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Abstract 
 
Allochthonous carbon can be a large proportion of the carbon budget in 
northern temperate and boreal lakes.  This thesis uses stable carbon and 
oxygen isotopes to examine the fate of allochthonous dissolved organic 
matter (DOM) in northern temperate lakes, and to determine the 
importance of dissolved organic carbon (DOC) in lake carbon mass 
balances and in the δ13C of lake sediments.  To use stable isotopes as a tool 
for studying DOC loss and sedimentation within lakes requires an 
understanding of processes that affect the δ13C and δ18O in aquatic systems.  
Photolysis is one mechanism that can account for the large allochthonous 
DOC loss within northern temperate lakes.  There is, however, little 
research examining the effects of photolysis on stable isotopes (e.g. δ13C and 
δ18O) in aquatic systems, or how photodegradation of DOM affects the δ13C 
of lake sediments. 
 

To study the effects of DOM photodegradation on carbon and 
oxygen isotopes, stream waters from catchments with varying peatland 
coverage were incubated in Tedlar bags placed in water baths under natural 
sunlight.  Results from three streams flowing into two oligotrophic 
headwater lakes (Harp and Dickie Lakes) indicate that O2 consumption 
rates and dissolved inorganic carbon (DIC) production rates were an order 
of magnitude greater in light exposed treatments than in dark treatments, 
suggesting that light mediated processes control O2 consumption and DIC 
production in incubations.  The similarity between filtered, inoculated, and 
sterile treatments, indicate that photolysis was the dominant O2 consuming 
and DIC producing process in the incubations, while the contribution of 
respiration to these processes was not detectable.  Differences in both O2 
consumption rates and DIC production rates (normalized to DOC loss) 
among streams suggest that DOM photolability was an important factor in 
both O2 loss and DIC production on a volumetric basis.   
 

A concomitant increase in δ18O-O2 was observed with O2 loss 
indicating that during the photo-oxidation of DOM, the lighter 16O 
isotopomer was preferentially consumed in the oxidation of DOC to CO2.  
Fractionation factors for respiration, photolysis and other abiotic reactions 
were not a function of O2 consumption rates and ranged between 0.988 and 
0.995, which lies outside the range published for respiration (0.975-0.982).  
These are the first published photolytic fractionation factors. 
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The δ13C-DIC produced collectively by photolysis, respiration, and 
other abiotic reactions in incubations exposed to natural sunlight ranged 
between –23‰ and –31‰, and were similar in the light incubations for 
each treatment, but different among streams.  Together, the light and dark 
incubation data suggest that photolysis and other abiotic reactions were 
largely responsible for the DIC concentration and δ13C-DIC changes 
observed, while respiration is a relatively minor contributor.  
 

During the incubations, as DOC photodegraded to CO2, the lighter 
12C isotope was preferentially mineralized (or the moieties cleaved were 
depleted in 13C) leaving the residual δ13C-DOC 1‰ to 4‰ enriched, 
creating enrichment (ε) values up to ~–3‰.  The change in final δ13C-DOC 
after DOM photodegradation was different for each inflow, ranging from 
~1 ‰ to 8.0 ‰, and provides an average enrichment of –2.1‰ (Harp 
Inflows ε: –1.2‰; Dickie Inflows ε: –3.4‰).  These ε values are in 
agreement with the average ε from previous incubations on 3 of the inflows 
and 3 published studies based on UV exposed bog water (Osburn et al., 
2001), riverine waters (Opsahl and Zepp, 2001), and lyophilized Juncus 
leachate dissolved in lake water (Vähätalo and Wetzel, 2008) (average ε =   
–2.9‰). 

 
The structure of DOM changed during photolysis.  Absorbance data 

indicated that the aromaticity, colour, UV absorption and the average 
molecular size of the DOC decreased.  Additionally, after exposure to 
sunlight, C/N ratios of the DOC changed from high values (24-55), 
indicative of terrestrial inputs, to lower values (4-13) traditionally thought to 
be representative of algal or microbial inputs.  This contradicts the 
conventional view that terrestrial DOC has C/N ratios >20, and shows that 
abiotic processes can alter allochthonous carbon structure and the residual 
allochthonous carbon can have C/N values similar to, or overlapping with, 
C/N ratios expected from algal or microbial carbon. 
 

With the loss of 61-90% of the DOC, the particulate organic carbon 
(POC) created accounted for 20-90% of the DOC lost.  Values of δ13C-POC 
ranged from –25.7‰ to –27.7‰, with 80% of the samples within 1‰ of the 
initial δ13C-DOC indicating that the particulate carbon created from the 
photodegradation of DOM that settles to the lake sediments could be 
isotopically similar to the source DOC.  Overall, these incubations indicate 
that the photodegradation of DOM can affect both concentrations and 
isotopes of O2, DIC, DOC, and POC of the stream waters flowing into 
Harp and Dickie Lakes and are important to consider in lake dynamics of 
high DOC retention lakes. 
 

Two independent methods were used to examine the importance of 
allochthonous DOC to lake sediments.  The first method used a two end-
member mixing model to estimate the proportion of allochthonous and 
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autochthonous carbon within the lake sediments.  Inflow δ13C-POC data, 
δ13C-leaf litter measurements, and DOC photodegradation experiments 
were used to calculate average annual δ13C-POC values for the 
allochthonous end member.  The average annual δ13C-POC values for the 
autochthonous end member were calculated using estimates of productivity, 
surface δ13C-CO2 values and estimated average annual fractionation factors.  
Average annual δ13C-POC values from allochthonous and autochthonous 
sources for these lakes were distinct.  Using the end members to calculate 
the relative contributions of allochthonous and autochthonous carbon to 
lake sediments revealed that the δ13C of the lake sediment can be 
significantly affected by the ratio of autochthonous and allochthonous 
contributions.  Furthermore, peaks in the allochthonous contributions of 
carbon accompany the δ13C peaks in the sediment records to the lake 
sediments.  This suggests that climate change and/or anthropogenic 
changes to the landscape, and the concomitant changes in DOC inputs to 
lakes, can be recorded in the sediment record indicating that sediment 
records are not just productivity signals, but also mass balance signals in 
high DOC retention lakes.  
 

In the second method carbon isotope budgets were completed to 
accompany the carbon mass budgets for Harp and Dickie Lakes. 
Mass-weighted average annual δ13C-DOC values from the inflows and 
outflows and δ13C-DIC values from the inflows varied by 0.2‰ to 1.3‰, 
suggesting the values are well constrained.  Conversely, the range of 
weighted δ13C-DIC values from the outflows were larger (2.2‰) than those 
of the inflows.  Calculated δ13C values of the lake sediment were not equal 
to the measured δ13C values of the lake sediments for either Harp or Dickie 
Lakes suggesting a problem lies within the mass balances, or the weighted 
average annual δ13C values used in the isotope budgets. 
 

To examine the sensitivity of the average annual weighted δ13C 
values for the carbon entering and exiting the lakes, and the mass of carbon 
entering the lakes δ13C of the lake sediments, a mass and isotope budget 
model was created.  The model indicated that the δ13C of the lake sediments 
is sensitive to a number of parameters including the amount of DOC 
entering the lake, the δ13C-CO2 evaded from the lake, the areal water 
discharge rate (qs), the gas exchange coefficient (k), and pH.  Many of these 
parameters required adjustments for the masses of carbon to match those 
presented in the mass balances suggesting that the mass balances averaged 
over 8 years have errors associated with them.  However, changing the 
DOC load to the lakes in the model by the variability observed over all the 
years of the mass balances) indicates that the isotopic signature of the lake 
sediment could change by up to 2.5‰.  This isotope change is large enough 
to account for the historical δ13C changes observed in the δ13C sediment 
record, suggesting that allochthonous DOC can drive the sediment record. 
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Chapter 1: 
 
Introduction 
Dissolved organic matter (DOM) is the predominant form of organic matter 

entering lakes (Wetzel, 2001), and is responsible for transporting organic 

carbon, nitrogen, phosphorus and sulphur from terrestrial catchments to 

aquatic systems (Aitkenhead-Peterson et al., 2003).  Transport of dissolved 

organic carbon (DOC), the dominant organic fraction of DOM in most lake 

waters, is crucial to aquatic systems as DOC controls the buffering capacity 

of waters, and is an energy source for productivity (Wetzel, 2001).  DOC is 

not only an integral component of carbon cycling within lakes, but it also 

affects water quality by mediating the availability of dissolved nutrients and 

metals (Driscoll et al., 1994), in addition to modifying the optical and 

thermal properties of water (Schindler, 1971; Schindler and Curtis, 1997; 

Schindler 2001). 

1.1 DOM and the global carbon cycle 

Due to the mismatch between the global amount of CO2 produced (carbon 

source) and the marine and terrestrial carbon sinks, the global carbon 

budget cannot be balanced (Smith et al., 1993).  There have been 

suggestions that the missing carbon sink is terrestrial and lies in the 

Northern Hemisphere (e.g. Tans et al., 1990, Kauppi et al., 1992; Sedjo, 

1992; Quay et al, 1992).  Sellers et al. (1997) suggest that even with its low 

productivity, boreal ecosystems could contain an appreciable portion of 

carbon, serving as an important global carbon sink, since the boreal forest 

biome can store a significant amount of carbon (Kurz and Apps, 1993; 
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Sampson et al., 1993) in forest trees, soils, and soils associated with 

peatlands (Apps et al., 1993).  The greatest dissolved component transferred 

from boreal catchments to oligotrophic lakes is DOC (Schindler et al., 

1997).  Therefore, streams and lakes can act as conduits for transfer of 

organic carbon to aquatic systems.  By extrapolating their carbon mass 

balance model to the entire boreal forest biome, Molot and Dillon (1996) 

estimated that during the export of carbon from the terrestrial catchment to 

lakes that 30-52 Tg C y-1 (of 66 Tg C y-1) is retained in northern surface 

waters (i.e. either evades or is sedimented).  In addition to surface waters, 

carbon can also be sequestered in lake sediment, however, the transfer of 

organic carbon to lake sediments is likely very small in terms of the global 

carbon cycle. 

The transport and transition of DOC into other carbon fractions in 

aquatic systems therefore provides DOC with an important role in lake 

functioning and the global carbon cycle.  Recent increases in atmospheric 

CO2 concentrations due to anthropogenic activities, with suggestions of 

concentrations doubling within a century (Houghton et al., 1995), and the 

associated climate change predictions resulting from these CO2 increases, 

have provided the need for a greater understanding of carbon dynamics and 

the processes that affect carbon cycling in aquatic systems.  With 

approximately 800,000 boreal lakes in Canada alone, there is great potential 

for boreal lakes to be significant to the global carbon cycle, which in turn is 

strongly coupled to the physical climate system (Sellers et al., 1997).  

Northern temperate and boreal lakes rely on dead or decaying organic 

matter produced in, and transported from, the terrestrial catchment for 

sustenance.  They are generally considered net heterotrophic ecosystems 

(del Giorgio and Peters, 1994; Algesten et al., 2003) as allochthonous 

carbon is mineralized to CO2 and evades to the atmosphere (Kling et al., 

1991; Cole et al., 1994). 
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Although it was historically assumed that freshwater lakes fixed 

atmospheric CO2 and transferred the carbon to the sediments, more recent 

views suggest that the majority of carbon in boreal and northern temperate 

lakes has a terrestrial origin, and the lakes sediments actually transfer 

exported fixed allochthonous carbon to aquatic storage (Molot and Dillon, 

1996).  Many oligotrophic lakes are supersaturated with CO2 (Cole et al., 

1994) suggesting that terrestrial carbon could be a main carbon contributor 

to the lakes.  Several studies of northern lakes suggest the majority of 

organic carbon in lakes actually is terrestrial and that is a function of the 

amount of runoff entering lakes, and the coverage of peatlands within their 

catchments (Rau, 1978; Kling et al., 1991; Cole et al., 1994; Dillon and 

Molot, 1997b).  Dillon and Molot (1997a) estimated carbon mass balances 

of seven northern temperate lakes in the Muskoka-Haliburton region and 

determined that the DOC load into lakes ranged from 6.5 to 39.7 g C m-2 y-1 

while the atmospheric DOC input ranged from 2% to 13% of the DOC 

load.  In most of the lakes, there was net CO2 evasion to the atmosphere on 

an annual basis, and the loss was greater than both dissolved inorganic 

carbon (DIC) loading and precipitation inputs suggesting there is in-lake 

mineralization of DOC to CO2 in the lake.  The study revealed that the 

carbon was derived from the terrestrial catchment, and that 38% to 70% of 

this DOC was retained in lakes, although the transfer mechanisms are 

unknown.  

In boreal lakes, carbon storage was estimated to be a significant 

carbon sink within lake sediments (Kortelainen et al., 2004).  Algesten et al. 

(2003) examined mass balances of Swedish lakes and found that terrestrial 

carbon export to freshwaters ranged from 3.0 to 8.4 g C m-2 y-1 with 30-80% 

of total organic carbon retained.  However, partitioning between the 

atmosphere and sediment was different than Dillon and Molot (1997a).  

Algesten et al. (2003) found that the organic carbon burial was eight times 

less than the carbon loss by CO2 evasion indicating that mineralization was 
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significant to carbon loss (via CO2) in these lakes, whereas Dillon and 

Molot (1997a) found that 50% of the DOC entering some northern 

temperate lakes is lost to evasion and burial in roughly in equal proportions.  

Molot and Dillon (1996) applied carbon flux relationships to the global 

boreal forest biome and estimated that boreal lake evasion and sediment 

storage range between 12-21 Tg C y-1 and 18-31 Tg C y-1 respectively, 

supporting global estimates of 15 Tg C y-1 and 36 Tg C y-1 stored as DOC 

and POC in lakes respectively by both Meybeck (1993) and Downing et al. 

(1993).  According to a conservative estimate by Molot and Dillon (1996), 

lake sediments may contain approximately 120 Pg of carbon after 5000 

years of accumulation and, as a consequence, carbon storage within the 

boreal forest biome may be significantly larger than previously calculated.   

Since DOC is the main form of carbon transported into these lakes 

from the terrestrial catchment, coagulation and/or flocculation into a 

particulate carbon form is likely integral to carbon sequestration of 

allochthonous carbon in lake sediments (von Wachenfeldt et al., 2008, von 

Wachenfeldt and Tranvik, 2008).  Alternatively, fixation of inorganic 

carbon by aquatic organisms can also transform and transport carbon from 

the surface waters (and the terrestrial catchment) to the lake sediments, and 

is considered by paleolimnologists as a main source of carbon to sediment 

organic matter (Meyers and Teranes, 2001).  Identifying and understanding 

the impacts of the mechanisms by which lakes sequester carbon is therefore 

important to understanding DOM fate, and will help clarify ecological 

energy flow along the transfer paths from streams to lakes (Mulholland, 

1981). 

1.2 Carbon transfer mechanisms 

To understand the fate of DOM, it is important to understand the in-lake 

mechanisms that may convert and redistribute the different chemical forms 

of carbon in lakes, and convert stream DOC to dissolved inorganic carbon 
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(DIC) and particulate organic carbon (POC).  Carbon dynamics within 

lakes can be affected by a number of processes including the 

photodegradation, microbial decomposition, and the direct sedimentation 

of dissolved organic matter (via flocculation/coagulation), in addition to gas 

exchange with the atmosphere, photosynthesis, respiration (and other redox 

reactions), and mixing (Figure 1.1).   

 

 

Figure 1.1:  A conceptual diagram illustrating carbon cycling in lakes. 

1.2.1 Biological processes affecting carbon 

In the photic zone, DOM provides metabolic substrates for heterotrophic 

microorganisms, and influences aquatic microbial communities (Pomeroy, 

1974; Azam and Cho, 1987), although allochthonous carbon can also be 

incorporated into pelagic food webs (e.g. Cole et al., 2002; Pace et al., 2004; 

Carpenter et al., 2005; Mohamed and Taylor, 2009).  Autochthonous DOM 

can be derived from algae (predominantly phytoplankton) and macrophytes 

and can be respired by heterotrophic bacteria (Bertilsson and Jones, 2003).  

Additionally, autochthonous DOM can be released both during herbivore 
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grazing (Lampert, 1978) and during the active growth of cells (Baines and 

Pace, 1991) and this high quality substrate (Cole et al., 1982) is directly 

available for uptake by heterotrophs or available to be transformed though 

enzymatic and abiotic processes to consumable substrates (Bertilsson and 

Jones, 2003).  After cell death, a secondary DOM source is created as the 

photosynthetically fixed organic substances are released in dissolved or 

particulate forms to the surrounding waters (Azam and Cho, 1987).  

Similarly, macrophytes also release photosynthetically produced dissolved 

and particulate DOM during active growth to the surrounding waters 

(Bertilsson and Jones, 2003).  As with phytoplankton, macrophytes also 

release a pulse of DOM with death and decay although little information is 

available regarding this release. In both algal and macrophyte production 

and release of DOM, predominantly biologically labile and low molecular 

weight compounds are created for heterotrophic uptake (Bertilsson and 

Jones, 2003). 

1.2.2 Redox Reactions 

In natural waters such as lakes, many elemental redox reactions are driven 

by organic carbon cycling (Morel and Hering, 1993).  Photosynthesis is a 

redox reaction that uses light energy to reduce CO2 to organic carbon.  The 

organic carbon accumulates at the bottom of lakes, producing steep redox 

gradients at the sediment water interface (Wehrli, 1990).  Organic matter, 

the most common reducing agent in natural waters, is oxidized to CO2 

during respiration by the reduction of O2 in aquatic systems (Morel and 

Hering, 1993).  Oxygenated waters have high redox potentials and a low 

level of chemically reactive electrons as dissolved and adsorbed ions are 

present in their high oxidation states.  However, in lakes, the redox 

environment can be highly variable between the highly oxygenated surface 

waters and the sediments at the bottom of the lake due to intermediate 

zones created by the mixing, diffusion, and various biological activities 

between the surface and base of a lake (Stumm and Morgan, 1996).  
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DOM participates in a number of redox reactions and easily 

complexes with minerals such as iron and manganese oxides that can affect 

metal transport, water quality and nutrient availability.  For example, DOM 

has a large binding capacity for iron (Koenings and Hooper, 1976; Sojo and 

de Haan, 1991), and many humic streams in central Ontario transport high 

loads of DOM (and iron) and create highly coloured and acidic waters 

(Molot and Dillon, 1997a; Dillon and Molot, 2005).  This transport of iron 

complexed with DOM to lakes can provide an essential micronutrient for 

phytoplankton growth (Murphy and Yesaki, 1983) and affect carbon 

dynamics within lakes. 

1.2.3 Photodegradation of DOM 

Dissolved oxygen is used as an electron acceptor in the photodegradation of 

DOM and, in conjunction with heterotrophs, can convert otherwise 

recalcitrant DOM (in addition to fresh DOM) to more labile carboxylic 

acids, other smaller organic compounds, and DIC such as CO and CO2.  In 

photolytic reactions, aromatic rings and unsaturated carbon skeletons in 

DOM absorb UV radiation to break bonds in the presence of a catalyst and 

a highly reactive oxidant (Sinsabaugh and Findlay, 2003).  Since 

photodegradation reduces the average molecular weight of carbon 

compounds (Opsahl and Benner, 1998; Zepp et al., 1998) the smaller 

organic products can enter the microbial food web to be consumed by and 

stimulate microbial activity (Miller and Moran, 1997; Tranvik et al., 2000).   

In addition, the photolytic breakdown of DOM also induces 

particulate matter formation, especially in the presence of iron as a catalyst 

(Gao and Zepp, 1998).  During photodegradation, DOC is oxidized, low 

molecular weight organic carbon products are created, and Fe3+ is reduced 

to Fe2+.  The ferrous iron is then reoxidized to form new ferric hydrous 

oxides to which the remaining DOC can bond via ligand exchange.  Even 

though particulate matter can form in both the light and the dark, Gao and 
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Zepp (1998) suggest that as DOM is oxidized in the light, it complexes iron 

more readily, converting dissolved iron and carbon to particulate matter.  

1.2.4 Mixing 

The chemical composition and the amount of DOM and particulate organic 

matter (POM) entering lakes differ with both season and with the volume of 

flow (Wetzel, 2001).  Once in the lake, both POC and DOC move with the 

water, with POC settling to the sediment according to Stoke’s law (the rate 

of sedimentation of spherical particles of a certain density is directly 

proportional to the square of their radii).  DOC is subjected to the chemistry 

of the water layer it is contained within, possibly exposing it to redox 

reactions, assimilation, photodegradation, etc.  As DOC entering lakes can 

be recalcitrant, it is commonly affected by abiotic processes, which may 

create more labile forms of carbon.  Flocculation of DOC can also occur 

when particles collide during mixing and adhere due to the attractive van 

der Waals forces (Wetzel, 2001).  Increased collisions and adhesiveness of 

particles can be affected by physical processes such as Brownian motion, 

shear from laminar or turbulent flow, the collision of larger particles with 

smaller particles causing differential settling, capture of smaller particles 

within the boundary layer of larger particles, surface coagulation at the gas-

water interface, small colloids being scavenged as they pass through lake 

snow, and bacterial collision with colloids (O’Melia and Tiller, 1993; 

Kepkay, 1994).  

1.2.5 Gas Exchange – CO2 loss to the atmosphere 

In aquatic systems, the concentrations of dissolved carbon compounds and 

the amount of CO2 invaded to/evaded from the lake are affected by the 

mineralization of DOM through metabolism or photodegradation.  Primary 

production (see Biological processes) has the ability to decrease CO2 

concentration in the photic zones of lakes, while respiration increases CO2 

concentrations.  The balance between the rates of these processes is used to 
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assess if the lakes are heterotrophic, and affects the release or resupply by 

gas exchange at the atmosphere-water interface. However, DOM 

photodegradation has also been found to increase concentrations of DIC 

and CO2 (e.g. Anesio and Granéli, 2003; Granéli et al., 1998; Bertilsson and 

Tranvik, 2000) suggesting that the degree of photodegradation could also 

affect the degree of CO2 saturation in lakes.   

Dillon and Molot (1997a) found that in most of their seven northern 

temperate study lakes, net CO2 evasion to the atmosphere occurred and the 

loss was greater than both DIC loading and precipitation inputs suggesting 

there was in-lake mineralization of terrestrial DOC to CO2.  Comparing 

photodecay constants (from DOM photodegradation experiments) to the 

mass balance rate constants revealed that although photolysis could not 

account for all DOC losses (to the atmosphere and to the sediments) in 

lakes with DOC > 4mg/L, it could be responsible for CO2 evasion and 

carbon sedimentation in lower DOC lakes (<4 mg/L) (Molot and Dillon 

1997b). 

1.2.6 Sedimentation 

DOC can be lost to sedimentation by a number of processes in aquatic 

systems (Stumm and Morgan, 1996).  Concentration and size distribution of 

colloids (including or in the presence of natural organic matter) can affect 

both the coagulation and aggregation rates and the size and sedimentation 

rates of colloids in all aquatic systems (Filella and Buffle, 1993; Buffle and 

Leppard, 1995).  Other processes such as bubble catalyzed transfer of DOC 

to POC (e.g. Baylor and Sutcliffe, 1963; Barber, 1966), and the creation of 

POM through the assembly of DOM polymers to form polymer gels (e.g. 

Chin et al., 1998) have been documented in marine waters.  In riverine 

systems, turbulence and associated increases in particle contact can affect 

the creation and size of particulate matter (Droppo and Ongley, 1992, 1994) 

in addition to the changes cations and pH can have on particulate matter in 
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all aquatic systems.  Finally, there can be photochemical and iron induced 

precipitation where UV reduces Fe3+ to Fe2+ and transforms H2O2 to O2*.  

The O2* radical can then react with the reduced iron to create Fe3+, which 

binds with DOM. 

1.3 Use of carbon mass balances to examine allochthonous inputs 
to lakes 

Since the majority (90-95%) of total organic carbon is dissolved organic 

carbon (DOC) in natural aquatic environments (Wetzel, 2001), aquatic 

carbon mass balances can be dominated by dissolved organic species in 

boreal lakes and rivers (Algesten et al., 2003).  Carbon cycling in terrestrial 

and oligotrophic aquatic systems can also be highly dependent on the fate of 

allochthonous DOC.  Carbon mass balances are commonly used to 

examine the sources and controls of carbon in aquatic systems although, 

due to the complexity of carbon transfer pathways, studies commonly only 

concentrate on a portion of the carbon cycle (e.g. the inorganic or organic 

component; Wetzel et al., 1972, Emerson, 1975; Hesslein et al., 1980).  

Dillon and Molot (1997a) used carbon DIC and DOC mass balances from 7 

oligotrophic and mesotrophic lakes to partition the carbon lost between the 

atmosphere and the sediments since mass balances bypass the internal 

carbon transfer pathways.  Isotopic balances have also been used to 

determine the fate of organic matter and isolate sources of carbon in aquatic 

systems (e.g. Quay et al., 1986; Cifuentes and Eldridge, 1998; Raymond 

and Bauer, 2001; Jonsson et al., 2001; and Ogrinc et al., 2002) but similar to 

carbon mass balances alone, only concentrate on a portion of the carbon 

cycle (i.e. DIC or DOC).  

This research explores the use of carbon mass and isotope budgets to 

examine the fate of DOM and carbon cycling in two northern temperate 

oligotrophic Shield lakes.  In Harp and Dickie Lakes, carbon mass balances 

suggest that allochthonous carbon controls the carbon budgets in the lakes 
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(Dillon and Molot, 1997a).  Since organic carbon cycling in temperate and 

boreal lakes can be controlled by terrestrially fixed organic carbon, lakes 

could be important carbon sinks for organic carbon and zones where 

terrestrial carbon is mineralized and emitted to the atmosphere (Algesten et 

al., 2003).  Adding complementary isotope budgets to the mass balances 

estimated by Dillon and Molot, the impact of changing allochthonous 

inputs to the lakes on organic carbon burial (sedimentation) and 

mineralization of carbon and CO2 evasion to the atmosphere can be 

examined.  Furthermore, temporal changes of allochthonous and 

autochthonous contributions to lake sediments are estimated in this work 

using the isotope budgets and the δ13C of lake sediment cores taken from 

Harp and Dickie Lakes.  Paleolimnologists suggest that changes in δ13C of 

sediment organic matter reflect changes in past productivity.  This thesis 

will examine whether changes to the allochthonous inputs are also recorded 

within the δ13C of lake sediments.  

Previously published studies on mass and isotope balances in aquatic 

systems normally consider respiration, photosynthetic assimilation of 

carbon, mixing, and gas exchange as the processes affecting the isotopic 

ratio of carbon (e.g. Quay et al., 1986).  These are not, however, the only 

processes affecting carbon in lacustrine and riverine systems. Approximately 

50% of the DOC entering some oligotrophic lakes in the southern 

Precambrian Shield is lost to the atmosphere and sedimentation (Dillon and 

Molot, 1997a).  Photolysis is one mechanism that produces DIC and that 

could account for a large DOC loss observed in many boreal lakes with high 

DOC (Molot and Dillon, 1997b).  However, photolysis commonly is not 

included in carbon mass or isotope balances and the effect of photolysis on 

carbon isotopes remains understudied. Since photodegradation of DOM 

can transform DOM and create particulate carbon, it can potentially 

contribute organic carbon to lake sediments.  
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Many carbon (and oxygen) stable isotope studies designed to 

examine photosynthesis to respiration ratios or the importance of 

allochthonous and autochthonous carbon in food web or sedimenting POC 

studies do not consider the possible effects that photolysis could have on 18O 

or 13C of the dissolved and/or particulate compounds in aquatic systems.  

Carbon cycling in lakes, and incorporation of carbon into food webs, was 

examined by Cole et al. (2006) using the δ13C of DIC, DOC, POC and biota 

(e.g. zooplankton, fish, benthic algae and benthic invertebrates).  A series of 

studies have also been completed on lakes spiked with 13C-DIC to track the 

uptake and transfer of carbon to POC and the aquatic species within the 

systems (e.g. Cole et al., 2002; Pace et al., 2004; Carpenter et al., 2005) 

determining that approximately 50% of the POC in the lakes was terrestrial 

(Pace et al., 2004).  In addition, von Wachenfeldt and Tranvik (2008) used 

stable carbon isotopes to estimate the importance of allochthonous carbon 

in sedimenting POC concluding that DOC is a precursor to organic matter 

that settles in 12 small Swedish boreal lakes.  To effectively use stable 

isotopes as tools to interpret and understand the processes occurring within 

aquatic systems, it is essential to understand how the processes affect the 

isotopes.  It is therefore imperative to understand the impact DOM 

photodegradation can have on the carbon (and oxygen) isotopic ratios used 

in coupled mass and isotope balances and mixing models.  

1.4 Thesis Objectives 

To examine the fate of DOC and its role in carbon cycling and 

sedimentation in aquatic systems, an understanding of the processes 

affecting DOC is needed.  Understanding processes such as the 

photodegradation, microbial decomposition, and the direct sedimentation 

of DOM is necessary to understand how their carbon isotopes can be used 

to help understand the fate of DOC and carbon cycling.  In this thesis, I first 

examine how DOM photodegradation affects the δ18O of dissolved oxygen 
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and the δ13C of DOC, DIC, and POC.  Although the fractionation of δ18O 

during DOM photodegradation is not used to explore the role of 

allochthonous carbon to lake sediments, data were gathered during 

incubation experiments used to determine the role of photolysis on δ13C.  

This work (Chapter 2) is the first published study on δ18O fractionation 

resulting from DOM photodegradation.  Changes to the δ13C of DOC, DIC 

and POC were examined concurrently with oxygen fractionation to 

examine how photodegradation of DOM transforms allochthonous carbon 

entering lakes.  Complementary isotope budgets were then completed for 

the estimated mass balances of Dillon and Molot (1997a) to examine the 

importance of allochthonous carbon to the carbon sediment record.  The 

proportion of allochthonous and autochthonous carbon in lake sediments 

was then estimated by calculating allochthonous and autochthonous δ13C 

end-members (using δ13C values for leaf litter, temporal stream POC, 

photodegraded DOC, and temporal DIC).  These objectives are presented in 

5 data chapters with the following objectives: 

1. To examine the stable oxygen isotope fractionation during photolytic 
O2 consumption in stream waters (Chapter 2); 

2. To examine the effects of DOM photodegradation on δ13C-DOC and 
δ13C-DIC in stream waters (Chapter 3); 

3. To examine the effects of DOM photodegradation on δ13C-DOC and 
δ13C-POC in stream waters (Chapter 4); 

4. To examine the influence of allochthonous carbon on the δ13C-lake 
sediment records in two small oligotrophic lakes using carbon mass 
and isotope balances (Chapter 5);  

5. To examine the relative proportion of allochthonous and 
autochthonous POC to the carbon isotopic signature of lake 
sediments (Chapter 6). 
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2.1 Overview 

Oxygen (O2) is required for life in higher organisms, however, processes such as 
respiration, the oxidation of reduced inorganic species, and the photolytic 
breakdown of dissolved organic matter (DOM) decrease the O2 concentrations 
in aquatic systems.  Filtered, inoculated, and sterile samples of stream waters 
from Ontario, Canada, were incubated in natural sunlight to examine the effects 
of photolysis of DOM, respiration, and abiotic reactions on O2 consumption and 
δ18O of dissolved oxygen (δ18O-O2).  Oxygen consumption rates in the light were 
up to an order of magnitude greater than in the dark, suggesting light-mediated 
processes controlled O2 consumption. Rates of O2 loss were the same for each 
treatment (i.e. filtered, inoculated, and sterile) indicating that photolysis was the 
dominant O2 consuming process over respiration in these incubations.  O2 
consumption rates were different between streams, even when normalized to the 
change in dissolved organic carbon (DOC), signifying that DOM photolability 
varied among streams.  During DOM breakdown to CO2, the lighter 16O 
isotopomer was preferentially consumed.  Fractionation factors observed for 
photolysis, respiration, and abiotic reactions ranged between 0.988 and 0.995, 
and were similar in both the light and in the dark incubations in all streams.  
These fractionation factors are not a function of O2 consumption rates, and are 

                                                 
1 Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, 
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outside the range published for respiration (0.975-0.982).  In current models of 
O2 and δ18O-O2, photolysis and respiration are not considered separately and the 
isotopic fractionation during respiration that is measured in the dark is used in 
the light.  In these incubations, DOM degradation and abiotic reactions are 
important O2 consuming and δ18O-O2 fractionating processes.  Current models 
of O2 and δ18O-O2 incorporate photolysis of DOM and other abiotic processes 
into the respiratory component of O2 consumption, thereby overestimating 
respiration and underestimating photosynthesis to respiration ratios.  
Consequently, photolysis and abiotic reactions should be considered separately, 
particularly in shallow aquatic systems with high DOC. 

2.2 Introduction 

Oxygen is a fundamental requirement for life in higher organisms (Wetzel, 

2001).  In aquatic systems, O2 regulates respiratory metabolism, mediates 

biogeochemical cycles, and is an integral component of water quality. Oxygen 

concentration is controlled by the balance between various processes including 

gas exchange with the atmosphere, photosynthesis, respiration, mixing, 

photolysis, and other redox reactions.   

  Oxygen mass balances are commonly used to calculate rates of 

photosynthesis (P) and respiration (R) and thus ecosystem metabolism (Odum, 

1956).  More recently, δ18O of dissolved O2 − (δ18O-O2) has been increasingly 

used to assess ecosystem metabolism and O2 dynamics in aquatic systems such 

as lakes, rivers, and ponds.  Quay et al. (1995) demonstrated how O2 and δ18O-

O2 balances could be used simultaneously to directly constrain the P:R in 

aquatic systems under steady state assumptions.  Temporal and spatial 

variability of trophy was assessed by Russ et al. (2004) in a large oligotrophic 

lake, and Parker et al. (2005) looked at oxygen isotope changes in rivers with up 

to 13‰ variation in diel cycles.  Since many of the studies using δ18O-O2 are 

limited by steady state assumptions and do not consider daily oxygen cycles, 

Venkiteswaran et al. (2007, 2008) developed a dynamic model (PoRGy) to 

assess metabolic balance.  Using diel O2 and δ18O-O2 measurements, the rates 

and ratios of P:R:G (Photosynthesis: Respiration: Gas Exchange) could be 

assessed. 
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  Oxygen saturation and δ18O-O2 can be used in conjunction with each 

other to calculate P:R and P:R:G ratios.  Atmospheric oxygen (23.5‰ vs. 

SMOW; Kroopnick and Craig, 1972) fractionates in water by 0.7‰ (Benson 

and Krause, 1984).  If gas exchange dominates, O2 concentrations will be close 

to saturation, and the δ18O will remain approximately 24.2‰ (Quay et al., 

1993).  Aquatic respiration preferentially consumes 16O16O, decreasing the 

dissolved O2 concentration and increasing the δ18O of the remaining O2.  

Fractionation factors for respiration (αR) in most δ18O-O2 studies are typically 

not determined directly but selected from the range of published values for 

marine and river waters (αR= 0.975-0.982) (Kiddon et al., 1993; Kroopnick, 

1975; Quay et al., 1993; Quay et al., 1995).  In contrast, during photosynthesis 

there is no photosynthetic fractionation (αp = 1.000; Guy et al., 1993) and the 

δ18O-O2 produced will reflect the δ18O-H2O.  Given that the δ18O-H2O for most 

aquatic systems is typically less than 0‰, much less than the δ18O in air 

(23.5‰), photosynthetic O2 added to the aquatic system will lower the δ18O-O2.  

Therefore, if photosynthesis is the dominant process (over gas exchange and 

respiration) O2 will be supersaturated and the δ18O-O2 value will decrease.   

  Measured values of O2 concentrations, δ18O-O2, and gas exchange rates 

can be used in two mass balance equations to determine P:R (Quay et al., 1995): 

 

(Equation 2.1) 

d(O2)
dt

=
G
Z

× (O2s − O2) − R + P  

(Equation 2.2) 

d(18O2)
dt

=
G
Z

×αg (O2sδ
18Oaα s − O2δ

18O) − Rδ18OαR + Pδ18OwαP  

where O2 is the dissolved oxygen concentration, t is the time, Z is the mean 

depth, G is the gas exchange rate, s is the O2 value at atmospheric saturation, R 

is the respiration rate, P is the gross production rate, αg is the gas exchange 
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fractionation factor (0.9972; Knox et al., 1992), δ18Oa is the 18O:16O atmospheric 

value, αS is the equilibrium air-water fractionation factor, αR is the respiration 

fractionation factor, δ18Ow is the 18O:16O isotopic ratio in water, and αP is the 

photosynthetic fractionation factor.  If there is an accrual of water from surface 

or groundwater, an additional term can be added.  There is no separate term in 

these equations for the photolytic or abiotic consumption of oxygen and these 

processes are thus amalgamated within ‘R’.  Similarly, αR includes all 

fractionations associated with O2 consumption processes, including respiration, 

and any other abiotic processes and redox reactions. 

Previously published studies on δ18O in aquatic systems only 

considered respiration, photosynthesis, and gas exchange as processes 

affecting the isotopic ratio of O2 (e.g. Quay et al., 1995; Wang and Veizer, 

2000; Russ et al., 2004; Parker et al., 2005, Tobias et al., 2007) although 

some acknowledge O2 consumption occurs to a lesser extent by chemical 

oxidation.  However, respiration and chemical oxidation are not the only 

oxygen consuming processes in lacustrine and riverine systems.  Northern 

temperate and boreal lakes are generally net heterotrophic ecosystems, 

dependent upon decaying or dead organic matter from the terrestrial 

catchment for sustenance (del Giorgio and Peters, 1994; Algesten et al., 

2003).  Approximately 50% of the dissolved organic carbon (DOC) entering 

some oligotrophic lakes in the southern Precambrian Shield is lost to the 

atmosphere and sedimentation (Dillon and Molot, 1997a).  Photolysis is 

one mechanism that consumes oxygen and that could account for a large 

DOC loss observed in many boreal lakes with high DOC (Molot and 

Dillon, 1997b). 

Dissolved oxygen is an electron acceptor in dissolved organic matter 

(DOM) photodegradation and, in conjunction with heterotrophs, converts 

recalcitrant DOM to more labile, carboxylic acids, other smaller organic 

compounds, and dissolved inorganic carbon (DIC) forms such as CO and 
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CO2.  These smaller organic products can be consumed by and stimulate 

microbial activity (Miller and Moran, 1997; Tranvik et al., 2000).  The 

breakdown of DOM to CO2 consumes oxygen and affects the oxygen 

balance of aquatic ecosystems.  It is therefore crucial to understand the 

photodegradation of DOM, in addition to the other processes controlling 

oxygen production and consumption, since DOM degradation and O2 

dynamics are linked. 

  Many studies have looked at DOM photodegradation because of its 

importance in the carbon cycle (e.g. carbon transport from terrestrial to ocean 

environments: Miller and Zepp, 1995; supersaturation of CO2 in lakes: Granéli 

et al., 1996; and loss of DOM in lake surface layers: Bertilsson and Tranvik, 

2000).  Other studies have shown that photodegradation of DOM influences 

water chemistry and transparency (affecting the photic zone depth and the 

region of photosynthetic activity: Andrews et al., 2000; Anesio and Granéli, 

2003), in addition to affecting aquatic organisms (e.g. UV exposure/damage to 

life and the effects on the food web by altering lability of sustenance sources: 

Gao and Zepp, 1998).   Only a few studies have looked at O2 consumption in 

the context of surface water oxygen levels (Amon and Benner, 1996; Miles and 

Brezonik, 1981), and the relative importance of O2 consumption during DOM 

photodegradation due to the combined effects of DOM photodegradation and 

microbial respiration versus primary production (Lindell and Rai, 1994). 

Although photolytic effects on O2 concentrations have been 

recognized, changes in δ18O-O2 during photolytic O2 consumption have not 

been investigated.  Photolysis could be an important but neglected 

component in oxygen isotopic models used to determine P:R ratios in 

aquatic systems.  The goals of this study were to: 1) determine the effects of 

photolysis, microbial respiration, and other abiotic reactions on δ18O-O2 in 

waters from three different forested streams, and 2) determine the δ18O-O2 
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fractionation factors associated with photolysis, respiration, and abiotic 

reactions. 

2.3 Methods 

Incubation experiments were performed on typical small inflows from two 

headwater oligotrophic lakes.  Stream water samples were collected from Harp 

Lake Inflow 4 (H4), Harp Lake Inflow 5 (H5), and Dickie Lake Inflow 10 

(D10).  These streams are either major DOC or water contributors to their lakes, 

and have been the focus of previous studies on DOM consumption by 

photolysis (e.g. Molot and Dillon, 1997b; Gennings et al., 2001). In these 

streams, DOC concentration decreases as discharge increases.  In addition, the 

streams have higher DOC concentrations than their lakes due to high rates of in-

lake DOC consumption.  Inflow waters were collected at weirs just upstream 

from the lakes.  The streams are located in the Muskoka-Haliburton region 200 

km north of Toronto, Ontario, Canada.  The watersheds lie on the southern tip 

of the Precambrian Shield, are composed of thin tills (<1m thick), and contain 

peatlands.  A detailed description of the streams and forested catchments can be 

found in Dillon et al. (1991). 

H4 and H5 contribute the majority of the water to Harp Lake, and 

are surrounded predominantly by deciduous trees.  These two streams flow 

through beaver ponds and swamp valley bottom wetlands, whereas D10 (a 

major water and carbon contributor to Dickie Lake) flows through a bog.  

These waters are typically oxic without measurable NH4
+, but with Fe and 

Mn complexed to DOC.  The extent of peatlands, and general chemical 

characteristics of each stream are listed in Table 2.1.  Stream water samples 

were filtered to 0.2 µm.  One litre of each stream water was filtered through 

1 µm Nuclepore membranes leaving suspended bacterioplankton as an 

inoculant (Sieburth et al., 1978).  Once filtered, the waters were divided into 

three treatments.  Filtered treatments contained only the 0.2 µm-filtered 
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water and, accordingly, microbial activity should be absent (Wotton, 1994).  

Inoculated treatments contained 90% of the 0.2 µm-filtered water, and 10% 

of the 1 µm filtered and thus contained microbes.  The absence of microbial 

activity was ensured in sterile treatments by spiking the 0.2 µm-filtered 

water with 1mL of a saturated mercuric chloride (HgCl2) solution per litre 

of sample. 

Table 2.1:  Percent peatland and summer stream water characteristics (July 1995) of the 
three sites. 

  Experiments were performed to ensure that there was no DOM leaching 

from the bags and that the bags were gas tight.  Eight litres of water was pumped 

into each Tedlar bag that had been previously washed in triplicate with ethanol 

and rinsed 3 times with nanopure water.  The bags were placed in shallow water 

baths, and exposed to natural sunlight at the University of Waterloo (43° 28' 

25.6" N and 80° 33' 27.5" W; elevation ~ 335 m).  Each treatment (filtered, 

inoculated, and sterile) was performed simultaneously in duplicate. The water 

baths of duplicate treatments were arranged side by side to minimize variation 

in exposure and temperature.  Temperature of duplicate bags was within 0.2°C, 

however, temperature between treatments on the same day varied according to 

sampling time.  Temperature was not controlled, but water baths moderated 

daily temperature changes.   

  A total of 14 bags were incubated in the first experiment (D10) that 

began on June 17th, 2005 (2 per treatment in the light and in the dark, and two 

light exposed H5 sterile samples).  Treatments incubated in the light were 

exposed for 4-7 days, while the dark treatments were incubated for 20 days to 

Site
Catchment % 

peatland1

Total iron 
(mg/L)2 pH2

Colour 
(Hz)2

DOC 
(mg/L)2 DOC (mg/L)3

Dickie Inflow 10 17.1 1297 4.7 393 28.7 29.4
Harp Inflow 4 5 291 6.5 66.1 7.3 6.8
Harp Inflow 5 13.3 n.d.4

n.d. n.d. n.d. 15.4
1  Taken from Dillon and Molot, 1997
2  Taken from Molot and Dillon, 1997
3 current study
4 n.d. = no data
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allow for sufficient O2 depletion.  In the second experiment (H4) 16 bags (2 per 

treatment in the light and the dark, two H5 light exposed sterile samples, and 

two D10 light exposed sterile samples) were incubated beginning July 9th, 2005.  

Light treatments were exposed for 3-8 days, while dark treatments were 

incubated for 14 days.  The concentration data presented is an average of the 

duplicate bags for each treatment.  The isotope data are run in their entirety for 

one bag, with duplicates run approximately every 5 samples, while samples 

from the second bag were run every 3-5 samples.  Exposure time was dependent 

on site, treatment (i.e. light vs. dark), and rate of O2 consumption.  Since D10 

and H4 waters were incubated on different dates each incubation experiment 

contains a set of sterile water from H5 and D10 exposed to light to assess the 

variation of the same samples between the two incubations.  

  Samples were withdrawn at regular intervals, roughly at increments of 

20% dissolved oxygen loss until 80-90% of the oxygen was consumed, to permit 

the determination of O2 consumption rates and fractionation factors (α) for δ18O 

due to photolysis, respiration, and other abiotic reactions.  A three-way valve, 

tubing and needles were used to collect samples and to minimize O2 

contamination from the atmosphere. 

O2 concentrations were measured in duplicate using the Winkler 

method.  Samples were collected in 20 or 30-mL air-tight glass syringes, 

instead of BOD/COD bottles, and reagent quantities were adjusted for 

these volumes.  Samples were stored under water and were analyzed within 

approximately 4 hours.  Oxygen concentrations have an associated 

precision of ±0.2 mg/L.  δ18O-O2 samples were collected in 60mL evacuated 

Wheaton serum bottles with butyl blue stoppers and 0.3 g of sodium azide.  

A 5mL helium headspace was added to the δ18O-O2 samples, and the bottles 

were shaken for at least 1.5 hours to equilibrate headspace and dissolved 

oxygen.  Gas from the headspace was analyzed on a Micromass Isochrom 

gas chromatograph isotope ratio mass spectrometer (GC-IRMS) (similar to 
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Wassenaar and Koehler, 1999) at the Environmental Isotope Laboratory, 

Waterloo, Ontario.  Precision of the δ18O-O2 analysis was ± 0.3‰.  

Duplicates were analyzed periodically, and isotopic ratios of duplicates 

were always within 0.3‰.  Near the end of each experiment, O2 

concentrations were too low to be analyzed for δ18O-O2.   

DOC samples were filtered to 0.45 µm, acidified to pH 2-3, and 

sparged to remove DIC.  DOC concentrations were analyzed on a total 

organic carbon analyzer (Dohrmann DC-190) with a precision of ± 

0.3 mg/L, although variation among duplicates was often less than this 

amount.  DOC absorbance samples (also filtered to 0.45 µm) were analyzed 

on duplicate samples on a Beckman DU530 Life Science UV/Vis 

Spectrophotometer (path length = 1cm) between 200 nm and 700 nm.  

Absorbance was automatically corrected to the absorbance of nanopure 

water.  The specific UV absorbance (SUVA254) was determined using the 

ratio of UV absorption at λ = 254 nm (measured in absorbance units m-1) to 

DOC concentration (mg/L) (Weishaar et al., 2003). 

  Fractionation of dissolved oxygen due to respiration, photolysis, and 

other abiotic reactions was calculated from the decrease in O2 and concomitant 

increase in δ18O-O2 by assuming the processes followed Rayleigh fractionation 

(Broecker and Oversby, 1971): 

(Equation 2.3) 

Rt

Ri

=
O2t

O2i

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

(α−1)

 

 

where R is the 18Ο/16Ο, and O2 is the oxygen concentration at initial time (i) and 

at a time after the starting point (t), and α is the fractionation factor.  The α 

includes all of the oxygen consuming processes occurring within the treatment.  

The sterile treatments in the light had no biotic activity and therefore the 
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associated fractionation factor would only consist of abiotic processes including 

photolysis.  However, the fractionation factor for inoculated treatments 

combined biotic respiration and abiotic processes. 

2.4 Results and Discussion 

2.4.1 Rates of O2 consumption 

Oxygen loss was rapid in all treatments exposed to light, with 80-90% of the 

O2 consumed within approximately 4 days (Figure 2.1,Table 2.2).  The 

DOC concentration was reduced by an average of 25% (Table 2.3).  Oxygen 

concentrations in duplicate treatments were generally within 0.2mg/L.  As 

O2 consumption was similar in the inoculated and sterile treatments from 

each site, the main mechanism of O2 loss was not microbial respiration.  

Although not quantified in this experiment, microscopic examination from 

samples in a preliminary experiment show bacteria present.  Sterile 

treatments contained no bacteria.  
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Figure 2.1: O2 concentrations versus Time of a) D10 and b) H4.  Points are the average of two 
duplicate bags incubated simultaneously.  Differences between bags are <0.2 mg/L. D10 
inoculated samples in (a) is underneath the filtered and sterile samples. Sterile H5 samples were 
incubated with both experiments (a and b), and sterile D10 samples were incubated with H4 (b) 
to assess the effects of differences in light exposure between the two experiments. 
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Table 2.2: Oxygen consumption rates and O2 consumption rates normalized for DOC concentration in the water 

and for DOC lost during the experiment. 

 

O2 consumed 
(µg/L/hrsunlight)

O2 consumed 
(µg/L/hrsunlight/ 

mg/LDOC)

O2 consumed 
(µg/L/hrsunlight/ 
mg/LDOC lost)

O2 consumed 
(µg/L/hr)

O2 consumed 
(µg/L/hr/ 
mg/LDOC)

O2 consumed 
(µg/L/hrsunlight/ 
mg/LDOC lost)

filtered 122 ± 8 4 13 12 ± 1 0.5 6
inoculated 127 ± 8 4 15 14 ± 1 0.5 3
sterile 124 ± 8 4 16 11 ± 1 0.4 3

Average 124 12
sterile1 189 ± 9 7 150 n/s3 n/s3 n/s3

filtered 68 ± 3 9 62 21 ± 1 3 10
inoculated 54 ± 3 8 41 11 ± 1 1 6
sterile 61 ± 3 8 34 8 ± 1 1 7

Average 61 13

sterile2 104 ± 6 7 25 n/s3 n/s3 n/s3

sterile1 90 ± 5 5 32 n/s3 n/s3 n/s3

Average 97
1 Incubated with H4 water; 2 Incubated with D10 water; 3 ns = no sample
Values are based on the average of measurements from duplicate bags.

Dickie 
Inflow 10

Harp 
Inflow 4 

Harp 
Inflow 5

Site Treatment

LIGHT DARK
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Table 2.3: Initial and final DOC concentrations and SUVA254 measurements in filtered, inoculated, and sterile incubations. 

 

DOC initial 
(mg/L)3

DOC final 
(mg/L)

SUVA 
initial

SUVA 
final

DOC initial 
(mg/L)

DOC final 
(mg/L)

SUVA 
initial

SUVA 
final

filtered 29.1 20.0 5.35 7.09 29.1 26.8 5.35 5.63
inoculated 29.6 21.1 5.26 6.66 29.6 24.5 5.26 6.09
sterile 29.5 21.7 5.26 6.44 29.5 25.9 5.26 5.8
sterile1 29.2 27.9 5.29 4.91 n/s3 n/s3 n/s3 n/s3

filtered 7.0 4.3 3.88 2.51 7.0 4.9 3.88 4.95
inoculated 6.8 5.5 3.95 2.6 6.8 4.9 3.95 4.87
sterile 6.6 4.4 4.07 3.27 6.6 5.5 4.07 4.34

sterile2 15.6 11.4 5.90 6.03 n/s4 n/s n/s n/s
sterile1 15.1 12.9 6.10 5.58 n/s n/s n/s n/s

1 Incubated with H4 water; 2 Incubated with D10 water; 3 DOC precision: ±0.3 mg/L; 4 n/s = no sample.  
Values are based on the average of measurements from duplicate bags.

Dickie Inflow 10 

Harp Inflow 4 

DARK

Harp Inflow 5 

LIGHT

Site Treatment
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Oxygen was generally consumed more rapidly earlier in the 

experiment, thus O2 consumption was not linear with time.  The rapid 

initial loss of O2 could be consistent with a non-linear process such as light-

induced particulate matter formation or with a reaction rate that is first-

order with respect to O2.  However, the goodness-of-fit between zero- and 

first-order fits was not markedly different and there is insufficient evidence 

to adopt a first-order fit rather than zero-order approach when calculating 

consumption rates.  A linear fit was therefore used to calculate the rates of 

O2 consumption in order to compare the rates with other studies using zero-

order approaches (e.g. Miles and Brezonik, 1981; Lindell and Rai, 1994).  

The O2 consumption rates in D10 in the light were approximately 

twice that of H4.  However, the original DOC concentration in D10 (29.4 

mg/L) was greater than in H4 and H5 (6.8 mg/L and 15.4 mg/L 

respectively; Table 2.3) a result of higher wetland coverage in the D10 

catchment (Table 2.1; Dillon and Molot, 1997b).  Normalizing the O2 loss 

to the DOC concentration lost reveals that H4 consumed more than twice 

the O2 per mg/L of DOC lost from the water than D10 in light and dark 

treatments.  O2 consumption during the breakdown of DOM from H5 fell 

between H4 and D10 and illustrates that natural differences exist between 

streams.  Differences in O2 consumption rates between streams could be due 

to differences in DOM quality or different degrees of self-shading in waters 

with higher DOC concentrations (i.e. D10). 

The O2 consumption rates in the dark did not vary among treatments 

or among streams (Table 2.2), even in inoculated treatments where 

respiration occurred.  Minor variations existed between treatments from 

each stream with the exception of the dark filtered treatment from H4, 

which had a higher O2 consumption rate in both incubation bags for an 

unknown reason.  
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Consumption rates in the light treatments were an order of 

magnitude greater than in the dark treatments of D10 and approximately 3 

to 8 times greater in H4.  The similarity of the rates in light treatments and 

large differences between the light and the dark treatments indicates that 

consumption of O2 by respiration and redox reactions was very small 

compared to photolysis in this experiment. 

O2 consumption rates from this study were similar to rates from 

other streams and other aquatic systems including incubations of sterile 

highly coloured humic waters of Lake Mize (light: 0.12mg/L/hr; dark: 

0.04mg/L/hr; DOC = 38 mg/L), in situ rates observed in other coloured 

Florida lakes with DOC concentrations ranging from 13-60 mg/L (light: 

0.02-0.09 mg/L/hr; dark: 0.01-0.04 mg/L/hr; Miles and Brezonik, 1981), 

and incubations of sterile lake and creek waters with varying humic content 

from northern Germany (0.02-0.062 mg/L/hr; DOC = 5-37 mg/L; Lindell 

and Rai, 1994).  In contrast, our O2 consumption rates were much lower 

than incubations of humic Swedish bog waters with DOC ≥70mg/L 

(Lindell and Rai, 1994). 

Others have also noted the importance of photolysis relative to 

respiration.  Amon and Benner (1996) found respiration rates were eight 

times smaller than O2 consumption rates due to photochemical processes in 

incubation experiments of Brazilian Rio Negro (blackwater river; DOC 

~10mg/L).  Their rates are comparable to those observed by Lindell and 

Rai (1994) in humic-coloured freshwaters, and in light and dark treatments 

of this study.   Rates in this study normalized for DOC also fall within the 

range of rates calculated from Amon and Benner (1996).   

Although photooxidative O2 consumption rates appear to be high in 

incubations, this is often not the case in natural water bodies.  In 5 

temperate oligotrophic lakes, Granéli et al. (1996) determined that O2 



 30

consumed during photodegradation of DOM was more important than 

during planktonic community respiration on a volumetric basis in surface 

waters; however, respiration was greater than photodegradation on an areal 

basis.  Similarly, Anesio and Granéli (2003) found that community 

respiration was areally greater than photooxidation in mesocosm 

experiments.  In natural systems, respiration may become more important 

because light is rapidly attenuated with depth whereas respiration occurs 

throughout the entire water column (Wetzel, 2001).  Therefore, the mean 

depth of the system will, in part, govern the relative importance of 

photolysis and respiration. 

DOC is lost in all the treatments but at a much greater rate in the 

light indicating the loss is likely a result of the photodegradation of DOM 

(Table 2.3).  However, particulate matter also formed during the incubation 

in both the light and the dark treatments accounting for a portion of the 

DOC loss.  Although not quantified in this experiment, more particulate 

matter appeared visually to form in the light treatments.  Even though 

particulate matter can form in both the light and the dark, Gao and Zepp 

(1998) suggest that as DOM is oxidized in the light, it complexes iron more 

readily, converting dissolved iron and carbon to particulate phases. During 

photodegradation, DOC is oxidized and low molecular weight products are 

created, and Fe3+ is reduced to Fe2+.  The ferrous iron is then reoxidized to 

form new ferric hydrous oxides to which the remaining DOC can bond via 

ligand exchange.  Reactions are much slower in the dark where the 

reduction of Fe3+ by organic matter is temperature driven (Faust, 1994).  

Other O2 consuming reactions can occur in the dark, including nitrification, 

methane oxidation, and the oxidation of other reduced inorganic species 

(e.g. Mn2+, Fe2+; Quay et al., 1995).  Sometimes, these reactions can be the 

result of photochemical products from light-mediated reactions (e.g. iron 

catalyzed hydrogen peroxide Fenton reactions).  Abiotic oxidation could 

account for particulate matter formation (in the light and in the dark) in this 
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study and could be a direct or indirect mechanism for O2 loss.  Therefore, 

the calculated O2 consumption rates are a combination of all O2 consuming 

processes.  

DOC from different streams may differ in photolability.  Changes in 

SUVA254 have been used as an indicator of changes in the chemical 

character (including % aromaticity) of DOC (e.g. Hood et al., 2006).  Initial 

SUVA254 was higher in D10 indicating that its DOC had a different 

chemical character than H4 with a higher % aromaticity (Table 2.3).  

Exposure to light alters the DOC character as functional groups are cleaved 

and particulate matter forms.  At the end of the incubation, SUVA254 

decreased in H4, increased in D10 (Table 2.3) and did not vary greatly in 

H5.  Thus, although DOC was lost in all the stream samples, DOC did not 

react in the same manner in all streams.  

SUVA254 increased in all the dark treatments but changes were 

smaller than in the light (Table 2.3).  Particulate matter also formed in the 

dark treatments.  With no photodegradation occurring in the dark 

treatments, changes in SUVA254 likely reflect changes in the DOC character 

resulting from particulate formation and/or other abiotic processes.  

2.4.2 Effects of photolysis and respiration on δ18O-O2  

In these incubations, O2 consumption caused an increase in the δ18O-O2 

value of both the light and the dark treatments (Figure 2.2).  In the light 

treatments, the δ18O-O2values increased by approximately 7‰ to 15‰ and 

changes were similar in filtered, inoculated, and sterile treatments of each 

inflow.  In addition to DOM photochemistry, other photochemical 

reactions may have occurred (including redox reactions with trace metals, 

iron, nitrate, etc).  Given that photolysis of DOM and other abiotic 

processes consume O2 in the light sterile treatments, the increase in δ18O-O2 
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shows that photolysis and other abiotic reactions preferentially consume the 

lighter isotopomer, 16O16O.  
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Figure 2.2: δ18O-O2 versus Time of a) D10 and b) H4.  Precision of δ18O-O2 is 0.3‰.  Sterile 
H5 samples were incubated with both experiments (a and b), and sterile D10 samples were 
incubated with H4 (b) to assess the differences in light exposure between the two experiments. 

Stream water incubated in the dark also exhibited an increase in 

δ18O-O2with decreasing O2 concentration (~4‰ to 7‰ increase) in all 

treatments including the sterile treatment.  Abiotic O2 consumption 

mechanisms, are thus also δ18O-O2 fractionating processes preferentially 

consuming 16O16O.  Values of α calculated through dark incubation 

experiments include abiotic O2 consumption fractionation. 

Isotopic fractionation factors in the light treatments ranged between 

0.988 and 0.994 (average α = 0.992; Table 2.4).  In general, the α ranges 

were similar for filtered, inoculated, and sterile treatments in D10 and H4.  

Sterile samples from H5 and D10 incubated on two different dates were also 
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similar. The α values for all the streams were similar even though the DOC 

from the different streams was of different quality.  Isotopic fractionation in 

the dark incubations (average α = 0.994), was similar for the different 

treatments and for all the streams.  In addition, dark and light exposed 

samples had similar α values. The magnitude of the α values is similar to 

the O2 fractionation for pyrite oxidation in mine tailings (0.9957; Taylor et 

al., 1984).  These calculated α values are much closer to 1.000 than the αR 

values reported for marine microalgae and bacteria (0.974 – 0.982; Kiddon 

et al., 1993), and Amazon River water (0.979 – 0.986; Quay et al., 1995) 

that are usually used in O2 – δ18O-O2 studies. 

Table 2.4: Fractionation factors calculated from the incubations using the principles of 
Rayleigh fractionation. 

Isotopic fractionation in these incubations was not dependent on the 

rate of O2 loss.  There was no relationship between fractionation factors 

from the incubations and rates of O2 consumption, similar to the only other 

published studies of respiration rates and αR values (Figure 2.3; Kiddon et 

al., 1993; Quay et al., 1995).  Samples generally clustered according to 

filtered 0.991 ± 0.001 0.001 0.993 ± 0.001 0.001
inoculated 0.990 ± 0.001 0.001 0.995 ± 0.001 0.001
sterile 0.992 ± 0.001 0.001 0.995 ± 0.001 0.001
sterile1 0.994 ± 0.001 0.001

Average 0.992 0.994
 

filtered 0.990 ± 0.001 0.001 0.991 ± 0.001 0.001
inoculated 0.990 ± 0.001 0.001 0.990 ± 0.001 0.001
sterile 0.985 ± 0.001 0.001 0.985 ± 0.001 0.001

Average 0.988 0.989

sterile2 0.992 ± 0.001 0.001
sterile1 0.995 ± 0.001 0.001

Average 0.994
1 Incubated with H4 water; 2 Incubated with D10 water; 3 n/s = no sample

Site Treatment LIGHT (±) DARK (±)

Dickie Inflow 10 
(wetland)

n/s3

Harp Inflow 4 (more 
upland)

Harp Inflow 5 
(wetland)

n/s
n/s
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stream and light regime and were separated from the incubations of Kiddon 

et al. (1993).  However, Kiddon et al. (1993) incubated bacteria and 

microalgae in artificial seawaters where fractionation by the biotic species 

was enzyme-limited and abiotic redox reactions were likely minimal in 

comparison to respiration.  The dark O2 consumption incubation rates from 

this study are similar to the dark incubations performed by Quay et al. 

(1995) on unfiltered water from the Amazon basin (Figure 2.3) but the αR 

values are different.  Although the unfiltered Amazon River fractionations 

also incorporate all abiotic oxidation, nitrification, and bacterial respiration, 

the similarities to Kiddon et al. (1993) suggest that their fractionation factors 

could be enzyme-limited and that biotic O2 consumption could be higher in 

their waters. Values of α may rely on the relative importance of O2 

consumption by abiotic and biotic processes. 
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Figure 2.3:  Fractionation factor (α) versus O2 consumption rate for the current incubation 
study. Filled symbols denote dark incubations, while hollow symbols represent light 
exposed treatments.  Data from Quay et al. (1995) and Kiddon et al. (1993) incubations are 
included.  Kiddon et al. (1993) incubated isolated and mixed bacteria and marine 
microalgae assemblages in dark syringes with artificial seawater for 4-8 hours at 20°C.  
Quay et al. (1995) incubated unfiltered Amazon river water in dark bottles for <24hrs for 
small bottles and 2-7 days for large carboys at 28°C.  Respiration rates included all O2 
consuming processes (e.g. bacterial respiration, CH4 and Mn oxidation, nitrification etc). 

Current coupled O2 – δ18O-O2 models used to calculate P:R ratios in 

the Amazon Basin (Quay et al., 1995), Meech Lake (Wang and Veizer., 

2000), and Big Hole River (Parker et al., 2005) and P:R:G (Venkiteswaran 

et al., 2007) do not consider respiration, photolysis, and other abiotic 

reactions separately.  All the O2 consuming processes in these incubations 

including the photolytic breakdown of DOM, respiration, particulate matter 

formation, and other abiotic redox reactions preferentially consume 16O16O 

over 18O16O.  Only two studies have measured αR values from dark 

incubations in artificial seawater or river waters, and generally these values 

are used for both light and dark respiration fractionation in whole 

ecosystem O2 – δ18O-O2 studies (e.g. Wang and Veizer, 2000; Parker et al., 
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2005).  As the α values from this study are different than published αR 

values, αR values measured in dark incubations may not be appropriate for 

all O2 consumption in the light when photolysis is an important process, or 

in either the dark or the light when other abiotic reactions are important.  

Because photolysis both consumes oxygen and changes the δ18O-O2, a 

separate photolytic/abiotic component may need to be incorporated into 

the models especially in shallow aquatic systems with high DOM where 

DOM photodegradation may be a significant O2 consuming process.  

2.5 Summary 

Oxygen loss occurred in stream water samples incubated in natural sunlight.  

O2 consumption rates were similar in incubations of filtered, inoculated, and 

sterile waters from the same stream under either light or dark conditions.  

Incubations in the light had substantially higher rates of O2 consumption 

than the dark indicating that photolysis was greater than respiration and 

abiotic processes in the light-exposed treatments.  Rates differed in different 

streams even when normalized for the DOC concentration lost indicating 

that there were inherent differences in DOM photolability.  Consumption of 

O2 in photochemical and other abiotic reactions fractionated oxygen 

isotopes (preferentially consuming the lighter 16O16O isotopomer) similar to 

respiration.  Calculated δ18O-O2 photolysis fractionation factors in the light 

and the dark regimes were the same for all treatments within a stream, and 

were confined to a narrow range for the three different streams (α range = 

0.988 – 0.995).  Furthermore fractionation factors were not dependent on O2 

consumption rates, which differed between streams.  The α values 

calculated from dark incubations were larger than αR values reported for 

large rivers and marine systems. As O2 and δ18O-O2 applications in aquatic 

system studies currently do not separately include DOM photodegradation 

and other abiotic processes, respiration rates in shallow, high DOC aquatic 

systems, could be overestimated.   
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Chapter 3:  
 
The effect of DOM photodegradation on δ13C-
DOC and δ13C-DIC in forested stream waters. 

3.1 Overview 

Carbon is required for sustenance in aquatic systems such as streams and lakes, 
however, processes such as respiration, the photolytic breakdown of dissolved 
organic matter (DOM) and the direct sedimentation of DOM also affect carbon 
concentrations.  To examine the effects of respiration, photolysis, and other 
abiotic reactions on dissolved inorganic and dissolved organic carbon 
concentrations (DIC, DOC) and isotopes (δ13C-DIC, δ13C-DOC), filtered, 
inoculated, and sterile samples of stream waters from Ontario, Canada, were 
incubated in natural sunlight.  DIC production rates in the light were up to an 
order of magnitude greater than in the dark, suggesting that light-mediated 
processes controlled DIC production.  The similarities between DIC production 
rates for each treatment (i.e. filtered, inoculated, and sterile) indicates that 
photolysis was the dominant DIC producing process compared to respiration in 
these incubations and that DIC consumption due to photosynthesis was 
minimal.  DIC production rates were different among streams, even when 
normalized to the change in DOC concentration, signifying that DOM 
photolability varied among streams.  During DOM breakdown to CO2, the 12C 
isotope was preferentially degraded, leaving the residual δ13C-DOC 1‰ to 4‰ 
enriched in the 13C isotope, creating enrichment (ε) factors down to -3‰.  
Concurrently, δ13C-DIC was produced by photolysis, respiration, and possibly 
other abiotic reactions.  The δ13C-DIC values of the DIC produced ranged 
between –23‰ and –31‰, and were similar in the light incubations for each 
treatment, but different between streams.  The δ13C-DIC produced in the dark 
incubations was inconclusive due to large errors but considering the DIC 
production rates and the δ13C-DIC values from the light incubations suggests 
that photolysis and abiotic reactions are mostly responsible for the DIC and 
δ13C-DIC changes observed, not respiration.  In current DIC and δ13C-DIC 
models, photolysis and respiration are not considered separately and the isotopic 
fractionation during respiration is either assumed, calculated via models, or 
measured in the dark and used in the light.  In these incubations, DOM 
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photodegradation and abiotic reactions are important DIC producing and δ13C-
DIC fractionating processes that can affect the δ13C-CO2.  Current models of 
DIC and δ13C-DIC or δ13C-CO2 may incorporate photolysis of DOM and other 
abiotic processes into the respiratory component of DIC production and DOC 
mineralization, thereby overestimating respiration. Without incorporating the 
δ13C-DOC changes from DOM photodegradation, studies examining the ratio of 
allochthonous to autochthonous carbon contributions could underestimate the 
importance of allochthonous carbon.  Additionally, most models trying to 
isolate DOC sources using carbon isotopes of DOM assume that photolysis has 
no effect on δ13C-DOC.  However, photolysis and abiotic reactions can both 
affect δ13C-DIC and δ13C-DOC signatures, particularly in shallow aquatic 
systems with high DOC. 

3.2 Introduction 

Carbon is crucial in aquatic systems as it controls the buffering capacity of 

waters, influences nutrient availability, and is a source for organic productivity.  

Northern temperate and boreal lakes are generally net heterotrophic ecosystems, 

partially relying on dead or decaying organic matter produced in the terrestrial 

catchment for sustenance.  Carbon dynamics within these lakes can be affected 

by a number of processes including the photodegradation, microbial 

decomposition, and the direct sedimentation of dissolved organic matter 

(DOM), in addition to gas exchange with the atmosphere, photosynthesis, 

mixing, and other redox reactions.  

Carbon mass balances are commonly used to examine the sources 

and controls of carbon in aquatic systems.  Due to the complex transfer 

pathways, studies have commonly concentrated on only a portion of the 

carbon cycle (e.g. the inorganic or organic component; Wetzel et al., 1972; 

Emerson, 1975a; Hesslein et al., 1980).  However, Dillon and Molot 

(1997a) used dissolved inorganic carbon (DIC) and dissolved organic 

carbon (DOC) mass balances to partition the carbon lost in oligotrophic and 

mesotrophic lakes between the atmosphere and the sediments.  Andersson 

and Sobek (2006) also used carbon mass budgets and ecosystem models to 

understand organic matter pathways in lakes, while Sobek et al. (2006) 
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found a small Swedish boreal lake to be net heterotrophic with respiration 

acting as the largest organic carbon sink in the lake.  Yang et al. (2008) 

compared mass balances, and gas exchange and carbon burial balances to 

determine that the eutrophic Lake Donghu acts as carbon sink.   

Isotopic balances can also be used to determine the fate of organic 

matter and isolate sources of carbon in aquatic systems.  Estimates of rates 

of gas exchange and of net organic carbon production were determined 

using δ13C-DIC mass and isotope balances in Lake Washington by Quay et 

al. (1986).  Cifuentes and Eldridge (1998) used carbon mass and 13C-isotope 

balances to examine the sources, sinks, and mixing of DOC to estimate the 

magnitude of the different DOC sources in estuaries.  Raymond and Bauer 

(2001) used DOC and DIC (13C and 14C) isotope balances to examine the 

sources and fate of DOC in a temperate estuary.  Mineralization of DOC in 

a humic Swedish lake was examined by Jonsson et al. (2001) to reveal the 

importance of allochthonous and autochthonous carbon as sources of DOC 

and CO2 within the lake, and δ13C of DIC and particulate organic carbon 

(POC) were used to independently trace the organic and inorganic carbon 

sources.  Ogrinc et al. (2002) used carbon isotope balances in addition to 

other chemical analyses to isolate DIC sources in carbonate rich sediments 

from a subalpine lake, while Herczeg (1987) completed DIC mass and 

isotope balances in a softwater lake for a better understanding of lake 

productivity, assessment and management, and to predict human impacts 

on lakes.  Herczeg et al. (2003) also determined the importance of 

groundwater to lake water and chemical balances, and changes to the 

carbon budget using stable carbon and oxygen isotopes of carbonate and the 

δ13C of organic matter in Blue Lake Australia.  However, none of these 

studies specifically considered photolysis as a separate process affecting the 

carbon balances. 
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DIC and DOC concentrations and their isotope ratios can be used in 

conjunction with each other to isolate carbon sources and cycling in aquatic 

systems.  As terrestrial DOC is respired, the CO2 produced will have a 

similar δ13C to its organic source.  Microbial degradation of DOC 

originating from C3 plants (average foliar δ13C = –28‰; Deines 1980) will 

increase the DIC concentration, and the δ13C-CO2 produced will be lower 

than the atmospheric CO2 signature of –8‰ (Keeling et al., 1995).  

Conversely, δ13C-CO2 derived from carbonate minerals will not necessarily 

be greater than atmospheric CO2 (as suggested by Craig, 1953), but will 

depend on the δ13C of the carbonate being weathered.  Although the 

δ13C-CO2 produced may be lower than the atmospheric CO2 signature, it 

will be markedly different than DOC originating from C3 plants.  Therefore, 

heterotrophic respiration will decrease δ13C-DIC, while atmospheric inputs 

of CO2 and degassing of CO2 would normally increase the δ13C-DIC.  

Aquatic photoautotrophs can increase the remaining δ13C-DIC by isotopic 

fractionation during photosynthesis (McKenzie, 1985). 

Previously published studies on δ13C in aquatic systems consider 

respiration, photosynthetic assimilation of carbon, mixing, and gas 

exchange as the processes affecting the δ13C values of DIC, DOC, and POC 

(e.g. Quay et al., 1986; Cole et al., 2002; Pace et al., 2004; Carpenter et al., 

2005; Cole et al., 2006).  These are not, however, the only processes 

affecting carbon in lacustrine and riverine systems.  In a 13C carbon dual 

isotope flow model developed from a whole-lake 13C addition tracing the 

pathways of organic carbon utilization, Cole et al. (2002) note that 

photooxidation could be a significant CO2 source, but do not include it in 

their model suggesting that system respiration is much larger than 

photooxidation.  Similarly, Pace et al. (2004) note that allochthonous 

carbon can aggregate, coagulate, and flocculate upon entering lakes 

providing a POC source to aquatic consumers such as Daphnia, but do not 
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consider the isotopic changes that might accompany these processes in their 

univariate time-series carbon models.  In the multi-variate autoregression 

model described in Carpenter et al. (2005), although epilimnetic POC 

turnover is rapid and flocculation of DOC is incorporated into the model (as 

in Cole et al., 2002), there is no mention of the isotopic effects associated 

with this process.  Cole et al. (2006) further examine the importance of 

terrestrial POC, DOC, and prey in food web pathways within lakes using 

the dual isotope flow model, however, they do not examine the isotopic 

effects of photodegradation on δ13C-DOC.  In the same whole lake addition 

experiments (e.g. Cole et al., 2002; Pace et al., 2004; Carpenter et al., 2005) 

δ13C-DOC change due to algal carbon contributions was examined by Bade 

et al. (2007).  In their isotope model, Bade et al. (2007) incorporate DOC 

loss by photooxidation, however they did not use a fractionation factor for 

this process due to uncertainty in the fractionation over long time frames 

(Opsahl and Zepp, 2001).  Approximately 50% of the DOC entering a suite 

of 7 oligotrophic lakes in the southern Precambrian Shield is lost to the 

atmosphere and sedimentation (Dillon and Molot, 1997a).  Therefore, a 

mechanism that could produce DIC could account for the large DOC loss 

in many boreal lakes with high DOC is photolysis (Molot and Dillon, 

1997b).  Thus, it is important to understand the impacts that photolysis can 

have on these systems when conducting isotopic studies.  

DOM photodegradation has been extensively studied due to its role 

in the global carbon cycle (e.g. transport of terrestrial carbon to the ocean: 

Miller and Zepp, 1995; CO2 supersaturation in lakes: Granéli et al., 1996; 

and DOM loss in lake surface layers: Bertilsson and Tranvik, 2000).  

Photodegradation of DOM also influences water chemistry and 

transparency affecting both the photic zone depth and the region of 

photosynthetic activity (Andrews et al., 2000; Anesio and Granéli, 2003).  

In addition, DOM photodegradation can affect aquatic organisms by 
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altering UV penetration, and the lability of carbon sustenance in the food 

web (Gao and Zepp, 1998). 

During the photodegradation of DOM, dissolved oxygen is used as 

an electron acceptor in the overall oxidation of DOC into lower molecular 

weight, more labile carboxylic acids, smaller organic compounds, and DIC 

which can stimulate microbial activity (Miller and Moran, 1997; Tranvik 

and Bertilsson, 2001).  The breakdown of DOM to CO2 transforms carbon 

and affects the carbon balance of aquatic ecosystems.  It is therefore crucial 

to understand the photodegradation of DOM, in addition to the other 

processes controlling carbon production and consumption, to effectively 

comprehend and model carbon dynamics in lakes and other aquatic systems 

with high allochthonous DOC inputs. 

Although extensive research has addressed DIC production and 

DOC degradation during photolysis (e.g. Miller and Zepp, 1995; Granéli et 

al., 1996; Bertilsson and Tranvik, 2000), only a few studies have examined 

the changes in the δ13C of DOC and DIC during photolysis (Opsahl and 

Zepp, 2001; Osburn et al., 2001; Vähätalo and Wetzel, 2008) and none 

investigate how the degree of DOM degradation affects these isotopic 

signatures.  This study 1) examines the effects of photolysis, respiration, and 

other abiotic reactions on δ13C-DIC and δ13C-DOC in waters from three 

different forested streams; 2) examines the amount of DOC loss necessary 

before a measurable isotopic shift in δ13C-DOC occurs; and 3) calculates the 

associated enrichment factor (ε). 

3.3 Methods 

Bulk water samples were collected for incubation experiments from streams 

emptying into two oligotrophic headwater lakes (Harp and Dickie Lakes) 

which are located approximately 200 km north of Toronto, Ontario, 
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Canada, on the southern tip of the Precambrian Shield in the Muskoka-

Haliburton region.  The lakes’ watersheds are composed of tills <1m thick 

and contain peatlands.  Detailed descriptions of these forested catchments 

and streams can be found in Dillon et al. (1991).   

Dickie Inflow 10 (D10), Harp Inflow 4 (H4), and Harp Inflow 5 

(H5), are either major carbon or major water contributors to Harp and 

Dickie Lakes.  Stream water was collected at weirs less than 50m upstream 

from the lakes and their general characteristics can be found in Table 3.1.  

These inflows have been the focus of other photolytic studies on DOM and 

O2 consumption (e.g. Molot and Dillon, 1997b; Gennings et al., 2001; 

Chomicki and Schiff, 2008: Chapter 2).  Generally, DOC concentrations in 

these streams decrease with increasing discharge.  The lakes have lower 

DOC concentrations than their streams illustrating high rates of in-lake 

DOC loss.  

Table 3.1:  Percent peatland and stream water characteristics (taken within one week of the 
samples from this study) for the three sites. 
 

This study ran concurrently with an experiment tracking the O2 

consumption and δ18O-O2 fractionation during the photolytic degradation of 

DOM.  The field sites and experimental setup are summarized from 

Chomicki and Schiff (2008) (Chapter 2).  In brief, bulk stream water 

samples were filtered to 0.2 µm and subjected to three treatments.  Filtered 

treatments contained only the filtered water, and microbial activity should 

Site
Catchment 

% peatland1
Total iron 

(µg/L)2 pH2 Colour (Hz)2 DOC (mg/L)2 DOC (mg/L)3

Dickie Inflow 10 17.1 1050 4.58 359 31.5 29.4
Harp Inflow 4 5.0 105 6.68 42.8 5.0 6.8
Harp Inflow 5 13.3 778 5.82 175 16.9 15.4
1  Taken from Dillon and Molot, 1997b
2  OME unpublished, May 24th, 2005
3  current study: May 28th, 2005
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therefore be absent (Wotton, 1994).  Inoculated treatments contained a 

mixture of the 0.2 µm filtered water and the inoculant in a ratio of 9:1, and 

therefore microbes were present.  To create the inoculant, 1 litre of each 

water was filtered through 1 µm Nuclepore membranes leaving suspended 

bacterioplankton (Sieburth et al., 1978) (e.g. heterotrophic bacteria and 

archaea: 0.2-1.2 µm; Legendre and Rivkin, 2009), filtering out most 

photosynthetic organisms and bacterial grazers such as protists, rotifers, etc.  

The third treatment was filtered to 0.2 µm and sterilized with 1 mL of a 

saturated solution of HgCl2 per litre of stream water to ensure the absence of 

microbial and/or photosynthetic activity. 

Preliminary experiments were completed to make certain DOM 

leaching from Tedlar bags did not occur and to ensure that the bags were 

gas-tight.  The Tedlar bags were washed in triplicate with ethanol and rinsed 

3 times with Nanopure water before filling with 8 L of sample water.  The 

bags were exposed to natural sunlight at the University of Waterloo (43° 28' 

25.6" N and 80° 33' 27.5" W; elevation ~ 335 masl) in shallow water baths.  

Each treatment was exposed simultaneously in duplicate such that two bags 

of each of the filtered, inoculated, and sterile treatments were arranged side 

by side to minimize variation in solar exposure and temperature.  Although 

duplicate bags were within 0.2°C, the temperature was not controlled.   

Water baths moderated daily temperature changes, however, temperature 

between treatments on the same day varied according to sampling time. 

In the first experiment (D10: began on June 17th, 2005) 14 bags were 

incubated (2 replicates of each of 3 treatments in the light and in the dark, 

and two additional light-exposed H5 sterile samples).  Light treatments were 

exposed for 4-7 days, while the dark treatments were incubated for 20 days.  

The second experiment (H4) began on July 9th, 2005 and a total of 16 bags 

were incubated (2 bags for each of 3 treatments in the light and the dark, 

two H5 light exposed sterile treatments, and two D10 light exposed sterile 
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treatments).  Light treatments were exposed for 3-8 days; however, dark 

treatments were incubated for 14 days.   

Phase 1 of the experiment was closed (with no gases entering the 

bags from the atmosphere or exiting the bags to the atmosphere) and 

tracked the gas changes in the incubated bags.  After the loss of >80% of the 

oxygen in the light exposed bags (signifying the end of Phase 1), the bags 

were re-aerated daily and final δ13C-DOC samples were collected once the 

DOC had declined by ≥ 50% (Phase 2).  Since the Tedlar bags are gas tight, 

re-aeration was necessary to reintroduce oxygen into the light exposed bags 

in order for the remainder of the DOC to be photo-oxidized under aerobic 

conditions.  Bags were well mixed prior to each sampling, and since 3 to 5 L 

of sample water remained at the end of the incubations, no effects are 

expected due to the changes in the incubation water volume throughout the 

experiment. 

The concentration data presented is an average of the duplicate bags 

for each treatment. The isotope data are analyzed in their entirety for one 

bag, with duplicates analyzed approximately every 5 samples, while only 

every 2-5 samples from the second (duplicate) bag were run for isotopes.  

Since D10 and H4 waters were incubated on different dates, each 

incubation experiment contained a set of sterile water from H5 and D10 

exposed to light to assess inter-incubation variation. 

Changes in DIC, pCO2 (partial pressure of CO2) and DOC 

concentrations, and δ13C-DIC were tracked over the course of the 

experiment.  DIC concentration and δ13C-DIC samples were taken at 

regular intervals during Phase 1 (until 80-90% of the oxygen was 

consumed). A three-way valve, tubing and needles were used to collect 

samples and to minimize gas contamination from the atmosphere.  Samples 

for δ13C-DOC were collected at the beginning of the experiment, when the 
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bags were first re-aerated (Phase1), and at the final stages of the experiment 

after ≥ 50% of the DOC was degraded (Phase 2).  

DIC samples were collected without headspace in 15 mL Wheaton 

serum bottles with baked BD Vacutainer stoppers and preserved with 

0.02 mL of saturated HgCl2 solution.  A 5mL helium headspace was added 

while removing an equivalent volume of water and samples were acidified 

with 85% H3PO4 to pH < 2 before being shaken on an orbital elliptical 

shaker for 1.5 hours to equilibrate headspace and liquid phases.  

Concentrations were measured by equilibrated headspace on a Shimadzu 

GC-8A Gas Chromatograph fitted with a methanizer (Ni catalyst, He gas 

carrier, FID detector) with an uncertainty of < 5% (Stainton, 1973). 

pCO2 samples were collected without headspace in evacuated 60 mL 

Wheaton serum bottles, with baked BD Vacutainer stoppers, containing 

3.56 g of KCl as a preservative.  A 5 mL helium headspace was added and 

samples were shaken on an orbital elliptical shaker for 1.5 hours to 

equilibrate concentrations with the headspace.  Concentrations were 

measured as above. 

DOC samples were filtered to 0.45 µm and acidified with 20% HCl 

to approximately pH 4.  Samples were analyzed on a total organic carbon 

analyzer (Dohrmann DC-190) with a precision of ± 0.3 mg/L after being 

acidified by the instrument with 85% H3PO4 to a pH of 2-3 and sparged to 

remove DIC.  Duplicate DOC absorbance samples (also filtered to 0.45 µm) 

were analyzed on a Beckman DU530 Life Science UV/Vis 

Spectrophotometer (path length = 1cm) between 200 nm and 700 nm and 

automatically corrected to the absorbance of Nanopure water. The ratio of 

UV absorption at λ = 254 nm (measured in absorbance units m-1) to DOC 

concentration (mg/L) was used to determine the specific UV absorbance 

(SUVA254) (Weishaar et al., 2003).  The specific absorption coefficient at λ = 
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350 nm (SAC350) was calculated by normalizing the absorbance at 350 nm 

to the DOC concentration (mg/L) (Moran et al., 2000).  Other dissolved 

absorbances (ad) of interest were ad320 and ad250:ad365 ratio. 

δ13C-DIC samples were collected without headspace in 125 mL 

Wheaton serum bottles, capped with baked BD Vacutainer stoppers, and 

preserved with 0.3 mL of a saturated solution of HgCl2.   A 5 mL helium 

headspace was created and samples were acidified with 85% H3PO4 to a pH 

less than 2.  Samples were shaken for a minimum of 1.5 hours to equilibrate 

the gases between the dissolved phase and the headspace.  Gas from the 

headspace was analyzed on a Micromass Isochrom Gas Chromatograph 

Combustion Isotope Ratio Mass Spectrometer (GC-C-IRMS) at the 

Environmental Isotope Laboratory, Waterloo, Ontario.  Precision of these 

analyses is within ± 0.3‰.  Duplicates were analyzed approximately every 5 

samples and results were within 0.3‰ of each other. Results are reported in 

standard δ notation as δ13C = ((Rsample / Rstandard) – 1) x 103 ‰, where R is 
13C:12C. 

δ13C-DOC samples were obtained by filtering water through pre-

combusted GF/F filters.  The filtrate was acidified with 20% HCl to a pH of 

4.5, freeze-dried and analyzed with a Carlo Erba 1105 Elemental Analyzer 

coupled to a Micromass Isochrom IRMS with a precision of ± 0.2‰ by the 

Environmental Isotope Laboratory, Waterloo, Ontario.  Results are 

reported in standard δ notation as δ13C = ((Rsample / Rstandard) – 1) x 103 ‰, 

where R is 13C:12C. 

Assuming a Rayleigh relationship between the δ13C-DOC and the 

fraction of DOC remaining after photodegradation, an enrichment factor (ε) 

was calculated from the fractionation factor using the following 

relationship: R = Rof (α-1), where, R = ratio of the DOC isotopes after 

photodegradation, Ro = initial DOC isotope ratio, f = fraction of DOC 
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remaining, and α = fractionation factor.  From the calculated fractionation 

factor, ε was calculated using: ε = (α-1) x 1000 ‰. 

3.4 Results and Discussion 

3.4.1 Rates of DIC production 

In the light-exposed incubation bags, DIC production was rapid during 

Phase 1 in all treatments, and was accompanied by an 80-90% loss in O2 

and an average DOC loss of 25% in approximately 4 days (Chomicki and 

Schiff, 2008: Chapter 2).  DIC concentrations in duplicate treatments were 

generally within 5%.  DIC production was quasi-linear with time and 

similar for all three treatments in the light incubation bags (Figure 3.1).  O2 

consumption in the inoculated and sterile treatments from each site was 

similar (Chomicki and Schiff, 2008: Chapter 2) to DIC production, 

indicating that the main mechanism responsible for DIC production was 

not microbial respiration.  Microscopic examination of samples in a 

preliminary experiment indicates bacteria were present in unsterilized 

treatments, although bacterial populations were not quantified in the 

current experiment.   
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Figure 3.1:  DIC concentration versus time of a) D10 and b) H4.  Points are the average of 
two duplicate bags incubated simultaneously.  Differences between bags are <0.2 mg/L.  
Sterile H5 samples were incubated with both experiments (a and b), and sterile D10 
samples were incubated with H4 (b) to assess the effects of differences in light exposure 
between the two experiments. 

O2 loss was similar to the DIC gained, however, they were not equal 

on a molar basis (Figure 3.2).  In the dark incubations, there is greater O2 

consumption than DIC production, and inoculated and sterile treatments 

were similar, suggesting that abiotic processes increased the O2 loss in the 

bags.  The light treatments generally produced more DIC than O2 lost 

although most of the samples were close to the 1:1 line. The average O2 

consumption:DIC production in the light and dark bags was 0.91 (standard 

error ± 0.04) and 2.13 (standard error ± 0.41) respectively.  In most cases, 

the average O2 consumption to DIC production was within error of the 1:1 

line, however, the dark bags suggest that some process is occurring within 

the dark that consumes more O2 than it produces DIC.  By comparing the 

two sets of incubations, the sterile treatments of H5 and D10 from the 
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second set of incubations produced greater amounts of DIC than in the first 

set of incubations.  For an unknown reason, the dark filtered H4 bag 

clusters with the light incubations showing a large degree of O2 loss and 

DIC gain in comparison to the other dark incubation bags. 
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Figure 3.2:  The relationship between O2 loss and DIC gain in the light incubations (open 
symbols) and the dark incubations (filled symbols).  The solid line denotes the 1:1 
relationship. 

DIC production rates in D10 were approximately twice those in H4 

(Table 3.2).  As differences exist in the original DOC concentrations in D10, 

H4, and H5 (29.4mg/L, 6.8 mg/L, and 15.4 mg/L respectively; Table 3.1), 

the DIC production rates were normalized to the DOC concentration lost.  

Normalized production rates reveal that in light and dark treatments H4 

produced more than twice the DIC per mg/L of DOC lost than D10.  It 

appears that natural differences exist between streams as the DIC 

production of H5 fell between H4 and D10.  These data patterns are similar 

to the O2 consumption trends from Chomicki and Schiff (2008: Chapter 2), 
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and were attributed to differences in DOM quality, or degrees of self-

shading in highly coloured high DOC concentration waters.  However, 

further studies suggest that these differences could also be attributed to 

different amounts of particulate carbon formation during the incubations 

(Chapter 4).  Although not quantified, visual inspection of the incubation 

bags (and the particulate residuals on the filters after sample filtration for 

δ13C-DOC analysis) suggests that more particulate matter was created in 

D10 than H4.  So, even though D10 produced less DIC per mg DOC lost, 

there was more visible particulate matter in the final samples and thus more 

DOC lost than in H4.  This is corroborated by greater amounts of DOC lost 

and particulate matter formed in the photolytic incubations presented in 

Chapter 4.  

There was little variation in DIC production rates in the dark 

incubations among treatments and among streams (Table 3.2), even in the 

inoculated treatments where biotic respiration occurred.   The dark filtered 

treatment of H4 produced more DIC than the other dark treatments for 

unknown reasons.   

DIC production rates in the light treatments were approximately 4 to 

9 times greater than in the dark treatments of H4, while the rates from the 

light-exposed D10 treatments were an order of magnitude greater than in 

the dark treatments.  In this experiment, the DIC produced by respiration 

and other reactions was quite small in comparison to photolysis given the 

similarity of the production rates in the light treatments and the large 

differences between the light and dark treatments. 
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Table 3.2:  Dissolved inorganic carbon (DIC) production rates and  DIC production rates normalized for DOC concentration in the 
water and for DOC lost during the experiment. 

 

DIC produced 
(µg/L/hrsunlight)

DIC produced 
(µg/L/hrsunlight/ 

mg/LDOC)

DIC produced 
(µg/L/hrsunlight/ 
mg/LDOC lost)

DIC produced 
(µg/L/hr)

DIC produced 
(µg/L/hr/ 
mg/LDOC)

DIC produced 
(µg/L/hrsunlight/ 
mg/LDOC lost)

filtered 54 ± 7 3.3 5.9 2.6 ± 0.5 0.1 1.1
inoculated 51 ± 6 2.9 6.0 1.4 ± 0.5 0.1 0.3
sterile 55 ± 7 3.0 7.1 1.4 ± 0.5 0.1 0.4

Average 53 2

sterile1 92 ± 9 3.3 73 n/s3 n/s3 n/s3

filtered 26 ± 3 5.1 24 7.0 ± 1 1.7 3.3
inoculated 23 ± 3 4.8 18 2.5 ± 1 0.6 1.3
sterile 26 ± 3 6.4 14 3.2 ± 1 0.7 3.1

Average 25 4

sterile2 44 ± 4 4.4 10 n/s3 n/s3 n/s3

sterile1 49 ± 5 4.2 17 n/s3 n/s3 n/s3

Average 47
1 Incubated with H4 water; 2 Incubated with D10 water; 3 ns = no sample
Values are based on the average of measurements from duplicate bags.

Dickie Inflow 
10

Harp Inflow 4 

Harp Inflow 5

Site Treatment

LIGHT DARK
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DIC production rates from these incubations were similar to DIC 

production rates from photolysis of other streams and aquatic systems 

including incubations of Lake Skärshulsjön water pumped from 0.5m depth 

under different pH conditions (18.4 to 31.8 µgC/L/hr; DOC ~ 15 mg/L; 

Anesio and Granéli, 2003), and in 5 Swedish and 4 Brazilian lakes and the 

Rio Negro (15 to 283 µgC/L/hr; DOC = 2.9 to 41.8 mg/L; Granéli et al., 

1998).  Rates also lie within the range observed from light incubations of 

filter sterilized surface waters from 38 lakes (~1 to 159 µgC/L/hr) with 

DOC concentrations ranging from 2.0 mg/L to 22.0 mg/L (Bertilsson and 

Tranvik, 2000) and filter sterilized riverine, near coastal and salt marsh 

waters incubated under simulated sunlight (~1 to 476 µgC/L/hr; DOC 2.0 

to 61.8 mg/L; Miller and Zepp, 1995).  In contrast, these DIC production 

rates were higher than 5 oligotrophic Swedish lakes with DOC ranging 

between 3.9 to 19 mg/L (3.6 to 17 µg DIC/L/hr; Granéli et al., 1996).  In 

many of the aforementioned studies, dark incubations were performed on 

unfiltered water or the raw data was not presented preventing direct 

comparison to the current study (e.g. Granéli et al., 1996; Bertilsson and 

Tranvik, 2000). 

The relative importance of photolysis and respiration has been 

recognized in terms of O2 consumption (e.g. Amon and Benner, 1996; 

Lindell and Rai, 1994), but is often overlooked in carbon mass and 13C/12C 

studies (e.g. Pawellek and Veizer, 1994; Findlay, 2003).  However, 

Raymond and Bauer (2001) suggested photo-oxidation as a potential 

mechanism to account for lost riverine DOC from their estuarine DOC 

cycling study.  In addition, Jonsson et al. (2001) recognized the importance 

of photo-oxidative effects on carbon in their whole-lake organic carbon 

mineralization study based on DIC production rates collected during the 

photooxidation of waters from the same system (completed by Bertilsson et 

al., 1999) and estimate that 20% of the DOC mineralization in the 

epilimnion was due to photo-oxidation. Using 38 lakes of varying organic 
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matter quality, Bertilsson and Tranvik (2000) showed that the majority of 

temperate lakes will be influenced by photochemical DIC production and it 

is possible that this could translate to other climate regimes.  However, in 5 

oligotrophic lake surface waters of different humic content, DIC production 

from photo-oxidation could exceed community respiration on an areal 

basis, yet became less important when integrated over the depth of the lakes 

(Granéli et al., 1996).  In the current study, the photodegradation of DOM 

was examined within incubated stream waters samples from inflow waters 

flowing into northern temperate lakes.  Although DIC production rates 

were not extrapolated to the lakes (or performed on lake waters), it is 

important to recognize that the DIC production rates from DOM 

photodegradation may decrease when considered on a volumetric basis over 

the depth of the epilimnion. 

Absorbances were measured at the beginning of the experiment, and 

at the end of Phase 1.  The chemical character of DOC can be examined by 

measuring SUVA254 , an indicator of changes in % aromaticity (e.g. Hood et 

al., 2006; Weishaar et al., 2003).  Initial SUVA254 values were generally 

greater when the incubation waters were from catchments with a higher 

percentage of peatlands suggesting that the wetland samples had a higher % 

aromaticity than waters that did not travel through wetlands (Table 3.3).  

Exposure to UV altered the DOC samples, created particulate matter and 

cleaved functional groups from the DOC.  SUVA254 results indicate the 

DOC did not react the same in all of the incubations (Chomicki and Schiff, 

2008: Chapter 2; Table 3.3).  Initial SUVA254 was higher in D10 indicating 

that its DOC had a different chemical character than H4 with a higher % 

aromaticity.  By the end of the incubation, SUVA254 decreased in H4, and 

increased in D10 and H5 (Table 3.3).  Exposure to light alters the DOC 

character, and generates photochemical transients (e.g. Haag and Mill, 

1990; Zafiriou et al., 1990).  High molecular weight DOM can fragment 

into low molecular weight carbon compounds including (but not limited to) 
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pyruvate, glyoxylate, acetaldehyde and carbon dioxide (Miller, 1994), and 

particulate matter can form (Gao and Zepp, 1998).  Thus, although DOC 

was lost in all the stream samples, it is possible that it did not react in the 

same manner in all streams.  
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Table 3.3:  Initial and final DOC concentrations, absorbances, and SUVA254 measurements for the three sites under filtered, inoculated, and 
sterile conditions.

a) Light Treatments

Site
Light 

Treatment

% peatland 
in 

catchment

DOC 
initial 

(mg/L)3

DOC final
(mg/L)

SUVA 
initial

SUVA final
ad250:ad365 

initial
ad250:ad365 

final
SAC350 

initial
SAC350 

final
ad320 

initial
ad320 

final
ad380 

initial
ad380 

final

filtered 29.1 20.0 5.35 7.09 4.03 4.28 3.93 4.90 70.45 60.58 31.90 27.93
inoculated 29.6 21.1 5.26 6.66 4.06 4.32 3.83 4.55 69.80 59.80 31.60 27.05
sterile 29.5 21.7 5.26 6.44 4.05 4.34 3.83 4.40 69.90 59.43 31.55 27.05
sterile1 29.2 27.9 5.29 4.91 4.08 4.26 3.83 3.38 69.40 58.68 31.40 26.95

filtered 7.0 4.3 3.88 2.51 4.56 5.73 2.60 1.82 11.90 4.98 4.85 2.13
inoculated 6.8 5.5 3.95 2.6 4.56 6.00 2.63 1.33 11.85 4.70 4.85 2.08
sterile 6.6 4.4 4.07 3.27 4.59 5.53 2.72 1.93 11.75 5.50 4.60 2.28

sterile2 15.6 11.4 5.90 6.03 4.44 4.92 4.02 3.66 40.35 27.25 16.95 11.70
sterile1

15.1 12.9 6.10 5.58 4.47 4.77 4.13 3.53 40.60 29.40 16.80 12.53
1 Incubated with H4 water; 2 Incubated with D10 water; 3 DOC precision: ±0.3 mg/L; 4 n/s = no sample.  

b) Dark Treatments

Site
 Dark 

Treatment

% peatland 
in 

catchment

DOC 
initial 

(mg/L)

DOC final
(mg/L)

SUVA 
initial

SUVA final
ad250:ad365 

initial
ad250:ad365 

final
SAC350 

initial
SAC350 

final
ad320 

initial
ad320 

final
ad380 

initial
ad380 

final

filtered 29.1 26.8 5.35 5.63 4.03 3.97 3.93 4.15 70.45 68.60 31.90 31.65
inoculated 29.6 24.5 5.26 6.09 4.06 3.99 3.83 4.48 69.80 67.65 31.60 31.00
sterile 29.5 25.9 5.26 5.8 4.05 4.02 3.83 4.25 69.90 68.15 31.55 30.85

filtered 7.0 4.9 3.88 4.95 4.56 4.81 2.60 3.13 11.90 10.20 4.85 4.10
inoculated 6.8 4.9 3.95 4.87 4.56 4.77 2.63 3.19 11.85 10.42 4.85 4.05
sterile 6.6 5.5 4.07 4.34 4.59 4.94 2.72 2.75 11.75 9.98 4.60 4.05

Dickie Inflow 
10 (wetland)

Harp Inflow 4 
(more upland)

Harp Inflow 4 
(more upland)

Dickie Inflow 
10 (wetland)

17.1

8

13.3

17.1

8

Harp Inflow 5 
(wetland)
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The optical index of molecular weight (ad250:ad365) is indicative of 

changes in the relative size of the DOM after photodegradation.  The 

increase in the ratio (Morris and Hargreaves, 1997; DeHaan and DeBoer, 

1987; Strome and Miller, 1978) indicates that the molecular weight 

decreased in all of the samples incubated in the light (Table 3.3).  The 

absorption at 350 nm has been used as an index of coloured DOM (CDOM; 

Moran et al., 2000) and normalization to DOC concentration (SAC350) 

indicates that the CDOM reacted differently between samples after 

exposure to light.  Decreases in the SAC350 of H4 and H5 samples suggest 

that photobleaching has occurred as CDOM concentrations have decreased, 

whereas the opposite effect was seen in D10.  Furthermore, ad380 has also 

been used as an indicator of CDOM (Buiteveld, 1995) and the decrease in 

both ad380 and ad320 suggests that CDOM in the water decreased (and 

consequently the colour of the water; De Lange, 2000) increasing the UV 

transparency (Osburn et al., 2001) in all of the light-exposed incubation 

bags. 

In the dark treatments, SUVA254 increased but changes were smaller 

than in the light (Chomicki and Schiff, 2008: Chapter 2).  Similar to the 

light exposed incubations, SAC350 increased in the D10 dark incubations, 

however not in the H4 or H5 samples.  The ad250:ad365 increased in H4, while 

there was not much variation in D10, suggesting that the molecular size 

decreased more in H4 than D10.  The absorbances at 320 nm and 380 nm 

both decreased slightly, indicating CDOM also decreased in the 

incubations.  Additionally, particulate matter formed in the dark treatments.  

With no photodegradation occurring in the dark treatments, changes in 

SUVA254 and other absorbance parameters reflected changes in the DOC 

character resulting from particulate matter formation and/or other abiotic 

processes. 
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3.4.2 Effects of photolysis and respiration on δ13C-DIC 

In these incubations, DIC production caused a decrease in the δ13C-DIC in 

both the light and dark treatments (Figure 3.3).  In the light treatments, the 

δ13C-DIC values decreased by approximately 3‰ to 7‰ and changes were 

similar in filtered, inoculated, and sterile treatments of each stream.  

However, because DOM photolysis and other abiotic processes produced 

DIC in the light sterile treatments, the decrease in δ13C-DIC could indicate 

that the source of carbon (or CO2 produced) has a lower δ13C value than the 

pre-existing δ13C-DIC.  Since the DOC is the source of the new CO2 

produced, the δ13C-DIC should become more similar to the δ13C of the 

functional groups cleaved (likely carboxylic acids) from the bulk DOC as 

more DOC is consumed producing more DIC. 

Dark incubations also exhibited a decrease in the δ13C-DIC with 

increasing DIC concentration (~0.5‰ to 5‰ decrease) in all treatments 

including the sterile treatment.  Dark incubation results include abiotic DIC 

production and, similar to the light incubations, a source (such as DOC) 

with a lower δ13C value is required to produce δ13C-DIC lower than the 

initial δ13C-DIC.  Abiotic processes that produce DIC are thus also 

processes that use the lighter δ13C functional groups cleaved from the bulk 

DOC to create δ13C-DIC. 
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Figure 3.3:  δ13C-DIC versus time of a) D10 and b) H4.  Precision of δ13C-DIC is 0.3‰.  
Sterile H5 samples were incubated with both experiments (a and b), and sterile D10 
samples were incubated with H4 (b) to assess the effects of differences in light exposure 
between the two experiments.  Note the scale difference between the figures.  Initial δ13C-
DOC values are: -27.2‰ for H4, -27.0‰ for H5, and –27.5‰ for D10. 

 

The δ13C value of the DIC produced in the light treatments 

(calculated by mass balance) ranged between –23‰ to –31‰ and was 

similar between treatments yet different between sites (Table 3.4).  The δ13C-

DIC produced in the sterile samples from H5 and D10 incubated on two 

different dates were also similar.  In the dark incubations, the δ13C-DIC 

produced (also calculated using mass balances) was more variable, ranging 

by approximately 10‰ and 5‰ in D10 and H4 samples, respectively 

(excluding the H4 dark filtered sample).  Since only a small amount of DIC 

was produced in the dark incubations, a large error is associated with the 

calculated δ13C-DIC gained.  Applying this error to the δ13C values from the 
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individual treatments caused the δ13C values to overlap, however, the large 

errors suggest that no conclusive results are available.  
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Table 3.4:  Calculated values for δ13C-DIC and δ13C-CO2 gained and δ13C-DOC lost during the incubations.  The error values listed take 
into account the maximum error possible on all analyses required to calculate these isotopic signatures.  The measured δ13C-DOC 
remaining at the end of phase 1 (before re-aeration) is also presented and has a precision of 0.2‰.  Initial δ13C-DOC values for Dickie 10, 
Harp 4, and Harp 5 are -27.5‰, -27.2‰, and -27.0‰ respectively. 

 

δ13C-DIC 
gained 

+/- 
(‰)

δ13C-
CO2 

gained 

+/- 
(‰)

δ13C-DOC 
lost

+/- 
(‰)

δ13C-DOC 
remaining

δ13C-
DIC 

gained 

+/- 
(‰)

δ13C-CO2 

gained 
+/- 

(‰)
δ13C-

DOC lost
+/- 

(‰)
δ13C-DOC 
remaining

Filtered -30.5 -3.6 -30.9 -3.5 -28.8 -0.8 -27.0 -26.3 -5.5 -27.2 -4.9 -33.0 -7.4 -27.2
Inoculated -30.1 -3.7 -31.0 -3.9 -28.5 -0.8 -26.9 -23.9 -8.6 -40.5 -42.8 -29.1 -3.2 -27.4
Sterile -30.6 -3.6 -33.5 -4.3 -28.5 -0.8 -27.0 -33.2 -9.7 -30.7 -7.7 -29.2 -4.5 -27.2
Average -30.4 -31.8 -28.6 -26.9 -27.8 -32.8 -30.4 -27.3

Sterile1 -29.9 -3.0 -30.3 -3.1 -30.3 -0.9 -27.0 n/s3 n/s3 n/s3 n/s3 n/s3 n/s3 n/s3

Filtered -23.7 -2.9 -24.2 -2.1 -33.6 -3.1 -22.3 -15.3 -2.4 -18.2 -1.7 -29.8 -5.6 -26.2
Inoculated -24.7 -3.0 -25.9 -2.3 -31.0 -2.8 -22.9 -24.8 -6.6 -22.9 -2.5 -26.2 -6.3 -27.7
Sterile -23.4 -2.7 -23.7 -2.0 -31.9 -3.2 -21.9 -30.1 -6.6 -25.6 -2.7 -26.1 -11.7 -27.5
Average -23.9 -24.6 -32.2 -22.4 -23.4 -22.3 -27.3 -27.1

Sterile2 -28.5 -3.2 -29.3 -2.9 -28.8 -1.7 -26.6 n/s3 n/s3 n/s3 n/s3

Sterile 1 -27.1 -2.8 -26.3 -2.3 -28.3 -1.4 -26.8 n/s3 n/s3 n/s3 n/s3

1 Incubated with H4 water.  2 Incubated with D10 water.  3 n/s = no sample

Dickie 
Inflow 10

Harp 
Inflow 4

Harp 
Inflow 5

Site Treatment

LIGHT DARK
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3.4.3 Effects of photolysis and respiration on δ13C-DOC 

DOC loss during the light incubations caused an increase in δ13C-DOC 

values of the light treatments (Figure 3.4) by approximately 1.5‰ to 5‰ 

after more than 50% of the DOC had been degraded.  Changes were similar 

in filtered, inoculated, and sterile treatments of each stream.  There was 

generally no change in the δ13C-DOC during the dark incubations, except in 

the H4 filtered incubation, which increased by approximately 1‰.  This 

incubation also exhibited greater DIC production and O2 consumption rates 

than the other H4 treatments for unknown reasons (Chomicki and Schiff, 

2008: Chapter 2).  However, since both photolysis and respiration 

consumed DOM in the light sterile treatments, and photolysis occurs at a 

much faster rate than respiration in these incubations (Chomicki and Schiff, 

2008: Chapter 2), the increase in δ13C-DOC suggests that photolysis 

preferentially degraded 12C12C bonds, or cleaved functional groups that were 

more depleted in 13C than the bulk DOC, leaving the residual DOC 

enriched in the heavier 13C isotope.  
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Figure 3.4:  δ13C-DOC of D10 and H4.  Precision of δ13C-DOC is 0.2‰.  Sterile H5 
samples were incubated with both experiments (1 incubated with H4, 2 incubated with 
D10), and sterile D10 samples were incubated with H4 to assess the differences in light 
exposure between the two experiments.  Phase 1 signifies the end of the closed experiment 
after which the bags are reaerated.  Phase 2 represents the point where ≥ 50% of the DOC 
was lost after daily reaeration. 

The calculated δ13C-DOC lost values are similar (within error) 

among the three treatments and among the sites (Table 3.4).  There was 

more variability in the δ13C-DOC lost in the dark samples between 

treatments and the errors are much larger due to the small amount of DOC 

lost in comparison to the light samples.  Similar to this study, Osburn et al. 

(2001) found a 1.2‰ change in δ13C-DOC after a 16% DOC loss in UV 

exposed bog DOM samples, which were filtered to 0.2 µm and sterilized 

with NaN3.  These data also support the 1.6‰ change in riverine waters 

exposed to natural sunlight (filtered to 0.6 µm, containing microbes, after a 

27% DOC loss; Opsahl and Zepp, 2001) and the findings of Vähätalo and 

Wetzel (2008) who observed a 6‰ increase in photolyzed samples of 

lyophilized Juncus-leachate that was dissolved into lake water samples 

(0.7 µm autoclaved water) and incubated for 459 days with 72% DOC loss. 
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Differences existed between the δ13C-DIC produced and the δ13C-

DOC lost in all sites and treatments (Table 4).  In H4, the average δ13C-DIC 

gained between treatments was more positive than the δ13C-DOC lost by 

approximately 8‰ and approximately 2‰ more negative than the residual 

δ13C-DOC.  In contrast, the δ13C-DIC produced in the D10 light treatments 

had a more negative δ13C value in comparison to the δ13C-DOC lost and the 

δ13C-DOC remaining by approximately 2‰ and 4‰ respectively.  The 

differences might be attributed to the particulate carbon formed within the 

incubation bags, however, isotopic fractionation during particulate carbon 

formation has not been studied and is the focus of Chapter 4.  Mass and 

isotope POC balances would be required to accurately determine its impact. 

3.4.4 Photodegradation enrichment factor (ε) 

To calculate an enrichment factor (ε) for the DOC loss, the DOM 

photodegradation process was treated as a Rayleigh-type distillation, 

assuming that the δ13C-DOC reservoir is finite and well mixed, and that it 

does not re-react with the product (Clark and Fritz, 1997).  Examining the 

Rayleigh relationship between the δ13C-DOC and the fraction of DOC 

remaining after photodegradation shows that the light incubated H4 and 

D10 samples fall along 2 different paths suggesting fractionation is site and 

possibly DOM dependent (Figure 3.5).  Separating the two sites provides an 

ε for Harp and Dickie as –1.2‰ and –2.3‰ respectively.  Previously 

published photolytic studies of high DOC rivers and bogs fall in along the 

same path as the D10 samples (Figure 3.5).  Incorporating the 5 sample 

points obtained from 3 previous studies (Osburn et al., 2001; Opsahl and 

Zepp, 2001; and Vähätalo and Wetzel, 2008) shifts the ε only slightly from  

–2.3‰ to –3.0‰. 
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Figure 3.5:  The change in δ13C-DOC due to the photodegradation of DOM where a) is a 
plot of δ13C-DOC as a function of DOC remaining after the photodegradation of DOC, and 
b) is a Rayleigh plot showing the change in δ13C-DOC with the fraction of DOC remaining.  
The plots includes Phase 1 and Phase 2 changes from the light incubations (hollow 
symbols), and data from 3 studies in the literature. 

Current coupled carbon and carbon isotope models used to 

understand carbon cycling in aquatic systems do not consider photolysis (or 

other abiotic reactions) as processes that are isotopically fractionating, or as 

processes that will affect the δ13C dynamics within them.  Bade et al. (2007) 
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modeled δ13C dynamics to examine sources and fates of lacustrine DOC 

and, although they assumed a removal rate of DOC by photooxidation, the 

associated fractionation was not included due to uncertainty in fractionation 

over long time periods (i.e. longer than 3 weeks: Opsahl and Zepp, 2001; 

and 7 days: Osburn et al., 2001).  However, subsequently Vähätalo and 

Wetzel (2008) observed a 6‰ increase in δ13C-DOC with a 72% DOC loss 

over 459 days (see above).  In other δ13C balances, it is generally assumed 

that during respiration and microbial degradation of organic carbon there is 

no isotopic fractionation (Degens et al., 1968; Smith and Kroopnick, 1981; 

Quay et al., 1986).  The results from the dark incubations in this study show 

little change in the DOC concentration or the δ13C-DOC indicating that 

these experiments shed no light on whether there is an isotopic fractionation 

during the microbial degradation of organic carbon.  However, it is 

apparent that the photolytic degradation of DOM does preferentially 

mineralize 12C, leaving the remaining DOC more positive with an 

associated ε value between –1‰ and –3‰.  Subsequently, the DIC becomes 

lighter in the 13C isotope. This process can thereby alter the terrestrial end 

member δ13C-DOC signal used in food web studies and in studies 

examining the allochthonous/autochthonous ratios in sedimenting particles 

(e.g. von Wachenfeldt et al., 2008) and sediments.  Therefore, it is likely 

that most studies that assume a discrete allochthonous end-member value 

(generally around –27‰ or –28‰) could underestimate the importance of 

allochthonous carbon in their system.  Additionally, DOM 

photodegradation can also affect the δ13C in carbon-cycle studies (e.g. Quay 

et al., 1986), and influence the δ13C-CO2 in aquatic systems.  Because 

photolysis both produces DIC and changes the δ13C-DIC and δ13C-DOC, a 

separate photolytic/abiotic component may be needed in models especially 

in aquatic systems with high DOM where DOM photodegradation may be 

a significant portion of carbon mineralization.  
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3.5 Summary 

DIC production occurred concurrently with DOC loss (and some POC 

formation) in stream water samples incubated in natural sunlight.  DIC 

production rates were similar in all treatments (i.e. filtered, inoculated and 

sterile waters) incubated from the same stream.  Light incubations produced 

considerably higher DIC production rates than the dark, indicating that the 

DIC source was photolysis of DOM and not the microbial degradation of 

DOM and/or other abiotic reactions.   DIC production rates differed 

between streams, and differences in DOM photolability were evident after 

normalizing the production rates to the DOC lost.  Degradation of DOM by 

photochemical oxidation and other abiotic reactions preferentially produced 

more negative δ13C-DIC values, and ε values that ranged between –1‰ to   

–3‰.  Changes in the δ13C of the terrestrial end-member value when applied 

to food web studies, or studies examining the proportion of allochthonous 

to autochthonous carbon could be underestimating the proportion of 

allochthonous carbon.  Since carbon isotopic studies in aquatic systems 

currently do not consider DOM photodegradation and other abiotic as 

processes affecting δ13C-DIC and δ13C-DOC values, respiration rates could 

be overestimated, sources of DOC could be misinterpreted and δ13C studies 

in shallow, high DOC systems could be missing an important component. 
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Chapter 4: 
 
Examination of POC formation during DOM 
photodegradation and the impacts of DOM 
photodegradation on δ13C-POC and δ13C-DOC in 10 
forested streams, southern Ontario  

4.1 Overview 

The effects of photodegradation on dissolved organic matter (DOM) quality 
were investigated by examining the isotopic and molar C/N ratios of 
dissolved organic carbon (DOC), and the particulate organic carbon (POC) 
created in waters from ten streams within 2 catchments.  Stream waters 
were filtered to 0.2 µm, sterilized, and incubated in natural sunlight.  
Absorbances (SUVA254, SAC350, and ad320 and ad380) decreased after the 
stream waters were exposed to natural sunlight indicating the aromaticity, 
colour, and UV absorption of the DOC decreased.  The optical index of 
molecular weight (ad250:ad365) increased in most samples indicating that 
generally the molecular size of the DOC decreased.   

During the photodegradation of DOM, 61-90% of the DOC was lost, and 
20-90% of the DOC lost was transformed to POC.  Initial δ13C-DOC values 
were within 2‰ in all the inflows.  The change in δ13C-DOC was different 
between inflows, ranging from 2.7 ‰ to 8.0 ‰.  Generally, there was a 
positive relationship between the δ13C-DOC change and the % peatland 
coverage.  Enrichment factors (ε) for DOC photodegradation in the Harp 
and Dickie inflows are –1.2‰ and –3.4‰ respectively, with an average ε of 
–2.1‰ for all the 10 inflows.  These data are in agreement with previous 
incubations and other literature data (average ε = –2.9‰). δ13C-POC values 
ranged from –25.7 ‰ to –27.7 ‰, and were up to 2‰ heavier than the 
initial δ13C-DOC, with 80% of the samples within 1‰ of the original δ13C-
DOC.  Since the ε factors are different for DOC loss and POC creation, 
ignoring stream δ13C-DOC and using lake δ13C-DOC as an indicator of 
photolyzed DOC is not possible.  Also, it is still unknown how the isotopic 
changes observed from altered stream waters will translate to the lakes. 
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After exposure to sunlight, C/N ratios of the DOC change from high values 
(24-55) indicative of terrestrial inputs to lower values (4-13), which are 
common for algal or microbial inputs.  POC C/N ratios ranged from 12 to 
26, and were different than the source DOC and the residual DOC after 
DOM photodegradation.  In high DOC aquatic systems, it is possible for 
photodegradation to alter the δ13C-DOC signature and the structure and 
C/N of DOC, while creating particulate carbon that in most cases is 
isotopically similar (i.e. within 1‰) to the DOC from which it is derived.  

4.2 Introduction 

Carbon budgets within lakes are often dominated by external loading 

(Caraco and Cole, 2004) and can be controlled by the influx of dissolved 

organic carbon (DOC) from the terrestrial catchment (Dillon and Molot, 

1997a).  In aquatic systems, DOC affects water quality by binding to trace 

metals thereby affecting nutrient availability and trace metal toxicity, in 

addition to controlling the water transparency, temperature and thermocline 

depth (Wetzel, 2001).  Dead or decaying allochthonous carbon also 

provides sustenance for northern temperate and boreal lakes which are, 

generally, net heterotrophic ecosystems (del Giorgio and Peters, 1994; 

Algesten et al., 2003).  With large inputs of terrestrial DOC controlling the 

mass and the δ13C budgets of high DOC retention lakes (e.g. northern 

temperate and boreal lakes), it is important to examine the fate and the 

isotopic effects of processes affecting DOC.  Since it is commonly assumed 

that internal processes do not affect the isotopic signature of DOC, and little 

work has examined the impact that processes (e.g. photodegradation, direct 

sedimentation, and microbial alteration) have on the isotopic fate of DOC 

(Chapter 3; Bade et al., 2007), it is crucial to understand the isotopic effects 

that DOC undergoes to fully understand what processes control the carbon 

balance. 

Stable carbon isotopes are commonly used to examine carbon 

cycling and more specifically, the proportion of allochthonous to 

autochthonous carbon in aquatic systems.  Cole et al. (2006) used the δ13C 
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of dissolved inorganic carbon (DIC), DOC, particulate organic carbon 

(POC) and biota (e.g. zooplankton, fish, benthic algae and benthic 

invertebrates) to examine the carbon cycling in lakes and including the food 

web.  Pace et al. (2004) used a 13C-DIC spike to track the uptake and 

transfer of carbon in two lakes and determined that approximately 50% of 

the POC in the lakes was terrestrial.  In addition, von Wachenfeldt and 

Tranvik (2008) concluded that DOC is a precursor to organic matter that 

settles in 12 small Swedish boreal lakes.  They used stable carbon isotopes 

to estimate the proportions of allochthonous and autochthonous carbon to 

the sedimenting POC. 

Allochthonous carbon enters streams and lakes as DOC and can be 

respired or photodegraded into CO2.  Although it has been assumed that 

there is no isotopic fractionation associated with the respiration of DOM 

(e.g. Degens et al., 1968; Smith and Kroopnick, 1981; Quay et al., 1986) 

and little to no carbon isotope fractionation observed during respiration has 

been subsequently confirmed (e.g. Baril, 2001; Boudreau, 2000; 

Oelbermann and Schiff, 2008; Venkiteswaran, unpublished data), there is a 

small fractionation during the photodegradation of DOC (e.g. Osburn et al., 

2001; Opsahl and Zepp, 2001; Vähätalo and Wetzel, 2008; Chapter 3) and 

this creates isotopically light CO2 (Chapter 3) which may alter the lake δ13C-

DIC value.  Autochthonous DOC is released by primary producers and is 

generally assumed to be –20‰ lighter than the source CO2, although recent 

work highlights that algal fractionation may be lower than this accepted 

value (e.g. Cole et al., 2002; Bade et al., 2006; McCallister and del Giorgio, 

2008).  In addition, allochthonous and autochthonous organic matter 

deposited in lake sediment is thought to be distinguishable by C/N ratios 

such that ratios between 4 and 15 are from lacustrine algal sources and C/N 

ratios greater than 20 are from vascular land plants (Meyers and Teranes, 

2001).   
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Post-burial diagenesis can affect the organic carbon in aquatic 

sediments until it is buried below the oxic-anoxic interface by decreasing the 

mass of total organic carbon.  For example, the organic matter mass from 

two sediment cores taken within 6 years of each other from the same 

location in Lake Ontario decreased by 20% (Hodell and Schelske, 1998).  

Organic matter C/N ratios can also be affected by early diagenesis.  

Selective degradation of carbon-rich sugars and lipids is observed by lower 

C/N ratios observed in buried wood samples in comparison to fresh wood 

samples (Meyers et al., 1995).  However, increases in the C/N ratio of algal 

derived (autochthonous) organic matter due to degradation of nitrogen-rich 

proteins can also occur (Meyers and Terranes, 2001).  Usually, the observed 

C/N differences between land plants and algae are not erased by the 

diagenetic changes to the C/N ratio of sediment organic matter.  Post-burial 

diagenesis can presumably also impact the δ13C of sediment organic matter 

since different compounds degrade more readily (Herezeg, 1988), but was 

found to be minimal in the 2 Lake Ontario cores collected from the same 

location 6 years apart (Hodell and Schelske, 1998).  

In aquatic systems, DOC can be lost to sedimentation by a number 

of processes (Stumm and Morgan, 1996).  The size distribution and 

concentration of colloids (including or in the presence of natural organic 

matter) affects both aggregation and coagulation rates in addition to the size 

and sedimentation rates of colloids in all aquatic systems (Filella and Buffle, 

1993; Buffle and Leppard, 1995).  Bubble catalyzed transfer of DOC to 

POC (e.g. Baylor and Sutcliffe, 1963; Barber, 1966), and the POM creation 

via DOM polymer assembly to form polymer gels (e.g. Chin et al., 1998) are 

other processes that have been documented in marine waters.  In riverine 

systems, the creation and size of particulate matter can be affected by 

turbulence and associated increases in particle contact (Droppo and Ongley, 

1992, 1994) as well as changes in cations and pH (e.g. Maignan, 1983; 

Abate and Masini, 2003).  Lake pH can affect the partitioning of carbon 
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between the sediments and the atmosphere (Dillon and Molot, 1997a; 

Molot and Dillon, 1996) and although it is conventionally believed that 

acidified lakes are clear due to the precipitation of DOC-Al complexes 

(Effler et al., 1985), acidity has also been found to enhance photo-oxidation 

rates (Gennings et al., 2001; Anesio and Granéli, 2004).  Finally, 

photochemical and iron induced DOC precipitation can also occur to create 

particulate matter when UV reduces Fe3+ to Fe2+ and transforms H2O2 to 

O2*.  The O2 radical reacts with the reduced iron to create Fe3+ which binds 

with DOM. 

Dillon and Molot (1997a) determined that in oligotrophic Shield 

lakes from south central Ontario, carbon is primarily derived from the 

terrestrial catchment, and that approximately 40% to 70% of the annual 

input of carbon to lakes is lost to a combination of sedimentation and 

evasion to the atmosphere.  Loss rates of photolyzed total organic carbon 

measured from some of the streams feeding the Dillon and Molot (1997a) 

lakes (once corrected for extinction of UVA and UVB in the surface waters 

with depth, and in situ mixing) are similar to long-term mass balance loss 

rates in those lakes suggesting that the photo-oxidation of carbon is one 

mechanism that can account for the loss of carbon to the atmosphere and 

sediments (Molot and Dillon, 1997b).   

DIC production, O2 consumption, and photo-oxidation rates 

associated with the photodegradation of DOM have been examined in 

many studies (e.g. Amon and Benner, 1996; Anesio and Granéli, 2004; 

Bélanger et al., 2006; Bertilsson and Tranvik, 2000; Ma and Green, 2004; 

Miller and Zepp, 1995; Granéli et al., 1996; Chomicki and Schiff, 2008: 

Chapter 2; Chapter 3), however, the effects of DOM photodegradation on 

δ13C-DIC (Chapter 3), and fractionation of δ18O-O2 (Chomicki and Schiff, 

2008: Chapter 2) and δ13C-DOC (Osburn et al., 2001; Opsahl and Zepp, 

2001; Vähätalo and Wetzel, 2008; Chapter 3) remain understudied.  Miles 
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and Brezonik (1981) and Gao and Zepp (1998) have recognized the creation 

of POC during DOM photodegradation, however, minimal work has been 

completed that examines changes in δ13C-DOC or in the δ13C-POC created 

from photodegradation of DOM.  Commonly, incubation studies on DOM 

photodegradation are short in duration to avoid any significant particulate 

matter accumulation.  This goals of this study were to: 1) quantify the 

amount of particulate carbon created due to the photodegradation of DOM 

in waters from 10 different forested streams, 2) determine the changes and 

variability in the residual δ13C-DOC and in the δ13C-POC created as a result 

of photolysis and other abiotic reactions and 3) examine the changes in the 

C/N ratio of DOC resulting from photodegradation. 

4.3 Methods 

Water samples were collected from 10 gauged streams in the catchments of 

2 oligotrophic headwater lakes, Harp Lake and Dickie Lake.  These 

watersheds are located in the Muskoka-Haliburton region on the southern 

tip of the Pre-Cambrian Shield approximately 200 km north of Toronto, 

Ontario, Canada.  Dillon et al. (1991) provide detailed descriptions of the 

watersheds, which contain thin tills (<1m thick) and peatlands.  The 

Ontario Ministry of the Environment (OME) has monitored these streams, 

and substantial chemistry and hydrology datasets are available.  General 

characteristics of these 10 streams are presented in Table 4.1. 

Waters were collected from weirs located less than 100 m upstream 

from the lakes.  Streams with high carbon inputs to the lakes have been the 

focus of previous carbon and oxygen photolytic DOM studies (e.g. Molot 

and Dillon, 1997b; Gennings et al., 2001; Chomicki and Schiff, 2008; 

Chapter 3).  Relative to their inflows, Harp and Dickie Lakes have 

significantly lower DOC concentrations due to in-lake DOC loss. 
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Table 4.1:  General Characteristics of stream water samples taken on the same date as the sample collection for the current study (analyzed 
by the Ontario Ministry of the Environment; unpublished data). 

 

Inflow
% 

Peatland1
Area 
(ha)1

Stream 
Length1 

(m)

DOC 
(mg/L)

True 
Colour

Fe 
(µg/L)

Mn 
(µg/L)

NH4
+ 

(µg/L)
Alkalinity 
(mg/L) 

pH
DIC 

(mg/L)

Dickie 5 25.4 299.8 762 13.4 117 610 29.3 14 0.60 4.65 4.84
Dickie 6 21.8 22.0 488 n/a 263 568 33.3 8 0.15 4.54 1.52
Dickie 8 8.2 67.0 1220 n/a 277 379 20.0 14 2.90 5.10 3.38
Dickie 10 17.1 78.9 975 n/a 302 559 17.0 12 0.55 4.59 2.16

Harp 3 9.3 26.0 1010 11.7 131 339 34.7 6 3.80 5.74 1.50
Harp 3a 2.9 19.7 762 3.1 13 66 8.9 12 4.45 6.08 1.66

Harp 4 8 2 119.5 2040 5.2 40 121 7.2 4 5.70 6.50 1.30
Harp 5 13.3 190.5 1830 12.9 135 371 28.1 6 3.70 5.51 2.34

Harp 6 10 2 10.0 701 8.6 56 234 33.6 6 7.25 6.38 2.02
Harp 6a 8.5 15.3 610 11.8 115 130 11.0 6 2.25 5.10 2.90
1Dillon et al., 1991
2 Eimers et al., 2008

n/a : not available
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Stream waters were filtered to 0.2 µm and sterilized with the addition 

of 1mL of saturated HgCl2 solution per L of stream water.  Three litres of 

water was pumped into Tedlar bags, which had been triple washed with 

ethanol and triple rinsed with Nanopure water.  Duplicate bags were placed 

in shallow water baths to minimize temperature and light exposure 

variations, and placed in natural sunlight at the University of Waterloo (43° 

28' 25.6" N and 80° 33' 27.5" W; elevation ~ 335 masl).  Since data from a 

previous experiment indicated little difference between filter-sterilized and 

HgCl2 sterilized waters (Chomicki and Schiff, 2008; Chapter 3), there was 

no need for different treatments and thus all waters for these incubations 

were filtered and sterilized with HgCl2, prior to light exposure. 

All 20 bags (2 bags of each of 10 streams) were placed outside on 

August 9th, 2007 and aerated every 1-2 days.  Harp and Dickie inflow 

samples were incubated for 28 and 34 days, respectively until DOC 

concentrations decreased by more than 50%.  These experiments were 

augmented by data from an experiment run in June and July of 2005 that 

examined the δ13C-DOC changes associated with photolysis.  Details of the 

first experimental setup are outlined in Chomicki and Schiff (2008: Chapter 

2) and in Chapter 3, and only contain samples for Harp Inflow 4, Harp 

Inflow 5, and Dickie Inflow 10. 

DOC samples were periodically taken from the incubation bags to 

track DOC loss, however, the volume loss for the duration of the 

experiment was generally less than 100 mL.  DOC samples were filtered to 

0.45 µm, acidified with 85% H3PO4 to a pH of 2-3, sparged to remove DIC, 

and analyzed on a total organic carbon analyzer (Dohrmann DC-190) with 

a precision of ± 0.3 mg/L.  DOC absorbance samples (also filtered to 0.45 

µm) were analyzed in duplicate on a Beckman DU530 Life Science UV/Vis 

Spectrophotometer (path length = 1cm) between 200 nm and 700 nm and 

automatically corrected for the absorbance of Nanopure water. The ratio of 
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UV absorption at λ = 254 nm (measured in absorbance units m-1) to DOC 

concentration (mg/L) was used to determine the specific UV absorbance 

(SUVA254) (Weishaar et al., 2003).  The specific absorption coefficient at λ = 

350 nm (SAC350) was calculated normalizing the absorbance at 350 to the 

DOC concentration (mg/L) (Moran et al., 2000).  Other absorbances (ad) of 

interest were ad320 and the ratio of ad250:ad365. 

δ 13C-POC and δ13C-DOC samples were collected by filtering 

incubated waters through QMA (1.2 µm nominal pore size) and GF/F 

filters respectively.  The particulate matter collected on the QMA filter was 

analyzed on a Carlo Erba 1105 Elemental Analyzer coupled to a Micromass 

Isochrom IRMS with a precision of ± 0.2‰.  The mass of particulate carbon 

created was calculated by multiplying the fraction of carbon in the sample 

(as measured on the Elemental Analyzer) with the weight of the POC 

created.  Because initial samples were filtered to 0.2 µm, they contained (by 

definition) no POC.  The water which passed through the GF/F was 

acidified with 20% HCl to a pH of 4.5, freeze-dried and analyzed on the 

same instrument by the Environmental Isotope Laboratory, at the 

University of Waterloo, Ontario also with a precision of ± 0.2‰.  Results 

are reported in standard δ notation as δ13C = ((Rsample / Rstandard) – 1) x 103 ‰, 

where R is 13C:12C.  

An enrichment factor (ε) was calculated from the fractionation factor 

determined by assuming a Rayleigh relationship between the δ13C-DOC and 

the fraction of DOC remaining after photodegradation, using the following 

relationship: R = Rof (α-1), where, R = ratio of the DOC isotopes after 

photodegradation, Ro = initial DOC isotope ratio, f = fraction of DOC 

remaining, and α = fractionation factor.  From the calculated fractionation 

factor, ε was calculated using: ε = (α-1) x 1000 ‰. 
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4.4 Results and Discussion 

4.4.1 Effects of DOM photodegradation on DOC loss and POC 
production 

In the Harp Lake watershed, allochthonous DOC entering the streams and 

lake is generally expected to be from a young labile DOC pool and not an 

older DOC pool recalcitrant to decomposition (Schiff et al., 1997).  The 

Harp and Dickie inflow samples lost an average of 75% (± 11%) of their 

DOC after exposure to natural sunlight, and 0.4 mg C/L to 13.6 mg C/L of 

particulate carbon was created (Table 4.2).  On average, slightly higher 

concentrations of POC were produced in the Dickie Inflows (Table 4.2) 

reflecting higher initial DOC concentrations and the proportion of wetlands 

in the catchments.  However, on average, 53% ± 21% of the DOC lost 

during exposure to UV transformed to particulate carbon in both the Harp 

and Dickie Lakes inflows (Table 4.2), and the remainder likely transformed 

to DIC.  Previous experiments designed to examine gas production during 

photolysis indicate that DIC is produced during photodegradation and 

production rates were similar in filtered, inoculated, and sterile treatments 

(Chapter 3) indicating that DIC is being produced in addition to POC in the 

current incubations.   

Table 4.2:  Changes in DOC concentration, and particulate carbon created during the 
August 2007 incubations.  Data are an average of the two incubation bags and standard 
deviations between the two bags are in mg/L. 
 

Inflow
Initial DOC 
(mg C/L)

Final DOC 
(mg C/L)

Std 
Dev 
±

Change in 
DOC (mg 

C/L)

Final POC 
concentration

(mg C/L)

Std 
Dev 
±

POC as a 
% of DOC 

lost

POC as a 
% of 

original 
DOC

Dickie 5 13.1 2.2 0.5 10.9 4.3 0.6 39 33
Dickie 6 20.9 0.8 0.2 20.1 4.7 2.8 23 22
Dickie 8 24.7 9.7 0.5 15.0 13.6 0.8 91 55
Dickie 10 24.5 9.3 1.1 15.2 9.2 2.9 61 38

Harp 3 12.4 2.9 0.1 9.5 6.2 1.3 66 50
Harp 3a 3.2 1.2 0.1 1.9 0.4 0.0 20 12
Harp 4 5.7 1.4 0.1 4.3 2.1 0.1 49 36
Harp 5 13.1 2.2 0.1 10.9 5.3 0.6 49 40
Harp 6 9.4 2.2 0.2 7.3 4.5 0.5 62 48
Harp 6a 12.3 3.5 0.5 8.8 6.0 0.4 67 48
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Miles and Brezonik (1981) incubated humic coloured waters to 

examine photolytic O2 consumption and the ferrous-ferric catalytic cycle 

and found that O2 consumption increased linearly with increasing Fe3+, and 

that humic matter precipitated within 6 hours in samples with iron 

concentrations that were greater than 10 mg/L.  Gao and Zepp (1998) 

noted that DOM photooxidation converted iron to particulate matter (likely 

via polymeric iron oxides) and caused DOC transformation to particulate 

matter in their incubations of water from the Satilla River, Georgia (iron 

concentration 12 ± 2 µg/L) after 72 h of irradiation.  As DOM 

photodegraded, carboxylate moieties oxidized (evident from the DIC 

produced) and Fe3+ formed polymeric iron oxides as the Fe3+ hydrolyzed to 

hydroxy complexes.  These oxides then induced the flocculation of DOM 

creating particulate matter.  Although iron concentrations and speciation 

were not monitored during these incubations, concentrations measured on 

unfiltered water by the Ontario Ministry of the Environment (Table 4.1) 

show iron ranging between 66 and 610 µg/L (presumably oxidized or 

complexed to DOC) creating conditions for the flocculation of DOM to 

form polymeric iron oxides.  

While approximately half of the DOC lost was transformed into 

particulate carbon, the particulate carbon formed was between 12 to 55% 

(38% ± 13%) of the original DOC.  This is similar to the results of Dillon 

and Molot (1997a), that carbon sedimentation is 13% to 60% of the annual 

DOC inputs of their 7 study lakes (Harp: 22%; Dickie: 32%), however, it is 

possible that the same photolytic transformations may not occur in the lakes 

as in the incubation bags.  von Wachenfeldt and Tranvik (2008) found a 

positive relationship between sedimentation rates of allochthonous matter 

per m2 in lakes and DOC concentration in the water, in addition to a 

positive relationship between DOC concentrations and % wetlands 

surrounding their catchments.  Similarly, the amount of POC created in the 

incubations from this experiment increases with increasing DOC 
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concentrations.  However, normalizing the POC created to the original 

DOC indicates that as the percentage of peatlands increases, the amount of 

POC created decreases with the exception of H3a (Figure 4.1; R2 = 0.61 

without H3a) once the original DOC concentration is accounted for.  H3a 

has a lower iron concentration than the other stream samples (Table 4.1), 

and it is possible that the flocculation of DOM is inhibited since there is 

little iron in comparison to the other streams to form polymeric iron oxides.   
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Figure 4.1:  Relationship between the POC concentration normalized to the original DOC 
concentration and the % peatland coverage in the associated catchments. 

The initial iron concentration may be an overestimate since a portion 

of the iron may have been removed by filtering the initial samples.  

Comparing the POC created to the initial total iron concentration shows no 

relationship (R2 = 0.18; data not shown) suggesting that iron is not the only 

parameter influencing particulate matter formation.  Separating the Harp 

and Dickie samples indicates that while Harp shows a weak positive 

relationship (R2 = 0.51; data not shown) between the concentrations of POC 
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created and iron, Dickie shows a strong negative relationship (R2 = 0.84; 

data not shown) suggesting that the importance of iron in particle formation 

might be different between the two catchments.  Molot et al. (2005) found 

that as pH increases, the importance of iron to DOC loss decreases, 

however, this is based on only one stream (Dickie 5) and there is no 

mention of particulate matter created.  The initial pH of the Dickie stream 

waters ranges between 4.5 and 5.1, whereas the Harp streams range 

between 5.1 and 6.5.  Generally, there is no relationship (R2 = 0.40; data not 

shown) between the particulate carbon created and pH in Harp streams 

samples and a positive relationship between the POC created and pH (R2 = 

0.70; data not shown) in the Dickie streams samples.  Since iron 

concentrations and pH were not tracked during this experiment, it is 

difficult to determine whether iron was acting as a catalyst for particulate 

carbon formation (Gao and Zepp, 1998), or whether it is co-precipitating 

with the DOC. 

SUVA254 changes have been used as indicators of changes in % 

aromaticity and thus changes in the chemical character of DOC (e.g. Hood 

et al., 2006; Weishaar et al., 2003).  SUVA254 of initial stream samples were 

generally greater in streams from catchments with a higher fraction of 

peatlands suggesting that those samples had a higher % aromaticity than 

samples from catchments with a lower fraction of peatlands (Table 4.3).   

Exposure to UV altered DOC, created particulate carbon and altered the 

DOC structure in all of the incubations.  These changes caused the SUVA254 

to decrease by at least 5-fold after light exposure in each of the 10 streams 

(Table 4.3) indicating the aromaticity of the remaining DOC decreased.  
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Table 4.3:  Changes in absorption after exposure to light.  Values are the average changes in the duplicate bags in m-1.   All 
ad values are multiplied by 100, and n.d. denotes non detectable. 

 

Inflow
Initial 

SUVA254

Final 
SUVA254

 Initial 
SACλ350

Final 
SACλ350 

Initial 
ad250:ad365

Final 
ad250:ad365

Initial 
ad320

Final 
ad320

Initial ad380 Final ad380 

Dickie 5 5.24 0.23 3.31 0.09 4.84 4.25 27.25 0.30 12.30 0.93
Dickie 6 5.21 0.21 3.41 0.21 4.54 1.11 43.70 0.13 20.45 0.55
Dickie 8 5.39 1.24 3.38 0.40 4.86 7.84 51.80 2.90 23.10 2.00
Dickie 10 5.49 1.76 3.44 0.78 4.75 6.82 51.60 5.20 24.05 2.70

Harp 3 5.19 0.59 3.23 0.21 4.94 9.75 25.50 0.33 11.05 0.13
Harp 3a 3.82 0.88 2.03 0.45 6.00 7.54 4.05 0.30 1.95 0.20
Harp 4 4.38 0.85 2.59 0.34 5.16 10.00 9.25 0.15 4.60 0.15
Harp 5 5.36 0.55 3.27 0.19 5.00 19.40 27.25 0.15 12.00 0.15
Harp 6 4.22 0.64 2.10 0.33 6.47 15.00 13.90 0.18 4.80 0.03
Harp 6a 3.02 0.50 3.10 0.15 2.71 16.13 18.40 0.33 13.30 n.d.
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The optical index of molecular weight (ad250:ad365) increased in the 

majority of the streams (except Dickie 5 and Dickie 6; Table 4.3) suggesting 

a reduction in the relative size of the DOM after photodegradation (Morris 

and Hargreaves, 1997; DeHaan and DeBoer, 1987; Strome and Miller, 

1978).  Absorption at 350 nm has been used as an index of coloured DOM 

(CDOM; Moran et al., 2000) and normalization to DOC concentration 

(SAC350) indicates that photobleaching had occurred and CDOM 

concentrations decreased in all streams after exposure to light.  In addition, 

ad380 has also been used as an indicator of CDOM (Buiteveld, 1995) and the 

decrease in both ad380 and ad320 (Table 4.3) also suggests that CDOM has 

decreased (and consequently the colour of the water; De Lange, 2000) and 

UV transparency has increased (Osburn et al., 2001).  Photodegradation of 

DOC in the stream waters thus alters the chemical structure of DOC.  The 

aromaticity and size of the residual DOC decreased, possibly making it 

more bioavailable in the natural environment (Sulzberger and Durisch-

Kaiser, 2009).  Additionally, the penetration depth of UV-B radiation would 

increase exposure of enhancing aquatic organisms to UV radiation. 

4.4.2 Effects of DOM photodegradation on δ 13C-DOC and δ 13C-POC 

The initial δ13C-DOC of the 10 streams ranged between –28.6‰ and 

-26.7‰.  After more than 50% of the DOC had degraded in the incubations, 

the δ13C-DOC increased by 2.7‰ to 8.0‰ (Figure 4.2).  In general, larger 

changes in δ13C were observed in samples with higher initial DOC 

concentrations, peatland coverage (Table 4.1, Table 4.2, Table 4.3), and 

normalized DOC loss (Figure 4.3).  The magnitudes of δ13C-DOC changes 

observed in the 2005 incubations on light exposed Harp 4, Harp 5, and 

Dickie 10 streams (Chapter 3) were similar to those observed here (Figure 

4.2, Figure 4.3).  DOM photodegradation, respiration, and abiotic redox 

reactions can all affect DOM concentrations in the light, however, since 

these samples were sterilized with HgCl2 and abiotic reactions did not alter 

DOM in dark incubations (Chapter 3) the isotopic changes can be attributed 



 86

to photodegradation.  These incubations thus could support that photolysis 

preferentially degrades the lighter 12C12C bonds leaving a residual DOC 

more enriched.  Additionally, since the 12C and 13C atoms are not evenly 

distributed within DOC molecules, it is possible that the functional groups 

cleaved from the molecule during DOM photodegradation (i.e. -COOH 

moieties) contain an abundance of 12C atoms leaving the residual DOC 

molecule with the heavier 13C atoms.  The increases in δ13C-DOC due to 

photodegradation from this experiment agree with the 1.2‰ increase in 

δ13C-DOC of UV-exposed bog DOM samples (0.2 µm filtered water 

sterilized with NaN3; Osburn et al., 2001), the 1.6‰ increase in δ13C-DOC 

of riverine waters exposed to natural sunlight (0.6 µm filtered water – 

microbes present; Opsahl and Zepp, 2001), and the 6‰ increase in δ13C-

DOC of Vähätalo and Wetzel (2008) who incubated lyophilized Juncus-

leachate dissolved in lake water samples for 459 days (0.7 µm filtered and 

autoclaved water).  
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Figure 4.2:  The change in δ13C-DOC in the current (circles) and 2005 (triangles) 
incubations after exposure to natural sunlight.  Filled symbols denote initial conditions, 
while hollow symbols represent photodegraded samples. 
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Figure 4.3:  The change in δ13C-DOC after exposure to natural sunlight vs. the DOC lost 
normalized to initial DOC concentrations. 
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Assuming a Rayleigh relationship between the δ13C-DOC and the 

fraction of DOC remaining after photodegradation, a fractionation factor 

was calculated using the following relationship: R = Rof(α - 1), where, R = 

ratio of the DOC isotopes after photodegradation, Ro = initial DOC isotope 

ratio, f = fraction of DOC remaining, and α = fractionation factor.  From 

the calculated fractionation factor, an enrichment factor (ε) was calculated 

using: ε = (α-1) x 1000‰.  The incubated Harp and Dickie inflow samples 

plot along a similar line (Figure 4.3, Figure 4.4) suggesting fractionation is 

similar between the sites with an average enrichment factor (ε) of –2.1‰ 

(Figure 4.4).  Separating the two sites provides an ε for Dickie and Harp as 

–3.4‰ and –1.7‰ respectively.  These ε values are relatively similar to the 

2005 experiments (Harp 4: –1.2‰; Dickie 10: –2.3‰; Chapter 3) suggesting 

that fractionation may be dependent on individual sites or DOM quality.  

The data from these incubations are similar to previously published 

photolytic studies of high DOC rivers and bogs fall and the D10 samples 

from the 2005 incubations discussed in Chapter 3 (Figure 4.4).  However, 

the H4 samples from the 2005 incubations (Figure 4.4) plot in a different 

region compared to the 2007 incubations suggesting that they are 

fractionating differently.  Recalculating the ε to include the current 

incubation samples with the 2005 incubations and previously published 

studies provides an ε of –2.6‰ (R2 = 0.44).  Considering that, in 2005, H4 

does not follow the same trend and possibly fractionated differently than the 

other incubations, excluding it provides an enrichment factor of –2.9‰ (R2 

= 0.78), which is nearly identical to the ε of –3.0‰ calculated in Chapter 3.  

Photodegradation of DOM is therefore an isotopically fractionating process 

and could be dependent on site or initial DOM quality.   
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Figure 4.4:  The relationship between δ13C-DOC and the fraction of DOC remaining (a) 
and (b) the Rayleigh relationship between the δ13C-DOC of the photodegraded DOC and 
the fraction of DOC remaining after photodegradation for the current 2007 incubations, the 
2005 incubations, and other available literature data.  Error bars for the current study are 
contained within the size of the symbols. 
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The δ13C-DOClost from the 10 inflows ranged between –30.4‰ and 

-27.7‰ (Table 4.4).   Given the involved errors, the δ13C-DOClost from the 

10 inflows are similar and support the data from the 2005 incubations, in 

which different treatments (filtered, inoculated, and sterile) among three 

sites (H4, H5, and D10) also found that the δ13C-DOClost are similar when 

errors are considered (–28.5‰ ± 1.6‰ to –32.2‰ ± 3.0‰; Chapter 3).  

Table 4.4:  Comparison of the δ13C-DOC lost, the δ13C-POC created, and the δ13C-DIC 
gained (estimated by mass balance) in the 2007 incubations.  Data are the averages of the 2 
incubation bags. 
 

Values of δ13C-POC created after DOM exposure to natural sunlight 

ranged between and –27.8‰ and –25.7‰ (Table 4.4). Although the average 

δ13C-POC for the 10 streams is –26.6‰, it is similar to the average 

calculated δ13C-DOClost (–28.8‰) once errors are applied to each parameter 

(Table 4.4).  In 80% of the samples, the POC created is within 1‰ of the 

initial δ13C-DOC but can be up to 2‰ heavier than the initial δ13C-DOC 

(range: –0.4‰ to +1.9‰; Table 4.4; Figure 4.5).  Since the ε for the DOC 

lost does not equal the difference in δ13C-POC from the source DOC, lake 

DOC cannot be used as a proxy for photolyzed DOC.  Although isotopic 

changes are observed for DOC loss during photodegradation in the stream 

water incubations, it is currently unknown how much DOC loss in the lakes 

is attributed to photodegradation.  Therefore, it is difficult to know how the 

isotopic changes observed in the incubations will translate to the lakes. 

Inflow
Initial DOC 

(mg/L)
Final DOC 

(mg/L)

δ13C-DOC 
initial 
(‰)

δ13C-DOC
final 
(‰)

δ13C-DOC
lost (‰)

± 
(‰)

δ13C-POC 
(‰)

Calculated 
δ13C-DIC 

gained (‰)

± 
(‰)

Dickie 5 13.1 2.2 -28.6 -22.0 -30.0 -1.1 -26.8 -32.1 -3.3
Dickie 6 20.9 0.8 -27.7 -19.7 -28.0 -0.8 -26.8 -28.4 -5.1
Dickie 8 24.7 9.7 -27.5 -23.1 -30.4 -0.8 -26.5 -68.9 -17.8
Dickie 10 24.5 9.3 -27.2 -23.5 -29.5 -0.8 -27.7 -32.3 -13.7

Harp 3 12.4 2.9 -26.9 -21.8 -28.5 -1.2 -26.4 -32.6 -11.3
Harp 3a 3.2 1.2 -27.0 -24.2 -28.8 -6.8 -25.7 -29.6 -7.2
Harp 4 5.7 1.4 -26.8 -24.1 -27.7 -2.9 -26.3 -29.0 -5.4
Harp 5 13.1 2.2 -26.7 -21.0 -27.9 -1.0 -26.5 -29.2 -3.6
Harp 6 9.4 2.2 -27.0 -22.5 -28.3 -1.6 -26.6 -31.1 -6.5
Harp 6a 12.3 3.5 -27.1 -22.5 -28.9 -1.3 -26.7 -33.4 -5.8
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Figure 4.5:  The similarity of δ13C-POC created after exposure to natural sunlight and the 
initial δ13C-DOC from which it was created.  Precision is 0.2‰ on isotopic measurements. 

The 2005 and the 2007 incubations were different because the initial 

phase of the 2005 experiments was closed to allow monitoring of changes in 

O2 and DIC concentrations, δ18O-O2 (δ18O of dissolved oxygen; Chapter 2) 

and δ13C-CO2 (Chapter 3).  These experiments indicated the DIC 

photoproducts (such as CO2) have δ13C values lower than their original 

δ13C-DIC (Chapter 3).  The remaining pathways for carbon removal in the 

current incubations can be estimated using the isotopic signature and 

concentration of the DOClost, and the isotopic signature and concentration 

of the particulate carbon created under the assumption that the remaining 

carbon from the degraded DOC that is not POC, would be DIC.  Although 

δ13C-DIC and DIC concentrations were not measured, by assuming that the 

initial DIC concentration is negligible (in comparison to the DOC), the 

δ13C-DIC produced in 9 out of the 10 stream samples ranged between          

–28.4‰ and –33.4‰ (Table 4.4).  Although the error associated with the 
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δ13C-DICgained is relatively large (as the POC created in the bags had 

standard deviations up to 2.9 mg/L), these values are comparable to the 

D10 and H5 samples in the 2005 incubations, with isotopic signatures of 

δ13C-DIC gained ranging from –27.1‰ to –30.6‰ (Chapter 3).   

The data required to calculate enrichment factors for the 

transformation of DOC to DIC is not available because the experiment was 

not designed to track the temporal changes in DIC or POC.  To calculate an 

ε with the existing data would require the assumption that the ratio of DIC 

produced to POC produced was constant throughout the incubations, and 

there is no evidence to support this.  An ε can be calculated at a single point, 

by assuming that there is an open system between the DOC lost (source) 

and the DIC and POC produced (products) such that DOC is constantly 

lost and always lost only to DIC and POC.  In this case, the ε values would 

range between ~–5‰ to 0‰ in 9 out of 10 cases with an average ε of            

–2.3‰.  By applying the same assumptions to the 2005 incubation data, the 

ε would range between –2‰ and ~0‰ for the D10 samples, ~0‰ to –1‰ 

in the H5 samples, and ~–6‰ to –10‰ in the H4 samples.  The 2005 

incubations were incubated for less time than the 2007 incubations, and 

only exhibited a DOC loss of 4% to 34% (compared to ~60% to 95% in 

2007).  This suggests that partitioning between DIC and POC as well as 

isotopic fractionation during DIC and POC production during DOC 

photodegradation may be a function of (or partly related to) DOC quality 

and amount of DOC loss. 

4.4.3 Effects of DOM photodegradation on C/N ratios of DOC 

Organic matter derived from vascular (e.g. land grasses, shrubs, trees and 

aquatic macrophytes) and non-vascular (e.g. phytoplankton) plants 

maintains its geochemical source distinctiveness and resulting organic 

matter accumulation in lake sediments can reflect the amount and type in 

addition to the extent of alteration and/or degradation of the original 
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material (Meyers and Teranes, 2001).  Initial molar C/N ratios of the DOC 

ranged between 24 and 55, however, it is unknown whether the POC 

derived from this DOC would retain similar C/N ratios to the 

allochthonous DOC source.  Low N content is common in the lignaeceous 

material of higher plants while higher relative N content (and lower C/N 

ratios) is expected in algal derived DOC (McKnight et al., 1994).  In the 

surface waters of Loch Vale, McKnight et al. (1997) found that fulvic acids 

and some large particulates clustered in the range of plant derived carbon, 

while smaller particulates and colloids had greater δ13C values (and lower 

C/N ratios) suggesting possible algal sources.  With the photodegradation 

of more than 50% of the DOC in the current incubations, the C/N ratios of 

the residual DOC decreased to 4 to 14 in 9 out of 10 of the 2007 incubation 

samples (and increased by approximately 3‰ to 8‰ in δ13C), to become 

more similar to what is expected for algal sources (Figure 4.6).  The low 

DOC C/N ratios from samples after photodegradation were not treated to 

remove NO3
2- or NH4

+, which could affect the C/N ratios.  However, by 

assuming all of the nitrogen is retained, the importance of not treating the 

samples can be assessed by applying the DOC loss to 1) the measured initial 

DOC concentrations and OME total nitrogen measurements, and to 2) the 

initial DOC C/N ratios.  The calculated C/N values (assuming all the 

nitrogen is retained) range from ~1 to 20 (with 90% of the samples below 

16.5), and are within the ranges measured for the final DOC (C/N = ~1 to 

14) suggesting that treating the samples for NO3
2- or NH4

+ was not 

important.   
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Figure 4.6:  The differences between the δ13C-DOC and C/N ratio of DOC of the initial 
DOC and final incubation samples after exposure to natural sunlight.  Values are the 
averages of duplicate bags. 

In aquatic systems, photochemical release of NH4
+ has been 

observed (e.g. Bushaw et al., 1996; Gao and Zepp, 1998; Gardner et al., 

1998; Bushaw-Newton and Moran, 1999; Buffam and McGlathery, 2003; 

Vähätalo et al., 2003; Kitidis et al., 2006) and can affect inorganic nutrient 

budgets (Bushaw et al., 1996).  However, Kitidis et al. (2006) suggest that 

the potential impact of NH4
+ photoproduction is largest in shelf waters and 

marginal seas.  Nitrite and low molecular weight organic nitrogen 

compounds (e.g. primary amines and dissolved free amino acids) are also 

observed photoproducts (as cited in Kitidis et al., 2006), but 

photoproduction rates are generally one order of magnitude less than NH4
+ 

production. Photoammonification is not always detected in lake and river 

waters (e.g. clear water lake, Sweden: Jørgensen et al., 1998; humic surface 

waters in boreal watersheds: Bertilsson et al., 1999; agricultural and forest 

runoff into rivers: Wiegner and Seitzinger, 2001), and therefore the 
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importance of NH4
+ must be considered in a regional context (Kitidis et al., 

2006).  Detection of NH4
+ from photolysis could depend on the reactivity of 

DOM and other environmental controls that are not well understood 

(Kitidis et al., 2006) including the presence of dissolved iron (Gao and 

Zepp, 1998), the intrinsic properties of DOM, levels of O2, and the degree of 

prior exposure to radiation (Koopmans and Bronk, 2002; Buffam and 

McGlathery, 2003).   

Although the C/N ratios were not treated to remove NH4
+ or NO3

2-, 

it is possible that it is not necessary as these photoproducts may be absent 

after photodegradation or the photoproducts may not be produced in large 

enough quantities to impact the C/N ratios.  Perhaps more important than 

the degree of C/N alteration, is merely the idea that photodegradation of 

DOM can alter the C/N ratio of DOC, possibly obscuring the origins of or 

the proportion of autochthonous DOC in aquatic systems with high 

proportions of allochthonous DOC inputs.  In addition, the POC C/N 

ratios ranged between 12 and 26, and were different than the residual DOC 

C/N ratios.  Thus C/N ratios of DOC that has been subjected to photolysis 

cannot be used to ascertain sources of DOC. 

4.5 Summary 

Photodegradation of DOC altered the DOC and created POC in waters 

from 10 streams flowing into 2 oligotrophic lakes on the Canadian Shield.  

After exposure to natural sunlight for 28 to 34 days (Harp and Dickie Lake 

Inflow samples respectively), 61% to 90% of the DOC was degraded.  

According to the optical index of molecular weight (ad250:ad365) and SUV254 

absorbance data, the molecular weight and the aromaticity of the residual 

DOC decreased in the most of the samples.  Decreases in SAC350, ad380 and 

ad320 values confirmed that photobleaching occurred, decreasing CDOM 

concentrations, the colour of the water and increasing UV transparency. 
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Loss of DOC to photodegradation was accompanied by the creation 

of 0.4 mg C /L to 13.6 mg C /L of particulate carbon, which accounts for 

20% to 90% of the DOC loss.  Higher POC concentrations were generally 

produced in the inflows with high initial DOC concentrations and a high 

proportion of wetlands in the catchments.  Although approximately half of 

the DOC lost was transformed to POC, POC was 12-55% of the original 

DOC concentration. 

After exposure to natural sunlight, δ13C-DOC values increased by 

2.7‰ to 8‰ after, on average, 75% of DOC was degraded; large changes 

were generally observed in samples with high initial DOC concentrations 

and peatland coverage.  Data from 2005 incubations, and other literature 

data (e.g. Osburn et al., 2001; Opsahl and Zepp, 2001; Vähätalo and 

Wetzel) show increases in δ13C-DOC similar to the current incubations, 

further supporting the suggestion that photodegradation of DOM either 

preferentially degrades the lighter 12C12C bonds, and/or that the 12C and 13C 

atoms are not equally distributed within DOC and the moieties cleaved 

from the DOC have more 12C atoms than average with an average 

enrichment factor of –2.9‰ (ε range: –1.2‰ to –3.4‰). 

The δ13C-DOClost from the 10 streams was similar across inflows.  

The average δ13C-POC created value of the 10 inflows was –26.6‰ (range: 

–25.7‰ to –27.7‰) and was similar to the average calculated δ13C-DOClost 

(–28.8‰) once errors are applied, and to the initial average δ13C-DOC 

(-27.3‰) suggesting that the isotopic signature of POC created during 

photodegradation is generally within 1‰ of the DOC it is created from.  

The remaining carbon loss pathway resulting from the photodegradation of 

DOM is likely DIC production and, assuming the initial DIC 

concentrations are negligible, the average δ13C-DIC produced (of 9 samples) 

was –30.9‰.   
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δ13C studies in aquatic systems currently do not consider DOM 

photodegradation as a process affecting isotopic values.  The δ13C changes 

could become important to isolating and interpreting DOC sources.  Since 

DOM photodegradation can create POC ranging from –0.4‰ lighter than 

to 2 ‰ heavier than the initial DOC, it can affect the δ13C value of lake 

sediments depending on the proportion of POC in the sediments derived 

from photodegraded DOM.  In lakes, this could become important to the 

interpretation of the ratio of autochthonous to allochthonous carbon in both 

the POC in the water column and the lake sediments.  Additionally C/N 

ratios of DOC can be altered to resemble microbial sources.  Furthermore, 

δ13C carbon cycling studies in shallow, high DOC systems could be missing 

an important component. 
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Chapter 5: 
 
The use of carbon mass and isotope balances to 
examine the influence of allochthonous carbon 
on the δ13C-lake sediment records in two small 
Ontario lakes. 

5.1 Overview 

Carbon mass and stable isotope balances were completed for Harp and 
Dickie Lakes in the Muskoka-Haliburton region of Ontario, Canada based 
on stream inflows, and outflows, precipitation, lake surface, and sediment 
measurements.  Mass-weighted average annual δ13C-DOC and δ13C-DIC 
values from the inflows varied by 0.2‰ and 1.3‰ respectively from year to 
year suggesting that these values are well confined.  The ranges of the mass-
weighted average annual δ13C-DOC values of the outflows were similar to 
the inflows for δ13C-DOC (0.2‰); however, the ranges of the outflow mass-
weighted average annual δ13C-DIC were larger (range: 2.2‰) than the 
inflow range.  Precipitation was found to be a small part of the mass and 
isotopic balances of these lakes.  Calculated δ13C values of the lake sediment 
were less than measured δ13C values of the lake sediments for Dickie Lake 
by approximately 2‰; however, they were approximately 5‰ greater in 
Harp Lake.  A dynamic model, created to examine the effects of mass 
change on the δ13C of the lake sediments, revealed that changing the DOC 
mass entering lakes by 5% (a small annual variation, or the bias in 
measuring the mass balances) does not appear to significantly alter the δ13C 
of the lake sediment.  However, altering the mass of DOC entering the lakes 
by the long-term annual variability of DOC entering the lakes from the 
years of the mass balances (e.g. 40%) can change the isotopic signature of 
the lake sediment by up to 2.5‰.  Examining the input parameters to the 
model suggests that the value calculated for δ13C-CO2 evaded to the 
atmosphere is key for completing the isotope balances, and calculating the 
δ13C of the sediments.  Flux calculations suggest that detailed lake surface 
measurements must be collected at the onset of and times surrounding the 
fall turnover for accurate calculation of δ13C-CO2 lost to the atmosphere.  
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According to the model, the δ13C of lake sediments is sensitive to the long-
term changes in the mass of DOC entering and the areal water discharge in 
both lakes.  The δ13C of the sediments in Harp Lake is also sensitive to pH 
and the gas exchange coefficient whereas Dickie Lake is not as sensitive to 
these inputs due to the size, depth, and carbon content differences between 
the lakes. 

5.2 Introduction 

The fate of organic carbon and carbon cycling within lakes impacts the 

health of aquatic systems, global carbon budgets, and emissions of 

greenhouse gases (e.g. CO2) to the atmosphere.  Allochthonous dissolved 

organic carbon (DOC) exported from terrestrial systems through streams 

and into lakes can affect water transparency (e.g. Schindler, 1971; Schindler 

and Curtis, 1997) and thermocline depth (Perez-Fuentetaja et al., 1999; 

Schindler, 2001), nutrient availability due to binding of metals (Wetzel, 

2001), lake metabolism (e.g. Cole et al., 2006), and food web energy sources 

(Pace et al., 2004).  DOC can also be mineralized releasing CO2 to the 

atmosphere (Algesten et al., 2003) or sequestered sediment (Dillon and 

Molot, 1997a; Molot and Dillon, 1996; Molot and Dillon, 1997b).   

Carbon mass budgets are often used in aquatic systems to examine 

carbon controls and sources.  Commonly, only one component of the 

carbon cycle is examined (e.g. dissolved inorganic carbon (DIC) or DOC; 

Wetzel et al., 1972; Emerson, 1975; Hesslein et al., 1980) but more recent 

studies use the complete carbon budgets (DOC and DIC) to examine 

pathways and sinks of organic matter (Andersson and Sobek, 2006; Sobek et 

al., 2006; Yang et al., 2008) to assess the potential of lakes as carbon sinks.  

Using carbon mass balances in high DOC retention lakes can potentially 

reveal the relative importance of terrestrial and atmospheric derived CO2 as 

well as the importance of in-lake mineralization of DOC (e.g. Dillon and 

Molot, 1997a).  In addition, the estimated carbon mass balances from 7 

unproductive central Ontario lakes have illustrated the impact of DOC on 

sedimentation and carbon evasion/invasion (Dillon and Molot, 1997a).  
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Quay et al. (1986) used mass and isotope balances of DIC to 

estimate gas exchange and the production rates of organic carbon in Lake 

Washington, U.S.A..  Raymond and Bauer (2001) looked at the mass 

balance of both stable and radioactive carbon isotopes (13C/12C and 14C/12C) 

to investigate DOC sources and fate in an estuarine environment. The 

importance of autochthonous and allochthonous carbon to DOC and CO2 

production in lakes has also been examined through mass and isotope 

balances by Jonsson et al. (2001).  Using whole-lake 13C additions, Cole et 

al. (2002) evaluated the importance of allochthonous and autochthonous 

carbon within East Long Lake, Wisconsin by constructing a process-based 

carbon flow mass balance model using ambient and manipulated 13C values 

for 12 carbon pools.  Similarly, Carpenter et al. (2005) used 3 different 

dynamic models including the same process rich, dual-isotope dynamic flow 

model as Cole et al. (2002) to estimate allochthony within two 13C enriched 

unproductive lakes.  However, carbon isotope balance studies rarely 

examine both the organic and inorganic forms of carbon, and have not been 

used to investigate their role as drivers controlling the δ13C values of the 

sediment record in lakes.  

According to Dillon and Molot (1997a), long-term mass balance 

studies using DOC and DIC measurements from stream and precipitation 

inputs and outflows can be useful in examining the relative importance of 

atmospheric and terrestrial carbon sources.  By calculating annual flux 

measurements of DIC and DOC in inflows, outflows, and sediments of 

unproductive lakes, the invasion/evasion of carbon from/to the atmosphere 

can be examined.  Particulate organic carbon (POC) was not measured 

separately in Dillon and Molot (1997a) as POC in screened water samples 

was found to be an insignificant compared to DOC concentration (<10%).  

Thus these mass balances include some unknown part of the POC since 

DOC samples were not filtered. Accordingly, the following equation can be 

used to describe the annual mass balances: 
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(Equation 5.1) 

DOCin + DICin = DOCout + DICout + Sed + Atm 

where DOCin and DICin are the mass of carbon transported from the inflows 

in the form of DOC and DIC (including atmospheric deposition), DOCout 

and DICout are the mass of carbon transported from the outflows in the form 

of DOC and DIC, Sed is the mass of carbon lost to sedimentation, and Atm 

is the mass of carbon lost to the atmosphere.  Should the Atm parameter be 

negative, DIC would be invading the lake. 

Similarly, the complementary annual isotopic budget requires 

weighted average annual δ13C values for each of the parameters.  To 

calculate a weighted average annual δ13C value, the δ13C and the mass of the 

carbon entering the lakes through each individual inflow must be considered 

on a monthly basis, and then weighted annually.  The isotope budget was 

determined using the following equation: 

(Equation 5.2) 

δ13C−DOCin (DOCin ) + δ13C−DICin (DICin ) =

δ13C−DOCout (DOCout ) + δ13C−DICout (DICout ) + δ13C−Sed (Sed) + δ13C−CO2 (Atm)
 

This study will 1) calculate the isotope mass balance by determining 

the weighted average annual δ13C signatures of the inflows, outflows, and 

gas invaded/evaded to the atmosphere, 2) use the completed isotope mass 

balance and the carbon mass balances presented by Dillon and Molot 

(1997a) to calculate the expected δ13C of the sediment (δ13C-Sed), 3) 

examine the sensitivity of the input parameters examined (weighted δ13C 

values, DOCin, DICin, qs (areal water load), v (apparent settling coefficient), 

pH, and k (gas exchange coefficient)) to the δ13C-Sed, 4) compare the 

measured δ13C of the sediment to the expected δ13C of the sediment to test 

the method of Dillon and Molot (1997a) for determining lake carbon mass 
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balances, and 5) assess whether changes in the δ13C of lake sediments can be 

driven by changes in the carbon mass balance. 

5.3 Methods 

Harp and Dickie Lakes are relatively clear oligotrophic headwater lakes 

located approximately 200 km north of Toronto in the Muskoka-Haliburton 

region on the southern tip of the Precambrian Shield.  Their watersheds 

generally contain tills (<1m), forested primarily by deciduous trees.  Inflow 

streams also travel through beaverponds, wetlands, and bogs en route to the 

lakes.  Lake catchments are divided into a series of sub-catchments based on 

surface drainage patterns (Figure 5.1).  More detailed physical and chemical 

descriptions can be found in Dillon et al. (1991) and Dillon and Molot 

(1997a) for the inflows and lakes respectively (Table 5.1).   

To determine the mass weighted average annual δ13C values of the 

inflows, outflows, and gas evaded to the atmosphere between 2004 and 

2005, samples for DIC, DOC, partial pressure of CO2 (pCO2),  δ13C-DIC, 

and δ13C-DOC were collected bimonthly to monthly from the lakes and 

associated inflows between April (immediately after ice-off) and the end of 

November prior to ice cover on the lakes.  Additional samples for DIC, 

pCO2, and δ13C-DIC were collected in the spring of 2007.  Winter lake 

sampling was completed twice, generally in the middle of March, and 

weekly sampling was performed immediately after ice-off.  Additional 

winter sampling and ice-off samples were collected from the inflows 

between March to the end of May in 2007 and from the lake (from the end 

of April to the end of May) to capture the high CO2 evasion period from the 

lake. 
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Figure 5.1:  Maps of Harp and Dickie Lakes illustrating the watershed boundary, the sub-
catchment boundaries, ungauged areas (UNG), inflow streams, and wetlands. 
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Table 5.1:  Physical and chemical characteristics of Harp and Dickie Lake inflows. 
 

DIC samples were collected in 15 mL Wheaton bottles, capped with 

baked BD vacutainer stoppers without headspace, and preserved with 0.02 

mL of a saturated HgCl2 solution.  Samples were acidified with 85% H3PO4 

to a pH < 2 after a 5 mL helium headspace was added.  To equilibrate 

headspace and liquid concentrations, acidified samples were shaken on an 

orbital elliptical shaker for 1.5 hours.  Concentrations were measured by 

equilibrated headspace on a Shimadzu GC-8A Gas Chromatograph fitted 

with a methanizer (Ni catalyst, He gas carrier, FID detector) with an 

uncertainty of < 5% (Stainton, 1973). 

DOC samples were filtered to 0.45 µm, and acidified with 20% HCl 

to approximately pH 4 after collection.  Samples were analyzed on a total 

organic carbon analyzer (Dohrmann DC-190) with a maximum error of 

± 0.3 mg/L after being acidified by the instrument with 85% H3PO4 to a pH 

of 2-3 and sparged to remove DIC. 

Length1 (m)
Catchment 
Area (ha)

Lake 
Area (ha)

Peat (%) DIC2   

(mg C /L)
DOC2   

(mg C /L)

Harp Inflow 3 1010 25.99 9.3 1.9 12.0
Harp Inflow 3a 762 19.65 2.9 2.7 3.1

Harp Inflow 4 2040 119.50 8 4 1.7 6.7
Harp Inflow 5 1830 190.50 13.3 3.8 16.0

Harp Inflow 6 701 9.97 10 4 3.1 8.8
Harp Inflow 6a 610 15.28 8.5 3.8 12.3
Harp Outflow n/a n/a 1.6 4.6

Harp Lake n/a 470.70 71.38 n/a 1.53 3.9

Dickie Inflow 5 762 29.98 25.4 6.3 16.2
Dickie Inflow 6 488 21.80 22.0 3.0 21.5
Dickie Inflow 8 1220 66.96 8.2 4.7 22.4
Dickie Inflow 10 975 78.89 17.1 2.7 21.7
Dickie Outflow n/a n/a 1.0 6.2

Dickie Lake n/a 406.40 93.60 n/a 0.93 5.1

1 Dillon et al., (1991)

3 Annual weighted concentrations (OME, unpublished)
4 Eimers et al., (2008)

2 Average DIC and DOC values of weekly measurements from 2004-2007 (n = 127-179; OME unpublished)
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δ13C-DIC samples were collected in 125 mL Wheaton serum bottles 

without headspace, capped with baked BD Vacutainer stoppers, and 

preserved with 0.3 mL of a saturated solution of HgCl2.  A helium 

headspace was created (5 mL He: 155 mL water) and samples were 

acidified with 85% H3PO4 to a pH less than 2.  Samples were shaken for a 

minimum of 1.5 hours to equilibrate the gases between dissolved and 

headspace phases.  Headspace gas was analyzed on a Micromass Isochrom 

gas chromatograph combustion isotope ratio mass spectrometer (GC-C-

IRMS) at the Environmental Isotope Laboratory (EIL), Waterloo, Ontario.  

Precision of this analysis is less than ± 0.3‰.  Periodically, duplicate 

samples were analyzed and results were within 0.3‰ of each other.  Low-

concentration samples were either extracted offline (Heemskerk and 

Diebolt, 2006) and analyzed on a Prism 903 dual inlet mass spectrometer or 

on a Carlo Erba 1110 EA coupled to a Delta Plus XP CF-IRMS, also at 

EIL. 

δ13C-DOC samples were collected by filtering water through GF/F 

filters (nominal pore size of 0.7µm).  The filtrate was acidified with 20% 

HCl to a pH of 4.5, freeze-dried, and run on a Carlo Erba 1105 Elemental 

Analyzer coupled to a Micromass Isochrom IRMS with a precision of 

± 0.2‰ at EIL, Waterloo, Ontario.   

To supplement these data, weekly to monthly DIC, DOC, pCO2, 

δ13C-DIC and δ13C-DOC samples from 1990-1992 in the Harp Lake 

watershed (Schiff and Aravena, unpublished) were also used to construct 

the isotope budget.  These supplementary Harp and Dickie Lake inflow 

data were either used to augment the measurements from this study or 

provide data where no data were available.  These DIC concentration 

samples were analyzed by the Ontario Ministry of the Environment (OME) 

colourmetrically using an autoanalyzer with a phenolphthalein indicator 

(Dillon and Molot, 1997a) while DOC concentrations were analyzed using 
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the persulfate oxidation method (OME, 1983).  Samples for δ13C-DIC were 

acidified and the CO2 was collected and analyzed at EIL (Aravena et al., 

1992).  δ13C-DOC was sampled, and analyzed using the methods reported 

by Schiff et al. (1990).  Additionally, supplementary δ13C-DOC data from 

the inflows to Dickie Lake were obtained from Humphries (2003) and 

Sentance (2006). 

Cores from the middle of Harp and Dickie Lakes had previously 

been 210Pb-dated (Paterson, unpublished).  The Harp core was previously 

analyzed for δ13C (Schiff, unpublished), and the Dickie core required δ13C 

analysis (Table 5.2).  Analyses were performed as above with a precision of 

± 0.2‰ at EIL. 

The OME collected DOC and DIC samples from the inflows and the 

outflows of Harp and Dickie Lakes every 1 to 4 weeks (Dillon and Molot, 

1997a) as part of their ongoing monitoring of these catchments over the last 

30 years.  Concurrently, they also continuously monitored stream stage at 

stream weirs or flumes and constructed stage-discharge relationships. The 

OME compiled monthly DOC and DIC data to complete monthly DOC 

and DIC mass balances used by Dillon and Molot (1997a).  More details on 

the collection methods and analysis of the DOC and DIC concentration 

samples and construction of the mass balances can be found in Dillon and 

Molot (1997a).  Although Dillon and Molot (1997a) used mass balances 

from 1981-1989 in their study, to examine the inter-annual variability over a 

longer time scale, mass budget data from 1978 to 1998 are used in this 

study. 
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Table 5.2:  Range of 13C isotope data from inflows, outflows, and surface waters, and the calculated mass weighted average, minimum, and maximum 
annual 13C values using measured 13C values and the carbon budgets from 1978-1998.  Mass weighted annual 13C signatures were calculated for each 
year of the balance to provide a range of 13C mass weighted annual signatures.  The calculated 13C sedimented is determined using the mass balances 
and solving for the 13C-Sed parameter.  Measured sedimentation is actual 13C analyses on the sediments of the lakes.  Note that the 13C-precipitation is 
not included in the minimum and maximum ranges of the inflows, however, it was included in calculations. 

 
 

Min Max Min Max AVG Min Max Min Max AVG

DOCIN 28.9 -27.7 -26.2 -26.9 -26.7 -26.8 31.2 -28.8 -26.6 -27.3 -26.8 -27.1
DICIN 7.85 -24.4 -11.7 -20.5 -19.2 -19.9 7.35 -23.7 -15.8 -21.9 -20.7 -21.3
DOCOUT 16.9 -27.3 -26.3 -26.9 -26.7 -26.9 14.2 -27.1 -26.6 -26.9 -26.9 -26.9
DICOUT 6.35 -17.4 -7.4 -17.1 -14.9 -16.0 2.53 -18.9 -6.1 -16.2 -13.7 -15.1
Gas Exchange* 7.17 n/a n/a -21.9 11.7 n/a n/a -25.7
Sedimentation (calculated) 6.26 n/a n/a -34.7 10.1 n/a n/a -27.7
Sedimentation (measured) n/a n/a -29.9 n/a n/a -30.0
1 from Dillon and Molot (1997a)

*  calculated using 13C-DIC and CO2 saturation data; interpolated between sampling dates

Harp Lake Dickie Lake
Loading 
Rate1 

(gC/m2/yr)

Measured δ 13 C Mass Weighted Annual δ 13 C Loading 
Rate 

(gC/m2/yr)

δ 13 C range (‰) Mass Weighted Annual δ 13 C 
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Since the OME mass balances were calculated on a monthly basis, 

samples for DIC, DOC, pCO2, δ13C-DIC, and δ13C-DOC were collected 

weekly to monthly to complete the complementary isotope balance.  To 

determine the weighted average annual δ13C values for DIC and DOC 

entering and exiting the lakes, monthly δ13C values were calculated as the 

arithmetic average of 1 to 8 samples per month.  For months with no data, 

the δ13C values were interpolated between months with existing data.  To 

determine the weighted annual δ13C value, average monthly δ13C values 

were weighted by the mass of carbon entering the lakes each month.  This 

was done for the 20 years of monthly mass balance data to determine the 

variability in the weighted average annual δ13C value. 

The net δ13C-CO2 lost to the atmosphere through gas exchange was 

calculated from ice off to ice cover using lake surface δ13C-DIC values, 

pCO2, and DIC concentrations.  Weekly measurements were used in the 

month proceeding ice off because of the expected high fluxes of CO2 with 

low δ13C values from the ice-cover season, and monthly measurements were 

used for the remainder of the ice-free season.  Due to preservational and/or 

analytical issues, complete data sets of the required parameters were not 

available to calculate the net δ13C-CO2 evaded from the lake in all years. In 

2005, CO2 concentrations from Harp Lake were calculated using measured 

DIC concentrations and pH collected and measured by the OME (on the 

same day as DIC).  Surface water saturation CO2 concentration was 

calculated (based on temperature), and since the lakes were almost always 

supersaturated, CO2 evasion to the atmosphere occurred.  The net annual 

CO2 ((Equation 5.3) and δ13C-CO2 ((Equation 5.4) fluxes were calculated for 

each day according to the following equations: 

(Equation 5.3) 

CO2 Flux = k (CO2sat − CO2 in situ )  
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(Equation 5.4) 
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where k is the gas exchange coefficient, CO2 sat and CO2 in situ are the 

concentrations of CO2 at saturation, and in the lake water respectively, 
13C/12C-CO2 atm is the atmospheric 13C/12C-CO2 (where δ13C-CO2 is –8‰; 

e.g. Quay et al., 1986; Levin et al., 1987), 13C/12C-CO2 in situ is the measured 

δ13C-CO2 at the lake surface converted from ‰ to ratio, αGK is the kinetic 

fractionation factor associated with gas exchange (0.9987; Clark and Fritz, 

1997), and αGEq is the equilibrium fractionation factor for gas exchange 

(0.9989; Mook et al., 1974).  These values were summed to determine the 

net annual flux and used to calculate the average annual weighted 13C/12C-

CO2 ratio, which was converted to a δ13C-CO2 value.  Concentration and 

temperature data required for the calculations were linearly interpolated 

between sampling points.  Since the calculated values are net flux and net 

δ13C-CO2 values evaded from the lakes, they incorporate the influx of 

atmospheric CO2 (with a δ13C-CO2 of -8‰) into the lakes. 

To investigate the sensitivity of the isotope mass balance (and carbon 

inputs) to the lake sediment δ13C value, a dynamic mass and isotope budget 

model was constructed for Harp and Dickie Lakes using Stella v9.0.  The 

model used the carbon inputs from Dillon and Molot (1997a), and the 

weighted average annual δ13C values for the inflows, outflows, and CO2 lost 

to the atmosphere to calculate the expected δ13C of the lake sediments.  

Rearranging Equation 5.2, the δ13C of the lake sediments can be calculated: 

(Equation 5.5) 

δ
13

C −Sed =

δ 13C −DOCin (DOCin ) + δ 13C −DICin (DICin )
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ − δ 13C −DOCout (DOCout ) + δ 13C −DICout (DICout ) + δ 13C −CO2 (Atm )

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

Sed

 DOCin and DICin input parameters are taken from Dillon and Molot (1997a).  
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The DOCout and DICout parameters are calculated based on the mass of DOC 

and DIC in the lakes according to: 

(Equation 5.6) 

DOCout =
DOCin lake × qs × A

V
 

(Equation 5.7) 

DICout =
DICin lake × qs × A

V
 

 

where, DOCin lake is the mass of DOC within the lake, qs is the areal water 

load, A is lake area, and V is lake volume.  The mass of CO2 evaded to the 

atmosphere (Atm) was also calculated within this model: 

(Equation 5.8) 

Atm =
k CO2 in situ − CO2 sat

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ × A

V
 

 

In this model, the CO2 mass in the lake was calculated from DIC in the lake 

(DICin lake), pH and the acid dissociation equations (Wetzel, 2001). 

The mass of carbon lost to the sediment was calculated via a 

sediment partition (sed partition) coefficient based on the DOC removed 

from the lake: 

(Equation 5.9) 

Sed = DOC
removed

× sed partition  

 

The DOCremoved and the sed partition were calculated using: 

(Equation 5.10) 

DOC
removed

=
DOC

in lake
× v × A

V
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(Equation 5.11) 

sed partition =
SedD& M

DOCin − DOCout

 

where v is the apparent settling coefficient, and SedD&M is the average carbon 

sedimentation calculated by Dillon and Molot (1997a).   

Most of the model input parameters were either provided by Dillon 

and Molot (1997a) or calculated from field measurements (Table 5.3).  It 

was necessary to adjust the pH in Harp and Dickie Lakes, and qs and v in 

Harp Lake for the masses of DOCout, DICout, Sed, and Atm in the model to 

equal the average masses calculated by Dillon and Molot (1997a) from the 

mass balances suggesting that there might be errors associated with the mass 

balances and/or these measured/calculated input parameters.   

Table 5.3:  Input parameters to the model. 

Parameter Source of Data

δ13C-DOCIN Calculated from monthly measurements

δ13C-DICIN Calculated from monthly measurements

δ13C-DOCOUT Calculated from monthly measurements

δ13C-DICOUT Calculated from monthly measurements

δ13C-CO2 (GE) Calculated from monthly measurements

DOCIN LAKE Calculated from data in Dillon and Molot (1997a)
DICIN LAKE Calculated from data in Dillon and Molot (1997a)
DOCIN Calculated by Dillon and Molot (1997a)
DICIN Calculated by Dillon and Molot (1997a)

pH Annual Ice off average measured by OME1,2

qs Calculated by Dillon and Molot (1997a)1

v Calculated by Dillon and Molot (1997a)1

k Calculated from wind speed measurements
sediment partition 
coefficient

Calculated from Dillon and Molot (1997a)
1 Adjusted slightly to improve fit in Harp Lake to carbon mass balances of Dillon and Molot 
(1997a)
2 Adjusted slightly to improve fit in Dickie Lake to carbon mass balances of Dillon and 
Molot (1997a)
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5.4 Results and Discussion 

To calculate the isotope mass balance, the following must be determined: 

1) the weighted average annual δ13C-DIC and δ13C -DOC of the 
inflows,  

2) the importance of precipitation on the weighted average annual δ13C-
DIC and δ13C-DOC values of the inputs,  

3) the weighted average annual δ13C-DOC and δ13C-DIC of the 
outflows, and 

4) the weighted average annual δ13C-CO2 evaded to the atmosphere. 

5.4.1 δ13C-DIC of the Inflows (δ13C-DICin) 
Average monthly DIC concentrations for the Harp and Dickie inflows 

ranged between approximately 1 mg C/L and 9 mg C/L (Figure 5.2).  

Concentrations were elevated in the winter, peaking around February to 

March, and then declined to a minimum in April; after winter, DIC 

concentrations increased throughout the spring and summer, peaking 

between June and September, then concentrations steadily declined in the 

fall. 

The ranges of the δ13C-DIC measurements of the inflows between 

the early 1990’s and 2004-2005 differed; however, average values in the two 

time periods were similar.  Seasonally, δ13C-DIC in streams generally 

increased from ice-off to a maximum in July or August, after which values 

declined.  The δ13C-DIC of the inflows ranged between –23.7‰ to –15.8‰ 

in Dickie Lake and –24.4‰ to –11.7‰ in Harp Lake (Figure 5.3).  The 

overall range of δ13C-DIC over all of the inflows to each lake was up to 

~13‰ (e.g. ~–25‰ to –12‰).  However, the annual variations observed 

within each individual stream (~7‰: Figure 5.3) and the range in mass 

weighted annual δ13C signatures (1.3‰: Table 5.2) are both smaller than the 

ranges observed over all the inflows (~13‰).   
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Figure 5.2:  Annual variability in DIC concentrations for a) Harp Lake and b) Dickie 
Lake.  DIC concentrations were based on monthly averaged values of weekly DIC 
collected from 2004-2007 (OME, unpublished). 
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Figure 5.3:  Annual variability in monthly averages of δ13C-DIC values for a) Harp Lake 
and b) Dickie Lake.  During months with extremely low flow or no flow at the time of 
sampling, δ 13C-DIC values were linearly interpolated using existing δ13C-DIC 
measurements.  Precision is 0.3 ‰. 
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In Harp Lake Inflow 3, generally as DIC concentrations increased, 

the δ13C-DIC values decreased (Figure 5.4) suggesting that the stream was 

degassing increasing the δ13C-DIC, or the source of DIC changes slightly as 

the water table level changes affecting diffusion of CO2 out of the soil.  

Doctor et al. (2008) found increased outgassing with increases in δ13C-DIC 

values along a forested stream during the growing season, since there was 

likely an increase in soil CO2 production (creating a larger pCO2 gradient 

between the soil and atmosphere), with more pronounced stream CO2 

outgassing expected in the warmer months.  Outgassing changes the δ13C-

CO2 due to isotopic fractionation (i.e. between CO2 (aq) and CO2 (g), HCO3
- 

and CO2 etc.).  DIC is partitioned into HCO3
- and CO2 (aq) based on pH, and 

there is a large equilibrium fractionation between HCO3
- to CO2 (Mook et 

al., 1974), with an isotopic difference of ~9‰.  The CO2 lost to the 

atmosphere is ~1‰ different than the CO2 (aq) (Zhang et al., 1995), thus the 

δ13C-DIC increases as more CO2 is lost to the atmosphere.  Similarly, a 

small kinetic fractionation has been observed during dissolution of CO2 in 

water (Usdowski and Hoefs, 1990).  However, there is no evidence to 

suggest that the changes in δ13C-DIC in the remainder of the Harp and 

Dickie Lake inflows were due to outgassing. 
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Figure 5.4:  Annual variability in DIC versus δ13C-DIC for a) Harp Lake and b) Dickie 
Lake.  DIC concentrations are based on average values of weekly DIC collected from 2004-
2007 (OME, unpublished). 
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In Harp Lake Inflows 4, and 5, and Dickie Lake Inflow 5, generally 

there is a positive relationship between in δ13C-DIC and DIC although the 

trend is not strong in all cases (Figure 5.4).  This suggests that degassing is 

not prevalent in these stream waters, and that the source of DIC has 

changed and caused the variation in δ13C-DIC; however, there is not 

enough evidence to support this since it is unknown how production has 

affected the δ13C-DIC.  Also, this trend could be observed if the DIC 

concentration was changing in the system with no change to the δ13C-DIC.  

The DIC concentrations increase in the remainder of the inflows, yet the 

δ13C-DIC remains relatively similar on an annual basis also suggesting that 

the balance of processes affecting the δ13C-DIC may be changing, although 

conclusive results cannot be made due to lack of evidence.   

Lower δ13C-DIC values in the late summer suggest that there was 

less water flow than in spring and the more negative δ13C-DIC values could 

be due to greater production of soil CO2.  Although not measured in the 

current study, Aravena et al. (1992) report δ13C values between –21‰ and –

25‰ for soil CO2.  However, low δ13C-DIC values in the autumn and 

winter suggest increased drainage from the catchment during times of high 

flow affected the δ13C-DIC.  Increases in aquatic photosynthesis could 

increase the stream δ13C-DIC values during the growing season, however, in 

the early spring during snowmelt, stream temperatures are low, and as the 

growing season proceeds light becomes limited in the forested catchments 

(although not in the wetland ponds and streams) and could affect 

productivity. 

The δ13C-DIC inflow values observed in this study were lower than 

many of the previously reported δ13C-DIC stream data.  Findlay (2003) 

observed a minimum δ13C-DIC of –17.7‰ during summer baseflow of 

small streams from a temperate forested watershed in northern California 
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and found increases to –6.4‰ with increasing stream size.  Many other 

streams from temperate watersheds have been found to range between –9‰ 

and –13‰ in summer months (cited in Finlay, 2001) while springs and 

groundwater ranged between –15‰ to –18‰ and –15‰ to –19‰, 

respectively (cited in Finlay, 2003).  The variations observed could be a 

result of the DIC sources in the region as the main DIC sources in river 

water are soil CO2, carbonate mineral dissolution, and exchange of 

atmospheric CO2 at the air water interface (Yang et al., 1996).  If carbonate 

dissolution prevailed in the Harp Lake catchment, it would produce 

δ13C-DIC signatures around –11‰ in closed systems (assuming soil CO2 = 

-22‰; carbonate = 0‰; Aravena et al., 1992) and between –19‰ to –13‰ 

in open systems (Deines et al., 1974; Wigley, 1975; Aravena et al., 1992).  

However, there is no carbonate in the Harp catchment and the δ13C-DIC of 

the groundwater from wells close to recharge and discharge areas, in 

addition to the middle of the basin at Harp Lake, lies within the range of 

-22‰ to -24‰, typical isotope values for CO2 in soils without CaCO3.  In 

conjunction with 14C and soil CO2 data, these data have been shown to 

reflect silicate weathering of underlying geology in the catchment (Aravena 

et al., 1992).  The isotopic composition of DIC, in the case of silicate 

weathering, will reflect the soil CO2 produced from root respiration and soil 

organic matter decomposition, which in turn is related to the type of 

vegetation cover (Amiotte-Suchet et al., 1999).  Low variability in the δ13C-

DIC values from November to May can be explained by the loss of 

vegetation in autumn and subsequent snow cover throughout the winter.  

During this time the snow and ice cover provides a “cap” creating a closed 

system where diffusive CO2 losses are low (compared to summer) and the 

water in the streams (and under the ice) are reflective of the soil CO2, even 

though there is reduced soil respiration.  As spring melt causes the snow 

pack and ice to recede, diffusive losses increased and the soil CO2 increases, 

causing increased outgassing and a change in δ13C-DIC further illustrating 

that DIC is controlled by silicate weathering (and soil CO2). 
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Using the monthly average δ13C values, the mass weighted average 

annual inflow δ13C-DIC values of Dickie and Harp Lake inflows are  

-21.3‰ and -19.9‰ respectively (Table 5.2). 

5.4.2 δ13C-DOC of the Inflows (δ13C-DOCin) 

Average monthly inflow DOC concentrations ranged between 

approximately 3 mg C/L and 50 mg C/L (Figure 5.5; OME, unpublished).  

Concentrations were low in April, and steadily increased in all Dickie 

inflows.  The majority of the Harp inflows peak between June and 

September.  After the peak concentration, the DOC concentrations steadily 

declined in the fall until they reached a minimum in April.  DOC 

concentrations in Harp Inflows 3a and 4 did not show a lot of annual 

variability. 
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Figure 5.5:  Annual variability in DOC concentrations for a) Harp Lake and b) Dickie 
Lake.  DOC concentrations were based on monthly averaged values of weekly DOC 
collected from 2004-2007 (OME, unpublished). 
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In contrast to the isotopic composition of the stream δ13C-DIC 

values, there was little inter-annual variation in δ13C-DOC values of the 

inflows.  Additionally, inflow and outflow δ13C-DOC values generally did 

not vary greatly between similar months in the early 1990’s and 2004-5 and 

thus the data were used in conjunction with each other to augment existing 

data, or provide values where data was unavailable.  Dickie and Harp Lake 

inflows ranged between –28.8‰ to –26.6‰ (mass weighted average annual 

δ13C = –27.1‰) and –27.7‰ to –26.2‰ (mass weighted average annual 

δ13C = –26.8‰) respectively (Figure 5.6).  The similarities between annual 

δ13C-DOC values of inflows, and between the sub-catchments within the 

watersheds (with the exception of Dickie Lake inflow 5) indicated that 

DOC sources in the streams did not change annually.  Since the δ13C-DOC 

values were similar to shallow soil percolates from the LFH horizon 

(-27.9‰; Schiff et al., 1990) and the DOC content for streams, lysimeter 

and groundwaters (–27‰ to –28‰; Trumbore et al., 1992), suggests that the 

DOC source was from the terrestrial catchment.  Similar conclusions on the 

origin of DOC in streams have also been drawn by Duan et al. (2007), who 

noted that dissolved organic matter (DOM) parameters including δ13C-

DOM for Pearl River, a small blackwater river, are likely controlled by 

hydrologic conditions affecting organic matter transport from local or deep 

soils and not in-situ processing as in larger rivers such as the Mississippi.  

The δ13C-DOC from Dickie Lake inflow 5 was approximately 1‰ to 1.5‰ 

lower than the other inflows in the Dickie Lake catchment and it noticeably 

declined to a minimum in the summer months.  This catchment contains a 

wetland comprised of a floating peat layer underlain by a water pocket.  

Since the δ13C of Sphagnum in the Dickie 5 catchment is lower and lays 

between –26.6‰ and –27.1‰, and the peat ranges between –25.3‰ and 

-27.7‰ with depth (Schiff, unpublished data), it is likely that peat is a more 

important carbon source than shallow soil percolates to the stream water 

during the winter and spring months when flow was high and DOC was 
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being flushed from the wetlands.  In the summer, the floating peat mat 

compressed and sometimes did not float resulting in a disconnection 

between the upland and wetland systems.  δ13C-DOC values in the pocket 

water under the peat were –28.5‰ to –29.1‰ (Schiff, unpublished) 

indicating this water could be draining to the streams suggesting its 

importance to the stream in the summer months.  Although local vegetation 

and wetland vegetation (e.g. Sphagnum, tamarack, fern, labrador tea and 

leatherleaf) have δ13C values between –30.6‰ and –28.0‰ (Schiff, 

unpublished), they were above the water table and likely did not contribute 

to the observed minimum during the summer months. 
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Figure 5.6:  Annual variability in δ13C-DOC values for a) Harp Lake and b) Dickie Lake.  
During months with no data, δ 13C-DOC values were linearly interpolated.  Precision is 
0.2 ‰. 
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Fresh plant material and relatively undecomposed litter in the Harp 

catchment was more depleted (–28‰ to –30‰) than the stream δ13C values 

(Aravena et al., 1992; Trumbore et al., 1992) and their δ13C values lie within 

the range observed for C3 plants (–24‰ to –29‰; Deines, 1980).  The 

narrow ranges of the 2004-2007 δ13C-DOC data were similar to the data 

from Schiff et al. (1997) where the δ13C-DOC of Harp inflows ranged 

between –28.6‰ to –25.5‰ with more than 80% of the data within 0.5‰ of 

–27.0‰.  Averages of monthly δ13C-DOC data from both sets of data were 

used to calculate the mass weighted average annual δ13C-DOC.  δ13C-DOC 

values were similar to those from summer stream water and water table well 

samples, which ranged from –27.3‰ to –28.3‰, in a region of the 

Allequash Creek catchment, Wisconsin, where the local hydrology 

influenced the δ13C-DOC in small streams entering Lake Allequash (Elder et 

al., 2000).  Similar to the Dickie watershed, the Allequash catchment 

contains extensive peatlands upstream of the lake and δ13C-DOC values 

reflected this carbon source, in addition to local vegetation. 

5.4.3 δ13C of Atmospheric Deposition 

From the mass budgets between 1978 to 1998, precipitation was calculated 

to be, on average, approximately 2.6% and 3.3% of the total DIC and total 

DOC inputs, respectively, to both Dickie and Harp Lakes.  These averages 

fell at the lower end of the ranges observed for the contribution of 

atmospheric deposition to carbon budgets of the lakes included in the study 

by Dillon and Molot (1997a).  In general, DOC inputs via precipitation 

were highest in the late 1970s then decreased by approximately 50% by 

1980, and generally fluctuated between 2% and 4% of the total annual DOC 

inputs (Figure 5.7).  DIC inputs via precipitation were also higher in the late 

1970s after which DIC inputs from precipitation decreased around 1980 and 

fluctuated around 1.5% to 2.5% of the total annual DIC inputs to the lake.  

An increase in DIC inputs in the mid 1990s was accompanied with lower 
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DOC inputs (Figure 5.7).  No data are available for DIC inputs in 

precipitation for the last 3 years of the budget, therefore, these years were 

not used to determine the mean weighted δ13C-DIC values.  The 

atmospheric δ13C-CO2 and δ13C-DOC of precipitation has been reported as 

-11.3‰ (Aravena et al., 1992) and -23.9‰ (Schiff et al., 1990).  However, 

since precipitation contributes such a small component of the total DIC and 

DOC, adjusting these values does not greatly affect the calculation of the 

average annual mass weighted δ13C-DIC or δ13C-DOC values. 
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Figure 5.7:  DOC and DIC inputs through precipitation as a function of the total annual 
DOC or DIC inputs.  Hydrologic years frun from June 1st to May 31st. 

5.4.4 δ13C-DIC of the lake surface water and Outflows (δ13C-DICout) 

Average monthly outflow DIC concentrations for Harp and Dickie Lakes 

ranged between approximately 0.5 mg C/L and 2 mg C/L (Figure 5.2).  

Concentrations were elevated in the winter, and declined to a minimum in 

May after ice-off.  DIC concentrations slowly increased throughout the 
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spring, summer, and fall, however on an inter-annual basis, there was not 

much variability in the DIC concentrations exiting the lakes. 

The δ13C-DIC leaving Harp and Dickie Lakes via the outflows was 

annually variable with the δ13C-DIC ranging from –18.9‰ to –6.1‰ for 

Dickie Lake and–17.4‰ to –7.4‰ from Harp Lake (Figure 5.3).  The mass 

weighted average annual δ13C-DIC values of the outflows were –15.1‰ and 

–16.0‰ for Dickie and Harp Lake outflows respectively.  The δ13C-DIC 

values of the outflows were greater than the inflows, show more variability 

than the inflows, and were similar to the surface waters within the lakes 

(Figure 5.3, Figure 5.8, and Figure 5.9). 
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Figure 5.8:  Annual variability in δ13C-DIC profiles in a) Harp Lake and b) Dickie Lake.  
Profiles are from 2004, and measurements have a precision of 0.3‰. 
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Figure 5.9:  Variation in the annual δ13C-DIC of the surface waters of Harp Lake. 

The lake surface water δ13C-DIC values increase after ice off, peaking 

in mid-summer after which they declined until the lakes turned over in the 

fall.  δ13C-DIC values decreased during the winter in Dickie Lake, while 

they were about constant in Harp Lake (Figure 5.3).  The difference in δ13C-

DIC between the inflows and the surface waters, and outflows of the lakes 

suggest that CO2 was lost from the lake, and/or in-lake processing of the 

DIC was dominated by preferential uptake of 12C during photosynthesis, 

both of which would increase δ13C-DIC values during the summer.  

Photodegradation creates DIC with δ13C-DIC values lower than the 

ambient δ13C-DIC values, and/or lower than the original δ13C-DOC thus 

shifting the δ13C-DIC to more depleted values (Chapter 3).  In fall, winter, 

and early spring when temperatures were low and the lakes were ice 

covered, δ13C-DIC values either remained uniform or they decreased.  Since 

there is little to no carbon isotope fractionation during respiration (e.g. 

Baril, 2001; Boudreau, 2000; Oelbermann and Schiff, 2008; Venkiteswaran, 
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unpublished data), the decrease in δ13C-DIC during the colder and ice 

covered months could have been due to oxidation of organic carbon to DIC 

(Striegel et al., 2001).  Also, since gas exchange is limited after ice formation 

(after the fall turnover), initial mixing of the colder bottom waters after 

turnover will increase CO2 concentration and decrease δ13C-DIC by mixing 

in water with low δ13C-DIC values, characteristic of 

decomposition/respiration, into the whole lake (Figure 5.8).  Therefore, the 

low hypolimnetic δ13C-DIC values will be recorded in the outflows.  

However, as winter progresses, the lakes stratify under the ice at which 

point respiration in the epilimnion and the sediments could have become 

important to the outflow δ13C-DIC values in the winter and when the lake 

mixes vertically after ice-off; these processes also occur during the summer 

and will likely become important at the fall turnover as well.  Although 

winter respiration is slow due to the cold, it could have a greater effect than 

the rate suggests due to the lack of gas exchange across the ice.  

Furthermore, the negative relationship between δ13C-DIC and DIC in the 

outflows (Figure 5.4) suggests that degassing (and/or primary production) 

heavily influences the δ13C-DIC values of the lake surface waters. 

These δ13C-DIC outflow data fit within the range of values measured 

in the surface waters of lakes (Bade et al., 2004), which show that the large 

δ13C-DIC variation among lakes was much greater than the temporal 

changes observed within individual lakes.  Using 395 measurements in the 

literature from 72 freshwater lakes, δ13C-DIC values ranged between -29.6‰ 

and +2.6‰, and data from Bade et al.’s 32 lakes (2004) exhibited a similar 

δ13C-DIC range of –31‰ to –2.1‰.  These data were used to develop a 

process-based lake model, which suggested that for most lakes in their data 

set, low GPP:R (Gross Primary Production to Respiration) ratios were 

associated with more negative δ13C-DIC values suggesting that it was likely 

respiration within the surface of the lake controlled the δ13C-DIC of the 
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outflows from fall to early spring.  However, as noted above, increased lake 

mixing will bring hypolimnetic water in which respiration, but no gas 

exchange and little primary production, have occurred to the surface. 

5.4.5 δ13C-DOC of the lake surface waters and Outflows (δ13C-DOCout) 

Average monthly DOC concentrations for the Harp outflow range between 

approximately 4 mg C/L and 5 mg C/L, while Dickie outflow DOC 

concentrations were generally between 6 mg C/L to 7 mg C/L (Figure 5.5; 

averages from 2004-2007: OME, unpublished).  Concentrations showed 

little annual variability and the intra-annual variability was generally small.  

Outflow δ13C-DOC values were not as variable as δ13C-DIC and the 

average annual δ13C-DOC value of Dickie and Harp Lake outflows was 

-26.9‰ (Dickie range: -27.1‰ to -26.6‰; Harp range: -27.3‰ to -26.3‰). 

The range for Harp Lake was similar to published δ13C-DOC values from 20 

years earlier (–25.7‰ August 1988; –27.9‰ May 1989; Schiff et al., 1990).  

Small temporal ranges of δ13C-DOC are common in the literature (e.g. 15 

Swedish Lakes: -29.9‰ to –27.6‰, Karlsson et al., 2003; 8 Québec Lakes: 

–28.8‰ ± 0.6‰, McCallister and del Giorgio, 2008) suggesting that on a 

temporal basis similar DOC sources or similar processes are controlling δ13C 

values within the lakes.  The δ13C-DOC outflow values were fairly uniform 

from September through April, but showed a slight increase peaking around 

June (Figure 5.6).  These temporal changes were close to the reported 

precision of the measurements in Dickie Lake, however, there was a 1‰ 

variation in Harp Lake δ13C-DOC values.  Unlike the δ13C-DOC of the 

inflows, outflow δ13C-DOC values reached a maximum in the summer 

suggesting that photodegradation of DOC could be occurring (Ch 3 and 4), 

or that the relative importance of DOC sources has changed, or that the 

δ13C value of the source has changed.  Overall, the similarily between the 

δ13C-DOC of the inflows and outflow are likely due to the continuous 
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replenishment of unprocessed or minimally processed DOC from the 

terrestrial catchment.  Elder et al. (2000) observed higher δ13C-DOC values 

(–24.5‰ to –25‰) in lake outflow samples of Allequash Lake compared to 

the peat-influenced inflow values (Allequash Creek: –28.3‰) and 

concluded that outflow values were affected by a combination of sources, 

whereas the inflows mainly reflected the δ13C of the peat. 

5.4.6 δ13C-CO2  lost to Gas Exchange (δ13C-CO2) 

In small lakes, the rate of gas exchange between the lake and the 

atmosphere is calculated from CO2 saturation in the lake (relative to the 

atmosphere) and the gas exchange coefficient, k.  If wind speed is known, 

then empirical relationships have been used to estimate k, however, these 

estimates can span over 2 orders of magnitude (Wanninkhof, 1992).  Wind 

speeds are often low around small sheltered lakes.  Below wind speeds of ~2 

to 3 m/s (at 10 m height), k cannot reliably be predicted using empirical 

equations (Crill et al., 1988; Clark et al., 1995; MacIntyre et al., 1995; Ho et 

al., 1997).  Cole and Caraco (1998) estimated a mean k600 value of 2.69 

cm/h (normalized to a Schmidt number of 600, the Schmidt number of CO2 

at 20ºC) in Mirror Lake, New Hampshire by tracking the mass loss of SF6 in 

the lake during a SF6 tracer experiment.  Similarly, a k600 of 2.65 cm/h was 

estimated using the surface water SF6 data.  Crusius and Wanninkhof 

(2003) measured an average k600 of ~4 cm/h in a small oligotrophic lake on 

the Canadian Shield at the Experimental Lakes Area (ELA). 

Cole and Caraco (1998) noted that at low wind speeds (1-2 m/s) k600 

values were underestimated using the common wind speed to gas exchange 

relationships of Liss and Merlivat (1986) and Wanninkhof (1992).  By 

combining data from various ecosystems, they created a power function 

which indicated that at low wind speeds, k600 is approximately 2 cm/h.  

Wind speed and tracer experiments were not performed to determine k in 

this study, however, wind data from meteorological towers at Harp Lake 
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(from 2003-2007) and near Dickie Lake (from 1991-2007) were used to 

estimate k.  Wind speeds were converted to wind speeds at 10 m height 

(U10) assuming neutral stability using the wind profile power law 

relationship, since U10 is a common way of parameterizing the k to U 

relationship.  Because Harp and Dickie Lakes are reasonably sheltered small 

lakes, the U10 speeds were used in the relationship derived by Cole and 

Caraco (1998) to estimate k600 values of 2.3 cm/h and 2.5 cm/h 

respectively.  These values were within the above range for small sheltered 

lakes.  

Harp and Dickie Lakes were almost always supersaturated with CO2 

with the highest saturations at the end of April after ice melt, and in fall 

prior to ice cover (Figure 5.10).  Generally, there is a negative relationship 

between CO2 concentrations and δ13C-CO2 values (Figure 5.11) suggesting 

isotopic fractionation or mixing was occurring.   
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Figure 5.10:  Annual variability in the a) CO2 concentrations and b) δ13C-CO2 in the 
surface waters of Harp and Dickie Lakes.  Dickie Lake spring melt data is based on data 
from 2007 and combined with 2004 surface water data.  Additional sampling at spring melt 
provides 5 data points to capture the rapid loss of CO2 and changes in δ 13C-DIC within the 
lakes.  δ 13C-CO2 values were calculated from measured δ 13C-DIC values and pH.  
Precision of the CO2 measurements is 5%, and the δ13C-DIC is 0.3‰. 



 135

CO2 (µM) 

0 20 40 60 80 100

δ13
C

-C
O

2 (
‰

)

-30

-25

-20

-15

-10

-5

0

5

10

Photosynthetic Curve
Degassing Curve

a) Harp Lake

 

CO2 (µM) 

0 20 40 60 80 100 120

δ13
C

-C
O

2 (
‰

)

-30

-20

-10

0

10

20

Photosynthetic Curve
Degassing Curve

b) Dickie Lake

 

Figure 5.11:  δ13C-CO2 versus CO2 concentrations of surface samples in Harp and Dickie 
Lakes.  Hatched lines represent hypothetical pathways the highest CO2 concentration 
sample would follow if CO2 was either being taken up for photosynthesis assuming a 
Rayleigh relationship (enrichment factor -20‰; black hatched line) or if CO2 was being lost 
by degassing (enrichment factor -1‰; grey hatched line) with no other inputs or outputs. 
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The net δ13C-CO2 lost to the atmosphere from Harp Lake during the 

month after ice melt, calculated using weekly measurements of CO2 and 

δ13C-CO2 in the lake surface waters, was –30.3‰.  The net annual flux 

weighted δ13C-CO2 value of Harp Lake in 2005 was –21.9‰.  In Dickie 

Lake, 2004 and 2007 data were used together since detailed 2004 ice melt 

samples were not collected.  The net average flux weighted δ13C-CO2 lost to 

the atmosphere during ice melt was –33.4‰ and the net annual flux 

weighted δ13C-CO2 value lost to the atmosphere was –25.7‰.  The annual 

weighted values may be different between the 2 lakes because the Dickie 

Lake data did not capture the CO2 loss as well as the Harp data since Dickie 

datasets from 2 different years have been combined to calculate the δ13C 

value.  Or, the values could be different because the balance of processes 

affecting the δ13C are different between the lakes, thereby affecting the δ13C 

of the CO2 evaded from the lakes (i.e. Figure 5.12).  The calculated monthly 

δ13C-CO2 fluxes were lower than the measured surface water δ13C-CO2 

values since the equilibrium δ13C-CO2 value of the atmosphere was always 

greater than the measured δ 13C-CO2 of the epilimnion and net monthly 

fluxes were almost always from the lake to the atmosphere.  At low net flux 

rates, there can be a large difference between the δ13C-CO2 and the net δ13C-

CO2 fluxed to the atmosphere.  For example, to degas an ecosystem from 70 

µM CO2 and δ13C-CO2 of –27‰ to the equilibrium values of 20 µM and      

–8.9‰ requires a net flux out of 50 µM at –34.3‰.  However, to degas an 

ecosystem from 25 µM CO2 and δ13C-CO2 of –27‰ to the equilibrium 

values of 20 µM and –8.9‰ requires a net flux out of 5 µM at ~–90‰.  

Calculating the evaded δ13C-CO2 when CO2 values are close to saturation 

yields net δ13C-CO2 values much lower than expected suggesting that there 

may be a problem with calculating net flux when the lakes are close to 

atmospheric saturation. 
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Figure 5.12:  Annual variability in CO2 flux evaded from a) Harp Lake and b) Dickie Lake.  
Numbers above the fluxes are the calculated δ13C-CO2 values (‰) of the CO2 evading the 
lake.  Fluxes and δ 13C-CO2 values were interpolated between sampling dates. 
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The δ13C-CO2 of the surface water in Harp Lake is generally lower 

than Dickie Lake in the summer and fall except for October (Figure 5.10).  

The net δ13C-CO2 evaded from Harp Lake is ~9-10‰ greater than from 

Dickie Lake for September and October.  The Harp fall peak in δ13C-CO2 

could be due to a fall algal bloom in the lake, which would decrease the CO2 

concentration and increase the δ13C-CO2 at a period when the gas flux is 

high.  Using chlorophyll a as a proxy for productivity in the lakes suggests 

that the fall bloom hypothesis is a possible explanation for the data trends 

since a peak in chlorophyll a in Harp Lake was observed in the fall (OME, 

unpublished).  

Figure 5.12 indicates that the CO2 flux in the fall, as the lakes are 

beginning to turnover, comprises a large part of the annual CO2 flux.  Since 

there was no sampling in September when the thermocline was beginning to 

deepen, it was possible that a crucial sampling time was omitted.  

Therefore, it is apparent that the fall CO2 flux from the lake was an 

important CO2 flux to capture and should have been sampled with greater 

frequency.  Additionally, according to historical chlorophyll a data (OME, 

unpublished), fall blooms do not always occur in Harp Lake therefore 

perhaps the surface water δ13C-CO2 values are not representative of the lake 

surface waters on a long-term basis. 

 

The annual weighted δ13C-CO2 values evaded to the atmosphere 

from Harp and Dickie Lakes were different.  This could reflect that Dickie 

Lake loses mass at a faster rate than Harp Lake since it has a greater lake 

surface area and a smaller mean depth.  Figure 5.8 indicates that in the 

surface waters of Dickie Lake, the δ13C-DIC decreased by approximately 

8‰ between August and October.  During this time, the lake was almost 

completely mixed (with the exception of the bottom metre of the lake) 

suggesting that sampling in September could have provided a different CO2 

flux or a different δ13C value than the interpolated value used to calculate 
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the net δ13C-CO2 value evaded to the atmosphere depending on when the 

majority of mixing occurred.  Additionally, given that Harp Lake has a 

larger mean depth and a smaller surface area than Dickie Lake, the fall CO2 

fluxes and δ13C-CO2 changes were likely better captured as complete 

turnover did not occur until late fall. 

5.4.7 δ13C lost to Sedimentation (δ13C-Sed) 

The δ13C-Sed (δ13C of the organic matter lost to the sediments in the lake) 

was calculated from the carbon isotope budgets (Equation 5.5).  The 

calculated δ13C-Sed did not equal the measured sediment value from the 

Harp and Dickie Lake sediment cores (Table 5.2).  The calculated δ13C-Sed 

values were greater than the measured δ13C-Sed values by approximately 

2‰ in Dickie Lake and approximately 5‰ less than the measured δ13C-Sed 

values in Harp Lake.   

Digenetic effects and other lake processes that could have affected 

the δ13C values used to calculate the δ13C-Sed value (e.g. photosynthesis, 

respiration, etc) are incorporated into the mass balance model as changes to 

other parameters (e.g. gas exchange, load exiting through the outflows, etc.) 

and therefore included in the calculated δ13C-Sed.  For example, 

photosynthetic fractionation causes the δ13C of POC to be less than the δ13C-

DIC and the remaining δ13C-DIC would increase.  This increase would be 

reflected in surface and outflow δ13C-DIC values, and the weighted average 

annual δ13C evaded to the atmosphere, illustrating that changes in 

productivity would become incorporated into the measured values.  Since 

the calculated δ13C-Sed did not equal the measured δ13C-Sed in either Harp 

or Dickie Lakes, there is either an error in the δ13C value of the parameters, 

and/or an error in the carbon mass balance, and/or an input or output of 

the mass balance is not adequately characterized. For example, the 

difference between the expected and the measured δ13C-Sed could be 
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attributed to POC entering the lakes from the inflows, or δ13C is not a good 

tool to test the carbon budgets created by Dillon and Molot (1997a) since it 

is difficult to calculate the flux of δ13C-CO2 evading the lake when the lakes 

are near atmospheric saturation. 

5.4.8 Carbon Mass and Isotope Budget Model 

To examine the discrepancy between the calculated and measured δ13C-Sed 

values, and the importance of each of the parameters involved in the mass 

balance, a dynamic mass and isotope budget model was created.  This 

model was based on the mass balances of Dillon and Molot (1997a) and the 

calculated weighted average annual δ13C values above.  The model assumed 

that:  

1) The DIC evaded from the lake was a function of DOC lost within 

the lake that did not go to the sediments and the DIC entering and 

exiting the lake.  The lakes remained supersaturated in CO2 so that 

there is a net flux to the atmosphere.  Microbial and phytoplankton 

biomass, and vegetation were assumed to be small and at steady state 

on an annual basis (such that changes in carbon storage were 

unimportant except in the sediments). 

2) The DOC removed in the lake (Equation 5.10) was first order with 

respect to the DOC in the lakes and the apparent settling coefficient 

(v) was a constant. 

3) The DOC lost to the sediments (Equation 5.9 and 5.11) was a 

constant fraction of the DOC removed in the lake.  Humic 

aggregation may be regulated by pH (Maignan, 1983; Abate and 

Masini, 2003).  However, inter-annual pH did not fluctuate 

drastically annually (standard deviation < 0.1 pH units; OME, 

unpublished), so the DOC removal rate and sediment partitioning 

(Equation 5.11) were assumed constant.  
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4) The DOC and DIC exiting the lake through the outflows were a 

function of the DOC and DIC within the lake respectively and the 

areal water load (qs) of the lake (i.e. average annual evaporation is 

constant). 

5) The lake is at annual steady state with respect to carbon and water 

(i.e. constant lake volume). 

Model inputs included two types of input parameters (Table 5.3):  

constants calculated from field measurements in the current study, and 

constants calculated from OME data or by Dillon and Molot (1997a).  

Constants calculated in the current study include all of the weighted average 

annual δ13C values (i.e. DOCin, DICin, DOCout, DICout, and CO2 lost to the 

atmosphere through gas exchange).  The constants calculated from OME 

data or by Dillon and Molot (1997a) include the initial mass of carbon 

within the lakes (DOCin lake, DICin lake), the gas exchange coefficient (k), and 

the mass of DOC and DIC entering the lakes (DOCin and DICin).  

Additionally, as DOC and DIC loads change, the areal water load (qs), the 

apparent settling coefficient (v), and pH could be affected, therefore, their 

relationships with load were determined using historical OME data.  

Although most of the input parameters used in the model were provided by 

Dillon and Molot (1997a), or calculated from OME measurements (Table 

5.3), it was necessary to adjust the pH in Harp and Dickie Lakes, and qs and 

v in Harp Lake, in order to cause the masses of DOCout, DICout, Sed, and 

Atm in the model to equal the masses measured by Dillon and Molot 

(1997a).  The necessary adjustments, and the sensitivity of each of the 

parameters, are examined below. 

5.4.8.1 Sensitivity of δ13C-Sed to weighted average annual δ13C values 

Changing the weighted average annual δ13C-DIC and δ13C-DOC values by 

0.5‰ did not change the δ13C-Sed appreciably with the exception of 
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changing the δ13C-DOC of the inflows (Table 5.4).  The δ13C-Sed was most 

sensitive to δ13C-DOC because DOC was the largest carbon mass entering 

or exiting the lakes (Table 5.5).  However, of all δ13C values measured, the 

δ13C-DOC of the lake inflows and outflows was the least annually-variable 

parameter.  The intra-annual difference between the δ13C-DOC 

measurements from the 1990s and 2004-2005 was generally within 

analytical error, and in conjunction with low annual variability (Figure 5.6, 

Table 5.2), the weighted annual average δ13C-DOC calculated from the field 

data likely will not change appreciably annually.  Since the data range was 

minimal within the individual inflows (Figure 5.6), this suggested that 

sources of DOC to the inflows were not changing over time, and/or sources 

have similar δ13C values; therefore, it is unlikely that the weighted annual 

average values will be offset by more than 0.5‰.  Thus, although an offset 

of only 1‰ in δ13C-DOCin is required for the Harp Lake calculated and 

measured δ13C-Sed to match, it is improbable that the δ13C-DOCin value can 

be the main source of this difference. 

Table 5.4:  Sensitivity of the sediment δ13C value to increases in a) the average annual 
isotopic values by 0.5‰ and b) the input parameters of the model. 

 

a)
Harp Dickie

Increase 
average 

annual δ13C 
by 0.5‰ 

(‰) (‰)
DOCIN 2.3 1.5
DICIN 0.4 0.4
DOCOUT -1.4 -0.7
DICOUT -0.5 -0.1
DICGE -0.6 -0.6

b)
Harp Dickie

Parameter Increase by
(‰) (‰)

DOCIN 5% 0.11 0.06
DICIN 5% 0.35 -0.04
k 0.1 0.17 0.03
qs 0.1 -0.15 -0.11
v 0.1 -0.01 -0.04
pH 0.1 -0.95 -0.11

Sediment changes by

Sediment changes by
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Table 5.5:  Model parameters used, and comparison of masses from the Dillon and Molot 
(1997) mass balances and the mass outputs from the model.  Retention of DOC and DIC 
(RDOC and RDIC respectively) is calculated as (Loadin-Loadout)/(Loadin) and qs is the 
areal water load.  Standard deviations are reported for qs and v. 
 

5.4.8.2 Sensitivity of δ13C-Sed to δ13C-CO2 lost to the atmosphere 

To further examine the 2‰ to 5‰ difference between calculated and 

measured δ13C-Sed values, the sensitivity of the model to the net δ13C-CO2 

lost to the atmosphere was re-examined by adjusting the net δ13C-CO2 value 

to close the 2‰ to 5‰ gap.  This requires changing the annual weighted 

values from –21.9‰ to –25.9‰ for Harp Lake, and from –25.7‰ to            

–24.0‰ for Dickie Lake.  These net δ13C-CO2 evasion values yield a 

calculated δ13C-Sed of –30.1‰ and –29.7‰ for Harp and Dickie Lakes 

respectively, within 0.3‰ of the measured δ13C-Sed values.  Inaccuracies in 

estimating the net δ13C-CO2 evaded from the lake may be the cause of the 

difference between the calculated and measured δ13C-CO2 values, since it is 

the least well known parameter.  

D&M (1997)
Model from 
this study D&M (1997)

Model from this
study

DOCIN (g C m-2y-1) 28.9 28.9 31.2 31.2

DICIN (g C m-2y-1) 7.85 7.85 7.35 7.35

DOCOUT (g C m-2y-1) 16.9 16.9 14.2 14.1

DICOUT (g C m-2y-1) 6.35 6.36 2.53 2.54

DICGE (g C m-2y-1) 7.17 7.18 11.7 11.7

SED (g C m-2y-1) 6.26 6.26 10.1 10.1

Lake Volume (m3) 82.6 x 105 46.4 x 105

Residence Time (y) 3.16 1.71
RDOC 0.42 0.55
RDIC 0.19 0.66
Mean depth (m) 13.3 5.0
pH 6.22 6.44 5.85 5.75
qs (my-1) 4.16 ± 0.75 4.26 2.66 ± 0.59 2.66
v (my-1) 2.9 ± 0.4 3.00 3.2 ± 0.4 3.21
k (cmh-1) 2.26 2.46
sediment partition 
coefficient 0.52* 0.52 0.6* 0.60
* Calculated from Dillon and Molot, 1997a

Harp Dickie
Parameter
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CO2 concentrations in the lakes were supersaturated surrounding 

and preceeding the onset of autumn turnover (Figure 5.10a).  CO2 flux rates 

from the lakes were highest in the autumn and δ13C-CO2 values of emitted 

CO2 were lower than those of the summer in Harp and Dickie Lakes 

(Figure 5.12).  High autumn flux rates suggest that turnover was important 

for estimating total CO2 fluxes from the lakes and their δ13C-CO2 values. 

According to Eimers et al. (2006), Dickie Lake usually mixes and 

turns over in September.  As Dickie Lake is darker and shallower (~11 m) 

than Harp Lake (~34 m), autumn turnover begins much sooner than in 

Harp Lake (late October to early November).  Rapid changes to surface 

δ13C-CO2 values were observed (Figure 5.10b and Figure 5.12).  There was 

also a gap in the data during this time frame.  Since summer surface δ13C-

CO2 values of Dickie Lake were greater than for Harp Lake, there was a 

much larger change during the fall evasion.  It was therefore possible that 

using data from a different year to fill in a missing monthly data point or 

using incomplete annual data would result in different average annual δ13C-

CO2 values.  High net δ13C-CO2 values evaded from the Harp Lake in 

September and October may be due to a fall bloom and thus not 

characteristic of the entire month or every fall.  The loss of CO2 and the net 

δ13C-CO2 flux estimated using mass balance calculations in the lake between 

August and November are different than the monthly net δ13C-CO2 flux 

calculated from the interpolated data in Figure 5.12, suggesting that other 

factors besides degassing are influencing the δ13C-CO2.  Accurate 

determination of the net δ13C-CO2 evaded from the lakes requires more 

detailed surface water data from the onset of autumn turnover until ice 

cover. 
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5.4.8.3 Initial C mass within Lakes (DOCin lake, DICin lake) 

A steady state model of chemical flux (Equation 5.12; Vollenweider, 1976) 

requiring data available from the mass balances of Dillon and Molot 

(1997a) was used to determine the initial mass of carbon as DIC and as 

DOC within the lakes by multiplying the calculated concentration with the 

volume of the lake.   

(Equation 5.12) 

Concentration =
LRT 1− R( )

z
 

 

The steady state model of chemical flux required the load entering the 

system (L: g/m2/y), the water residence time (RT: y), the retention of the 

load (R: m/y), and the mean depth of the lake (z: m).  Subsequently, 

weighted annual DIC and DOC concentrations within the lakes became 

available (OME, unpublished) and can be compared to the results of 

(Equation 5.12.  Using Vollenweider’s equations (1976), the calculated 

annual DIC and DOC concentrations were within 0.01 to 0.03 mg/L of the 

annual weighted ice-free concentrations (OME, unpublished), with the 

exception of the Harp average annual weighted DOC concentration, which 

was 0.2 mg/L different.  Therefore, both methods (Vollenweider’s 

equations or weighted annual measured concentrations) give similar results 

for the initial mass of carbon within the lakes. 

5.4.8.4 Sensitivity of δ13C-Sed to DOCin and DICin 

The DOC and DIC entering the lakes had previously been determined from 

8 years of mass balances averaged by Dillon and Molot (1997a).  The DOC 

and DIC loading rates to Harp Lake were 28.9 g C m-2 y-1 and 

7.85 g C m-2 y-1 respectively (Table 5.5).  Relative to Harp Lake, Dickie Lake 

had a greater DOC loading rate (31.2 g C m-2 y-1) and a lower DIC loading 

rate (7.35 g C m-2 y-1) (Table 5.5). 
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More than 20 years of carbon mass balance data for Harp and Dickie 

Lakes indicate that a 5% annual difference in DOC or DIC loading entering 

the lakes was not uncommon.  Inter-annual variability of DOC entering the 

lakes ranged between 25-40% depending on the lake (OME, unpublished).  

Schindler et al. (1997) note that, in reference lakes at the ELA, DOC 

concentrations decreased 15-25% in the 1980s indicating that climate-

induced DOC changes can significantly affect the carbon budgets of boreal 

lakes as climate affects annual stream flow and DOC loading, and thus lake 

residence time (and in-lake processing).  Similarly, Dillon and Molot 

(1997a) found that declining DOC concentrations in Dickie Lake could be 

attributed to stream flow since DOC loading was a predictable function of 

water loading.  Other controls on DOC concentrations in a suite of 9 boreal 

lakes (including Harp and Dickie Lakes) based on 21 years of data include 

mean solar radiation and winter precipitation (Hudson et al., 2003).  

Before using the model to determine the effects that DOC and DIC 

mass changes would have on the δ13C-Sed value, it was necessary to 

consider that as carbon loading rates change, the CO2 flux to the 

atmosphere may change.  This may change the δ13C-CO2 evaded value, 

which can affect the δ13C-Sed.  To account for changes in δ13C-CO2 values 

that coincide with changes in CO2 flux to the atmosphere, the relationship 

between surface δ13C-CO2 values and CO2 concentrations from the lakes 

(Figure 5.11) was used.  A stronger relationship exists for Harp Lake (R2 = 

0.69) than for Dickie Lake (R2 = 0.26).  This may reflect problems 

calculating CO2 concentrations in the Dickie Lake waters with higher DOC 

concentrations and lower pH, differences in mixing within the lakes, or 

variable photosynthetic fractionation with time.   

To understand the controls on the negative relationship between CO2 

and δ13C-CO2, it is important to consider that different processes affect CO2 

and δ13C-CO2 differently.  Two of these are photosynthesis and degassing.  
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Assuming a single starting point for illustrative purposes, the theoretical 

photosynthetic and degassing pathways that a high concentration CO2 

sample would follow are shown in Figure 5.11.  If the high CO2 sample was 

only affected by photosynthesis, the δ13C-CO2 value would increase as CO2 

declines as a result of photosynthetic isotopic fractionation (e.g. black 

hatched line in Figure 5.11).  For degassing, the point would follow the 

hatched grey line (Figure 5.11) since the fractionation associated with gas 

exchange is much smaller than photosynthetic fractionation.  CO2 

concentrations and δ13C-CO2 values can also be affected by the 

photodegradation of DOM, respiration, or inputs of high DIC stream 

waters.  That surface waters of Harp and Dickie Lakes are affected by 

degassing is evident from decreasing DIC concentrations and concomitant 

increases in δ13C-DIC (Figure 5.4, Figure 5.11).  Since the lake surface 

samples lie above and below the degassing curve (Figure 5.11), the surface 

waters are also likely affected by other CO2 consuming processes (e.g. 

photosynthesis) and CO2 producing processes (e.g. photodegradation 

and/or respiration) and mixing.  Temperature changes and pH also affect 

CO2 concentrations within the lakes by changing the equilibrium between 

CO2 and DIC. 

Since DOC and DIC loading rates will change with hydrological 

changes to the ecosystem (OME, unpublished), the relationship between qs 

and load was determined to account for how the qs in the two lakes would 

change when the mass of DOC or DIC changed by 5%.  The linear 

relationship between qs and carbon loading rates from the OME mass 

balances was stronger in Harp Lake than in Dickie Lake (i.e., qs versus 

DOC loading, not shown; Dickie: R2 = 0.47, Harp: R2 = 0.83).   

Increasing the mass of the DOC and DIC entering the lakes by 5%, 

causes only small changes in the δ13C-Sed (Table 5.4).  Increasing the DOC 

loading rate of Harp Lake by 5% changed the δ13C-Sed by less than the 
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precision of the δ13C-Sed measurement (0.2‰).  This mass change in Dickie 

Lake also had little effect on the δ13C-Sed, which may be due to the weaker 

relationships between CO2 concentration and δ13C-CO2 and the weaker 

relationship between the carbon inputs and qs than in Harp Lake.   

A positive relationship exists between qs and total carbon (DOC + 

DIC) load rates (Harp: R2 = 0.87; Dickie: R2 = 0.61).  Changing qs affects 

carbon retention and DOC concentrations in the lakes since R = v/(v+qs), 

where R is retention (R = (DOCin – DOCout)/DOCin), and v is the apparent 

settling velocity (Dillon and Molot, 1997a).  If qs is not altered with carbon 

loading rates, the observed changes in the Dickie Lake δ13C-Sed value are 

much greater than the Harp Lake δ13C-Sed value.  Dickie Lake loses a 

greater fraction of carbon to the atmosphere and sediments than Harp Lake 

since it has a greater DOC and DIC retention and lower pH.  

Changing the carbon loading rates by 5% has a smaller effect on 

δ13C-Sed than altering the weighted δ13C values of the mass balance 

parameters by 0.5‰ does.  The 5% change represents the lower range of 

typical inter-annual variability in DOC loading rates.  Long-term DOC load 

variability increases to 25% to 40% if the 8 years of the mass balances are 

used instead of year-to-year changes.  This long-term variability can change 

the δ13C-Sed value by 0.5‰ to 2.5‰.  Since lake sediment slices are 

typically multi-year, they would record the range in carbon loading rate 

variability. 

In the δ13C sediment record of Harp and Dickie Lakes, δ13C peaks in 

the mid-1950s.  To reproduce these peaks within the model, (–27.6‰ in 

1957, Harp Lake; –28.7‰ in 1955, Dickie Lake), the DOC loading rates 

had to be decreased by ~40% in Harp Lake and ~42% in Dickie Lake, 

assuming that average annual δ13C values were the same then as in this 

study with the exception of the δ13C-CO2 evaded to the atmosphere.  
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Although the model suggests that the peaks in δ13C-Sed are coincident with 

a large reduction in DOC entering the systems, it indicates nothing about 

the proportions of allochthonous and autochthonous carbon in the lake 

sediments (Chapter 6).  Peak δ13C values are very similar to δ13C-DOC 

values entering the system suggesting that although the model indicates a 

40% to 42% reduction in DOC loading rates (allochthonous carbon) from 

present day rates, it was possible that in the 1950s the allochthonous carbon 

was more important to the sediment record than autochthonous carbon.  

However, this hypothesis needs to be tested. 

5.4.8.5 Sensitivity of δ13C-Sed to pH 

The model also required adjustment of the average annual pH in the lakes 

in order to reproduce the carbon loss rates of Dillon and Molot (1997a).  

Weighted average annual ice-free pH measurements (and their standard 

deviations) from Harp and Dickie Lakes from the years of Dillon and 

Molot’s (1997a) study are 6.22 ± 0.06 and 5.85 ± 0.09 respectively (OME, 

unpublished).  However, the model required pH inputs of 6.44 and 5.75 for 

Harp and Dickie Lakes respectively for the carbon loss rates to match 

(which changes the H+ concentrations for Harp and Dickie Lakes by 

-0.26 µmol and +0.37 µmol, respectively).  Since these lakes are poorly 

buffered, and have low surface DIC concentrations, accurately measuring 

pH in the system is difficult (Herczeg and Hesslein, 1984; Herczeg et al., 

1985). 

The δ13C-Sed in Harp Lake is sensitive to lake pH, decreasing by 

almost 1‰ with a 0.1 increase in pH.  However, Dickie Lake δ13C-Sed was 

less sensitive, with only a 0.1‰ decrease from a 0.1 increase in pH.  This 

may be due to the difference in DIC concentrations between the two lakes.  

Ice-free annual DIC concentrations during the study periods used by Dillon 

and Molot (1997a) are 1.50 mg C/L in Harp Lake and 0.86 mg C/L in 

Dickie Lake. The mass of carbon as DIC in Harp Lake is an order of 
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magnitude greater than in Dickie Lake, and the mean depth of Harp Lake is 

approximately 2.7 times that of Dickie Lake.  Therefore, an equivalent 

change in pH in both lakes would represent a larger change in the total 

amount of CO2 in Harp Lake than in Dickie Lake. 

5.4.8.6 Sensitivity of δ13C-Sed to Areal water load (qs) 

Dillon and Molot (1997a) published average areal water loads (qs) of 2.66 ± 

0.59 my-1 and 4.16 ± 0.75 my-1 for Dickie and Harp Lakes respectively, 

however, the dynamic model required an adjusted qs of 4.26 my-1 for Harp 

Lake to produce results most similar to the mass balances of Dillon and 

Molot (1997a; Table 5.5).  This optimized qs value is within the reported 

standard deviations and is within the 5% error in measuring the annual 

water balances of lakes (Winter, 1981).  Changing the qs by 0.1 my-1 can 

change the δ13C-Sed by at least the same magnitude as changing the DOC 

loading rate by 5% (Table 5.4).  Over the range of the standard deviation of 

qs, the δ13C-Sed value could decrease by up to 1‰ in Harp Lake indicating 

that qs could change the δ13C-Sed value by affecting DOC retention. 

5.4.8.7 Sensitivity of δ13C-Sed to Apparent settling coefficient (v) 

The apparent settling coefficient is a first order rate constant for DOC loss 

(by sedimentation and mineralization) from the lake, was calculated using 

R=v/(v+qs), [rearranged to v = Rqs/(1-R)], where R is the DOC retention in 

the lake (Dillon and Molot, 1997a).  In Harp and Dickie Lakes, the v 

(averaged over 8 years) was 2.9 ± 0.4 my-1 and 3.2 ± 0.4 my-1 respectively 

(Table 5.5).  However, to match the DOC loss rates in the model with those 

of Dillon and Molot (1997a), Harp Lake required a v of 3.01.  Changing v 

by 0.1 my-1 did not change the δ13C-Sed value.  Increasing v by the standard 

deviation decreased the δ13C-Sed value up to 0.16‰, therefore v does not 

have an appreciable effect on δ13C-Sed.  This is a result of the model 
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assumption that a constant fraction of DOC lost within the lakes via the 

apparent settling coefficient is lost to the sediments. 

5.4.8.8 Sensitivity of δ13C-Sed to the Gas Exchange Coefficient (k) 

The gas exchange coefficient was estimated to be 2.3 cm/h and 2.5 cm/h 

for Harp and Dickie Lakes respectively using 5 years of daily wind speed 

data.  The gas exchange coefficient controls the rate at which CO2 is evaded 

from the lake and has been estimated by nearby wind speeds in this study 

therefore there could be additional error associated with calculating k.  

Changing these values by 0.1 cm/h did not change the δ13C-Sed value in 

Dickie Lake, but changed the Harp δ13C-Sed by almost 0.2‰ (Table 5.4).  

Since k is calculated using wind speed relationships, including the intra-

annual variability of wind speed is very important.  The precision of the 

assumed average annual k is likely more than 0.1 cm/h, therefore if a larger 

range of k values were considered, it would be possible for greater changes 

to the δ13C-Sed value to occur. 

Since the optimization of pH, v, and qs is required for the masses in 

the carbon model to match the masses from the mass balances published by 

Dillon and Molot (1997a), it is possible that there could be some error 

associated with the mass balances estimated by Dillon and Molot (1997a), 

or that the model is not adequately representing the carbon loss rates.   

Changes to the weighted average annual δ13C values for the different 

carbon loading and loss rates, qs, v, and pH can affect the δ13C-Sed, thus 

changing the δ13C-CO2 might not be the only way to make the model and 

Dillon and Molot (1997a) loading rates match.  There might be other 

combinations of changes to the input values (Table 5.3) to alter the 

δ13C-Sed, however, changing pH, qs, and/or v would also change the 

carbon loss rates and thus the mass balances.  Additionally, although the 

δ13C-Sed value appears to be most sensitive to qs and pH, the changes 
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observed are relatively small and would require large shifts to account for a 

5‰ difference between the calculated and the measured δ13C of the 

sediments.  Since δ13C-DOC is well defined to a narrow range of 0.2 ‰, the 

difference between the calculated and measured δ13C-Sed values is due to 

the δ13C-CO2, which will also affect the δ13C-DIC exiting the lakes.  

Therefore, the δ13C and mass balances can be used as tools to explore how 

carbon balances affect the δ13C of lake sediments, however, a more accurate 

technique is required to characterize of the δ13C-CO2 flux from lakes near 

atmospheric saturation. 

5.5 Summary and Implications 

Calculated mass weighted average annual δ13C-DOC and δ13C-DIC values 

of the inflows to Harp and Dickie Lakes appear to be well constrained and 

vary by only 0.2‰ and 1.3‰ respectively.  The range in the mass-weighted 

average annual δ13C-DOC of the outflows was similar to the inflows 

(0.2‰), however, the range of the mass-weighted average annual δ13C-DIC 

of the outflows was larger (2.2‰).  Isotope mass balances for the two lakes 

indicate that calculated δ13C-Sed values were greater by 5‰ for Harp Lake 

and less by 2‰ for Dickie Lake than the measured δ13C-Sed values. 

That calculated and measured δ13C-Sed values of both lakes do not 

match suggests there may be error associated with the mass budgets and/or 

isotope budget.  Possible error within the mass balances may be indicated by 

the need to adjust input parameters in order for the carbon loading rates 

from the mass balance model (Dillon and Molot, 1997a) to match the 

dynamic carbon model.  There may be other error associated with input 

parameters to the mass and isotope model, such as pH dependent 

calculations and the δ13C-CO2 values of the gas flux.   
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Sensitivity analyses on the input parameters to the carbon mass and 

δ13C budgets revealed that δ13C-DIC entering the lakes can affect the 

δ13C-Sed values in Harp Lake, but little in Dickie Lake.  This could be due 

to the larger range in measured δ13C-DIC values.  Changes in DOC loading 

rates to the lakes by 40% could change the δ13C-Sed by up to 2.5‰.  This 

alone can account for the observed changes in the δ13C-Sed record. 

Since approximately 50% of the DOC entering the lakes was lost in 

roughly equal amounts to the atmosphere and sediment, understanding the 

gas exchange from these lakes is also crucial to accurately complete the δ13C 

and mass balances.  The model does not appear to be extremely sensitive to 

the net δ13C-CO2 lost to the atmosphere relative to the δ13C-DOC (Table 4).  

However, the net δ13C-CO2 value is the least well known parameter.  

Autumn was a crucial period where most of the CO2 was evaded from the 

lakes.  The net δ13C-CO2 changes associated with autumn turnover were not 

well captured.  The calculated and measured δ13C-Sed values would match 

if the δ13C-CO2 value was increased by 1.7‰ in Dickie Lake and decreased 

by 4‰ in Harp Lake. 

The sensitivity analysis reveals that Harp Lake is more sensitive to k 

than Dickie Lake.  However, k values, estimated from daily averages of 

measured windspeeds, fell within the range of other published k values from 

small sheltered lakes.  The areal discharge rate (qs) has control over the 

retention of DOC in the lakes and therefore affects the δ13C-Sed value.  

However, qs was calculated from measured hydrology budgets.  The model 

was also sensitive to pH in Harp Lake, but almost an order of magnitude 

less sensitive in Dickie Lake.  The sensitivity to variability in input 

parameters to the mass and δ13C model suggests that DOC loading rates and 

qs are important controls of δ13C-Sed values.  There is a positive relationship 

between qs and retention, suggesting that they are linked.  Depending on the 
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lake, other factors such as k and pH can become important because of their 

effects on CO2 flux and it’s δ13C-CO2 value.  That DOC loading rates and qs 

are important controls on lake δ13C-Sed values in high DOC retention lakes 

has implications for paleolimnology since productivity records are inferred 

from the δ13C-Sed values.  DOC loading and qs can therefore confound the 

often-reconstructed primary production record from δ13C-Sed records. 
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Chapter 6: 
 
The importance of allochthonous and 
autochthonous POC to lake sediment δ13C 
records. 

6.1 Overview 

To calculate the δ13C of particulate organic carbon (POC) reaching lake 
sediments, allochthonous and autochthonous end member values within 
two small, oligotrophic, high dissolved organic carbon (DOC) retention, 
Shield lakes, were determined by calculating average annual δ13C-POC 
values for terrestrially derived and aquatic derived POC.  The allochthonous 
δ13C end member value was calculated using δ13C-POC data from inflows, 
from POC production during DOC photodegradation experiments, and 
from litter and vegetation.  To determine the autochthonous end member, 
monthly δ13C-DIC (dissolved inorganic carbon), POC, DIC, and 
zooplankton measurements from lake surface waters were used to calculate 
the average annual autochthonous δ13C-POC contribution.  These end 
member values suggest that the average annual δ13C-POC values from 
allochthonous and autochthonous sources are distinct.  Estimates of POC 
mass balances in Harp and Dickie Lakes suggest that between 1.2 to 3.1 g 
C/m2 of POC enters the lakes from streams, while 1.4 to 3.0 g C/m2 of litter 
is deposited on the lakes compared to average sedimentation rates of 23.9 g 
C/m2 in Harp Lake and 41.1 g C/m2 in Dickie Lake. Incubations of the 
inflow waters tracking DOC loss and POC creation suggest that on average 
56% of the DOC lost is converted to POC potentially adding 7.7 to 9.1 g 
POC/m2 to the lakes.  Sediment accumulation rates from estimated mass 
balances in Harp and Dickie Lakes (6.3 g C/m2 and 10.1 g C/m2; Dillon 
and Molot, 1997a) are smaller than the sum of the estimated allochthonous 
POC mass contributions in the current study, however, a portion of the 
POC will exit through the outflows and a portion could be lost to 
diagenesis.  The relative proportion of stream POC, litter, and photolyzed 
DOC remains important and is used to calculate the δ13C of the 
allochthonous end member.   
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The allochthonous to autochthonous ratio in the δ13C of the lake sediments 
was calculated using the isotopically distinct δ13C end members of 
allochthonous and autochthonous carbon in a 2 end-member mixing model.  
Results from the mixing models indicate that the isotopic signature of 
sediment organic matter can be affected by the ratio of autochthonous and 
allochthonous contributions, suggesting that climate change and/or 
anthropogenic changes to the landscape, and the concomitant changes in 
DOC inputs to lakes can be preserved in the sediment record.  A short 
sediment core from both lakes suggests that the allochthonous contributions 
to the lake sediments have varied historically between 66% and 97%.  The 
importance of allochthonous POC contradicts Molot and Dillon (1997b) 
who suggest that the DOC loss in lakes (< 4 mg C/L) can be entirely 
explained through photodecay constants (or the decay of allochthonous 
contributions) of DOC to DIC, which then is used in photosynthesis to 
produce POC.  The δ13C of lake sediments can thus be affected by the 
amount of particulate carbon created through the photodegradation of 
DOC, POC entering lakes, and litter fall onto lakes, suggesting that 
sediment records are not just a productivity signal, but a mass balance signal 
in high DOC retention lakes.  Furthermore, applying allochthonous and 
autochthonous carbon contributions to sedimentation rates indicates that 
the autochthonous contributions in Harp Lake were relatively constant from 
the early 1800s until ~1960 even though the δ13C of the lake sediments were 
changing.  This indicates that the δ13C of lake sediments cannot always be 
used to infer past productivity in aquatic systems with high DOC retention. 

6.2 Introduction 

The relative importance of allochthonous and autochthonous carbon inputs 

to lakes has recently gained attention due to their importance to carbon 

cycling in and greenhouse gas fluxes to the atmosphere from aquatic 

systems.  Eutrophic lakes tend to produce large amounts of autochthonous 

carbon and are net carbon sinks if carbon fixation is greater than respiratory 

losses.  However, oligotrophic lakes can have high allochthonous inputs 

from their catchments which can support net CO2 evasion to the 

atmosphere if respiration is larger than carbon fixation (del Giorgio et al., 

1999; Pace et al., 2004) and can be net carbon sinks on the landscape.   

In boreal lakes, carbon storage within lake sediments is estimated to 

be a significant carbon sink (Kortelainen et al., 2004).  Up to 80% of the 
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total organic carbon (TOC) entering lakes can be mineralized or stored 

within lake sediment according to carbon mass budgets from Swedish lakes 

(Algesten et al., 2003).  Similarly according to Dillon and Molot (1997a), 

approximately 50% of the dissolved organic carbon (DOC) entering a suite 

of northern temperate lakes is lost to a combination of the atmosphere and 

the sediment roughly in equal proportions (i.e. ~25% evaded and ~25% 

sedimented).  Typically, particulate organic carbon (POC) in the inflows to 

the lakes is neither measured nor included in carbon mass balances (e.g. 

Dillon and Molot, 1997a) as POC concentrations are typically less than 

10% of the DOC concentrations entering the lakes (Wetzel, 2001).  

However, during the photodegradation of dissolved organic matter (DOM) 

from streams flowing into some of the lakes studied by Dillon and Molot 

(1997a), 20% to 90% of the DOC lost can be transformed to POC (Chapter 

4). 

In aquatic systems with large allochthonous inputs, the balance 

between allochthonous and autochthonous carbon also becomes important 

when interpreting the δ13C record of the lake sediments (δ13C-Seds).  

Traditionally, examining the organic content and the δ13C of lake sediments 

has been used as an indicator for changes in productivity and surface water 

nutrient levels, to aid in the reconstruction of lake and watershed 

paleoenvironments, and to infer regional climate change (Meyers and 

Teranes, 2001).  During photosynthesis, phytoplankton create organic 

matter that is isotopically lighter than the dissolved inorganic carbon (DIC) 

source through the preferential consumption of 12C, due to a fractionation of 

~20‰ between the carbon source and the organic product (O’Leary, 1988).  

However, this fractionation value can be variable (e.g. Hecky and Hesslein, 

1995; Bade et al., 2006; Mohamed and Taylor, 2009).   

Productivity is not the only process that affects the δ13C-Seds in 

aquatic systems.  Photodegradation of DOM uses O2 as an electron acceptor 
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in the breakdown of DOC to DIC.  During this process, POC is created and 

the δ13C- of the remaining DOC is altered (Chapters 3 and 4).  In stream 

waters from 10 Ontario inflows, the δ13C of the majority of POC samples 

created through DOM photodegradation were similar to, or greater than, 

the initial δ13C-DOC, and always greater than the δ13C of the DOC lost 

(Chapter 4).  This indicates that in lakes with high DOC, photodegradation 

can alter the δ13C-DOC and the POC created is generally within 1‰ of the 

δ13C-DOC from which it formed.  Similarly, von Wachenfeldt and Tranvik 

(2008) have shown that trapped sedimenting materials in 12 boreal lakes 

were dominated by allochthonous matter resembling the source δ13C-DOC 

(as suggested by fluorescence index data and δ13C values, by assuming an 

estimated allochthonous δ13C end-member of –27‰). 

The organic carbon in aquatic sediments can be composed of a 

combination of: i) litter falling onto the lake from the surrounding shoreline; 

ii) POC entering the lake through the inflows; iii) the flocculation of 

photodegraded allochthonous DOC; iv) allochthonous and/or 

autochthonous DOC flocculating within the lake; and v) autochthonous 

POC.  In the carbon balances calculated by Dillon and Molot (1997a), if 

25% of the DOC entering lakes is ultimately sedimented, and POC is 10% 

of the DOC entering, then stream POC and the POC formed from the 

degradation of allochthonous DOM could become important components 

of the lake sediments.  However, organic carbon in aquatic sediments can be 

affected by post-burial diagenesis decreasing the mass of total organic 

carbon until it is buried below the oxic-anoxic interface (Meyers and 

Teranes, 2001).  For example, two sediment cores taken from the same 

location in Lake Ontario 6 years apart indicate that microbial processing 

decreased the organic matter mass by 20% during that time (Hodell and 

Schelske, 1998).  Early diagenesis can also affect the C/N ratios of organic 

matter.  For example, buried wood samples have lower C/N ratios than 

fresh wood samples indicating selective degradation of carbon-rich sugars 
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and lipids (Meyers et al., 1995).  The C/N ratio of algal derived 

(autochthonous) organic matter, however, can increase due to degradation 

of nitrogen-rich compounds.  Diagenetic changes to the C/N ratio of 

sediment organic matter are not often large enough to erase the observed 

C/N differences between land plants and lake algae (Meyers and Terranes, 

2001).  The δ13C-Seds can also be impacted by post-burial diagenesis since 

different compounds degrade more readily (Herezeg, 1988), but this was 

found to be minimal in the 2 Lake Ontario cores collected from the same 

location 6 years apart (Hodell and Schelske, 1998).  Although sediment 

diagenesis is included in the whole lake mass balances of Dillon and Molot 

(1997a), based on organic measurements in the lake sediments it is expected 

to be minimal (Ontario Ministry of the Environment, unpublished data). 

Methanogenesis can also occur in unconsolidated lake sediments 

and soils under anaerobic conditions, and methanotrophs do fractionate 

carbon.  Fractionation will depend on whether the source carbon is CO2 or 

preformed reduced carbon substrates however, even when the 

soils/sediments are CH4 saturated methane only accounts for approximately 

1% of the total organic carbon present in organic rich shallow sediments.  

(Whitcar, 1999),  therefore it is unlikely that methanogenesis will affect the 

δ13C-Seds. 

Since incoming POC from streams and POC that formed by 

allochthonous DOM degradation can be important contributors to lake 

sediments, their role in the δ13C of lake sediments should be assessed.  This 

paper will 1) estimate the proportions and the δ13C values of litter, POC 

entering through streams, and POC created through photodegradation to 

calculate the δ13C of the allochthonous sediment input end-member, 2) 

estimate a δ13C value for the autochthonous end-member to determine if the 

allochthonous and autochthonous end-members are isotopically distinct, 

and 3) examine whether the δ13C of lake sediments can be used to discern 
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the relative proportions of allochthonous and autochthonous carbon within 

them for two northern temperate lakes. 

6.3 Methods 

Harp and Dickie Lakes are oligotrophic headwater lakes that are part of a 

long-term monitoring program carried out by the Ontario Ministry of the 

Environment (OME).  The 25-year chemistry and hydrology datasets 

indicate that stream DOC concentrations decrease with increasing 

discharge, and generally that discharge has a 7 or 10 year cycle.  The 

watersheds lie on the southern tip of the Precambrian shield approximately 

200 km north of Toronto, Ontario, Canada in the Muskoka-Haliburton 

region.  Descriptions of these inflows and catchments are summarized in 

Dillon et al. (1991) and the location and general characteristics are located 

in Figure 5.1 (Chapter 5) and Table 6.1 (current chapter).   

Table 6.1:  General Stream Characteristics for the Inflows of Harp and Dickie Lakes. 

Stream/Lake % Peatland1 Area (ha)1 Stream 
Length1 (m)

Harp Inflow 3 9.3 26.0 1010
Harp Inflow 3a 2.9 19.7 762

Harp Inflow 4 8 3 119.5 2040
Harp Inflow 5 13.3 190.5 1830

Harp Inflow 6 10 3 10.0 701
Harp Inflow 6a 8.5 15.3 610

Harp Lake 71.38 2

Dickie Inflow 5 25.4 299.8 762
Dickie Inflow 6 21.8 22.0 488
Dickie Inflow 8 8.2 67.0 1220
Dickie Inflow 10 17.1 78.9 975
Dickie Lake 93.6 2

1Dillon et al., (1991)
2Dillon and Molot, (1997a)
3Eimers et al., 2008
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Stream waters are generally oxic with low NO3
2- and NH4

+ 

concentrations (e.g. Dickie Inflows maximum NH4
+ = 0.36 mg/L, 

maximum NO3
2- + NO2

- = 0.18 mg/L; OME, 2004-2007 unpublished data).  

Additionally, although annual-weighted ice-free concentrations of iron have 

fluctuated (between ~190 µg/L and 380 µg/L) and concentrations of 

manganese have increased slightly (~40 µg/L to 95 µg/L) in Dickie Lake, 

both iron and manganese are decreasing in Harp Lake (Fe: ~170 µg/L to 

~35 µg/L, Mn: ~76 µg/L to 7 µg/L; OME, unpublished).  These lakes 

have an appreciable amount in-lake DOC consumption, evident by the 

lower lake and outflow DOC concentrations in comparison to their inflows.  

The inflows travel through peatlands ranging between 0% and 25.4% of 

their sub-catchment area (Dillon et al., 1991).  

The inflows and outflows of Harp and Dickie Lakes were sampled 

between March and the end of November in 2004 to 2005 and in the spring 

of 2007.  Additional samples were collected from the Harp inflows between 

1990-1992 (Schiff, unpublished).  Inflow and outflow water was collected 

from weirs located approximately 50 m upstream and downstream from the 

lakes.  Many of these streams have been the focus of photolytic DOM and 

carbon balance studies (e.g. Dillon and Molot, 1997a; Molot and Dillon, 

1997b; Gennings et al., 2001; Kelton et al., 2007; Chomicki and Schiff, 

2008; Chapters 2 through 4).  

Inflow and outflow samples were analyzed for δ13C-POC and δ13C-

DOC.  Samples for δ13C-POC and δ13C-DOC were obtained by filtering 

stream water sequentially through Whatman QMA and pre-combusted 

GF/F filters.  The particulate carbon collected on the QMA filter was 

analyzed on a Carlo Erba 1105 Elemental Analyzer coupled to a Micromass 

Isochrom (EA-IRMS) at the Environmental Isotope Laboratory, Waterloo, 

Ontario, with a precision of ± 0.2‰, and with duplicate samples measuring 

within 0.2‰ of each other.  The filtrate passed through a GF/F was 
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acidified with 20% HCl to a pH of 4.5, freeze-dried and run on the same 

instrument used for analysis of δ13C-POC to obtain δ13C-DOC values, also 

with a precision of ± 0.2‰.  Molar C/N ratios were calculated using the 

%C and %N results from the elemental analyzer.   

To examine the δ13C of POC created from the degradation of stream 

DOM, incubation experiments were performed on inflow waters to Harp 

and Dickie Lakes.  Details of the experimental setups are outlined in 

Chapter 4.  Briefly, large samples of inflow waters were filtered to 0.2 µm.  

Further microbial growth was inhibited by adding 1mL/L of a saturated 

solution of HgCl2 to the 0.2 µm filtrate.  Initial experiments indicated little 

difference between concentration and isotope analysis in filter-sterilized and 

HgCl2 sterilized samples (Chapters 2 and 3).  In the current photolytic 

experiment, Harp and Dickie inflow samples were incubated under natural 

sunlight at the University of Waterloo (43° 28' 25.6" N and 80° 33' 27.5" W; 

elevation ~ 335 m) for 28 and 34 days respectively.  Duplicate samples were 

placed in Tedlar bags and incubated together in shallow water baths to 

minimize temperature and light exposure variations.  After more than 50% 

of the DOC degraded, the POC created was collected and analyzed as 

above.  

Samples for DIC, CO2, and δ13C-DIC were collected weekly to 

monthly from the mid-epilimnion of Harp and Dickie Lakes between 2003-

2005 and 2007. Samples for DIC were collected without headspace in 15 

mL Wheaton serum bottles, capped with baked BD Vacutainer stoppers 

(heated to remove residual CO2), and preserved with 0.02 mL of a saturated 

HgCl2 solution.  For analysis, the samples were acidified with 85% H3PO4 

to a pH < 2 after a 5 mL helium headspace was added.   To equilibrate 

headspace and liquid concentrations, the acidified samples were shaken on 

an orbital elliptical shaker for 1.5 hours.  DIC concentrations were 

measured by equilibrated headspace on a Shimadzu 8A Gas 
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Chromatograph fitted with a methanizer (Ni catalyst, He gas carrier, FID 

detector) with an uncertainty of < 5% (Stainton, 1973). 

Water was slowly pumped from the mid-epilimnion via peristaltic 

pump into evacuated 60 mL Wheaton serum bottles capped with baked BD 

Vacutainer stoppers without headspace for CO2 concentrations.  Each bottle 

contained 3.56 mg of KCl as a preservative.  Helium was introduced into 

the samples (5 mL He: 55 mL water) and the CO2 in the water was 

equilibrated with the headspace by shaking the samples for a minimum of 

1.5 hours on an orbital shaker.  CO2 concentrations were measured on the 

same gas chromatograph described above (Davies et al., 2003). 

Samples for δ13C-DIC were collected in 125 mL Wheaton serum 

bottles without headspace, capped with baked BD Vacutainer stoppers, and 

preserved with 0.3 mL of a saturated solution of HgCl2.   A helium 

headspace was created (5 mL He: 155 mL water) and samples were 

acidified with 85% H3PO4 to a pH less than 2.  Samples were shaken for a 

minimum of 1.5 hours to equilibrate the gases between the dissolved phase 

and the headspace.  Gas from the headspace was analyzed on a Micromass 

Isochrom isotope ratio mass spectrometer interfaced to a gas 

chromatograph combustion unit (GC-C-IRMS) at the Environmental 

Isotope Laboratory, Waterloo, Ontario.  Precision of these samples is better 

than ± 0.3‰.  Periodically, duplicate samples were analyzed and were 

within 0.3‰ of the first sample. 

Sediment cores were extracted from the centre of Harp and Dickie 

Lakes in 1999 using a KB-type gravity corer (Glew, 1989).  A detailed 

description of the coring and sediment processing is described in Eimers et 

al. (2006) and Faulkenham et al. (2003).  Briefly, a minimum of fifteen 

0.5-cm sediment slices were 210Pb dated at Queen’s University (A. Paterson, 

unpublished data) following the sample preparation and the core 
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chronology establishment of Schelske et al. (1994).  The constant rate of 

supply model (Binford, 1990) was used to calculate ages of the sediment 

samples after the 210Pb activities were corrected for isotopic decay.  

Sediment δ13C signatures were also measured from the 210Pb dated short 

cores taken.  Carbon and nitrogen stable isotopes of the sediment organic 

matter from Dickie Lake was analyzed on EA-IRMS as above, with a 

precision of ± 0.2‰. 

6.4 Results and Discussion 

To determine the ratio of allochthonous to autochthonous carbon in lake 

sediments using δ13C, the δ13C values of the allochthonous and 

autochthonous end-members are required for each lake.  Additionally, the 

importance of different sources that comprise allochthonous POC must be 

determined.  For the allochthonous end-member the δ13C was calculated 

using the following equation: 

 

(Equation 6.1) 

δ13Calloch =
(mlitterδ

13Clitter) + (mstreamδ13Cstream ) + (mDOCphoto deg radedδ
13CDOCphoto deg raded )

(mlitter + mstream + mDOCphoto deg raded )
 

 

where mlitter is the mass of the litter entering the lakes, mstream is the mass of 

POC entering through the inflows, mDOCphotodegraded is the mass of POC 

created through the photodegradation of DOC, δ13Clitter is the δ13C of litter 

and vegetation in the lake catchments, δ13Cstream is the weighted average 

annual δ13C of the POC entering through the inflows, and δ13CDOCphotodegraded 

is the δ13C of the POC created during DOC photodegradation. 

The autochthonous δ13C end member value was calculated using: 
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(Equation 6.2) 

δ13Cauto = (
month=1

12

∑ relative productionmonth × (δ13C−CO2month + ε))  

 

where month is the month of the year, relative production is the relative 

annual production of each month, δ13C-CO2month is the δ13C of the surface 

water CO2 for each month, and ε is the average annual photosynthetic 

fractionation.  The values used to calculate these allochthonous (δ13Calloch) 

and autochthonous (δ13Cauto) end-member values will be discussed in the 

following sections. 

6.4.1 δ13C-Allochthonous POC (δ13Calloch) 

There are many difficulties associated with quantifying the δ13Calloch end 

member. Commonly, the isotopic signature of the allochthonous source is 

considered to be equal to the terrestrial δ13C-DOC signal, which usually falls 

within the range of –26‰ to –29‰ (commonly –28‰ in boreal regions; 

Junger and Planas, 1994).  However, the allochthonous end-member can be 

composed of leaf litter and other vegetation falling onto lakes, and POC 

from streams, in addition to the DOC entering from streams that is 

photodegraded to POC in lakes.  In order to calculate an allochthonous 

end-member, the importance of each of these components needs to be 

assessed.  The following allochthonous POC section will be organized into 

three subsections (Litter, Stream POC, and Photodegraded DOC) and will 

explore i) the potential mass contribution of the allochthonous component, 

ii) measured ranges in the C/N ratios, iii) the δ13C values associated with 

each component, and iv) a summary of the values used to calculate the 

average annual δ13C value for each component. 
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6.4.2 Litterfall 

6.4.2.1 Estimate of mass contribution (mlitter) 

The mass of leaves and other litter transported into Harp and Dickie Lakes 

through the inflows or falling on the lakes has not been quantified.  Due to 

the complexity and the potential number of carbon transfer pathways, often 

complete carbon mass balances are scarce (Quay et al., 1986).  Since 90-

95% of total organic carbon in streams is DOC (Wetzel, 2001), mass 

balance calculations are controlled by the dissolved components (Algesten 

et al., 2003).  Dillon and Molot (1997a) completed DOC and DIC mass 

balances for Harp and Dickie Lakes but did not separately measure 

allochthonous POC inputs.  TOC samples were screened through a 70-µm 

mesh (Dillon and Molot, 1997a), which would exclude a large portion of 

the litterfall coming in through the streams from the measured TOC.  

Additionally, litter falling onto the lake was not included.  It was therefore 

necessary to estimate the litter falling onto Harp and Dickie Lakes to 

determine its importance to the δ13C allochthonous end-member value. 

The studies that have estimated or measured shoreline litter in 

addition to DOC and DIC entering lakes have shown variable results, with 

litterfall ranging from 0% to 50% of the total carbon inputs and between 

0.4% and 88% of the allochthonous inputs (e.g. Wetzel and Rich, 1973; 

Wetzel et al., 1972; Gasith, 1975; Gasith and Hasler, 1976; Wissmar et al., 

1977; Hall and Hyatt, 1974; Hargrave, 1969; Jordan et al., 1985).  However, 

the high allochthonous and high total inputs are from Lake Findley and 

Mirror Lake, while litter from the remaining lakes cited above is less than 

approximately 3% of the allochthonous and total inputs.  The carbon 

budgets of Lake Findley lack any data for macrophytes, algae, CO2 uptake 

by bacteria, or precipitation, suggesting that some important carbon 

contributions could be missing.  If included, the actual proportion of litter in 

comparison to the other carbon inputs may be different.  Additionally, Lake 

Findley has a very rapid flushing time (0.14 years) which influences carbon 
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cycling.  Lakes that flush rapidly have much higher inputs of allochthonous 

to autochthonous carbon (Jordan et al., 1985).   

Mirror Lake, the other lake with high litter input (~25% of 

allochthonous inputs; ~7% of total inputs), has a longer flushing time (1.0 

years) than Lake Findley, but is a good comparison to Dickie Lake in terms 

of its depth, flushing time, and landuse (recreational/forest).  However, it is 

located near the mouth of Hubbard Brook Valley, and its basin is 

characterized by steep land slopes, and high knobs and ridges (Winter, 

1985) perhaps transporting additional litter to the lake.  Litter at Mirror 

Lake has been estimated as 354 g C m-1 shoreline falling onto the lake (as 

twigs, branches, leaves, flowers, pollen, seeds, etc.), which is similar to 

Polish lakes (Szczepanski, 1965) and Lake Wingra (Gasith and Hasler, 

1976).  Using this estimate as a maximum, Harp and Dickie Lakes could 

have an additional 2.3 g C m-2y-1 and 3.0 g C m-2y-1 falling onto the lakes 

respectively (on an areal basis).  Incorporating these litter values into the 

inputs of the budgets suggests litter could contribute a maximum of 6% and 

7% of the total carbon inputs to Harp and Dickie Lakes respectively and 

approximately 7% to 9% of the TOC inputs to the lake. 

However, the shores of Harp and Dickie Lakes are covered with 

cottages that are seasonally and permanently occupied (e.g. 140 homes on 

Dickie Lake of which 36 are fulltime homes; Dickie Lake Association, 

2007) suggesting that estimates for litterfall into the lakes can be treated as 

maxima since many trees surrounding the lake near the shore have been 

cleared for cottage development.  At Mirror Lake, leaves contributed 62% of 

the total litterfall (e.g. reducing 354 g C m-1 to 219 g C m-1 shoreline).  Using 

only the Mirror Lake leaf contribution, 3.7% and 4.5% of the total carbon 

inputs (and approximately 4.5% to 5.5% of the total organic carbon inputs) 

to the Harp and Dickie Lakes respectively are from leaves.  To calculate the 

allochthonous δ13C end-member value, and assess the sensitivity of this 
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value to the amount of litter, a range of 219 g C m-1 shoreline to 354 g C m-1 

shoreline will be used to estimate the mlitter contribution (Table 6.2). 
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Table 6.2:  Scenarios used to calculate the possible 13C range of the allochthonous end-
member in a) Harp Lake, and b) Dickie Lake.  Mass is normalized to area and displayed in 
g C m-2y-1, and δ13C values are in ‰.  The photolytic component (Photo) indicates that 56% 
of the DOC is converted to POC. The contribution of each of the three allochthonous 
sources to the allochthonous endmember are listed in % such that the litter, stream POC 
and photolyzed DOC contributions sum to 100%. 

6.4.2.2 C/N ratios 

In the Harp and Dickie watersheds, the unweighted average C/N ratios of a 

variety of leaves and vegetation are 62 and 117 respectively (Schiff, 

unpublished).  Similarly, Sphagnum and other vegetation from the region 

also had high C/N ratios ranging between 73 and 162 (Sentance, 2006).  

High C/N ratios in litter are expected since vascular land plants are protein 

a) Harp Lake

Conditions

Mass/
Area

% 13C
Mass/
Area

% 13C
Mass/
Area

% 13C
Mass/
Area

13C

Litter: 354g/m 
POC: 4% of DOC
Photo: 56% DOC to POC

Litter: 354g/m
POC: 10% of DOC
Photo: 56% DOC to POC

Litter: 219g/m
POC: 4% of DOC
Photo: 56% DOC to POC

Litter: 219g/m
POC: 10% of DOC
Photo: 56% DOC to POC

b) Dickie Lake

Conditions

Mass/
Area

% 13C
Mass/
Area

% 13C
Mass/
Area

% 13C
Mass/
Area

13C

Litter: 354g/m 
POC: 4% of DOC
Photo: 56% DOC to POC

Litter: 354g/m
POC: 10% of DOC
Photo: 56% DOC to POC

Litter: 219g/m
POC: 4% of DOC
Photo: 56% DOC to POC

Litter: 219g/m
POC: 10% of DOC
Photo: 56% DOC to POC

3.0 22 -29.5 1.2 9 -31.0 9.1 68 -26.6 13.3 -27.7

3.0 20 -29.5 3.1 21 -31.0 8.5 58 -26.6 14.6 -28.2

1.8 15 -29.5 1.2 10 -31.0 9.1 75 -26.6 12.1 -27.5

1.8 14 -29.5 3.1 23 -31.0 8.5 63 -26.6 13.4 -28.0

-26.4 12.0 -27.2

Litter Stream POC Photolyzed DOC Allochthous 
endmember

24 -28.6 7.7 641.4 12 -28.9 2.9

76 -26.4 10.8 -26.9

-26.4 12.9 -27.3

1.4 13 -28.9 1.2 11 -28.6 8.2

11.6 -27.1

2.3 18 -28.9 2.9 22 -28.6 7.7 60

-28.6 8.2 71 -26.42.3

Allochthous 
endmember

Litter Stream POC Photolyzed DOC

19 -28.9 1.2 10
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poor and contain fibrous tissues such as cellulose and lignin, which have 

C/N ratios greater than 20 (Meyers and Teranes, 2001).  Temporal C/N 

ratios are not available for the litter surrounding Harp and Dickie Lakes, but 

the ratios likely vary on a seasonal basis and are higher at litterfall time.   

6.4.2.3 δ13C values (δ13Clitter) 

The average δ13C values of leaves and vegetation was –28.9‰ and –29.5‰ 

in Harp and Dickie catchments respectively (Schiff et al., 1997; Schiff, 

unpublished; Sentance, 2006) which is similar to the –28‰ to –30‰ 

measured by Aravena et al. (1992) and Trumbore et al. (1992).   

6.4.2.4 Average annual δ13C value 

The mean δ13C values of leaves and vegetation at Harp and Dickie Lakes 

were used in combination with the range of litter fall estimates 

(219 g C m-1 shoreline to 354 g C m-1 shoreline) to calculate the litter 

component to the δ13C allochthonous end-member, and to assess the 

sensitivity of litter on the δ13C allochthonous end-member value. 

6.4.3 Stream POC 

6.4.3.1 Estimated mass contribution (mstream) 

The mass of stream POC entering Harp and Dickie Lakes is also unknown, 

therefore a range of masses for stream POC must be estimated.  On a subset 

of samples, Dillon and Molot (1997a) measured both filtered and unfiltered 

DOC samples in the data accumulated for their mass budgets and found 

that POC was insignificant compared to DOC.  In addition, Molot and 

Dillon (1997b) performed incubation experiments on some of the same 

streams and lakes of the current study, and cite unpublished data by Dillon 

(1991), indicating POC was less than 5% of total organic carbon (TOC).  

Since POC is a small proportion (< 5%) of the total organic carbon inputs in 
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Harp and Dickie Lakes (Dillon, unpublished data, 1991 as cited in Molot 

and Dillon 1997b) it is not measured separately from DOC by the OME.  

However, many studies infer or measure POC concentrations.  Some of 

these studies will be examined to isolate a range of POC values to use in the 

determination of the mstream value.  

Generally, POC is 3% to 10% of the total carbon entering the lakes 

(Wetzel, 2001).  Baker et al. (2008) show that a comparison between filtered 

DOC and DIC to the total organic and inorganic carbon in the River Tern, 

which is surrounded by wetlands, yields a linear slope of 0.97 with an 

intercept of zero illustrating that the majority of carbon is dissolved (not 

particulate carbon).  Sand-Jensen and Pedersen (2005) found DOC 

concentrations to be 2 to 18 times higher than POC among 4 streams with 

highest POC concentrations in open streams downstream of plankton rich 

lakes and low concentrations in a groundwater-fed forest spring.  The most 

similar stream to streams in this study contained high DOC concentrations 

(18.3 mg/L) with POC concentrations 18 times lower than the DOC (POC 

= 0.9 mg/L; POC ~5% of DOC).  

Similarly, historical inflow data from Lake 239 at the Experimental 

Lakes Area (ELA) near Kenora, Ontario indicate that on average, the POC 

load was approximately 4% of the DOC load (Kasian, ELA Database, DFO 

unpublished).  In unproductive forest lakes, with high allochthonous carbon 

inputs, DOC is the dominant organic carbon input (Kortelainen et al., 

2006).  This is seen in a boreal Finnish humic river where POC 

concentrations were on average approximately 12% of the DOC 

concentrations, and peatlands accounted for 50%-60% of the land area 

surrounding the river (Heikkinen, 1994).  This is approximately 2 to 5 times 

the peatland coverage in the current study (Harp subcatchments 0%-13%; 

Dickie subcatchments 8%–25% peatland coverage).  The carbon budgets of 

Mirror and Marion Lakes indicate that POC is approximately 10% of DOC 
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(Jordan et al., 1985).  However, Lakes Lawrence and Wingra are less 

similar than the lakes from this study (e.g. influenced by an agricultural 

marsh or lie within an urban forested region) and have higher POC inputs 

into the lakes (~20% and ~149% of the DOC inputs respectively; Jordan et 

al., 1985) likely on account of increased soil erosion (Jonsson and Jansson, 

1997). 

Considering the literature, the amount of POC entering the study 

lakes is likely between 4% to 10% of the DOC load, and is likely more 

similar to ELA, and the forested stream (POC ~5% of DOC) in Sand-

Jensen and Pedersen (2005) than the regions influenced by agricultural 

marshes and urban development.  Although Dillon (unpublished data, 

1991) suggest that POC is less than 5%, a POC range of 4 to 10% of DOC 

will be used to assess the sensitivity of stream POC on the allochthonous 

δ13C end-member value, and the δ13C of the lake sediments.  

If the amount of POC entering the lakes is between 4% and 10% of 

the DOC load, then stream POC can account for 5% to 13% of the TOC 

loss through sedimentation and via the outflows in Harp and Dickie Lakes.  

Similarly, applying the same POC range to the aquatic carbon fluxes from 

21 northern and central Sweden catchments in Algesten et al. (2003) 

indicates that the “estimated POC” from terrestrial export ranges from 5% 

to 35% of the total carbon lost to sedimentation and the outflows (i.e. if 

POC = 4% of TOC, then the range is 5% to 13%; if POC = 10% of TOC, 

then the range is 14% to 35%).  It is therefore understandable that since 

POC is usually a small influence on lake budgets, TOC is often measured 

instead, accounting for the POC (e.g. Algesten et al., 2003; Dillon and 

Molot, 1997a).   

Although the majority of allochthonous carbon transported to boreal 

aquatic systems is DOC, carbon accumulation within lakes is presumably 
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dominated by POC (Kortelainen et al., 2004), which is primarily 

transported at high stream flow periods (i.e. spring and autumn) when 

terrestrially derived POC inputs are high (Jonsson and Jansson, 1997).  

Although POC may only be 4% to 10% of the carbon entering the lakes, if 

all the POC settled to the lake sediments they could contribute 12% to 31% 

and 18% to 46% of the total carbon accumulation in the lake sediments of 

Dickie and Harp Lakes respectively. However, although stream POC will 

likely have a much higher settling velocity, these are overestimations since a 

combination of stream POC and within lake POC could exit the lakes 

through their outflows. 

6.4.3.2 C/N ratios 

Stream POC has C/N ratios ranging between 8.6 and 16.5 with 62% of the 

samples below 12 and 90% of the samples below 15 (Figure 6.1a).  These 

stream POC C/N ratios are similar to C/N ratios in northern temperate 

lakes (8.3 to 17.9) and streams (10.4 to 14.2) from ELA (Hecky et al., 1993).  

While land plants have C/N ratios greater than 20 (Meyers and Teranes, 

2001), phytoplankton, with little to no cellulose and lignin, contain more N 

and commonly have C/N values between 4 and 10.  Different 

phytoplankton groups have C/N ratios ranging between 6.6 (Goldman et 

al., 1979; Morris, 1981, Biddanda and Benner, 1997), similar to the Redfield 

ratio, and 12 (Legendre and Rivkin, 2009), but Goldman and Dennett 

(2000) indicate that growth conditions may cause variations in the C/N 

ratio.  C/N ratios less than the Redfield ratio have been found in both 

bacteria and protozooplankton (Legendre and Rivkin, 2009), while 

filamentous periphyton samples composed of mostly algae can have higher 

average C/N ratios (e.g. C/N = 20, n=21, 2000; C/N = 31, n=13, 2001; 

Venkiteswaran, 2008).  Although the C/N range of the inflows suggests that 

POC from the streams reflects a mixture of algal and vascular plants, the 

majority of samples reflect an algal source.   
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Figure 6.1: δ13C-POC vs. C/N in a) the inflows and the sediment of Harp and Dickie 
Lakes; and b) the inflows, lake sediments and epilimnion POC samples from Harp and 
Dickie Lakes.  Boxes are constructed after Meyers and Terranes (2001), however, algae can 
be less than –30‰. 
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Cross et al. (2005) note that in freshwater benthic systems there are 

substantially higher C/N and C/P ratios in leaf, litter, and green leaves than 

in terrestrial and other aquatic environments.  The C/N ratios of leaves and 

other vegetation (62 to 117) are much larger than the C/N range observed 

in the POC of the inflows, lakes, and sediments (Figure 6.1) suggesting that 

litter transported to lakes may not be a large carbon source to the lake 

sediments (C/N range: 12.6 to 14.6) or that litter is heavily processed within 

the lake. The C/N range observed for the POC in the Harp and Dickie Lake 

inflows is similar to the C/N ratios in the lake sediments (Figure 6.1b) 

suggesting that if there were an appreciable amount of POC from the 

inflows which is not heavily processed within the lakes, it could influence or 

become incorporated into the sediment record. 

6.4.3.3 δ13C values (δ13Cstream) 

The δ13C-DIC of the groundwater from wells close to recharge and 

discharge areas, and from wells near the middle of the basin at Harp Lake 

were within the range of –22‰ to –24‰, typical isotope values for CO2 in 

soils without CaCO3 (Aravena et al., 1992).  These data (in conjunction 

with 14C and soil CO2 data) reflect the silicate weathering of underlying 

geology in the catchment (Aravena et al., 1992).  The isotopic composition 

of stream DIC, in the case of silicate weathering, reflects the soil CO2 

produced from root respiration and soil organic matter decomposition.   

It is possible that some of the changes in the δ13C-DIC values in the 

streams over the course of the year are due to changes in the diffusive gas 

losses.  As diffusive gas losses increase and the soil CO2 increases, 

outgassing increases and changes the δ13C-DIC, further illustrating that the 

DIC is controlled by soil CO2 and the silicate weathering of the underlying 

geology.  This suggests that in stream production or consumption was not 

the dominant process affecting the δ13C-DIC signatures. 
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The δ13C-POC of the inflows ranged between –26.3‰ and –35.3‰ 

for Harp Lake and –27.4‰ and –39.1‰ for Dickie Lake (Figure 6.2 and 

Figure 6.3).  Using the DOC mass balances, and assuming that POC was 

4% to 10% of the DOC, the monthly POC was estimated in each inflow and 

used to calculate an weighted average annual δ13C-POC inflow value of 

-28.6‰ and -30.9‰ for Harp and Dickie inflows respectively.  Seasonally, 

in the Harp Lake inflows, δ13C-POC signatures were at a maximum in the 

spring, becoming more depleted as the snow melts reaching a minimum in 

May.  As summer progressed, the δ13C-POC increased and, in most cases, 

reached a maximum (similar to the spring maximum) in the late fall (Figure 

6.3a).  
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Figure 6.2:  δ13C-POC vs. δ13C-DIC in stream waters and in the epilimnion of Harp and 
Dickie Lakes.  δ 13C-POC and δ 13C-DIC have a precision of 0.2‰ and 0.3‰ respectively. 
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Figure 6.3:  Annual variation in the δ13C-POC of the inflows and outflows of a) Harp Lake 
and b) Dickie Lake.  Precision is 0.2‰. 
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In general, the range of stream δ13C-POC ( –25‰ and –35‰) 

overlaps with the range observed for C3 plants (–24‰ to –29‰; Deines, 

1980), fresh plant material, and relatively undecomposed litter in the Harp 

catchment (–28‰ to –30‰; Aravena et al., 1992; Trumbore et al., 1992).  

The upper range of the δ13C-POC values overlaps soil δ13C values (–26.4‰ 

and –25.6‰ in the A1 and B2 soil horizons respectively; Trumbore et al., 

1992).   However, the δ13C-POC values were generally less than the 

δ13C-DIC in both the streams and epilimnion of the lakes but the slope for 

the two lakes does not equal 1 (Figure 6.2), suggesting that POC is not 

entirely autochthonous, or that photosynthetic fractionation is changing.    

The depleted δ13C-POC values reaching –35‰, suggest that stream 

δ13C-POC appears to be influenced by algal sources (Figure 6.1 and Figure 

6.2) suggesting that aquatic cellulose is transported into the lakes and 

possibly to the lake sediments.  Low C/N ratios also suggest that algae are 

an important source of POC within the streams (Figure 6.1).  Therefore, the 

δ13C and C/N ratios both suggest that stream POC is a mix of terrestrial and 

algal carbon.  The range in δ13C values suggests that the source of POC 

either changes or the importance of different sources (i.e. terrestrial vs. 

algal) changes over the year.  In the early spring, prior to shading from 

forest cover, δ13C-POC and δ13C-DIC values were generally lower than in 

the summer months and the POC could be created via in-stream primary 

productivity.  The δ13C-POC became enriched in the summer, suggesting 

the role of terrestrial carbon in POC development becomes more important.  

D10 is an anomaly with extremely depleted δ13C signatures (DIC and POC) 

and higher C/N ratios (i.e. 18 to 33) in the winter months through early 

spring suggesting that a different POC source exists. 

In the Dickie Lake inflows, there was more month-to-month 

variability in δ13C-POC than in Harp Lake inflows and, while Dickie 
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Inflows 5 and 6 generally follow the same trends as Harp Lake inflows, 

Dickie Inflows 8 and 10 do not (Figure 6.3b).  Dickie Inflow 8 reached a 

minimum earlier in the spring months than the other inflows, reaching a 

maximum in summer.  In the fall, Dickie Inflow 8 δ13C-POC values 

generally stayed close to -29‰.  Dickie Inflow 10 was initially very depleted 

during March and April, increasing until June after which the observed 

δ13C-POC trend is similar to the Harp Lake Inflows.  

Annual changes in δ13C-POC values were 2‰ to 13‰, while within 

month changes between the inflows were 1.4‰ to 7.7‰ and 1.6 to 10.3‰ 

for Harp and Dickie inflows respectively.  The greatest variation and lowest 

δ13C values were observed in streams with a higher percentage of peatlands 

in their catchments, suggesting that with increasing peatland coverage there 

is an increasing deviation from a terrestrial δ13C value (or δ13C-DOC) and 

more of an algal influence likely due to ponded water. 

The δ13C-POC range observed in the Harp and Dickie Inflows are 

larger than δ13C-POC ranges from other studies. δ13C-POC values during 

peak spring runoff from 14 streams within forested and agricultural regions 

of the Hudson-Mohawk watershed had a much smaller inter-stream δ13C-

POC range (2.5‰) with an average δ13C-POC of –27.3‰ (Longworth et al., 

2007).  However, temporal data from six of these streams with minimal 

wetland area show similar variability (~1 to 6‰ within April to September) 

to the range observed in the Harp and Dickie streams (~1 to 8‰ from April 

to September).  Small temporal δ13C-POC ranges were observed within the 

main river inflows to Loch Ness, ranging between –25.0‰ and –27.1‰ in 

September and November (Jones et al., 1997).  Townsend-Small et al. 

(2007) measured δ13C-POC between –23‰ and –28‰ in 3 small Amazon 

headwater rivers during July and August.  These rivers are much larger than 

the inflows in this study, and have more of an allochthonous contribution.  

It is important to recognize in the rivers listed above, algal POC will depend 
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on the δ13C-DIC of the individual systems.  Temporal δ13C-POC data on 

streams of similar size to the Harp and Dickie streams was scarce since 

these streams are shorter and shallower than streams reported in the 

literature.  

6.4.3.4 Average annual δ13C value 

Overall, the weighted-average annual δ13C value of POC entering the lakes 

was –28.6‰ and –31.0‰ for the Harp and Dickie inflows respectively.  

Generally, the lower δ13C-POC values measured in the summer do not have 

much effect in the shaded streams since the carbon load is highest during 

non-summer periods.  To assess the sensitivity of stream POC on the 

allochthonous δ13C end-member value (and the δ13C of the lake sediments) a 

POC range of 4 to 10% of DOC will be used to calculate the allochthonous 

end-member (Table 6.2).  

6.4.4 POC created by DOC photodegradation 

6.4.4.1 Estimated mass contribution (mDOCphotodegraded) 

Using the relationship between the DOC lost and the POC created during 

the incubations tracking the photodegradation of DOC and creation of POC 

(Chapter 4), on average, approximately 56% of the DOC lost is transformed 

to POC (Figure 6.4).  Two statistical outliers were identified by Systat and 

were removed for regression analysis.  The regression line is forced through 

the origin since there will be no POC formation if DOC is not lost.  

Although the relationship between the POC created and the DOC lost is 

good within the incubations of the Harp inflows, the relationship is not clear 

in the Dickie inflow incubations as the POC created compared to the DOC 

lost is more variable between the streams.  Additionally the two statistical 

outliers were the incubations from Dickie Inflows 6 and 8.  The reasons for 

this variability are unknown.  However, Gao and Zepp (1998) note the 

formation of particulate matter is influenced by the presence of iron during 
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DOM photooxidation.  As DOM photodegrades, carboxylate moieties 

oxidize (evident from the DIC produced) and Fe3+ forms polymeric iron 

oxides as the Fe3+ hydrolyzes to hydroxy complexes.  These oxides then 

induce the flocculation of DOM creating particulate matter. It is possible 

that differences in iron concentrations (or other precursors to particulate 

matter formation such as manganese) could affect the amount of POC 

created and explain the scatter.  However, iron and other metal 

concentrations were not measured in these incubations, therefore it is 

difficult to determine whether any differences in the concentrations of 

metals within the inflows controlled the variability in particulate matter 

formation.  Consequently, the average POC created of all the incubations of 

both lakes will be used to estimate the importance of photodegraded DOC 

to the allochthonous 13C end-member.  Assuming that 1) POC is 4% -10% of 

the DOC entering the lake and 2) DOC will be converted to POC by 

photodegradation only during ice free months (e.g. May to November), 

then the mass of POC created by DOC photodegradation was calculated by: 

 

(Equation 6.3) 

mDOCphotodeg raded =
month= 5

11

∑ ((TOCstream )month − (POCstream )month ) × 0.56 

 

where mDOCphotodegraded is the mass of POC created by the photodegradation of 

DOC, TOCstream is the mass of total organic carbon (TOC) in the stream for 

each month m, POCstream is the mass of POC in the streams assuming that 

stream POC is 4% to 10% of the TOC, and 0.56 is the slope of the line in 

Figure 6.4 once the two statistical outliers are removed.  Using this 

equation, the mDOCphotodegraded is 7.7 to 8.2 g C m-2 and 8.5 to 9.1 g C m-2 of 

POC in Harp and Dickie Lakes respectively.  
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Figure 6.4:  The relationship between the DOC lost and POC created during the 
photodegradation of DOC in incubation waters from the 10 inflows to Harp and Dickie 
Lakes.  With the two statistical outliers (identified by Systat) removed for the regression 
analysis, the equation of the line is y = 0.5603x, and has an R2 of 0.86.  The statistical 
outliers remain on the plot. 

6.4.4.2 C/N ratios 

If the amount of POC created from the photodegradation of DOC is 

significant to the POC mass balances in aquatic systems, then determining 

the effects of DOM degradation on C/N ratios and δ13C becomes important 

if this POC is incorporated into lake sediments.  DOC can be lost to the 

sediment through coagulation and flocculation of DOC (Molot and Dillon, 

1997b; von Wachenfeldt and Tranvik, 2008) or assimilation and 

sedimentation.  The incubation experiments from Chapter 4 indicate that 

during the photodegradation of DOC in waters from the inflows to Harp 

and Dickie Lakes (with DOC original concentrations ranging between 3.2 

mg C/L and 24.7 mg C/L, and C/N ratios ranging between 24 and 55) 

between 20% and 90% of the DOC lost was transformed to POC (Chapter 

4) with C/N ratios ranging between 12 and 26.  Photodegradation of DOM 
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therefore creates POC with C/N ratios different from the source DOC and 

different from the residual DOC (C/N range: 1 to 13).  Furthermore, the 

C/N ratios of POC created during DOM photodegradation overlap the 

C/N ratios of the lake sediments in Harp and Dickie Lakes (C/N range: 12 

to 16). 

6.4.4.3 δ13C values 

The incubations in Chapter 4 show that, in all cases except one, the δ13C of 

the POC created was more enriched than the DOC it was created from (by 

0.2‰ to 1.9‰) and ranged from -25.7‰ to -26.7‰ and -26.5‰ to -27.7‰ 

in the Harp and Dickie inflows respectively.  The average δ13C-POC from 

the 10 inflows was –26.6‰ and, although the POC was up to 2‰ greater 

than the original DOC, generally it was within 1‰ of the δ13C-DOC it was 

created from (Chapter 4).  This could become important to the δ13C of the 

allochthonous end-member calculation if the amount of DOC that 

transforms to particulate carbon during DOM photodegradation is 

appreciably higher than the other allochthonous 13C sources.  If there is a 

large contribution of POC created by the photodegradation of DOC then, 

since the δ13C-POC created is appreciably lower than the δ13C of the inflows 

and the δ13C of the litter, it could draw the δ13Calloch end member value close 

to the commonly assumed range (–27‰ to –28‰) for the terrestrial end 

member making the errors associated with assuming that terrestrial DOC is 

the allochthonous end member smaller. 

Few studies have considered the POC created during DOC 

photodegradation, and even fewer have examined the isotopic impacts.  

Vähätalo and Wetzel (2008) had little particulate matter accumulation after 

their 459-day incubation of lyophilized Juncus effusus leachate dissolved in 

lake water.  Consequently, there were no measurements to quantify or 

determine the δ13C value of the POC created.  However, von Wachenfeldt 
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and Tranvik (2008) suggest that light stimulates allochthonous DOC 

flocculation in lakes and, using isotopic signatures for an end-member 

mixing model and the fluorescence index of settling organic carbon from 

sediment collection traps, suggest that allochthonous DOC was the 

dominant form of organic carbon flocculating and settling in 12 Swedish 

lakes.  Although von Wachenfeldt and Tranvik (2008) mention unpublished 

flocculation experiments regarding the dependence of DOC flocculation on 

light and temperature, they did not measure the δ13C of the flocculated 

POC.  Similarly, other studies examining optical, chemical, structural 

and/or isotopic changes in DOC (or DIC) resulting from the photochemical 

alteration of DOM do not mention POC formation (e.g. Osburn et al., 

2001; Opsahl and Zepp, 2001; Vähätalo and Wetzel).  The formation of 

POC due to flocculation and coagulation of DOC is thus understudied and 

the δ13C is assumed to be identical to the source DOC.  The current study 

shows that the source δ13C changes as it is photodegraded, and the POC 

created is on average 0.7‰ heavier than the source DOC. 

6.4.4.4 Average annual δ13C value 

To determine the annual average δ13C signature for the photolytic 

component of the allochthonous δ13C signal, the contribution of organic 

carbon from each inflow was calculated for ice-free months using (Equation 

6.3.  It was assumed that 56% of the DOC available for photodegradation 

would form particulate carbon and that the δ13C-POC created will deviate 

from the DOC by +0.7‰. 

6.4.5 Calculating the δ13C of the Allochthonous end member 

Combinations of different scenarios were used to estimate the δ13C of the 

allochthonous end-member (Table 6.2).  The ranges of estimates of litterfall 

(219 g C/m shoreline to 354 g C/m shoreline) and stream POC (4% to 10% 
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of the DOC load entering the lakes) were used, with estimates of photolyzed 

DOC (56% of the DOC load during the ice free months).   

The mass estimates suggest that litter and stream POC could account 

for roughly equal proportions of the allochthonous carbon entering lakes 

(12% to 22% and 9% to 24% respectively), while the POC created through 

DOC photodegradation could contribute 58% to 76% of the allochthonous 

carbon to the lakes (Table 6.2).  This suggests that stream inputs to the lake 

could be incorporated into lake sediments.  Since POC C/N ratios are low 

(< 16.5 with 90% of the samples below 12) and δ13C-values range between 

-25‰ and -35‰, it is likely that stream POC is a combination of 

productivity and terrestrial inputs indicating that in stream (or wetland) 

productivity can be incorporated into the lake sediments.  In addition, the 

lake sediment C/N ratios (~12 to 16) fall within the ranges observed for 

POC created by photodegraded DOC and stream POC, further suggesting 

that they could be important to lake sediments in addition to autochthonous 

POC C/N ratios (which are expected to be < 20).  This goes against the 

conventional view that the organic matter within lake sediments originates 

from organics produced by organisms living in or around the lake with the 

detritus of single-celled phytoplankton as the source of primary organic 

matter (e.g. Meyers, 1997; Rullkötter, 2000), although it has been suggested 

that in lakes and marine sediments close to river mouths land plant detritus 

could also become important (Meyers, 1997).  The high degree of POC 

created by the photodegradation of DOC corroborates von Wachenfeldt et 

al. (2008) who suggest that DOC photoflocculation could account for up to 

60% of the DOC loss in lake and mire waters and that photoflocculation 

could lead to allochthonous carbon sequestration in lake sediments (von 

Wachenfeldt and Tranvik, 2008; von Wachenfeldt et al., 2008).  However, 

the amount of particulate carbon made will likely be system dependent and 

depend on DOC concentration, previous light exposure (von Wachenfeldt 

et al., 2008), and possibly residence time in the photic zone. 
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The δ13C of litter, the weighted annual δ13C value of stream POC 

entering the lakes, and the δ13C of POC created by photodegrading DOC 

were used in combination with the POC mass estimates to calculate the 

δ13Calloch end member (Table 6.2).  In Harp Lake, these scenarios yielded 

similar final δ13C signatures for the allochthonous end-member (mean: 

-27.1‰; range: -26.9‰ to -27.3‰; Table 6.2).  In Dickie Lake the scenarios 

yielded a slightly larger range (mean: –27.8‰; range: –27.5‰ to –28.2‰; 

Table 6.2) than Harp Lake, however, the range is still small.  The 

allochthonous end-member δ13C value is influenced by a combination of 

litter, stream POC, and POC created from photodegraded DOC, and ~55% 

to 75% of it’s signature is derived from the DOC entering lakes and 

photodegrading to POC (Table 6.2).  Since the POC created through 

photolysis (δ13C > –28‰) is heavier than the other allochthonous end-

member components, the stream POC and litter (δ13C < –28‰) draw the 

end-member value back towards a commonly assumed allochthonous DOC 

range (δ13C ~ –27‰ to –28‰) making the errors associated with assuming 

that terrestrial DOC is the allochthonous end-member smaller.   

Although the allochthonous δ13C-POC range is small, there is a small 

difference between the two lakes (2 tailed t-test, p = 0.005) suggesting that 

the between lake differences δ13C-POC are likely driven by the stream δ13C-

POC values.  Since one goal of this study is to try to put bounds on the 

relative proportion of allochthonous and autochthonous carbon in lake 

sediments, the entire range of δ13Calloch end member values (Table 6.2) will 

be used in an attempt to include the errors associated with the estimates 

such that the Harp and Dickie Lake allochthonous end members are likely 

between -26.9‰ to -27.3‰ for Harp Lake and -27.5‰ to -28.2‰ for Dickie 

Lake.  Changing the litter and stream δ13C values by 0.5‰ only changes the 

allochthonous end member δ13C value by a maximum of 0.1‰, while 

changing the POC created from photodegraded DOC by 0.5‰ changes the 
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δ13Calloch by a maximum of 0.4‰.  Assuming that the optimal parameters are 

that litter contributes 219 g C/m shoreline, and stream POC is 4% of stream 

DOC, then the allochthonous δ13C signature is likely at the higher end of 

the calculated range at –26.9‰ and –27.5‰ for Harp and Dickie Lakes 

respectively.   

6.4.6 δ13C-Autochthonous POC 

To calculate a δ13C autochthonous end member value, it is necessary to 

determine the δ13C value of POC created each month, and to weight the 

δ13C-POC value accordingly ((Equation 6.2).  Therefore, primary 

production curves with the relative monthly production are required for 

Harp and Dickie Lakes.  Detailed productivity curves have not been 

completed for these lakes; therefore it was necessary to estimate the relative 

production in each month.  This section is set up to i) estimate the relative 

monthly production (relative productionm, (Equation 6.2), ii) estimate the 

average annual photosynthetic enrichment factor (ε, (Equation 6.2), iii) 

calculate the δ13C value of POC created by production each month (δ13C-

CO2 + ε, from (Equation 6.2), and iv) provide a summary of the values used 

to calculate the autochthonous δ13C end member. 

6.4.6.1 Estimated relative production (relative productionm) 

The monthly proportion of the total annual primary was estimated using a 

variety of scenarios.  Scenario 1 used an annual productivity curve from 

Lake Erken, Sweden (59°50’24” N, 18°34’48” E; Figure 6.5a) - a 

mesotrophic clearwater lake with a maximum depth of 21m, total 

phosphorus 27ug/L, ice cover and stratified periods similar to the study 

lakes (Kalff, 2002).  For the second scenario, productivity curves from 

Lakes 239 and 442 at ELA from periods with no ice cover were used 

(Figure 6.5b and c; Kasian: ELA, unpublished, pers. comm.).  Lake 239 is 

an oligotrophic first order lake that is approximately 30m deep, and Lake 
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442 is a coloured shallow (maximum depth: 17m) first order oligotrophic 

lake that becomes anoxic in the bottom waters during summer (similar to 

Dickie Lake).  Although no annual ice cover production was completed 

from 1973 to 2004 in Lake 239 or from 1987 to 1998 in Lake 442, historical 

ice cover production data from 1969 to 1972 suggests that in the winter 

production in Lake 239 contributed only 1% to 5% of the total annual 

production (Reid et al., 1975).  These winter production fractions were used 

in conjunction with the ice-free production curves of Lakes 239 and 442 to 

create an estimate of annual production.  Scenario 3 assumed equal 

productivity over the entire year (Figure 6.5d). 
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Figure 6.5: The total percent of annual production for each month for a) Lake Erken, b) 
Lake 239, c) Lake 442, and d) assuming equal monthly production.  May has been split 
into 4 weeks to characterize the rapid changes in surface water δ13C-CO2 occurring after ice 
melt. 
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6.4.6.2 Estimating a mean annual photosynthetic enrichment factor (ε) 

Since POC within lakes will be from a combination of allochthonous and 

autochthonous carbon that can be created by a variety of processes, it is 

difficult to determine the δ13C autochthonous end-member directly.  

Because separation of the autotrophic portion of POC is difficult, Mohamed 

and Taylor (2009) mention that measuring the autochthonous δ13C 

signature at the base of the planktonic food web is problematic.  

Presumably, if measuring phytoplankton was easy, then the δ13C of 

phytoplankton could be used as the autochthonous end member.  It is 

difficult to physically separate phytoplankton, and when it is done, it is 

often done on one type of phytoplankton, which might not be representative 

of the lake.  In 10 out of 12 Finnish lakes, phytoplankton were impossible to 

separate from POM since they were dominated by small flagellates, 

however, in two lakes the dominant species (Gonyostomum semen) was 

measured between ~ –36‰ to –40‰ (Jones et al., 1999), and diatoms 

collected by repeated sedimentation measured between ~ –29‰ and –33‰ 

in the deep oligotrophic Loch Ness (Jones et al., 2001).  In a suite of 11 UK 

lakes with a range of trophic states, the separation of phytoplankton into 

pure isolates was attempted by repeated sedimentation or by the natural 

buoyancy of different species, and measured between –16.4‰ and –35.2‰ 

with the oligotrophic samples around –32‰ (Grey et al., 2000).  Weekly 

measurements from Pel et al. (2003) provide phytoplankton δ13C biomass 

values (from fatty acids) between approximately –34‰ to –45‰ in the 

shallow eutrophic Lake Loosdrecht using flow cyclometric retrieval and a 

cell sorter.  It is therefore difficult to use the literature ranges of δ13C-

phytoplankton to estimate the δ13C autochthonous end member in lakes, 

since the measured ranges are variable, and the dominant species could be 

lake dependent.  Additionally, the autochthonous end member likely varies 

across systems since the δ13C-DIC (and δ 13C-CO2) varies across systems. 
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To estimate the δ13C of the autochthonous end-member, δ13C-CO2 

values and a photosynthetic enrichment factor are required along with the 

percent of annual production occurring each month determined above.  

Mohamed and Taylor (2009) found δ13C-CO2 values to be a good predictor 

of δ13C-zooplankton (and presumably algae) in their suite of northern 

temperate lakes in the Muskoka-Haliburton region (including the two lakes 

from this study), suggesting that CO2 is a good indicator of autochthonously 

produced POC in lakes with no CO2 limitation or bicarbonate use.  Similar 

to Mohamed and Taylor (2009), temporal δ13C values of zooplankton from 

this study also show a positive relationship with δ13C-CO2 values (Harp r2 = 

0.80, Dickie r2 = 0.52; Figure 6.6).  The relationship between δ13C-

zooplankton and δ13C-CO2 improves if the outlier is removed (r2= 0.76).  

Presumably, since 76% to 80% of the variation in δ13C-zooplankton can be 

explained by δ13C-CO2, temporal δ13C-CO2 values can be used to calculate 

an average annual photosynthetic enrichment factor. 
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Figure 6.6:  The relationship between δ13C-Zooplankton and δ13C-CO2 in Harp and Dickie 
Lakes. 

Estimating the δ13Cauto end-member requires monthly surface δ13C-

CO2 values calculated from epilimnion δ13C-DIC samples (using CO2 and 

DIC concentrations), and an average photosynthetic enrichment factor 

estimated for each of the lakes.  Mohamed and Taylor (2009) used 

epilimnetic δ13C-CO2 values and δ13C-POC to derive an estimate of the 

average photosynthetic enrichment factor (–15.9‰) in a suite of 27 Lakes 

(including Harp and Dickie Lakes) during late summer. They reasoned that 

POC or zooplankton should vary with CO2 if CO2 was a primary inorganic 

carbon source to phototrophs, such that a slope of 1 (on a δ13CO2 vs. 

δ13POC or δ13C-zooplankton plot; e.g. dashed line on Figure 6.7) would 

indicate that the POC or zooplankton were entirely autochthonous (since 

they would only be influenced by the δ13C-CO2 value).  If POC were entirely 

allochthonous, there would be no relationship (slope = 0) and the δ13C-POC 

data points would fall along the allochthonous δ13C (e.g. grey line on Figure 
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6.7).  However, it is likely that POC is a combination of allochthonous and 

autochthonous sources indicating that δ13C-POC data should fall between 

these two extremes (Figure 6.7).  The point where the δ13POC or δ13C-

zooplankton relationship intersects the allochthonous 13C value represents a 

point where the allochthonous contribution to the POC or zooplankton will 

not influence the δ13C-POC or δ13C-zooplankton signature.  Therefore, if 

there is any autochthonous contribution, the δ13C-CO2 value when the δ13C-

POC intersects the allochthonous signal can provide an estimate of the 

mean enrichment.  They used a simple mixing model: 

(Equation 6.4) 

δ13C−POC = Cauto(δ13C− CO2 + ε) + (1− Cauto)δ13Calloch  

 

 where Cauto and Calloch are the autochthonous and allochthonous 

contributions of carbon).  At the point where the POC relationship 

intersects the terrestrial δ13C value, this equation simplified to:  

(Equation 6.5) 

δ13C−POC = δ13Calloch
= δ13C−CO2 + ε

 

and can be used to estimate ε, the mean photosynthetic enrichment factor.  

A more thorough explanation can be found to in Mohamed and Taylor 

(2009). 
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Figure 6.7:  The relationship between δ13C-POC and δ13C-CO2 in the surface waters of a) 
Harp Lake and b) Dickie Lake.  Solid grey lines denote the weighted average annual δ13C-
DOC of the inflows to the lakes (Harp = -26.8‰, Dickie = -27.1‰), while the solid black 
lines represent the Model 2 regression line of best fit (Harp: y = 0.456x - 23.656, R2 = 0.68; 
Dickie: y = 0.581x - 20.817, R2 = 0.65).  The dashed line represents a 1:1 line.  The δ13C-
CO2 value that corresponds with where the line of best fit intersects the weighted average 
annual δ13C-DOC of the inflows (grey line) is represented by the dotted line.  The point 
where the dotted line intersects the x-axis is the δ13C-CO2 value that is substituted into 
Equation 5 to determine the average photosynthetic enrichment factor.  For example in 
Harp Lake, ε = δ13C-POC – δ13C-CO2 = -26.8‰ – (-6.9 ‰) = -19.9‰. 
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Using the methods of Mohamed and Taylor (2009), an average 

annual (or temporal) photosynthetic enrichment factor was estimated for 

each lake.  Since POC was found to be a good indicator to determine the 

average fractionation (Mohamed and Taylor, 2009) and does not involve an 

additional layer of assumptions regarding trophic enrichment that using 

zooplankton would, the average fractionation was calculated taking into 

account temporal POC data (and not temporal zooplankton data), and the 

weighted average annual δ13C-DOC signatures from the inflows to Harp 

and Dickie Lakes (–26.8‰ and –27.1‰ respectively; Chapter 5).  The 

inflow weighted average annual δ13C-DOC values were used since an 

average annual photosynthetic enrichment factor was being calculated.  

Similar to Mohamed and Taylor (2009), the temporal data shows a positive 

relationship between δ13C-POC signatures and δ13CO2, demonstrating that 

as δ13C-CO2 values increase, there is an associated increase in δ13C-POC 

values (Harp: R2 = 0.68; Dickie: R2 = 0.65; Figure 6.7).  Using the temporal 

data, the mean photosynthetic enrichments for Harp and Dickie Lakes were 

calculated as –19.9‰ and –16.3‰ respectively.  Should the values of the 

allochthonous end-members be used instead of just the weighted average 

annual δ13C-DOC, the mean fractionations for Harp and Dickie Lakes 

change to –19.3‰ and –15.8‰. 

 

Examination of the relationship between δ13C-POC and δ13C-CO2 

indicates that Harp and Dickie Lakes likely have different amounts of 

autochthonous POC.  It is possible that autochthony is not the sole process 

that is producing POC since all of the data do not fall directly on the 1:1 

line, indicating that the δ13C-POC does not equal the δ13C of algae 

calculated from measured δ13C-DIC values (Figure 6.7, dashed line).  Harp 

and Dickie Lakes do not closely follow the 1:1 line suggesting they may be 

more influenced by allochthony. 
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6.4.6.3 δ13C-POC created by production (δ13C-CO2 + ε) 
Using a late-summer photosynthetic enrichment of –15.9‰ (Mohamed and 

Taylor, 2009) the autochthonously derived POC would range on a monthly 

basis from –27.4‰ to –40.3‰ in Harp Lake and from –30.1‰ to –42.2‰ 

in Dickie Lake (Figure 6.8a).  However, using the estimated enrichment 

values of –19.9‰ and –16.3‰ from temporal data for Harp and Dickie 

Lakes respectively, the autochthonous POC would range from –31.5‰ to 

-44.4‰ in Harp Lake and -30.5‰ to -42.6‰ in Dickie Lake (Figure 6.8b) 

illustrating the importance of using a temporal photosynthetic fractionation 

in Harp Lake.  The ranges for Dickie Lake do not differ a lot since the 

temporal fractionation is similar to the average photosynthetic fractionation 

calculated by Mohamed and Taylor (2009) across their suite of 27 lakes.  

The δ13C-POC values derived from the temporal ε value were used in 

conjunction with the estimated relative production in the lakes to calculate 

weighted average annual δ13C autochthonous end member values. 
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Figure 6.8:  The autochthonous δ13C-POC signature of Harp (closed square) and Dickie 
(open circle) Lakes calculated using a) an average fractionation factor of -15.9‰ 
(Mohamed and Taylor, 2009), and b) average fractionation factors of -19.9‰ and -16.3‰ 
for Harp and Dickie Lakes respectively and measured surface water 13C-DIC, CO2, and 
DIC.  May 1-4 represent four weeks in May when weekly sampling was completed. 
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Comparing the δ13C signatures of the weighted average annual 

autochthonous end member resulting from each of the aforementioned 

scenarios shows that, between scenarios, the range in the weighted average 

annual autochthonous end member is 2.9‰ for Harp Lake and 2.2‰ for 

Dickie Lake (Table 6.3).  To determine an average annual POC derived 

from autochthonous production, the average of production scenarios 1 and 

2 were used, assuming an average enrichment of –19.9‰ and –16.3‰ for 

Harp and Dickie Lakes, respectively.  Scenario 3 was not included as it is 

not likely that productivity is equal throughout the year, especially when the 

lakes are ice and snow covered during the winter months.  The 

autochthonous δ13C end member calculated using equal monthly production 

can be up to ~2‰ different than the other production δ13C end member 

values, and shows that using monthly production is important to this 

calculation.  Excluding scenario 3, the range in the autochthonous end 

member decreases to between ~1.5‰ and 2‰.  Since the production curves 

in scenarios 1 and 2 are from lakes in  a similar northern temperate/boreal 

region that have characteristics similar to Harp and Dickie Lakes, their 

productions could resemble relative total production at the current study 

lakes and were therefore used to calculate the δ13Cauto.  According to the 

average of scenarios 1 and 2, the δ13Cauto end member is –36.6‰ in Harp 

Lake and -35.7‰ in Dickie Lake (or -35.5‰ and -35.2‰ if δ13C 

allochthonous end-member is used instead of δ13C-DOC inflows).  

Changing the enrichment factor to the late-summer derived enrichment 

value of –15.9‰ (Mohamed and Taylor, 2009) changes the average annual 

POC derived from autochthonous production to –32.6‰ and –35.3‰ for 

Harp and Dickie Lakes respectively illustrating the sensitivity of the end 

member to the specific annual fractionation for each lake.  It also illustrates 

the importance of using a temporal average photosynthetic enrichment 

factor, and not a fractionation calculated in the late-summer.  Since it is not 

likely that fractionation is annually constant in the lakes, temporal data was 

used to estimate a mean enrichment factor.  When the lakes are 
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supersaturated with CO2, it is expected that photosynthetic fractionation 

will be large, whereas if CO2 decreases or becomes limiting, the 

photosynthetic fractionation will decline, but the reasonable fit of the line in 

Figure 6.7 suggests that this isn’t the case for Harp and Dickie Lakes. It is 

also important to recognize that there is a positive feedback between δ13C-

CO2 and the autochthonous end-member.  As production increases in the 

lake, the δ13C-CO2 (and δ13C of the autochthonous end-member) will 

increase.  Changing the δ13C of the lake sediments to lower δ13C values with 

productivity using end-member mixing is therefore a minimum of the 

amount of autochthonous carbon required to shift the δ13C signal since 

autochthonous carbon is labile and can be more easily degraded than 

allochthonous carbon in the lake sediments. 

Table 6.3:  Scenarios used to calculate the possible 13C range of the autochthonous end-
member in Harp Lake and Dickie Lake. 

In addition to Mohamed and Taylor (2009) who found δ13C-CO2 

signatures to be a good predictor of δ13C-zooplankton in 27 northern 

temperate lakes, suggesting that CO2 is a good indicator of autochthonously 

produced POC in the lakes, many other studies have used δ13C as a tool to 

provide information about autochthony.  Findlay (2001) found δ13C values 

to be useful in differentiating between allochthonous and algal energy 

-15.9‰a -19.9‰ -15.9‰a -16.3‰
1 Lake Erken n/a -32.4 -36.4 -34.3 -34.7
2a Lake 239 1 -32.0 -36.0 -34.9 -35.3

Lake 239 5 -32.3 -36.3 -35.1 -35.5
2b Lake 442 1 -33.1 -37.1 -36.1 -36.5

Lake 442 5 -33.4 -37.4 -36.2 -36.6
3 Equal montly productivity n/a -34.9 -38.9 -36.5 -36.9

All Scenarios average -33.0 -37.0 -35.5 -35.9
minimum -34.9 -38.9 -36.5 -36.9

maximum -32.0 -36.0 -34.3 -34.7

Scenarios 1 and 2 average -32.6 -36.6 -35.3 -35.7
minimum -33.4 -37.4 -36.2 -36.6

maximum -32.0 -36.0 -34.3 -34.7
a Enrichment factor calculated by Mohamed and Taylor (2009)

Harp Lake Average 
Photosynthetic 

Enrichment

Dickie Lake Average 
Photosynthetic Enrichment

13C Autochthonous endmember

Scenario Modeled after
Winter Production 

(% of annual 
production)
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sources in CO2 supersaturated unproductive streams and also found that 

δ13C-algae was strongly related to δ13C-DIC.  McCallister and del Giorgio 

(2008) used two independent approaches to determine the autochthonous 

δ13C end member (i.e. the expected δ13C-algae) in 8 boreal lakes and 2 

streams in Quebec, Canada.  For the first method, they measured δ13C-CO2 

signatures and assumed a –20‰ enrichment value, suggesting that the δ13C 

for algal biomass produced ranged between –32‰ and –43‰, similar to the 

range calculated for Harp and Dickie Lakes (Harp: –31.5‰ to –44.4‰; 

Dickie: –30.5‰ to –42.6‰) using the temporal average enrichment factors 

(Harp: –19.9‰ and Dickie: –16.3‰).  The Harp and Dickie values also 

overlap the δ13C-biomass derived via lipids in the second method used by 

McCallister and del Giorgio (2008), although these values differed from the 

δ13Cauto derived from the δ13C-CO2 in the above study.  McCallister and del 

Giorgio (2008) suggest that differences between the biomass signature 

calculated from δ13C-CO2 and those measured from lipid extraction are due 

to an overestimation from applying the commonly used –20‰ enrichment 

factor and propose that photosynthetic enrichment more likely lies between 

–8‰ and –15‰.  This, along with the –15.9‰ enrichment factor from 

Mohamed and Taylor (2009), and the estimated photosynthetic enrichment 

factors for Dickie Lake (–16.3‰) supports other recent suggestions that in 

situ fractionation is likely lower than the often used value of –20‰ (e.g. 

Hecky and Hesslein, 1995; Cole et al., 2002; Bade et al., 2006).  However, 

the estimated average photosynthetic enrichment in Harp Lake (–19.9‰) is 

very similar to the often-used value of 20‰. 

6.4.6.4 Average annual δ13C value 

To determine the proportion of allochthonous to autochthonous carbon 

within lake sediments, mean photosynthetic enrichments of –19.9‰ and 

-16.3‰ for Harp and Dickie Lakes respectively, were used to calculate 

autochthonous δ13C end members ranges of –36.0‰ to –37.4‰ for Harp 
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Lake and –34.7‰ to –36.6‰ for Dickie Lake (Table 6.3) using (Equation 

6.2.  These values are open water values, and do not include carbon fixed by 

macrophytes.  Macrophytes were ~3% of the total autochthonous carbon 

inputs in the carbon budget of Mirror Lake (Jordan et al., 1985; a lake 

similar to Dickie Lake) therefore, it is possible that macrophytes may not be 

a significant contributor to the autochthonous δ13C value.  Similarly, 

macrophytes have low biomass in the oligotrophic lakes on the Canadian 

Shield (France and Schlaepfer, 2000), located between ThunderBay and the 

Experimental Lakes Area.  Less than 10% of the total surface area of Harp 

Lake is colonized by macrophytes, and vegetation was present only to 

depths of 3 m (Wile et al., 1985).  Wile et al. (1985) note that the species 

richness and species composition of Harp and Red Chalk Lakes were 

similar to other Ontario soft water lakes (Miller, 1977).  The average 

macrophyte biomass of Harp Lake was 73.6 g m-2 for the vegetated zone 

and within the range for oligotrophic lakes (Wile et al., 1985).  In a 

literature survey, France (1995) compiled a range of δ13C values for 

macrophytes in freshwater lakes, between ~–10‰ and –32‰, while 

Osmond et al. (1981) show that in British rivers the δ13C of total plant 

carbon in aquatic macrophytes ranged between –22‰ and –44‰.  

Therefore, in lakes where macrophyte carbon contributions are high, 

macrophytes and their δ13C values may play a more important role in 

sedimentation and the δ13C values of lake sediments. 

6.4.7 Allochthonous vs. Autochthonous POC 

Using the allochthonous and autochthonous δ13C end member values to 

calculate the ratio of allochthonous to autochthonous organic carbon in the 

lake sediments relies on the assumption that the δ13C end-member values do 

not change over the time frame of the sediment core.  It is not likely that 

local vegetation surrounding the lakes (i.e. C3/C4 plants) would change 

drastically suggesting that the δ13C of litter and stream POC would not 
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change significantly.  Additionally, the δ13C range of litter (C3 plants) is 

narrow and although the stream POC δ13C range has more variation, it will 

also be small since it is composed mainly of terrestrial material.  If the local 

vegetation remained similar, it is likely that the lability of the allochthonous 

material did not change.   

It is also important to consider how the Suess effect would affect the 

δ13C-DOC derived from the terrestrial catchment over the history of the core 

to determine whether the allochthonous end-member is representative for 

the entire core.  Since the industrial revolution, increases in CO2 and 

decreases in δ13C-CO2 have been observed in the atmosphere (Francey et al., 

1999).  Although plants will uptake the decreased δ13C-CO2, the DOC in 

streams, soil water and groundwater surrounding Harp Lake reflect both 

contemporary plant material and older soil organic matter (Trumbore et al., 

1992) although significant amounts of DOC (often >50%) is recent (Schiff et 

al., 1990).  However, extreme 14C values also show the importance of 

carbon sources prior to the 1960s to DOC formation in some streams and 

all shallow groundwaters sampled (Trumbore et al., 1992).  Since 

integration of CO2 into plants occurs slowly over time, and the carbon in the 

soils incorporates older carbon sources, it is unlikely that the Suess effect 

will alter the δ13C-DOC (or δ13C-POC) significantly.  However, even if the 

Seuss effect is important to the allochthonous end member δ13C value by the 

change in atmospheric δ13C-CO2 since the industrial revolution will change 

the allochthonous end member δ13C value by less than 0.5‰. 

It is also possible that the autochthonous signature could be affected 

by temporal changes in the atmospheric δ13C-CO2.  Although Verburg 

(2007) suggest that lake sediments in autochthonous and heterotrophic 

environments should be corrected for the Suess effect, this may not be 

necessary for the scope of this study.  Since the mass balances of Harp and 

Dickie Lakes are controlled by the terrestrial DOC entering the lakes, it is 
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unlikely that correcting for the Suess effect would significantly affect the 

proportion of autochthonous carbon in the lake sediments.  Changes in the 

δ13C of the autochthonous end-member by 0.5‰ only affects the % of 

autochthonous inputs by <1%.  Changes in nutrients (from development), 

or changes in the degree of fractionation over time could also affect the δ13C 

of the autochthonous end-member, and each of these will be discussed later.  

The relative proportion of allochthonous POC versus 

autochthonously derived POC in the lake sediments was calculated using a 

simple mixing model between the isotopic signatures of the allochthonous 

(Harp range: –26.9‰ to –27.3‰, Dickie range: –27.5‰ to –28.2‰) and 

autochthonous (Harp range: –36.0‰ to –37.4‰, Dickie range: –34.7‰ to 

-36.6‰) end members of Harp and Dickie Lakes.  The ranges of 

allochthonous POC and autochthonous POC are both narrow and do not 

overlap, indicating that the δ13C end member values are different.  The δ13C 

values of Harp and Dickie Lake sediments range between –27.6‰ and 

-29.9‰ suggesting that sediments must be more allochthonous than 

autochthonous.  Although lake sediments can undergo diagenesis, 

diagenetic shifts in the δ13C of the lake sediments with depth are generally 

absent (e.g. Rea et al., 1980; Hodell and Schelske, 1998; Meyers et al., 1995) 

In Harp Lake, the ratio of allochthonous to autochthonous carbon 

has changed over time, ranging from 2:1 up to 36:1 (corresponding with the 

percentage of allochthonous carbon changing between 67% and 97% using 

all δ13Calloch and δ13Cauto end member scenarios) (Figure 6.9).  Similarly, in 

Dickie Lake, the ratio of allochthonous:autochthonous carbon ranged 

between 2:1 to 15:1 corresponding with the terrestrial inputs to the sediment 

record ranging between 66% to 94% (Figure 6.9).  As an example, the ratio 

of allochthonous to autochthonous carbon in the lake sediments using the 

maximum δ13Calloch and the minimum δ13Cauto end members is displayed in 

Table 6.4.  Therefore decreases in the δ13C of the lake sediments can occur 
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due to increases in autochthonous POC or decreases in the contribution of 

allochthonous POC. 
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Figure 6.9:  δ13C sediment profiles of Harp and Dickie Lakes plotted with age of sediment 
determined by 210Pb.  The % of allochthonous carbon within the sediment is displayed at 
the top, δ13C peak, and base of the core in black text for Harp Lake, and grey text for 
Dickie Lake. 
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Table 6.4:  The percent allochthonous and percent autochthonous contributions to the 13C-
Sediment signature from short cores within a) Harp Lake and b) Dickie Lake using the 
maximum allochthonous and minimum autochthonous δ13C end-member values as an 

example. 

Isotopically, the proportion of allochthonous to autochthonous 

carbon is more sensitive to the δ13C of the average annual allochthonous 

a) Harp Lake

Year
13C-Sediment 

(‰)
Allochthonous 

(%)
Autochthonous 

(%)
Alloc:Auto

1998 -29.9 67 33 2
1996 -29.6 71 29 2
1993 -28.9 78 22 4
1991 -28.5 83 17 5
1988 -28.4 84 16 5
1985 -28.2 86 14 6
1981 -28.2 86 14 6
1976 -28.2 86 14 6
1970 -28.0 88 12 7
1964 -27.8 90 10 9
1958 -27.6 93 7 13
1942 -27.6 92 8 12
1924 -27.6 92 8 12
1901 -27.8 90 10 9
1874 -28.3 85 15 6
1851 -28.5 83 17 5

b) Dickie Lake

Year
13C-Sediment 

(‰)
Allochthonous 

(%)
Autochthonous 

(%)
Alloc:Auto

1998 -30.0 66 34 2
1996 -29.2 77 23 3
1993 -29.1 78 22 4
1989 -29.0 80 20 4
1984 -29.0 80 20 4
1979 -28.8 82 18 5
1974 -28.7 83 17 5
1967 -28.8 83 17 5
1961 -28.7 83 17 5
1956 -28.7 84 16 5
1949 -28.7 83 17 5
1932 -28.8 82 18 5
1912 -28.9 81 19 4
1884 -29.2 76 24 3
1835 -29.3 75 25 3
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POC sources.  Altering the average annual δ13C signatures by 0.5‰ (the 

average difference between the range of the δ13C allochthonous end member 

values calculated in Table 6.2) changes the percentage of allochthonous 

inputs (to the sediments) by an average of 4.4% and 5.1% in Harp and 

Dickie Lakes respectively (Harp range: 3.5% to 4.7%, Dickie range: 4.4% to 

5.3%).  However, changing the average annual δ13Cauto end member by 

0.5‰ only changes the percentage of allochthonous inputs to the sediments 

by an average of 0.7% and 1.0% in Harp and Dickie Lakes respectively 

(Harp range: 0.3% to 1.7%, Dickie range: 0.7% to 1.8%).  Therefore it is 

likely that large changes to δ13C-CO2 (much larger than the Suess effect) or 

large changes in the degree of fractionation over the time frame of the core 

would be required to affect these values significantly, emphasizing the 

important control of allochthonous carbon on the lake sediments.   

There is not much difference in the relative proportion of 

allochthonous to autochthonous carbon if the δ13C-DOC of the inflows is 

used as the terrestrial signal versus the δ13C of the allochthonous end-

member (i.e. ~2.5% change).  The higher sensitivity to changes in the 

allochthonous δ13C end-member value than the autochthonous end-member 

δ13C value is due to the inferred high proportion of allochthonous material 

in the sediments.  Additionally, had the temporal photosynthetic 

fractionation factors been calculated using the allochthonous end member 

instead of the δ13C-DOC entering the lakes been used (–15.8‰ and –18.8‰ 

for Dickie and Harp Lakes respectively instead of –16.3‰ and –19.9‰), the 

allochthonous contributions would only change on average by less than 1%.  

Harp Lake has less DOC (3.9 mg/L) than Dickie Lake (5.0 mg/L), 

which is darker in colour (Dillon and Molot, 1997a).  According to the 

mixing model in this chapter, the average POC preserved in the sediments 

in Harp (from 1850 to 1998) is 87% allochthonous and 13% autochthonous 

and is 85% allochthonous and 15% autochthonous in the Dickie Lake core 



 206

sediments dated from 1835 to 1998.  The estimated average sediment 

accumulation rates of Harp and Dickie Lakes are 6.26 g C m-2y-1 and 10.1 g 

C m-2y-1 respectively and the DOC retention in Dickie Lake (0.55) is greater 

than that of Harp Lake (0.42) (Dillon and Molot, 1997a).  Dickie Lake has 

higher estimated sediment accumulation rates and DOC retention than 

Harp, and it is possible that increases in DOC transport to the lakes could 

bring additional labile phosphorus to the system, and increase the amount 

of carbon sedimentation and productivity in the lakes.  It is also likely that 

more autochthonous carbon has sedimented out, but since it is more labile, 

it was lost to decomposition. 

According to Molot and Dillon (1997b), the DOC loss coefficients 

(σ, from the mass balances) in Harp and Dickie Lakes are very similar to 

photodecay constants extrapolated to the lakes (klake).  They suggest that 

photolysis of DOC could be large enough in situ to account for all DOC loss 

to the atmosphere and sediments in lakes with DOC < 4 mg C/L.  The 

σ/klake  increases with increasing DOC concentration, suggesting that in 

high DOC lakes, nonphotolytic mechanisms could become more important.  

Since Harp Lake has a DOC concentration of 3.9 mg C/L, it falls below the 

4 mg C/L value of Molot and Dillon (1997b) where it is possible that all 

DOC losses can be attributed to photolysis.  However, Molot and Dillon 

(1997b) assume that as DOC is degraded, DIC forms and can be consumed 

during photosynthesis to create POC.  The data from this study suggests 

that a larger proportion of the sediment record is composed of terrestrially 

derived carbon (67% to 97%), and this could be due to the production of 

POC during DOM photodegradation, contradicting the results of Molot and 

Dillon (1997b).  Similarly, the estimated percentage of carbon in the 

sediment record that is derived from allochthonous sources in Dickie Lake 

ranges between 66% and 94%.  The DOC of Dickie Lake is 5.0 mg C/L, 

and above the concentration that Molot and Dillon (1997b) suggest requires 

nonphotolytic sources of DOC loss.  However, since Molot and Dillon 
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(1997b) did not filter their DOC samples, the actual DOC loss includes any 

POC production and may underestimate the DOC loss because initial and 

final DOC samples will contain some portion of initial POC, and POC that 

is formed from the photodegradation of DOC.  In this case, their 

photodecay constants might change if POC was removed from the DOC.  

Their initial stream chemistry samples have higher DOC and total iron 

concentrations than the waters from the Chapter 4 incubations, suggesting 

that POC should form from the stream water in their study.   

Re-examining the relationship between the POC created and the 

DOC lost from the inflow samples incubated in Chapter 4 shows that the 

Dickie inflow samples deviate further from the 1:1 line than the Harp Inflow 

samples (Figure 6.4) and the two statistical outliers in the plot are from 

Dickie Lake.  The plot indicates that as DOM is photodegraded, less POC 

is being created in Dickie Lake than in Harp Lake.  The lack of relationship 

in the Dickie samples could either indicate that no relationship exists, or 

there are not enough samples to determine if there is a relationship.  It is 

important to recognize that the average percent of POC created in both the 

Harp and Dickie inflows was used to estimate the contributions of 

photodegraded allochthonous end-member since the relationship using only 

the Dickie Lake samples was weak.  This could mean that POC production 

was underestimated in Harp Lake and over-estimated in Dickie Lake.  

Further incubations may be necessary to understand the relationship 

between DOC loss and POC gain from DOM photodegradation in the two 

lakes.  

6.4.8 Sedimentation of Allochthonous and Autochthonous carbon 

Examining short cores from the 2 lakes shows that the δ13C increased from 

the late 1800s until ~1960, where it peaked (Harp: 1957, Dickie: 1955; 

Figure 6.9).  In the late 1800s to the early 1900s (~1870 to 1910) intensive 

logging occurred in central Ontario followed by road construction in the 
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1930s and forest regeneration (Paterson, unpublished).  In the mid 1950s, 

where the δ13C of the lake sediments peak, the 2 end mixing model suggests 

that 97% and 94% of the carbon in the sediment record is allochthonous (for 

Harp and Dickie Lakes respectively).  During this time, there was increased 

logging in the area and the peak δ13C could coincide with cottage 

development surrounding the lakes.  In the mid to late 1950s, a pathway 

was bulldozed through thick brush and rough terrain, and large boulders 

were blasted to create the first road to Harp Lake.  After that, parts of the 

surrounding catchment were logged and development began around the 

lake (Harp Lake Association, 2009).  The development around Harp Lake 

coincides with the peak in the proportion of allochthonous carbon within 

the sediment cores, suggesting that allochthonous transport to the lake was 

increased during this time.  However, without knowing how the carbon 

load transported from the watershed changed, this is speculation.  

Using the sedimentation rates derived from 210Pb dating for the two 

cores (Paterson, unpublished) and the percent carbon results from the 

mixing model, the amount of allochthonous and autochthonous carbon 

sedimenting within the lakes temporally was calculated (Figure 6.10).  In 

Harp Lake, there was little variability in carbon accumulation from 

autochthonous sources until the 1960s when autochthonous contributions 

appear to rise, which coincides with the onset of development surrounding 

the lake and the peak in the δ13C signature.  However, Figure 6.10 also 

indicates that the allochthonous carbon contributions have generally 

increased until 1987, after which, allochthonous carbon contributions are on 

the decline (coincident with increasing autochthonous contributions).  The 

Harp Lake sediment carbon accumulation rate did not peak at the same 

time as the peak in δ13C or the peak in the ratio of allochthonous to 

autochthonous carbon in Figure 6.9.  In Dickie Lake, the autochthonous 

contribution appears to generally increase until approximately 1980, after 

which it steadily increases, with a larger increase from 1996 to 1998 (Figure 
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6.10).  The allochthonous contribution within Dickie Lake has generally 

increased from the base of the core peaking in 1956 with the δ13C of the lake 

sediments, after which there was a general decrease in allochthonous 

sedimentation rate.  However, it is important to note that at the top of each 

core the allochthonous contributions are still dominant within the lake 

sediment. 
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Figure 6.10:  Total sediment carbon accumulation rates for a) Harp Lake, and b) Dickie 
Lake, and the allochthonous and autochthonous sediment carbon accumulation rates for c) 
Harp Lake, and d) Dickie Lake.  Accumulation rates are calculated using allochthonous 
and autochthonous proportions derived from the maximum allochthonous 13C end-member 
and the minimum autochthonous 13C end-member scenario and the sedimentation rates 
from the cores. 

Overall, these results suggest that although allochthonous 

contributions increased within the lakes from the early 1800s to the 1960s, 

productivity generally did not, contradicting the conventional interpretation 

of the δ13C sediment record which indicates that productivity is decreasing 

during this time frame.  After 1960, productivity began to increase 



 210

(corroborated by the δ13C sediment record) and allochthonous contributions 

to lake sediments became more variable.  The switch to increased 

productivity and decreased allochthonous inputs to the lake sediments 

appear to coincide with increased development in the region, and the shift 

from cottages to permanent homes possibly reflecting increased transport of 

phosphorus to the lakes.  Additionally, from the late 1980s until 2004 mean 

average annual temperatures were generally greater than the climatic 

normals between 1960 and 1990, and coincide with decreases in the 

allochthonous inputs to the lake sediments.  Total precipitation was also 

greater than the climatic normals from the mid 1980s to the mid 1990s.  The 

surface of the cores suggests that productivity is rising and allochthonous 

contributions to lake sediments is decreasing, however, allochthonous 

contributions remain the main component of lake sediments. 

The results from the δ13C-POC mixing model of allochthonous and 

autochthonous carbon and the carbon sedimentation rates from the short 

cores imply that the sediment record is primarily composed of 

allochthonous material and therefore records not only a lake productivity 

signal, but also changes to the allochthonous inputs to the lake.  

Furthermore, the contributions of allochthonous and autochthonous carbon 

to the sediment record have changed historically.  Shifts in the 

allochthonous contributions to the mass balances of these lakes will change 

the δ13C of the lake sediments (Chapter 5) corroborating that lake sediments 

provide information about carbon mass balances.  In addition, changes in 

the δ13C record of lake sediments can potentially record both productivity 

and mass balance information; however, this study shows that it is also 

possible that productivity changes occurring within the lakes cannot always 

be inferred by changes in the δ13C of lake sediments. 



 211

6.5 Summary 

Inflow and surface samples from two oligotrophic Shield lakes reveal that 

significant changes in δ13C-POC and δ13C-DIC are observed monthly.  

These values were used in conjunction with estimated POC balances to 

calculate δ13C values for the allochthonous and autochthonous end 

members.  Estimated POC, litter, and incubations tracking the 

phototransformation of DOC to POC were used to calculate the δ13C 

allochthonous end member signal.  Using the novel technique of Mohamed 

and Taylor (2009), average annual photosynthetic enrichments for Harp and 

Dickie Lakes were calculated (–19.9‰ and –16.3‰ respectively) and 

applied to surface water δ13C-CO2 and seasonal productivity curves, to 

calculate the POC created by phytoplankton.  The POC created from 

allochthonous and autochthonous sources have distinct δ13C values that lie 

on opposite sides of sediment δ13C values indicating that lake sediments are 

a combination of allochthonous and autochthonous carbon.  

Using these distinct average annual δ13C end member values, and 

assuming that they do not change over the time represented by the cores, 

the proportion of allochthonous and autochthonous carbon within the lake 

sediments was assessed.  Even if the δ13C end member values change, the 

variation would be small, therefore not affecting the main conclusions that 

lake sediments are affected by, and primarily composed of, allochthonous 

carbon.  The allochthonous contributions to the sediments have varied 

between 66% and 97% within the cores from Harp and Dickie Lakes.  

Contrary to interpretations derived from δ13C sediment records alone, 

sedimentation rates of allochthonous and autochthonous carbon suggest 

that the autochthonous contribution of POC to lake sediments was 

relatively constant in Harp Lake and increased slightly in Dickie Lake until 

the 1960s, after which productivity increased within both the lakes.  This 

suggests that changes to the δ13C of the lake sediments of Harp and Dickie 
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Lakes were controlled by changes in the allochthonous carbon contribution 

to lake sediments until the late 1950s.  Allochthonous contributions 

generally increased throughout the history of the cores, however, they have 

been on the decline and have become more variable since the 1980s.  

Therefore, the sediment δ13C value has the potential to record both changes 

in productivity and changes in the allochthonous carbon load entering and 

sedimenting in high DOC retention lakes.  

This study has important implications for paleoecology studies.  Not 

only does it reveal that δ13C sediment records can record changes in 

productivity and in carbon mass balances, but it also shows that changes in 

the δ13C sediment records may not always reflect changes in productivity.  

This research also demonstrates that stream POC contributes to lake 

sediments.  It was estimated that 9% to 24% of the allochthonous POC 

could be transported to the lakes as POC in the inflows, therefore 6% to 

23% of the lake sediments could be derived from the streams.  Since the 

δ13C and C/N ratios of stream POC suggest algal contributions, 

productivity measured or inferred from lake sediments could include stream 

and wetland productivity.  Thus, the “aquatic signal” recorded in lake 

sediments includes aquatic processes (and aquatic cellulose) from adjoining 

wetlands and streams. 
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Chapter 7:  
 
Conclusions and Recommendations 

7.1 Conclusions 

The overall objectives of this thesis are to use stable carbon and oxygen 

isotopes as tools to examine the fate of allochthonous DOM in northern 

temperate lakes, and to examine the importance of DOC in lake carbon 

mass balances and in the δ13C of lake sediments.  Many northern temperate 

lakes retain a large proportion of allochthonous DOC, and 

photodegradation alone can account for the DOC loss (mineralization and 

sedimentation) that is observed within these lakes (Molot and Dillon, 

1997b).  To understand the impacts of allochthonous DOC on the sediment 

record, it is necessary to understand how abiotic processes (such as the 

photodegradation of DOM) affect stable oxygen and carbon isotopes 

relative to biotic processes (i.e. respiration) and to use this information to 

calculate isotope values for the carbon end-members of which the sediment 

is comprised. 

Photodegradation of DOM uses O2 to convert recalcitrant DOM to 

more labile carboxylic acids, other smaller organic compounds, and 

dissolved inorganic carbon (DIC); therefore DOM photodegradation, O2, 

and carbon dynamics in aquatic systems are linked.  Previously published 

studies have examined the effects of photodegradation on O2 and carbon 

(e.g. DIC, CO2, DOC) concentrations, however, studies of the changes in 

the δ18O-O2, δ13C-DIC, δ13C-DOC, and δ13C-POC during photolytic 
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processes are few or do not exist.  In this thesis, incubations on northern 

temperate stream waters reveal that DOC loss was concomitant with O2 

loss, DIC gain, and POC gain. O2 consumption and DIC production rates 

normalized for the DOC lost differed between streams indicating that there 

were inherent differences in DOM photolability.  O2 consumption rates and 

DIC production rates were an order of magnitude greater in incubations 

under natural sunlight in comparison to dark conditions.  Additionally, the 

rates among different treatments (filtered, inoculated, and sterile) were 

similar, indicating that photolysis was greater than respiration and other 

abiotic processes in the light-exposed treatments.  Although photolytic 

effects cannot be directly quantified, the differences in consumption and 

production rates in the dark incubations (in which photolysis does not occur 

and abiotic and/or respiration could occur) were minimal suggesting that 

the effects observed in the light incubations were primarily the cause of 

DOM photodegradation.  Photolysis could therefore be an important, 

though neglected, component in oxygen and carbon mass balances used to 

determine P:R ratios and ecosystem metabolism in aquatic systems.  In O2 

models, the loss of O2 during DOM photodegradation could be 

misinterpreted to be the result of respiration suggesting that respiration 

could be overestimated in aquatic systems.  Similarly, DIC gain in carbon 

studies could be due to the photodegradation of DOM, not respiration, 

again indicating that respiration could be overestimated.  If this is the case, 

then photosynthesis could be more important compared to respiration than 

previously believed. 

DOM photodegradation affects the δ18O-O2, δ13C-DIC, and 

δ13C-DOC.  Few other DOM photodegradation studies have examined the 

δ13C-DIC and δ13C-DOC and no other studies have looked at changes to the 

δ18O-O2, or the production and carbon isotope ratios of the POC produced.  

The incubations in the present work indicate that during O2 consumption, 

photolysis and other abiotic reactions fractionated oxygen isotopes, 



 215

preferentially consuming the lighter 16O16O isotopomer, similar to 

respiration.  Calculated δ18O-O2 photolysis fractionation factors (α) were the 

same for all treatments within a stream, and were confined to a narrow 

range for the three different streams (α range = 0.988 – 0.995) under both 

light and dark regimes.  Furthermore, fractionation factors were not 

dependent on O2 consumption rates, which differed among the wetland and 

upland streams.  This suggests that the range of fractionation factors 

calculated in this study could be applied to other 18O studies. 

The α values calculated from dark incubations (for respiration and 

abiotic processes occurring within the dark) were larger than αR 

(fractionation due to respiration) values reported for large rivers and marine 

systems.  As O2 and δ18O-O2 applications in aquatic system studies currently 

do not separately include DOM photodegradation and other abiotic 

processes, respiration rates in shallow, high DOC aquatic systems, could be 

overestimated since they could incorporate all three processes.  This could 

affect P:R ratios directly constrained using combined O2 and δ18O models 

(e.g. Quay et al., 1995) and could have effects on ecosystem implications.  

The δ13C-DIC value decreased with DIC production in all 

incubations, contrary to two out of three samples from the one other study 

of this type (all three samples inoculated; Opsahl and Zepp, 2001).  The 

DIC produced is created from the breakdown of DOC, which has a lower 

initial δ13C-DOC signature than the initial δ13C-DIC value thereby 

decreasing the δ13C-DIC as more DIC is produced.  The calculated 

δ13C-DIC gained was within 1‰ between the incubations of the same 

stream water (H5 and D10) performed on different dates (mid June and 

early July) suggesting that the carbon source, not total irradiation, was the 

cause of the changing δ13C-DIC value.  Presumably, the δ13C-DIC value 

would eventually match the δ13C-DOC value if enough DIC was produced 
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and the δ13C-DOC source remained constant.  This suggests that the 

δ13C-DIC gained was dependent on the δ13C and the quality of the source 

DOC and must be calculated independently for different systems.  

However, similar to the δ18O-O2, the δ13C-DIC values are affected by DOM 

photodegradation, therefore models that include DIC production could be 

incorporating all DIC producing processes including photolysis.  Cole et al. 

(2006) created a dual isotope flow (DIF) model that simulated the flow of 

carbon (12C and 13C) and 13C in a lake food web.  Although they considered 

that DOC was lost by photooxidation and particulate carbon formation in 

the model, DIC was not gained by photooxidation but is presumably 

included in their total respiration component, possibly overestimating 

respiration. Additionally, similar to 18O/16O studies, carbon isotope studies 

in aquatic systems do not consider DOM photodegradation and other 

abiotic processes as processes affecting the δ13C-DIC values suggesting that 
13C/12C studies could be missing an important component and possibly 

confusing the processes (or balance of processes) affecting the δ13C-DIC 

(and δ13C-CO2) within surface waters of high DOC systems.   

Another important aspect of this research is that with DOM 

photodegradation, the residual DOC became isotopically heavier than the 

initial δ13C-DOC, illustrating that the isotope value of the allochthonous 

DOC entering lakes can be altered from its original δ13C value.  The degree 

of change in the incubations (up to 8‰) appears to be related to the amount 

of degradation that has occurred, and changes could be due to either 

preferentially breaking off the lighter 12C molecules, or due to functional 

groups that are being cleaved having more depleted isotope ratios than the 

bulk DOM.  DOC enrichment factors (ε) during DOM photodegradation 

range between 1‰ and 3.5‰ over two sets of incubations with an average ε 

value of approximately 2‰.  This has implications for 13C/12C studies that 

are using δ13C-DOC to isolate DOC sources or using δ13C-DOC as a 
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terrestrial end member value in aquatic systems since the alteration of 

δ13C-DOC during photodegradation can confuse the origin of DOC.  It is 

possible to use the calculated average enrichment factor from the current 

work in models such as the DIF model presented by Cole et al. (2006) 

where they assume that the δ13C-DOC does not change due to 

photodegradation.  Additionally, without incorporating the δ13C-DOC 

changes from DOM photodegradation, 13C/12C studies that use δ13C-DOC 

as a terrestrial end member in food web studies or in studies that examine 

the ratio of allochthonous to autochthonous carbon contributions could 

underestimate the importance of allochthonous carbon.  For example, Pace 

et al. (2004) use a terrestrial isotope value of –28‰ in their two end mixing 

model to determine the origin of POC in lakes, potentially underestimating 

the importance of allochthonous carbon if DOM photodegradation occurs 

within their system.  Since carbon isotopic studies in aquatic systems 

currently do not consider DOM photodegradation as a process that affects 

δ13C-DOC values, sources of DOC could be misinterpreted and 13C/12C 

studies in shallow, high DOC systems could be missing an important 

component. 

The δ13C-DOC lost during photodegradation did not match the 

δ13C-DIC produced, suggesting that there was an alternative loss pathway 

not accounted for.  In the first set of incubations, particulate matter was also 

created during DOM photodegradation, but was not quantified.  The 

second set of incubations was designed to examine the importance of POC 

formation during the degradation of DOM.  The amount of POC created 

accounted for 20% to 91% of the DOC lost, indicating that a significant 

portion of DOC can transform to POC.  In most cases, the δ13C-POC was 

within 1‰ of the initial DOC in this study, suggesting that if this POC were 

to settle to the lake sediments, it would have a δ13C value close to the source 

DOC.  If the difference between the δ13C-POC created and its source 
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δ13C-DOC was larger in other systems, then studies that use the δ13C of 

settling POC to examine the importance of allochthonous carbon to lake 

sediments could underestimate the importance of allochthonous carbon 

depending on the amount of photoflocculation occurring. 

After exposure to sunlight, the C/N ratios of the photolyzed DOC 

decreased.  This could mean that DOC sources could be misinterpreted as a 

shift in source from terrestrial inputs to increased algal or microbial inputs.  

C/N ratios of the POC created during photolysis were between the initial 

DOC C/N value and final DOC C/N ratio after photodegradation, 

indicating that the C/N ratios of the POC created is not similar to the DOC 

source.  Furthermore, the C/N ratios of POC suggest a combination of 

terrestrial and algal inputs although no algae or microbes are present.  

Therefore, the origin of POC created during the photodegradation of DOC 

in surface waters could be misinterpreted as a combination of POC from 

productivity and terrestrial sources and the source of POC in sediments 

cannot be determined from C/N ratios. 

Absorbances decreased after the stream waters were exposed to 

natural sunlight, indicating the aromaticity, colour, and UV absorption of 

the DOC decreased which has implications for biota in aquatic systems 

(Schindler and Curtis, 1997).  McKnight et al. (1997) note that the scarcity 

of aromatic fulvic acid derivatives causes increased UV penetration in high 

latitudes.  Decreases in colour and UV absorption resulting from 

photodegradation could increase UV exposure and decrease UV protection 

to freshwater communities, and Curtis and Schindler (1997) suggest that 

lakes with small catchments in boreal regions could be at risk since there is a 

rapid selective loss of coloured DOC.  The optical index of molecular 

weight also increased in most samples indicating that, generally, the 

molecular size of the DOC was decreasing.   
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Understanding that DOM photodegradation can change δ13C values 

and C/N ratios allows for a better understanding of the processes that could 

affect aquatic systems with high DOC.  Dillon and Molot (1997a) indicate 

that according to mass balances, approximately equal amounts of carbon 

are evaded to the atmosphere and lost to sedimentation within a suite of 

temperate lakes from southern Ontario.  Furthermore, Molot and Dillon 

(1997b) found that photodecay constants from incubations on stream inflow 

water, once extrapolated to lakes, are similar to those from DOC loss in the 

mass balances of Dillon and Molot (1997a).  The incubations performed in 

the current study corroborate that a significant portion of the DOC lost 

could be transformed, however, contrary to Molot and Dillon (1997b) who 

believe that sedimentation is the result of CO2 fixation, the loss pathway in 

the current study includes the abiotic formation of particulate carbon, which 

can settle out and thus affect the mass balance of lakes.   

Two independent methods were used to determine the importance of 

DOC on lake sediments.  One of the methods used stable carbon isotope 

analyses on stream and lake POC, litter, POC created from 

photodegradation, DIC, and zooplankton and suggested that 

allochthonously and autochthonously derived POC are isotopically distinct.  

Using a 2 end member mixing model, the allochthonous to autochthonous 

ratio in the δ13C of the lake sediments was calculated, indicating that the 

isotopic signature of sediment organic matter can be affected by the ratio of 

autochthonous and allochthonous contributions. This suggests that climate 

change and/or anthropogenic changes to the landscape, and the 

concomitant changes in DOC inputs to lakes can be recorded in the 

sediment record. The δ13C of lake sediments can thus be affected by the 

amount of particulate carbon created through the photodegradation of 

DOC, POC entering lakes, and litter fall onto lakes, suggesting that 

sediment records are not just a productivity signal, but a mass balance signal 

in high DOC retention lakes.  Furthermore, once the allochthonous to 
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autochthonous ratio is applied to sedimentation rates from the cores, it 

becomes evident that the autochthonous contribution to the lakes does not 

always change.  Therefore, δ13C of lake sediments may not always be 

recording productivity within lakes, which goes against classic δ13C lake 

sediment interpretations.  Consequently, productivity changes inferred from 

δ13C lake sediment records could be incorrect, and may be overestimated in 

aquatic systems.  

Furthermore, it was estimated that up to 25% of the lake sediments 

could be derived from POC originating from lake inflows.  The δ13C and 

C/N ratios of stream POC suggest that stream POC is a combination of 

algal contributions and terrestrial inputs and that in stream (or wetland) 

productivity can be incorporated into the lake sediments.  Therefore, 

productivity measured or inferred from lake sediments could include stream 

and wetland productivity suggesting that, the “aquatic signal” recorded in 

lake sediments includes aquatic processes (and aquatic cellulose) from 

adjoining wetlands and streams. 

A second independent method used annual carbon mass and stable 

isotope balances for Harp and Dickie Lakes to determine the impacts of 

allochthonous carbon on the δ13C of lake sediments and corroborated that 

long-term DOC changes affect lake sediment records.  The small range in 

the mass-weighted average annual δ13C values suggest that for most of the 

parameters the values are well constrained.  However, calculated δ13C 

values of the lake sediment differ from the measured δ13C sediment values, 

suggesting that there was either a problem with the carbon mass balance or 

the isotope balance of the lakes.  In an attempt to isolate why the calculated 

δ13C of the lake sediments did not match the measured δ13C value, a 

dynamic mass and isotope budget model was created to examine the 

sensitivity of the δ13C values and masses of carbon of the different inputs to 

the lakes were to the sediment signature. 
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The model revealed that changing the DOC mass entering lakes by 

small amounts (i.e. 5%) does not appear to significantly alter the δ13C of the 

lake sediment.  However, the δ13C of the lake sediments can change up to 

2.5‰ when the long-term annual variability of DOC entering the lakes (i.e. 

40% change) is applied.  According to the model, the δ13C of the lake 

sediments is also sensitive to the areal water discharge rate (qs), which 

controls the mass of DOC exiting the lakes.  Harp Lake is also sensitive to 

pH and the CO2 gas exchange coefficient.  Although the carbon mass and 

isotope balances are sensitive to different parameters, the δ13C of lake 

sediments in both lakes are affected by changes to the long-term DOC load 

entering the lakes. 

Overall, this thesis demonstrates that the photodegradation of DOM 

can change stable oxygen (δ18O-O2) and carbon (δ13C-DIC, δ13C-DOC) 

isotopes and affect the interpretation of isotope studies in aquatic systems 

with high DOC (or high DOC loss due to photodegradation).  Particulate 

carbon is created during the photolytic breakdown of DOC, and could 

account for a large portion of the allochthonous DOC loss in lakes.  Since 

allochthonous and autochthonous POC are isotopically distinct, estimates 

of POC balances in Harp and Dickie Lakes suggest that allochthonous POC 

(from litter, as POC entering streams, and POC created by DOM 

photodegradation) can account for ~65% to 100% of organic carbon within 

lake sediments.  Furthermore, a dynamic carbon mass and isotope budget 

model corroborates that long-term changes to the DOC entering lakes can 

affect the δ13C of lake sediments illustrating, by a second independent 

method, the importance of allochthonous carbon to lake sediments. 

7.2 Recommendations 

Broadly, this thesis can be split into 2 components: the effects of DOM 

photodegradation on the concentrations and isotopes of O2, DIC, DOC, 

and POC, and the use of carbon mass balances to examine the importance 
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of allochthonous carbon to lake sediments.  Suggestions to improve future 

studies of this nature will be suggested in the following sections. 

7.2.1 i)  DOM photodegradation experiments 

In this thesis, O2 consumption rates, DIC production rates, O2 fractionation 

factors, and the δ13C-DIC produced for the combined effects of respiration, 

photolysis, and other abiotic reactions were calculated.  Although the 

experiments indicate that DOM photodegradation is the main process 

affecting these concentrations and isotope ratios in the incubations, future 

work could differentiate between the effects of respiration, photolysis, and 

other abiotic reactions.  Separating abiotic and respiratory effects from 

photolysis in the light treatments would require sampling the dark 

incubation bags concurrent with the light incubations to ensure that 

incubation conditions (i.e. temperature, hours, etc) are consistent.  

Additionally, other aquatic environments could be examined to determine 

whether the isotope fractionations and ratios presented in this thesis can be 

applied to other systems.  

O2 consumption and DIC production rates differed in different 

streams even when normalized for the DOC concentration lost, indicating 

that there were inherent differences in DOM photolability.  Annual and/or 

seasonal changes in DOM lability suggest that O2 consumption and DIC 

production rates may be different with changes in DOM quality, and that 

these experiments should be performed on DOM collected from different 

seasons.  Schumacher et al. (2006) have used CP-MAS 13C-NMR (cross 

polarization magic-angle spinning 13C nuclear magnetic resonance) 

spectroscopy to examine seasonal differences in the chemical composition 

of DOM from boreal catchments.  Completing 13C-NMR analysis on 

incubation samples could provide a better understanding of the changes to 

DOM during photodegradation possibly providing insight into the structural 

changes of DOM, perhaps identifying the functional groups cleaved.  
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However, 13C-NMR spectroscopy of humic substances assumes the equal 

distribution of isotopically enriched carbon among different carbon moieties 

(McKnight et al., 2003), which might not be the case. 

The stream water used in the incubations was collected in spring, 

however, it was not incubated until mid summer when the length of 

daylight was at a maximum.  Although not quantified for the duration of 

the incubations, it is also possible that the O2 loss and DIC production rates 

could be affected by the amount and/or intensity of sunlight the stream 

water was exposed to.  Incubating sterile treatments of Harp Inflow 5 and 

Dickie Inflow 10 water during incubations conducted in the middle of June 

and the beginning of July show that the O2 consumed and DIC produced 

(both normalized for the amount of DOC lost) were lower in the June 

incubations than in the July incubations for Dickie Inflow 10 samples, but 

similar for the Harp Inflow 5 samples.  This suggests that there might be 

differences in DOM photolability and that different intensities or amounts 

of total irradiation might affect the amount and rate of photodegradation.  

Additionally, von Wachenfeldt et al. (2008) show that light stimulated 

particulate matter formation and that the POC produced decreased with 

decreases in photosynthetically active radiation (PAR), indicating that 

amount of photoflocculation in the current incubations could change 

seasonally with changes to PAR.  Performing photolytic experiments using 

DOC samples collected over the course of a year could also show the 

importance of POC formation to lake mass balances. 

Particulate matter formation can also be related to metal 

concentrations (e.g. Mn, Fe) within natural waters and these were not 

quantified in these experiments.  As metals are bound to DOM, transport of 

metals from the catchment could also change temporally with hydrological 

changes flushing DOC from the catchments to the lakes.  It is possible that 

the amount of particulate matter created could be related to the metals in 
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the stream water and, therefore, the amount of particulate matter created 

could change temporally.  It could be useful in future incubations to track 

the concentrations of metals or manipulate the metal concentrations for a 

better understanding of what drives the amount of particulate matter created 

by photodegradation.  Additionally, the δ13C-POC created during DOM 

photodegradation could be tracked during these incubations to determine 

whether POC production (and enrichment in δ13C-POC from the source 

DOC) is constant with different amounts of DOC loss. 

7.2.2 ii) The importance of allochthonous carbon to lake sediments 

In this thesis, the importance of allochthonous carbon to lake sediments was 

investigated using two independent methods: estimated POC mass 

balances, and combined DOC and DIC mass balances.   

The first method used estimated POC mass balances to calculate average 

temporal allochthonous and autochthonous δ13C end member values.  The 

allochthonous value was composed of litter, POC entering through streams 

and POC created through photodegradation.  POC concentrations and litter 

fall into the lakes were only estimated in this study, however, their 

calculated δ13C values were similar.  If POC concentrations and litter fall 

were quantified, it could provide a better understanding of their 

contributions to the lake sediments.  Additionally, incubations using stream 

samples collected from different times of the year could provide additional 

information on both the amount and the δ13C of POC formed during DOM 

photodegradation.  Since a two end-member mixing model was used to 

examine the proportion of allochthonous to autochthonous carbon in lake 

sediments, the ratio is affected by the δ13C autochthonous end member 

signal.  Since productivity curves were also assumed in this study, having a 

better understanding of production within Harp and Dickie Lakes could 

provide a more accurate autochthonous δ13C end-member value.  
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The second method used to examine the importance of 

allochthonous carbon to lake sediments involved creating a combined mass 

and isotope budget model.  The average carbon masses within the model for 

Harp and Dickie Lakes did not match the mass balances (averaged over 8 

years) provided by Dillon and Molot (1997a) even though their input 

variables (i.e. qs, v, pH etc) were used to calculate the masses.  To determine 

whether this was due to the technique used to estimate the balances or the 

model, it might be useful to input variables for one year (instead of an 

average of 8 years), to assess whether the masses within the model balance.  

However, this would involve further assumptions (e.g. the partition between 

sedimentation and gas exchange remains constant) that would require 

further consideration.   

The model indicated that the amount of carbon exiting the lakes was 

highly dependent on the gas exchange coefficient used in the model.  This 

variable was estimated based on temporal wind speed data; however, 

improvements could be made through tracer experiments to determine the 

annual variability of this parameter or by installing flux towers around the 

lakes.  Additionally, a closer look at the input parameters to the model 

suggest that the δ13C-CO2 evaded to the atmosphere is a key parameter in 

completing the isotope balances, and calculating the δ13C of the sediments.  

Flux calculations suggest that detailed lake surface measurements must be 

collected at the onset of and times surrounding the fall turnover for accurate 

calculation of δ13C-CO2 lost to gas exchange.  This key point was missed in 

the sampling efforts and could account for the mismatch between the 

calculated and the measured δ13C sediment values.  Future studies should 

recognize the importance of CO2 evasion in the fall, and account for its 

impact in sampling strategies. 
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Appendix A 

A forester diagram of the dynamic mass and isotope budget model used to 
calculate the δ13C of the lake sediments in Chapter 5 is presented on the 
following page.  
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