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Abstract

This thesis develops an algorithm for the Schubert calculus of the Grass-
manian. Specifically, we state a puzzle-based, synthesis algorithm for a triple
intersection of Schubert varieties. Our algorithm is a reformulation of the
synthesis algorithm by Bercovici, Collins, Dykema, Li, and Timotin. We re-
place their combinatorial approach, based on specialized Lebesgue measures,
with an approach based on the puzzles of Knutson, Tao and Woodward.
The use of puzzles in our algorithm is beneficial for several reasons, foremost
among them being the larger body of work exploiting puzzles. To understand
the algorithm, we study the necessary Schubert calculus of the Grassmanian
to define synthesis. We also discuss the puzzle-based Littlewood-Richardson
rule, which connects puzzles to triple intersections of Schubert varieties. We
also survey three combinatorial objects related to puzzles in which we in-
clude a puzzle-based construction, by King, Tollu, and Toumazet, of the well
known Horn inequalities.
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Chapter 1

Introduction

The main topic of this thesis is the Schubert calculus of the Grassmanian,
a subdiscipline of enumerative geometry. Schubert calculus is the study of
certain counting problems in linear algebra, which take forms similar to the
following classical example studied by Hermann Schubert [19]:

Let d < n be positive integers and N = d(n —d). Given N
(n — d)-dimensional, linear subspaces of C™ in general position,
how many d-dimensional subspaces intersect all N subspaces non-
trivially?

It is natural to phrase these counting problems in terms of Schubert varieties
(defined in Subsection 1.1.1), where the number of solutions is given as the
size of an intersection of Schubert varieties. The number of solutions can
also be calculated using a Littlewood-Richardson rule. Each such rule asserts
that the size of a finite triple intersection of Schubert varieties is equal to the
size of a certain set of combinatorial objects; three examples of Littlewood-
Richardson rules are discussed in Chapter 3.

Here, we are interested in more than computing the size of intersections.
We also interested in explicitly describing the points in a triple intersection
of Schubert varieties in terms of spans and intersections of subspaces used to
define the three Schubert varieties. A point described in this way is said to
be synthesized.

As we will see in Subsection 2.1.2, if a point V' in the triple intersection
can be synthesized, then V is the unique point of that intersection. In this
thesis, we will state an algorithm that establishes the converse: if V' is the
unique point of a triple intersection, then V' can be synthesized.



1. INTRODUCTION

The algorithm for synthesizing a point V was first published by Bercovici,
Collins, Dykema, Li, and Timotin in [2]. They use a combinatorial approach
based on specialized Lebesgue measures for which a Littlewood-Richardson
rule can be stated. The measures are in bijection with puzzles, another impor-
tant combinatorial object. Puzzles were introduced by Knutson, Tao, and
Woodward in [15] to prove a claim pertaining to Horn’s conjecture about
eigenvalues of Hermitian matrices. The main result of this thesis is a refor-
mulation of the algorithm in [2] using a puzzle-based approach in place of
the measures used in [2].

We now introduce our basic notation and state the main definitions con-
cerning Schubert varieties, synthesis, and puzzles.

1.1 Schubert Calculus

This section will define the necessary concepts from the Schubert calculus of
the Grassmanian. We are actually restricting to a special case of Schubert
calculus. More generally, Schubert calculus is the study of Schubert varieties
in flag manifolds and generalizations of those manifolds. As the notation will
be applied in later sections, we now define flag manifolds in general.

Let E be an n-dimensional vector space. A step sequence, d, is a strictly
increasing list of non-negative integers d = (dy, dy, . .., d,,) with dy = 0 and
d,, = n. A flag F, in E with step sequence d is a list of subspaces of F,
Fy = (Fy, Fy, ..., F,,), such that dim F;, = d; and F;, C F,.;. The subspace
Fy is called the /th step of the flag, and a complete flag has step sequence
d=1(0,1,2,...,n).

The flag manifold with step sequence d, F{4(E), is the set of flags with
step sequence d, and the flag manifold of complete flags is denoted F{(E). It
is beyond our scope to delve into the theory of general flag manifolds other
than to note that they are smooth, projective varieties, and hence manifolds.
A comprehensive discussion of flag manifolds and their Schubert calculus can
be found in [6].

The Schubert calculus we are interested in is carried out in the complex
Grassmanian, Gry(C"), which we noted is a special case of a flag manifold
where £ = C":

Grq(C") == Fl,an)(C").

The complex Grassmanian can also be viewed as the set of d-dimensional
subspaces of C™; indeed, this was how Hermann Grassman first introduced
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Grg(C™). Since the first and last steps of every flag are fixed, it is clear
that the two views of Gry(C™) are equivalent. We now develop the basic
definitions from Schubert calculus of the Grassmanian.

1.1.1 Schubert Varieties

The Schubert calculus of Gr,(C") involves manipulating the Schubert vari-
eties Q7 (F,), the primary geometric objects of consideration. The input data
for Q(F,) are a complete flag F, and a cardinality d set IC[n]. We will de-
note the set of all such subsets as [n]q, and if I € [n]4, we index the elements
of I as I ={i; < iy < --- <igq}. The Schubert variety for a complete flag
F, and I € [n]y is

Qr(F.) = {V € Gry(C") | dim(V N F,) > ¢}

Our focus is the intersection of three Schubert varieties for complete flags
F.,Gs,H,, and I, J, K € [n]g:

T_[JK = Q](F,) N QJ(G.) N QK(H.)

The majority of our discussion requires that T7;x be transverse. In Sec-
tion 2.1.2, we discuss how the flags are selected so that the intersection
is transverse. For now, it suffices to note why transversality is desirable.
If Ty is transverse for the flags F,, G,., H, and the flags F., G, H,, then
|Trrk| = |1}, k|, where T}, is the triple intersection for F), G, H,.

Let F,,G,, H, be any flags such that Tk is transverse. We define the
Littlewood-Richardson number to be the intersection’s size in this case
when 17k is finite and 0 otherwise:

c . ‘T[JK‘ if T[JK is ﬁnite,
LK== 0 otherwise.

The Littlewood-Richardson number is often written with an up index,
ck,; however, the two notations are not synonymous; rather they are related

by crix = cﬁv, where the set KV is derived from K € [n]4 by

K'={n+1—k|keK}.
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1.1.2 Synthesis

Our aim is to state an algorithm that synthesizes the unique point of 17k
when ¢y = 1. To write the result, we use the lattice theory operations,
meet and join, to create lattice polynomials. The set of vector subspaces
of C™ is a lattice where intersection is denoted by meet, A, and span is
denoted by join, V. The lattice operations can be used to construct lattice
polynomials where A, and V replace the usual polynomial operations + and
x. For example,

V = (F4 A Gg A Hg) V (F3 A (G4 V Hl)) \% (H4 A (G4 \% Hl))

is a lattice polynomial in the flags F,, G,, H,. We define synthesis as follows:
V € Ty ki is synthesized if there exists a lattice polynomial ¢ such that

V = q(F,,Ge, H,) € Q(F,) NQy(Ge) N Qe (H,)

for all generic, complete flags F,, Go, H,.

We will discuss the generiticity condition in Subsection 2.1.2. For the mo-
ment, it is enough to note that using generic flags ensures that the subspaces
we construct have the ‘correct’” dimension. In particular, any intersection or
span of two steps has the expected dimension: dim F; A G; = max{i+j—n,0}
and dim F; V G; = min{i + j,n}.

Let us illustrate a very simple case of synthesis. Let n = 5, d = 2,
I ={2,3}, J ={3,4} and K = {4,5}. Further, let F,,G,, H, be generic,
complete flags in C°. We claim that

G4 N F; €Ty C Gr2((C5).

We check that G4 A Fj is in the first Schubert variety, €2;(F,), by checking
the dimension condition dim(V A Fj,) > (. Generiticity ensures that

dim(G4/\F3) /\E2 = dimG4/\F3 =2

where i1 = 2, and i, = 3. Hence, G4 A F3 € Q;(F,). Similarly, G4 A F3 is also
in the other two varieties.
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1.2 Puzzles

The central combinatorial object of this thesis is the puzzle, introduced in
[15]. Puzzles are one of several combinatorial objects with a Littlewood-
Richardson rule. As such, puzzles are in bijection with the objects discussed
in Chapter 3: Littlewood-Richardson tableaux, Berenstein and Zelevinsky’s
hives, and the measures in [2]. However, puzzles offer a different combinato-
rial view that has been put to several important uses.

It was shown in [15] that puzzles entirely determined by their boundaries,
called rigid puzzles, correspond to facets of the Littlewood-Richardson cone.
Puzzles also give rise to Horn inequalities via a construction demonstrated
in [10], which we detail in Section 3.2. This construction was used to prove a
factorization result for Littlewood-Richardson numbers [10]. A generalization
of puzzles has even been used for computation in the equivariant cohomology
of the Grassmanian; this equivariant puzzle rule was proved by Knutson and
Tao in [14]. We now define puzzles and their relevant notation.

1.2.1 Labelled Puzzles

&

Figure 1.1: The three edge labelled puzzle pieces.

A labelled puzzle P sits in a size n equilateral triangle, and it is filled
with labelled pieces. The individual pieces are shown in Figure 1.1. The
pieces and their rotations are placed in the triangle such that the edge labels
of adjacent pieces match and there are no empty positions. Figure 1.2 shows
a complete puzzle composed of labelled pieces. The number of 1s on each
side of P is the same, so in addition to n, we use another parameter, d, to
specify the number of 1 labels per side. Hence, the number of 0 labels per
side is n — d. The puzzle in Figure 1.2 has d = 4.

The borders of P can be viewed as three 01-strings of length n with d ones.
We say P has boundary 7,0, p if 7, 0 and p are strings written clockwise on
P’s Northwest (NW), Northeast (NE), and south (S) borders respectively.
There is a straightforward bijection between [n]; and 01-strings with d ones:
i¢ determines the position of the ¢th 1 in a string. The Littlewood-Richardson
numbers can be given in terms of these 01-strings; if mx is the string associ-
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Figure 1.2: A completed puzzle with labelled pieces.

ated to X € [n]q4, then we write ¢rix = Crymymy-
A Littlewood-Richardson rule for ¢, can be stated for puzzles, which
we do now:

Littlewood-Richardson rule 1. Let 7, p,o be n length 01-strings with d
1s. Then
Crop = FF puzzles with boundary 7, o, p.

This rule is proved in Subsection 2.3.2.

1.2.2 Shaded Puzzles

Although more commonly used, labelled puzzles involve too many symbols
for our purposes, as we require puzzles with less adornment to avoid over-
crowding our figures. To this end, we introduce shaded puzzles with shaded
pieces as in Figure 1.3. The piece conversion is as follows: 1-triangles be-
come dark triangles, O-triangles become white triangles, and labelled rhombi
become gray rhombi. Figure 1.3 also shows the puzzle from Figure 1.2 con-
verted to a shaded puzzle. The triangle pieces are called white or dark in
the obvious way. A piece edge is called dark if a dark triangle may be placed
adjacent to it; otherwise, the edge is called white.

We describe the boundary of shaded puzzles using the sets I, J, K € [n]q.
If I determines the NW boundary of P, then i, is the position of the fth
dark edge counting clockwise from the lower left corner. The sets J, K € [n],
determine the NE and S boundaries similarly. Unless otherwise required, we
always label the NW side by a set I, NE by J, and S by K.

The rotational symmetry of puzzles makes some symmetries of the
Littlewood-Richardson numbers clear:

CilJKk = Ck1J = CJKI-

6
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&
INENIN

A<>A /N\L/NANIN

Figure 1.3: The puzzle piece shading.

Puzzles have another symmetry: reflection about a center line. To make
the reflection a puzzle, all dark triangles must change to white triangles and
vice-versa. The boundary of this new puzzle is given by the sets J*, I*, K* €
[n]n—a. These sets determine the positions of the n — d white edges of P
counter clockwise, so I*= {i* | i* # n+ 1 —i for ¢ € I}. These sets should
not be confused with IV € [n]4. By Littlewood-Richardson rule 1,

CIJK = Cj*I*K*-

1.3 Owur Aim and Outline

The goal of this thesis is to state an algorithm that synthesizes a point in
Q(F) N Qy(Ge) N Qi (H,)

when ¢y = 1. As noted, our algorithm is a reformulation, using puzzles,
of the algorithm in [2], which used specialized Lebesgue measures. These
measures are in bijection with puzzles, but we prefer an algorithm in terms
of puzzles for several reasons.

Firstly, the use of puzzles makes certain aspects of the proof of correctness
for our algorithm are more transparent. Second, the need to switch between
two sets of combinatorial objects, measures and their duals, is avoided, as
puzzle encode both. Third, puzzles are strongly connected to Horn inequali-
ties, and in fact, our algorithm can be used to find essential Horn inequalities.
Lastly, puzzles seem central among the combinatorial objects connected to
Littlewood-Richardson rules in that there are straightforward bijections be-
tween those other objects and puzzles. It is perhaps because of this that

7
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puzzles have been better studied and more widely applied than the mea-
sures in [2], so a synthesis algorithm stated in terms of puzzles more clearly
connects with that previous work.

Chapter 2 delves into the triple intersection of Schubert varieties and the
relation to puzzles in greater detail. The first section examines the Grass-
manian, and Schubert varieties. We will prove some facts about Richardson
varieties. An important fact about the intersection of a Richardson variety
and a special Schubert variety is also stated. The claim that synthesis is
not possible when cyyx > 2 is justified in Subsection 2.1.2. In the following
section, we explore the cohomology of the Grassmanian. Some facts about
the Schubert classes are proven using the results for Schubert varieties from
Subsection 2.1.1. In Section 2.2.2, the relationship between Schur functions
and Schubert classes is made explicit when a linear map from the ring of
symmetric polynomials to the cohomology ring is shown to be a ring homo-
morphism. Finally, the puzzle-based Littlewood-Richardson rule is proved in
Section 2.3.

In Chapter 3, we discuss three combinatorial devices related to puzzles:
the measures from [2], hives, and Littlewood-Richardson tableaux. In each
case, we state the associated Littlewood-Richardson rule and prove a bijection
with puzzles. The measures are discussed at length, as the facts we state in
Section 3.1 are used in the proofs of correctness in Chapter 4. With hives, we
include a discussion of the Horn inequalities, and we describe a construction
of the inequalities combining hives d puzzles.

Our synthesis algorithm is stated in Chapter 4. The algorithm consists of
three ‘layers’: walkers, the Puzzle Skeleton algorithm, and the Lattice Poly-
nomial algorithm. A section is devoted to each. Section 4.1 will define the
walkers, a method of marking puzzle pieces. The Puzzle Skeleton algorithm
of Section 4.2 uses walkers to search for a desirable set of marks in a puz-
zle. Finally, the Lattice Polynomial algorithm employs the desirably marked
puzzle to synthesize the point in a triple intersection of Schubert varieties.



Chapter 2

The Triple Intersection of
Schubert Varieties

The focus of this chapter is the triple intersection of Schubert varieties. As
mentioned in Section 1.1.1, Schubert calculus is the study of linear algebra
problems phrased as intersections of subvarieties of flag manifolds. In modern
terms, this is the study of Schubert classes in the cohomology ring of a
flag manifold, the complex Grassmanian in our case. Products of Schubert
classes in the cohomology ring correspond to transverse intersections of the
underlying Schubert varieties. As such, the product structure of these classes
can be used to study the intersection theory of the manifold and vice-versa.

In Section 2.1, we develop the necessary ideas about Schubert varieties.
In particular, we discuss Richardson varieties and their intersection with a
special Schubert variety in Subsection 2.1.1. We include a discussion of syn-
thesis, by a lattice polynomial, of points in a triple intersection of Schubert
varieties in Subsection 2.1.2, and we demonstrate why synthesis is not possi-
ble when the intersection has size greater than one. We then move to looking
at the cohomology ring H*(Grg(C™)) in Section 2.2. Specifically, we study the
Schubert classes which are the cohomology classes of Schubert varieties. The
chapter finishes with a discussion of puzzles and a proof of the puzzle-based
Littlewood-Richardson rule. The majority of the discussion comes from [6].
We begin with the Schubert varieties of the Grassmanian.
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2.1 Schubert Varieties

For ease of reference, we recall the definition of Schubert varieties from Sub-
section 1.1.1. Let I € [n]4, and F, be a complete flag. The Schubert variety
for I and F, is

Qr(F,) :={V € Gry(C") | dim(V N F,) > (}.

The two extreme cases for this definition are the set {1,2,...,d} € [n]s, which
we denote ™" and {n —d+1,...,n} =", The Schubert variety for /™
is Qmin(Fy) = {Fy}, a single point, as only V' = F, satisfies dim(V N Fy) > d.
For 1™ Qmax (F,) = Grg(C"), as every d-dimensional subspace of C" obeys

dlm(V N Fn—d-i—é) Z dlm(V) + dim(Fn_dM) —nNn
=(d)+n—d+¥0)—n
=/

Schubert varieties are also commonly indexed by 01-strings. We write the
Schubert variety Q;(F,) as Q,(F,) when 7 is the 01-string corresponding to
I under the bijection in Subsection 1.2.2. We note that the use of the term
variety is no misnomer: Q;(F,) is indeed a projective subvariety of Gr,(C").
We do not include the details here; they can be found in [6].

The Schubert cells are affine subvarieties of Schubert varieties. They
are given by

Q7(Fy) == {V | dim(V N Fy) = L for iy <k <'igyq}.

If Vis in Q(F,), the sequence dim(V N Fj) stabilizes between consecutive
values in /. We note two facts about Q9(F,) from [6]. First, Q3(F,) is open
in the Zariski topology relative to Q;(F,), so it is dense in £;(F,). Second,
Schubert varieties can be expressed as a disjoint union of Schubert cells:

Q(F) = [Tk,

J<I

where J < T'if I,J € [n]|q and j, < iy for 1 < ¢ < d.

Another way to define the Schubert cells is by using a basis for V' €
Grg(C™). Select a basis of C", {fi,..., fn} such that F, = span{fi,..., fi}.
Then for V' € Grg(C"), select a basis {vy,...,vs}. We have that v, =

10
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* 0« x 0 =« 0 1
A * 0 x %« 0 x 1 0
T lx0xx 1000
* 1.0 00000
Figure 2.1: Gaussian elimination from the right for V' € Q5 5 ; s(F5).

> A fr, so we can form the matrix A = Ay. The matrix A is then put
in reduced form using Gaussian elimination from the right, as in Figure 2.1.
The reduced matrix has d pivot columns, and if column i, is the ¢th pivot
column, then dim(V N F;,) = ¢. Hence, Q3(F,) can be defined as the set of
subspaces whose reduced matrices have pivot columns given by /. In Figure
2.1, we see the general form of a matrix for a subspace V' € Q3 5, 5(F,). The
stars represent arbitrary complex entries. The dimension of Q9(F,) is the
number of stars in the general form:

dim (Q3(F,)) = zd: (ie = 0).

/=1

As Q9(F,) is dense in Q;(F,), the dimension of Q;(F,) is the same as that
of Q9(F,). In particular, the dimension of Gry(C") is d(n — d) as Gry(C") =
QImax(F.) and Z?lax =n — d + E

2.1.1 Notable Intersections

Products in the cohomology ring of Gry(C™) can be computed by intersection
theory, so the intersections of Schubert varieties are of special interest. In
particular, we want to know the size of the intersection

TIJK = Q](F.) N QJ(G.) N QK(H.)

for complete flags F,, G4, H,. The focus of this section is on developing the
necessary facts about Schubert varieties needed to compute |77 ,k| in general.
Clearly, we need |T k| to be finite to say anything meaningful about it. Two
conditions are needed for finiteness.

The first is a condition on the sets I, J, K. If the sets I, J, K obey

d
2d(n —d) =Y _ (i + jo + ke — 30),

/=1

11
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then the intersection 77,k is possibly finite. We assume this condition for the
remainder of this chapter. The second condition is transversality, discussed
in Subsection 2.1.2, which ensures that 717, is in indeed finite.

The computation of |17 ;x| in general will be accomplished using the co-
homology ring, but some initial calculations must be done directly with the
Schubert varieties. In particular, we prove two facts about Richardson vari-
eties, and then state a fact about the size of an intersection of a Richardson
variety with a special Schubert variety.

The first intersection we look at uses an opposite flag. Select a basis
for C": {f1,..., fe}. Let F, be the complete flag with Fy, = span{fi,..., f:}.
The opposite flag in the basis {fi,..., fi} is F, where the ¢th step is given
by F, = span{ f,_¢41, - ., fn}. For a Schubert variety Q;(F,), an opposite
variety is ;(F,). When the flags are understood, we instead write ;
and Q for a variety and an opposite variety. A Richardson variety is
the intersection €2y N €);. We state and prove two theorems for Richardson
varieties.

Theorem 2.1.1. Q;NQ; % 0 if and only if n+1 < ig+jgp1-¢ forl =1,...,d.

Proof. Let ja1-¢ = koo F;, N ﬁkl is spanned by {f; | n+ 1 —k, <t < iz},
which may be empty, and it has dimension i, + k, — n when non-empty.
Suppose V' € Q;NQ;. Then dim(V N F;,) > ¢ and dim(V N EFy,) > d+1— L.
V' is d-dimensional, so

1<dim (VNF,)NVNE,)) <dmn(F, NF,) =i+ k —n,

as required.
Conversely, if n+1 < iy + k, for £ = 1,...,d, then 1 < dim(F;, N f’kz)
Define the vectors
V0= fon-kpt1+ 0+ fiy
Let V' be their span. It is easily seen that dim(V') = d, dim(V N F;,) > ¢ and
dim(V N Fy,) > d+1— 0, s0 QN # 0, as required. O

The next theorem involves the set derived from I € [n|y defined in Subsec-
tion 1.1.1: IV = {n+1—1, | i, € I}. It is easy to see that iy, , , =n+1—1i,.

Theorem 2.1.2. If) i+ > ,j=d(n+1), then

a point if J =1V
0 otherwise,

Q,NQy = {
and the intersection is transverse at the point when non-empty.

12
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Proof. 1t J # IV, then for some £, iy + jgr1-¢ <n+1, 0 Q7N Q=0 by the
previous theorem.
Say J=1". Theﬂjd_H_g :n—i-l—’ig, SO Q[ﬂQJ #(Z) Let V € Q[ﬂQJ.
Then by the same argument as in the previous theorem,
1< dim(V N EF, N Fpyg,) < dim(E, 0 Foog,) = i0+ jas—e = 1,
for 1 < ¢ < d. We also have for each ¢ that F;, N ﬁnﬂ_i( = span(f;,). There

is a basis of V' including the vector f;, for 1 < ¢ < d. Hence, {2; N2 consists
of the single point V' = span{f;,,..., fi,}- O

We delay proof that €; N Q) is transverse until Section 2.2.1.

Now, let I,.J € [n]g. We say that .J is an m-shift of I, denoted I = J, if
m =mq +---+ mg, each my; > 0, and

g1 < Jg = 1p — My.

A special Schubert variety is indexed by the unique m-shift of I™**, which we
denote J,,. A special Schubert variety is 2, (G.). The next intersection
we discuss is between a Richardson variety and a special Schubert variety.
Theorem 2.1.3. Letm >0, [ > KY and Y ,i0— >, k/ =m. Then

1. if KV is not an m-shift of I, then there exists a flag G such that

Q[ N QK N QJm(G.) == @

2. if I 5 KV, then there exists a flag Go such that
QN Qg NQy.(G.) = {V},
a single point, and the intersection is transverse at V.

The proof, though slightly more involved, follows lines similar to the two
proofs above, so it is omitted here. It can be found in [6].

13
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2.1.2 Monodromy Prevents Synthesis

We now discuss synthesis in the Grassmanian. Recall that a subspace
\% c TIJK = Q](F.) N QJ(G.) N QK(H.)

is said to be synthesized if it can be described in terms of a lattice poly-
nomial built from the steps of the complete flags F,, Go, H,. We show that
synthesis is not possible when ¢y > 1.

We examine the monodromy of the intersection points of a triple inter-
section as we continuously deform the three given flags F,,G,, H,. Con-
sider a continuous function from [0,1] — F¢(C") given by t +— F,(t) with
Fo(0) = Fy(1) = F,. Consider G4(t) and H,(t) similarly. Each intersection
point is then defined by a continuous function from [0, 1] — Gryg(C"™) where
t — V(t) with

V(0),V(1) € Tryxk-

The monodromy of 17, is given by the group of all ways the intersection
points can be permuted in this way. The salient point is that if the mon-
odromy of a point V' is non-trivial, then V'(0) need not be equal to V(1). We
show below that when c;;x > 1, the monodromy of every point in 17k is
non-trivial, and thus, a deformation can be found with V(0) # V/(1).

There is the danger that the deformations we perform change the size of
|T7 k|- To understand how this might occur, consider the intersection of two
circles. If the circles are tangent, then a perturbation can change a single
point of intersection into two or none. The size of Tj;x can exhibit similar
sensitivity to perturbation. However, the term ‘non-tangentially’ is not the
correct notion for general manifolds; instead, we desire T;;x to be a trans-
verse intersection. We do not define transversality here. For us, it is enough
to note that when an intersection of Schubert varieties is transverse, infinites-
imal perturbations of the flags do not change |77 x|. Let Fo(t), Go(t), He(t)
be such that Tjk is transverse for all . Then |T},x| = cryx for all t.

However, we may not have such flags to choose from for a given I, J, K.
Fortunately, it is always possible to choose three flags such that T7;x is
transverse. This follows from Kleiman’s transversality theorem [11] which,
in this case, states that for any three complete flags F,, G,, H, there is an
open, dense subset & C GL? such that

QI(QlF-), QJ(92G')7 and QK(93H0)

14
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have transverse intersection for all (g1, g2, g3) € U. In other words, a generic
choice of three flags produces a transverse Schubert variety intersection.
Hence, we can select F,(t), Go(t), He(t) such that the triple intersection they
define is transverse for all ¢, which we do for the remainder of this discussion.
See [8] for more details about transversality and Kleiman’s theorem.

We now prove that when ¢;;x > 2 and the monodromy of an intersection
point is non-trivial, we cannot synthesize that point. Let V. W & T}k, and
suppose that the continuous function with V(0) = V has V(1) = W # V.
Suppose further that V' is given by a lattice polynomial p: V' = p(F,, G, H,).
We have that V (t) = p(Fe(t), Ge(t), He(t)) as spans and intersections change
continuously with ¢, so p(Fe(1),Ge(1), He(1)) = V(1) = W. We also have
Fy(0) = Fy(1) and similarly for the other flags, so p(F4(0), G+(0), Ho(0)) =
p(Fe(1),Ge(1), He(1)); a contradiction, as V' # W. Hence, if V is synthetic,
then the monodromy of the intersection point V' is trivial.

Of course, when cy;x = 1, the monodromy of the unique intersection
point is trivial, so synthesis may be possible in this case. We now show that
when ¢;yx > 2 the monodromy of every intersection point is non-trivial [18],
so synthesis is impossible. Define

U = {(F.,G., H) | Q3(F.) NQ5(Ge) N Q% (H,) is transverse }.

The set U is open and dense in F¢(C")* by Kleiman’s theorem, and it is
therefore connected, as F¢(C")? is connected. Let I, J, K be such that ¢y >
2. Define the space

T = {(‘/, F.,G.,H.) | V e TIJK, (F.,G.,H.) € U}
Also, define two projections:

Q(Va Fn Gn H.)

(F.7 G.7 H.)7
r(V, F,, G, H,) :

=V

We have that ¢~!(F,, G, H,) = T1jx. It is not hard to show that 7
is connected; however, it requires showing that the fibers are Schubert cells
in Fl4(C") for some step sequence d, which are connected. Consider a path
e, € T,t € [0, 1] such that g(eg) = q(e1) = (Fs, Go, Ho). Since 7 is connected
and ¢ '(F,,G,, H,) has more than one point, we can choose e; such that
r(eo) # r(e1). Hence, moving around the loop ¢(e;) in U permutes the points
of Ty x non-trivially. We record this as a theorem.

15
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Theorem 2.1.4 ([18]). Let I, J, K € [n|q4, and F,,Ge, He be complete flags
such that Ty 1s transverse. If there exists a lattice polynomial p such that
p(Fe, Go, H,) € Tryk, then cryx = 1.

2.2 The Cohomology Ring H*(Gr,(C"))

Cohomology associates a ring, H*(X), to a topological space X, and ele-
ments of that ring to certain subobjects of the space. In the case of Gry(C"),
the subobjects are subvarieties of Gry(C™), and certain classes of the ring
H*(Gry(C™)) are associated with the subvarieties of Gry(C™). The classes
defined by Schubert varieties form a linear basis for H*(Gry(C")). The in-
tersections of the previous section can be interpreted as products of these
Schubert classes. The aim of this section is to exploit this connection be-
tween the intersection theory of Gry(C") and the ring H*(Gry(C™)). In par-
ticular, a Pieri rule is proved for H*(Gry(C")), and a surjection from the well
understood ring of symmetric functions to the cohomology ring follows.

2.2.1 Schubert Classes
The Schubert class for I, denoted by oy, is the class in H*(Gry(C")) of a

corresponding Schubert variety:
o7 = [Q[(F.)} .

These classes form a basis for H*(Gry