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Abstract

Object tracking is an important problem with wide ranging applications. The
purpose is to detect object contours and track their motion in a video. Issues of
concern are to be able to map objects correctly between two frames, and to be able
to track through occlusion. This thesis discusses a novel framework for the purpose
of object tracking which is inspired from image registration and segmentation models.
Occlusion of objects is also detected and handled in this framework in an appropriate
manner.

The main idea of our tracking framework is to reconstruct the sequence of images
in the video. The process involves deforming all the objects in a given image frame,
called the initial frame. Regularization terms are used to govern the deformation of
the shape of the objects. We use elastic and viscous fluid model as the regularizer.
The reconstructed frame is formed by combining the deformed objects with respect to
the depth ordering. The correct reconstruction is selected by parameters that mini-
mize the difference between the reconstruction and the consecutive frame, called the
target frame. These parameters provide the required tracking information, such as
the contour of the objects in the target frame including the occluded regions. The
regularization term restricts the deformation of the object shape in the occluded re-
gion and thus gives an estimate of the object shape in this region. The other idea is
to use a segmentation model as a measure in place of the frame difference measure.
This is separate from image segmentation procedure, since we use the segmentation
model in a tracking framework to capture object deformation. Numerical examples are
presented to demonstrate tracking in simple and complex scenes, alongwith occlusion
handling capability of our model. Segmentation measure is shown to be more robust
with regard to accumulation of tracking error.
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Chapter 1

Introduction

In the field of computer vision there are various aspects of interest such as the abilitiy to
detect and represent objects present in an image, to observe motion of objects in video
frames and to derive a cognitive interpretation of the motion for understanding object’s
behavior. Tracking of objects is an important open problem in computer vision. It has
widespread applications, for instance, in robotic navigation to traverse a path while
avoiding obstacles, security surveillance for monitoring individuals for suspect behavior
[32], monitoring vehicular movement at highways and traffic intersections, astronomy
for observing the motion of stellar bodies relative to earth, medical imaging for tracking
the motion of organs [25], such as the heart [56], brain, and blood vessels, and, life
sciences for tracking moving cells in a culture. One particular example of interest is
tracking of cells in brightfield microscopy [46]. This problem is difficult because the
image constrast is low, and the cells appear similar to each other and the background.
Also, certain types of cells, such as muscle cells, change shape rapidly and can occlude
each other in complex ways.

The main objective for tracking is to identify objects in a sequence of frames of a
video and determine where each object moves in the scene. Several approaches with
which this can be done are tracking certain feature points of the object [41], tracking
a kernel over the object region [7], or contour tracking of the objects [3]. There are
several ways of detecting objects in scene, depending on the type of tracking method
used. For point tracking, feature points of the object have to be extracted. SIFT,
KLT, and Harris corner detector are examples of methods commonly used for feature
point extraction. Region and contour tracking require the region of interest is first
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detected using segmentation methods.

Tracking of objects is challenging for several reasons. One may need to deal with
complexities such as noise in images, varying illumination with time, loss of information
in two dimensional (2D) images of three dimensional (3D) scenes, and complex object
motion. Multiple object tracking poses its own set of problems. For instance, if the
objects resemble each other in appearance, then although objects may be detected
it becomes difficult to distinguish between themselves. It is necessary to tell objects
apart from each other so that correspondence between detected objects in two different
frames may be established, and, consequently object motion be obtained by comparing
past positions with current ones. Another problem is dealing with occlusion which
occurs when part or all of the object is hidden from the vantage of observation. For
example, objects moving in a video may overlap and hide other objects. As a result,
information about the occluded part is lost. In practice, however, it is often desirable
to estimate the object shape in the occluded region. Consider a case where an object
moves underneath, say, from one side of a square object. Without the occluded shape
information, when the object reappears from the other side of the square, it would be
difficult to tell whether it is the same object or a new one. Shape information helps to
match occluded part of the object with the same object in the next frame. The method
for recovering the lost information is to impose some constraints on the behavior of the
objects. Objects are normally assumed to be undergoing “predictable” motion in the
image sequence such that there can be no significant changes in the shape, features,
appearance, velocity or acceleration of the object from frame to frame.

Our approach to tracking is to compute the motion of objects. Our model is based
on image registration model which is used to compute the displacement. More pre-
cisely, given object and background information in a frame, we reconstruct the next
frame using the idea of registration. The displacement field over the whole object is
then computed and it is used to establish correspondence between objects in consec-
utive frames. It can also be used to recover the shape of an object in the occluded
regions as well. The registration framework is used for computing the displacement.
Most approaches resort to finding the segmentation contour for tracking the object
whereas we find the displacement field of the object contour. One benefit of this ap-
proach is that it will give the contour of the occluded region implicitly without having
to detect occlusion explicitly. Another benefit is that our model is computationally
less expensive than the typical segmentation based approaches, since the number of
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model unknowns is often less in our case. To measure the quality of reconstruction, we
use L2 norm of the difference of reconstructed image and the actual image in the video.
Our model uses level sets for representing objects. This allows us to seamlessly inte-
grate any existing segmentation model based on the level set framework as a similarity
measure in our tracker. We demonstrate this idea with a segmentation measure and
compare its robustness with image difference measure. When segmentation measure
is used in a registration framework, it is distinct from segmentation algorithms. In
the former, the unknown is object motion, whereas in the latter, the unknown is the
segmentation contour.

The rest of this thesis is organized as follows. We describe the various approaches
for object tracking in Chapter 2. The focus in this chapter is on discussing existing
contour tracking models and their relation to our model. In Chapter 3, we provide
a brief review of the image registration and segmentation techniques. A particular
model for each one is described, which will later be used in our tracking model. In
Chapter 4, we present our tracking model which is based on the rigid and nonrigid
registration. We also discuss how we combine the rigid and nonrigid registration
based tracking to handle occlusions. The segmentation model is introduced into the
registration based tracking model as a similarity measure. The segmentation based
similarity is then compared with the image difference based similarity. Later, we
derive the Euler-Lagrange equations for minimizing the tracking model. We also make
certain modifications to the model so that it is numerically accurate to solve. In
Chapter 5, we discuss the implementation details for solving the rigid and nonrigid
steps. Levenberg-Marquardt method is used for the computing the rigid step and
finite difference method for the nonrigid step. Computational performance issues are
also encountered and remedies are devised to reduce the computational complexity.
Finally, tracking examples are given in Chapter 6 to demonstrate our method.
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Chapter 2

Background Review

Computer vision tracking has been studied extensively in the literature. The are two
main steps in object tracking, one is to detect moving objects in an image, and other
is to track objects in sequence of images. A survey by Yilmaz and Shah [54] gives a
thorough review and classification of techniques into the following major categories -
point tracking, kernel tracking and silhoutte tracking. These categories are based on
the representation of objects used for tracking. In this chapter, we will discuss some
of the methods that fall into these categories. The review of layers based methods,
which fall into both kernel and silhoutte tracking, is conducted at the end.

2.1 Point Tracking

In point tracking methods, the object is represented by a single point or set of points.
In the case of a single point, it is usually the centroid of the object. Single points are
suitable for representing small objects in an image such as birds in a flock or cells in
microscopic images. If the object is relatively large then multiple points on the object
are used for representation. These points represent some local features in a region
of the object such as a corner, intensity gradients or a particular color and texture.
Examples of point detectors are KLT [44] and SIFT [27] transforms. The goal in point
tracking is to detect points of interest in video frames and to establish correspondence
between points in the frames. Mainly, there are two classes of correspondence methods,
deterministic and statistical.
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In deterministic methods, each correspondence between two points has an associ-
ated cost. By minimizing the total cost for all points correspondence is established.
The costs are based on constraints imposed on the motion from one frame to the
other. It is assumed that object does not move rapidly from frame to frame so that
the displacement is bounded within a window around the object. That the object
moves smoothly without large changes in speed and direction, is also a frequently used
assumption. There may also be constraints on the shape of the object, i.e., it moves
rigidly so that the relative position of adjacent points remains the same. One way is
to use nearest neighbor search for correspondence. The approach by Veenman et al.
[47] imposes motion constraint that close points have similar motion.

In statistical methods, the position, velocity, and acceleration of the object is mod-
eled in the state space. Uncertainities and noise in the state space model, such as
abrupt change in the velocity of objects, are also taken into account. The state of the
system at a given time is computed from the state at a previous time instants. For
single objects Kalman filters [10] are used for predicting the state if the distribution
of the state random variables is Gaussian. Particle filters [17] are used when the type
of distribution is unknown. For multiple objects, Joint Probability Data Association
Filtering (JPDAF) [36] and Multiple Hypothesis Tracking (MHT) [38] are used. MHT
exhaustively generates all possible associations over several frames and then selects
one which has the highest likelihood.

Point tracking is generally not suitable for highly deformable or nonrigid object
motion, since in general, the shape of an object cannot be related to the position of its
features points. For the same reason, it is not suited for recovering occluded regions.
Also, points may not be recovered correctly once they become occluded if the motion
constraint assumptions do not hold. When multiple large objects are being tracked,
with several points on each object, there is the additional complexity of associating
the points correctly to their respective objects which are in vicinity of each other.

2.2 Kernel Tracking

In this category of tracking methods, the object is represented by a kernel which is a
primitive geometric shape, such as rectangle or ellipse, superimposed upon the object.
The centroid of the kernel is considered to be the location of the object. The object’s
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motion is modeled by rigid, affine, or projective transformation which is applied to the
kernel for the updated location. The position of the kernel is determined by matching
the appearance characterisitics of the object within an image region.

Template matching may be used to locate the object in the target frame. The
position of the template is computed by minimizing a similarity measure, such as the
sum of squared differences or maximizing the correlation coefficient. Image intensity
is normally used as the feature in the template images. However, other features such
as texture or edges may also be used.

Statistical models of appearance are commonly used in kernel tracking. Comani-
cius et al. [14] model the kernel with a weighted histogram, with weight inversely
proportional to the distance of the pixel from the kernel center. The motion is given
by the mean shift tracker by computing similarity of the histogram of the object and
the histogram of the window around the hypothesized target location. The distance
measure used to compute the similarity is the Bhattacharya coefficient [6]. They also
extend the tracker by incorporating Kalman filter for improved search of the target.
Optical flow is also used for computing the location of the kernel by computing the
displacement field that enforces the brightness constraint. The KLT tracker [44] pro-
posed by Shi and Tomasi computes the motion of a rectangular region by computing
the optical flow of the feature points detected by the tracker.

Khan and Shah [23] developed an algorithm for tracking people under occlusion.
They do it by tracking the person as separate regions connected together. However,
in their approach there is no recovery of occluded regions. Vezzani et al. [15] track an
object as a macro object composed of smaller regions called tracks. Once regions have
been detected based on appearance, they are joined into a macro object. Again in this
approach, there is no recovery of occluded region as it is a kernel based method.

Isard and MacCormick [16] track multiple objects by joint modeling of the back-
ground and foreground regions with Gaussian distributions. The shape of objects are
modeled as cylinders. Particle filters are used for predicting the state vector which
includes the velocity, position and shape. Their method is also capable of tolerating
partial occlusions.

Representing objects with simple geometric shapes has inherent problems. Certain
parts of the objects may lie outside the kernel region while parts of the background
may fall within it. This makes it difficult to correctly classify pixels inside the kernel.
Kernel tracking is works suitably for objects that appear largely rigid. For nonrigid
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objects, kernel tracking may work but it is possible that object regions fall outside the
kernel, leading to errors.

2.3 Silhoutte Tracking

In silhoutte trackers, the object is represented by a contour including the region inside
the contour. Tracking can be either boundary based or region based. For boundary
based approach, the contour is evolved to match the boundary edges of the object. In
region based approach, the contour is evolved until the region inside the contour has
the same appearance as the object. The appearance of the object can be for example
the intensity image of the object. It can also be a statistical measure such as mean
intensity and standard deviation of the object region. Shape of the object is another
type of information that can be used along with apperance. Object information could
either be selected from the object region in the previous frame or it could be statistically
learnt information over the past few frames. The region based approach and kernel
tracking both use the appearance information of the object.

Since their introduction by Kass et al. [21], active contour have been used exten-
sively as a deformable model for object detection [21, 8, 26]. Active contour models
allow detetction for object of any shape by detecting strong gradients around the
boundary. The initial contour is assumed to enclose the object of interest and shrunk
so that it locks onto the object boundary. Casselles et al. [12] reformulated the curve
evolution problem as finding the geodesic (minimal distance curve) in Riemannian
space for detecting boundaries. The geometric flow approach improves the detection
capability of active contours by preventing the contour from seeping in through small
holes in the boundary. Paragios and Deriche [34] use the interframe difference his-
togram as a Gaussian distribution to classify pixels as belonging to the boundary of a
mobile or static object. They set this up in the geometric flow framework and so build
upon object detection technique from Caselles [12].

Edge detection based active contours do not perform well on complex and textured
backgrounds. To overcome, this Ronfard [40] and Zhu and Yuille [57] proposed a
region based energy where object and background regions are statistically modeled.
The contour evolves outwards if the neigborhood matches object model and inwards
if it matches background.
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Nonrigid motion can be computed as optical flow given by the brightness constancy
constraint. Bertalmio et al. [3] computes optical flow in a band around the boundary
by solving two PDEs, one for evolving the contour and the other for intensity morphing.
This method is useful only when object deformation is small. Mansouri [30] uses a
probabilistic brightness constraint modeled by a Gaussian distribution. He performed
a search for the optical flow vectors for each pixel in a circular neighborhood.

Yilmaz and Shah [52, 55] developed a general framework for tracking that is based
on previous work in region and boundary based tracking. Their model learns shape
and color online and applies it to obtain occluded regions. We do not adopt learning
techniques in our model as it may not be suitable for tracking highly deformable
objects, which have similar shapes for several frames but later change shape abruptly.
However, we remark that learning based model can be incorporated in our framework
if the application area can take benefit from this additional information. Also, in order
to detect occlusion, Yilmaz and Shah [55] use a heuristic method. When the object
becomes occluded, there is a significant reduction in the area of the object as compared
to the average area in the previous frames. If the ratio of current area to the average
area is below a user specified threshold parameter, the object is treated as occluded.
Once occlusion is detected the contour in the occluded region is recovered using shape
level sets. This heuristic may not work well for highly deformable objects, as it is not
clear how to distinguish whether reduction in area is due to occlusion or actual change
in the size of the object.

Yezzi and Soatta [53], and Jackson et al. [18] developed a model to describe the
average shape of a deforming object being tracked. The object motion is decomposed
as a global rigid or affine motion, and a local deformation. This is similar to how we
treat object motion. However, the difference is that their approach assumes object
segmentation is available. They predict shape by learning the shape average over
several frames. Their model also has no explicit occlusion detection, so if there is an
occlusion lasting several frames a wrong shape with much smaller area would be learnt.
Another approach to predict shape is to use particle filters for infinite dimensional state
space, [37]. They set the state variable to be the affine (global) transformation and a
curve for local deformations. Their assumption for shape prediction is that the object
undergoes constant acceleration, which may not necessarily hold, for example, if the
object moves in a jagged manner or is deforming rapidly over each frame.
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2.4 Layers based Tracking

For multi object tracking with occlusion handling, layers based representation of the
scene is appropriate. Each object is represented by a layer which has the appearance
and shape information. The background, which contains objects that are stationary,
is represented by its own layer. Additionally, a depth order is assigned to each layer
to describe the relative position of the objects in terms of distance from the observer.
There are methods which use both kernel and silhoutte representation in a layers
framework.

Wang and Adelson [49] are one of the earliest to use a layers based representation of
the scene. They first compute the optical flow between two frames to obtain the global
motion. The optical flow field has discontinuities at boundaries of moving objects. The
field is clustered where it is smooth, in order to separate the motion of objects from
each other. The localized optical flow is then fit to an affine motion model with
linear least squares, to compute the motion parameters of each layer. The shape of the
object is modeled with a binary image. Occluded regions are recovered by applying the
median filter operation on the layer pixels. Depth ordering is established by counting
the number of pixels in each layer compared with the motion compensated layer. In
the occluded layers the number of pixels would be reduced compared to unoccluded
layers.

Kernel representation of objects in layers is used by Tao et al. [45]. The kernel
is an ellipse and the model parameters are the rigid motion and layer appearance,
both of which are modeled by a Gaussian distribution. They compensate for the
background motion by modeling it as projective transform. The farther points from
the center in the kernel are assigned a probability of the background and the nearer
points are assigned the probability of the object, in the layer. For each pixel in the
image, a probability of its assignment to a particular layer is computed based on the
past motion and the appearance probability. They compute the model parameters
iteratively with the expectation maximization algorithm, by fixing layer ownership
and estimating the motion, then fixing the motion and estimating the layer ownership.

Jackson et al. [19] developed a layers framework with deformable objects. The
motion of the layers is composed of a group transform and local deformation applied
on the intensity template. The transform parameters are selected by minimizing the
difference between the topmost layer at a point in the domain and the video frame,
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and the occlusion boundaries are recovered from the layers that are hidden by others.
Their model is also capable of inpainting layers where the intensity information of a
regions remains occluded.
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Chapter 3

Image Registration and
Segmentation

Image registration is the task of finding a transform between two images such that they
are aligned in an optimal configuration. Motion based tracking requires registration of
objects from frame to frame. The objective is to compute a transformation that maps
an object from one frame to the next one. This idea is similar to image registration
where the template image is mapped to the reference image, with the difference being
the former operates individually on objects in an image while the later operates on
whole images.

Segmentation is the process of finding the boundaries of objects in an image. It
is often used for tracking by detecting objects in a video in consecutive frames and
establishing correspondence by object appearance. This chapter discusses the key
elements of image registration and segmentation model which will be used in later
chapters for formulating our tracking model.

3.1 Images

In digital representation, images are a discrete set of values, called pixels, in an image
domain. Each pixel is characterized by its location in the domain and its intensity
value. The locations of the pixels are discrete values, and normally, the intensity
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values are in the range [0, 255] for an 8 bit encoded image. Mathematically, however,
we treat an image as a continuous function

f : Ω→ ρ

where Ω = ℝd, ρ = ℝq, d ∈ ℕ is the spatial dimension, and q ∈ ℕ is the color dimension
of the image. Examples are 2D images with d = 2, 3D images with d = 3, grayscale
images with q = 1, and color images with q = 3. For simplicity the image domain and
intensity values are scaled so that Ω = [0, 1]d and ρ = [0, 1]q. For most part of the
thesis two dimensional grayscale images will be considered, while later, extensions will
be made to two dimensional color images.

3.2 Image Registration

In this section, we give a brief review of image registration, its applications, and, clas-
sification. Later we provide the general mathematical formulation of registration. The
similarity measures and spatial transformations used in the process are also described.

3.2.1 General Description

Image registration is used for bringing two or more images into alignment with each
other so that the information in them may be combined. The images may have been
taken at different times so that they are out of alignment due to motion of the capturing
device or the scene. Images of the same scene may have been captured using different
sensors and devices so that different types of information may be acquired. They may
also be taken from a different pose of the same scene.

Image registration has many applications in different fields such as computer vision,
medical imaging, remote sensing, astronomy etc. In medical imaging, for example,
images taken from different devices such as CT and MRI show different features of the
same anatomy. By overlaying the images from the two devices, the information for the
same spatial region may be seen together. In geospatial imaging, satellite images taken
at different times may be compared together for observing changes in the landscape.
In computer vision, registration is relevant to the task of sterescopic vision, which is to
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capture two dimensional images from different view points an use them to reconstruct
a three dimensional scene.

Registration may be classified into different categories based upon the type of
application [58]. One such classification is made on registration basis i.e. the features
that drive the registration. Landmark and intensity based registration are the primary
categories in this classification. In landmark based registration (see [39] for details),
the images are first pre-processed to detect features such as points, edges, or shape.
The images are then registered so that corresponding features in different images are
overlayed together. Intensity based registration instead works by registering intensities
directly in the images, [2, 20, 29]. In this thesis, we will be concerned only with intensity
based registration. Another classification is based on the transformation types used
for registering the images. Transformations fall into two broad categories - global
transforms such as rigid, affine, and projective, and, local transforms. The details
for the transformation types are dicussed below. One more classification is that of
mono-modality registration in which the images are captured from the same sensors,
and multi-modality registration, in which the images are from different sensors. In this
thesis, we are concerned only with mono-modality images.

3.2.2 Mathematical Formulation

Formally, the purpose of image registration is to compute the spatial mapping of the
template image A : ΩA → [0, 1] to the reference image B : ΩB → [0, 1], i.e.,

Ψ : ΩB → ΩA,

so that the deformed template A(Ψ) becomes similar to the reference image B. Reg-
istration is then stated as an optimization problem

max
Ψ
S (A(Ψ), B) ,

where S is the similarity measure between the deformed template and the reference
image. An alternative way to state registration is to minimize the distance between
the transformed template and the reference image. Then image registration is stated
as

min
Ψ
D (A(Ψ), B) ,
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where D is the distance measure. The objective function used in the optimization
is called the similarity measure. In this thesis, we will simply refer to the distance
measure, stated in the minimization problem, as the similarity or image difference
measure.

3.2.3 Similarity Measure

For images captured by similar devices in such a way that there is a direct correspon-
dence between the intensities in the two images, the image difference can be used as the
distance measure. One distance measure commonly used is the Sum of the Squared
Differences (SSD), which is the L2 norm of the difference between the transformed
image A (Ψ(x)) and the reference image B(x),

DSSD[Ψ] ≡
∫

Ω

1
2 (A (Ψ(x))−B(x))2 dx. (3.1)

This distance measure would be minimized once the images are in correct alignment.
Another measure is the Sum of Absolute Differences (SAD), which uses the L1 norm
over the image differences,

DSAD[Ψ] ≡
∫

Ω
|A (Ψ(x))−B(x)|dx. (3.2)

SAD has a benefit over SSD in that it is less sensitive to large variations in image
intensities. However, the optimization with SSD is more convenient to solve numeri-
cally as compared to SAD; the former can be solved with Gauss-Newton or Levenberg
Marquardt method whereas the latter cannot.

3.2.4 Transformation Types

The transformations used to align the template image are generally categorized as
global and local transformations. The global transforms act on the whole image do-
main, while the local transform produce spatially localized deformations.

Rigid, affine, and projective fall within the class of global transformations. Rigid
and affine transforms are shown in Figure 3.1. These are linear transformations that
are represented by a linear operation on the spatial coordinates. The rigid transform

14



Original Rigid

Affine Local

Figure 3.1: Different types of transformation illustrated on an image.

only allows for rotation and translation of the image, and so retains the shape of the
image as well as the objects in it. It is mathematically defined as

Ψ(x) = Qθx + τ,

where Qθ ∈ ℝd×d, such that Q>θ Qθ = QθQ
>
θ = Id, is called the rotation matrix. Qθ

rotates the coordinates by angles θ ∈ [−π, π]p around each axis (p = 1 for d = 2, and
p = 3 for d = 3), and τ ∈ ℝd is the translation. For d = 2, the rotation matrix is given
by the formula

Qθ =
[

cos θ sin θ
− sin θ cos θ

]
.

The affine transform is comprised of scaling and shear in addition to rotation and
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translation. It is formally defined as

Ψ(x) = Cx + τ,

where C ∈ ℝd×d with detC > 0.

Whereas the group transformations are global transforms that are unable to model
local deformation, the deformable nonrigid transform is capable of it (see Figure 3.1).
There are several deformable models such as wavelets [51], splines [24], and physically
based models [9, 11], possessing varying degrees of freedom. In this thesis, physically
based models are used and they will be discussed.

The general formulation for nonrigid registration can be written as:

min
Ψ

(D[Ψ] + βE [Ψ]), (3.3)

where E [Ψ] is the regularization term, and β ∈ ℝ+ is a user selected parameter. If
we minimize the similarity measure alone by setting β = 0, then the minimization
problem (3.3) is ill posed because there could be an infinite number of transforms
that would minimize the objective function. Typically, the role of the regularizer is
to restrict the transform to a diffeomorphism and to provide a unique solution. The
nonrigid deformation is usually written in terms of a displacement field r : Ω → ℝd

acting on the image, i.e., Ψ(x) = x− r.

A common regularizer is the linear elastic potential energy [11, 31],

Eelas[r] ≡ P [r] =
∫

Ω

µ

4

d∑
j,k=1

(
∂xjrk + ∂xkrj

)2
+ λ

2 (∇.r)2dx, (3.4)

which models the deformation of an elastic body. The potential energy P [r] is propor-
tional to the deformation, so the objective function also tends to minimize deformation.
The Lamé constants µ and λ are physical parameters, but for image registration they
are usually set to some particular value. The minimizer of (3.3) with elastic regularizer
(3.4) and SSD similarity (3.1), is computed by solving the Euler-Lagrange equation

µ4r + (λ+ µ)∇ (∇.r) = β (A (Ψ(x))−B(x))∇A (Ψ(x)) . (3.5)

The deformation may also be modeled after a body which flows as a viscous fluid,
[9]. Unlike the elastic model which is formulated as a minimization problem, the fluid
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model is written as a system of two PDEs:

µ4v + (λ+ µ)∇ (∇.v) = b,

v = ∂r
∂t

+∇r v.
(3.6)

The first equation is used to compute the velocity v : Ω → ℝd of the viscous fluid
body under the applied body force b : Ω → ℝd. The viscous fluid model is derived
from the momentum equations of Navier Stokes. The force applied on the fluid is
similar to the force applied on the elastic body (see [9]). Thus, in this case the body
force is b = β (A (Ψ(x))−B(x))∇A (Ψ(x)), which is obtained from the variation of
the similarity measure and present on the right hand side of (3.5). In other words,
the elastic PDE in (3.5) is replaced with the fluid PDE in (3.6). The second equation
gives the updated displacement of the body given the velocity. This model causes the
body to flow like a viscous fluid with internal resistance to motion, but it does not
restrict motion over a large number of time steps. In the case of registration, since
the body force is nonlinear, the two equations are solved iteratively. When velocity is
computed from the first equation, displacement is updated from the second, then the
first equation is computed again with the updated force.

3.3 Segmentation

Segmentation is the task of finding regions in an image that belong to an object of
interest. Segmentation methods are relevant for the purpose of object tracking, since
they are used to detect objects in consecutive video frames. A vast number of methods
have been developed for image segmentation which is not possible to discuss in short
length. We list some important methods for segmentation which are classified broadly
as

1. Clustering methods: These methods classify image pixels as belonging to clus-
ters. Each cluster has shared features such as pixels of the same intensity or
a particular range of intensity. K-means [28] or histogram [5] of the image are
possible choices to compute the clusters. With K-means, pixels are assigned to
K clusters so as to minimize the variance of the pixels from the cluster center.
In histogram based methods, the peaks and valleys in the image histogram are
detected, which correspond to clusters.
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2. Region growing: In these methods, seeds, which are region labels, are spread
over pixels in the image [1]. These seeded regions are then grown iteratively
in its immediate neighborhood based on a growing criteria, until all pixels in
the image have been assigned to images. The assignment criteria for instance
could be whether the difference between the pixel intensity and the average
region intensity lies within a specified threshold. Watershed transform [4] treats
the image as a topographic surface. The altitude of the surface may be the
grey level value or the magnitude of the image gradient. Regions are grown
from the smallest value on the surface. Pixels with smaller values are assigned
to existing regions before pixels with larger values. Pixels with a given value
not assigned to any region are seeded as a new region. With this property,
the watershed transform generates regions separated by lines along which the
topographic values are high.

3. Active contour methods: The basic idea is to evolve a curve so that it moves to
the boundary of the object. There are several models that fall into this category.
One is the snakes model [21] which represents a curve as a parameterization over
control points, such as spline. The curve is evolved until it lies over an edge
in the image, where further evolution is stopped with the assumption that the
object boundary has strong intensity gradients. Other methods involve evolving
the curve until it segments regions in the image with some shared property, such
as the average intensity of the region [13], texture [33], or a probabilistic measure
on intensity [57]. Many active contour models [3, 13, 34, 33, 35, 55] represent the
curve implicity as the zero level contour of level sets functions. Level set methods
[42] are then used to evolve the curve by evolving the level set functions.

4. Graph partitioning: In these methods, for example one given in [43], the image
pixels are modeled as nodes in an undirected graph. The weight of the edges
may, for instance, specify the similarity between two nodes. The graph is then
partitioned into clusters with each cluster representing a segmented region in the
image.

Active contour methods are the most relevant to contour tracking of objects. In this
section we discuss a particular contour segmentation model from Chan and Vese [13]
and its formulation in a level set framework.
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3.3.1 Chan-Vese Model

A widely used segmentation model is given by Chan and Vese [13]. Their model is used
for segmenting uniform intensity regions in an image. Let a curve C be the boundary
of an open bounded subset of the image domain such that it divides the image plane
into two regions, i.e.

ω ⊊ Ω, C = ∂ω,

inside(C) = ω, outside(C) = Ω \ ω̄.

The assumption is that the image f : Ω → [0, 1] consists of two uniform intensity
regions so that it may be described as

f(x) =
c1 x ∈ ω
c2 x ∈ Ω \ ω̄.

Let the average intensity inside the two regions be denoted by

cin =
∫
ω f(x)dx∫

ω dx
cout =

∫
Ω\ω̄ f(x)dx∫

Ω\ω̄ dx
.

The deviation of segmented regions from a uniform intensity is measured by the terms

F (C, cin, cout) = F1(C, cin) + F2(C, cout)

=
∫
ω

(f(x)− cin) dx +
∫

Ω\ω̄
(f(x)− cout) dx.

(3.7)

The objective is to select a curve C̄ such that it minimizes the energy functional

min
C

(F (C, cin, cout)) ≈ 0 ≈ F1(C̄) + F2(C̄).

In such a case the image will be partitioned into two regions, so that the average
intensity of the two regions is equal to the intensity value defined over it, i.e., cin ≈
c1 and cout ≈ c2. The idea is illustrated in Figure 3.2 , where the two terms of
the functional are evaluated on different curve configurations. The optimal curve is
shown in Figure 3.2(d). Regularization terms may also be added to improve the well-
posedness of the objective functional.
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(a) (b) (c) (d)

Figure 3.2: Different possible curves are shown over an image, [13]. In (a) F1 > 0,F2 ≈
0, (b) F1 > 0,F2 > 0, (c) F1 ≈ 0,F2 > 0, (d) F1 ≈ 0,F2 ≈ 0.

3.3.2 Level Set Representation

A closed curve C may be represented implicitly as the zero level curve Γ of a higher
dimensional function Φ : ℝd → ℝ i.e.,

Γ = C, Γ = {x|Φ(x) = 0} ,
inside(C) = {x|Φ(x) < 0} , outside(C) = {x|Φ(x) > 0} .

Φ(x) is called the level set function, illustrated in Figure 3.3. Level set methods [42]
are used to compute the optimal curve with implicit representation. With the level set
method, the topology of the curve can split into different disconnected regions without
any extra work. The contour and the regions are illustrated in Figure 3.4.

The curve C in (3.7) is represented by a level set function which leads to the
functional

min
Φ

∫
Ω

(f(x)− cin)2 (1−H (Φ(x))) + (f(x)− cout)2H (Φ(x)) dx, (3.8)

where H is the Heaviside function

H (Φ(x)) =
0 Φ(x) ≤ 0,

1 Φ(x) > 0,

and cin and cout can be written in terms of H (Φ(x)) as

cin =
∫
Ω f(x) (1−H (Φ(x))) dx∫

Ω (1−H (Φ(x))) dx , cout =
∫

Ω f(x)H (Φ(x)) dx∫
Ω H (Φ(x)) dx .

Notice that, cin is the average intensity of the region Φ(x) < 0 while cout is the average
intensity of the region Φ(x) > 0.
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Level Set Function Φ

Zero Level Curve Φ=0

Figure 3.3: Level Set function with zero level contour.
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Φ>0

Normal

Normal

Normal
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Outside
Φ>0

Curve
Φ=0

Figure 3.4: The contour plot of the level set function Φ(x) at the zero level set. The
level set partitions the domain into inside and outside regions as indicated by the value
of the function, [13].
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Chapter 4

Tracking Model

In this chapter, the main idea for our tracking model is discussed. Motion based track-
ing of objects requires determining the motion that the object undergoes between a
given video frame and the consecutive frame. Registration framework captures the
“motion” between two given images. The framework can be modified so that it gives
motion for individual objects between two given frames. Note that, this procedure
is different from standard registration methods which deal with the entire images,
whereas here it deals with objects in an image. The framework is capable of detecting
occlusion and recovering the occluded region. We also discuss the idea of using seg-
mentation measure to do tracking by embedding it in the tracking framework. This
yields improved tracking results, since the segmentation measure is more robust to
noise in the images and errors in tracking process.

4.1 Reconstruction Based Model

Given region, intensity, and motion information for all objects in the current frame,
the next frame in a video can be reconstructed by applying the motion to the region
and intensity templates of the object, and, combining all the transformed objects into
a single image. The closer the reconstruction is to the actual frame, the more accurate
will be the object motion that makes the reconstruction.

In case there are multiple objects in the video, the reconstruction process also
needs to determine the depth ordering of the objects relative to each other. The
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reason is that objects in real world scenario can get occluded in different ways. The
objective is to capture the contour and obtain intensity template of the tracked object
in both its occluded and unoccluded parts. If the occluded region is not tracked,
tracking becomes more ill posed in later frames. For instance, when the occluded
region becomes unoccluded, the tracking algorithm may incorrectly consider it to be
a separate object or part of another object that lies in its vicinity. This affects the
quality of reconstruction in later frames.

In general, tracking through occlusion is a highly ill-posed problem as the hid-
den part of the object can acquire any shape. Moreover, if the object is completely
occluded, then theoretically it is not possible to determine the object’s location and
shape. Thus only partially occluded objects will be considered in this thesis, where in-
formation is available for the unoccluded part. Furthermore, it can be safely assumed
for many cases, that, objects undergo a smooth deformation from frame to frame.

The reconstruction process takes into account the depth ordering, so that all regions
in the reconstructed frame carry intensity information from the topmost lying object in
that region. The occluded part of the object can be recovered by imposing additional
conditions on the shape of the object. In the frame before which an object becomes
occluded, the shape of the object is fully known and serves as its shape template. The
motion of the object is constrained so that there are minimal changes in the shape of
the object as compared to its shape template. This motion provides the shape and
intensity information of the object in the occluded region.

We now develop representation for the video and objects in the scene. The frames
in the video are denoted by F (x, t), where x ∈ [0, 1]d, d = 2 is the spatial dimension
of the image frame, t = 1, . . . , T denotes the current frame number, and T ∈ ℕ is
the total number of frames in the video. The current frame, called the initial frame,
is denoted by f(x) ≡ F (x, t) which gives the initial location of objects, and the next
frame, called the target frame, as g(x) ≡ F (x, t + 1) which gives the final location of
the objects. Suppose that there are N ∈ ℕ objects to be tracked, which include both
fixed and moving objects. Each object at current time t is represented by the following
set of information:

n object number
Φn(x) level set function
In(x) intensity template

 , for n = 1, 2, . . . , N.
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The level set function Φn(x) is used for representing the object domain Ωn so that

Φn(x) = 0, if x ∈ ∂Ωn object boundary
Φn(x) < 0, if x ∈ Ωn object interior
Φn(x) > 0, if x /∈ Ωn object exterior

 , for n = 1, 2, . . . , N.

This is a convenient approach to keep track of the object region by evolving its level
set from frame to frame. Also, when two objects overlap, the region of occlusion
is simply given by the intersection of their respective level set functions in the object
interior. It is also used for determining the region in the intensity template In(x) which
actually belongs to the object. The level set function thus constitutes an important
part of the object model. The background is the region of the video frame that is
outside of any objects in the scene. The background image of the scene is denoted by
B(x), x /∈ Ωn for all n = 1, 2, . . . , N . It is assumed to be available throughout the
duration of tracking.

4.1.1 Rigid Tracking Model

First a simplified case is considered where the motion of the objects is assumed to
be rigid in the video. Thus there is very little or no shape changes. In this case the
objective for tracking simplifies to finding translation and rotation parameters. The
approach is to reconstruct the target frame with information of objects from the intial
frame. The reconstructed frame is then compared with the target frame in the video.
The translation and rotation parameters are computed by minimizing the difference
between the reconstructed frame and the target frame.

Consider a single object moved with translation parameters τ ∈ ℝd and rotated
by θ ∈ [−π, π] around the center of mass. Let the rigid transform for the object be
ξ (x) = Qθx + τ . The transformed object is then given byIξ(x) ≡ I (ξ(x)) transformed intensity template,

Φξ(x) ≡ Φ (ξ(x)) transformed level set.

The reconstructed frame, R(x, τ, θ), is defined as

R(x, τ, θ) =
B(x) Φξ(x) > 0,
Iξ(x) Φξ(x) ≤ 0.

(4.1)
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The reconstructed image has two regions - the unoccluded background, and, the trans-
formed object. The tracking problem is then formulated as an unconstrained optimiza-
tion problem:

min
τ,θ
‖R(·, τ, θ)− g(·)‖2

2 . (4.2)

The correct translation and rotation parameters will give a reconstruction similar to the
target frame and will minimize the objective functional (4.2). The optimal parameters
give an estimate of the motion of the object from the initial frame to the target frame.

4.1.1.1 Occlusion Tracking

In a case with a single tracked object, the object can become partially or completely
hidden by a stationary object. Since the object is rigid, when the object is successfully
located based on its unoccluded parts then the rest of the object’s contour can also be
determined. Whether the object is on top of or underneath another object also needs

(a) (b) (c) (d)

Figure 4.1: A moving circle becomes occluded by a fixed bar. Image (a) shows the
initial frame, (b) the target frame, (c) the reconstruction with z = (1, 2), and (d) the
reconstruction with z = (2, 1).

to be determined. Consider an example shown in Figure 4.1, which has a fixed object
- a bar I1(x), along with the moving object - a circle I2(x). The two objects are each
assigned a depth order by its position in a row vector z , where the position of the
object’s number in the vector determines its depth order. In general, the components
of the vector, z(i), i = 1, . . . , N , represent the object number. By our convention, the
object Iz(i)(x) is occluded by object Iz(j)(x) if i < j. The two possibilities for the
example shown in Figure 4.1 are z ∈ {(1, 2), (2, 1)}. The reconstructed frame is then
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defined as

R(x, z, τ, θ) =


B(x) Φ1

ξ1(x) > 0 and Φ2
ξ2(x) > 0,

I
z(1)
ξz(1)(x) Φz(1)

ξz(1)(x) ≤ 0 and Φz(2)
ξz(2)(x) > 0,

I
z(2)
ξz(2)(x) Φz(2)

ξz(2)(x) ≤ 0.

The transform for the first object is the identity function ξ1(x) = x since the object is
fixed, whereas for the second object it is ξ2(x) = Qθx+τ . Now the reconstructed image
has three regions - the unoccluded background, the unoccluded region of object z(1),
and the full object z(2). Figure 4.1 shows the two possible reconstruction cases. Figure
4.1(c) corresponds to reconstruction with z = (1, 2), and Figure 4.1(d) corresponds
to reconstruction with z = (2, 1). The latter reconstruction with z = (2, 1) is the
correct one. In presence of occlusion, depth ordering is necessary to give the correct
reconstruction, and hence serves as an additional parameter. Thus, the minimization
problem becomes:

min
z,τ,θ
‖R(·, z, τ, θ)− g(·)‖2

2 . (4.3)

4.1.1.2 Multiple Objects

The model in Section 4.1.1.1 can be extended to accommodate multiple moving objects.
The idea is to simultaneously move all objects so that a correct reconstruction will be
obtained similar to the target frame. At the same time, minimization over different
depth orders produces a reconstruction that is closest to the target image.

For each object the translation parameter τn ∈ ℝd, the rotation parameter θn ∈
[−π, π], and the depth order z ∈ P (1, 2, . . . , n), where P (1, 2, . . . , n) represents the
set of permutations, are the reconstruction parameters. For N objects there will be a
total of 2N translation parameters, N rotation parameters, and a set of N ! different
permuted depth orderings. The unconstrained minimization problem is

min
z,τ ,θ
‖R (·, z, τ ,θ)− g(·)‖2

2 , (4.4)
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where τ ≡
{
τ 1, τ 2 . . . , τN

}
, θ ≡

{
θ1, θ1, . . . , θN

}
, the piecewise function

R (x, z, τ ,θ) =



B(x) Φn
ξn(x) > 0 (n = 1, 2, . . . , N),

I
z(1)
ξz(1)(x) Φz(1)

ξz(1)(x) ≤ 0 and Φz(n)
ξz(n)(x) > 0 (n = 2, . . . , N),

... ...
I
z(m)
ξz(m)(x) Φz(m)

ξz(m)(x) ≤ 0 and Φz(n)
ξz(n)(x) > 0 (n = m+ 1, . . . , N),

... ...
I
z(N)
ξz(N)(x) Φz(N)

ξz(N)(x) ≤ 0,
(4.5)

Φn
ξn(x) ≡ Φn (ξn(x)), Inξn(x) ≡ In (ξn(x)), and the rigid transform ξn(x) = Qθnx + τn.

The objective functional is first minimized for object motion parameters for all given
depth orders and then the minimum is taken over different depth orders.

4.1.2 Nonrigid Tracking Model

Uptil now only objects that appear rigid in the video have been considered. In practice,
however, there would be deformations in the object. To make the tracking more
general, the objects are allowed to deform as well. The rigid model for single object
tracking is modified so that a displacement r : Ω → ℝd is defined for every point of
the object domain. The problem can then be solved similar to (4.2), by solving for
the displacement field in the minimization. The tracking problem is formulated as the
following minimization problem:

min
r

(
α ‖R(·, r)− g(·)‖2

2 + E [r]
)
, (4.6)

where E [r] is the regularization term for the reconstruction, and R (x, r) is as defined
in (4.1) but replacing translation τ and rotation θ with displacement r(x), Φξ(x)
with ΦΥ(x) ≡ Φ (Υ(x)) and Iξ(x) with IΥ(x) ≡ I (Υ(x)), and, the nonrigid transform
Υ(x) = x−r(x). There are several choices for the regularizer. Two possible candidates
are E [r] = Eelas[r] (3.4) and E [r] = Evf [r] (3.6).

Dealing with occlusion is similar to the technique presented in Section 4.1.1.1.
Multiple objects tracking is also similar to Section 4.1.1.2. In this case, we compute
the sum of the regularization terms for all objects

min
z,~r

(
α ‖R (·, z,~r)− g(·)‖2

2 +
N∑
n=1
E [rn]

)
, (4.7)
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(a) (b) (c) (d)

Figure 4.2: Nonrigid tracking of two objects is shown in two consecutive frames. The
dotted lines indicate the boundary contour for the object. The images (a) and (b) show
the initial frame and the target frame, respectively. Image (c) is the reconstruction
with rigid model, and (d) the reconstruction with the nonrigid model.

where ~r ≡
{
r1, r2, . . . , rN

}
, E [rn] is the regularization term for object n, R (·, z,~r) is as

defined in (4.5) but replacing translation τn and rotation θn with displacement rn ≡
rn(x), Φn

ξn(x) with Φn
Υn(x) ≡ Φn (Υn(x)) and Inξn(x) with InΥn(x) ≡ In (Υn(x)), the

nonrigid transform Υn(x) = x− rn(x), z is the depth order, and α ∈ ℝ+ is the weight
of the similarity measure. The nonrigid model is now able to capture the deformable
object contours. An example is shown in Figure 4.2. The rigid reconstructed image
in Figure 4.2(c) does not minimize the functional in (4.7), since it leaves a residual in
the first term of (4.7). The deformation of the object can be captured by applying
the nonrigid model. The reconstruction as shown in Figure 4.2(d) does not leave any
residual in the similarity measure since the first term of (4.7) is approximately zero.
This reconstruction is the optimal solution and it matches the expected results.

The reconstructed image does not change if the object shape is changed in the
occluded region. This is apparent from the definition of the reconstruction (4.5) where
the occluded parts of the object are not present in the reconstucted image. Hence,
the similarity measure also does not change with object shape change in the occluded
region. The value of the regularization term, however, increases proportional to the de-
formation of the object. Minimizing the functional hence prevents large shape changes.
The shape of the object in the occluded region is thus retained, while still allowing
shape changes in the unoccluded region.

We note that level set segmentation model (3.8) for tracking requires computing the
level set function over the entire image. If the image is large then this computation
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becomes quite expensive. In the nonrigid model (4.7), the displacement field needs
to be computed over the objects only. Thus, the computation time depends only on
the size and resolution of the object in the image. For the rigid model, there are
only two unknowns for each object. Our model, therefore, has fewer unknowns and
computationally less expensive.

4.1.3 Combined Rigid and Nonrigid Model

The nonrigid model by itself, however, may not capture occlusion. Consider the ex-
ample in Figure 4.3. The circle gets occluded by the bar in the target frame. If the
nonrigid model is applied, then the obtained contour, as shown in Figure 4.3(c), does
not include the circle’s occluded part. This is because the similarity measure in (4.7)
remains unchanged if the object shape is changed inside the region occluded by the bar.
The reconstructed image remains the same regardless of object shape in the occluded
part. On the other hand, the value of the regularization term generally increases with
greater deformation in the object shape. The expected solution does not coincide with
the minimum of (4.7), as it yields an overall higher value of the functional as opposed
to the one shown in Figure 4.3(c). The minimization process will thus deform the
object to match the unoccluded part only.

To address this issue, the object’s motion is decomposed into rigid and nonrigid
components. If we apply the rigid model in (4.4), and perform an intermediate rigid
reconstruction, as in Figure 4.3(d), the global rigid motion of the object can be ob-
tained. Even though at this stage no nonrigid motion is accounted for, it gives an
initial estimate for the location of the object in the target frame. More importantly,
this step gives an estimate of the occluded part of object as well as the depth order-
ing. The depth order and rigid transform parameters (z, τ ,θ) are fixed and then the
nonrigid model (4.7) is applied to obtain the final reconstruction, as shown in Figure
4.3(e). The objects deform until their unoccluded regions match with those in the
target frame. The regularizer produces a smooth and continuous displacement field
over the object. As a result, the occluded part of the object is also slightly deformed.

Let us denote the optimal rigid transform parameters for each object, obtained from
solving (4.4), are (τ̂n, θ̂n), and the optimal depth order is ẑ. The optimal transform
is then x̂ = ξ̂n(x) = Qθ̂nx + τ̂n. These paramters are then fixed in the nonrigid step
and the displacement field is computed. The transform Υn in (4.4) is replaced with
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(a) (b) (c)

(d) (e)

Figure 4.3: The images (a) and (b) show the initial frame and the target frame, respec-
tively. Image (c) shows the reconstruction using the nonrigid model only. Images (d)
and (e) show the intermediate reconstruction with the rigid model and the combined
rigid and nonrigid model, respectively.

the combined transform

Ψn(x) = Υn(ξ̂n(x))
= x̂− rn(x̂).

(4.8)

This transform is composed over the optimal transform from the rigid step, so the
remaining unknown rn(x̂) is computed from the nonrigid model, which is now stated
as

min
~r

αDrec[~r] +
N∑
n=1
E [rn]. (4.9)

The measure of quality of reconstruction Drec[~r] is denoted in short by Drec and defined
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as
Drec ≡

∥∥∥R (·, ẑ, τ̂ θ̂,~r)− g(·)
∥∥∥2

2
. (4.10)

Note that the tracking model given in (4.9) is computed via a piecewise compo-
sition of the reconstructed image, where each piece corresponds to different objects
or the background. The reconstructed image (4.5) can be expressed in terms of the
object intensity images InΨn(x) and the level set functions with H (Φn

Ψn(x)). Then the
reconstruction measure (4.10) is written equivalently as:

Drec =
N∑
n=1

∫
Ω

(InΨn(x)− g(x))2 (1−H (Φn
Ψn(x)))

∏
kεK

H (Φn
Ψn(x)) dx

+
∫

Ω
(B(x)− g(x))2

N∏
n=1

H (Φn
Ψn(x)) dx,

(4.11)

where K = {z(m+ 1), . . . , z(N)} , s.t. z(m) = n. The benefit of using this formulation
as opposed to the one in (4.10) is that, in the former, the domain of integration is the
whole domain of the image, whereas, in the latter, the domains are the boundaries
of the unoccluded parts of the objects. Differentiating through the integral of the
measure, in the former case, requires computing the derivatives of the boundary of
the integral explicitly as the integral domain is variable with respect to object motion.
In the latter case, derivatives of the integral boundary are zero since it is fixed with
respect to object domain. Thus it is easier to compute the derivatives of the integrals.

4.2 Segmentation Measure

While the L2 norm on the difference image (4.10) works well in many cases, it may
not give the right object boundary when the background has a uniform intensity.
Consider Figure 4.4(a) and Figure 4.4(b). They show two consecutive frames where
a white object moves from left to right on a black background. Suppose there is a
small error in tracking the object boundary in the first frame as shown in Figure
4.4(a). This error will persist in the following frames. The reason is that the similarity
measure (4.2) in the incorrectly captured region is zero because the intensity of the
reconstructed image (4.1) is the same as the background intensity in the target frame.
The minimization process would not deform the object in this region as the similarity
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(a) (b) (c) (d)

Figure 4.4: The images (a) and (b) show consecutive frames with a uniform back-
ground. The error is retained in the tracking in this case. The other two images (c)
and (d) are consecutive frames with a varying background. The error in the tracked
contour is corrected.

has already reached the minimum possible value. The nonrigid model will not deform
the incorrect object contour to the correct one, as seen in Figure 4.4(b). This type
of error can progressively accumulate over several frames as the object changes shape,
and become difficult to remove. The error will only be self corrected if the background
intensity in the vicinity of the object changes in a future frame as seen in Figure 4.4(c)
and Figure 4.4(d). In this case, the intensity of the incorrect region is black which
does not match the gray background of the target. Thus the contour will shrink to
minimize the similarity measure against the target frame.

In order to address this issue, we propose the use of a segmentation energy measure
(3.8), in place of the usual L2 measure. In this approach the benfits of registration and
segmentation are combined together. Only the object displacement r(x) needs to be
computed, rather than the entire level set function Φ(x) as is the case in segmentation
model. At the same time we are able to use the more robust measure provided by the
segmentation model.

First, consider the case of a single rigid object. In our new registration based model,
the objective functional given in (3.8) is changed to

min
τ,θ

∫
Ω

(
(g(x)− cin)2

(
1−H

(
Φξ(x)

))
+ (g(x)− cout)2H

(
Φξ(x)

))
dx,

(4.12)

where ξ(x) = Qθx + τ . The main difference between (3.8) and (4.12) is that in the
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(a) (b) (c) (d)

Figure 4.5: Images (a) and (b) demonstrate the case of rigid object motion in the
target frame. Images (c) and (d) are target frames for nonrigid object motion. The
images (a) and (c) show the contours with non optimal solution, whereas (b) and (d)
show optimal solutions.

former is to find the level set function that segments the object, and in the latter, the
objective is to find the rigid transform of the object from the initial frame to the target
frame. The contour Φξ(x) will minimize the functional when the displacement applied
to it provides an accurate fit to the boundary of the object. If the error as shown in
Figure 4.4(a) was present in the past frame, then in the future frames, the error will be
corrected because the similarity measure will not be minimized until the contour Φξ(x)
separates the object and the background into regions of uniform intensity. Compared
to (4.2), this model is more robust to tracking errors in past frames.

We now consider the two object case. The original Chan-Vese model [13] assumes
the boundaries of objects are disjoint, and none of the boundaries are occluded. Here,
the energy functional is generalized so that it will capture occlusion. Consider the
nonrigid case of two moving objects; see Figure 4.5. For the depth order z = (1, 2), we
define the new energy functional as follows:

min
z,τ ,θ

∫
Ω

((
g(x)− c1

in

)2 (
1−H

(
Φ1
ξ1(x)

))
H
(
Φ2
ξ2(x)

)
+
(
g(x)− c2

in

)2 (
1−H

(
Φ2
ξ2(x)

))
+ (g(x)− cout)2H

(
Φ1
ξ1(x)

)
H
(
Φ2
ξ2(x)

)) )
dx,

(4.13a)
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where

c1
in =

∫
Ω g(x)

(
1−H

(
Φ1
ξ1(x)

))
H
(
Φ2
ξ2(x)

)
dx∫

Ω

(
1−H

(
Φ1
ξ1(x)

))
H
(
Φ2
ξ2(x)

)
dx

,

c2
in =

∫
Ω g(x)

(
1−H

(
Φ2
ξ2(x)

))
dx∫

Ω

(
1−H

(
Φ2
ξ2(x)

))
dx

.

c1
in is the average of the intensity for the unoccluded region of object 1, and c2

in is the
average of the intensity of object 2 which is unoccluded in this case. The first term in
(4.13a) computes the sum of the difference between the average intenisty of object 1
and the target frame over unoccluded regions of object 1. The second term is the sum
of the difference between the average intensity of object 2 and the target frame. The
last term is the sum over the difference outside all object regions; i.e. the background.
If the depth order is z = (2, 1), then the energy functional becomes:

min
z,τ ,θ

∫
Ω

((
g(x)− c1

in

)2 (
1−H

(
Φ1
ξ1(x)

))
+
(
g(x)− c2

in

)2
H
(
Φ1
ξ1(x)

) (
1−H

(
Φ2
ξ2(x)

))
+ (g(x)− cout)2H

(
Φ1
ξ1(x)

)
H
(
Φ2
ξ2(x)

))
dx,

(4.13b)

where

c1
in =

∫
Ω g(x)

(
1−H

(
Φ1
ξ1(x)

))
dx∫

Ω

(
1−H

(
Φ1
ξ1(x)

))
dx

,

c2
in =

∫
Ω g(x)H

(
Φ1
ξ1(x)

) (
1−H

(
Φ2
ξ2(x)

))
dx∫

Ω H
(
Φ1
ξ1(x)

) (
1−H

(
Φ2
ξ2(x)

))
dx

.

Here the average intensities are defined similar to the previous case, but with object 1
considered to be unoccluded and object 2 considered occluded. For both cases,

cout =
∫
Ω g(x)H

(
Φ1
ξ1(x)

)
H
(
Φ2
ξ2(x)

)
dx∫

ΩH
(
Φ1
ξ1(x)

)
H
(
Φ2
ξ2(x)

)
dx

.

The new energy functional considers occlusion in contrast to the Chan-Vese model,
which does not. The functional computes the average intensity only on the unoccluded
parts of the objects. Moreover, the difference between average intensity and image
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frame is taken over the unoccluded regions of the objects. If the average intensity were
to include both of the occluded and unoccluded regions, then the average intensity
would be different from the object intensity; see Figure 4.5(a). The difference between
the average intensity and the intensity of region inside the contour, for both the objects,
is nonzero at all points inside the contour. The difference between the average intensity
of the region outside the contours and the background intensity is also nonzero at all
points in the outside region. Hence, the contours in Figure 4.5(a) do not minimize the
model.

The functionals for the different depth orders generally give different similarity
measure values for the same translation and rotation, when the objects overlap. For
instance in Figure 4.5(b), the first term in the functional (4.13b) is nonzero because
it includes the occluded part. The average intensity of object 1, which is a shade of
grey instead of white, when subtracted from the target frame leaves a residual. The
functional (4.13a) does not include the occluded part of the object in the first term, so
it has all the terms zero. The contours with z = {1, 2} are thus the optimal solution.

The energy functional (4.13a) can be generalized to N objects. Let m be the posi-
tion of the object n in the depth order vector i.e. z(m) = n, andK = {z(m+ 1), . . . , z(N)}
be the set of all the object numbers that lie on top of object n. Then the tracking
model is given by

min
z,τ ,θ

N∑
n=1

∫
Ω

(g(x)− cnin)2
(
1−H

(
Φn
ξn(x)

)) ∏
kεK

H
(
Φk
ξk(x)

)
dx

+
∫

Ω
(g(x)− cout)2

N∏
n=1

H
(
Φn
ξn(x)

)
dx,

(4.14)

where

cnin =
∫

Ω g(x)
(
1−H

(
Φn
ξn(x)

))∏
kεK H

(
Φk
ξk(x)

)
dx∫

Ω

(
1−H

(
Φn
ξn(x)

))∏
kεK H

(
Φk
ξk(x)

)
dx

,

cout =

∫
Ω g(x)

N∏
n=1

H
(
Φn
ξn(x)

)
dx

∫
Ω

N∏
n=1

H
(
Φn
ξn(x)

)
dx

.

(4.15)

The extension of (4.14) to combine rigid and nonrigid case is straightforward. The
displacement field is added as a parameter in addition to translation and rotation, so
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the model becomes
min
~r

αDseg[~r] +
N∑
n=1
E [rn]. (4.16)

The segmentation measure Dseg[~r] is denoted in short by Dseg and defined as

Dseg ≡
N∑
n=1

∫
Ω

(g(x)− cnin)2 (1−H (Φn
Ψn(x)))

∏
kεK

H
(
Φk

Ψk(x)
)
dx

+
∫

Ω
(g(x)− cout)2

N∏
n=1

H (Φn
Ψn(x)) dx.

(4.17)

cnin and cout are similar to the definition in the rigid case, but replacing Φn
ξn(x) with

Φn
Ψn(x) ≡ Φn (Ψn(x)). The transform Ψn(x) is as defined in (4.8) using the optimal

parameters obtained from the rigid step.

We note that in segmentation based trackers, occlusion is detected and handled
separately from the segmentation. For instance, the tracking method given by Yilmaz
and Shah [55] first segments objects with a segmentation functional, and then sepa-
rately detects and recovers occlusion. Our model uses the segmentation functional as
a similarity measure. The minimization process handles the occlusion and a separate
procedure is not required.

For the rigid case, once the unoccluded part of the object is correctly tracked, then
the estimate for the contour in the occluded part is obtained as well. This may not be
the case for nonrigid tracking. Consider Figure 4.5(c) and Figure 4.5(d). The combined
rigid and nonrigid model (Section 4.1.3) is applied to track the white and gray objects.
Suppose the rigid tracking step has been performed. Thus part of the contour for the
white object has already moved to the occluded region. Now the nonrigid model is
applied using the new energy functional (4.16). The contours in both Figure 4.5(c) and
Figure 4.5(d) would give rise to the same minimum similarity measure. The reason is
that the average intensity is computed over the unoccluded region, so it will not be
changed by a change in object shape in the occluded region. Moreover, the difference
between the average intensity and the target frame is computed over the unoccluded
region only, so the difference measure will also not change. In other words, the energy
functional would not differentiate the two cases. In fact, one can select any contour for
the white object in the occluded region and get the same value for the segmentation
energy. The minimization process, however, will lead to the results in Figure 4.5(d).
Also, the regularization term allows for only small deformations. Thus, after the rigid
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tracking step, the contour in the occluded region will remain more or less unchanged,
while the nonrigid model captures the contour of the occluded part.

The segmentation measure devised here is based on the assumption that the images
in the video are composed of uniform intensity regions. This assumption is similar to
the one in Chan-Vese model, where the image is composed of two distinct uniform
intensities. However, more sophisticated measures may easily be devised from other
level set segmentation methods, such as Yilmaz et al. [55], which can detect regions
based on appearance characteristics.

4.3 Color Images

Color images can be represented in different color spaces. Red-Blue-Green (RGB)
is the most common color representation on digital images. Alternative represen-
tations include Hue-Saturation-Lightness (HSL), Hue-Saturation-Value (HSV), and
Luma-Chrominane (Y’UV) among others. Tracking in color image sequences can be
done using any of the color spaces. We use RGB format for our model with the color
channels q ∈ Q = {red, green, blue}. Each video frame is represented by the three
intensity images 〈F q(x, t)〉, target frame by 〈gq(x)〉, object intensities by 〈Iq,n(x)〉,
and the reconstructed image denoted by〈Rq (x, z, τ ,θ,~r)〉. The objects can be tracked
independently in the three component images. This results in a set of three functionals
- one for each color channel, which are as following:

min
~r

(
α
∥∥∥Rred (·, z, τ ,θ,~r)− gred(·)

∥∥∥2

2
+

N∑
n=1
E [rn]

)
,

min
~r

(
α ‖Rgreen (·, z, τ ,θ,~r)− ggreen(·)‖2

2 +
N∑
n=1
E [rn]

)
,

min
~r

(
α
∥∥∥Rblue (·, z, τ ,θ,~r)− gblue(·)

∥∥∥2

2
+

N∑
n=1
E [rn]

)
.

(4.18)

The three objective functionals are solved simultaneously. Since the system is overde-
termined, least squares method is used to yield a single displacement field for each
object. The approach is to minimize over the sum of the norm of the difference image
for the three color channels, which can be written as:
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min
~r

α∑
q∈Q
‖Rq (·, z, τ ,θ,~r)− gq(·)‖2

2 +
N∑
n=1
E [rn]

 (4.19)

The minimum of the summed similarity measure may not coincide with the minimum
of similarity in individual color channels. The approach works because it gives the
best estimate of the actual displacement in the sense of least squares fitting. The
segmentation based measure can be extended in a similar manner by summing the
measure in the RGB color channels. Note that we have left out describing the rigid
tracking step but the objective functionals for it are similar to those discussed in
4.1.1.2. Also, the reconstruction measures in (4.19), are restated in the form of (4.26)
when it is actually implemented.

In the alternate color image representation, the HSV color space can be used to gain
control over certain aspects of tracking. For instance, if the object changes intensity
from frame to frame because of shadows, this change is reflected mostly in the Value
component of the HSV space. In order to make tracking less sensitive to shadows and
illumination, the weight of the Value component may be set to zero or a small number,
and tracking can be done with the Hue-Saturation components alone.

4.4 Minimizers for Tracking Model

In this section, we will compute the equations for minimizing the tracking models
(4.9), (4.16), and (4.19). In this first part, the gradient of the models are derived with
respect to the rigid transform parameters. In the second part, the Euler-Lagrange
equations are obtained for solving the nonrigid tracking step.

For the sake of brevity, we will first define some terms that will be used in the rest
of this thesis, before deriving the minimizers of the tracking model. Let

K1 = {1, . . . , N} \{n},
K2 = {z(1), . . . , z(m− 1)} , s.t. z(m) = n,

K3 = {z(m+ 1), . . . , z(N)} , s.t. z(m) = n, (4.20)
K4 = {z(m+ 1), . . . , z(N)} , s.t. z(m) ∈ K2,

K5 =K4\{n},
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where K1 is the set of object indices except for the object n, K2 is the set of object
indices occluded by object n, K3 is the set of object indices occluding object n, K4 and
K5 is the set of object indices that occlude an object that is itself occluded by object
n, with K4 including object n and K5 excluding it. The following are also defined:

T1 = δ
(
Φn
χn(x)

)
∇Φn

χn(x)∂χ
n

∂s
, T2 =

∏
kεK3

H
(
Φk
χk(x)

)
,

T3 =
(
1−H

(
Φk
χk(x)

)) ∏
k̄εK5

H
(
Φk̄
χk̄

(x)
)
, T4 =

∏
k∈K1

H
(
Φk
χk(x)

)
, (4.21)

T5 =
(
1−H

(
Φn
χn(x)

))
T2, T6 =

N∏
n=1

H
(
Φn
χn(x)

)
,

T7 =
(
1−H

(
Φk
χk(x)

)) ∏
k̄εK4

H
(
Φk̄
χk̄

(x)
)
.

Here δ (x) is the Dirac delta function, ∇Inχn(x) and ∇Φn
χn(x) are the gradients of

transformed intensity image and level set function. In the rigid tracking step, we
denote the tracking parameter and transform to be sn ∈ {τn, θn} and χn(x) = ξn(x)
respectively, and, in the nonrigid tracking step, to be sn = rn(x̂) and χn(x) = Ψn(x)
respectively .

4.4.1 Rigid Step - Gradient

For the rigid tracking step, the reconstruction measure is similar to (4.11), but replacing
Ψn(x) with ξn(x). Levenberg-Marquardt algorithm is used to solve the rigid model
which requires the similarity measure be expressed as a sum of the squares terms. So,
the terms associated with the level set functions also squared. This does not change
the minimum of the model and allows use of nonlinear least squares optimization. It
is then written as:

Drec =
N∑
n=1

∫
Ω

(Dn
1 )2 dx +

∫
Ω

(D2)2 dx, (4.22)

where
Dn

1 =
(
Inξn(x)− g(x)

)
T5, D2 = (B(x)− g(x))T6. (4.23)
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Let sn ∈ {τn, θn} belong to the set of rigid transform parameters for object n. The
gradient of the terms (4.23) with respect to the model parameters are

∂Dn
1

∂sn
= T1

(
Inξn(x)− g(x)

)
T2 +∇Inχn(x)∂ξ

n

∂sn
T5,

∂D2
∂sn

= T1 (B(x)− g(x))T4.

(4.24)

The derivative of the spatial transform is

∂ξn

∂sn
=


1 sn = τn,
∂Qθn

∂θn
x sn = θn,

(4.25)

where the derivative of the rotation matrix for two dimensional case, i.e. d = 2, is

∂Qθn

∂θn
=
[
− sin θ cos θ
− cos θ − sin θ

]
.

The segmentation measure (4.17) is similarly written as

Dseg =
N∑
n=1

∫
Ω

(Dn
2 )2 dx +

∫
Ω

(D4)2 dx, (4.26)

where

Dn
3 = (g(x)− cnin)T5, D4 = (g(x)− cin)T6. (4.27)

The gradient of the terms (4.27) are

∂Dn
3

∂sn
= −T1 (g(x)− cnin)T2 −

∂cnin
∂sn

T5,

∂D4
∂sn

= T1 (g(x)− cout)T4 −
∂cout

∂sn
T6,

(4.28)

where for k ∈ K2

∂cnin
∂sn

= −
∫
Ω g(x)T1T2dx∫

Ω T5dx
+
∫

Ω g(x)T5dx
∫

Ω T1T2dx
(
∫

Ω T5dx)2 , (4.29a)

∂ckin
∂sn

=
∫

Ω g(x)T1T3dx∫
Ω T7dx

−
∫

Ω g(x)T7dx
∫

Ω T1T3dx
(
∫

Ω T7dx)2 , (4.29b)

40



∂cout

∂sn
=
∫

Ω g(x)T1T4dx∫
Ω T6dx

−
∫

Ω g(x)T6dx
∫

Ω T1T4dx
(
∫

Ω T6dx)2 . (4.29c)

The gradient of the rigid tracking model gives the direction for steepest ascent and
descent with respect to the rigid tracking parameters. It is required for computing the
minimizers when using least squares based optimization algorithms, such as Gauss-
Newton and Levenberg-Marquardt method. In the next chapter, the gradient will be
used for solving the rigid tracking step; Section 5.3.

4.4.2 Nonrigid Step - Euler-Lagrange Equations

For the regularization term in the tracking model we can either use the linear elastic
model (3.4) or substitute the regularizer with the viscous fluid model (3.6). Although
it is possible to use either of these options, we choose to use the viscous fluid regularizer
for reasons which we discuss here in short. The linear elastic model allows only small
linear deformations in the body. The elastic regularization term used in the tracking
model is, therefore, restrictive in the shape change of the tracked object. This can
cause the tracked contour to not match the actual contour of the object. The fluid
model, on the other hand, describes motion of viscous fluids and so allows nonlinear
deformation in the object.

For the nonrigid step, we derive the Euler-Lagrange equations (refer to [50] for
details) of (4.9) with respect to displacement rn ≡ rn(x̂) and keeping the rigid pa-
rameters fixed as obtained from the rigid step. The elastic regularizer is used in the
derivation of Euler-Lagrange equations. Similar to the fluid registration model (see
3.2.4), we replace the elastic PDE with the viscous fluid PDE, while keeping the body
force the same. For the sake of brevity, we skip listing the elastic equations and di-
rectly provide the fluid equations. Objects are then tracked by solving the following
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equations:

µ4v1 + (λ+ µ)∇
(
∇.v1

)
= α

∂Drec
∂r1 , v1 = ∂r1

∂t̄
+∇r1 v1,

µ4v2 + (λ+ µ)∇
(
∇.v2

)
= α

∂Drec
∂r2 , v2 = ∂r2

∂t̄
+∇r2 v2,

... ...

µ4vN + (λ+ µ)∇
(
∇.vN

)
= α

∂Drec
∂rN , vN = ∂rN

∂t̄
+∇rN vN ,

(4.30)

where t̄ is the time for computing the velocity from the displacement. This time t̄
is different from the video time t which is used to denote the frame number. Each
object has associated with it two equations, for a total of 2N equations for N objects.
The first one is for computing the velocity of the object and the second one is for
computing the updated displacement from the velocity. The body force b(x) is given
by the variation of the similarity measure Drec (4.26):

∂Drec
∂rn =T1

(
− (InΨn(x)− g(x))2 T2 +

∑
kεK2

(
IkΨk(x)− g(x)

)2
T3

+ (B(x)− g(x))2 T4

)
+ 2 (InΨn(x)− g(x))∇InΨn(x)∂Ψn

∂rn T5

(4.31)

where the terms are as defined previously in (4.20) and (4.36). The derivative of the
spatial transform used in the definitions is

∂Ψn

∂rn = −1,

as it follows from straightforward differentiation. The solution of (4.30) is not exactly
the solution of (4.9). However, by using the fluid model, large nonlinear deformation
in the object shape can be captured as opposed to when using the elastic model and
tracking results will be better.

There are two components of the force in (4.31). One is on the boundaries of
the objects arising from the first three terms, and the other is inside the unoccluded
region of the objects coming from the last term. Force is nonzero where there is a
difference in intensity between the target frame and the reconstruction, and, zero in
regions where there is no difference. The second component of force is scaled by the
gradient of the intensity image of the object so that stronger gradients will give rise to
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higher magnitude forces. The edges corresponding to the gradients inside the object,
implicitly act as features to be registered. A sharper edge means more information
is available in its region with which to drive the registration. Note that the force
is zero inside the occluded region since all the terms in (4.31) are computed on the
unoccluded part of the object. This keeps the shape of the occluded regions intact
while still deforming the unoccluded regions. The fluid PDE (3.6) produces a smooth
deformation. The occluded parts of the object will thus deform sufficiently with the
rest of the object so as to result in a smooth object boundary.

Similarly, the Euler-Lagrange equations for the segmentation measure model (4.16)
are:

µ4v1 + (λ+ µ)∇
(
∇.v1

)
= α

∂Dseg
∂r1 , v1 = ∂r1

∂t̄
+∇r1 v1,

µ4v2 + (λ+ µ)∇
(
∇.v2

)
= α

∂Dseg
∂r2 , v2 = ∂r2

∂t̄
+∇r2 v2,

... ...

µ4vN + (λ+ µ)∇
(
∇.vN

)
= α

∂Dseg
∂rN , vN = ∂rN

∂t̄
+∇rN vN .

(4.32)

where Dseg is the segmentation measure given in (4.17). From calculus of variations,
we obtain

∂Dseg
∂rn =T1

(
− (g(x)− cnin)2 T2 +

∑
kεK2

(
g(x)− ckin

)2
T3

+ (g(x)− cout)2 T4

)
− 2 (g(x)− cnin) ∂c

n
in

∂s
T5

−
∑
kεK2

2
(
g(x)− ckin

) ∂ckin
∂s

T7 − 2 (g(x)− cout)
∂cout

∂rn T6,

(4.33)

where the terms are as defined previously in (4.20), (4.36), (4.29a), (4.29b) and (4.29c),
but with sn = rn and the variation of the spatial transform

∂Ψn

∂rn = −1.

For color images, using the model in (4.19) and the definition of the reconstruction
measure in (4.35), the corresponding Euler-Lagrange equations are similar to (4.32)
with
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∂Drec
∂rn =

∑
q∈Q

T1

(
− (Iq,nΨn (x)− gq(x))2 T2 +

∑
kεK2

(
Iq,kΨk (x)− gq(x)

)2
T3

+ (Bq(x)− gq(x))2 T4

)
+ 2 (Iq,nΨn (x)− gq(x))∇Iq,nΨn (x)∂Ψn

∂rn T5

,
where Q = {red, green, blue}. Note that the forces produced by the three color
channels are simply added to give a net force at a given point. The color channel
in which the difference between the reconstruction and the target image is higher
will influence the net force more. The Euler-Lagrange equations thus tend to reduce
the measure more in that channel as opposed to the others. The extension of the
segmentation model to color images is similar to the extension in reconstruction model.
The forces are computed in each channel by (4.33) and summed to give a net force.
The net force is then the body force used in the equations (4.32).

4.5 Force on Object Boundary

The Dirac delta function δ (x) present in the variation of the reconstruction and seg-
mentation measures is not possible to compute numerically as it is defined to be in-
finity at a single point x = 0. Instead a regularized version δε (x) is used as an
approximation, such that limε→0 δε(x) = δ(x). The Heaviside step function defined as
H(x) =

∫∞
−∞ δ (x) dx, is also regularized to correspond with the use of regularized delta

function. One choice for the functions are a C∞(Ω) regularization given in [13]

Hε(x) = 1
2

(
1 + 2

π
tan−1

(
x

ε

))
,

δε (x) = ε/π

x2 + ε2 .

(4.34)

Notice that the function Hε (Φ(x)) > 0, for Φ(x) < 0 (Figure 4.6(a)) as opposed to
H (Φ(x)) = 0, for Φ(x) < 0 (Figure 4.6(b)), and δε (Φ(x)) 6> 0, for Φ(x) 6= 0 (Figure
4.6(a)), compared with δ (Φ(x)) = 0, for Φ(x) 6= 0.

The approximate step and delta functions are used in the terms of (4.21). Thus,
the object intensity images present in all the terms of (4.31), are evaluated inside
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Figure 4.6: (a) The plot of the regularized step function and delta function. (b) The
step function with regularized delta function. The object inside and outside region is
defined by the level set function.
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the object boundary as well as outside. However, object intensity is only defined
inside the object region, with its outside undefined. This may give incorrect tracking
results. Consider an object being tracked in Figure 4.7, with the initial frame in (4.7a)
and target frame in (4.7b). The object is shown overlayed on a pixel grid, with the
boundary lying between two pixels. Though not shown in the figure, the inside region
of the object intensity template is white and outside is black, while the background
intensity is black. Two boundary forces act on the object according to (4.31). The
term T1 = (InΨn(x)− g(x))2 T2 is the magnitude of the inward pulling force, and,
T2 = (B(x)− g(x))2 T4 is the magnitude of the outward pulling force, and the net
force magnitude is −T1+T2. These terms are evaluated at pixels on both sides of the
object boundary since the regularized step and delta functions are used. The figures
show only the force acting on one pixel at a time, but it is the same for all pixels lying
around the top boundary. The net force on the object boundary in Figure 4.7(a),
evolves the object outwards to result in the object in Figure 4.7(b). It should stop
evolving at this stage as it has deformed into the object in the target frame. This,
however, is not the case, since the net force on the object boundary in Figure 4.7(b)
is nonzero due to T2 > 0. The boundary force evolves the object further outwards to
result in the object in Figure 4.7(c), which has pixels captured from the background.
In Figure 4.7(c), the net force is still nonzero because T1 > 0, but this time it pulls the
object inwards resulting in the same configuration as Figure 4.7(b). The contour thus
keeps oscillating between these positions. Eventually, when the solution to the system
in (4.30) converges, some pixels from the background are often incorrectly classified
as part of the object. Such an issue does not arise in segmentation based measures
since segmentation models do not use object intensity templates. Instead they work by
taking into account explicitly whether a pixel in a target frame belongs to a particular
object or the background. Thus for the segmentation models the regularized step and
delta functions are used.

The boundary force on the object depends on how the object intensity templates
are defined. But since it is not apparent what the object intensity should be in regions
outside its boundary, it may not make sense to evaluate the image difference terms of
(4.31) outside the defined object region. The model is modified so that the terms do
not get evaluated in regions of undefined intensity. The reconstruction measure in the
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Figure 4.7: Evolution of the object contour in a scene with a single object using model
terms (4.21) with regularized step and delta functions. (a) The initial frame, (b) the
target frame, and (c) the incorrect object contour, show different stages in the evolution
of object shape.
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model is then modified to

Drec =
N∑
n=1

∫
Ω

(InΨn(x)− g(x))2 (1−H (Φn
Ψn(x)))2 ∏

kεK

H
(
Φk

Ψk(x)
)2
dx

+
∫

Ω
(B(x)− g(x))2

N∏
n=1

H (Φn
Ψn(x))2 dx,

(4.35)

where the inside and outside region terms have been squared compared to (4.31). Its
gradient with respect to rigid parameters and variation with respect to displacement
is given by (4.31) respectively with the terms in it redefined as

T1 = 2δε (Φn
Ψn(x))∇Φn

Ψn(x)∂Ψn

∂s
,

T2 = (1−H (Φn
Ψn(x)))

∏
kεK3

H
(
Φk

Ψk(x)
)2
,

T3 =
(
1−H

(
Φk

Ψk(x)
))2

H (Φn
Ψn(x))

∏
k̄εK5

H
(
Φk̄

Ψk̄(x)
)2
, (4.36)

T4 = H (Φn
Ψn(x))

∏
k∈K1

H
(
Φk

Ψk(x)
)2
,

T5 = (1−H (Φn
Ψn(x)))T2.

The terms associated with the step function in (4.35) have been squared so that it
introduces extra terms in (4.36) as compared to (4.21). These extra terms alongwith
the use of step function (Figure 4.6(b)), instead of the regularized version, prevents
any evaluations of terms in (4.31) outside of defined object intensity regions. However,
the delta function still needs to be regularized; otherwise, the boundary terms of (4.31)
will not be evaluated unless the boundary happens to lie exactly on a pixel. Figure
4.8 demonstrates forces being computed with the modified model. The inward pulling
force is identitcally zero outside the object region, while the outward pulling force is
zero inside the object. The modified model produces correct results as shown in Figure
4.8(b), where all the forces become zero so that there is no more deformation of object
shape. Note that the squaring of the terms in (4.35) does not change the minimum of
the model.
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Figure 4.8: Evolution of the object contour in a scene with a single object using model
terms (4.36) with step and regularized delta functions. (a) The initial frame, and (b)
the target frame, show the evolution of object shape.

49



Chapter 5

Numerical Implementation

In this chapter, implementation details for the tracking model are given. This involves
solving the rigid and nonrigid step of the combined tracking model, 4.1.3. The rigid
part is solved using the Levenberg-Marquardt algorithm and the nonrigid part is solved
using PDE discretization by finite difference method. Both the steps have a high
computational complexity which are later addressed at the end.

5.1 Space and Time Discretization

In this chapter, the image domain is considered as two dimensional, i.e., Ω ∈ [0, 1]2,
with each point in the domain represented by x = (x, y)>. So far, images have been
considered as continuous functions defined over the image domain. In practice, the
images are stored in digital format, so function values are available only on discrete
points (pixels) in the domain, spaced at regular intervals from each other. Suppose
the video frame and intensity template images consist of Mx ×My pixels. The image
domain Ω = [0, 1]2 is discretized into a regular grid, with pixels located at (xi, yj)

xi = i

hx
, for i = 1, 2, . . . ,Mx,

yj = j

hy
, for j = 1, 2, . . . ,My,
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where the spacing between adjacent pixels in each dimension is given by

hx = 1
Mx + 1 , hy = 1

My + 1 .

The function values at the pixel locations are denoted by the following

F t
i,j = F (xi, yj, t),
fi,j = f(xi, yj), gi,j = g(xi, yj).

Other functions are discretized in a similar manner, with subscripts (i, j) indicating
its discretized version.

The time dimension involved in the fluid model PDEs (4.30) and (4.32), is also
discretized. Let [0, T̄ ] be the time interval for solving the PDE. This interval is dis-
cretized into L regular time steps. Time at each step is denoted by t̄` = `4t̄ for
` = 1, . . . , L and 4t̄ = T̄ /L. The functions that evolve with this time are denoted by
the superscript `. For instance, the level set function for object n evolving in time are
represented by

(Φn
Ψn)`i,j ≡ Φn

(
Ψn,`(xi, yj)

)
,

intensity templates by
(InΨn)`i,j ≡ In

(
Ψn,`(xi, yj)

)
,

and nonrigid transform by

(Ψn)`i,j ≡ (x̂i, ŷj)− rn,`(x̂i, ŷj),

where (x̂, ŷ)> = ξ̂n(x, y) = Qθn(x, y)> + (τ̂nx , τ̂ny )> is the optimal transform from the
rigid step.

5.2 Interpolation

The function values for images and level sets are available only at the pixel locations.
The transforms acting on these functions may require function values be computed on
a point that does not coincide with a pixel. Interpolation is required to compute these
values. More precisely, let (x, y) = χn(xi, yj). In Figure 5.1, the point (x, y) lies in the
middle of a region surrounded by four adjacent pixels (xp, yq), (xp+1, yq), (xp, yq+1),
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Figure 5.1: The figure shows pixels in the deformed object intensity image being
interpolated from the pixels inside the initial object intensity image. The three types
of interpolation displayed are interpolation between two, three, and four pixels from
inside the object region in the initial object, and one case of a single pixel in which
there is no interpolation.

and (xp+1, yq+1). Bilinear interpolation from these four pixels locations is normally
performed to compute the function values:

(Φn
χn)i,j ≈

(xp+1 − x)
hx

(yp+1 − y)
hy

Φn
p,q + (xp − x)

hx

(yp+1 − y)
hy

Φn
p+1,q

+ (xp+1 − x)
hx

(y − yp)
hy

Φn
p,q+1 + (x− xp)

hx

(y − yp)
hy

Φn
p+1,q+1,

(5.1)

(Inχn)i,j ≈
(xp+1 − x)

hx

(yp+1 − y)
hy

Inp,q + (xp − x)
hx

(yp+1 − y)
hy

Inp+1,q

+ (xp+1 − x)
hx

(y − yp)
hy

Inp,q+1 + (x− xp)
hx

(y − yp)
hy

Inp+1,q+1.

(5.2)

The bilinear interpolation, though suitable for object interior and level set function,
cannot be used for object intensity images near object boundaries. Some of the four
pixels adjacent to (x, y) may lie outside the object region. Since the intensity is not
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defined outside the object region (refer Section 4.5), (5.2) cannot be used. Interpolation
is thus carried out using only the pixels lying inside the object. In case there is only
one pixel inside the object, the value from that pixel is assigned. In the case of two
pixels, if the two pixels lie along an axis, a line interpolates between the two pixels.
The value at the required point is computed at the point lying closest to it on the line.
If the two pixels are across from each other, then the nearest neighbor value is assigned
to (Inχn)i,j. For three pixels, a plane is defined and the required value is computed from
the equation of a plane. One scenario of each of these cases is presented in Figure 5.1.

Interpolation techniques discussed here allow the images to be treated as continuous
functions. Other techniques such as spline and wavelets may also be used, but the ones
discussed here suffice. Both the rigid and nonrigid components of the tracking process
use interpolation in the following sections.

5.3 Implementation: Rigid

In this section the implementation of the rigid tracking step is described. The model
equation terms are first discretized. The Jacobian of the vector function is then de-
rived. Later, the Levenberg-Marquardt algorithm is used to compute the optimal rigid
parameters.

5.3.1 Discretization

The integrals in the reconstruction (4.22) and segmentation (4.26) measures are dis-
cretized in space with a rectangular quadrature,

Drec ≈
Mx∑
i=1

My∑
j=1
Dreci,j , (5.3a)

Dseg ≈
Mx∑
i=1

My∑
j=1
Dsegi,j , (5.3b)

where

Dreci,j =
N∑
n=1

((Dn
1 )i,j)2 + ((D2)i,j)2 (5.4a)
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Dsegi,j =
N∑
n=1

((Dn
3 )i,j)2 + ((D4)i,j)2 . (5.4b)

The terms (4.23) and (4.27) in the model are discretized as

(Dn
1 )i,j ≈

(
(Inξn)i,j − gi,j

)
(T5)i,j

√
hxhy, (D2)i,j ≈ (Bi,j − gi,j)(T6)i,j

√
hxhy, (5.5a)

(Dn
3 )i,j ≈ (gi,j − cnin)(T5)i,j

√
hxhy, (D4)i,j ≈ (gi,j − cout)(T6)i,j

√
hxhy. (5.5b)

For the segmentation measure, the average inside and outside intensity is computed
from the discretization of (4.15):

cnin ≈
∑Mx
i=1

∑My
j=1 gi,j(T5)i,jhxhy∑Mx

i=1
∑My
j=1(T5)i,jhxhy

, cout ≈
∑Mx
i=1

∑My
j=1 gi,j(T6)i,jhxhy∑Mx

i=1
∑My
j=1(T6)i,jhxhy

.

To compute the Jacobian of the similarity measure, the derivatives of (5.5a) and (5.5b)
with respect to the rigid model parameters need to be derived, which are as follows:(

∂Dn
1

∂sn

)
i,j

≈
(
−(T1)i,j

(
(Inξn)i,j − gi,j

)
(T2)i,j

)√
hxhy (5.6a)

+
((
∇∇Inξn

)
i,j

∂ξn

∂sn
(T5)i,j

)√
hxhy,(

∂D2
∂sn

)
i,j

≈ (T1)i,j (Bi,j − gi,j) (T4)i,j, (5.6b)(
∂Dn

3
∂sn

)
i,j

≈
(
−(T1)i,j (gi,j − cnin) (T2)i,j −

∂cnin
∂sn

(T5)i,j
)√

hxhy, (5.6c)(
∂D4
∂sn

)
i,j

≈
(

(T1)i,j (gi,j − cout) (T4)i,j −
∂cout

∂sn
(T6)i,j

)√
hxhy, (5.6d)

where ∂ξn/∂sn is given by (4.25) and the derivatives of average inside and outside
intensities are

∂cnin
∂sn
≈ −

∑Mx,My
i=1,j=1 gi,j(T1)i,j(T2)i,j∑Mx,My

i=1,j=1(T5)i,jhxhy
(5.7a)

+

(∑Mx,My
i=1,j=1 gi,j(T5)i,j

∑Mx,My
i=1,j=1(T1)i,j(T2)i,j

)
(hxhy)2(∑Mx,My

i=1,j=1(T5)i,jhxhy
)2 ,
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∂ckin
∂sn
≈
∑Mx,My
i=1,j=1 gi,j(T1)i,j(T3)i,jhxhy∑Mx,My

i=1,j=1(T7)i,jhxhy
(5.7b)

−
(∑Mx,My

i=1,j=1 gi,j(T7)i,j
∑Mx,My
i=1,j=1(T1)i,j(T3)i,j

)
(hxhy)2(∑Mx,My

i=1,j=1(T7)i,jhxhy
)2 ,

∂cout

∂sn
≈
∑Mx,My
i=1,j=1 gi,j(T1)i,j(T4)i,jhxhy∑Mx,My

i=1,j=1(T6)i,jhxhy
(5.7c)

−
(∑Mx,My

i=1,j=1 gi,j(T6)i,j
∑Mx,My
i=1,j=1(T1)i,j(T4)i,j

)
(hxhy)2(∑Mx,My

i=1,j=1(T6)i,jhxhy
)2 .

The gradient of the object intensity image and the level set function, present in
(5.13a) and T1 respectively, are approximated by central finite differences:

(
∇Inξn

)
i,j
≈


(Inξn)i+1,j − 2(Inξn)i,j + (Inξn)i−1,j

h2
x

(Inξn)i,j+1 − 2(Inξn)i,j + (Inξn)i,j−1

h2
y

 , (5.8a)

(
∇Φn

ξn

)
i,j
≈


(Φn

ξn)i+1,j − 2(Φn
ξn)i,j + (Φn

ξn)i−1,j

h2
x

(Φn
ξn)i,j+1 − 2(Φn

ξn)i,j + (Φn
ξn)i,j−1

h2
y

 . (5.8b)

In the implementation, the object is not rotated in the rigid step. Since most of
the object’s rigid motion arises from translation in many videos sequences, rotation
can be ignored in these instances. Small degrees of rotation is still captured by the
nonrigid step so that tracking works accurately. The rotation matrix is set to be the
identity matrix, i.e., Qθn = I2, so that ξn(x, y) = (x, y)> + (τnx , τny )>.

5.3.2 Algorithm

The rigid step of the model is solved using Levenberg-Marquardt algorithm [22] which is
based on the Gauss-Newton [22] and gradient descent method. The algorithm requires
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the similarity measure (5.3a) and (5.3b) be expressed as sum of the squares. The
similarity measure is expressed in terms of its components, and assembled into a vector
ℝ(N+1)MxMy given by

~Drec [~s] =
(

(D̄1
1)m · · · (D̄N

1 )m (D̄2)m
)>
,

~Dseg [~s] =
(

(D̄1
3)m · · · (D̄N

3 )m (D̄4)m
)>
,

(5.9)

where 
(D̄n

1 )m = (Dn
1 )i,j, (D̄2)m = (D2)i,j,

(D̄n
3 )m = (Dn

3 )i,j, (D̄4)m = (D4)i,j.

m = j +My(i− 1)
1≤i≤Mx

1≤j≤My

The parameters are also assembled into a vector ℝ2N

~s =
[
τ 1
x , τ

1
y , τ

2
x , τ

2
y , . . . , τ

N
x , τ

N
y

]>
.

It also requires computing the Jacobian of the similarity measures vector (5.9), which
is a matrix ℝ(N+1)MxMy×2N . The columns of the Jacobian matrix are as follows:

J rec [~s] =
∂ ~Drec
∂τ 1 ,

∂ ~Drec
∂τ 2 , . . . ,

∂ ~Drec
∂τN

 ,
J seg [~s] =

∂ ~Dseg
∂τ 1 ,

∂ ~Dseg
∂τ 2 , . . . ,

∂ ~Dseg
∂τN

 .
(5.10)

where

∂ ~Drec
∂τn

=



(
∂D̄1

1
∂τnx

)
m

(
∂D̄1

1
∂τny

)
m

...(
∂D̄N

1
∂τnx

)
m

(
∂D̄N

1
∂τny

)
m(

∂D̄2
∂τnx

)
m

(
∂D̄2
∂τny

)
m


,

∂ ~Dseg
∂τn

=



(
∂D̄1

3
∂τnx

)
m

(
∂D̄1

3
∂τny

)
m

...(
∂D̄N

3
∂τnx

)
m

(
∂D̄N

3
∂τny

)
m(

∂D̄4
∂τnx

)
m

(
∂D̄4
∂τny

)
m


.

The derivatives are given by

(
∂D̄n̄

1
∂sn

)
m

=
(
∂Dn̄

1
∂sn

)
i,j

,

(
∂D̄2
∂sn

)
m

=
(
∂D2
∂sn

)
i,j

,

(
∂D̄n̄

4
∂sn

)
m

=
(
∂Dn̄

3
∂sn

)
i,j

,

(
∂D̄4
∂sn

)
m

=
(
∂D4
∂sn

)
i,j

,

n̄ = 1, . . . , N
m = j +My(i− 1)

1≤i≤Mx

1≤j≤My
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with the model parameters sn = {τnx , τny }.
The Levenberg-Marquardt algorithm starts with an initial estimate ~s0 of the pa-

rameter vector and computes updates to it by the following relation

~s`+1 = ~s` +
(
J >J + η`diag(J >J )

)−1 J > ~D.

Here, ~D = ~Drec or ~Dseg and J is the Jacobian matrix from (5.10). The parameter
η` ∈ ℝ+ is adjusted in each iteration to obtain gradient descent like behavior when ~s`
is far from the minimum and Gauss-Newton like behavior when it is close. The details
of the procedure are given in Algorithm 5.1.
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Algorithm 5.1 Levenberg-Marquardt for Rigid Tracking
Input: Object information: Φn(xi, yj), In(xi, yj) for n = 1, 2, . . . , N ,

Initial parameters: ~s0, η0,

Trust region parameters: 0 < ω̄down < 1 < ω̄up, and µ̄0 ≤ µ̄low < µ̄high.

Output: Optimal parameters: ŝ.

Compute residual vector ~D [~s`] from (5.9), and Jacobian J := J [~s`] from (5.10).
1: `← 0, TERMINATE ← false
2: repeat
3: ~s`+1 ←

(
J >J + η`diag(J >J )

)−1 J > ~D [~s`]
4: δs← ~s`+1 − ~s`
5: if ` = `max or

∥∥∥J > ~D [~s`]
∥∥∥
∞
≤ ε1 or δs/~s` ≤ ε2 or

∥∥∥ ~D [~s`]
∥∥∥

2
≤ ε3 then

6: TERMINATE ← true
7: else
8: ρ̄← 0
9: while ρ̄ < µ̄0 do

10: ρ̄←
(∥∥∥ ~D [~s`+1]

∥∥∥2

2
−
∥∥∥ ~D [~s`]

∥∥∥2

2

)
/
(
δs>J > ~D [~s`]

)
11: η`+1 ← max(ω̄upη`, η0)
12: ~s`+1 ←

(
J >J + η`diag(J >J )

)−1 J > ~D [~s`]
13: δs← ~s`+1 − ~s`
14: end while
15: if µ̄0 ≤ ρ̄ < µ̄low then
16: η`+1 ← max(ω̄upη`, η0)
17: else if ρ̄ > µ̄high then
18: η`+1 ← ω̄downη`
19: end if
20: if η`+1 < η0 then
21: η`+1 ← 0
22: end if
23: `← `+ 1
24: end if
25: until TERMINATE 6= true
26: ŝ← ~s`
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5.4 Implementation: Nonrigid

This section discusses the implementation of the nonrigid part of the tracking model.
The nonrigid tracking equations are discretized and a method is provided to compute
the solution. The vectors defined on the domain therefore have components along
the horizontal and vertical axis. The components of the vectors are denoted by v =
(vx, vy)>, r = (rx, ry)> and b = (bx, by)>.

5.4.1 Discretization

The Navier Lamé equations in (4.30) and (4.32), in two dimensions are written as:

A[vn] = µ4vn + (λ+ µ)∇ (∇.vn)

=
(

(λ+ 2µ) ∂xxvnx + µ∂yyv
n
x + (λ+ µ) ∂xyvny

(λ+ µ) ∂xyvnx + µ∂xxv
n
y + (λ+ 2µ) ∂yyvny

)
.

(5.11)

The derivatives in these equations are discretized and approximated by second order
central finite differences(

∂2vnx
∂x2

)`
i,j

≈ (vnx)`i+1,j − 2(vnx)`i,j + (vnx)`i−1,j

h2
x

,

(
∂2vnx
∂y2

)`
i,j

≈ (vnx)`i,j+1 − 2(vnx)`i,j + (vnx)`i,j−1

h2
y

,

(
∂2vnx
∂x∂y

)`
i,j

≈ (vnx)`i+1,j+1 − (vnx)`i+1,j−1 − (vnx)`i−1,j+1 + (vnx)`i−1,j−1

4hxhy
,

(
∂2vny
∂x2

)`
i,j

≈ (vny )`i+1,j − 2(vny )`i,j + (vny )`i−1,j

h2
x

,

(
∂2vny
∂y2

)`
i,j

≈ (vny )`i,j+1 − 2(vny )`i,j + (vny )`i,j−1

h2
y

,

(
∂2vny
∂x∂y

)`
i,j

≈ (vny )`i+1,j+1 − (vny )`i+1,j−1 − (vny )`i−1,j+1 + (vny )`i−1,j−1

4hxhy
.

The body force in (4.30) for reconstruction based models is given by

(bnx)`i,j =
(
∂Drec
∂rnx

)`
i,j

, (bny )`i,j =
(
∂Drec
∂rny

)`
i,j

, (5.12a)
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and body force in (4.32) for the segmentation based model is given by

(bnx)`i,j =
(
∂Dseg
∂rnx

)`
i,j

, (bny )`i,j =
(
∂Dseg
∂rny

)`
i,j

. (5.12b)

The variation of the similarity measures with respect to the displacement field rn =
(rnx , rny ), are also discretized to give(

∂Drec
∂rn

)`
i,j

= (T1)`i,j
(
−
(
(InΨn)`i,j − gi,j

)2
(T2)`i,j (5.13a)

+
∑
kεK2

(
(IkΨk)`i,j − gi,j

)2
(T3)`i,j + (Bi,j − gi,j)2(T4)`i,j

)

+ 2
(
(InΨn)`i,j − gi,j

)
(−1)(T5)`i,j,

(
∂Dseg
∂rn

)`
i,j

= (T1)`i,j
(
− (gi,j − cnin)2 (T2)`i,j +

∑
kεK2

(
gi,j − ckin

)2
(T3)`i,j (5.13b)

+ (gi,j − cout)2 (T4)`i,j
)
− 2 (g(x, y)− cnin)2 ∂c

n
in

∂rn (T5)`i,j

−
∑
kεK2

2
(
gi,j − ckin

) ∂ckin
∂rn (T7)`i,j − 2 (gi,j − cout)

∂cout

∂rn (T6)`i,j.

The terms (Tm)`i,j = T`m(xi, yj) form = 1, . . . , 7 as given in (4.36) for the reconstruction
model and in (4.21) for the segmentation model, are discretized in a similar manner.
The discretizations of ∂cnin/∂rn, ∂ckin/∂rn, and ∂cout/∂rn are as defined in (5.7a), (5.7b),
and (5.7c). The gradient of the intensity templates, ∇InΨn (x, y), and the level set,
∇Φn

Ψn (x, y), are discretized as in (5.8a) and (5.8b) respectively, but replacing ξn(x, y)
with Ψn,`(x, y). The equation to update the velocity for each object is(

A
[
(vnx , vny )>

])
i,j

=
(
(bnx)`i,j, (bny )`i,j

)>
. (5.14)

The time derivative in the second equation of the pairs in (4.30) and (4.32), is
discretized with the forward Euler method:(

∂rnx
∂t̄

)`
i,j

=
(rnx)`+1

i,j − (rnx)`i,j
4t̄ ,

(
∂rny
∂t̄

)`
i,j

=
(rny )`+1

i,j − (rny )`i,j
4t̄ .
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The update equation for the displacement is obtained by rearranging the terms in
(4.30) and (4.32):

(rnx)`+1
i,j = (vnx)`i,j

(
1− (rnx)`i+1,j − (rnx)`i−1,j

24t̄

)
,

(rny )`+1
i,j = (vny )`i,j

(
1− (rny )`i,j+1 − (rny )`i,j−1

24t̄

)
.

(5.15)

The Dirichlet boundary conditions are enforced for the velocity field on the bound-
ary of the image domain. These are stated by: (rnx)`i,0 = 0, (rnx)`i,My+1 = 0, (rnx)`0,j = 0, (rnx)`Mx+1,j = 0,

(rny )`i,0 = 0, (rny )`i,My+1 = 0, (rny )`0,j = 0, (rny )`Mx+1,j = 0.
i = 0, . . . ,Mx + 1
j = 0, . . . ,My + 1

The zero initial conditions are specified for velocity and displacements: (rnx)0
i,j = 0, (rny )0

i,j = 0,
(vnx)0

i,j = 0, (vny )0
i,j = 0.

i = 0, . . . ,Mx + 1
j = 0, . . . ,My + 1

5.4.2 Iteration Process

The system of equations in (4.30) and (4.32) are solved simultaneously for computing
the nonrigid deformation for all objects. Each pair of equations requires two steps,
one for computing the velocity generated by the applied body force, and the other for
computing the displacement from the velocity. The body force equations introduce
coupling into the pair of equations since velocity is computed from the force, which is
dependent on displacement, and the displacement is computed from the velocity. The
two equations are solved iteratively until the approximate solution converges to the
required solution. We use

∥∥∥vn,`∥∥∥
∞
< tol and maximum number of iterations as the

stopping criterion. At the same time iteration is also performed on the system of PDEs
to solve them simultaneously. A brief outline of the steps is provided in Algorithm 5.2.

The reconstruction based measure in (4.11) will usually be nonzero even if the
computed deformation is a global optimum. The reason is that in real world video
sequences, the object intensity may change due to changes in illumination, shadows,
and object pose. It may thus not be possible to reconstruct the target frame exactly
from the information in the previous frame. The operational assumption is that the
changes occur gradually from frame to frame so that they are easily captured by the
tracking process.
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Algorithm 5.2 Nonrigid tracking
Input: Object information: Φn(xi, yj), In(xi, yj), for n = 1, 2, . . . , N

Optimal rigid parameters: τ̂
Output: Optimal nonrigid parameters: ~r(xi, yj)

1: rn,0x ← 0, rn,0y ← 0, vn,0x ← 0, vn,0y ← 0, for n = 1, 2, . . . , N .
2: CONVERGEDn ←false, for n = 1, 2, . . . , N .
3: for ` = 0, 1, . . . , L− 1 do
4: for all n such that n = 1, 2, . . . , N and CONVERGEDn =false do
5: Compute (vnx)`+1

i,j and (vny )`+1
i,j from (5.14)

6: Compute (rnx)`+1
i,j and (rny )`+1

i,j from (5.15)
7: if

∥∥∥vn,`+1
∥∥∥
∞
< tol then

8: CONVERGEDn ←true
9: end if

10: Compute Jacobian J̄ n,` of the transformation from (5.16)
11: if mini,j

∣∣∣J̄ n,`(xi, yj)
∣∣∣ < tolJ̄ then

12: Regrid for object n
13: end if
14: end for
15: end for

5.4.2.1 Regridding

The fluid PDE requires regridding when the deformation becomes singular. The Ja-
cobian of the deformation

J̄ n,`(x, y) = Id −∇rn,`(x, y) (5.16)

is computed for each grid point, for a given object. If the determinant of the Jacobian∣∣∣J̄ n,`(x, y)
∣∣∣ = 0 for any (x, y) ∈ Ω, the transformation map is no longer bijective at that

point. To prevent singularities, the displacement field is regridded if the determinant
falls below a certain threshold, i.e., mini,j

∣∣∣J̄ n,`(xi, yj)
∣∣∣ < tolJ̄ . The regridding process

involves forming an intermediate set of deformed intensity templates and level set
functions. The velocity and displacement are then set to zero and the PDE is solved
again with the deformed objects as the initial object.
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5.5 Algorithm

In this section we give an outline of the tracking process in Algorithm 5.3. We also
discuss performance issues that arise from the computational complexity of the process,
and ways to mitigate these issues.

Step 1 of the algorithm requires the objects be initially segmented using any contour
segmentation algorithm. The segmentation provides the level set functions for the
objects which are used in the tracking. It is also assumed that all the objects are
unoccluded in the first frame so that the intensity templates for the whole object is
extracted. The tracking process is then started for all frames in the video. First the
rigid tracking step 2 is performed, which gives the estimated rigid motion parameters
as well as the depth order. After that the nonrigid tracking step is performed 3, while
keeping the depth order fixed. Once all the rigid and nonrigid tracking parameters
are obtained, the updated level sets and intensity templates are computed. The same
procedure is repeated for subsequent frames starting with the updated information.

5.5.1 Recovery of Occluded Region

During the process of tracking in a given initial frame, if all the objects are unoccluded
then the intensity information of the objects can be obtained directly from the initial
frame. However, if in a given frame objects are occluded, then the intensity infor-
mation for the occluded regions cannot be obtained from the image frame. For the
reconstruction based model, the intensity of the whole object is required in order to
form the reconstructed image. Without this piece of information tracking correctly into
the next frame is not possible. Our approach to recover the missing information is to
use the object’s intensity from the last unoccluded frame. The steps for this are given
in 4 of the algorithm. The intensity templates are updated only in the unoccluded
region of the object. The intensity information in the occluded region is retained until
that region becomes unoccluded. This way new information of the object is updated
as it becomes available, while the past information is used otherwise. Tracking can
then be performed through several frames of occlusion. Note, however, if the object
remains occluded for a long period of time, the intensity information may no longer
be accurate due to changes in the occluded region.
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Algorithm 5.3 Tracking algorithm

1. Segment objects in the first frame F (x, y, 1). For each object n = 1, . . . , N
compute the level set functions for representing the contour

Φn(x, y) ≤ 0, x inside object n,

and intensity image

In(x, y) =
F (x, y, 1) Φn(x, y) ≤ 0,

0 otherwise.

2. Rigid tracking. Solve the optimization problem (4.4) or (4.14) as outlined in
Algorithm 5.1. Denote the optimal parameters as τ̂ and ẑ.

3. Nonrigid tracking. Solve the Euler-Lagrange equations for nonrigid motion ~r
(4.32) or (4.32) as outlined in Algorithm 5.2. Use the parameters obtained from
the rigid tracking step and the transform Ψn(x) = (x̂, ŷ) + rn((x̂, ŷ)), where
(x̂, ŷ) = (x, y)> + (τ̂nx , τ̂ny )>, in these equations.

4. Update object information for the next frame. For n = 1, . . . , N

Φn(x, y) = Φn
Ψn (x, y) .

If reconstruction based measure is used also update

In(x, y) =


F (x, y, t+ 1) Φn

Ψn (x, y) ≤ 0 and Φẑ(k)
Ψẑ(k) (x, y) > 0 for k ∈ K3,

InΨn (x, y) Φn
Ψn (x, y) ≤ 0 and for any Φẑ(k)

Ψẑ(k) (x, y) ≤ 0 for k ∈ K3,

R(x, z,u) otherwise.

5. Reinitialize level sets

6. Repeat Step 2 to 5 for all frames t = 1, . . . , tmax.
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5.5.2 Level Set Reinitialization

The level set functions are initially set to the signed distance function. This is to
ensure that the gradient of the level set used in the computation of T1 is uniform
along the boundary and regions around it. The shape of the level set function, after
tracking of each frame, no longer remains a signed distance function. This may cause
numerical issues and eventually introduce a nonsmooth zero level contour. The level
set function is therefore reinitialized after every frame. One method to reinitialize the
level sets is to solve the PDE

∂Φn(x, y)
∂t̄

= 1− |∇Φn(x, y)| ,

see [42] for details. The steady state of this PDE produces a signed distance function.

5.5.3 Performance Issues

We note that the number of depth order parameters in step 2 increases in the order
of O(n!) with increasing number of objects. For instance, tracking for just four ob-
jects requires 24 different depth orders and additionally 8 translation parameters. In
practice, the objects move continuously from frame to frame in the vicinity of its past
frame location. Far away objects will not occlude each other. Thus, many of the depth
order permutations can be ignored.

It is assumed that objects do not undergo rapid motion between two frames. Sup-
pose an object may move at most 10 pixels in a direction along the x or y axis. Let a
window be constructed around each object in the initial frame by adding a fixed length
of 10 pixels along each face of its minimum bounding rectangle, which is the smallest
rectangle that fits the object. The window formalizes the notion of maximum motion
of an object from the initial frame to the target frame, as shown in Figure 5.2(b).

First, clusters of objects are detected in the scene. A cluster is a set of objects
that lie close together. There may be several such clusters, as shown in Figure 5.2(a),
but none of them share any objects between themselves, since the objects in different
clusters are far from each other. A window over the cluster is defined by forming a
minimum bounding rectangle over all of the objects in the cluster set, and adding
the fixed length of 10 pixels to it. The cluster window is larger than or equal to any
of the individual object windows inside it. Also, no two objects belonging to two
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(a) (b)

Figure 5.2: (a) shows several clusters of objects. The dotted white line is the window
over the cluster set with no overlap between any window. (b) Three objects shown in
one cluster. The dotted white window represents the maximum motion an object may
undergo.

different clusters may overlap each other since the window of objects belonging to
different clusters do not overlap. The depth order permutations for each cluster is
thus restricted to objects within the cluster set.

Each cluster itself may have several objects. Further reduction in depth orders is
therefore desirable. For each cluster, depth order permutations that test the depth
order between two objects that do not lie in each other’s window are removed. Figure
5.2(b) illustrates the idea. The three objects of white (w), light gray (lg), and dark
gray (dg) color, are shown with a dotted white window which is the limit of motion
for each object. The total depth orders for tracking to the next frame would be 3! = 6.
However, the white object cannot overlap with the dark grey object in the next frame
since there is no overlap between their motion windows. So we only need to check
three depth orders z = {(w, lg, dg) , (lg, w, dg) , (w, dg, lg)}. The other three depth
orders {(dg, w, lg) , (lg, dg, w) , (dg, lg, w)} can be ignored since if two objects do not
overlap then their position relative to each other in the depth order vector is of no
consequence. Since the first three depth orders check for the relative depth order of
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the white and light gray objects, and of the light gray and dark gray objets, which
is sufficient information to establish the full depth ordering. The other three depth
orders are redundant since the white object is assumed to not overlap with the dark
gray object.

Solving the PDE (5.14) in step 3 is computationally complex for large images. This
problem can be mitigated by solving the PDE in a window defined around each object
cluster. Nonrigid transform is therefore computed simultaneously for only those objects
that belong to the cluster set. The PDE is then solved separately for all clusters.
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Chapter 6

Results

In this chapter, results are provided for different examples and scenes, with parameter
values specified for the experiments.

6.1 General Description

The start of the tracking algorithm requires the initial level set segmentation be pro-
vided. In the examples presented here, the segmentation has been done manually
and the level sets initialized to signed distance functions with the method provided
in 5.5.2. The maximum number of iterations for the nonrigid fluid PDE is typically
set to L = 200. The Lamé constants in the viscous fluid model λ ∈ ℝ and µ ∈ ℝ+

control the deformation of the fluid. Increasing the value of µ corresponds to increas-
ing the viscosity of the fluid. Roughly speaking, a larger value of µ requires a larger
magnitude of force to produce the same deformation as a smaller value would in any
given time step. The parameter λ when positive causes contraction of the fluid in the
direction perpendicular to the direction of applied force and a negative value will cause
an expansion. For all experiments, the Lamé constants are set to λ = 0 and µ = 1.
These are set so as to provide maximum deformability for the shape of the tracked
objects and having no lateral deformation. The force scaling factor α is set such that
typically the maximum velocity in the starting iterations is in the order of 10−1. This
leads to maximum displacement on the order of 100 to 10−1 pixels in a single iteration
of the fluid PDE. The maximum motion constraint for each object is typically set to
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Figure 6.1: Tracking of a taxi using the combined rigid and nonrigid model.

10 pixels or 1.5% of image size, whichever is smaller, in each direction along x and y
axis. The extent of the level set reinitialization is set to the same number of pixels
around the boundary of the object.

6.2 Examples

In this section, examples that demonstrate various aspects of the tracking model are
presented. We start with example of a single object to test the model without occlu-
sions. Then tracking objects through occlusion, first for single object, and later for
multiple objects with both simple and complex backgrounds, are considered. All the
examples, except for moving ellipses, are run with the reconstruction based measure.
Later, the results of the image difference and segmentation measures are compared.
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6.2.1 Taxi Sequence

Consider a relatively simple example of a taxi video1 in Figure 6.1 used frequently in
tracking related papers such as [19]. In this sequence, the tracked object is a white
taxi which is making a turn on a street corner. Other moving vehicles in the video
are not tracked. The results show that the tracked contour match well with the object
boundary. Note that the rigid model in step 2 of Algorithm 5.3 does not have rotation
parameters, but the turning motion is still captured by the nonrigid model.

6.2.2 Man Sequence

This example shows tracking of a single person; see Figure 6.2. The test video is
obtained from [48] which uses a logic segmentation model for tracking. The man
enters the room from the left side and walks across it. There are also two bars present
in the video. One bar matches the color of man’s tracked region while the other bar
is of different color. The camera is static in the actual video and captures the whole
room. However, for the purpose of illustrating the contours in detail, the images in
Figure 6.2(b), are zoomed and clipped to a region around the object of interest.

This example demonstrates the occlusion tracking capability of our model. The
white boundary represents result of the logic segmentation model [48]. Whereas the
white boundary only tracks the torso, we track the whole person as shown by the red
boundary. This example demonstrates better results using our method, as can be seen
from the seventh (top-middle), twenty sixth (bottom-middle) and forty eight (bottom-
right) frame. The white boundary (their model) lies outside the man’s body whereas
the red contours from our model remain accurate. The contours in the occluded region
correspond well to the expected shape of a person.

In the video, the legs move such that they occlude themselves when crossing each
other from the camera perspective. Also, the legs have more deformation as compared
to the head and torso. For these reasons part of the background in between the legs
is also captured. In the twenty sixth and forty eight frame, the shape of the region
between the legs is slightly different to that in earlier frames. This happens when the
legs cross each other causing the region to shrink. It does not, however, affect the

1Image sequence courtesy - Prof. Dr. H.-H. Nagel, Image Sequence Server
(http://i21www.ira.uka.de/image_sequences) (1997)
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(a)

(b)

Figure 6.2: Tracking of a person walking in a room occluded by bars of two different
colors. (a) shows the whole room, and images in (b) the tracked results in a window
around the person. Frames shown are the first (top-left), seventh (top-middle), tenth
(top-right), twenty sixth (bottom-left), thirty third (bottom-middle), and forty eight
(bottom-right).
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quality of the results. The tracked contour remains close to the outer boundary of the
man’s body, whereas the background region between the legs expands and shrinks as
the legs move. In twenty sixth and thirty third frame, small errors may be observed
at the back of the man’s legs. During occlusion, large deformation of the legs in the
occluded region is not completely captured, which causes this error. These types of
errors are not corrected as the background does not change significantly from frame
to frame as has been explained in Section 4.2. However, the error does not increase to
affect the overall results significantly.

6.2.3 Moving Ellipses

The examples in Figure 6.3 and Figure 6.4 show several ellipses. The ellipses move and
change shape as shown by the frames. The pink one moves to top left, purple moves
top right, green moves right and yellow moves down. In the process, these ellipses
occlude each other in complex ways. For instance in the second image, all ellipses
occlude each other.

In Figure 6.3, the tracking results are obtained from Algorithm 5.3 and heuristics
for z-order as discussed in Section 5.5.3 are used. In the first few frames, the pink
ellipse is at a distance from the other three, so a total of 3! + 1 = 7 depth orders are
checked. In other frames where all objects are close, 4! = 24 depth orders have to be
checked. In the last few frames only one depth order is required for each of the pink
and yellow ellipse, and two are required for the green and purple ellipses, i.e., a total
of 4 depth orders are tested. The example shows that the depth order detection in the
rigid model works correctly. Also, the contour of the object in occluded regions are
close to the expected circular shapes, despite complex inter occlusions.

In Figure 6.4, the two similarity measures, reconstruction based and segmentation
based, are used. Additionally, Gaussian noise has been added to the images to test the
robustness of the similarity measures. The top-right images in the Figure 6.4(a) and
Figure 6.4(b), shows the results are comparable for both the models. However, as the
tracking progresses further as shown in bottom-left and bottom-right images, errors
start to accumulate in the results from the reconstruction based measure. The seg-
mentation based model, however, produces better tracked contours since the measure
is robust to noise and error. Notice there is a slight error in the contour of the pink
ellipse in the bottom-left frame of Figure 6.4(b). This and any other error introduced

72



Figure 6.3: Tracking of moving and deforming ellipses using the reconstruction based
measure.

during the tracking process corrects itself as has been discussed in Section 4.2.

6.2.4 Snooker

A real wold example that is similar to the synthetic moving ellipse example, is shown
in Figure 6.5. The scene here has a more complex background than the one in the
synthetic example. The background is a billiard board. The white ball as it is hit
by a pool cue scatters the yellow ball which in turn hits the black ball and so on.
The blue ball remains stationary throughout the video. Although the balls themselves
are rigid, they appear bigger as they come closer to the camera. Our tracking model
successfully captures all the occlusions occuring in the video. The contours are circular
in the occluded regions as expected. The first four images (top and middle rows)
contain a hand and a stick which are not tracked objects. Note the contours are not
circular because the shadows are also captured as part of the object. This is because
the shadows are not present in the background image and they are attached to the
object, so the difference between the reconstructed and target image is non zero in the
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(a)

(b)

Figure 6.4: Tracking of moving and deforming ellipses with Gaussian noise, using (a)
the reconstruction based measure, and (b) the segmentation based measure.
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Figure 6.5: Tracking of snooker balls as they move and occlude each other. Frames
are ordered in the sequence top-left, top-right, middle-left, middle-right, bottom-left
and bottom-right.
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region.

6.2.5 Walking people

In this example, a scene with three people walking and occluding each other is tracked;
see Figure 6.6. The objects in this video have larger deformation compared to moving
ellipses or the snooker example. One person in yellow shirt, whom we briefly call as
person 1, is moving across the scene and occludes another person in blue jacket, whom
we call person 2, who is moving away from the camera. The last person in light pink
shirt, called person 3, is moving across in the direction opposite to person 1.

The tracking model captures the contour correctly of both the upper body and the
legs. The contours of person 1 and 3 are quite close to the actual boundaries. The
occluded region of person 2 is also captured properly and the shape of legs is retained.
The dark black hair of person 1 is correctly tracked despite being in the vicinity of
the dark blue jacket of person 2. Errors, however, occur in some of the frames in
the contour of person 1 near the middle part of the body, which tend to increase
progressively. This is because the scene has shadows which changes the luminance of
the objects in certain regions. Normally these subtle changes would be captured by the
model, since the variation occurs gradually from frame to frame. However, when these
changes occur when the object is under occlusion, then the stored intensity templates
may not remain accurate. Here, the intensity of the leg region of person 2 changes
during occlusion because of moving legs and changing illumination. When the legs
become unoccluded, they are captured incorrectly by person 1.

In this example, we also compare the performance of the fluid model vs the elastic
model. The deformations in this video are large and nonlinear. Figure 6.7 shows the
results from using the two nonrigid models. The elastic model Figure 6.7(a), is able
to capture only small deformations and misses the shape changes especially near the
leg regions, whereas the fluid model Figure 6.7(b), captures the shape correctly. Our
choice of the fluid model is thus justified for tracking applications; see Section 4.4.2
for details.
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Figure 6.6: Tracking of three moving people through occlusion. Frames 1 (top-left), 7
(top-right), 13 (bottom-left), and 18 (bottom-right) of the video are shown.

(a) (b)

Figure 6.7: Comparison of two nonrigid models, (a) elastic and (b) fluid. Frame 2 of
the video is shown in both images.
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6.2.6 Brightfield Cell Images

The images in Figure 6.8 are brightfield microscopic images containing four cells mov-
ing in a plate. The top-left image in the figure is the starting frame of the video. The
background in these images is relatively simple. However, there are two challenges for
object detection and tracking. Firstly, in many regions the contrast is poor and the in-
terior of the cells have similar intensity values as other cells, as well as the background.
The boundaries of the cell can be seen to be bright but this is not always the case
as in some regions this feature is absent and in others it is not contiguous. Secondly,
the cells are highly deformable and their motion is not uniform over several frames.
In some frames they may move very little while in others there is a sudden increase
in movement. Many cells can overlap each other and it is difficult to determine the
overlapped regions and depth order even manually.

Despite these issues, the results are generally good. The global location of the cells
are correctly tracked with the rigid step, which is visually most evident for cells 1 and
3. The nonrigid step produces deformation at the cell boundaries, that though not
completely accurate, are still reasonable. Notice the nonrigid tracking of cell 2 is the
most accurate. The bending motion of this cell has been captured correctly. In the
fourth frame (top-right), cell occlusion between cells 2, 3 and 4, is also captured. Our
model at the moment uses region intensity as feature, so regions of low contrast on
the outer parts of cells 1 and 3 are difficult to capture. In the future, results could be
improved further by using a segmentation measure desgined for brightfield cell images.
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Figure 6.8: Tracking of cells in brightfield images. Frames one (top-left), four (top-
right), ten (bottom-left), and fifteen (bottom-right) are displayed. The four cells have
been numbered for identification.
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Chapter 7

Conclusion

In this thesis, a general framework for multiple object tracking and occlusion has
been presented. The main idea is of scene reconstruction using object region and
intensity information, which is used to recover the object motion and depth order
from frame to frame. The motion is comprised of rigid and nonrigid components. Rigid
registration is used to recover the rigid motion component and nonrigid registration
for the nonrigid motion. The rigid motion provides the estimate for the shape of
the occluded region and the relative depth ordering of objects in the scene. The
nonrigid motion captures the deformation of the object in the unoccluded regions,
while simultaneously improving upon the rigid motion estimate of the object contour
in the occluded region.

Our framework can also use any level set segmentation technique as a meaure for
computing the object motion in place of the image difference measure. This improves
the robustness of the tracker with respect to accuracy of the obtained object contours.
Segmentation methods by themselves cannot capture occlusion unless some extra pro-
cedure is added to recover the occluded region, such as the one given by Yilmaz and
Shah [55]. By contrast our method captures occlusion as part of the tracking model
while at the same time benefitting from the improved accuracy of segmentation mea-
sures.

We have demonstrated the viability of our model with different examples. Simpler
tracking examples such as the taxi and more complex ones of man and snooker, show
the tracker computes motion accurately and captures the object contours, while at the
same time providing a good estimate of the object shape in the occluded parts. A
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synthetic example is also given to compare the increased accuracy of the segmentation
based measure with the reconstruction based measure.

Our tracking model is designed for offline use so performance is not a major issue.
But if desired for high resolution images, the time for solving the fluid equations can
be reduced by using multigrid methods. There is scope for investigating different
similarity measures like mutual information, statistical appearance models and active
shape models, which can improve the robustness of our tracking model. Also, currently
we do not gather the background information directly from the video. Techniques to
resolve this issue can be worked upon in the future. Different deformable models can
also be investigated like physically based ones such as non-linear elastic, fluid, mass
transfer models, and non-physical ones, such as set symmetric difference, and spline
model.
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