Performance Comparison of Uniprocessor
and Multiprocessor Web Server
Architectures

by

Ashif S. Harji

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2010

© Ashif S. Harji 2010

I hereby declare that | am the sole author of this thesis. iBhastrue copy of the thesis, including any
required final revisions, as accepted by my examiners.

| understand that my thesis may be made electronicallyadailto the public.

Abstract

This thesis examines web-server architectures for stadikleads on both uniprocessor and multi-
processor systems to determine the key factors affectieig performance. The architectures examined
are event-driveniierver) and pipeline (WatPipe). As well, a thread-per-eation (Knot) architecture
is examined for the uniprocessor system. Various workl@adstested to determine their effect on the
performance of the servers. Significant effort is made toena fair comparison among the servers. For
example, all the servers are implemented in C or CH, andastipgndfile and edge-triggeredpoll. The
existing servers, Knot angserver, are extended as necessary, and the new pipelirex;séfatPipe, is
implemented usingiserver as its initial code base. Each web server is also timddtermine its best
configuration for a specific workload, which is shown to beicai to achieve best server performance.
Finally, the server experiments are verified to ensure eapbkrforming within reasonable standards.

The performance of the various architectures is examinedwmiprocessor system. Three workloads
are examined: no disk-1/0, moderate disk-1/0O and heavy-u8k These three workloads highlight the
differences among the architectures. As expected, theiexpets show the amount of disk 1/O is the most
significant factor in determining throughput, and oncedhiermemory pressure, the memory footprint of
the server is the crucial performance factor. The peak tirput differs by only 9-13% among the best
servers of each architecture across the various worklo&dsthermore, the appropriate configuration
parameters for best performance varied based on workloallha single server performed the best for
all workloads. The results show the event-driven and pagetiervers have equivalent throughput when
there is moderate or no disk-1/0. The only difference is miyithe heavy disk-1/0 experiments where
WatPipe’s smaller memory footprint for its blocking sergawve it a performance advantage. The Knot
server has 9% lower throughput for no disk-1/0 and moderste ldO and 13% lower for heavy disk-1/O,
showing the extra overheads incurred by thread-per-caiomeservers, but still having performance close
to the other server architectures. An unexpected resuibistiocking sockets withendfile outperforms
non-blocking sockets witkendfile when there is heavy disk-1/0 because of more efficient disksx

Next, the performance of the various architectures is emathbn a multiprocessor system. Knot
is excluded from the experiments as its underlying threlachty, Capriccio, only supports uniprocessor
execution. For these experiments, it is shown that pantitgpthe system so that server processes, subnets
and requests are handled by the same CPU is necessary teeablyh throughput. Both N-copy and
new hybrid versions of the uniprocessor servers, extenuledifgport partitioning, are tested. While the
N-copy servers performed the best, new hybrid versionseéévers also performed well. These hybrid
servers have throughput within 2% of the N-copy servers fiat benefits over N-copy such as a smaller
memory footprint and a shared address-space. For muldpsoc systems, it is shown that once the system
becomes disk bound, the throughput of the servers is datlgtreduced. To maximize performance on a
multiprocessor, high disk throughput and lots of memoryemsential.

Acknowledgements

| would like to thank Peter Buhr, my supervisor, mentor anenid. You have always given me the
trust and respect of a colleague, but also tremendous dugmbguidance. As a result, | have had a most
unusual graduate experience. | have enjoyed the wide yafigirojects we have worked on together, and
I will miss our close collaboration.

| also thank the other members of my committee: Tim BrechbaSgan Fischmeister, Martin Karsten
and Matt Welsh. Your feedback has improved this thesis afichelp in my future research.

During my time in the Programming Languages lab, it has abAmgen more than a place to work. The
lab has undergone many changes over the years, but onerntosdtze interesting people who choose to
work there. | would like to acknowledge all the members of PGu are a big part of the reason | stayed
for as long as | did. In particular, | would like to thank my gbfsiend Roy Krischer for his help and
advice, and for his love of good food and movies. | would alle® o thank Jiongxiong Chen, Maheedhar
Kolla, Brad Lushman, Richard Bilson, Ayelet Wasik, Justyidzinski, Stefan Bittcher, Mona Mojdeh,
Josh Lessard, Rodolfo Esteves, Azin Ashkan, Ghulam Lashami Chen, Davinci Logan Yonge-Mallo,
Kelly Itakura, Ben Korvemaker, John Akinyemi, Tom Lynam,dig Terra, Nomair Naeem, Jason Selby,
Dorota Zak and Krszytof Borowski. It has been a privilegersttpa lab with all of you. As well, thank
you to Lauri Brown, Stuart Pollock, Robert Warren, Elad bal2avid Pariag and Mark Groves.

I would also like to thank the people | have had the pleasunearking with in my capacity as lab
manager. Especially, Mike Patterson, Wendy Rush, LawrEotland and Dave Gawley.

To my parents and my brother, thank you for your tremendoppatt and patience.

Vii

To my parents

Contents

XV

XiX

XXi

Xii

£.6.3 ASynchronous UO . . . o o oo 20
bz summalyl 21
IS_LLDJ.DLQQE.SS.QUNeb_SﬂDLeLALQh.II.e.CLuLdS 23
Bi Filesdt ... 23
B2 ReSpONSETINE . . . v oo 26
B2 Verficatioho 27
Ba Tuninh 28
5 EMVITONMENt . -« o oot e 29
B6 Cache Warmilg o v oo e e e 31
I;’L.J_Ia.b.l.ﬂ}.al.culali.cbn 31
Ms .. 33
B81 Knotand Capricdio 33
BE2 wsendr .. 37
B.8.2 SYMPEDArchitectule o oo 37
B84 Shared-SYMPED Architecthire 38
BBE WAPIHE . » o o v oo e e 38
B.9_Static Unipracessor Warklohds oot e 40
Bao 14Gh. ... 40
B10.1 TUNINGKNBt .« o o oot e 40
I&..’LQ.ZJLLDiDgJSﬂDE]r 47
B.10.3 TUNINGWAIPIDE« o o ov e e e 57
I&._’I.Q.A_S.euem.o.mp.a.r.if!on 59
Batach. 67
BALL TUning KNOt . .« o o oo 67
I&._’L:L.Zluning.ls.enaf]r 72

L’S_ll.A_S.enLer_C.Qm,aa.t'LsJon 79
Bao 75GB. ... 85
BA2.1 TUNING KOOt . . o o o e 85
|:3_12.2_'[uning.ls.emdr 90
3.12.3 TUNINGWAIPIDE . « « « o o o oo e e 96
B13 Server Comparisono 99
B.14 Comparison ACrosS WOrkIoAdS+« oo 106
Bas summaly ... 108
lo__Multiprocessar Weh-Server Architectures 113
La overviel . ..o 113
Lo Flesdt ... 114
B3 EMVIFONMENt . . .« o o oo 115
La afinitied 117
U5 Scalabilifly o e e 120
L6 4GB 123
SCOMY -« - e e e e e e e e e e e 123
I4..6..2Juningus.&me|r 131
463 TUNINGWAIPIDE . « « « o o o e oo 137
IéL.G.._A._S.enLem.Qmp.a.Lif]on 142
Lz 2GB. . 149
Ié_l.uuning_N;mp;us.e.nLdr 149
4.7.2 Tuning N-copy WatPiQe . . . o o oo 152
7.3 TUNINQUSEIVEN « « o o o o oo 154
74 TuningWatPiDe o oo oo 156
IéLl.E_S.enLem.omp.a.Lif]on 158
h_B_QQmpaﬂaQn_AnmsleoLklmltds 165

Xiv

171
171
172
173
174

177
179

181

183
183
184

185

List of Tables

4GB L e 68
4GB .. e 68
4GB . 70
WMMMMB 70
4GB, . 73

XV

XVi

XVii

List of Figures

XX

List of Abbreviations

AIO Asynchronous I/O

AMPED Asymmetric Multi-Process Event-Driven
API Application Programming Interface
Gbps Gigabits per second

IPC Inter-Process Communication

IRQ Interrupt Request

LRU Least Recently Used

Mbps Megabits per second

MP Multiprocess

MT Multi-threaded

SEDA Staged Event-Driven Architecture

shared-SYMPED Shared SYmmetric Multi-Process Eventdbriv
SPED Single Process Event-Driven

SYMPED SYmmetric Multi-Process Event-Driven

XXi

Chapter 1

Introduction

One of the biggest problems for many Internet companiesaisisiity. With social networking and cloud
computing growing in popularity, not only is more user-getted content moving online, ever larger
online user-communities are placing increased demand®pulgr web-sites. For example, Facebbok
serves over 600,000 unique images a second. Deliveringdhtent to a growing user base presents many
scalability problems. While additional hardware is neaeg$o handle the increased loads, correspond-
ingly advanced servers are required to utilize this hardvaad manage the increased loads. These servers
must be able to handle high throughput and support a largbauaf concurrent connections. Fundamen-
tally, web servers are a key component through which mudhrret traffic flows. Another recent change
is the shift to parallel processors (multi-threaded, racdtie, multiprocessor) even on low-end commodity
hardware. This hardware has the potential to reduce the euoflserver machines necessary for large
commercial sites, reducing power footprints and mainteaamosts. However, this shift is forcing appli-
cations to become multi-threaded to take advantage of tredlg@lehardware. Little research has focused
on examining web-server architectures for static conteninalltiprocessors. The assumption is exist-
ing server architectures that incorporate threading shecdle and perform similarly on multiprocessors.
However, previous work has shown this assumption to be [EBle

In order to achieve high performance, it is reasonable tospeeialized, highly-tuned servers for
various types of traffic. Specifically, a reasonable desigio iuse a separate server to handle static con-
tent [29,(31], possibly off-site, for example, at Amazorf 8 Akama?. Even for general web-servers,
efficiently handling static content frees up resources tbeotypes of traffic. Static content is an im-
portant aspect of web traffic, in fact, much user-generatedent is static. This thesis examines various

Lhttp://www.facebook.com
2http://aws.amazon.com/s3/
Shttp://www.akamai.com

CHAPTER 1. INTRODUCTION

web-server architectures for static workloads on bothnaiegssor and multiprocessor systems. The goal
of the thesis is to identify the key factors affecting thefpamance of web servers.

Much research has focused on different architectures fbrsgevers serving static contefi][7] B4, 57,
E3,[81]. This work has led to a number of improvements in dpegaystems and web-server implemen-
tations; e.g., zero-copy transfer and user-level thrdadriies that scale to thousands of threads. While
comparisons have been performed as various improvementsdeeeloped, a fair comparison of the dif-
ferent architectures based on the current state-of-thfsaweb servers, across a number of workloads,
has not been performed. Therefore, the first objective af tieésis is to undertake such a comparison.
The comparison begins by analysing the performance of oogasor servers, which can then be used as
a baseline for examining the performance of multiprocessohitectures. The second objective of this
thesis is to extend the uniprocessor servers to performamadl multiprocessor and to compare their per-
formance across two different workloads. Given the unipssor servers as a baseline, the approach of
running multiple copies of a uniprocessor ser{el [62] ishtberchmark used to evaluate the performance
of the extended servers.

1.1 Contributions

The contributions of this thesis are:

e A new pipeline server, WatPipe, is implemented. Its pertomoe is comparable to the other servers
examined for in-memory workloads and it has better perforweaor disk-bound workloads. As
well, an existing thread library, Capriccio, is extendedhva new non-blockingendfile implemen-
tation.

e WatPipe and shared-SYMPED, an event-driven architecane extended for multiprocessor ex-
ecution, including support for partitioning of proceskesghel-threads, subnets and CPUs. These
extensions allow versions of these server to achieve padioce comparable to N-copy on multi-
processors.

¢ Significant effort has been undertaken to make the serveesrasstent as possible to ensure the
comparison among the servers is fair. Contrary to previoagkwit is shown that performance
differences between state-of-the-art implementationthefvarious server-architectures is small
given a level playing-field. In fact, the experiments in thedis show architecture is most important
as it relates to the memory footprint of the servers, wheretieememory pressure.

e An important result in the thesis is that non-blockiswndfile is better when there is no disk 1/O or
moderate disk I/O, and blockirggndfile is better when the server is disk bound. Once the workload

2

1.2. THESIS OUTLINE

is disk bound, the blocking version of a server performsaoéktan the corresponding non-blocking
server despite having a larger memory footprint becauseetéibdisk efficiency due to different
file-access patterns. The exception is the blocking sh@MdPED servers in the multiprocessor
experiments, where their memory footprint is too large atieg the benefit.

e Through extensive experiments across a range of paramieterghown that proper tuning is critical
to achieve best server performance and that no single tathiggves the best performance for all
workloads.

e Insight is provided into the work behind the thesis. Lesseasned are presented with respect
to implementing, debugging and performing a large numbgresformance experiments on web
servers.

1.2 Thesis Outline

The thesis is organized as follows. Chapler 2 covers thegpagkd material for the thesis and the related
work. ChaptefI3 compares the performance of several wefesarchitectures on a uniprocessor across
three workloads, from in-memory to disk bound. The architexs tested include thread-per-connection,
SYMPED, shared-SYMPED and pipeline. Each server is run Wiiticking and non-blockingendfile

and a version of the thread-per-connection server, usgiitgwith an application file-cache, is also tested.
The performance of the servers are also profiled and analysedderstand their differences. These
experiments establish a baseline for multiprocessor @rpets. Chaptdr4 compares the performance of
several web-server architectures on a multiprocessosadwo workloads, in-memory and disk bound.
The architectures tested include SYMPED, shared-SYMPEDVsatPipe. Both an N-copy version of
the server and a version of the server extended for execatia multiprocessor are tested. Again, the
servers are run with blocking and non-blockisgndfile and then profiled and analysed to understand
the performance differences. Chagdier 5 relates some ok#s®ms learned based on the experience of
implementing, debugging and performing a large number pégrents on the web servers in the thesis.
Chaptefb contains the conclusion and future work.

Chapter 2

Background and Related Work

A variety of architectures for building web servers haverbpmposed and implemented. These servers
have become increasingly sophisticated to deal with a latgaeber of concurrent connections while
achieving high throughput. In addition to evolving serveghitectures, operating-system facilities have
been examined and extensions proposed to improve schlagificiency and ease of programming. This
chapter examines this work.

2.1 Handling an HTTP Request

Before looking at complex server-architectures, it is ustf understand how a server handles an HTTP
request. Processing a typical static HTTP-request by &seonsists of several steps, see Fidurk 2.1. The
server begins by accepting a connection request from a.clfierce a connection is established, an HTTP
request is read from a socket. For a static request, therssaeches for the requested file and a response
is sent to the client. Assuming the request is successfyladof this response the file is read from disk
and sent over the network to the client. If the connectioreisigtent, the server reads a new request from
the client. If there are no new requests, the connectiorosed and a new connection is accepted. This
description is simplified as it does not consider file cachies potential need to send the file in blocks,
etc.

Handling a single request can involve a number of delayd) asdransmission latencies and band-
width limitations. Given these delays, the time to handigpéchl request can be measured in secofilds [9].
Therefore, a server needs to handle many requests simulisige For a high-performance server to
process thousands of requests a second, the server mudele afficiently handle thousands of simul-
taneous connections. The web-server architectures egdrimirthis thesis each have a different approach

5

CHAPTER 2. BACKGROUND AND RELATED WORK

Client Client Client
persistent A
’ ’ |
Accept Read Process Write Close
File

Figure 2.1: Server-side processing of an HTTP connection

to dealing with a large number of simultaneous connections.

2.2 Server Architectures

There are several different server architectures apmgpfor high-performance web-servers. As well,
there are a number of criteria upon which to evaluate thewarserver architectures. For this thesis, the
most important criteria is throughput, both at peak andraféuration. Throughput is selected because
it is a common performance metric used in a large body of ptsviwork, allowing the results in the
thesis to be compared to this work. A well-designed serveulshdegrade gracefully after saturation,
maintaining high throughput. As a consequence of the waddaised in this thesis, a server must support
a large number of connections to achieve high throughpudlithhal criteria affecting throughput include
scalability, latency, memory footprint and contentionpeeding on the workload being tested. Finally,
while ease of programming and debugging are important,dheyot considered in this thesis because all
the servers examined are complex.

Traditionally, a web server is classified based on how it lkengotentially-blocking network-1/O.
In order to achieve high throughput, a server must be ablat&sléave the processing of thousands of
simultaneous connections. For network 1/O, it is possibléake advantage of the non-blocking socket
operations available on Unix-like operating-systems.hiiocking semantics, the calling thread blocks
until all the data associated with the call has been buffereécansmitted by the kernel. With non-blocking
semantics, only the portion of data that can be immediateffeted in the kernel is transmitted to the
client. Then, the calling thread continues and can attempehd the remaining untransmitted data at a
later time. Combining non-blocking operations with an evgolling mechanism likaelect or poll allows
the server to interleave processing of thousands of simedias connections. This architecture is referred
to as an event-driven server.

2.2. SERVER ARCHITECTURES

Another method for dealing with potentially blocking netk/O is to use threads. In this approach,
if a user-thread blocks waiting on a call, other unblocke#dls can execute. In the simple case, each
thread only processes a single connection at a time, cédiltedd-per-connection, so thousands of threads
may be required. Context-switching among the threads alfawthe implicit interleaving of thousands
of simultaneous connections. This architecture is refetoeas a threaded server.

There has been much debate over whether an event-driventmeaded architecture is bettéd [3,
20,33, [2B[Th]. The argument is event-driven programs tengetdifficult to understand because of
complicated control flow and threaded programs tend to halkdeserrors and are difficult to debug. A
number of libraries have been developed to make eventrdpvegramming easier, e.dibeel [I3] and
libasync [Ed]. Simplifying programming with threads is an area cothgereceiving a lot of attention but
it is a difficult problem and no solution has been found. Utifioately, this simple classification of server
architectures is both inadequate and misleading.

In addition to blocking network-1/0O, disk I/O can cause Iimg. Asynchronous I/O (AlO) mech-
anisms exist for some file operations, but performancesatisystem-calls likesendfile have no AIO
equivalent. Therefore, all server architectures must eynpbme form of threading to mitigate the ef-
fects of blocking disk-1/O. Furthermore, over the past decahere has been a paradigm shift within
hardware architecture from faster processors (more MHpgatallel processors (multi-threaded, multi-
core, multiprocessor) because physical limits in CPU speebpower/cooling are being reached. This
change is having a ubiquitous effect on the design of all modeftware towards some form of concur-
rency. As well, servers traditionally labelled as threaddxd also involve events. Depending on the type
of threading, the event-handling mechanisms are in thehlibrary, the language run-time library or
embedded in the operating-system kernel. Taking a holi#iw of the entire architecture, including ap-
plication, libraries and operating system, all server idéctures must incorporate both threads and events
to maximize performance. There has been some researchniagyating event-driven and threaded pro-
gramming BE2DAT3Z62]. While all the servers examinedhis thesis use some combination of
event-driven and threaded programming, they do not use tggsroaches.

The following different web-server architectures haverbgeposed and implemented.

2.2.1 Event-Driven Architecture

Single-Process Event-DriveiSPED architecture[[44] is a common approach to implementing b we
server, withuserver [1] and Zeud®3] as examples of high-performancel8kRé&b-servers. In this ap-
proach, a single process (kernel thread) services muttgpieections in various stages of processing using
non-blocking I/0, see Figufe Z.2[a). In the figure, conmerstiare represented By and rounded rectan-
gles represent tasks/threads/processes. Data struenwede the current status of each connection. An

7

CHAPTER 2. BACKGROUND AND RELATED WORK

/

=y Cl \

[J
[J
[J
Event Poll Event Poll
o Helper Task
[}
[J

Blocking and Non-Blocking Non-Blocking Blocking
(a) SPED Server (b) AMPED Server

Figure 2.2: SPED and AMPED server

event mechanism such select or poll is called to determine which connections are currently abkelor
writable. For each outstanding event, an appropriate dvamdler is invoked to process that event with-
out causing the server to block. For example, depending etyjie of the event, a new connection may
be accepted, a new HTTP request may be read or some data maittba w the socket. Once all the
outstanding events are handled, the process is repeateccoffiplexity of implementing a SPED server
comes from the management required to concurrently proamegamaintain many partially completed
connections in differing states with only a single threaah{plex finite-state machine).

An interesting extension to this strategy, proposed by @raand MosbergeE1 6] and further inves-
tigated by Brechet al. [[[3], is multiaccept, i.e., to accept multiple connections when the event mashan
indicates that a listening socket is readable. Callingept multiple times amortizes the overhead of
the event-mechanism system-call by establishing multiplenections after each poll. This strategy is
employed by theiserver.

One major disadvantage of the SPED architecture is thakiplpaue to disk 1/O significantly de-
creases performandg]44]. Since SPED only involves a spgleess containing one kernel thread, block-
ing disk-1/0 suspends the entire server until the I/O comnesleBased on profilingiserver spends a large
portion of time 1/0-blocked on disk-bound workloads. As $PE single threaded, it cannot take advan-
tage of overlapping CPU execution and disk 1/O, nor can i¢ tatvantage of multiple CPUs. A natural
extension to this approach is to run several copies of a SP&bsegrver. This approach is called N-copy
and was proposed by Zeldovieh al. [B2]. Not only can this strategy take advantage of multipRUS,
but it can also be used to deal with blocking I/0. The key ig thaltiple server-copies are needed per
CPU, so when one process blocks due to blocking I/O, anotioseeps is usually available to run. As each

8

2.2. SERVER ARCHITECTURES

copy is independent, there is no need for mutual-exclusymhronization at the application level; at the
kernel level, sharing may occur necessitating locking. el®v, with N-copy each independent process is
listening for connections on a separate socket, requimigiifianal processing in order to balance requests
across the individual servers and to prevent all requesis being sent to only one server.

One approach that extends SPED to deal with blocking diSkid/the Asymmetric Multi-Process
Event-Driven AMPED) architecture proposed by Pat al. [E4] and used in the implementation of
the Flash web-server. The idea behind this architecture isnake up for the lack of true non-
blocking/asynchronous system-calls for disk 1/O on mangrafing systems by providing helper tasks
to handle blocking disk-1/0O operations. The basic impletagon is to use the SPED approach for all re-
quests that can be serviced from the main-memory file-caoti¢cgpass off blocking disk-1/0 operations
to helper tasks, as in Figure Z.4(b). Communication betvikerserver task and the helper tasks is done
through inter-process communication (IPC), e.g., pipeghat completion events from the helper tasks
are processed by the server task using non-blodéiegt. Processes may or may not share address-spaces
and AMPED relies on the operating system for all processdidhmey.

Using helper tasks to perform blocking disk-1/O allows teever task to continue handling requests
while disk 1/O is in progress. Further benefits include thditgtto utilize multiple disk drives more
efficiently and more efficient disk-head scheduling. At tlleecof AMPED is a SPED server, hence it
benefits from the advantages of only having a single procestaging the processing of connections.
Specifically, only a single cache with no mutual-exclussgnthronization is required as the helper tasks
do not modify the cache. Furthermore, the only overheadoing-lived connections is one file descriptor
and some application-level data-structures rather thading an entire thread as with the thread-per-
connection approach. Finally, the centralized storagefofmation simplifies data gathering and only
one listen socket is required. The disadvantages of thisbapp are the IPC overhead and the additional
memory required for the helper tasks. The amount of additiomemory varies depending on whether
address spaces are shared. As well, the AMPED architectayenot scale well on its own with multiple
CPUs; while 1/0 is distributed among several processeshmfithe processing is centralized in a single
process.

Another approach that builds on N-copy is the Symmetric Meitbcess Event DrivenSMPED
architecture by Ren and Warfg]37]. SMPED combines a pool &fl5rocesses with a scheduler process
to accept connections and distribute them among the SPEt2gses and perform load balancing. The
server deals with blocking I/O by having a pool of SPED preesswvhose size is dynamically adjusted
based on throughput feedback from each process. This ectihi¢ is similar to the Symmetric Multi-
Process Event-Driven architecture examined in this thssis sectioh-3.8.3), though both were conceived
independently.

CHAPTER 2. BACKGROUND AND RELATED WORK

Library

Event Pol

Figure 2.3: Thread-per-connection server

2.2.2 Thread-Per-Connection Architecture

The thread-per-connection architecture is another apprdar implementing web servers, e.g.,
Apache [6] and KnofI37]. In this approach, one thread corefytdhandles a single HTTP request before
processing another request, see Figurk 2.3.ePai. [A4] distinguish between multi-threaded (MT) and
multiprocess (MP) servers. The former involves multiplertthireads in a single address-space and the
later involves each thread corresponding to a unique psoicea separate address-space. The type of
thread-per-connection server examined in this thesis Iti-thueaded.

As well, it is possible to create processes or threads dyainifor each new connection or to use a
static pool of threads or processes. Dynamically creatingaids allows the server to scale depending on
the workload. Having a fixed-size pool of threads results areroverhead when the number of connec-
tions is small but eliminates a potentially expensive thfpacess creation cost for each connection. The
thread-per-connection server examined in this thesisaisestic pool of threads.

One advantage of the thread-per-connection architecttine isimplicity gained by making application-
level blocking-I/O calls in the server and allowing the ng@ving of requests to be handled by context
switching rather than having a single thread explicitly agethe state of numerous partially-completed
connections. However, there are a number of disadvantagdsstapproach. First, a web server may
need to maintain hundreds or even thousands of simultanemusections resulting in a correspond-
ing number of threads. Having a large number of threads teeguisignificant memory overhead due
to their stacks. Furthermore, there is additional overheadtontext switching and from the mutual-
exclusion/synchronization required to coordinate acteshared data-structures, like the file cache. Hav-
ing a separate cache for each thread is impractical wheae #rera large number of threads as it can lead
to significant data duplication. As well, efficiently schédg a large number of threads is difficult. In
addition to the execution costs associated with schedulamgors such as locking and processor caches
must be considered to maximize performaricé [TP[3B, 52].

10

2.2. SERVER ARCHITECTURES

AcceptC,;

| Read 8;

— ! . GGy
Read Poll | Write c,c,

Write Poll

Figure 2.4: Example pipeline server

The underlying thread-library used by a server has a sigmfiaffect on performance. The Linux
NPTL Pthreads libraryI22] uses a 1:1 threading model, wieagh user-level thread is also a kernel
thread. With this model, kernel threads can make blockirsgesy-calls without inhibiting the execution
of other user-level threads and the server can take advanfagyerlapping CPU execution with I/O and
multiple CPUs with no additional effort by the applicatiorogrammer. The problem with 1:1 threading
libraries is that they do not scale to support the tens ofghnds of threads needed for a high-performance

server [5Y].

Using an M:N user-level threading package is the alteraativallow scaling to thousands of threads.
With M:N threading, the threading library typically implemts an I/O subsystem built on top of an event
mechanism likeselect or poll, similar to SPED, to handle I/O. As multiple user-threads rmultiplexed
over a small number of kernel threads, the threading likiréeyg to avoid making blocking system-calls. In
order to provide blocking calls for the user threads withamitially blocking the underlying kernel threads,
system calls are wrapped, and the underlying thread-ildaals with blocking by making an equivalent
non-blocking system-call. If an equivalent non-blockingstem-call is unavailable, the blocking call
can be allowed to proceed or handed off to a worker threadjasito an AMPED helper thread. In
either case, a sufficient number of kernel threads are needeahdle blocking 1/0O while still allowing
unblocked user-threads to continue executing. Kindt [53] tisread-per-connection server implemented
using the Capriccio thread-packa@€el[57], which scalesdogands of threads (see Secfion3.8.L . 33 for
more details).

2.2.3 Pipeline Architecture

The pipeline architecture is another approach for implegmgmweb servers, e.g[L TIEIIZ]E3] £31 B9, 61].
L In a pipeline architecture, a server’s execution is brokémseparate stages, with thread pools to service

INote, while Flux [I}] and Asped$3] are languages and ndiitctures or servers, the network applications genetated
Flux and Aspen have a pipeline architecture.

11

CHAPTER 2. BACKGROUND AND RELATED WORK

each stage, see Figlirel2.4. The thread pools can be pemstsiggred across multiple stages or the entire
application. In the figure, the thread pools are per-stagfb, the Read stage serviced by two threads and
the write stage serviced by four threads. The number of adimms currently being processed by each
stage, indicated b§Z;, is at most equal to the number of threads, but there may b&add in-progress
connections waiting in the queues between stages. A pgalichitecture is often referred to as a hybrid
architecture as it explicitly uses threads and events Heuhtimber of threads is fewer than the number of
connections. The Staged Event-Driven Architect 88 DA proposed by Welskt al. [B3] is a complex
pipeline architecture used to construct the Haboob welesd]. SEDA starts as a basic pipeline server
by dividing an application into a series of stages. The stage self-contained but linked by event queues
that are used to communicate between the stages. As welhradsbr individual thread-pool is used to
service each stage. SEDA then extends the basic pipelimgndagadding a dynamic resource-controller
that adjusts the thread allocation and scheduling of thgestameet performance targets. Typically there
are only a small number of threads per stage, and an apphicatinsists of a network of stages. For
example, the Haboob server contains the following stageske® Accept, Socket Read, HTTP Parse,
PageCache, CacheMiss, File I/O, HttpSend and SocketWAiteHHTTP request is passed from stage to
stage as it is processed through the pipeline.

There are several advantages to using a pipeline serversefitttontained stages. First, the mod-
ularity of this approach allows stages to be reused in skegaications and allows for independent
load-management. As well, it makes debugging easier atilddtas performance analysis. For example,
the size of the queues connecting the stages show how welpftiation is running and help to identify
bottlenecks. Third, using finite event-queues makes ieeasiperform load shedding as requests can be
terminated at any stage.

While pipeline servers like SEDA have the complexity of betlents and threads at the application
level, they also benefits from some advantages of both apipesaand allow better control over each.
SEDA utilizes the efficiency of the event-based approactetiuce the number of threads significantly
below the number of connections. Furthermore, with mudtighireads spread across the various stages,
pipeline servers can also benefit from the overlapping ofii@® CPU execution as well as multiple CPUs.
Pipeline servers also allow for cohdrf]33] or convbhyl[6(Reduling, where tasks with similar operations
are scheduled together to allow for better data and insbrudbcality. As each stage in a pipeline is a
grouping of threads executing similar operations, schiaguhese threads to execute together achieves
this objective.

The obvious disadvantage of this approach is that each ctiandancurs the overhead of passing
through a number of stages in the pipeline. This procesdves@n enqueue/dequeue for each stage and
likely a context switch as a different thread processesdhjeast at each stage. However, this overhead
can be reduced by keeping the pipeline small and by having #mead handle several requests before

12

2.3. UNIPROCESSOR PERFORMANCE COMPARISONS

it is preempted, i.e., amortizing a context switch acroserse requests keeps the overhead manageable.
Finally, mutual-exclusion/synchronization is neededratgct the queues as multiple threads on different
processors may try to access the queues simultaneouskyagicg complexity and runtime cost.

2.3 Uniprocessor Performance Comparisons

One of the objectives of this thesis is to compare currerteéstathe-art web-server architectures on a
uniprocessor. In this section, a number of previous corapas for web servers on a uniprocessor with a
static workload are discussed. The first comparison digclisssimilar to the comparison of uniprocessor

architectures presented in this thesis; several serversxamined across various workloads. However, a
number of changes have occurred since that comparisonngakiew comparison necessary, including

new server architectures, new implementations for exjss@rver architectures, new operating-system
facilities and faster networks. As web server architecturave been introduced or refined, performance
among new and existing servers has been compared. The sebsetiscussion presents the evolving

comparison picture as these changes occurred.

Paiet al. [@4] implemented Flash, based on the AMPED architecturd,p@nformed tests on various
server architectures for different workloads on a unipssoe connected with multiple 100 Megabit per
second (Mbps) Ethernet interfaces. Several architectueze implemented from a common code-base,
including AMPED, SPED, MP and MT. They show that architeetisr not a significant factor for trivial
tests with a single file. For more realistic workloads, SPEBIPED and MT have approximately the
same throughput when the file set fits into cache and the MRisbas approximately 15-30% lower
throughput. As the workload becomes more disk bound, thipeance of all the servers declines but
only the throughput of the SPED server drops significantlyt éscks additional threads to deal with
blocking disk-1/0O. A final test with hundreds of concurreminaections, to model more realistic WAN
conditions, shows the performance of the MT server gragutdtlines and the performance of the MP
server declines more sharply as the number of concurremtections increases, while the performance
of SPED and AMPED remain flat. They demonstrate the impoetafithreads for disk-bound workloads
and show the potential scalability problems with threadqmmnection servers.

Welshet al. [E9] also performed tests on various server architectwwesompare the performance
of SEDA. They implemented a SEDA server called Haboob in dedacompared it to Flash, which is
AMPED, and Apache, which is thread-per-connection. FlaghApache are both implemented in C. The
workload tested is heavily disk bound as the size of the filéss& 31 GB but the page cache is only 200
MB. In the experiments, throughput is measured as the nuofliient connections are varied. Both the
AMPED server and the thread-per-connection server pedkfewter connections and lower throughput

13

CHAPTER 2. BACKGROUND AND RELATED WORK

than the SEDA server; Haboob has approximately 15-20% higeak throughput than the other two
servers. None of the servers experience degradation inghput as the number of connections increases;
however, Apache caps its connections at 150 and Flash awB0ie, Haboob supports the maximum of
1024 connections tested. As well, Flash and Apache have & tatger distribution of response times,
with large maximum values. Although the machines were coaewith gigabit Ethernet interfaces, the
throughput is low because the workload is heavily disk boamd the number of connections is small.

von Behreret al. [E7] compare the performance of Knot, Apache and Haboob.vildrkload for their
experiment is heavily disk bound since the cache size isduirto 200 MB and the file set is 3.2 GB. Their
experiment measures throughput as the number of connggioncreased to the tens of thousands. Up
to 100 connections, the performance of the servers is ajppataly the same. Beyond 100 connections,
the performance of Haboob and Knot is about the same, andédpately 30% higher than the peak
performance of Apache. As the number of connections appesat0,000 and higher, the performance of
Haboob and Knot drop until they reach the same level as Apache

Brecht et al. [[3J] compare the performance of Knot apderver with an in-kernel web-server,
TUX [Bd E8]. They used two static workloads, an in-memoryES®eb99-like workload and a one-
packet workload on a uniprocessor with two gigabit Etheintdrfaces. Though their results are ex-
pressed in replies per second, larger replies per secomchlypindicate higher throughput, especially
for the one-packet workload. Based on the experimamstver has 40-50% higher throughput for the
in-memory SPECweb99-like workload and 50-60% higher thhguit for the one-packet workload com-
pared to Knot. In this comparisopserver useselect while Knot usegoll andpserver has a maximum
connection limit of 15,000 while Knot is configured to useyodlD00 threads (connections). As ex-
pected [ZP[40], the in-kernel server has the best perfocmdiutuserver has performance close to TUX
for the SPECweb99-like workload.

Burnset al. [I4]] compare Haboob and Knot with servers of different aettures built using the Flux
language. The workload for their experiments is in-memooyjsisting of a 32 MB static file-set on a
uniprocessor with a gigabit Ethernet interface. Their fowas on stressing CPU performance. In their
experiments, Knot has approximately two times the througlep Haboob. The event-based Flux server
and the thread-pool based Flux server both had performamparable to Knot but the Flux server with
dynamic threads had the worst performance.

Park and Pal]46] compare the performance of Flash, Apacti¢daboob to servers modified to use
connection conditioning. With connection conditioningguests pass through filters, to provide secu-
rity and connection management, before being passed oretsettver. Their experiments were on an
inexpensive uniprocessor with a gigabit Ethernet interfaicd involved static workloads. For in-memory
workloads, their experiments show that Flash has the befstrpgance, with Apache having lower perfor-
mance and Haboob having poor performance. As the worklaftd shmore disk bound, the performance

14

2.4. MULTIPROCESSOR PERFORMANCE COMPARISONS

difference among the servers reduces until all the senaes &ipproximately the same performance except
Haboob whose performance is relatively flat and lower tharother servers for all workloads.

As shown by the previous discussion, a number of changesreccsince the original performance
comparison by Pagt al. [B4]. Unfortunately, the subsequent comparisons have @en las thorough or
consistent. In most cases, only one type of workload is exadjieither in-memory or disk bound. Since
relative server performance can change based on workloedhard to get a complete picture of server
performance from a single workload. As well, implementatémd configuration differences among the
servers make architecture comparisons difficult. For exantipe number of connections supported by the
various servers in the comparison by Wedglal. [B7)] differs and in the comparison by Breddttal. [[L3].
Another example is that the implementation languages areamsistent; Haboob is implemented in Java
while many of the other servers are implemented in C or C+es€ldifferences can have a large effect on
performance. Finally, some of the results are contradictbor example, in some experiments Haboob
performs well compared to Apache or Flash and in other ewxpmaris extremely poorly. As a result, it
is difficult to determine whether relative performance eliéfinces are due to architecture or other factors,
such as, language, implementation, tuning, memory fagttpriorkload, etc. Given these short-comings,
itis reasonable to perform a thorough comparison of cugee-of-the-art web servers on a uniprocessor
across various workloads. The comparison in this thesisrgitts to be fair, by addressing the problems
discussed in this section, and uses current best pracilkees=hdfile andepoll.

Note, the publication[]45] is a preliminary version of the aroate disk-1/0O uniprocessor-workload
presented in ChaptEl 3. However, there are a number ofeliffeis that make the results in that publication
incomparable to those in the thesis. The differences inttigsis include 1.4 GB of system-memory
instead of 2 GB for the moderate workload, the useemdll, a Linux kernel patched to fix a caching
problem, a newsendfile implementation for Knot and large changes to WatPipe basedddingepoll
support.

2.4 Multiprocessor Performance Comparisons

Another objective of this thesis is to compare the perforreaof multiprocessor server-architectures.
Little research has focused on web-server architecturesifggally targeted for multiprocessors. Three
previous comparisons for web servers on multiprocessdfsanstatic workload are presented.

Zeldovichet al. [&d] compare the performance of a number of web servers. ditiad to AMPED
(Flash) and thread-per-connection (Apache), they alssuned the performance of N independent copies
of a single-process web-server, where N is the number of CRbisa balanced workload, they suggest
that the N-copy server represents an upper bound on penficares each server process runs indepen-

15

CHAPTER 2. BACKGROUND AND RELATED WORK

dently. Note that Flash also creates one independent sspgrper CPU on a multiprocessor, similar to

N-copy, except the servers share a listen socket. The pugfdbeir experiment is to measure the multi-

processor speedup for various architectures. The workikbadmemory with a warmed file-cache. The

experiments show the performance of Flash is better tharl#gp&r one processor, but as the number
of processors increases to four, the difference in perfoo@ahrinks. However, the performance of both
servers is less than the N-copy server. An interestingtresthe experiment is that the speedup of all the
servers is small, especially beyond two CPUs. Similar tantlitiprocessor comparison in the thesis, the
various servers are compared to an N-copy server, with thepy-server having the highest throughput
for the in-memory workload. However, Zeldovigt al. do not include a pipeline server in their com-

parison, affinities and partitioning (see Secfiod 4.4,_) ke not considered and only one workload is
examined.

Choi et al. [[[4] propose a pipeline architecture for multiprocess@teasyns and compare the perfor-
mance to AMPED, SPED, MP and MT architectures using a simulat their architecture, processing an
HTTP request is broken into pipeline stages, with each stapéced by a single thread. A single pipeline
is referred to as a pipelined thread-pool, and the servesistsnof multiple pipelined thread-pools in a
single address-space. For the pipeline-server experintiegtte is one pipelined thread-pool per CPU, for
the AMPED and SPED server experiments there is one servgrpmpCPU and for the MT experiments
there are 32 or 64 threads per CPU. Based on the simulatiomg conclude the memory footprint of a
server is important in determining the performance of aeseggpecially as the number of CPUs becomes
large. Hence, servers with separate address-spaces sodle gompared to servers with shared address-
spaces on multiprocessors when using an N-copy approachkelghey found that contention became a
problem for MT servers as the number of threads becomes targeot for the other servers because the
number of threads sharing data is small.

There are a number of similarities between the work done ki €tal. and Chaptell4 of this thesis.
Both examine pipeline and N-copy servers under differentki@ads, and find memory footprint to be
an important factor in server performance. However, theeeatso a number of differences. The most
important difference is their experiments are run on a satow) which allowed testing more workloads,
while the experiments in this thesis are actually run on atiprocessor. The experiments run by Choi
et al. are a reasonable starting point, but do not take into accaffinities and partitioning, scalability
issues (outside of file-cache locking), cache coherencyamyrother factors that come into play on a real
system. However, the advantage of running on a simulattreijtimber of CPUs (processing elements)
are scaled from 1 to 15, a larger range than examined in tisésth&s well, the pipeline server proposed
by Choiet al.is different from the architecture in this thesis. Diffeces include the number and function
of stages in the pipeline, the usesafhdfile in the thesis, the number of threads per stage, etc. As well,
Choi et al.do not discuss the mechanism used to poll for events in timairlation. Based on experiments

16

2.4. MULTIPROCESSOR PERFORMANCE COMPARISONS

in Chaptei 4, their strategy of only using one thread per GiPtéad data from disk is insufficient in the
presence of disk 1/0. As well, their experiments show ssipgly little difference in throughput between
the SPED and AMPED servers when there is disk 1/O.

Upadhyayaet al. [E3] compare the performance of Flash, Haboob and a serwalaped using
Flux [I4] with a pipeline server they developed using Aspdime workload for the experiments con-
sists of a 3.3 GB static SPECweb99-like file-set on a 4 CPUipmaltessor with four gigabit Ethernet
interfaces. Since the server has 4 GB of memory, the worki®gobably in-memory or has a small
amount of disk I/O. Their experiments show that the pipenspen server is scalable as the number of
concurrent client-connections increases, eventuallkipgawith the highest throughput. Flash and the
Flux server achieve higher throughput for a smaller numiieroacurrent client-connections but their
throughput peaks quickly, levels off and is eventually sgged by the Aspen server. The performance of
Haboob is much lower than the other servers. Flash and Halmmhn application file-cache and Aspen
usessendfile. Flux does not use an application file-cache, but it is uméféausessendfile. Similar to the
experiments in the thesis, the pipeline server performs$ \Wwelwever, the use dfendfile by Aspen gives
it a performance advantage. Unfortunately, there is notighdnformation to determine what factors are
affecting the performance of the various servers. As welly one workload is tested and affinities and
partitioning are not considered.

Voras and Zagafl]38] compare the performance of SPED, SEDMPED and SYMPED on the
mdcached application, a memory database for web caches. Whileached is not a web-server, it is a
high-performance network server. The workload for the @rpents is in-memory on a 8 CPU machine.
However, the clients and server run on the same machine gald@@iPUs are dedicated to the server. The
experiments show that SYMPED has the best performancewetl by SEDA and AMPED with similar
performance and SPED has the worst performance. In theariements, SYMPED had a linear increase
in performance up to 4 threads. These experiments cannadtdmlyl compared with the experiments in
the thesis because the operating system, test applicatéibwarkload are different from those used in the
thesis; however, the result that SYMPED performs well femamory workloads is consistent with the
experiments in the thesis. The authors do not provide araeatibn for SEDA's performance.

Web-server experiments on multiprocessors have beernvedjatimited and have tended to ignore
important issues like affinities and partitioning. The redmulator experiments have focused exclusively
on in-memory workloads, but workloads requiring disk-1/@shbe examined as they are more realistic.
As well, the server throughput for these experiments istivelly low, so it does not stress the server
architectures. Similar to the uniprocessor experiments,difficult to determine the factors causing the
performance differences among the various servers. Thdation experiments are a reasonable starting
point, but must be verified on an actual machine.

17

CHAPTER 2. BACKGROUND AND RELATED WORK

2.5 File-System Cache

The Linux file-system cache is important for the experimentthis thesis. For example, file data is
transmitted usingendfile via the file-system cache. As well, its size dictates the arhofi disk 1/0
required during an experiment; as the level of disk 1/0 iases, the throughput of a server decreases.
The file-system cache is global to the operating system aackdhoy all processes and threads. This
section presents a brief description of the Linux file-aystache.

The Linux file-system cache is used to cache data from diskjding meta-data, directory informa-
tion and file data. Data read from disk is typically stored aodessed from the file-system cache because
disk access is slow compared to memory access. The cach&ésupaf pages, where a page is a fixed-
size block of memory. Cached data is stored indefinitely ag ks there is sufficient free memory. The
size of the file-system cache is limited by the amount of freenmry. If a section of a file is accessed
that is not currently in the file-system cache, it must be liatmlthe cache. However, if there is no free
memory, some existing file data must be evicted so the newdtke chn be read. A Least Recently Used
(LRU) algorithm is used to determine which pages of file détautd be evicted from the file-system
cache. While changes to disk data also proceed through #hsytem cache, this operation is not used
in this thesis, so it is not discussed further as it is irratevto the experiments.

Since disk access is slow and most file access is sequehgabperating system typically reads a
large amount of adjacent data for a single disk read into lxesyistem cache. In addition, if the operating
system detects that file access is proceeding sequeritiallsp performs additional read-ahead by reading
the next chunk of sequential file data from disk before it cpiested by the application. Performing larger
reads improves disk efficiency and using read-ahead redieesmmount of time an application waits for
disk 1/0 as the data has already been requested. If the oesatstem detects that file access is not
sequential, then read-ahead is disabled.

2.6 APl Improvements

Many of the servers discussed in this chapter do not takensatya of newer operating-system calls.
This section reviews some recent application-programsiiteyface (API) extensions applicable to high-
performance servers.

2.6.1 Scalable Event-Polling

Event-polling mechanisms are important for high-perfanoeaservers. Event-driven architectures such as
SPED and AMPED use event polling to determine what actiopetform next. Many thread libraries use

18

2.6. API IMPROVEMENTS

event polling to minimize blocking, allowing multiple ustiireads to be multiplexed over a small number
of kernel threads. Banga and Mogul showed that traditiom@riaces likeselect andpoll do not scale
well for a large number of file or socket descriptdrk [8]. Ie ttontext of a web server, each connection
corresponds to a socket descriptor.

One problem withselect and poll is that the cost of the operation is proportional to the nundfe
descriptors, not the number of available events. Thess sadtide O(n) copying costs for arguments such
as bitmasks or arrays into the kernel and back to user spad® @) costs to scan the list of descriptors to
find outstanding events. Another problem is the calls atelstss, so each call requires the interest set as
an argument. Hence, multiple calls on the same set of filerigesis require the interest set to be copied
into the kernel each time, versus the kernel retaining ttereist set.

Research on more appropriate event-polling mechanismbidbrperformance servers handling a
large number of simultaneous connections has resulted umédber of new event-polling mechanisrib [9,
[I8,[41]. These new event-polling mechanisms have beengacated into various operating systems,
including /dev/poll on Solaris, Kqueud[35] on FreeBSD aegbll on Linux. I/O completion ports offer
similar functionality under Window$]@,.55].

The idea behind these mechanisms is similar to the scalablg-enechanism proposed by Bargja
al. [@. In their mechanism, rather than having event pollingsteeless, the kernel stores the interest
set on behalf of the application. The application prograits @n event-polling routine to retrieve events
associated with the stored interest-set or calls updatamesuto modify the interest-set stored in the kernel.
Their mechanism is both efficient and scalable; it reducesthount of data copying required for polling
and the performance of the event-poll calls depend on thebeuwf available events and not the size of
the interest set. One disadvantage to this approach, hovieteat a copy of the interest set must be kept
inside the kernel, potentially resulting in additional n@gnoverhead as a copy of the interest set likely
exists in the application too. As well, each change to ther@st set requires an expensive call into the
kernel, offsetting some of the advantages, especiallyeifrikerest set changes frequenflyl[26].

All the servers examined in this thesis take advantagspalf, with functionality similar to the event
mechanism proposed by Bangtal. [B]. There are two modes of operation fepoll: level-triggered
and event-triggered. With level-triggered semanticspag las there are events pending for a descriptor,
polling that descriptor returns, indicating events areilakée. With edge-triggered semantics, polling
a descriptor only indicates available events when the efilstitoccurs; subsequent polls of the same
descriptor do not indicate that events are pending untéhaghts for that descriptor are drained. Typically,
the application continues reading or writing to a descriptatil EAGAIN is returned before it can expect
to be natified of further events for that descriptor.

Gammoet al. [Ed] compared the performance efoll, select andpoll. They show that edge-triggered

19

CHAPTER 2. BACKGROUND AND RELATED WORK

epoll performs better than level-triggeredoll for web servers under various loads and that edge-triggered
epoll performs equivalently or better thalect or poll for a variety of workloads. As well, similar

to Chandra and Mosbergd]16], they show tkelect and poll perform reasonably under high load for
certain workloads provided multiaccept is used. The seregamined in this thesis use edge-triggered
semantics foepoll.

2.6.2 Zero-Copy Transfer

Originally, web servers maintained a cache of file data ireghy@ication. File data is read from disk into
the application file-cache and then thete system-call is used to transmit the data to the client. Hence
the file data is read from disk into the kernel file-system eaatd subsequently copied into the application
file-cache. Then, the data must be copied from applicatierciche back to the kernel every time afile is
requested and transmitted to a client. This method is ineffias it incurs at least double copying every
time file data is transmitted to a client, and possibly mongyat if data is evicted from the application
file-cache due to size restrictions.

To reduce the inefficiency, operating systems offer zerdoansfer methodssendfile on Solaris,
Linux and FreeBSD antransmitFile on Windows. With zero-copy transfer, the application doatsneed
to maintain an application file-cache. Instead, the file dathe kernel file-system cache is utilized to
transmit the file to the client, eliminating the overhead gpying the file data between user space and
the kernel. Both, Joubest al. [E9] and Nahumet al. [EQ] show the performance benefits of zero-copy
transfer. One potential downside of using zero-copy tearisfthat the kernel decides which files remain
in the cache, not the application.

2.6.3 Asynchronous I/O

While sockets can be placed into non-blocking mode, thabopmloes not exist for disk I/O. Instead,
operating systems are starting to offer support for asymaus disk-1/0. Like non-blocking socket-1/0O,
with asynchronous I/O, an application makes a request &k @O but does not block waiting for the
I/0 to complete. At some point in the future, the kernel nesifthe application once the 1/0O completes.
Currently, there is no unified event-mechanism supportddrnyx; ideally, the kernel notifications should
be tied into an event mechanism likpoll, so all I/O can be managed by the application through a single
interface. The advantage of this approach is that only desitgead is needed on a uniprocessor as an
application never needs to block waiting for socket or digsk However, multiple threads or processes
are still needed to achieve parallel execution on a multigseor. Huet al. [28] show the advantage of

20

2.7. SUMMARY

using asynchronou®ansmitFile in Windows NT under heavy load for large file transfers coregatio
multi-threaded servers using synchronous 1/O.

Unfortunately, the Linux kernel does not offer full suppfat asynchronous I/A21]. For example, as
mentioned previously, asynchronasehdfile does not exist. In the absence of kernel support, it is plessib
for an application to use kernel threads (helper tasks)mulsite asynchronous /O, i.e., a set of kernel
threads are used to submit disk-I/O operations on behalh@fapplication and notify the application
once the I/O completes. However, this mechanism is lessegffithan a kernel implementation as there
are overheads related to mutual-exclusion/synchrooizas well as memory and scheduling overheads
resulting from additional threads.

Another approach is for the operating system to provide amggmechanism, like Scheduler Activa-
tions [@] or First-Class User-Level Threadis][38], that allihread libraries or applications to implement
asynchronous I/O operations on top of existing synchrom@sperations. Elmeleegst al. [23] propose
Lazy Asynchronous I/O, a user-level I/O library to allow etrdriven servers to deal with blocking I/O
operations. The library provides a polling mechanism tovalboth socket and file 1/0 to be handled in a
consistent manner. The advantage of this approach ovetidred asynchronous 1/O is that I/O contin-
uations are only created if an operation actually blocksar@aet al. [[3] developed ServLib, a thread
library that provides an M:N threading library built usingyachronous I/O. While most M:N threading
libraries contain an 1/0O subsystem to transparently detld llocking calls so the entire application does
not blocking waiting for 1/0O, ServLib provides this functiality by building its I/O subsystem using asyn-
chronous 1/0. They show that M:N threading with asynchranld® offers better performance than other
threading models for 1/O intensive multi-threaded senligesweb servers. Both Lazy Asynchronous I/O
and ServLib are built on top of Scheduler Activations. Thavadvack of Scheduler Activations is that a
new kernel thread is spawned every time an operation blackigh could result in high overhead. As
well, many operating systems, including Linux, do not pdevsupport for mechanisms like Scheduler
Activations.

2.7 Summary

Web servers are complex software applications. They musiléanetwork and disk 1/O efficiently and
scale to thousands of concurrent connections. Previoeands has focused on improving web servers
serving static content. These improvements have includgd architectures, implementations and op-
erating system facilities. Web server architectures mhelAMPED, thread-per-connection and pipeline.
High performance implementations of these architecturesFéash for AMPED, Knot for thread-per-
connection and Haboob for pipeline. Newer operating sydtaitities include zero-copy transfer and
scalable event-polling, e.gendfile and edge-triggereepoll, respectively.

21

CHAPTER 2. BACKGROUND AND RELATED WORK

The current performance picture for web servers is unknosgabse a thorough comparison encom-
passing all these facets is lacking. Furthermore, much isfwlork has focused on the uniprocessor
domain. Chaptdil3 presents a comparison of current stetteeedrt web servers on a uniprocessor across
various workloads. Once the uniprocessor situation is tshoed, Chaptelfl4 continues the comparison

into the multiprocessor domain.

22

Chapter 3

Uniprocessor Web-Server Architectures

This chapter examines various server architectures run singée processor with different workloads.
The goal of this chapter is to compare the performance of éies architectures and to see how their
performance changes under different workloads. A spectfimorkloads, ranging from in memory to
disk bound, are explored. The varying workloads are acHi®yereconfiguring the server with different
amounts of memory. All other factors are kept the same, dwstuthe file set, the log files used by the
clients, the network configuration, etc.

For each workload, similar parameters for each server aredtdor best performance. All experi-
ments are verified (see Sectionl3.3) to ensure the serveovaprg fair service to the clients and only
those experiments passing verification are included. Thedmmfiguration for each server is profiled to
examine any differences and similarities among the arcthites and for different implementations within
an architecture.

3.1 File Set

The file set used for the experiments in this chapter is statet generated using the SPECwel39 [50]
file-set generator. The choice of a SPECweb99 file-set altbesesults to be comparable to the large
body of previous worki[Id4€, BB HIZ.193.162], which uses tcsBPECweb99 file-set. In many cases,

these file-sets are also of a similar size as the file-set ithtgs. More recent versions of the SPECweb
benchmark exist, and it would be interesting to test theeseaxchitectures on these and other workloads,
but that is beyond the scope of this thesis. The various wadd for this chapter are generated by keeping
the file set the same and reconfiguring the server with diftemenounts of memory. This strategy has the
advantage of keeping one additional variable consisteongrthe experiments.

23

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Clients

File Request

Server File Data
Ge'g_?rated) Log File 2

iles

M .
Subset of Generated
File Names [---------mmmmmmmi e

Figure 3.1: From file setto HTTP requests

The SPECweb99 generator produces a number of director@s camtaining files with the same
profile. The files are classified into four classes each ctingisf nine files, with all thirty-six files having
unique sizes. The sum of the file sizes in a single directonakso,123,580 bytes. Class 0 files range in
size from 102 bytes to 921 bytes. Class 1 files range in size i024 bytes to 9216 bytes. Class 2 files
range in size from 10,240 bytes to 92,160 bytes. Class 3 filagerin size from 102,400 bytes to 921,600
bytes. The size of the files is constant across the direstobdérectories are generated to make up a file
set of the desired size. While each directory contains 36 flelassex 9 files), the contents of each file
differs.

Figure[321 shows the relationship among the file set, semnechents. For the experiments in this
chapter, 650 directories were generated, resulting in adilef approximately 3.1 gigabytes in size on the
server. However, the size of the generated file-set ovaratds the size of the actual file-set used in the
experiments. The size of the actual file-set is based on theesof files a client might actually request.

Each client consists of a copy of the httperf load-generf@@8} running with a log file of requests.
The load generator simulates a number of users, based oeghedirequest rate, by establishing multiple
concurrent connections to the server. The main advantadgtperf is its ability to generate overload
request-rates, dealing with the inability of the SPECwedb@8-generator to generate overload conditions
as discussed by Banga and Druschel [7]. Individual cliehteave distinct log files, with the log files
generated based on the specifications of the file set anddhests in a log file are designed to conform
to a Zipf distribution [6}]. Each log file contains a numbepefsistent HTTP connection sessions, where
each session is a request for one or more of the files. The ksyifitlude both active and inactive off

24

3.1. FILESET

% Reqs Memory Size (MB) Max File size (B)

10 0.5 409
20 0.8 512
30 1.6 716
40 4.8 3072
50 8.4 4096
60 9.9 5120
70 12.2 5120
80 20.1 7168
90 94.6 40,960
95 127.2 61,440
100 2196.0 921,600

Table 3.1: Cumulative amount of memory required for recgiegten sorted by file size

periods to model browser processing times and user thingstif®]. For this chapter, the log files for
each client have an average session length of 7.29 requrestdl dhe requests are for static files. Due to
the way the log files are generated, not all the files in the &itease requested. The log files request 2.1
GB, consisting of 21,396 files across all 650 directorieeffile set. Hence, the size of the requested file
set is approximately 2.1 GB.

Interestingly, even this value does not represent the teféetile-set for a specific experiment. The
effective file-set during an experiment is based on the r&gqube server actually processes. During the
experiment, some client requests may timeout causing ripttioa request itself to not be processed by
the server but also all the subsequent requests in thabeeddence, it is possible that not all files in a
client log-file may be processed by the server, meaning lieagffective file-set experienced by the server
may vary from run to run. Nevertheless, in the remainder efttiesis the term file set is used to refer
to the file set based on all possible client requests as isgiveeasonable approximation of the file set
experienced in a given experiment and is the file set thatvaseould handle if it was able to process all
client requests (i.e., no timeouts).

The various workloads in the chapter are generated by kgdpafile-set the same and reconfiguring
the system with different amounts of system memory. Givext the server machine used for these
experiments has 4 GB of physical memory, a file-set size ofGBLfits entirely in memory and still
leaves enough memory for the operating system and applicafor the experiments requiring moderate
disk activity, the system is booted with 1.4 GB of memory amdHigh disk activity, the system is booted

25

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

with .75 GB of memory.

When a server receives a valid file-request, it sends backl¢héata to the client. The question of
how disk bound the file set is depends on the amount of memaiiable on the server and the pattern of
requests. TablE3.1 shows the amount of memory requiredisfyseequests as the files size increases.
For example, 60 percent of requests are for files of size 5yBstor less and the sum of the sizes of
the unique files contained in those requests is 9.9 megabptes to the Zipf distribution, only a small
amount of memory is needed to service a significant perceradgequests; 50 percent of the requests
comprise 8.4 MB of the file set and 95 percent of the requestipdee only 127.2 MB of the 2.1 GB
file-set.

3.2 Response Time

In order to simulate more realistic workloads, all clienuests must be serviced within a certain time.
If a request is not completed within that time frame, thertliggmes out and closes the connection. This
behaviour models a real user who only waits for a relativetalsamount of time for a web page to load.
This response time value may also vary from user to user, aiserss response-time tolerance may vary
based on the web site being accessed.

For the experiments in this chapter, a single timeout valugOoseconds is chosen and applied to
all requests. 10 seconds is reasonable based on the falambiservations. First, in Windows XP, the
TCP/IP stack is tuned to wait 9 seconds when trying to estalaliconnection before timing out. Second,
Nielsen [41] recommends that 10 seconds is the upper limiaaneptable response time based on a
variety of user studies examining human-computer contiersd interactions conducted from 1960 to
1980. While 10 seconds sounds reasonable, based on exmextat current broadband users and the
fact that the networks in these experiments are runninggabifi speeds, a timeout value of 10 seconds
is likely rather generous. In fact, newer studigsl [30] sstgleis value may be lower for certain types
of sites. However, even with a broadband connection, doadihg a 1 MB file (approximate size of the
largest file in the file set) can take a few seconds. Hence,ddhds is a reasonable compromise.

Timeouts are enforced using the timeout parameter to fittHervever, this parameter is used for two
purposes. While establishing a connection, the timeowmater is the amount of time the server has
to respond to a SYN. This value is in line with the Windows XmPmection timeout mentioned above.
Once a connection is established, it becomes the timeoug Y¥at the entire persistent HTTP connection
session. All the files in the session must be completely séhinathis amount of time.

IFiles of size 5120 B span across 60%—70% of requests

26

3.3. VERIFICATION

3.3 \Verification

The servers compared in this thesis are verified based onritesia First, it is necessary to ensure

correctness, i.e., that the server is sending valid dathet@lients. This step is accomplished by having
each client compare the bytes returned by the server witlpg abthe actual file requested. A server

is running correctly if all the data matches. Due to the digaint overhead required to compare the
data sent by the server, only a few representative requiest aae run to verify the correctness of the
server; correctness verification is disabled during théopsiance experiments. When there is a significant
change to the server, this verification is repeated to maletha server is still sending valid data.

Second, itis necessary to ensure adequate performancty verify the server is achieving an accept-
able response with respect to the entire range of clientestgu This requirement creates a level playing
field and allows for a fair comparison of the servers. Theedatused to establish this range is that files of
differing sizes are equally serviced; otherwise, a seraarignore certain requests to achieve performance
benefits such as higher throughput or lower response tintesyequests for large files.

This verification step considers both the individual cleeahd the aggregate of the clients. Three
criteria are used to determine if a server is operating restdy. These criteria focus on the percentage of
requests that timeout both cumulatively across all filesfanéach file size. Client requests that timeout
before being accepted or read by the server are not countzdidee factors external to the server are
controlling this decision; in this case, the server has rehshe requests, and hence, is not explicitly
rejecting specific requests. While client timeouts are [itéech across all file sizes, verification ensures
that each size receives a reasonable level of service. Tthdaare as follows:

e The maximum percentage of timeouts for all files does noteckd®%.

e The timeout percentage for each file size is below a certagshtiovld. For individual clients, the
threshold is 5% and the aggregate for all clients is 2%.

e For each file size, the timeout percentage is not larger theamiean timeout percentage of all files
plus a threshold. Again, for individual clients the threlshis 5% and the aggregate for all clients is
2%.

The first check ensures that there is not an excessive nurhtiereouts in general. The second check
ensures that no individual client experiences a disprapwate number of timeouts. The third check
ensures that no file size experiences a disproportionatdeuaf timeouts. This check is similar to that
performed in SPECweb99 to verify that approximately theesaumality of service is afforded to files of
different sizes. Based on experience, these checks mayhalpdo determine if a server is operating
incorrectly or if there is a problem with the experimentaliemnment.

27

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Without this check, various techniques can be employed poorre performance. For example, it was
found that higher throughput could be obtained for certadnkioads by allowing requests for the largest
files to timeout. Due to the fact these workloads use the Zgifidution, smaller files are accessed more
frequently and hence, tend to remain in the file-system cathes, giving priority to smaller files can
result in higher throughput and smaller response timesusecthere is less disk I/O.

The verification step to ensure adequate performance ddesffaot server throughput as it is run
after the experiment finishes. All experiments undergo ¥hisfication unless otherwise indicated and
results are only included for experiments that pass vefificgfor all request rates. In instances where
experiments did not pass verification, it is most often dugetwers not being able to respond to requests
for large files prior to the client timing out.

3.4 Tuning

When implementing a server, a number of design choices aitable, with the biggest being the server
architecture. Once a server architecture is chosen, a nuofilsenaller design choices still exist. Many
of these choices are made either through trial and error éoltowing best practices. These choices can
include how the data is transmitteskqdfile vs write), the event mechanisnsdlect vs poll vs epoll), etc.
For each architecture examined, best practices are usegpternent a server.

However, even when best practices are used, there are a nafioafiguration parameters that affect
a server’s performance with respect to different worklcaus$ hardware, e.g., maximum number of simul-
taneous connections, number of threads, etc. Ideallyethasmmeters should be automatically adjusted
by the server according to the dynamic workload. Howesetp-tuningis a challenging probleniJ11]. In
this thesis, tuning is performed systematically by hand.

The basic idea is to run experiments and measure the perfoera the server as the parameters
of interest are varied. By observing how the performancehefderver changes with different tunings,
it is possible to find a combination of parameters that resuthe best performance. Tuning is done
independently for each server and workload combinationth&snumber of possible tuning parameters
for each server is quite large, a subset of parameters isteadleBased on my experience in running a
large number of different server experiments, a subsetmiogpiate parameters was chosen that have the
most significant affect on performance.

The parameters chosen in general are the maximum numbenafaneous connections supported by
the server, level of concurrency and blocking versus noealihg sendfile. The terms blockingendfile
and non-blockingsendfile refer to whether a socket is in blocking or non-blocking madensendfile is
called. For Knot using an application level cache (knoteg Sectioi-3.81), the size of the application

28

3.5. ENVIRONMENT

file-cache is the third parameter tuned; knot-c does nosersdfile. After selecting the type afendfile or
cache size for knot-c, a range of values for both the maximonmections and the level of concurrency
are chosen. In order to see the effect of each individualnpeter change, an experiment is run for the
cross product of each parameter combination of the two gangée original ranges are chosen to be
sufficiently large so that the entire spectrum of perforneaiscovered.

The initial set of experiments for each server are analyaaget an indication of the general vicinity
resulting in good performance. Once this area is found, arfine-grained matrix can be used to find
the combination of parameters that resulted in the besbpadance. This procedure can recurse as many
times as necessary but typically only two or three levelsamessary.

Each experiment consists of running the server for sevataky with each rate taking about 5 to 8
minutes to complete. Client requests are generated usipgrhais the load generator. The total request
rate is evenly divided among each copy of httperf, which gpomsible for generating its portion of the
load using its associated log file. A client traverses thefilegone or more times based on the length
of time the experiment lasts and the desired request ratethE@xperiments in this chapter, the request
rates range from 6000 requests per second to 30,000 regueesiscond. This range is wide enough to
find a server’s peak throughput and to measure its throughipert saturation. In the initial tuning, an
experiment consists of five request rates and for the fineepatuning the number of request rates is
increased to eight. The selected rates are run in increasteg and the server is restarted between each
rate. There are 2 minutes of idle time between rates and betegperiments to allow any connections in
the TIME-WAIT state to be cleared. As a result, 45 to 75 miawee required to produce a single line on
a graph plotting multiple rates.

3.5 Environment

The experimental environment consists of four client maesiand a single server. The client machines
each contain two 2.8 GHz Xeon CPUs, 1 GB of RAM, a 10,000 RPMISIZX and four one-gigabit
Ethernet cards. Each client machine runs two copies of thiklear generator. They run a 2.6.11-1 SMP
Linux kernel, which permits each client load-generatoruim on a separate CPU. The server machine is
identical to the client machines except that it contains 4d6BAM and a single 3.06 GHz Xeon CPU.
For all experiments, the server runs a 2.6.16-18 Linux Kenngniprocessor mode, i.e., the kernel is built
with SMP disabled.

The 2.6.16-18 Linux kernel on the server has been modifiedkta foroblem with caching in the
kernel that | found and fixed. The file-system cache in thelB-88 kernel is designed to prevent a single,
sequential non-page-aligned read of a large file from idedilng a large portion of the file-system cache.

29

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

SERVER
[1] [2] [3] [4]

(1] [2] (3] [4] | | [a] [2] [3] [4] | [[1] 2] [3] [4] | | 2] [2] [3] [4]
CLIENT 1 CLIENT 2 CLIENT 3 CLIENT 4

Figure 3.2: Networking between server and client machines

The problem occurs because the mechanism to detect thigibeh& too coarse; multiple consecutive
accesses to the same page in the file-system cache do nae tipglaccess flags for that page. Only when
a different page in the file is accessed are the access flagtdpd his logic causes files that are less than
or equal to the size of a single page to never be marked assactafier their first access. Hence, these
pages are always ejected from the cache regardless of hewtbft file is accessed. Due to the range of
file sizes used by the SPECweb99 file set, a significant numifdes are less than the size of a page,
and hence, are affected. The situation is exacerbated h¥igiialistribution, which results in smaller
files being requested more frequently. In fact, more than &¥é Tabl&3]1) of requests are for files of a
size that occupy one page or less. The result is a significaatiat of unnecessary disk accesses for the
workloads in this chapter. In order to alleviate this probleé helped to devise a patch for the 2.6.16-18
Linux kernel to circumvent this behaviour (see Secfion] Ad gatch). This patch has been approved
and is included in newer versions of the Linux kernel. Thimké problem also means that the results
presented by Pariagf al. [EH] are not directly comparable.

The clients, server, network interfaces and switches haea Bufficiently provisioned to ensure that
the network and clients are not the bottleneck. In partictlee server and client machines require mul-
tiple gigabit Ethernet interfaces. To take advantage ofiplalEthernet cards, separate subnets are used
for each interface, allowing for explicit load balancingrefjuests. Four subnets are used to connect the
server and client machines via multiple 24-port gigabittslaés. Each machine has 4 one-gigabit net-
work interfaces and these interfaces are connected to thiestdnets with no machine having multiple
interfaces connected to the same subnet. Each copy of thdoadrgenerator on a client machine uses a
different subnet and simulates multiple users who are sgndiquests to and getting responses from the
web server. Though each client machine only uses two sybihetlients are equally spread over the
four interfaces available on the server, see Figuie 3.2efample, client 1 generates requests on subnets
1 and 2, while client 2 generates requests on subnets 3 and 4.

One limitation of this network configuration is that the alfie and server all communicate using fast,

30

3.6. CACHE WARMING

reliable network links. A more realistic environment woundlude a mixture of link speeds from slow to
fast, similar to actual clients. Slow network links limirdughput to certain clients, resulting in increased
transmission times and additional TCP overheads. Sinse ttenditions where not tested, their effect on
the server architectures examined is unknown; however likély the performance of the servers would
change. Dealing with these changes could range from reguédditional connections or a higher level
of concurrency, especially for the servers using bloclkiagdfile, and may not be consistent across the
server architectures. As well, the overall throughput efglarvers would probably be lower. Nevertheless,
| conjecture that many of the performance trade offs amoegdhious server architectures would remain
the same in this environment as the environment used initegs.

3.6 Cache Warming

The experiments were run without clearing the file-systeahedetween rates and experiments. As well,
if the file-system cache is not warmed, a preliminary experitris run to warm the cache before the
beginning the actual experiments. This approach is reatorea the idea is to measure performance of
the web server after initialization and when a working set een created in the file system. Hence, the
experiments are not completely independent as one runtaffee immediately following run based on
what is left in the file-system cache. However, the state effile-system cache should be acceptable
given that the log files used by the clients never change aidtib requests follow a Zipf distribution.

However, this strategy is biased against knot-cache apjiigcation cache is not warmed, and there-
fore, starts empty after each rate. Hence, there is a petmliyarm up its application cache as the
experiment progresses, but it can still take advantageeoivirmed file-system cache. Some experiments
were run to measure the extent of the bias by warming knoteedsee Section 3.10.1.1). The other
approach is to zero the file-system cache, but that seemgroajate.

3.7 Table Calculation

Most of the results of the experiments conducted in thisishase presented in tables. A table entry
is an if the experiment failed to verify. If the experiment verdiethe performance of the multiple
experiment runs at different request rates is condensedairgingle number. These numbers can be
compared to determine how experiments perform relativa¢b ether, with larger values indicating better
performance. Ideally, it would be better to present theltesdi each experiment in a graph. However, as
the number of experiments is large and the number of lings#drareasonably be placed on a single graph
is small, using graphs is impractical for most cases. Intafdto the number of graphs required to show

31

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

each experiment, comparing performance among graphsisiifficult. For these reasons, a single value
is used as a coarse representation of the performance oparireent. Graphs are selectively included in
order to examine certain experiments in more detail.

The reason experiments composed of multiple runs at diffawges can be condensed is that most
of the graphs have a very consistent shape (see Higdre 3d[58). The general shape results from the
following behaviour. For most of the experiments, the lowagfuest rates can be fully serviced resulting
in increasing throughput as the request rate is increaseeht&ally, the server reaches a peak, typically
around 15,000 requests per second. After this point, theser saturated and has relatively flat perfor-
mance with a slight decrease in throughput from peak. Expais where this assumption does not hold
true are marked ined these anomalies are explained further.

Given the common shape of a curve for an experiment, it islyntig height of the throughput peak
that differentiates each curve. By taking the area undectinee, a single value can be used to represent
the performance of an experiment. This area is then norethlia generate a smaller value, because
working with ten digit values is cumbersome. Since the ldveesl highest request rates are consistent
for all the graphs, the area is a reasonable measure asragpisithat have higher throughput have larger
areas compared to experiments with lower throughput. Heéaigger values represent better performance.

It is possible to normalize in a number of different ways. Example, dividing by the width of the
endpoints of the x-axis results in average throughput ferekperiment. Unfortunately, throughput is
limited by the request rates below peak, meaning that theageethroughput can be misleading as it is
lower than the throughput at peak and after saturation. éleinchose to normalize using an arbitrary
value so no additional information aside from relative parfance can be inferred from the value. The
value chosen was to divide the area by 13 million to give senalinitless performance values.

More formally, let the request rates for the experiment Ipeagented byate, with ratg < rate 1, Vi
and let the corresponding throughput be representagutty In this caset pui; is actually goodput, where
goodput is the throughput of the requests completed withen10 second timeout. Partially completed
requests that timeout are not included in this calculatidinen the condensed area of an experiment
consisting ofn rates (i > 1) can be represented by:

n-1
Condensed Area (Zl(rataﬂ —rate) x (tputi1 +tput)/2)/scaling factor

As mentioned, for this thesiscaling factor= 13,000, 000.

32

3.8. SERVERS

3.8 Servers

There are three general servers compared in this chaptet i&a thread-per-connection servgserver

is an event-driven server and WatPipe is a pipeline serveiorder to perform a fair comparison and
to highlight differences in architecture, every effort waade to eliminate implementational bias where
possible and the servers are made as consistent as possible.

All the servers, except caching Knot (knot-c), use essigntiae same code for implementing the
cache table of file descriptors and HTTP headers

Level of compiler optimization is -O2

All the servers, except knot-c usendfile

All the servers used edge-triggeregbll

Minor differences include using C faserver and C+ for the other servers.

3.8.1 Knot and Capriccio

Previous studiedT44.59] have shown that for various wadkbothread-per-connection servers are un-
suitable for high performance web servers. In order for aeseio perform well under high loads, it
must support a large number of simultaneous connectldnsy{®aning a large number of concurrently
running threads for a thread-per-connection server. Wnfiately, as the number of threads increases,
overheads related to scheduling, mutual exclusion andhsgnization also increase and tend to inhibit
performance. However, von Behren al. [E7] have suggested the problem is not with the thread-per-
connection architecture but with the implementation of wineerlying threading libraries. Specifically,
any threading library that uses a 1:1 threading model doesaade well when thousands of concurrent
threads are required. With a 1:1 model, each user-leveddhzerresponds to an underlying kernel thread,
so overheads related to context switching, contention ehnéduling eventually cause the performance of
the server to degrade as more threads are added.

Capriccio [RT] is a user-level threading package desigoeddrk well for high-concurrency appli-
cations. It is designed to efficiently support a large numdfeconcurrent user-level threads by using
a non-preemptive, M:1 threading model. With an M:1 thregdimodel, all the user-level threads are
multiplexed over a single kernel-thread. This type of thieg, combined with no preemption, reduces
contention because little or no locking is required sineeuber-level threads only give up control at fixed
scheduling points. Essentially, Capriccio implementgdhing by adding a scheduler and 1/O facilities

33

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

to a coroutine library[[118]. Building non-preemptive, Miiréading on top of coroutines is similar to co-
operative task management with automatic stack manageasetgscribed by Adyet al. [B]. While this
approach has the advantage of being fast with low overheadnnot take advantage of multiple CPUs,
where locking must occur.

Since Capriccio only has a single kernel-thread, allowisgruhreads to directly make 1/0O system-
calls is problematic. These I/O calls could block the unded kernel thread essentially causing the
entire program to block. Instead, Capriccio has wrapperB@system-calls that interact with the sched-
uler thread and an I/O subsystem to transparently preverketmnel thread from blocking unnecessarily.
Socket and disk 1/0 each have a specific wrapper implementati

For socket I/O, the wrapper begins by allowing the user thiteaattempt the system call in non-
blocking mode. If the call completes successfully, the wepreturns and the user thread continues
execution. However, if the operating system indicates #ieveould block (EWOULDBLOCK), then
an /0O request structure is created, the associated soeketiptor is added to the interest set for the
appropriate event mechanism and the user thread blockedRaily or when there are no other threads to
schedule, the scheduler thread polls the event mechanideigamine if any sockets are ready for reading
or writing. Based on the set of ready events, the scheduléesdhe associated system calls on behalf of
the blocked user threads. If the subsequent system callletespvithout the system indicating the call
would block, then the associated user thread is placed batkeoready queue and the socket descriptor
is removed from the interest set. If the I/O request cannatdmepleted without blocking, for example,
the amount of data being transmitted is larger than the aailsocket buffer space, then the scheduler
completes the request using multiple non-blocking syst&lia with the parameters appropriately adjusted
for each call. Similar to the initial request, the additibagstem calls are performed when subsequent
polling indicates the socket descriptor is ready again.

For disk I/0, the wrapper passes the request to a pool of kidmreads referred to as workers. These
worker tasks are necessary because disk I/O is potentildbkibg if the data is not in the file-system
cache and non-blocking disk I/O is unavailable. These wotdsks spin polling a queue of Capriccio
disk-1/0O requests and performing the potentially blockdigk-I/O on behalf of the user-level threads.
When a user thread invokes a disk-1/0 wrapper, the userdhmesates an I/O request structure, places it
on the worker queue for processing and blocks. A worker teslores the queued request, performs the
associated system call on behalf of the user thread, andpthe user thread back on the ready queue
once the call is completed. Safe access to the disk-I/O gbgumultiple threads requires appropriate
locking.

Knot [B1] is a thread-per-connection web server built ughrgyCapriccio threading library. Knot can
be run in different modes depending on various compilatioth @mmand-line parameters. At compile
time, a fixed number of worker tasks is specified and the eveshanism, eithegoll or epoll, is chosen.

34

3.8. SERVERS

The user threads in Knot can either be pre-forked duringesenitialization or created on demand for
new connections. Previous reseairchl [I3, 56] reports thtitally pre-forking threads results in better
performance. With pre-forked user threads, each threamige®a continuous loop accepting connections;
with on-demand threads, a single thread accepts connectind then dynamically creates additional
threads to process the requests. Once a connection is edcéipe associated thread reads an HTTP
request and completely processes the request before gahdimext request from the same client.

Knot uses an application-level cache that stores HTTP heaatel file data. If a file is not in cache, a
cache entry is created consisting of an HTTP header and ¢hdgfi&, which is read from disk. All requests
are serviced from the appropriate cache entry usingvthe system call to send the data from the cache
to a client.

3.8.1.1 Modifications to Capriccio and Knot

To allow for a fair comparison, several modifications weredm#o both Knot and Capriccio. These
changes serve to make all the servers consistent wherebjgoasid to add features or to fix Knot and
Capriccio so that they are implemented using best practices

The first major change is the addition eéndfile support to Capriccio. After Capriccio supports
sendfile, Knot is modified to optionally operate usisgndfile instead ofwrite. Previously supported 1/O
system-calls in Capriccio can be classified as either inglgocket I/O or disk 1/Osendfile is an inter-
esting system call as it can involve both socket and disk@®en that these two types of I/O are handled
separately in Capriccio, supportingndfile in Knot required a different implementation than previgusl
supported system calls. Threendfile variations were implemented; two non-blocking versiond an
blocking version. Similar to other I/O functions in Knegndfile has a wrapper.

Initially, non-blockingsendfile was implemented in Capriccio as a socket request followed thigk
request. The socket portion involves checking if the soiketady for writing and the disk portion
involves writing file data to the socket with thlendfile system call. In detail, the socket is already in
non-blocking mode so theendfile wrapper begins by creating a socket-1/0 request datatatejcadding
the socket descriptor to the interest set for the event nméstmaand blocking the user thread. When the
operating system reports that the socket is writable, hewdiresendfile system call is not immediately
invoked by the scheduler thread; instead, the user threpudtiback on the ready queue. Once the user
thread is rescheduled, it wakes up in the wrapper routireates a disk-1/0 request data-structure, adds it
to the disk-1/0 queue and blocks again. Eventually one ofatbiker tasks retrieves the request from the
gqueue and performs thsendfile call and then puts the user thread back on the ready queubeAstket
is in non-blocking mode, the entire file may not be written bsirggle call tosendfile. When the user
thread restarts, it may need to perform additicsmmidfile wrapper calls to completely transfer the file.

35

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Unfortunately, when this version was tested, it exhibitedrperformance due to high event-polling
and context-switching overheads. For all other socket gérations in Capriccio, the 1/0 operation is first
attempted and only if the operating system indicates tieatdi would block is the event mechanism used.
This technique tends to keep the event mechanism overheeaaklthe first attempt is usually successful.
However, sincesendfile may require disk 1/0, it is undesirable for a user thread tteartae call directly.

To alleviate this problem, a second version of non-blockiagdfile was implemented. This imple-
mentation is consistent with the idea of attempting theesyistall first and then using the event mech-
anism only if necessary. Thsendfile wrapper begins with the user thread creating a disk-1/O esju
data-structure, adding the request to the disk-1/0 quedeblotking the user thread. A worker task re-
moves the request from the queue and attemptsethdfile call with the socket in non-blocking mode. If
the operating system indicates that the call would blocknttihe worker task callgoll directly on that
socket descriptor with a one second timeout. If po# call indicates the socket is writable within the
timeout period, theendfile call is retried. Otherwise, theoll call times out and an appropriate return code
is passed back to the user thread. The downside of this agpiedhat it can cause the worker tasks to
block onpoll, but with sufficient worker tasks this is not problematic.

The implementation of the blockinggndfile version is similar to the second non-blocking implemen-
tation. Thesendfile wrapper creates a disk-1/O request data-structure, ptaeeequest on the disk-1/0
gueue and blocks the user thread. A worker task removes tluesefrom the queue, places the socket
in blocking mode and attempts tlsendfile call. Once the call completes, the user thread is put back on
the ready queue. There are a couple of differences betwednidbkingsendfile version and the second
non-blockingsendfile version. First, the blocking version does not need tomallas the system call now
blocks if necessary. Second, a blockeggdfile call always transmits the entire file and so the overhead of
waking the user thread to repeatedly calhdfile is avoided. Both the second non-blockisgndfile and
the blockingsendfile implementations are used for the experiments in the thesis.

The second major change is to the cache in Knot. For all theiores of Knot tested, the hashing
algorithm is changed to be consistent with the hashing dlgorused byuserver and WatPipe. This
hashing algorithm performs better on the URLSs for the fileuset by these experiments. As well, for the
versions of Knot usingendfile, further cache changes were required. Skwelfile uses the file-system
cache, the application cache in Knot is inappropriate ferwtérsions usingendfile. For these versions
of Knot, the caching code was modified to be similapserver so that only file descriptors and HTTP
headers are cached.

The third major change is the addition of code to perform eaghrming in Knot. The cache-warming
code allows a set of files to be read into the application cadten the server starts so the cache is warmed
before the experiment begins. In the case of knot-c, the dila i$ also read into the application cache.

36

3.8. SERVERS

Finally, various bugs were fixed throughout Capriccio anarrhese bug fixes include problems
with epoll support, the I/O subsystem and scheduling.

The first non-blockingsendfile implementation, the blockingendfile implementation and the cache
changes (not including cache warming) were made by otherbeenof the projec{]45]. The remaining
changes and fixes were done as part of the work for this thesis.

3.8.2 uyserver

In the Single-Process Event-DriveBRED architecture, a single thread services multiple conoesti

in various stages of processing using non-blocking I/O cBigally, a SPED server maintains a set of
connections that are being processed and data structueesade the current status of each connection.
An event mechanism such select is called to determine which connections have outstandiegts. For
each outstanding event, an appropriate event handlerakeavto process that event.

Thepserver originated as an event-driven (SPED) server and bhag oonfiguration options, includ-
ing using eitheselect, poll or epoll as its event mechanism. It also supports zero-capyfile and only
caches HTTP headers and open file descriptors. The majoleprakith a SPED server is blocking disk
I/0; when the single SPED process blocks for disk I/O, thé@eiprocess blocks, hence there is no way
to overlap CPU execution and 1/0O. Depending on the amountssf I¢O required, this can result in the
server spending a significant amount of time blocked waitnglisk I/0. As well, a single process cannot
take advantage of multiple CPUsserver evolved to support two different architectures tl déth these
problems. It can run as either a Symmetric Multi-ProcessnElgiven (SYMPED) server or a shared
Symmetric Multi-Process Event-Driven (shared-SYMPEDYse Note that when running with a single
process, both SYMPED and shared-SYMPED revert to a SPERIserv

3.8.3 SYMPED Architecture

In SYMPED mode userver consists of multiple independent SPED processesh acess is a fully
functional web server that accepts new connections, redd$Hequests and writes HTTP replies. How-
ever, when one SPED process blocks due to disk 1/0, the apgraystem context switches to another
SPED process that is ready to run. This approach allows plel8PED servers to be used in environ-
ments where a single copy of the server blocks due to diskiV@server, the SPED processes are entirely
independent except they share a common listening socket.sRaring is accomplished by having one
process create the additional copies of the server aftdistba socket has been initialized. This approach
has the advantage of not requiring any user-level mutudlsixm or synchronization. In addition, the
common listening socket means that no additional port deéphexing or load balancing is required.

37

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

SYMPED is similar to SMPED by Ren and Warig]37], however, the architectures were developed
independently. The SYMPED model is an extension ofheopy approach described by Zeldovieh
al. [&2]. With N-copy, however, each copy of the web server iststhusing a different TCP port number,
so some method for load balancing across the servers isedqururthermore, in the presence of disk
I/O, it may be beneficial to actually have more copies of theesarunning than CPUs, so N is no longer
equal to the number of CPUs.

3.8.4 Shared-SYMPED Architecture

The main drawback of the SYMPED architecture is that eackgs® executes in its own independent
address-space. The price of this independence is that epghot the server maintains an independent
cache of open file descriptors and HTTP headers, resultingeimory duplication. This duplication can
produce significant memory overhead. For example, 25,0@@ 6ife descriptors in each of 100 SPED
processes results in a cache of over 2,500,000 file desarigal their associated HTTP headers across the
entire server. As well, the operating system is requiredippsrt an equivalent number of open files plus
an additional amount of open sockets. These resource esggints can potentially stress the operating
system and significantly increase the memory footprint efsérver.

In order to mitigate this problem, the shared-SYMPED asttitre was developed. In shared-
SYMPED, the processes are independent except for a shatkd oh open file-descriptors and HTTP
headers. Two changes were required to implement sharedPEIMin pserver. First, the shared-
SYMPED processes are created to be independent exceptiehdedcriptors are shared among the pro-
cesses. Second, the area of memory for the cache tablmaped and shared across all the shared-
SYMPED processes. Mutual exclusion is handled using aesifugéx lock [2b] around the entire cache
table. This approach significantly reduces the number of dipe descriptors in the system, the size of
the cache table across the server and the memory footprtheaferver. The downside of this approach
is that the server processes are no longer independent dtid¢hmeaded program considerations must be
addressed, i.e., contention on the cache-table lock.

3.8.5 WatPipe

WatPipe is a web server | implemented using a pipeline archite. In WatPipe, each stage handles a
portion of the processing of an HTTP request. Itis impleradrih C++ and built from th@server source,

so much of the code base is the same or similar; however, thpaents are restructured into a pipeline

architecture. Additional code was added to support thré@dsach stage, communication using queues,
specialized event handling for various stages and mutwdiision and synchronization where necessary.

38

3.8. SERVERS

While SEDA is designed to allow for the creation of well-cdiwhed servers via dynamic resource
controllers, WatPipe eliminates these controllers to &fsnfhe design while still achieving good perfor-
mance. One of the primary design goals for WatPipe is to keephead low; in addition to eliminating
dynamic resource controllers, WatPipe also uses a shatimpgowith only a small number of threads in
each stage. Keeping the number of threads small allows YWatBibe built on top of a 1:1 threading
library. Wrapping of system calls is unnecessary as ea@athcan invoke (blocking) system calls di-
rectly without causing the entire application to block. e implementation for this thesis, Pthreads are
used to create multiple threads within the same addres® sammmunication is handled using explicit
gqueues that are used to pass socket descriptors between.stsgtPipe’s careful batching of events and
shortened pipeline should prevent excessive contextlsidc Like pserver, WatPipe takes advantage of
zero-copysendfile and uses the same codepasrver to cache HTTP reply-headers and open-file descrip-
tors. Both blocking and non-blockinggndfile are supported. Finally, eithepoll or select can be used to
wait for events. In contrast, SEDA and Haboob are implenteimelava. Haboob has a longer pipeline
and utilizes dynamic resource controllers to perform adimiscontrol on overloaded stages.

Specifically, the WatPipe implementation consists of 5etagiccept, Read Poll, Read, Write Poll
and Write. The pipeline server in Figure2.4 on pBge 11 isadlgtthe WatPipe server. The first 4 stages
have one thread each, simplifying these stages as therecisnoorrency within a stage, and stage 5 has
a variable number of threads. Synchronization and mutualusion is required when communicating
between stages and when accessing global data (e.g., thdilepdescriptors cache). Stage 1 (Accept)
accepts connections and passes newly accepted connetdictage 3. Stage 2 (Read Poll) uses an
event mechanism to determine which active connections eardd and passes these events to stage 3.
Stage 3 (Read) performs reads on these connections, paesesaming HTTP requests and if necessary
opens the required files and adds the appropriate inform&tidhe application cache. Stage 4 (Write
Poll) uses an event mechanism to determine which connectios available for writing. Once stage 4
determines the connections that can be written, the thiieastage 5 (Write) perform the actual writes.
In the case where non-blockirggndfile is used, a request may cycle within stage 5 until all bytes are
written. After all the data is written, the connection is g&g back to stage 3 to handle the next request,
if necessary. Having multiple threads performing the wgtallows processing to continue even when a
thread is blocked waiting for disk 1/0 to occur. WatPipe addlows multiple threads in the Read stage,
but they were unnecessary for the experiments in this chapte dashed lines to Read Poll and Write
Poll indicate that communication between the stages odoylkicitly, as the read and write interest sets
are maintained in the kernel, so no direct communication tinése stages is required.

39

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

3.9 Static Uniprocessor Workloads

The next few sections contain the experiments run for eaclesen the various workloads. The work-
loads are generated by keeping the file set and client logcfilesistent and adjusting the memory size of
the server machine. The three workloads are labelled basétewsize of the server memory: 1.4 GB, 4
GB and .75 GB. These workloads correspond to moderate dxsknld disk 1/0 (in-memory) and heavy
disk 1/0.

For each workload, a number of experiments are run for easferseAt the end of each experiment,
the throughput of the server is calculated based on outpmt fhe clients. Each client tracks the status of
each attempted request and the amount of data transferred.

Additional data is gathered in two ways. First, vmstat iswith a five second interval on the server
machine. Second, each server tracks various statistinge(sgtatistics), some of which are printed at 5
second intervals throughout the experiment and the reraaidwhich are printed out as summary data
when the experiment terminates. Due to the large amounttafgddhered, only the condensed throughput
value for each experiment is reported. The remainder of ¢t id not included in the thesis. However,
a summary of some of the data gathered is presented whersagcés provide further explanations. In
particular, file-system cache-size, the percentage of sipemt waiting for disk 1/0 (1/0O wait), idle time
and context-switching information is provided from vmstat

3.10 1.4GB

For the experiments in this section, the server machinenfigured with 1.4 GB of memory. Since the

size of file set is 2.1 GB, the entire file set does not fit congbhfeinto the file-system cache. However,

given the Zipf distribution of requests, the majority of negts should be serviced from the file-system
cache. While the remainder of requests need to be servioed disk, only a moderate amount of disk

I/0O should be required.

3.10.1 Tuning Knot

Experiments were run to tune the three versions of the Kneeseknot-c, knot-nb and knot-b. Knot-c is
the knot server running with an application cache, knotsthé knot server running with non-blocking
sendfile and knot-b is the Knot server running with blockiegndfile. For all the Knot servers, the pa-
rameters tuned are the number of threads and the number kémtasks. As Knot runs using a thread-
per-connection model, the number of threads correspontie tmaximum number of simultaneous con-
nections the server can handle. The number of worker tasiesndi@es how many blocking disk-1/0

40

3.10. 1.4 GB

operations can occur simultaneously. For knot-c, one éuitilming parameter is the size of its application
cache.

3.10.1.1 Knot-c

Table[3.2 shows the results of the coarse-grained tuninnioi-c after verification. Each row in the table
represents a different number of workers from 1 to 150. THeneos are separated into three sections
with the results for 10,000 threads in section one, 15,008atls in section two and 20,000 threads in
section three. In each section, the columns representextitf application cache size value from 10 to
700 MB.

A cache size of 10 MB is misleading as the actual size of theecaan be larger. It is at least as big
as the cumulative size of the active files being sent. Oncedbbe size limit is reached, files selected
for eviction are marked for removal and the cache size is tepidbut these files are only deleted from
memory once the file has been completely sent. Using a sn@ikcsize, such as 10 MB, is interesting
because it maximizes the amount of memory available for thes§istem cache as effectively only active
files are in the application cache.

The term stability is used in the thesis to describe the padoce of a web server as the tuning
parameters are adjusted. In this context, a server’'s pegioce is stable once the condensed area of
the server levels off as one or both of the tuning parametersadjusted. The range of tuning values
over which performance is stable is different for the vasi@ervers. Based on extensive tuning, the
performance of the servers follows a relatively consispattern as the tuning parameters are increased,
though individual performance varies from server to ser@erce the performance of a server stabilizes or
begins decreasing across both tuning parameters, the basveeached its best performing configuration
and so increasing the tuning parameters further does ndt nesiigher performance.

The best performing configuration in each Table is highighihbold. Note that throughout the thesis
if more than one configuration results in the best perforraattee least resource intensive configuration
is always chosen as the best for any experiment. Once a euffisumber of workers are present, per-
formance stabilizes, which is reasonable as the incremessaof adding additional worker tasks is low,
i.e., a small memory cost and the overhead of an additionefevaask polling for disk operations. Even-
tually, these additional overheads will degrade perforreahe experiments show the best performance
for knot-c is around 10,000 threads, 400 MB of applicatiooheaand at least 25 workers. Based on this
general vicinity, additional experiments were run and aes@nted in Table=3.3. For this table, there are
two sections with 10,000 threads in section one and 13,0@ads in section two. The columns are vary-
ing application cache sizes from 300 to 500 MB. Each row gmts a different number of workers from
10 to 150. This table shows that the best performance ocdthisl®,000 threads, 400 MB of application

41

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Cache size in MB
10,000 threads 15,000 threads 20,000 threads
Workers|| 10 | 100 | 400 | 700 || 10 | 100 | 400 | 700 | 10 | 100 | 400 | 700
1] 1.48| 165|163 O 1.47] 1.64| 1.30| O 1.46| 1.62| O O
51 1.48| 1.67| 1.61| O 1.47| 1.64| 1.26| O 1.46| 1.62| O O
25| 1.48| 1.70| 1.77| 1.33| 1.47| 1.67| 1.70| O 1.46| 1.64| O O
50| 1.48|1.69| 1.78| 1.60| 1.47| 1.67| 1.73| O 1.46| 1.64| 1.71| O
100 1.48| 1.68| 1.79| 1.72|| 1.46| 1.66| 1.75| O 1.46| 1.64| 1.72| 0O
150 1.47| 1.69| 1.78| 1.70|| 1.46| 1.66| 1.76| O O O O O

Table 3.2: Knot cache initial experiments - 1.4 GB (conddraea)

Table 3.3: Knot cache fine tune experiments - 1.4 GB (condkbassn)

Mbps
o0
S
3

Workers

Cache size in MB

10,000 threads

13,000 threads

300

400

500

300

400

500

10

1.74

1.72

1.43

1.72

1.66

O

25

1.76

1.77

1.70

1.74

1.73

1.58

50

1.77

1.77

1.76

1.77

1.75

1.71

100

1.77

1.78

1.76

1.76

1.76

1.73

150

1.77

1.78

1.76

1.76

1.76

1.73

1600
1400 r
1200 r
1000 r

knot-c-10K-100w-400MB —+—
knot-c-10K-100w-700MB ----->¢----
knot-c-10K-100w-100MB «+%--
_knot-c-10K-100w-10MB -

5000

10000

15000 20000 25000 30000
Requests/s

42

Figure 3.3: Knot cache performance with various cache sizes

3.10. 1.4 GB

cache and 100 workers (1.78), with a peak throughput of 100psvbccurring at 15,000 requests per
second and with a sustained throughput of around 956 Mbp3,@0@ requests per second.

For knot-c, 10,000 threads (maximum simultaneous conmesitigives the best performance. As is
shown later, only supporting 10,000 simultaneous conoestis a bottleneck that throttles server perfor-
mance with this workload so no experiments are shown withegless than 10,000 connections. Hence,
the performance of knot-c is capped lower than the otheresgisince its best performance occurs with
10,000 threads. A significant problem appears to be the atmadunemory consumed by each thread.
While the stack size of each thread is only 16 KB, adding 5008ads can consume up to an additional
78 MB of memory just for the stacks. For example, with 100 veoskand 400 MB of application cache,
the average size of the file-system cache is about 795 MB {@00Chreads, 709 MB for 15,000 threads
and 623 MB for 20,000 threads. Hence, when compared to 1@f06ads, the file-system cache is ap-
proximately 11% smaller with 15,000 threads and 22% smuadldr 20,000 threads. This problem is more
pronounced with knot-c than with the other versions of krsdtr@ot-c’s memory footprint is already larger
due to its use of an application cache.

The focus of discussion for knot-c is on application caclze sis the other Knot configurations use
sendfile, which uses the file-system cache to store the contents dflése Figure[3B shows how the
throughput of knot-c changes as the size of the applicatimhe is varied. Client request rate is plotted
on the horizontal axis and the corresponding server thiowigim megabits per second is plotted on the
vertical axis. All the experiments shown are for 10,000dkse(10K) and 100 workers (100w) with cache
sizes of 10, 100, 400 and 700 MB. Up to 400 MB, increasing the sf the application cache improves
performance. Unexpectedly, however, increasing the caizeebeyond 400 MB causes performance to
degrade and for 15,000 threads or more, experiments stopriging (see Tabl€3]2). As long as free
memory exists, a larger application cache size should hahefiserver, meaning that the performance
of Knot should improve up to an application cache-size ofintbl.2 GB based on memory information
gathered from vmstat during the Knot experiments.

The experiments in this chapter are all run with a warmedsfjitem cache. However, this method
represents a bias against the knot-c experiments as it alan application cache to store file data,
but this application cache is not warmed since the serversitarted between runs for each request rate
in a particular configuration. Furthermore, there is a tam$ietween the application cache and the file-
system cache. Having two caches means duplication, mnegultiwasted space. Ideally, the application
cache size should be as large as possible in order to miniovizeneads when servicing requests. As
there is not enough memory to hold the entire file set in thdicgjon cache, overheads occur such as
copying file data from the file-system cache to the program amgravery time a file is inserted into
the application cache and the additional management ofgthkcation cache as entries are inserted or
evicted. However, as shown in the experiments, an appitatiche larger than a certain size can cause

43

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

performance to degrade and experiments not to verify. Bsigltis somewhat counter-intuitive because a
larger application cache size should benefit the servercamiservice more requests from its own cache.
Unfortunately, a larger application cache means that teedfithe (warmed) file-system cache is smaller
when the server initially starts. Hence, at the beginnintipefrun, more requests are sent to disk, resulting
in timeouts early in the experiment that result in the experit not verifying.

In order to overcome this bias, some knot-c experiments wanewith 100 workers but without
restarting the server between successive request rates séine experiment. Keeping the server running
between rates means that the application cache is warml fautahe first run at the lowest rate. Without
performing a full tuning, it is difficult to judge the compéeperformance picture; however, these exper-
iments do provide some additional insights. Experiments tis cache warming strategy (not shown)
were run with 400 MB, 700 MB and 1 GB of application cache an@®Q0 and 15,000 threads. Inter-
estingly, the performance with 400 MB and 700 MB for 10,00@#uls is about the same (1.80) but the
performance with 1 GB is lower (1.72). The performance of486 and 700 MB experiments appear to
be capped by the 10,000 threads. With 1 GB of applicationeatte file-system cache size was about
145 MB. It appears that given the presence of disk I/O, a iceaimount of file-system cache is needed
in order to get reasonable performance. Hence, a file-systetme of 145 MB appears to be too small.
At 15,000 threads and 100 workers, the performance with 480skdys about the same (1.81) but the
performance with 700 MB of cache increases by 4% (1.87) ankl W&B of cache the experiment did
not pass verification. These experiments show that runnig-& without a warmed application cache
results in only a small decrease in performance for this i@ak so the previous experiments without
cache warming sufficiently characterize knot-c's perfanoea

The big drawback of knot-c is the need for an application eachirst, requiring two caches with
duplicated data means the effective cache size for knotadways smaller than for the other servers
without an application cache. Second, the application &doh knot-c is not warmed between runs,
resulting in performance and verification problems. Switgho sendfile allows the application cache for
file data to be eliminated and the performance of knot to b&uated on a more equal footing with the
other servers.

3.10.1.2 Knot-nb and knot-b

Table[3% shows the results of the coarse-grained tuningrfor-nb and knot-b after verification. Each
row in the table represents a different number of workersffioto 150. The columns are separated into
two sections with the results for knot-nb in the first sectioi the results for knot-b in the second section.
In each section, the columns represent the number of threads

Consider the knot-nb section (left) in TabI€l3.4 first. Santb knot-c, all the experiments with 20,000

44

3.10. 1.4 GB

threads did not verify. However, in this case the area of pegbrmance occurs with 15,000 threads and
at least 5 workers. With non-blockirsgndfile, fewer workers are required as there is less copying between
the kernel and user-space than knot-c. Based on this gemgraty, additional experiments were run and
are presented in Tabfe 3.3(a). For this table, the numberookers are varied from 15 to 150 and the
number of threads from 13,000 to 17,000. This table showghiecbest performance occurs with at least
15 workers. As the performance is similar for both 13,000%0Q0 threads, the least resource intensive
configuration is chosen. In this case, the best performancers with 13,000 threads and 15 workers
(2.18), with a peak throughput of 1280 Mbps occurring at @8 &&quests per second and with a sustained
throughput of around 1240 Mbps at 30,000 requests per second

Again, once a sufficient number of workers are present, padace stabilizes. Unfortunately, the
workers in Capriccio poll, even when there are no requegisdcess, so idle time and I/O wait are almost
zero. Hence, it is impossible to use these values to tuneuimder of workers.

As can be seen in TablEsB.4 gnd 3)5(a), the number of threafsimportant tuning parameter. Too
few threads hinder performance and too many threads resudtification failures. With 10,000 or fewer
threads, throughput never exceeds 1030 Mbps. In this cas®rmance for knot-nb is limited because
it cannot support a sufficiently large number of simultarseconnections. In all the experiments with a
memory size of 1.4 GB, when the number of simultaneous cdimmscis capped at 10,000, throughput
never exceeds around 1030 Mbps, and the condensed areadziamiely 1.82 for these experiments.

For every server configuration using non-blockiedfile, there is a point where too many connec-
tions result in verification failures. The actual point wi@xperiments begin to fail verification varies
from server to server. When the number of threads in knosrarger than 15,000, experiments tend to
stop verifying.

As well, the relationship between workers and threads caebn. With 10,000 threads, performance
improves as the number of workers is increased to around %er Ais point, performance does not
improve as there are an insufficient number of connectidmedts). With 5 workers, increasing the
number of threads from 10,000 to 15,000 improves performdnycalmost 20%. At peak, performance
improves from 1023 Mbps to 1259 Mbps, an increase of 23%. Aglddditional workers beyond 5 does
result in a small improvement in performance, but perforoesstabilizes once there are at least 5 workers.

Now consider the knot-b (right) section in Tablel3.4. Unlike knot-c and knot-nb case, experiments
with 20,000 threads did verify. In this case, the area of pediormance occurs with 15,000 threads and
100 workers. More worker tasks (kernel threads) are needédblocking sendfile because the kernel
thread may block for both socket and file operations. Herezkérnel thread is unavailable and cannot
be used by the server for other work, and therefore additkerael threads are required.

Based on this general vicinity, additional experimentsexren and are presented in Taple 3.5(b). For

45

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Number of Threads

non-blockingsendfile blocking sendfile
Workers || 10,000| 15,000| 20,000 10,000| 15,000 20,000
1 1.77 O O O O O

5] 1.81 2.17
25| 1.82 2.18
50| 1.82 2.18

100 | 1.82 2.19
150 | 1.82 2.18

O O O
1.70 1.72 1.48
1.82 2.15 2.09
1.83 2.16 2.15
1.82 2.16 2.15

Ogo|g|o)|.

Table 3.4: Knosendfile initial experiments - 1.4 GB

Number of Threads Number of Threads

Workers || 13,000| 15,000| 17,000 Workers || 13,000| 15,000| 17,000
15| 2.18 2.18 O 35| 2.04 2.01 1.96

251 2.18 2.18 O 50| 2.16 2.15 2.13

50| 2.18 2.18 O 75| 2.17 2.15 2.14

75| 2.18 2.18 O 100 || 2.16 2.14 2.14
100 || 2.18 2.17 O 125 2.17 2.14 2.14
125 2.18 2.18 O 150 || 2.17 2.15 2.14
150 || 2.18 2.18 O 200 || 2.15 2.14 2.13

(a) non-blockingsendfile (b) blockingsendfile

Table 3.5: Knokendfile fine tune experiments - 1.4 GB

this table, the number of workers are varied from 35 to 200 thedhumber of threads from 13,000 to
17,000. This table shows the best performance occurs witlD02hreads and 75 workers. Consistent
performance from 50 to 200 workers indicates there are siftiovorker tasks. The best performance
occurs at 13,000 threads and 75 workers (2.17), with a peakdhput of 1261 Mbps occurring at 15,000
requests per second and a sustained throughput of aroudMIg® at 30,000 requests per second.

Similar to knot-nb, throughput with 10,000 threads is cab@el030 Mbps. As expected, the blocking
sendfile version requires more workers to achieve good performatdeast 50 instead of 15 with the non-
blocking version. Another interesting feature is that eipents with less than 50 workers tend to exhibit
performance degradation after peak. In fact, all the erpeamts with fewer than 50 workers either did not
verify or had tails that dropped by more than 20%, as inditatethered entries in the tables.

46

3.10. 1.4 GB

It is interesting to note that the best knot-nb and knot-lfigonations have very similar performance
for this memory size. However, despite this similarity,rthare some notable differences. Unlike knot-nb,
knot-b seems to be able to support a larger number of threadsi¢ctions) without verification failures.
In fact, the blockingsendfile version of all the servers tends to be able to support a lamgmber of con-
nections without verification failures when compared tarthen-blocking counterparts. This verification
problem is explored in sectidn_3.1D.2. The downside of usilogking sendfile is that for an equiva-
lent number of simultaneous connections, the number of erertequired to service those connections is
larger resulting in more overhead and decreasing througfpus additional overhead is more problem-
atic when the system is under increased memory pressurebeftadit of having a kernel thread dedicated
to sending the entire file is that as the number of conneciimreases, experiments still verify despite
increased overheads and lower throughput.

3.10.2 Tuningpserver

Experiments were run to tune the four versionsusérver: symped-nb, symped-b, sharedsymped-nb
and sharedsymped-b. These four versions cover the spacenedharing (symped) versus sharing
(sharedsymped) of file descriptors and cache table, andloaking (-nb) versus blocking (-tsendfile.

For all versions ofuserver, the parameters tuned are the maximum number oftaimeius connections
and the number of processes (number of copies of the semmring). The number of processes deter-
mines how many disk I/O operations can be pending. Theseatipes block the kernel thread if the data
is accessed from disk or are non-blocking if the data is irfithesystem cache. With blockingendfile,

the number of processes also determines the maximum nurfifiég@soconcurrently being sent at any
given time.

3.10.2.1 Symped-nb and symped-b

Table[3.6 shows the results of the coarse-grained tuningyimped-nb and symped-b. Each row in the
table represents a different number of processes from 1@ IHhe columns are separated into two
sections, with the results for symped-nb in section one haddsults for symped-b in section two. In
each section, the columns represent a different maximunbauof connections from 10,000 to 30,000.

The experiments show the best performance for symped-mbusd 25 processes and 15,000 connec-
tions (2.21). Based on this general vicinity, additionahggd-nb experiments were run and are presented
in Table[3:7(d). For this table, the number of processesated/from 5 to 75 and the maximum number
of connections from 13,000 to 17,000. Taple 3J7(a) also shbe best performance occurs with 25 pro-
cesses and 15,000 connections (2.21), with a peak throughp@75 Mbps occurring at 15,000 requests
per second and with a sustained throughput of around 1264 l&ibp0,000 requests per second.

47

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

(a) non-blockingsendfile

Table 3.7:userver SYMPED fine tune experiments - 1.4 GB

Maximum Number of Connections
non-blockingsendfile blocking sendfile
Procs|| 10,000| 15,000 20,000| 25,000| 30,000| 10,000| 15,000 20,000| 25,000 30,000
1 1.70 1.67 1.67 1.67 1.65 O O O O O
5 1.81 O O O O O O O O O
25| 1.82 2.21 O O O 1.57 1.70 1.54 1.41 O
50 || 1.82 2.14 O O O 1.75 2.06 2.09 2.04 1.96
100 1.75 O O O O 1.76 2.04 2.09 2.11 2.11
150 || 1.68 O O O O 1.70 1.95 2.03 2.05 2.06
Table 3.6:userver SYMPED initial experiments - 1.4 GB
Max Number of Connections
Procs| 13,000 | 15,000 | 17,000 Max Number of Connections
5 2.07 O O Procs|| 20,000| 25,000 30,000| 35,000 40,000
10 2.18 O O 50 || 2.10 2.05 1.96 1.85 1.77
15 2.18 O O 75| 2.12 2.14 2.14 2.11 2.07
25 2.15 2.21 2.19 100 || 2.09 2.11 2.11 2.12 2.12
35 2.12 2.19 O 125 2.06 2.08 2.09 2.09 2.09
50 2.07 2.15 O 150 | 2.03 2.06 2.06 2.07 2.06
75 202 2.08 O (b) blockingsendile

All the symped-nb experiments with a single process (SPEDjied because they are self limiting.

With SPED, a single process performs the tasks of acceptamwrite in a continuous cycle. During the
accept phase, the process accepts all available conneciidihthe operating system indicates that there
are currently no more connections to be accepted or the nuaximumber of simultaneous connections

is reached. Once the maximum number of simultaneous cdaneds sufficiently large, the size of the

pending accept queue and the rate at which new connectierar@ring determine how many connec-
tions are accepted at any given time. If this rate is rouglllamced by the number of connections that
are closed, then a steady state is reached. At this poithefuincreasing the maximum simultaneous

connections parameter does not affect server functionitnlyg increases the memory footprint of the

server because the size of the static data structures ssxdait additional connections are not accepted.
It may be possible to force the server to accept more cormeste.g., by increasing the size of the ac-

48

3.10. 1.4 GB

cept queue, but this technique does not improve throughgate there is no idle time when the server
reaches steady-state, the server is already able to acemray connections as it can handle. Forcing
the server to accept additional connections beyond thist pesults in verification problems as response
times increase but throughput does not. For all of the SPEi@ranents, steady-state occurs with less
than 10,800 simultaneous connections on average duringpanieent. Increasing the maximum number
of connections parameter significantly beyond this valussdwt benefit the SPED experiments.

All experiments with a maximum number of connections patamaf 10,000 also verified. As with
all the servers with 1.4 GB of memory, performance with 10,86nnections is capped at around 1030
Mbps. Comparing all the servers, symped-nb and sharedsimmip@chieve the best performance for a
maximum connections value of 10,000. However, 10,000 cotiores is too few as all the servers can
achieve better performance with a larger maximum-conoestparameter.

For experiments involving more than one process, the exygetis tend to stop verifying above 15,000
connections. As the maximum connections parameter isaserk the number of file timeouts, especially
for large files, increases beyond the verification threshaldubset of the experiments in Tablel3.6 were
run again with profiling enabled. Examining the OProfile daat shown) reveals no spikes or unusual
values as the maximum number of connections parameterrigsised, even in the costs related to calling
the event mechanism. (The stability in the cost of the evasthanism is due to the scalability egoll.)
The reason for the increase in file timeouts seems to be tieathé experiment is running for a short time,
the number of requests read by the server starts to becoger than the number of requests completed
by the server. Despite not being able to keep up with the nurmbesquests in progress, the server
continues to read new requests. Because requests for fdegetend to require multiple calls to non-
blockingsendfile, these replies tend to timeout before being completelygesed. Clearly, the number of
simultaneous requests that the server is trying to prosedisdctly related to the number of connections
it has accepted, and hence, related to the maximum numbenoéctions parameter.

In fact, the reason for the verification failures with all then-blocking servers seems to be timeouts
on large files. With the non-blocking servers, if a file reqaimultiple calls tasendfile in order for it to
be completely sent, the time between callsdadfile increases as the number of connections increases.
Eventually, the time increases sufficiently to cause thentlio timeout before the file is completely
transferred. With blockingendfile, the initial call continues until the file is completely sergsulting in
fewer timeout problems.

To verify the large-file timeout problem, non-blockisgndfile experiments were run for symped-nb
with the socket write-buffer set large enough to accomnetia largest files in the file set. Hence, each
file can be transmitted with a single calldendfile. Note that the operating system may still send the file in
several chunks, but the server only needs to make a singl®caindfile. If the reason that file timeouts
are occurring is that large files require multiple callss¢mdfile and these calls get further apart as the

49

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Mbps
o0
S
3

400 symped-nb-15K-25p —+—
symped-nb-13K-10p ----- Xe-ee-
200 symped-nb-13K-5p - 0

0 . symped-nb-13K-1p -

0 5000 10000 15000 20000 25000 30000
Requests/s

Figure 3.4:pserver with non-blockingendfile

load increases, then using a large socket buffer shouldifixptioblem. Tabl&318 contains the results of
these experiments for 15,000 and 20,000 maximum conneactidme main result is that the server is able
to handle a larger number of simultaneous connections)dugxperiments show no verification failures
up to 30,000-35,000 maximum connections. When verificdadares do start to occur, the distribution
of timeouts is across all file sizes and not concentrated enatger file sizes. The secondary result
is a performance boost because the server operates morengffievithout having to perform multiple
sendfile calls for a single request. While these are desirable owsourther experiments with a large
socket buffer are not run as most of the existing file set caady be sent in a single call and it is important
to test the server’s ability to handle larger files requinngltiple writes. In general, it is impractical to
increase the socket-buffer size to accommodate the Iditgeistthe file-set because files can be arbitrarily
large, resulting in wasted memory, especially for a largalmer of simultaneous connections.

Figure[3:% shows how the throughput of symped-nb changedseasumber of connections and pro-
cesses are varied. The lines labeled 13K show the resuli3f600 connections and one (1p), five (5p)
and ten processes (10p) respectively. The line labeled hbWsthe results with 15,000 connections and
twenty-five processes (25p).

The throughput of symped-nb-1p-13K is 923 Mbps at 15,000est$ per second and 946 Mbps at
30,000 requests per second. Increasing the number of gexés 5 improves throughput by 29% at
15,000 requests per second and 22% at 30,000 requests pedsdeurther increasing the number of
processes to 10 improves throughput by 6% at 15,000 regpestsecond and 8% at 30,000 requests
per second. At 25 processes, the performance of the seresrdmvn but it has not reached its best

50

3.10. 1.4 GB

Max Number of Connections
Procs 15,000 20,000
5 2.24 2.24
10 2.30 2.27
15 2.30 2.25
25 2.26 2.29
35 2.23 2.30

Table 3.8:userver non-blocking SYMPED with large socket buffer size

performance (not shown). The problem is that the maximunulégneous connections value is not large
enough and so the additional processes increase overh#aalitvincreasing throughput. By increasing
both the number of processes to 25 and the number of connedtidl5,000, the server achieves its best
performance with throughput improving by 1% at 15,000 retgi@er second and 2% at 30,000 requests
per second.

Consider the I/O wait for each of these configurations. WR0Q0 connections and 1 process, /O
wait on average is 33% at 15,000 requests per second and 330480 requests per second. Increasing
to 5 processes results in the 1/0 wait dropping to 8—9% foh d&t, 000 and 30,000 requests per second.
Moving to 10 processes, the I/O wait drops to 2—-3% on averagmlly, with 25 processes, the 1/0 wait
drops to 0. As can be seen in Taple_3]7(a), additional presessyond 25 do not help because the 1/0
wait has essentially been eliminated. In fact, as additipnacesses are added, performance drops as
more resources are consumed.

While 25 processes drop the I/0 wait to 0, performance atiBgdnnections goes down. In this case,
13,000 connections is the bottleneck and the additionagages increase overhead and hurt performance.
However, with 15,000 connections the 1/O wait is still zernal gerformance is better as the server is able
to handle more connections.

It is important to have both a sufficient number of connediand a sufficient number of processes.
When there are too few connections, increasing the numbgirosEsses is not beneficial. Furthermore,
increasing the number of connections without a sufficiembloer of processes leads to verification fail-
ures. When the number of connections is not the bottlenacke&sing the number of processes improves
performance. However, this performance increase is ysbattause of parallelism afforded by overlap-
ping disk 1/O with other activities. Once the I/O wait is zgaditional performance benefits due to
concurrency are unlikely.

Table[3.6 also shows the results of the coarse-grainedguoninsymped-b. The experiments show
the best performance for symped-b is around 100 procesdez5a000 connections (2.11). Based on this

51

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Mbps
o0
S
3

400 r symped-b-30K-100p -----%---
symped-b-25K-50p %
200 1 symped-b-30K-50p -E

0 , symped-b-25K-25p ---k--

0 5000 10000 15000 20000 25000 30000
Requests/s

Figure 3.5:userver with blockingsendfile

general vicinity, additional experiments were run and aesented in Tablg_3.7{b). For this table, the
number of processes are varied from 50 to 150 and the maxinuwmber of connections from 20,000
to 40,000. This table shows that the best performance oeathis’5 processes and 25,000 connections
(2.14), with a peak throughput of 1234 Mbps occurring at @8 @quests per second and with a sustained
throughput of around 1198 Mbps at 30,000 requests per second

As expected, blockingendfile requires significantly more processes than symped-nb. ci fae
symped-b experiments with fewer than 25 processes did mify \aad all the experiments with 25 pro-
cesses had tails that dropped by more than 20% as indicatedimthe table. The experiments with 50
processes and 25,000 or more maximum connections also iledith large drops. FigurE—3.5 shows
how the throughput of symped-b changes as the number of chamg and processes are varied. The
lines labeled with 30K show the results with 30,000 conmastiand fifty (50p), one hundred (100p) and
seventy-five (75p) processes. The lines labeled with 25Kvghe results with 25,000 connections and
twenty-five (25p) and fifty (50p) processes.

The bottom three lines are examples of experiments thagaeddd inred in the Tabld 3.7(). With
these experiments, the throughput increases to a certaih goud then drops as the load on the server
increases. For all three of these lines, the drop is more 2086, with smaller table values indicating
earlier or steeper drops in performance.

Since symped-b requires additional processes to run wélhs lower performance than symped-nb
due to the extra overhead, especially memory. It is interg4b note that symped-b is resistant to large-
file timeouts even at high maximum connection values. With-blocking sendfile, large files are sent

52

3.10. 1.4 GB

in pieces with multiple calls teendfile. In between sending successive pieces of a large file, maey ot
files or file pieces may get sent. As the number of requestsnbedarge and the server gets saturated,
the period of time taken to send a large file increases as teegsing of more and more requests are
interleaved with sending the large file. Eventually, thedtiihtakes to send the file exceeds the time
alloted by the client and the request times out. This proldees not occur with small files as they are
sent in a single call tgendfile and has less affect with medium files as only a few callsetaifile are
required. With blockingsendfile, the kernel thread performing the call blocks until the renfile is sent,
preventing new requests from getting priority over exgtiaquests. In fact, using blocking sockets with
sendfile means that files get attention directly proportional tortk&ge.

Unlike pserver SPED, with symped-b the number of simultaneous ations does increase as the
maximum connections parameter is increased due to thepteukernel threads. However for rates of
10,000 requests per second or higher, another intereséng emerges when the number of processes is
fixed. Despite an increasing number of simultaneous commme;tthe number of requests read per second
is relatively steady once performance reaches its peake, Nt the symped-b experiments because of
blocking sendfile, the number of requests read is almost equal to the numbepbés sent, and hence,
is an indicator of throughput. Therefore, the performarfdhe server also stabilizes once the number of
requests read stabilizes. For example, with 100 proceasesrding to the server output, the number of
requests read per second stabilizes with 25,000 or mordtaimeous connections. Clearly, this stability
would degrade with a large number of connections due to th@iedal overhead. Hence, the symped-b
server is also self limiting but in another way comparegderver SPED. Witluserver SPED, the number
of requests read also stabilizes, but this stability ocbesause the number of simultaneous connections
stops increasing even as the maximum connections paraotgtiénues to increase.

With 75 processes and a maximum connections parameter @@0the I/O wait is zero at 30,000
requests per second. Increasing the maximum connectioasmpter to 25,000 results in a small I/O wait
value of 1%. With at least 100 processes, the I/O wait is agalnced to zero. However, as the number of
processes increases, the amount of overhead, especiatipny)@ncreases and the throughput decreases.
In fact, the file-system cache shrinks by about 25-30 MB etiarg the number of processes is increased
by 25 because the processes do not share an address spabe.ti®®aghput stabilizes with 25,000 or
more simultaneous connections, increasing the numbemofemtions does not improve performance. Itis
possible that a small amount of additional performancetgkisthe space between 75 and 100 processes.

3.10.2.2 Sharedsymped-nb and sharedsymped-b

Table[3.9 shows the results of the coarse-grained tuninghfaredsymped-nb and sharedsymped-b. Each
row in the table represents a different number of processes I to 150. The columns are separated into

53

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

two sections with the results for sharedsymped-nb in sedite and the results for sharedsymped-b in
section two. In each section, the columns represent a éliffenaximum number of connections from
10,000 to 30,000.

The experiments show the best performance for sharedsynipedaround 25 processes and 15,000
connections (2.27). Based on this general vicinity, addal experiments were run and are presented
in Table[3:I0(g). For this table, the number of processee waried from 5 to 75 and the maximum
number of connections from 13,000 to 17,000. This table shihat the best performance occurs with
15 processes and 17,000 connections (2.34), with a peakgiwpot of 1374 Mbps occurring at 15,000
requests per second and with a sustained throughput ofcdd®8¥ Mbps at 30,000 requests per second.

Similar to symped-nb, all the sharedsymped-nb experimeititsa single process (SPED) verified. In
fact, runninguserver SYMPED opserver shared-SYMPED with one process is equivalent, ¢éXoethe
cache lock. The difference is the basic overhead of lockathare is no contention in the single process
configuration. Comparing the symped-nb and sharedsympe8RED experiments (Table“B.6 versus
Table[3) shows that the cost of locking is relatively sraalll that any additional costs associated with a
shared cache-table, when there is more than one proceshjete contention. For sharedsymped-nb, the
number of simultaneous connections did not exceed 15,004llfthe SPED experiments and on average
there were less than 11,000 simultaneous connectionslires@eriment during the run of the experiment.
Therefore, the performance of sharedsymped-nb SPED beéy®Aa0 maximum connections is relatively
steady.

The sharedsymped-nb experiments involving more than ameeps tend to stop verifying at or above
20,000 maximum connections. Once the server has at leasbtBgses, adding further processes does
not improve performance. As more processes are addediparice tends to drop or experiments stop
verifying as more resources are consumed and the efficienitye server degrades. Since the system is
under memory pressure, as the memory footprint of the sareszases, the size of the file-system cache
gets smaller. For example, with a maximum connections valué,000 at 30,000 requests per second,
the file-system cache is approximately 39 MB smaller (3%hwib processes than with 15 processes
and 82 MB smaller (7%) with 150 processes. Note that theseanefootprint increases are smaller per
process than with symped-nb, showing the advantage ofdargmed-nb. In addition to the increased
memory footprint, the efficiency of the server with respectalls toepoll_wait also decreases as the
number of processes increases. 75 processes make abaoies2ite number of calls tepoll_wait and
150 processes make about 2.3 times the number of callsotib wait compared to 15 processes. Finally,
context switching also increases with the number of prases&b processes have approximately 2.9 times
more context switches per second and 150 processes abdirhdsOmore context switching per second
compared to 15 processes. These overheads are enough tplf@mance and eventually cause the
server to stop performing acceptably based on the verificatiiteria.

54

3.10. 1.4 GB

Maximum Number of Connections

non-blockingsendfile blocking sendfile
Procs|| 10,000| 15,000 20,000| 25,000| 30,000 10,000| 15,000| 20,000| 25,000 30,000
1 171 1.68 1.67 1.66 1.66 O O O O O
5 1.81 O O O O O O O O O

25| 1.83 2.27

U 1.57 1.72 1.56 0 O
50| 1.83 2.20 U

0

U

1.75 2.12 2.15 2.10 2.01
1.79 2.11 2.19 2.21 2.22
1.75 2.05 2.14 2.17 2.19

100 | 1.78 2.11
150 | 1.72 2.06

O
O
O
O

Oo|jg|jg|d

Table 3.9:userver shared-SYMPED initial experiments - 1.4 GB

Max Number of Connections Max Number of Connections
Procs| 13,000 | 15,000 | 17,000 Procs| 23,000 | 25,000 | 27,000
5 2.11 O O 35 1.85 1.78 1.73
15 2.22 2.31 2.34 50 2.14 2.11 2.07
25 2.20 2.28 2.31 75 2.22 2.23 2.23
35 2.17 2.25 2.29 100 2.21 2.21 2.22
50 2.14 2.21 O 125 2.18 2.20 2.20
75 2.09 2.16 O 150 2.16 2.17 2.19
(a) non-blockingsendfile (b) blockingsendfile

Table 3.10:userver shared-SYMPED fine tune experiments - 1.4 GB

The expectation is that the performance of sharedsympeshobld be better than symped-nb for
the following reason. Sharedsymped-nb has a smaller mefootprint, making additional memory
available for the file-system cache, but has contentionhi@ishared cache-table. Symped-nb has a larger
memory footprint but does not have to deal with contentidateel to sharing a cache table among multiple
processes. Assuming that the cache lock is not a bottlesbekedsymped-nb should perform better in
any situation where there is memory pressure as there ismmemgory available for the file-system cache.

Comparing the performance of symped-nb and sharedsympedtma memory size of 1.4 GB shows
that sharedsymped-nb has a small performance advantagsyonped-nb. This performance advantage
tends to get larger as the maximum number of connectionsases, resulting in more sharedsymped-nb
experiments at 15,000 and 17,000 maximum connectionsyiragif For the best performing configura-
tions of each server, the performance difference is almidsaBpeak. However, the best parameters are
different for the two servers. Consider the performanceott Bervers with 17,000 maximum connections

55

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

and 25 processes. Symped-nb has a peak of 1288 Mbps and aseddegea of 2.19 (see Taple 3.V (a))
and sharedsymped-nb has a peak of 1353 Mbps and a condeeaeit 2131. At 30,000 requests per sec-
ond, symped-nb’s average file-system cache size is 1105 MBlearedsymped-nb’s average file-system
cache size is 1200 MB a difference of about 95 MB or 9% larger.

Table[3D also shows the results of the coarse-grainedguiomsharedsymped-b. The experiments
show the best performance for sharedsymped-b is around rbgégses and 30,000 connections (2.22).
Additional experiments run at higher maximum connectiolues (not shown in table) reveal that per-
formance stabilizes at around 25,000 to 30,000 maximumemiioms. Based on this stability, additional
experiments around 25,000 maximum connections were ruraangresented in Tabfe 3:I((b). For this
table, the number of processes were varied from 35 to 150henechaximum number of connections from
23,000 to 27,000. This table shows that the best performaocers with 75 processes and 25,000 con-
nections (2.23), with a peak throughput of 1295 Mbps ocngrat 15,000 requests per second and with a
sustained throughput of around 1257 Mbps at 30,000 regpestsecond.

Similar to symped-b, all experiments with fewer than 25 psses did not verify. While experiments
with 25 processes did verify, all these experiments had tadt dropped by more than 20% as indicated
in redin the table. Hence, 25 processes are insufficient when inlgclendfile is used. Similarly, with
25,000 connections or more, 50 processes are insufficient.

Similar to symped-b, the sharedsymped-b server is selfifigi For rates of 10,000 requests per sec-
ond or higher, with 100 processes and 25,000 or more sinagtaconnections, according to the server
statistics the number of requests read per second stabildaspite an increasing number of simultaneous
connections, the number of requests read per second iweglatteady once the performance reaches its
peak. Again, this stability would degrade once the overluéath excessively large number of connections
uses sufficient additional memory, resulting in a noticeaddfect on performance.

Also similar topserver SYMPED, sharedsymped-b has lower performance tsaadsymped-nb. As
discussed earlier, the versions of the server using blgaéndfile require more processes to run well,
but these additional processes result in increased owdslaeal affect performance. When using blocking
sendfile, there seems to be a tension between using more processdseaeahe required concurrency to
run well in the presence of blocking socket operations amdtlerheads resulting from these additional
processes. Given the large number of processes requirdtefblocking versions of the server, memory is
a significant overhead. Due to the sharing of file descripgobthe cache table, the memory footprint of
sharedsymped-b is smaller than the memory footprint of ggvipfor similar configuration options. As
the number of processes gets larger, this memory efficieeginb to become more significant and results
in better performance. For example, with 50 processes oenshraredsymped-b performs better than
symped-b. However, unlike with sharedsymped-nb, this awgd performance can likely be attributed to
a smaller memory footprint.

56

3.10. 1.4 GB

Comparing the performance of sharedsymped-b and symped#s processes and 25,000 maximum
connections at 30,000 request per second, the throughmhiaoédsymped-b is 1257 Mbps versus 1198
Mbps for symped-b. Based on vmstat data, sharedsymped-brhaserage file-system cache size of
1109 MB versus 966 MB for symped-b, resulting in a memoryedéhce of around 143 MB or almost
15%. The average I/O wait is 1% for both sharedsymped-b andyimped-b. Interestingly, on aver-
age sharedsymped-b has about 7% more context switchingstmaped-b and about 31% more calls to
epoll_wait. The smaller memory footprint of sharedsymped-b is a defamdivantage despite the additional
overheads resulting from a shared cache-table.

3.10.3 Tuning WatPipe

Experiments were run to tune the two versions of WatPipepipatnb and watpipe-b. Watpipe-nb is the
WatPipe server using non-blockisgndfile and watpipe-b is the WatPipe server using blocléandfile.

For both servers, the parameters tuned are the maximum mahbennections and the number of writer
tasks. The number of writers determine how many blockinlg i@ operations can occur simultaneously.

Table[3. 11 shows the results of the coarse-grained tuning/ditpipe-nb and watpipe-b after verifi-
cation. Each row in the table represents a different numbuarriter tasks from 1 to 150. The columns
are separated into two sections with the results for watplp@ section one and the results for watpipe-b
in section two. In each section, the columns represent ardift maximum number of connections from
10,000 to 30,000.

The experiments show the best performance for watpipe-rasosnd 25 writer tasks and 15,000
maximum connections (2.34). Based on this general vigimitiditional experiments were run and are
presented in Table 3.12]a). For this table, the number démasks were varied from 10 to 100 and the
maximum number of connections from 13,000 to 17,000. Thiketalso shows that the best performance
occurs with 25 writer tasks and 15,000 connections (2.3ith, apeak throughput of 1393 Mbps occurring
at 15,000 requests per second and with a sustained throughatound 1370 Mbps at 30,000 requests
per second.

All watpipe-nb experiments with a maximum number of coniwext value of less than 25,000 verified.
Above 25,000 connections, the experiments tend to notyveDifice the server had at least 25 writer tasks,
adding further writers did not improve performance. In fabe average 1/0 wait drops to zero once
there are at least 25 writers. As more writer tasks are aduirfhrmance did not drop appreciably, but
eventually the performance would drop as the overhead ahgddore writer tasks becomes larger.

For the experiments run, the performance of watpipe-nb iserstable over a larger range for the
parameters tested than the other non-blocking servers.leV@hperiments began to stop verifying at

57

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections
non-blockingsendfile blocking sendfile

Writers || 10,000 15,000| 20,000| 25,000 30,000 10,000 15,000| 20,000| 25,000 30,000

1 1.71 1.83 1.75 1.67 1.64 O O O O O

5 1.77 2.22 2.14 2.11 2.10 O O O O O

25| 1.77 2.34 2.33 O O 1.67 1.79 1.50 1.38 O

50 || 1.77 2.33 2.33 O O 1.77 2.28 2.21 2.13 1.98
100|| 1.77 2.32 2.33 O O 1.78 2.30 2.31 2.31 2.31
150|| 1.78 2.32 2.32 O O 1.77 2.29 2.30 2.31 2.32

Table 3.11: WatPipe initial experiments - 1.4 GB

Max Number of Connections Max Number of Connections
Writers || 13,000 | 15,000 | 17,000 Writers || 13,000 | 15,000 | 17,000

10 2.23 2.36 2.34 35 2.13 2.14 O

25 2.23 2.37 2.37 50 2.23 2.31 2.29

35 2.23 2.36 2.36 75 2.23 2.32 2.32

50 2.23 2.36 2.37 100 2.22 2.31 2.32

75 2.23 2.35 2.36 125 2.22 2.31 2.31
100 2.22 2.35 2.36 150 2.22 2.31 2.31

(a) non-blockingsendfile (b) blockingsendfile

Table 3.12: WatPipe fine tune experiments - 1.4 GB

25,000 maximum connections, for less than 25,000 maximumettions, performance stabilizes once
there are a sufficient number of writer tasks. As the entidkes$ space is shared, the cost of an additional
writer task is mainly its stack. More importantly, the remdgr of the server functions the same, so adding
more writers should not affect the efficiency of the othegetaof the pipeline. For example, the number
of calls to the event mechanism remains the same.

Table[3I1 also shows the results of the coarse-grainedgudar watpipe-b. The experiments show
the best performance for watpipe-b is around 100 writerstasid 20,000 connections (2.31). However,
the performance of watpipe-b stabilizes around 100 wrdaskd and 15,000 connections, so additional
experiments were run based on this general vicinity and sesepted in Tablg_3:12{b). For this table,
the number of writer tasks were varied from 35 to 150 and thgirmam number of connections from
13,000 to 17,000. This table also shows that the best pesfocmoccurs with 75 writer tasks and 15,000

58

3.10. 1.4 GB

connections (2.32), with a peak throughput of 1365 Mbps ooy at 15,000 requests per second and
with a sustained throughput of around 1323 Mbps at 30,000atq per second.

Similar to the other experiments with blockisgndfile, all experiments with fewer than 25 threads
(writer tasks) did not verify. While experiments with 25 teri tasks did verify, all these experiments had
tails that dropped by more than 20% as indicatedeiin the table. Similarly, with 25,000 connections
or more, 50 writer tasks are insufficient. All experimentshaat least 50 writer tasks verified. Once the
server had at least 75 writer tasks, adding further writ@adt improve performance. As more writer
tasks are added, performance did not drop appreciablyveatéally the performance would drop as the
overhead of adding more writer tasks becomes larger.

The blocking version requires more threads due to blockéngifile, however, the additional threads
consume more resources and so the performance is lowehthaomn-blocking version. Since the system
is under memory pressure, watpipe-nb has an advantage @seves its best performance with fewer
writers. However, these memory differences do not entiagigount for the difference in performance.
For example, in TablEZ312 with 75 writers and 15,000 conaestthe performance of watpipe-nb is 2.35
while the performance of watpipe-b is 2.32. As these two goméitions have similar memory footprints,
memory is not the only difference. Examining the vmstat atigt 15,000 requests per second reveals that
the blocking server has 1% more user time and 2.2 times marextoswitching than the non-blocking
server. The difference seems to be that a non-blocking mititead can do more work before being
context switched than a blocking writer thread, resultindower overhead for the non-blocking server.
While these overheads are small, they do affect performbynde-2% at peak and beyond.

For the watpipe-b experiments, the average 1/0 wait drogeto once there are at least 75 writers.
Similar to the versions giserver using blockingendfile, watpipe-b is also self limiting. For request rates
of 10,000 requests per second or higher, with 100 processE25000 or more simultaneous connections
the number of requests read per second stabilizes.

3.10.4 Server Comparison

The previous sections examined the performance of difteserver architectures with multiple imple-
mentations of each under the same workload and environnyeminbing experiments to tune each server
in order to find its best performing configuration. In thistimt, the best configurations for each server
are compared. As discussed earlier, the differences aniengervers were minimized, and hence, the
remaining differences are related to architecture and tiwrdactors, such as caching strategies, event
mechanisms, etc.

Figure (3.6 presents the best performing configuration fatheserver-architecture implementa-
tion: caching Knot (knot-c), non-blocking Knot (knot-nbplocking Knot (knot-b), userver non-

59

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

o 77—

1400

1200 r

1000 |

800 r

Mbps

- watpipe-nb-15K-25w —+—
600 L sharedsymped-nb-17K-15p ---->---

watpipe-b-15K-75w ----EJ-+-
sharedsymped-b-25K-75p @

400 symped-nb-15K-25p -
I knot-nb-13K-15w ---57:-:-
200 knot-b-13K-75w =+

symped-b-25K-75p -~ Qe
. klnot-c— IOK—II OOW—40()1|\/[B e e

0 L L 1

10000 15000 20000 25000 30000
Requests/s

0 5000

Figure 3.6: Throughput of different architectures - 1.4 GB

Server Rank
watpipe-nb 1
sharedsymped-nb 2
watpipe-b 3
symped-nb 4
sharedsymped-b 4
knot-nb 5
knot-b 5
symped-b 6
knot-c 7

Table 3.13: Ranking of server performance - 1.4 GB

60

3.10. 1.4 GB

blocking SYMPED (symped-nb)yserver blocking SYMPED (symped-k)server non-blocking shared-
SYMPED (sharedsymped-nh)server blocking shared-SYMPED (sharedsymped-b), nookbig Wat-
Pipe (watpipe-nb) and blocking WatPipe (watpipe-b). Thyeie in Figurd=316 is ordered from the best
performing server at the top to the worst at the bottom. Ekolyknot-c, peak server performance varies
by about 11% (1234-1393 Mbps), indicating all the servensdtaan excellent job.

Table[3IB ranks the performance of the servers for the 1.4v@Bload. The ordering is determined
by the area under the performance curve, with larger argassenting better performance. The best
performing configuration for each server is run three tintdsen Tukey’s Honest Significant Difference
test is used to determine, based on an analysis of variariiehwinean areas are significantly different
from one another with a 95% confidence level. The servershee tanked based on mean area, with
servers without a significant difference being grouped ttogye

The top performer is watpipe-nb, followed by sharedsympledind watpipe-b; however, the differ-
ence in performance among the servers is small. The nexpmmuonsists of sharedsymped-b and
symped-nb. Theendfile version of the Knot servers, knot-nb and knot-b are nextoicdd closely by
symped-b. Finally at the bottom is knot-c. Comparing théqrarance of the best version of WatPipe
and the best version @ierver, watpipe-nb has a 1% higher peak at 15,000 requeasteq@and and 1%
higher performance after saturation at 30,000 requestsgoend, so the performance of these two servers
is basically identical. Comparing the performance of thst lersion of WatPipe and the best versions
of Knot, watpipe-nb has a 9% higher peak at 15,000 requestsgeend and 10% higher performance
at 30,000 requests per second. The watpipe-nb and watpesbrs have performance within about 2—
4% of each other. Sharedsymped-nb has a 6% higher peak @0lgqQuests per second and 8% higher
performance at 30,000 requests per second than sharedsympetween the blockingserver and non-
blocking userver versions is a larger gap; symped-nb has a 3% highkrapd&,000 requests per second
and 6% higher performance at 30,000 requests per secondnofhblocking and blocking versions of
Knot have around the same performance. However, compailatbtec, knot-nb has a 28% higher peak
at 15,000 requests per second and 30% higher performan@e0@03equests per second.

The performance of most of the servers is relatively closéthere are some interesting differences
and similarities. In order to better understand the peréoroe of the servers and to compare the servers,
the best configuration of each server was profiled. Data isegadl by running OProfile and vmstat
during an experiment where each server is subjected to aolohfl,000 requests per second. While the
overhead of profiling does result in a performance pendiiy,rate represents peak performance for most
of the servers, and even with profiling, all the servers pasication. OProfile periodically samples the
execution of the program to determine where the system isdépg time. As no unnecessary programs
or services are running on the machine during an experinadinprofiling samples, including those in
kernel and library code, can be legitimately attributedni® éxecution of the server. Additional statistics

61

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

are gathered directly from the servers. The resulting daa@mmarized in Tablés3]14 dnd3.15.

The tables are divided into four sections with the data faheserver in a separate column. The
first section lists the architecture of the server, the coméiion parameters and the performance of the
server in terms of both reply rate and throughput in meggieissecond. In this section, “T/Conn”
means thread per connection and “s-symped” means sharRlRED. The second section is a summary
of the execution sampling data gathered by OProfile. The fdmata consists of the percentage of
samples that occurred in a particular function. From this,dé is possible to extrapolate how much
CPU time the system is spending in each function. Theseimxare divided among the Linux kernel
(vmlinux), Ethernet driver (€1000), application (usera@aand C library (libc). All remaining functions
fall into the “other” category, which mostly represents Ofe execution. The vmlinux and user-space
sections are further divided into sub-categories. Caiegiion is automated by generating ctags files to
define the members of each sub-category. In the user-sptegooag threading overhead denotes time
spent in the threading library (Capriccio for Knot and P#u® for WatPipe) executing code related to
scheduling, context-switching and synchronization ofdeeel threads. It also includes communication
and synchronization between light-weight user and kehrekids for Knot. The event overhead refers to
the server CPU-time spent managing event interest-setsegging event notifications from the operating
system and invoking appropriate event handlers for eaclevet event. The application sub-category
includes the time not spent in thread and event overhead. thittesection presents data gathered by
vmstat during an experiment. The vmstat utility periodicalamples the system state and generates
data about processes, memory, 1/0, CPU activity, etc. Feselexperiments, vmstat was configured to
sample the system every five seconds. The data presentegltaibtk is an average of the sampled values
gathered during the experiment. The row labelled “file-systache” gives the average size of the Linux
file-system cache in megabytes and the row labelled “ctseast/gives the average number of context
switches per second performed by the kernel. The last sectintains the number of user-level context
switches per second gathered directly from Capriccio. Boheserver, only the values where there is a
significant difference among the servers are discussed.

The user-space total for all the Knot servers is 3% - 11% tatgan the user-space total for the other
servers. The difference is related to the fact that Knotiregua large number of threads (L0,000) to
achieve good performance under this workload, resultiredititional overhead for user-level threading,
I/O, synchronization and context switches. However, tize sif this difference is misleading without
taking into account some other values. First, the overheachlling an event mechanisreppll overhead)
is lower with Knot than with the other servers. This diffezeris due to Knot’s implementation of trying
the call first and only using an event mechanism if the calhoacomplete without blocking. In most
cases, the call completes successfully the first time, tieguh rather sparse interest sets. Hence, using
epoll instead ofselect or poll is more efficient[[4b]. Second, Capriccio calls into the letumsing syscalls

62

3.10. 1.4 GB

and bypasses using libc for 1/0. So the libc overhead fronother servers is combined into the thread
overhead for the Knot servers. Hence, the extra overheadnaiing with a large number of threads is
actually lower than it may appear.

As can be seen from Figufe_B.6, the performance of knot-c ishnhawer than the other servers,
even the other Knot servers. The OProfile data reveals thaekdata copying is quite large for knot-c
at 17.46%, but only around 1% for the other servers. Thishmaat is virtually eliminated in knot-nb
and knot-b by moving away from an application data cache ambsendfile instead, suggesting that
maintaining an application cache is not a good techniqua asa&le form the data duplication problems
with maintaining two separate file caches. The next sectibrere the entire file set can fit into memory,
examines if performance is comparable when the file-sysemheccan be bypassed or if operations that
reduce data copying between the kernel and user-space edecheNote that larger OProfile values are
not always an indication of a problem or inefficiency. In sorases, the differences between knot-c and
both knot-nb and knot-b, e.g., larger e1000 values, artexbta differences in throughput. However, there
are issues related to duplication of data between the apiglicand file-system cache that make it difficult
to confirm the hypothesis that high data copying overhead®mate more expensive thagendfile. This
observation is revisited in the next section.

Another difference among the servers is the average sidecoffile-system cache. As knot-c uses
an application data-cache, its file-system cache is smiiléer the other servers. For the servers using
user-level threading, there is no significant differencélésystem cache despite the blocking version of
the server requiring more kernel threads since the staeksmaall and the address space is shared. Knot-
nb and knot-b have virtually the same size file-system cashdoavatpipe-nb and watpipe-b. For these
servers, the non-blocking and blocking versions have aqipitely the same size file-system cache and
almost the same throughput. For theerver versions, the size of the difference depends on tloei@m
of sharing among the processes. With SYMPED, the non-bhgckirsion has a file-system cache of
1106 MB versus 939 MB for the blocking version, which is a rchn of about 167 MB for the 50
additional processes required by the blocking versionhWlitared-SYMPED, the non-blocking version
has a file-system cache of 1203 MB versus 1105 MB for the bhockiersion. This is a reduction of
about 98 MB for the 60 additional processes required by toelihg version. For both servers, the
non-blocking version of the server has better performarteeen with the same number of processes,
sharedsymped-b has a 166 MB larger file-system cache thgpesln resulting in the shared-SYMPED
servers having better performance than their SYMPED copatts. Similarly, watpipe-b has an 82 MB
larger file-system cache than sharedsymped-b, resultifgaiipe having the best performance among
the blocking servers.

Finally, it is interesting to note that the non-blockingsas with shared data, which require lock-
ing, also appear to have less context switching. While Vg&Rioes not have an alternative version to

63

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

compare with, watpipe-nb has the second lowest amount dexbawitching at 933 context-switches
per second. More interestingly, sharedsymped-nb has 84t&xteswitches per second on average com-
pared to symped-nb with 3475 context switches per secon@ stheduling overhead in the profiling
tables show some of the direct overheads of context-swigghiigher levels of kernel context-switching
result in larger scheduling-overhead values. Both kno&umth knot-b have around 20,000 kernel context-
switches per second as well as around 20,000 user-levadxi@witches per second. While knot-nb and
knot-b have reasonable performance, their schedulingheeels are higher, indicating that high levels
of context-switching do result in higher overheads. Howeatthese levels, context-switching does not
appear to be a major problem. But, the differences in com@ithing among similar servers is impor-
tant as it may still give insight into the behaviour of thevees. For example, with shared-SYMPED,
fewer context switches could indicate that more data is¢hedturned fromepoll, resulting in processes
executing longer between context switches.

64

3.10. 1.4 GB

Server Knot-cache Knot Knot userver | userver
Arch T/Conn T/Conn | T/Conn symped | symped
Write Sockets non-block | non-block block | non-block block
Max Conns 10K 13K 13K 15K 25K
Workers/Procs/Writers 100w 15w 75w 25p 75p
Other Config 400MB
Reply rate 8002 9839 9627 9847 9444
Tput (Mbps) 952 1177 1149 1174 1127
OPROFILE DATA
vmlinux total % 65.34 57.45 59.00 63.25 64.09
networking 22.46 27.95 28.22 28.74 28.81
memory-mgmt 7.16 6.93 6.66 7.38 7.53
file system 3.22 4.78 4.67 5.08 5.68
kernel+arch 5.59 5.98 6.30 8.52 8.00
epoll overhead 1.68 2.21 2.18 5.35 5.21
data copying 17.46 0.64 0.66 1.07 0.99
sched overhead 1.64 2.07 2.99 0.66 1.08
others 6.13 6.89 7.32 6.45 6.79
1000 total % 18.32 2215 2151 23.08| 21.89]
user-space total % 14.13 18.18 17.3 7.78 7.28
thread overhead 6.24 10.09 9.2 0.00 0.00
event overhead 0.00 0.00 0.00 2.76 2.41
application 7.89 8.09 8.1 5.02 4.87
| libc total % | 0.01 | 002| 0.02] 362| 4.33]
| other total % | 2.20 220] 217] 227 2.41]
VMSTAT DATA
waiting % 0 0 0 0 0
file-system cache (MB 795 1168 1168 1106 939
ctx-sw/sec (kernel) 2705 22,280| 19,833 3475 4216
SERVER STATS
ctx-sw/sec (user) | 12,380 22,290| 19,455

Table 3.14: Server performance statistics gathered unldadeof 15,000 requests per second - 1.4 GB

65

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Server userver userver | WatPipe | WatPipe
Arch s-symped| s-symped| pipeline | pipeline
Write Sockets non-block block | non-block block
Max Conns 17K 25K 15K 15K
Workers/Procs/Writers 15p 75p 25w 75w
Other Config
Reply rate 10,606 10,028 10,769| 10,490
Tput (Mbps) 1267 1198 1286 1251
OPROFILE DATA
vmlinux total % 62.47 63.96 61.19 62.42
networking 29.93 29.96 29.70 29.49
memory-mgmt 7.36 7.47 8.12 7.71
file system 4.41 4.31 4.36 4.32
kernel+arch 7.41 7.60 7.12 7.56
epoll overhead 5.80 5.59 4.75 4.58
data copying 1.10 1.05 0.83 0.84
sched overhead 0.28 1.18 0.56 1.25
others 6.18 6.80 5.75 6.67
e1000 total % 24.23 22.42 24.06 22.51
user-space total % 7.91 7.63 10.84 11.21
thread overhead 0.00 0.00 451 5.19
event overhead 2.83 2.63 2.44 2.17
application 5.08 5.00 3.89 3.85
| libc total % | 3.31] 3.88 | 186 1.78]
| other total % | 2.08] 2.11] 205] 2.08|
VMSTAT DATA
waiting % 0 0 0 0
file-system cache (MB 1203 1105 1187 1187
ctx-sw/sec (kernel) 845 4568 933 5078
SERVER STATS

ctx-sw/sec (user)

Table 3.15: Server performance statistics gathered unidadeof 15,000 requests per second - 1.4 GB

66

3.11. 4GB

3.11 4GB

For these experiments, the system was configured with 4 GBewfiary. In actual fact, the amount
of available memory is around 3.7 GB due to parts of the addspace being reserved for hardware
devices. The idea behind these experiments is to examiderpance when the entire file set is in
memory, thus eliminating disk I/O. Given the size of the fit¢, 2.1 GB, 3.7 GB of memory is sufficient
for these experiments. While the notion of having the fileisehemory has different meanings for the
various servers, ideally, all the servers should be ableliege their maximum throughput under this
configuration. As well, the expectation is that one or very kernel threads are necessary for the servers
using non-blocking 1/O, since with this setup no overlagpif disk 1/0 and CPU execution is possible as
the file set is cached and I/O waiting should be zero. Howévender to examine the tuning sensitivity
of the servers, a large range of parameters are presenteddioiserver even though the variation is small
in some cases.

3.11.1 Tuning Knot

Tuning was again performed for knot-c, knot-nb and knotr. &l servers, the parameters tuned are the
number of threads and the number of worker tasks. Additigrthle size of the application cache is tuned
for knot-c.

3.11.1.1 Knot-c

For the knot-c experiments, two cache sizes are used, 100aindE2500 MB. As discussed earlier, the
size of the file set is approximately 2.1 GB. With 1000 MB of iggiion cache, the entire file set fits into
the file-system cache but not the application cache. Witt0288 of application cache, the entire file
set no longer fits into the file-system cache but does fit intoagbplication cache. As the point of these
experiments is to eliminate disk 1/0, another strategy Edushen the application cache is set to 2500
MB. In this case, the file set is preloaded into the applicatache using cache warming. To perform
cache warming for knot-c, the file data for the entire file seteiad into the application cache before
the experiment begins. Hence, during the experiment altdifgiests can be serviced directly from the
application cache without requiring any disk I/O. Note thaing cache warming is an extra benefit for
knot-c because the files do not need to be opened during theziexgnt as the file data is pre-cached
on startup, resulting in reduced overhead. While it is gadsgio eliminate this difference by performing
application cache-warming for the other server experisiecache-warming is not done for the other
server experiments because it would eliminate interegtifigrences among the servers with respect to
shared versus non-shared application caches.

67

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Cache size in MB

10,000 threads| 15,000 threads| 20,000 threads| 25,000 threads
Workers || 1000| 2500 (| 1000| 2500 || 1000| 2500 || 1000 | 2500
1] 1.82| 1.82 205 | 210 205 | 210 2.04 | 2.10

5] 1.82| 1.82 2.05| 210 2.05| 210 2.04| 2.10

10| 1.82| 1.82 205 | 210 205 | 210 205 | 2.10

25| 1.82| 1.81 2.05| 210 2.04| 210 2.04| 210

50| 1.81| 1.81 2.04| 2.09 2.04| 210 2.04 | 2.09
100 1.81| 1.81 2.04 | 2.10 2.04 | 2.09 2.04 | 2.09

Table 3.16: Knot cache initial experiments - 4 GB

2500 MB
Number of Threads
Workers || 13,000| 15,000 18,000| 20,000
1 2.10 2.10 2.10 2.10
5 2.11 2.11 2.10 2.10
10|| 2.10 2.11 2.10 2.10
25| 2.10 2.10 2.10 2.10

Table 3.17: Knot cache fine tune experiments - 4 GB

Table[3I6 shows the results of the coarse-grained tunindrfot-c after verification. Each row
represents a different number of workers from 1 to 100. Thenaos are separated into four sections with
the results for 10,000 threads in section one, 15,000 tergaskction two, 20,000 threads in section three
and 25,000 threads in section four. In each section, the dlworins correspond to the two different cache
sizes being tested, i.e., 1000 or 2500 MB.

The experiments show the best performance is around 1 wakéeast 15,000 threads and 2500
MB of application cache (2.10). Based on this general \igiradditional experiments were run and are
presented in TablEZ3L7. In this table, the cache size isiatest to 2500 MB. Each row represents a
different number of workers from 1 to 25 and each column regmes a different number of threads from
13,000 to 20,000. This table shows that the best performacoars with 13,000 threads, 5 workers and
2500 MB of application cache (2.11), with a peak throughgut2®3 Mbps occurring at 15,000 requests
per second and with a sustained throughput of around 119ZMbg0,000 requests per second. Note,
since there is no disk 1/O, the additional workers are doiagy Vittle work (some polling). Hence, the
experiments are virtually identical, so the results fortladl experiments are very close, and it is likely

68

3.11. 4GB

just experimental variation that resulted in this paracutonfiguration giving the best performance for
this run. This result represents an improvement of appratéiy 20% at peak and 25% for the sustained
throughput over the best results obtained with knot-c ferkhl GB experiments.

However, even without disk I/O the performance of knot-dilsgightly worse than the performance
of the other servers running with only 1.4 GB of memory; itsf@enance is just below the level achieved
by symped-b with 1.4 GB of memory. Eliminating cache duplara problems in these experiments
should allow for a better comparison of usingite with an application cache versus using zero-copy
sendfile with the file-system cache. While there may be duplicated datween the application cache
and the file-system cache, since the entire file-set is ptetbato the application cache, duplicated data
in the file-system cache does not effect the performanceatf&ifor these experiments.

Both Table3.T6 and Table~3]17 show that after at least 13/@@@ds there is not much variation in
the results. Only as the number of worker tasks gets larger 25 is there a slight but consistent drop in
throughput. As the memory overhead is irrelevant sincestteeenough memory to eliminate disk 1/0 and
swapping, one obvious overhead is the amount of contextling. However, this overhead is small and
does not affect performance greatly. For example, at 25000M&oplication cache and 15,000 threads
under a load of 30,000 requests per second, the average nafikeenel context switches per second for
1 worker is 34 and for 100 workers is 1024. It is likely the tispent polling the empty worker (disk 1/O)
queue results in more overhead than the context switching.

3.11.1.2 Knot-nb and knot-b

Table[3:18(d) shows the results of the coarse-grainedddoirknot-nb. Each row in the table represents
a different number of workers from 1 to 100 and each colummesgmts a different number of threads
from 10,000 to 25,000. For these experiments, the bestmeafice occurs at 15,000 threads and at least
1 worker (2.26). Based on this general vicinity, additioeaperiments were run and are presented in
Table[3:I9(d). For this table, the number of workers areedaftiom 1 to 10 and the number of threads
from 13,000 to 17,000. For knot-nb, the best performanceirscwith 15,000 threads and 1 worker
(2.29), with a peak throughput of 1339 Mbps occurring at @8 &&quests per second and with a sustained
throughput of around 1320 Mbps at 30,000 requests per secnd result represents an improvement
of approximately 5% at peak and 6% for the sustained thrauigbyer the best results obtained for the
1.4 GB experiments. This improvement is much smaller thasdtobtained by knot-c; however, knot-c
benefited from more than just eliminating disk 1/0. Not onlg the entire file set fit into the application
cache, reducing tension with the file-system cache, but&iatd the added benefit of application cache
warming.

It is interesting to note that 10,000 connections is agaiimanfficient number of threads and lim-

69

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Threads
Workers || 10,000| 15,000 20,000 25,000

Maximum Number of Threads
Workers || 10,000| 15,000| 20,000 25,000

1 O O O O
1 1.82 2.26 2.24 O
5 O O O O
5 1.82 2.26 2.24 2.24
10| 0.99 O 0 O

10| 1.83 2.26 2.24 2.23
25| 1.83 2.26 2.24 2.24
50| 1.83 2.25 2.24 2.24
100 || 1.83 2.25 2.24 2.24

25| 1.70 1.75 1.50 1.38
50 || 1.82 2.20 2.14 2.09
100 | 1.83 2.22 2.23 2.23
150 | 1.83 2.22 2.22 2.23

(b) blockingsendfile

(a) non-blockingsendfile

Table 3.18: Knokendfile initial experiments - 4 GB

Maximum Number of Threads

Maximum Number of Threads
Workers 13,000 15,000 17,000
Workers || 20,000| 25,000| 30,000| 35,000
1 2.26 2.29 2.27
100 2.26 2.25 2.25 2.25
3 2.26 2.28 2.27
150 2.26 2.25 2.25 2.25
5 2.26 2.28 2.27
200 2.25 2.25 2.25 2.25
10 2.26 2.28 2.27

b) blockingsendfile
(a) non-blockingsendfile () g

Table 3.19: Knotendfile fine tune experiments - 4 GB

its performance. When the number of simultaneous conmeci®capped at 10,000, throughput never
exceeds 1036 Mbps, and the condensed area is approximaddhfat these experiments. This value
is almost identical to the peak throughput observed with@Blof memory, suggesting performance is
limited by only having 10,000 threads and not other overhesadh as memory or disk I/O.

Finally, the tuning stability seen in the knot-c experingewhen adding workers continues with the
knot-nb experiments. However, increasing the number afattts beyond 15,000 results in a gradual
decline in performance.

When knot-c is run with 2500 MB of cache, problems relatedhéosize of the application cache versus
the file-system cache are eliminated. In this case, theediiitrset fits into the application cache. Hence,
any differences between knot-c and knot-nb are likely eelab the difference in efficiency betweerite
versus zero-copyendfile. It appears thatendfile is more efficient and results in better performance even
with the benefit that knot-c gets from cache warming. Thisolagtion is explored further in the Server

70

3.11. 4GB

Comparison sectioh (3.11.4).

Table[3I8(H) shows the results of the coarse-grainedduninknot-b after verification. Each row in
the table represents a different number of workers from 15dnd each column represents a different
number of threads from 10,000 to 25,000. For these expetsntre best performance occurs at around
20,000 threads and 100 workers (2.23). Based on this gevienaity, additional experiments were run
and are presented in Taljle 3.I9(b). For this table, the nuwfweorkers are varied from 100 to 200
and the number of threads from 20,000 to 35,000. For knotdy performance of the experiments in
Table[3:T9(H) are similar enough that the least resoureasite configuration is chosen as the best. The
best performance occurs with 20,000 threads and 100 wo(Re?6), with a peak throughput of 1310
Mbps occurring at 30,000 requests per second. In this chsgdak occurs at the highest rate run but
the throughput at 15,000 requests per second is 1308 Mbpsictt woint performance is relatively level.
This result represents an improvement of approximately 8% #00 requests per second and 6% for the
sustained throughput over the best results obtained fot.th6&B experiments. This improvement is in
line with the improvements for knot-nb and smaller than éhesen by knot-c.

Unlike knot-nb, even though the entire file set fits into the-fi{stem cache, more workers are required
compared to knot-b running with 1.4 GB of memory. In this ¢dm®mvever, the workers are only blocked
waiting to send the contents of larger files and not due to W8k The larger number of workers are
a function of the higher throughput and the increased nurobsimultaneous connections. It is also
interesting to note that similar to the knot-b experimenith .4 GB of memory, more than 25 workers
are needed, otherwise experiments do not verify or perfocedrops of more than 20% occur after peak.

While there is no memory pressure, knot-b does not performedisas knot-nb. The only significant
difference is the larger number of workers required by KmdBased on vmstat output, one big difference
between the servers is kernel context-switching overh&adtheir corresponding best performing con-
figurations, at a request rate of 30,000 requests per seknotinb has an average of 39 context switches
per second and knot-b has 6875 context switches per secohde e context switching overhead is
not very large in either case, the amount of time spent mptlie worker (disk 1/0) queue is much higher
with knot-b. While knot-b requires a larger number of wogkts handle cases where many large files are
being sent concurrently, at other times these extra wodierply consume CPU time polling the worker
queue because they spin.

As well, knot-b appears to be self-limiting. Based on sestatistics, the number of simultaneous
connections does not appear to exceed 30,000 for any of fegiments in Tablg 3:19(b). Hence, further
increases to the number of threads is not helpful.

71

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

3.11.2 Tuningpserver

Experiments were run to tune the four versionspsérver. symped-nb, symped-b, sharedsymped-nb
and sharedsymped-b. For all versionsusérver, the parameters tuned are the maximum number of
simultaneous connections and the number of processes.

3.11.2.1 Symped-nb and symped-b

Table[3:20(3) shows the results of the coarse-grainedddairsymped-nb after verification. Each row in
the table represents a different number of processes franiQd and each column a different maximum
number of connections from 10,000 to 25,000. The experis®smw the best performance for symped-nb
is around 1 process and 15,000 maximum number of conneditofs). Based on this general vicinity,
additional symped-nb experiments were run and are praseniablg 3.21(a). For this table, the number
of processes are varied from 1 to 4 and the maximum numbemofextions from 13,000 to 20,000. Ta-
ble[3:Z1(d) shows that the best performance for symped-cilr®evith 1 process and 18,000 connections
(2.45), with a peak throughput of 1444 Mbps occurring at @8 @quests per second and with a sustained
throughput of around 1437 Mbps at 30,000 requests per secidnid result represents an improvement
of approximately 13% at 15,000 requests per second and 1lAathdsustained throughput over the best
results obtained for the 1.4 GB experiments.

Moving from an actual SYMPED server to a SPED server reptesesignificant reduction in over-
head for symped-nb. Efficiencies are gained by only havinmpgles process, such as fewer and hence
more efficient calls to the event mechanism, very few corgestches and th@eserver SPED servers are
self-limiting so verification problems are less likely a® thaximum number of connections increase.
These types of efficiencies combined with other advantafeslp having a single thread, such as, little
to no contention for resources, reduced scheduling ovdghaad better usage of hardware caches, result
in a performance advantage for the SPED servers.

The SPED runs are self-limiting; the maximum number of stangdous connections never exceed
20,000. As well, the best performance occurs with 1 proceglere is no blocking for disk 1/0. Aside
from a performance boost when the maximum number of cororects at least 15,000, the results for 4
GB are very similar to results for 1.4 GB with respect to vedfion. As discussed earlier, once the 1/0
wait is zero, adding additional processes does not imprev@pmance.

Symped-nb experiments with 15,000 maximum connectionsbahsleen 3 and 10 processes did not
verify, but other experiments with 15,000 maximum conraidid verify. These verification problems
occur at 15,000 requests per second because the serveséstalthe edge of its tuning range for the
maximum number of connections. As discussed earlier, gatifin failures occur because the server

72

3.11. 4GB

Maximum Number of Connections Maximum Number of Connections
Procs|| 10,000| 15,000 20,000| 25,000|| Procs|| 10,000| 15,000| 20,000| 25,000| 30,000
1 1.83 2.44 2.43 2.43 1 O O O O O
5 1.84 O O O 5 O O O O O
10| 1.83 O O O 10| 1.02 O O O O
251 1.83 2.33 O O 25| 1.59 1.75 1.59 1.44 O
50 || 1.83 2.29 O O 50| 1.75 2.10 2.14 2.10 2.01
100 || 1.78 2.18 O O 100 1.78 2.08 2.14 2.17 2.18

(a) non-blockingsendfile (b) blockingsendfile

Table 3.20:userver SYMPED initial experiments - 4 GB

Maximum Number of Connections
Procs|| 13,000| 15,000| 18,000| 20,000
1 2.28 2.44 2.45 2.44

Maximum Number of Connections
Procs|| 25,000| 30,000| 35,000| 40,000
100 2.19 2.21 2.21 2.21

2| 2.28 2.32 O 0

125 2.17 2.18 2.19 2.19
3| 2.28 O O O

150 | 2.15 2.16 2.17 2.17
41 2.28 0 O 0

b) blockingsendfile
(a) non-blockingsendfile () J

Table 3.21:userver SYMPED fine tune experiments - 4 GB

reads more requests than it can process, especially foetighuest rates, so timeouts occur with large
files. With one process, event polling occurs at specific sigred the requests available at that time are
processed before the event mechanism is called again. Wiibesn &re several processes, event polling
occurs independently for each process over a larger spamef tesulting in more requests available for
reading. As the overall number of requests read becomesrldign the server can handle, verification
problems occur. However, as the number of processes imSetie server operates less efficiently and
eventually more requests time out before being read. Shroaighput decreases as the number of pro-
cesses increases, the number of requests handled by tlee sarst also decrease. Because there is a
direct correlation between the number of requests prodessa the throughput of the server, if the num-
ber of requests handled by the server did not decrease, duitioaal read requests must time out, since
the throughput is lower, resulting in verification failurdherefore, while the experiments with more than
10 processes verify, performance decreases.

Table[3:20(H) shows the results of the coarse-grained duoinsymped-b. Each row in the table rep-

73

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

resents a different number of processes from 1 to 100 andadiginn a different maximum number of
connections from 10,000 to 30,000. The experiments showdkeperformance for symped-b is around
100 processes and 30,000 maximum number of connectior$).(Based on this general vicinity, addi-
tional symped-b experiments were run and are presentecbie[Ba21(D). For this table, the number of
processes are varied from 100 to 150 and the maximum numbmmaiections from 25,000 to 40,000.
Table[3:Z1I(H) shows that the best performance for sympettbre with 100 processes and 30,000 con-
nections (2.21), with a peak throughput of 1284 Mbps ocnogret 15,000 requests per second and with
a sustained throughput of around 1263 Mbps at 30,000 rexjpessecond. This result represents an im-
provement of approximately 4% at 15,000 requests per semotd% for the sustained throughput over
the best results obtained for the 1.4 GB experiments.

Similar to knot-b, more than 25 processes are needed, ageeaxperiments do not verify or drops
in throughput larger than 20% occur after peak. The requergnfior more than 1 process means that
symped-b does not perform as efficiently as symped-nb rgnSIRED. As discussed earlier, with no
memory pressure a SPED server is more efficient than runnithgmultiple processes. For example, at a
rate of 30,000 requests per second the best symped-b catiigumade 128,365 calls to the event mech-
anism compared to 103,696 calls by symped-nb, a differehapproximately 24%. (See Sectibn-3.71.4
for profiling data related to the efficiencies of running wattsingle process.) As well, since SYMPED
processes are symmetric, each process performs all thiédiusof a complete server, so additional pro-
cesses tend to have a larger negative effect on performhaneasymmetric tasks like the worker threads
in Knot. Therefore, the performance difference betweenmamb and symped-b is larger than the per-
formance difference between knot-nb and knot-b. For theesggason, the SYMPED experiments for
this workload exhibit less tuning stability as the numbepafcesses are increased compared to the Knot
experiments when the workers are increased.

3.11.2.2 Sharedsymped-nb and sharedsymped-b

Table[3:22(3) shows the results of the coarse-grainedddoirsharedsymped-nb after verification. Each
row in the table represents a different number of processes 1 to 100 and each column a different
maximum number of connections from 10,000 to 25,000. Theex@nts show the best performance for
sharedsymped-nb is around 1 process and 15,000 maximurmenwidonnections (2.46). Based on this
general vicinity, additional sharedsymped-nb experimemtre run and are presented in Tgble 3.23(a).
For this table, the number of processes are varied from 1 twd4l®e maximum number of connections
from 15,000 to 30,000. Tab[e 3:23(a) shows that the besbperence for sharedsymped-nb occurs with
1 process and 20,000 connections (2.46), with a peak thputight 1457 Mbps occurring at 15,000
requests per second and with a sustained throughput of it Mbps at 30,000 requests per second.

74

3.11. 4GB

This result represents an improvement of approximately 6% 800 requests per second and 6% for the
sustained throughput over the best results obtained fat.th&B experiments.

Similar to symped-nb, the best performance for sharedsgimpeoccurs when it is running SPED.
As expected, the performance of symped-nb and sharedsyntpaghning SPED is approximately the
same and within the range of experimental variation. Hetlejmprovement for sharedsymped-nb is
less than the improvement for symped-nb because shareddyniiphas better performance with 1.4 GB
of memory. With 1.4 GB of memory, the sharedsymped-nb sdreeefits from less runtime overhead
due to fewer processes and a smaller memory footprint dusshamed cache-table and fewer processes,
compared to symped-nb. In moving to 4 GB of memory, perfomeagains result from needing only one
process and no memory pressure in the system. These twoasharggboth smaller for sharedsymped-nb,
resulting in a smaller performance improvement for shamaged-nb versus symped-nb.

The pattern of verification failures with 15,000 maximum gections is similar for both symped-nb
and sharedsymped-nb, and occur for the same reason. timghgsthe sharedsymped-nb experiment
with 15,000 maximum connections and 10 processes in TaPE&. does verify, however, it has lower
throughput than the experiment with 25 processes. Thisuahuhp in performance occurs because the
experiment with 10 processes is close to failing due to tuteon large files. These timeouts result in a
lower condensed area because only completed transfenscéwded in the calculation of throughput.

Table[3:22(H) shows the results of the coarse-grained dufoinsharedsymped-b after verification.
Each row in the table represents a different number of pegseom 1 to 100 and each column a different
maximum number of connections from 10,000 to 30,000. Thex@nts show the best performance for
sharedsymped-b is around 100 processes and 30,000 maxioralrenof connections (2.30). Based on
this general vicinity, additional sharedsymped-b experita were run and are presented in Tble 3.23(b).
For this table, the number of processes are varied from 750@ftd the maximum number of connections
from 25,000 to 40,000. Tab[e 3.23(b) shows that the besbpeence for sharedsymped-b occurs with
75 processes and 25,000 connections (2.31), with a peakgimpat of 1356 Mbps occurring at 15,000
requests per second and with a sustained throughput of 81l Mbps at 30,000 requests per second.
This result represents an improvement of approximately 6% 00 requests per second and 4% for the
sustained throughput over the best results obtained fat.th&B experiments.

Similar to symped-b, these improvements are not as largeoae fachieved by its non-blocking coun-
terpart due to the efficiencies gained when sharedsympeasiin as a SPED server. It is interesting to
note that there is approximately 2% idle time at 30,000 rstpueer second with 75 processes and 25,000
maximum connections. The amount of idle time drops to zetb@sumber of processes is increased but
performance does not improve.

Similar to knot-b and symped-b, more than 25 workers are ewedtherwise experiments do not

75

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections Maximum Number of Connections
Procs|| 10,000| 15,000| 20,000 25,000|| Procs|| 10,000| 15,000| 20,000| 25,000| 30,000
1 1.83 2.46 2.46 2.45 1 O O O O O
5 1.84 O O O 5 O O O O O
10| 1.83 2.35 O O 10| 1.01 O O O O
251 1.84 2.41 O O 25| 1.58 1.75 1.57 O O
50| 1.83 2.36 O O 50| 1.75 2.17 2.21 2.16 2.05
100| 1.81 2.26 O O 100 || 1.80 2.18 2.27 2.29 2.30
(a) non-blockingsendfile (b) blockingsendfile

Table 3.22:userver shared-SYMPED initial experiments - 4 GB

Maximum Number of Connections Maximum Number of Connections
Procs|| 15,000| 20,000| 25,000 30,000 Procs|| 25,000| 30,000| 35,000 40,000
1 2.45 2.46 2.45 2.46 75| 2.31 2.30 2.27 2.21
2 2.33 O O O 100 || 2.29 2.30 2.30 2.30
3 O O O O 125| 2.28 2.28 2.28 2.29
4 O O O O 150 | 2.25 2.27 2.28 2.29
(a) non-blockingsendfile (b) blockingsendfile

Table 3.23:userver shared-SYMPED fine tune experiments - 4 GB

verify or drops in throughput larger than 20% occur aftelipdes expected, the larger number of workers
means sharedsymped-b cannot perform as efficiently asdslyanped-nb running SPED. By comparison,
the best sharedsymped-b configuration at a rate of 30,00@sexper second makes 206,216 calls to the
event mechanism compared 104,941 calls to the event maohdior the best sharedsymped-nb running
SPED. As well, the symmetric processes with shared-SYMR&DIt in a larger performance difference
between sharedsymped-nb and sharedsymped-b versustkaotiknot-b.

A reasonable expectation is that sharedsymped-b wouldnpervorse than symped-b for this work-
load. Since the system is not under memory pressure, a sbact@ offers no advantages and the
additional overhead of locking should adversely affectfqggenance. However, the performance of
sharedsymped-b is better than the performance of sympdtidas approximately 6% better perfor-
mance at peak and 4% for sustained throughput. This perfaendifference is examined further in
Sectio 31T} with the help of profiling data.

76

3.11. 4GB

3.11.3 Tuning WatPipe

Experiments were run to tune the two versions of WatPipepivatnb and watpipe-b. For both versions
of WatPipe, the parameters tuned are the maximum numbemaitsineous connections and the number
of writer tasks.

Table[3:24(g) shows the results of the coarse-grained guoinwatpipe-nb. Each row in the table
represents a different number of writers from 1 to 100 andh eatumn a different maximum number of
connections from 10,000 to 25,000. The experiments sholwdkeperformance for watpipe-nb is around
1 writer and 15,000 maximum number of connections (2.43)seBaon this general vicinity, additional
watpipe-nb experiments were run and are presented in [T&B€g}. For this table, the number of writers
are varied from 1 to 4 and the maximum number of connectiom® ft5,000 to 23,000. Tabje 3:25(a)
shows that the best performance for watpipe-nb occurs wittitér and 18,000 connections (2.45), with a
peak throughput of 1452 Mbps occurring at 15,000 requestsquond and with a sustained throughput of
around 1439 Mbps at 30,000 requests per second. This repudtsents an improvement of approximately
4% at 15,000 requests per second and 5% for the sustainedjkimat over the best results obtained for
the 1.4 GB experiments.

The overall performance of watpipe-nb is similar to shayagsed-nb. The expectation is that, in
the absence of disk I1/0, a SPED server is more efficient thameeiswith multiple threads. Hence, the
fact that watpipe-nb manages to achieve similar performaodoth of the SPED servers is surprising.
However, WatPipe also has certain efficiencies gained by lmaWing multiple writer tasks. What is not
surprising is that, unlike the two non-blocking versionspueérver, watpipe-nb has stable performance
with up to 100 writer tasks even though only one writer taskeiguired because the cost of additional
writers is negligible.

Table[3:24(H) shows the results of the coarse-grained duitin watpipe-b. Each row in the table
represents a different number of writers from 1 to 100 andh eatumn a different maximum number of
connections from 10,000 to 25,000. The experiments showeakeperformance for watpipe-b is around
100 writers and 15,000 maximum number of connections (2.82sed on this general vicinity, addi-
tional watpipe-b experiments were run and are presentedbie[l3.25(H). For this table, the number of
writers are varied from 75 to 150 and the maximum number oheotions from 13,000 to 20,000. Ta-
ble[3:25(0) shows that the best performance for watpipeehrsavith 75 writers and 15,000 connections
(2.36), with a peak throughput of 1399 Mbps occurring at @8 &&quests per second and with a sustained
throughput of around 1357 Mbps at 30,000 requests per sedtislresult represents an improvement of
approximately 2% at 15,000 requests per second and 3% feugtained throughput over the best results
obtained for the 1.4 GB experiments. Interestingly, theulhput of watpipe-b for the 1.4 GB workload,
despite the presence of disk 1/0, is close to its performémcthe in-memory workload.

77

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections Maximum Number of Connections

Writers || 10,000| 15,000| 20,000 25,000 Writers || 10,000| 15,000| 20,000 25,000
1 1.77 2.43 2.41 O 1 O O O O
5 1.78 2.42 2.42 O 5 O O O O
10| 1.78 2.42 2.41 O 10 1.01 0.98 O O

25| 1.78 2.42 2.42 O 25 1.68 1.83 1.53 1.40

50| 1.78 2.41 2.41 O 50| 1.78 2.32 2.23 2.16
100 || 1.77 2.40 2.40 O 100 || 1.77 2.33 2.32 2.32

(a) non-blockingsendfile (b) blockingsendfile

Table 3.24: WatPipe initial experiments - 4 GB

Maximum Number of Connections Maximum Number of Connections
Writers || 15,000| 18,000 20,000| 23,000 Writers || 13,000| 15,000 18,000| 20,000
1 2.44 2.45 2.44 O 75 || 2.24 2.36 2.36 2.35
2 2.45 2.45 2.44 O 100 | 2.23 2.36 2.36 2.35
3 2.44 2.45 2.45 O 125 2.23 2.36 2.36 2.35
4| 2.44 2.45 2.44 O 150 | 2.23 2.35 2.36 2.35

(a) non-blockingsendfile (b) blockingsendfile

Table 3.25: WatPipe fine tune experiments - 4 GB

Despite a smaller increase in performance compared to fm@nd sharedsymped-b, watpipe-b
has better performance than those servers. In the 1.4 GBierguds, watpipe-b had the advantage of
a smaller memory footprint so under memory pressure it isaieable that watpipe-b has better perfor-
mance. However, for this set of experiments there is no mgm@ssure but watpipe-b still has better
performance than symped-b and sharedsymped-b despitadhéhét their non-blocking counterparts
have similar performance. One disadvantage of the SYMPHiDoagh is that all the server processes
perform all the steps of a single SPED server. While this egqir scales well for a small number of
server processes, as the number of server processes gefs ilaefficiencies related to this architecture
emerge. One such inefficiency is the number of calls to thatewechanism. For example, for the best
blocking server configurations at 30,000 requests per skwatpipe-b has 45,475 calls to the event mech-
anism, sharedsymped-b has 206,216 calls across 75 pre@sseymped-b has 128,365 calls across 100
processes. As mentioned earlier, the additional perfocendifference for symped-b is examined further
in Sectio 3. TTM with the help of profiling data.

78

3.11. 4GB

3.11.4 Server Comparison

Figure [presents the best performing configuration fozheaerver architecture implementa-
tion: caching Knot (knot-c), non-blocking Knot (knot-nbplocking Knot (knot-b), userver non-
blocking SYMPED (symped-nb)yserver blocking SYMPED (symped-h)server non-blocking shared-
SYMPED (sharedsymped-nh)server blocking shared-SYMPED (sharedsymped-b), nookbig Wat-
Pipe (watpipe-nb) and blocking WatPipe (watpipe-b). Thyeie in Figurd=317 is ordered from the best
performing server at the top to the worst at the bottom. Eknlyknot-c, peak server performance varies
by about 13% (1284-1457 Mbps), indicating all the servensdtaan excellent job.

Table[3.Zb ranks the performance of the servers for the 4 Giglead. Again, based on a total of
three runs for each server, Tukey’s Honest Significant Bafiee test is used to differentiate the servers
with a 95% confidence level. The servers are then ranked lmsetkan area.

The top performing servers are sharedsymped-nb, watgipana symped-nb, all with approxi-
mately the same performance. The next server is watpipeimhvhas slightly better performance than
sharedsymped-b and knot-nb. The last two blocking serkamt;b and symped-b, occur next with knot-c
at the bottom again. The performance gap between the neakibtpand blocking servers is larger than
with the 1.4 GB experiments. The best non-blocking sendesiyedsymped-nb, compared to the best
blocking server, watpipe-b, has a 4% higher peak at 15,0§0ests per second and 6% higher perfor-
mance after saturation at 30,000 requests per second. Cednpethe 1.4 GB experiments, the through-
put of the non-blocking servers improved more than the tjinput of their blocking counterparts. This
difference is a result of the number of threads requiredHermon-blocking servers decreasing while the
number of threads required for the blocking servers inangasComparing sharedsymped-nb to the best
Knot server, sharedsymped-nb has a 9% higher peak at 1%606sts per second and 9% higher perfor-
mance at 30,000 requests per second. This performanceediffe is approximately the same compared
to the 1.4 GB experiments. The non-blocking version of kimohpared to knot-c has an 11% higher peak
at 15,000 requests per second and 11% higher performanfeéd@03equests per second. This difference
is much lower than the difference at 1.4 GB and is a resulteftiditional benefits experienced by knot-c
beyond eliminating disk 1/O.

To better understand the performance of the servers, thebefiguration of each server is profiled.
The OProfile and vmstat data for these experiments are sumedan Table§—3.247 ard_31?8. Perhaps
the most interesting observation is that the OProfile datheged for each server is very similar to the
data gathered for the 1.4 GB experiments. Differences amdl nd generally related to throughput,
higher networking, e1000 aregboll overhead values with 4 GB, and number of threads, lower sdimgd
overheads for the non-blocking servers with 4 GB. The bigdiferences occur in the file-system cache-
size and context switches per second values reported byaurfstr the 4 GB experiments, the file-system

79

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

o 77—

1400
1200 r

1000 |

800 r

Mbps

- sharedsymped-nb-20K-1p —+—
600 | watpipe-nb-18K-1w ----3¢---

symped-nb-18K-1p ---E]J-~
watpipe-b-15K-75w @

400 sharedsymped-b-25K-75p ===~
I knot-nb-15K-1w ---x7:--
200 | knot-b-20K-100w -+~

symped-b-30K-100p - Qe
knot-c-13K-5w-2560MB -k~

0 L L L 1

0 5000 10000 15000 20000 25000 30000
Requests/s

Figure 3.7: Throughput of different architectures - 4 GB

Server Rank
symped-nb 1
sharedsymped-nb 1
watpipe-nb 1
watpipe-b 2
sharedsymped-b 3
knot-nb 4
knot-b 5
symped-b 6
knot-c 7

Table 3.26: Ranking of server performance - 4 GB

80

3.11. 4GB

cache size is always large enough to contain the entire filarsd any variations between the 4 GB
experiments are not important. The exception is knot-cclwhises cache warming and an application
cache large enough to contain the entire file set. The amduwundext switching is directly related to
the number of kernel threads and hence is generally lowah&non-blocking, 4 GB experiments. The
exception is watpipe-nb, which has significantly more cxinsgvitching than the SPED servers due to its
pipeline design with dedicated threads for each stage. ifegsgving more than one thread, watpipe-nb
performs as well as the SPED servers.

Several observations from the 1.4 GB experiments are tru¢hése experiments as well. Knot-c
again has high data-copying overheads (16.89%) due to wsityg inhibiting the performance of the
server. In general, Knot has higher user-space plus libcheagls than the other servers because a large
number of user-level threads incurs high thread overhebldsvever, similar to the analysis for the 1.4
GB experiments, part of this additional overhead is migdaby lowerepoll overheads. Despite these
overheads pushing the performance of Knot lower than ther atrvers, knot-nb and knot-b still manage
to outperform symped-b.

While it is expected that the blocking version of a servenkiasse performance than its non-blocking
counterpart, the performance of symped-b is especially. pdbe idea behind shared-SYMPED is to
reduce the memory footprint of the server to reduce the atr@fudisk 1/O when there is memory pressure
in the system. When there is no memory pressure, the exjpectathat the overheads related to locking
and contention on the shared application cache negatiieglgta performance. Hence, it is reasonable
to expect that symped-b would have better performance tharedsymped-b in these experiments but
the actual performance of symped-b is worse. Examining tAeoflle data and the server statistics at a
rate of 15,000 request per second reveals some interesisggwations. The time spent in the file-system
category is about 36% larger for symped-b than for sharedsgrb. As well, the server output shows the
application cache hit rate for symped-b is 78% versus 99&9%tiaredsymped-b. For both servers, the
application cache only contains file descriptors and HT Tdrlbes, and is large enough to cache the entire
file-set. The first time a file is requested, the file is not indpplication cache (cache miss) so the server
opens the file and stores the file descriptor and an assoc¢iat€&® header in its application cache. If a
subsequent request occurs for the same file, the file is glieatie application cache (cache hit) so no
additional work is required to cache the file. The cache It imcalculated by dividing the total number
of cache hits across every file by the total number of requi¥éith userver SYMPED, each server process
has a separate application cache so each process mustliradiiyiopen and create a cache entry for each
file. With pserver shared-SYMPED, the cache is shared so each file isopelyed and cached once for
the entire server the first time any server process receiveguest for the file. Because each symped-b
process has its own separate application cache, each fids teebe looked up multiple times and it takes
longer for each individual cache to become fully populatehtfor a single shared cache. Hence, there is

81

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

significantly more file system activity and increased ketoeking and contention on the file system due
to the larger number of 1/O accesses with symped-b, regultipoorer performance. For the experiment
at 15,000 requests per second, symped-b has 807,719 castesmersus 21,297 for sharedsymped-b, a
difference of 786,422. An experiment comparing sharedggvipand symped-b with 100 processes and
30,000 connections with a warmed application cache, iléheafiles in the file-set are opened before the
experiment begins, thereby eliminating most of the diffieeein file system activity between the servers
during the experiment, shows approximately equivalenfoperance for both servers.

The expectation is that eliminating disk I/O would resulthe servers requiring fewer kernel threads
to achieve their best performance. While this expectatmdshtrue for the non-blocking servers, it does
not hold true for the blocking servers. Instead, the higheoughput of the blocking servers means
that more threads/processes are required to handle moudtasieous requests for large files. In fact,
the number of threads required is dictated by the size ofabkest buffers, the number of simultaneous
requests for large files and the throughput of the server.

The additional processes required by the blocking servergrablematic as they reduce the efficiency
of the server and increase the system overheads. For the E®WMIRAd shared-SYMPED servers, the
OProfile data shows that the kernel overheads, especidigdeto scheduling, are larger for the blocking
version of the servers. These increases are consistessabmservers and indicate that additional kernel
threads in the system cause an increase in overheads.

82

3.11. 4GB

Server Knot-cache Knot Knot userver | userver
Arch T/Conn T/Conn | T/Conn symped | symped
Write Sockets non-block | non-block block | non-block block
Max Conns 13K 15K 20K 18K 30K
Workers/Procs/Writers 5w 1w 100w 1p 100p
Other Config 2560MB
Reply rate 9296 10,340| 10,061 10,893 9672
Tput (Mbps) 1108 1233 1202 1301 1152
OPROFILE DATA
vmlinux total % 63.65 56.84 58.79 62.07 64.11
networking 24.94 29.33 29.31 30.07 29.25
memory-mgmt 5.32 6.57 6.37 6.90 6.85
file system 2.55 4.81 4.58 4.24 5.74
kernel+arch 5.61 6.19 6.48 6.85 8.29
epoll overhead 1.96 2.34 2.21 7.11 5.37
data copying 16.89 0.63 0.71 1.16 1.00
sched overhead 1.13 0.96 2.40 0.06 1.13
others 5.25 6.01 6.73 5.68 6.48
1000 total % 20.41 2315 22.19| 24.87| 21.92|
user-space total % 14.29 18.27 17.15 8.14 7.36
thread overhead 6.6 10.53 9.39 0.00 0.00
event overhead 0.00 0.00 0.00 2.95 2.35
application 7.69 7.74 7.76 5.19 5.01
| libc total % | 0.01 | 001 0.02] 319| 4.57]
| other total % | 1.64| 1.73] 1.85] 173 2.04]
VMSTAT DATA
waiting % 0 0 0 0 0
file-system cache (MB 1309 2287 2291 2270 2272
ctx-sw/sec (kernel) 96 190 5910 68 4328
SERVER STATS
ctx-sw/sec (user) | 12,269| 23,781| 20,575

83

Table 3.27: Server performance statistics gathered unidadzof 15,000 requests per second - 4 GB

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Server userver userver | WatPipe | WatPipe
Arch s-symped| s-symped| pipeline | pipeline
Write Sockets non-block block | non-block block
Max Conns 20K 25K 18K 15K
Workers/Procs/Writers 1p 75p 1w 75w
Other Config
Reply rate 11,190 10,347 10,926 10,621
Tput (Mbps) 1334 1235 1305 1266
OPROFILE DATA
vmlinux total % 61.78 63.07 59.97 61.68
networking 30.12 29.90 30.18 29.47
memory-mgmt 6.93 6.99 7.57 7.17
file system 4.18 4.23 4.24 4.29
kernel+arch 6.82 7.63 6.98 7.74
epoll overhead 6.83 5.55 4.79 4.44
data copying 1.14 1.09 0.81 0.87
sched overhead 0.06 1.16 0.29 1.32
others 5.70 6.52 5.11 6.38
e1000 total % 25.12 23.18 25.23 22.89
user-space total % 8.13 7.85 11.13 11.78
thread overhead 0.00 0.00 4.16 5.33
event overhead 2.92 2.65 2.62 2.33
application 5.21 5.20 4.35 4.12
| libc total % | 3.21] 3.99| 203] 1.84]
| other total % | 1.76| 1.91] 164 1.81]
VMSTAT DATA
waiting % 0 0 0 0
file-system cache (MB 2295 2295 2291 2291
ctx-sw/sec (kernel) 68 4519 1058 6058
SERVER STATS

ctx-sw/sec (user) ‘

Table 3.28:

Server performance statistics gathered unidadaof 15,000 requests per second - 4 GB

84

3.12. .75GB

3.12 .75GB

The final workload examined is on a system configured with .Bedbmemory. These experiments
examine the performance of the servers when there is heakylf, so a server cannot completely
eliminate 1/0 wait. The expectation is that these experisishould have significantly lower throughput
because of slow disk I/O. As a consequence, the non-bloddngers require additional threads to achieve
their best performance and the servers with smaller menamipfints should perform better than the
servers requiring more memory. Hence, these experimeatddstend to favour the servers that share an
address space unless contention becomes an issue. Amsfimggoint is to see how the blocking servers
perform compared to the non-blocking servers since theklrigeservers have a larger memory footprint.

3.12.1 Tuning Knot

Tuning was again performed for the three versions of Knobt4x knot-nb and knot-b. For all servers,
the parameters tuned are the number of threads and the nomierker tasks. Additionally, the size of
the application cache is tuned for knot-c. Unlike the experits with 4 GB of memory, the application
cache is not warmed for the knot-c experiments with this \oad.

3.12.1.1 Knot-c

Table[32D shows the results of tuning knot-c after verificatEach row represents a different number of
workers from 5 to 200. The columns are separated into fouiosecwith the results for 8000 threads in
section one, 10,000 threads in section two, 15,000 threadsdtion three and 20,000 threads in section
four. In each section, the columns correspond to the thiféerelit cache sizes being tested, i.e., 10 MB,
100 MB or 200 MB.

The experiments show the best performance is around 150evgyrkt least 8000 threads and 10
MB of application cache (1.39). Based on this general vigirdadditional experiments were run and are
presented in Tab[eZ3.B0. Each row represents a differenbaunf workers from 50 to 200. The columns
are separated into two sections with the results for 80@atts in section one and 9000 threads in section
two. In each section, the columns correspond to the twordifitecache sizes being tested, i.e., 10 MB, or
50 MB. This table shows that the best performance occurs8ai€® threads, 100 workers and 50 MB of
application cache (1.44), with a peak throughput of 795 Mimgmurring at 15,000 requests per second and
with a sustained throughput of around 782 Mbps at 30,000astquper second. This result represents a
decline of approximately 21% at peak and 18% for the susiaim®ughput over the best results obtained
with knot-c for the 1.4 GB experiments.

85

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Cache size in MB
8000 threads 10,000 threads 15,000 threads || 20,000 threads
Workers|| 10 | 100 | 200 || 10 | 100 | 200|f 10 | 100 | 200 | 10| 100 | 200

51103081 O 094|072 O [|0.70| O O ol 0O O

25| 1.37| 1.13|0.79| 1.31| 1.07| O O O O ol O O

50 || 1.38| 1.26 | 0.87 || 1.37| 1.16 | O 1.11| O O ol 0O O

100 1.38| 1.30| 0.93 | 1.38| 1.22| O O O O ol O O
150 1.39| 1.26| O 1.37| 1.16| O O O O ol O O
200 | 1.38| 1.25| O 1.36| O O O O O ol 0O O

Table 3.29: Knot cache initial experiments - .75 GB

Cache size in MB
8000 threadg| 9000 threadsg
Workers| 10 50 10 50

50| 1.39| 1.42 || 1.38| 1.36

100 1.38| 1.44 || 1.38| 1.42
125 1.39| 1.44 || 1.38| 1.37
150 1.38| 1.44 || 1.38| 1.36
200 1.38| 1.43 | 1.38| 1.35

Table 3.30: Knot cache fine tune experiments - .75 GB

For this workload, knot-c performs better with small casiees; experiments with cache sizes of
100 MB or larger have lower throughput or do not verify. Basedprevious experiments, the fact that
knot-c performs better with smaller cache-sizes is expedttat the application cache sizes here are very
small. Due to increased memory pressure in the system, leaon is disk bound. While the best
performing knot-c has no I/O wait at either 15,000 or 30,08Quests per second, the lack of I/O wait
is actually the result of polling in the application. At pedlke main Knot thread makes 2,408,380 calls
to the event mechanism with 87% of the calls returning no &svenhis polling indicates there is extra
CPU time available, which is reasonable given the smallerbar of connections. Hence, using a smaller
application-cache at the expense of additional CPU timaaesl duplication with the file-system cache
and is a reasonable trade off. However, there is a point wisedradeoff is no longer beneficial and
further reductions in cache size negatively effect perforoe. For the same configuration with 10 MB of
cache, Knot makes only 389,523 calls to the event mechaniimB&%6 of the calls returning no events.
Polling is reduced because additional overheads associth managing a smaller application-cache

86

3.12. .75GB

decrease the available CPU time.

3.12.1.2 Knot-nb and knot-b

Table[3:31I(d) shows the results of tuning knot-nb. Each rothé table represents a different number of
workers from 5 to 200 and each column represents a differenber of threads from 8000 to 20,000. For
these experiments, the best performance occurs at 80G@thesmd at least 50 workers (1.38). Based on
this general vicinity, additional experiments were run arelpresented in Talle 3.33(a). For this table, the
number of workers are varied from 25 to 200 and the numberreatts from 7000 to 9000. For knot-nb,
the best performance occurs with 8000 threads and 50 waik&8), with a peak throughput of 769 Mbps
occurring at 8000 requests per second and with a sustaineagtiput of around 734 Mbps at 30,000 re-
quests per second. The occasional verification failurds 800 workers indicate that knot-nb is close to
the maximum number of threads (connections) that it canlbdndthis workload. This result represents
a decline of approximately 40% at 15,000 requests per semotd 1% for the sustained throughput over
the best results obtained with knot-nb for the 1.4 GB expenits. This decline is significant and much
larger than the drop in performance experienced by knot-c.

Comparing the performance of knot-nb and knot-c shows aréiffice from the trend observed in the
previous workloads; knot-nb performs worse than knot-ct tReir respective best performing configu-
rations, knot-c has 4% higher peak throughput at 15,000estgper second and 7% higher sustained
throughput at 30,000 requests per second. This result [isisimg because the reasons that knot-nb has
better performance under the previous two workloads sili true for this workload.

Consider the performance of both servers at 30,000 regpestsecond with 8000 threads and 100
workers for both and also with 50 MB of application cache fookc. First, knot-nb has a smaller memory
footprint than knot-c, resulting in a larger average filsteyn cache, 595 MB versus 534 MB for knot-c.
Second, knot-nb uses zero-copgndfile versuswrite for knot-c, resulting in less kernel data copying
overhead. Based on profiling data, knot-nb spends 0.47%perferming kernel data copying at peak
versus 19.18% for knot-c.

Despite these advantages, however, knot-nb is execussgféiciently than knot-c in some important
ways. Knot-nb makes 1,325,180 calls to the event mechanigmBé% of these calls returning no events,
indicating that the main knot thread is spending a reaserailount of time spinning with no other work
to do. On the other hand, knot-c makes 852,058 calls to thet emechanism with 77% of these calls
returning no events. As well, knot-nb has an average of 3B@rnel context-switches per second versus
28,474 for knot-c. This additional spinning also explainsyknot-nb has higher user-time compared to
knot-c, 25% for knot-nb versus 17% for knot-c.

87

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Number of Threads Number of Threads
Workers || 8000 | 10,000| 15,000| 20,000 Workers || 8000 | 10,000 15,000 20,000
5 O O O O 5 O O O O
25| 1.36 O O O 25| 1.36 1.37 1.19 1.04
50 || 1.38 O O O 50 || 1.43 1.56 1.40 1.26
100 1.38 O O O 100 1.43 1.56 1.41 1.28
150 | 1.37 O O O 150 || 1.43 1.55 1.40 1.30
200 1.37 O O O 200| 1.43 1.55 1.41 1.31

(a) non-blockingsendfile (b) blockingsendfile

Table 3.31: Knosendfile initial experiments - .75 GB

Number of Threads
Workers 7000 8000 9000 Number of Threads
25 1.26 1.36 O Workers 9000 10,000 | 12,000

50 1.27 1.37 O 50 1.55 1.57 1.50
100 1.27 1.37 O 100 1.55 1.57 1.50
125 1.27 O O 150 1.55 1.56 1.48
150 1.27 O O 200 1.54 1.57 1.47

O

200 1.26 1.37 (b) blockingsendfile

(a) non-blockingsendfile

Table 3.32: Knotendfile fine tune experiments - .75 GB

This data suggests that knot-nb is spending a large amouithefpolling for additional work, in
both the main thread and worker tasks, but is unable to takend@age of unused capacity in the system.
The usual technique when a server is underutilized is teass the number of connections and thereby
increase the throughput of the server. However, Tdblega)ahd 3.32(4) show that increasing the number
of connections leads to verification failures for knot-nturtRermore, even with additional overheads,
knot-c is able to outperform knot-nb with similar configumoat parameters.

One advantage of knot-c over knot-nb is the way the two semezd data from disk. Knot-c reads an
entire file from disk into its application cache in a singlsteyn call before sending any data to the client.
This method of disk access is efficient, especially for filest tare laid out contiguously on disk. Once
the file is in its application cache, knot-c transmits the tilehe requestor usingrite. While multiple
calls towrite may be necessary if the file is sent in chunks, no further didkd required for that request.

88

3.12. .75GB

Knot-nb uses non-blockingendfile to transmit a file to the requestor. With non-blockisendfile, large
files may be transmitted in chunks to the requestor, requirialtiple calls tasendfile in order to complete
the transfer. For file data that is not in the file-system caalwall tosendfile can result in both disk 1/O
and network 1/0O. Furthermore, a single callstendfile may not cause the entire file to be loaded into the
file-system cache, meaning that large files requiring meltipndfile calls likely have to block waiting for
disk I/0 multiple times. Since each disk I/O request must lbeugd, the total amount of time it takes to
transmit a file increases as multiple callsstmdfile for the same request may block waiting for disk 1/O,
leading to more large-file timeouts. As well, once the disadis positioned, it is more efficient to read
in data contiguously than jumping around reading in pogiohvarious files. Therefore, knot-c is able to
support more threads than knot-nb without verification fgois. Based on vmstat output, knot-nb reads
in an average of 14,258 blocks per second while knot-c reads iaverage of 17,629 blocks per second
at 30,000 requests per second.

Table[3:31(H) shows the results of tuning knot-b after \@atfon. Each row in the table represents
a different number of workers from 5 to 200 and each colummesgnts a different number of threads
from 8000 to 20,000. For these experiments, the best pesfocenoccurs at around 10,000 threads and
50 workers (1.56). Based on this general vicinity, addaloexperiments were run and are presented in
Table[3:32(H). For this table, the number of workers aresdafiiom 50 to 200 and the number of threads
from 9000 to 12,000. The best performance occurs with 10ibads and 50 workers (1.57), with a
peak throughput of 888 Mbps occurring at 15,000 requestsqmand and with a sustained throughput of
around 842 Mbps at 30,000 requests per second. This repudtsents a decline of approximately 30%
at 15,000 requests per second and 32% for the sustainedjtimaiuover the best results obtained with
knot-b for the 1.4 GB experiments. This drop in performarsciess than knot-nb but more than knot-c.

For their best configurations, knot-b has 12% better pedimca than knot-c at 15,000 requests per
second and 8% better performance at 30,000 requests pedseenwell, knot-b has 15% better perfor-
mance than the best knot-nb configuration at 15,000 reqpestsecond and 15% better performance at
30,000 requests per second. At 30,000 requests per secwieh kas a file-system cache size of 574 MB,
putting it between knot-c and knot-nb. Compared to knotrotidb manages better performance because
of a smaller memory footprint and less overhead dusetaifile. Its use of blockingendfile allows knot-b
to support more threads without verification problems andrgelr file-system cache results in higher
throughput. On the other hand, knot-nb also seeslfile and has approximately the same size file-system
cache for equivalent experiments but knot-b has betteoprence. Knot-b outperforms knot-nb because
it blocks a worker task until the entire file is sent, givingopity to larger files, resulting in fewer verifica-
tion problems due to large-file timeouts. As the experimshtswv, fewer verification problems mean that
knot-b can support a larger number of threads (connectiatisving it to achieve better performance.
While performance eventually decreases as the numbereddhrincreases, knot-b does not suffer from

89

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

verification problems like knot-nb. However, even for coaf@tion parameters where knot-nb verifies,
knot-b has better performance. There appears to be a parficaradvantage when using blockiegdfile
for this workload.

Based on vmstat output, for its best configuration, knotdndg 13% of its time waiting for I/O at
30,000 requests per second and 6% at 15,000 requests paedsdoareasing the number of workers
eliminates 1/0 wait but does not improve performance. Ngitmot-nb nor knot-c have 1/0 wait for their
best configurations, however, given that Knot constantlisyitis difficult to draw any conclusions based
on this observation.

3.12.2 Tuningpserver

Experiments were run to tune the four versionspsérver. symped-nb, symped-b, sharedsymped-nb
and sharedsymped-b. For all versionspsérver, the parameters tuned are the maximum number of
simultaneous connections and the number of processes.

3.12.2.1 Symped-nb and symped-b

Table[3:33(d) shows the results of tuning symped-nb aftéficagion. Each row in the table represents a
different number of processes from 5 to 150 and each coluniffeaatht maximum number of connections
from 8000 to 15,000. The experiments show the best perfarentor symped-nb is around 25 processes
and 8000 maximum number of connections (1.24). Based omémieral vicinity, additional symped-nb
experiments were run and are presented in Table 3]34(a) thisotable, the number of processes are
varied from 10 to 150 and the maximum number of connectiam® ff000 to 9000. Tab[e 3:34]a) shows
that the best performance for symped-nb occurs with 25 pesseand 8000 connections (1.24), with a
peak throughput of 680 Mbps occurring at 12,500 requestsqmand and with a sustained throughput of
around 659 Mbps at 30,000 requests per second. This reptasents a decline of approximately 48% at
15,000 requests per second and 48% for the sustained thmaugVver the best results obtained for the 1.4
GB experiments.

The performance of symped-nb is lower than all the Knot gerire the previous section. Similar
to knot-nb, symped-nb experiences verification problemenithe maximum number of connections is
larger than 9000. As well, the performance of symped-nb pedth 25 processes, unlike the Knot servers
which peak with 50-100 workers.

With 25 processes and 8000 connections at 30,000 requeasteqend, symped-nb has an average
file-system cache of 555 MB. This cache size is approxima&eliyB smaller than the average cache-size

90

3.12. .75GB

Maximum Number of Connections Maximum Number of Connections
Processeg 8000 10,000 15,000 Processes| 8000 | 10,000| 15,000| 20,000
5 1.08 O O 5 O O O O
10 1.19 O O 10 || 0.84 0.80 O O
25 1.24 O O 25| 1.23 1.26 1.18 1.08
50 1.19 O O 50 || 1.29 1.33 1.27 1.20
100 O O O 100 1.25 1.26 1.21 1.14
150 O O O 150 || 1.20 1.19 1.11 O
(a) non-blockingsendfile (b) blockingsendfile
Table 3.33:userver SYMPED initial experiments - .75 GB
Maximum Number of Connections
Processes 7000 8000 9000 Maximum Number of Connections
10 1.15 1.18 1.17 Processes| 9000 10,000 12,000
15 1.18 1.22 1.22 35 1.31 1.32 1.31
25 1.19 1.24 1.24 50 1.32 1.34 1.31
50 1.17 1.20 O 100 1.28 1.28 1.26
100 O O O 125 1.25 1.25 1.22
125 O O O 150 1.21 1.20 1.17
150 O O O (b) blockingsendfile

(a) non-blockingsendfile

Table 3.34:userver SYMPED fine tune experiments - .75 GB

of knot-nb with 50 workers and 8000 threads. Increasing timaber of processes or connections with
symped-nb leads to verification problems, restricting tegggmance of symped-nb. The limitation on
the number of processes is a significant problem given theiatas disk 1/0 required for this workload
because additional processes allow the server to contenueing requests when a process blocks waiting
for disk 1/O. If the server cannot support a sufficient nuntigsrocesses, then CPU time is wasted while
the server is I/O blocked; the symped-nb server spends 40&tohe waiting for I/O.

The problem with symped-nb is that its memory footprint gsavon-trivially as processes are added
since the processes are independent, unlike the Knot seriFer example, moving to 50 processes and
8000 connections at 30,000 requests per second resultsaveaage file-system cache of size 519 MB,
a reduction of approximately 36 MB. As the file-system cadbe decreases, the number of requests re-

91

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

quiring disk 1/O increases, eventually resulting in lafgetimeouts and verification problems. Therefore,
despite unused CPU time available in the system, sympedunibot support a large enough number of
processes to improve performance.

Tableg3:33(0) shows the results of tuning symped-b aftefieation. Each row in the table represents a
different number of processes from 5 to 150 and each coluniffeaetht maximum number of connections
from 8000 to 20,000. The experiments show the best perfaenfor symped-b is around 50 processes
and 10,000 maximum number of connections (1.33). Basedisgémeral vicinity, additional symped-b
experiments were run and are presented in Table 3]34(bjhiBdable, the number of processes are varied
from 35 to 150 and the maximum number of connections from 360®,000. Tablg 3:34(p) shows that
the best performance for symped-nb occurs with 50 processk40,000 connections (1.34), with a peak
throughput of 743 Mbps occurring at 12,500 requests pernskemd with a sustained throughput of
around 700 Mbps at 30,000 requests per second. This reptasents a decline of approximately 42% at
15,000 requests per second and 42% for the sustained thmatugVer the best results obtained for the 1.4
GB experiments.

Table[3:3B shows that symped-b verifies over a larger range@meters than symped-nb. Not
only does the best performing symped-b experiment have mmmaections and more processes than
symped-nb but it also has better performance. Symped-b%dse®er performance than symped-nb at
peak and 6% better performance at 30,000 requests per sedomaver, the performance of symped-b
is lower than the Knot servers in the previous section.

The problem with symped-b is its large memory footprint. Wisymped-nb and symped-b have com-
parable memory footprints for equivalent configurationapaeters, for its best configuration symped-b
has an average file-system cache-size of 502 MB at 30,00@stxjper second, 53 MB smaller than
symped-nb. While a smaller file-system cache likely inageabe amount of time a process must wait
for disk 1/0, a larger number of processes and connectidog/glthe server to service more requests.
Overall, the I/0 wait is still high at 35% but less than the Wa@it for symped-nb despite having a smaller
file-system cache. The net effect is that symped-b has h@tésrmance than symped-nb despite having
a larger memory-footprint due to more connections and [EsER

In general, the problem with the SYMPEBerver is a large memory-footprint; moving to shared-
SYMPED reduces the memory footprint of the server and shimfifove performance. Withserver,
the size of the cache table is based on the number of files statiee-table size is fixed for the various
workloads tested but other statically allocated data &iras in the server are based on the number of
connections. Given the small maximum connections valueshfgsse experiments, moving to a shared
cache-table should have a noticeable effect on performance

92

3.12. .75GB

3.12.2.2 Sharedsymped-nb and sharedsymped-b

Table[3:35(a) shows the results of tuning sharedsympedteberification. Each row in the table rep-
resents a different number of processes from 5 to 150 andagdigimn a different maximum number of
connections from 8000 to 15,000. The experiments show thedmrformance for sharedsymped-nb is
around 50 processes and 10,000 maximum number of conne¢fiotb). Based on this general vicinity,
additional sharedsymped-nb experiments were run and esemied in Tablg 3:36]a). For this table, the
number of processes are varied from 15 to 150 and the maximumber of connections from 8000 to
12,000. Tablg¢3:36(p) shows that the best performance émedsymped-nb occurs with 50 processes and
10,000 connections (1.46), with a peak throughput of 812 $/grurring at 8000 requests per second
and with a sustained throughput of around 791 Mbps at 30 &§@ests per second. This result represents
a decline of approximately 42% at 15,000 requests per semotnd2% for the sustained throughput over
the best results obtained for the 1.4 GB experiments.

The performance of sharedsymped-nb is 19% higher at pealsymaped-nb and 20% higher at 30,000
requests per second, due to a smaller memory footprint §yraped-nb as a result of the shared cache-
table; for its best configuration at 30,000 requests perrgkdts average file-system cache-size is 604
MB, approximately 49 MB larger than symped-nb. Considethmeg the system is running with 768 MB
of memory, 604 MB is a large amount of space for the file-systanohe. The incremental cost of adding
additional processes is smaller with shared-SYMPED thah &¥MPED. For example, moving from
25 process to 50 process with 8000 connections at 30,00@stxper second decreases the average file-
system cache size by 12 MB, approximately one third of theston experienced by symped-nb. Since
sharedsymped-nb runs with a larger file-system cache, itsopport more processes and connections
without verification problems, resulting in higher thropgih The larger number of processes and con-
nections for its best configuration allows sharedsympetbnitilize the extra CPU time available when
a process blocks for disk I/O in order to improve performar®igaredsymped-nb spends 31% of its time
blocked waiting for disk 1/0, which is lower than both the SPHED servers.

Sharedsymped-nb also has a performance advantage ovenlknatth 6% better performance at
peak and 8% better performance at 30,000 requests per seEontheir best configurations at 30,000
requests per second, sharedsymped-nb has a larger fibersyathe by approximately 9 MB. This differ-
ence is not large enough to account for the performance ritigetween the two servers. However, at
its best configuration knot-nb is only running with 8,000emis (connections) as it has verification prob-
lems for larger connections values, while sharedsympeid-nbnning with 10,000 connections. There-
fore, sharedsymped-nb supports more connections with Hesmeemory footprint, resulting in higher
throughput than expected just based on the difference hsydeem cache-size. Adding a small number
of additional worker tasks has little effect on knot-nb’smuy footprint but adding a large number of

93

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections Maximum Number of Connections
Processes| 8000 10,000 15,000 Processeg 8000 10,000 15,000
5 1.13 O O 5 O O O
10 1.27 1.28 O 10 O O O
25 1.37 1.44 O 25 1.29 1.39 1.31
50 1.40 1.45 O 50 1.41 1.57 1.56
100 1.40 O O 100 1.45 1.61 1.59
150 1.40 O O 150 1.46 1.59 1.50
(a) non-blockingsendfile (b) blockingsendfile
Table 3.35:userver shared-SYMPED initial experiments - .75 GB
Maximum Number of Connections Maximum Number of Connections
Processes| 8000 | 9000 | 10,000| 12,000| | Processes 9000 10,000 12,000
15| 1.32 1.36 1.36 O 35 1.46 1.51 1.53
25| 1.36 1.41 1.44 O 50 1.52 1.59 1.61
50 || 1.40 1.45 1.46 O 100 1.56 1.63 1.64
100 | 1.40 1.44 O O 125 1.57 1.62 1.63
150 || 1.40 1.42 O O 150 1.56 1.61 1.62

(a) non-blockingsendfile (b) blockingsendfile

Table 3.36:userver shared-SYMPED fine tune experiments - .75 GB

additional threads (connections) has a larger effect. Blthrocesses and 8000 connections at 30,000 re-
guests per second, sharedsymped-nb has a file-system cacb&&20 MB, approximately 25 MB larger
than knot-nb with equivalent parameters, explaining stammped-nb’s slightly better performance even
at 8,000 connections.

Table[3:35(H) shows the results of tuning sharedsympedeb eérification. Each row in the table
represents a different number of processes from 5 to 150 astd@lumn a different maximum number
of connections from 8000 to 15,000. The experiments shovibdisé performance for sharedsymped-b is
around 100 processes and 10,000 maximum number of conme¢lic1). Based on this general vicinity,
additional sharedsymped-b experiments were run and asenqtesl in Tablg 3:36(b). For this table, the
number of processes are varied from 35 to 150 and the maxinwmiber of connections from 9000 to
12,000. Tablg3:36(b) shows that the best performance &edeymped-b occurs with 100 processes and
12,000 connections (1.64), with a peak throughput of 909 dtiqzurring at 15,000 requests per second

94

3.12. .75GB

and with a sustained throughput of around 879 Mbps at 30 &§@ests per second. This result represents
a decline of approximately 30% at 15,000 requests per semotd@0% for the sustained throughput over
the best results obtained for the 1.4 GB experiments.

The performance of sharedsymped-b is 12% higher at peakstremedsymped-nb and 11% higher at
30,000 requests per second. While sharedsymped-nb anedshiarped-b have similar memory foot-
prints for equivalent configuration parameters, for itstbamnfiguration at 30,000 requests per sec-
ond, sharedsymped-b has a file-system cache-size of 561 bBoxmately 43 MB smaller than
sharedsymped-nb for its best configuration. Similar to #mand symped-b, despite having a smaller
memory footprint sharedsymped-b performs better thareslsgmped-nb.

Sharedsymped-b also has 2% better performance than kropéak and 4% better performance
at 30,000 requests per second. For their best configuratip®9,000 requests per second, knot-b's
file-system cache is 14 MB larger than sharedsymped-b byteittormance is lower. Similar to the
non-blocking version, sharedsymped-b supports more abions than knot-b, for their best performing
configurations. Staying with 50 workers but increasing t@0@@ threads, knot-b’s file-system cache is
552 MB at 30,000 requests per second, 9 MB smaller than shargrbd-b with equivalent parameters.
Similarly, sharedsymped-b has 22% better performance smped-b at peak and 26% better perfor-
mance at 30,000 requests per second. In this case, for #sircbnfigurations at 30,000 requests per
second, sharedsymped-b has a file-system cache that is 5@ While supporting 2000 additional
connections, resulting in better overall performance.ufwbthe vicinity where best performance occurs,
sharedsymped-b has a smaller memory footprint than anaguoily configured knot-b or symped-b, re-
sulting in better performance. As well, a smaller memonytfoiot allows sharedsymped-b to support a
larger number of connections, resulting in further perfance improvements.

For its best configuration at 30,000 requests per secondedsyanped-b spends 20% of its time
blocked waiting for disk I/O. While this value is lower thametl/O wait for the other servers discussed
so far for this workload, it is still not zero. Sharedsymgedees not suffer from verification problems,
s0 it is possible to examine the effect of increasing the remalh connections. Increasing the number
of connections to 15,000 results in performance decredsi8§3 Mbps and I/O wait increasing to 25%
because the average file-system cache shrinks by 27 MB. Bgaigog the size of the file-system cache,
the number of requests requiring disk I/O increases to & pdiere increasing the number of connections
no longer yields performance benefits but hurts performarethis point, increasing the number of
processes to compensate for the additional connectiogsegaterbates the problem by further shrinking
the file-system cache.

95

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

3.12.3 Tuning WatPipe

Table[3:37(3) shows the results of tuning watpipe-nb aeifigation. Each row in the table represents a
different number of writers from 5 to 150 and each column > maximum number of connections
from 8000 to 15,000. The experiments show the best perfarenfor watpipe-nb is around 100 writers
and 10,000 maximum number of connections (1.52). Basedi®géneral vicinity, additional watpipe-nb
experiments were run and are presented in Table 3]38(athiBdable, the number of writers are varied
from 15 to 200 and the maximum number of connections from 960®,000. Tablg3:38(a) shows that
the best performance for watpipe-nb occurs with 100 wridei 10,000 connections (1.52), with a peak
throughput of 880 Mbps occurring at 8000 requests per seandavith a sustained throughput of around
823 Mbps at 30,000 requests per second. This result repiseseecline of approximately 40% at 15,000
requests per second and 40% for the sustained throughputhevbest results obtained for the 1.4 GB
experiments.

The performance of watpipe-nb is 9% higher at peak than degneped-nb and 4% higher at 30,000
requests per second. However, for its best configuratio,808 requests per second watpipe-nb has an
average file-system cache size of 590 MB, which is 14 MB sm#ilen sharedsymped-nb. Watpipe-nb
verifies over a larger range of configuration parameters #emedsymped-nb, with more stable per-
formance across these parameters. The reason for watpipstability is that its tasks share an address
space so the incremental cost of additional writers is srivatlally, watpipe-nb has a larger memory foot-
print than sharedsymped-nb but the memory footprint ofedteymped-nb increases faster as processes
are added compared to watpipe-nb as writer tasks are addgu sBaredsymped-nb and watpipe-nb have
approximately the same performance with 50 workers and0DOg@nnections. Sharedsymped-nb has a
file-system cache that is 13 MB larger at 30,000 requests gmmsl. With watpipe-nb, moving from
50 writers to 100 writers and 10,000 connections at 30,0§0asts per second results in the file-system
cache shrinking by approximately 1 MB. With sharedsympkegdmoving from 50 processes to 100 pro-
cesses and 10,000 connections at 30,000 requests per sesotid in the file-system cache shrinking
by approximately 22 MB. Hence, watpipe-nb has a larger filgesn cache with 100 writer tasks versus
sharedsymped-nb with 100 processes, both at 10,000 maxooaomections. Since watpipe-nb supports
more writer tasks with less memory overhead, it is able thzaea performance advantage by moving to
100 writer tasks.

Watpipe-nb spends 26% of its time waiting for disk 1/0 withOl@riters and 10,000 connections at
30,000 requests per second, lower than the other non-bipddrvers examined. 1/0O wait represents an
opportunity to improve performance by taking advantagerafsed CPU time. While watpipe-nb does
not have verification problems over the range of tuning \@tested, it is unable to improve performance
and eliminate I/O wait. The reason is that its memory footpgrows slowly as writer tasks are added

96

3.12. .75GB

Maximum Number of Connections Maximum Number of Connections
Writers 8000 10,000 15,000 Writers 8000 10,000 15,000
5 1.03 0.99 0.93 5 O O O
10 1.21 1.19 1.10 10 0.87 0.79 0.69
25 1.35 1.37 1.29 25 1.37 1.42 1.26
50 1.40 1.48 1.38 50 1.43 1.66 1.56
100 1.41 1.52 1.44 100 1.43 1.71 1.68
150 1.42 1.52 1.44 150 1.43 1.72 1.68
(a) non-blockingsendfile (b) blockingsendfile
Table 3.37: WatPipe initial experiments - .75 GB
Maximum Number of Connections Maximum Number of Connections
Writers 9000 10,000 12,000 Writers 9000 10,000 12,000
15 1.30 1.28 1.25 35 1.56 1.58 1.54
25 1.40 1.39 1.34 50 1.60 1.66 1.65
50 1.46 1.46 1.43 100 1.61 1.72 1.77
100 1.51 1.52 1.49 125 1.60 1.72 1.74
150 1.51 1.52 1.50 150 1.60 1.72 1.75
200 1.51 1.52 1.48 200 1.60 1.71 1.74

(a) non-blockingsendfile (b) blockingsendfile

Table 3.38: WatPipe fine tune experiments - .75 GB

and grows at about the same rate as sharedsymped-nb astammnace added. At 10,000 connections,
adding additional processes beyond 100 does not improyerpemce though 1/0O wait does decline.
Moving to 12,000 connections reduces the file-system caideeby 14 MB, increases /O wait to 30%
and reduces performance. Increasing the number of writekSQ reduces 1/0 wait to 25% and improves
performance slightly but not back to the level of its bestfgmenance. Further increasing the number
of writers decreases I/O wait, but does not improve perfoceaeven though the file-system cache-size
decreases only slightly. The disk is clearly the bottlenietibiting performance.

Table[3:37(8) shows the results of tuning watpipe-b aftefigation. Each row in the table represents
a different number of writers from 5 to 150 and each columrffamint maximum number of connections
from 8000 to 15,000. The experiments show the best perfaeéor watpipe-b is around 150 writers
and 10,000 maximum number of connections (1.72). Basedisgdémeral vicinity, additional watpipe-b

97

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

experiments were run and are presented in Table 3]138(bxhisaiable, the number of writers are varied
from 35 to 200 and the maximum number of connections from 360®,000. Tablg 3:38(p) shows that
the best performance for watpipe-b occurs with 100 writeid 52,000 connections (1.77), with a peak
throughput of 1002 Mbps occurring at 15,000 requests pasrgeand with a sustained throughput of
around 968 Mbps at 30,000 requests per second. This reptasents a decline of approximately 27% at
15,000 requests per second and 27% for the sustained thmatugVer the best results obtained for the 1.4
GB experiments.

The performance of watpipe-b is 14% higher at peak than wetpb and 18% higher at 30,000
requests per second. For its best configuration at 30,0Q@séx)per second, watpipe-b has an average
file-system cache-size of 577 MB, which is 13 MB smaller thatpipe-nb. Again, the WatPipe servers
have similar memory footprints for equivalent configuratjgarameters, so the memory difference is due
to differing parameters for their best configurations. Hbthe servers examined, the blocking version
has better performance than its non-blocking counterpintthis workload.

The performance of watpipe-b is 10% higher at peak than dgneped-b and 10% higher at 30,000
requests per second. For its best configuration at 30,0Q@&sé&x per second, watpipe-b has an average
file-system cache that is 16 MB larger than sharedsympedhils.difference is not large enough to explain
the performance disparity between the servers since bdhipeab and sharedsymped-b have their best
performance with the same configuration parameters. THerpance difference between the servers
arises because of factors other than memory footprint. &\thi previous discussion has shown a strong
correlation between throughput and memory footprint fowees with equivalentendfile behaviour, a
memory difference of less than 3% cannot account for a 108érdiice in performance.

A couple of other factors also contribute to watpipe-b hgwiatter performance than sharedsymped-b.
Watpipe-b spends 16% of its time waiting for disk 1/0, whishithe smallest amount of time among all the
servers tested, versus 20% for sharedsymped-b. One ageaht watpipe has over shared-SYMPED is
that its tasks perform different actions. With sharedsyaripgit is possible for all the processes associated
with the server to become blocked waiting for disk I/O. Irstbase, extra CPU time that could be devoted
to accepting new connections, reading new requests ongaliwasted. With watpipe-b, when all the
writer tasks block waiting for disk I/O, the remaining taskstinue to process other stages of the pipeline.
As the number of connections are fixed, at some point the réngatasks must wait for disk 1/0 to
complete before they can proceed, resulting in a low butzesn-1/O wait. Similar to the other servers, at
some point the trade off between the increase in memory fimbtipom additional connections outweighs
the performance gains and the performance of the servéndecHowever, watpipe-b is able to push that
point further than the other servers due to its architectérg well, WatPipe has lower costs associated
with event polling than shared-SYMPED because WatPipe dasalized polling whereas each shared-
SYMPED process performs its own event polling (see OProéita th Sectiol-3.13).

98

3.13. SERVER COMPARISON

3.13 Server Comparison

Figure [338 presents the best performing configuration focheaerver-architecture implementa-
tion: caching Knot (knot-c), non-blocking Knot (knot-nbplocking Knot (knot-b), userver non-
blocking SYMPED (symped-nb)yserver blocking SYMPED (symped-h)server non-blocking shared-
SYMPED (sharedsymped-nh)server blocking shared-SYMPED (sharedsymped-b), nookbig Wat-
Pipe (watpipe-nb) and blocking WatPipe (watpipe-b). Thyeie in Figurd=318 is ordered from the best
performing server at the top to the worst at the bottom. Peakes performance varies by about 47%
(680-1002 Mbps).

Table[3:3D ranks the performance of the servers for the .75v@Rload. Again, based on a total of
three runs for each server, Tukey’'s Honest Significant Bifiee test is used to differentiate the servers
with a 95% confidence level. The servers are then ranked lmsetkan area.

The top performer is watpipe-b, with performance 10% bditizn the next best server, sharedsymped-
b. Third are knot-b and watpipe-nb, which is the highestqrenfng non-blockingsendfile server. The
next grouping consists of knot-c and sharedsymped-nb vgilicximately the same performance. Fi-
nally, come knot-nb and the SYMPED servers with knot-nb ayrdped-b having better performance
than symped-nb.

Comparing the performance of the best version of WatPipelambest version gfiserver, watpipe-b
has a 10% higher peak than sharedsymped-b at 15,000 regaestscond and 10% higher performance
after saturation at 30,000 requests per second. Compaergerformance of the best version of WatPipe
and the best version of Knot, watpipe-b has a 13% higher geakknot-b at 15,000 requests per second
and 15% higher performance at 30,000 requests per seconthigaorkload, knot-c does not have the
worst performance; it places in the middle of the serveretesHowever, compared to knot-c, knot-b
has a 12% higher peak at 15,000 requests per second and 8ét pagformance at 30,000 requests per
second. The best blocking server, watpipe-b compared tbabkenon-blocking server, watpipe-nb, has
a 14% higher peak at 15,000 requests per second and 18% fpigiHermance at 30,000 requests per
second. Between the best blockipserver and the worst non-blockingerver versions is a larger gap;
sharedsymped-b has a 34% higher peak at 15,000 requestsgoeidsand 33% higher performance at
30,000 requests per second compared to symped-nb. Syrbpiedtme worst performing server, with
symped-b having a 9% higher peak at 15,000 requests perdsaooin6% higher performance at 30,000
requests per second.

To better understand the performance of the servers, thedeafiguration of each server is profiled.
The OProfile and vmstat data for these experiments are sumedan Table§3.40 arfd 3}41. Additional
vmstat data is presented for this workload; the row labéelbatks in” gives the average number of blocks
read in per second. Note, a non-zero I/O wait value indidai@the profiling data must be scaled because

99

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

1600

1400

1200

1000

Mbps
o0
S
S

600

400

200

sharedsymped-b-12K-100p
knot-b-10K-50w -
watpipe-nb-10K-100w
knot-c-8K-150w-50MB
sharedsymped-nb-10K-50p
knot-nb-8K-50w -
symped-b-10K-50p -
sylmped—nb—9Kl—25p -I--I-- :

5000 10000 15000 20000 25000 30000

Requests/s
Figure 3.8: Throughput of different architectures - .75 GB

Server Rank
watpipe-b 1
sharedsymped-b 2
knot-b 3
watpipe-nb 3
knot-c 4
sharedsymped-nb 4
knot-nb 5
symped-b 5
symped-nb 6

Table 3.39: Ranking of server performance - .75 GB

100

3.13. SERVER COMPARISON

the profiling data gathered only accounts for time when th&) @GRexecuting, so it does not include I/O
wait. For example, if the 1/0 wait is 30%, then the profilingalatill adds up to 100% but only covers the
70% of the time that the CPU is in use.

The SYMPED and shared-SYMPED servers have lower user-spesmition totals than the other
servers by 50% or more. The relative user-space totalsstEnver have stayed consistent over the various
workloads but the totals for Knot and WatPipe are highestHi workload. With Knot, both the main
thread and the worker tasks poll for additional work. Sirmre is extra CPU time as a result of waiting
for disk 1/0, Knot spends this time polling, leading to inased application totals compared to the other
servers. With WatPipe, the various threads in the systemarbusy enough to keep running so there is
a lot of blocking and signaling of threads, resulting in lgthread overheads. Aserver is event-driven
it does not suffer from these overheads.

However, the downside of the SYMPED and shared-SYMPED seisdiigh kernel event-poll over-
heads. Since all thgserver processes are symmetric, each process indepgndeaitglthe event mech-
anism. For example, sharedsymped-b makes 2945 calls perdsémepoll_wait, while watpipe-nb with
asymmetric tasks has less overhead as it only makes 174%ealkecond.

The SYMPED and shared-SYMPED servers appear to have higioriéhg and e1000 values but
not correspondingly high throughput. However, scaling ieéworking and e1000 values based on the
appropriate 1/0 wait shows that these values are consigtitinthe other servers.

Similar to the other workloads tested, knot-c has large-dapy overhead. As well, additional over-
heads related to user-level threading still exist for al Knot servers. For this workload, however, these
overheads do not have a large effect on performance. Betlaiseorkload is disk bound, there is extra
CPU time available in the system to absorb these overhezdis;ing their effect on performance. Knot-nb
and knot-b spend any leftover CPU time polling, resulting imgh level of kernel context-switching that
results in large scheduling overheads and higher useedptals. For knot-c, the data-copying overhead
required to maintain an application cache consumes thisa €®U time. Note the low kernel context-
switching and scheduling overhead values for knot-c. Hekmmet-c's performance penalty for not using
sendfile is offset and it also gains some efficiency with respect th dixess by performing large contigu-
ous disk reads into the application cache. The result igtiegterformance of the Knot servers are similar
to the other servers despite additional overheads.

The discussion in the previous sections showed a correlatitween the file-system cache-size and
the throughput of a server. For equivalent configuratidmes,sterver with a smaller memory footprint has
higher throughput. Furthermore, a smaller memory footpiten allows the server to achieve its best
performance with a larger number of processes and/or ctionsg resulting in additional performance
improvements. Since the servers are disk bound, the exjpeciathat the average throughput of the disk

101

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

is approximately the same for all the servers and the sizeedfile-system cache only effects the number
of requests that must block waiting for disk 1/0. Howeverading to the vmstat data in Tables—3.40
and341L, the blocks-in per second values show a large igariatross the servers.

For analysis, divide the servers in two separate groups:bimeking sendfile servers and blocking
sendfile servers. The difference in blocks-in among the serversappge be related to two factors, the
number of kernel threads (workers, processes or writersrdépg on the server) and the size of the file-
system cache. If the number of kernel threads is kept the gameservers with larger file-system caches
have higher blocks-in per second and higher throughputeSime system is under memory pressure, the
most frequently requested files are likely already in thedilstem cache, while the remaining files need to
be read in from disk when requested. Due to the Zipf distidlouof requests, smaller files are requested
more frequently than larger files. Therefore, as the sizdeffile-system cache increases, the average
size of a file serviced from disk also increases. Requesarggt files from disk means that on average
more contiguous data is read on each disk read, so disk afficiacreases and the amount of data that
can be read from disk also increases. The servers with 10@k#reads have file-system cache-sizes
that are less than 20 MB smaller than the best performingesemwith 50 kernel threads. For these small
differences, having more kernel threads is an advantageeas tdditional threads are able to keep the
disk more consistently busy, resulting in higher blocksHiowever, since the file-system cache continues
to shrink as kernel threads are added, the average file-sieguests requiring disk 1/0 becomes smaller
and disk efficiency eventually drops resulting in lower perfance.

When all the servers are analysed together, a performarmready emerges when comparing block-
ing versus non-blockingendfile servers. As mentioned in the sections discussing the peaiuce of
individual servers for this workload, the blocking versioha server has better performance than the
equivalent non-blocking version. This behaviour is unlibegause in all cases, for their best configura-
tions, the blocking server has a smaller file-system cacie itk non-blocking counterpart. For some of
the servers, part of the performance difference can béuatidd to the non-blocking servers encountering
verification problems at the configuration parameters wtrerdlocking version of the server performed
best. However, the blocking servers even outperformeddhebfocking servers at the best configuration
parameters for the non-blocking server. Furthermore, waipb does not suffer from verification prob-
lems but watpipe-b still has better performance. Since thg difference between the WatPipe servers
is blocking versus non-blockingendfile, for equivalent configuration parameters their file-systawhe
sizes are approximately the same and cannot account fopehfisrmance difference. One unexpected
difference that is consistent among the servers is thatltdekibg version of the server has higher blocks-
in per second than the non-blocking version of the servaercesSihe speed of the disk remains consistent
and the disk is a bottleneck for this workload, the expeatais that all the servers are maximizing disk
I/0 and the average throughput of the disk is consistent grttmanservers assuming that other factors are

102

3.13. SERVER COMPARISON

equivalent. But the blocks-in per second values for theessrsuggest that the blocking servers are able
to get more data from disk than the non-blocking servers.

Read access to each file for all the servers is sequential. ettaywwith non-blockingsendfile the
access pattern for reading large files may be misinterprieyethe kernel. Withsendfile, the data is
transmitted in pieces, with the size of each piece detemninethe socket-buffer size. Similarly, the
operating system reads a file into the file-system cache fisknid pieces, with the size of each piece
determined by the I/O scheduling algorithm. For large fitbg, socket-buffer size is smaller than the
amount of file-data read in by a single disk request, so thebeurof disk accesses required is fewer
than the number of network transmissions required for aastof a large file that is not already in the
file-system cache. With non-blockirgndfile, the file-access pattern appears random because subsequent
sendfile calls do not appear to continue from the end of the last d@kAt this point, the kernel disables
page-caching read-ahead for the file and the size of the dipkests become smaller on average. With
blocking sendfile, only a singlesendfile call is required, and since the kernel performs the appeatsori
tracking, it recognizes that file access is sequential,ltieguin two benefits. First, the average disk-
request size is larger, resulting in better disk efficien8econd, since the blocking server has page-
caching read-ahead enabled, the kernel requests the rtiinsef the file be read in from disk while it
is still processing the current section of the file. Hence,tthtal amount of time to send an entire file is
reduced as the transmission of the file is overlapped witlhetding of the file from disk, leading to fewer
large-file timeouts. The misclassifying of the non-blockiendfile access-pattern is likely a deficiency
of the Linux kernel used for these experiments and may nolyappewer kernels or other operating
systems.

Once the servers become disk bound, there is extra CPU tajrathe system so execution effi-
ciency becomes less important than disk-access efficielgnwomparing servers and server architec-
tures. Knot-c’'s performance with this workload is an exaengll the importance of disk efficiency. For
this experiment, the two factors affecting disk efficiencg hlocking versus non-blockinggndfile and
memory footprint. The use of blockingendfile made the biggest difference, with the blocking servers
outperforming the non-blocking servers despite havingllemmemory footprints. However, once the
servers are divided based eandfile, small memory footprints result in better performance. s
workload, the servers with at least some shared address-gaformed better, with the two SYMPED
servers having the worst performance and no shared adsjrass-

103

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

Server Knot-cache Knot Knot userver | userver
Arch T/Conn T/Conn | T/Conn symped | symped
Write Sockets non-block | non-block block | non-block block
Max Conns 8K 8K 10K 8K 10K
Workers/Procs/Writers 100w 50w 50w 25p 50p
Other Config 50MB
Reply rate 6470 6283 6974 5384 5881
Tput (Mbps) 770 750 832 641 700
OPROFILE DATA
vmlinux total % 65.97 59.45 60.11 62.45 63.25
networking 19.31 18.35 22.32 26.41 26.14
memory-mgmt 7.35 4.81 5.52 6.84 6.89
file system 4.25 3.41 3.79 5.38 5.55
kernel+arch 5.53 5.72 6.33 9.72 9.76
epoll overhead 1.36 1.53 1.69 4.65 4.63
data copying 19.18 0.47 0.53 0.95 0.93
sched overhead 2.04 10.91 8.03 1.02 1.57
others 6.95 14.25 11.90 7.48 7.78
1000 total % 15.69 15.61] 17.79] 2379 22.35]
user-space total % 15.72 22.56 19.62 7.34 7.07
thread overhead 7.03 10.97 9.68 0.00 0.00
event overhead 0.00 0.00 0.00 2.54 2.37
application 8.69 11.59 9.94 4.8 4.7
| libc total % | 0.02 | 002] 002| 360 4.36|
| other total % | 2.60 | 236| 246| 282 297|
VMSTAT DATA
waiting % 0 1 6 39 31
file-system cache (MB 528 593 570 542 478
blocks-in/sec 17,101 14,514| 16,489 13,670| 16,066
ctx-sw/sec (kernel) 9984 319,285| 194,558 4575 7264
SERVER STATS
ctx-sw/sec (user) | 16,012| 14,506| 13,794

Table 3.40: Server performance statistics gathered unidadaof 15,000 requests per second - .75 GB

104

3.13. SERVER COMPARISON

Server userver userver | WatPipe | WatPipe
Arch s-symped| s-symped| pipeline | pipeline
Write Sockets non-block block | non-block block
Max Conns 10K 12K 10K 12K
Workers/Procs/Writers 50p 100p 100w 100w
Other Config
Reply rate 6502 7586 7068 8322
Tput (Mbps) 778 908 843 990
OPROFILE DATA
vmlinux total % 63.00 64.95 61.35 62.26
networking 26.02 25.26 20.79 23.01
memory-mgmt 7.04 6.74 6.02 6.21
file system 4.37 4.26 3.61 3.95
kernel+arch 10.33 11.05 12.97 11.79
epoll overhead 5.05 5.85 2.56 2.88
data copying 0.97 0.93 0.67 0.71
sched overhead 1.84 3.13 5.48 4.71
others 7.38 7.73 9.25 9.00
€1000 total % 23.45 21.25 18.84 18.41
user-space total % 7.45 7.29 15.38 14.96
thread overhead 0 0 10.35 9.78
event overhead 2.63 2.45 1.90 1.89
application 4.82 4.84 3.13 3.29
| libc total % | 3.37| 3.85| 165] 1.67]
| other total % | 2.73 | 2.66 | 278 2.70]
VMSTAT DATA
waiting % 30 13 23 10
file-system cache (MB 598 554 585 572
blocks-in/sec 15,352 18,643 16,605 19,501
ctx-sw/sec (kernel) 7933 14,967 21,278 19,977
SERVER STATS
ctx-sw/sec (user) ‘

105

Table 3.41: Server performance statistics gathered unldadeof 15,000 requests per second - .75 GB

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

3.14 Comparison Across Workloads

The previous sections concentrate on understanding thierpemce of the various servers under three
different workloads. This section examines the performanfcthe servers across the workloads. As the
workload changes, the general behaviour of the serversimikus as memory pressure increases, the
throughput of the servers decreases. However, the relpgifermance of the servers is not consistent
over the three workloads.

Figure[3.9 graphs the throughput of servers versus thersystemory size across the three workloads
at 15,000 requests per second. The knot-c experimentssatmsvorkloads show that usirsgndfile is
crucial for high performance. Usingrite results in high data-copying overheads and cache duglitati
resulting in lower throughput. The performance of knot-s a#ready been discussed in the previous
sections, so knot-c is ignored in the following discussixtept where referred to explicitly.

The servers achieve their best performance with the 4 GBlaadkwhen there is no memory pressure
in the system. At this point, differences in architecturgida from memory footprint, have the largest
effect on the performance of a server. For the in-memory lark servers requiring few kernel threads
tend to have low overheads and high throughput. Since theblumking servers require only a few
kernel threads, as no overlapping of CPU and disk I/O canrcsioge all data reads (disk 1/0) occur
without blocking, the non-blocking servers perform bettem the blocking servers. The blocking servers
have higher overheads as they require a large number oflkbreads to handle blocking network 1/O.
The additional overheads associated with user-level dimgaresult in lower performance for the Knot
servers. However, unlike with other comparisons of servehitectures for in-memory workloads, the
differences in performance among the various architestare small and the performance of all the servers
is reasonable.

When the entire file set no longer fits into the file-system easlome requests require disk 1/0 to
complete. If the system is able to overlap computation wittk ¢/O, eliminating the time a server is
entirely blocked waiting for 1/0, the drop in performancesisall. Once the amount the memory pressure
in the system is large, disk 1/0O becomes the bottleneck amdhifoughput of the servers drops sharply
as the servers begin blocking waiting for disk 1/0 to comgplefA reasonable expectation is that server
performance should tend to converge as the memory pregstine system increases and the speed of
disk I/0 becomes the major bottleneck. However, serveutiiput does not converge.

The most important factors governing performance are thmong footprint and the disk efficiency
of the server. For servers with similar disk efficiency, oticere is memory pressure in the system,
the memory footprint of the server dictates performancermaller memory footprint results in higher
throughput. As discussed in section_3.13, the blockiewgifile servers have better disk efficiency than
the non-blockingsendfile servers, though that is at least partly due to the kernelabadd problem. The

106

3.14. COMPARISON ACROSS WORKLOADS

1600 T T T T T T T T T T T T T T T T
1400 r
1200 [
1000 [
£ 800 |
= : sharedsymped-nb —+—
_ watpipe-nb ---->¢---
600 Symped_nb B
watpipe-b @
400 - sharedsymped-b ===
i knot-nb -7~
2 | knot-b Q
OO Symped-b@
knot-c
0 s s s | s s s | s s s | s s s | s s s
0 1 2 3 4 5
System Memory Size (GB)

Figure 3.9: Comparison of server throughput at 15,000 r&lgymer second across workloads

effect of these two factors can be observed in both the 1.41&B & GB workloads. Other factors such
as maximum connections and number of kernel threads arégewstant to achieve high throughput, but
to a large extent these factors are constrained by the meimatyrint of the server.

The throughput of all the servers decreases when moving themd GB workload to the 1.4 GB
workload. However, the throughput of the non-blocking ees\decreases more than the blocking servers,
resulting in a tighter grouping of server performance. Tdrgdr drop in throughput is partially because
of the overhead of the non-blocking servers going from orfewrkernel threads to many kernel threads,
incurring more overheads; e.g., whpeerver goes from SPED to SYMPED with multiple processes.
However, the blocking servers also have the advantage @frtabsk efficiency, resulting in smaller drops
in throughput. As a result, the performance of the blockiagyers is close to the performance of the
non-blocking servers despite having larger memory footprand more overheads since additional kernel
threads are required. Since the disk is not saturated an@aiOcan be eliminated, the effect of disk
efficiency is lower for this workload compared to the .75 GBrkoad. In fact, ignoring knot-c, the

107

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

spread of throughput for the servers is smallest for the Bav@rkload.

The relative performance of the blocking servers contirtaeésprove compared to the non-blocking
servers for the .75 GB workload. Since the workload is diskrigh 1/0O wait cannot be eliminated and
disk efficiency becomes more important. As the amount of tidkincreases, disk efficiency becomes
crucial for high throughput and so the blocking servers bemgrforming better than the non-blocking
servers. Again, for servers with similar disk efficiencyeaer with a larger file-system cache has higher
throughput. Therefore, the servers that share address gmaform better than the SYMPED servers.
The disk efficiency of the blocking servers and the largeedifices in memory footprint relative to the
available memory result in the largest spread in througfguhe .75 GB workload.

The tuning parameters to achieve best performance variessathe servers but they tend to be-
have consistently across the workloads. The expectatitimaisthe number of kernel threads required
to achieve best performance increases with the memoryyseess the system. For the non-blocking
sendfile servers, one kernel thread is required for the in-memonykilead, fifteen to twenty-five for
the 1.4 GB workload and twenty-five to one hundred for the .BvW®rkload. The range of kernel
threads gets larger as the level of disk I/O increases bedhesincrease in memory footprint as addi-
tional workers/processes/writers are added constraim#eeémum number of kernel threads to achieve
best performance. Therefore, servers with shared addpsg® are able to support a larger number of
kernel threads. For the blockirgndfile servers, seventy-five to one hundred kernel threads ar@edqu
for the in-memory workload, seventy-five for the 1.4 GB wowdd and fifty to one hundred for the .75
GB workload. When the server is not disk bound, the numbeeoidd threads required is dictated by the
throughput of the servers. Since the servers have highendghput with the in-memory workload, more
requests tend to block arendfile, so more kernel threads are required. Once the serversskréalind,
the memory footprint of the server constrains the numbeeafidl threads.

For the second tuning parameter, number of connectionstethionship is more straightforward.
The throughput of the server dictates the maximum numbepfections it can support without veri-
fication problems. As the amount of disk I/O increases, theutphput of the servers decrease and best
performance occurs with fewer maximum connections. Asudised previously, the blocking servers can
support a larger number of connections without verificafiosblems and achieve their best performance
with a larger number of connections.

3.15 Summary

This chapter examines the performance of several servhitestures on a uniprocessor machine for a
spectrum of workloads, from in-memory to disk bound. Théaectures include thread-per-connection,

108

3.15. SUMMARY

SYMPED, shared-SYMPED and pipeline. For the first threeitgctures, an existing high performance
server implementation is chosen, Knot running on top of thericio thread library for the thread-per-
connection server angserver for SYMPED and shared-SYMPED. For the last architectWatPipe, a
new pipeline server is implemented. Previous research l@srsboth Knot anduserver to be among
the best for their respective architectures and WatPipecbagparable performance. Significant effort
has been undertaken to make the servers consistent, ajldéaria fair comparison. As well, the servers
employ newer operating system features, sendfile and edge-triggeredpoll, to reduce overhead and
improve throughput. The servers have been extensivelydttmé&nd the best performing configuration
and both a non-blockingendfile and blockingsendfile version of each server is examined. In addition, a
version of Knot using an application file-cache wiittite is also tested. This version of Knot is similar to
the original version, except it usepoll for its event mechanism and has some modifications to make it
consistent with the other servers, e.g., updated hashithg. co

The experiments show that tuning the server parameterdtisatito achieving high throughput. In
some cases there is a narrow window of best tuning, espetialthe non-blocking servers, and missing
that window can result in large performance penalties. tiigithe maximum number of connections for
non-blocking servers is important to maintain high thrqughafter saturation. One important problem
with the non-blocking servers is large-file timeouts. As ltecking servers focus on replying to current
requests before reading new requests, they tend to be imimiarge-file timeouts. This behaviour is also
self-limiting, so the blocking servers are less sensitiva larger maximum number of connections. With
respect to the number of kernel threads, performance ofeiivers with shared memory and asymmetric
tasks is stable as the number of kernel threads increasen vidven there is no memory pressure in the
system, the servers with symmetric processes show lesgtstability as the number of kernel threads
increase due to additional overheads.

The servers are verified to ensure that all file sizes are lggggiviced. Typically, once the tuning
parameters exceed a certain value, either performancks leffe performance decreases or verification
failures occur. However, examining the throughput of ekpents failing verification shows the perfor-
mance of the server levels off or decreases in this case &sMad observation is reasonable because if
a server is attempting to equally service all file sizes fieation problems indicate timeouts for requests
in progress, resulting in wasted processing time.

One big difference between the servers is how additionaldtéhreads are introduced into the server.
pserver uses symmetric processes, while the other serverasysnmetric kernel threads, Knot has a
main thread and worker tasks and WatPipe has threads dedlitaservicing the various stages. The
advantage of symmetric processes (or kernel threads) isth&duling is easier. The fair scheduling
of the default operating system scheduler does a reasojubfer symmetric processes. On the other
hand, scheduling asymmetric threads can be difficult. fFagheduling all threads may be inappropriate,

109

CHAPTER 3. UNIPROCESSOR WEB-SERVER ARCHITECTURES

forcing the application to self schedule its threads. InRi@, for example, it is unreasonable to allow
an event polling thread to repeatedly call the event meshaniithout allowing the other threads in
the application to process the available events betweéds c@his coordination introduces additional
overheads, can be tricky and may not be portable. Howevemrastric threads also offer advantages
over symmetric threads. One advantage of asymmetric thisadldey allow adding threads where needed,
without affecting overheads for other parts of the applicatFor example, adding additional worker tasks
in Knot to handle disk I/O. While neither approach shows i§iggnt advantages for the servers tested,
the symmetric approach seems to work better when fewer kimeads are required and the asymmetric
approach when a larger number of kernel threads are requiedexample, the servers with asymmetric
threads have a smaller performance difference betweennieiblocking and blocking versions than the
servers with symmetric processes, for the in-memory weaiklo

The experiments show the throughput of the servers is affeloy the workload. The servers have
highest throughput with the 4 GB workload, followed by thd GB workload and finally the .75 GB
workload. Since servicing requests from memory is fastan tervicing requests from disk, the amount
of disk I/O required dictates the maximum throughput of teever. All the architectures tested are a
viable choice for a high-performance web-server. New dpegaystem facilities, such aendfile, epoll
and efficient context switching bring the performance ofsbevers together. However, as the workload
changes, the relative performance of the servers also ehamgsingle server performs the best across
all the workloads tested. For the 4 GB workloggerver non-blocking shared-SYMPE[server non-
blocking SYMPED and non-blocking WatPipe have the highesiughput at 15,000 requests per second,
approximately 9% higher than non-blocking Knot. For the @B workload, non-blocking WatPipe and
non-blocking shared-SYMPED have the highest throughpli5A100 requests per second, approximately
9% higher than both non-blocking SYMPED and non-blockingKifror the .75 GB workload, blocking
WatPipe has the highest throughput at 15,000 requests @amdeapproximately 10% higher than block-
ing shared-SYMPED and 13% higher than blocking Knot and 3&ldr than blocking SYMPED. The
additional overheads related to user-level threading withrge number of threads for Knot result in it
consistently performing lower than the other servers.

Once there is memory pressure in the system, the biggesrdadétermining the performance of a
server are memory footprint and disk efficiency. For the tisknd workload, the blocking servers per-
form better than the corresponding non-blocking servespitkehaving a larger memory footprint because
of better disk efficiency. Overall, blocking WatPipe has llest performance. It benefits from both better
disk efficiency from blockingsendfile and from a smaller memory footprint due to its completelyratia
address space once there is memory pressure in the systensystem is under memory pressure, the
biggest factor in determining whether an architecture &soeable appears to be memory footprint. It
may be possible to improve the memory footprint of all thesees tested, resulting in better performance.

110

3.15. SUMMARY

Based on the experiments in this chapter, no single senréorpes best across all the workloads;
the peak throughput difference among the best version df eawver is within 9-13%, depending on
the workload, indicating that all the servers perform wéilachieving maximum throughput is critical,
non-blocking WatPipe and non-blocking shared-SYMPEDrdfie best performance for in-memory and
moderate disk-1/0, and blocking WatPipe offers the bedoperance when there is heavy disk-1/0. Knot
has extra overheads related to supporting a large numbeeothreads. Non-blockingserver SYMPED
performs well for in-memory workloads buserver SYMPED does not scale efficiently as the number of
processes increase because the processes have comgptabta address-spaces.

Given the reasonable performance exhibited by all the sgrfactors other than throughput may
be more important in deciding which server architecturepigrapriate. For example, the experiments
show tuning is important to achieve the best performancahmibest tuning for a server varies based
on workload. Therefore, servers that are less sensitigithatger tuning parameters are easier to tune
and a single tuning may be reasonable for a wider range oflo@de servers with shared memory and
asymmetric tasks are easier to tune because they show tisg gensitivity across all workloads as the
number of kernel threads are increased. As well, the blgckervers have fewer verification problems
as the maximum number of connections increase. Based omdldégional criteria, blocking WatPipe is
a good server choice. Blocking WatPipe performs well actbesvorkloads, i.e., it has peak throughput
within 4% of the best server for the in-memory workload, 2% tfee moderate disk I/O workload and
10% higher peak throughput for the disk-bound workload tli&rmore, it is easier to tune than the other
servers; its performance is stable as the number of wrg&sts increased and it does not have verification
problems as the number of connections is increased.

111

Chapter 4

Multiprocessor Web-Server Architectures

This chapter examines various server architectures rumauligorocessor with different workloads. The
servers from Chaptél 3, aside from Knot, are extended fotipnocessor execution and both the N-copy
version of the uniprocessor server and the extended veosithre server are tested. Two workloads are
explored: the first is in-memory and the second is disk bouithilar to the uniprocessor experiments,
the varying workloads are achieved by reconfiguring theesesith different amounts of memory, while
keeping other factors the same.

For the multiprocessor experiments, partitioning the stand processes/kernel-threads is important
to achieve high performance (see Secfioh 4.4). While astgehis partitioning is straightforward for the
N-copy servers, the server architectures are extendedots #lis partitioning as well. The goal of this
chapter is to compare the performance of the server artinigscon a multiprocessor and to show that
performance comparable to N-copy can be achieved with ttemé®d servers. Again, each server is indi-
vidually tuned for best performance on each workload andést configuration of each server is profiled
to examine any differences and similarities among the grchires, and for different implementations
within an architecture.

4.1 Overview

The methodology for the experiments in this chapter is gdlyethe same as the methodology used in
ChaptelB. Specifically, httperf is run with a 10 second tiote@lue, the same verification procedures
are followed and similar tuning is performed on each theesstvHowever, based on experience gained
with the uniprocessor experiments, only a single round aofriy is performed. For the experiments

113

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

in this chapter, the request rates range from 25,000 regpestsecond to 70,000 requests per second.
Differences in file set and environment are discussed fuithihe next two sections.

Before running experiments to measure the performanceeok¥dhious servers, some preliminary
experiments are run. These preliminary experiments daterthe affinity settings required to maximize
performance and examine the scalability of the hardwareogrdating system.

Performance experiments are run to test each server on tvkboads. The two workloads are labelled
based on the size of the server memory: 4 GB and 2 GB. Thesdoadekcorrespond to in-memory and
heavy disk I/0O. Note, 2 GB of system memory results in heask-tfiO for these experiments due to higher
throughput resulting from multiple processors. For eachkiead, a number of tuning experiments are
run for each server.

Additional data is gathered for each experiment in threeswayimilar to the uniprocessor experi-
ments, vmstat is run with a 5 second interval and each seatbers statistics while it is running. In
addition, mpstat is run during the experiments. The mpsiigtys run with a 5 second interval to sample
the system state and generate per CPU data about where @eukier time is spent. It breaks down the
information into categories such as user time, system tgsoftfware interrupts (softirgs), interrupts per
second, etc. Similar to the uniprocessor experiments, tielgondensed area under the throughput curve
for each experiment is reported. The remainder of the datatisicluded in the thesis, but a summary of
some of the data gathered is presented when necessary idepfarther explanations.

Finally, no Knot experiments are run for this chapter. Kndten running on the Capriccio thread li-
brary, only supports multiple kernel-threads for writirmjitscan only be run N-copy. Given this limitation,
Knot is uninteresting on a multiprocessor so it is not comsd further.

4.2 File Set

The file set used for the experiments in this chapter is staiitgenerated using the SPECweb99 file-set
generator. Similar to the file set used in Chapler 3, 650 tdirixs were generated, resulting in approxi-
mately 3.1 GB of files on the server. Based on preliminarygrarnce experiments, the 650 directories
are distributed over the server’s two hard drives to achiegher throughput when disk I/O occurs (not
done in the uniprocessor experiments). The list of the filesaich directory and their profile is the same
as the files in Chapté&i 3.

The multiprocessor experiments are run with 16 clientss{y®18 in the uniprocessor experiments),
each running a copy of the httperf load generator, requiaimgw set of 16 log files, also with requests
conforming to a Zipf distribution, to account for the addital clients. As discussed earlier, the actual file

114

4.3. ENVIRONMENT

set for the experiments is based on the files present in tertdbg-files. Due to the way the log files

are generated, not all the generated files on the server ede Tke client log-files request 2.2 gigabytes,
consisting of 21,600 files across all 650 directories of thedéet. Hence, the actual size of the file set
is approximately 2.2 GB. For the experiments in this chaphter log file for each client has an average
session length of 7.29 and all the requests are for statg fil&ke Chaptefl3, the various workloads for
this chapter are generated by keeping the file set and ctigritlés constant and reconfiguring the server
with different amounts of memory.

Table[4.1 shows the amount of memory required to satisfyestguas the file size increases. The
distribution of requests over the file sizes is very simitathe log files in Chaptdd 3 but not exactly the
same. Again, due to the Zipf distribution, only a small amamfrmemory is needed to service a significant
percent of the requests; 50 percent of the requests congdddB of the file set and 95 percent of the
requests comprise only 126.5 MB of the file set.

% Reqs Memory Size (MB) Max File size (B)

10 0.5 409
20 0.8 512
30 15 716
40 4.8 3072
50 8.4 4096
60 9.9 5120
70 12.2 5120
80 20.1 7168
90 94.3 40,960
95 126.5 51,200
100 2291.6 921,600

Table 4.1: Cumulative amount of memory required for reqgiesten sorted by file size

4.3 Environment

The experimental environment consists of eight client nreghand a single server. The client machines
are identical to the clients in Chap{dr 3. The server macbomgains one quad-core E5440 2.83 GHz
Xeon CPU, 4 GB of RAM, two 10,000 RPM, 146 GB SAS hard drives tamd one-gigabit Ethernet
ports. Four of the ports are on-board, four more are from alikam card and the remaining two from

115

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

another add-on card. For all experiments, the server rur&s 2423 Linux kernel in 32-bit mode with SMP
enabled. Switching to a newer kernel is required to propaujyport the hardware on the server machine.
With a 32-bit address space, the default configuration ferLtimux kernel is to assign 1 GB of virtual
address space for the kernel and 3 GB for user processesg thgirdefault 1 GB/3 GB memory split,
the kernel began to run out of available memory for some éxy@ts due to a large number of processes
and sockets. The problem appears to be related to slow réksenzl memory, eventually resulting in
insufficient free memory for new connections over the coofsn experiment. In order to accommodate
experiments with a large number of processes and socketkethel has been compiled to use a 2 GB/2
GB memory split between the kernel and user-space.

The 2.6.24-3 kernel already contains the fix for the cachimglem discovered in the 2.6.16-18 kernel
used in the previous chapter. However, the kernel code patefidfile is different in the 2.6.24-3 kernel
versus the 2.6.16-18 kernel, so the fix is not relevant foettgeriments in this chapter. Furthermore, the
read-ahead code has also been extensively modified and dbezhibit the problem seen in Chapkér 3
(see Sectiof 313 for details). Unfortunately, | discoddteat the new code path has a page caching prob-
lem that results in poor disk performance. Whendfile is used to transmit a file to a client, none of the
pages associated with the file are marked as accessed byrtied Réot marking page-accesses means the
kernel cannot distinguish between recently or frequerdbeased pages and other pages in the file-system
cache. Therefore, under memory pressure the kernel eainttom pages from the file-system cache. The
problem is these random pages could include pages in thdeoflfiles, frequently accessed pages, etc.,
resulting in erratic performance and low disk-throughpsiiang contiguous disk reads and read-ahead
buffering are less useful as disk requests become smaltemane random. Therefore, the experiments
in this chapter use a 2.6.24-3 kernel that | patched so thy pecesses are correctly markedsiatdfile
calls (see SectidnAl.2 for patch). Disk throughput improfrech approximately 11,000 blocks in per sec-
ond for non-blockingsendfile and 20,000 blocks-in for blockinggndfile to approximately 28,000-30,000
blocks-in for both non-blocking and blockirsgndfile with the patch. As well, the difference in disk per-
formance between blocking and non-blockiwndfile is small and the variation in throughput is low for
repeated experiments. Due to improved disk throughputpémormance of the servers also improved
with the patch.

The connection between the server and client machines isatime as that described in sectiod 3.5,
except scaled to 8 client machines. Again, each client machas two CPUs and runs two copies of
the workload generator, resulting in 16 clients evenly agrever eight network interfaces on the server.
The clients, server, network interfaces and switches haea Bufficiently provisioned to ensure that the
network and clients are not the bottleneck.

116

4.4. AFFINITIES

4.4 Affinities

On a single processor, all the processes and interruptcgggvinust execute on that processor. When
multiple processors exist, there are several options deagahow the execution of processes and interrupt
servicing can be distributed. Of particular interest faesh experiments is the execution of the kernel
threads associated with the server and the interrupt $sgvior the network interfaces.

The default behaviour is to allow the system to schedule d¢inees kernel-threads and interrupt re-
quests (IRQs). In order to control the behaviour of the Kenntl respect to IRQ scheduling, the Linux
kernel used in this chapter is built with IRBRALANCE disabled because the IRQ balancing functionality
in the Linux kernel does not perform well. Other simple gtgids like handling interrupts round-robin
among the CPUs also perform poorly due to poor cache behaviostead, IRQ scheduling should be
configured manually to achieve best performance for spesgficer hardware. The Linux kernel also al-
lows setting CPU affinities for kernel threads and for inipts. Setting CPU affinity ties a kernel thread
or interrupt to a specific processor or set of processors.

The server machine in the test environment has multiplegssmrs and multiple network-interfaces,
so a number of configurations exist. Affinities can be setpedeently for the network interfaces and for
the server processes. This section considers some of tom®fdr an N-copy server using non-blocking
sendfile. For these experimentgserver SYMPED is used. Based on Chapler 3, gserver process per
CPU should be sufficient and achieve reasonable performance

There are four CPUSs, so four copies of the symped-nb sereeexacuted. In order for the servers
to cover all eight subnets, each symped-nb server hand@edistinct subnets with no subnet handled by
more than one server. This configuration results in a uniggeaation of servers and subnets that allows
segregation of server processes and network interface&iglme[4.1, the same experiment is chosen
for all configurations: 4 processes with 20,000 maximum egtions per process for a total of 80,000
connections. Verification failures are ignored and justhtineughput of the server is considered. However,
both experiments where the network interface affinitiesnateset fail verification.

In the first experimentno affinity, no affinities are set to allow subsequent comparisons veittous
affinity settings. Both the network interfaces and the psees are free to use any CPU. Note the server
does not have IRBALANCE enabled in the kernel or installed on the system. Pphak throughput is
2375 Mbps at 25,000 requests per second.

Based on the mpstat output for the experiment, one CPU sd€ids of its time servicing interrupts
and the other processors spend a small amount of time sepiidierrupts, 5% or less on average. Note
the processor that becomes dedicated to handling intsrdagts vary between experiments but is constant
during the run for each individual rate. However, a singlecessor handling the majority of interrupts is a

117

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

6000
5000 | =

4000

Mbps

3000

2000

no affinity —+—
1000 F process affinity ---->¢----
interrupt affinity ---- -~

aligned process and interrupt affinity -fzt-
unaligned process and intf:rrupt affirllity "'.'."

0 1
0 10000 20000 30000 40000 50000 60000 70000
Requests/s

Figure 4.1:userver N-copy non-blocking with 4 processes, 80,000 cdiorecand various affinities

bottleneck because it does not have enough CPU capacitytiehiaterrupt processing for eight network
interfaces, inhibiting performance. Given this orgaria@atthe server processes receive insufficient work,
resulting in low throughput and a large amount of idle timdlmremaining CPUs.

In the second experimerrocess affinityeach server process has its affinity set to a separate porvces
and interrupt affinities are not set. Setting affinities fur processes results in a slight improvement, with
a peak throughput of 2794 Mbps at 25,000 requests per sed@trdnpstat output again reveals that the
system schedules the servicing of interrupts on a singlegssor, resulting in a bottleneck as the CPU is
quickly saturated. As a result, the server process tiedas#turated CPU is starved for execution time
after interrupt servicing occupies 100% of the CPU.

In the third experimentinterrupt affinity, interrupt affinities are set for the network interfaces but
the processes are free to execute on any of the CPUs. Sditingetwork-interface affinities results in a
significant improvement in performance; the peak througigob915 Mbps at 56,000 requests per second.
Examining the mpstat output reveals that the average satiméerrupt servicing time, as well as, user
time, system time, etc. is approximately the same acroghelCPUs for each rate. However, Tabld 4.2
shows that performance can be inconsistent across expagntiee condensed area at 80,000 connections
is lower than the value for 60,000 and 100,000 connectiohi& anomaly occurs for the following reason.
By default, the Linux scheduler schedules a particular ggsconsistently on the same CPU unless aload
imbalance occurs. When it detects a load imbalance, a agsslected to execute on another CPU. So
when the server processes are not bound, they tend to exatatsingle CPU and this CPU is likely the
same as the CPU tied to servicing its interrupts. Howeveentthis coincidental affinity does not occur,

118

4.4. AFFINITIES

Maximum Number of Connections
Procs|| 40,000| 60,000| 80,000| 100,000
4| 12.87 | 16.75 | 16.62 16.76

Table 4.2: Experiments with only network interface affigstiset (condensed area)

Maximum Number of Connections
Procs|| 40,000| 60,000| 80,000| 100,000
41 12.87 | 16.84 | 16.85 16.84

Table 4.3: Experiments with aligned network interface aratess affinities set (condensed area)

there can be poor performance at that rate, in this case ®@5e@iests per second. (Note the drop in the
interrupt affinity line at that point in Figuré&4l1). Based on a number of expents (not shown), the
instability can randomly occur at different request ratéh warious configuration parameters. This type
of instability occurs as a result of not binding each proeeds a specific CPU.

In the fourth experimentaligned process and interrupt affinjtipoth process and interrupt affinities
are set and aligned to correspond so that the server proaadfing requests from a particular subnet is
bound to the same CPU as the CPU servicing interrupts forsthiatet. The peak throughput is 6202
Mbps at 56,000 requests per second. Unlike the previousiexgat, setting both process and interrupt
affinity results in stable throughput across all the experits, see Tab[e4.3.

Finally, a fifth experimentynaligned process and interrupt affinitg run to confirm that the alignment
of interrupt servicing and processes to the same CPU is itaonn this case, both process and interrupt
affinities are set but the alignment is explicitly set so firaicesses and network interfaces are unaligned.
The performance of this experiment is much lower than therinpt affinity and aligned process and
interrupt affinity experiments. In fact, the fifth experinielid not pass verification. Ignoring verification
problems, however, the peak throughput for the unaligng@mment is 4081 Mbps at 65,000 requests
per second, compared to 6202 Mbps at 56000 requests perdskrdhe aligned process and interrupt
affinity experiment. In this case, after the experiment hesnbexecuting for a while two of the CPUs
become mostly dedicated to servicing interrupts and thees@rocesses on those CPUs become starved
for execution time. As those processes are only handling al smamber of requests, the time spent
servicing interrupts on the other two remaining CPUs drdpfectively, only two of the processes are
servicing requests and the other two processes are sta@ledrly, aligning the processes and network
interfaces results in the best performance. In additios,akperiment confirms that the Linux scheduler
does a reasonable job of scheduling the processes based intettnupt affinity settings with this type of
workload. While the Linux scheduler does a reasonable jtteifprocess affinities are not set, it is better

119

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

to align the affinities, if possible, to guarantee the besfiopemance.

The term partitioned is used to describe the general casesefver running with aligned process
and network affinities. Specifically, partitioning meanattthe kernel threads processing a request must
execute on the same CPU that handles the network interropegsing for the subnet associated with
the request. For certain experiments in this chapter, stepgaken in order to achieve partitioning.
First, affinities are set so that network interrupt proageg$or a subnet occurs on a single CPU. For load
balancing, interrupt processing for the eight subnets qually distributed over the four CPUs, so each
CPU handles interrupt processing for two distinct subn8scond, each kernel thread in a server only
processes requests from subnets associated with the eufartCPU, and affinities are set so the kernel
thread only executes on that CPU. As will be seen with WatRifgectioT4Z.6.13, absolute partitioning of
all the kernel threads is not always required.

Other work has also shown that aligning processor and ingeraffinities yields the best perfor-
mance [#[2H]. Foongt al. [24] performed similar experiments to test TCP performaunnder vari-
ous affinity settings. Their experiments also show thanatig process and interrupt affinities yields the
best performance. In addition, they also provide an exgilamas to why only setting interrupt affini-
ties performs almost as well as aligning process and irgeafiinities. According to their explanation,
tasklets, deferrable functions related to interrupt hiawggllare usually scheduled on the same processor
as the interrupt handler, indirectly resulting in alignedgess affinity. As well, they provide a detailed
analysis explaining why aligned process and interruptigifsresult in the best performance. They note
improvements in cache misses, pipeline flushes and lockirgsa various parts of the TCP pipeline.

Anand and HartneJ4] examined TCP/IP performance on th@2d42.5 versions of the Linux ker-
nel. They showed that aligning both process and interrdjtitéds results in better data and instruction
locality, resulting in better cache performance and higherughput.

4.5 Scalability

In order to achieve higher throughput, the simplest apprasi¢o have multiple, identically configured
single-processor machines each running an independentof@oweb server. Assuming that an external
mechanism exists to handle load balancing, the performahtiee system should scale perfectly from
one to N machines. An alternative approach that may seentasiiito run independent copies of a
web server on a multiprocessor system, with one server cepCpPU. Despite the copies of the server
running independently, sharing at the operating systenhardivare level can have a significant effect on
scalability.

Experiments were run to examine the scalability of runniegrver N-copy non-blocking SYMPED

120

4.5. SCALABILITY

on a multiprocessor machine. The purpose of the experiraémtietermine if running on a multiprocessor
scales similarly to running on separate single-processarhines. To accomplish this comparison, in-
memory experiments were run as both the server hardwareg@RdJnetwork interfaces) and client load
are scaled proportionately to simulate independent sipgieessor machines. To perform the equivalent
uniprocessor experiment, the server is booted with 1 CPhingra single copy dfiserver with four clients
generating requests over two subnets. Corresponding,GPUs are booted, the experiment consists
of running N copies ofuserver with 4x N clients generating requests, simulating N single-premes
machines. Experiments with N equal to 1, 2 and 4 were run.

Eachpserver process is set up to receive requests from two subitetsio two processes sharing a
subnet, i.e., each process communicates exclusively withnetwork interfaces. Affinities are aligned
so a process and the interrupts for its corresponding nktinterfaces are handled by the same CPU and
no two server processes share a CPU. The idea is to miniméanghof resources among copies of the
server. As well, the experiments are setup so that gaehver process receives the same sequence of
requests; i.e., the same set of log files are used for eaclp gfotlients associated with|@server copy.
Since the number of clients are scaled along with the CPUgeggte request rates are also scaled so
that the request rate for each individual client remainsstrae. For example, with 1 CPU, an aggregate
request rate of 8,000 requests per second would result inafdhe four clients running at a rate of 2000
requests per second. With 4 CPUs, the aggregate request eatpisted to 32,000, resulting in each of
the sixteen clients running at a rate of 2000 requests pendec

Unfortunately, when running with 1 CPU, the single copyusérver achieves line speed on the two
network interfaces before the CPU is fully utilized. Whild@liming additional network interfaces would
have solved this problem, scaling to 4 CPUs would requireenabient machines than available and more
network interfaces than the server machine can support. ifigate this problem, special measures are
taken for the scalability experiments. First, the speeth®i@PUs is reduced from 2.83 GHz to 2.00 GHz.
Second, transmit and receive checksumming is disabledeondtwork interfaces to increase the amount
work done by the CPUs. These measures reduced the throughpugh so the scalability experiments
could be run with the existing hardware setup.

Table[Z.% contains the results of the scalability experiseRerfect scalability is not achieved. With
4 CPUs, the throughput is around 2.3 times the throughput avgéingle CPU. Interestingly, the speedup
from 2 to 4 CPUs is also 1.5. The table shows that the requesstatavhich the servers peak is lower
(after appropriate scaling) than the expected perfecingedror example, with 1 CPU the server peaks at
14,000 requests per second but with 2 CPUs the server pe2Rs580 requests per second, not 28,000
requests per second.

To compare the servers, experiments with a single consisdéa scaled for each configuration, are
examined, see Tabl[e“4.5. In this case, the rate chosen i8BB:Quests per second, the peak rate for 4

121

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

CPUs Rate Throughput (Mbps) Speedup Idle Time (%)

1 14,000 1556 1 4
2 22,500 2367 15 1
4 33,000 3603 2.3 2

Table 4.4: Scalability ofiserver N-copy SYMPED

CPUs, with scaled rates of 16,500 for 2 CPUs and 8250 for 1 @Rléxpected, the scalability at these
rates is almost perfect since virtually all the requestssaeessfully handled. Only the 4 copy version
had a small number of client timeouts. More important foisthexperiments is to examine the average
idle time, based on vmstat output during the experiment. ifllectime in Tabld” 4} is averaged over the
CPUs, so 2% means 2% per CPU in the 4 CPU case. From 1 CPU to 2 @rRlidle time drops by 12%
and from 2 CPUs to 4 CPUs the idle time drops by a further 24%.ddtrease in idle time as the number
of CPUs increases indicates that at some level the seneroaentirely independent, and hence, perfect
scaling would not continue at higher request rates.

CPUs Rate Throughput (Mbps) Speedup Idle Time (%)

1 8250 907 1 38
2 16,500 1814 2 26
4 33,000 3603 4 2

Table 4.5: Scalability ofiserver N-copy SYMPED at a consistent rate

For a further breakdown, mpstat output is also gatherechduhie experiments. The only significant
difference in the mpstat values is the time spent in systratiand software-interrupt (softirg) code. The
averages with 1 copy: 29% for system, 23% for softirq, wittopies: 35% system and 29% softirqg and
with 4 copies: 55% system and 38% softirq. Again all the timesaveraged over the number of CPUs.
As load is scaled based on the number of CPUs, ideally alfgarthe system should have the same
relative performance, so the percent of time spent in eaghspauld remain constant. Given that the
user times (not shown) are within 0.5Userver is scaling linearly, so the non-linear parts appedet
concentrated in the kernel.

Despite attempting to segregate the server processes @indgslsociated hardware, including CPU
and network interfaces, the system does not scale lineadsiuse the operating-system kernel, processor
caches and hardware buses are still shared. These elerhégssgstem inhibit parallelism of the server
processes. The focus of this chapter is to examine the affedrious server architectures within the

122

4.6. 4GB

confines of these limitations.

Veal and Foong[[34] also analysed the scalability of a welesesn a multiprocessor. Similar to
the experiments in this section, they found scalabilitybpems as the number of cores increased. Based
on extensive profiling, they determined that address-bpaaty is the primary bottleneck that inhibited
scaling of the web server on eight cores for their machinesardonment. However, both the application
and kernel also exhibited some scalability problems.

46 4GB

This section considers the performance of various webesamnchitectures when the entire file set fits into
the file-system cache. For these experiments, the systernoméigured with 4 GB of memory, resulting
in 3.5 GB of available memory due to parts of the address spairgy reserved for hardware devices.
Eliminating memory pressure highlights the multiprocessuaracteristics of the various architectures
without focusing on disk I/O. The next section examines ffeceof disk I/O. Note, the special measures
taken for the scalability experiments are not in effect fa bther experiments in this chapter; the CPU
speed has been reset to 2.83 GHz and transmit and receiesuheuning on the network interfaces has
been re-enabled. Based on the throughput speedup achiébefbur processors, the network capacity
for the server and test environment are sufficiently provied.

The servers can be run in various ways to achieve parall@utio® on a multiprocessor. The ex-
periments in this section try to cover some different otifor achieving parallel execution but not all
possible configurations are tested for each option. Onemnelte technique for achieving parallel exe-
cution is the N-copy approach discussed in Sedfioh 4.4. eAs@m N-copy, the servers can be run with
multiple kernel threads, similar to the uniprocessor expents. Based on experiments in Secfiod 4.4,
network interrupt affinities are always set, so that intgrorocessing is equally distributed across the
CPUs, by pinning two network interfaces to each CPU. Whessipte, process affinities are also set so
that network and process affinities are aligned in order tttjpm the system. For example, the N-copy
experiments in this section segregate the CPU and netwt@kaoces associated with each server copy so
the experiments achieve better performance.

4.6.1 Tuning N-copy

As the experiments use static workloads, no communicasicegjuired among the various server processes
and connections; hence, N-copy is a reasonable archigediMhile the SYMPED and shared-SYMPED
servers already have an N-copy design, there are someediffes between those servers and the N-copy

123

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

architecture in this section. The SYMPED and shared-SYMBEDers have a single listening port with
all processes handling connections from any subnet. Tigoaph does not allow specific processes to
be associated with particular subnets and for the hardwdve partitioned based on this association. By
running N copies of the SYMPED, shared-SYMPED and pipeleeess, the desired segregation can
be achieved. Since there is no communication among therseawel the system is not under memory
pressure, the N-copy approach likely represents the besitpe performance for the servers.

The problems when running concurrent programs on a mudtsor are locking, synchronization,
cache coherency, etc. By setting affinities appropriatiflg, idea is to run the server as a number of
uniprocessor servers each running on a single CPU. Thi®agipttries to eliminate multiprocessor issues
among servers at the application level as the servers agpandent and can only be scheduled on a single
CPU. It also tries to minimize multiprocessor issues in thmkl by segregating the hardware and servers
as much as possible. However, locking and sharing of datatates still occurs within the Linux kernel
to control access to shared resources such as the disk, diensybus, network cards, etc.

Based on uniprocessor tests for non-block#egdfile, only one kernel thread is required per CPU
when there is no disk 1/0. Based on testing in Sedfioh 4.4eg@ging the subnets among the servers and
then running the servers on the same CPU as the subnets itdirtpis the best approach. Again, since
there are eight subnets and four server copies, each sengtthandle connections from two subnets.

4.6.1.1 Tuning N-copyuserver

Sincepserver is already a form of N-copy, a bit of explanation isuiezp to differentiate the experiments

in this section. In the N-copy experiments earlier in thiaptler, there is only one process per CPU with
affinities set to segregate the hardware. Hence, each smrpgris essentially a separate instance of a
SPED server. For the next set of experiments, each copy dfibepy server is a general SYMPED or
shared-SYMPED server potentially consisting of multiplegesses sharing the same subnets and running
on a single CPU. The machine used for these experiments lia€RiJs available and so for these N-copy
experiments, N equals four. Consider an N-copy experiméthtablocking SYMPED server where each
copy of the server uses 100 processes. A single copy of thersepuld consist of 100 processes each
sharing two subnets all tied to a single CPU. The entire exyat consists of 400 processes across eight
subnets and all four CPUs, i.e., 4 of the single copies.

Experiments were run to tune three versiongsédrver: N-copy symped-nb, N-copy symped-b and
N-copy sharedsymped-b (but not N-copy sharedsymped-ethedew). As discussed later in this section,
no N-copy sharedsymped-nb experiments were run. For allores ofuserver, the parameters tuned are
the maximum number of simultaneous connections and the euaflprocesses.

124

4.6. 4GB

Table[4.6(g) shows the results of tuning N-copy symped-alshEow in the table represents a different
number of processes from 4 to 16 with the number of procespessenting the total number of processes
running. The total number of processes must be divided by ttodetermine the number of processes
for each server copy. For example, the 8 processes in thadeow represent 4 symped-nb servers each
with 2 processes. The columns represent a different maximumber of connections from 40,000 to
100,000. Again, the columns represent the total number mfi@ctions across all the servers. Hence, the
entry for 8 processes and 60,000 connections means thaoédoh four symped-nb server copies has
a maximum of 15,000 connections. Furthermore, each ingilidymped-nb process has a maximum of
7500 connections as each server copy has 2 processes ixdhiple. The experiments show the best
performance for N-copy symped-nb is around 4 processes @n@0d0 connections (16.87), with a peak
throughput of 6202 Mbps occurring at 56,000 requests paesnskand with a sustained throughput of
around 5695 Mbps at 70,000 requests per second. This thpatighsubstantially larger than those seen
in the uniprocessor experiments. However, the resultsatédoencompared as the hardware and operating
systems are different.

One interesting observation for the best configuration as #fter the peak the throughput drops by
6.5% from 6204 Mbps to 5800 Mbps at 58,000 requests per seammhthen starts to level off. While the
condensed areas at 60,000 and 100,000 connections arasit6iB5 and 16.87 respectively, the shape of
the throughput curves are different. At 60,000 connectitms peak is 5964 Mbps at 56,000 requests per
second but after peak the performance holds steady wittoaghput of 5954 Mbps at 58,000 requests
per second. Hence, there is a trade off with lower peak thmpuigbut a more gradual decline after peak.

Similar to the uniprocessor experiments, when there is sk WD, efficiencies are gained by only
having a single process. In this case, a single SPED serveaamnprocessor is equivalent and performs
the best. As well, the performance of these experiments ¢éi/beyond 60,000 maximum connections.
N-copy symped-nb running with a single server process pa&t iSRelf-limiting with an average of less
than 16,500 concurrent connections per server. Therefondar to the uniprocessor SPED experiments,
additional connections beyond 100,000 do not result indrighvroughput.

Tableg[4.6(H) shows the results of tuning N-copy symped-khEaw in the table represents a different
number of processes from 200 to 600, with the number of psesegepresenting the total number of
processes running. The total number of processes must lnedlibey four to determine the number of
processes for each server copy. For example, the 300 pesciesthe second row represent 4 symped-b
server copies each with 75 processes. The columns repeedédfarent maximum number of connections
from 40,000 to 100,000. Again, the columns represent thed tatmber of connections across all the
servers. Hence, the entry for 300 processes and 80,000 @@mmemeans that each of the 4 symped-b
server copies has a maximum of 20,000 connections. Furthierraach individual symped-b process has
a maximum of 267 connections as each server has 75 procestes éxample. The experiments show

125

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections
Procs|| 40,000| 60,000| 80,000 100,000
200 (| 12.19 | 14.14 | 13.21 | 12.87
300 | 12,59 | 15.34 | 1452 | 13.89

Maximum Number of Connections
Procs|| 40,000| 60,000| 80,000| 100,000
41| 12.86 | 16.85 | 16.86 16.87

8 O O 16.68 | 16.68

400 || 12.75 | 15.54 | 15.05 | 14.66
12 || 12.87 O 16.66 | 16.64

500 | 12.55 | 15.41 | 15.28 | 14.95
16 0 O 16.64 | 16.63

600 || 12.42 | 14.87 | 15.18 | 14.74
(b) blockingsendfile

(a) non-blockingsendfile

Table 4.6:userver N-copy SYMPED experiments - 4 GB

Maximum Number of Connections|

Maximum Number of Connections Procs|| 40,000| 60,000| 80,000 100,000

Procs|| 40,000| 60,000| 80,000| 100,000 200 || 12.18 | 14.22 | 13.15 | 12.88

200 | 12.18 | 13.93 | 13.45 O 300 | 12.63 | 15.46 | 1457 | 13.81

300 | 12.64 | 15.09 | 14.34 | 13.58 400 || 12.76 | 15.77 | 15.43 | 14.68

400 || 12.73 | 15.24 | 14.98 | 14.39 500 12.82 | 15.82 | 15.62 | 15.30
500 | 12.81 | 15.31 | 15.17 | 14.94 600 || 12.93 | 15.79 | 15.72 O

600 | 12.91 | 15.38 | 15.26 | 15.11 700 13.04 | 15.88 | 15.77 | 15.69

(a) mutex lock 800 | 12.91 | 15.73 | 15.81 | 15.68

(b) readers/writer lock

Table 4.7:userver N-copy blocking shared-SYMPED experiments - 4 GB

the best performance for N-copy symped-b is around 400 pseseand 60,000 connections (15.54), with
a peak throughput of 5346 Mbps occurring at 50,000 requestsgrond and with a sustained throughput
of around 4286 Mbps at 70,000 requests per second. The thpatugs 14% lower at peak than the
throughput of the corresponding non-blocking version abih 2ower at 70,000 requests per second.

The problem is that N-copy symped has a large memory fodtdEwven for 200 processes and 40,000
connections, the memory footprint of the server is largaughdhat the file set cannot fit into the remaining
memory. For the best performing configuration at peak, tleeame file-system cache is 1.99 GB, resulting
in disk 1/0 but no I/O wait. Since the amount of disk 1/O incsea as the number of processes and/or
connections increase, the server becomes disk bound ansdhal performance of the server decreases,
see Tablg4:6(b). As seen in Chajifler 3, each symped-b sewerequires at least 50 processes for stable
performance, hence running with fewer processes reduc&smpance.

126

4.6. 4GB

To mitigate the large-memory footprint-problem, some Nycsharedsymped-b experiments were
run. With N-copy sharedsymped-nb, the best performingesaprexpected to be the SPED version of
the server as this is consistent with the experiments in @h@pand the N-copy symped-nb experiments
earlier in this section. Since, sharedsymped-nb and sympede the same when the servers are run with
a single process, the N-copy sharedsymped-nb experimentsiaecessary.

Table[4:7(d) shows the results of tuning N-copy sharedsgrpeEach row in the table represents a
different number of processes from 200 to 600. The columpesent a different maximum number of
connections from 40,000 to 100,000. Again, 4 copies of tlereshSYMPED server are run, with the
rows and columns representing the total number of procesmksonnections across all the servers. The
experiments show the best performance for N-copy shargusg+h is around 600 processes and 60,000
connections (15.38), with a peak throughput of 5153 Mbpsiooty at 50,000 requests per second and
with a sustained throughput of around 4444 Mbps at 70,000astg per second. The throughput is 17%
lower at peak than the throughput of N-copy symped-nb and [22¢ér at 70,000 requests per second.

A number of the experiments had a higher peak than the expatiyielding the best overall perfor-
mance but large performance drops after peak result in vowmesell performance for these experiments.
For example, the experiment with 300 processes and 60,00&ctons (15.09) has a higher peak of 5459
Mbps at 50,000 requests per second but its throughput dsopebe than 20%, with a throughput of 3706
Mbps at 70,000 requests per second. Similar to the unipsocexperiments, these drops in throughput
occur with blocking servers when there are insufficient psses to handle higher request rates. As well,
since the number of workers required is related to throughpare workers per CPU are needed for these
experiments. Additional processes result in a tradeofabse the increase in overhead results in a small
decrease in peak throughput but more processes resultiigeaifecrease in sustained throughput.

The N-copy sharedsymped-b server has a smaller memoryriiactotipan the corresponding N-copy
symped-b server. It is not until 100,000 connections andatl400 processes that the memory footprint
of the N-copy sharedsymped-b server is large enough soltbed ts not enough memory available for
the file-system cache to contain the entire file set. Since wiothe experiments do not experience
memory pressure, the pattern of performance for the N-cbpyesisymped-b server is more in line with
expectations, i.e., performance is stable. Once disk l&fissto occur, as with N-copy symped-b, the
performance of a server drops.

At its best performing configuration, N-copy sharedsympduas no idle time at peak for 600 pro-
cesses. However, the peak throughput for its best configaré only about 1% higher than its peak
for 400 processes and 80,000 connections, where it has aagavef 5% idle time at 56,000 requests
per second. The larger number of processes improve penfeenaspecially for rates after peak, but at
the cost of higher overhead. The difference in idle time isnemnore pronounced for higher rates. For
example, with 400 processes and 80,000 connections at afra@ 000 requests per second N-copy,

127

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

sharedsymped-b has 26% idle time on average. The high amobudie time combined with the low
throughput of 4029 Mbps suggests that the performance afgher is inhibited by lock contention. The
only sharing occurring between the processes at the apphelavel is the cache table, which is analyzed
next.

Exclusive access to the cache is only required when an entigided or removed from the table. As
each file is only added to the table once, most cache tablssexare lookups to find existing entries.
Multiple cache table lookups can proceed simultaneousiyeg do not require exclusive access to the
cache table. Once an entry is found, exclusive access t@that is required so its usage information
can be updated. If the entry is not found, then the entireectaible must be locked so the new entry can
be added to the table. Therefore, the current strategy &frigahe entire cache table for every access
inhibits concurrency. To test the contention hypothesis, dache table mutex lock is replaced with a
readers/writer lock. The changes are implemented by usingiered locking, with a furwocK]25] used
to lock the cache table and one futex per individual cachey.efihe furwock is acquired with exclusive
access when entries are added or removed from the cache@hkrwise, read access is acquired when
searching the cache table and then individual cache emtréel®cked for updating.

Table[4.7{0) shows the results of tuning N-copy sharedsyhrtipafter the conversion. Each row in
the table represents a different number of writer tasks f26to 800. The columns represent a different
maximum number of connections from 40,000 to 100,000. Tipeiments show the best performance
for N-copy sharedsymped-b with readers/writer locks isiatb700 processes and 60,000 connections
(15.88), with a peak throughput of 5416 Mbps occurring ad80 requests per second and with a sustained
throughput of around 4614 Mbps at 70,000 requests per sedtrecthroughput is 5% higher at peak than
the throughput of N-copy sharedsymped-b and 4% higher 8000equests per second.

Based on vmstat output, there is no idle time at peak and kadimde at 70,000 requests per second is
5%. Unfortunately, by 70,000 requests per second the sysii#ns to experience a small amount of disk
I/O. Further increasing the number of processes to 800 imgsrthe throughput of the server at 70,000
requests per second and eliminates idle time at the costcoéawsed throughput at peak. Increasing both
the number of processes to 800 and the maximum connectitures tee80,000 results in throughput gains
at 70,000 requests per second with a smaller decrease intieaighput. Unfortunately, the memory
footprint of the server becomes too large so the overallctffeness of further increasing the number
of processes is muted as disk I/O starts to occur. In termserath performance, the trade off in peak
throughput versus sustained throughput for these expetinglid not result in a higher condensed area.

128

4.6. 4GB

4.6.1.2 Tuning N-copy WatPipe

Extensive changes were made to WatPipe to improve its modgssor performance. These changes are
described in Sectidn 4.6.3. This new version of WatPipeesl tisr the N-copy experiments in this section.

Experiments were run to tune the two versions of N-copy WePN-copy watpipe-nb and N-copy
watpipe-b. For all versions of WatPipe, the parametersdare the maximum number of simultaneous
connections and the number of writer tasks.

Similar to thepserver experiments, one copy of WatPipe is started on eadegsor, resulting in 4
copies of WatPipe for these experiments. In the tables, tingber of writers and maximum number of
connections listed represents the aggregate across &koojthe server. The values for each individual
server can be obtained by dividing by four as writer tasks@mthections are equally distributed among
the servers.

Tablg4.8(d) shows the results of tuning N-copy watpipeHg#zh row in the table represents a different
number of writer tasks from 4 to 16. The columns represenfferdnt maximum number of connections
from 40,000 to 100,000. The rows and columns represent thertomber of writer tasks and connections
across all the servers. The experiments show the best penfime for N-copy watpipe-nb is around 12
writer tasks and 100,000 connections (16.92), with a peaduthput of 6066 Mbps occurring at 56,000
requests per second and with a sustained throughput of 05 Mbps at 70,000 requests per second.
Unexpectedly, the best performance does not occur with #mtesks (one task per CPU). However, the
highest peak does occur with 4 writer tasks and 80,000 cdionsc This peak is 6196 Mbps at 56,000
requests per second. This peak is very close to the peak @fidBps achieved by the N-copy symped-nb
server.

The experiment with 12 writer tasks has a larger condensedl lzgcause its post-peak performance
experiences a more gradual decline in throughput. Whilebtst performing N-copy symped-nb and
N-copy watpipe-nb with 4 writer tasks experience a 6.5% ah@é8lecline in throughput at 58,000 request
per second respectively, the 12 writer version of N-copypipet-nb experiences a decline of only 1.1%.
While the sustained throughput for all three servers is raatdhir00 Mbps, the more gradual decline in
performance of N-copy watpipe-nb with 12 writers result@ihigher condensed area despite having a
lower peak. This result is unexpected and interesting. |I8itpi the shaper decline in throughput for the
4 writer version of N-copy watpipe-nb resulted in a lower densed area for N-copy watpipe-nb with
80,000 connections.

Table[4.8({0) shows the results of tuning of N-copy watpipeHach row in the table represents a
different number of writer tasks from 200 to 600. The columeesent a different maximum number of
connections from 40,000 to 100,000. The experiments shewdbkt performance for N-copy watpipe-b is

129

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections
Writers || 40,000| 60,000| 80,000| 100,000
200 | 12.59 | 15.18 | 15.11 | 14.75
300 | 12.61 | 16.54 | 16.44 | 16.15
400|| 12.60 | 16.71 | 16.79 | 16.78
500 | 12.60 | 16.68 | 16.73 | 16.73
600 | 12.60 | 16.64 | 16.68 | 16.68

(b) blockingsendfile

Maximum Number of Connections
Writers || 40,000| 60,000| 80,000| 100,000
4| 12.62 | 16.81 | 16.81 | 16.80
8| 12.60 | 16.80 | 16.72 | 16.73
12 || 12.61 | 16.76 | 16.91 | 16.92
16 || 12.61 | 16.74 | 16.87 | 16.87

(a) non-blockingsendfile

Table 4.8: N-copy WatPipe experiments - 4 GB

around 400 writer tasks and 80,000 connections (16.79%), ayiteak throughput of 5957 Mbps occurring
at 56,000 requests per second and with a sustained thraughptound 5645 Mbps at 70,000 requests
per second. The difference in peak throughput between teeNbeopy non-blocking server (N-copy
symped-nb) and N-copy watpipe-b is around 4%, which is ie lvith the 4% throughput difference
observed between the best non-blocking and blocking seimdéhe 4 GB uniprocessor experiments. The
throughput is 10% higher at peak than the throughput of Nrebaredsymped-b with readers/writer locks
and 22% higher at 70,000 requests per second. The perfoent© watpipe-b is more consistent
with the performance of the blocking servers in Chalpter 8 tha other multiprocessor N-copy blocking-
servers.

One reason for the stability of the N-copy watpipe-b serséhat its memory footprint is smaller than
the memory footprint of the other N-copgerver servers. Hence, the entire file set fits into the fitesy
cache for all the N-copy watpipe-b experiments. Howeveendor experiments with the same param-
eters where neither server experiences disk I/O, N-coppipath performs better. N-copy watpipe-b
has its best performance at 400 writer tasks and 80,000 ctiong and N-copy sharedsymped-b with
readers/writer locks also has no disk I/O for those parametewever, N-copy sharedsymped-b’'s perfor-
mance is worse than N-copy watpipe-b. In fact, N-copy stamged-b with readers/writer locks peaks
at 50,000 requests per second with a throughput of 5460 Minparity has a throughput of 5295 Mbps at
56,000 requests per second. N-copy watpipe-b has equiyaeiormance at 50,000 requests per second,
but peaks at 56,000 requests per second with a throughp @53t Blbps. One major difference among
the servers is that with the shared-SYMPED server, eachepsois a separate event-driven server. For
400 processes and 80,000 connections at 56,000 requesiscped, N-copy sharedsymped-b with read-
ers/writer locks has an average of 8592 callsdoll_wait per second while N-copy watpipe-B has 2007
calls per second on average. Based on OProfile data for th&ieent, N-copy watpipe-b spends 1.79%
of time in the kernel event-mechanism versus 3.29% for Ntcslparedsymped-b with readers/writer

130

4.6. 4GB

locks. This difference accounts for some but not all of thégeeance difference.

Not only do N-copy sharedsymped-b and N-copy watpipe-bexehiheir best performance with dif-
ferent tuning parameters, but the performance of N-copyipetb is stable over a larger tuning range
than N-copy sharedsymped-b. Switching to a readers/wotde helps to increase the performance and
scalability of N-copy sharedsymped-b but a large numberofgsses are required to achieve best per-
formance. One big difference between N-copy watpipe-b arwbpy sharedsymped-b is the contention
on the locks associated with the cache table. With N-copyiweatb, only reader tasks contend for the
readers/writer lock and with the N-copy version there isyame reader task per server so there is no
contention on the lock. The reader task and writer tasks cmhgend for the individual locks associated
with each cache entry. With N-copy sharedsymped-b, all thegsses associated with a server copy
contend for both the readers/writer lock associated wighcdthe table and the locks associated with indi-
vidual cache entries. Despite the fact that all the prosesisaring the lock execute on the same CPU, the
contention on the lock reduces concurrency and increassabead because processes tend to be blocked
waiting for the lock. Overcoming the reduction in concumgmequires more processes, which increases
execution overhead and the memory footprint of the seresulting in lower throughput. It is interesting
to note that N-copy sharedsymped-nb avoids this problenmetyaing contention as it only requires a
small number of processes. However, this solution is ndtlgifor the blocking server.

The expectations for these experiments is that N-copy shprdduce the best performandel[62].
Requests are independent so the server processes canenidelet. However, non-N-copy servers offer
advantages that can be useful, such as shared memory, loettebalancing, etc. The next sections
examine these types of servers and what can be done to aiferrable performance.

4.6.2 Tuningpserver

Experiments were run to tune three versiongs#rver: symped-nb, sharedsymped-nb and sharedsymped-
b. Symped-b is excluded because its memory footprint is &ogel For all versions dfiserver, the
parameters tuned are the maximum number of simultaneougections and the number of processes.

Table[4.D shows the results of tuning symped-nb. Each rowerable represents a different number
of processes from 4 to 16. The columns represent a differeximum number of connections from
40,000 to 100,000. The experiments show the best perfomnfmmcsymped-nb is around 4 processes
and 80,000 connections (16.13), with a peak throughput 683vbps occurring at 50,000 requests per
second and with a sustained throughput of around 5217 Mbf3 @00 requests per second. Experiments
with additional rates between 50,000 and 56,000 requestsepgend were run to explore the area of peak
throughput for the server (not shown). Based on these expets, the peak throughput for symped-nb
with 4 processes and 80,000 connections is 5585 Mbps onguati52,000 requests per second. N-copy

131

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections
Procs|| 40,000| 60,000| 80,000| 100,000
4| 12.81 | 16.12 | 16.13 | 16.11
8| 12.82 | 16.06 | 16.03 | 16.04
12 || 12.81 | 16.07 | 15.99 | 15.99
16 || 12.81 | 16.08 | 15.96 | 15.95

Table 4.9:userver non-blocking SYMPED experiments - 4 GB

symped-nb has throughput that is approximately 11% highpeak than symped-nb and 9% higher at
70,000 requests per second

There are a couple of differences between this experimeahtrenN-copy version. First, none of the
processes have CPU affinity set, so any process is free tatexac any CPU. Furthermore, only a single
listening port is used so each server process can handleciorms from any subnet. Note, interrupt
processing is still equally distributed so that two netwinitierfaces are pinned to each CPU.

These differences result in a server that is distinct froemNkcopy servers examined in Sectlonl 4.4.
Specifically, the performance of symped-nb is lower tharptiiéormance of the N-copy symped-nb server
without process affinities, even though both run with nekaiaterface interrupt-affinities set on the sys-
tem but not process affinities. In the N-copy symped-nb semhout process affinities, each process
only handles requests from two subnets, both associatédasingle CPU; it is possible for the operating
system to schedule a process on the CPU associated wittbitetsu In fact, the Linux scheduler does
a reasonable job of scheduling the processes of the N-copgrsand the server achieves good perfor-
mance (see Sectign .4). With symped-nb, however, a prazgskandle connections from any subnet
regardless of the CPU on which it is executing. Since theigffof the network interfaces associated
with these subnets span multiple CPUs, scheduling therspreeesses in order to maintain CPU affinity
between processes, subnets and requests is impossibtutvittore support from the operating system.
The inability to partition symped-nb results in increasegrbead and lower performance than N-copy
symped-nb. For example, with 4 processes and 80,000 commectt 50,000 requests per second, av-
erage softirg time is 8% higher and average system time is igtehfor symped-nb than both N-copy
symped-nb and N-copy symped-nb server without processt&f§in The increased overhead means that
the symped-nb server peaks earlier with lower throughput.

However, symped-nb performs better than the N-copy synmpederver with misaligned network
interface and process affinities. With the misaligned erxpemt, each request is handled by a process
executing on a CPU that is different from the CPU tied to thienst of the request. With symped-nb,
the expectation is that 25% of the requests are handled lmegses executing on the same CPU as

132

4.6. 4GB

the network interface associated with the subnet of theasiguesulting in better performance than the
misaligned server with 0%.

In order to improve the performance of symped-nb, the ldgitep is to restrict the server processes
so they do not handle requests from all subnets. Partitigihi@ subnets among the server processes would
allow these processes to be scheduled on the appropriate T partitioning is essentially the N-copy
server discussed earlier in the chapter.

Table[4:10(3) shows the results of tuning sharedsymped=alch row in the table represents a dif-
ferent number of processes from 4 to 16. The columns represdifferent maximum number of con-
nections from 40,000 to 100,000. The experiments show tee g@mformance for sharedsymped-nb is
around 4 processes and 60,000 connections (15.97), witakatpmughput of 5462 Mbps occurring at
50,000 requests per second and with a sustained throughargund 5097 Mbps at 70,000 requests per
second. N-copy symped-nb has approximately 14% higheugfmout at peak than sharedsymped-nb
and 12% higher at 70,000 requests per second. As well, symipdds slightly higher throughput at
peak and a more gradual decline in throughput after peakltireg in better overall performance than
sharedsymped-nb.

Based on vmstat output gathered during the experimenied&anped-nb has about 2% idle time even
after peak. At the application level, only the cache tablghiared among the server processes. Moving
to better locking on the shared cache-table, such as a stauiéer lock, should improve scalability and
eliminate idle time. Tablg 4.TI{a) shows the results ofrtgrsharedsymped-nb after converting the shared
cache-table to use readers/writer locks. This changeteekin a small performance improvement as the
idle time now goes down to zero. The experiments show thegeeitrmance for sharedsymped-nb with
readers/writer locks is around 4 processes and 80,000 ctimme (16.16). The peak throughput is still
5463 Mbps but sustained throughput is around 5266 Mbps 80@0equests per second. Not only is
this performance consistent with the results for sympedknib both servers spend a larger amount of
time servicing softirgs compared to N-copy symped-nb. Withrocesses and 80,000 connections at
50,000 requests per second, the increase in average timesspsoftirgs is about 3% and the increase in
average system time is about 8% compared to N-copy sympethiboverhead is less than the overhead
experienced by the symped-nb server. While the sharedslsmipaerver with readers/writer locks has a
slightly lower peak than the symped-nb server, it has b#tteughput at 70,000 requests per second.

The sharedsymped-nb servers have two disadvantages eird¥tbopy counterparts. First, the cache
table is shared across processors, inhibiting paralleliBnis problem is mitigated by switching to read-
ers/writer locks for the cache table. The second problerhésiriability to partition server processes,
subnets and CPUs. In order to address the second problemsianvef sharedsymped-nb is implemented
such that processes, subnets and CPUs are partitioned Ingle cache table is shared across all pro-
cesses. The difference between N-copy symped-nb and slyarpdd-nb with readers/writer locks and

133

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections
Procs|| 40,000| 60,000| 80,000 100,000
200 11.67 | 12.89 | 11.77 | 11.02
300| 12.05| 13.53 | 13.39 | 12.84
400 | 11.87 | 13.19 | 13.25 | 13.20
500 | 11.65 | 12.84 | 12.82 | 12.80
600 | 11.41 | 12.48 | 12.42 | 12.26

(b) blockingsendfile

Maximum Number of Connections
Procs|| 40,000| 60,000| 80,000| 100,000
4| 12.82 | 1597 | 1597 | 15.94
8| 12.81 | 15.35 | 15.35 | 15.38
12 || 12.82 | 14.89 | 14.88 | 14.89
16 || 12.81 | 14.74 | 14.73 | 14.73

(a) non-blockingsendfile

Table 4.10:userver shared-SYMPED experiments - 4 GB

Maximum Number of Connections
Procs|| 40,000| 60,000| 80,000 100,000
200 11.69 | 13.40 | 12.64 | 12.06
300 | 12.08 | 13.87 | 13.64 | 13.01
400 | 11.92 | 13.54 | 13.59 | 13.49
500 11.69 | 13.15| 13.19 | 13.08
600 11.44 | 12.68 | 12.73 | 12.66

(b) blockingsendfile

Maximum Number of Connections
Procs|| 40,000| 60,000| 80,000| 100,000
4| 12.82 | 16.13 | 16.16 | 16.15
8| 12.81 | 16.07 | 16.01 | 16.00
12 || 12.81 | 16.06 | 15.96 | 15.96
16 || 12.81 | 16.06 | 15.93 | 15.93

(a) non-blockingsendfile

Table 4.11:userver shared-SYMPED with readers/writer locks experined GB

Maximum Number of Connections|
Maximum Number of Connections Procs|| 40,000| 60,000| 80,000 100,000
Procs|| 40,000| 60,000| 80,000| 100,000 200 12.29 | 14.41 | 13.35 O
4| 12.87 | 16.84 | 16.80 | 16.81 300 | 12.66 | 15.44 | 14.65 | 13.88
8 O O 16.42 | 16.44 400 || 12.74 | 15.71 | 15.41 | 14.83
12 || 12.88 O 16.33 | 16.32 500 12.83 | 15.71 | 15.52 | 15.21
16 || 12.87 O 16.29 | 16.30 600 || 12.95 | 15.82 | 15.64 | 15.44
(a) non-blockingsendfile 700 | 13.04 | 15.70 | 15.67 a

(b) blockingsendfile

Table 4.12:pserver shared-SYMPED with readers/writer locks and poeaéffities experiments - 4 GB

process affinities is that sharedsymped-nb has a shared-tatdle and its processes share file descriptors.
The shared cache-table affects performance, but its effexhall when the number of processes is also
small.

134

4.6. 4GB

Table[4:12(d) shows the results of tuning sharedsympeditib readers/writer locks and process
affinities. Each row in the table represents a different nemdf processes from 4 to 16. The columns
represent a different maximum number of connections fropf@®to 100,000. The experiments show
the best performance for sharedsymped-nb with readetsfwoicks and process affinities is around 4
processes and 60,000 connections (16.84), with a peakgiwot of 5959 Mbps occurring at 56,000 re-
quests per second and with a sustained throughput of ardaif®l Mbps at 70,000 requests per second.
The throughput of sharedsymped-nb with readers/writekd@ad process affinities is around 4% lower
at peak than N-copy symped-nb and approximately the san® @2 requests per second.

At peak, the server experiences an average of 6% idle tinterdldaces to 1% by 70,000 requests
per second. Increasing the maximum number of connectiahges the idle time but does not improve
performance.

Table[4.I0(H) shows the results of tuning sharedsympeddzh Eow in the table represents a dif-
ferent number of processes from 200 to 600. The columns geptea different maximum number of
connections from 40,000 to 100,000. The experiments sheweist performance for sharedsymped-b is
around 300 processes and 60,000 connections (13.53), wialathroughput of 4349 Mbps occurring
at 45,000 requests per second and with a sustained througharound 3999 Mbps at 70,000 requests
per second. The difference in peak throughput between N-sbaredsymped-b and sharedsymped-b is
around 18% and N-copy sharedsymped-b also has 11% higleaigtiput at 70,000 requests per second.
This throughput difference is larger than with the non-king version.

There are two major differences between the sharedsym@ettiN-copy sharedsymped-b servers.
First, N-copy sharedsymped-b benefits from additionallfedisam as there are four separate cache tables,
one per CPU; whereas, sharedsymped-b has a single cach¢hiatils shared by all the server processes.
Furthermore, with N-copy sharedsymped-b, only processestd the same CPU share a cache table.
Hence, the shared cache-table does not inhibit the padtgratiallelism across the system as blocking
effects are limited to a single CPU and the amount of cordardn each cache table is less since only 25%
of the processes share a single cache table. Second, N{tam@dsymped-b benefits from the alignment
of CPUs, network interfaces and processes, while the pseseis sharedsymped-b accept connections
from any subnet and are not tied to a single CPU. The expentdithat 25% of requests should be
aligned while the remainder of the requests should not lgmedi. As shown previously, this alignment
can make a large difference in performance.

Since using a single cache table is a bottleneck that ishibé server from scaling, a new version of
pserver is implemented with a readers/writer lock used fershared cache-table. Taple 4.I]L(b) shows
the results of tuning sharedsymped-b with readers/wiighd used for the shared cache-table. The exper-
iments show the best performance for sharedsymped-b vdtters/writer locks is around 300 processes
and 60,000 connections (13.87), with a peak throughput 28848bps occurring at 45,000 requests per

135

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

second and with a sustained throughput of around 3972 Mbp8,@800 requests per second. Compared
to N-copy sharedsymped-b, the throughput of sharedsyrpeith readers/writer locks is around 12%
lower at peak and 11% lower at 70,000 requests per second.

The effect of switching to readers/writer locks is small fioe blocking server; however, that is ex-
pected as the experiments have no idle time. With 300 presemsd 60,000 connections at 45,000 re-
quests per second, sharedsymped-b with readers/writes gpends approximately 66% of its time han-
dling softirgs, 12% more than N-copy sharedsymped-b wistdees/writer locks. It is interesting to note
that sharedsymped-b with readers/writer locks actualyylbaer system and user times than the N-copy
version. This difference can be attributed to the lowerudbgtput of sharedsymped-b with readers/writer
locks. Since, handling softirgs takes more CPU time, thearpent peaks earlier with lower throughput.
Not partitioning processes, subnets and CPUs has a detehedfect on performance and the additional
processes required by sharedsymped-b only exacerbatsisutiigon.

Table[4.T2(8) shows the results of tuning sharedsympedtbreaders/writer locks and process affini-
ties. Each row in the table represents a different numberaafgsses from 200 to 700. The columns repre-
sent a different maximum number of connections from 40,0Q00,000. The experiments show the best
performance for sharedsymped-b with readers/writer lackkprocess affinities is around 600 processes
and 60,000 connections (15.82), with a peak throughput 6294bps occurring at 50,000 requests per
second and with a sustained throughput of around 4568 Mbp8,a00 requests per second. The differ-
ence in throughput between N-copy sharedsymped-b wittereadriter locks and sharedsymped-b with
readers/writer locks and process affinities is less thantlil86th peak and 70,000 requests per second.

At peak, the server experiences no idle time but this valeesases to 7% by 70,000 requests per
second. As expected, since sharedsymped-b with readiges/acks and process affinities uses a sin-
gle cache table across all processes and CPUs, its overtdhpance is a little lower. However, both
servers start to experience disk 1/0O, which has a tenden@vén out the performance. It turns out
that sharedsymped-b with readers/writer locks and proafigsties has a larger memory footprint than
its N-copy counterpart. The memory savings gained by onlyrigaone cache table instead of four is
more than offset by the increase in the size of some appitatata structures resulting from sharing
file descriptors. While the number of file descriptors rermaionstant for both servers, the maximum
file-descriptor supported by an individual process is fames larger with sharedsymped-b compared to
N-copy sharedsymped-b. In particulgserver uses an index array to map a socket descriptor toris-co
sponding entry in an array containing the information abisudssociated request. Each entry in the index
array consists of a single integer and the number of elenietie array is based on the largest possible
file descriptor for the server. For N-copy sharedsympedith 800 processes and 60,000 connections the
maximum file descriptor is approximately 40,000 (15,000r@mtions per N-copy- 25,000 files in the
file-set), requiring 92 MB of memory (600 processe# bytesx 40,000 entries). For sharedsymped-b

136

4.6. 4GB

with similar parameters, the maximum file descriptor is agpnately 85,000 (60,000 connectiors
25,000 files), requiring 195 MB of memory (600 processed bytesx 85,000 entries). However, the
cache table is only 6 MB, so four cache tables require 24 MB efniory. While sharedsymped-b saves
18 MB of memory by only having one cache, it expends 103 MB omwoey due to larger index arrays.
This increase in memory footprint causes sharedsympedtoreaders/writer locks and process affinities
to peak with fewer processes as it incurs disk 1/0O with fewercpsses, which begins to occur at 600
processes and 60,000 connections.

With SYMPED and shared-SYMPED, a single process handlestire g@equest so the difference
between these servers and their N-copy counterparts id.sidalvever, based on the results for the
SYMPED and shared-SYMPED servers in this section, aligngugests, processes, subnets and CPUs
is important for achieving the best performance. Adoptinig partitioning to create a hybrid server
improved performance but the difference between the hyivéded-SYMPED server and N-copy is small.
Other servers, for example, WatPipe, are more amenableldhgpproaches that are still somewhat
distinct from N-copy.

4.6.3 Tuning WatPipe

Major changes are required for WatPipe to run well with theegeeriments. The goal of changing WatPipe
is to create a hybrid server that encompasses the major tsen&fan N-copy server while retaining
advantages of a shared-memory pipeline server. The mosgiriam feature of the N-copy approach
is the ability to partition server processes, subnets andSdR order to reduce overhead and improve
throughput. The challenge with WatPipe is to determine tvipiarts of the pipeline require partitioning.

Completely partitioning the kernel threads and data strestwould essentially result in an N-copy
server in a single address space. While certain types ofisenvay benefit from this approach as it allows
data or computations to be efficiently shared via common mgniboffers no benefits over straight
N-copy for the static workload experiments in this sectiém fact, the need to support a large number
of file descriptors due to the shared address-space is a @cvdompared to actually running N-copy.
Overall, the biggest problem with the N-copy approach isldénge memory footprint of the server due
to duplication resulting from independent data structurBlse advantages of this approach are reduced
overhead due to partitioning and reduced contention agiseiata is not shared across the partitioned
kernel threads.

The other extreme is for the server to be completely unjaréd. In this case, the tasks in the server
are free to handle requests from any subnet and can execaeyc@PU. Based on the experiments in
the previous section, there is a significant penalty astatiaith not partitioning the server. As well,
the shared queues and other data structures represent msmajoe of contention. Locking the queues

137

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

inhibits parallelism across the CPUs and represents afisigmi bottleneck. The major benefit of this
approach is that the memory footprint of the server is snmatigared to the N-copy approach. Additional
benefits include centralized event polling and CPU loadruate since tasks can execute on any CPU.

A hybrid approach is to selectively partition sections dof fiipeline. Specifically, only sections of
the pipeline directly involved with network 1/0O are panitied. In the case of WatPipe, the reader and
writer tasks and their associated queues are partitiondacach subnet is allocated an equal portion of
the maximum number of connections. Advantages of movinghghaid approach include partitioning
to reduce overhead, efficiencies due to centralizing eveltihg and a small amount of load balancing
is possible since the remaining tasks are free to executeypiCRU. There are a number of tradeoffs
resulting from moving to a hybrid approach. While the memfmotprint is smaller than N-copy, it is
not as small as the unpartitioned approach. Contentionalslkared queues and data structures is higher
than the N-copy approach but reduced compared to the utiaeti approach since queues are only
selectively shared.

While completely partitioning the server likely yields thest performance, it offers no benefits com-
pared to N-copy for these experiments while possibly iringradditional overhead. On the other hand,
the performance of a completely unpartitioned server isdador it to be considered a reasonable choice.
Hence, the hybrid approach is chosen for WatPipe as it dffierdest compromise, while incurring only
a small performance penalty compared to N-copy.

Specifically, the hybrid approach involves partitionindestive sections of the pipeline. The idea
behind patrtitioning is to associate a task with a CPU andHar task to only handle requests from sub-
nets tied to the same CPU. Since there are four CPUs with taociged subnets, where applicable,
pipeline stages are similarly partitioned. Hence, readdrveriter tasks are assigned exclusively to a par-
ticular CPU with each type of task equally distributed amtmgyCPUs. Therefore, each reader or writer
task only executes on a single CPU and services the two subssbciated with that CPU. To reduce
contention, there is a separate queue per CPU for the ReaWdtalstages of the pipeline. For these
experiments, exactly four reader tasks are used, one assigreach CPU. The number of writer tasks is
one of the parameters that is varied during tuning to achiesdest performance. Since the maximum
number of connections is equally divided between the sgbaetingle listening socket does not provide
enough control because an accepted connection could comeafiry of the subnets. Therefore, a separate
listening socket is created for each subnet with one accégél per subnet, resulting in eight acceptor
tasks. While each acceptor task is associated with a spealfieet, they are free to execute on any CPU
as no affinities are set for these tasks. There is still ong/task handling polling for read events for all
subnets and one task handling polling for write events figudinets. Since both of these tasks are free to
execute on any CPU, their execution is throttled by intrasly@ small delay between polls.

While this approach seems very similar to N-copy, it has seigificant differences. Aside from the

138

4.6. 4GB

PCI-E 8257 : Ethernet 2 and 3

PCI-E

FSB |MCH IOH O
FCPU Ethernet 0 and 1
NB ESI (PCI-E) |[ESB-2 -
PCI-E PCI-E

Figure 4.2: Partial block diagram of server hardware

separate per-CPU entry-queues in the Reader and Writersstdighe pipeline, the data structures used to
track connections and requests are shared and there ide singred cache-table. Similar to the changes
made to theuserver cache table, readers/writer locks are used to allmeguwrent access to the cache
table. Hence, the hybrid implementation has a smaller mgifoatprint than the N-copy version. Not
all tasks are confined to a single CPU and some activitiesamdléd by a single task instead of having
a separate task per subnet or CPU. More specifically, thepame&eadPoll and WritePoll tasks do not
have affinities set and can execute on any processor. Thatadeaof allowing these tasks to float is that
if offers some flexibility for the scheduler to perform a streahount of load balancing to better handle
small variations in load.

Experiments were run to tune two versions of WatPipe: watpip and watpipe-b. For all versions of
WatPipe, the parameters tuned are the maximum number oftaimeous connections and the number of
writer tasks.

Table[4:I3(4) shows the results of tuning watpipe-nb. Eawhin the table represents a different
number of writers from 4 to 16. The columns represent a diffemaximum number of connections from
40,000 to 100,000. The experiments show the best perfomnfamavatpipe-nb is around 4 writer tasks
and 100,000 connections (17.04), with a peak throughput0O@D@vibps occurring at 56,000 requests
per second and with a sustained throughput of around 5835 Mbj30,000 requests per second. The
difference in peak throughput between N-copy watpipe-nth \@atpipe-nb is around 2% and between
N-copy symped-nb and watpipe-nb is also around 2%, with iatpb having lower peak throughput in
both cases. At 70,000 requests per second, watpipe-nbisghput is 2% better than N-copy watpipe-nb
and 2% better than N-copy symped-nb. But just after peak #0680requests per second, watpipe-nb’s
throughput is 6% higher than N-copy watpipe-nb and 4% higfiieen N-copy symped-nb. This stability is
even more impressive given that the peak of watpipe-nb s 2# lower than the best N-copy servers. A
more gradual decline after peak gives watpipe-nb a largetdlesed area than the N-copy servers despite
having a lower peak.

139

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections
Writers || 40,000| 60,000| 80,000| 100,000
200 | 12.58 | 15.02 | 14.89 | 14.37
300 | 12.60 | 16.37 | 16.29 | 16.11
400 || 12.61 | 16.39 | 16.41 | 16.40
500 | 12.59 | 16.34 | 16.36 | 16.36
600 | 12.60 | 16.29 | 16.30 | 16.29

(b) blockingsendfile

Maximum Number of Connections
Writers || 40,000| 60,000| 80,000| 100,000
4| 12.61 | 16.78 | 17.03 | 17.04
8| 12.60 | 16.77 | 16.93 | 16.92
12 || 1259 | 16.45 | 16.48 | 16.47
16 || 12.60 | 16.43 | 16.45 | 16.45

(a) non-blockingsendfile

Table 4.13: WatPipe experiments - 4 GB

Maximum Number of Connections|
Procs|| 40,000| 60,000| 80,000| 100,000
41| 12.86 | 16.84 | 17.09 17.10

Table 4.14:userver N-copy non-blocking SYMPED load balancing experitee 4 GB

Maximum Number of Connections
Writers || 40,000| 60,000| 80,000| 100,000
41 12.61 | 16.82 | 17.03 17.02

Table 4.15: N-copy non-blocking WatPipe load balancingeexpents - 4 GB

Maximum Number of Connections
Writers || 40,000| 60,000| 80,000| 100,000
41| 12.60 | 16.80 | 17.28 17.27

Table 4.16: Non-blocking WatPipe load balancing experitmied GB

Figure[ZP contains a portion of the system-level block iiagfor the server machine used in the
experiments[[31]. Specifically, the diagram shows the conme of the on-board network interfaces
and the PCI slots containing the additional Ethernet polethernet 0 and 1 are connected directly to
the Southbridge 1/0 Hub (IOH), Ethernet 2 and 3 are conneci@é dual gigabit Ethernet chip (Intel
Ophir 82571) to the IOH via a PCI-E connection and the remaiiiithernet interfaces are add-on cards
connected via PCI-E to the Northbridge Memory ControllebHMCH) and the IOH respectively. The
network interfaces, not directly connected to the IOH halditaonal latencies and CPU overhead, because
they must communicate over the PCI bus, compared to the neimrfaces connected directly to the

140

4.6. 4GB

IOH. These lower-overhead network-interfaces were notl isethe main experiments in this chapter,
however, several experiments were run using these netwtmkaces to see the effect of a small hardware
performance-imbalance on the servers. As a result of jgauitig, two of the CPUs on the machine
are associated with one lower-overhead network-intertau# one higher-overhead network-interface,
while the other two CPUs are associated with two highertmad network-interfaces. Talile4.14 shows
the results of tuning N-copy symped-nb, Table #.15 showsehelts of tuning N-copy watpipe-nb and
Table[4.I6 shows the results of tuning watpipe-nb. All theveses were run with 4 processes or writers
across all copies of the server and with a maximum number ofections from 40,000 to 100,000.
All the servers show a performance improvement due to thedawerhead direct-connection. N-copy
symped-nb has best performance at 100,000 connectionk0f1with a throughput of 6202 Mbps at
peak and 5897 Mbps at 70,000 requests per second. N-copipesp has best performance at 80,000
connections (17.03), with a throughput of 6196 Mbps at peak 2007 Mbps at 70,000 requests per
second. Watpipe-nb has best performance at 80,000 coong¢fi7.28), with a throughput of 6293 Mbps
at peak and 6051 Mbps at 70,000 requests per second.

Because of the imbalance, the two CPUs only associated kdgthigher-overhead network-interfaces
become saturated before the other two CPUs. The N-copyrseskiew a small increase in overall per-
formance but not in peak throughput. With the N-copy servigrs higher-overhead network-interfaces
cannot handle an increase in capacity, which throttleshtmughput of the entire system. Watpipe-nb,
however, has higher throughput at peak and higher overdbppeance. The reason watpipe-nb achieves
higher throughput is because not all of its tasks are confieedspecific CPU. Therefore, the free tasks
can be scheduled on the less saturated CPUs, freeing upspingeapacity on the CPUs only associated
with the higher-overhead network-interfaces. Examinimg itlle time of the servers at 58,000 requests
per second, the N-copy servers have an average of 4-5%riteoti two of the CPUs and 10-13% on the
other two CPUs, but watpipe-nb has an average of only 3—5&iile on all four CPUs. The end result
is watpipe-nb can take advantage of a small amount of loahbag to achieve higher throughput than
the N-copy servers.

As mentioned, the lower-overhead network-interfaces veelg used for the previous few experi-
ments. Therefore, these experiments are not discussdubfufbr example, in the Server Comparison
section. The remaining experiments in this chapter all hbsesame hardware configuration that does not
include these alternative network interfaces.

Table[4:T3(0) shows the results of tuning watpipe-b. Eashindhe table represents a different num-
ber of writers from 200 to 600. The columns represent a @iffemaximum number of connections from
40,000 to 100,000. The experiments show the best perforrfanavatpipe-b is around 400 writer tasks
and 80,000 connections (16.41), with a peak throughput 823@bps occurring at 56,000 requests per
second and with a sustained throughput of around 5395 Mbf3 @00 requests per second. Experiments

141

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

with additional rates between 50,000 and 56,000 requestsepend were run to explore the area of peak
throughput for the server (not shown). Based on these arpets, the peak throughput for watpipe-b

with 400 writer tasks and 80,000 connections is 5729 Mbpsiwity at 54,000 requests per second. The
throughput of N-copy watpipe-b is approximately 4% highepeak than watpipe-b and 5% higher at

70,000 requests per second.

N-copy watpipe-b and watpipe-b have their best performavittethe same configuration parameters.
However, based on vmstat data, watpipe-b has an average afld%me at peak and 3% at 70,000
requests per second, while N-copy watpipe-b has an avefé2§é ale time at peak and no idle time at
70,000 requests per second. These differences occur leeNacspy watpipe-b has less contention than
watpipe-b and no locking or sharing of application data s€©PUs.

Watpipe-b has 5% better throughput than sharedsymped-t6%nbetter throughput than N-copy
sharedsymped-b at peak. Both sharedsymped-b and N-copgdskeped-b have their best per-
formance with more processes than the number of writer tatskeatpipe-b: 700 processes for
N-copy sharedsymped-b and 600 for sharedsymped-b. Anrestirg difference between watpipe-b
and sharedsymped-b involves the amount of contention orcdbbe-table readers/writer lock. With
sharedsymped-b, all the processes are symmetric and nqusteathe lock on the cache-table at some
point while processing a request. Even though most of thaisitigns are for reading, all lock calls re-
guire some basic mutual exclusion to determine the lock ssaid also exclusive access is required on the
first request for a file. Hence, there are hundreds of prosess®ss multiple CPUs contending for the
cache-table lock. With watpipe-b, only the reader tasksiaeghe cache-table lock as the writer tasks
work with the mutex lock associated with individual caché&ries. Hence, with watpipe-b there are only
four tasks contending for the cache-table lock. As wellgsitnere are dedicated tasks servicing the vari-
ous stages of the pipeline, when a reader task blocks on the-¢able lock, the other tasks in the system
can continue execution. In order to compensate for blockimghe cache-table lock, sharedsymped-b
requires additional processes, increasing overhead.tialbn the memory footprint of sharedsymped-b
becomes large enough that disk 1/0O occurs as the file-systetreccan no longer hold the entire file set
causing the throughput of the server to be capped. While dglstors may influence the performance of
the servers, the effect of disk 1/O is too large to overcomige fact that watpipe-b has a small memory
footprint also accounts for its stability as it does not hdigk I/O for any of the tuning parameters tested.

4.6.4 Server Comparison

Figure[4.B presents the best performing configuration fon sarver-architecture implementatiquserver
N-copy non-blocking SYMPEDpserver N-copy blocking shared-SYMPED with readers/writeks,
N-copy non-blocking WatPipe, N-copy blocking WatPipgserver non-blocking SYMPEDyserver

142

Mbps

6000

5000

4000

3000

2000

1000

4.6. 4GB

i ncopy-symped-nb-100K-4p ——
watpipe-nb-100K-4w ----)€----

ncopy-watpipe-nb-100K-12w «---[=}---

ncopy-watpipe-b-80K-400w @y

- sharedsymped-nb-rw-aff-60K-4p ===~
watpipe-b-80K-400w ==~

symped-nb-80K-4p =€

i sharedsymped-nb-rw-80K-4p --Q---
ncopy-sharedsymped-b-rw-60K-700p - -l----
sharedsymped-b-rw-aff-60K-600p —@—

| | sharedlsymped-bTrw—6OK—3I()Op ----Ar-l---
0 10000 20000 30000 40000 50000 60000 70000

Requests/s

Figure 4.3: Throughput of different architectures - 4 GB

Server

Rank

watpipe-nb

N-copy symped-nb
N-copy watpipe-nb
N-copy watpipe-b

sharedsymped-nb with readers/writer locks and processtidf§

watpipe-b

Ao W NN R

N-copy sharedsymped-b with readers/writer locks 5
sharedsymped-b with readers/writer locks and processtaf§in 5

Table 4.17: Ranking of server performance - 4 GB

143

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

non-blocking shared-SYMPED with readers/writer lockserver blocking shared-SYMPED with read-
ers/writer locks piserver non-blocking shared-SYMPED with readers/writek$oand process affinities,
pserver blocking shared-SYMPED with readers/writer loakd process affinities, non-blocking WatPipe
and blocking WatPipe. The legend in Figlirel 4.3 is orderethftioe best performing server at the top to
the worst at the bottom. In the legend, “rw” indicates the ofseaders/writer locks and “aff” indicates
process affinities for the shared-SYMPED servers. Exclydimredsymped-b with readers/writer locks,
peak server throughput varies by about 15% (5416—6202 Mbpanhge of 786 Mbps.

Table[41¥ ranks the performance of the servers for the 4 GRlead. Only the best server of each
type is included in the ranking, so all the non-N-copy sesweithout process affinities are excluded from
the ranking. Again, based on a total of three runs for eackegefukey’s Honest Significant Difference
test is used to differentiate the servers with a 95% configléael. The servers are then ranked based on
mean area.

The top performer is watpipe-nb, followed by N-copy sympddand N-copy watpipe-nb, which have
approximately the same performance. The next groupingstsras N-copy watpipe-b and sharedsymped-
nb with readers/writer locks and process affinities. Wagipis next followed by the blocking shared-
SYMPED servers, N-copy sharedsymped-b with readersimdieks and sharedsymped-b with read-
ers/writer locks and process affinities. The non-blockiagrers without process affinities (not ranked),
symped-nb and sharedsymped-nb with readers/writer lagksear to have performance between watpipe-
b and the blocking shared-SYMPED server. The blocking sh&¥MPED servers, have approximately
the same peak as the non-blocking servers without proctsiies but larger decreases in throughput af-
ter peak. Sharedsymped-b with readers/writer locks (mitad) is last with the worst performance. Com-
paring the performance of the best version of WatPipe antdbeversion ofiserver, N-copy symped-nb
has a 2% higher peak at 56,000 requests per second but watpipas 2% higher throughput at 70,000
requests per second. If only peak throughput is considéhed, N-copy watpipe-nb with its best peak
(not shown in Figur€4l3 as it has a lower condensed arealtkarotresponding server in the figure) and
N-copy symped-nb have approximately the same throughpotait and at 70,000 requests per second.
Ignoring the N-copy servers and comparing the best verdsiaatPipe and the best version pderver
shared-SYMPED, watpipe-nb has 2% higher throughput thareslsymped-nb with readers/writer locks
and process affinities. For the non-blocking servers, badtPige and the begkserver servers have sim-
ilar performance. The real difference occurs among thekitgcservers, with WatPipe having a clear
advantage. The best blocking WatPipe server, N-copy wedpjhas 9% higher peak throughput than the
best blockinguserver, sharedsymped-b with readers/writer locks andegroaffinities.

Finally, consider the difference between the N-copy andleicopy versions of a server. For non-
blocking WatPipe, the differences in peak throughput isreximately 2% and for blocking WatPipe
around 4%. For non-blocking shared-SYMPED, the differeincpeak is 4% (assuming the same peak

144

4.6. 4GB

as for N-copy symped-nb), and for blocking shared-SYMPES3 khan 1%. For these experiments, the
performance advantage of N-copy over the hybrid servemnls

To better understand the performance of the servers, thedeafiguration of each server is profiled.
The OProfile, vmstat and mpstat data for these experimeretsianmarized in Tablds4]18 ahd4.19.
Some additional terms are used to describe the architeotuhe multiprocessor servers. In this section,
“N-copy” means the server is being run N-copy with each secepy and its associated subnets parti-
tioned to execute on a separate CPU, “rw” meansikatver is being run with a readers/writer lock for
its cache table and “aff” means that a single shared-SYMP&l2es is being run with process affinities
set so that its processes can be partitioned similar to N-cAmew section is added to the end of the
table and it contains the results of running mpstat duriegetkperiment. The row labelled “softirg” gives
the percent of time spent servicing software interruptsdéfrom these changes, the table is similar to
the profiling tables presented in the previous chapter. Roh eerver, only the values where there is a
significant difference among the servers are discussed.

Typically, more time spent in networking is an indicationhagher throughput. However, the non-
partitioned servers, symped-nb, sharedsymped-nb wittlersavriter locks and sharedsymped-b with
readers/writer locks have larger networking values (0@ Bthan the other servers, which are all par-
titioned, without correspondingly higher throughput. 8amy, these non-partitioned servers also have
large softirqg values (over 60%) and large e1000 values biotthich are typically associated with higher
throughput. These large values show the increased ovestieeautred as a result of not partitioning the
processes, subnets and CPUs.

As expected, the variougserver versions generally have higlegioll overheads than WatPipe. As
well, the blocking versions gfiserver have largegpoll overheads than the non-blocking versions since
they have significantly more processes. With WatPipe, tbekimg and non-blocking versions of the
server have approximately the saapell overheads since only the polling tasks call the event mestman
and these tasks are the same between the servers. Howeudrctipy WatPipe servers have lovepoll
overheads than the other WatPipe servers. This result ipeoted as WatPipe has centralized event
polling across all the CPUs while the N-copy versions paenfseparate polling in each server copy. Since
event polling is throttled for the experiments being prafjldl-copy WatPipe has approximately 4 times
the number of calls tepoll_wait as WatPipe. The number of callsdpoll_ctl is approximately the same.
Overall, the N-copy WatPipe servers have more system caised to events. The larger overhead for
WatPipe, despite fewer overall system calls related totey@nlikely a result of sharing a singégoll file
descriptor across CPUs.

According to the table, the blockingserver versions also incur higher scheduling overheadsttiea
non-blockinguserver versions. The increase in scheduling overhead suét i having more processes
that need to be scheduled. This effect does not hold trueNvitbpy WatPipe. Examining the average ker-

145

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

nel context-switching values shows that N-copy watpipdradalmost twice as much context switching as
N-copy watpipe-b, resulting in more scheduling overhead\feopy watpipe-nb. Since the bgsterver
configurations are non-blocking with only 4 processes, tmeunt of context switching is low so the
scheduling overheads for these servers is also low. Hoywaléne WatPipe servers perform well despite
having large average context-switching per second valolpared to the best performing SYMPED and
shared-SYMPED servers. The WatPipe servers have 10 torh88 thore context switching but still have
comparable performance, including both the non-blocking lslocking servers. While the difference in
scheduling overhead among the servers can be large, tted agarhead is small. Nevertheless, the large
scheduling differences highlight significant architeatudifferences among the servers.

The row labelled “idle” represents the amount of time thenkéspends executing its idle loop. The
amount of idle time for N-copy sharedsymped-b with readeitr locks and sharedsymped-b with read-
ers/writer locks and process affinities is large and helpsxfain their poor performance. Note as well,
the large kernel+arch values for these servers. As disduesdier, the large number of processes result
in contention for both the shared cache-table and systéatededata-structures. Eliminating idle time by
increasing the number of processes does not work for thgseriments as the memory footprint of the
server becomes too large and disk I/O starts to occur. Intfaetaverage file-system cache-size entry for
the sharedsymped-b with readers/writer locks and prodéegias is smaller than the size of the file set,
confirming that it incurs disk 1/0 during the experiment. Wpe-nb has the lowest idle time compared
to the other servers, explaining why it achieves excellerdughput despite additional overheads related
to sharing data across CPUs. This advantage is realizedninaieing certain operations and not pinning
all tasks to specific CPUs.

Much of the difference among the servers relates to panririgp of the server processes, subnets and
CPUs. Hence, the N-copy and hybrid servers perform better the other servers. Watpipe-nb has a
peak close to the peak of the best N-copy server, N-copy sgmpeand has a more gradual decline in
performance after peak. The performance of watpipe-nbrfgrising since it shares a number of queues
and data structures across processes and CPUs while thpyNseovers have no sharing at the appli-
cation level. As well, similar to the uniprocessor expetinse using blockingsendfile incurs a penalty
compared to non-blockingendfile for the in-memory experiments. Unfortunately, the blogkservers
require a large number of kernel threads due to the high ¢imout of the servers, resulting in memory
pressure and contention. Of the blocking servers, only kbeking WatPipe servers did not suffer from
memory pressure, however, the additional contention chlngehe large number of writer tasks resulted
in lower performance than the non-blocking WatPipe serv€ae benefit of the N-copy servers is re-
duced contention, resulting in better performance for Nycaatpipe-b than watpipe-b. In fact, N-copy
watpipe-b performed as well as the hybrid non-blocking stt&8YMPED server, sharedsymped-nb with
readers/writer locks and process affinities.

146

4.6. 4GB

Server userver userver | WatPipe | WatPipe userver userver
Arch symped| s-symped| pipeline | pipeline symped | s-symped
Write Sockets non-block block | non-block block | non-block | non-block
Max Conns 100K 60K 100K 80K 80K 80K
Processes/Writers ap 700p 12w 400w 4p 4p
Other Config N-copy | N-copy,rw N-copy | N-copy rw
Reply rate 47,474 43,378 49,229| 48,116 43,329 43,308
Tput (Mbps) 5666 5180 5866 5729 5176 5171
OPROFILE DATA
vmlinux total % 81.70 84.46 80.78 81.65 81.38 80.96
networking 29.70 20.30 27.58 28.48 33.00 32.88
memory-mgmt 30.52 24.38 28.75 29.15 27.63 27.37
file system 4.28 3.49 3.93 4.51 4.04 4.18
kernel+arch 3.91 7.48 6.45 5.85 3.97 4.02
epoll overhead 3.43 3.63 1.69 1.79 3.49 3.47
data copying 0.76 0.57 0.76 0.75 0.72 0.69
sched overhead 0.04 1.66 0.96 0.77 0.07 0.07
idle 6.6 19.72 7.39 7.18 6.15 5.96
others 2.46 3.23 3.27 3.17 2.31 2.32
e1000 total % 11.23 8.71 10.27 10.45 11.90 11.92
user-space total % 5.33 4,52 4.7 3.95 5.01 5.45
thread overhead 0.00 0 1.83 151 0.00 0
event overhead 1.84 1.45 0.44 0.37 1.71 1.69
application 3.49 3.07 2.43 2.07 3.3 3.76
| libc total % | 0.90 | 1.19] 123] 1.10] 0.88| 0.84]
| other total % | 0.84 | 1.12] 302 285] 0.83| 0.83|
VMSTAT DATA
waiting % 0 0 0 0 0 0
file-system cache (MB 2560 2438 2360 2360 2559 2395
ctx-sw/sec (kernel) 1083 74,730 129,836 64,003 680 921
MPSTAT DATA
softirq % ‘ 58 58 56 58 61 60

Table 4.18: Server performance statistics gathered unidadzof 56,000 requests per second - 4 GB

147

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

Server userver userver userver | WatPipe | WatPipe
Arch s-symped| s-symped| s-symped| pipeline | pipeline
Write Sockets block | non-block block | non-block block
Max Conns 60K 60K 60K 100K 80K
Processes/Writers 300p 4p 600p 4w 400w
Other Config rw rw,aff rw,aff
Reply rate 35,227 49,717 43,707 49,886 45,666
Tput (Mbps) 4193 5944 5210 5944 5448
OPROFILE DATA
vmlinux total % 82.90 81.94 83.36 79.33 80.84
networking 30.79 28.08 21.54 29.41 28.35
memory-mgmt 22.95 31.82 24.52 28.49 27.36
file system 4.05 4.17 3.78 4.53 4.55
kernel+arch 5.79 4.27 7.15 5.62 5.79
epoll overhead 6.86 2.36 3.66 2.58 2.5
data copying 0.60 0.64 0.62 0.72 0.72
sched overhead 1.18 0.08 1.53 0.48 0.78
idle 7.3 8.2 17.28 4.53 7.66
others 3.38 2.32 3.28 2.97 3.13
€1000 total % 10.26 10.82 9.13 10.91 10.36
user-space total % 4.65 5.49 4.97 5.44 471
thread overhead 0 0 0.01 2.32 1.93
event overhead 1.41 1.63 1.55 0.46 0.39
application 3.24 3.86 3.41 2.66 2.39
| libc total % | 1.11] 0.89| 1.32] 116] 1.06|
| other total % | 1.08| 0.86 | 1.22] 316| 3.03|
VMSTAT DATA
waiting % 0 0 0 0 0
file-system cache (MB 2415 2395 2327 2358 2360
ctx-sw/sec (kernel) 58,888 4523 72,645 11,096 59,401
MPSTAT DATA
softirg % | 64 59 57 58 56

Table 4.19: Server performance statistics gathered unldadaof 56,000 requests per second - 4 GB

148

4.7. 2GB

Maximum Number of Connections

Procs|| 40,000| 50,000 60,000| 70,000
41 11.71| 11.23 | 11.17 | 11.03
20 || 12.23 | 12.29 O O
32| 12.45| 12.71 O 0
40 || 12.42 | 12.52 O O
52 || 12.21 0 O 0
60 || 12.04 O O O

Table 4.20:userver N-copy non-blocking SYMPED experiments - 2 GB

4.7 2GB

This section examines the effect of memory pressure on thesseser architectures for multiprocessors
by configuring the server with 2 GB of memory. While the amoohimemory pressure in the system
is low relative to the 2.2 GB file set, the potentially highahghput of the server means the disk is a
bottleneck. Only the best servers from Secfiod 4.6 are teeldfor this workload. An interesting point
is whether, similar to the uniprocessor experiments, tloeknahg servers outperform the non-blocking
servers despite the fact that the system is under memorgyseeand the blocking servers have a larger
memory footprint.

4.7.1 Tuning N-copyuserver

Experiments were run to tune three versions of N-cqmerver: N-copy symped-nb, N-copy
sharedsymped-nb with readers/writer locks and N-copyesisgmped-b with readers/writer locks. For
all versions ofuserver, the parameters tuned are the maximum number oftaimeolus connections and
the number of processes.

Table[4.2D shows the results of tuning N-copy symped-nbhEae in the table represents a different
number of processes from 4 to 60, with the number of procespessenting the total number of processes
running across all copies of the server. The columns reptesdifferent maximum number of connections
from 40,000 to 70,000, also cumulative across all the servigme experiments show the best performance
for N-copy symped-nb is around 32 processes and 50,000 ctoine (12.71), with a peak throughput of
4012 Mbps occurring at 54,000 requests per second and ansastaAroughput of 3856 Mbps at 70,000
requests per second. This result represents a decline mhamately 35% at peak and 32% at 70,000
requests per second compared to the best N-copy sympea-titefd GB experiments.

149

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

Maximum Number of Connections$
Procs|| 40,000| 50,000| 60,000| 70,000 Maximum Number of Connections
41 1160 | 11.28 | 11.13 | 11.07 Procs|| 40,000| 50,000| 60,000| 70,000

20 || 1259 | 13.46 O O 200 || 11.95| 12.45| 12.00 | 11.24

40 0 13.88 0 O 300 | 12.35| 13.68 | 12.76 | 11.95

60 || 12.70 | 13.98 O O 400 | 12.50 | 13.66 | 12.17 O

80 0 O 0 O 500 || 12.54 | 12.51 O 0
100 || 12.73 O O O

(b) blockingsendfile

(a) non-blockingsendfile

Table 4.21:userver N-copy shared-SYMPED with readers/writer lockseexpents - 2 GB

The vmstat data for the server for its best configuration €d0®requests per second shows that it
has an average file-system cache-size of 1.35 GB. Despitgeafiie-system cache, the server spends an
average of 36% of its time waiting for disk 1/0. As shown in Teel8.20, increasing the number of con-
nections results in verification problems, as well, incirgghe number of processes reduces throughput
and eventually causes verification errors.

As the server copies are independent, increasing the numhipeocesses results in a large change in
memory footprint. For example, increasing the number otesses from 32 to 52 with 50,000 connec-
tions at 70,000 requests per second reduces the size ofdatsy$ilem cache by 64 MB and increases 1/O
wait to 44%. Given the high throughput of the server, it appéhat disk I/O is a bottleneck despite the
file-system cache containing a large portion of the file set.

No N-copy symped-b experiments are run due to its large mgfieotprint. Sharedsymped-nb ex-
periments are run and its smaller memory footprint shouldrbadvantage for this workload. Based on
the results in Sectidn 4.6, only the shared-SYMPED servétsn@aders/writer locks are considered for
this workload.

Table[4:Z1(g) shows the results of tuning N-copy sharedegrmbp with readers/writer locks. Each
row in the table represents a different number of processes 4 to 100, with the number of processes
representing the total number of processes running aclasspées of the server. The columns represent
a different maximum number of connections from 40,000 t®@0, The experiments show the best
performance for N-copy sharedsymped-nb with readergwiiicks is around 60 processes and 50,000
connections (13.98), with a peak throughput of 4570 Mbpsiootw at 54,000 requests per second and
a sustained throughput of 4235 Mbps at 70,000 requests pende This result represents a decline of
approximately 26% at peak and 26% at 70,000 requests pandeompared to the best N-copy symped-
nb for the 4 GB experiments.

150

4.7. 2GB

Compared to N-copy symped-nb, N-copy sharedsymped-nbreadtthers/writer locks has 12% higher
throughput at peak and 9% higher throughput at 70,000 régjpes second. The performance difference
appears to be related to memory footprint. For their besfigorations at 70,000 requests per second,
N-copy sharedsymped-nb with readers/writer locks hasceopiately a 138 MB larger file-system cache
on average despite having almost twice the number of preseskhese two factors combine to reduce
the I/O wait for N-copy sharedsymped-nb with readers/writeks at 70,000 requests per second to
10%. However, similar to N-copy symped-nb, increasing ti@lper of connections results in verification
failures due to timeouts on large files. Since the memorypfoat of the server increases as the number of
processes increases, it is expected that performancedsbeetually start to decline. However, as each
copy of the server shares a cache table, the memory foogmomis slowly. Despite this slow growth,
N-copy sharedsymped-nb with readers/writer locks beginsxperience verification failures beyond 60
processes. As the server processes are symmetric, the nofmeguests read across all server copies
increases with the number of processes. Eventually, mquests are read than the server can handle and
verification errors occur. As well, once the server beginseerencing timeout problems, both the number
of requests read and the throughput decrease.

Tableg[4.Z1(0) shows the results of tuning N-copy sharedsghipwith readers/writer locks. Each row
in the table represents a different number of processes &@dnto 500, with the number of processes
representing the total number of processes running aclasspées of the server. The columns represent
a different maximum number of connections from 40,000 t®@0, The experiments show the best
performance for N-copy sharedsymped-b with readers/migieks is around 300 processes and 50,000
connections (13.68), with a peak throughput of 4589 Mbpsiooty at 56,000 requests per second and
a sustained throughput of 3549 Mbps at 70,000 requests pende This result represents a decline
of approximately 15% at peak and 23% at 70,000 requests pendecompared to the best N-copy
sharedsymped-b for the 4 GB experiments.

Despite a lower condensed area, the peak throughput of thieNseopy sharedsymped-b with
readers/writer locks is approximately the same as for the-blocking version. However, N-copy
sharedsymped-b with readers/writer locks has a largerdeiiithroughput as the request rate increases,
resulting in lower overall performance. At 70,000 requess second, N-copy sharedsymped-b with
readers/writer locks has 16% lower throughput than N-cd@redsymped-nb with readers/writer locks.
Similar to the uniprocessor experiments, blocking servegsiire additional processes to prevent a sharp
decline in throughput at higher request rates. Unfortupatiee average file-system cache for the server
with 300 processes, its best configuration, is already 75 MBIlgr at 70,000 requests per second than
the best non-blocking configuration. Increasing the nunatb@rocesses from 300 to 400 while keeping
the number of connections at 50,000 further reduces thegedile-system cache-size by 45 MB. At this
point, any potential performance gains from the additigmmatesses are offset by increased 1/0O wait due

151

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

to a smaller file-system cache. While the throughput at migbguest rates may increase somewhat as
the number of processes increases, peak throughput dedciimit the overall performance of the server
decreases. As for all the servers under memory pressure, itha tension between having a sufficient
number of processes to compensate for I1/O wait and the iser@amemory footprint resulting from the
additional processes.

Unlike N-copy symped-nb and N-copy sharedsymped-nb withdees/writer locks, N-copy
sharedsymped-b with readers/writer locks has fewer vatifio problems. Similar to the uniprocessor
experiments, blockingendfile causes the server to be self limiting because it spends rimoeeservicing
existing requests rather than reading new requests. [Rdsping self limiting, however, increasing the
number of connections reduces the memory footprint of tineeseresulting in more time spent waiting
for disk 1/0 and eventually requests begin to timeout as ffidency of the server decreases.

4.7.2 Tuning N-copy WatPipe

Experiments were run to tune the two versions of N-copy VePiN-copy watpipe-nb and N-copy
watpipe-b. For both versions of WatPipe, the parametersttane the maximum number of simultaneous
connections and the number of writer tasks. As well, forfal YWatPipe experiments for this workload,
the number of reader tasks per CPU is increased from one tolfigreased concurrency with respect to
reading requests is helpful when reader tasks block waftinglisk I/O related to finding and opening
files.

Table[4:22(d) shows the results of tuning N-copy watpipe-Blach row in the table represents a
different number of writer tasks from 4 to 100, with the numbé writer tasks representing the total
number of writers running across all copies of the servere @tlumns represent a different maximum
number of connections from 40,000 to 70,000. The experignsinbw the best performance for N-copy
watpipe-nb is around 100 writer tasks and 50,000 connextibh.43), with a throughput of 4594 Mbps
occurring at 54,000 requests per second and a sustainedjtimat of 4598 Mbps at 70,000 requests per
second. While peak throughput occurs at 70,000 requestseoend, throughput is relatively flat after
45,000 requests per second. This result represents aeletlapproximately 26% at 56,000 requests per
second and 20% at 70,000 requests per second compared testhi-oopy watpipe-nb for the 4 GB
experiments.

With WatPipe, the incremental cost of adding additionakevriasks is small since the address space
is shared. Hence, N-copy watpipe-nb has stable performastee number of writer tasks increases. For
its best configuration at 70,000 requests per second, veatfiiphas a file-system cache-size that is only
approximately 4 MB smaller than N-copy sharedsymped-nih wetders/writer locks for its best con-
figuration despite having 100 writer tasks compared to 6@esgarocesses for N-copy sharedsymped-nb

152

4.7. 2GB

Maximum Number of Connections
Writers || 40,000| 50,000| 60,000 70,000
4| 11.53 | 10.80 | 10.73 | 10.66

20 || 12.46 | 13.82

40 || 12.52 | 14.40

60 || 12.51 | 14.32

80 || 12.51 | 14.33
100 || 12.52 | 14.43 O

Maximum Number of Connections
Writers || 40,000| 50,000| 60,000 70,000
200 || 12.58 | 14.25 | 13.46 | 12.30
300 | 12.58 | 14.88 | 15.07 | 14.03
400 || 12.59 | 14.88 | 15.00 | 15.01
500 | 12.58 | 14.91 | 15.25 O
600 || 12.58 | 14.89 O O

(b) blockingsendfile

Ogo|ig|4d

[iy

(a) non-blockingsendfile

Table 4.22: N-copy WatPipe experiments - 2 GB

with readers/writer locks. While the memory footprint fastb servers grows slowly as the number of
writer-tasks/processes increases, the memory footpfittieoN-copy watpipe-nb server grows slower.
In addition, N-copy watpipe-nb does not suffer from verifica problems as the number of writers in-
crease because the tasks in WatPipe are not symmetric. fotegranlike adding processes to N-copy
sharedsymped-nb with readers/writer locks, adding amiuiti writer tasks to WatPipe does not result in
more requests being read than can be serviced.

Increasing the number of connections has a larger effe¢teomemory footprint of N-copy watpipe-nb
because the size of many of the data structures in WatPig&epertional to the number of connections.
Moving from 50,000 to 60,000 connections reduces the aediilgsystem cache-size by approximately
73 MB. However, the big problem is that the server acceptsrtany connections resulting in verification
problems due to timeouts.

Table[4.22(H) shows the results of tuning N-copy watpipEdch row in the table represents a differ-
ent number of writer tasks from 200 to 600, with the number fartasks representing the total number
of writers running across all copies of the server. The colsinepresent a different maximum number of
connections from 40,000 to 70,000. The experiments shovéle performance for N-copy watpipe-b
is around 500 writer tasks and 60,000 connections (15.2#),arhroughput of 5012 Mbps occurring at
60,000 requests per second and a sustained throughput4MI88s at 70,000 requests per second. This
result represents a decline of approximately 16% at peald 2¢dat 70,000 requests per second compared
to the best N-copy watpipe-b for the 4 GB experiments.

N-copy watpipe-b has 8% higher throughput than its nonitmccounterpart. This difference in per-
formance is surprising because N-copy watpipe-b has arlargeory footprint than N-copy watpipe-nb.
For example, at 70,000 requests per second, N-copy wallfsdde-system cache is 41 MB smaller than
N-copy watpipe-nb for their respective best configuratidiewever, N-copy watpipe-b spends less time

153

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

waiting for I/0 than N-copy watpipe-nb, 3% versus 17%. Patthe reason N-copy watpipe-b spends only
a small amount of time waiting for 1/O is its ability to supparlarge number of connections without ver-
ification problems; a larger number of connections allovessarver to operate more efficiently. However,
even for lower connection values, where N-copy watpipesb aerifies, N-copy watpipe-b has higher
overall throughput. For example, at 50,000 maximum conoestN-copy watpipe-b has a peak of 4788
Mbps at 45,000 requests per second, 4% higher that N-copyipeanb. It appears that using blocking
sendfile allows for better disk efficiency and higher throughput.

N-copy watpipe-b also has higher throughput than N-copyestsymped-b. For their best config-
urations, N-copy watpipe-b has 9% higher throughput at geak N-copy sharedsymped-b and 41%
higher throughput at 70,000 requests per second. In thées daes difference is that each watpipe-b copy
uses a completely shared address-space, resulting in éesmatrall memory footprint than N-copy
sharedsymped-b. As seen in the non-blocking experimemisnihe number of writer-tasks/processes is
less than 100, the difference in memory footprint betweeroy shared-SYMPED and N-copy WatPipe
is small. However, for a larger number of writer-tasks/gsses the difference in memaory footprint be-
comes important. For example, with 500 writer-tasks/pseee respectively and 60,000 connections at
70,000 requests per second, N-copy sharedsymped-b hassgsfiéan cache that is approximately 207
MB smaller on average, around 14%, compared to N-copy wetpipThe large performance difference
at 70,000 requests per second occurs because the memamjribof N-copy watpipe-b grows very grad-
ually as writer tasks are added, unlike N-copy sharedsyrhpeesulting in two advantages. First, N-copy
watpipe-b can support a sufficient number of writers to awldrge decline in performance for higher
request rates. Second, N-copy watpipe-b gets better peaifure even with fewer threads because it has a
smaller memory footprint than N-copy sharedsymped-b.

4.7.3 Tuningpserver

Experiments were run to tune two versionspserver: sharedsymped-nb with readers/writer locks and
process affinities and sharedsymped-b with readers/voitks and process affinities. For all versions of
pserver, the parameters tuned are the maximum number oftaimeolus connections and the number of
processes. Npserver SYMPED experiments are run for this workload becassever SYMPED does
not support partitioning of requests and processes withecbming equivalent to the N-copy version.

Table[4:23(3@) shows the results of tuning sharedsympedittb readers/writer locks and process
affinities. Each row in the table represents a different nemath processes from 4 to 100 and the columns
represent a different maximum number of connections fron@@to 70,000. The experiments show
the best performance for sharedsymped-nb with readetsfvioicks and process affinities is around 60
processes and 50,000 connections (14.02), with a peakgiwot of 4584 Mbps occurring at 56,000 re-

154

4.7. 2GB

Maximum Number of Connections

Maximum Number of Connections
Procs|| 40,000| 50,000| 60,000| 70,000
Procs|| 40,000| 50,000| 60,000| 70,000
4| 11.71 | 11.34 | 11.22 | 11.26
200 | 1198 | 12.75 | 12.04 | 11.01
20 || 1255 | 13.57 O O
300|| 12.46 | 13.41 | 12.79 | 11.70
40 || 12.68 | 13.89 O O
400 | 12.58 | 13.36 | 11.76 O
60 || 12.68 | 14.02 O O
500 | 12.53 | 11.89 O O
80 || 12.72 O O O
600 || 12.44 O O O
100|| 12.70 O O O

b) blockingsendfile
(a) non-blockingsendfile (®) g

Table 4.23:userver shared-SYMPED with readers/writer locks and poeafffities experiments - 2 GB

quests per second and a sustained throughput of 4197 Mbs0ft07requests per second. This result
represents a decline of approximately 23% at peak and 26%,@00 requests per second compared to
the best sharedsymped-nb with readers/writer locks armepsaaffinities for the 4 GB experiments.

Compared to N-copy sharedsymped-nb with readers/writekslo sharedsymped-nb with read-
ers/writer locks and process affinities has approximatetysime throughput at peak. In fact, the perfor-
mance of the two servers is similar; the differences in thhput seem to be in the range of experimental
variation. At 70,000 requests per second, the averageysle® cache-size of sharedsymped-nb with
readers/writer locks and process affinities is approxiipd@eviB smaller than N-copy sharedsymped-nb
with readers/writer locks. While there is a small differenapproximately 4%, for the equivalent 4 GB
experiments, disk I/O and a similar memory footprint in th&R experiments seems to have equalized
performance.

Table[4:23(0) shows the results of tuning sharedsympedtbreaders/writer locks and process affini-
ties. Each row in the table represents a different numberafgsses from 200 to 600 and the columns
represent a different maximum number of connections frof@@®to 70,000. The experiments show
the best performance for sharedsymped-b with readersfwdtks and process affinities is around 300
processes and 50,000 connections (13.41), with a peakgimpotiof 4576 Mbps occurring at 54,000 re-
quests per second and a sustained throughput of 3521 Mbs0ft07requests per second. This result
represents a decline of approximately 16% at peak and 23%,@00 requests per second compared to
the best sharedsymped-b with readers/writer locks andepsaaffinities for the 4 GB experiments.

Compared to N-copy sharedsymped-b with readers/writdslogsharedsymped-b with readers/writer
locks and process affinities has approximately the sameighmut at peak and at 70,000 requests per
second. While these two rates are similar, the N-copy sdrasibetter performance in the middle rates,
resulting in better overall performance. At 70,000 regsigsdr second, the file-system cache-size of

155

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

sharedsymped-b with readers/writer locks and processteffins approximately 81 MB smaller than
N-copy sharedsymped-b with readers/writer locks. Sintitathe 4 GB experiments, sharedsymped-b
with readers/writer locks and process affinities has a tangemory footprint compared to the N-copy
server because of larger data structures as a result ohghfde descriptors across all the server pro-
cesses. Both servers have their best performance with the garameters and both servers suffer from
the same problem with this configuration, a sharp declindioughput at higher request rates. Despite
the difference in memory footprint, the performance of teghvers for their best configuration at 70,000
requests per second is dominated by an insufficient numbmooesses, resulting in similar throughput.
The effect of this larger memaory footprint is more pronouheg 400 processes and beyond. For exam-
ple, with 400 processes and 50,000 connections at 70,00@stqper second, the difference in memory
footprint grows to 103 MB. At this point, the difference in mery footprint begins to have a large effect
on performance.

4.7.4 Tuning WatPipe

Experiments were run to tune the two versions of WatPipepipatnb and watpipe-b. For both versions
of WatPipe, the parameters tuned are the maximum numbemaftsineous connections and the number
of writer tasks.

Table[4:24(4) shows the results of tuning watpipe-nb. Eaghin the table represents a different
number of writer tasks from 4 to 100. The columns represeifterent maximum number of connections
from 40,000 to 70,000. The experiments show the best pedioca for watpipe-nb is around 100 writer
tasks and 50,000 connections (14.43), with a throughpu6884bps occurring at 54,000 requests per
second and a sustained throughput of 4565 Mbps at 70,00@stqgper second. This result represents
a decline of approximately 24% at peak and 22% at 70,000 stsjyeer second compared to the best
watpipe-nb for the 4 GB experiments.

Compared to N-copy watpipe-nb, watpipe-nb has approxim#ite same throughput at peak and at
70,000 requests per second, as well as the same condensedHeever, watpipe-nb has a smaller
memory footprint. Comparing the best configuration for beénvers at 70,000 requests per second,
watpipe-nb has a 34 MB larger file-system cache than N-cogpip&nb. As well, watpipe-nb spends
less time waiting for 1/O, 14% versus 17% for N-copy watpige- While both of these differences are
small, the expectation is that the watpipe-nb should haghts} higher throughput. However, watpipe-nb
shares application data across CPUs, resulting in addltexecution costs.

Watpipe-nb has better overall performance than sharedsygimp with readers/writer locks and pro-
cess affinities. While watpipe-nb only has equivalent penénce at peak, and 9% better performance at
70,000 requests per second. Since all the tasks in watpigbare the same address space, it has a smaller

156

4.7. 2GB

Maximum Number of Connections Maximum Number of Connections

Writers || 40,000| 50,000| 60,000(70,000 Writers || 40,000| 50,000| 60,000(70,000

4| 11.53 | 11.13 | 10.92 | 10.89 200 || 12.56 | 14.26 | 13.74 | 12.58

20 || 12,50 | 14.21 O O 300 | 12.59 | 14.92 | 15.12 | 14.79

40 || 12.53 | 14.28 O O 400 || 12.57 | 14.94 | 15.19 | 14.88

60 || 12.53 | 14.28 O O 500 | 12.57 | 14.86 | 15.25 | 15.09

80| 1253 | 14.38 O O 600 | 12.56 | 14.86 | 15.14 | 15.09

100 || 12.52 | 14.43 O O 700 | 12.57 | 14.81 | 15.12 | 15.02
(a) non-blockingsendfile (b) blockingsendfile

Table 4.24: WatPipe experiments - 2 GB

memory footprint than sharedsymped-nb with readers/wiiteks and process affinities. For their best
configurations at 70,000 requests per second, watpipe-alamaverage file-system cache-size that is
36 MB larger than sharedsymped-nb with readers/writerdaakd process affinities, despite having 100
writer tasks versus 60 processes for the shared-SYMPERrserv

Table[4.24(8) shows the results of tuning watpipe-b. Eashindhe table represents a different num-
ber of writer tasks from 200 to 700. The columns representfardint maximum number of connections
from 40,000 to 70,000. The experiments show the best pedoce for watpipe-b is around 500 writer
tasks and 60,000 connections (15.25), with a throughpu®®2 Mbps occurring at 54,000 requests per
second and a sustained throughput of 4863 Mbps at 70,00@stgper second. This result represents
a decline of approximately 11% at peak and 10% at 70,000 stgjyeer second compared to the best
watpipe-b for the 4 GB experiments.

Compared to N-copy watpipe-b, watpipe-b has approximatalysame throughput at peak but 3%
lower throughput at 70,000 requests per second. Watpipestigher throughput for some of the middle
rates, resulting in similar overall performance. Howeveatpipe-b has a smaller memory footprint than
N-copy watpipe-b. Comparing the best configuration for bedhvers at 70,000 requests per second,
watpipe-b has a 34 MB larger file-system cache than N-coppipetb, the same difference as the non-
blocking WatPipe servers. While this difference is smélé expectation is that watpipe-b should have
slightly higher throughput. Again, any performance gairesafset due to higher execution costs resulting
from sharing data across CPUs.

Watpipe-b has better overall performance than sharedsyinp8% higher throughput at peak and
38% higher throughput at 70,00 requests per second. Threratiife in performance is due to a smaller
memory footprint for watpipe-b compared to sharedsympedtivreaders/writer locks and process affini-
ties. For their best configurations at 70,000 requests paEmse watpipe-b has an average file-system

157

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

cache that is 214 MB larger, approximately 16%, than shareded-b with readers/writer locks and pro-
cess affinities. Similar to the situation with N-copy, watpib has two advantages over sharedsymped-b
with readers/writer locks and process affinities. Watggsas a smaller memory footprint so it can sup-
port a sufficient number of threads to prevent a decline ifop@ance at high request rates and it can get
better performance with fewer threads because its has desmamory footprint than sharedsymped-b
with readers/writer locks and process affinities.

4.7.5 Server Comparison

Figure 4.4 presents the best performing configuration fon sarver-architecture implementatiquserver
N-copy non-blocking SYMPEDyserver N-copy non-blocking shared-SYMPED with readeriséwtocks,
pserver N-copy blocking shared-SYMPED with readers/wiibeks, N-copy non-blocking WatPipe, N-
copy blocking WatPipepserver non-blocking shared-SYMPED with readers/writeikéoand process
affinities, userver blocking shared-SYMPED with readers/writer loaks process affinities, non-blocking
WatPipe and blocking WatPipe. The legend in Fiduré 4.4 isi@d from the best performing server at the
top to the worst at the bottom. Peak server throughput vagiesbout 25% (4012-5012 Mbps), a range
of 1000 Mbps. Without N-copy symped-nb, the difference oaduo 10% (4570-5012 Mbps), a range of
442 Mbps.

Table[4.2b ranks the performance of the servers for the 4 GiRlead. Again, based on a total of
three runs for each server, Tukey’'s Honest Significant Bifiee test is used to differentiate the servers
with a 95% confidence level. The servers are then ranked lmasptean area.

The top performing servers are N-copy watpipe-b and watpjpghich have the same overall perfor-
mance. Though N-copy watpipe-b has better sustained thputghan watpipe-b, it is less stable after
peak; the throughput of watpipe-b is more stable after peaklting in approximately the same over-
all performance, despite lower sustained throughput. Txt grouping of servers have approximately
the same peak throughput of 4600 Mbps, but differing peréoroe after saturation. N-copy watpipe-nb
and watpipe-nb have approximately the same performandeoniy a small decline in throughput after
peak. Similarly, N-copy sharedsymped-nb with readerséwiiocks and sharedsymped-nb with read-
ers/writer locks and process affinities have approximaties same performance but a larger decline
in throughput after peak compared to non-blocking WatPipée final two servers in that grouping,
N-copy sharedsymped-b with readers/writer locks and slsgreped-b with readers/writer locks and pro-
cess affinities, also have similar performance with a largg ¢h throughput after peak. Though N-copy
symped-nb has the worst overall performance, its througdiiper peak declines gradually and its through-
put beyond 60,000 requests per second is actually higherthiestwo blocking shared-SYMPED servers.

Comparing the performance of the best version of WatPipetlamdbest version ofiserver, N-copy

158

Mbps

6000

5000

4000

3000

2000

1000

4.7. 2GB

ncopy-watpipe-b-60K-500w ——

watpipe-b-60K-500w =---)¢----

- ncopy-watpipe-nb-50K-100w ----[=}---
watpipe-nb-50K-100w

ncopy-sharedsymped-nb-rw-50K-60p --&--

B sharedsymped-nb-rw-aff-50K-60p -'--¥F-"
ncopy-sharedsymped-b-rw-50K-300p <€
sharedsymped-b-rw-aff-50K-300p ---Q---

e mcOPY-sympednb-SOK-32p k-
0 10000 20000 30000 40000 50000 60000 70000

Requests/s
Figure 4.4: Throughput of different architectures - 2 GB

Server Rank
N-copy watpipe-b 1
watpipe-b 1
N-copy watpipe-nb 2
watpipe-nb 2
N-copy sharedsymped-nb with readers/writer locks 3
sharedsymped-nb with readers/writer locks and processtifé 3
N-copy sharedsymped-b with readers/writer locks 4
sharedsymped-b with readers/writer locks and processtigf§in 4
N-copy symped-nb 5

Table 4.25: Ranking of server performance - 2 GB

159

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

watpipe-b has 9% higher throughput than sharedsymped-tibreaders/writer locks and process affini-
ties at peak and 19% higher throughput after saturation @000equests per second. Between the best
non-N-copy version of WatPipe and the best non-N-copy warsif userver, watpipe-b has 9% higher
throughput than sharedsymped-nb with readers/writerslackl process affinities at peak and 16% higher
throughput at 70,000 requests per second. For this worklNacbpy watpipe-b is the best perform-
ing server and N-copy watpipe-nb is the best performing ologking server. At peak, the throughput
of N-copy watpipe-b is 9% higher than N-copy watpipe-nb aba Bigher at 70,000 requests per sec-
ond. As mentioned earlier, the best N-copy server, N-coptpiwe-b, and the best non-N-copy server,
watpipe-b, have similar throughput at peak and watpipegi38a lower throughput at 70,000 requests per
second. The best N-comgerver, N-copy sharedsymped-nb, and the best non-N-capioneof userver,
sharedsymped-nb with readers/writer locks and processtafi also have approximately the same per-
formance.

To better understand the performance of the servers, thebefiguration of each server is profiled.
The OProfile, vmstat and mpstat data for these experimeatswanmarized in Tablds 4126 ahd 4.27.
Additional vmstat data is presented for this workload; the fabelled “blocks in” gives the average
number of blocks read in per second. Otherwise, the tabéesianilar to the profiling tables presented in
the previous workload. Note, a non-zero 1/0O wait value iatks that the profiling data must be scaled
because the profiling data gathered only accounts for timenwhe CPU is executing, so it does not
include 1/0O wait (similar to Sectioh=313). For each senaaly the values where there is a significant
difference among the servers are discussed. The effechafrmy OProfile is larger on the non-N-copy
servers, so their throughput is more adversely affected i@ N-copy servers.

Similar to the other experiments in this thesis, for pamidd servers, higher throughput corresponds
to larger networking, e1000 and softirq values, after agalor I/O wait. The two non-blocking WatPipe
servers, however, have slightly lower values than expegiash their throughput. The softirg and net-
working values are approximately 10% lower than expectedpased to the other servers. It is unclear
why these values are different for the non-blocking WatRgmers.

A larger number of threads corresponds to more context Bingcand higher scheduling values for a
server. However, the amount of context switching is alsolrhigher for these experiments, compared
to the 4 GB workload, because the best configuration for eactestends to require more kernel threads
to deal with blocking disk-1/0 and kernel threads blockingitimg for disk-1/0 also increase the amount
of context-switching. As well, the kernel idle values forstiworkload are generally larger compared to
the 4 GB workload. The increased idle time is likely a resfildaditional contention and locking in the
kernel related to updating the file-system cache as file daadded or removed. These values, however,
are comparable to the 4 GB experiment values for the servatdricurred disk-1/0.

The WatPipe servers have approximately 25% higher useesgeecution compared to the N-copy

160

4.7. 2GB

WatPipe servers. Increased execution time for the non{y-¥datPipe servers is expected as application
data-structures are shared across the CPUs, resultingditioadl overheads, e.g., locking and cache
coherency. Since the amount of time spent in user-spaceail, $he absolute differences are also small.

Similar to the uniprocessor experiments, the experimemtthfs workload show a correlation between
file-system cache-size and the throughput of a server. Blguitly configured servers with smaller mem-
ory footprints tend to have higher throughput and tend teehhbeir best configurations with more kernel
threads and/or connections. However, the experimentshtao an advantage to using blockisendfile.
With the uniprocessor experiments, it is difficult to separde advantages of using blockingndfile
from the effects of the read-ahead problem in the versioheLinux kernel used for those experiments,
but the patched Linux kernel used for these experiments doebave this problem. The variability of
the average blocks-in per second is less for these expasmespecially if the effects of OProfile are
eliminated. The mpstat data for the same experiments witB&uwofile running (not in the table) show
an average blocks-in per second difference of 1948 (2831,361) across all the servers at a request
rate of 56,000 requests per second. The minor differencbbaks-in among the servers appear related
to the size of the file-system cache; servers with largersfistem caches tend to have smaller blocks-in
values. For example, the non-blocking and blocking WatBgreers have average blocks-in per second
values within 1% of each other, and average file-system sagihe differences within 2—3%. Despite 400
additional workers, the blocking servers have averagesjitgem caches that are only 34—43 MB smaller
because the extra memory overhead is limited to each werk&tk.

At 56,000 requests per second, the blocléandfile servers in the experiment spend less time waiting
for disk I/O than the corresponding non-blocking serverswelver, since the blocking servers have larger
memory footprints, the expectation is they should havedngt© wait. Part of the lower 1/O wait can be
attributed to additional overhead incurred by the bloclgegvers. Low I/O wait combined with higher
throughput indicate that blockirggndfile accesses the disk more efficiently than non-blockinglfile for
the workload tested. Comparing the disk request pattemislftopy watpipe-nb and N-copy watpipe-b
reveals some interesting observations. The blocking sema&es disk-1/0 requests on fewer distinct files
and for the larger files these requests tend to be contigadlos/ing the server to take advantage of page
cache read-ahead. The result is the blocking server makes fiisk requests overall compared to the
non-blocking server and is able to service more requeste rémainder of the lower 1/O wait can be
attributed to more efficient disk access for the blockinyees.

The difference between the two servers is the duration ovechwiile data in the file-system cache
is accessed. With the blocking server, a single kernel thbdacks trying to send an entire file, so the
time over which the file data for a single file is accessed idIsfmhis approach has the added advantage
of reducing verifications problems due to timeouts. With loa-blocking server, a kernel thread may
interleave the sending of a large file with the sending of faeador many other files, so the time over

161

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

which the file data for a single file is accessed could be mustdo When there is memory pressure in
the system, the kernel evicts pages from the file-systemecasimg an LRU algorithm. For the blocking
server, since the pages associated with a file are accestad wishort span of time, it is likely that
the kernel would subsequently evict the entire file from thedistem cache because these pages would
become least recently used at approximately the same timeth& non-blocking server, the kernel is
more likely to evict portions of various files based on the-btotking server’s interleaved access-pattern.
As a result, the blocking server tends to read entire filas fdisk into the file-system cache when disk-
I/O is necessary, while the non-blocking server tends td i@asmaller portions of many files. The
blocking server benefits from the efficiency of contiguouskdieads and better file read-ahead caching.
A possible consequence of this difference is that the nookithg server may read in file data from disk
that is already in the file-system cache because individisil rdads tend to be for a fixed size of data.
Overall, the blocking server has better disk efficiency temnon-blocking server. This difference in disk
access allows a blockingendfile server to have the same or higher throughput than the camdspy non-
blocking server despite having a larger memory footprint.

The same analysis applies to the uniprocessor kernel inrtwops chapter, which also has a read-
ahead problem (see Sectibn—3.13). However, both thesegonsbbenefit blockingendfile, making it
difficult to separate out the effect of each.

162

4.7. 2GB

Server userver userver userver | WatPipe | WatPipe
Arch symped | s-symped| s-symped| pipeline | pipeline
Write Sockets non-block | non-block block | non-block block
Max Conns 50K 50K 50K 50K 60K
Processes/Writers 32p 60p 300p 100w 500w
Other Config N-copy | N-copy,rw | N-copy,rw N-copy | N-copy
Reply rate 31,365 37,524 39,097 37,902 41,161
Tput (Mbps) 3747 4490 4675 4511 4905
OPROFILE DATA
vmlinux total % 86.49 83.74 81.43 82.50 81.37
networking 20.26 24.15 23.35 22.16 24.58
memory-mgmt 25.64 26.87 25.71 26.42 25.93
file system 2.96 3.34 3.86 3.28 4.05
kernel+arch 5.65 5.29 6.52 7.47 7.48
epoll overhead 1.7 2.07 3.51 1.34 1.47
data copying 0.45 0.53 0.63 0.52 0.63
sched overhead 0.14 0.39 1.69 0.99 1.48
idle 27.75 18.82 12.65 17.05 11.84
others 1.94 2.28 3.51 3.27 3.91
e1000 total % 8.02 9.07 9.60 8.81 9.49
user-space total % 3.13 4.14 4.98 3.9 4.18
thread overhead 0.00 0.00 0.00 1.74 1.71
event overhead 1.02 131 1.62 0.30 0.35
application 2.11 2.83 3.36 1.86 2.12
| libc total % | 0.63| 0.74 | 1.21] 090 1.02|
| other total % | 1.73] 2.31] 2.78] 389 3.94|
VMSTAT DATA
waiting % 38 22 13 23 7
file-system cache (MB 1384 1539 1446 1519 1476
blocks-in/sec 28,593 28,442 31,614 29,620 30,399
ctx-sw/sec (kernel) 9476 34,044 179,025 128,876| 208,602
MPSTAT DATA
softirg % | 37 47 48 43 49

163

Table 4.26: Server performance statistics gathered unldadaof 56,000 requests per second - 2 GB

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

Server userver userver | WatPipe | WatPipe
Arch s-symped| s-symped| pipeline | pipeline
Write Sockets non-block block | non-block block
Max Conns 50K 50K 50K 60K
Processes/Writers 60p 300p 100w 500w
Other Config rw,aff rw, aff
Reply rate 38,253 38,139 37,489 | 39,951
Tput (Mbps) 4560 4562 4461 4756
OPROFILE DATA
vmlinux total % 83.35 81.81 81.40 80.24
networking 24.18 22.68 22.29 24.27
memory-mgmt 27.85 25.43 24.87 24.63
file system 3.41 3.81 3.36 4.03
kernel+arch 5.23 6.60 7.77 7.97
epoll overhead 2.09 3.39 1.78 2.09
data copying 0.54 0.59 0.56 0.62
sched overhead 0.42 1.60 1.23 1.79
idle 17.29 14.29 16.08 10.78
others 2.34 3.42 3.46 4.06
e1000 total % 9.13 9.38 8.83 9.38
user-space total % 4.41 4.94 4.69 5.08
thread overhead 0 0 2.17 2.27
event overhead 1.37 1.55 0.35 0.37
application 3.04 3.39 2.17 2.44
| libc total % | 0.78] 1.15] 093] 1.03|
| other total % | 2.33] 2.72] 415| 4.27|
VMSTAT DATA
waiting % 21 17 20 5
file-system cache (MB 1530 1364 1556 1522
blocks-in/sec 28,523 31,748 27,908 27,553
ctx-sw/sec (kernel) 37,632| 165,682 153,640| 222,268
MPSTAT DATA
softirg % | 47 45 42 49

Table 4.27;

Server performance statistics gathered unidedaof 56,000 requests per second - 2 GB

164

4.8. COMPARISON ACROSS WORKLOADS

4.8 Comparison Across Workloads

This section examines the performance of the best mulissar servers in the chapter across the two
workloads tested. Similar to the uniprocessor experimexstanemory pressure increases, the through-
put of the servers decrease. However, with the multiprazesgperiments, even a moderate amount of
memory pressure results in a sharp drop in throughput.

Figure[45 graphs the throughput of the servers versus steraymemory-size across the two work-
loads at 56,000 requests per second. Unfortunately, 56difiiests per second does not represent the
peak throughput for every server, making comparisons diffi€-or example, both N-copy watpipe-b and
watpipe-b have approximately the same throughput at paatkéo2 GB workload, but peak at different
request rates. To allow for a better comparison, Figure vaplts the condensed area of the servers across
the request-rates tested for the two workloads using aeslduistogram. The servers are on the horizontal
axis, with each server represented by a single bar and thesponding condensed area is on the vertical
axis. The black portion is the condensed area for the 2 GB leadkand the gray portion represents the
additional condensed area, due to higher throughput, ®dt®B workload. While the condensed area
gives a better picture of overall performance, it de-emiaeasdifferences in peak throughput.

The general pattern is the same for both the uniprocessomatiiprocessor experiments: as the
memory pressure in the system increases, the throughphe agfetrvers decrease. Therefore, the servers
achieve their best performance with the 4 GB workload. Wlhamet is no memory pressure, another
pattern emerges: the non-blocking servers require fewekénneads, resulting in low overheads and high
throughput, and the blocking servers require more kermehtts, resulting in higher overheads and lower
throughput.

The performance of all the servers drop with the 2 GB workldAtthen there is memory pressure in
the system, a different pattern emerges: memory footpridtdisk efficiency are two important factors
determining server performance. The blocking version araes benefits from better disk efficiency but
it also has a larger memory footprint than the correspondimgrblocking server. Since WatPipe uses a
shared address-space it can scale to a large number of Keneedls with only a small increase in memory
footprint. Hence, the blocking WatPipe servers performidast. Unfortunately, shared-SYMPED does
not scale as efficiently, resulting in the blocking shar&®ED servers having a large memory footprint
and lower performance compared to blocking WatPipe. As, Wb efficient scaling means the blocking
shared-SYMPED servers are unable to support a sufficienbacof processes, resulting in lower overall
performance than all the non-blocking servers, except py+&ymped-nb. N-copy symped-nb has the
worst performance as it has even less efficient scaling aed ot benefit from better disk efficiency.

Two additional factors affecting the throughput of the nputicessor experiments are high throughput
and the presence of multiple CPUs. These factors combinéfect ahe performance of the servers in

165

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

6500 e e e e

6000
5500
£ 5000 f

= w ncopy-symped-nb —+—

/“ncopy-sharedsymped-nb-rw ----3---

4500 r watpipe-nb -

ncopy-watpipe-nb @

ncopy-watpipe-b ===~

L sharedsymped-nb-rw-aff ----57--

ncopy-sharedsymped-b-rw - -~

3500 . slharedsymped-b—rlw—aff e fle

1 2 3 4 5
System Memory Size (GB)

Figure 4.5: Comparison of server throughput at 56,000 r&guser second across workloads

18
4GB =3
17 2GB mm |
16 1
<
Z 151
B
z 14
(5}
2
o 13 I
O
12 +
11 ¢
10
00 00 4. OC‘ OO "}5 lp o(‘ &/5
%J» %J, (9{0] %J» ?OJ, Q’b (?{O/' ?OJ, Q/b
Rty Ky & b, L. 4 “%e Ry K9
2, %, \ % % %, %,
2 2. % Y. L. Y %, 2
D, () , @, EoN () 12N
00:0 Oj&, e, 00‘6 O'O Oj} %
% OZO . ’?6 6/‘ %@ ‘/2[/
lp\ Oié \9}0
K Kz . o
6‘% - b
Server

Figure 4.6: Comparison of server performance across wadkslo

166

4.8. COMPARISON ACROSS WORKLOADS

various ways.

To achieve high throughput, the multiprocessor serversiredarger configuration parameters, re-
sulting in larger memory footprints. Specifically, the Howg servers require a large number of kernel
threads to handle blocking network-l/O. While the non-klog servers also require additional kernel
threads to handle blocking disk-1/O and multiple CPUs, tiweéase is much smaller than for the blocking
servers. Even with the 4 GB workload, N-copy sharedsympadebsharedsymped-b with readers/writer
locks and process affinities have large enough memory fiotspto affect their performance. The best
configuration parameters for these two servers is at the pdiare disk I/O begins to occur. Hence, even
though there is little to no disk I/O for the best configuratif the two servers, the memory footprint of
the server limits performance; once disk I/O occurs, théoperance of a server begins to level off and
then decrease as its tuning parameters are increased.

To deal with blocking disk-1/0, the number of kernel threaslguired increases for the 2 GB workload,
resulting in additional memory pressure. However, thedargemory footprints are mitigated by a larger
system memory-size, 2 GB versus a system memory-size ofB.@& &5 GB for the uniprocessor experi-
ments with memory pressure. In fact, the multiprocessaressmeed larger file-system caches-sizes than
either of the two uniprocessor workloads with memory pressecause of higher throughput. Despite the
larger file-system caches, however, the decline in througbfithe multiprocessor experiments is sharper.
The presence of /0 wait indicates the 2 GB workload is diskriab Given the high request rates, even a
small percentage of requests requiring disk I/O means #ies diecome a bottleneck.

Another difference with the multiprocessor experimentddta sharing and contention across CPUS,
reducing the parallel execution of the system, especialiytfe non-N-copy servers since they also share
application data among a larger number of threads and aCfess. This problem affects the in-memory
experiments as well. Note the poor scalability moving fror@RU to 4 CPUs in Section 4.4. For ex-
ample, data sharing and contention at the application Bwelss CPUs results in worse performance for
watpipe-b in the 4 GB workload compared to N-copy watpipesi watpipe-b, despite having a smaller
memory footprint, has performance equivalent to N-copypipet-b in the 2 GB workload. The problem
is worse when there is disk 1/0O because the file-system cadtered, resulting in additional locking and
contention as file data is added and removed. As expectedy itk efficiency and a smaller memory
footprint result in more efficient use of the file-system @eind lower additional overheads. Therefore,
the blocking WatPipe servers receive an additional perdmce advantage.

The multiprocessor tuning parameters to achieve the bektrpmnce for the various servers are
larger than for the uniprocessor experiments. The chamge®cesses/kernel-threads over the two work-
loads is discussed earlier in this section. To achieve Highughput, the servers must also support a large
number of connections. Similar to the uniprocessor expanis) as the memory pressure in the system in-

167

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

creases, the throughput of the servers decreases and theinoihsimultaneous connections required also
decreases. Interestingly, for the multiprocessor expants) the non-blocking servers achieve their best
performance with a larger number of connections than thekbig servers for the in-memory workload.

It is not apparent why this tuning is opposite from the ungessor experiments. For the 2 GB workload,
the blocking and non-blocking shared-SYMPED servers hhgesame number of connections and the
blocking WatPipe servers require a larger number of conmest It is the larger memory footprint of the
blocking shared-SYMPED servers that limits their througthpnd hence, fewer connections are required.

4.9 Summary

This chapter examines the performance of several servhitestures on a multiprocessor machine for
two workloads: in-memory and disk bound. The architectimekide SYMPED, shared-SYMPED and
pipeline. Similar to the uniprocessor experimepterver is used for SYMPED and shared-SYMPED and
a new version of WatPipe is implemented for the pipeline itgcture.

The uniprocessor experiments identified a number of faetibesting the performance of the servers,
including memory footprint and disk efficiency. These fastare important, however, executing on a
multiprocessor introduces a number of challenges overugixgron a uniprocessor. Key issues include
data sharing across CPUs, affinities and partitioning, itecland high throughput. These factors must
be considered when designing a web server for execution oultjprcessor. Simply running a server
from the previous chapter on a multiprocessor does not aeHi@h throughput, despite the presence
of multiple kernel threads. For the experiments in the thesgardless of the server architecture or
implementation, it is important to set affinities to equaligtribute network interrupt processing across
the available CPUs. Based on this arrangement, extendingniiprocessor servers to support partitioning
is necessary to achieve best performance.

The most straightforward approach to achieve partitioigrig use an N-copy approach, with one copy
of a server per CPU. The system is partitioned by pinning sacver copy and its associated processes to
a specific CPU and having each server copy only handle rexjaoestubnets associated with that CPU. As
there is no shared data at the application level, the exji@tta the non-blocking N-copy servers should
perform the best for the in-memory workloads. The uniprsceservers are also extended to support
partitioning using a hybrid approach whereby the processfirequests is partitioned but application data
is shared across CPUs to varying degrees.

The advantage of sharing data is a smaller memory footgrowever, sharing data results in addi-
tional overheads to ensure safe access and can inhibitgbaraécution with multiple CPUs. Despite
improved locking, as the number of kernel threads sharig idareases, these overheads also increase.

168

4.9. SUMMARY

The N-copy servers typically have larger memory footprthien the non-N-copy servers due to data du-
plication across the copies; however, the difference in orgrfootprint is proportional to the number of
CPUs. While there may be many processes/kernel-threasts, dhe only a few CPUSs, limiting the amount
of additional duplication, e.g., the application cacherly® MB, so one application cache instead of four
is a savings of only 18 MB. When the system is not under memm@gsure, increased contention as the
number of kernel threads increases results in lower thnowigfor the blocking non-N-copy servers. When
there is memory pressure in the system, the tradeoff betweenory footprint and contention results in
approximately equivalent performance for the N-copy and-Recopy versions of a server, except for
blocking shared-SYMPED, where the N-copy version actulailg a smaller memory footprint than the
non-N-copy version due to an implementation issue.

Blocking userver N-copy shared-SYMPED has a smaller memory footiniamh the blocking non-
N-copy version because in the presence of a large numbemofdfile-descriptors and a large number
of processes, its index data-structures are costly enaughgate any memory savings generated for the
non-N-copy servers. In fact, several of the performandemihces observed are related to implementation
rather than architecture. Another example is the use of laaglmutex lock for the cache table. Better
performance is gained by switching to two-tiered lockindginal example is the scheduling of asymmetric
tasks in WatPipe has a large effect on performance.

The difference between server architectures is more prarealthan the difference between the
N-copy and non-N-copy versions of a server. Again, no sisgleer or tuning achieves the best per-
formance across all the workloads. For the in-memory wadtd) all the non-blocking servers that sup-
port partitioning have high performance and for the disktimbworkload blocking WatPipe, both N-copy
and multiprocessor, has the best performance. BlockindPipatperforms the best because of better
disk efficiency due to blockingendfile and a smaller memory footprint due to asymmetric tasks and a
shared address space. In fact, N-copy blocking WatPipemesfwell across both workloads, it has peak
throughput within 4% of the best server for the in-memory klaad and 9% higher throughput than the
other servers, not including watpipe-b, for the disk-bourmtkload. Hence, N-copy blocking WatPipe is
a good server choice across workloads.

Predicting the best server as the number of CPUs increashffidgsilt because other factors, such
as memory size and workload, must also be considered. Howssever architecture becomes more
important as throughput and the number of CPUs increase.infloaemory workloads, it is likely that
the non-blocking N-copy servers would have the best pedoca. As seen with the blocking servers, a
larger number of kernel threads results in increased ctiateand eventually lower throughput. When
there is memory pressure in the system, the situation is wliffreult to predict as there is a tradeoff in
the servers designs between memory footprint and contenfor situations where N-copy servers are
inappropriate, the pipeline architecture appears to dfégter scalability because of its use of a shared

169

CHAPTER 4. MULTIPROCESSOR WEB-SERVER ARCHITECTURES

address space and asymmetric tasks. As well, the serveatsarmore sensitive to memory pressure as
throughput increases, meaning that high disk-througtgpassential for good performance.

170

Chapter 5

Lessons Learned

A large part of the work for this thesis involved implemegtiar augmenting web servers, debugging
performance problems and running experiments. While theltseof this work are discussed in the pre-
vious chapters, the process of performing the work is natudised. This chapter discusses some of my
experiences and may provide useful information to anyose @hdertaking similar research.

5.1 Implementing Web Servers

The main software development effort for the thesis is theéPiid@ server, both the uniprocessor and

multiprocessor versions. However, | also augmemnisetver, Knot and Capriccio to enhance the servers
and fix bugs. Some of the design and implementation choigebdovarious servers are discussed in this

section, along with some of the implications of these chmice

It is reasonable for an application to avoid holding a lockileviperforming blocking 1/O, unless
the lock is explicitly protecting the 1/0 operation. Howevblocking I/O can occur in subtle ways, for
example, calls t@pen andfstat access the file system and are potentially blocking. In thpracessor
experiments, the application cache-tablgserver shared-SYMPED is protected by a global mutex-lock.
Originally, as part of adding an entry to the applicationhesatable, botlopen andfstat were called with
the cache lock acquired. Sinpserver shared-SYMPED has a shared application-cachehehiviour
reduces throughput when there is memory pressure becamse |ifrocess blocks holding the cache lock,
while waiting for 1/0 as a result of one of these calls, othergesses would tend to block waiting on the
cache lock. In fact, the problem was discovered becauseethiersaalways had a small amount of 1/0O wait
for the moderate disk-1/O experiments. To fix the problere,dhche lock is released before callismgen

171

CHAPTER 5. LESSONS LEARNED

andfstat, and reacquired afterwards. While there is extra lockingriogad, the overall result is higher
throughput and I/O wait is eliminated because of the aduficoncurrency.

A more general observation is that small decisions can beamportant when scaling to thousands of
connections and hundreds of processes. One example isdire data-structures usedjiserver to map
between a socket descriptor and the array containing itegponding request information. As discussed
in Section[Z.6R, when scaling to hundreds of processes avitiige number of connections, this data
structure can occupy hundreds of megabytes of space.

All the servers tend to operate more efficiently when a langenber of events are returned from each
call to the event mechanism. An interesting observatiohas tmore events returned for one call to the
event mechanism leads to more events per call for subsegaltmto the event mechanism. When more
events are returned from a call, more work is performed @sing the events, so the processes/kernel-
threads tend to execute longer resulting in a larger numberemts available for the next call.

While these observations apply to all the servers, ther@aamember of lessons learned specifically
related to the design and implementation of WatPipe.

5.1.1 WatPipe

One of the major design features of WatPipe is the use of agtricasks. Asymmetric tasks offer many
benefits but allowing tasks to execute freely and be schddylehe operating-system scheduler can lead
to problems such as contention and poor cache behaviourthftneghput of WatPipe can vary greatly
depending on how these tasks are scheduled. To deal with pineslems, WatPipe uses convoy or cohort
scheduling so reader tasks are not active at the same timatas tasks. As well, the execution of the
event polling tasks are also controlled by WatPipe. Bec#lusge tasks perform very little work aside
from calling epoll_wait, they do not use their entire time slice, so the Linux schedidnds to schedule
them frequently. However, event polling is more efficientantthe delay between polls is longer, i.e.,
fewer calls result in more events returned per call. Withuthiprocessor server, information is centralized
so deciding when to perform polling is simple. With the nquiticessor server, sections of the server are
executing independently on different CPUs, so making aaldecision is difficult. Hence, the simple
approach of throttling the polling tasks using a small dédaysed.

When designing the multiprocessor version of WatPipe,rdeténg how to partition the server was
difficult. The approach taken is to partition most of the senincluding the read stage and the write
stage, and creating a separate copy per CPU of the the cédbatal most of the internal data-structures.
In-memory experiments were then run to confirm the servérsughput is equivalent to the N-copy
server and to generate a baseline throughput for subseqompiarisons. Then, parts of the system were

172

5.2. PERFORMANCE PROBLEMS

unpartitioned in turn and experiments were run to deterrtheesffect on performance. This systematic
unpartitioning identified places where partitioning is essary for high performance, resulting in the
multiprocessor WatPipe server presented in the thesis.efample, unpartitioning the read and write
stages resulted in a large drop in throughput, but the aoctgeks and most of the internal data structures
did not require partitioning. An unpartitioned applicatioache also resulted in lower throughput initially,
but moving from a single global lock to two-tiered locking desa shared application-cache reasonable.

The initial design of multiprocessor WatPipe used a singigehing-port with a small number of
acceptor tasks. However, the final design contains sepkstdaing-ports with one acceptor task per
subnet. While using a single port for accepting connectismsore efficient, it does not provide enough
control. Because WatPipe uses fixed-sized queues and separaCPU queues, it is inappropriate, at
times, to accept connections from any subnet; but it may &soreable to continue accepting connections
for certain subnets. Therefore, each subnet must be hasdpatately to control the subnets from which
new connections are accepted. While it is possible to retheaumber of acceptor tasks by using accept
with a non-blocking listening socket, this approach leadsdiling. It is more efficient to use accept with
blocking sockets, requiring a separate acceptor task jpeesu

5.2 Performance Problems

Debugging for the thesis can be classified into one of twaycaies: correctness and performance. Track-
ing down either type of problem is challenging, especidilhéy only occur when the server is under a
full load. The focus of this section is the kernel problemscdivered in the course of the experiments.
While at least two of the kernel problems can be consideregcimess issues, all the problems presented
themselves initially as performance problems.

Debugging performance problems are difficult, especialigking a performance problem into the
Linux kernel. The first step is to recognize that a perforneammblem actually exists. In isolation, it is
difficult to determine if a server is running reasonably dhére is a problem. One advantage of comparing
multiple servers across various configurations is the dppity to compare throughput among the servers
to identify performance anomalies. Tracking down the seuwrftan anomaly can be challenging if these
anomalies only tend to occur when the server is under a fadl.Id he first step is to determine whether the
server itself is defective or if an external factor is cagdime problem. If an anomaly occurs consistently
with certain types of servers or server configurations, ghthisuggest a deeper problem. This situation
occurred several times over the course of the thesis. In ase, ¢there was a consistent performance
difference between the non-blocking and blocking servarshie disk bound workloads. In another case,
using a separate cache per process unexpectedly had ftmnmnce than using a shared cache. In a

173

CHAPTER 5. LESSONS LEARNED

final example, there was inconsistent throughput for migltipns with the same server configuration. In
each of these case, the problem was eventually traced imticitkix kernel

In tracking down these problems, | found OProfile data washetiiful because it tended to be too
coarse grained. Rather, other types of data gathered dimngxperiments, such as differences in the
average blocks-in from disk or the amount of I/O wait, wererenbelpful. Unexpected differences in
these statistics, helped to confirm a problem exists and svggested what type of problem is occurring.

A tool | found useful in tracking down Linux kernel problems $ystemTap[]2]. SystemTap is a
scripting language useful for instrumenting a running kirkernel. It works by executing a handler
on specified events, such as on entry to or exit from specifeedek functions. One useful feature of
SystemTap is the ability to access and print local contesitienthe kernel.

For example, this technigue was used to track down the readelproblem with non-blockirgendfile
in the 2.6.16-18 Linux kernel. Initially, SystemTap was dise understand and track the behaviour of
sendfile into the kernel. After identifying the important functioaad data structures involved, a subset of
the function parameters was printed on entry to these fumgtiLooking specifically at the output for the
functions involved in managing page-cache read-aheadlegi¢hat read-ahead was being disabled with
non-blockingsendfile. Based on this information, an examination of the relevantee code revealed the
source of the anomaly, a mismatch between the amount of Miskrd network 1/0O on calls teendfile.
Without a tool like SystemTap to trace thendfile call and narrow the search space, finding the problem
would have taken significantly longer because the Linuxéeimlarge and complicated.

5.3 Performance Experiments

There are a number of advantages to using the Linux kernebtra open-source software for perfor-
mance experiments. Access to the source is invaluable ¢Ritiga down problems and understanding
performance issues. A frequent suggestion when a probldouis is to upgrade to a newer version.
However, the Linux kernel and open-source software, in ggnare moving targets. In many cases, up-
grading to a new kernel does not solve a given problem, an@émegrsions of the kernel can have their
own problems, leading to performance regressions. For phearRigurd 51l shows the results of multi-
ple N-copy sharedsymped-nb with readers/writer locks expnts on the Linux kernel 2.6.24-3. The
lines labelled “No patch” are two separate runs of the sarperament, without rebooting the machine in
between runs, with an unpatched version of the kernel. Tiess liabelled “Patch” are two separate runs
of the same experiment, without rebooting the machine iwéeh runs, with a patched version of the
kernel (the same kernel used for the experiments in ChBptaamaining the patch in Sectign’A.2). The
results show that the throughput for the unpatched kernmluish lower than the patched kernel and the

174

6000

5000

4000

Mbps

3000

2000

1000

5.3. PERFORMANCE EXPERIMENTS

| Nopatch-run1 —+—
No patch - run 2 =-=-)----
Patch -run 1 -}~
. . . . Patch-run2 @
0 10000 20000 30000 40000 50000 60000 70000

Requests/s

Figure 5.1: Experiments unpatched and patched Linux ke6e24-3 - 2 GB

6000

5000

4000

Mbps

3000

2000

1000

T T T T T T T T
L No patch - run | ——
No patch - run 2 =-=-)----
Patch-run 1 -3~
. . . . Patch-run 2 =@
0 10000 20000 30000 40000 50000 60000 70000
Requests/s

Figure 5.2: Experiments with unpatched and patched Linuneke?.6.32 - 2 GB

175

CHAPTER 5. LESSONS LEARNED

performance of the second run is worse than the first run. Tihg with the patched kernel have higher
throughput and the performance is approximately equitddetween runs.

Figure[5.2 contains the same sequence of experiments wihZ24_ inux kernel. The unpatched ker-
nel behaves similarly to the unpatched 2.6.24-3 kernelh\itié same patch, experiments with the newer
kernel also show much higher performance. However, exmatisnwith the patched kernel have two
problems. First, there is a significant drop in performartcraund 54,000 requests per second. Second,
the second patched run has lower throughput than the firdtg@atrun. Without further investigation, it is
unclear whether the problem is with the patch or if there ttlagr problem with the kernel. In either case,
this small experiment illustrates the challenges of waykivith rapidly changing open-source software
and the fallacy that upgrading to a new version is a fix.

Many performance experiments were run for the thesis. Iy fdicof the experiments were run more
than once, and in some cases many times due to various pmbl&he most important lesson when
running a large number of experiments is to create scripgsitomate the process of running experiments
and summarizing the results as much as possible. Buildimgtscan be time consuming, but every script
| wrote has been used many times and has ended up saving ataoymt of time.

176

Chapter 6

Conclusion

This thesis examines uniprocessor and multiprocessorseeler architectures for serving static con-
tent to determine the key factors affecting their perforoganThe uniprocessor architectures examined
are thread-per-connection, SYMPED, shared-SYMPED arelipign Knot and Capriccio are used for the
thread-per-connection architectupserver for SYMPED and shared-SYMPED, and WatPipe for pigeli
WatPipe was implemented for the thesis and the other samagesbeen augmented so the implementation
for each architecture is state-of-the-art and uses cub&stt practices. The multiprocessor architectures
examined are SYMPED, shared-SYMPED and pipeline. To aehi@st performance on a multiproces-
sor, server architectures and implementations must betadjio support partitioning of kernel-threads,
subnets and CPUs. The corresponding uniprocessor semneeext@nded for multiprocessor execution
and also compared against N-copy versions of the servers.

Extensive experiments were run for each server on two waddpin-memory and heavy disk-1/0,
and for the uniprocessor servers a moderate disk-I/O wadkiwas also tested. These experiments are
used to compare the performance of the servers and to datetha factors that are important to achieve
high throughput.

Regardless of the server architecture or implementatimmgy tuning is critical to achieve best server
performance. Furthermore, no single tuning achieves tke Erformance for all workloads. An im-
portant difference among the servers is the range of paesmever which performance is stable. The
blocking servers tend to be more stable as the number of ctiang are increased and are less suscep-
tible to large-file timeouts than the non-blocking serveks. well, the servers with shared memory and
asymmetric tasks show better tuning stability as the nurob&ernel threads increase than the servers
with symmetric processes. Stability is an important feats it makes server tuning easier and it allows
a server configuration to operate well over a wide range okioads.

177

CHAPTER 6. CONCLUSION

One interesting result is the performance difference betweon-blocking and blockingendfile
across the workloads. For in-memory workloads, the mosbitapt factor is to keep the execution
overhead of the server small. Hence, the non-blocking semperform best as they require few kernel
threads. Once there is memory pressure in the system, penfice is dictated by the memory footprint
of the server. Since a large number of kernel threads aréreeqto handle blocking disk-1/0, servers
with shared address-space have higher throughput. As tmbetuof kernel threads increases, the use
of asymmetric tasks incur less additional execution owetheeompared to symmetric processes, though
the differences are small. Once the server is disk bound;jexffidisk access is also an important factor
in determining throughput. Despite having a larger memontgdrint and additional overheads, servers
usingsendfile with blocking sockets have better disk efficiency due toedéht file-access patterns, usu-
ally resulting in higher throughput with disk-bound wor&tis. For the multiprocessor experiments, the
high throughput of the servers make memory footprint everenmportant. Even a moderate amount of
memory pressure causes the servers to become disk bounite th@ uniprocessor experiments, better
disk efficiency is unable to overcome large memory-footgpimblems for some of the servers.

A final factor that is important for the multiprocessor sesvis sharing data across CPUs. The ad-
vantage of sharing data is a smaller memory footprint, bettthde off is increased overheads due to
contention and cache coherency. Any server architectuteskiared application data must control these
overheads, otherwise they can become a bottleneck. Thefus®-tiered locking for the application
cache seems to work reasonably well when there are only adavekthreads but less well as the number
of threads increase. However, the shared memory designsmoey/ easily support other kinds of work
within a server, such as dynamic monitoring, load balaneimgj tuning.

Comparing the performance of the servers across the walkltested, blocking WatPipe offers the
best performance among the uniprocessor servers and Nebogking WatPipe among the multiproces-
sor servers. More importantly, consider the factors thatilten these servers having the best overall
performance. Both servers use blockswndfile, resulting in better disk efficiency when there is heavy
disk-1/0. While all the servers have blocking versions,hbsgrvers also have a small memory footprint
even with a large number of kernel threads due to shared ssldpace. Even though N-copy blocking
WatPipe does not have a completely shared address spaeandiumt of duplication is small as it is pro-
portional to the number of CPUs. The trade off for the largenmory footprint is less contention as there
is no sharing of application data across CPUs. Finally, lsettrers use asymmetric tasks, allowing the
server to add tasks where needed without unnecessary adsthesulting in high throughput even with
the in-memory workload despite a large number of kernekitise

While no single server or configuration performed the besafoworkloads, the difference in peak
throughput among the best version of each server architeeiwithin 9—13%, across the uniprocessor
and multiprocessor workloads, where at least one serveaaf kind of architecture appears with these

178

6.1. FUTURE WORK

ranges. Unless highest throughput is critical, secondacyofs may determine the appropriate choice
of server architecture, e.g., tuning stability, ease oflamentation and debugging, and programming
preference.

6.1 Future Work

There are a number of areas for further work related to theighén addition to examining alternative
architectures, especially for multiprocessors, thereaarember of other avenues to explore.

One of the big problems with the servers in the thesis is tieg fier hand tuning. Tuning is critical
to server performance, however, no single tuning perforest across all workloads. Ideally, the server
should dynamically adapt to changing workloads as necg$saperforming auto tuning. Auto tuning,
however, especially across a number of different parameten difficult problem[[I1]. As shown in the
thesis, simple heuristics like eliminating idle time arsdfficient. Servers must be able to monitor their
behaviour and adjust accordingly. As well, the various éectures examined in the thesis show varying
degrees of sensitivity to the tuning parameters teste@cesly for large tuning values. Examining server
architectures specifically with respect to ease of tunirajsgs reasonable.

For the experiments in the thesis with heavy disk-1/0, all servers experienced 1/0 wait because
blocking disk-1/0 becomes a bottleneck once the file-systaahe is sufficiently small. Since the presence
of 1/0 wait indicates there is extra CPU time in the systenmfqueing extra work in order to reduce the
memory footprint of the servers could result in a higher tigtgput. All the servers store HTTP headers
in their application cache, resulting in a larger memorytfoiat. It would be interesting to see the effect
of dynamically generating HTTP headers for each requegedially for the SYMPED servers since
each process has a separate application cache, so théaadnanemory footprint is non-trivial. Other
opportunities to trade additional CPU execution for mensayings may also exist.

An important result in the thesis is the performance of hilogkersus non-blockingendfile as mem-
ory pressure changes. Rather than basing this choice oroadrkt may be be reasonable to dynamically
adjust the behaviour afendfile based on file size. For example, using block#epdfile for large files
and non-blockingsendfile otherwise. Experiments are required to understand theteffehis dynamic
adjustment on disk access-patterns and number of kerregldby as well as to determine an appropriate
file size for this transition.

There are also interesting areas to explore specificalaelto multiprocessor architectures. A first
step is moving to a 64-bit operating system and testing takabiity of various server architectures with
more memory and CPUs. The trend of increasing CPUs and rieiwiarface capacity make it likely

179

CHAPTER 6. CONCLUSION

that CPUs will outnumber network interfaces on newer hardyweaking partitioning more challeng-
ing. Furthermore, new multiprocessor hardware may redlifferent approaches for best performance.
For example, instead of partitioning, parallelizing opieigtsystem interrupt-handling code and network
stacks may be required.

Based on working with several server architectures, a eoofptmall operating system improvements
may help when implementing servers. One problem with somese(WatPipe, Knot) is the inappropri-
ate scheduling of asymmetric threads by the operatingrsystdeduler, as its general policy is fairness.
However, due to factors such as contention and cache calyetiemay be reasonable to use techniques
like cohort [33] or convoy[[&] scheduling, where only a sethsf the ready threads are run concurrently.
Unfortunately, these self-scheduling techniques can teadefficient CPU utilization due to potentially
blocking operations, such as disk 1/O, because it is unknovadvance whether an operation will block,
so the application is unable to determine if it should adjssturrent thread schedule. Techniques involv-
ing thread priorities tend to be awkward, difficult to comtaad may become expensive if priorities need
constant adjusting. Therefore, a reasonable enhancemént the operating system kernel to wake up
a voluntarily blocked thread when another thread involtlytdlocks. For example, signalling a thread
blocked on a condition variable or providing a special typgield system-call to allow threads to volun-
tarily delay their execution until a blocking operation oc

Another useful extension is to allow minimums to be specifaadoperations like event polling. In
many cases, it is preferable to wait until a number of evergsagailable to reduce the number of event
polling calls required. For example, if an application hasrenthan one thread, polling for events may
not be an indication that the application has run out of w@kecifying a minimum number of events
with a timeout would still allow for the timely delivery of emts while reducing the amount of polling,
but additional tuning would be required to determine thigimum.

As well, once operating systems provide better asynch®hi@ support, it would be interesting to
determine if these mechanisms offer any performance bsrfefithigh-performance web-servers. In-
tegrating asynchronous I/O with existing event mechanigmsld present an application with a single
consistent interface for all I/0O, simplifying programmifi@@]. As well, asynchronous I/O could reduce
the memory footprint required for certain server architees.

Finally, it would be interesting to examine the performané¢he various server architectures with
different types of Internet applications and other workloaecause architectures that work best for static
web-servers may not work well for other application domalfer example, other types of servers, such as
video streaming or game servers, and other workloads, sutyremic workloads and web 2.0 workloads,
have different requirements.

180

APPENDICES

181

Appendix A

Kernel Patches

A.1 Patch for Linux kernel 2.6.16-18

xxx try/linux-2.6.16.18/mm/filemap.c ~ 2006-05-22 14:04:35.000000000 -0400
--- linux-2.6.16.18-rafixymm/filemap.c 2009-07-03 23:14:58.000000000 -0400
kkkdokk kK kkkkkk page_Ok:
*k% 803,809 *kkk

» When (part of) the same page is read multiple times

% in succession, only mark it as accessed the first time.

*/
! if (prev_index != index)

mark_page_accessed(page);
prev_index = index;

--- 803,809 ----
* When (part of) the same page is read multiple times
* in succession, only mark it as accessed the first time.
-
! if (prev_index != index || !offset)
mark_page_accessed(page);
prev_index = index;

183

APPENDIX A. KERNEL PATCHES

A.2 Patch for Linux kernel 2.6.24-3

*xx linux-source-2.6.24/fs/splice.c 2008-11-30 17:09:49.000000000 -0500
--- linux-source-2.6.24-cachefix/fs/splice.c =~ 2009-07-24 11:30:07.000000000 -0400

*kkkkkkkkkkkkkk f| | | _ |t
*kk 412,417 *kkk
--- 412,418 ----
if (unlikely(lisize || index > end_index))
break;
+ mark__page__accessed(page);

[%
= if this is the last page, see if we need to shrink
» the length and stop

184

References

[1] The pserver home page. HP Labs, 2005. http://www.hpl.hp.caeéeh/linux/userverll 7
[2] The SystemTap home page, 2010. http://sourcewarsysigmtap/[C114

[3] Atul Adya, Jon Howell, Marvin Theimer, William J. Bologkand John R. Douceur. Cooperative
task management without manual stack managemenATHEC '02: Proceedings of the General
Track of the annual conference on USENIX Annual Technicaf€ence pages 289-302, Berkeley,
CA, USA, 2002. USENIX Associatiorl] . 134

[4] Vaijayanthimala Anand and Bill Hartner. TCPIP netwotkck performance in Linux kernel 2.4 and
2.5. InProceedings of the 4th Annual Ottawa Linux Symposilume 2002120

[5] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowskal Henry M. Levy. Scheduler
activations: Effective kernel support for the user-levedmagement of parallelismACM Trans.
Comput. Syst10(1):53-79, 199221

[6] Apache software foundation. The Apache web server../Mitfpd.apache.ord 110

[7] Gaurav Banga and Peter Druschel. Measuring the capafc#tyweb server. IJSITS'97: Proceed-
ings of the USENIX Symposium on Internet Technologies asigr8g on USENIX Symposium on
Internet Technologies and Systempages 66, Berkeley, CA, USA, 1997. USENIX Associatlod. 24

[8] Gaurav Banga and Jeffrey C. Mogul. Scalable kernel perémce for Internet servers under re-
alistic loads. INATEC '98: Proceedings of the annual conference on USENIXuainmechnical
Conferencepages 1-1, Berkeley, CA, USA, 1998. USENIX Associatfod. 19

[9] Gaurav Banga, Jeffrey C. Mogul, and Peter Druschel. Aafta and explicit event delivery mech-
anism for UNIX. InUSENIX Annual Technical Conferengeages 253-265, June 19901 19,
B3

185

REFERENCES

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Paul Barford and Mark Crovella. Generating repredamaveb workloads for network and server
performance evaluation. IRroceedings of ACM SIGMETRICS 1998adison, Wisconsin, 1998.

Viceng Beltran, Jordi Torres, and Eduard Ayguadé. déhstanding tuning complexity in multi-
threaded and hybrid web servers.Rarallel and Distributed Processing, 2008. IPDPS 2008. EEE
International Symposium opages 1-12, April 2008_P8_1179

Silas Boyd-Wickizer, Robert Morris, and M. Frans Kaask. Reinventing scheduling for multicore
systems. IrProceedings of the 12th Workshop on Hot Topics in Operatygieths (HotOS-XI))
Monte Verita, Switzerland, May 2008110

Tim Brecht, David Pariag, and Louay Gammo. accept@atttategies for improving web server
performance. IProceedings of the 2004 USENIX Annual Technical Conferehase 200400414,
13,2335

Brendan Burns, Kevin Grimaldi, Alexander Kostadin®&mery D. Berger, and Mark D. Corner.
Flux: A language for programming high-performance servers’roceedings of the 2006 USENIX
Annual Technical Conferencpages 129-142, 2006.11T] [4] 17

Anupam Chanda, Khaled Elmeleegy, Romer Gil, Sumitafiitdlan L. Cox, and Willy Zwaenepoel.
An efficient threading model to boost server performancechiical Report TR04-440, Rice Uni-
versity, 200421

Abhishek Chandra and David Mosberger. Scalability ofux Event-Dispatch mechanisms. In
Proceedings of the 2001 USENIX Annual Technical Conferez@@l.[8[TP["20

Gyu Sang Choi, Jin-Ha Kim, Deniz Ersoz, and Chita R. Damulti-threaded pipelined web server
architecture for SMP/SoC machines WANVW '05: Proceedings of the 14th international conference
on World Wide Welpages 730-739, New York, NY, USA, 2005. ACM.[Z] (1], 16

Melvin E. Conway. Design of a separable transitiongdien compiler. Communications of the
ACM, 6(7):396—408, July 1968. B4

Ryan Cunningham and Eddie Kohler. Making events lappsty with eel. IlHOTOS’05: Proceed-
ings of the 10th conference on Hot Topics in Operating Systpages 3—3, Berkeley, CA, USA,
2005. USENIX Associatiori17

Frank Dabek, Nickolai Zeldovich, Frans Kaashoek, @aMazieres, and Robert Morris. Event-
driven programming for robust software. Rmoceedings of the 10th ACM SIGOPS European Work-
shop pages 186-189, New York, NY, USA, 2002. ACM. 7

186

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

REFERENCES

Ulrich Drepper. The need for asynchronous, zero-copiywork 1/0. InProceedings of the 8th
Annual Ottawa Linux Symposiyduly 2006 [21L

Ulrich Drepper and Ingo Molnar. The native POSIX threadibrary for Linux.
http://people.redhat.com/drepper/nptl-design.pdf. 11

Khaled Elmeleegy, Anupam Chanda, Alan L. Cox, and Willyaenepoel. Lazy asynchronous I/O
for event-driven servers. IdSENIX Annual Technical Conference, General Traages 241-254,
2004.21

Annie Foong, Jason Fung, and Don Newell. An in-depthyemaof the impact of processor affinity
on network performance. INetworks, 2004. (ICON 2004). Proceedings. 12th IEEE Irgtgomal
Conference onwvolume 1, pages 244-250 vol.1, Nov. 20041120

Hubertus Franke, Rusty Russell, and Matthew Kirkwdedks, futexes and furwocks: Fast user-level
locking in Linux. InOttawa Linux Symposiuyndune 2002[_3& 128

Louay Gammo, Tim Brecht, Amol Shukla, and David Paria@omparing and evaluating epoll,
select, and poll event mechanisms Pimceedings of the 6th Annual Ottawa Linux Symposiiuty
2004.[1®

Philipp Haller and Martin Odersky. Actors that Unify idads and Events. IRroceedings of the
9th International Conference on Coordination Models anadgaages (COORDINATIONpages
171-190. Springer, 20001 7

James C. Hu, Irfan Pyarali, and Douglas C. Schmidt. Meag the impact of event dispatching and
concurrency models on web server performance over higbespetworks. IrGlobal Telecommuni-
cations Conference, 1997. GLOBECOM '97., IERBlume 3, pages 1924-1931 vol.3, Nov 1997.

Philippe Joubert, Robert King, Richard Neves, Mark stogvich, and John Tracey. High-
performance memory-based Web servers: Kernel and usee-gmaformance. IfProceedings of
the USENIX 2001 Annual Technical Conferemuages 175-188, 200fl [T] {Z] 20

Jupiter Research. Retail website performance: Corsueaction to a poor online shopping experi-
encelhtt p: // www. akamai . coni 4seconds), 2006.[26

Maxwell Krohn. Building secure high-performance wengces with OKWS. IPATEC '04: Pro-
ceedings of the annual conference on USENIX Annual Tedra#derencepages 15-15, Berkeley,
CA, USA, 2004. USENIX Associatiori] 1

187

http://www.akamai.com/4seconds

REFERENCES

[32] Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek. Bgecan make sense. ATC’'07: 2007
USENIX Annual Technical Conference on Proceedings of tHeNUi& Annual Technical Conference
pages 1-14, Berkeley, CA, USA, 2007. USENIX Associat[dn. 7

[33] James R. Larus and Michael Parkes. Using cohort-sdingdto enhance server performance. In
ATEC'02: Proceedings of the General Track of the annual e@mice on USENIX Annual Technical
Conferencgpages 103-114, Berkeley, CA, USA, 2002. USENIX Assoamafd [T1 [TP[_T30

[34] Hugh C. Lauer and Roger M. Needham. On the duality of ajirey systems structures. Rroceed-
ings of the 2nd International Symposium on Operating SystéRiA October 1978[17

[35] Jonathan Lemon. Kqgueue - a generic and scalable evdification facility. In USENIX Annual
Technical Conference, FREENIX Traglages 141-153, 200.]19

[36] Chuck Lever, Marius Eriksen, and Stephen Molloy. Anlgsia of the TUX web server. Technical
report, University of Michigan, CITI Technical Report 0048ov. 2000 [TH

[37] Ren Liyong and Wang Tao. Study and implementation of@a/heserver architecture. M/ireless
Communications, Networking and Mobile Computing, 200€@# 2006.International Conference
on, pages 1-4, Sept. 2008.[9] 38

[38] Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc, &wdngelos P. Markatos. First-class user-
level threads. IISOSP '91: Proceedings of the thirteenth ACM symposium onafipg systems
principles pages 110-121, New York, NY, USA, 1991. ACM1] 21

[39] David Mosberger and Tai Jin. httperf tool for measurimgb server performanceSIGMETRICS
Perform. Eval. Rey26(3):31-37, 199424

[40] Erich Nahum, Tsipora Barzilai, and Dilip D. Kandlur. fR&mance issues in www servers.
IEEE/ACM Trans. Netw10(1):2-11, 200220

[41] Jakob NielsenDesigning Web UsabilityNew Riders, 200026

[42] Michal Ostrowski. A mechanism for scalable event no#fion and delivery in Linux. Master’s
thesis, Department of Computer Science, University of Yiae November 2000180

[43] John K. Ousterhout. Why threads are a bad idea (for magtgses), January 1996. Presentation
given at the 1996 USENIX Annual Technical Confereride. 7

[44] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. shlaAn efficient and portable Web server.
In Proceedings of the USENIX 1999 Annual Technical Conferer@%9.[2[V[B4 10,18 15133

188

REFERENCES

[45] David Pariag, Tim Brecht, Ashif Harji, Peter Buhr, anchal Shukla. Comparing the performance of
web server architectures. EuroSys '07: Proceedings of the 2nd ACM SIGOPS/EuroSyspearo
Conference on Computer Systems 2Q8gjes 231-243, New York, NY, USA, March 2007. ACM.
15,30 3Y[6P

[46] KyoungSoo Park and Vivek S. Pai. Connection conditigniArchitecture-independent support for
simple, robust servers. IRroceedings of the Third Symposium on Networked SystenignDewd
Implementation (NSDI 2006%an Jose, CA, May 200611423

[47] Niels Provos and Chuck Lever. Scalable network 1/0O inux. In Proceedings of the USENIX
Annual Technical Conference, FREENIX Tragkne 2000_19

[48] Red Hat, Inc.TUX 2.2 Reference Many&002.[Th

[49] Amol Shukla, Lily Li, Anand Subramanian, Paul A. S. Wahd Tim Brecht. Evaluating the
performance of user-space and kernel-space web servaEASRON '04: Proceedings of the 2004
conference of the Centre for Advanced Studies on Collalveraesearch pages 189-201. IBM
Press, 200414

[50] Standard Performance Evaluation Corporation.SPECWeb99 Benchmarkl999. http://-
www.specbench.org/osg/webd9] 23

[51] Sun Microsystems. Sun Fire X4150, X4250, and X4450 esearchitecture. Whitepaper, 2008,
OPTnote =, OPTannote £ 140

[52] David Tam, Reza Azimi, and Michael Stumm. Thread clistg Sharing-aware scheduling on
SMP-CMP-SMT multiprocessors. BuroSys '07: Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2083es 47-58, New York, NY, USA, 2007. ACM.
o)

[53] Gautam Upadhyaya, Vijay S. Pai, and Samuel P. MidkifkpiEessing and exploiting concurrency
in networked applications with Aspen. PPoPP '07: Proceedings of the 12th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programgnpages 13-23, New York, NY, USA,
2007. ACM.[11[1I123

[54] Bryan Veal and Annie Foong. Performance scalabilityaahulti-core web server. IANCS '07:
Proceedings of the 3rd ACM/IEEE Symposium on Architecturadtworking and communications
systemspages 57-66, New York, NY, USA, 2007. ACM.123

[55] John Vert. Writing scalable applications for Window3 NL995.[T9

189

REFERENCES

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Rob von Behren, Jeremy Condit, and Eric Brewer. Why &vare a bad idea for high-concurrency
servers. IMth Workshop on Hot Topics in Operating Systems (HotOS2003.[T[(3b

Rob von Behren, Jeremy Condit, Feng Zhou, George C. Ideand Eric Brewer. Capriccio: Scal-

able threads for Internet services. 3OSP '03: Proceedings of the Nineteenth ACM Symposium on

Operating Systems Principlepages 268—-281, New York, NY, USA, 2003. ACM PrelSs[21D, 11,
14,15 283334

lvan Voras and MaricZagar. Characteristics of multithreading models for higinformance 10
driven network applicationsThe Computing Research Repository (CoRR$/0909.4934, Septem-
ber 200917

Matt Welsh, David Culler, and Eric Brewer. SEDA: An aitelcture for well-conditioned, scalable
Internet services. IBOSP '01: Proceedings of the eighteenth ACM symposium oratdjpesystems
principles pages 230-243, New York, NY, USA, 2001. ACM Prd34_2[TNITAIZ3[3B

Matt Welsh, Steven D. Gribble, Eric A. Brewer, and Dad@dller. A design framework for highly
concurrent systems. Technical report, University of @afifa at Berkeley, Berkeley, CA, USA,

2000.[T2[180

Nian-Min YAO, Ming-Yang ZHENG, and Jiu-Bin JU. Pipekn a new architecture of high perfor-
mance serversSIGOPS Oper. Syst. Re86(4):55-64, 20041211

Nickolai Zeldovich, Alexander Yip, Frank Dabek, Robdt Morris, David Maziéres, and Frans
Kaashoek. Multiprocessor support for event-driven proggaln Proceedings of the USENIX 2003
Annual Technical Conferencpages 239252, June 2003 ML T 8[IH[24. 38, 131

Zeus technology. Zeus web server. http://www.zeus/pooducts/zws[17

George K. Zipf. Human Behavior and the Principle of Least Effort: an Introtian to Human
Ecology Addison-Wesley, Cambridge, MA., 1948124

190

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Contributions
	Thesis Outline

	Background and Related Work
	Handling an HTTP Request
	Server Architectures
	Event-Driven Architecture
	Thread-Per-Connection Architecture
	Pipeline Architecture

	Uniprocessor Performance Comparisons
	Multiprocessor Performance Comparisons
	File-System Cache
	API Improvements
	Scalable Event-Polling
	Zero-Copy Transfer
	Asynchronous I/O

	Summary

	Uniprocessor Web-Server Architectures
	File Set
	Response Time
	Verification
	Tuning
	Environment
	Cache Warming
	Table Calculation
	Servers
	Knot and Capriccio
	server
	SYMPED Architecture
	Shared-SYMPED Architecture
	WatPipe

	Static Uniprocessor Workloads
	1.4 GB
	Tuning Knot
	Tuning server
	Tuning WatPipe
	Server Comparison

	4 GB
	Tuning Knot
	Tuning server
	Tuning WatPipe
	Server Comparison

	.75 GB
	Tuning Knot
	Tuning server
	Tuning WatPipe

	Server Comparison
	Comparison Across Workloads
	Summary

	Multiprocessor Web-Server Architectures
	Overview
	File Set
	Environment
	Affinities
	Scalability
	4 GB
	Tuning N-copy
	Tuning server
	Tuning WatPipe
	Server Comparison

	2 GB
	Tuning N-copy server
	Tuning N-copy WatPipe
	Tuning server
	Tuning WatPipe
	Server Comparison

	Comparison Across Workloads
	Summary

	Lessons Learned
	Implementing Web Servers
	WatPipe

	Performance Problems
	Performance Experiments

	Conclusion
	Future Work

	APPENDICES
	Kernel Patches
	Patch for Linux kernel 2.6.16-18
	Patch for Linux kernel 2.6.24-3

	References

