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Abstract

This thesis develops an algorithm for the Schubert calculus of the Grass-
manian. Specifically, we state a puzzle-based, synthesis algorithm for a triple
intersection of Schubert varieties. Our algorithm is a reformulation of the
synthesis algorithm by Bercovici, Collins, Dykema, Li, and Timotin. We re-
place their combinatorial approach, based on specialized Lebesgue measures,
with an approach based on the puzzles of Knutson, Tao and Woodward.
The use of puzzles in our algorithm is beneficial for several reasons, foremost
among them being the larger body of work exploiting puzzles. To understand
the algorithm, we study the necessary Schubert calculus of the Grassmanian
to define synthesis. We also discuss the puzzle-based Littlewood-Richardson
rule, which connects puzzles to triple intersections of Schubert varieties. We
also survey three combinatorial objects related to puzzles in which we in-
clude a puzzle-based construction, by King, Tollu, and Toumazet, of the well
known Horn inequalities.
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Chapter 1

Introduction

The main topic of this thesis is the Schubert calculus of the Grassmanian,
a subdiscipline of enumerative geometry. Schubert calculus is the study of
certain counting problems in linear algebra, which take forms similar to the
following classical example studied by Hermann Schubert [19]:

Let d < n be positive integers and N = d(n − d). Given N
(n − d)-dimensional, linear subspaces of Cn in general position,
how many d-dimensional subspaces intersect all N subspaces non-
trivially?

It is natural to phrase these counting problems in terms of Schubert varieties
(defined in Subsection 1.1.1), where the number of solutions is given as the
size of an intersection of Schubert varieties. The number of solutions can
also be calculated using a Littlewood-Richardson rule. Each such rule asserts
that the size of a finite triple intersection of Schubert varieties is equal to the
size of a certain set of combinatorial objects; three examples of Littlewood-
Richardson rules are discussed in Chapter 3.

Here, we are interested in more than computing the size of intersections.
We also interested in explicitly describing the points in a triple intersection
of Schubert varieties in terms of spans and intersections of subspaces used to
define the three Schubert varieties. A point described in this way is said to
be synthesized.

As we will see in Subsection 2.1.2, if a point V in the triple intersection
can be synthesized, then V is the unique point of that intersection. In this
thesis, we will state an algorithm that establishes the converse: if V is the
unique point of a triple intersection, then V can be synthesized.

1



1. INTRODUCTION

The algorithm for synthesizing a point V was first published by Bercovici,
Collins, Dykema, Li, and Timotin in [2]. They use a combinatorial approach
based on specialized Lebesgue measures for which a Littlewood-Richardson
rule can be stated. The measures are in bijection with puzzles, another impor-
tant combinatorial object. Puzzles were introduced by Knutson, Tao, and
Woodward in [15] to prove a claim pertaining to Horn’s conjecture about
eigenvalues of Hermitian matrices. The main result of this thesis is a refor-
mulation of the algorithm in [2] using a puzzle-based approach in place of
the measures used in [2].

We now introduce our basic notation and state the main definitions con-
cerning Schubert varieties, synthesis, and puzzles.

1.1 Schubert Calculus

This section will define the necessary concepts from the Schubert calculus of
the Grassmanian. We are actually restricting to a special case of Schubert
calculus. More generally, Schubert calculus is the study of Schubert varieties
in flag manifolds and generalizations of those manifolds. As the notation will
be applied in later sections, we now define flag manifolds in general.

Let E be an n-dimensional vector space. A step sequence, d, is a strictly
increasing list of non-negative integers d = (d0, d1, . . . , dm) with d0 = 0 and
dm = n. A flag F• in E with step sequence d is a list of subspaces of E,
F• = (F0, F1, . . . , Fm), such that dim F` = d` and F` ⊂ F`+1. The subspace
F` is called the `th step of the flag, and a complete flag has step sequence
d = (0, 1, 2, . . . , n).

The flag manifold with step sequence d, F`d(E), is the set of flags with
step sequence d, and the flag manifold of complete flags is denoted F`(E). It
is beyond our scope to delve into the theory of general flag manifolds other
than to note that they are smooth, projective varieties, and hence manifolds.
A comprehensive discussion of flag manifolds and their Schubert calculus can
be found in [6].

The Schubert calculus we are interested in is carried out in the complex
Grassmanian, Grd(C

n), which we noted is a special case of a flag manifold
where E = Cn:

Grd(C
n) := F`(0,d,n)(C

n).

The complex Grassmanian can also be viewed as the set of d-dimensional
subspaces of Cn; indeed, this was how Hermann Grassman first introduced

2



1.1. SCHUBERT CALCULUS

Grd(C
n). Since the first and last steps of every flag are fixed, it is clear

that the two views of Grd(C
n) are equivalent. We now develop the basic

definitions from Schubert calculus of the Grassmanian.

1.1.1 Schubert Varieties

The Schubert calculus of Grd(C
n) involves manipulating the Schubert vari-

eties ΩI(F•), the primary geometric objects of consideration. The input data
for ΩI(F•) are a complete flag F• and a cardinality d set I⊂[n]. We will de-
note the set of all such subsets as [n]d, and if I ∈ [n]d, we index the elements
of I as I = {i1 < i2 < · · · < id}. The Schubert variety for a complete flag
F• and I ∈ [n]d is

ΩI(F•) :=
{
V ∈ Grd(C

n) | dim(V ∩ Fi`) ≥ `
}
.

Our focus is the intersection of three Schubert varieties for complete flags
F•, G•, H•, and I, J, K ∈ [n]d:

TIJK := ΩI(F•) ∩ ΩJ(G•) ∩ ΩK(H•).

The majority of our discussion requires that TIJK be transverse. In Sec-
tion 2.1.2, we discuss how the flags are selected so that the intersection
is transverse. For now, it suffices to note why transversality is desirable.
If TIJK is transverse for the flags F•, G•, H• and the flags F ′

•, G
′
•, H

′
•, then

|TIJK | = |T ′
IJK |, where T ′

IJK is the triple intersection for F ′
•, G

′
•, H

′
•.

Let F•, G•, H• be any flags such that TIJK is transverse. We define the
Littlewood-Richardson number to be the intersection’s size in this case
when TIJK is finite and 0 otherwise:

cIJK =

{ ∣∣TIJK

∣∣ if TIJK is finite,
0 otherwise.

The Littlewood-Richardson number is often written with an up index,
cK
IJ ; however, the two notations are not synonymous; rather they are related

by cIJK = cK∨

IJ , where the set K∨ is derived from K ∈ [n]d by

K∨ = {n + 1 − k | k ∈ K}.

3



1. INTRODUCTION

1.1.2 Synthesis

Our aim is to state an algorithm that synthesizes the unique point of TIJK

when cIJK = 1. To write the result, we use the lattice theory operations,
meet and join, to create lattice polynomials. The set of vector subspaces
of Cn is a lattice where intersection is denoted by meet, ∧, and span is
denoted by join, ∨. The lattice operations can be used to construct lattice
polynomials where ∧, and ∨ replace the usual polynomial operations + and
∗. For example,

V = (F4 ∧ G9 ∧ H2) ∨ (F3 ∧ (G4 ∨ H1)) ∨ (H4 ∧ (G4 ∨ H1))

is a lattice polynomial in the flags F•, G•, H•. We define synthesis as follows:
V ∈ TIJK is synthesized if there exists a lattice polynomial q such that

V = q(F•, G•, H•) ∈ ΩI(F•) ∩ ΩJ (G•) ∩ ΩK(H•)

for all generic, complete flags F•, G•, H•.

We will discuss the generiticity condition in Subsection 2.1.2. For the mo-
ment, it is enough to note that using generic flags ensures that the subspaces
we construct have the ‘correct’ dimension. In particular, any intersection or
span of two steps has the expected dimension: dim Fi ∧ Gj = max{i+j−n, 0}
and dim Fi ∨ Gj = min{i + j, n}.

Let us illustrate a very simple case of synthesis. Let n = 5, d = 2,
I = {2, 3}, J = {3, 4} and K = {4, 5}. Further, let F•, G•, H• be generic,
complete flags in C5. We claim that

G4 ∧ F3 ∈ TIJK ⊂ Gr2(C
5).

We check that G4 ∧ F3 is in the first Schubert variety, ΩI(F•), by checking
the dimension condition dim(V ∧ Fi`) ≥ `. Generiticity ensures that

dim (G4 ∧ F3) ∧ Fi2 = dim G4 ∧ F3 = 2

dim (G4 ∧ F3) ∧ Fi1 = dim G4 ∧ F2 = 1

where i1 = 2, and i2 = 3. Hence, G4 ∧F3 ∈ ΩI(F•). Similarly, G4 ∧F3 is also
in the other two varieties.

4



1.2. PUZZLES

1.2 Puzzles

The central combinatorial object of this thesis is the puzzle, introduced in
[15]. Puzzles are one of several combinatorial objects with a Littlewood-
Richardson rule. As such, puzzles are in bijection with the objects discussed
in Chapter 3: Littlewood-Richardson tableaux, Berenstein and Zelevinsky’s
hives, and the measures in [2]. However, puzzles offer a different combinato-
rial view that has been put to several important uses.

It was shown in [15] that puzzles entirely determined by their boundaries,
called rigid puzzles, correspond to facets of the Littlewood-Richardson cone.
Puzzles also give rise to Horn inequalities via a construction demonstrated
in [10], which we detail in Section 3.2. This construction was used to prove a
factorization result for Littlewood-Richardson numbers [10]. A generalization
of puzzles has even been used for computation in the equivariant cohomology
of the Grassmanian; this equivariant puzzle rule was proved by Knutson and
Tao in [14]. We now define puzzles and their relevant notation.

1.2.1 Labelled Puzzles

11

1

00

0

0

0
1

1

Figure 1.1: The three edge labelled puzzle pieces.

A labelled puzzle P sits in a size n equilateral triangle, and it is filled
with labelled pieces. The individual pieces are shown in Figure 1.1. The
pieces and their rotations are placed in the triangle such that the edge labels
of adjacent pieces match and there are no empty positions. Figure 1.2 shows
a complete puzzle composed of labelled pieces. The number of 1s on each
side of P is the same, so in addition to n, we use another parameter, d, to
specify the number of 1 labels per side. Hence, the number of 0 labels per
side is n − d. The puzzle in Figure 1.2 has d = 4.

The borders of P can be viewed as three 01-strings of length n with d ones.
We say P has boundary π, σ, ρ if π, σ and ρ are strings written clockwise on
P ’s Northwest (NW), Northeast (NE), and south (S) borders respectively.
There is a straightforward bijection between [n]d and 01-strings with d ones:
i` determines the position of the `th 1 in a string. The Littlewood-Richardson
numbers can be given in terms of these 01-strings; if πX is the string associ-
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Figure 1.2: A completed puzzle with labelled pieces.

ated to X ∈ [n]d, then we write cIJK = cπIπJπK
.

A Littlewood-Richardson rule for cπσρ can be stated for puzzles, which
we do now:

Littlewood-Richardson rule 1. Let π, ρ, σ be n length 01-strings with d
1s. Then

cπσρ = # puzzles with boundary π, σ, ρ.

This rule is proved in Subsection 2.3.2.

1.2.2 Shaded Puzzles

Although more commonly used, labelled puzzles involve too many symbols
for our purposes, as we require puzzles with less adornment to avoid over-
crowding our figures. To this end, we introduce shaded puzzles with shaded
pieces as in Figure 1.3. The piece conversion is as follows: 1-triangles be-
come dark triangles, 0-triangles become white triangles, and labelled rhombi
become gray rhombi. Figure 1.3 also shows the puzzle from Figure 1.2 con-
verted to a shaded puzzle. The triangle pieces are called white or dark in
the obvious way. A piece edge is called dark if a dark triangle may be placed
adjacent to it; otherwise, the edge is called white.

We describe the boundary of shaded puzzles using the sets I, J, K ∈ [n]d.
If I determines the NW boundary of P , then i` is the position of the `th
dark edge counting clockwise from the lower left corner. The sets J, K ∈ [n]d
determine the NE and S boundaries similarly. Unless otherwise required, we
always label the NW side by a set I, NE by J , and S by K.

The rotational symmetry of puzzles makes some symmetries of the
Littlewood-Richardson numbers clear:

cIJK = cKIJ = cJKI .
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Figure 1.3: The puzzle piece shading.

Puzzles have another symmetry: reflection about a center line. To make
the reflection a puzzle, all dark triangles must change to white triangles and
vice-versa. The boundary of this new puzzle is given by the sets J∗, I∗, K∗ ∈
[n]n−d. These sets determine the positions of the n − d white edges of P
counter clockwise, so I∗= {i∗ | i∗ 6= n + 1 − i for i ∈ I}. These sets should
not be confused with I∨ ∈ [n]d. By Littlewood-Richardson rule 1,

cIJK = cJ∗I∗K∗.

1.3 Our Aim and Outline

The goal of this thesis is to state an algorithm that synthesizes a point in

ΩI(F•) ∩ ΩJ (G•) ∩ ΩK(H•)

when cIJK = 1. As noted, our algorithm is a reformulation, using puzzles,
of the algorithm in [2], which used specialized Lebesgue measures. These
measures are in bijection with puzzles, but we prefer an algorithm in terms
of puzzles for several reasons.

Firstly, the use of puzzles makes certain aspects of the proof of correctness
for our algorithm are more transparent. Second, the need to switch between
two sets of combinatorial objects, measures and their duals, is avoided, as
puzzle encode both. Third, puzzles are strongly connected to Horn inequali-
ties, and in fact, our algorithm can be used to find essential Horn inequalities.
Lastly, puzzles seem central among the combinatorial objects connected to
Littlewood-Richardson rules in that there are straightforward bijections be-
tween those other objects and puzzles. It is perhaps because of this that

7
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puzzles have been better studied and more widely applied than the mea-
sures in [2], so a synthesis algorithm stated in terms of puzzles more clearly
connects with that previous work.

Chapter 2 delves into the triple intersection of Schubert varieties and the
relation to puzzles in greater detail. The first section examines the Grass-
manian, and Schubert varieties. We will prove some facts about Richardson
varieties. An important fact about the intersection of a Richardson variety
and a special Schubert variety is also stated. The claim that synthesis is
not possible when cIJK ≥ 2 is justified in Subsection 2.1.2. In the following
section, we explore the cohomology of the Grassmanian. Some facts about
the Schubert classes are proven using the results for Schubert varieties from
Subsection 2.1.1. In Section 2.2.2, the relationship between Schur functions
and Schubert classes is made explicit when a linear map from the ring of
symmetric polynomials to the cohomology ring is shown to be a ring homo-
morphism. Finally, the puzzle-based Littlewood-Richardson rule is proved in
Section 2.3.

In Chapter 3, we discuss three combinatorial devices related to puzzles:
the measures from [2], hives, and Littlewood-Richardson tableaux. In each
case, we state the associated Littlewood-Richardson rule and prove a bijection
with puzzles. The measures are discussed at length, as the facts we state in
Section 3.1 are used in the proofs of correctness in Chapter 4. With hives, we
include a discussion of the Horn inequalities, and we describe a construction
of the inequalities combining hives d puzzles.

Our synthesis algorithm is stated in Chapter 4. The algorithm consists of
three ‘layers’: walkers, the Puzzle Skeleton algorithm, and the Lattice Poly-
nomial algorithm. A section is devoted to each. Section 4.1 will define the
walkers, a method of marking puzzle pieces. The Puzzle Skeleton algorithm
of Section 4.2 uses walkers to search for a desirable set of marks in a puz-
zle. Finally, the Lattice Polynomial algorithm employs the desirably marked
puzzle to synthesize the point in a triple intersection of Schubert varieties.

8



Chapter 2

The Triple Intersection of

Schubert Varieties

The focus of this chapter is the triple intersection of Schubert varieties. As
mentioned in Section 1.1.1, Schubert calculus is the study of linear algebra
problems phrased as intersections of subvarieties of flag manifolds. In modern
terms, this is the study of Schubert classes in the cohomology ring of a
flag manifold, the complex Grassmanian in our case. Products of Schubert
classes in the cohomology ring correspond to transverse intersections of the
underlying Schubert varieties. As such, the product structure of these classes
can be used to study the intersection theory of the manifold and vice-versa.

In Section 2.1, we develop the necessary ideas about Schubert varieties.
In particular, we discuss Richardson varieties and their intersection with a
special Schubert variety in Subsection 2.1.1. We include a discussion of syn-
thesis, by a lattice polynomial, of points in a triple intersection of Schubert
varieties in Subsection 2.1.2, and we demonstrate why synthesis is not possi-
ble when the intersection has size greater than one. We then move to looking
at the cohomology ring H∗(Grd(C

n)) in Section 2.2. Specifically, we study the
Schubert classes which are the cohomology classes of Schubert varieties. The
chapter finishes with a discussion of puzzles and a proof of the puzzle-based
Littlewood-Richardson rule. The majority of the discussion comes from [6].
We begin with the Schubert varieties of the Grassmanian.
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2. THE TRIPLE INTERSECTION OF SCHUBERT VARIETIES

2.1 Schubert Varieties

For ease of reference, we recall the definition of Schubert varieties from Sub-
section 1.1.1. Let I ∈ [n]d, and F• be a complete flag. The Schubert variety
for I and F• is

ΩI(F•) :=
{
V ∈ Grd(C

n) | dim(V ∩ Fi`) ≥ `
}
.

The two extreme cases for this definition are the set {1, 2, . . . , d} ∈ [n]d, which
we denote Imin, and {n − d + 1, . . . , n} =Imax. The Schubert variety for Imin

is ΩImin(F•) = {Fd}, a single point, as only V = Fd satisfies dim(V ∩Fd) ≥ d.
For Imax, ΩImax(F•) = Grd(C

n), as every d-dimensional subspace of Cn obeys

dim(V ∩ Fn−d+`) ≥ dim(V ) + dim(Fn−d+`) − n

= (d) + (n − d + `) − n

= `.

Schubert varieties are also commonly indexed by 01-strings. We write the
Schubert variety ΩI(F•) as Ωπ(F•) when π is the 01-string corresponding to
I under the bijection in Subsection 1.2.2. We note that the use of the term
variety is no misnomer: ΩI(F•) is indeed a projective subvariety of Grd(C

n).
We do not include the details here; they can be found in [6].

The Schubert cells are affine subvarieties of Schubert varieties. They
are given by

Ω◦
I(F•) :=

{
V | dim(V ∩ Fk) = ` for i` ≤ k < i`+1

}
.

If V is in Ω◦
I(F•), the sequence dim(V ∩ Fk) stabilizes between consecutive

values in I. We note two facts about Ω◦
I(F•) from [6]. First, Ω◦

I(F•) is open
in the Zariski topology relative to ΩI(F•), so it is dense in ΩI(F•). Second,
Schubert varieties can be expressed as a disjoint union of Schubert cells:

ΩI(F•) =
∐

J≤I

Ω◦
J (F•),

where J ≤ I if I, J ∈ [n]d and j` ≤ i` for 1 ≤ ` ≤ d.
Another way to define the Schubert cells is by using a basis for V ∈

Grd(C
n). Select a basis of Cn, {f1, . . . , fn} such that F` = span{f1, . . . , f`}.

Then for V ∈ Grd(C
n), select a basis {v1, . . . , vd}. We have that v` =

10



2.1. SCHUBERT VARIETIES

A −→




∗ 0 ∗ ∗ 0 ∗ 0 1
∗ 0 ∗ ∗ 0 ∗ 1 0
∗ 0 ∗ ∗ 1 0 0 0
∗ 1 0 0 0 0 0 0




Figure 2.1: Gaussian elimination from the right for V ∈ Ω◦
2,5,7,8(F•).

∑
A`kfk, so we can form the matrix A = A`k. The matrix A is then put

in reduced form using Gaussian elimination from the right, as in Figure 2.1.
The reduced matrix has d pivot columns, and if column i` is the `th pivot
column, then dim(V ∩ Fi`) = `. Hence, Ω◦

I(F•) can be defined as the set of
subspaces whose reduced matrices have pivot columns given by I. In Figure
2.1, we see the general form of a matrix for a subspace V ∈ Ω◦

2,5,7,8(F•). The
stars represent arbitrary complex entries. The dimension of Ω◦

I(F•) is the
number of stars in the general form:

dim
(
Ω◦

I(F•)
)

=

d∑

`=1

(
i` − `

)
.

As Ω◦
I(F•) is dense in ΩI(F•), the dimension of ΩI(F•) is the same as that

of Ω◦
I(F•). In particular, the dimension of Grd(C

n) is d(n − d) as Grd(C
n) =

ΩImax(F•) and imax
` = n − d + `.

2.1.1 Notable Intersections

Products in the cohomology ring of Grd(C
n) can be computed by intersection

theory, so the intersections of Schubert varieties are of special interest. In
particular, we want to know the size of the intersection

TIJK := ΩI(F•) ∩ ΩJ (G•) ∩ ΩK(H•)

for complete flags F•, G•, H•. The focus of this section is on developing the
necessary facts about Schubert varieties needed to compute |TIJK | in general.
Clearly, we need |TIJK | to be finite to say anything meaningful about it. Two
conditions are needed for finiteness.

The first is a condition on the sets I, J, K. If the sets I, J, K obey

2d(n − d) =

d∑

`=1

(
i` + j` + k` − 3`

)
,

11



2. THE TRIPLE INTERSECTION OF SCHUBERT VARIETIES

then the intersection TIJK is possibly finite. We assume this condition for the
remainder of this chapter. The second condition is transversality, discussed
in Subsection 2.1.2, which ensures that TIJK is in indeed finite.

The computation of |TIJK | in general will be accomplished using the co-
homology ring, but some initial calculations must be done directly with the
Schubert varieties. In particular, we prove two facts about Richardson vari-
eties, and then state a fact about the size of an intersection of a Richardson
variety with a special Schubert variety.

The first intersection we look at uses an opposite flag. Select a basis
for Cn: {f1, . . . , f`}. Let F• be the complete flag with F` = span{f1, . . . , f`}.

The opposite flag in the basis {f1, . . . , f`} is F̃• where the `th step is given

by F̃` = span{fn−`+1, . . . , fn}. For a Schubert variety ΩI(F•), an opposite

variety is ΩJ (F̃•). When the flags are understood, we instead write ΩI

and Ω̃J for a variety and an opposite variety. A Richardson variety is
the intersection ΩI ∩ Ω̃J . We state and prove two theorems for Richardson
varieties.

Theorem 2.1.1. ΩI∩Ω̃J 6= ∅ if and only if n+1 ≤ i`+jd+1−` for ` = 1, . . . , d.

Proof. Let jd+1−` = k`. Fi` ∩ F̃k`
is spanned by {ft | n + 1 − k` ≤ t ≤ i`},

which may be empty, and it has dimension i` + k` − n when non-empty.
Suppose V ∈ ΩI ∩ Ω̃J . Then dim(V ∩Fi`) ≥ ` and dim(V ∩ F̃k`

) ≥ d + 1− `.
V is d-dimensional, so

1 ≤ dim
(
(V ∩ Fi`) ∩ (V ∩ F̃k`

)
)
≤ dim(Fi` ∩ F̃k`

) = i` + k` − n,

as required.
Conversely, if n + 1 ≤ i` + k` for ` = 1, . . . , d, then 1 ≤ dim(Fi` ∩ F̃k`

).
Define the vectors

v` = fn−k`+1 + · · ·+ fi` .

Let V be their span. It is easily seen that dim(V ) = d, dim(V ∩Fi`) ≥ ` and

dim(V ∩ F̃k`
) ≥ d + 1 − `, so ΩI ∩ Ω̃J 6= ∅, as required.

The next theorem involves the set derived from I ∈ [n]d defined in Subsec-
tion 1.1.1: I∨ = {n+1− i` | i` ∈ I}. It is easy to see that i∨d+1−` = n+1− i`.

Theorem 2.1.2. If
∑

I i +
∑

J j = d(n + 1), then

ΩI ∩ Ω̃J =

{
a point if J = I∨

∅ otherwise,

and the intersection is transverse at the point when non-empty.
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2.1. SCHUBERT VARIETIES

Proof. If J 6= I∨, then for some `, i` + jd+1−` < n + 1, so ΩI ∩ Ω̃J = ∅ by the
previous theorem.

Say J = I∨. Then jd+1−` = n + 1− i`, so ΩI ∩ Ω̃J 6= ∅. Let V ∈ ΩI ∩ Ω̃J .
Then by the same argument as in the previous theorem,

1 ≤ dim(V ∩ Fi` ∩ F̃n+1−i`) ≤ dim(Fi` ∩ F̃n+1−i`) = i` + jd+1−` = 1,

for 1 ≤ ` ≤ d. We also have for each ` that Fi` ∩ F̃n+1−i` = span(fi`). There

is a basis of V including the vector fi` for 1 ≤ ` ≤ d. Hence, ΩI ∩ Ω̃J consists
of the single point V = span{fi1 , . . . , fid}.

We delay proof that ΩI ∩ Ω̃J is transverse until Section 2.2.1.

Now, let I, J ∈ [n]d. We say that J is an m-shift of I, denoted I
m
→ J , if

m = m1 +· · ·+ md, each m` ≥ 0, and

i`−1 < j` = i` − m`.

A special Schubert variety is indexed by the unique m-shift of Imax, which we
denote Jm. A special Schubert variety is ΩJm

(G•). The next intersection
we discuss is between a Richardson variety and a special Schubert variety.

Theorem 2.1.3. Let m ≥ 0, I ≥ K∨ and
∑

` i` −
∑

` k∨
` = m. Then

1. if K∨ is not an m-shift of I, then there exists a flag G• such that

ΩI ∩ Ω̃K ∩ ΩJm
(G•) = ∅.

2. if I
m
→ K∨, then there exists a flag G• such that

ΩI ∩ Ω̃K ∩ ΩJm
(G•) = {V },

a single point, and the intersection is transverse at V .

The proof, though slightly more involved, follows lines similar to the two
proofs above, so it is omitted here. It can be found in [6].
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2. THE TRIPLE INTERSECTION OF SCHUBERT VARIETIES

2.1.2 Monodromy Prevents Synthesis

We now discuss synthesis in the Grassmanian. Recall that a subspace

V ∈ TIJK := ΩI(F•) ∩ ΩJ (G•) ∩ ΩK(H•)

is said to be synthesized if it can be described in terms of a lattice poly-
nomial built from the steps of the complete flags F•, G•, H•. We show that
synthesis is not possible when cIJK > 1.

We examine the monodromy of the intersection points of a triple inter-
section as we continuously deform the three given flags F•, G•, H•. Con-
sider a continuous function from [0, 1] → F`(Cn) given by t 7→ F•(t) with
F•(0) = F•(1) = F•. Consider G•(t) and H•(t) similarly. Each intersection
point is then defined by a continuous function from [0, 1] → Grd(C

n) where
t 7→ V (t) with

V (0), V (1) ∈ TIJK .

The monodromy of TIJK is given by the group of all ways the intersection
points can be permuted in this way. The salient point is that if the mon-
odromy of a point V is non-trivial, then V (0) need not be equal to V (1). We
show below that when cIJK > 1, the monodromy of every point in TIJK is
non-trivial, and thus, a deformation can be found with V (0) 6= V (1).

There is the danger that the deformations we perform change the size of
|TIJK |. To understand how this might occur, consider the intersection of two
circles. If the circles are tangent, then a perturbation can change a single
point of intersection into two or none. The size of TIJK can exhibit similar
sensitivity to perturbation. However, the term ‘non-tangentially’ is not the
correct notion for general manifolds; instead, we desire TIJK to be a trans-
verse intersection. We do not define transversality here. For us, it is enough
to note that when an intersection of Schubert varieties is transverse, infinites-
imal perturbations of the flags do not change |TIJK |. Let F•(t), G•(t), H•(t)
be such that TIJK is transverse for all t. Then |TIJK | = cIJK for all t.

However, we may not have such flags to choose from for a given I, J, K.
Fortunately, it is always possible to choose three flags such that TIJK is
transverse. This follows from Kleiman’s transversality theorem [11] which,
in this case, states that for any three complete flags F•, G•, H• there is an
open, dense subset U ⊆ GL3

n such that

ΩI(g1F•), ΩJ(g2G•), and ΩK(g3H•)

14



2.1. SCHUBERT VARIETIES

have transverse intersection for all (g1, g2, g3) ∈ U . In other words, a generic
choice of three flags produces a transverse Schubert variety intersection.
Hence, we can select F•(t), G•(t), H•(t) such that the triple intersection they
define is transverse for all t, which we do for the remainder of this discussion.
See [8] for more details about transversality and Kleiman’s theorem.

We now prove that when cIJK ≥ 2 and the monodromy of an intersection
point is non-trivial, we cannot synthesize that point. Let V, W ∈ TIJK , and
suppose that the continuous function with V (0) = V has V (1) = W 6= V.
Suppose further that V is given by a lattice polynomial p: V = p(F•, G•, H•).
We have that V (t) = p(F•(t), G•(t), H•(t)) as spans and intersections change
continuously with t, so p(F•(1), G•(1), H•(1)) = V (1) = W . We also have
F`(0) = F`(1) and similarly for the other flags, so p(F•(0), G•(0), H•(0)) =
p(F•(1), G•(1), H•(1)); a contradiction, as V 6= W . Hence, if V is synthetic,
then the monodromy of the intersection point V is trivial.

Of course, when cIJK = 1, the monodromy of the unique intersection
point is trivial, so synthesis may be possible in this case. We now show that
when cIJK ≥ 2 the monodromy of every intersection point is non-trivial [18],
so synthesis is impossible. Define

U =
{
(F•, G•, H•) | Ω◦

I(F•) ∩ Ω◦
J (G•) ∩ Ω◦

K(H•) is transverse
}
.

The set U is open and dense in F`(Cn)3 by Kleiman’s theorem, and it is
therefore connected, as F`(Cn)3 is connected. Let I, J, K be such that cIJK ≥
2. Define the space

T =
{
(V, F•, G•, H•) | V ∈ TIJK , (F•, G•, H•) ∈ U

}
.

Also, define two projections:

q(V, F•, G•, H•) = (F•, G•, H•),

r(V, F•, G•, H•) = V.

We have that q−1(F•, G•, H•) = TIJK . It is not hard to show that T
is connected; however, it requires showing that the fibers are Schubert cells
in F`d(C

n) for some step sequence d, which are connected. Consider a path
et ∈ T , t ∈ [0, 1] such that q(e0) = q(e1) = (F•, G•, H•). Since T is connected
and q−1(F•, G•, H•) has more than one point, we can choose et such that
r(e0) 6= r(e1). Hence, moving around the loop q(et) in U permutes the points
of TIJK non-trivially. We record this as a theorem.
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2. THE TRIPLE INTERSECTION OF SCHUBERT VARIETIES

Theorem 2.1.4 ([18]). Let I, J, K ∈ [n]d, and F•, G•, H• be complete flags
such that TIJK is transverse. If there exists a lattice polynomial p such that
p(F•, G•, H•) ∈ TIJK, then cIJK = 1.

2.2 The Cohomology Ring H∗(Grd(C
n))

Cohomology associates a ring, H∗(X), to a topological space X, and ele-
ments of that ring to certain subobjects of the space. In the case of Grd(C

n),
the subobjects are subvarieties of Grd(C

n), and certain classes of the ring
H∗(Grd(C

n)) are associated with the subvarieties of Grd(C
n). The classes

defined by Schubert varieties form a linear basis for H∗(Grd(C
n)). The in-

tersections of the previous section can be interpreted as products of these
Schubert classes. The aim of this section is to exploit this connection be-
tween the intersection theory of Grd(C

n) and the ring H∗(Grd(C
n)). In par-

ticular, a Pieri rule is proved for H∗(Grd(C
n)), and a surjection from the well

understood ring of symmetric functions to the cohomology ring follows.

2.2.1 Schubert Classes

The Schubert class for I, denoted by σI , is the class in H∗(Grd(C
n)) of a

corresponding Schubert variety:

σI :=
[
ΩI(F•)

]
.

These classes form a basis for H∗(Grd(C
n)). We now show that this definition

does not depend on the choice of flag.

Proposition 2.2.1. Let F• and H• be complete flags. Then [ΩI(F•)] =
[ΩI(H•)].

Proof. There exists h ∈ GLn such that hF• = H•, where the action is on
each step of F•. The action of GLn on Schubert varieties is then given by

hΩI(F•) = ΩI(H•).

Define ht : [0, 1] → GLn to be continuous such that h0 =Id and h1 = h. This
gives a homotopy from the map

Id: ΩI(F•) → ΩI(F•) to the map h : ΩI(F•) → ΩI(H•).

Hence, [ΩI(F•)] = [ΩI(H•)], as homotopic varieties represent the same coho-
mology class.
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∗(Grd(C

n))

We turn now to the product structure of H∗(Grd(C
n)). The product of

two Schubert classes, σIσJ , is represented by the intersection of the Schubert
varieties

σIσJ = [ΩI(F•) ∩ ΩJ(G•)],

provided the intersection is transverse. Since ΩImax(F•) = Grd(C
n), σImax is

the identity element in H∗(Grd(C
n)).

We also require transversality when calculating the pairing between ho-
mology and cohomology. The pairing between the fundamental class of
Grd(C

n) and a cohomology class σ is commonly denoted by
∫
Grd(Cn)

σ. The

integral notation comes from the de Rham theory of cohomology, where it is
indeed an integral. Here, it is simply notation for the pairing. In the case
of a triple product of Schubert classes, the pairing computes the size of a
transverse intersection of the three Schubert varieties:

∫

Grd(Cn)

σIσJσK :=
∣∣ΩI(F•) ∩ ΩJ(G•) ∩ ΩK(H•)

∣∣ = cIJK .

Since σI is independent of flag choice, we may choose generic flags F•, G•,
and H• to ensure that the intersection is transverse.

In the case of a Richardson variety, if F• and G• are two generic flags, it
is possible to select a basis such that G• = F̃•. Multiplying by h ∈ GLn, we
see that any pair of opposite flags produces transverse intersections, as mul-
tiplication by h maintains transversality. We have the following corollaries
to Theorem 2.1.2.

Corollary 2.2.2. If
∑

I i +
∑

J j = d(n + 1), then

∫

Grd(Cn)

σIσJ = δIJ∨.

Corollary 2.2.3.

σIσJ =
∑

L

cIJL σL∨ .

Proof. Write the product σIσJ in the Schubert basis: σIσJ =
∑

L dIJL σL∨ .
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2. THE TRIPLE INTERSECTION OF SCHUBERT VARIETIES

Then we have that
∫

Grd(Cn)

σIσJσK =
∑

L

dIJL

∫

Grd(Cn)

σL∨σK

=
∑

L

dIJL δL∨K∨

= dIJK .

Hence, dIJK = cIJK.

The intersection of the Richardson variety and a special variety is also
transverse by Kleiman’s theorem giving us a corollary to Theorem 2.1.3.

Corollary 2.2.4. Let m ≥ 0, I ≥ K∨, and
∑

I i −
∑

K∨ k∨ = m. Then

∫

Grd(Cn)

σIσJm
σK =

{
1 if I

m
→ K∨

0 otherwise.

This gives the Pieri Rule for Schubert classes.

Corollary 2.2.5. Let m ≥ 0. Then

σIσJm
=

∑

I
m
→K

σK .

Proof. Consider the product σIσJm
=

∑
L cIJmL σL∨ . Combining Corollaries

2.2.2 and 2.2.4, we get that

cIJmK =

∫

Grd(Cn)

σIσJm
σK = 1

when I
m
→ K∨, and 0 otherwise. Hence,

σIσJm
=

∑
cIJmKσ∨

K =
∑

I
m
→K∨

σK∨.
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n))

2.2.2 Map From Schur Polynomials to Schubert Classes

In this section, we describe the connection between the ring of symmetric
polynomials in d variables, Λ(d), and the cohomology ring for the Grassma-
nian. In particular, we will show that a linear map taking the Schur basis to
the Schubert basis is in fact a ring homomorphism. The ring homomorphism
allows Schubert classes to be represented by Schur polynomials. The homo-
morphism also makes clear how the Littlewood-Richardson numbers, defined
in Subsection 1.1.1 relate to the classical definition: Littlewood-Richardson
numbers are the connection coefficients of a product of Schur polynomials in
the ring of symmetric polynomials. The Schur polynomials are indexed by
partitions. We now recall the definition of partitions and their diagrams, and
we define Schur polynomials after that.

A partition λ= (λ1, . . . , λt) is a weakly decreasing, finite sequence of
non-negative integers which sum to an integer N > 0. The partition λ is
said to partition N , denoted λ ` N . The integer λ` is called the `th part of
λ. A partition can also be given by its diagram. The diagram of a partition
λ is drawn by placing t rows of boxes with the `th row having λ` boxes,
as in Figure 2.2. A partition is said to fit within an n − d by d box if the
partition’s diagram fits within that box. We denote the partitions that fit
within an n − d by d box by Partn,d.

Figure 2.2: The diagram for λ = (5, 3, 3, 1).

We also need to define the skew partition λ/ν. Suppose ν is a partition
whose diagrams fits within λ’s. The diagram of the skew partition λ/ν is
constructed by laying the diagram of ν on λ and removing any boxes that
overlap. A skew partition diagram is pictured in Figure 2.3.

Now, the Schur polynomial indexed by the partition (m) for m > 0 is the

Figure 2.3: The diagram for the skew partition λ/ν = (5, 3, 3, 1)/(2, 1).
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2. THE TRIPLE INTERSECTION OF SCHUBERT VARIETIES

homogeneous, symmetric polynomial of degree m:

s(m) :=
∑

1≤i1≤i2≤···≤im≤d

xi1xi2 · · ·xim .

For a general partition λ, the Schur polynomial for λ is the following:

sλ := det(s(λi+j−i))i,j=1,...,d.

The Schur polynomials form a basis of Λ(d), so the definition for sλ makes
it clear that s(m) for m ≥ 0 generate the ring Λ(d).

There is a bijection between [n]d and Partn,d that allows us to index
Littlewood-Richardson numbers by partitions. For I ∈ [n]d, λ(I) is the
partition where

λ`(I) = n + 1 − id+1−` − `.

The indices of a Littlewood-Richardson number are simply replaced using this
bijection: cIJK∨ = cK

IJ = c
λ(K)
λ(I)λ(J). The Littlewood-Richardson numbers are

often defined as the connection coefficients of a product of Schur polynomials
in Λ(d), and we record this here as a theorem.

Theorem 2.2.6. Let µ, ν, λ be partitions. Then

sµsν =
∑

λ

cλ
µνsλ.

Proof. As we did for Schubert classes, we can state a Pieri rule for Schur
polynomials. We say that λ/ν is an m-strip if the diagram of λ/ν has at
most one box per column. We say that an m-strip was added to ν to form
λ if λ/ν is an m-strip. We denote this by ν

m
→ λ. The Pieri rule for Schur

functions is
sνs(m) =

∑

ν
m
→λ

sλ.

Using the bijection between [n]d and Partn,d, it is easily checked that
λ(Jm) = (m), and that adding an m-strip corresponds to an m-shift. Let

Figure 2.4: Diagram of (5), and a 5-strip.
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2.3. THE PUZZLE-BASED LITTLEWOOD-RICHARDSON RULE

I
m
→ K. Then we have that i`−1 < i` − m` = k` for ` = 1, . . . , d and

m = m1 +· · ·+ md. Hence, λ`(I) = λ`(K) + m` ≤ λ`−1(I), and so

λ(I)
m
→ λ(K) if and only if I

m
→ K.

We define the unique, surjective, linear map Λ(d) → H∗(Grd(C
n)) given

by

sν 7→

{
σI if ν = λ(I),
0 otherwise.

Since Λ(d) is generated by s(m), the Pieri rules on both sides confirm that
this linear map is a surjective ring homomorphism; specifically,

sλ(I)s(m) 7→ σIσJm
,

and ∑

λ(I)
m
→λ(K)

sλ(K) 7→
∑

I
m
→K

σK .

Hence, the connection coefficients of σIσJ in H∗(Grd(C
n)) are the connection

coefficients for a product of Schur polynomials in ∆(d).

The proof of Theorem 2.2.6 also shows us that H∗(Grd(C
n)) is generated

by σJm
, as Λ(d) is generated by s(m).

2.3 The Puzzle-Based Littlewood-Richardson

Rule

In this section, we prove the puzzle-based Littlewood-Richardson rule. Let
I, J, K ∈ [n]d. Then

cIJK = |ΩI(F•) ∩ ΩJ(G•) ∩ ΩK(H•)| = # puzzles with boundary I, J, K.

Our ultimate aim is to provide a synthesized description of an intersection
point, so we are interested in the case where there is a single puzzle with
boundary I, J, K. This occurs when the boundary allows no choice in the
placement of puzzle pieces. We call such puzzles rigid. In [15], a puzzle P
with boundary I, J, K is shown to be rigid if and only if P has no gentle
loops, which are gentle paths with the same start and end. Gentle paths are
also central to the proof of the puzzle Littlewood-Richardson rule. We define
gentle paths and loops next, and prove the Littlewood-Richardson rule in
Subsection 2.3.2.
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2. THE TRIPLE INTERSECTION OF SCHUBERT VARIETIES

2.3.1 Gentle Paths

We follow the definition of gentle paths from [15]. Let g be a path that
walks through a puzzle P along puzzle piece edges, obeying the following
conditions:

1. g can never use an edge between pieces of the same type or an edge on
the boundary,

2. dark triangles are always to the right of g, and

3. white triangles are always to the left.

A gentle turn is a ±60◦ turn in such a path, and such a path is a gentle

path if all its turns are gentle. A gentle loop is a closed gentle path. Figure
2.5 shows a gentle path and a gentle loop in a puzzle.

Figure 2.5: A puzzle with a gentle path (left), and gentle loop (right).

Figure 2.6: The four possible piece arrangements around a gentle path edge
oriented right to left.

Figure 2.7: The four arrangements after breathing and reorienting the loop
from left.to right.

22



2.3. THE PUZZLE-BASED LITTLEWOOD-RICHARDSON RULE

Now, consider all the pieces with either a side or a corner adjacent to a
gentle path. These pieces can be partitioned into one of the four arrange-
ments shown in Figure 2.6, where the bold edge is the only edge of the gentle
path in the arrangement. A gentle path allows the repositioning of pieces
adjacent to the path without affecting the rest of the puzzle. This is called
breathing a gentle path, and it can be done to closed paths or to paths
between two points on the boundary of P . At each edge e of the gentle path,
the piece arrangement at e is changed as in going from Figure 2.6 to Figure
2.7: that is, the triangular cases are turned so the other triangle piece is
adjacent to the gentle path edge, and the other two cases are flipped about
the gentle path edge. In the following theorem, we prove that a puzzle is
rigid if and only if it has no gentle loops.

Theorem 2.3.1. Let P be a puzzle. Then P is non-rigid if and only if there
is a gentle loop in P .

Proof. Suppose P has a gentle loop. Breathing that gentle loop produces
another puzzle with the same boundary as P , so P is not rigid.

Conversely, if P is non-rigid, then there are at least 2 puzzle with the
same boundary as P . We find a gentle loop in P . Let P1 = P , and let P2 be
another puzzle with the same boundary such that the number of positions
that differ from P1 is minimal. Remove from P1 all the pieces that differ
from P2. As P2 is minimally different, there is only one empty region in P1.
Let R be that empty region. If we walk along an edge of R, the puzzle piece
rules force our turns to be ±60◦, as any turn of 120◦ has a single piece that
may be placed at that turn.

Figure 2.8: The puzzles from Figure 2.5 after breathing the gentle paths.
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2. THE TRIPLE INTERSECTION OF SCHUBERT VARIETIES

Let r be a rhombus placed with a side adjacent to a piece p on R’s outer
boundary, properly or not. The piece r is only adjacent to p. Otherwise,
there can only be one type of puzzle piece placed next to p, contradicting
that this is a spot where P1 and P2 differ. Therefore, at least one of the piece
arrangements from Figure 2.6 can be placed next to p. An easy, though
lengthy, case analysis suffices to show that, regardless of an inner boundary
of R, the piece arrangements can be placed around the outer boundary of R
without overlap. The minimality of R ensures that these arrangements fill
R, and the bold edges form a gentle loop in P1.

2.3.2 Proof of The Puzzle-Based Littlewood-Richardson

Rule

Our final task in this section is to prove the Littlewood-Richardson rule for
puzzles:

cIJK = # puzzles with boundary I, J, K ∈ [n]d.

We begin by defining a ring Q.
Let Q be a vector space with basis qI for I ∈ [n]d, and let qIqJ =∑

K dIJK∨ qK , where dIJK∨ is the number of puzzles with boundary I, J, K∨.
We first show that this is an associative ring by specifying a puzzle bi-
jection using m-shifts. Our proof follows the outline of the proof of the
Littlewood-Richardson rule for H∗(Grd(C

n)) given in [5], but here, we re-
place the tableaux with puzzles. The techniques we use on puzzles in this
proof are modifications of the techniques used on mosaics in [17], and on
equivariant puzzles in [14].

Theorem 2.3.2. Let I, J, K ∈ [n]d. Then

∑

J
m
→J̃

d
IJ̃K

=
∑

I
m
→Ĩ

d
ĨJK

.

Proof. We show that for every puzzle with boundary I, J̃, K for some m-shift
J̃ of J there is a corresponding puzzle with boundary Ĩ , J, K for some m-
shift Ĩ of I, and that the operation connecting the puzzles is invertible. First,
consider the case where m = 1, so J̃ is a 1-shift of J . Let P be the associated
puzzle with boundary I, J̃, K. There is some j` such that j̃` = j` − 1. By
definition of J , j`+1 > j`, so the j̃` edge of P is dark, and the j̃` + 1 edge
is white. A gentle path can be started at the point s between the dark and
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2.3. THE PUZZLE-BASED LITTLEWOOD-RICHARDSON RULE

white edges for j̃` and j̃` + 1. Indeed, if a gentle path can be found from s
to the NW boundary of P , then breathing that gentle path will change the
NE boundary to J and the NW boundary to some 1-shift of I.

Here, we construct such a path. Note that at every point g between
consecutive edges of a gentle path there is at least one dark edge and one
white edge meeting at g which form a line. Further, there is a unique line
formed this way that is also not parallel to any of the gentle path edges
meeting at g.

The diagram shows such a dark and white edge pair at a point on a gentle
path running along the bold edge. The edge pair is indicated by the dotted
line. That line will be denoted by Lg.

Now, start a gentle path G at the point s found above. If G has not
reached the NW boundary, we add an edge to the end of G such that the end
point g has Lg parallel to either the NW or NE sides of the puzzle. Figure
2.9 shows an example of a gentle path G with the point s and the lines Lg.
If G hits a boundary, it must be the NW boundary, as otherwise some line
Lg was parallel to the S side.

We now show that G always reaches the NW side. Let g and h be the
end points of the last edge added to G, with h being the current end point
of G. The lines Lg and Lh are parallel unless g is the central point of one of
the diagrams below.

s

Figure 2.9: The path G in a puzzle with start point s. The lines Lg are
dotted.
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2. THE TRIPLE INTERSECTION OF SCHUBERT VARIETIES

If the point g is at the center point of one of the two arrangements, then we
need to show there is always a choice for the next point h such that Lh is
parallel to the NW or NE sides. A simple case analysis shows that if Lg is
parallel to the NW or NE, then there is a unique choice for h with Lh parallel
to the NW or NE and the turn at g is gentle. Hence, G is the unique path
from the point s on the NE side to the NW side.

Breathing the gentle path G produces a new puzzle P ′. The NW bound-
ary of P ′ is given by a 1-shift Ĩ, as a dark edge on the NW is moved from
above G to below G. If we build a gentle path H in P ′ from the NW to the
NE with the same rules, then H = G but with the opposite direction. To see
this, note that the lines Lg mark the borders of the piece arrangements from
Figure 2.6 in P , so there is a gentle path in P ′ that follows G in reverse. To
deviate from that gentle path, H would have to hit a point h with Lh parallel
to the S side. Each step in H is also unique, so this process is invertible for
1-shifts.

Now, take m > 1. P is again the puzzle with boundary I, J̃ , K for an
m-shift J̃ of J . We repeat the procedure for m = 1 in three steps to find a
succession of gentle paths, Gi, to breath and produce a puzzle with boundary
Ĩ , J, K for some m-shift Ĩ. First, find the least element in J̃ such that j̃` < j`.
Second, find G1 as in the m = 1 case. Finally, breath G1. Repeat these three
steps in the puzzle produced at the end of them until the NE boundary is J .
Figure 2.10 shows the puzzle after the gentle path in Figure 2.9 is breathed.
The next gentle path is bold, and the final puzzle after breathing that path
is shown on the right of Figure 2.10. Between the two examples, this is an
example of a 2-shift.

It is clear that the NW boundary is an m-shift of I, as there were m moves
of dark edges counter clockwise. Further, a dark edge was never moved past
another, as a gentle path cannot exit between dark edges. Note also that

s

Figure 2.10: The example from Figure 2.9 continued.
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Gi+1 never intersects Gi. If it were to do so, then Gi+1 either runs along Gi

or crosses it. The dark edge of each line Lg for Gi and Gi+1 is above the
gentle path, but after breathing Gi, the dark edge is below. Hence, Gi+1

cannot run along Gi. To cross Gi, a case analysis shows that Gi+1 must have
a point h where the line Lh is parallel to the S side, which is not possible.
Therefore, successive gentle paths do not intersect. The argument in the
m = 1 case suffices to show that each of the gentle paths Gi is unique, and
the inverse process consists of finding the first dark edge clockwise on the Ĩ
boundary with position ĩ` < i`, starting the gentle path H , and breathing
H .

This constitutes a bijection between puzzles with boundary I, J̃ , K and
Ĩ , J, K, which proves the result.

We get the Pieri rule for Q as a corollary.

Corollary 2.3.3.

qIqJm
= qJm

qI =
∑

I
m
→Ĩ

qĨ .

Proof. Recall that Jm is the unique m-shift of Imax. Hence,

dIJmK =
∑

I
m
→Ĩ

dĨImaxK .

It is an easy matter to check that there is a unique puzzle with boundary
J, Imax, K, and that K = J∨. So we have that

dIJmK =

{
1 I

m
→ K∨

0 otherwise.

Hence, qIqJm
=

∑
K dIJmKqK∨ =

∑
I

m
→Ĩ

qĨ .

For qJm
qK , we note two facts. First, I

m
→ K∨ is equivalent to K

m
→ I∨.

Second, dIJmK = dJmKI , as puzzles are rotationally symmetric. Hence,

qJm
qK =

∑

I

dJmKIqI∨ =
∑

K
m
→K̃

q
K̃

.
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A product with qJm
is associative:

(qIqJm
)qK =

∑

L

qL

∑

I
m
→Ĩ

dĨKL∨

=
∑

L

qL

∑

K
m
→K̃

d
IK̃L∨

= qI(qJm
qK).

Consider the surjective linear map given by σI 7→ qI . There is a Pieri rule on
both sides of the map, so Q is generated by qJm

, as H∗(Grd(C
n)) is generated

by σJm
. Hence, the product in Q is associative, so Q is a ring. It follows

that the map is a surjective ring homomorphism. Therefore, the Littlewood-
Richardson rule for puzzles is proven, as the structure constants are equal:

cIJK = dIJK = the number of puzzles with boundary I, J, K.
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Chapter 3

Combinatorics Related to

Puzzles

In this chapter, we undertake a survey of some combinatorial objects related
to puzzles and the Littlewood-Richardson rule. In particular, we introduce
the measures developed in [2], Berenstein and Zelevinsky’s hive model, and
a classical skew tableau formulation of the Littlewood-Richardson rule. For
each, we describe a Littlewood-Richardson rule and a bijection with puz-
zles. The discussion of the measures includes the development of a notion of
measure rigidity, and a method for decomposing the measures via submea-
sures known as skeletons. For hives, we include the construction of the Horn
Inequalities from [10], as it uses both hives and puzzles.

3.1 Measures in 4r

The first combinatorial objects of our survey are the Lebesgue measures
defined in [2]. These measures are supported in an equilateral triangle in
the plane. We denote this triangle by 4r, where r ∈ N is the side length.
The measures are supported on the intervals between the triangular lattice
points in 4r. Figure 3.1 shows the lattice points of 45 on the left. On the
right, the allowed intervals are shown by dashed lines between lattice points.
These intervals are called small edges. We require the density of a measure
on a small edge to be a non-negative integer and constant.

The measures of interest have a further requirement that the densities
on the small edges meeting at a lattice point in 4r must obey the balance
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Figure 3.1: The triangle region 45, and the intervals in 45 which can
receive non-zero measure.

condition. Let m be a measure in 4r and a, b, c, d, e, f be the six small edges
about a non-boundary lattice point of 4r, as in Figure 3.2. The balance
condition at a non-boundary lattice point is obeyed if the edge densities of
a, b, c, d, e, f obey the following:

m(a) − m(d) = m(b) − m(e) = m(c) − m(f). (3.1)

c d 

b

fa

e

Figure 3.2: The six small edges meeting at a lattice point in 4r.

For the balance condition at boundary points, we introduce the exit

edges of 4r. The exit edges of 45, marked ai, bj , ck, are shown in Figure
3.3. The edge densities at each point on the boundary must obey the balance
condition, Equation 3.1, with an additional requirement that the exit edges
are the only edges outside of 4r that can receive non-zero density. For
example, if the lattice point in Figure 3.2 is a boundary point on the NW
side, then the edge e must have zero density. A boundary point is said to
meet the balance condition if the small edge densities around the point obey

c0c1c2c3c4c5

a5

a4

a3

a2

a1

a0

b0

b1

b2

b3

b4

b5

Figure 3.3: The exit edges of measures in 45.
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Figure 3.4: A measure in M6 with and without its exit edges.

Equation 3.1 and obey this additional requirement. The balance condition
shows that the density of edges a, b, c, d and f obey

m(a) = m(b) + m(d)

m(c) = m(b) + m(f)

with m(f) = 0 at the top corner point. The other two sides have similar
equations specifying the densities on small edge around the boundary points.

We denote by Mr the set of integer measures in 4r meeting the balance
condition at each lattice point. Figure 3.4 shows two diagrams of a measure
in M6. The left diagram has the exit edges displayed, and their densities are
all equal to the densities of the adjacent small edges in 46. In future, the
exit edges will be suppressed, as in the right diagram.

For m ∈ Mr, we define µ ∈ Mr to be a submeasure of m, denoted
µ ≤ m, if for every small edge e in 4r, µ(e) ≤ m(e). Clearly, the support of µ
is contained in the support of m, that is supp(µ) ⊆ supp(m). A measure m is
called extremal if all the submeasures of m are multiples of m, that is, there
is some constant c such that cµ(e) = m(e) for all small edges e ∈ supp(m).

As with puzzles, we describe measures in Mr by their boundary, specif-
ically, by their exit edge densities. Let m ∈ Mr and I, J, K ∈ [n]r, and
let

At = {1 + t + Mt, 2 + t + Mt, . . . , m(at) + t + Mt} ,

where Mt =
∑t−1

u=0 m(au) is the sum of exit densities for exit edges a0 to at−1.
We say m has NW boundary I if I =

⋃r

t=0 At. The exit edge densities can
be computed by |At| = m(at). We define the sets J and K similarly for Bt

and Ct. The weight of a measure in Mr is

ω(m) =
∑

t

|At| =
∑

t

|Bt| =
∑

t

|Ct|.
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2

1

2

Figure 3.5: The deflation D1(P ) process shown in two stages.

If I, J, K ∈ [n]d, then a measure m with that boundary has ω(m) = d.

3.1.1 Puzzle Bijection

In this section, we describe the bijection used in [2] between the measures
of Mr and puzzles. The bijection is called deflation. The process of defla-
tion is the same as the deflation used by Knutson, Tao, and Woodward in
[15] to create a bijection between puzzles and honeycombs. Except for the
need to orient the honeycomb appropriately, the two deflation processes are
identical. The measures described here can be viewed as the result of apply-
ing the honeycomb configuration to the honeycomb tinkertoy from [13]. For
more information about how Knutson and Tao define honeycombs and their
deflations, see [13] and [15]. We now describe the bijection.

Let P be a size n puzzle with d dark edges on each boundary. The type

1 deflation of P is denoted D1(P ), and it is obtained by shrinking all dark
edges to length zero and dropping the boundaries on the white triangles. The
density of each small edge or exit edge is given by the number of dark edges
collapsed in forming that edge. The measure produced is in a triangle of size
equal to the number of white edges on a boundary of P , so D1(P ) ∈ Mn−d

with ω
(
D1(P )

)
= d. Figure 3.5 shows the process in three steps. The labels

in the last step are edge densities that can be used to determine the densities
everywhere in the measure by repeatedly applying the balance condition.

The type 1 inflation of m ∈ Mr, denoted I1(m), expands each small
edge e to a number of rhombi equal to m(e). The puzzle is completed by
filling the holes with dark triangle pieces. It is clear that I1(D1(P )) = P ,
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and D1(I1(m)) = m. Also, P and D1(P ) have the same boundary I, J, K;
the exit edges with non-zero density inflate to dark edges on P ’s boundary.
The type 1 deflation and inflation operations constitute a bijection between
size n puzzles with d dark edges per side and the measures m ∈ Mn−d with
ω(m) = d. The Littlewood-Richardson rule for measures follows.

Littlewood-Richardson rule 2. Let I, J, K ∈ [n]d. Then

cIJK = #m ∈ Mn−d with boundary I, J, K.

There is another pair of operations similar to the type 1 operations where
the roles of the dark and white edges are exchanged. To define these, we first
take a moment to discuss the set of dual measures.

Let M∗
s be the set of measures in the triangle 4s that obey the balance

condition at every lattice point in 4s but have the exit edges as in Figure 3.6.
The boundary of dual measures in M∗

s is defined similarly to the boundary
of measures in Mr. Note that for m ∈ Mr, the reflection of m about the
center vertical line is a dual measure in M∗

r. To differentiate, the diagrams of
measures in Mr are drawn with a white background, and the dual measures
in M∗

s are drawn with a dark gray background.
The dual measures allow us to define the type 0 deflation and inflation

operations. The type 0 deflation, D0(P ), of a puzzle P is similar to the type
1 deflation save that it is the white edges that are shrunk to zero length. This
creates a measure D0(P ) = m∗ ∈ M∗

d. The type 0 inflation of m∗ ∈ M∗
d,

I0(m
∗), is similar to I1(P ) but the rhombi created are inflated along their

white edges and the holes created are filled with white triangles.
Recall the definition of the sets I∗, J∗, K∗ ∈ [n]n−d from Section 1.2.2.

The measure m∗ ∈ M∗
d is dual to the measure m ∈ Mn−d in the following

c4c3c2c1c0 c5

a5

a0

a1

a2

a3

a4

b4

b3

b2

b1

b0

b5

Figure 3.6: The exit edges of dual measures.
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way: if m has boundary I, J, K ∈ [n]d, then the dual measure of m is

m∗ = D0(I1(m)),

and m∗ has boundary I∗, J∗, K∗ ∈ [n]n−d. As noted, D1(P ) ∈ Mn−d with
weight d, while its dual D0(P ) ∈ M∗

d has weight n − d. This duality makes
it clear that cIJK = cI∗J∗K∗ .

3.1.2 Evil Loops

The bijection with puzzles in Section 3.1.1 gives a natural idea of measure
rigidity: the measure m ∈ Mr is rigid if and only if the puzzle I1(m) is
rigid. In [2], the authors define measure rigidity this way, and then give a
characterization of measure rigidity wholly in terms of the measures using
what are called evil loops. Evil loops are similar to gentle loops in puzzles in
that evil loops are composed of evil turns, as gentle loops are gentle turns.
We now state the definition of an evil loop from [2].

Definition 3.1.1. Let e and f be adjacent small edges in the support of
m ∈ Mr arranged as shown in one of the five diagrams in Figure 3.7. The
turn from e to f is evil if supp(m) contains the small edges shown in that
diagram, and possibly others. An evil loop in a measure is a sequence of
evil turns that start and end with the same small edge.

e f e

f

e

f

e = f e

f

Figure 3.7: The five evil turns from e to f .

We define measure rigidity as follows. The measure m is rigid if m does
not contain an evil loop or a lattice point with all six adjacent small edges
in supp(m). An example of an evil loop is given in Figure 3.8. It is pictured
along with another measure, which is obtained by an operation similar to
breathing a gentle loop. Both measures have the same boundary I, J, K, so
cIJK ≥ 2.

We have two remarks about this definition. First, the evil turns in dual
measures reverse the arrows of the evil turns pictured in Figure 3.7, so for
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Figure 3.8: An evil loop, and another measure with the same boundary.

a dual measure, the evil turn can be viewed as going from the edge f to e.
Second, for a measure m′ ∈ Mr with m′ ≤ m, if m is rigid, then m′ is also
rigid, as an evil loop in m′ gives an evil loop in m.

3.1.3 Skeletons

We now turn to the decomposition of rigid measures by submeasures sup-
ported on skeletons. Let m ∈ Mr. The support of m is a skeleton if m is
an extremal measure. If m is rigid and not extremal, then supp(m) can be
decomposed into skeletons. Figure 3.9 shows a measure with the three skele-
tons that compose it. The aim of this section is to describe the decomposition
method in [2].

We say that a small edge f ∈ supp(m) is a descendant of e, denoted
e → f , if e and f are adjacent in supp(m) and, up to rotation or reflection, are
arranged as in Figure 3.10. For e → f , the solid edges must be in supp(m),
and at least one of the dotted edges must not be in supp(m). The small edge
e is the ancestor of f . A descendance path from e to f is a sequence of
small edges, e = e1, e2, . . . , em = f , such that

e = e1 → e2 → · · · → em = f.

Note that if e → f , the turn from e to f is evil, as both descendance relation-

Figure 3.9: The measure from Figure 3.5, and the three skeletons
composing it.
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e

f

ef

Figure 3.10: e → f if the solid edges are in supp(m) and at least one of the
dotted lines is not.

ships shown in Figure 3.10 are evil turns. Hence, if there is a descendance
path from e to f and a different descendance path from f to e, then m has
an evil loop.

To track the descendants, we mark the small edges of a measure with
the arrows in Figure 3.10 where the arrow points from an ancestor edge to
a descendant. Let v be a lattice point in 4r, and let E be the set of small
edges incident to v that are marked with an arrow pointing at v. We say v is
descendance marked if for every e ∈ E, all the descendants of e incident
to v are marked with an arrow pointing away from v. Note that we do allow
a small edge to be marked with arrows of opposite direction. A directed path
along such arrows is a descendance path.

A descendance set is the set of all descendants of a particular small
edge. The descendance set for a small edge e is denoted Se. The set Se

can be found by marking the descendants of e with arrows pointing away
from e, and then repeatedly descendance marking any lattice points that
are incident to arrows which are not yet descendance marked. During this
process, we never place an arrow on a small edge f such that the new arrow
has the same direction as an already existing arrow on f ; as such, the marking
process cannot cycle. An example of a descendance set marked in this way
is shown in Figure 3.11.

Our first task toward the decomposition of m is to show that the density
increases along descendance paths. Let e → f . We show that either m(e) =
m(f) or m(e) < m(f). The cases when m(e) = m(f) are pictured in Figure

e

Figure 3.11: The marked descendants of an edge e.
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e ee

Figure 3.12: Three descendance marked points where the densities of all
arrow marked edges is equal.

3.12. The balance condition, Equation 3.1, requires that m(e) = m(f) in
each case. Note that regardless of which descendant is designated f , we also
have f → e.

e 1

e2
f

e 1

e2f

Figure 3.13: The two ways a descendant, f , can have greater density than
an ancestor, e1 and e2.

The two lattice points shown in Figure 3.13 have m(e) < m(f) for e = e1

or e = e2. This is because in both cases, m(f) = m(e1) + m(e2), so that
m(f) is strictly greater than either.

Figure 3.14 shows lattice points for which an ancestor edge could have
no descendants. Together, Figures 3.12, 3.13, and 3.14 show all the ways an
arrow marked edge e can be adjacent to a lattice point. Since e → f , the
small edge e cannot be arrow marked as in Figure 3.14. Hence, the edge e
must be the arrow marked edge in a case of Figure 3.12 or e is one of e1

or e2 in a case of Figure 3.13. The paragraphs above then establish that
m(e) ≤ m(f). Further, the only lattice points where the density along a
descendance path can increase are those in Figure 3.13.

Now, let m ∈ Mr be rigid. Let e have minimal density in m, and find Se

using arrow marks. We aim to define a non-zero measure in Mr supported

e

e

e

Figure 3.14: The edge e has no descendants in the direction of the arrow.
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h

i

f g

Figure 3.15: The descendance path from h to f .

by the skeleton Se. To do this, we must ensure that it is possible for the
balance condition to be met at each lattice point in 4r. If a lattice point in
4r was marked as in Figure 3.14, the balance condition cannot be met at
that lattice point, as there is a single small edge included in Se at that point.
We show there can be no lattice point marked as in Figure 3.14 if m is rigid.

Suppose otherwise. Let f be the arrow marked edge as in one of the
diagrams in Figure 3.14. The small edge f cannot be incident to a lattice
point where six edges meet, as m is rigid. In the other two cases of the figure,
f is adjacent to an edge g as in Figure 3.13 where g plays the role of either
e1 or e2. Hence, m(f) > m(g). Figure 3.15 shows an example of the lattice
point where f and g meet.

Since e has minimal density, we have that m(f) > m(g) ≥ m(e); there-
fore, the densities along the descendance path from e to f must have in-
creased. The lattice points pictured in Figure 3.13 are the only points where
a descendance path increases in density. Hence, there is a pair of edges h
and i in the descendance path where the density strictly increased from i to
h. Figure 3.15 shows an example of the lattice point where h and i meet.
Further, we can assume without loss of generality that m(h) = m(f).

The small edges f and h are both on the descendance path from e to
f , so there is a descendance path from h to f . Figure 3.15 shows this as a
dashed line. Since m(h) = m(f), every edge along the path between h and f
has the same density. In particular, each turn along that path is evil in both
directions, as per the argument made for Figure 3.12. We note that there is
an evil turn at the end points, and the evil turn in each case is the fourth
evil turn pictured in Figure 3.7, which uses a single small edge to reverse
direction. Hence, there is an evil loop in m, contradicting the rigidity of m.

We can now define a measure µe in 4r that is supported on Se. First, set
the density of e to be µe(e) = m(e). Then follow the arrows outward from e,
increasing the density of small edge f by m(e) each time f is encountered.
Figure 3.11 shows an example of Se in a measure, with the measure µe on
the right.
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We note some facts about the measure µe. Firstly, the process of building
µe does not cycle; otherwise, there are two different descendance paths from
two antipodal edges on that cycle, which forms an evil loop. Secondly, µe ∈
Mr. To see this, we need only check the balance condition at each lattice
point. To that end, we keep the arrows of Se on the measure µe. Each
lattice point where small edges of µe meet is descendance marked, so the
procedure outlined above ensures that the balance condition is met at each
lattice point. Thirdly, Se is indeed a skeleton as the measure created by
removing a proper subset of small edges from µe has at least one lattice
point that is not descendance marked, that is at least one lattice point where
the balance condition cannot be met. Hence, µe is extremal. The third point
is in fact enough to show that a descendance set Se that is without a lattice
point marked as in Figure 3.14 is a skeleton.

The measure m is decomposed as follows. Let e be a minimal density
edge in m. Find Se by arrow marking as above, and form the measure µe.
Then, we do the following:

1. find the minimal edge e′ in the measure m′ = m− µe that is not arrow
marked in m,

2. construct Se′,

3. add the arrow marks made in m′ for Se′ to the original measure m,

4. construct µe′, and

5. form m′′ = m′ − µe′.

Repeat this process for the minimal edge e(t) and Se(t) in the measure m(t)

until
m(t) = m −

∑

i

µe(i) = 0.

We now prove that this decomposition is correct. First, it is easily checked
that every measure in sight is a measure in Mr. Second, consider the measure
m′ = m − µe ∈ Mr. To construct the next measure m′′, we must be able to
find an edge e′ that has minimal density in m′ and is not arrow marked in m.
Suppose to the contrary. Then every small edge in m′ is arrow marked by Se

in m. Thus, every edge of m′ is a descendant of e, and therefore part of Se.
The construction of µe and the balance condition, Equation 3.1, ensure that
in this case m′ = 0. Hence, either m′ = 0 or there is a minimal density edge
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3. COMBINATORICS RELATED TO PUZZLES

e′ in m′ such that e′ is not arrow marked in m. We can repeat this argument
in general to show that, either there is a minimal density small edge e(t) in
m(t) that is not arrow marked in m, or

m(t) = m −
∑

i

µe(i) = 0.

Hence, the process ends with

m =
∑

i

µe(i),

and this decomposition is unique up to reordering the sum, as none of the
edges e(i) are descendants of any other such edge e(j).

3.2 Hives

We continue our survey with a discussion of hives. Hives are a combinatorial
device created by Berenstein and Zelevinsky in [3] that are closely related to
honeycombs and puzzles, defined in [13] and [15] respectively. Interestingly,
hives did not appear in either of the latter papers. Buch, in [4], gave a
proof of the saturation conjecture, the main result of [13], using hives in
place of honeycombs. Hives also play a significant role in [10], where a hive-
based description of the Horn inequalities was exploited to factor Littlewood-
Richardson coefficients.

Our definition of hives follows the edge labelling definition given in [10].
We begin, ostensibly, with a puzzle consisting entirely of white triangle pieces.
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c14c13c12c11
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a 31
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Figure 3.16: A hive diagram with labels aij, bij , cij.
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Triangle Condition: a + b = c

b

c

a b

c

a

Rhombus Conditions: a ≥ a′, b ≥ b′, c ≥ c′

b

c’

c

a’a

b’b

c’

c

a

b

b’
c

a’
a

Figure 3.17: The hive conditions.

The edges are labelled with non-negative real numbers, as is shown in Figure
3.16. The result is a hive if the labels obey the following two requirements.
First, let the labels a, b, c be the labels around a triangle as in the top portion
of Figure 3.17. The labels a, b, c must obey the triangle condition, that is
a + b = c. Second, suppose R is a rhombus formed of two triangles, and let
the labels around R be as in one of the cases in the bottom portion of Figure
3.17. Each pair of labels on parallel edges around R must obey one of the
inequalities a ≥ a′, b ≥ b′, c ≥ c′. For example, the labels a, a′, c, c′ in the
first case of Figure 3.17 must obey a ≥ a′, c ≥ c′. If the labels around R obey
these inequalities, we say R obeys one of the three rhombus conditions.
A hive is integer if all the labels are non-negative integers.

The conditions on the labels ensure that the boundary of an integer hive is
given by the d-part partitions ν = (a11, . . . , a1d), µ = (b11, . . . , b1d), and λ =
(c11, . . . , c1d). For instance, ν is a partition, as the first and third rhombus
conditions show that the NW labels obey a1i ≥ a1(i+1). We can now state
the Littlewood-Richardson rule for hives.

Littlewood-Richardson rule 3. Let ν, µ, and λ be d-part partitions. Then

cλ
νµ = # hives with boundary ν, µ, λ.

Figure 3.18 shows an integer hive with boundary ν = (3, 3, 3, 0, 0), µ =
(4, 4, 2, 0, 0), λ = (5, 4, 4, 3, 3), so cλ

νµ ≥ 1.

3.2.1 A Puzzle Bijection

We now aim to show that hives are in bijection with puzzles defined in Section
1.2. We do this by showing a bijection to the dual measures of Section 3.1,
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Figure 3.18: An integer hive.

and then apply inflation to get a puzzle with the same boundary, that is the
puzzle has boundary I, J, K and the hive has boundary λ(I), λ(J), λ(K∨).

Choose a hive h with boundary ν, µ, λ. Let d be the size of h, and choose n
so that ν, µ, λ fit in an n − d by d box. Define a measure m∗ in 4d as follows.
Give the label n − d to every exit edge on the NW side, and 0 to every other
exit edge. Place an edge in between the ends of successive exit edges, and
label it with the boundary label of h found between the same two exit edges.
Figure 3.19 shows how the labels are placed around the region 4d. Densities
are assigned as follows. The first exit edge on the NW, NE and S sides is
assigned density m(a0) = a1d, m(b0) = b1d and m(c0) = c11 respectively. The
final exit edges have densities m(ad) = n − d− a11, m(bd) = n − d− b11, and
m(cd) = n − d − c1d respectively. Every other small edge e in 4d and exit
edge is assigned density as in Figure 3.20 and its rotations; that is, if we
treat e as the edge through the middle of a rhombus, m(e) is the absolute
difference of either the b sides or the a sides.

Figure 3.21 shows an example of this process applied to the hive of Figure
3.18 with n = 10 and n − d = 5. The darker lines in the hive itself show
the relative density of the measure edges; the thickest have density 3, then
2 and finally 1. The thinnest hive edges have density 0. On the right, the
measure in M∗

s is shown as normal, that is at the normal size, without exit
edges, and without differentiated thickness of small edges.

We now show that the dual measures created from a hive by the procedure
above are indeed in M∗

d by demonstrating that the balance condition is met
at each lattice point. Consider Figure 3.22. We refer to the small edge
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Figure 3.19: The labels placed around 4d.
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Figure 3.20: m(e) = a − a′ = b − b′.
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Figure 3.21: The measure obtained from Figure 3.18 both in the hive and
as a dual measure on the right.
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Figure 3.22: Hive labels.

of m by its label from the hive, so the edge labeled x has density m(x).
The balance condition is the following condition on the small edge densities
meeting at the central point of Figure 3.22:

m(a) − m(d) = m(b) − m(e) = m(c) − m(f).

The measure density, m(x), for an edge x is given by a difference of hive edge
labels, as in Figure 3.20. We have that

m(a) − m(d) = (e − E) − (B − b), (3.2)

m(b) − m(e) = (f − F ) − (C − c), (3.3)

m(c) − m(f) = (D − d) − (a − A). (3.4)

The hive labels obey the triangle condition from Figure 3.17, and that condi-
tion shows that Equations 3.2, 3.3, and 3.4 do indeed hold with equality. For
instance, the triangle condition for the triangle labelled E, f, a is E + f = a,
and for the triangle labelled C, e, a, the condition is given by C + e = a.
Hence, E + f = a = C + e. Similarly, we have b + F = d = c + B. Rearrang-
ing and summing these equations gives (e−E)− (B−b) = (f −F )− (C−c),
which shows m(a) − m(d) = m(b) − m(e). The equations show that given
a dual measure, the edge labels of a hive can be calculated uniquely, so a
unique hive can be created from a dual measure. Hence, the procedure above
is a bijection.

We then have a bijection between hives and puzzles using the type 0 defla-
tion and inflation operations of Subsection 3.1.1. Further, it is an easy matter
to check that if the puzzle P has boundary I, J, K, then the hive obtained
by this bijection has boundary λ(I), λ(J), λ(K∨), as we would expect.

3.2.2 Horn Inequalities

The Horn inequalities arise when determining conditions on the eigenvalues
of d×d Hermitian matrices A, B, C satisfying A+B = C. These inequalities
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are closely tied to the Schubert calculus of the Grassmanian in that the
sets I, J, K determine a Horn inequality when the Littlewood-Richardson
number cIJK > 0. The Horn inequalities are related to several other areas of
mathematics including symplectic geometry and invariant theory; the surveys
[7] and [9] by Fulton examine these connections. In this section, we describe
the construction of Horn inequalities presented in [10], where a puzzle with
boundary I, J, K is used to build the Horn inequality for I, J, K. We begin
with the necessary definitions.

Denote the eigenvalues of the matrix X by λ1(X) ≥ λ2(X) ≥ · · · ≥
λd(X). Let (I, J, K) be a triple of sets from [d]s for some s ≤ d such that
cIJK > 0. Then we say (I, J, K) is a Horn triple and

∑

k∈K∨

λk(C) ≤
∑

i∈I

λi(A) +
∑

j∈J

λj(B), (3.5)

is the Horn inequality for (I, J, K). These inequalities characterize the
possible eigenvalues of Hermitian d×d matrices A, B, C for which A+B = C.

The Horn inequalities define a cone in R3d, and the facets of this cone
are given by the essential Horn inequalities. Not every Horn inequality
is essential. The essential Horn inequalities have the following characteri-
zation due to Belkale [1] (forward) and Knutson, Tao and Woodward [15]
(backward):

The Horn inequality for (I, J, K) is essential if and only if cIJK = 1.

Schubert calculus and the Littlewood-Richardson numbers are related to the
Horn inequalities by the following theorem, known as the Horn recursion.

Theorem 3.2.1. Let ν, µ, λ be partitions of length at most d. Then cλ
νµ > 0

if and only if |λ| = |ν| + |µ| and the Horn inequalities

∑

k∈K∨

λk ≤
∑

i∈I

νi +
∑

j∈J

µj,

are satisfied for all Horn triples (I, J, K) for I, J, K ∈ [d]s for all s ≤ d.

Theorem 3.2.1 is deducible using the result of [22] along with the main result
of [12] and the saturation theorem of [13].

Horn’s inequalities can be determined by a construction using hives and
puzzles [10], which we describe now. First, take d to be the size of our hive
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Figure 3.23: A puzzle P with a hive superimposed with d = 5 and s = 3.

with boundary ν, µ, λ, and choose a Horn triple (I, J, K) ∈ [d]s for some
s ≤ d. The triple has at least one puzzle P with boundary given by (I, J, K),
as cIJK > 0. Superimpose the hive on P and suppress all edge labels within
puzzle piece regions, as in Figure 3.23. The Horn inequality can be written
using the hive edge labels:

∑

k∈K∨

c1k ≤
∑

i∈I

a1i +
∑

j∈J

b1j .

This inequality can be obtained from the hive overlay in the following way.
For each dark region, find the equation determined by the triangle condition
for the region’s hive labels. The rhombus conditions are used similarly to
determine inequalities for the hive labels around a rhombus region. The
Horn inequality for I, J, K is found by using the relations found to relate the
sum

∑
k∈K∨ c1k with the sums ≤

∑
i∈I a1i, and

∑
j∈J b1j .

As an example of this, we construct the Horn inequality for Figure 3.23.
We first apply the triangle condition to each dark region Figure 3.23, and we
get the following equations for the hive labels around the three dark regions:

c31 + a23 + a24 = b11 + a13 + a14 + a15,

c23 + a42 = b13 + a32 + a33,

c15 = a51 + a15.

We then apply the the three rhombus conditions on the rhombus regions
to produce inequalities for the hive labels around each of the gray rhombus
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regions; there are four such inequalities:

c11 ≥ c31, a33 ≥ a24, a32 ≥ a23, a51 ≥ a42.

Combining the three equalities and the four inequalities for Figure 3.23, we
have the following computation:

c11 + c13 + c15 = c31 + c23 + (a51 + b15)

≥ c31 + (c23 + a42) + b15

= c31 + (b13 + a32 + a33) + b15

≥ (c31 + a23 + a24) + b13 + b15

= (a13 + a14 + a15) + (b11 + b13 + b15).

This is the Horn inequality for I = {3, 4, 5}, J = {1, 3, 5} and K∨ =
{1, 3, 5} = K. In a similar fashion, the white regions can be used to give the
Horn inequality for I∗, J∗, K∗:

c12 + c14 ≤ (a11 + a12) + (b12 + b14).

Note that the puzzle above is rigid, so cIJK = 1. That is the triple I, J, K is
essential.

3.3 Tableaux

There are many Littlewood-Richardson rules given by a combinatorial con-
structions using tableaux. In this section, we describe a classical example
using skew tableaux of shape λ/ν with content µ. This rule first appeared
in [16] without proof, and it was later proved by Schützenberger in [20]. A
concise proof for this version of the Littlewood-Richardson rule can be found
in [21]. The interested reader is directed to [6] for additional examples of
Littlewood-Richardson rules given in terms of tableaux.

The Littlewood-Richardson rule we present uses semistandard Young
tableau. A semistandard Young tableau (SSYT) of shape λ is a filling
of the boxes of λ’s diagram with numbers such that the columns are strictly
increasing downward, and the columns weakly decreasing to the right. Let t
be a SSYT of shape λ. We say t has content µ ` m if the number of times
i appears in t is equal to µi. The shape of a SSYT can also be given by a
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µ = (3, 3, 2, 2, 2) µ = (5, 2, 2)

1 1 1 2 2
2 3 3
4 4 5
5

1 1 1
1 2

1 2 3
3

Figure 3.24: Semistandard tableau for a partition and skew partition with
content µ.

skew partition λ/ν. An example of a SSYT of shape λ and of shape λ/ν is
shown in Figure 3.24.

Suppose t is a SSYT of shape λ/ν with content µ. The word of t, w(t),
is the word created from the entries of t read right to left, top to bottom.
We say t is a Littlewood-Richardson tableau if w(t) obeys the following
condition denoted (∗):

(∗) : In any initial subword of w(t), i appears at least as often as i + 1.

The skew tableau of Figure 3.24 has word 111213213, which obeys (∗). We
state the Littlewood-Richardson rule for these tableaux.

Littlewood-Richardson rule 4. Let ν, µ, λ be partitions. Then

cλ
νµ = #Littlewood-Richardson tableaux with shape λ/ν and content µ.

We finish this chapter with a bijection between puzzles and these tableaux.
It comes from [10], and it is in the form of a bijection to hives. The bijection
in Section 3.2.1 then establishes the bijection to puzzles. Let t be a tableau
of shape λ/ν with content µ which fits in an n−d by d box. Fill the positions
of ν in the diagram of λ/ν with zeros. Let h a hive of size d with edge labels
given by the following:

aij = #
{

entries ≤ i − 1 in row (i + j − 1) of t
}

(3.6)

bij = #
{

entries = j in 1st (d + 1 − i) rows of t
}

(3.7)

cij =

(
#

{
entries = j in 1st (i + j − 2) rows of t

}
+

#
{

entries ≤ j in row (i + j − 1) of t
}
.

)
(3.8)

We show that h is indeed a hive, and thus, the bijection of Section 3.2.1 may
be applied to h to form a puzzle.
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Figure 3.25: The hive for the tableau in Figure 3.24.

We first establish that the hive labels aij obey the rhombus conditions,
which are defined by Figure 3.17. Checking the rhombus conditions for aij

amounts to checking that

aij ≥ a(i+1)j ≥ ai(j+1)

for a tableau obeying (∗). The i entries in row i+j of t are positioned weakly
to the left of the furthest right i − 1 entry in row i + j − 1, so aij ≥ a(i+1)j .
The definition of aij is enough to show that a(i+1)j ≥ ai(j+1). The rhombus
conditions for the labels bij and cij are shown by similar observations about
t.

The triangle condition for labels around a triangle in h is

cij = aji + b(d+2−i−j)j ,

if the triangle is rightside up. If the triangle is upside down, the condition
on the labels is

cij = a(j+1)(i−1) + b(d+3−i−j)j .

Both equations are established by substituting the indices in Equations 3.6,
3.7, and 3.8 followed by some trivial manipulation.

The hive in Figure 3.25 is the hive for the Littlewood-Richardson tableau
in Figure 3.24. For instance, the hive label c32 in Figure 3.25 is equal to 2,
and this agrees with Equation 3.8; c32 is the number of 2s in the first three
rows plus the number of entries less than 3 in row 4, which is 2+0. The hive
labels can be used to reconstruct a unique tableau using Equations 3.6, 3.7,
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and 3.8. By way of example, the number of i > 0 that appear in row k of the
tableau t is a(i+1)(k−i) − ai(k−i+1), and a1k is the number of zeros in row k.

The triangle condition and the rhombus conditions on the hive labels then
guarantee that the tableau constructed is a unique Littlewood-Richardson
tableau. Hence, the above describes a bijection between Littlewood-Richardson
tableau and hives, so by the bijection in Section 3.2.1, there is a bijection
between Littlewood-Richardson tableaux and puzzles.
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Chapter 4

Main Results

In this chapter, we describe an algorithm which is run on a rigid puzzle P
with boundary I, J, K ∈ [n]d. The algorithm creates a lattice polynomial
describing the single subspace in the triple intersection of Schubert varieties.

ΩI(F•) ∩ ΩJ(G•) ∩ ΩK(H•).

The chapter is divided up into three sections each describing a major part
of the algorithm. The first systematically marks the pieces of P , the second
searches for a set of marks obeying some conditions, and the third uses the
marked puzzle to build the polynomial recursively.

Now, if P is non-rigid, then cIJK > 1, by the puzzle-based Littlewood-
Richardson rule. In that case, Theorem 2.1.4 shows that synthesis is im-
possible. Synthesis is the purpose of our algorithm, so our algorithm must
avoid attempting to compute a lattice polynomial using a non-rigid puzzle
as input. To this end, the algorithms are defined such that non-rigidity can
be detected. We begin with the description of how P is marked.

4.1 Walkers

We show a partially marked puzzle in Figure 4.1, and give a brief preview
of how it is marked. A walker is a double arrow symbol on a puzzle piece.
The double arrow in Figure 4.1 is an example of how a walker can appear
in a puzzle. The marking procedure is carried out by having walkers move
about a puzzle taking steps, and leaving behind a mark on the vacated puzzle
pieces. The marks are either a dot, or a single arrow. Figure 4.1 has examples
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Figure 4.1: A marked puzzle mid-algorithm.

of how these marks can appear in a puzzle. We call the dot a branch mark

and the single arrow is called a rhombus mark.

Subsection 4.1.1 defines the walker steps and some of the necessary termi-
nology. We end that subsection with an example of how a puzzle is marked.
Subsection 4.1.2 defines some terms for describing the regions of a puzzle,
and introduces a final rule restricting walkers. The remainder of Section 4.1
is devoted to proving that the basic marking procedure terminates and that
the marks achieve their aim: to mark a set of pieces in P which deflate to
the edges of a descendance set.

4.1.1 Walker Steps

We begin with the rules for placing the initial walker in an unmarked puzzle.
Choose a rhombus piece, and place the initial walker w so it is parallel to
an edge of that rhombus. If the edge it is parallel to is white, we require w to
be placed rightmost, where rightmost means every rhombus to the right of
w has a rhombus mark. If the edge is dark, then w must be placed leftmost,
which is similar to rightmost. These placement rules will suffice for now, but
later, additional rules will be introduced that further restrict the placement
of an initial walker.

After the initial placement, w begins to take its steps. If a walker is
outside the puzzle after any step, the walker is removed. The basic step is
called a rhombus step. These steps consist of making a rhombus mark
on the piece occupied by the walker. The mark can be made on a pair of
unmarked triangles or an unmarked rhombus. The walker is then placed
in front of the rhombus mark just made. The rhombus steps are shown in
Figure 4.2. The any rhombus marked pair of triangles or rhombi is referred
to as marked rhombi.
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→ →

→ →

Figure 4.2: The rhombus steps.

The branch steps are taken if a rhombus step is not possible. This
occurs when the walker is on an unmarked triangle piece which cannot be
matched to another in the direction of the walker. Figure 4.3 shows the
cases in which a match cannot be made, and the result after the branch step
is taken. The walker taking the branch step, w, is removed, and two new
walkers, called the children of w, are placed. If w is an initial walker in P ,
any other walker in P is said to be a descendant of w.

→ →

Figure 4.3: The branch steps.

Walkers may step on to previously made marks. An overlap step is
taken when the overlap is as in Figure 4.4. Specifically, an overlap step is
taken when the walker is placed on a rhombus mark it is not parallel to and
the walker is parallel to the center line of the marked rhombus. Figure 4.4
shows how the step is resolved.

→

→

Figure 4.4: The overlap step.

The last overlaps that can occur are called non-rigid overlaps, and as
their name suggests, they indicate that the puzzle is non-rigid. We prove this
claim in Proposition 4.1.12. If a non-rigid overlap occurs, all the walkers are
stopped. Conceivably, there are more way for a walker to overlap a rhombus
mark, but Lemma 4.1.2 shows the overlaps in Figures 4.4 and 4.5 are the
only that can occur for walkers.

Figure 4.5: The non-rigid overlaps.

Figure 4.6 shows a full example of how a puzzle is marked.
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1) An initial walker. 2) Four rhombus steps.

3) A branch step. 4) Two more rhombus mark steps.

5) Another walker after four steps. 6) A branch step.

7) An overlap step. 8) Final state of P .

Figure 4.6: An example of how a puzzle P is marked by a pair of walkers.
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Tri-Shape Trap-Shape 4gem

5gem Hex-Shape

Figure 4.7: Examples of the five tri-regions with adjacent rhombi.

4.1.2 Tri-Regions

We will be examining how walkers proceed through puzzle piece regions, so it
is convenient to develop some nomenclature for these regions. To avoid say-
ing ‘triangle piece region’ throughout, a contiguous region of triangle pieces
will be called a tri-region. A tri-region is dark or white depending on the
triangles composing it.

It is not hard to see that the puzzle conditions ensure that tri-regions are
convex, so there are only five types of tri-regions in puzzles. We name them
as follows. A triangular shaped tri-region is a tri-shape. A trapezoid is a
trap-shape. A six sided region will be a hex-shape. A rhombus shaped
tri-region is a 4gem, as in four sided gem, and a five sided region will be a
5gem. The five dark tri-regions are shown in Figure 4.7 with their adjacent
rhombi. The white versions are obtained by reflection.

A hex-shape in a puzzle indicates that the puzzle is non-rigid. Algorithm
4.2.2 searches the puzzle for hex-shapes, and it returns EWF if a hex-shape
is found. The symbol EWF stands for ‘End With Failure’. For now, we
assume there are no hex-shapes in our puzzles.

We have one final rule for how walkers take steps in a puzzle. A bad

side of a dark tri-region is any one of the sides labelled ‘bad’ around the
tri-regions shown in Figure 4.8. The white tri-region bad sides are obtained
by reflecting each case of Figure 4.8. All the other sides are called good

sides. The rule for bad sides the following.
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Bad Side Stop: If a walker takes a step over a bad side and finishes on a
triangle piece, then all walkers are stopped from taking further steps. Figure
4.9 shows an example of a walker causing a bad side stop.

bad

b
a
d b

a
d

bad

b
a
d

 b
a
d

Figure 4.8: The bad sides of a trap-shape, 4gem and 5gem.

Figure 4.9: A walker crossing a bad side.

4.1.3 Skeleton Correspondence

Here, we prove some of the basic facts about walkers. These facts are needed
to show that walkers fulfill their purpose, which is marking pieces in a puzzle
which deflate to the small edges of a skeleton. The type of a walker is dark

or white according to the type of triangle pieces they mark. This is well
defined for a single walker as the rhombus and overlap steps taken by a
single walker can only be made on a single type of triangle. The following
lemma shows that all the descendants of a dark (respectively white) walker
are dark (respectively white) walkers.

Lemma 4.1.1. Let w be a walker in a puzzle P . All the descendants of a
dark (respectively white) walker are dark (respectively white) walkers.

Proof. Suppose w is an initial walker. We can assume without loss of gener-
ality that w is a dark walker, as the white walker case is similar. Then w was
placed on a rhombus parallel to the white edges. First, we show that any all
descendant walkers of w are also dark walker. The walker w can only take
rhombus steps in one direction, so w is always parallel to the white edges
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of a rhombus w started on. This is the case even if w has made taken an
overlap step. Hence, w can not change to a white walker.

Suppose w takes a branch step in a tri-region T . Let v be a child of w.
The walker v will take rhombus steps or overlap steps until it either takes
a branch step, or is placed on rhombus piece outside of T . In the latter
case, v is on a rhombus piece parallel to the white edge of that rhombus.
Hence, v is also a dark walker. If v takes a branch step, we can repeat the
above argument to show that any descendant of v which exits T will be a
dark walker. The tri-region T is finite, so eventually, there can be no more
descendants of w in T .

The argument above can be repeated when a descendant of w, v, enters
another tri-region T ′. This shows that all the descendants of v which exit T ′

will also be dark, as v must be dark.

We get the following corollary recording a fact about the ways a walker
can overlap a rhombus mark in P . We use Lemma 4.1.1 in Corollary 4.1.2
to show that the overlaps of Figures 4.4 and 4.5 are the only overlaps which
can occur during the marking of a puzzle.

Corollary 4.1.2. Let w be a walker in a puzzle P . The walker w can only
overlap a rhombus mark as in Figures 4.4 or 4.5.

Proof. Suppose w is an initial walker, and that w is a dark walker, the white
walker case being similar. All the walkers that mark P are descendants of
the dark walker w, so by Lemma 4.1.1, all the walkers that mark P are dark.

There are three types of overlaps not handled in the walker steps. The
first type overlaps are pictured in the following diagram.

Both overlaps are impossible in P , as the walker in the diagrams is white.
The second type, pictured below, do not occur. The walkers are not

parallel to either side of the rhombus piece, and so are neither dark or white
walkers.

For the last type overlap, the walker v in both diagrams would have to
have taken rhombus steps to the current position. There are a series of
rhombus marks behind v with the same direction, so v must have entered
this dark tri-region by a side parallel to the rhombus mark. However, the
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walker v could not have been placed on any of rhombus pieces adjacent to
that side and have the direction shown in the diagrams. This shows that the
overlaps in the final diagram are not possible in P .

Now, if P has been marked by dark walkers, then the rhombus marks in
P can survive a type 1 deflation. By ‘survive’, we mean that the rhombus
mark is parallel to the rhombus edges that are identified in the shrinking
process. The rhombus mark on a shrunk rhombus can simply be placed on
the edge the rhombus its mark is shrunk to in D1(P ). An example of this
is shown in Figure 4.10. Rhombus marks made by white walkers survive a
type 0 deflation. In this way, the rhombus marks in a puzzle can be turned
into marks on small edges in a measure.

Suppose P is a puzzle marked by walkers, and no bad side stop or a non-
rigid overlaps occurred. We claim that the rhombus marks around each dark
(respectively white) tri-region T in a puzzle P correspond to descendance
marks around the lattice point of T branch point in P ’s type 1 (respectively
0) deflation. Proving this claim is the focus of this and the next subsections.
We begin with a lemma characterizing when a walker will exit a tri-region
without making a branch mark.

Lemma 4.1.3. Let T be an unmarked tri-region in a puzzle P , and let w be
a walker in T . Then no branch step was taken in T if and only if the side by
which w entered T is parallel to the side by which w tried to leave T .

Figure 4.10: Rhombus marks made by dark walkers survive type 1
deflations.
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We clarify the usage of ‘tried to leave T .’ Suppose the walker w took a
rhombus step, regardless of whether it was possible, and landed outside of
T . The side of T that w crossed over is the side by which w tried to leave T .
Of course, w may be forced to take a branch step instead of a rhombus step.
In that case, w would be removed without being placed outside of T .

Proof. If a walker, w, left T without leaving a branch mark, then w only
placed rhombus marks in T . Those marks form a parallelogram whose short
sides form part of the sides by which w entered and left T , so those sides are
parallel.

On the other hand, let s be the side by which w entered T , and u be a
side parallel to s. Suppose further that w tried to leave by the side u. Since
s and u are parallel, the triangles forming s have the opposite orientation,
pointing up or down, to the triangles forming u. All the triangle pieces in T
on which w is placed have the same orientation as those forming s. Hence,
the final triangle piece t1 in T on which w lands on cannot be part of u.
To leave by the side u, w must step over a triangle piece of the side u, say
t2. The triangle t2 is adjacent to t1. A rhombus mark can be placed over t1
and t2, so w can take a rhombus step and land outside of T , completing the
proof.

We note that we can define the deflation operation for incomplete puzzles,
that is puzzle piece arrangement that obey the rules for adjacent pieces but
do not form a triangle. If we take T to be a dark tri-region with its adjacent
rhombi, the deflation D1(T ) is a lattice point with its surrounding small
edges. Examples of the tri-region’s deflations are shown in Figure 4.11. A
branch point is the lattice points in D1(T ) or D0(T ) which is a deflation of a
tri-region. The next result shows that when a walker enters an unmarked dark
tri-region T , the lattice point D1(T ) is descendance marked. Our discussion
is eased by the following notation: if T is a tri-region in a puzzle fragment,
TR is T plus the adjacent rhombi.

Tri-Shape Trap-Shape 4gem 5gem Hex-Shape

Figure 4.11: D1(T ) for the tri-regions shown in Figure 4.7.
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Proposition 4.1.4. Let T be an unmarked dark tri-region. Let w be a walker
about to enter T by a good side. Then after all walkers have exited TR, the
branch point D1(TR) is descendance marked.

Proof. We show for the four allowed tri-regions that the rhombus marks
made around a tri-region deflate to descendance marks. In each case, T is a
tri-region, and we examine the arrows around D1(TR).

Figure 4.12: The marking of a 4gem, and the deflation.

4gem: The walker w enters T by a good side, and it is clear that w tries
to leave T by the other good side. The good sides are parallel, so by Lemma
4.1.3, w will exit T without making a branch mark. The deflation D1(TR),
shown in Figure 4.12, is descendance marked.

Figure 4.13: A walker marked tri-shape, and its deflation.

Tri-shape: No side of a tri-shape is parallel to any other, so w will make
a branch mark on a triangle piece b in T . The branch mark is on the boundary
of T , so it has the same orientation as T . The children of w are placed next to
the branch mark so one of the children is placed on a rhombus outside of T .
The other child, v, can be viewed as entering T by crossing the bottom line
of b. Hence, v leaves T without making a branch mark, as the bottom edges
of b and T are parallel. The lattice point D1(TR) is descendance marked as
the children of w leave T at angles ±60◦ to the direction of w.

Figure 4.14: Both cases of a walker marked trap-shape, and their deflations.
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Trap-shape: We first deal with w entering a trap-shape in T by a side
parallel to the bad side. The deflation is descendance marked by the same
argument as for the 4gem.

If w enters by either of the remaining good sides, we can argue as we
did in the tri-shape case that w will make a branch mark, both children will
leave T , and that D1(TR) is descendance marked. This is because additional
triangle pieces can be added to the top side of T to make it a tri-shape, and
none of the walkers take steps on those added triangles.

Figure 4.15: Both cases for a 5gem.

5gem: The argument for trap-shapes can be used for 5gems. First, add
triangle pieces to the lower right corner of the 5gem, making T a trap-shape.
Then if w enters by a good side of the 5gem, then w or its children do not
step on those added pieces. Hence, D1(TR) is descendance marked by the
argument for trap-shapes.

4.1.4 Rhombus Mark Deflation

In this subsection, we aim to show that the deflations of marked tri-regions
are descendance marked regardless of the number of walkers which passed
through them. To help show this, we define a special deflation operation.

Rhombus Mark Deflation: Let U be a marked puzzle fragment. Say
further that no bad side removals occurred during the marking of U . The
rhombus mark deflation of U , denoted D→(U), is obtained by removing all
the branch marked triangles, and identifying the sides parallel to a rhombus
mark of any marked rhombus. The rhombus marks survive this deflation,
and any arrows that are not on a piece edge are dropped.

Figure 4.16 shows an example of rhombus mark deflation. The furthest
right horizontal rhombus mark is dropped in the deflation. Note that several
rhombus marks in U may be deflated to a single arrow in D→(U).

It is a matter of checking simple cases to see that a tri-region marked by a
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Figure 4.16: The rhombus mark deflation on a puzzle piece fragment.

single walker deflates to another tri-region. Further, any unmarked rhombus
in TR which is adjacent to a good side of T is adjacent to a good side in the
deflation D→(TR). The following lemma shows that if the arrows in D→(T )
are on the boundary of the tri-region D→(T ), then the behaviour of another
walker entering the marked tri-region T can be understood by considering
that walker’s behaviour in the tri-region D→(T ). The results of this section
are all proved for dark walkers. The white walker case can obtained by
reflecting the arguments and replacing dark and rightmost everywhere with
white and leftmost.

Lemma 4.1.5. Let T be a marked, dark tri-region, and let TR be T with
adjacent rhombi. Let the arrow marks in D→(T ) be on the boundary. If a
walker w enters T by a good side, then the new pieces marked in TR by w
and its children are the corresponding pieces marked by w and its children in
the deflation D→(TR).

Proof. We consider any puzzle piece in TR which is not removed to create
the rhombus mark deflation D→(TR) to be the corresponding puzzle piece in
the deflation D→(TR). Thus, if r is an unmarked rhombus in TR, then r is a
rhombus in D→(TR).

Now, the walker w entered T by an unmarked rhombus; otherwise, a
non-rigid overlap would have occurred. Let r be that unmarked the rhombus
piece. As r is unmarked, r is a rhombus in the deflation D→(TR), so r is the
rhombus by which w enters the tri-region D→(T ). The rhombus r is adjacent
to a good side of D→(T ), as r was adjacent to a good side of T .

The arrow marks left in D→(T ) do not affect the types of steps a walker
will take in the tri-region D→(T ), so rhombus steps and branch steps are the
only type of steps w takes in D→(T ). We consider two cases; the walker w
either does not take a branch step in D→(T ) or it does.

In the first case, w only takes rhombus steps. If w does not take a
rhombus step over an arrow mark in D→(T ), then w will not overlap any
rhombus marks in T . Thus, it is clear that the new pieces marked by w in
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Figure 4.17: A rhombus step over an arrow in D→(T ), and the result in T .

D→(TR) are the same as w marks in TR.

Suppose w does step over an arrow mark in D→(T ). Figure 4.17 shows an
example of this case. The top row shows the rhombus mark step in D→(T ).
The rhombus r in D→(T ) is the rhombus the walker is on in the left diagram.
Let t be the puzzle piece in D→(T ) that w lands on after that step. The piece
t in D→(T ) is the bold piece in the top right diagram of Figure 4.17.

The arrow w steps over in D→(TR) corresponds to one or more rhombus
marked triangle pairs in T . Let a be the arrow in D→(T ) which w steps over.
Since a is on the boundary of D→(T ), the corresponding rhombus marks are
parallel to the side by which w enters or exits T . By lemma 4.1.3, we have
that w will land on a rhombus mark as in one of the cases of Figure 4.4, so
the next step w takes in T is an overlap step. The walker w will continue to
take overlap steps until all the rhombus marks corresponding to the arrow
a have been stepped over. The bottom row of Figure 4.17 shows how these
overlap steps can occur in TR.

The rhombus mark deflation ensures that the piece in TR which w lands
on after these overlap steps is the piece t on which w lands on in D→(TR).
In Figure 4.17, the piece t in TR is the bold piece in the lower right diagram.
Since t is the same piece in both D→(TR) and TR, the new pieces marked in
D→(TR) by w are the same as the new pieces marked in TR, completing the
first case.

In the second case, w takes a branch step in D→(TR). The branch step
must be the first type of branch step in Figure 4.3. Figure 4.18 shows an
example of the steps taken by w and the children of w in D→(TR) and TR. If
the branch step occurred in D→(T ) such that there is an arrow, a, in front
of w, then at least one of the children of w is placed on the other side of a
in D→(TR). Let v be the child placed on the other side of a, and let t be
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Figure 4.18: A branch mark step that encountered a boundary arrow in
D→(T ), and the result in T .

the piece v is on. In Figure 4.18, t is again the bold piece in the top right
diagram.

In TR, the branch mark step must be the second type of branch step in
Figure 4.3, as the arrow a corresponds to rhombus marks in T . The child v
is not immediately placed on the piece t in TR; v will instead be placed on a
rhombus mark, as in the bottom middle diagram of Figure 4.18. It is clear
from the argument for the first case above that v will take overlap steps until
it is placed on the piece t. Figure 4.18 shows v in TR on the bold piece t
in the bottom right case. Hence, it is clear that the new pieces marked in
D→(T ) and TR are the same, completing the second case and the proof.

Lemma 4.1.6. Let T be a dark tri-region, and assume that any marks in
T were made by walkers which entered TR rightmost. Further, let w be a
rightmost walker that enters T by a good side. Then w or its children leave
TR rightmost, and the arrow marks in D→(T ) are on the boundary.

Proof. We begin by showing the result in the case when w is the first right-
most walker to enter T . We claim that all of rhombus steps taken by w prior
to a branch step are along a boundary of T . To see this, consider Figure
4.19. The figures shows five dotted lines, one for each of the other possible
boundaries of T meeting at the triangle piece w first lands on. The fourth
and fifth lines cannot be boundaries of T due to the convexity of tri-regions.
The third cannot occur because w is a rightmost walker. In the first case, w
makes a branch mark immediately. In the second, all of the rhombus steps
taken by w in T are taken along that boundary of T , as claimed.

If w does not make a branch mark in T , then there are no triangle pieces
to the right of the rhombus marks left in T , as all its rhombus steps in T were
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12

54
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Figure 4.19: The five possible boundaries of T meeting at the triangle by
which w.

Figure 4.20: w children in relation to T ’s boundary at a branch mark
triangle.

along a boundary. Hence, there are no rhombi to the right of the rhombus w
lands on in TR, so w is rightmost. Clearly, the rhombus marks it left deflate
to the boundary of D→(T ).

If w does leave a branch mark, then because w stepped along a boundary
of T prior to the branch step, the children of w children are placed as in
Figure 4.20. In particular, one of the children is placed rightmost on a
rhombus adjacent to the branch marked triangle. The other child takes
rhombus steps along a boundary of T until it exits T , by Proposition 4.1.4,
so it leaves rightmost, similarly to w leaving rightmost above. It is also clear
that all the rhombus marks left by w and its children deflate to arrows on
the boundary of D→(T ).

We now take T to be a marked tri-region. We proceed by induction on
k, the number of rightmost walkers to enter T . If k = 1, then the para-
graphs above serve to show that when a single rightmost walker w enters
T , all walkers leaving TR are rightmost and the arrows in D→(T ) are on the
boundary.

Suppose that k rightmost walkers have marked T , that the arrows in
D→(T ) are on the boundary, and all walkers exited TR rightmost. w is the
(k + 1)st rightmost walker entering T . To distinguish the state of T before
and after w has marked it, denote by T ∗ the tri-region T after w and its
children have marked it. The notation T ∗

R and (D→(TR))∗ is used similarly.

The tri-region D→(TR) is not rhombus marked, as all the rhombus marks
in TR have been deflated, so we can apply the k = 1 case to show that
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TR T ∗
R D→(T ∗

R)

D→(TR) (D→(TR))∗ D→((D→(TR))∗)

Figure 4.21: The various stages of marking TR and their rhombus mark
deflations.

all walkers leaving D→(TR) are rightmost and the arrows in D→((D→(T ))∗)
are on the boundary. We claim that the arrows in D→(T ∗) are also on the
boundary. Since the original arrows in D→(T ) are on the boundary, we
can apply Lemma 4.1.5 to get that the newly marked pieces in T ∗

R are the
same pieces marked in (D→(TR))∗ by w and its children. It is then clear
that D→(T ∗

R) = D→((D→(TR))∗), proving the claim. Figure 4.21 shows an
example for each stage of deflation.

We show that a walker v which exited D→(T ) during the marking of
(D→(TR))∗ is rightmost in T ∗

R. Say v exited D→(T ) by crossing a side s. The
k = 1 case gives that v is rightmost in D→(TR). The arrow marks in D→(TR)
which point away from the side s must be to the right of v. Otherwise,
a previous walker exited T by a rhombus piece to the left of an unmarked
rhombus, contradicting the induction hypothesis that all previous exiting
walkers were rightmost. Hence, v must be rightmost in TR, as any rhombi to
the right of v are rhombus marked.

Corollary 4.1.7. All walkers marking a puzzle P are rightmost.

Proof. As the initial walkers are rightmost, this corollary is proved by apply-
ing Lemma 4.1.6 to give a simple induction on the number of times a walker
enters a tri-region in P .

We now show that for any dark tri-region T , marked or not, the marks
around TR deflate so that D1(T ) is descendance marked. Again, we note that
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we are have assuming that the walkers are dark and rightmost, as the white
and leftmost case is easily obtained from the dark case.

Proposition 4.1.8. Let T be a dark tri-region, and assume that all the marks
in T were made by rightmost walkers and their children. Then D1(TR) is
descendance marked.

Proposition 4.1.8 proves a stronger results than does Proposition 4.1.4.
In particular, Proposition 4.1.8 proves that D1(TR) is descendance marked
when the tri-region T has been previously marked, whereas Proposition 4.1.4
assumes T is unmarked.

Proof. We proceed by induction on the number of walkers to enter T . Our
base case is provided by Proposition 4.1.4. Now say that k walkers have
previously entered T , and that D1(TR) is descendance marked. Let w be the
(k+1)st walker to enter T , and again use the notation T ∗ to denote the state
of T after w and its children have marked it.

By assumption, the previous walkers that entered T were rightmost, so by
Lemma 4.1.6, the arrows in D→(T ) are on the boundary. Applying Lemma
4.1.5, we have that the new marks in T ∗

R are the marks made in (D→(T ))∗.
For the moment, we erase the arrow marks in (D→(T ))∗. We have that the
deflation D1((D→(T ))∗) is descendance marked by Proposition 4.1.4, that is
the arrow pointing into the branch point has all of its descendants marked
by out arrows.

To complete the induction, we need to show that D1(T
∗
R) is still de-

scendance marked. The deflation D1(TR) is descendance marked by induc-
tion, so we need only show that the new arrows in D1(T

∗
R) are descendance

marks. But this is true since the small edges around the branch point in

TR (D→(TR))∗ T ∗
R

D1(TR) D1((D→(TR))∗) D1(T
∗
R)

Figure 4.22: The type 1 deflation of each marking of TR.
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D1((D→(T ))∗) are present around D1(T
∗
R), and we showed in the previous

paragraph that those new arrows are descendance marks.

We get the following corollary.

Corollary 4.1.9. Let P be a marked puzzle. Then all the lattice points of
in a deflation of P deflation are descendance marked or have no incident
arrows.

Proof. Proposition 4.1.8 shows that if a branch point has arrows around it,
then it is descendance marked. The remainder of the lattice points are on
line segments that inflate to rhombus regions. If a walker proceeded through
a rhombus region R, then there are arrows with the same direction on every
small edge of R’s deflation. The arrows along eR point from ancestor to
descendant, so each lattice point along eR is descendance marked.

From Corollary 4.1.9, it is clear that following a series of rhombus marks
describes a descendance path in a deflation of P .

4.1.5 Non-Rigid Overlaps

In this section, we deal with the claim made in Subsection 4.1.1 that non-rigid
overlaps indicate that P is non-rigid. Figure 4.23 shows a simple example of
how a non-rigid overlap can occur in a puzzle fragment. The left diagram of
Figure 4.23 shows an initial, white walker placed on a rhombus piece, and
the right diagram shows a non-rigid overlap that occurs when a descendant
of the initial walker steps onto a rhombus mark. We prove a lemma and some
corollaries which will be used in the proof of Proposition 4.1.12 below.

Figure 4.23: A non-rigid overlap in a puzzle fragment.
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Figure 4.24: These rhombus marks indicate P is not rigid.

Lemma 4.1.10. Let P be a marked puzzle. If a pair of rhombus marks is
made in P such that in P ’s deflation the arrows are as in figure 4.24, then
P is not rigid.

We clarify how two rhombus marks might end up as in Figure 4.24 with
the two examples in Figure 4.25. In each, it is clear that the type 1 deflation
will have a pair of arrows arranged as one of the cases in Figure 4.24. The
walkers that made the marks in both cases are rightmost. We now prove the
lemma.

Figure 4.25: Two examples of rhombus marks which deflate to arrows as in
Figure 4.24.

Proof. We prove the result for dark tri-regions, the white case being similar.
Now, there is a series of rhombus and branch steps that can be followed
backward from the two rhombus marks in each case of Figure 4.24. Since
every walker is descended from the initial walker, these two series of steps
must have some mark in common, either a branch mark or an initial rhombus
mark. This forms a cycle of rhombus and branch marks.

We show that this cycle is an evil loop in D1(P ). This requires that each
turn be evil. Corollary 4.1.9 says that the rhombus marks deflate to descen-
dance paths. From Section 3.1.2, we have that each turn in a descendance
path is evil. Thus, if the turn where the rhombus marks meet is evil, then
there is an evil loop in P , and in each case of Figure 4.24, the turn is clearly
evil.

The following corollary gives another way to show that P is non-rigid.

69



4. MAIN RESULTS

Corollary 4.1.11. Let T be a tri-region in a puzzle P . If a walker w tries
to enter T by a side through which another walker previously exited T , then
P is non-rigid.

Proof. If this occurred, the deflation of T would deflate to one of the two cases
of Figure 4.24. We can apply Lemma 4.1.10 to show P is non-rigid.

We now show that non-rigid overlaps are correctly named, in that they
indicate that P is not rigid.

Proposition 4.1.12. If a non-rigid overlap occurs in a puzzle P , then P is
not rigid.

Proof. Let w be a walker overlapping another mark. All walkers were halted
when the non-rigid overlap occurred, so this overlap is the first to have oc-
curred in P . Let v be the walker that originally took the step that created
the mark w overlaps. Suppose v was the initial walker. Then there is a
cycle of rhombus marks starting and ending at the rhombus the walker v was
initially placed on. The second paragraph of the proof of Lemma 4.1.10 can
be used to establish that there is an evil loop in D1(P ), so P is not rigid.

We now assume that v was not the initial walker. It is the case that the
walkers w and v entered the piece where the overlap occurred from different
directions, as otherwise the overlap would have occurred earlier. We deal
with three cases for how the overlap occurred.

If the overlap occurred in a tri-region T , then w and v entered T by
different sides, so the direction of w is 120◦ or 180◦ from the direction of v.
Hence, the deflation of T looks like one of the cases in Figure 4.25, so P is
non-rigid by Lemma 4.1.10. If the overlap occurred on a rhombus adjacent
to a tri-region, a similar argument again shows that P is non-rigid. Finally,
if the overlap occurred on any other rhombus, then the deflation of P has
the first case in Figure 4.24 at a lattice point adjacent to the overlap, and
again, we apply Lemma 4.1.10 to show P is not rigid.

4.2 Puzzle Skeletons

In this section, we define two algorithms. The first algorithm is called a
rhombus walk. Rhombus walks employ the walkers of Section 4.1 to mark a
puzzle P . The second algorithm, the Puzzle Skeleton Algorithm, searches for
a rhombus walk in which no bad side stops or non-rigid overlaps occur. In
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Subsection 4.2.4, we introduce two puzzles created from the marks made in a
puzzle by the Puzzle Skeleton Algorithm. The statements of the algorithms
are followed by some example computations in Subsection 4.2.2, and the
proofs of termination and correctness can be found in Subsection 4.2.3. We
turn to stating the algorithms of this section.

4.2.1 Puzzle Skeletons

The first algorithm we state in this section is called the rhombus walk al-
gorithm. As mentioned in Subsection 4.1.1, the conditions on initial walker
placement have not been fully stated. We begin this subsection by stating
the initial placement rules.

Initial walkers are placed in a puzzle P in pairs. Let w and v be the
initial walkers placed in P . The position of v is determined from the position
of w. To place w, choose a tri-region T and a side s of T . The walker w is
placed on a rhombus adjacent to the side s. If T is dark, then w is dark and
is placed rightmost. If T is white, then w is white and is placed leftmost.
The tri-region T is required to be a trap-shape, 4gem or 5gem, and the side
s is determined by the type of tri-region chosen. If T is a 4gem, s is either
one of the good sides. For a trap-shape and 5gem, the side s is the good side
of T such that if a walker entered T by s, then that walker will not take a
branch step in T .

The walker v is placed as follows. Place v on the rhombus w is on but
with the opposite direction to w. If w is a dark walker, then shift v right
till it is on the rightmost rhombus from the perspective of v. If w is white,
then replace right by left in the preceding statement. Finally, advance v
one rhombus step without making a rhombus mark. Figure 4.26 shows an
example of this. We call the tri-region T a starting tri-region, and w and
v are T ’s initial walkers.

Once initial walkers are placed, the oldest walker in the puzzle is selected
to take a step. Walker age is uniquely determined as the time since the

v

w

Figure 4.26: The initial walkers of T .
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walker was placed in the puzzle and two other conditions for the walkers
which are placed simultaneously. First, w is the oldest of a pair of initial
walkers. Second, the child created clockwise of the other at a branch step
is older. The oldest walker will take steps until it is removed or some other
terminating condition occurs.

The terminating conditions for a rhombus walk are a bad side stop, a
non-rigid overlap or all walkers have been removed from the puzzle. In the
case of a bad side stop, the rhombus walk terminates and returns the tri-
region B where the bad side stop occurred. If a non-rigid overlap occurs,
the rhombus walk terminates and returns the symbol EWF, which is an
‘End With Failure’. If there are no walkers remaining in P , then the marked
puzzle is returned. We now state the algorithm.

Algorithm 4.2.1 (Rhombus Walk). The input to the algorithm is a puzzle
P without hex-shapes, and a pair of walkers in P .

1. Place T ’s initial walkers.

2. While walkers are in P ,

i) Let the oldest walker w take a step.

ii) If a non-rigid overlap occurs, then terminate and return EWF.

iii) If a bad side stop occurs, then terminate and return the tri-region
B.

3. Return the marked puzzle P .

We describe the Puzzle Skeleton Algorithm next. It functions by starting
a new rhombus walk using the tri-region B at which a bad side stop occurred
in the preceding rhombus walk. It is possible to have a cycle of starting tri-
regions. As we see in Proposition 4.2.4, this indicates that the puzzle is
not rigid. To ensure the algorithm terminates, a list of starting tri-regions is
kept, and the algorithm returns EWF if a repeat occurs. The Puzzle Skeleton
Algorithm also returns EWF if P contains a hex-shape or a rhombus walk
returns EWF.

The Puzzle Skeleton Algorithm uses rhombus walks in a second way, for
which we extend the rules for placing pairs of initial walkers in a marked
puzzle P . The new walkers are placed as follows.
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Let W be a rhombus walk which returns a puzzle skeleton. Let T be the
starting tri-region of W , and let s be the side which was used to place the
initial walkers w and v. If all the pieces along the side s are marked, then no
more walkers may be placed in P . Let s have an unmarked piece adjacent
to it, and let w′ and v′ be the additional pair of walkers we wish to place in
P . The walkers w′ and v′ are placed obeying the following three conditions
if T is a dark tri-region.

1. The walker w′ is placed on an unmarked rhombus and v′ is placed on
an unmarked triangle both adjacent to the side s.

2. The walker w′ is dark and points away from the side s, and v′ has the
opposite direction.

3. The walker w′ is placed on the rightmost unmarked rhombus adjacent
to s, and v′ is similarly placed on the rightmost unmarked triangle
adjacent to s.

If T is white, w′ is white, and both walkers are placed leftmost. The walkers
w′ and v′ are called T ’s initial walkers in the marked puzzle. The puzzle
algorithm starts rhombus walks from T until initial walkers can no longer be
placed in along the side s.

We call the set of marks returned by the Puzzle Skeleton Algorithm a
puzzle skeleton, and a puzzle skeleton is dark or white depending on the
type of the initial walkers. We now state the algorithm.

Algorithm 4.2.2 (Puzzle Skeleton Algorithm). The input to the algorithm
is a puzzle P with a trap-shape. It maintains a list L of starting tri-regions.

1. If T is a hex-shape, terminate, and return EWF.

2. Find either a 5gem, 4gem or trap-shape T in P , in that order of prece-
dence.

3. Run a rhombus walk W starting at T , and add T to L.

4. If W returns a tri-region B, loop until W returns a marked puzzle or
EWF.

i) Erase the marks in P .

ii) If B is already on the list L, terminate and return EWF.
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iii) Run a rhombus walk W on P with starting tri-region B.

5. If W returns EWF, terminate and return EWF.

6. While initial walkers can be placed for P ,

i) Run a rhombus walk W starting at P .

7. Return the marked puzzle P .

Note that if the Puzzle Skeleton Algorithm does not return EWF, then
it returns a marked puzzle P . The marks in P are the result of a rhombus
walk which terminated without a bad side stop or non-rigid overlap, so the
marks form a puzzle skeleton.

4.2.2 Example Computations

In this subsection, we demonstrate the Puzzle Skeleton Algorithm on some
examples. A simple example can be seen at the end of Subsection 4.1.1,
though the initial walkers are not placed on the 4gem. The first example
here is shown in Figure 4.27. It shows the initial walkers, a bad side stop, a
new rhombus walk, and the final marked puzzle.

The next example, Figure 4.28, shows the Puzzle Skeleton Algorithm
executing on a puzzle P where a starting tri-region is placed on the list L
a second time. The initial walkers are placed on the 5gem, and one of the
walkers quickly comes to a bad side stop. The next two rhombus walks both
end with bad side stops, and in particular, the second has a bad side stop on
the original 5gem. Hence, the symbols EWF is returned, indicating P is not
rigid. In fact, the cycle itself can be used to find a gentle loop in P , and the
gentle in this example is indicated by the bold polygon in the final step.

4.2.3 Termination and Correctness

In this subsection, we prove three facts about the Puzzle Skeleton Algorithm.
The first is that the algorithm terminates. The second is that the algorithm
only ends with failure if the puzzle is non-rigid. Finally, we prove that a
puzzle skeleton marked in a rigid puzzle deflates to a skeleton in the deflation
of the puzzle.

In Subsection 4.1.1, the marking procedure was started with a single
initial walker. We now start with two initial walkers. To use the results
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Initial walkers on a trap-shape. A bad side stop.

New initial walkers. Final result.

Figure 4.27: A simple example with a bad side stop.

Initial walkers on 5gem. First bad side stop.

Second bad side stop. Bad side stop on starting 5gem.

Figure 4.28: A cycle of starting tri-regions, and the gentle loop in P found
using the cycle.
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from Section 4.1, we must ensure that the proofs of Section 4.1 still hold.
The proofs of Subsections 4.1.3 and 4.1.4 were all made in terms of puzzle
fragments, so they did not depend on the number of initial walkers. For
Subsection 4.1.5, the placement of the initial walkers w and v ensures that
the first rhombus marks they each make on a rhombus piece both point away
from the same branch point in the deflation of P . Hence, the arguments for
Lemma 4.1.10 and Proposition 4.1.12 are easily extended to the placement of
two initial walkers. We turn to proving that the Puzzle Skeleton Algorithm
terminates.

Lemma 4.2.3. The Puzzle Skeleton Algorithm terminates for any puzzle P .

Proof. The number of walkers created in a puzzle is finite, as walkers are
only created during a branch step. There are finitely many triangle pieces in
P , and each triangle piece can only be marked once by a branch mark, or a
non-rigid overlap occurs. Hence, every rhombus walk started by the Puzzle
Skeleton Algorithm terminates.

There are finite number of tri-regions in P . Each tri-region in P can
only be used to start a single rhombus walk. Otherwise, the Puzzle Skeleton
Algorithm terminates and returned EWF.

The next proposition proves that if the Puzzle Skeleton Algorithm returns
EWF, then P is indeed non-rigid.

Proposition 4.2.4. Let P be a puzzle without hex-shapes. If the Puzzle
Skeleton Algorithm returns EWF, then P is not rigid.

Proof. The Puzzle Skeleton Algorithm returns EWF in three situations. We
deal with each separately.

First, suppose EWF is returned because P contains a hex-shape. There
is a gentle loop running along the boundary of the hex-shape, so P is not
rigid.

Second, the rhombus walk returned EWF. In this case, a non-rigid overlap
occur during the rhombus walk, and Proposition 4.1.12 shows that P is not
rigid.

The third condition is that a tri-region T is placed on the list L of initial
tri-regions more than once. Let k be the length of the list L. Let T0 = Tk = T ,
and For 1 ≤ i ≤ k − 1, let Ti be the ith tri-region on L. We can assume
without loss of generality that the Ti are all dark tri-regions. Let bi = D1(Ti)
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e f e
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e = f e

f

Figure 4.29: The five evil turns from e to f .

be the branch mark Ti deflates to, and let wi and vi be the initial walkers
started at Ti. Our indexing will be carried out mod k for simplicity.

In every case, a walker descended from wi or vi tried to enter a bad side
of Ti+1. There is a directed path along rhombus marks from a side of Ti to a
bad side of Ti+1. Let Qi be the rhombus mark path from Ti to Ti+1, and let
Ri be the rhombus mark path where each rhombus mark of Qi is reversed.
Place all the rhombus marks from the paths Ri in P .

Corollary 4.1.9 shows that each Ri is a descendance path from bi+1 to bi.
Every turn in a descendance path is evil in either direction. Hence, if we can
show that there is an evil turn at every bi that takes you from Ri to Ri−1,
then the cycle formed by the paths is an evil loop in D1(P ). In Figure 4.29,
we reproduce the figure showing the five evil turns for measures in Mr.

If Ti is a trap-shape, then there are two cases for bi depending on the
side by which Ri enters Ti. Note that Ri−1 points away from the bad side of
the trap-shape Ti. If the path Qi was started by the walker wi, then Qi left
Ti from a good side. When rhombus marks of the paths are reversed, there
is an evil turn at bi from the first arrow of Ri−1 to last arrow of Ri, as the
marks are parallel. If Qi left Ti by the bad side, then the turn from Ri to
Ri−1 at bi is evil, as it is the fourth evil turn shown in Figure 4.29.

Suppose Ti is a 4gem. The first arrow of Qi points away from a good
side of Ti, so the last arrow of Ri points towards Ti. The last arrow of
Ri−1 points away from a bad side of Ti. In the deflation, there is an arrow
pointing toward bi that is 60◦ counter clockwise or 120◦ clockwise from an
arrow pointing away from bi. We see that the turn from Ri to Ri−1 at bi is
evil, as it is either the second or fifth turn in Figure 4.29.

Let Ti be a 5gem. Note that 4gems and 5gems have the same deflation
save one additional edge for the 5gem. The additional edge is the deflation
of a good side that is not used to start a rhombus walk, so there is no arrow
on it. Hence, the argument for 4gems shows that the turn at bi is evil, unless
the arrows in and out of bi use the same edge. In that case, the turn at bi is
the fourth case of Figure 4.29.
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These three cases show that the arrows at each bi form an evil turn from
the path Ri to the path Ri+1 for each i, giving an evil loop in D1(P ). Hence,
P is not rigid.

We now prove that the marks made by the Puzzle Skeleton Algorithm do
indeed deflate to a skeleton in the deflation of the puzzle.

Proposition 4.2.5. Let P be a rigid puzzle in which a puzzle skeleton is
marked. Then the arrows in the deflation of P mark a skeleton, and all the
pieces in P which deflate to that skeleton are marked.

Proof. Let the puzzle skeleton in P be dark, the white case being similar,
and let W be the rhombus walk that marked the puzzle skeleton. Let T be
the starting tri-region of W , and let R be the rhombus region that one of
T ’s initial walkers was placed in. Denote the deflation of R in the measure
D1(P ) by eR.

The initial walkers were rightmost, so all the walkers marking P were
rightmost, by Lemma 4.1.6. This allows us to use Proposition 4.1.8 and
Corollary 4.1.9 to show that there is a descendance path following arrows
from eR to every arrow marked edge in D1(P ).

We also have that every descendant of eR is marked. To see this, note that
no bad side stops occurred during W , so every branch point with an arrow
pointing in has arrows pointing out, unless the point is on the boundary.
Proposition 4.1.8 shows that each branch point is descendance marked, so
the arrows pointing out of the branch point are all the descendants of an
arrow pointing in. Hence, by the argument made in Subsection 3.1.3, the
arrows in D1(P ) mark the small edges of a skeleton SeR

, as the marks in
D1(P ) form a descendance set without any lattice points like those in Figure
3.14.

Recall the measure µeR
from Subsection 3.1.3 that is created from the

skeleton SeR
. To show we have marked all the pieces which deflate to µeR

, we
must show that the number of rhombus marks which deflate to a particular
arrow on a small edge a in m = D1(P ) is equal to the density of the measure
µeR

on the small edge a. The number of rhombus walks started by the second
while loop of the Puzzle Skeleton Algorithm is equal to the number of rhombi
that deflate to eR in m, which m(eR) = µeR

(eR). The number of rhombus
marks that deflate to the arrow on a is equal to m(eR) times the number of
descendance paths from eR to a. The density µeR

(a) of the small edge a is
constructed in the same way, so the number of arrow marks on a is equal to

78



4.2. PUZZLE SKELETONS

the density of the measure µeR
on a. Hence, every puzzle piece which deflates

to µeR
is marked in P .

4.2.4 The Two Puzzles Created From a Puzzle Skele-

ton

We finish this section with the descriptions of two puzzles constructed from
the marks of a puzzle skeleton which will be used later. Our main goal is
simply to confirm that they are both puzzles, and that when P is rigid,
they are rigid as well. We also show the construction of a third puzzle that
is related to the Horn inequalities of Subsection 3.2.2. However, the third
puzzle is not used later in this thesis.

The first puzzle, called the rhombus mark deflation of P is constructed
using the rhombus mark deflation, D→(P ), and removing the arrow marks.
We denote this puzzle D◦

→(P ) the puzzle created from D→(P ) without the
arrows. Figure 4.30 shows an example of a puzzle skeleton in a puzzle, and
the construction of D◦

→(P ). We show that D◦
→(P ) is a puzzle.

Lemma 4.2.6. Let P be rigid and have a puzzle skeleton marked in it. Then
D◦

→(P ) is a rigid puzzle.

Proof. Branch marked pieces are only adjacent to other marked pieces or the
boundary of P , so their deletion will not leave holes in D◦

→(P ). The marks
in P are a puzzle skeleton, so every rhombus mark points towards another
rhombus mark, a branch mark or the boundary of P , as no bad side removal
occurred. This ensures that any edge shrunk in the deflation is adjacent to
another shrinking edge, a deleted piece or the puzzle boundary.

The rhombus mark deflation also identifies the two edges of a marked
rhombus which are parallel to the rhombus mark itself. Those two sides are

Figure 4.30: A puzzle skeleton in P , and the puzzle D◦
→(P ).
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the same type, dark or white, regardless of whether the marked rhombus is
a rhombus piece or a pair of triangles. Hence, the pieces made adjacent by
the deflation meet along edges of the same type.

The boundary of D◦
→(P ) is triangular. To see this, note that the puzzle

skeleton deflates to a skeleton in D1(P ), and skeletons obey the balance
conditions at every lattice point in 4n−d. Hence, the densities on the exit
edges along each side of the boundary sum to the same integer, so the same
number of edges along on the boundary of P are shrunk to form D◦

→(P ).
Finally, suppose that D◦

→(P ) is not rigid. Then there is a gentle loop in
D◦

→(P ). Consider D→(P ) where we have kept the arrow marks. If this gentle
loop crosses arrow marks in D→(P ), a simple case analysis shows that the
gentle loop can be extended across the deflated pieces to form a gentle loop
in P . If the gentle loop does not cross the arrows, the loop is a gentle loop
in P . Both cases contradict the rigidity of P .

The second puzzle we constructed is called the stretched puzzle. The
stretched puzzle is constructed from the marks of a puzzle skeleton. Suppose
a dark (respectively white) puzzle skeleton is marked in P . The stretched
puzzle is denoted by S(P ), and it is constructed as follows.

1. Set all unmarked puzzle positions to be white (respectively dark) tri-
angles,

2. change rhombus marked pairs of triangles into rhombus pieces, and

3. clear the branch and rhombus marks.

Note that the branch mark triangles remain dark (respectively white) tri-
angles. Figure 4.31 shows a puzzle skeleton in a puzzle, and the stretched
puzzle constructed from it. We now prove S(P ) is a puzzle.

Lemma 4.2.7. If P is rigid, then S(P ) is a rigid puzzle.

Proof. Say that the puzzle skeleton in P is dark, the white case being similar.
We first show that S(P ) is a puzzle. It is easily checked that if a rhombus
marked pair of triangles was changed into a rhombus piece, the rhombus
mark would run parallel to the white edges of that rhombus. The rhombus
marks on rhombus pieces also run parallel to white edges.

Let the rhombus marks persist in S(P ). It is then clear from the above
that every rhombus mark in S(P ) points from a dark edge to a dark edge.
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Figure 4.31: A puzzle skeleton in P , and the puzzle S(P ).

Hence, the only dark edges in S(P ) are between two rhombi, a dark triangle
and rhombus, two dark triangles, or along the boundary. Hence, S(P ) obeys
the conditions for puzzle pieces to be adjacent.

We now show that S(P ) is rigid. Suppose to the contrary. Then there
is an evil loop in the type 1 deflation of S(P ). Hence, there is an evil loop
in the type 1 deflation of P , as D1(S(P )) is part of the decomposition into
skeletons of D1(P ). But this contradicts the rigidity of P .

We note that if a dark puzzle skeleton is marked in P , then the type
1 deflation of S(P ) is an extremal measure. This follows from Proposition
4.2.5 which says that the marked pieces in P deflate to a skeleton. It is an
easy matter to then check that S(P ) does not have any dark 4gems or dark
5gems. The white case is similar.

We construct the third puzzle as follows. The white edges in the large
puzzle P are shrunk to zero length. Then the marked pieces are changed into
different puzzles pieces in the same they are changed to create S(P ). Figure
4.32 shows how this puzzle is created.

This puzzle relates to Horn inequalities. Suppose the boundary of the
large puzzle P is ν, µ, λ under the bijection between [n]d and Partn,d from
Subsection 2.2.2. Further, suppose that the boundary of the smaller puzzle
created as above is I, J, K. Then the partitions λ, µ, ν satisfy the Horn
inequality for I, J, K with equality. That is

∑

k∈K∨

λk =
∑

i∈I

νi +
∑

j∈J

µj.

We do not prove this here. It can be deduced from the results in [2].
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Figure 4.32: The third puzzle created from a puzzle skeleton.

4.3 Lattice Polynomial Construction

In this section, we at last describe the algorithm which constructs the lattice
polynomial for a rigid puzzle. The Lattice Polynomial Algorithm is recursive,
and uses the Puzzle Skeleton Algorithm as a sub-procedure. The algorithm is
stated in Subsection 4.3.1. We calculate some examples in Subsection 4.3.2.
In the final subsection, we prove our main result: the Lattice Polynomial
Algorithm synthesizes the unique point of a triple intersection of Schubert
varieties for a rigid puzzle. We now state the algorithm.

4.3.1 Lattice Polynomial Algorithm

To start, we introduce flag labelled puzzles. Given a puzzle P and three
generic, complete flags, we write the subspaces of the flags clockwise along
the boundary of P as shown in Figure 4.33.

The flag labels for the puzzles S(P ) and D◦
→(P ) are obtained from the
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Figure 4.33: A flag labelled and rhombus marked puzzle, and D◦
→(P ) with

adjusted flag labels.
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4.3. LATTICE POLYNOMIAL CONSTRUCTION

labels of P in the following ways. The labels for S(P ) are simply copied
from P . For the flag labels around D◦

→(P ), we require the lattice polynomial
computed by the Lattice Polynomial Algorithm for the puzzle S(P ).

Let p be the lattice polynomial returned by the Lattice Polynomial Algo-
rithm, and let V be the evaluation of p at the three flags, V = p(F•, G•, H•).
To create the flag labels for D◦

→(P ), we first change the labels of P as follows.
If the puzzle skeleton in P is dark, we relabel the NW side of P with the
labels F•∨V = (F0∨V, F1∨V, . . . , Fn∨V ). The NE and S sides are relabelled
similarly with the labels G• ∨ V and H• ∨ V . If the puzzle skeleton is white,
the new labels are F•∧V, G•∧V and H•∧V. After relabelling P , create the
rhombus mark deflation as normal, and at any point where multiple labels
are brought together, the label with least index is kept. Figure 4.33 shows
the induced flag labels after a rhombus deflation, where F ′

• = F• ∨ V .
Now, the list of subspaces F•∨V is not truly a flag, as it contains repeated

subspaces. However, after a rhombus mark deflation, the repeated subspaces
are removed. This is proved in the proof of correctness in Section 4.3.3. Even
after the deflation, the lists of subspaces around D◦

→(P ) are not honest flags
in Cn, as either the first step is not {0} or last step is not Cn. However,
F• ∧ V is a complete flag in V , and (F• ∨ V )/V is a complete flag in Cn/V ,
and they are commonly referred to as induced flags. We prefer to work with
F• ∧ V and F• ∨ V as dishonest flags of Cn, and we will refer to them as
induced flags.

Next, we describe the basic puzzles where the recursion of the Lattice
Polynomial Algorithm stops. A basic puzzle is a flag labelled puzzle where
there are two tri-regions: a dark tri-shape and a white tri-shape. Figure 4.34
shows a basic puzzle P . The lattice polynomial returned for P is the flag
label between the two tri-shape corners on the boundary of P , which is F3

in Figure 4.34.
A basic puzzle has boundary Imin, Imax, Imax, in some order. Suppose the
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Figure 4.34: A basic puzzle, with V = F3.
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NW side is given by Imin, and the NE and S sides are given by Imax. The
discussion at the start of Section 2.1 shows that the triple intersection in this
case is

ΩImin(F•) ∩ ΩImax(G•) ∩ ΩImax(H•) = {Fd} ∩ Grd(C
n) ∩ Grd(C

n) = {Fd}.

The flag labels on the NW side are given by the flag F•, so the subspace Fd is
the flag label at the point on the NW side where the white and dark tri-shapes
meet, as the dark tri-shape has size d. Hence, the lattice polynomial returned
by the Lattice Polynomial Algorithm is Fd, which is the unique point in the
associated triple intersection of Schubert varieties. The cases when the NE
or S side is given by Imin are the same, save that Gd or respectively Hd is the
unique point in the intersection. The flag label returned for a basic puzzle
P is called the basic lattice polynomial for P .

We can now state the Lattice Polynomial Algorithm.

Algorithm 4.3.1 (Lattice Polynomial Algorithm). The algorithm starts with
a flag labelled puzzle P . The lattice polynomials p, q are given in terms of the
flags labels F•, G•, H• around P .

1. If P is basic, let q be the basic lattice polynomial for P .

2. ELSE

i) Run Puzzle Skeleton Algorithm on P .

ii) IF Puzzle Skeleton Algorithm returns EWF, terminate and return
EWF.

iii) Run Lattice Polynomial Algorithm on S(P ) with P ’s flag labels to
get p.

iv) IF Lattice Polynomial Algorithm returns EWF, terminate and re-
turn EWF.

v) Let V = p(F•, G•, H•), and let F ′
•, G

′
•, H

′
• be the induced flag labels

for D◦
→(P ).

vi) Run Lattice Polynomial Algorithm on D◦
→(P ) with the induced flag

labels for V = p to get q.

vii) IF Lattice Polynomial Algorithm returns EWF, terminate and re-
turn EWF.

3. Return q.
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4.3.2 Example Computations
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Figure 4.35: The Lattice Polynomial Algorithm on a simple example.

We now do some example computations using the Lattice Polynomial
Algorithm. Figure 4.35 shows how the algorithm runs on a simple puzzle.
It is fairly easy to see that the marks made in the puzzle are those that
would be made by the puzzle skeleton sub-procedure. The puzzle S(P ) is
a basic puzzle with lattice polynomial p = F3, so the induced flag on the
NE boundary is G′

• = G• ∧ F3, as the puzzle skeleton is white. The puzzle
D◦

→(P ) is also basic. Therefore, the Lattice Polynomial Algorithm returns
q(F•, G•, H•) = G′

4 = G4 ∧ F3.

The next example builds the polynomial for the running example of this
chapter. The Puzzle Skeleton Algorithm must choose a 4gem over a trap-
shape as starting tri-region, so the puzzle skeleton marked in Figure 4.36 is
the result of the first and only rhombus walk in the puzzle. The puzzles S(P )
and D◦

→(P ) have polynomials p = G3 ∧ H6 and q = F ′
4 ∧ H ′

3 by a similar
argument to that made for the above example. Since the puzzle skeleton is
dark, F ′

• = F• ∨ p, and similarly for H ′
•. Therefore, the Lattice Polynomial

Algorithm returns the lattice polynomial q, for which we have

q(F•, G•, H•) = F ′
3 ∧ H ′

4

= (F3 ∨ (G4 ∧ H1)) ∧ (H4 ∨ (G4 ∧ H1)).
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Figure 4.36: Another example of Lattice Polynomial Algorithm.

4.3.3 Termination and Correctness

In this subsection, we show that the Lattice Polynomial Algorithm terminates
with a lattice polynomial satisfying the triple intersection, or it returns the
symbol EWF. To show that it terminates in general, we first bound the
number of recursive steps taken by the Lattice Polynomial Algorithm to
show that it terminates for a rigid puzzle. The number of rhombus mark
deflations is bounded by the size of P . We also need to bound the number
of times the Lattice Polynomial Algorithm is run on a puzzle the same size
as P . That is we need to show that for some k, Sk(P ) is basic. We begin
the proof of the first point with a lemma. The lemma is proved for a dark
puzzle skeleton in P ; the white case can be obtained from this argument by
reflection.

Lemma 4.3.2. Let P have a dark puzzle skeleton marked in it. If S(P ) has
a dark trap-shape, then it has a white 5gem.

Proof. Let Q = S(P ). The note after Lemma 4.2.7 shows that Q has no
dark 4gems or 5gems, so D1(Q) has no lattice points as in the diagrams:
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The puzzle Q has a trap-shape, so the measure D1(Q) does have a lattice
point as in the following diagram.

For this proof, we call such a lattice point a fork, and the three edges
opposite the one edge are called tines. The fork in D1(Q) will be denoted
f . The measure D1(Q) is a skeleton by Proposition 4.2.5. There is some
small edge e in D1(Q) such that the descendance set Se equals the support
of D1(Q), and there must be a descendance path from e to the center tine of
f and another path to one of the outer tines of f .

The small edges of the two descendance paths form an enclosed white
region, R. As the descendance paths enclose R, we see that every corner
has internal angle 120◦ or 240◦, save the corner at the fork f . Let R have
minimal area among all such enclosed regions associated to forks. We claim
that R has no 240◦ degree corners.

Suppose otherwise, and let c be such a 240◦ corner. An example of this
situation is shown in Figure 4.37. As D1(Q) is a skeleton, the small edge e
in Figure 4.37 must have non-zero density by the balance conditions. The
descendants of e which are not shown must ‘find a way out’ of R to ensure the
balance conditions are met. These descendants cannot cross the borders of R
by the above paragraph, so the descendants must leave by at least one of the
other corners of R. But this shows there is another fork in D1(Q), with an
associated region that is strictly contained in R. This idea is demonstrated
by extending the edge e in Figure 4.37 straight out until it leaves R. This
contradicts the minimality of R.

c

e

Figure 4.37: The region R with a 240◦ corner c, and the small edge e.
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Hence, each corner of the region R has 120◦ internal angle, save the
corner at the fork. It is an easy matter to show that R is shaped like a 5gem.
Inflating D1(Q), we see that Q must have a white 5gem.

Proposition 4.3.3. Let P have a puzzle skeleton marked in it and let S(P )
be non-basic. Then the Puzzle Skeleton Algorithm run on S(P ) ends with a
puzzle skeleton of the opposite type to the puzzle skeleton found in P . Further,
the Puzzle Skeleton Algorithm does not mark every rhombus region in S(P ).

Proof. We again prove the result, without loss of generality, for the case that
the puzzle skeleton is dark. Let S(P ) be the puzzle created from the marked
puzzle P .

If the initial rhombus walk started in S(P ) was started by a white walker,
then all subsequent rhombus walks will be started by white walkers. In this
case, the puzzle skeleton marked in S(P ) will be white. Thus, it suffices to
show that the Puzzle Skeleton Algorithm must select a white tri-region in
S(P ) to start with. Recall that the Puzzle Skeleton Algorithm first tries to
find a 5gem, then a 4gem and finally a trap-shape to use as the first starting
tri-region.

The note after Lemma 4.2.7 shows there are no dark 4gems or 5gems in
S(P ). By Lemma 4.3.2, if there is a dark trap-shape, then there is a white
5gem, so the algorithm will select the white 5gem over the dark trap-shape
to start the Puzzle Skeleton Algorithm.

We now assume all the dark tri-regions are tri-shapes. Then there is a
dark tri-region in S(P ) that has rhombi adjacent on at least two sides as in
the diagram:

The white tri-region between the rhombi has a corner with an internal angle
of 120◦, so the white tri-region cannot be a tri-shape. Hence, the Puzzle
Skeleton Algorithm will select a white tri-region to start the first rhombus
walk, so the puzzle skeleton marked in S(P ) is white.

Now, we show that there is a rhombus region that is left unmarked by a
white puzzle skeleton marked in S(P ). Let T be the starting white tri-region
of a puzzle skeleton in S(P ). If T is a 4gem or a 5gem, then T has a bad
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side b that is never stepped over by a walker leaving T . Hence, the puzzle
skeleton in S(P ) started at T never marks the rhombus region adjacent b.

If the starting tri-region T is a trap-shape, then by Lemma 4.3.2, all the
dark tri-regions must be tri-shapes. We show that in this case, T cannot be
completely marked by the white puzzle skeleton. To completely mark T , a
series of walkers must exit one good side of T and enter by another good
side. But all the dark tri-regions are tri-shapes in this case, so such a cycle
would have to make a 120◦ turn around a dark tri-region to return to the
starting trap-shape. The directions of the children of a walker w are only
ever 60◦ from the direction of w. Therefore, the starting trap-shape cannot
be completely marked by a puzzle skeleton. There must be a rhombus region
adjacent to the deflated tri-region T in D◦

→(P ), and so there is an unmarked
rhombus region in S(P ), completing the proof.

Corollary 4.3.4. Let P be a non-basic puzzle. Then S(S(P )) has fewer
rhombus regions than S(P ).

Proof. This follows from the fact that any puzzle skeleton in S(P ) leaves at
least one rhombus region R unmarked. The creation of S(S(P )) turns R into
triangle pieces.

Corollary 4.3.4 shows that the number of puzzles of size n that the Lattice
Polynomial Algorithm is run on is bounded by the number of rhombus regions
in the original puzzle P . Hence, the Lattice Polynomial Algorithm terminates
for any puzzle P .

Our final theorem establishes that the algorithm does indeed produce
a lattice polynomial whose evaluation at the flags F•, G•, H• is the unique
subspace in a triple intersection of Schubert varieties. It is followed by a
corollary recording the fact that the symbol EWF is returned if and only if
P is not rigid.

Theorem 4.3.5. Let P be a puzzle with boundary I, J, K, and let q be the
lattice polynomial returned by the Lattice Polynomial Algorithm. If W =
q(F•, G•, H•) for the generic complete flags F•, G•, and H•, then

{W} = ΩI(F•) ∩ ΩJ(G•) ∩ ΩK(H•).

Note that the requirement that the flags be generic ensures that the triple
intersection is transverse.
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Proof. We prove the stronger statement that

{W} = Ω◦
I(F•) ∩ Ω◦

J (G•) ∩ Ω◦
K(H•),

and we proceed by induction on the number of recursive steps taken. The
base case, when P is a basic puzzle, is proved in the comment following the
definition of basic puzzles in Subsection 4.3.1.

Now, suppose that the Lattice Polynomial Algorithm is run on a non-
basic puzzle P with boundary I, J, K. We start with the case in which the
puzzle skeleton marked in P is white. Let S(P ) have boundary IS , JS , KS .
By induction, the Lattice Polynomial Algorithm run on S(P ) returns a lattice
polynomial V = p(F•, G•, H•) such that

{V } = Ω◦
IS (F•) ∩ Ω◦

JS (G•) ∩ Ω◦
KS (H•).

Hence, V obeys
dim V ∧ Fx = `,

for iS` ≤ x < iS`+1 with the convention that if ` + 1 > |IS|, then iS`+1 = n + 1.
This condition on V shows that the induced flag V ∧F• stabilizes at each of
the NW boundary white edges at positions in [n]−IS . Since those white edges
where V ∧F• stabilizes are the edges shrunk to form D◦

→(P ), the induced flag
label, F ′

• = V ∧ F•, on the NW boundary of D◦
→(P ) forms a complete flag

in V . We get similar conditions for JS and KS and their associated induced
flags. Since F•, G• and H• are generic, the induced flags are also generic.

Let D◦
→(P ) have boundary ID, JD, KD. Note that |I| = |ID| = d, as

white edges were shrunk to form D◦
→(P ). The steps of the induced flag

labels around D◦
→(P ) are indexed using the indices prior to deflation, so we

have that F ′
i`

is the flag label clockwise from the dark edge at position iD` .
We also have that F ′

i`
= V ∧ Fi` .

By induction, the Lattice Polynomial Algorithm returns a lattice polyno-
mial W = q(F ′

•, G
′
•, H

′
•) such that W is a subspace of V and

{W} = Ω◦
ID(F ′

•) ∩ Ω◦
JD(G′

•) ∩ Ω◦
KD(H ′

•).

Therefore, W obeys
dim W ∧ F ′

x = `

for i` ≤ x < i`+1 and x /∈ IS . Since the induced flag V ∧ F• stabilizes at
each iS ∈ IS , W ∧ F ′

x = W ∧ (V ∧ Fx) stabilizes also. The subspace W is a
subspace of V , so we have that

W ∧ (V ∧ Fx) = W ∧ Fx.
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Combining these two facts, we have that W obeys

dim W ∧ F ′
x = dim W ∧ Fx = `

for i` ≤ x < i`+1. Hence, W ∈ Ω◦
I(F•). Similar arguments establish that W

is in the other two Schubert cells.
When the puzzle skeleton in P is dark, we consider the puzzle with bound-

ary J∗, I∗, K∗ that is P reflected in the vertical axis, the dark and white pieces
exchanged, and the flag labels changed to F⊥

• , G⊥
• , H⊥

• . The puzzle skeleton
is now white, so the above argument suffices to find a lattice polynomial q
such that

q(F⊥
• , G⊥

• , H⊥
• ) ∈ Ω◦

I∗(F
⊥
• ) ∩ Ω◦

J∗(G⊥
• ) ∩ Ω◦

K∗(H⊥
• ).

To return to the I, J, K case, we define the lattice polynomial q∗ by the
following relations:

(a ∨ b)∗ = a∗ ∧ b∗

(a ∧ b)∗ = a∗ ∨ b∗.

To evaluate q∗ at the flags, we have that (F⊥
i )∗ = Fi, which follows from the

fact ∨ corresponds to the operation span and the ∧ corresponds to intersec-
tion. Hence, there is a lattice polynomial r such that

q∗(F⊥
• , G⊥

• , H⊥
• ) = r(F•, G•, H•).

It is an easy matter to check that the Lattice Polynomial Algorithm returns
the lattice polynomial r, and that W = r(F•, G•, H•) is the subspace satis-
fying

Ω◦
I(F•) ∩ Ω◦

J(G•) ∩ Ω◦
K(H•).

Corollary 4.3.6. Let P be a puzzle with boundary I, J, K. Then the Lattice
Polynomial Algorithm returns EWF if and only if P is non-rigid.

Proof. If the Lattice Polynomial Algorithm returns EWF, then some sub-
procedure returned EWF, and the results of Sections 4.1 and 4.2 show that
P is not rigid.

Conversely, if the Lattice Polynomial Algorithm returns a lattice polyno-
mial q for P , then Theorem 4.3.5 shows that q(F•, G•, H•) is in the triple
intersection of Schubert varieties for I, J, K and flags F•, G•, H•. By Theorem
2.1.4, we have that cIJK = 1, so by the puzzle-based Littlewood-Richardson
rule, P is rigid.
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path, 22
turn, 22

good sides, 55
Grassmanian, 2

hive, 41
integer, 41
rhombus conditions, 41
triangle condition, 41

Horn
essential inequality, 45
inequality, 45
recursion, 45
triple, 45

inflation
type 0, 33
type 1, 32
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join, 4

lattice points, 29
lattice polynomial

basic, 84
lattice polynomials, 4
Littlewood-Richardson number, 3

mark
branch, 52
rhombus, 52

measure, 31
dual, 33
extremal, 31
submeasure, 31
weight, 31

meet, 4

non-rigid overlaps, 53

opposite variety, 12

partition, 19
diagram, 19
part, 19
skew, 19

puzzle
basis, 83
flag labelled, 82
labelled, 5
rhombus mark deflation, 79
shaded, 6
stretched, 80

puzzle boundary
01-strings, 5
shaded, 6

puzzle skeleton, 73
puzzles

rigid, 21

rhombus mark deflation, 61
Richardson variety, 12
rigid

measure, 34

Schubert
cell, 10
class, 16
special Schubert variety, 13
variety, 3, 10

Schur polynomial, 20
semistandard Young tableau, 47

content, 47
Littlewood-Richardson tableau, 48
shape, 47
word, 48

shaded pieces
dark edges, 6
dark pieces, 6
white edges, 6
white pieces, 6

skeleton, 35
synthesized, 4, 14

transverse, 14
tri-region, 55

4gem, 55
5gem, 55
bad side, 55
good side, 55
hex-shape, 55
starting, 71
trap-shape, 55
tri-shape, 55

triangle condition, 41

walker, 51
age, 71
children, 53
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dark, 56
descendant, 53
initial, 52, 71, 72
leftmost, 52
rightmost, 52
white, 56

walker step
branch, 53
overlap, 53
rhombus, 52
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