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Abstract

This thesis investigates the issues in deriving the Finite Di�erence Time Domain
Method, including the derivation of a unique method for exciting an FDTD system
that is physically realistic in terms of acoustics. It is also the goal of this thesis to use
the FDTD method as a tool for investigating various speaker placement con�gurations
for use in bass equalization. A demerit function is then developed in order to assess
how well a particular equalization method performs relative to any others.
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Chapter 1

Introduction

The goals of this masters project can be summed up in two main foci. The �rst,
is the development of a Finite Di�erence Time Domian (FDTD) acoustic simulation
program and its use to investigate and assess the FDTD method's ability to prop-
erly simulate the physical characteristics involved in room acoustics. The second, is
to investigate di�erent equalization methods that have been shown to improve the
room's frequency response in the bass region and to develop an appropriate measure
of demerit to properly determine the e�ectiveness of an equalization technique. Both
of these foci have the same single, overall goal, which is the equalization of bass.

1.1 Bass Equalization

Since the development of the �rst closed-box loudspeaker to be used in home audio
systems and it being made available to the common public, the problem of proper
placement and equalization has arisen. In a typical rectangular listening room, the
hard, parallel surfaces of the walls, �oor and ceiling cause the primary acoustic reso-
nances due to the interaction of the loudspeaker coupling to the room. The resonances
occur in each of the three dimensions of the room as standing waves. The most no-
table of the resonances are the ones at low frequencies that re�ect from two parallel
surfaces only (front-back walls, left-right walls and ceiling-�oor walls). The other res-
onance modes are more complex and involve as many as all six boundary surfaces. In
general though the rule of thumb is is that the more surfaces involved in a resonance
the more that resonance is absorbed by the boundary from which it is re�ecting,
which is why most of the concern is with the resonances that occur between the
fewest number of surfaces. This point will be evident when looking at room responses
to various speaker placements. It is important to note that the lowest frequencies are
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most excited in rooms where the wavelength is so long that the sound waves are not
signi�cantly a�ected by the objects in the room.

The two most noticeable e�ects that these resonances create are,

� the average sound pressure level at low frequencies has great variation depending
on the listener position

� the sound level for a low frequency resonance decays at a noticeably slower rate
than the rest of the sound spectrum.

Thus for several decades much time and research has been devoted to solving these
issues that a�ect primarily sounds in the bass region. One of the earliest papers that
the author has come across that attempts to address the issue of bass equalization is
�High-Fidelity Sound System Equalization by Analysis of Standing Waves� by Allen
R. Groh in 1974 [1]. The paper recognizes the shortcomings of electronic equalization
at the time and attempts to utilize a physical analysis of standing waves to create
an optimization method for speaker placement. The method is based primarily on
moving the speaker toward a position where there is a pressure node that corresponds
to the frequency someone would wish to minimize. From the paper the method works
reasonably well. But the method does have shortcomings as well. When moving a
speaker around in the room other modes of vibration may be excited while attempting
to minimize the resonance of interest. It also might not be practical to place a speaker
in its optimized position depending on what the room is used for. Thus something
more robust is required.

The works of Welti [2, 3] help show that increasing the number of sub-woofers
combined with appropriate placement of the additional woofers can yield a reduction
in the resonant e�ects in the room. The work of Santillan [5] also deals with placing
multiple sub-woofers and describes how a plane wave can be created in a listening
room. This then leads into the works of J. Abildgaard Pedersen [4] and Celestinos
(in three conference papers [6, 7, 8] and in two journal papers [9, 10]). The work of
Celestinos was critical to both the placement and equalization portion of this thesis,
as well as the creation of the simulation program and was the basis for this Masters
project.

1.2 The Finite Di�erence Time Domain Method (FDTD)

Simulator

The wave equation for acoustics, like most other wave equations, is di�cult to solve
analytically when not dealing with ideal boundary shapes and conditions. Thus like

2



most problems in physics we turn to solving the problem numerically. For acoustics
some of the common numerical methods used for solving real world problems are the
Finite Element Method(FEM), Boundary Element Method(BEM) and Ray Tracing.
These methods make solving the wave equation easier by transposing the problem
from the time domain into the frequency domain. Then after the problem is solved
in the frequency domain the result has to be transposed again back to the time
domain. Although these methods have advantages, the method of Finite Di�erence
Time Domain has two signi�cant advantages the others do not. The �rst, is that it
computes the solution to the wave equation directly in the time domain as real time
data. This allows for a real time picture to be made of what is happening in the room
and helps in the development of a deeper intuition into more complex problems. It
also prevents the need to transform the data back and forth between the time and
frequency domains. The second advantage, is that it is accurate for low frequencies
and becomes more accurate at higher frequencies when smaller grid spacings are used.
The accuracy of the other methods on the low end of the spectrum is not well known
by the author. The general feeling obtained from researching and reading about the
FDTD method from other authors has been that the other methods are not well suited
to low frequency analysis. This is especially true in the case of Ray Tracing where
it is assumed the wavelengths are small and the waves can be treated as particle like
beams bouncing around the room. Thus the FDTD method is very appropriate for
simulating low frequencies, which happens to be exactly why it has been chosen for
this area of research. The only hindrance to the method when it was �rst conceived
in 1966 in a paper written by Kane Yee[37], is that the modern computer at that
time, was not powerful enough to handle computing solutions using this method in a
time e�cient way.

Today's CPUs are much faster and can now make FDTD computations of reason-
able spaces with reasonable frequency resolution on common home computers.

As a starting point for this research the papers presented by Adrian Celestinos
[6, 7, 8] laid the ground work for learning about both equalization techniques and
creating the FDTD simulation program. Although the papers provided most of the
equations needed to make the simulation program, their derivation and application
was left as a mystery. The paper that made it very clear how the FDTD method
for acoustics is derived was by Soren Krarup Olesen in his paper 'Low Frequency
Room Simulation Using Finite Di�erence Equations' [11]. This paper alone answered
nearly every question about how the derivation was done and provided insight into
how Celestinos performed his derivation. The di�erence between Olesen's equations
and Celestinos' were that Olesen used h and k as the spatial and temporal intervals,
whereas Celestinos used h/2 and k/2. This led to much confusion on the authors
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part because either way did not yield a change in the constants for the di�erencing
equations because the 2's eventually canceled each other out. The di�erence is that
by doing half steps we can calculate both pressure and velocity in one interval of k
with Celestinos' equations instead of in two with Olesen's. Thus the di�erence is only
in making it easier to program the scheme. Olesen's paper also made it quite clear as
to how the boundary condition was applied and made the assumptions being made,
much more clear than in other papers. It is truly a must read for anyone doing FDTD
research.

The only mystery that Olesen's paper does not shed a signi�cant amount of light
on is in the derivation and application of a source term to properly excite the system.
The author then turned to other papers like Botteldooren [12, 13], and Lopez [14] and
books like [15, 16, 17]. While these references do contain a wealth of knowledge it was
still frustrating to the author that not one of these references contained information
on how to properly excite the system with a source. Three papers found that did
happen to include a method for how to excite the system are [18, 19, 20]. These
three papers illustrated the source discussed in sub-section 2.4.3, which turns out to
not be a physically realistic way to excite a system, and not really applicable for our
application. A di�erent way to excite the system was then discovered in a MATLAB
script written by Nick Clark [21] on the Mathworks website that is then discussed
in sub-section 2.4.2. This source term is assumed to be what most FDTD users are
probably using to excite the system given the vague descriptions given in the preceding
references. It is also not physical, with respect to the fact that it does not respect
the acoustical equations used in the FDTD method and forces a pressure point to
adhere to a particular function. This then led the author, under the instruction of his
adviser Professor John Vanderkooy, to derive a method based on the complete form
of the continuity equation as it is given in Morse & Ingard [22]. A derivation and
full discussion of the results are given in sub-section 2.4.4. This �new method� is a
unique achievement that has resulted from this work.

As an observation of the author's is it is seen that a majority of the papers reviewed
spend most of their e�orts on re�ning the boundary conditions in an attempt to
capture the frequency dependence of a typical wall. This is strongly observed in the
papers [23, 24].
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Chapter 2

The FDTD method for Acoustics

The Finite Di�erence Time Domain method, or FDTD, is as powerful as it is simple.
It can easily be applied to the wave equation for acoustics and be used to solve
problems and situations that analytic methods would �nd impossible.

In this Chapter we go over the �ner points of deriving the FDTD method for
acoustics and its implementation in computer code.

2.1 Derivation1

2.1.1 The starting point - The centered di�erence equation

Before we dive right into the derivation of the FDTD method we need to recall some
familiar formulas that most would have seen in any introductory Calculus class. The
following are three variations of the de�nition of the derivative given by �rst principles.

df

dx
(x0) = lim

4x→0

f(x0 +4x)− f(x0)
4x

df

dx
(x0) = lim

4x→0

f(x0)− f(x0 −4x)
4x

df

dx
(x0) = lim

4x→0

f(x0 +4x)− f(x0 −4x)
24x

In a computational application 4x is a small �nite value which leads to the following
approximations,

1everything in this section is a variation of the derivation found in Olesen [11]
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df

dx
(x0) ≈

f(x0 +4x)− f(x0)
4x

(2.1)

df

dx
(x0) ≈

f(x0)− f(x0 −4x)
4x

(2.2)

df

dx
(x0) ≈

f(x0 +4x)− f(x0 −4x)
24x

(2.3)

Equations 2.1 and 2.2 are commonly called the Right and Left Di�erence equa-
tions, respectively. Equation 2.3 is called the Centered Di�erence equation, and is
the key equation that will be used in our derivation. The other two equations will be
useful when deriving the boundary conditions.

2.1.2 The Acoustic Equations

In deriving the FDTD method for acoustics 3 essential equations are required. The
�rst, is the Linear Inviscid Force Equation, or Newton's Equation,

∇p = −ρ ∂
∂t
~u. (2.4)

The second, is the Equation of Continuity,

1

ρc2
∂

∂t
p =

q(r, t)

ρ
−∇ · ~u, (2.5)

where p is the sound pressure, c is the speed of sound in the medium, ~u is the particle
velocity vector, ρ is the density of the medium and q(r, t) is the function that de�nes
the rate of creation of �uid in kg

m3s
.

Commonly in most of the literature equation 2.5 is written without the function
q(r, t) as,

1

ρc2
∂

∂t
p = −∇ · ~u (2.6)

and will be the form of the continuity equation that is employed for the main body
of the FDTD method, but we will see that equation 2.5 is essential for deriving a
physically realistic source model.

Applying equation 2.3 to equations 2.4 and 2.6 will result in the creation of four
separate matrices. The �rst three will be the x, y and z components of the velocity
vector, while the 4th matrix will be the pressure in the room. These four matrices
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will be computed in a leap frog pattern where, for example, the components of the
velocity are calculated �rst for a time t, and then the pressure matrix is calculated
afterwards at time t+ 1. The reason for this will become clear after the derivation.

An interesting point to note is that there is another method for the derivation
that only involves the Acoustic Wave equation,

∇2p− 1

c2
∂2p

∂t2
= 0

Upon discretizing this equation we obtain only the pressure matrices, but for three
adjacent time steps. The bene�t here is that one only has to store three matrices
instead of four. This certainly cuts down on the amount of memory needed and can
also increase the calculation speed. It is not applied here because in order to derive
a proper source term we need a q(r,t) that includes the rate of creation of �uid as
given in equation 2.5.

2.1.3 Velocity Matrix Derivation

In light of the fact that velocity is a vector, ~u = uxx̂ + uyŷ + uz ẑ, we must consider
each component of the velocity separately. We apply equation 2.3 to each component
of equation 2.4, where we substitute2 h

2
and k

2
for 4x in equation 2.3 when applying

to a spatial derivative and time derivative, respectively. Thus the x component should
look as follows,

p
(
x+ h

2
, y, z, t

)
− p

(
x− h

2
, y, z, t

)
h

= −
ρ
(
ux
(
x, y, z, t+ k

2

)
− ux

(
x, y, z, t− k

2

))
k

Thus we re-arrange and solve for, in this case, ux
(
x, y, z, t+ k

2

)
and time shift

t+ k
2
= T , which gives us the following for all 3 components,

ux(x, y, z, T ) = ux(x, y, z, T − k) + . . .

k

ρh

(
p

(
x− h

2
, y, z, T − k

2

)
− p

(
x+

h

2
, y, z, T − k

2

))
(2.7)

2For this derivation we used the half step method which uses h
2 instead of h and k

2 instead of
k for the approximation to the derivative. The reason for this is for ease of programming later on
where we wish to have computed both û and p in one interval of k.
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uy(x, y, z, T ) = uy(x, y, z, T − k) + . . .

k

ρh

(
p

(
x, y − h

2
, z, T − k

2

)
− p

(
x, y +

h

2
, z, T − k

2

))
(2.8)

uz(x, y, z, T ) = uz(x, y, z, T − k) + . . .

k

ρh

(
p

(
x, y, z − h

2
, T − k

2

)
− p

(
x, y, z +

h

2
, T − k

2

))
(2.9)

2.1.4 Pressure Matrix Derivation

Here we observe that there are only scalars in equation 2.6 which means we can derive
the whole thing in one giant step. Apply equation 2.3 to both sides of 2.6 in the same
way as we did with the velocity matrices. Resulting in,

ux
(
x+ h

2
, y, z, t

)
− ux

(
x− h

2
, y, z, t

)
h

+
uy
(
x, y + h

2
, z, t

)
− uy

(
x, y − h

2
, z, t

)
h

. . .

+
uz
(
x, y, z − h

2
, t
)
− uz

(
x, y, z + h

2
, t
)

h
= − 1

ρc2
p
(
x, y, z, t+ k

2

)
− p

(
x, y, z, t− k

2

)
k

followed by re-arranging and solving for p
(
x, y, z, t+ k

2

)
and time shift t+ k

2
= T to

obtain

p(x, y, z, T ) = p(x, y, z, T−k)+ρkc
2

h

[
ux

(
x+

h

2
, y, z, T − k

2

)
− ux

(
x− h

2
, y, z, T − k

2

)]
. . .

+
ρkc2

h

[
uy

(
x, y +

h

2
, z, T − k

2

)
− uy

(
x, y − h

2
, z, T − k

2

)]
. . .

+
ρkc2

h

[
uz

(
x, y, z +

h

2
, T − k

2

)
− uz

(
x, y, z − h

2
, T − k

2

)]
(2.10)

2.1.5 Results of Derivation

Considering the x-component for the velocity, ux(x, y, z, T ) is calculated based on
the velocity from t = T − k seconds ago and the two pressures at

(
x± h

2
, y, z

)
from
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t = T − k
2
seconds ago. This is a similar situation when p(x, y, z, T ) is calculated,

except it is required that all three x,y,z-components are done as well.
What does this tell us? It means that we can use a leapfrog scheme for our

calculations in one time step (1t) calculating all the p's at t = T , then calculate all
the u's at t = T + k

2
. Then again calculate all the p's again at t = T + k based on

the previous u's and p's we just calculated at T and T + k
2
. The derivation can also

be performed with a non-zero q which will be the main focus when we develop how
to properly add a source term in the FDTD scheme.

2.2 Parameter Determination

2.2.1 Cell Size Choice

We must choose the size of the cell to be much much smaller than the smallest
wavelength we wish, in order to have accurate results in our simulation. This concept
di�ers from the idea of the Nyquist sampling rate where it is needed to sample twice
as fast as the fastest frequency. The reason for this is that for spatial sampling we
require that we have enough grid points close enough together that it can sample the
wave at a minimum of 5 points.

Common choices range from between 1
5
λ to 1

10
λ. The smaller the fraction we

choose the more accurate the results will be but at the sacri�ce of computational
speed. For example, if we wish to accurately simulate 600Hz, which has a wavelength
of 0.5733m, we may choose 1

5
λ which requires a grid spacing of approximately 11.47cm.

Thus choosing 10cm for our value of h (or4x) to use as the grid spacing is even better.

2.2.2 Time Step Choice (stability)

Now that a spatial sampling step has been chosen we now need to choose a temporal
sampling or time step. Because we are discretizing a partial di�erential equation we
need to make use of the Courant Stability Condition, which says,

c · 4t
4x
≤ 1 (2.11)

Where 4x is our h value and 4t will be our k value. Equation 2.11 in 3-D looks
like (see [12]),

c · 4t ·
√

1

4x2
+

1

4y2
+

1

4z2
≤ 1.
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If h = 4x = 4y = 4z,

k = 4t ≤ h

c ·
√
3

(2.12)

As a common example let's choose h=10cm. We then obtain, from equation 2.12,
a k = 1.678 × 10−4s. Because of the less than or equal sign we can choose k to be
a more managable number like 1.25 × 10−4 which corresponds to a time sampling
frequency of 8kHz. Thus because of the Courant condition we are forced to sample in
time at a much faster rate than is required by the Nyquist Theorem, which for 600Hz
would have been 1.2kHz.

2.2.3 Parameter Veri�cation/Exploration

In this subsection we wish to investigate the consequences of violating the Courant
condition by using a time step choice that is larger than k = 1.678×10−4(s). Also we
wish to see the e�ects of what happens to a pulse that contains frequencies greater
than those that are theoretically available to be calculated given our choice of h=10cm.

2.2.3.1 Time Step

In order to investigate what happens to the stability of the system a pulse of �nite
duration is sent into the system for various values of k ≥ 1.678× 10−4and the results
of how stable the system is can be observed from the three plots in �gure 2.1.

As can be observed, both cases for k > 1.678×10−4(s)yields a system that becomes
unstable. The closer the k value is to 1.678× 10−4 the longer it takes for the system
to become unstable. But only the value k = 1.678× 10−4 remains stable for all time.

2.2.3.2 Cell Size

The size of the cell that we choose directly a�ects the allowed frequencies that will
propagate in the system without any numerical errors. The most signi�cant numerical
error that is su�ered in the FDTD method is that of numerical dispersion. Numerical
dispersion is totally analogous to the type of dispersion that is su�ered in Solid State
physics, see [34], where the wave speed of higher frequency components is reduced
relative to the lower frequency components. For example a wave packet or impulse
would be observed to be spreading out as it travels. Using the pulse that will be
derived in section 2.4.4 we can test this phenomenon by changing the length of a
squared raised-cosine pulse and observe it as it travels through the system at various
distances. By making the pulse longer we are thus reducing the number of higher
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Figure 2.1: Figures depicting change in stability as K approaches the Courant Con-
dition. Note the small re�ection in the upper plot.
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frequency components that are present in the pulse. The speci�cation of the pulse in
each case is given by its total length. The actual half-width of the pulse is a bit less
than half of this value.

The parameters for this experiment are a k = 1.25×10−4seconds and an h=10cm.
The length of the pulses under investigation will range between 30*k to 160*k. The
pulses will be observed at 1, 2.5, 5, and 10metres away from the source. The results
are displayed in �gure 2.2.
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Figure 2.2: Collection of �gures illustrating the numerical dispersion issue.
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As can be observed in the �gures from the 20msec pulse to the 3.75msec pulse,
that once a pulse has more and more higher frequencies in it, its shape changes. This
is most easily observed by the slight bump after the pulse in the shorter pulse plots.
It can also be observed by noting that the amplitude of the negative peak of the pulse
is getting larger relative to the positive peak as the amount of dispersion increases.
Only the 20msec pulse appears free of dispersive elements. The only problem with
using a 20msec pulse is that the decibel level for frequencies above 90Hz or so sharply
decays. This is the region where in most small listening rooms there is still a lot of
reverberant behavior. Thus perhaps a 10msec or 5msec pulse would be more ideal. A
10msec pulse should provide ample level for the frequencies of interest and still have a
low amount of dispersion. To examine how much the dispersion a�ects the frequency
response of our simulated rooms, we shall perform the following:

� Create in the simulator a room with dimensions L=5.6m, W=4.2m and H=2.4m

� apply the source term in 2.4.4 and place it in the corner of the simulation to
excite maximum number of room modes

� plot frequency responses for 10, 5, and 2.5cm grid spacings and compare the
results to determine e�ect of dispersion on the frequency responses.

Halving the grid spacing doubles the number of frequencies that will be dispersion
free. Our area of interest is below 200Hz, thus we can determine whether or not a
10cm grid is appropriate for these kinds of measurements.

From the plot a response for a 10cm grid with a 16000Hz sampling is also intro-
duced to show that there is no e�ect from simply changing the sampling frequency
because it is observed that both 10cm grid plots lie directly on top on one another.
It is also observed that for low frequencies all the plots lay essentially on top of one
another, with the exception of small amplitude changes. It is assumed that these
minor changes are due to the fact that when the grid spacing is made smaller the
virtual sub-woofer gets closer to the simulated corner of the room, which is discussed
in section 5.2.1. For now it should be safe to assume the small amplitude varia-
tions are due to the slight change in position of the sub-woofer, whereas numerical
dispersion would show up as frequency shifts due to the speed change of the higher
frequency components. From the plot this e�ect is observed and becomes stronger as
frequency increases. Up to 200Hz the dispersion e�ect on the frequency response is
extremely small to non-existent, thus we can conclude that both a 10cm grid and a
10msec squared cosine pulse together produce a minimum of numerical error in the
simulation for the region we are interested in.
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2.3 Boundary Conditions

In the bulk part of our grid when we calculate a pressure point or a velocity point
that requires knowledge of the points around it. For instance, if we calculate the
x-component of the velocity at (x,y,z), then we require the pressure points at x± h

2
.

This situation poses a problem once we reach a wall, or boundary. At a wall there is
no pressure point for us to use in our calculation, thus we have to re-derive equation
2.7 with equations 2.1 and 2.2, depending on whether we encounter a left handed wall
or a right handed wall.

The next piece we will need to re-derive our formula is the characteristic wall
impedance Z, where

Z =
p

~u · n̂
, (2.13)

where n̂ the unit normal vector to the surface.
Here we make the assumption the Z is real, because for most wall impedances
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the real part signi�cantly dominates (according to Olesen [1]). Thus we can use the
following as an assumption,

Z = ρ · c
(
1 +
√
1− α

1−
√
1− α

)
. (2.14)

Here α is the real absorption co-e�cient. The last piece of our puzzle is not an
obvious approximation but will be necessary later on. It is an approximation for the
velocity given an earlier time and a later time,

u

(
x, y, z, t− k

2

)
≈

[u(x, y, z, t) + u(x, y, z, t− k)]
2

(2.15)

2.3.1 Right-Hand Wall (RHW) Boundary Derivation

For a RHW we wish to apply 2.3 to the right hand side of 2.4 as usual. This time we
wish to simultaneously apply 2.2 to the left hand side of 2.4 instead. This yields,

p(x, y, z, t)− p(x− h
2
, y, z, t)

h
2

= −ρ

(
ux(x, y, z, t+

k
2
)− ux(x, y, z, t− k

2
)

k

)
then, after a time shift of T = t+ k

2
, solve for ux(x, y, z, T ) to obtain,

ux(x, y, z, T ) = ux(x, y, z, T − k)−
2k

ρh

[
p

(
x, y, z, T − k

2

)
− p

(
x− h

2
, y, z, T − k

2

)]
We note that in this equation we have u and the �rst p occur both at position x, but
according to our grid that's just not possible. We can only have u's at position x so
we need to apply 2.13 to p(x, y, z, T − k

2
) to obtain,

ux(x, y, z, T ) = ux(x, y, z, T−k)−
2k

ρh

[
Zux(x, y, z, T −

k

2
)− p

(
x− h

2
, y, z, T − k

2

)]
.

This creates another issue. Now we have a ux at time T − k
2
. This directly violates

our leap frog scheme. In order to rectify this we must now apply 2.15.

ux(x, y, z, T ) = ux(x, y, z, T − k)−
2k

ρh
· · ·[

Z

(
ux(x, y, z, T ) + ux(x, y, z, T − k)

2

)
− p

(
x− h

2
, y, z, T − k

2

)]
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After collecting like terms we thus arrive at our equation for the boundary condition
at a right-hand wall.

ux(x, y, z, T ) =
(ρ · h− k · Z)
(ρ · h+ k · Z)

ux(x, y, z, T − k) · · ·

+
2 · k

(ρ · h+ k · Z)
p

(
x− h

2
, y, z, T − k

2

)
(2.16)

2.3.2 Left-Hand Wall (LHW) Boundary Derivation

For the LHW the derivation is nearly identical except for the fact that seeing as we
are approaching the wall from the right we now wish to apply equation 2.1 to the left
hand side of 2.4 instead of equation 2.2. Thus we get,

p(x+ h
2
, y, z, t)− p(x, y, z, t)

h
2

= −ρ

(
ux(x, y, z, t+

k
2
)− ux(x, y, z, t− k

2
)

k

)
.

We thus repeat the same procedure as before but note that we obtain the following
before collecting like terms3.

ux(x, y, z, T ) = ux(x, y, z, T − k) · · ·

− 2k

ρh

[
p

(
x+

h

2
, y, z, T − k

2

)
− Z

(
ux(x, y, z, T ) + ux(x, y, z, T − k)

2

)]
We then obtain as the �nal equation for the LHW boundary,

ux(x, y, z, T ) =
(ρ · h+ k · Z)
(ρ · h− k · Z)

ux(x, y, z, T − k) · · ·

− 2 · k
ρ · h− k · Z

p

(
x+

h

2
, y, z, T − k

2

)
(2.17)

3An important point here is that because it is a LHW the dot product in equation 2.13 is negative,
whereas before for a RHW it was positive. This point was crucial in obtaining the correct signs in
the end result.
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2.4 Adding in a Source Term

Typically when in a room we think of a speaker as creating some pressure at a point
in the room. In most cases what is done is that at a desired position a pressure point
is made to re�ect a signal by forcing that point to adhere to a prede�ned function.
This procedure may be OK in terms of observing how signals travel throughout the
room but is not a physical way of exciting the room. Although at a point in our room
a pressure is in�uenced by an external force, like a speaker, the pressure at that point
is also a�ected by the air around that point reacting to the force being created by the
source. Thus I would like to present the �not so good way� to excite the room and
�the better way� to excite the room in an FDTD scheme.

2.4.1 Sources at Low Frequencies

The main focus of this research has been on the response in a listening room based
on various speaker placements. Thus it is only sensible to have a source term that
simulates the physics of a conventional loudspeaker. The response from a typical
closed box loudspeaker (which will be our focus) is dependent on the frequencies it is
trying to reproduce. At high frequencies closed box loudspeakers have a very direc-
tional response where most of the sound is projected forward in a beam like fashion.
On the other hand, low frequencies are omni-directional and act like approximate
point sources4 that obey the compact source model described in [5]. The essence of
the compact source model is that the point source is creating spherical waves whose
pressure is described by the relation,

p(r) =
ρ · A(t)
4πr

(2.18)

where A(t) is the volume acceleration of the speaker cone. What closed box
loudspeakers actually do is they produce volume velocity (the area of the speaker cone
multiplied by the velocity of the cone), denoted Q(t), and the pressure a distance r
away is directly proportional to the �rst derivative of Q(t), which is A(t). Thus the
two qualities we are looking for from a source term are:

� Creates spherical waves that have a 1/r relationship

� the shape of the wave a distance r away is a derivative of the inputted volume
velocity.

4This fact is shown strongly in the works of [6].
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2.4.2 The Hard Source5 (�not so good way�)

This source model involves taking a point in the pressure matrix and applying a
Gaussian pulse to it (we are not limited to only using a pulse, but can excite with
any type of signal). For example,

p(x, y, z, t) = e−
(t−t0)

2

σ2 .

This is a pulse centered at time t0 and the width of the pulse is de�ned by σ.
The issue when using a pulse like this is that it does not involve the velocity points
around it in the grid to update itself based on how the pressure in the rest of the
room is a�ecting it. It simply maintains a p irrespective of the acoustic equations.
This might not seem like a big deal because all the other points around the source
are being updated by the source itself. But, in fact this is a very big deal! Once the
pulse has reached zero the pulse has begun to spread out into the room and there are
now two choices.

1. Set p(x,y,z,t) back to equation 2.10

2. Leave p(x,y,z,t)=0 for all t.

To most people option 1 seems like the obvious and logical choice. If the room size
is su�ciently large or the pulse su�ciently narrow and has returned to zero before
any re�ections come back then why not simply revert back to equation 2.10 and
continue to calculate normally? Although this sounds like a simple solution it turns
out to be very troublesome and fundamentally unusable. What happens is that this
will introduce an unexpected discontinuity that introduces errors into the calculation
scheme.

The second option is the stable option here except for the fact that we are con-
stantly giving a point in the room a value of 0 for all time. Physically what this does
is create an area of �quiet� in the room, where the size of this area is dependent on the
size of the grid spacing. Clearly this isn't physically possible, but one could imagine
that if the region is su�ciently small then the error this introduces may well be just
as small. One could compare this method and what one would get with our model
that we derive from q(r,t) in 2.5 that we will introduce shortly.

5The �hard source� is a term encountered while browsing the Mathworks website looking for a
FDTD example. http://www.mathworks.com/matlabcentral/�leexchange/21000.
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2.4.3 Area Pulse6

Another source model, that couldn't even really be classi�ed as a source model (but
for completeness I have included it), is what I have nicknamed the Area Pulse or
Spatial Pulse. Instead of being a pulse that evolves in time like that Hard Source it
is a pulse that is de�ned over an area as an initial condition. The program calculates
the net result based on this initial condition. An example of the Area Pulse is given
by,

p(r) =

{
1
2

(
1 + cos

(
πr
R

))
r ≤ R

0 r > R
.

As with the other methods for exciting the FDTD system there are also problems
with this choice as well. For instance, this pulse is only de�ned in the pressure matrix
with nothing said about what the initial condition might be in the velocity matrix,
although upon observation when applying this pulse this doesn't seem to yield any
major issues except that it is physically impossible. The second problem with this
method is that it is limited only to being able to de�ne an initial condition and not
be able to excite the system past t=0.

2.4.4 New pulse

So far we have seen two methods of exciting the simulated room. But how do we
know how that room will react to a speci�c speaker? One method can be to measure
the speaker's impulse response in an anechoic situation and apply its transfer function
to the source. But is there an easier way (or just some way to avoid having to have
measured data all the time)? It can be shown that by solving some simple coupled
di�erential equations that it is possible to work out a speaker cone's volume velocity
and thus relate it to the function q(r,t) as seen in equation 2.57. Thus we can relate
q(r,t) to the voltage that is applied from an ampli�er, which can be known with great
precision, to properly simulate an actual speaker in our FDTD model by using our
knowledge of the speaker's parameters. But for now let us focus on creating a source
that acts like the a simple source as discussed in section 2.4.1.

We begin by re-deriving equation 2.108 from equation 2.5 instead of from equation
2.6, which has a non-zero q(r,t) term. Recall that we apply 2.3 to 2.5 to now obtain,

6see references [18, 19, 20].
7The method of which I am talking about can be seen in [4].
8For the sake of simplicity I will only derive with the x-component present. To include the other

two components follow the same procedure.
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q(x, t)

ρ
−
(
ux
(
x+ h

2
, t
)
− ux

(
x− h

2
, t
))

h
=

1

c2ρ

(
p
(
x, t+ k

2

)
− p

(
x, t− k

2

))
k

.

After time shifting and re-arranging in the same way that was done in 2.1.4 we
obtain the following,

p(x, T ) = p(x, T − k) + kc2 · q
(
x, T − k

2

)
− c2ρk

h

[
ux

(
x+

h

2
, T − k

2

)
− ux

(
x− h

2
, T − k

2

)]
. (2.19)

Equation 2.19 contains the intensive function q which is the rate of creation of
�uid in the system, which has units of kg

m3s
. But we want a relation that contains the

extensive volume velocity function Q, which has units of m
3

s
.Therefore we can relate q

and Q by multiplying q by the volume of the cell about the pressure point of interest,
and then divide it by the density of the medium. Thus

Q =
4V
ρ
· q or q =

ρ

4V
·Q. (2.20)

Here 4V = 4x · 4y · 4z = h3. Substituting 2.20 into 2.19 yields

p(x, T ) = p(x, T − k) + kc2ρ

h3
· q
(
x, T − k

2

)
− c2ρk

h

[
ux

(
x+

h

2
, T − k

2

)
− ux

(
x− h

2
, T − k

2

)]
. (2.21)

2.4.5 New Pulse Testing

If we review our criteria for what makes an acceptable pulse from section 2.4.1 we
recognize that a physical spherical pulse will have a 1/r dependence. Thus by mea-
suring the peak pressure at two di�erent locations and comparing we should obtain
results that correspond to the theory. We do this by using the formula

P1

P2

=
r2
r1
⇒ P2 =

P1r1
r2

. (2.22)

Using the data found in the plot entitled �Plot of a 5msec squared raised-cosine
pulse measured at di�erent positions� in section 2.2.3.2 we assume the peak pressure
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for the pulse measured at 1m away from the source is P1and is used as a reference to
see if the measured peak values at 2.5, 5 and 10 metres agree with what is expected
in equation 2.22. The results are summarized in the following table.

Table 2.1: Table of Expected and Measured Pressure values from a 1/r spherical pulse
using a 5msec pulse.

r(m) 2.5 5 10

Expected Pmax 30.8178 15.4089 7.7044
Measured Pmax 29.4736 13.4615 5.7319

error(%) 4.3616 12.6380 25.6026

The experiment is also repeated for the data using the 10msec and 20msec pulses.

Table 2.2: Table of Expected and Measured Pressure values from a 1/r spherical pulse
using a 10msec pulse.

r(m) 2.5 5 10

Expected Pmax 15.7068 7.8534 3.9267
Measured Pmax 15.6220 7.7520 3.8362

error(%) 0.5396 1.2909 2.3045

Table 2.3: Table of Expected and Measured Pressure values from a 1/r spherical pulse
using a 20msec pulse.

r(m) 2.5 5 10

Expected Pmax 7.8757 3.9379 1.9689
Measured Pmax 7.8554 3.9236 1.9588

error(%) 0.2580 0.3621 0.5145

As can be observed from the data in the tables the error that is observed increases
over the distance the pulse travels and also increases as the pulse length gets smaller,
or in other words, as there are more higher frequencies present in the pulse. A most
likely conclusion that can be drawn from this is that the result of the increasing error
over distance and the increasing error with shorter pulse widths may be due to the
numerical dispersion, where the higher frequencies are traveling at di�erent speeds
than the rest of the pulse, thus changing its shape over time. Thus the shorter the
pulse the more distortion of the pulse and the greater the error.
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2.4.6 New Pulse Drawbacks

In a perfect setting it would be nice to be able to excite our system with a sharp
impulse that had a �at response for all frequencies. Given that there are disper-
sion e�ects at higher frequencies a sharp impulse is not an option for us. The
reader will have noticed that we have already used a squared raised-cosine pulse.
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Figure 2.4: Example of a squared raised-
cosine pulse

The reason for this is that a raised-
cosine pulse starts o� gently and �n-
ishes gently so that there are no sharp
changes that would introduce unwanted
high frequeny content. The raised-cosine
pulse on its own would be an ideal pulse
to use because its frequency response
is reasonably �at from 0Hz up to some
cut-o� frequency(based on the length of
the pulse). Unfortunatly when using
the raised-cosine pulse for the function
Q(t) we end up exciting the system with
dQ(t)/dt as we have already observed,
which does not have a �at response. In
order to have dQ(t)/dt equal to a raised-
cosine pulse we have to set Q(t) equal to the initial �rst half of the cosine pulse and
then hold it at its peak value. This does not prove to be very helpful for two rea-
sons. The �rst, is that this situation is unphysical. Holding Q(t) at a positive value
implies that the speaker cone is travelling with a constant velocity, which is just not
possible physically. The second reason is that the room becomes pressurized. The
pressure level rises to a �xed value and never decays. This is problematic because we
are unable to take a proper FFT of something that does not decay to zero unless we
apply a window to it. This is a very bad idea because the frequency response at the
freqencies of interest will be a�ected by the window and will make the measurement
very di�cult to interpret. This is why we use raised-cosine pulses. We could have
used a Gaussian pulse as well.
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Chapter 3

Code Implementation

Now that we have the equations that de�ne the FDTD method we need to implement
the method into computer code. The following will be a brief overview of how to im-
plement the equations in general into any sort of programming language using pseudo
code and one-dimensional examples. A full disclosure of the �nal implementation of
the computer code in MATLAB script used to generate the results in this thesis is in-
cluded in the Appendix. This section can be skipped because the sections that follow
are not dependent on any of this information. Along the way the author has included
programming tips. This was done because the code contained in the appendix is the
evolved form of the basic implementation that is described in this chapter. The tips
are helpful things that the author has used, and in some cases thought of using but
didn't have the time, and are brie�y described in the tips sub-sections.

3.1 Initial conditions and pre-allocation

By examining equations 2.7 to 2.10 it is clear that we have a few constants that need
to be de�ned initially. They are,

� k, the time step or sampling rate. Commonly set to 1.25e-4 seconds

� h, the spatial step or spatial sampling spacing. Commonly set to 0.1 metres

� c, the speed of sound. Commonly set to 344 m/s

� ρ, the density of air. Commonly set to 1.21 kg/m3.

These constants make up the constant factors found in equations 2.7 to 2.10. Those
factors will simply be referred to as FV and FP for simplicity. FV is the factor used
in the velocity equations and FP is the factor used in the pressure equations.
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Figure 3.1: Example FDTD grid setup. Circles-pressure points; Stars-particle velocity
in the y direction; Squares-particle velocity in the x direction.

The next set of constants that have to be de�ned are the dimensions of the matrices
that will be used. What needs to be kept in mind is that on the boundaries there
are velocity matrix points only, thus the velocity matrix will always have one index
larger than the pressure matrix. As an example let's assume we wish to de�ne a
three dimensional situation with variables M, N, and O for the dimensions. We
would allocate space for the pressure matrix as P(M-1, N-1, O-1) because in all three
dimensions the pressure matrix has to be one unit smaller. For the velocity matrices
only, the dimension that that matrix corresponds to is kept at the full value of the
variables. For example the velocity in the x direction is allocated as Ux(M, N-1, O-1),
where the x component is kept at M while the y and z components each have a �-1�.
This point is visually understood by looking at the 2D layout of the grid in �gure 3.11.
Considering the fact that for now we just want to look at the one dimensional case
we set M=50. Given that our value of h is 0.1m then the distance between velocity
points is h. This means that if the indices of the matrix start at zero then the size of
this room dimension is 5m. In the case of MATLAB the indices start at 1 and thus
the size of the room dimension is only 4.9m. It is crucial to be aware of this.

1This �gure is taken directly from [8].
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In general the FDTD method requires knowledge of the previous values when pre-
de�ning the matrices that will be used in the scheme. We need to de�ne two matrices
for each acoustic variable we wish to calculate. Thus, we pre-allocate the following
matrices;

P_old=zeros(M-1)

P_new=zeros(M-1)

Ux_old=zeros(M)

Ux_new=zeros(M).

The zeros command is used to set the matrices initially as having all of the values
inside equal to zero as an initial condition.

3.1.1 Programming Tip #1

Keeping around two full sized arrays for the acoustic pressure and all three of the
particle velocity components is very expensive in terms of memory, especially if work-
ing with very large arrays. What can be done in MATLAB is the use of recur-
sion to eliminate half of the matrices that need to be stored. For example, using
P = P +Fp ∗ (′velocity components′) calls P to re-calculate itself based on its current
values instead of using Pnew = Pold + Fp ∗ (′velocity components′) which depends on
two stored matrices.

3.2 Implementation of equations 2.7 to 2.10

For the moment, let's forget about the boundary conditions and any sources that we
need to implement and just focus on the raw calculation of the body of the matrices.
Firstly we recall that in the FDTD equations we have components that depend on
three separate instances of time (T, T-k/2 and T-k). For the initial condition the
components that depend on T-k we can assume to be zero initially because they are
earlier versions of the values being calculated at T. For an example let us use the one
dimensional version of 2.10 and 2.7;

pnew(x, T ) = pold(x, T − k) + FP

[
ux

(
x+

h

2
, T − k

2

)
− ux

(
x− h

2
, T − k

2

)]
(3.1)
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unew(x, T ) = uold(x, T − k) + FV

[
p

(
x+

h

2
, T − k

2

)
− p

(
x− h

2
, T − k

2

)]
. (3.2)

The time di�erence between T − k and T is the interval k. So from one instance of
k, to say k + 1, we need to calculate velocity �rst (at k + 1/2) and then pressure
afterwards (at k) in one single interval of k (this sounds more confusing than it is).
This is the point for using the half step method mentioned in the footnote in sub-
section 2.1.3. If it were not used, then one would be calculating velocity and pressure
in the interval of 2k and not in the interval of k. This led to a lot of confusion to the
author as to why the velocity of sound appeared to be c/2 in some early versions of
the code. Thus, for the calculation a for-loop is used where inside the loop velocity
is calculated �rst and then pressure afterward, i.e.,

for i=0 to N

calculate Velocity Matrix

calculate Pressure Matrix

end

The two calculations inside this for-loop are the main body of the whole program.

3.3 Pressure and Velocity calculation

Now that we have our main for-loop we need to go about calculating the velocity
and pressure matrices. As a matter of preference, the velocity matrix is chosen
to be calculated �rst. The values for the newly calculated velocity are then used
immediately afterwards to calculate the pressure matrix. Thus the pseudo code inside
the main for-loop should resemble2;

for i=1 to M

calculate unew(i, T−k
2
) = uold(i, T−3k

2
)+FV

[
pold

(
i+ h

2
, T − k

)
− pold

(
i− h

2
, T − k

)]
end

2It should be noted that in real code it would be pold (i+ 1) − pold (i) and not pold
(
i+ h

2

)
−

pold
(
i− h

2

)
because the u and p matrices are separate from each other, but using h/2 helps illustrate

the point that they are the values on either side of the u value being calculated.
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for i=1 to M-1

calculate pnew(i, T ) = pold(i, T − k) + FV
[
uold

(
i+ h

2
, T − k

2

)
− uold

(
i− h

2
, T − k

2

)]
end

As you can see in the two for-loops we are indeed calculating both u and p in one
iteration of the main for-loop and that the pressure matrix only goes out to M-1.

3.3.1 Programming tip #2

For the sake of speeding up the calculation of the simulation program we can lever-
age the fact that when we calculate the values in the x-component velocity matrix
(equation 2.7) they only depend on its previous values and the previous values of the
pressure matrix, completely independent of the other components of velocity. Thus,
for multi-core CPU systems the three components of the velocity can all be calculated
at once instead of one at a time, thus saving computation time. Unfortunately, this
cannot be done with the pressure matrix as there is only a single matrix. The way
around this is to parse all 4 matrices into separate parts and have each core of the
CPU work on one chunk at a time instead. The implementation for the �rst method
is more straight forward (in the author's opinion) with using the function �parfor� in
MATLAB.

3.3.2 Programming tip #3

Another technique to increase the speed of calculation is to eliminate the two for-loops
by using vectorization. Vectorization is something that is built into MATLAB and
can be done in C. Instead of iterating through each individual value one at a time, it
can tackle the whole matrix all at once, thus saving a considerable amount of time.

3.3.3 Programming tip #4

This tip may be MATLAB speci�c. If we note the term in brackets in equation 3.1 we
are taking the di�erence. By using the di� function in MATLAB there is an increase
in speed because the function has been optimized in MATLAB. Therefore, whenever
possible, use a �built-in� function to do a job for speed gains.
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3.4 Boundary Conditions

If we observe the last bit of pseudo code and focus on the velocity calculation we
will realize that there is a problem. When the for-loop reaches the value of i=M
then the equation wants to calculate using a p at M + h/2, which does not exist.
Similarly, the same thing happens when we calculate at i=1. This is because those
indices represent the boundary and need to be calculated separately by the boundary
condition equations for right-hand walls (equation 2.16) and left-hand walls (equation
2.17). Thus the pseudo code changes to adapt to these changes as follows;

for i=2 to M-1

calculate unew(i, T−k
2
) = uold(i, T−3k

2
)+FV

[
pold

(
i+ h

2
, T − k

)
− pold

(
i− h

2
, T − k

)]
end

calculate unew(1, T − k
2
) = FZ1∗uold(1, T − 3k

2
)− FZ2

[
pold

(
1 + h

2
, T − k

)]
calculate unew(M,T − k

2
) = FZ1∗uold(M,T − 3k

2
) + FZ2

[
pold

(
M − h

2
, T − k

)]
In the above pseudo code, FZ1 and FZ2 are just the constants in equations 2.16 and
2.17. This one dimensional case only has to update the end points. But if we are
talking larger dimensions then the last two lines will have to be calculated in their
own for-loops that calculate the outer shell of the three dimensional room. Given
that the shell of the room is made up of slices then programming tip #3 works very
well in this instance.

3.5 Source Terms

In order to add a source term we examine equation 2.21 and notice that it is identical
to equation 2.10 with the addition of the function q(x, T− k

2
) multiplied by a constant.

For now, let us denote the q function and its constant by s(t) and its position is at
index s. In order to add in the source term we just have to de�ne where we want it
in our pressure matrix and have that point be calculated with equation 2.21 instead
of 2.10. There is more than one way to do this. If we are using for-loops (what has
been shown so far) then it is possible to add a conditional if-statement in the for-loop
to switch to equation 2.21. Or we can simply calculate the whole matrix normally
and then calculate the source equation immediately afterwards replacing the value
that was just calculated. This second method is the preferred method because the
�rst creates signi�cant di�culties for performing vectorization later on. The second
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method works better because the pressure at the point where the source is going to
be added, is only dependent on its previous value and the particle velocity around
it. So as long as the previous pressure at the source has not been thrown away then
it can simply be recalculated before the next iteration of the main loop begins. The
pseudo code is as follows:

for i=1 to M-1

calculate pnew(i, T ) = pold(i, T − k) + FV
[
uold

(
i+ h

2
, T − k

2

)
− uold

(
i− h

2
, T − k

2

)]
end

calculate pnew(s, T ) = poldsource(s, T−k)+s(t)+FV
[
uold

(
s+ h

2
, T − k

2

)
− uold

(
s− h

2
, T − k

2

)]
store poldsource = pnew(s, T ).

3.6 L-Shaped Room Creation

In order to talk about L-shaped rooms we need to move to thinking about things
in two dimensions brie�y. There are two ways to construct an L-shaped room in an
FDTD calculation. The �rst is a brute force way in which the programmer creates a
massive square room and then takes a subset of the points in the matrix in the shape
of a smaller square and sets those points to be left out of the calculation process. This
is accomplished by simply setting up the points around the boundary of the smaller
square as boundary points. This method is very easy to program but wastes a lot of
memory in the process.

The second and preferred method is to create a separate sub-room and attach it to
the main room. This is slightly more complicated than it sounds. The sub-room and
the main room have to share the boundary that separates the main room from the
sub-room. This shared boundary is a set of particle velocity points that are set up to
be calculated as boundary points. Instead they must now be setup to calculate just
like the other points that are governed by equation 3.2. But now one of the pressure
points has to come from the main room and the other comes from the new sub-room
in order to properly connect the two rooms together. This means that along the
dimension that is perpendicular to the boundary to which we are attaching the sub-
room, the size of the pressure matrix and velocity matrix will be the same size. This
di�ers from the normal case of always having the velocity matrix one dimension larger
than the pressure matrix. The following is a one dimensional example of pseudo-code
for connecting two linear strips together. The new sub-strip is added at the left hand
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side of the original and has N points. Capital letters are used to denote the variables
from the sub-room:

for i=2 to M-1

calculate unew(i, T−k
2
) = uold(i, T−3k

2
)+FV

[
pold

(
i+ h

2
, T − k

)
− pold

(
i− h

2
, T − k

)]
end

calculate unew(M,T − k
2
) = FZ1∗uold(M,T − 3k

2
) + FZ2

[
pold

(
M − h

2
, T − k

)]
calculate unew(1, T − k

2
) = u(1, T − 3k

2
) + FV [pold (1, T − k)− Pold(N, T − k)]

for j=2 to N-1

calculate Unew(j, T−k
2
) = Uold(j, T−3k

2
)+FV

[
Pold

(
j + h

2
, T − k

)
− Pold

(
j − h

2
, T − k

)]
end

calculate Unew(1, T − k
2
) = FZ1∗Uold(1, T − 3k

2
)− FZ2

[
Pold

(
1 + h

2
, T − k

)]
.

As can be observed, the 5th line is where the two strips are connected to one another
and depends on the pressures from both the main room (pold(1, T − k)) and the
sub-room (Pold(N, T − k)).
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Chapter 4

Boundary Condition Testing

One of the most worked-on areas in acoustic FDTD research has been in modeling
the boundary conditions. The work is mainly focused on modeling the boundaries in
such a way that they re�ect the nature of common acoustic surfaces. Most surfaces
have varying acoustic impedances at di�erent frequencies.

Considering the low frequency (20Hz-200Hz) nature of our research, we do not nec-
essarily care about how the absorption co-e�cient changes with respect to frequency
because it varies little in the frequencies of direct interest. This fact strengthens the
justi�cation of our choice of using the boundary condition stated in section 2.3, which
upon investigation does not incorporate any obvious knowledge about the frequencies
that are impinging on the boundary.

Equation 2.14 gives us a relationship for the Characteristic Wall Impedance which
is what we use to approximate our boundary condition. But before going any further,
it should be noted how it can be obtained from the acoustic theory. We turn to section
6.3 in [5] entitled �Re�ection from a locally reacting surface�. A locally reacting surface
is a surface whose various parts are not strongly coupled together, thus the motion
normal to a certain portion of the surface is dependent only on the acoustic pressure
incident on that portion, and independent of all other motions occurring elsewhere
in the surface. At the boundary for a situation like this, the impedance is equal to
(p/− uy)1 where;

p(x, 0) = −ρc(1− Cr)ψ′i(x sinϑ− ct)
uy(x, 0) = cosθ(1− Cr)ψ′i(x sinϑ− ct)

1Equation2.13 applies to both RHW and LHW. The negative sign appears when the normal
vector is properly taken into account.
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Thus p/− uy = Z gives us,

Z =
ρc(1 + Cr)

cosθ(1− Cr)
(4.1)

The variable Cr is de�ned in [5] as the re�ection coe�cient, which is the ratio
between incident and re�ected pressure waves. If we consider normal incidence then
cos(0)=1 and equation 4.1 looks identical to equation 2.14, given that Cr =

√
1− α,

which is the common de�nition.

4.1 Direct Incidence Testing

In testing to determine whether or not the simulation program's boundary condition is
su�cient we need to test what happens to a pressure pulse before and after it hits the
boundary. The factor Cr is de�ned as being the ratio between incident and re�ected
pressure waves. The theory for Z and how it relates to Cr is derived right at the
boundary, which presents a problem for measuring this phenomenon. If data is taken
right against the wall as the pressure pulse hits, then separating the waves from the
data may be possible but di�cult. Another way to look at the problem is to consider
the wave before, and after, it encounters the boundary. This is acceptable, because
the re�ected wave will travel through the medium but with a reduced amplitude factor
given by Cr. Given that the simulator uses a point source to produce a pulse then
the waves will be spherical in nature. Thus, as a wave is sent at the wall, the source
sends another identical wave into the open room. This second wave can be measured
at a distance equal to the path length that the re�ected wave travels to be measured
at the virtual mic. Thus, the second wave that has been unhindered by any boundary
shall be thought of as being a reference to the incident wave that corresponds to the
re�ected wave having traveled the same distance. Therefore we can measure how
much absorption occurred by measuring α from the pressure amplitudes of the two
waves in the following formula.

α = 1− C2
r = 1− P 2

r

P 2
i

. (4.2)

The results are tabulated in table 4.1. The conditions for this data are that a
10cm grid and a 7.5msec pulse were used.

32



Figure 4.1: Diagram depicting the mic and source placement for measuring the
amount of absorption on the boundary.
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Figure 4.2: Example providing data for calculating the absorption coe�cient.
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Absorption Co-e�cient P 2
r /P

2
i

.01 .0202
.1 .1001
.2 .1897
.3 .2806
.4 .3727
.5 .4663
.6 .5616
.7 .65910
.8 .7596
.9 .86480

Table 4.1: Table showing absorption coe�cient data.

Figure 4.3: Plot of data in table 4.1.

As can be seen from the plotted data, we get a line whose slope is close to unity
and has a very small intercept, which is expected from a plot of α vs. P 2

r /P
2
i . Thus,

it can be concluded that for direct incidence the boundary condition is functioning

34



correctly. Smaller grid spacings seem to make the resultant slope tend closer to unity,
but we speculate that the slope is not exactly unity because the re�ected wave is not
plane. The spherical character changes the absorption at di�erent portions of the
wave surface.

4.2 Angular Absorption

We have now seen that the boundary condition is a reasonable approximation to the
theory posed in [5] for the case of zero angle incidence. Considering that the angle
isn't directly factored into the derivation of the boundary condition we should now
try and observe how well the physics is preserved o� axis.

For this experiment, the same technique as for direct incidence is applied again,
except now the mic that measures the re�ected pulse will be the same distance away
from the wall as the source, but now it is a known distance to the left of the source
in the room. The mic that measures the incident pulse is placed a distance away that
is equal to the path length of the re�ected wave away from the source, as depicted in
�gure 4.4.

Figure 4.4: Diagram depicting the mic and source placement for measuring the
amount of absorption on the boundary at various angles.
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Figure 4.5: Example plot showing trend of how the amount of absorption changes
with the angle in the simulation relative to the theory.
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Figure 4.6: Figure depicting the theoretical change in the amount of absorption as a
function of angle for various levels of the value alpha.
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Alpha=.1

Angle Measured Absorption Theoretical Absorption %di�erence
0 .0958 .1000 4.20

14.17 .0982 .1030 4.66
26.8 .1060 .1113 4.76
37.15 .1185 .1238 4.28
45 .1293 .1385 6.64

Alpha=.2

Angle Measured Absorption Theoretical Absorption %di�erence
0 .1904 .2000 4.80

14.17 .1963 .2056 4.52
26.8 .2114 .2212 4.43
37.15 .2334 .2443 4.46
45 .2564 .2709 5.35

Alpha=.5

Angle Measured Absorption Theoretical Absorption %di�erence
0 .4787 .5000 4.26

14.17 .4925 .5110 3.62
26.8 .5219 .5409 3.51
37.15 .5640 .5830 3.26
45 .6075 .6285 3.34

Table 4.2: Data for changing absorption as the angle theta is changed.

Given equation 4.1 and the relationship Cr =
√
1− α we can calculate alpha as,

α = 1−
(
Z cosθ − ρc
Z cosθ + ρc

)2

. (4.3)

Thus, if we want to investigate theoretically how alpha varies with angle we choose
an alpha and input it into equation 2.14 to �rst obtain a value for Z. We then put
it into equation 4.3 in order to compute values for alpha as theta is changing2. A
sample of some of the data taken, is in table 4.2. From table 4.2 it is clear that
the measured absorption in the simulated room mimics the trend given by equation
4.3 and observed in �gure 4.5. The theoretical calculation for all angles is shown

2As a check it can be seen that for theta equal to zero gives back the original value of alpha that
was used to compute Z from equation 2.14
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in �gure 4.6. We can conclude that even though the angular dependence of the
absorption coe�cient was not directly incorporated in the derivation, the physics is
still preserved. This is because even though the angle of the wave is unknown, the
proportion of the perpendicular velocity component is known and its change in size
relative to the other components is what allows the program to obey the physics in
equation 4.1.
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Chapter 5

Rectangular Room analysis

The most popular of all room shapes is the rectangular room.

5.1 The Groh Room

The paper by Groh [1] illustrates how adjusting the position of a speaker changes
the response at the listening position. The dimensions of the room are Height=2.4m,
Width=4.2m, and Length=5.6m. The author will use the term �Groh Room� through-
out this thesis to refer to the room dimensions given.

5.1.1 Common Acoustic Room Measures

In order to better assess whether or not our program is properly simulating the Groh
Room we need to asses the expected acoustic properties of such a room based on the
common acoustic equations that are used to assess rectangular rooms. The following
equations were chosen based on their use in the paper by Siegfried Linkwitz [28].

The �rst equation is the reverberation time. It is the most well known and least
disputed measure in room acoustics. This makes it an important measure to help us
indicate whether or not our simulated room resembles an actual listening room or not.
The reverberation time in [29] says �The reverberation time T is de�ned as the time
required for the sound energy density to decay 60dB, that is, to 10−6 of its original
value.� In most cases the reverberation time is denoted as T60, and is computed via
the following formula1.

1For completeness it should be pointed out that in general αS = ΣαiSi, but this is not used
because for simplicity we make all the α′s the same.
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T60 =
60V

1.085cαS
, (5.1)

where V is the volume of the room, c is the velocity of sound in air, α is the average
absorption coe�cient in the room, and S is the sum of all the surface areas in the
room. The T60 measurement will be focused on more intensely later on in the chapter.

The next equation is called the Rise Time and is directly related to the reverber-
ation time. Unlike the reverberation time the rise time describes the amount of time
it takes for a room to go from 10% to 90% of its steady state sound level when being
excited by a sound source. The equation is given by,

Trise = 0.32T60. (5.2)

The following formula is one that describes the various eigenfrequencies, or reso-
nance modes, which can occur in rectangular shaped rooms and is simply known as
the Eigen-Frequency formula,

f =
ω

2π
=
c

2

√(
nx
lx

)2

+

(
ny
ly

)2

+

(
nz
lz

)2

(5.3)

where nx,y,z are the room indices and lx,y,z are the room dimensions.
The spacing between resonance modes in a room is initially irregular, as seen

in table 5.2, but the spacing between these modes gets smaller and smaller as the
frequency increases. The equation that is used to estimate the number of modes of
vibration below an upper frequency limit, say fm = 150Hz, is given by,

N =
4π

3
V

(
fm
c

)3

+
π

4
S

(
fm
c

)2

+
1

8
Le

(
fm
c

)
(5.4)

where

V = V olume = LWH [m3]

S = SurfaceArea = 2(LW + LH +WH) [m2]

Le = Length of Edges = 4(L+W +H) [m]

and the average separation, df, between the resonance frequencies at fm is given by,

df =
c3

4πV f 2
m

[Hz]. (5.5)
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The estimation of the bandwidth, BW, for the resonance frequencies is based on the
calculation for the reverberation time and is given by,

BW = 2.2/T60 = 0.7/Trise [Hz]. (5.6)

The last acoustic measure that is used in table 5.1 is called the Schroeder Cuto�
Frequency. I personally feel that its explanation given in [32] on pages 293-294, best
describes this measure and is quoted as follows:

When the resonance peaks are closer together than the bandwidth asso-
ciated with any one peak, the resonances are less evident. If the aver-
age spacing (4f)mode between peaks is of the order of or less than, say,
1
3
(4f)res, the resonance peaks may be regarded as a smoothed-out con-

tinuum. Since the average spacing (4f)mode decreases with increasing
frequency, there is a frequency fsch (Schroeder cuto� frequency) below
which (4f)res > 3(4f)mode is not satis�ed and above which it is. This
frequency is identi�ed as,

fsch =

(
c3

4ln10

)1/2(
T60
V

)1/2

. (5.7)

The important point to understand from this equation is that it is simply telling us
below what frequency the modes are not signi�cantly overlapping one another. This
is important because of how we hear. The more overlap in the mode the less our brain
distinguishes that a resonance is present. Since there is very little overlap between
the modes in the bass region below fsch then our brains easily distinguish one mode
from another. If c=340m/s then the equation reduces to,

fsch w 2000

(
T60
V

)1/2

. (5.8)

For the Groh Room with the common parameters that are assumed, the frequency
fschis about 260Hz. Given that the room is reverberant up to this point then it would
be ideal to equalize up to that frequency. But it should be noted that the frequencies
below 200Hz (depending on the room) are in general the most troublesome.

Most of these measures will not be examined in great detail but it is worth noting
that most, in some way, depend on the reverberation time, thus that measure will be
looked at more closely in section 5.3.

Table 5.1 describes the common acoustic attributes associated with a room with
these dimensions.
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Groh Room Calculations

Assumed Average Wall Absorption= .1
Room Dimensions in metres L= 5.6

W= 4.2
H= 2.4

Speed of sound c (m/s)= 343
Floor area A(m2)= 23.52
Volume V(m3)= 56.45

Surface area S(m2)= 94.08
Edge Length Le(m)= 48.8

Below Frequency fm(Hz) 150
Total number of modes N= 36.57
Avg. Mode spacing df(@fm)= 2.53Hz

Estimated reverberation time T60(s)= .98
Resonance bandwidth BW(Hz)= 2.25

Rise time Trise(s) .31
Schroeder frequency fsch(Hz)= 263.5

Table 5.1: Table displaying the common acoustic measures for the Groh Room.
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Modes in Groh Room (sorted by Freq.) nx ny nz freq[Hz]

1 1 0 0 30.63
2 0 1 0 40.83
3 1 1 0 51.04
4 2 0 0 61.25
5 0 0 1 71.46
6 2 1 0 73.61
7 1 0 1 77.74
8 0 2 0 81.67
9 0 1 1 82.3
10 1 1 1 87.82
11 3 0 0 91.88
12 3 1 0 100.54
13 2 1 1 102.59
14 0 2 1 108.52
15 1 2 1 112.75
16 4 0 0 122.5
17 0 3 0 122.5
18 3 1 1 123.35
19 4 1 0 129.13
20 0 3 1 141.82
21 0 0 2 142.92
22 1 3 1 145.09
23 1 0 2 146.16
24 4 1 1 147.58
25 1 1 2 151.76
26 5 0 0 153.13
27 5 1 0 158.48
28 0 4 0 163.33
29 5 1 1 173.84
30 0 4 1 178.28
31 1 2 1 180.89
32 6 0 0 183.75
33 6 1 0 188.23
34 6 1 1 201.34

Table 5.2: Table of modal frequencies in the Groh Room.
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5.2 Veri�cation of Room Size

Given that our simulation method is based on a number of assumptions and approxi-
mations it is important to know that when we specify our room dimensions that what
we put in is what we get out again. The following are two ways in which we test the
size of our simulated room.

5.2.1 Frequency Response Method

In rectangular rooms it is possible to use the following formula to determine all the
possible resonance frequencies that are potentially present in a listening room.

f =
ω

2π
=
c

2

√(
nx
lx

)2

+

(
ny
ly

)2

+

(
nz
lz

)2

(5.9)

The nx,y,z are the room modes and lx,y,z are the room dimensions. In rectangular
listening rooms it is possible to excite all possible room modes, as calculated by 5.9,
by placing a sub-woofer in the corner of the room. By placing a source term in a
corner of our pressure matrix, say at (1,1,1), it is possible to observe this e�ect of
exciting all possible room modes. Based on the nature of our grid, and the fact that
the source term is a pressure point, then choosing (1,1,1) does not exactly place the
source in the corner because the velocity points are on the boundaries and not the
pressure points, but with no actual point in the corner. Thus, the true distance from
the assumed corner will be dependent on the grid spacing and equal to

√
3h
2
. For

example if h=10cm then the distance from the source to the corner will be 8.66cm.
As example we shall use the Groh Room. The lowest possible resonance mode will

correspond to the largest room dimension, lx=5.6m. Given nx = 1, and ny = nz = 0,
or n(1,0,0) mode, then 5.9 reduces to f1,0,0 =

c
2

1
lx
, thus resulting in f1,0,0 = 30.71Hz.

In this test of the FDTD program we use the following parameters,

� pulse length of 10msec

� absorption coe�cients on all surfaces set to 10%

� h=10cm and 5cm with K=1.25×10−4s (fs=8000Hz) and 6.25×10−5s (fs=16000Hz)
respectively

� 1second of data to be collected.

� source placement at (1,1,1)
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� mic placement at (M,N,O), where M,N, and O correspond to the maximum
dimensions of the pressure matrix, putting the mic in the opposite corner relative
to the source.

The reason for taking data with h=10cm and 5cm is to see whether or not our results
change when the size of the grid spacing is made smaller. In general making the
grid spacing smaller suggests achieving greater accuracy in the FDTD calculations.
Below in �gure 5.1 we see the raw pressure data taken by our microphone. It should
be pointed out that the blue curve is almost completely covered by the green curve
showing how little di�erence there is.
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Figure 5.1: Raw pressure data showing that the 10cm and 5cm grid curves lie prac-
tically on top of one another. Note, the horizontal axis should be time (s).

In order to obtain greater accuracy in determining the frequency of the lowest
frequency mode from taking the FFT of our data, we need to consider zero-packing
our data. It should be noted that the data has decayed to zero in 1 second, thus it
is possible to use zero-packing, without the need for windowing. Simply taking the
number of points, n, obtained from the data and multiplying by a factor of 4 yields
acceptable results2 as plotted in �gure 5.2.

2The use of factors larger than 4 seem to yield no new information, which is why we stopped at
4.
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Figure 5.2: �t output of raw pressure data from �gure 5.1.

The location of the lowest frequency mode given by the plot is found to be 30.62Hz.
In order to be more accurate the �ve values about the peak are taken and a squared
least squares �t3, is applied to those points. From the resulting polynomial the
frequency of the �rst peak is obtained. For the 10cm grid we obtain f1,0,0 = 30.6314Hz
and for the 5cm grid we obtain f1,0,0 = 30.6340Hz. These values correspond to lx
values of 5.6151m and 5.6146m which di�ers from the inputted value of 5.60m by less
than 2cm. This corresponds to a percent di�erence of 0.31%. This is certainly an
acceptable degree of error. But when comparing the di�erence to the size of the grid
spacing we see that the di�erence for the 10cm grid is 15.1% of a grid spacing and
for the 5cm grid is 29.2% of a grid spacing. This result is clearly not acceptable.

In order to obtain a more accurate result it is necessary to lower the value of the
absorption coe�cient to 1% (which also creates the need to take a longer data set).
This creates an incredibly reverberant environment which will sharpen the resonance
peaks and is observed in �gure 5.3.

From �gure 5.3 we can certainly see that the room is now very reverberant and the
resonance peaks have indeed been sharpened. For the 10cm grid we obtain f1,0,0 =
30.7101Hz and for the 5cm grid we obtain f1,0,0 = 30.7126Hz. These values correspond
to lx values of 5.6007m and 5.6003m which di�ers from the inputted value of 5.60m
by less than 0.1cm. This corresponds to a percent di�erence of less than 0.018%.

3for the least squares �tting the software package known as Maple was used here
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Figure 5.3: Comparison of data taken in the Groh room at 10% and 1% absorption.
Note, the horizontal axis on the left hand plot should be time (s).

This is certainly an acceptable degree of error. When comparing to the di�erence of
the size of the grid spacing we see that the di�erence for the 10cm grid has become
0.7% of a grid spacing and for the 5cm grid is 0.6% of a grid spacing. This result is
now exactly what we expected.

This experiment is repeated for two additional, di�erent sized rooms. The �rst
one with dimensions4 of lx = 6.30m, ly = 3.50m, and lz = 2.70m. The second room
has dimensions that are double that of the Groh Room. (lx = 11.20m, ly = 8.40m
and lz = 4.80m). The results are tabulated in the following table.

4Theses room dimensions are as an example and are similar to the dimensions of room P374 in
the physics building at the University of Waterloo.
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Table 5.3: Tabulated Data for the three di�erent room sizes and their measured f1,0,0
frequency.

Room Di-

mensions(m)

Grid

Spacing

absorption Expected

Fre-

quency(Hz)

Measured

Frequency

%di�erence

5.6x4.2x2.4 10cm 10% 30.7143 30.6314 .2699
10cm 1% 30.7102 .0133
5cm 10% 30.6340 .2614
5cm 1% 30.7126 .0055

6.3x3.5x2.7 10cm 1% 27.3016 27.2990 .0095
5cm 1% 27.3007 .0033

11.2x8.4x4.8 10cm 1% 15.3571 15.3562 .0059
5cm 1% 15.3564 .0046

Given that the results di�er by fractions of a percent from what the expected f1,0,0
value should be, it can be said that the FDTD simulator is accurately simulating
rooms that are the same size as what are being speci�ed.

5.3 Reverberation Time

From table 5.1 we can see that the calculated reverberation time is .98 seconds for
the Groh Room given an assumed absorption of 0.1 and the speed of sound being
344m/s. The question now remains, �How do we measure the reverberation time in
the simulated room?�. Thankfully the FDTD method gives us pressure data in the
time domain instantly and from that we can easily work out the reverberation time
using two di�erent methods.

5.3.1 Beranek Method

The Beranek Method is one that is adapted from the book Acoustical Measurements
by Leo L. Beranek [29]. In this method a room is excited by a band limited excitation
signal that excites the room to its steady state level. The sound source is then removed
and the sound level then begins to decay in the room. The time it takes for the signal
to decay 60dB from its steady state is thus the reverberation time we are looking for.
In the simulation we don't worry about band-limiting our sound source because it
has been shown in �gure 2.2 that the 20msec pulse has very little frequency content
above 100Hz, which will be used instead of a 10msec pulse. What can be done is to
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just excite the room with one cosine pulse and then just observe the decay in pressure
in the room and extrapolate the rate from that. An example of the raw pressure data
from the Groh Room being excited by a sub-woofer in the corner is presented in �gure
5.4.
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Figure 5.4: Raw pressure data taken from a mic in the centre of the Groh Room after
being excited by a 10msec source in the corner.

From the raw pressure data in �gure 5.4 there is an observable envelope of an
exponential decay as time evolves. In order to properly measure this decay we need
to plot 10log10(Pressure

2) versus time in order to obtain the decay rate. This data
is plotted in the left-hand plot of �gure 5.5. The idea would be to apply a linear �t to
this data and extrapolate the reverberation time from this. Because of the numerous
sharp dips in the data the result of a linear �t is skewed. In order to obtain a better
result from this data only the peak values are taken and used for the linear �t instead
of all the raw data, and is shown in the right of �gure 5.5. This omission of some
of the data is justi�ed in light of the fact that it is the envelope of the decay that is
of importance and not the points that are oscillating about zero. The results from
the linear �t is an equation for the line as time = −80.295 ∗ (dBlevel) + 27.819. By
taking 60dB and dividing by the slope the reverberation time is found to be 0.747
seconds.
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Figure 5.5: Figures depicting the transformed pressure data (10log10(Pressure
2)).

Left: Transformed data. Right: Plot of only the peaks taken from the transformed
data.

5.3.2 Schroeder Method

The Schroeder Method was developed by M. R. Schroeder and presented in his paper
�New method for measuring reverberation time� in 1965 [30], and then explored in
[31]. This method works out the reverberation time by using reverse integration over
the impulse response. We can use the results in the room from the 20msec, squared
raised-cosine pulse because its frequency response is very similar to that of a low pass
�ltered impulse and in the time domain is essentially a pulse. The response from our
band-limited impulse will yield an acceptable impulse response (hn), to be used for
the Schroeder Method given below.

〈
s2N,T (t)

〉
= N

� T

t

h2N(τ)dτ (5.10)

A plot of the result 〈s2〉 of this reverse integration applied to the same data shown in
�gure 5.4 is shown in �gure 5.6. The reverberation time calculated from the slope of
the Schroeder decay plot is 0.736 seconds.

5.3.3 Discussion

In light of the closeness in the results from both methods for determining the re-
verberation time (Beranek=0.747s and Schroeder=0.736s) we can safely say that the
reverberation time in the Groh room with alpha=0.1 on all walls is approximately
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Figure 5.6: Plot of the Schroeder decay plot from a 20msec pulse in the Groh room
with a source in the corner.

0.74 seconds and that either method is appropriate for determining the reverberation
time in the simulation. A di�erence of 0.1 seconds in reverberation time is not very
signi�cant, thus the values for the Beranek and Shroeder methods are essentially in
agreement.

But there is still an issue. The expected reverberation time in the Groh room
with alpha=0.1 as computed from equation 5.1 and shown in table 5.1 is 0.98 seconds
and not 0.74 seconds. This clearly needs to be explained. If we return to section
4.2 we recall that it has been shown that the absorption increases as a function of
angle. Given that the source is a spherical source the waves come out and bounce
all around the room at all available angles. The case of direct incidence is in fact a
rare occurrence, and it is more likely that most re�ections would have some sort of
angular component. Therefore it can be said that the average absorption in the room
will be larger than alpha=0.1. In order to get an idea of what the average absorption
is we take our 0.74 reverberation time and put it back into equation 5.1 and solve
for alpha. We obtain the value 0.1363, which from �gure 4.5 doesn't seem like an
unreasonable result.

It is possible to use equation 4.3 and perform an integral over the solid angle to
�nd the average absorption value. If the rays are assumed to be coming in equally
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Perpendicular Alpha Value Avg. Absorption

0.1 0.2839
0.2 0.4453
0.3 0.5652
0.4 0.6591
0.5 0.7334
0.6 0.7913
0.7 0.8339
0.8 0.8599
0.9 0.8634
1.0 0.7734

Table 5.4: Table depicting results of integration over solid angle to determine the
average absorption value.

from all directions a calculation (performed by JV) shows that the e�ective α should
be 0.284 (table 5.4 shows the values from this calculation for other alpha values).
This value is much higher than what we are seeing due to the fact that each angle is
weighted equally, and in a realistic situation some angles may be much more common
than others. This is probably due to the fact that the modes in the room are not very
uniform at these lower frequencies. Su�ce it to say, the problem is a very complex
one. It should also be noted that the value of the Schroeder frequency also becomes
lower now with alpha equal to 0.1363.
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Chapter 6

Plane Wave Creation

In undergraduate electrodynamics, students learn that when an in�nite line of point
charges is equally spaced, the electric �eld a distance away from these point charges
becomes very similar to the electric �eld of a continuous line of charge the further one
moves away. The same thing applies in 3 dimensions. If we have an in�nite number of
charges, all equally spaced out along a plane, then the further away one travels from
this plane the more the electric �eld looks like a sheet of charge. This e�ect is also
true in acoustics. The interesting di�erence between the �eld away from a spherical
point source and that of a plane of sources is that the plane of sources creates a plane
wave that does not decay as 1/r and does not depend on A(t)=dQ/dt. Instead, the
plane wave will maintain the same shape as the function Q(t) that is inputted into
the source, and will not decay as 1/r.

6.1 Single Source Plane Wave

In our simulation we are dealing with a �nite space and can use the image method to
observe a single source creating a plane wave. When a source is placed in a room with
re�ecting walls, then the re�ections appear to an observer as individual image sources
that in turn have re�ections of their own creating an in�nite number of sources. If the
source is placed directly on one of the re�ecting boundaries, then it will appear that
there are only image sources directly in the plane of that boundary. If the boundary
is a square wall, then placing the source in the centre will make it such that the
distance between the source and all of its images are equal to each other and equal to
the dimension of that square wall. It has been shown in [5] that when there is an array
of sources has seperation distance d, then there is a response change or equalization
e�ect below the frequency given by,
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Figure 6.1: Series of plots showing the time evolution of the point source emitting a
plane wave.

fmax =
c

d
−4ε (6.1)

where c is the speed of sound and 4ε1 is a frequency shift that depends on the
damping of the room. The equalization only a�ects the standing waves that setup
parallel to the plane the source is in and the longitudinal standing waves that travel
down the length of the room will be relatively una�ected. Actually they may be
re-enforced and are observed in section 7.2.

As an experiment to test our source term and how it couples to the room to create
a plane wave, we can set up an extremely long room with a relatively small square
wall at either end and measure the pulse at the source and at a point in the centre
of the room to observe the change in the shape of the pressure wave. The front wall
where the source will be placed is a 2.4m square and the length of the room is 28m.
Since the dimension of the wall is 2.4m then fmax ' 143Hz. In light of this value for
fmax the pulse that will be used is the 20msec squared raised-cosine pulse because its
frequency content is primarily below 140Hz. Also an alpha=0.1 was used.

It is observed in �gure 6.1 and 6.2 that the pressure at the source is indeed
proportional to dQ/dt as we have seen before and that the pressure does in fact

1it is not made clear in [5] how to calculate this value.
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Figure 6.2: Plots depicting the change of the spherical source pressure into a plane
wave. Top: Pressure at the source; Bottom: Pressure measured in the centre of the
room showing incident and re�ected pulse.
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become a plane wave when observed away from the source in the centre of the room.
It is also interesting to point out, that the length of the pulses measured in the centre
of the room (the �rst pulse is an incident pulse and the second is a re�ected pulse
from the back wall) are in fact 20msec which is exactly what was put into the room.
Thus, it has been shown that a plane wave was created from our source model and
gave the expected result. The characteristic of the plane wave that was not observed,
was how much it was decaying as it travelled, but regardless does not cast doubt on
the fact that what was observed is indeed a plane wave. There was absorption in the
room and it should be clear from the bottom plot in �gure 6.2 that the pressure does
not depend on 1/r.

6.2 Plane Wave In a Realistic Room

The idea behind suppressing a particular mode of vibration, is to move the speaker
towards a node for that mode of vibration. This simply prevents that mode from
establishing itself in the room because there is no coupling to the mode. This was the
whole idea behind Groh's paper [1]. In the previous subsection, it was shown that a
plane wave could be established by placing a source in the middle of the front wall.
This made the distance between the source and all the images the same so that the
lower-frequency tangential modes would not be established and only the longitudinal
modes are excited, creating a plane wave. This worked well for one source with
frequencies below 140Hz because the distance between source and image sources was
small (see equation 6.1) due to the dimensions of the front wall. The larger the
dimensions of the wall, according to equation 6.1, the lower the fmax is. This means
that the frequency limit at which the tangential waves are suppressed decreases. In
order to raise up fmax in the case of larger wall dimensions it has been shown in [5]
that additional speakers can be placed on the front wall.

For practical reasons the work of Celestinos in [6, 7, 8, 9, 10] used only two sources
on the front wall. The speakers were placed half way up the height of the wall and
moved in by a quarter distance in from the side walls. This positioning maintains
equal distance between sources and image sources in the y-direction. However, the
distances may di�er in the x and z directions if the width of the room is not exactly
twice the size of the height2. In the case of the Groh Room the front wall dimensions
do not form a perfect square and the width is not exactly twice the height. Given
the placement of the speakers equation 6.1 needs to be adjusted to read

2Having the width = 2(height) is the only condition that would allow a two speaker set up to
have the images and sources equally spaced in the x and z directions.
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Figure 6.3: Series of plots showing the time evolution of the point source in the centre
of the front wall displaying that a clean plane wave is not created in the Groh Room
using 20msec pulses.

fmax =
c

max
{
W
2
, H
} −4ε (6.2)

and in the case of the Groh Room H is the larger of the two and again fmax = 143Hz.
Suppressing the tangential modes with this speaker setup leaves the longitudinal
modes una�ected. The sources are thus placed in the Groh Room at (L,W/4,H/2)
and (L,3W/4,H/2) and the results are observed in �gures 7.7 to 7.11 in section 7.2.
This placement and the creation of plane waves below fmax is an essential element
for the cancellation process seen in section 7.3.

Figures 6.3 shows a single sub-woofer generating a complicated wave pattern that
is not quite a plane wave. The exact same source is used for the room of �gure 6.1,
which then creates a plane wave since that room is much narrower. Figure 6.4 shows
the same Groh Room as �gure 6.3, but now with two sub-woofers optimally placed.
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Figure 6.4: Series of plots showing the time evolution of two point sources at
(L,W/4,H/2) and (L,3W/4,H/2) in the Groh Room creating a clean plane wave using
20msec pulses.
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Chapter 7

Speaker Placement and Rear

Cancellation

In an ideal world, when an architect would begin designing a home, he/she would
consider that in one part of the home the family that would one day choose to have
a home audio system installed. Knowing this, the architect would factor in this
information when laying out the �oor plan for what would be the living room or rec
room in the home. The architect would consider both the dimensions of the room
as well as the building materials being used in the room's construction in order to
provide the basis for what would eventually be an acoustically suitable space for a
new home audio system.

Unfortunately, in most cases in home construction, the acoustic suitability of the
living/rec room isn't considered. The norm is that most people buy their homes pre-
made without such attentions to detail in their listening rooms and have to deal with
the room as it is. So then the question is asked, �Now that I have a listening room,
how do I make it better?�. The options available are limited. Acoustic absorbing
material on the walls, �oor and ceiling is certainly a possibility as well as acoustic
traps. Both can be expensive. So, instead, it is better to ask the question, �Is there
a way I can set up my home audio system to make the combination of room and
speakers sound better?�. In an attempt to answer this question, we have to start at
the beginning for what is done with typical sound systems.

The following sections will be examples of typical sub-woofer placements. The
�ner details of how much improvement is made, will be looked at when we have
developed a proper demerit function. Also, for the analysis of each speaker position,
an array of 25 mics equally spaced out over a 2m square region half way up the room
and in the xy-plane is used. Five plots will then be presented displaying each row
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Figure 7.1: Diagram depicting an example of the 25 mics in the room.

of the 5 mics from the front row to the back row . In certain occasions it will also
be necessary to employ a mic at approximately (1.5m, 2m, H/2) when comparing
di�erent speaker set-ups because that position picks up most of the resonance modes.

7.1 Sub-woofer in the Corner

In a typical 5.1 sound system the sub-woofer is placed in the corner. The bene�t of
this is that due to the immediate re�ections from the �oor and the adjacent walls,
there is an 8 times increase in power output. The unintended side e�ect of this, is
that from this position all room modes are excited, which gives rise to unwanted room
resonances.

By placing a source term in the approximate corner of the room we can measure
the frequency response resulting from a 10msec squared raised-cosine pulse in the
Groh Room.
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Figure 7.2: Plot of frequency response from the 1st row of mics in the 25 mic array
for a sub woofer at (0,0,0).
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Figure 7.3: Plot of frequency response from the 2nd row of mics in the 25 mic array
for a sub-woofer at (0,0,0).

61



0 20 40 60 80 100 120 140 160 180 200
−50

−40

−30

−20

−10

0

10

Frequency Response from 3rd row of mics in Groh Room from 
applying a 10msec pulse to a subwoofer in the corner at (0,0,0)

O
rig

in
al

 [d
B

]

Freq [Hz]

 

 

Mic 1
Mic 2
Mic 3
Mic 4
Mic 5

Figure 7.4: Plot of frequency response from the 3rd row of mics in the 25 mic array
for a sub-woofer at (0,0,0).
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Figure 7.5: Plot of frequency response from the 4th row of mics in the 25 mic array
for a sub-woofer at (0,0,0).
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Figure 7.6: Plot of frequency response from the 5th row of mics in the 25 mic array
for a sub-woofer at (0,0,0).

As can be seen in the plots there are many low frequency resonances present
that correspond to many of the lowest modes seen in table 5.1. The reason not all
of them are present is because many lie close to frequencies where there is also an
anti-resonance, which are left to the reader to verify. It should also be noted that
there is a lot of variability in the frequency responses. This illustrates the other
problem that this particular speaker con�guration creates. Each sitting position in
the area of interest, receives varying frequency responses creating di�erent versions
of the performance depending on where a listener is sitting. The ideal would be to
receive a similar, or the same, response at all positions.

7.2 Two Front Sub-woofers Tangential Adjustment

As explained in section 6.2, by placing sources at (L,W/4,H/2) and (L,3W/4,H/2) a
clean plane wave is created for frequencies below fmax (fmax = 143Hz in the Groh
Room), using a 20msec wide pulse. In �gures 7.7 to 7.11 we can see that there is an
abrupt change in the distribution of modes, before, and after 143Hz. Below 143Hz
the modes are less dense because this is the region where the tangential modes of
vibration have not been established, and only the longitudinal modes remain. We
observe that above 143Hz the modes are abruptly more dense due to the addtion of
the tangential modes. It is also observed that the plane wave created a more uniform
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response across all the microphone positions by noting that the responses in all 5
plots appear to be much more uniform than the responses in �gures 7.2 to 7.6.

At �rst glance, someone may conclude that the response due to the plane wave
creation is more desirable based on the uniformity of the response in the microphone
array area. This is because having random variations in the listening area is one of the
problems caused by low frequency resonances in the �rst place. But at the same time
it is observed that the peaks for the resonances that remain appear to be larger. One
would wonder if having less resonances that have an elevated level is more appealing
to the listener than having several more with lower level. This result is bitter sweet
because without doing rigourus listening tests it is impossible to say for sure that this
plane wave equalization technique �sounds better� than the single subwoofer in the
corner. All that can be said is that the perfomance over the region is more uniform
and that is a desired a�ect.

This method could become even more e�ective if coupled with a �lter to surpress
the speci�c longitudinal modes that are observed in the plots.
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Figure 7.7: Plot of frequency response, from the 1st row of mics in the 25 mic array
for sub-woofers w/tangential adjustment.
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Figure 7.8: Plot of frequency response, from the 2nd row of mics in the 25 mic array
for sub-woofers w/tangential adjustment.
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Figure 7.9: Plot of frequency response, from the 3rd row of mics in the 25 mic array
for sub-woofers w/tangential adjustment.
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Figure 7.10: Plot of frequency response, from the 4th row of mics in the 25 mic array
for sub-woofers w/tangential adjustment.
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Figure 7.11: Plot of frequency response, from the 5th row of mics in the 25 mic array
for sub-woofers w/tangential adjustment.
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Figure 7.12: Diagram depicting the CABS system.

7.3 Rear Cancellation (aka CABS1)

The idea behind rear cancellation is to create a plane wave down the room and allow
it to pass the listener. Then after the wave has passed by the listener it can then
be canceled. This is done by placing the sub-woofers at the front of the room as in
section 7.2. Now there is also an identical pair of sub-woofers at the back of the room
at (1,W/4,H/2) and (1,3W/4,H/2). The rear speakers are then fed an inverted and
delayed version of the signal that is sent to the front speakers(see �gure 7.12). The
amplitude is determined via some trial and error. This trial and error is made easier
with the use of the demerit that will be described in section 9.4. So for now, let's
assume that we require an 85% reduction on the amplitude of the cancellation pulses
sent to the rear speakers. The time delay is simply calculated by taking the length
of the room and dividing by the speed of sound i.e., time delay = L/c . Thus for
a room with L=5.6m the time delay will be 16.279msec. Considering that we have
�nite time intervals between calculations of .125msec(which corresponds to using a
10cm grid) then we cannot have the time delay be exact. The closest we can get is
130 time steps, or 16.250msec.

As can be observed in �gure 7.13 the lowest frequency modes have now been
equalized and the response is relatively �at up to about 130HZ. This result is an
extreme improvement in room response when comparred to the case of when there
was a lone sub-woofer in the corner. It is also very clear that the responses are very
similar at each location and one would be getting the same result throughout the
listening area.

1CABS stands for Controlled Acoustic Bass System and the acronym was coined by Adrian
Celestinos in two AES journal papers [8] that were the result of the research outlined in greater
detail in these 3 AES convention papers [7]
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Figure 7.13: Plot of frequency response from the 1st row of mics in the 25 mic array
for sub-woofers w/rear cancellation.
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Figure 7.14: Plot of frequency response from the 2nd row of mics in the 25 mic array
for sub-woofers w/rear cancellation.
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Figure 7.15: Plot of frequency response from the 3rd row of mics in the 25 mic array
for sub-woofers w/rear cancellation.
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Figure 7.16: Plot of frequency response from the 4th row of mics in the 25 mic array
for sub-woofers w/rear cancellation.
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Figure 7.17: Plot of frequency response from the 5th row of mics in the 25 mic array
for sub-woofers w/rear cancellation.

7.4 Further Discussion

In order to further analyze the changes made by each speaker con�guration the ref-
erence mics are used and plotted in �gure 7.18. Looking at the blue curve in �gure
7.18 we can compare the resonance peaks to the expected resonances predicted by
equation 5.9 and displayed in table 5.2. Focusing on the region below 110Hz the peaks
are very distinct and peaks #1 to #13 are all present in the plot, with the exception
of peak #7 which corresponds to 77Hz. Zooming in on the plot in the region between
20Hz and 100Hz we can see that when the tangential adjustment is made, that a
large number of resonances are canceled. The only resonance peaks that remain are
the #1, #4 and #11 from the table. If we examine the table closely, we notice that
the peaks that were canceled all had ny and nz components, but the ones with nx
components alone are indeed the ones left behind. This is an expected result given
the positions into which we moved the sub-woofers. Another expected result, is the
gain on the resonances of #1, 4 and 11 from the blue to the green curve. It is noted
that the gain varies between 6 and 4.5dB. At low frequencies, when an additional
speaker is added to a room, the increase in gain is theoretically supposed to be 6dB,
which is close to what we are observing in the simulation. It is also important to
note that the response observed in the green curve is only obtainable by using two
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Figure 7.18: Comparison of Speaker Con�gurations.
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Figure 7.19: Zoomed in plot of �gure 7.18.
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Plot of the frequency response in the Groh Room due to two speakers at the 
front of the room with tangential adjustment and the rear wall has been removed.
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Figure 7.20: Plot illustrating e�ect of removing the rear wall (setting α ' 1) in the
simulation.

speakers both moved in to W/4 and 3W/4. One speaker alone just doesn't cut it!
The red curve in �gure 7.18, involving the cancellation of the plane wave by use

of the rear speakers, inverted and delayed signal (CABS) is observed to be canceling
the longitudinal waves that correspond to the resonances of #1, 4 and 11. The rear
cancellation method accomplishes this because the waves are canceled before they
bounce o� the back wall and travel back up the room. This is a lot like physically
removing the back wall of the room and not allowing any of the waves to bounce o� of
it. This in practice can't often be done, but we can do it in the simulation by setting
the back wall to have an absorption coe�cient of α ' 1. The results are observed
in �gure 7.20. Clearly the plots are not identical, but the trend from 0 to 140Hz is
the same. It is also interesting to note that if the speakers are only up at H/2 and
put into the corners instead of moved in from the side walls by W/4 then the length
of the �at region is shortened, as observed in �gure 7.21. Thus the rear cancellation
method does still create an ideal e�ect but it is not optimized. It is interesting to
note that the resonance peaks that had an nx component are still canceled, which is
expected, but the region below 80Hz contains resonances that do not depend on nx
at all and are still being canceled regardless. This is made possible because of what
was observed in chapter 6, except the spacing between the sources and images in the
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Figure 7.21: Plot of the response of the Rear Cancellation with having the speakers
up H/2 but not in from the side walls by W/4.
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y direction is now larger. A plane wave is then created for frequencies below fmax
which is now lower than 143Hz and corresponds to equation 6.1. In this case, d is
equal to the width of the Groh Room (4.2m) making fmax = 81.90Hz, which is close
to the cuto� observed in �gure 7.21.
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Chapter 8

L-shaped Room Analysis

Figure 8.1: An example plot of an L-shaped room in the simulation program

8.1 The L-shaped Room

Although rectangular rooms are the most popular shape for listening rooms, they
are not the only shape that people will encounter. In more realistic situations the
room may be connected to the outside by a window, an open door or a long hallway.
Things like windows and doors that open up to the outside world have an e�ect on
the frequency response in the room. More interesting situations are when that door
connects the listening room to another closed room, or the case of a hallway connecting
two rooms together. In situations like this we have coupling e�ects between the two
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rooms that may be observed and may cause issues in our attempts to equalize the
room. As an example let's look at the e�ect of adding a di�erent sized rectangular
room onto our existing Groh Room. The dimensions of this new 'sub-room' will be
Height=same as Groh Room, Length=5m and Width=2.8m(which is half as long as
the existing Groh Room). Figure 8.2 depicts the frequency response of the new L-
shaped room as a result of a sub-woofer placed in the bottom corner of the room at
(0,0,0), the same as in section 7.1.
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Frequency Response in the L−shaped room made up of a smaller room attached
to the Groh Room with dimensions of (L=5m, W=2.8m, H=2.4m) with a 10msec pulse
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Figure 8.2: Frequency of coupled Groh Room with a sub-woofer in the bottom corner
at (0,0,0).

The most notable change is that there is a resonance mode now at approximately
18Hz that was not there before. This new resonance peak, as well as some others,
are explained by the eigen-frequency equation 5.9, because of the length 9.2m. In
general what is happening is that when the two rooms are coupled together they act
like coupled oscillators do. But unlike simple springs, the strength of the coupling has
been observed in the simulations thus far, to be similar to that for weakly coupled
springs as explained from [5], where µ is the coupling coe�cient between the two
resonance frequencies, ω1 and ω2,

We have already mentioned that when the coupling spring is weak, so
that µ2 � ω2

1or ω
2
2, the system behaves like two separate simple oscillators,
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# lx ly lz Frequency (Hz)

1 1 0 0 18.64
2 2 0 0 37.28
3 3 0 0 55.92
4 0 1 0 61.25
5 1 1 0 64.02
6 0 0 1 71.46
7 2 1 0 71.7
8 1 0 1 73.85
9 4 0 0 74.57
10 3 1 0 82.94
11 5 0 0 93.21
12 0 1 1 94.12
13 1 1 1 95.94
14 4 1 0 96.5
15 2 1 1 101.23
16 3 1 1 109.48
17 5 1 0 111.53
18 6 0 0 111.85
19 4 1 1 120.07
20 0 2 0 122.5
21 6 1 0 127.52
22 5 1 1 132.46
23 0 2 1 141.82
24 0 0 2 142.92
25 1 2 1 143.04
26 1 0 2 144.13
27 6 1 1 146.18
28 1 1 2 156.6
29 0 3 0 183.75

Table 8.1: Table displaying the Eigen-Frequencies that are possible in a 9.2x2.8x2.4m
room.
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Groh Room 5.6x4.2x2.4m
Sub−Room addition 9.2x2.8x2.4m
L−Shaped Room

Figure 8.3: Figure displaying the responses of a room that is 9.2x2.8x2.4m(green
curve) and comparing to the Groh Room(blue curve) and an L-shaped room(red
curve) that is coupled with the new room and the Groh Room.
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each slightly in�uencing the motion of the other.

This point is strongly observed in the region of the resonance peaks from all three
curves in �gure 8.3, by �rst focusing on the region about 40Hz. Here the green curve
for the sub room has a peak at 38Hz, and the blue curve for the Groh Room has a
peak at 41Hz. These two frequencies couple together and result in the stronger 38Hz
peak shifting slightly to 39Hz. Also, we can see that the peak for the Groh Room
at 31Hz has been shifted to 32Hz and the large 19Hz peak in the sub-room has been
reduced in amplitude and shifted backwards to 16Hz. From this we can conclude that
the lower in frequency the stronger the coupling.
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 Groh Room 5.6x4.2x2.4m
Sub−Room addition 1x2.8x2.4m
Sub−Room addition 2x2.8x2.4m
Sub−Room addition 3x2.8x2.4m
Sub−Room addition 4x2.8x2.4m
Sub−Room addition 5x2.8x2.4m

Figure 8.4: Figure illustrating the e�ect of increasing the length of the sub-room
attached to the Groh Room.

Figure 8.3 illustrates the increased modal density when the length of the sub-room
is increased.

8.2 L-shaped room with CABS cancellation

Additional frequencies have been introduced by the addition of the sub-room. We
also have an extended back wall. In light of the new variables the question arises,
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L−Shaped Room, No CABS
L−Shaped Room, With CABS
Groh Room, With CABS

Figure 8.5: Comparison of the L-Shaped room with and without the CABS method.

�how well does the CABS method work in this new situation?� The easiest way to
answer that is to run the simulation for this situation and observe the results. The
result from the reference mic is presented in �gure 8.5.

As can be observed the CABS method does in fact provide a large level of can-
cellation in the case of an L-shaped room, but the results are not as appealing as
the rectangular case. As expected the CABS method still equalized the modes cor-
responding to the original rectangular room but was not set up to handle the modes
corresponding to the addition of the sub room, whose features are still present even
with equalization. The degree of cancellation that has occurred will be discussed in
the next chapter.
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Chapter 9

Room Demerit

In room acoustics there are all sorts of di�erent measurements and calculations one
can do to assess how well a room will perform in terms of a particular performance.
Whether listening to music from a home stereo or a presentation being given by a
guest speaker to a small audience, there are di�erent �rules of thumb� as to how
to determine optimum room building parameters. Things like the room dimensions,
building materials, and acoustic absorbers may come under consideration for the
room's construction. As has been the intention thus far, let us consider the average
home listening room that has been constructed using a calculation based on a room
quality index (I do not wish to quote a speci�c one because their validity is not
certain). The room is then built and speakers are placed in it. We measure the
room's frequency response and plot it along with a smoothed version of itself. Upon
comparing both plots in �gure 9.1 it can be said that at �rst glance the one on the
right may look more desirable than the other one. This qualitative way of looking

Figure 9.1: Example room response plots
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at di�erent room response plots is the common method for measuring whether or
not a particular speaker placement is more e�ective in that location. This method
clearly lacks any sort of quantitative measure, which is more desired. The lack of a
quantitative measure is what brings up the need of a room demerit function. D2 is
given in [36].

If we consider that the smoothed response from the frequency response plots are
indeed the desired response of our system, then the deviations from that smoothed
response are what needs to be measured. The deviations can then be used to de-
termine how well the room, plus speaker system, are working together to create (or
destroy) a pleasurable listening experience.

Thus, the following two formulas are presented as possible candidates for what we
would call a �Room Demerit� calculation.

D1 =
1

N

N∑
n=1

[∣∣∣∣Punsmoothed[n]− Psmoothed[n]Psmoothed[n]

∣∣∣∣] (9.1)

D2 =
1

N

N∑
n=1

[
(Punsmoothed[n]− Psmoothed[n])2

(Psmoothed[n])2

]
(9.2)

There is very little di�erence between D1 and D2 except one may say that D2 is
more mathematically defensible by taking the squared di�erence, but in the author's
personal opinion, D1 is more intuitive and the results are more realistic in how a de-
merit formula should respond when assessing di�erent rooms. The di�erences become
clearer when looking at computed data, which will be seen later on. For now, let's
just say that we have two possible candidates for a demerit function.

It should be noted that the smoothed function is one that uses �xed bandwidth
smoothing instead of some sort of factional octave smoothing. At the low end of
the spectrum, fractional octave smoothing is using a very small amount data. This
results in the need for a very large amount of smoothing (1 to 2 octaves) in order
to obtain an ideal smooth curve in the bass region. The reason for this is that at
frequencies below the Schroeder frequency, the spacing between peaks is large com-
pared to frequencies after it. The spacing between peaks below 100Hz are especially
large. When smoothing begins with points that are approaching the Schroeder fre-
quency the smoothed curve jumps up in level at a point before the rest of the room
does. Thus the smoothing is only ever applied using a �xed bandwidth. This is also
psycho-acoustically defensible because it has been shown that the critical bandwidth
at very low frequencies is almost independent of frequency [35].
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9.1 Demerit Function Application to Multiple Mics

Applying the demerit function to a single microphone is very straight forward but, in
order to assess how a room is behaving it is important to have multiple microphone
positions. When applying the demerit to more than one microphone we are still left
with the problem from before with the multiple plots that had to be compared, but
now we have 25 di�erent demerit values that we have to scan through and assess for
each mic. Thus, it might make sense to take the average of those values and �nd an
average room demerit, D. The smaller value for D we obtain, then the less deviation
there is from the smoothed curves. But it has been shown that, in particular, for the
case when a sub-woofer is placed in the corner of the room there is great variability
across the listening area. This logically means that even the smoothed curves at each
mic could be di�erent from one another depending on where the microphone is. It
is observed though that the smoothed curves for each mic position do di�er a little
but not signi�cantly. Thus data will be presented where the demerit calculation is
performed based on (1) individual smoothed curves and (2) an average smoothed
curve. Logic would suggest that it would be best for the demerit calculation to be
based on a single reference smoothed curve that is the average of all the smoothed
curves, instead of individual smoothed curves. This is justi�able because one of the
goals has been to make the listening experience uniform across the whole area so it
makes sense to use a single reference curve for this exerecise.

Along with taking the average demerit it then only makes sense to try and make
use of the other statistical tools that go along with calculating an average. These tools
are the Standard Deviation (SD) and the Standard Deviation of the Mean (SDOM).

9.1.1 Statistics Tools1

Before we get into the SD and SDOM we have to �rst properly de�ne exactly what
the mean is. The mean value for any set of values, xi, is given by the formula,

x =
1

N

N∑
i=1

xi = mean (9.3)

which is assumed to be familiar to the readers.
The standard deviation is given by the formula,

σx =

√
1

N − 1

∑
(xi − x)2 = standard deviation, or SD. (9.4)

1The statistical tools and their de�nitions are taken directly from Taylor [33].
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According to [33] the standard deviation characterizes the average uncertainty in the
measurements of xi. In the case of the demerit, the standard deviation characterizes
the average variability between the individual measured responses and the average
response, which gives a measure for how di�erent one mic is from the average. Smaller
numbers indicate greater conformity to the average value across all the mics.

The last statistical tool, although not as useful or important for completeness,
should be mentioned. Simply put, the standard deviation of the mean is a measure
of the uncertainty in the value of the mean as being the true value out of a series of
separate measurements.

σx =
σx√
N

= standard deviation of mean, or SDOM. (9.5)

9.1.2 Demerit Parameter Choice

Two things need to be known. The �rst, is how large should the smoothing bandwidth
be. The second, is at what frequency do we stop calculating the demerit.

It was previously mentioned, that for the smoothing we are using a constant fre-
quency bandwidth because at low frequencies fractional octave smoothing typically
smooths too little below 100Hz. What needs to be determined, is how big the band-
width should be. We need to use a large enough bandwidth so that it uses enough
data to create a �at curve, but at the same time we do not wish to use a bandwidth
that is so large that it uses too much data (for reasons that will be made clear with
the CABS method example that follows) and is excessively smoothed, to be explained
momentarily. The curves that are in section 7.2 will be used because the separation
between peaks is greatest for these plots and will require a larger smoothing band-
width than the case for when the speaker is in the corner. By changing the bandwidth
from 30Hz to 60Hz and observing the change in how smooth the smoothed curve be-
came, it was decided that the 60Hz bandwidth worked the best. This is shown in
�gure 9.2.

With the bandwidth now chosen the demerit functions can now be applied to
real data. Ideally, what we would want is to calculate the demerit from 0Hz to the
Schroeder frequency in order to assess the room in the region where the resonance
modes are still signi�cantly spaced apart. Unfortunately, in the case of the Groh
Room this does not yield good results. The reason is, when we observe the plots in
section 7.3, we see that the cancellation only works up to 130Hz, which is well below
the Schroeder frequency. Therefore, assessing the region above 130Hz, that has not
been equalized will only make the value of the demerit larger and not properly asses
how much change has happened in the region where there is a signi�cant amount of
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Figure 9.2: Example plots of smoothing performed on the same data using constant
bandwidth smoothing with a 30Hz bandwidth (left) and a 60Hz bandwidth (right).

equalization going on. This gives rise to the reasoning that, in the case for the Groh
Room, we should stop calculating the demerit at least below 130Hz. This is in fact
still too high and we have to observe an example curve from the resultant CABS
method to understand why.
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Example of CABS frequency respons with 60Hz constant bandwidth smoothing
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Figure 9.3: Example of 60Hz constant
bandwidth smoothing with CABS.

As can be observed from �gure 9.3,
the smoothed curve deviates strongly
from the un-smoothed curve just after
110Hz. This deviation is because the
smoothing is now beginning to take into
account the data after 140Hz, where
there is little equalization and the av-
erage level jumps up by nearly 10dB. If
octave smoothing were being used, this
deviation occurs much earlier and is an-
other reason to support constant band-
width smoothing. This deviation may
not occur in the same place and is depen-
dent partly on the room dimensions. So
for now, we can say that in order to have
a proper assessment of the amount of
equalization in the Groh Room we have
to stop calculating the demerit at 100Hz.
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9.2 Rectangular Rooms Revisited

Back in chapter 7, when we took a look at the rectangular room and the various
speaker con�gurations that were used, we noticed that the frequency responses showed
fewer resonance peaks and more uniformity as we went from a single sub in the corner
to using the CABS method. We would expect that the demerit values should re�ect
what was observed in the plots with decreasing values of both D and σD. The
following tables are summaries of the demerit values taken for the di�erent changes
made in the Groh Room for both the individually smoothed and average smoothed
curves.

Sub in Corner 2 subs 1/4width, 1/2height adjustment CABS

D1 0.9269 1.1799 0.0814

D2 1.7001 3.7937 0.0135
σD1 0.0922 0.0443 0.0112
σD2 0.3068 0.5136 0.0022
σD1 0.0092 0.0044 0.0011
σD2 0.0307 0.0514 2.2272e-4

Table 9.1: Demerit values taken from the Groh Room with individually smoothed
curves.

Sub in Corner 1/4width 1/2height adjustment CABS

D1 0.9538 1.2043 0.0840

D2 1.7563 4.2016 0.0140
σD1 0.1088 0.0430 0.0137
σD2 0.3427 0.6272 0.0029
σD1 0.0109 0.0043 0.0014
σD2 0.0343 0.0627 2.9016e-4

Table 9.2: Demerit values taken from the Groh Room with a single average smoothed
curve for each speaker con�guration.

As we can see from the tables, the values are not very dissimilar between using
individual smoothed curves and using an average smoothed curve.

If we compare the �1/4width 1/2height adjustment� column with the CABS col-
umn we can see that the demerit values decrease by a signi�cant amount for the
CABS column. Both versions of the demerit show a decrease in the average demerit
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value as well as a much smaller value for the Standard Deviation which indicates
both smoothness and uniformity of the response across all 25 mics. This is indeed the
predicted result we expected to see earlier. What was not expected though, was the
results comparing the �Sub in Corner� column with the �1/4width 1/2height adjust-
ment� column. It is expected that all the values for the demerit measures should have
decreased when applying the 1/4width 1/2height adjustment. In order to understand
this result let's focus on �gure 9.4 taken from chapter 7. After making the 1/4width
1/2height adjustment or tangential adjustment, we can see from the �gure that the
peaks and dips from the green curve have a much larger magnitude than those of the
blue curve that correspond to the single speaker in the corner. So even though the
number of resonances has been reduced, the remaining modes of vibration have been
excited more strongly and this explains the higher D values. But, if we recall, the
tangential adjustment was supposed to create a plane wave which should result in a
more uniform response across the listening area. We can see this e�ect by comparing
the plots for the sub in the corner (�gures 7.2 to 7.6) to the plots for the tangential
adjustment (�gures 7.7 to 7.11). It was observed that the plots for the tangential
adjustment are more similar to one another than the plots for the sub in the corner.
This trend is re�ected in the tables where the value of σD1 does in fact get smaller
(about half the size) for the tangential adjustment response. It is puzzling as to why
the σD2 values do not share this trend. Given the fact that the D1 demerit values
conform to what is being observed, then this makes a case for the validity of equation
9.1 over equation 9.2.

9.3 L-Shaped Room Revisited

It has already been observed that the CABS method does indeed equalize the L-
shaped room to a large degree, although not as well as the simple rectangular case.
Now that we have de�ned demerit functions that appear to work reasonably well for
obtaining a value as to how well the equalization is working, we can have some value
to help us judge how bad the equalization is in the L-shaped room compared to the
typical Groh Room.
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Figure 9.4: Zoomed in plot of �gure 7.18.

Sub in Corner 1/4width 1/2height adjustment CABS

D1 0.8760 1.0379 0.5665

D2 1.5043 2.5736 0.9097
σD1 0.1067 0.0461 0.0421
σD2 0.4345 0.4324 0.1816
σD1 0.0107 0.0046 0.0042
σD2 0.0435 0.0432 0.0182

Table 9.3: Demerit values taken from the L-shaped room with individually smoothed
curves.
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Sub in Corner 1/4width 1/2height adjustment CABS

D1 0.9538 1.0514 0.5811

D2 1.7563 2.7512 1.0835
σD1 0.1088 0.0815 0.0490
σD2 0.3427 0.7958 0.5113
σD1 0.0109 0.0081 0.0049
σD2 0.0343 0.0796 0.0511

Table 9.4: Demerit values taken from the L-shaped room with a single average
smoothed curve for each speaker con�guration.

From the tables we can see that the trends are very similar to what was observed
in the Groh Room. As expected, the values in the CABS columns are much smaller
than the others, but not nearly as small as the CABS columns for the Groh Room.
This indicates that the CABS method is still working reasonably well even though
we do not have a closed o� rectangular room.

9.4 Amplitude Selection for CABS using Demerit.

In section 7.3 it was mentioned that the amplitude used for the rear speakers that
perform the cancellation was chosen based on trial and error. This is because the
amplitude for the rear cancellation not only depends on the room dimensions, but
also the amount of absorption in the room. This makes its determination by means
other than using trial and error di�cult and is a problem that is left unsolved here.

It is very easy to run a simulation and look at the plot and say, �yeah, that looks
like it's working pretty well�. But now with a demerit function we can make the
process all that much more accurate.
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Alpha=0.01 Alpha=0.1

amplitude(%) D1 D2 amplitude(%) D1 D2
100% 0.1416 0.0454 90% 0.1123 0.0293
98.75 0.1311 0.0412 87.5 0.0876 0.0185
97.5 0.1329 0.0616 85 0.0840 0.0140
95 0.2081 0.3148 82.5 0.0988 0.0189
92.5 0.3528 1.1062 80 0.1202 0.0362
90 0.5315 2.6192 75 0.2069 0.1186

Alpha=0.5 Alpha=0.1 4.2x11.2x2.4

amplitude(%) D1 D2 amplitude(%) D1 D2
40 0.2018 0.0619 90 0.1988 0.0672
37.5 0.1945 0.0570 80 0.0899 0.0176
35 0.1907 0.0545 77.5 0.0780 0.0141
32.5 0.1906 0.0546 75 0.0880 0.0167
30 0.1932 0.0573 72.5 0.1111 0.0265
25 0.2056 0.0703 70 0.1415 0.0446

Table 9.5: Tables showing the change in desired rear cancellation amplitude with
di�erent alpha values and change in size of the room dimensions.

Table 9.5 is a sample of data that was used in determining the correct amplitude
for the CABS method. In general, it is observed that when either the value of alpha
increases or the size of the room increases, the required amplitude to perform the
CABS method decreases. This is expected.

There are a few interesting things to note about the data in table 9.5. For starters,
when alpha is 0.01 the ideal amplitude to use turns out to be extremely close to
100%. This is interesting, in that it points out the fact that the plane wave that is
created, decays very little as it travels down the length of the room in the absence
of a signi�cant degree of absorption on the walls. This is to be expected, since plane
waves do not decay at all, whereas spherical waves decay like 1/r. Alpha=0.01 is
also a very unrealistic level of absorption in the �rst place. Another point is the fact
that for alpha=0.5 we notice that the results from the two demerit functions disagree
slightly. To have an alpha=0.5 is a very unrealistic situation as well, and the response
in the room without the CABS method is already reasonably �at (see �gure below)
and has a D1 = 0.4130 and D2 = 0.2556.
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Figure 9.5: Comparison of optimized CABS method(left) to two front sources(right)
with an alpha of 0.5.
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Chapter 10

Summary

In this thesis we investigated several aspects that pertained to two main topics, the
�rst is the development of the FDTD method, and the second is the bass equalization
and development of a demerit function.

10.1 FDTD Method

The Finite Di�erence Time Domanin method and how it is applied to the linear
acoutic equations was the �rst topic of interest. We needed to develop and explore
the FDTD method and its applicability to acoustics because it would be used as a
tool to help propel this research poject forward into other areas of investigation. This
subject brought up two important questions. How accurate is the FDTD method for
simulating room acoustics, and how do we properly excite the system?

The �rst question was tackled both directly and indirectly throughout the thesis.
We saw speci�cally in chapters 4 and 5 the FDTD simulation program, that was writ-
ten and is contained in the appendix, provided physically realistic results in testing
the boundary condidtions, verifying the room size, and the observed reverberation
time. As well we saw in chapter 2 that a spherical pulse did in fact obey a 1/r law as
predicted by the physics in [22]. It was also observed, that other expected physical
results were re-created throughout chapters 5 through 8. For example, the observa-
tion of a 6dB increase in sound pressure level when going from a single speaker setup
to a two speaker setup. The most sigi�cant example was the creation of a plane wave
from a single source and its images. From these observations it can be concluded that
the FDTD method is indeed an accurate method for simulating room acoustics.

The second question, of how we properly excite the system, was one that came
about out of necessity. Given that this was a subject that seemed to be almost
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completely passed over in much of the literature, the derivation of a proper source
term is a very important accomplishment, even though it was never meant to be an
important focus for this masters project. The source derived in chapter 2 comes out
directly from the physics of acoustics in the continuity equation, and acts identically
like a closed box loudspeaker at low frequencies (a spherical point source). Thus we
can conclude from this that the source that we developed is a proper way to excite
the system.

Overall we can see that the FDTD method, even with very basic boundary con-
ditions, is a very valuable and powerful tool for doing low frequency research for
reasonable sized listening rooms.

10.2 Bass Equalization and Demerit

From developing the FDTD simulation program in MATLAB we now have a tool that
allows us to look at various speaker placements and cancellation techniques, as well
as the ability to observe some special acoustic situations that would not normally be
observed in real world situations (i.e., removing the back wall of the listening room
to observe that there are no longitudinal modes of vibration). In order to assess
whether or not one equalization technique was performing better than another a
demerit function was required. The original demerit that was used was found in [36]
and with some slight modi�cations, the two demerit functions presented in chapter 9
were then able to be applied to 25 virtual microphones in the simulation program.

The �rst equalization method that was looked at was the creation of plane waves
down the room. This had the e�ect of reducing the number of modes present in
the room but also had the e�ect of increasing the level of the left over resonances,
which is not a desired result. The increased level was re�ected in larger demerit
values when compared to the values obtained from the reference frequency response
obtained from placing a single sub-woofer in the corner of the room. The other e�ect
that the plane wave had, was that the frequency responses were observed to be more
uniform across the 25 microphone positions. This is certainly a desired result given
the goal of creating an �acoustically sweet area� instead of just having a single �sweet
spot�. This result was re�ected in a smaller SD value for the D1 demerit function, but
was not observed in the SD value for the D2 demerit function. The reason for this
remains unknown and leads us to consider that perhaps D1 is a more valid fuction for
calculating the demerit than D2 is. To recap, this equalization has a larger demerit
value due to the larger resonance peaks but the response is more consistent. Whether
this creates an overall improvment in listening experience is unknown, given the
con�icting results. However, it should be noted that the creation of the plane wave
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is essential for achieving the signi�cant equalization found in the next equalization
method.

The second equalization method that was tested was the rear cancellation method
that was originally presented by Adrian Celestinos in [6, 7, 8, 9, 10]. As expected this
equalization technique works extremely well, creating a �at response in the region
below fmax. This result is also re�ected in the much smaller values for the demerit
and the SD. The interesting result observed from this equalization technique is that
it is rather robust and achieves very good results when applied to the L-shaped room,
and can presumably may work well in other situations.

The demerit function is in general used as a measure of how well the room responds
to a speaker setup. In the case of rear cancellation it is also used as a tool to help in
determining the correct amplitude for the rear speakers. This requires being able to
sense and di�erentiate between small changes in the response. Both demerit functions
have been shown to be sensitive enough for this job.

Overall the dermerit functions (in particular D1) have been observed to re�ect the
changes in the frequency response over the 25 mic positions with trends that coin-
cide with what is being observed, thus connecting the qualitative to the quantitative
results.

10.3 Future Work

10.3.1 Auralization

One of the interesting points to note about the pulse that we developed, is the fact
that it directly employs the volume velocity function Q(t). This function is directly
derivable from the physics applied to loudspeakers as seen in [26]. In the paper
the function for the displacement of the cone, X(ω), is given and is a function of the
voltage applied across the speaker terminals, as well as the other common Small-Thiele
parameters that are commonly known for speakers. Since Q(t) = v(t) · ConeArea =
dx(t)
dt
·ConeArea, then the function Q(t) can be obtained from the signal voltage and

the loudspeaker model. What this does is it allows us to simulate any speaker in
the FDTD simulation and observe how it couples to the room if we are aware of its
Small-Thiele parameters and the signal that would be applied to the speaker. Since
this is all done in the time domain, we can even feed the simulated speaker an actual
audio �le and record the pressure output at the listening position, in order to see how
a particular speaker might sound in the room we are interested in constructing.

The drawback to this method, is that because of the fact that we are oversampling
in time we have to up sample whatever sound �le we wish to play. This means that if
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we wish to input a raw music �le that has a length of 30seconds containing frequen-
cies higher than 10kHz then we need a much smaller grid spacing and thousands of
iterations. It was calculated that in order to do this, on a conventional PC, it would
take months. In order to get around this problem it was concieved that we could
�lter the sound �le we wish to test, inputting the low frequency content that would
be a�ected by the room modes and storing the high frequency portion to be added
back in afterwards. This would allow us to use a coarser grid spacing and save alot
of computational time. In addition to splitting the frequencies of the sound �le up,
we could also just obtain an impulse response for the grid spacing of interest instead
of playing the whole 30second sound �le in the simulation. We then would convolve
the results to get back what the sound �le would sound like in the room.

In order to obtain an impulse response from the room that is suitable for aural-
ization, a very �ne time and spatial step FDTD simulation would need to be done.
This is computationally challenging. Thus, we would look for ways of modelling the
low frequencies and adding a simpler model for the high frequencies.

This technique seemed a good idea but it required that a reference be made. A
reference that contains an impulse for the simulated room for an very small grid
spacing would be needed in order to tell if the sound artifacts we would hear in the
recording are from the errors and dispersion related to the FDTD method, and not
from our �ltering and equalization. In the authors opinion, in order to obtain a
satisfactory reference it would have been a large undertaking and taken over a month
to calculate on the current hardware. This led the author to abandon this aspect of
the project in hopes of continuinig this work in the future.

10.3.2 Boundary Conditions

From the investigation in chapter 4, we have seen that the boundary condition that
we chose to use was appropriate, by mimicing the physical results one would expect
for a locally reacting surface at low frequencies. The drawback here, is that not all
surfaces are locally re-acting and the amount of absorption can vary with frequency.
Given that the work we were performing only had to do with low frequencies, the
varying absorption was not so much of an issue, but it is foreseeable that one would
like to work with situations where the boundaries are not locally re-acting. Thus,
a more robust boundary condition is certainly worth adopting into the simulation
program. Examples of di�erent boundary conditions can be found in [23, 24].
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10.3.3 CUDA(Nvidia) and Stream(ATI) programming

Problems being solved using numerical methods are becoming more and more complex
and require more and more computer power to solve them. A perfect example, is the
issue that came about when we attempted to try Auralization. The speed of single
CPUs have roughly hit a limit, so smarter more clever ways have been developed
by scientists to tackle today's intense numerical problems. The most popular is to
break up the problem and have it solved by more than one CPU at a time. This is
called parallel computing. This new way of solving large numerical problems changed
the direction of CPU manufactuers to, instead of making faster CPUs, to now put
multiple CPUs, or �cores�, on a single chip. The current CPU architecture is limited
by the maximum number of CPU cores that can be put on a single chip. This gave
way to looking to the GPU, or graphics processor to handle the parallel processing
work. GPU's are made up of hundreds of smaller, less powerful cores instead of a
small handful of really powerful ones. The idea and strength behind using GPU's
instead of CPU's is that we are taking on the problem with thousands of little chisels
instead of one big sledge hammer.

Programming on a GPU is di�erent than programming on a CPU, and thus,
Nvidia and ATI (the two largest GPU manufacturers) have come up with their own
C like programming languages. Nvidia introduced CUDA (Compute Uni�ed Device
Architecture) and ATI introduced Stream, in order to leverage the power of the
manufacturers' respective graphics processors. There are also di�erent programs and
plugins for existing applications, like MATLAB, that allow one to seamlessly carry
out calculations in a programming language that is familiar to the user. An example
of this can be found at http://gp-you.org/, where a plugin for MATLAB has been
developed to allow it to access Nvidia GPU's directly and perform computations. The
author has tried this plugin and observed increases in the speed of computation over
his CPU by more than a factor of ten using a conventional graphics processor (Nvidia
GeForece 9600GT).

The FDTD method is a prime candidate for parallelization because it can be
broken up into pieces and the values only depend on previous values that are stored
and not immediately on the values around that particular piece. Research grade
GPU's boast speed increases of up to 30 times that of a high end CPU. Thus, in
order to handle higher and higher frequencies directly and to do auralization, some
sort of parallel processing using CUDA or Stream would be a great asset and should
strongly be considered for the future.

96



Bibliography

[1] Allen R. Groh. �High-Fidelity Sound System Equalization by Analysis of Stand-
ing Waves�. J. Audio Eng. Soc., Vol 22, No. 10, 1974 December.

[2] Todd Welti & Allan Devantier. �Low-Frequency Optimization Using Multiple
Subwoofers�. J. Audio Eng. Soc., Vol 54, No. 5, 2006 May.

[3] Todd Welti. �How Many Subwoofers are Enough�. Presented at the 112th Con-
vention of the Audio Engineering Society, Munich, Germany, May 10-13 2002,
paper 5602.

[4] J. Abildgaard Pedersen, �Adjusting a loudspeaker to its acoustic environment�,
Proc. AES 115th Convention, New York, convention paper 5880, (October 2003).

[5] Arturo O. Santillan. �Spatially extended sound equalization in rectangular
rooms�. J. Acoust. Soc. Am. 110 (4), October 2001.

[6] Adrian Celestinos and Sofus Birkedal Nielsen. �Multi-source low frequency room
simulation using �nite di�erence time domain approximations�. Presented at the
117th Convention of the Audio Engineering Society, San Fransisco, CA, USA,
October 28-31 2004.

[7] Adrian Celestinos and Sofus Birkedal Nielsen. �Optimizing placement and equal-
ization of multiple low frequency loudspeakers in rooms�. Presented at the 119th
Convention of the Audio Engineering Society, New York, NY, USA, October 7-10
2005.

[8] Adrian Celestinos and Sofus Birkedal Nielsen. �Low frequency sound �eld en-
hancement system for rectangular rooms using multiple low frequency loudspeak-
ers�. Presented at the 120th Convention of the Audio Engineering Society, Paris,
France, May 20-23 2006.

97



[9] Adrian Celestinos and Sofus Birkedal Nielsen. �Low-Frequency Loudspeaker�
Room Simulation Using Finite Di�erences in the Time Domain�Part 1: Anal-
ysis�. J. Audio Eng. Soc., Vol 56, No. 10, 2008 October.

[10] Adrian Celestinos and Sofus Birkedal Nielsen. �Controlled Acoustic Bass Sys-
tem (CABS) A Method to Achieve Uniform Sound Field Distribution at Low
Frequencies in Rectangular Rooms�. J. Audio Eng. Soc., Vol 56, No. 11, 2008
November.

[11] Soren Krarup Olesen. �Low Frequency Room Simulation Using Finite Di�erence
Equations�. Presented at the 102nd Convention of the Audio Engineering Society,
Munich, Germany, March 22-25 1997.

[12] D. Botteldooren. �Acoustical Finite-Di�erence Time-Domain Simulation in
Quasi-Cartesian Grid�. J. Acoust. Soc. Am., 96, pp. 2313-2319. (May 1994).

[13] D. Botteldooren. �Finite-Di�erence Time Domain Simulation of Low-Frequency
Room Acoustic Problems�. J. Acoust. Soc. Am., 98, pp. 3302-3309. (December
1994).

[14] Jose J. Lopez, Jose Escolano, and Basilio Pueo. �On the Implementation of a
Room Acoustics Modeling Software using Finite-Di�erence Time-Domain Meth-
ods�. Presented at the 122nd Convention of the Audio Engineering Society, Vi-
enna, Austria, May 5-8 2007.

[15] K.S. Kunz. The �nite di�erence time domain method for electromagnetism. CRC
Press. (1993).

[16] Dale R. Durran. Numerical Methods for Wave Equations in Geophysical Fluid
Dynamics. Springer (1999).

[17] Stefan Bilbao. Wave and Scattering Methods for Numerical Simulations. Wiley
(2004).

[18] Takatoshi Yokota, Shinichi Sakamoto, and Kideki Tachibana. �Visualization of
sound propagation and scattering in rooms�. Acoust. Sci. & Tech. 23, 1 (2002).

[19] Shinichi Sakamoto, Takuma Seimiya and Hideki Tachibana. �Visualization of
sound re�ection and di�raction using �nite di�erence time domain method�.
Acoust. Sci. & Tech. 23, 1 (2002)

98



[20] Hisaharu Suzuki, Akira Omoto, and Kyoji Fujiwara. �Treatment of boundary
conditions by �nite di�erence time domain method�. Acoust. Sci. & Tech. 28, 1
(2007).

[21] Nick Clark. �Tiny FDTD v1.0�. Mathworks website. URL:
http://www.mathworks.com/matlabcentral/�leexchange/21000-tiny-fdtd-v1-0.

[22] Philip M. Morse and K. Uno Ingard. Theoretical Acoustics. Princeton (1986).

[23] Chengbin Peng and M. Na� Toksoz. �An optimal absorbing boundary condition
for �nite di�erence modeling of acoustic and elastic wave propagation�. J. Acoust.
Soc. Am. 95 (2), February 1994.

[24] Konrad Kowalczyk and Maarten van Walstijn. �Modelling Frequency-Dependent
Boundaries as Digital Impedance Filters in FDTD and K-DWM Room Acous-
tics Simulations�. Presented at the 124th Convention of the Audio Engineering
Society, Amsterdam, The Netherlands, May 17-20 2008.

[25] Leo L. Beranek. Acoustics, 1993 edition. Acoustical Society of America.

[26] John Vanderkooy, Paul M. Boers and Ronald M. Aarts. �Direct-Radiator Loud-
speaker Systems with High Bl�. Presented at the 114th Convention of the Audio
Engineering Society, Amsterdam, the Netherlands, 2003 March 22-25; revised
2003 May 26.

[27] John Vanderkooy. �The Acoustic Center: A New Concept for Loudspeakers at
Low Frequencies�. Presented at the 121st Convention of the Audio Engineering
Society. San Francisco, CA, USA. 2006 October 5-8.

[28] Siegfried Linkwitz. �Investigation of Sound Quality Di�erences between Monopo-
lar and Dipolar Woofers in Small Rooms�. Presented at the 105th Convention of
the Audio Engineering Society, San Francisco, CA, USA, 1998 September 26-29,
paper #4786.

[29] Leo L. Beranek. Acoustical Measurements: Revised Edition. Acoustical Society
of America (1988).

[30] M. R. Schroeder. �New method for measuring reverberation time�. J. Acoust.
Soc. Am., vol. 37, pp. 409-412, 1965.

[31] Laurent Faiget, Robert Ruiz and Claude Legros. �The True Duration of the
Impulse Response used to Estimate Reverberation Time�. IEEE manuscript 0-
7803-3192-3/96, 1996.

99



[32] Allen D. Pierce. Acoustics: An introduction to its Physical Principles and Appli-
cations. Acoustical Society of America (1989).

[33] John R. Taylor. An Introduction to Error Analysis: The Study of Uncertainties
in Physical Measurements (Second Edition). University Science Books 1997.

[34] Neil W. Ashcroft & N. David Merman. Solid State Physics. Brooks Cole (1976).

[35] Thomas D. Rossing, Richard F. Moore, and Paul A. Wheeler. The Science of
Sound (3rd edition). Addison Wesley (2001).

[36] John Vanderkooy. �Multi-Source Room Equalization: Reducing Room Reso-
nances�. Presented at the 123rd Convention of the Audio Engineering Society,
New York, NY, USA, 2007 October 5-8.

[37] Kane Yee. "Numerical solution of initial boundary value problems involving
Maxwell's equations in isotropic media". Antennas and Propagation, IEEE
Transactions on 14: 302�307, 1996.

100



Appendix A

MATLAB Code

1 %this is the beginning of my new 5.1 test program

2 %this is a 3-d FDTD simulation

3 %This program will start off by exciting a pressure point of the

system temporally

4

5 clear all; close all;

6 tic;

7

8 %Settings for plotting

9 Plot =0; %1=plot , 0=no plot

10 Plotinterval =100; %determines the interval between interations to

plot

11

12 %Settings for Single or Double Precision

13 chooseSingle =1; %1= Single precision , 0= Double factor =1;

14

15 %Defining the time step , spacial step and speed of sound constants

K=1/ factor *1.25e-4; %this corresponds to a sampling frequency

of 8000Hz h=1/ factor *.1; %this is a spatial sampling of 10

cm

16 c=344; %speed of sound

17 rho =1.21; %density of air

18 fs=1/K;

19

20 %n Sets number of time steps

21 n=8000* factor;

22 T=0:n;

23

24 %This sets the size of the room %assume a P matrix with MxNxO
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25 M=42* factor +1; %42width 1 to 42, thus 41 points always one

bigger because there is not zero position , array starts at 1

26 N=56* factor +1; %56depth

27 O=24* factor +1; %24 height

28

29 %This will add in a seperate room connected to the main room

30 sub_room_flag =0;

31 M_sub =50* factor; %you are re -using a Ux from the main room so

you don 't need to account for 0 position being 1

32 N_sub =28* factor +1;

33 O_sub=O;%<----DO NOT CHANGE , I have not accounted for any other

case

34

35 %This will be where we add a doorway

36 Rightside_doorway_flag =0;

37

38 %Activating the speakers you want to test

39 %1= active and all other values = deactive

40 sourceon =0;

41 centreon =0;

42 lefton =1;

43 righton =1;

44 rlefton =1;

45 rrighton =1;

46 subwooferon =0;

47

48 %defining the time delay and a relative amplitude for the rear

speakers timedelay =130* factor;

49 amp = -0.85;

50 amp_RearLeft=amp;

51 amp_RearRight=amp;

52

53 %determins parameters for plotting with correct aspect ratios

54 if M>N

55 largest_dim=M;

56 elseif N>M

57 largest_dim=N;

58 elseif M==N

59 largest_dim=M;

60 end

61

62 %pre=allocating arrays

63 P=zeros(M-1,N-1,O-1);

64 Ux=zeros(M,N-1,O-1);

65 Uy=zeros(M-1,N,O-1);

66 Uz=zeros(M-1,N-1,O);
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67

68 if chooseSingle ==1 %changes double arrays to single

69 P=single(P);

70 Ux=single(Ux);

71 Uy=single(Uy);

72 Uz=single(Uz);

73 end

74

75 %pre -allocating speakers

76 Pold_source =0;

77 Pold_centre =0;

78 Pold_left =0;

79 Pold_right =0;

80 Pold_rleft =0;

81 Pold_rleft =0;

82 Pold_subwoofer =0;

83

84 %pre -allocating the mic array %data stored as single precision to

save space Psource=zeros(n+1,1,'single ');

85 Pmic1=zeros(n+1,1,'single ');

86 Pmic2=zeros(n+1,1,'single ');

87 Pmic3=zeros(n+1,1,'single ');

88 Pmicarray=zeros(5,5,n+1,'single ');

89

90 %this will be for adding in the initial pulse

91 pulsewidth =80* factor; %in samples

92 offset =0;

93 Q=(0.5*(1 - cos (2*pi*(T)/pulsewidth))).^2; dQ=(pi/pulsewidth)*sin(2*

pi*(T)/pulsewidth).*(1-cos (2*pi*(T)/pulsewidth));

94

95 if chooseSingle ==1

96 Q=single(Q);

97 end

98

99 for i=pulsewidth +1+ offset:n+1;

100 Q(i)=0;

101 dQ(i+1) =0;

102 end

103

104 if chooseSingle ==1

105 Q=single(Q);

106 end

107

108 Qfft =1/fs*fft(Q,n);

109 f=fs/n*(0:n/2);

110 figure (1)
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111 Qplot=semilogx(f,20* log10(abs(Qfft (1:n/2+1))));

112 ylabel('[dB]');xlabel('Freq[Hz]');

113 grid on

114 axis ([1 3000 -100 -30])

115 set(Qplot ,'linewidth ' ,2)

116 drawnow;

117

118 f=fs/n*(0:n-1);

119 Qfft2=f.*Qfft;

120 figure (2)

121 Qplot=semilogx(f(1:n/2+1) ,20* log10(abs(Qfft2 (1:n/2+1))));

122 ylabel('[dB]');

123 xlabel('Freq [Hz]');

124 grid on axis ([1 3000 -100 -30])

125 set(Qplot ,'linewidth ' ,2)

126 drawnow;

127

128 dQfft =1/fs*fft(dQ ,n);

129 f=fs/n*(0:n/2);

130 figure (3)

131 dQplot=semilogx(f,20* log10(abs(dQfft (1:n/2+1))));

132 ylabel('[dB]');xlabel('Freq[Hz]');

133 grid on

134 axis ([1 3000 -100 -30])

135 set(dQplot ,'linewidth ' ,2)

136 drawnow;

137

138 %this is only active with the sub -room switch

139 if sub_room_flag ==1

140 P_sub=zeros(M_sub ,N_sub -1,O_sub -1);

141 Ux_sub=zeros(M_sub ,N_sub -1,O_sub -1);

142 Uy_sub=zeros(M_sub ,N_sub ,O_sub -1);

143 Uz_sub=zeros(M_sub ,N_sub -1,O_sub);

144 Ux_subroom_old=Ux(M,1:N_sub -1,:);

145 new_dimx =(M-1+ M_sub);

146 P_plot =50* ones(new_dimx ,N-1);

147

148 if chooseSingle ==1 %changes double arrays to single

149 P_sub=single(P_sub);

150 Ux_sub=single(Ux_sub);

151 Uy_sub=single(Uy_sub);

152 Uz_sub=single(Uz_sub);

153 end

154 end

155

156 %DOORWAY
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157 if Rightside_doorway_flag ==1

158 heightstart =1;%<----DO NOT CHANGE , I have not accounted for any

other case heightfinish =20;

159 widthstart =17;

160 widthfinish =37;

161 Ux_doorway_old=Ux(M,widthstart:widthfinish ,heightstart:

heightfinish);

162 end

163

164 %determining the centre of the room for reference

165 roomcentrex=round((M)/2);

166 roomcentrey=round((N)/2);

167 roomcentrez=round((O)/2);

168

169 %dummy source position in centre of the room

170 xsource=roomcentrex;

171 ysource=roomcentrey;

172 zsource=roomcentrez;

173

174 %set Centre Channel position

175 xcentre=round(M/2);

176 ycentre=N-1;

177 zcentre=round(O/2);

178 move =0;

179

180 %set Right Channel Position

181 xright =( round((M)/4))-move;

182 yright=N-1;

183 zright=round(O/2);

184

185 %set Left Channel Position

186 xleft=M-xright+move;

187 yleft=N-1;

188 zleft=round(O/2);

189

190 %set Rear -Right Channel Position

191 xrright=xright;

192 yrright =1;

193 zrright=round(O/2);

194

195 %set Rear -Left Channel Position

196 xrleft=xleft;

197 yrleft =1;

198 zrleft=round(O/2);

199

200 %set Subwoofer Position

105



201 xsubwoofer =1;

202 ysubwoofer =1;

203 zsubwoofer =1;

204

205 %defining the absorption coefficients and wall impedances

206 alpha_right =.1;

207 alpha_left =.1;

208 alpha_front =.1;

209 alpha_back =.1;

210 alpha_roof =.1;

211 alpha_floor =.1;

212

213 Z_right=rho*c*((1+ sqrt(1- alpha_right))/(1-sqrt(1- alpha_right)));

Z_left=rho*c*((1+ sqrt(1- alpha_left))/(1-sqrt(1- alpha_left)));

Z_front=rho*c*((1+ sqrt(1- alpha_front))/(1-sqrt(1- alpha_front)));

Z_back=rho*c*((1+ sqrt(1- alpha_back))/(1-sqrt(1- alpha_back)));

Z_roof=rho*c*((1+ sqrt(1- alpha_roof))/(1-sqrt(1- alpha_roof)));

Z_floor=rho*c*((1+ sqrt(1- alpha_floor))/(1-sqrt(1- alpha_floor)));

214 Z_open_doorway=rho*c;

215

216 startloopscheckflag =1

217 timestamp1 =0

218 Pmicarray=zeros(5,5,n+1,'single '); %allocating mic array

219

220 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

221 %Setting the constants

222 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

223 UxleftwallU =(rho*h-K*Z_left)/(rho*h+K*Z_left);

224 UxleftwallP =2*K/(rho*h+K*Z_left);

225 UxrightwallU =(rho*h-K*Z_right)/(rho*h+K*Z_right);

226 UxrightwallP =2*K/(rho*h+K*Z_right); UxdoorwayU =(rho*h-K*

Z_open_doorway)/(rho*h+K*Z_open_doorway); UxdoorwayP =2*K/(rho*h+K

*Z_open_doorway);

227 UybackwallU =(rho*h-K*Z_back)/(rho*h+K*Z_back);

228 UybackwallP =2*K/(rho*h+K*Z_back);

229 UyfrontwallU =(rho*h-K*Z_front)/(rho*h+K*Z_front);

230 UyfrontwallP =2*K/(rho*h+K*Z_front);

231 UzfloorU =(rho*h-K*Z_floor)/(rho*h+K*Z_floor);

232 UzfloorP =2*K/(rho*h+K*Z_floor);

233 UzroofU =(rho*h-K*Z_roof)/(rho*h+K*Z_roof);

234 UzroofP =2*K/(rho*h+K*Z_roof);

235
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236 for T=0:n;

237 %begin velocity iterations

238

239 %side walls

240 %left hand wall

241 Ux(1,:,:)=UxleftwallU*Ux(1,:,:)-UxleftwallP*P(1,:,:);

242 %right hand wall

243 Ux(M,:,:)=UxrightwallU*Ux(M,:,:)+UxrightwallP*P(M-1,:,:);

244 if Rightside_doorway_flag ==1 Ux(M,widthstart:

widthfinish ,heightstart:heightfinish)=...

UxdoorwayU*Ux_doorway_old+UxdoorwayP *... P(M

-1, widthstart:widthfinish ,heightstart:heightfinish);

Ux_doorway_old=Ux(M,widthstart:widthfinish ,

heightstart:heightfinish); elseif sub_room_flag ==1

Ux(M,1:N_sub -1,:)=Ux_subroom_old+K/rho/h*(P(M-1,1:

N_sub -1,:)-P_sub (1,1:N_sub -1,:)); Ux_subroom_old=Ux(M,1:N_sub

-1,:);

245 end

246 %the rest

247 Ux(2:M-1,:,:)=Ux(2:M-1,:,:)+K/rho/h*(-diff(P(2-1:M-1,:,:) ,1,1));

248

249 %front and back walls

250 %left hand wall

251 Uy(:,1,:)=UybackwallU*Uy(:,1,:)-UybackwallP*P(:,1,:);

252 %right hand wall Uy(:,N,:)=UyfrontwallU*Uy(:,N,:)+

UyfrontwallP*P(:,N-1,:);

253 %the rest

254 Uy(:,2:N-1,:)=Uy(:,2:N-1,:)+K/rho/h*(-diff(P(:,1:N-1,:) ,1,2));

255

256 %roof and floor

257 %left hand wall

258 Uz(:,:,1)=UzfloorU*Uz(:,:,1)-UzfloorP*P(:,:,1);

259 %right hand wall

260 Uz(:,:,O)=UzroofU*Uz(:,:,O)+UzroofP*P(:,:,O-1);

261 %the rest

262 Uz(:,:,2:O-1)=Uz(:,:,2:O-1)+K/rho/h*(-diff(P(:,:,1:O-1) ,1,3));

263

264 %now do the Pressure Matrix

265 P = P + c*c*rho*K/h*(-diff(Ux ,1,1)-diff(Uy ,1,2)-diff(Uz ,1,3));

266

267 %this section adds in the speakers into the system with our

defined Q

268 if sourceon ==1 P(xsource ,ysource ,zsource)=K*c*c*rho/(h

*h*h)*Q(T+1)+Pold_source+c*c*rho*K/h*(Ux(xsource ,ysource ,zsource)

-Ux(xsource+1,ysource ,zsource)+Uy(xsource ,ysource ,zsource)-Uy(

xsource ,ysource+1,zsource)+Uz(xsource ,ysource ,zsource)-Uz(xsource
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,ysource ,zsource +1));

269 end

270

271 if centreon ==1 P(xcentre ,ycentre ,zcentre)=K*c*c*rho/(h*

h*h)*Q(T+1)+Pold_centre+c*c*rho*K/h*(Ux(xcentre ,ycentre ,zcentre)-

Ux(xcentre+1,ycentre ,zcentre)+Uy(xcentre ,ycentre ,zcentre)-Uy(

xcentre ,ycentre+1,zcentre)+Uz(xcentre ,ycentre ,zcentre)-Uz(xcentre

,ycentre ,zcentre +1));

272 end

273

274 if lefton ==1 P(xleft ,yleft ,zleft)=K*c*c*rho/(h*h*h)*Q(T

+1)+Pold_left+c*c*rho*K/h*(Ux(xleft ,yleft ,zleft)-Ux(xleft+1,yleft

,zleft)+Uy(xleft ,yleft ,zleft)-Uy(xleft ,yleft+1,zleft)+Uz(xleft ,

yleft ,zleft)-Uz(xleft ,yleft ,zleft +1));

275 end

276

277 if righton ==1 P(xright ,yright ,zright)=K*c*c*rho/(h*h*h)*Q

(T+1)+Pold_right+c*c*rho*K/h*(Ux(xright ,yright ,zright)-Ux(xright

+1,yright ,zright)+Uy(xright ,yright ,zright)-Uy(xright ,yright+1,

zright)+Uz(xright ,yright ,zright)-Uz(xright ,yright ,zright +1));

278 end

279

280 if rlefton ==1 && T>= timedelay P(xrleft ,yrleft ,zrleft)=K*c

*c*rho/(h*h*h)*amp_RearLeft*Q(T+1-timedelay)+Pold_rleft+c*c*rho*K

/h*(Ux(xrleft ,yrleft ,zrleft)-Ux(xrleft+1,yrleft ,zrleft)+Uy(xrleft

,yrleft ,zrleft)-Uy(xrleft ,yrleft+1,zrleft)+Uz(xrleft ,yrleft ,

zrleft)-Uz(xrleft ,yrleft ,zrleft +1));

281 end

282

283 if rrighton ==1 && T>= timedelay P(xrright ,yrright ,zrright)

=K*c*c*rho/(h*h*h)*amp_RearRight*Q(T+1-timedelay)+Pold_rright+c*c

*rho*K/h*(Ux(xrright ,yrright ,zrright)-Ux(xrright+1,yrright ,

zrright)+Uy(xrright ,yrright ,zrright)-Uy(xrright ,yrright+1,zrright

)+Uz(xrright ,yrright ,zrright)-Uz(xrright ,yrright ,zrright +1));

284 end

285

286 if subwooferon ==1 P(xsubwoofer ,ysubwoofer ,zsubwoofer)=K*c

*c*rho/(h*h*h)*Q(T+1)+Pold_subwoofer+c*c*rho*K/h*(Ux(xsubwoofer ,

ysubwoofer ,zsubwoofer)-Ux(xsubwoofer +1,ysubwoofer ,zsubwoofer)+Uy(

xsubwoofer ,ysubwoofer ,zsubwoofer)-Uy(xsubwoofer ,ysubwoofer +1,

zsubwoofer)+Uz(xsubwoofer ,ysubwoofer ,zsubwoofer)-Uz(xsubwoofer ,

ysubwoofer ,zsubwoofer +1));

287 end

288

289 %grabs and stores old source term data

290 Pold_source=P(xsource ,ysource ,zsource);
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291 Pold_centre=P(xcentre ,ycentre ,zcentre);

292 Pold_left=P(xleft ,yleft ,zleft);

293 Pold_right=P(xright ,yright ,zright);

294 Pold_rleft=P(xrleft ,yrleft ,zrleft);

295 Pold_rright=P(xrright ,yrright ,zrright); Pold_subwoofer=P(

xsubwoofer ,ysubwoofer ,zsubwoofer);

296

297 %Section that works out the sub -room

298 if sub_room_flag ==1

299 Ux_sub(M_sub ,:,:)=(rho*h-K*Z_right)/(rho*h+K*Z_right)*Ux_sub(M_sub

,:,:)+2*K/(rho*h+K*Z_right)*P_sub(M_sub ,:,:);

300 Ux_sub (1:M_sub -1,:,:)=Ux_sub (1:M_sub -1,:,:)+K/rho/h*(-diff(P_sub

(1:M_sub ,:,:) ,1,1));

301 %front and back walls

302 %left hand wall

303 Uy_sub (:,1,:)=(rho*h-K*Z_back)/(rho*h+K*Z_back)*Uy_sub (:,1,:)

-2*K/(rho*h+K*Z_back)*P_sub (:,1,:);

304 %right hand wall

305 Uy_sub(:,N_sub ,:)=(rho*h-K*Z_front)/(rho*h+K*Z_front)*Uy_sub

(:,N_sub ,:)+2*K/(rho*h+K*Z_front)*P_sub(:,N_sub -1,:);

306 %the rest

307 Uy_sub (:,2:N_sub -1,:)=Uy_sub (:,2:N_sub -1,:)+K/rho/h*(-diff(

P_sub (:,1:N_sub -1,:) ,1,2));

308

309 %roof and floor

310 %left hand wall

311 Uz_sub (:,:,1)=(rho*h-K*Z_floor)/(rho*h+K*Z_floor)*Uz_sub

(:,:,1) -2*K/(rho*h+K*Z_floor)*P_sub (:,:,1);

312 %right hand wall

313 Uz_sub(:,:,O_sub)=(rho*h-K*Z_roof)/(rho*h+K*Z_roof)*Uz_sub

(:,:,O_sub)+2*K/(rho*h+K*Z_roof)*P_sub(:,:,O_sub -1);

314 %the rest

315 Uz_sub (:,:,2:O_sub -1)=Uz_sub (:,:,2:O_sub -1)+K/rho/h*(-diff(

P_sub (:,:,1:O_sub -1) ,1,3));

316 P_sub (1,:,:)=P_sub (1,:,:)+c*c*rho*K/h*(Ux(M,1:N_sub -1,1:O_sub

-1)-Ux_sub (1,:,:)-diff(Uy_sub (1,:,:) ,1,2)-diff(Uz_sub (1,:,:)

,1,3));

317 P_sub (2:M_sub ,:,:)=P_sub (2:M_sub ,:,:) + c*c*rho*K/h*(-diff(

Ux_sub ,1,1)-diff(Uy_sub (2:M_sub ,:,:) ,1,2)-diff(Uz_sub (2:M_sub

,:,:) ,1,3));

318 end

319

320 %collecting mic data

321 %Source is the geometrical centre of the room

322 Psource(T+1)=P(xsource ,ysource ,zsource);

323 Pmic1(T+1)=P(15* factor ,15* factor ,zsource);
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324 Pmic2(T+1)=P(15* factor ,20* factor ,zsource);

325 Pmic3(T+1)=P(20* factor ,15* factor ,zsource);

326 Pmic4(T+1)=P(20* factor ,20* factor ,zsource);

327

328 %mic array a=5* factor;

329 %width spacing in h cm increments b=5* factor; %depth spacing

330 %defining the mic array based on the approximate centre of the

room

331 for i=-2:2

332 for j=-2:2

333 Pmicarray (3+i,3+j,T+1)=P(roomcentrex -i*a,roomcentrey -j*b,

roomcentrez); end

334 end

335

336 %plotting commands if rem(T,Plotinterval) == 0

337 if sub_room_flag ==1

338 P_plot (1:M-1,1:N-1)=P(:,:, zsource); P_plot(M:M-1+

M_sub ,1:N_sub -1)=P_sub(:,:, zsource);

339 else

340 P_plot=P(:,:,zsource);

341 end

342

343 timestamp2=toc;

344 howmuchdone=T/n*100

345 timeperiteration =(timestamp2 -timestamp1)/Plotinterval

346 timestamp1=timestamp2

347

348 if Plot ==1

349 if chooseSingle ==1

350 P_plot=double(P_plot);

351 end

352 figure (4)

353 surf(P_plot);

354 title('pressure ');ylabel('x-axis');xlabel('y-axis');zlabel('

amplitude ')

355 axis ([0 largest_dim 0 largest_dim -50 150]); drawnow;

356 end

357 end

358 end

359

360 %plotting mic and source responses for T=0:n

361 t(T+1)=(T*K);

362 end

363

364 figure (5)

365 plot(t,Psource);
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366 title('Pressure at the Centre Point ');

367 ylabel('pressure amplitude ');xlabel('time (s)'); %axis ([0 .7 0

170]) %grid on

368

369 figure (6)

370 plot(t,Pmic1);

371 title('Pressure at the 1st mic');

372 ylabel('pressure amplitude ');xlabel('time (s)');

373

374 figure (7)

375 plot(t,Pmic2);

376 title('Pressure at the 2nd Mic');

377 ylabel('pressure amplitude ');xlabel('time (s)');

378

379 figure (8)

380 plot(t,Pmic3);

381 title('Pressure at the 3rd Mic');

382 ylabel('pressure amplitude ');xlabel('time (s)');

383

384 figure (9)

385 plot(t,Pmic4);

386 title('Pressure at the 4th Mic');

387 ylabel('pressure amplitude ');xlabel('time (s)');

388

389 Pmic1fft =1/fs*fft(Pmic1.*Pmic1 ,n);

390 figure (10)

391 Pmic1plot=plot(f,(abs(Pmic1fft (1:n/2+1))));

392 ylabel('[dB]');xlabel('Freq [Hz]');

393 grid on

394 axis ([0 50 0 1200])

395 set(Pmic1plot ,'linewidth ' ,2)

396

397 Pmic1fft =1/fs*fft(Pmic1 ,n);

398 figure (100)

399 Pmic1plot=plot(f ,(20* log10(Pmic1fft (1:n/2+1))));

400 %title('Frequency Response in Groh Room from a sub -woofer in the

corner with a 10msec pulse ','FontSize ',20)

401 ylabel('Pressure [dB]','FontSize ' ,16);xlabel('Frequency [Hz]','

FontSize ' ,16);

402 grid on

403 axis ([0 200 -50 10])

404 legend('Un -Smoothed '); set(Pmic1plot ,'linewidth ' ,3)

405

406 Pmic2fft =1/fs*fft(Pmic2 ,n);

407 figure (200)

408 Pmic2plot=plot(f ,(20* log10(Pmic2fft (1:n/2+1))));
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409 %title('Frequency Response in Groh Room from a sub -woofer in the

corner with a 10msec pulse ','FontSize ',20)

410 ylabel('Pressure [dB]','FontSize ' ,16);xlabel('Frequency [Hz]','

FontSize ' ,16);

411 grid on

412 axis ([0 200 -50 10])

413 legend('Un -Smoothed '); set(Pmic2plot ,'linewidth ' ,3)

414

415 Pmic3fft =1/fs*fft(Pmic3 ,n);

416 figure (300)

417 Pmic3plot=plot(f ,(20* log10(Pmic3fft (1:n/2+1))));

418 %title('Frequency Response in Groh Room from a sub -woofer in the

corner with a 10msec pulse ','FontSize ',20)

419 ylabel('Pressure [dB]','FontSize ' ,16);xlabel('Frequency [Hz]','

FontSize ' ,16);

420 grid on

421 axis ([0 200 -50 10])

422 legend('Un -Smoothed '); set(Pmic3plot ,'linewidth ' ,3)

423

424 Pmic4fft =1/fs*fft(Pmic4 ,n);

425 figure (400)

426 Pmic4plot=plot(f ,(20* log10(Pmic4fft (1:n/2+1))));

427 %title('Frequency Response in Groh Room from a sub -woofer in the

corner with a 10msec pulse ','FontSize ',20)

428 ylabel('Pressure [dB]','FontSize ' ,16);xlabel('Frequency [Hz]','

FontSize ' ,16);

429 grid on

430 axis ([0 200 -50 10])

431 legend('Un -Smoothed '); set(Pmic4plot ,'linewidth ' ,3)

432

433 %%%Johns schroeder plot

434 Pintegral =0.002; %change this to straighten Schroeder plot

Pschroeder(n+1)=Pintegral;

435 for i=1:n

436 Pintegral=Psource(n+1-i).^2 + Pintegral;

437 Pschroeder(n+1-i)=Pintegral;

438 end

439 Pschroeder =10* log10(Pschroeder);

440 figure (11)

441 plot(t,Pschroeder);

442 grid on

443 title('Schroeder decay plot');

444 ylabel('SPL [dB]');xlabel('time (s)');

445 axis ([0 1 -20 70])

446 %%%end of johns shroeder plot

447
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448 %beginning of my own reverberation method

449 figure (12)

450 Reverbtime (:,1)=t;

451 Reverbtime (:,2) =10* log10(Psource .^2);

452 plot(Reverbtime (:,1),Reverbtime (:,2));

453 axis ([0 1 -100 40]);

454 [X Y]= findpeaks(Reverbtime (:,2));

455 Y=Y*K;

456

457 figure (13)

458 plot(Y,X);

459 drawnow

460 %end of my reverberation

461

462 fexpected =1/( pulsewidth*K)

463 load chirp;

464 sound(y,Fs)

465

466 %figure (4)

467 %surf(P);

468 %title('pressure ');ylabel('time ');xlabel('position ');zlabel('

amplitude ') toc

469

470

471 %% This version of Demerit uses constant band smoothing

472 tic

473 load 'PmicarrayGrohReference10cm ' flag =0;

474 bandwidth =60; %for now this is just the number of points. If

Fres=1 then it is the bandwidth

475 cuttoff =100; %this is the cuttoff frequency where the demerit

calculation stops

476 halfbandwidth=round(bandwidth /2);

477 realbandwidth =2* halfbandwidth +1

478

479 %% lets begin by extracting one mic out of the mic array

480 for i=1:5

481 for j=1:5

482 tempequalized=Pmicarray(6-i,6-j,:);

tempequalized=squeeze(tempequalized);

tempunequalized=PmicarrayGrohReference10cm (6-i,6-j,:);

tempunequalized=squeeze(tempunequalized);

483 n1=length(tempequalized) -1; n2=length(tempunequalized) -1;

484 if n1 ~= n2

485 return

486 else

487 n=n1;
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488 end

489 Y=1/fs*fft(tempequalized ,n);%./ transpose(dQfft); X=1/fs*fft(

tempunequalized ,n);%./ transpose(dQfft);

490 flag=flag +1;

491 f=fs/n*(0:n/2);

492

493 for k=1:n/2+1

494 low_bin=k-halfbandwidth;

495 high_bin=k+halfbandwidth;

496 if low_bin <1

497 power_sum=sum((X(1: high_bin).^2))+sum((X(1: abs(low_bin)+1)

.^2));

498 else

499 power_sum=sum((X(low_bin:high_bin).^2));

500 end

501 orig_smooth_power(k)=power_sum /(high_bin -low_bin +1);

502 end

503

504 UnSmoothCollector(flag ,:)=(X);

505 SmoothCollector(flag ,:)=orig_smooth_power;

506

507 for k=1:n/2+1

508 low_bin=k-halfbandwidth;

509 high_bin=k+halfbandwidth;

510 if low_bin <1

511 power_sum2=sum((abs(Y(1: high_bin)).^2))+sum((abs(Y(1: abs(

low_bin)+1) .^2)));

512 else

513 power_sum2=sum((abs(Y(low_bin:high_bin)).^2));

514 end

515 orig_smooth_power2(k)=power_sum2 /(high_bin -low_bin +1);

516 end

517 UnSmoothCollector2(flag ,:)=Y;

518 SmoothCollector2(flag ,:)=orig_smooth_power2;

519

520 figure(flag +13) h=plot(f,20* log10(abs(Y(1:n/2+1))),'g',f,10* log10(

orig_smooth_power2 (1:n/2+1)),'c');

521 %f,20* log10(abs(X(1:n/2+1))),f,10* log10(orig_smooth_power (1:n/2+1)

),'r', %title('Frequency Response in Groh Room from appling the

Rear Cancellation Technique with a 10msec pulse ','FontSize ',20)

522 ylabel('Original & Smoothed [dB]','FontSize ' ,16);xlabel('Freq [Hz]

','FontSize ' ,16);

523 grid on axis ([0 200 -50 10]) legend('Un -Smoothed ','Smoothed ');

524 set(h,'linewidth ' ,3)

525
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526 P_uneq_unsmoothed=transpose ((abs(X(1:n/2+1))).^2); %check that

matrix dimensions match

527 P_uneq_smoothed =( orig_smooth_power (1:n/2+1)); P_eq_unsmoothed=

transpose ((abs(Y(1:n/2+1))).^2); P_eq_smoothed =(

orig_smooth_power2 (1:n/2+1));

528 Fres=fs/n; %the frequency resolution of the FFT

529 N=round(cuttoff/Fres); %determines the #of bins between 0Hz and

200Hz

530 Demerit_eq1(flag)=1*(1/N)*sum(((abs(( P_eq_unsmoothed (1:N+1)-

P_eq_smoothed (1:N+1))./ P_eq_smoothed (1:N+1)))));

531 Demerit_eq2(flag)=1*(1/N)*sum ((((( P_eq_unsmoothed (1:N+1)-

P_eq_smoothed (1:N+1))./ P_eq_smoothed (1:N+1)).^2)));

532 end

533 end

534 Mean_eq1 = mean(Demerit_eq1)

535 Mean_eq2 = mean(Demerit_eq2)

536 std_eq1 = std(Demerit_eq1)

537 std_eq2 = std(Demerit_eq2)

538 sdom_eq1 = std_eq1/sqrt(N)

539 sdom_eq2 = std_eq2/sqrt(N)

540

541 %% Averaged Smoothing

542 flag =0;

543 for i=1:25

544 flag=flag +1;

545 for j=1:4001

546 SmoothSum(j)=sum(SmoothCollector (:,j))/25;

SmoothSum2(j)=sum(SmoothCollector2 (:,j))/25;

547 end

548 figure (50) h=plot(f,20* log10(abs(UnSmoothCollector2(flag ,(1:n/2+1)

))),'g',f,10* log10(SmoothSum2 (1:n/2+1)),'c');

549 ylabel('Original & Smoothed [dB]');xlabel('Freq [Hz]');

550 axis ([0 200 -50 10])

551 %semilogx(f,10* log10(orig_smooth_power (1:n/2+1)),'r',f,20* log10(

abs(Y(1:n/2+1))),'g');ylabel('Original & Smoothed [dB]');xlabel('

Freq [Hz]');

552 grid on

553 set(h,'linewidth ' ,2)

554

555 P_eq_unsmoothed =(( abs(UnSmoothCollector2(flag ,(1:n/2+1)))).^2);

P_eq_smoothed =( SmoothSum2 (1:n/2+1));

556 Fres=fs/n; %the frequency resolution of the FFT

557 N=round(cuttoff/Fres); %determines the #of bins between 0Hz and

200Hz

558 Demerit_eq1(flag)=1*(1/N)*sum(((abs(( P_eq_unsmoothed (1:N+1)-

P_eq_smoothed (1:N+1))./ P_eq_smoothed (1:N+1)))));
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559 Demerit_eq2(flag)=1*(1/N)*sum ((((( P_eq_unsmoothed (1:N+1)-

P_eq_smoothed (1:N+1))./ P_eq_smoothed (1:N+1)).^2)));

560 end

561 toc

562

563 Mean_eq1 = mean(Demerit_eq1)

564 Mean_eq2 = mean(Demerit_eq2)

565 std_eq1 = std(Demerit_eq1)

566 std_eq2 = std(Demerit_eq2)

567 sdom_eq1 = std_eq1/sqrt(N)

568 sdom_eq2 = std_eq2/sqrt(N)
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