. Black dots show the main sequence stars, blue squares show the

giants and the red triangles show the sources with red excess. The reddening

lines are drawn for an O9 and a B5 star. The solid curve marks the main

sequence at the same distance of the exciting star of S104 with no extinction

and the long-dashed curve shows the main sequence with a visual extinction of

3 mag. A second population of highly extincted stars (AV > 20 mag) which are

mostly giants (O and B stars) and sources with extra reddening is noticeable in

the diagram with (J−K) > 1.8 (sources at right side of the vertical dotted line).

Most of these sources are toward C4, the hot, dense clump at the borders of
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the H II region which contains a young cluster. These all suggest that massive

star formation is currently taking place in this region.
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Figure 4.1 (left) Contours of the 12CO(2-1) emission integrated between -10

and +10 km s−1 of S104 super-imposed on the 2MASS Ks band. A cluster

associated with the hot dense clump C4, is detected at the East (left) side of

the image. The thick white curve presents the visible boundary of the ionized

gas from DSS red images. (right) The JHK colour-colour diagrams of the stars

within Figure 4.1. The thick solid line presents the main sequence and the giant

branch. The dashed lines are the reddening lines for B1V and M0V stars. The

giants are presented with open squares. Red open triangles show the sources

with red excess and black dots are main sequence stars.
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Figure 4.2 Map of the C18O(2-1) of the molecular cloud fragment associated

with the cluster super-imposed on a CFHT K band image of the cluster by

Deharveng et al. (2003). The cluster is likely a second generation of young

stars formed within the compressed shells of molecular gas by the expansion of

the ionized gas.
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Figure 4.3 Colour-magnitude diagrams of the 2MASS sources toward S104.

Black dots show the main sequence stars, blue squares show the giants and

the red triangles show the sources with red excess. The reddening lines are

drawn for an O9 and a B5 star. The solid curve marks the main sequence

at the same distance of the exciting star of S104 with no extinction and the

long-dashed curve shows the main sequence with a visual extinction of 3 mag.

A second population of highly extincted stars is noticeable in the diagram with

(J−K) > 1.8 (noted by vertical dotted line). Most of these sources are toward

C4, the hot, dense clump at the borders of the H II region which contains a

young cluster.

165



4.3 S148/S149

Figure 4.4 shows the contours of the 12CO(2-1) emission of S148/S149 over-

laid on the 2MASS Ks band image. The thick white curve shows the visible

boundary of the H II region from DSS red images. The green circles note the

positions of detected 2MASS objects. A cluster is detected at the position of

the H II region. The B0V exciting star is probably a member of this cluster.

That is consistent with the idea that massive stars form within the rich stel-

lar clusters and the number density of the stars is well correlated with the H2

density (e.g. Saito et al. 2007). The cluster associates with clump C5 which

is the hottest clump in the mapped region (Tex = 29.5 K). S148-C5 has a high

column density of N(H) = 290 ×1020 cm−2 and a broad line width of ∆V12=

3.27 km s−1. The star formation efficiency of the clump is 5%, consistent with

the general star formation efficiency in molecular clouds.

Figures 4.4 right panel and 4.5 show the colour-colour and colour-magnitude

diagrams for the detected point sources (noted by green circles) in Figure 4.4

left panel. The overall extinction is about AV ∼ 5 mag. Three highly reddened

sources (red triangles at the right side of both diagrams) locate roughly at the

same position of C5 and could be YSOs candidates. A small number of giants

are highly extincted but the nature of these sources cannot be determined

without a NIR spectroscopy.

Stars with various masses may form from a single clump with large internal
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motions. To form a dense core that can produce a massive star, the clump

requires both a high gas density and large internal motion while it should also be

gravitationally bound (McKee & Tan 2003). S148-C5 has a velocity integrated

mass of Mint = 960±196 M� which considering uncertainties, is slightly larger

than the Virial mass (Mvir = 696±75 M�). The clump has enough mass to be

gravitationally bound and satisfy the requirements of massive star formation.

Figure 4.4 (Left) Contours of the 12CO(2-1) emission of S148/S149 overlaid on

the 2MASS Ks band image. The thick white curve shows the visible boundary

of the H II region from DSS red images. The green circles note the position of

detected 2MASS objects. Note the high density of point sources at the centre

of the H II region. The exciting star is probably a member of this cluster.

(right) Colour-colour diagram for detected 2MASS sources in S148/S149 7′×7′

mapped area. The marks are the same as Figure 4.2.

167



Figure 4.5 Colour-magnitude diagrams of the 2MASS sources toward

S148/S149. The symbols and reddening lines are the same as Fig. 4.3.
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4.4 S152

S152 is an active star-forming region. Several H2O and one OH masers have

been detected toward this molecular cloud (Heydari-Malayeri & Testor 1981).

Similar to S148 the H II region is coincident with a stellar cluster. The O9V

exciting star (Russeil et al. 2007) is probably a member of the cluster. S152

has large internal motions with large line widths (Table 3 in Chapter 3). The

S152 cluster is also coincident with S152-C3 which has ∆V12 = 4.76 km s−1

and ∆V13 = 1.69 km s−1. The clump has a high temperature (Tex = 26K)

and high density (N(H)= 340 ×1020 cm−2). The clump also has larger Mint

compared to Mvir (190±30 vs. 135±11) and is gravitationally stable. The star

formation efficiency for this clump is estimated about 12% which is consistent

with general star formation efficiency in molecular clouds.

A second smaller embedded cluster is noticeable associated with S152-C4.

In a recent near-IR study, Chen et al. (2009) have detected an IR nebula and

several point sources embedded within it (Figure 4.7). S152-C4 has the highest

density (N(H)= 466 ×1020 cm−2) and the largest line widths (∆V12 = 7.42 km

s−1 and ∆V13 = 3.15 km s−1) among S152 clumps. That large line width is

maybe due to a proto-stellar outflow.

We have detected 24 2MASS sources with IR colour excess in our colour-

colour diagram (Figure 4.6 right panel) . Thirteen of these objects form a new

population of red sources on colour-magnitude diagram (Figure 4.8) and are
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good YSOs candidates indicating that star formation is active in this region.

In their study of a smaller region 4.2′ × 4.2′ Chen et al. have identified 21

sources with an IR colour excess which exhibits the characteristics of T Tauri

stars, Herbig Ae/Be stars or Class I proto-stars. Both clusters show evidence of

sequential star formation. The larger cluster at the position of the H II region

is more evolved and has mostly main sequence stars, as expected, but the other

cluster is young and embedded in the dense clump covered by an IR nebula

(Chen et al. 2009).

Figure 4.6 Same as Figure 4.4 for S152. A stellar cluster is located at the

position of the H II region and the O9V exciting star is probably a member of

the cluster. 24 2MASS sources with red excess has detected within the map.
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Figure 4.7 JHK ′ composite colour image of S152 in a 4.2′ × 4.2′ field by Chen

et al. (2009). The two circles identify the two clusters. The upper cluster

associates with S152-C3 and the lower cluster is associated with S152-C4, CO

clumps identified in our 12CO(2-1) maps. The upper cluster which is covered

by the H II region is more evolved while the lower cluster is embedded in an

IR nebula and probably much younger.
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Figure 4.8 Colour-magnitude diagrams of the 2MASS sources toward S152.

The symbols and reddening lines are the same as Fig. 4.3. Thirteen point

sources (right side of the diagram) with IR excess form a new population of

YSO candidates
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4.5 175A / S175B

S175 is a small H II region. The associated molecular cloud has been stud-

ied in detail by Azimlu et al. (2009) (Chapter 2 of this thesis). Figures 4.9

and 4.10 present the CO contours super-imposed on 2MASS images for S175A,

associated with the H II region and S175B, within the same molecular cloud

but ∼ 20′ farther. The most massive clumps in S175A (C6) with Tex = 47K

and N(H) = 243× 1020cm−2 locates at the edges of the H II region. The star

formation efficiency in this clump is lower (∼ 2%) than the most turbulent

clump, C1, in S175B (∼ 6%) and less than the general star formation efficiency

in molecular clouds. A proto-stellar outflow has been detected associated with

S175B-C1 in our molecular cloud study (Chapter 2, Azimlu et al., in prepa-

ration). We have detected an extended object perpendicular to the outflow

direction in 2MASS Ks band data which is presented in the enlarged rectan-

gular in right panel in Figure 4.10. A higher resolution image is required to

study the structure of this extended object.

We have selected a third off field to compare the stellar distribution within

S175A and S175B. Figure 4.11 presents the colour-colour diagram for S175B

(left panel) and the off field (right panel). We see almost the same number

of objects with infrared colour excess in both S175B and off field and also

in S175A (Figure 4.9 right panel). The main sequence stars and giants are

more shifted along the reddening line than the off field. More reddening is
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seen for sources detected within S175B which indicates more gas in this region,

consistent with our findings in Chapter 2. We have detected five sources within

S175B (including the proto-stellar core with outflow and 4 point sources close to

it ) which have been detected only in Ks band and are possibly young embedded

stars.

Figure 4.12 shows the colour-magnitude diagram for S175A, S175B and

the off field. S175A is partially widened along the reddening line compared

to the off field, while S175B contains a new population of lower mass stars

with high IR colour excess. Detecting these sources associated with S175B-

C1 and detection of the proto-stellar outflow at the position of this clump

indicates that star formation is in progress in this region but none of the YSO

candidates are massive proto-stars. S175B is too far from the ionized gas to

be affected. contrarily, we have found no stellar cluster, candidates for proto-

stars, turbulent or dynamically active regions in S175A, the closest part of the

molecular cloud to the S175 H II region. These all means that star formation

has not been triggered by the H II region and star formation process in S175B

is probable spontaneous.
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Figure 4.9 (left) Same as Figure 4.1 for S175A. No clustering or active star

formation process has been detected in this region. (right) the colour-colour

diagram for S175A.
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Figure 4.10 The 12CO(2-1) contours overlaid on 2MASS Ks band image for

S175B. An active star-forming region that has been detected in the top right

corner of the map is enlarged in the right panel. An extended object has been

detected within S175B-C1 at the position of a recently detected proto-stellar

outflow and almost perpendicular to the outflow direction.
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Figure 4.11 colour-colour diagrams for S175B (left) and a check off field (right).

As was expected, the sources associated with the molecular gas have been

shifted along the reddening lines.
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Figure 4.12 Colour-magnitude diagrams of the 2MASS sources toward S175A

(left panel), S175B (middle) and off field (right panel). The symbols and red-

dening lines are the same as Fig. 4.3. All regions contain none or few massive

stars. S175A sources are slightly reddened along the reddening lines compared

to the off field, but it does not contain too many sources with IR colour excess.

In contrast S175B contains lots of sources with red colour excess which form

a new population of stars with high reddening. S175B is a good example of

spontaneous low mass star forming region.

178



4.6 S192 / S193 / S194

The molecular gas in this region is associated with three H II regions. Figure

4.13 presents the 12CO(2-1) contours overlaid on 2MASS Ks band image. The

visible borders of three H II regions are shown by red curves. No clustering is

seen in this region and probably most of the original cluster members have been

evaporated and left the cluster. The central clump, S192-C6 which appears to

be compressed by three H II regions has the higher temperature (Tex = 21 K)

and density (N(H)= 168 × 1020 cm−2) in the cloud. It also has the largest

line widths: ∆V12 = 3.45 km s−1 and ∆V13 = 2.13 km s−1. The clump has a

larger Virial mass compared to velocity integrated mass (Mvir =300 ±50 vs.

Mint = 22± 7) and is not gravitationally bound. The star formation efficiency

is very high in this clump (∼ 40%) and probably star formation has been

triggered in this clump by the expansion of three H II regions.

A weak IR nebula is detected at S192-C6. Eight reddened objects appear

associated with this nebula. The bright central source has the largest infrared

excess in the colour-colour diagram. Figure 4.14 shows the colour-magnitude

diagram for this region. Most of the 2MASS detected sources are main sequence

or giants slightly reddened by a small extinction of AV ∼ 3 and just a few

giants with larger extinctions up to AV ∼ 15. Only one source has been

detected with high infrared excess which locates at the S192-C6. The cloud

seems to be evolved and probably has lost most of its original gas, but the
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central compressed high density gas with large external motion still favours a

second generation star formation; however the clump mass is not high enough

to produce a rich cluster or massive stars.

Figure 4.13 The molecular cloud associated with S192/S193/S194 H II regions

is an evolved star-forming environ. The red curves present the visible borders

of three H II region. The central compressed gas has high temperature and

density and contains a few reddened objects. Despite the high density, external

pressure from expanding ionized gas and large internal motions, the clump does

not contain enough mass to produce a reach stellar cluster or massive stars.
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Figure 4.14 Colour-magnitude diagrams of the 2MASS sources toward

S192/S193/S194. The symbols and reddening lines are the same as Fig. 4.3.
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4.7 S196

S196 is an evolved H II region, similar to S192. Figure 4.15 shows a small

amount of the molecular gas left around the expanded H II region. No exciting

star has been identified for this bubble of ionized gas. It seems that the expan-

sion of the H II region has swept the molecular gas to an area larger than our

map and we need to extend the 12CO(2-1) map to cover more of the molecular

gas associated with this H II region. The only dense part of the cloud is lo-

cated at the south-east corner of the mapped region (S196-C1 and S196-C2).

We do not have 13CO(2-1) data for these two clumps. They are not very hot

(Tex = 15.5K and 16.5 K for C1 and C2 respectively) but contain more than

80% of the total mapped molecular gas but the star formation efficiency is not

very high (∼ 3%). The 2MASS sources with the highest infrared colour ex-

cess from colour-colour diagram lie within this region. The colour-magnitude

diagram, Figure ?? also shows mostly main sequence foreground/background

stars with an average extinction of AV ∼ 3− 4.
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Figure 4.15 same as Figure 4.13 for S196. The H II region has swept most of

the molecular gas to an area larger than the mapped region. No exciting star

has been identified for this region. The original cluster has probably evolved

and evaporated.
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Figure 4.16 Colour-magnitude diagrams of the 2MASS sources toward S196.

The symbols and reddening lines are the same as Fig. 4.3.
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4.8 S212

S212 is a large H II region with a diameter of 10.2 pc. It has been excited by

an O6 star which belongs to a stellar cluster. Figure 4.17 presents the 12CO(2-

1) map super-imposed on the 2MASS Ks band image. The molecular gas has

a filamentary structure, only half of which has been mapped by us (compared

to a more complete map by Deharveng et al. 2008). The H II region is also

larger than the mapped area and the visible edges of the ionized gas is shown

with the thick white curve. The exciting cluster is located at the west (right)

side of the map. The molecular gas at the position of the H II region has been

swept and collected in dense fragmented shells. These hot clumps (S212-C1 to

C4) with high gas density and large line widths (Tex > 25 K and ∆V12 > 3 km

−1), are good candidates of sequential star formation. S212-C3 has the highest

mass and temperature (≈ 1030M� and Tex = 38 K) however it is relatively

small clump (2 pc in diameter). The star formation efficiency in this clump

is about 8%, consistent with general efficiency of star formation in molecular

clouds.

Deharveng et al. (2008) made a detailed study including CFHT observa-

tions in JHK broad band filters. Figure 4.18 presents the result of their near-IR

observations. They have identified a YSO located at the periphery of the H II

region. Their colour-magnitude diagram shows that the whole region is af-

fected by a visual extinction of about 3 mag. They have observed red stars
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all over the cluster but the density of red stars is higher at the direction of

S212-C1 and S212-C2 in our study. They mark sources with infrared colour

excess in colour-colour diagrams which are good candidates for YSOs. S212 is

the farthest source in our sample at a distance of 7.1 K pc. The AV ∼ 3 is very

low for such a large distance, therefore, Deharveng et al. (2008) conclude that

there is little local dust in front of the exciting cluster. Our colour-colour and

colour-magnitude diagrams (Figures 4.17 and 4.19) for 2MASS sources are not

as deep as their CFHT study, but agree with their findings. We detect 6 point

source with high IR colour excess which could be YSOs candidates.

Figure 4.17 same plot as Figure 4.1 for S212. The H II region has been excited

by a cluster containing an O6 star. The 2MASS data colour-colour diagram

shows some sources with infrared colour excess that could be YSOs, but in

total we do not see a high reddening for the whole cluster.
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Figure 4.18 The exciting cluster of S212 with some identified sources. The

colour-magnitude diagram shows a visible extinction of 3 mag for the whole

field which is small for an object at the distance of S212 and probably caused

only by the ISM. Thus the local dust is very little and has a small role in

reddening (both pictures from Deharveng et al. 2008).
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Figure 4.19 Colour-magnitude diagrams of the 2MASS sources toward S196.

The symbols and reddening lines are the same as Fig. 4.3.
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4.9 S288

S288 is a small H II region excited by a B1 star located in a stellar cluster.

Similar to S212 the molecular gas associated with this H II region has a fil-

amentary structure with only four identified clumps. The two central dense

clumps, S288-C1 and S288-C2, seems to be two sides of a twisted filament with

excitation temperatures of 22.5 K and 24.6 K respectively. They also have

large 12CO line widths of 3.84 and 3.44 km s−1. We have no 13CO data for

this region. Star formation efficiency is moderate for these clumps (∼ 6%) in

agreement with general star formation efficiency in molecular clouds.

At a moderate distance of 3 kpc, the visible extinction due to the ISM is not

very large and about AV = 2 mag (colour-magnitude diagram, Figure 4.21).

The colour-colour diagram (Figure 4.20) also does not show high reddening for

the whole region indicating that similar to S212, there is little dust associated

with the cluster and the whole region. Only one 2MASS source has been

detected with high reddening which is located at the centre of the cluster and

probably behind the dense central twisted part of the filament. The 12CO(2-

1) emission line at the centre of the cloud is double-peaked and probably self-

absorbed. More observations in thinner emission lines such as 13CO and C18O

will be needed to estimate the physical properties of the molecular gas (density,

excitation temperature, mass).
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Figure 4.20 same as Figure 4.1 for S288. The exciting star belongs to a stellar

cluster located at the dense central part of the filamentary structure of the

molecular gas. The colour-colour diagram does not show a high extinction.

The only high reddened 2MASS source in this diagram lies at the direction

of the central dense clump which has signatures of self-absorption in 12CO

emission lines.
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Figure 4.21 Colour-magnitude diagrams of the 2MASS sources toward S288.

The symbols and reddening lines are the same as Fig. 4.3.
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4.10 S305

Figure 4.22 presents the 12CO(2-1) contours super-imposed on 2MASS Ks band

images. The H II region covers a stellar cluster which probably contains the

O9.5 exciting star. The molecular gas has partially collected at the edges of the

ionized has and collapsed into dense clumps. The dense clump located at the

west (right) edge of the mapped region, S305-C7, is the hottest clump detected

in our entire sample of 10 H II regions with a Tex = 46.4. Except for the

outflow detected in S175B, S305-C7 is the only clump with high density that we

have detected CS(5-4) at the position of highest 12CO peak within the clump.

Detection of CS(5-4) indicates a high central gas density of 2.8×107cm−3 (Evans

1999). This clump with the total velocity integrated mass of 470±240 M�, is

a likely candidate for massive star formation. A small sub-cluster is identified

at the direction of this clump in the 2MASS image, but it is not determined if

the cluster is associated with the S305-C7.

The star formation efficiency is moderate (∼ 6%) and probably underesti-

mated as most of the newborn stars are embedded within the dense gas and not

detected in 2MASS. S305-C2, the large central clump, is another candidate for

a massive star-forming region. Located at the periphery of the H II region and

probably compressed by the expansion of ionized gas, S305-C2 has a tempera-

ture of Tex = 28 K. S305-C2 is the largest and the most massive clump in the

region with Mint = 760±390 M� which is almost twice the Mvir = 320±87M�.
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Although the clump has a large line width of ∆V12 = 3.42 km s−1, it

is gravitationally bound. We have detected 26 sources with infrared colour

excess in colour-colour diagram, Figure 4.23. Colour-magnitude diagram shows

the main sequence and with a moderate extinction of AV ∼ 4 − 5 mag but

interestingly we notice a second population of giants and sources with IR colour

excess in Figure 4.23. Similar to S104, these highly extincted giants and red

sources are good candidates of new born stars and YSOs peobably embedded

within high density gas clumps.

The reddening is high within the field, indicating high density dust in the

region. Most of the detected sources with red colour excess are in the direction

of dense clumps.
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C7 

Figure 4.22 Same as previous Figures for S305. The H II region lies over a
stellar cluster. The colour-colour diagram shows a high reddening in the whole
field with 26 sources with red colour excess.
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Figure 4.23 Colour-magnitude diagrams of the 2MASS sources toward S305.

The symbols and reddening lines are the same as Fig. 4.3. similar to S104,

a second population of giants and point sources with large IR colour excess is

noticeable in this diagram. these are objects could be candidates for newborn

massive stars or YSOs.
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4.11 S307

Figure 4.24 presents the 12CO(2-1) contours super-imposed on 2MASS Ks band

images. The O9 exciting star belongs to a stellar cluster identified in 2MASS

images at the same position as the H II region. The cluster is probably the result

of a triggered star formation process as discussed in Appendix A. A second

smaller cluster is identified in the south-east part of the cloud which is distant

from the H II region and unlikely to be affected by the ionized gas. Different

physical conditions within that dense clump may have caused a different stellar

population. These two clusters are an interesting pair of objects to study in

details in future. Deep and high resolution observation is required to study the

faint embedded young stellar objects within this small part of the cloud.

Contrary to our expectations, S307-C4 which is distant from the H II region,

has the highest temperature (Tex= 50 K) and column density (N(H) = 513

×1020 cm s−2), the largest line width (∆V12 = 3.35 km s−1) and the largest

mass (Mint = 250±108 M�). Mint is close to the Mvir = 277±63 M�, therefore

the clump is in Virial equilibrium. This physical conditions are suited for cluster

formation (Lada et al. 1997) and massive star formation (McKee & Tan 2003).

The star formation efficiency in this clump is about 12% which is consistent

with the star formation efficiency in molecular clouds but smaller than the star

formation efficiency in S307-C2 ∼ 27%, the central clump which contains the

exciting star and a stellar cluster.
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In a recent study of S307, Roman-Lopes (2009) confirmed the presence of

an O9-O9.5V exciting star but they calculated a new heliocentric distance of

3.2±0.5 kpc for it. They estimated the dynamical age of the H II region to be

1.6×106 yrs. They also observed the cluster associated with the H II region

in near-IR JHK bands and found that the stellar population is very young

and a large fraction of YSO candidates with large excess emission in 2µm, are

accreting pre-main sequence proto-stars. They estimated a mean age of 2.5

Myr for the cluster.

Our colour-colour and colour-magnitude diagram for 2MASS sources (Fig-

ures 4.24 and 4.25) are not as deep as Roman-Lopez (2009) but in agreement

with their findings. We have detected 24 sources with IR colour excess 5 of

which are also high extincted. The average extinction of the visible magnitude,

AV , is about 3 mag which is not very large but some giants and red sources

with extinctions as large as 15 are noticeable in Figure 4.25. These objects are

probably newborn embedded stars or YSOs.
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Figure 4.24 same as Figure 4.1 for S307. The exciting star locates at a young

stellar cluster with an estimated age of 2.5 Myrs. The associated cluster and

molecular gas are likely to be influenced by the exciting star. A second cluster is

identified associated with the compact separated part of the cloud at East-Sout

corner of the filed. The two parts of the molecular cloud have different internal

dynamics and physical conditions and probably different stellar populations.
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Figure 4.25 Colour-magnitude diagrams of the 2MASS sources toward S307.

The symbols and reddening lines are the same as Fig. 4.3. Similar to S104,

a second population of giants and point sources with large IR colour excess is

noticeable in this diagram. these are objects could be candidates for newborn

massive stars or YSOs.
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4.12 Discussion and summary

We have studied the stellar population within and around our sample of H II

regions using 2MASS JHKs band images. Two types of clusters were identified

in this study: the open clusters that mostly have main sequence stars and

contain the exciting star and young embedded clusters whose formation is likely

triggered by the expansion of the H II region.

The colour-colour and colour-magnitude diagrams show different stellar

population within our sample. For example S104, S175B and S307 have no-

ticeably a second population of young and highly extincted stars. Interestingly

most of the young stars within S104 and S305 which are adjacent to the H II

region are giants but the young population within S175B which is too distant

from the H II region (10 times farther than the Stromgren radius) contains

relatively more intermediate and low mass stars. We may conclude that the

massive star formation is favoured in molecular clouds nearby the H II regions

but it is not clear yet if this is a result of the initial conditions that have formed

the first massive star in the first place or an effect of the previously formed mas-

sive star and the expanding H II region. S175B is a part of the same cloud that

has produced a B star which excites S175 H II region and probably have the

same initial conditions, but it is not a massive star forming site. We need to

study more regions within the same cloud but far from the H II regions nearby

other sources to examine that result.
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The fact that half of the H II regions in our sample have the same position

as a cluster that appears to host the exciting star is consistent with previous

suggestions that massive stars are mostly formed within clusters. We also

found that the hottest clumps with the high density and large line widths

are generally very close to the H II regions. Most of these dense clumps are

gravitationally bound and likely candidates for massive star formation. The

star formation efficiency is very high in S192-S194 and S104. S104 seems to

have star formation in process with high rate and efficiency but S192-94 is an

evolved region and the high stellar mass to gas mass ratio is probably because

most of the original gas within the cloud has evaporated.
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Chapter 5
Summary and Conclusions

The main goal of this thesis was to gain an understanding of the effects of

massive stars on the molecular clouds with which they are associated and to

investigate how the star formation has been influenced. We studied the charac-

teristics of the molecular gas by making 12CO(2-1) maps of the clouds around

H II regions excited by massive stars. We used these maps to probe out the

structure of each cloud and to identify the dense clumps within. In particular

we were interested in the clumps at the peripheries of the ionization fronts of

the H II regions. Pointed observations in 13CO(2-1) and CS(5-4) were made

at the identified 12CO(2-1) peaks within each clump. These higher density gas

traces provide us with information on the properties of the dense cores within

the clumps where star formation takes place.

We presented our CO maps in Appendix A and discussed special features
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within each map. For example, the molecular gas is swept up by the ionization

fronts and collected in shells in four sources in our sample: S104, S192/193,

S212 and S305. The clumps formed within these shells are generally hotter

and have higher density and larger line widths. We also found candidates for

further massive star formation within the clouds.

In Chapter 2 we compare two mapped regions within the same cloud asso-

ciated with S175. S175A is adjacent to the H II region and likely affected by

the ionized gas while S175B is too distant to be influenced.

Chapter 3 presents the derived parameters for the entire sample. In this

chapter we investigated how the physical properties of the identified clumps

are related to each other. We also studied how the physical characteristics of

the clumps change with distance from the ionization fronts of the H II region.

Finally, we looked at the stellar population within each region using JHK

near-IR images from 2MASS survey and investigated how the stellar distribu-

tion is related to the cloud structure and the gas properties. We expected to

see that star formation has been triggered at the edges of the expanding shells

around the H II regions and did find evidence of young stellar objects in some

of the dense collapsing clumps within the fragmented shells. In the following

we summarize the results of our investigation.

• Massive star formation is favoured in molecular clouds nearby the H II

regions at least in three active star forming regions in our sample. THe
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only star forming region which is far from the massive star and the H II

region contains only intermediate and low mass YSO candidates or stars.

It is not clear yet if this is a result of the initial conditions that formed the

first exciting massive star within the cloud or a feedback of the H II region

and massive star itself that provides the environmental requirement to

produce massive proto-stars.

• Our sources mapped in molecular gas can be divided into two categories,

the sources which show a size-line width power law relation, called “type

I” and the rest which do not have this relation, called “type II”. The

power law indices derived of the best fitted lines to examine this rela-

tion are generally larger than the previous studies. As we later conclude

that the internal dynamics of the gas beyond the collected shells around

the massive star is not much affected by the expanding H II region, we

may conclude that this is an initial characteristic of massive star forming

regions.

• In half of the sources in our sample molecular gas appears to be collected

by the expanding H II region and collapsed in dense clumps within shells

around the ionized gas in half of the sources in our sample. These clumps

have been warmed up by the radiation from the exciting star and the

compression by the ionized gas. The molecular gas in the shells is more

fragmented and the clumps within the shells have higher density and line

widths in general.

204



• Three different mass estimation methods were used in this study. The

Virial mass which varies with (∆V )2 is highly dependent on the internal

dynamics of the cloud and generally over estimates the mass. Veloc-

ity integrated mass, which is dependent on ∆V , also relies on the cloud

dynamics. MLTE is calculated based on the column density and is inde-

pendent of the internal dynamics of the cloud, but the LTE assumption

is not appropriate for all star-forming cores. In our study Mvir is the

largest mass for low mass clumps but tends to equal values with Mint

and MLTE for larger masses and becomes approximately equal to Mint at

100 M�. The larger clumps are mostly the most distant ones in which

we cannot resolve smaller structures. Therefore we examined the mass

relations only for the distant sources to reduce the resolution effect, but

no significant differences between different regions at different distances

were observed. This suggests that the larger clouds might be in Virial

equilibrium while the smaller fragments within them are not.

• The star formation efficiency is not very high except for S104 and S192-

94. That might be a result of the incompleteness of the 2MASS data

which is not deep enough and does not record the faint stars embedded

within dense gas. S104 is an active star forming region and has a SFE

of 35% while S192-S194 region is an evolved molecular cloud and it has

probably lost most of the initial gas and that’s the reason of a high stellar

mass to gas ratio (40%) for this region.
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• Clumps which are closer to the H II region have higher temperatures,

although we can measure only the projected distance to the ionization

fronts, which could be smaller than the true value. Therefore we com-

pared our results with a Monte Carlo simulator of the clumps temperature

at random distances from a heating source and found good consistency

between the simulation and observations. We also investigated how the

line width of the peaks at each clump varies with distance from the H II

region and found no relation. However it appears that the clumps within

the shells compressed by expanding ionized gas have generally larger line

widths, although the internal dynamics of the cloud beyond the com-

pressed shells is not much affected by the H II region.

• The exciting star of six H II regions in our sample belongs to a stel-

lar cluster, confirming the previous theoretical models and observational

studies that massive stars form within clusters in GMCs. The clusters are

not young and most of their members are main sequence stars with still

a few members having infrared colour excess that are probably pre-main

sequence or young stellar objects.

• Within our sample, the exciting star or the cluster that contains the

exciting star is generally associated with the most massive, hot clump

identified in the molecular cloud which has high density and large line

width. In some cases the ionized gas and the dense molecular gas clumps

overlap in position which indicates one is in front of the other. Despite
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the large internal motions, most of these clumps have enough mass to be

gravitationally bound.

• Star formation appears to be triggered by the expansion of ionized gas in

at least half of the sources in our sample. The young embedded clusters

have been detected in the near-IR. They are located at the edges of the

ionized gas front and associated with dense clumps within collected shells

of molecular gas around the H II regions in S104 and S152. Some other

dense clumps (for example S305-C7) compressed and warmed by the H II

region are likely sites to form further massive stars.

• We have detected a proto-stellar outflow in a star-forming region within

S175B. We have identified at least 5 very red objects detected only in Ks

band in this region. One of these sources is an extended object associated

with the outflow and almost perpendicular to the outflow alignment. The

nature of this object is not identified due to poor resolution.

5.1 Future Work

We have recently observed 5 sources within our sample in deep near-IR images

using CFHT WIRCAM to Ks magnitude of 20. Using these data we can

identify the young embedded clusters, whose formation is probably triggered

by H II regions, even if they are not very young (older than 10 Myrs) and highly

extincted (AV > 20 mag). We already have detected such stellar population in

207



raw data and so many other features in gas components in IR. Study of these

population with our deep data may examine the results of this thesis that the

number of massive YSOs or newborn stars is larger in association with H II

regions. We will be also able to derive the IMF for detected young clusters to

study if it has been affected by the environmental conditions or if there is a a

cut off for low-mass or high mass ends.

We have identified hot, dense, massive clumps which are suited for massive

star formation. We will look for candidates of forming massive stars within

these clumps. We have started pointed observations in C18O(2-1) at the peak

position of 12CO(2-1) within each clump which has a 12CO(2-1) antenna tem-

perature larger than 20 K. With this data set we can determine the density

and other physical properties of deep embedded cores where the star forma-

tion actually occurs. Combining this information with the data from identified

star-forming regions in the near-IR observation we will search for a better

understanding of the star formation process and massive star formation in par-

ticular.
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Appendix A
An Overview of the Selected Sources

A.1 S104

S104 is the largest source in our sample with a diameter of 7′, and it is excited

by an O6V star. Figure A.1 (right) shows the 9′ × 9′ 12CO(2-1) map of S104

integrated between -5 and 10 km s−1. Double peaked line profiles like the one

presented in the Figure A.1 show that the gas is expanding with a velocity of

∼ 3 km s−1. The small picture at bottom left shows the same field from the

Digital Sky Survey (DSS) red image and shows the ionized gas. The molecular

gas has been swept by the ionization fronts and collected in shells around the

ionized sphere. These dense shells have fragmented into several clumps which

are likely to collapse and form proto-stars. S104 is a perfect example for the

“Collect & Collapse” model, first presented by Elmegreen & Lada (1977).
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S104 is a good example of a triggered star-forming region. The number of

dense clumps that we have detected within the collected shells is more than

twice what is seen in any similar area in other mapped regions within our

sample. S104-C4, noted in the right hand picture by a red ellipse, is the hottest

clump in our map with a Tex=36 K. It also has the highest column density

(N(H)∼ 334 × 1020 cm−2). High temperature and density provide suitable

conditions for massive star formation.

Deharveng et al. (2003) studied the gas and dust component of the cloud

associated with the ionized gas in S104 and found that a complete ring of

dust emission surrounds the ionized gas. They detected a dense object at the

position of S104-C4. Their near-IR observations at CFHT (Figure 4.2) show

that a young cluster is deeply embedded within this clump (Deharveng et al.

2003). The cluster is associated with an Ultra Compact (UC) H II region,

therefore it should contain a massive young star.
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Figure A.1 : (right) 9′ × 9′ map of S104 in 12CO(2-1) . The line profile shows

the expansion of the gas through red-shifted and blue-shifted emission. The

bottom left image shows the same 9′ × 9′ area from Digital Sky Survey-2 red

filter. The molecular gas collected in shells at the front edges of the expanding

ionized gas.
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A.2 S148/S149

The molecular gas in our 12CO(2-1) map (integrated between -45 and -60 km

s−1 ) covers two H II regions: S148 and S149 (Figure A.2). S147 is another

component of this star-forming region which lies on south-east (bottom left in

our map) but out of the field. S148 is excited by an O8V star within a cluster

identified in 2MASS near-IR data (see chapter 4). S149 is smaller and excited

by a B0V star (Caplan et al. 2000). S148-C5, at the same position as S148

(probably in front of the H II region) has the highest temperature and column

density within our map (Tex = 29 K and N(H)∼ 290× 1020 cm−2). This region

had been studied by Pismis & Mampaso (1991) and they found it are very

dusty young region with active star formation. They also calculated the star

formation efficiency to be 0.08, close to the derived value of 0.1 by Hunter et

al. (1990).

The identified clumps at the south-east part of the field have broadened

line width and self-absorbed. These two clumps are probably affected by S147

which is out of our field but close to these two clumps. The wide line width of

∆V12 = 6.75 km s−1 might be caused by multiple cores along the line of sight or

signatures of an outflow. As this region is well known as an active star-forming

region, it is probable we will be able to find outflows from young proto-stars

associated with dense clumps within the cloud.
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Figure A.2 : (right) 7′×7′ map of S148/S149 in 12CO(2-1) . The larger central

clump is at the same position as S148 and probably in front of it. Two smaller

clumps at the South-East (bottom-left) side of the map have broadened, double

peaked line profiles. They are probably affected by the third component of this

star-forming region, S147 which is out of this field but locate at the south-east.
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A.3 S152

S152 is another component of the same star-forming region that contains S148/S149

. Figure A.3 shows the 12CO(2-1) map (integrated between -45 and -58 km s−1)

and the DSS-2 red image of S152. The H II region is created by an O9V exciting

star which is a member of rich stellar cluster (the near-IR image of cluster is

presented in chapter 4). The mapped part of the cloud is not very fragmented

and a weak 12CO emission covers the whole field. Most of the identified clumps

have a 12CO peak in the range of −50 ± 2 km s−1. All the line profiles are

broadened and for some clumps like S152-C2 and S152-C3, shown in the pic-

ture, are double peaked or self-absorbed. S152-C5 is the hottest region in our

map at the periphery of the H II region and probably warmed up by the ionized

gas and radiations from the exciting star.

S152-C4 has the highest column density and line width in our map (N(H)∼

466 × 1020 cm−2 and ∆V12 = 7.42 km s−1). In a near-IR study by Romero &

Cappa (2009) a deep young embedded cluster is identified at the position of

S152-C4. The cluster is covered by a red nebula in their images. See chapter

4 for a reprint of the Romero & Cappa (2009) image and a detailed discussion

about the detected stellar cluster.
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Figure A.3 : 12CO(2-1) map of S152 (right) and the DSS-2 red image of the

same field (left). S152-C2 and S153-C3, located at the edges of the H II region

are the hottest clumps in our map and probably warmed up by the ionized gas

and the O9V exciting star. The line emission over the map is very broad and

for some clumps double peaked or self absorbed. S152-C4 has the largest line

width and column density. A near-IR study shows a young embedded cluster

within this clump.
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A.4 S175

S175 is the closest source in our sample and we can therefore resolve smaller

clumps within it. Two components, S175A and S175B, were selected within

the molecular cloud associated with this H II region. S175A is adjacent to the

ionized gas and influenced by the H II region and its exciting star, while S175B

is too distant (10 times farther than the Stromgren radius of the H II region)

to be affected. Figure A.4 shows the 12CO contours of S175A and S175B,

super-imposed on the IRAS 12µm image.

Figure A.5 shows the integrated 12CO(2-1) maps (between -48 and -52 km

s−1 for S175A and between -47 and -53 km s−1 for S175B). S175A is very frag-

mented, and as expected, has hotter clumps, warmed up by the ionized gas

and the exciting star. S175B is less fragmented and a uniform gas with T≈

5-7 K covers the entire mapped field. The line profiles are also very broadened

within S175B. Contrary to our expectation, S175A is a very quiescent region

with relatively narrow line profiles, while S175B has active internal dynam-

ics and appears very turbulent. In particular, three clumps, S175B-C1,C2,C3

within the rectangular marked in Figure A.5, had very wide double peaked line

profiles. We made a sub-map in 12CO(3-2) using HARP at JCMT to look for

the source of turbulence in this region. A typical line profile for proto-stellar

outflow was detected at the position of S175B-C1. The 12CO(3-2) line profile

shows a typical proto-stellar outflow, but the deep self-absorption at the mid-

dle of the emission line is unusual. Although it is far from the massive star
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Figure A.4 : 12CO(2-1) contours of S175A and S17B super-imposed on IRAS

12µm image. S175A is associated with the H II region and the brighter compo-

nent in IRAS image. S175A has a filamentary structure and is fragmented. CO

emission covers the entire field in S175B and the molecular gas in this region

is less fragmented.

and the ionized gas, S175B is likely an active star-forming region. We have

detected at least five very reddened point sources associated with S175B-C1,

and an extended source in near-IR images at the position of the outflow and

almost perpendicular to the outflow direction (image shown in chapter 4).

More details about the physical properties of S175A and S175B are dis-

cussed in chapter 2 (Paper I).
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Figure A.5 : 12CO(2-1) maps of S175A and S175B. S175A covers the H II region

and therefore has a higher temperature, but the line profiles of the identified

clumps within S175A are very sharp with small line widths. Contrarily, S175B

has broadened, multiple peaked lines and is a dynamically active region. We

looked for the source of turbulence by making a 12CO(3-2) map of three more

turbulent clumps, S175B-C1,C2,C3 (bottom-right). We found a proto-stellar

outflow at the position of S175B-C1 with high self absorption.
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A.5 S192/S193/S194

S192, S193 and S194 are three small adjacent H II regions (Figure A.6). S192

is excited by a B2.5V and S193 is excited by a B1.5V star (Russeil et al. 2007).

No exciting star was found in the literature for S194. We have mapped the

molecular cloud in between these three H II regions and have identified dense

clumps along the edges of the H II regions. The molecular gas has been collected

in dense shell around the ionized gas, but the average temperature and density

are lower than in similarly mapped regions.

S192-C6, at the centre of the map, is surrounded and appears to be com-

pressed by three expanding ionization fronts. Because of this, we expected to

see a high temperature and density at this clump. S192-C6 is the hottest clump

(Tex=21.1 K) and has the larger line width (∆V12=3.45 km s−1), but it is not

as hot and dense as we expected compared to the other observed regions. A

faint nebula is detected in near-IR (chapter 4) with finer structure within it,

associated with S192-C6, but higher resolution and sensitivity is required to

identify the nature of this object and its fine structure.
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Figure A.6 : 12CO(2-1) map of the gas surrounded by three H II regions (in-

tegrated between -42 and -47 km s−1). The molecular gas has been swept up

and collected in shells around the ionized gas. S192-C6 which is compressed by

three ionized gas fronts has the highest temperature and density but still not

very hot and dense compared to other regions in our sample.
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A.6 S196

Figure A.7 shows the 12CO(2-1) map integrated between -44 and -50 km s−1

and contours of 12CO(2-1) super-imposed on the DSS-2 red image of the same

field. The mapped region does not contain much molecular gas. S196-C1 and

S196-C2 are the only large clumps, located at the south-east of the field. Even

these two clumps are not very hot or dense. No exciting star has been identified

in the literature for this spherical H II region. It is surprising that a massive

star has been formed in isolation and not associated with a large molecular

cloud.

There is a bright source detected in the IRAS 12µm image to the south of

the H II region, but the resolution is very poor and not sufficient to recognize

the structure of the cloud or investigate its association to the H II region. It

seems informative to extend the 12CO(2-1) map to the southern part to look

for the origin of the massive star which excited S196. The mapped molecular

gas has properties similar to those of S192/S193/S194 (Vlsr = -42 to -47 km

s−1 for S196 and Vlsr = -44 to -49 km s−1 for S192-4) and might be related

to the same complex. S196 might be a member of an evolved cluster that has

originated in the same cloud.
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Figure A.7 : 12CO(2-1) of S196 integrated between -44 and -50 km s−1 and the

contours overlaid on DSS-2 red image of the same field. It is surprising that

little molecular gas is associated with this H II region. No exciting star has

been recognized in the literature. S196 might be an evolved region related to

S192-4 complex.
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A.7 S212

Figure A.8 presents the 12CO(2-1) map integrated between -30 and -40 km s−1

and the CO contours overlaid on the DSS-2 red image of the same field. S212

is excited by an O6 star which is a member of a stellar cluster. S212 lies at

the centre of a filament only half of which is shown in our map. The cloud

has been completely mapped by Deharveng et al. (2008). They found that

the ionized gas has expanded to the space beyond the molecular gas and has

formed a Champagne flow1. They also suggest that S212 is a triggered star

formation region through the “collect and collapse” process.

The molecular gas is swept and collected in shells by the expansion of the

ionized gas. As expected, the temperature is higher in the clumps closer to the

H II region. These clumps also have higher densities and multiple peaked line

profiles. The peak emission line at S212-C1 is shown in Figure A.8. The double

peaked line profile could be due to self absorption or could be a signature of

infalling gas to the core. The double peaked profile, as seen in S104, might be

due to the expansion of the gas which is less probable in the case of S212. Red-

shifted and blue-shifted lines have been observed in this region which indicates

an active internal dynamics. The eastern side of the cloud, which is distant

from the H II region, is more uniform and less fragmented. The clumps have

larger sizes but they are colder and less dense.

1If the ionized gas in an expanding H II region within a molecular cloud reaches the

borders of the cloud, the ionized gas burst outward into the ISM; called the Champagne

flow.
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Figure A.8 : 12CO(2-1) map of S212 (left) and the CO contours super-imposed

on the DSS-2 red image of the same field (top right panel). Clumps closer to

the H II region are more fragmented and have higher temperature and density.

Double peaked line profiles, and red-shifted and blue-shifted lines indicate an

active internal dynamics in this region.
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A.8 S288

S288 is a small H II region at the centre of a filamentary molecular cloud

(Figure A.9, integrated between 52 and 62 km s−2). Like S212, it might have

created a Champagne flow. The filament itself is not very fragmented. Only

two dense clumps identified along the filament have different velocity ranges;

S288-C1 emits between 52 and 58 km s−1 while S288-C2 appears between 56

and 60 km s−1. While these two main clumps are slightly red-shifted and blue-

shifted (relative to the central gas VLSR), they do not have line profiles similar

to an outflow. The two clumps seem to be parts of a bent filament. The line

profile between the two clumps shown in Figure A.9 shows two components of

the cloud.

S288 is excited by a B1 star which belongs to a stellar cluster. The cluster

is shown in near-IR images from 2MASS in chapter 4.
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Figure A.9 : 12CO(2-1) map of S288 (right) and the CO contours super-imposed

on DSS-2 red image of the same field (upper-left). A filamentary structure

from north-west to south-east is identified for the molecular cloud. Two main

clumps S288-C1 and S288-C2 are slightly red-shifted and blue-shifted but their

emission line profiles do not look like a proto-stellar outflow. They seem to be

components of the bent centre of filament. The emission line profile between

the two clumps shows the two components.
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A.9 S305

Figure A.10 shows the 12CO(2-1) map of S305 integrated between 40 and 50

km s−1. S305 is another region that could be best explained by the collect and

collapse model. Molecular gas appears to have been swept by the ionization

fronts and collapsed in dense clumps. As expected these clumps have higher

temperatures. S305-C7 at the west side of the map, is the hottest clump in our

map with Tex= 46.4 K. This is the only clump in the entire sample that we have

detected CS(5-4) in it. Detection of this emission line indicates at least a density

of 2.8×107 cm−3 (Evans 1999). S305-C7 is a good candidate for further massive

star formation. The line profiles do not show multiple peaks or broadened lines.

Many clumps within the S305 cloud are relatively quiescent, but hot and dense

enough to be good signposts of further star formation. S305 is excited by an

O9.5 star which belongs to a cluster. The cluster has been detected in near-IR

data and is shown and discussed in chapter 4. More candidates of young stellar

objects are also detected within S305.
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Figure A.10 : 12CO(2-1) map of S305 (right) and the CO contours super-

imposed on DSS-2 red image of the same field (left). Molecular gas is collected

along the borders of the H II region and has been collapsed in hot dense clumps.

S305-C7, identified with a circle in right panel, is the densest clump with the

highest temperature in our entire sample. This clump is a good candidate for

more massive star formation.
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A.10 S307

S307 has a bubbly structure as shown in the integrated 12CO(2-1) map in

Figure A.11. The cloud consists of two separated parts: a central bubble struc-

tured region and a compact region in the south-east. These two parts show

a completely different velocity spectrum. It appears that the compact part is

too distant (four times farther than the Stromgren radius) to be affected by

the H II region. Evidence of expanding spheres is found in double peaked ve-

locity lines with differences of ∼ 3 km s−1. Contrarily, the opposite sides of the

compact part have almost the same velocity with a little blue or red excess.

The spherical structure is more fragmented and ten clumps have been identi-

fied within this part of the cloud. A large expanding bubble (shown in Figure

A.11) which probably has remained from an older generation of star formation,

seems to have triggered a new generation of stars that have produced a second

set of smaller expanding shells.

Most of the dense clumps are associated with the H II region and might

be compressed by the fronts of the ionized gas. S307 is excited by an O9 star

which lies within a stellar cluster. The cluster has been identified in near-IR

images, but it seems to be old with evolved members. See chapter 4 for details

of the stellar population within S307.

The line profiles are broadened and multiply peaked in S307. The bubbles
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are expanding with a speed of ∼ 3 km s−1. S307-C4 noted in the Figure A.11

has a very different structure. It does not show the evidence of expansion, but

has broadened red-shifted and blue-shifted line profiles that indicates a rotation

within the clump. S305-C4 is the hottest clump in the map with Tex= 36.1 K.

It also has the highest column density and line width (N(H)= 400× 1020 cm−2

and ∆V12 = 3.35 km s−1). S305-C7 is a good candidate to start star formation.

An embedded cluster has been identified in near-IR images associated with this

clump. See chapter 4 for details about the stellar population in S307.
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Figure A.11 : 12CO(2-1) map of S307 (right) and the CO contours super-

imposed on DSS-2 red image of the same field. S307 is a bubbly structure

and seems to have a second generation of triggered stars. The bubbles are

expanding with a velocity of ∼ 3 km s−1. S307-C4 is the hottest clump in the

map; it has a different structure and a good candidate to start star formation.
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Appendix B
Declaration

Chapters 2 and 3 of this thesis are reprints of the original papers written by

Mohaddesseh Azimlu. Chapter 2 was published in the Astronomical Journal in

June 2009 and chapter 3 is ready to submit. The papers have been reformatted

slightly to fit in the required thesis style.

The first part of the data (six CO maps) presented in this thesis and a part

of pointed observations in the first observing run were taken by Michel Fich in

1998 and 2005. The rest of observations are the original work of the author.

Data were taken during several observing runs from August 2005 to January

2009. I was the Principal Investigator on the proposals which I prepared under

supervision of Dr. Fich for the JCMT observing time.

The first paper (chapter 2) is originally written by the author in consultation

with Dr. Fich and Dr. Carolyn McCoey. The paper was edited in several
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drafts by these co-authors. Paper II (chapter 3) is written originally by the

author in consultation with Dr. Fich and edited in several drafts by him. The

Monte Carlo code to simulate the temperature versus projected distances from

a heating source in Paper II is the only component of the paper originally done

by Dr. Fich, although I run the code for several initial conditions and show

the results as plots here in this thesis.
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