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Abstract

In this thesis we introduce and evaluate several new models for the analysis of online algo-
rithms. In an online problem, the algorithm does not know the entire input from the beginning;
the input is revealed in a sequence of steps. At each step the algorithm should make its deci-
sions based on the past and without any knowledge about the future. Many important real-life
problems such as paging and routing are intrinsically online and thus the design and analysis of
online algorithms is one of the main research areas in theoretical computer science.

Competitive analysis is the standard measure for analysis of online algorithms. It has been
applied to many online problems in diverse areas ranging from robot navigation, to network
routing, to scheduling, to online graph coloring. While in several instances competitive analysis
gives satisfactory results, for certain problems it results in unrealistically pessimistic ratios and/or
fails to distinguish between algorithms that have vastly differing performance under any practical
characterization. Addressing these shortcomings has been the subject of intense research by many
of the best minds in the field. In this thesis, building upon recent advances of others we introduce
some new models for analysis of online algorithms, namely Bijective Analysis, Average Analysis,
Parameterized Analysis, and Relative Interval Analysis. We show that they lead to good results
when applied to paging and list update algorithms. Paging and list update are two well known
online problems. Paging is one of the main examples of poor behavior of competitive analysis.
We show that LRU is the unique optimal online paging algorithm according to Average Analysis
on sequences with locality of reference. Recall that in practice input sequences for paging have
high locality of reference. It has been empirically long established that LRU is the best paging
algorithm. Yet, Average Analysis is the first model that gives strict separation of LRU from all
other online paging algorithms, thus solving a long standing open problem. We prove a similar
result for the optimality of MTF for list update on sequences with locality of reference.

A technique for the analysis of online algorithms has to be effective to be useful in day-
to-day analysis of algorithms. While Bijective and Average Analysis succeed at providing fine
separation, their application can be, at times, cumbersome. Thus we apply a parameterized
or adaptive analysis framework to online algorithms. We show that this framework is effective,
can be applied more easily to a larger family of problems and leads to finer analysis than the
competitive ratio. The conceptual innovation of parameterizing the performance of an algorithm
by something other than the input size was first introduced over three decades ago [124, 125].
By now it has been extensively studied and understood in the context of adaptive analysis (for
problems in P) and parameterized algorithms (for NP-hard problems), yet to our knowledge
this thesis is the first systematic application of this technique to the study of online algorithms.
Interestingly, competitive analysis can be recast as a particular form of parameterized analysis in
which the performance of opt is the parameter. In general, for each problem we can choose the
parameter/measure that best reflects the difficulty of the input. We show that in many instances
the performance of opt on a sequence is a coarse approximation of the difficulty or complexity
of a given input sequence. Using a finer, more natural measure we can separate paging and list
update algorithms which were otherwise indistinguishable under the classical model. This creates
a performance hierarchy of algorithms which better reflects the intuitive relative strengths between
them. Lastly, we show that, surprisingly, certain randomized algorithms which are superior to
MTF in the classical model are not so in the parameterized case, which matches experimental
results. We test list update algorithms in the context of a data compression problem known to
have locality of reference. Our experiments show MTF outperforms other list update algorithms
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in practice after BWT. This is consistent with the intuition that BWT increases locality of
reference.
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Chapter 1

Introduction

Online computation is a model for formulating decision making under uncertainty. In an online
problem the algorithm does not know the entire input from the beginning; the input is revealed
in a sequence of steps. An online algorithm should make its decisions based only on the observed
past and without any secure knowledge about the forthcoming sequence in the future. The cost
and effects of a decision taken cannot be undone.

Paging is a classic example of a problem studied in the context of online computation. A
paging algorithm must decide which k memory pages to keep in the cache without the benefit of
knowing the sequence of upcoming page requests. The goal of a paging algorithm is to minimize
the number of faults (cache misses) over the entire input sequence. The paging algorithm must
produce a partial solution after receiving the ith page request and determine which page to evict,
shall the page request be a fault. The performance of the paging algorithm is quantified by the
number of faults, which is the cost of a particular solution.

We can generalize the key concepts of this example to other problems as follows. Let σ =
(σ1, σ2, . . .) be an input sequence. We denote by σ1:j = (σ1, σ2, . . . , σj) the prefix subsequence
of the first j requests in σ. An online algorithm A for an optimization problem takes as input
a sequence σ = (σ1, σ2, . . . , σn). The algorithm A processes the request sequence in order, from
σ1 onwards and produces a partial solution with cost A(σ1:j) after the arrival of the jth request.
In general it is assumed that the length of the sequence is unknown beforehand and hence an
online algorithm performs the same steps on the common prefix of two otherwise distinct input
sequences. More formally, if σ′ is a prefix of σ then A(σ′) = A(σ1:|σ′|).

The standard model for analysis of algorithms is worst-case analysis. In this model we consider
the worst performance of an algorithm over all input instances of the same size. Unfortunately,
worst-case analysis of online algorithms generally does not give useful information. This is because
online algorithms exhibit extremely bad behaviour (the worst possible) on some input sequences
and thus we cannot differentiate between their worst-case performance. For example consider an
online paging algorithm A. No matter how elegant A is, at each step we can request the page that
A has evicted in the previous step, resulting in a fault at each step. Originally online algorithms
were studied using average-case or distributional analysis. In this model, a probability distribution
is assumed for the input and the expected performance of algorithms on this distribution is
computed. The main problem with this approach is that we usually do not know this probability
distribution in practice and it might be difficult to characterize it formally. Also this distribution
might change over the time for some applications.
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Competitive analysis is the standard measure for the analysis of online algorithms. In this
model we compare the performance of an online algorithm with an offline optimal algorithm opt
which knows the entire sequence in advance. The main idea is that a competitive algorithm may
behave poorly on a sequence, provided it is a difficult one, as reflected by the bad performance
of opt on that sequence. Competitive analysis became popular after two papers by Sleator and
Tarjan [140, 141] in 1985, although its ideas were used by Graham [84] and Johnson [98, 99]
before. The term competitive analysis was introduced by Karlin et al. [108]. We formally define
competitive analysis in Chapter 2.

The competitive ratio has been a great success, enabling the measurement of the performance
of various well known heuristics and fostering the development of the field. Online algorithms are
more often than not amenable to analysis under this framework; that is, computing the compet-
itive ratio has proven to be effective—even in cases where the exact shape of the opt solution is
unknown. As well, it has been successfully applied outside the original online paging setting to
other applications such as online geometric searching and online approximation to NP-complete
problems. Competitive analysis is a relatively simple measure to apply yet powerful enough to
quantify, to a large extent, the performance of many online algorithms. The growth of online
computation is due in no small part to the effectiveness of this measure. Notwithstanding the
wide applicability of competitive analysis, it has been repeatedly observed by various researchers
that in certain settings the competitive ratio produces results that are too pessimistic or other-
wise found wanting. Indeed, the original paper by Sleator and Tarjan [140] discusses the various
drawbacks of the competitive ratio in the case of the paging problem and uses resource augmen-
tation to address some of the observed drawbacks. In her survey of paging algorithms [95], Irani
says:

Some of the reservations which have been raised about the competitive analysis of
paging are its inability to discern between LRU and FIFO (algorithms whose perfor-
mances differ markedly in practice), and the fact that the theoretical competitiveness
of LRU is much larger than what is observed in practice. Also unsettling is fact that
in the standard competitive model, a fixed amount of lookahead does not give an
on-line algorithm any advantage. [...] It seems intuitive that in practice, an on-line
algorithm would benefit from some limited lookahead, but this is not reflected in the
model.

More details about the shortcomings of competitive analysis are provided in Chapter 2. These
shortcomings have led to the introduction of several alternative measures for analysis of online
algorithms. For the case of paging, Irani [95] says: “in fact, a survey of the competitive analysis
of paging is in some ways a survey of the refinements of competitive analysis.” In this thesis we
review these alternatives and then we propose several new measures. We prove that these new
measures overcome some of the shortcomings of competitive analysis. As well, we resolve certain
issues which none of the previous alternatives did.

In most online problems we have a sequence of events that happen over time. For instance,
for paging we have a sequence of page requests. In other online problems, e.g., online robot
navigation, we do not have such an event sequence. Instead, the algorithm does not have complete
information about the input, e.g., the robot does not know the map of the terrain. The algorithm
then can obtain the missing information by performing some (online) actions. We consider such
online problems in Chapter 9.

2



As a testbed we concentrate on two of the most important problems in the context of online
computation: paging and list update, though we briefly discuss other applications in Chapter 9
and Chapter 10. These problems are the standard benchmarks for developing alternative measures
and they are ideally suited to this task, given our extensive understanding of them. We know
why competitive analysis fails, what are typical sequences in practice and we can better evaluate
whether a new technique indeed overcomes known shortcomings. It is important to note that
even though well studied, most of the alternative models for these problems are only partially
successful in resolving the issues posed by them and as such these testbed problems are still
challenging case studies against which to test a new model. We provide some background about
these problems in this chapter.

1.1 Paging

The paging problem is one of the most important online problems both in theory and in practice.
As discussed before, the competitive analysis of online paging algorithms is not entirely satisfac-
tory. Therefore substantial research has been done to obtain alternative performance measures
for paging algorithms. We briefly described the paging problem before. In this problem we have a
small fast memory (cache) of size k and a larger slow memory of size n. Each input is a sequence
of page requests. For each request, if the requested page is in the cache, a hit occurs and the
algorithm can serve the request without incurring any cost. Otherwise a fault occurs and the
algorithm should bring the requested page to the cache. Also if the cache is already full, the
algorithm should evict at least one page in order to make room for the new page. The paging
algorithms are usually specified by the eviction algorithm they use on a fault. The cost of a
paging algorithm A on an input sequence σ is the number of faults it incurs to serve σ.

Due to the importance of this problem, several paging algorithms have been proposed. The
most well known paging algorithms are Least-Recently-Used (LRU) and First-In-First-
Out (FIFO). When an eviction is required, LRU evicts the page that is least recently used and
FIFO evicts the page that was first brought to the cache. Flush-When-Full (FWF) is another
algorithm that evicts all the pages that are currently in the cache when a fault occurs and the
cache is full. It turns out that there exists a simple and efficient optimal algorithm for the offline
version of paging (this is not always the case for online problems, e.g., the list update problem
[35]). Longest-Forward-Distance (LFD) evicts the page whose next request is latest, if an
eviction is required. It is known [28] that LFD is an optimal offline paging algorithm.

Furthermore, paging algorithms are classified by certain common properties. A lazy paging
algorithm does not evict a page on a hit, and evicts at most one page on a fault. Thus FWF is
not lazy while LRU and FIFO are lazy algorithms. A paging algorithm is called conservative if
it incurs at most k page faults on any page sequence that contains at most k distinct pages. It
can be shown [35] that LRU and FIFO are conservative algorithms and FWF is not. Another
class of online paging algorithms are marking algorithms. A marking algorithm A works in
phases. Each phase starts right after the last request of the previous phase and consists of the
maximal sequence of requests that contains at most k distinct pages. All the pages in the cache
are unmarked at the beginning of each phase. We mark any page just after the first request to
it. When an eviction is necessary, A should evict an unmarked page. It is easy to show that
LRU and FWF are marking algorithms while FIFO is not. It is known that the competitive
ratio of any conservative or marking paging algorithm is k and this is the best possible among
deterministic online algorithms [35]. Therefore LRU, FIFO, and FWF all have competitive ratio
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k. Unfortunately this is not consistent with our expectations. We will elaborate more on this
later in the thesis.

Finally we describe a few other paging algorithms that will be of use. LRU-2 is a paging
algorithm proposed by O’Neil et al. for database disk buffering [128]. On a fault, LRU-2 evicts
the page whose second to last request is least recent. If there are pages in the cache that have
been requested only once so far, LRU-2 evicts the least recently used among them. O’Neil et
al. provided experimental results supporting that LRU-2 performs better than LRU in database
systems. Boyar et al. proved that LRU-2 has competitive ratio 2k [38]. On a fault (with a full
cache), Last-In-First-Out (LIFO) evicts the page that is most recently brought to the cache,
and Least-Frequently-Used (LFU) evicts the page that has been requested the least since
entering the cache. LFU and LIFO do not have constant competitive ratios [35].

1.2 Self-Organizing Data Structures

The dictionary problem or the search problem is one of the most fundamental problems in theo-
retical computer science. In it we have a (dynamic) totally ordered set of elements on which we
want to efficiently perform a sequence of searches. More specifically we require a data structure
that stores a set of n elements and supports the following three basic operations: Insert(e) in-
serts the element e into the structure, Delete(e) deletes e from the structure, and Search(e) finds
the element e. Various efficient data structures have been proposed for the dictionary problem.
For example balanced trees such as AVL-trees [1] and red-black trees [24, 86] support all three
operations in Θ(log n) time in the worst case which is the best possible in the worst case in the
comparison-based model. These data structures are static, i.e., they do not change their state
on a search operation. Self-Organizing or self-adjusting data structures have a restructuring or
self-organizing rule that changes the state of the structure after each operation. Informally, this
rule is designed to discover the properties of the given input sequence (in an online manner) and
reorganize the structure into a state that presumably favors future operations. Self-organizing
data structures have several possible advantages over their static counterparts [141]:

1. Their asymptotic amortized time is never much worse than static structures.

2. Their performance is much better than static structures on skewed input sequences as they
adjust according to the input.

3. They do not need to maintain additional information (e.g. balance information for search
trees) and therefore they need less space.

4. They usually have simple and easy to implement algorithms for their operations.

Their possible disadvantages are [141]:

• They need more local adjustments (they reorganize their state even on a search).

• Their worst case performance for an individual (non-amortized) operation can be bad.

Two very popular self-organizing data structures for the dictionary problem are unsorted
linear lists and binary search trees [10]. The most common self-organizing binary search tree is
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the splay tree [141]. Several results are known about the performance and structure of splay trees
and other self-organizing binary search trees (See e.g. [147, 58, 59, 71, 83, 63, 150]).

Using an unsorted list to support dictionary operations is usually called the list update or list
accessing problem. Consider an unsorted list of ` items. Let A be an arbitrary online list update
algorithm. The input to A is a sequence of n requests that must be served in an online manner.
To serve a request to an item x, A linearly searches the list until it finds x. If x is the ith item
in the list, A incurs a cost i to access x. Immediately after this access, A can move x to any
position closer to the front of the list at no extra cost. This is called a free exchange. Also A can
exchange any two consecutive items at unit cost. These are called paid exchanges. An efficient
algorithm can thus use free and paid exchanges to minimize the overall cost of serving a sequence.
This is called the standard cost model [10]. Later in this section we will describe an alternative
cost model.

List update algorithms were among the first algorithms studied using competitive analysis.
Three well known deterministic online algorithms are Move-To-Front (MTF), Transpose
(TR), and Frequency-Count (FC). MTF moves the requested item to the front of the list
whereas TR exchanges the requested item with the item that immediately precedes it. FC
maintains an access count for each item ensuring that the list always contains items in non-
increasing order of frequency count. Sleator and Tarjan showed that MTF is 2-competitive, while
TR and FC do not have constant competitive ratios [140]. Since then, several other deterministic
and randomized online algorithms have been studied using competitive analysis. (See [93, 5, 9]
for some representative results.)

Albers introduced the algorithm Timestamp (TS) and showed that it is 2-competitive [5].
After accessing an item a, TS inserts a in front of the first item b that appears before a in the
list and was requested at most once since the last request for a. If there is no such item b, or
if this is the first access to a, TS does not reorder the list. Schulz [137] introduced an infinite
(uncountable) family of list update algorithms called Sort-By-Rank (SBR). All algorithms in
this family achieve the optimal competitive ratio 2 and they mediate between MTF and TS.
Consider a sequence σ = σ1σ2 · · ·σm of length m. For an item a and a time 1 ≤ t ≤ m, denote by
w1(a, t) and w2(a, t) the time of the last and the second last access to a in σ1σ2 · · ·σt, respectively.
If a has not been accessed so far, set w1(a, t) = 0 and if a has been accessed at most once, set
w2(a, t) = 0. Then we define s1(a, t) = t−w1(a, t) and s2(a, t) = t−w2(a, t). Note that after each
access, MTF and TS reorganize their lists so that the items are in increasing order by s1 and s2,
respectively1. For a parameter 0 ≤ α ≤ 1, SBR(α) reorganizes its list after the tth access so that
items are sorted by their α-rank function defined as rα(a, t) = (1 − α) × s1(a, t) + α × s2(a, t).2

More formally, upon a request for an item a in time t, SBR(α) inserts a just after the last item
b in front of a with rα(b, t) < rα(a, t). Furthermore, if there is no such item b or this is the first
access to a, SBR(α) inserts a at the front of the list. Therefore SBR(0) is equivalent to MTF
and SBR(1) is equivalent to TS except for the handling of the first accesses, i.e., they would be
equivalent if TS moved an item that has been accessed only once so far to the front of the list.

While list update algorithms with better competitive ratios tend to have better performance
in practice, the validity of the cost model has been debated. More precisely, Mart́ınez and Roura
[122] and Munro [126], independently addressed the drawbacks of the standard cost model. Let
(a1, a2, . . . , a`) be the list currently maintained by an algorithm A. Mart́ınez and Roura argued
that in a realistic setting a complete rearrangement of all items in the list which precede item

1For TS, strictly speaking, this applies only to items that have been accessed at list twice.
2Schulz [137] denoted this by rt(a, α), here we follow the convention of [69].

5



ai would in practice require time proportional to i, while this has cost proportional to i2 in the
standard cost model. Munro provided the example of accessing the last item of the list and then
reversing the entire list. The real cost of this operation in an array or a linear link list should
be O(`), while it costs about `2/2 in the standard cost model. As a consequence, their main
objection to the standard model is that it prevents online algorithms from using their true power.
They instead proposed a new model in which the cost of accessing the ith item of the list plus
the cost of reorganizing the first i items is linear in i. We will refer to this model as the modified
cost model.

Surprisingly, it turns out that the offline optimum benefits substantially more from this real-
istic adjustment than the online algorithms do. Indeed, under this model, every online algorithm
has amortized cost of Θ(`) per access for some arbitrary long sequences, while an optimal offline
algorithm incurs a cost of O(log `) per access on every sequence. Hence all online list update
algorithm have a competitive ratio of Ω(`/ log `). One may be tempted to argue that this is proof
that the new model makes the offline optimum too powerful and hence this power should be re-
moved, however this is not correct as in real life online algorithms can rearrange items at the cost
indicated. Observe that the ineffectiveness of this power for improving the worst case competitive
ratio does not preclude the possibility that under certain realistic input distributions (or other
similar assumptions on the input) this power might be of use. Mart́ınez and Roura observed this
and posed the question: “an important open question is whether there exist alternative ways
to define competitiveness such that MTF and other good online algorithms for the list update
problem would be competitive, even for the [modified] cost model”.

1.3 Our Results and Organization of the Thesis

The thesis is structured as follows. In Chapter 2, we formally introduce competitive analysis
and study its shortcomings using paging as a case study. In Chapter 3, we present a survey of
various alternative measures to the competitive ratio that have been proposed in the literature.
In Chapter 4 we introduce Bijective Analysis and Average Analysis as two alternative measures
for analysis of online algorithms. The application of these measures to paging and list update
appears in Chapters 4 and 5. In Chapter 6 we define relative interval analysis and apply it to
paging. In Chapter 7, we study parameterized analysis of paging and list update problems. We
analyze the performance of algorithms for these problems in terms of the amount of locality in the
input sequence. In Chapter 8, we study two existing models for paging with locality of reference
in more detail. In Chapter 9, we apply adaptive analysis to two basic geometric search problems.
In Chapter 10, we perform an experimental comparison of various list update algorithms for
compression. We conclude in Chapter 11.

Remark. Part of the work presented in this thesis has already been published in the following
conferences:

1. S. Angelopoulos, R. Dorrigiv, and A. López-Ortiz. On the separation and equivalence of
paging strategies. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’07), pages 229-237.

2. S. Angelopoulos, R. Dorrigiv, and A. López-Ortiz. List update with locality of reference. In
Proceedings of the 8th Latin American Theoretical Informatics Symposium (LATIN ’08),
pages 399-410.
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3. R. Dorrigiv, A. López-Ortiz, and J. I. Munro. On the relative dominance of paging algo-
rithms. In Proceedings of the 18th International Symposium on Algorithms and Computa-
tion (ISAAC ’07), pages 488-499.

4. R. Dorrigiv, A. López-Ortiz, and J. I. Munro. On the relative dominance of paging algo-
rithms. Theoretical Computer Science, Volume 410, Issues 38-40, pages 3694-3701, 2009.

5. R. Dorrigiv, A. López-Ortiz, and J. I. Munro. List update algorithms for data compression.
In Proceedings of the IEEE Data Compression Conference (DCC ’08), page 512.

6. R. Dorrigiv, M. R. Ehmsen, and A. López-Ortiz. “Parameterized Analysis of Paging and
List Update Algorithms”. In Proceedings of the 7th Workshop on Approximation and Online
Algorithms (WAOA ’09), to appear, 2009.

7. R. Dorrigiv, A. López-Ortiz, and J. I. Munro. An application of self-organizing data struc-
tures to compression. In Proceedings of the 8th International Symposium on Experimental
Algorithms (SEA ’09), pages 137-148.

and in the following workshops and venues:

8. R. Dorrigiv and A. López-Ortiz. A survey of performance measures for online algorithms.
ACM SIGACT (Special Interest Group on Automata and Computability Theory) News, 36
(3): 67-81.

9. R. Dorrigiv and A. López-Ortiz. Adaptive searching in one and two dimensions. In Pro-
ceedings of the the 20th Canadian Conference on Computational Geometry (CCCG ’08),
pages 215-218.

10. R. Dorrigiv and A. López-Ortiz. On certain new models for paging with locality of reference.
In Proceedings of the 2nd Workshop on Algorithms and Computation (WALCOM ’08),
pages 200-209.

11. R. Dorrigiv and A. López-Ortiz. Closing the gap between theory and practice: new measures
for online algorithm analysis. In Proceedings of the 2nd Workshop on Algorithms and
Computation (WALCOM ’08), pages 13-24.

12. R. Dorrigiv and A. López-Ortiz. On Developing New Models, with Paging as a Case Study.
ACM SIGACT (Special Interest Group on Automata and Computability Theory) News, to
appear.
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Chapter 2

Online Measures

In this chapter we formally define the competitive ratio. We also study in more detail the
shortcomings of competitive analysis using paging as case study. Furthermore, we study and
compare the basic features of the classical performance measures. Finally we briefly talk about
the evaluation of new models.

2.1 Competitive Ratio

Competitive analysis was a major breakthrough in the study of online algorithms. It can be
derived from the observation that an online algorithm, in essence, computes a partial solution to
a problem using incomplete information. Then, it is only natural to quantify the performance
drop due to this absence of information. That is, we compare the quality of the solution obtained
by the online algorithm with the one computed in the presence of full information, namely that
of the optimal offline algorithm opt. Without loss of generality we assume that we have a
cost minimization online problem. The definitions and discussions can be extended to profit
maximization problems in a straightforward way. We denote the cost of an algorithm A on a
sequence σ by A(σ).

Definition 2.1. An online algorithm A is said to have competitive ratio c if

A(σ) ≤ c · opt(σ)

for all sequences σ.

Some of the early literature considers only algorithms with constant competitive ratio, and all
others are termed as algorithms with unbounded competitive ratio. Alternatively, we can define
a C(n)-competitive algorithm as follows.

Definition 2.2. An online algorithm A is said to have competitive ratio C(n) if, for all sequences
σ we have:

A(σ) ≤ C(|σ|) · opt(σ).

This definition can be relaxed to describe the asymptotic competitive ratio.
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Definition 2.3. An online algorithm A is said to have asymptotic competitive ratio C(n) if

A(σ) ≤ C(|σ|) · opt(σ) + b

for all sequences σ and a constant b.

Equivalently, using the more conventional ratio notation, we have that an algorithm is C(n)–
competitive if and only if

C(n) = max
|σ|=n

{
A(σ)

opt(σ)

}
.

We note that this definition has three key components: the max operator, the online cost in
the numerator and the optimal offline cost in the denominator. To better understand their role,
in the next section we briefly review three well known performance measures used in classical
algorithm analysis. Highlighting the differences between these well known measures will help us
understand the motivations behind some of the alternative measures we will describe in Chapter
3.

Randomized Algorithms. Unlike deterministic algorithms, competitive analysis of random-
ized algorithms does not have a single definition. This is because we can have three different
adversary models in this case [30]. A randomized online algorithm A makes some random choices
while serving a sequence. In all three models, the adversary knows A and the probability dis-
tribution of its actions on any sequence σ. The distinction comes from the extent to which the
adversary knows the outcome of random choices made by A. An oblivious adversary does not
know the specific actions taken by A on σ. Thus it does not know the outcome of random choices
made by A. We say that A has asymptotic competitive ratio C(n) against an oblivious adversary
if there exists a constant b such that for all sequences σ,

E[A(σ)] ≤ C(|σ|) · opt(σ) + b,

where the expectation is taken over the random choices made by A.

In contrast, an adaptive adversary knows the outcome of random choices made by A. Thus it
knows the exact actions taken by A at each step and can use this knowledge to choose a worst-
case sequence τ . We have two types of adaptive adversaries, which differ in the cost model. The
cost of an adaptive-offline adversary on a sequence σ is opt(σ), i.e., the cost of an optimal offline
algorithm on σ. We say that A has asymptotic competitive ratio C(n) against an adaptive-offline
adversary if there exists a constant b such that for all sequences σ,

E[A(σ)− C(|σ|) · opt(σ)] ≤ b,

where the expectation is taken over the random choices made by A. An adaptive-online adversary
should serve each request in an online manner and its cost is defined accordingly. The competi-
tiveness against an adaptive-online adversary is the same as the one against an adaptive-offline
adversary, except that opt(σ) is replaced by the cost of an adaptive-online adversary on σ.

Thus an adaptive-offline adversary is stronger than an adaptive-online adversary, which in
turn is stronger than an oblivious adversary. Oblivious adversaries are analogous to adversaries
for randomized offline algorithms and are the most common in analysis of randomized online
algorithms. We only consider oblivious adversaries in this thesis. Thus whenever we talk about
competitiveness of randomized online algorithms, we implicitly assume an oblivious adversary.
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Figure 2.1: Performance of Mergesort over a billion random permutation of 100 numbers.

2.2 Classical Performance Measures

In this section we discuss the basic features of the classical model with the aim of understanding
the differences between the various models. Classical analysis of algorithms uses primarily the
worst-case measure to quantify the performance of an algorithm. We briefly review the under-
lying assumptions and highlight certain key aspects of the measure. The driving motivation for
algorithm analysis is to understand, quantify and compare the relative performance of a set of
algorithms for a given problem. Traditionally, there has been a preference for measures which
return a single numerical value. Such a measure would naturally induce a linear order in the
set of algorithms thus allowing for ready comparisons between them. However, as we know, for
the case of algorithms in general it is not possible to reduce their performance down to a single
number. Hence we must consider measures that are functions of one (or more) parameters, and
introduce a method for making pairwise comparisons.

Formally, given an algorithm A and an input x, A〈x〉 denotes the execution of A over x. A
performance measure µ associates a real positive number to A〈x〉. Typical examples of µ are
time, space usage, number of random bits used, and number of I/O operations.

When analyzing an algorithm we aim to determine the value of µ for a given input in as
accurate a manner as feasible. Observe that the domain of µ(·), which consists of all binary
strings representing well formed inputs, lacks regularity. This makes it difficult to evaluate or
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Figure 2.2: Performance of Bubblesort over a billion random permutation of 100 numbers.

estimate µ(A〈x〉) for a given input x. Hence, we group inputs by size. This draws on the
familiar notion developed in elementary school that for a fixed type of problem—say addition or
multiplication—its complexity increases with the number of digits in the input. In other words
this assumption in the model is at some level naturally supported by experience.

With the grouping by size assumption in place we can now define a new measure—termed
a timing function—from the positive integers to the real numbers, i.e. TA : Z+ → R+. The
function TA(n), the worst-case time of algorithm A, is defined as

TA(n) = max
|x|=n
{TA(x)},

where TA(x) = µ(A〈x〉) denotes the time taken by algorithm A to run on input x.

Note that the worst-case instances for two algorithms can be different. Thus when we compare
two algorithms according to worst-case analysis, we might compare the performance of them on
different sequences. Although worst-case analysis might seem too pessimistic, it is the standard
measure for analysis of algorithms. This is partly because it guarantees the performance of the
algorithm in all situations. Furthermore, it is an abstraction that simplifies analysis of algorithms
(together with asymptotic analysis).

Worst-case analysis has come to be seen as synonymous to the performance of an algorithm.
However, it is important to remember that it is in fact an imprecise approximation and for some
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Figure 2.3: Performance of Quicksort over a billion random permutation of 100 numbers.

applications some other approaches might be preferable. Indeed, the amount of information lost
in this reduction varies significantly with the algorithm. We illustrate this with three algorithms:
Mergesort, Bubblesort with early termination, and Quicksort. Figures 2.1, 2.2, and 2.3,
show the performance of these algorithms over a billion random permutations of 100 numbers.
Each dot in the tear drop shape represents the number of comparisons required by an actual
input among the billion permutations. We can see that the performance for Mergesort over
most inputs is strongly clustered around 525 ± 10 comparisons—which is reasonably close to
the predicted worst-case value of 664 comparisons (see Figure 2.1). The actual observed worst
case for Mergesort over a billion permutations was 554 comparisons. For Bubblesort with
early termination we have a similar situation where the performance is strongly clustered around
4920±20 comparisons which is very close to the worst case performance of 4950 comparisons (see
Figure 2.2). Moreover the worst case bound of 4950 was observed in practice for several of the
permutations generated at random. Lastly we have Quicksort. For this algorithm we can see
that the worst case performance is a terrible representative of its actual performance. Quicksort
timings are strongly clustered around 700± 40 comparisons but the worst case prediction is 4950
comparisons! Even the observed worst case over a billion permutations which was on itself very
rare, required 1427 comparisons, falling well short of the predicted worst case.

While this is well known it illustrates that worst case performance is, in all three cases, just
an approximation of the actual behaviour we were interested in studying and that the quality of
this approximation is variable. Note that the fact that this bound on the performance has been
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Figure 2.4: Relative performance of sorting algorithms over a billion random permutation of 100
numbers.
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mathematically proven is orthogonal to the quality of this representation. The example given
also illustrates the ways in which a model or measure can fail and yet still be the preferred tool.
In Section 2.5 we will discuss this in more detail.

Observe that in the definition of worst case analysis there are several choices to be made.
First we have the choice of measure. For example, by replacing the time measure function µ with
a function µ′ measuring space or I/O operations we obtain the standard worst case space and
I/O-model analysis, respectively. Second we have the choice of the worst case max operator. We
could use instead the average operator which gives average-case analysis for any of the measures
listed above. In particular we can define average-case running time as follows.

Definition 2.4. The average-case time of A under a uniform distribution is defined as

A(n) = avg|x|=n{TA(x)} =

∑
|x|=n TA(x)

#{|x| = n}
,

where # denotes the cardinality function.

In the case of a general distribution, the average-case time of A is

A(n) = E(TA(x) | |x| = n) =
∑
|x|=n

TA(x)Pr(x),

where E denotes the expectation function of classical probability. Observe that max, avg, and
E(·) are aggregate functions over all inputs of size n. As stated before, the main drawback of
average-case analysis is that the input distribution is usually unknown in practice.

Another choice that is made in the definition of worst-case analysis is grouping by input
size. There are alternatives to this grouping though none as commonly used as those for the
previous two choices. For polynomial algorithms there is adaptive analysis. This measure is used
on problems in which much simpler instances appear frequently. The idea is to require good
performance on all inputs, as compared to only on the worst-case or the average-case. Adaptive
analysis takes into account the difficulty of input instances. This means that an algorithm has
better performance according to adaptive analysis if it performs well on “easy” instances and not
too poorly on “difficult” ones. We define the adaptive performance of an algorithm by normalizing
its performance by the difficulty of input. The two main challenges of adaptive analysis are to
find a realistic difficulty measure for input instances and to propose algorithms that perform well
under such a measure. For example see the survey by Estivill-Castro and Wood [73] for several
difficulty measures for the sorting problem.

Definition 2.5. An algorithm A is said to be adaptive with respect to a measure V (x) if TA(x) =
O(V (x)) for all input x or equivalently

max
∀x

{
TA(x)
V (x)

}
≤ c

for some constant c.

This expression combines both the max aggregate operator of worst-case analysis and a com-
parison ratio which is reminiscent of competitive analysis.

Thus, adaptive analysis uses a measure of difficulty to group inputs by a second dimension.
For example, in Table 2.1 we list the set of input permutations to a comparison based sort. Each
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input size 1 2 3 4
0 transpositions 1 1 2 1 2 3 1 2 3 4

1 transposition
2 1 1 3 2 1 2 4 3

2 1 3 1 3 2 4
2 1 3 4

2 transpositions

2 3 1 1 3 4 2
3 1 2 1 4 2 3

2 1 4 3
2 3 1 4
3 1 2 4

3 transpositions

3 2 1 1 4 3 2
2 3 4 1
2 4 1 3
3 1 4 2
3 2 1 4
4 1 2 3

4 transpositions

2 4 3 1
3 1 2 3 2 4 1

3 4 1 2
4 1 3 2
4 2 1 3

5 transpositions
3 4 2 1
4 2 3 1
4 2 1 3

6 transpositions 4 3 2 1

Table 2.1: Number of transpositions needed to sort an input of size n for n = 1, 2, 3, and 4.
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column is grouped by the standard measure of input size but further subdivided by the complexity
measure of transpositions required to obtain the sorted sequence. Observe that trivially all
sequences in the first few k rows, for k constant, can be sorted in time O(n).

For NP-hard problems we have parameterized analysis, which uses a set of measures—such as
treewidth—to group the inputs by a parameter other than input size. Another example is given
by output-sensitive algorithms in which the input space is partitioned by both the size of the
input and the size of the output produced by a particular input string.

Observe that these performance measures have, as in the case of the online competitive ratio,
three key choices: (i) an aggregate function over inputs; (ii) a numerator with possibly its own
aggregation function; and in the case of the average and adaptive measures (iii) a denominator
with its own aggregation function and involving an external measure.

2.2.1 Probability Measures

The partition of the input space by size is motivated by the goal of introducing structure to the
input space as well as obtaining a mapping from the reals to the reals, since real valued functions
are more amenable to analysis. Note that this situation parallels the use of random variables in
probability. In this case the probability space often is similarly not amenable to study due to
its lack of structure and hence the notion of random variable is introduced. A random variable
transforms the space of events (which could as varied as a set of coin tosses or a sample subset
of people) into classes which are represented by the pre-image of their numerical value, i.e. the
set of events X−1(r) for r ∈ R.

In practice, in nearly all instances the random variable X is some sort of natural counting
function, yet the formal definition chooses to ignore this fact and allows for any arbitrarily defined
random variable. Contrast this with the analysis of algorithms in which we selected the most
natural grouping function (input size). This grouping has only relatively recently been expanded
to include a second parameter such as difficulty of the input, treewidth or output size. At the
same time it has become increasingly clear that there is a large number of such grouping functions
which are natural and worthy of study1.

Similarly the measurement function Pr which also has a very natural interpretation in math-
ematics is left unspecified by the axiomatization of Kolmogorov and is only required to be a
measurement function assigning the value of one to the entire sample space. In turn in computer
science we selected a specific random-variable-of-sorts namely the input size, and then a specific
measure or density function, namely max. Thus far the field has only hesitantly considered vari-
ations of those, as discussed before. This is in stark contrast to the probabilistic definition in
which no judgement is made as to the specific choice of parameters.

In practice, the most commonly used measures aside from time are space and number of
I/O operations. In this it can be argued that while this set might not yet be complete it is
unlikely to contain many other functions and that by keeping the set of possible measures small
leads to stronger theorems, just as in probability theory often theorems assume a specific type
of distribution or at least independent identically distributed variables. So in all, the fact that
a narrower choice was made in algorithms analysis is not necessarily bad, but it is important to
keep in mind that this choice was made and expand this selection if need be.

1Indeed, at a recent Dagstuhl meeting on fixed parameter tractability over a dozen different parameters were
identified by the attendants as being in common use in the field.
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Observe that the competitive ratio can also be understood in this light. In its original form
(Definition 2.1) it simply computes the maximum of a normalized measure over the entire input
space. As stated before, this definition was enlarged (Definition 2.2) to include a partition of the
input space which allows us to describe an algorithm as, say log n-competitive or

√
n-competitive.

Following the same outline, we can generalize the original definition of adaptive algorithms
(Definition 2.5) to the notion of f(n, V (x))-adaptive algorithms which are those such that TA(x) =
f(n, V (x)), for all inputs x of length n. Again this can be expressed as a ratio

max
|x|=n

{
TA(x)
V (x)

}
= f(n, V (x)),

which gives a bivariate timing function. Fixed parameter algorithms, approximation algorithms
and output-sensitive algorithms also use a second parameter to refine the partition of the input
space. For example, consider the performance of Quicksort as shown in Figure 2.3. A well chosen
difficulty parameter would partition the performance teardrop into narrower ranges each of which
would then presumably be estimated much more accurately by its corresponding maximum value.

In sum, classical measures have made certain parameter choices, which while natural and
useful are not necessarily unique. In cases where these choices led to undesirable results one can
either perfect the classical model, or introduce a novel measure to handle the anomalous cases.
Past experience shows that properly chosen variants have led to interesting and novel algorithms
and results.

2.3 Online Performance Measures

As stated before, competitive analysis has some drawbacks. In this section we try to find the roots
of these drawbacks and general approaches to overcome them. Consider again the competitive
ratio measure C(n):

C(n) = max
|σ|=n

{
A(σ)

opt(σ)

}
.

This measure suffers in practice from three aspects. One of them is that the denominator is an
offline algorithm that has full knowledge of the future request sequence and unbounded computa-
tional power. Indeed, in some cases computing the optimal offline algorithm is non-recursive! In
certain instances the comparison with such a powerful adversary leads to algorithms of varying
degrees of sophistication having the same equally bad competitive ratio.

The other problem with the measure is its pessimistic nature: It concentrates on a single
worst-case sequence. For example an algorithm that has good performance in all but one rather
complicated instance has the same competitive ratio as an algorithm that always makes a bad
decision (even on “trivial” instances) so long as the bad decisions are never worse than that of
the rare worst case of the preferred algorithm.

Another problem with competitive analysis is that it cannot be used to directly compare two
online algorithms: it uses the concept of an optimal offline algorithm as a baseline for comparing
online algorithms. While this may be convenient, it is rather indirect: one could argue that in
comparing two online algorithms, all we need to study is the relative cost of the algorithms on
the request sequences.
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Theoretical Model Systems Framework
Competitive ratio framework Fault rate measure

Worst-case analysis Typical case analysis
Marking algorithms optimal LRU and variants thereof are best

In practice LRU is best LRU is impractical
LFD is offline optimal No analogous concept
Competitive ratio is k Comp. ratio is at most 4

User is a malicious adversary User (compiler/programmer) seeks
locality of reference

No benefit from lookahead Lookahead helps

Table 2.2: Contrast of theory versus practice for paging.

Therefore several alternative measures for the quality of online algorithms have been proposed
[29, 47, 39, 111, 110, 79, 95, 36, 97, 54, 153]. We study some of these alternatives in Chapter 3.
In general, known alternative approaches rely on one or more of the following:

1. Defining a new measure as a substitute for the competitive ratio

2. Limiting the power of the adversary

3. Employing different definitions for the concept of the “cost” of an algorithm

4. Incorporating certain assumptions concerning the request sequences

5. Directly comparing online algorithms, i.e., without a reference to opt

2.4 Theory versus Practice

As was mentioned earlier, competitive analysis of paging does not lead to satisfactory conclusions
which are replicated in practice. With the goal of closing the gap between theory and practice,
we examine the difference in assumptions between the theoretical competitive ratio model and
the practical systems research approach to paging. We now discuss in detail the differences which
appear summarized in Table 2.2.

1. The theoretical model for the study of paging algorithms is the competitive ratio framework,
in contrast, the vast majority of systems research on paging uses the fault rate measure,
which simply determines the percentage of page requests leading to a page fault. Consider
for example a request sequence of 1000000 pages, such that an online algorithm A has
200 page faults while opt has twenty faults. This means that A has a competitive ratio
of 10 which is high, while in terms of the fault rate model A has a page fault rate of
0.02% which is very good. Unfortunately, we cannot use (worst-case) fault rate alone to
get meaningful theoretical results about online paging algorithms, as it is still a pessimistic
measure. However, we will see in Section 3.14 that the fault rate measure can be combined
with some alternative models to give informative results.

2. In the worst case one can devise highly contrived request sequences with a very high compet-
itive ratio for any paging algorithm. Since these sequences do not occur naturally, measuring
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the performance of an online algorithm using them does not shed light on the actual rela-
tive performance of various algorithms. Practical studies in contrast use an extensive set
of real-life request sequences (traces) gathered from diverse set of applications, over which
the performance of any online strategy can be measured.

3. It has been empirically well established that LRU (and/or minor variants thereof) are,
in practice, preferable paging strategies to all other known paging algorithms [139]. In
contrast, the competitive ratio of LRU is the same as FIFO, and it is worse than that
of some randomized algorithms. Actually, LRU has the same performance as the näıve
algorithm FWF under competitive analysis. The competitive ratio then fails to separate
between these algorithms with very different performance in practice. This is one of the
most noticeable drawbacks of competitive analysis; most alternative measures can separate
the performance of LRU and that of FWF.

4. In terms of practice the theoretical model suggests that LRU might be preferable for “prac-
tical” heuristic reasons. In actuality, since paging algorithms are executed concurrently with
every page access this limits the complexity of any solution, and hence practical heuristic
solutions are simplifications and approximations of LRU.

5. Competitive analysis uses an optimal offline algorithm as a baseline to compare online
algorithms. While this may be convenient, it is rather indirect: one could argue that in
comparing A to B all we need to study is the relative cost of the algorithms on the request
sequences. The indirect comparison to an offline optimal can introduce spurious artifacts
due to the comparison of two objects of different types, namely an online and an offline
algorithm 2. As well the offline optimum benefits from aspects other than the difficulty of
the instances, namely it can take advantage of knowledge of the future, so regardless of the
difficulty of servicing a request it might do better as a consequence of this. In contrast, the
fault rate measure uses a direct comparison of the number of faults per access of paging
algorithms to determine which one is preferable. Some other models, e.g., the relative worst
order ratio [39] and the Max/Max ratio [29] allow for direct comparison of online algorithms.

6. Interestingly, even if algorithms are measured using the competitive ratio, in practice the
worst-case request sequence encountered using LRU has (empirical) competitive ratio 4,
and most sequences have competitive ratio between two and four [153]. Experimental results
suggest that the empirical competitive ratio of LRU is a small constant independent of k
[35]. Contrast this with the predicted competitive ratio of k under the theoretical model.
Several alternative measures address this issue by proving constant performance ratios for
LRU, e.g., loose competitiveness [156] and adequate analysis [129].

7. The offline optimum model implicitly creates an adversarial model in which the paging
algorithm must be able to handle all request sequences, including those maliciously designed
to foil the paging algorithm. In contrast, in real life, programmers and compilers purposely
avoid bad request sequences and try to arrange the data in a way so as to maximize locality
of reference in the request sequence (e.g. I/O model [3], or the cache oblivious model [130]).
In game theoretical terms, the theoretical competitive model is a zero sum game in which

2To illustrate, consider a consumer wishing to purchase a mountain bike. There are two choices which the
user evaluates indirectly by comparing them to an “optimal” racing bike. While in general good racing bikes
and mountain bikes have common characteristics, such a comparison would award no points for shock absorbers.
Similarly, lightness, which is essential in a racing bike is secondary to sturdiness in the case of the mountain bike,
and so on and so forth.
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the adversary benefits from a badly performing paging algorithm, while in practice paging
is a positive sum game in which both the user and the paging algorithm can maximize
their respective performances by cooperating and coordinating their strategies. Indeed it
has been observed [66] that paging algorithms optimize for locality of reference because
this was first observed in real life traces, and now compilers optimize the code to increase
locality of reference because those are the sequences over which paging algorithms excel.

8. Lastly, as stated in Chapter 1, finite lookahead does not help in the theoretical model, yet in
practice instruction schedulers in many cases know the future request sequence for a small
finite lookahead and can use this information to improve the fault rate of paging strategies.
This drawback has been addressed in two ways. One way is to propose alternative definitions
for lookahead (see Section 3.15.). The other is to use alternative models for analysis of online
algorithms: the relative worst order ratio [39], the Max/Max ratio [29], the full access cost
model [148], and the comparative ratio [111] reflect the influence of lookahead.

2.5 Evaluating New Models

In the rest of thesis we will see several models for analysis of (online) algorithms. In this section
we discuss key aspects of the introduction and evaluation of new models to illustrate the process
by which new models become adopted. As observed before, proposing a new model or measure
is relatively rare, and widespread adoption of one is even rarer. As such there is a paucity of
established techniques on how to gauge the usefulness and validity of a proposed new model.

Often there is a tendency to think in terms of “competing models” as if there were a unique
best model out there waiting to be found. In practice, different models are used in different
settings depending on the information being sought and the specific application in mind. For
example if we are sorting a given number of keys, we might choose to study the problem under
the RAM model, the I/O model or the MapReduce model if the number of keys is modest, large or
massive, respectively. That is to say, to adopt the MapReduce model we do not need to disprove
the validity of the RAM model throughout. All that is required is for the MapReduce model to
produce more accurate estimates of the algorithm performance for the particular set of instances
that we are interested in, and then we use this model for exactly those instances.

Furthermore, newly introduced models often have to be evaluated on their promise as it might
take the combined work of several research efforts before their full potential is grasped3. Indeed a
well-honed and understood inferior model will initially outperform an ultimately preferable new
model that is yet to be fully developed and perfected.

Another often overlooked factor is that models are approximations of reality, not accurate
descriptions—hence the use of the word model. This was most notably stated by the mathemati-
cian George Box in his maxim “essentially, all models are wrong, but some are useful”4 [37, page
424]. In fact models can be at times highly inaccurate provided that they fail in well understood
and predictable scenarios, in which case we learn not to use them in the first place. For example,
we know that the worst case measure is not adequate for the evaluation of randomized algorithms.
Naturally this is not considered an indictment of the worst case measure, and rightly so.

3Consider for example the introduction of the notion of NP-completeness by S. Cook and the followup paper
by Richard Karp the year after, discussing this idea further.

4Another variant, also by G. Box, is “remember that all models are wrong; the practical question is how wrong
do they have to be to not be useful.”
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The economist Paul Krugman observed this process of internalization of the limits of well
established models and overlooking of their flaws, in the context of commenting on the various
models he introduced:

The models I proposed were incomplete and yet they told meaningful stories. To
achieve this aggregate level of description required accepting certain basically silly as-
sumptions of symmetry, yet these silly assumptions tell stories that were persuasive,
and that could not be told using the standard model. What I began to realize was
that in economics we are always making silly assumptions; it’s just that some of them
have been made so often that they come to seem natural. And so one should not reject
a model as silly until one sees where its assumptions lead. Initially your assumptions
will surely look peculiar. Consider for example the Arrow-Debreu model of perfect
competition with utility maximization and complete markets. This is indeed a won-
derful model—not because its assumptions are remotely plausible but because it helps
us think more clearly about both the nature of economic efficiency and the prospects
for achieving efficiency under a market system. [emphasis added and excerpted for
brevity, see [113] for the complete quote]

This is not to say that newly proposed models cannot be tested or evaluated. A good model
shows promise even if initially flawed and should eventually lead to new insights and predictions
that were not explicitly built into the model.

A good model first unifies, then explains and ultimately predicts. Ideally it begins by reducing
the facts to basic, self-evident principles which are so obviously true that they verge between the
trivial, the overly simplified and the downright circular.5 Yet they readily and accurately explain
the facts in ways that were not otherwise possible.

Observe that the effectiveness of a model is another important consideration. Indeed, we
readily trade accuracy for effectiveness in our choice of models. We illustrated this fact with
the error observed during the worst case analysis of the sorting algorithms in Section 2.2. In a
more recent example we see the same tradeoff being made in the development of non-uniform
access-cost memory models:

A number of models have been proposed [...] The two most widely adopted ones are
the input/output model (or I/O model) and the cache-oblivious model. Their success
is due to the balance they provide between simplicity, in order to allow the design
and analysis of sophisticated algorithms and accuracy in predicting the performance
of algorithms on real memory hierarchies. (excerpted from [2])

It is easy to underestimate the amount of precision that we routinely trade in exchange for
effectiveness. In this sense almost all probabilistic models are a vast tradeoff between accuracy
and effectiveness. For example, given an unlimited budget a doctor might be able to determine
if a patient will or will not develop lung cancer. Instead we settle for a probabilistic statement
such as “30% of former smokers do”. In all three cases discussed above, even though we might be
able to produce much better estimates it would be at a disproportionately higher cost and hence
not done.

5For example, consider Newton’s 1st Law: “Objects remain in motion until they are affected by an external
force”. What is an external force? something that affects the motion of an object.
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Chapter 3

Existing Alternative Measures for
the Analysis of Online Algorithms

As stated before, various alternatives to the competitive ratio have been proposed in the literature.
In this chapter we survey several of those alternatives, highlight their distinctive properties and
discuss their benefits and drawbacks.

3.1 Max/Max Ratio

The Max/Max ratio [29] tries to be more optimistic by comparing the amortized worst case
behaviour of the online algorithm with the amortized worst case behaviour of the optimal offline
algorithm. Recall that in competitive analysis we compare the two algorithms on the same
sequence. However, this approach is sometimes problematic because the existence of only one
bad sequence for an online algorithm can drastically change the result. This measure tries to
avoid the situation in which a single unusual sequence leads to a very bad ratio. This becomes
more clear with the following example used in [29] as a motivation for defining the Max/Max
ratio. Consider the problem of buying an insurance policy in an online manner. It is reasonable
to pay $5 a month to insure your car against theft. However, this is not a competitive strategy
because the offline adversary can select the scenario in which one will never present a claim to
the insurance agent. Conversely if no theft insurance is purchased, then the adversary can select
the scenario in which the car is stolen. In the Max/Max ratio, we compare the two algorithms
on their respective worst case sequences of the same length.

We formally define this measure for an online minimization problem Π. The definition for
maximization problems is similar. Let A be an algorithm for Π.

Definition 3.1. The amortized cost of A is defined as M(A) = lim supn→∞Mn(A) where
Mn(A) = max|σ|=nA(σ)/n. The Max/Max ratio of A denoted wM (A) is

lim sup
n→∞

Mn(A)
Mn(opt)

=
M(A)
M(opt)

where opt is an optimal offline algorithm.
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Note that we can directly compare two online algorithms A and B using this measure because
we have M(A)

M(B) = wM (A)
wM (B) . Also when considering the Max/Max ratio, lookahead can improve the

online performance even in cases where the competitive ratio does not improve [29]. In Chapter
4 we will see that all lazy paging algorithms are equivalent according to the Max/Max ratio.

3.2 Random Order Ratio

The random order ratio [110] is another measure that tries to decrease the dependence on some
unusual bad sequences. Let A be an online algorithm for a minimization problem.

Definition 3.2. The random order ratio of A is defined as

RC(A) = lim sup
opt(σ)→∞

Eπ[A(σπ)]
opt(σ)

where π is a permutation of {1, 2, . . . , n}, σπ is the permuted sequence (σπ1 , . . . , σπn), and the
expectation is taken over all permutations of {1, 2, . . . , n}.

Therefore this measure assumes that all orderings of an input sequence are equally likely. This
is a reasonable assumption for some online problems. Kenyon [110] proves a lower and an upper
bound on the random order ratio of the Best-Fit algorithm for online bin-packing which are
better than the corresponding competitive ratio bounds. However, it seems that this measure is
difficult to generalize to other online problems.

3.3 Relative Worst Order Ratio

The relative worst order ratio [39, 48, 40] combines some desirable properties of the Max/Max
ratio and the random order ratio. Using this measure we can directly compare two online al-
gorithms. Informally, for a given sequence it considers the worst case ordering of that sequence
for each algorithm and compares their behaviours on these orderings. Then it finds among all
sequences (not just reorderings) the one that maximizes the worst case performance. Thus this
measure can be considered as a modification of the Max/Max ratio in that we consider the worst
sequence among those which are permutations of each other instead of considering the worst
sequence among all those having the same length as the Max/Max ratio does. It is also related
to random order ratio as it considers permutations of a sequence. However instead of taking the
expectation of the algorithm’s behaviour on all permutations, it considers the permutation with
the worst behaviour.

Let A and B be online algorithms for an online minimization problem. Denote by σπ the
sequence obtained by applying a permutation π to σ, i.e., σπ = (σπ1 , . . . , σπn). Define AW (σ) =
maxπA(σπ).

Definition 3.3. [40] Let S1(c) and S2(c) be the statements about algorithms A and B defined in
the following way.

S1(c) : There exists a constant b such that AW (I) ≤ c · BW (σ) + b for all σ.
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S2(c) : There exists a constant b such that AW (I) ≥ c · BW (σ)− b for all σ.

The relative worst order ratio WRA,B of A to B is defined if S1(1) or S2(1) holds. In this case A
and B are said to be comparable. If S1(1) holds, then WRA,B = sup{r|S2(r)}, and if S2(r) holds
then WRA,B = inf{r|S1(r)}.

WRA,B can be used to compare the qualities of A and B. If WRA,B = 1 then these two
algorithms have the same quality with respect to this measure. The magnitude of difference
between WRA,B and 1 reflects the difference between the behaviour of the two algorithms. For
a minimization problem, A is better than B with respect to this measure if WRA,B < 1 and vice
versa.

The idea behind this measure is that some online algorithms perform well on some types of
sequence orderings and other algorithms perform well on some other types of orderings. Therefore
certain algorithms that cannot be compared using competitive analysis may be comparable in
this measure. Boyar and Favrholdt show that the relative worst order ratio is transitive [39].

Note that we can also compare the online algorithm A to an optimal offline algorithm opt.
The worst order ratio of A is defined as WRA = WRA,opt. For some problems, opt is the same
for all orderings of requests on a given sequence and hence the worst order ratio is the same as
the competitive ratio. However for other problems such as fair bin packing the order does matter
for opt.

In [48], three online algorithms (First-Fit, Best-Fit, and Worst-Fit) for two variants
of the seat reservation problem [44] are compared using the relative worst order ratio. All of
these three algorithms can be compared in this framework while they have the same performance
within the classical competitive analysis framework.

For paging algorithms, LRU is strictly better than FWF with respect to the worst order ratio
[40], while these two algorithms have the same competitive ratio. Also a new paging algorithm,
Retrospective-LRU (RLRU), is proposed and it is shown that RLRU is better than LRU with
respect to the relative worst order ratio. This is in contrast to what the competitive ratio of these
algorithms predicts. It is also shown that lookahead is helpful when we consider the relative worst
order ratio.

3.4 Loose Competitiveness

Loose competitiveness was first proposed in [153] and later modified in [156]. We describe it for an
online minimization problem. It attempts to obtain a more realistic measure by considering the
following two aspects in the analysis of online algorithms. First, in many real-life online problems,
we can ignore those sequences on which the online algorithm incurs a cost less than a certain
threshold. Second, many online problems have a second resource parameter (e.g. size of the
cache, number of servers) and input sequences are independent of these parameters. In contrast,
in competitive analysis the adversary can select sequences tailored against those parameters. We
clarify this situation by considering the paging problem. In this case the problem parameter is
k, the size of the cache. Consider the following lower bound on the competitive ratio of any
deterministic paging algorithm.

Theorem 3.1. [140] The competitive ratio of any deterministic online paging algorithm is at
least k.
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This result can be easily proven by considering an adversary that selects only k + 1 pages
and at each time requests a page that is not in the cache. For this to work the adversary needs
to know the problem parameter k. However, in practice the competitive ratios of many online
paging algorithms have been observed to be constant [156], i.e., independent of k. This can be
obtained by applying loose competitiveness.

In loose competitiveness we consider an adversary that is oblivious to the parameter by
requiring it to give a sequence that is bad for most values of the parameter rather than just a
specific bad value. Let Ak(σ) denote the cost of an algorithm A on an input sequence σ, when
the parameter of the problem is k.

Definition 3.4. [156] An algorithm A is (ε, δ)-loosely c-competitive if, for any input sequence σ
and for any n, at least (1− δ)n of the values k ∈ {1, 2, . . . , n} satisfy

Ak(σ) ≤ max{c · optk(σ), ε |σ|}.

Therefore we ignore sequences σ which cost less than ε |σ|. Also we require the algorithm to
be good for at least a (1−δ)-fraction of the possible parameters. For each online problem, we can
select the appropriate constants ε and δ. The following result shows that by this modification of
the competitive analysis, we can obtain paging algorithms with constant performance ratios.

Theorem 3.2. [156] Every k-competitive paging algorithm is (ε, δ)-loosely c-competitive for any
0 < ε, δ < 1, and c = (e/δ) ln(e/ε), where e is the base of the natural logarithm.

3.5 Accommodating Ratio and Accommodating Function

These two measures are the same as the competitive ratio except that they restrict the set of
legal input sequences. They apply to online problems with limited resources and only consider
those sequences in which the optimal solution does not benefit from having more than a certain
amount of resources. We use an example to explain this. The fair bin packing problem consists
of n bins of size k and an input sequence σ of items where the size of each item is an integer
between 1 and k. This sequence is given to the algorithm in an online manner and we want to
maximize the total number of items in the bins. Also the packing should be fair; we can reject
an item only if it cannot fit in any bins when it is given. Although the optimal offline algorithm
knows the whole sequence σ in advance, it should fairly process the requests in the same order.

Now for the accommodating ratio [44] we consider those sequences that can be packed in n
bins by a fair optimal offline algorithm. In general we only consider those sequences in which
the optimal offline algorithm does not benefit from having more resources than those already
available. For the accommodating function [47, 41] we only consider those sequences that can be
packed in αn bins by a fair optimal offline algorithm opt. Boyar et al. [47] argue that if we allow
large values of α, then we will have sequences that cannot be handled very well by opt and this
can be unrealistic for some applications. Thus they consider small values of α ≥ 1.

More precisely, consider an online minimization problem Π with limited resources. Let A(σ)
be the cost of an online algorithm A on an input sequence σ and let opt(σ) be the cost of an
optimal offline algorithm on σ. Let optm be the cost of opt when an amount m of the limited
resource is available.
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Definition 3.5. [41] Let Π be an online problem with a fixed amount n of resources. For any
α > 0, an input sequence σ is said to be an α-sequence, if optαn(σ) = optn′(σ), for all n′ ≥ αn
(1-sequences are also called accommodating sequences).

Definition 3.6. Algorithm A is c-competitive on α-sequences, if there exists a constant b, such
that A(σ) ≤ c · opt(σ) + b, for any α-sequence σ. The accommodating function is defined as

AA(α) = inf{c | A is c-competitive on α-sequences}

The accommodating ratio is the same as the competitive ratio when we restrict the input
to accommodating sequences (1-sequences). Therefore the accommodating ratio is usually called
the competitive ratio on accommodating sequences. Note that accommodating ratio is equivalent
to A(1). Also the competitive ratio is limα→∞ A(α). Thus the accommodating function is an
extension of both the competitive ratio and the accommodating ratio.

Several papers [44, 46, 18, 17, 72, 49, 16] use the accommodating ratio as the measure of
quality for online algorithms. Boyar et al. [44] give lower bounds and upper bounds for the
competitive ratio and accommodating ratio of two versions (unit price and proportional price)
of the seat reservation problem. They prove these results for Best-Fit, First-Fit, and general
deterministic fair algorithms. The two measures (the competitive ratio and the accommodating
ratio), agree on the proportional price problem but differ on the unit price problem. The bounds
are tight for the proportional price problem, but not in the unit price problem. Bach et al.
[18, 17] give tight bounds for the deterministic fair algorithms for the unit price problem. They
also consider randomized algorithms and prove some bounds on them.

Several algorithms for the online fair bin packing problem are analyzed in [45]. Upper bounds
and lower bounds are given for the accommodating ratio for First-Fit, Worst-Fit, and general
algorithms. The lower bound for First-fit is improved in [49]. According to these bounds,
First-Fit has strictly better accommodating ratio than Worst-Fit. However if we consider
the standard competitive ratio, it can be shown [46] that Worst-Fit behaves strictly better than
First-Fit. Therefore the competitive ratio and the accommodating ratio can give contradictory
results. Epstein and Favrholdt [72] consider a variation of online fair bin packing in which bins
can have different sizes and give upper bounds and lower bounds for the accommodating ratio of
several online algorithms.

The unrestricted bin-packing problem is the same as the fair bin packing problem except
that we do not require the algorithms to be fair. Azar et al. [16] study this variation of the
problem and compare it with fair bin packing using the accommodating ratio. They prove an
asymptotically tight bound for the accommodating ratio of First-Fit for the fair bin packing
problem. They design an online algorithm called Unfair-First-Fit which has asymptotically
better accommodating ratio than First-Fit in the unrestricted bin packing problem. Finally
upper bounds on the accommodating ratio of deterministic and randomized algorithms are proven
for the unrestricted bin packing problem.

The accommodating function is studied by Boyer et al. for the fair bin packing problem [47].
They prove lower and upper bounds on the accommodating functions of First-Fit, Worst-
Fit, and all deterministic fair algorithms for all α ≥ 1. A variant of the seat reservation problem
in which seat changes are allowed is studied in [43]. Lower bounds and upper bounds for the
competitive ratio, accommodating ratio, and accommodating function are proven for several
algorithms. Finally, Boyer et al. [41] extend the accommodating function to values of α < 1. They
study the accommodating function of several algorithms for the seat reservation and unrestricted
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bin packing problems. For the seat reservation problem, they show that we can separate the
performance of three algorithms using the accommodating function at α = 1/3, while we cannot
do the same using the competitive ratio or the accommodating ratio. They also studied the
connection between the accommodating function and the resource augmentation technique [101].

3.6 Access Graph Model

The access graph model was introduced by Borodin et al. to solve two main problems in com-
petitive analysis of online paging algorithms [36]. One of these problems is that the practical
performance ratio of LRU is much better than its competitive ratio. We have mentioned the
second problem before: Although LRU and FIFO have the same competitive ratio, LRU behaves
much better than FIFO in practice. One reason that LRU has good experimental behaviour is
that in practice page requests show locality of reference. Temporal locality means that when a
page is requested it is more likely to be requested in the near future. Spatial locality means that
when a page is requested it is more likely that a nearby page will be requested in the near future.

In the access graph model we weaken the adversary by restricting the set of legal input
sequences. This is done by restricting the set of pages that can be requested after each page.
More specifically, we have an access graph G = (V,E) so that each vertex v represents a page pv
and there is an edge from a vertex u to a vertex v if and only if pv can be requested after pu.
This graph can be directed or undirected depending on the actual problem. Locality of reference
can be imposed in this model because when we request a page p we should request p or one of
its neighbours in the next step. The competitive ratio is the same as in standard competitive
analysis except that we restrict ourselves to the input sequences that conform to the given access
graph.

Using this model, several interesting results can be obtained [36, 97, 54, 78]. For every graph
G and every number k of pages in the fast memory, let ck(G) denote the best competitive ratio
that can be achieved by an online paging algorithm. Borodin et al. prove that the value ck(G) is
computable for every finite access graph G [36]. They also show how to compute the competitive
ratio of LRU for every access graph and every k within a factor of two (plus additive constant),
and propose a simple algorithm that nearly achieves the best competitive ratio for every access
graph. This algorithm, called FAR, evicts, on each fault, the unmarked page in cache whose
distance from a marked page is maximum in the access graph. They proved that the competitive
ratio of FAR for every undirected access graph and every k is within O(log k) of the best possible
competitive ratio. This was later improved by Irani et al. who showed that the competitive ratio
of FAR is O(ck(G)) for any undirected graph G [97]. Experimental results of [36] show that some
variations of FAR behave better than LRU in practice. It is also known that the competitive
ratio of LRU is at least as good as FIFO on every access graph [54].

Karlin, Phillips, and Raghavan [109] extended the access graph model by assigning proba-
bilities to the edges of the graph. In other words, they assume that the request sequences are
generated by a Markov chain process on the set of pages. Given such a Markov chain, the ob-
jective is to find an efficient online algorithm that minimizes the expected number of faults per
request. They provide an efficient algorithm that achieve bounds within a constant of the best
online algorithm.
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3.7 Diffuse Adversary Model

The diffuse adversary model [111] tries to refine the competitive ratio by decreasing the power of
the adversary. It does this by restricting the set of legal input sequences. Recall that in standard
competitive analysis we do not put any restriction on the input sequences and so they can have
any distribution. In other words, the online algorithm knows nothing about the distribution of
the input sequences. At the other end of the spectrum, in classic average-case analysis of online
algorithms, the exact distribution of input sequences is known to the online algorithm. In the
diffuse adversary model, the online algorithm does not know the exact distribution, but it knows
that it is a member of a class ∆ of distributions.

Definition 3.7. Let A be an online algorithm for a minimization problem and let ∆ be a class of
distributions for the input sequences. Then A is c-competitive against ∆, if there exists a constant
b, such that

Eσ∈D[A(σ)] ≤ c · Eσ∈D[opt(σ)] + b,

for every distribution D ∈ ∆, where A(σ) denotes the cost of A on the input sequence σ and the
expectations are taken over sequences that are picked according to D.

In other words the adversary selects the distribution D in ∆ that is the worst distribution
for A. If ∆ is more restricted then A knows more about the distribution of input sequences
and the power of adversary is more constrained. When ∆ contains all possible distributions
then competitive analysis against ∆ is the same as the standard competitive ratio. Therefore
the diffuse adversary model is an extension of the standard competitive analysis. Note that we
can also model locality of reference using the diffuse adversary model by considering only those
distributions that are consistent with the given access graph. This means that if there is no edge
between the vertices corresponding to two pages, the probability that one page is accessed after
the other should be zero in our distributions.

This model is applied to paging [111] by considering a class ∆ε of distributions and proving
that LRU has the best competitive ratio against ∆ε among all deterministic online algorithms.
For any sequence ρ of pages and any page p, let Pr(p|ρ) denote the probability that p is the
next page requested provided that the request sequence seen so far is ρ. For any 0 ≤ ε ≤ 1,
∆ε contains distributions in which Pr(p|ρ) ≤ ε for every page p and every page sequence ρ.
Young [154, 155] computed the actual competitive ratios of both deterministic and randomized
algorithms against ∆ε. He proves that around the threshold ε ≈ 1/k, the best competitive ratios
against ∆ε are Θ(ln k) for both deterministic and randomized algorithms. The competitive ratios
rapidly become constant for values of ε less than the threshold. For ε = ω(1/k), i.e., values greater
than the threshold, the competitive ratio rapidly tends to Θ(k) for deterministic algorithms while
it remains Θ(ln k) for randomized algorithms. He shows that for ε ≥ 1/k, FIFO and FWF have
competitive ratio k against ∆ε. Thus in this case they are outperformed by LRU, which has
competitive ratio Θ(ln k).

Becchetti [25] argues that the class ∆ε does not reflect locality of reference. He considers
other classes of distributions that model locality of reference. He then proves that LRU achieves
good competitive ratios against these classes, while the performance of FWF against them is bad.
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3.8 Probabilistic Competitiveness

Standard competitive analysis is a worst-case measure. Diffuse adversary, as a model for prob-
abilistic competitive analysis, is based on the average-case analysis. Recall that in average-case
analysis of online algorithms, we assume a probability distribution D on sequences and compute
the expected performance of algorithms under D. The diffuse adversary model is different from
the average-case analysis in two ways:

1. It considers a class ∆ of possible distributions, instead of a single distribution D.

2. It normalizes the expected performance of algorithms to the expected performance of opt.

There is an alternative way to compare the performance of online algorithms with opt under
probabilistic assumptions. This is related to two possibilities for defining the competitiveness
against a fixed probability distribution. The diffuse adversary model uses the following definition:

Definition 3.8. [95] Let D be a probability distribution on request sequences σ. An algorithm A
is c-competitive against D if there exists a constant, b, such that

ED[A(σ)] ≤ c · ED[opt(σ)] + b.

Equivalently, we can say that in this definition we compute

ED[A(σ)]
ED[opt(σ)]

.

The alternative is the instance-wise definition.

Definition 3.9. Let D be a probability distribution on request sequences σ. The average-case
competitive ratio of an algorithm A against D is defined as

ED

[
A(σ)

opt(σ)

]
.

Fujiwara and Iwama [80] apply average-case competitive analysis to the ski-rental problem.
In this problem, a skier should decide between renting and purchasing a pair of skis. The cost
of purchasing is s times the cost of renting. The problem is online: the skier does not know how
many times she would go skiing. It is well known [107] that the optimal deterministic strategy is
to buy the skis after s − 1 rental times. [80] considers the following scenario: At each time, the
skier quits skiing with probability λ > 0. Then the total number of ski trips follows exponential
distribution λe−λt. Fujiwara and Iwama prove that the algorithm with optimal average-case
competitive ratio against this distribution always rents skis if s ≥ 1/λ. Otherwise it buys the skis
after ≈ s2λ times. This is different from optimal algorithms in competitive analysis and standard
average-case analysis frameworks.

Similarly, they propose the following alternative definition for the diffuse adversary model.

Definition 3.10. Let A be an online algorithm for a minimization problem and let ∆ be a class
of distributions for the input sequences. Then the average-case competitive ratio of A against ∆
is defined as

max
D∈∆

{
ED

[
A(σ)

opt(σ)

]}
.

29



Souza [142] calls the competitive ratios defined in Definitions 3.7 and 3.10 the expected compet-
itive ratio and the average performance ratio, respectively. He argues that for some applications
the average performance ratio is preferable to the expected competitive ratio. Bin packing al-
gorithms have been extensively studied using the average performance ratio, e.g., see [56] and
references therein. This ratio has been applied to some scheduling problems as well [57, 135, 143].
Note that the average performance ratio is called the expected competitive ratio in these papers.

Actually, the average-case competitive ratio was first introduced in the context of competitive
searches on the real line for a target of unknown location. The classic problem in this field is the
cow path problem. As traditionally described, a cow reaches a fork on the road and recalls that in
one and only one of the two paths there is a pasture field. This problem was first analyzed under
the competitive ratio and its solution predates the introduction of the competitive ratio in online
algorithms. The optimal solution under the standard competitive ratio metric is 9-competitive.
However, on the average, the pasture is discovered at a cost of approximately 4.59 times the
optimal path to the pasture. Interestingly enough, the strategy resulting in the optimal average
cost is different from the optimal one under the competitive ratio framework [81, 114]. Formally
we have

Definition 3.11. The average competitive ratio, or average ratio for short is defined as

E∀ |σ|

[
A(σ)

opt(σ)

]
.

3.9 Smoothed Competitiveness

Some algorithms that have very bad worst case performance behave very well in practice. One of
the most famous examples is the simplex method. This algorithm has very good performance in
practice but it has exponential running time in the worst case. Average-case analysis of algorithms
can somehow explain this behaviour but sometimes there is no basis to the assumption that the
inputs to an algorithm are random.

Smoothed analysis of algorithms [145] tries to explain this intriguing behavior without any
prior assumptions on the distribution of the input instances. In this model, we randomly perturb
(smoothen) the input instances according to a probability distribution f and then analyze the
behavior of the algorithm on these perturbed (smoothed) instances. For each input instance Ǐ we
compute the neighborhood N(Ǐ) of Ǐ which contains the set of all perturbed instances that can be
obtained from Ǐ. Then we compute the expected running time of the algorithm over all perturbed
instances in this neighborhood. The smoothed complexity of the algorithm is the maximum of
this expected running time over all the input instances. Intuitively, an algorithm with bad worst
case performance can have good smoothed performance if its worst case instances are isolated.
Spielman and Teng show [145] that the simplex algorithm has polynomial smoothed complexity.
Several other results are known about the smoothed complexity of algorithms [23, 121, 34, 144].

As stated before, competitive analysis is a rather pessimistic measure and an algorithm can
have a very bad competitive ratio only because of a few bad sequences. Therefore the competitive
ratio is a reasonable choice for applying smoothed analysis. This was first done by Becchetti et al.
[26] who introduced smoothed competitive analysis. Informally, smoothed competitive analysis is
the same as competitive analysis except that we consider the cost of the algorithm on randomly
perturbed adversarial sequences. The smoothed competitive ratio of an online algorithm A for a
minimization problem can be formally defined as follows.
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Definition 3.12. [26] The smoothed competitive ratio of an algorithm A is defined as

c = sup
Ǐ

EI←N(Ǐ)

[
A(I)

opt(I)

]
,

where the supremum is taken over all input instances Ǐ, and the expectation is taken over all
instances I that are obtainable by smoothening the input instance Ǐ according to f in the neigh-
borhood N(Ǐ).

Note that it is also possible to define the smoothed competitive ratio as

c = sup
Ǐ

EI←N(Ǐ)[A(I)]

EI←N(Ǐ)[opt(I)]
.

In [26], the first definition is used but it is remarked that a similar result can be obtained using the
second definition. They use the smoothed competitive ratio to analyze the Multi-Level Feed-
back(MLF) algorithm for processor scheduling in a time sharing multitasking operating system.
This algorithm has very good performance in practice but its competitive ratio is very bad. They
obtain strictly better ratios using smoothed competitive analysis than with the competitive ratio.

3.10 Search Ratio

The search ratio belongs to the family of measures in which the offline opt is weakened. It
is defined only for the specific case of geometric searches in an unknown terrain for a target
of unknown position. Recall that the competitive ratio compares against an all knowing opt.
Indeed, for geometric searches opt is simply a shortest path algorithm, while the online search
algorithm has intricate methods for searching. The search ratio instead considers the case where
opt knows the terrain but not the position of the target. That is, the search ratio compares two
search algorithms, albeit one more powerful than the other. By comparing two instances of like
objects the search ratio can be argued to be a more meaningful measure of the quality of an online
search algorithm. Koutsoupias et al. show that searching in trees exhibits a large competitive
ratio regardless of the algorithm, yet under the search ratio framework certain algorithms are far
superior to others [112].

3.11 Travel Cost

As stated in Chapter 2, classical complexity time analysis generally uses an unnormalized time
measure even though a normalized measure has been defined and proven fruitful in certain set-
tings. This raises the possibility of using an unnormalized cost measure for online algorithms as
well. This measure has been used in online geometric searches, in which the main objective is
to minimize the length of the longest search sequence, known as the travel cost of the solution.
Formally,

Definition 3.13. The travel cost of an online algorithm A on input σ is given by

C(n) = max
|σ|≤n
{A(σ)}

For example in the case of an actual search and rescue operation in the high seas minimizing
the maximum search time is more relevant than the competitive ratio on any particular point in
the search path [75].
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3.12 Acceleration Ratio

Acceleration ratio is a worst case measure similar to the competitive ratio. It is defined for
some scheduling problems related to anytime algorithms [157]. In an anytime algorithm, the
output quality is related to the computation time. The behaviour of an anytime algorithm A on
an instance σ is described by a performance profile QA(t), where QA(t) denotes the quality of
the output produced by A in computation time t. It is usually assumed that QA(t) is strictly
increasing. There are two kinds of anytime algorithms. In an interruptible algorithm you can
stop the algorithm and ask the result at any time during the execution of the algorithm. On the
other hand, in a contract algorithm the computation time (contract time) should be given as part
of input before the start of its execution. The performance profile QA(t) for a contract algorithm
A is the quality of output produced by A if the computation time t is given to A prior to its
execution.

There are applications in which we need an interruptible algorithm while all we have is a
contract algorithm. This happens for example in real-time situations in which we do not know
the interruption time in advance. Suppose that we have a contract algorithm A. We can use
A to construct an interruptible algorithm B as follows. B considers an increasing sequence
X = (x1, x2, . . . ) of contract times. It first activates A with contract time x1. If A completes its
computation without interruption, B activates A with contract time x2. B continues activating
A with contract times from the sequence X until an interruption occurs; on an interruption,
B returns the output from the last completed execution of A. Since we only consider strictly
increasing performance profiles, X should be strictly increasing as well. Now we are ready to
define the acceleration ratio.

Definition 3.14. [157] Let A be a contract algorithm and B be an interruptible algorithm produced
by the sequence of contracts X = (x1, x2, . . . ), then the acceleration ratio of X, r ≥ 1, is the
smallest constant c for which:

∀t ≥ x1

c
: QB(ct) ≥ QA(t).

Russell and Zilberstein [134] give a schedule with acceleration ratio of 4 and Zilberstein et al.
[157] show that this is the best possible. Bernstein et al. extend the definition to the case that

we have m processors [32]. They also give a schedule of acceleration ratio (m+1)
m+1
m

m for this case,
which is shown to be optimal in [116].

3.13 Full Access Cost Model

Recall that the standard model for the analysis of online paging algorithms considers the number
of faults as the cost measure: the cost of an algorithm A on an input sequence σ, denoted by
A(σ), is the number of faults A incurs to serve σ. This is a fair model because usually in the
paging problem the fault cost is much more than the hit cost. It is used frequently due to the
above fact and its simplicity. Although this is the most common model, a few other cost models
have been proposed. One problem with the standard model is that it does not consider the length
of sequences; having 100 faults on a sequence of length 100000 is as bad as having 100 faults on
a sequence of length 1000. This problem can be fixed by normalizing the number of faults to
the length of the sequence. The fault rate of an algorithm A on an input sequence σ, denoted
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by FA(σ), is defined as A(σ)/|σ|, where |σ| is the length of σ. As stated before, the fault rate is
usually used in systems research for analysis of paging. In Section 3.14 we describe some results
using fault rate as the cost model.

Torng [148] proposes the full access cost model for paging. On a hit, the requested page is in
fast memory and can be accessed in one time step. On a fault, the corresponding page should be
brought to the fast memory in time p and then be accessed in time 1, where p is a parameter of
model that is called the miss penalty. Thus the cost of a hit is 1 and the cost of a fault is p+ 1.
Suppose that an algorithm A incurs f faults on an input sequence σ. Then the full access cost
of A on σ is defined as A(σ) = (|σ| − f)× 1 + f × (p+ 1) = |σ|+ fp. Note that in the standard
model the cost of a hit is 0 and the cost of a fault is 1. Also we can consider the standard model
as a special case of the full access cost model in which we have p = ∞. As stated before this
is not an unrealistic assumption as the miss penalty for the paging problem can be very large.
For example according to Figure 5.37 on page 441 of [88], it ranges between 7000 and 150000 on
typical systems.

Torng also considers locality of reference in this model. For a sequence σ and an integer
m > 1, an m-decomposition D(σ,m) is defined as partitioning σ into consecutive phases so that
each phase is a maximal subsequence that contains at most m distinct pages. More precisely, each
phase starts right after the previous phase and ends just before the (m+ 1)th distinct page. The
last phase may contain less than m distinct pages. The size |D(σ,m)| of this m-decomposition
is defined as the number of its phases. Also L(σ,m) = |σ|/|D(σ,m)| is the average phase length
of D(σ,m). Note that the phases in a k-decomposition of σ are the same as phases of marking
algorithms and are also called k-chunks in literature. Now a sequence σ exhibits significant
locality of reference if its k-chunks are long on average, i.e. L(σ, k)� k.

The competitive ratio of an online paging algorithm A can be defined in an analogous way for
this model. Torng shows that the competitive ratio of any marking algorithm A is k(p+ 1)/(k+
p) ≈ min (k, p+ 1) and that this is the best possible competitive ratio for any deterministic
online algorithm. He also proves the following result about paging with locality of reference. If
we consider only those sequences σ for which L(σ, k) ≥ ak, then the competitive ratio of A is
1+(k−1)/(ak/p+1) < 1+p/a for any marking algorithm A and again this is the best possible for
any deterministic online algorithm, although he considers FIFO as a marking algorithm which
is non-standard. He also gives some results for randomized online algorithms.

This model reflects the influence of lookahead. Torng defines a variation of LRU with looka-
head and shows that its competitive ratio is better than LRU in the full access cost model.

3.14 Concave Analysis

In this section we describe a model for paging with locality of reference proposed by Albers et
al. [6]. This model is based on the concept of working set by Denning [64]. The working set
is the small set of pages used by a process at any phase of its execution. Consider a function
whose value at n is the size of the working set in a window of size n. Denning [64] shows that if
we assume some local statistical regularities in a request sequence, then this function would be
increasing and concave.

The idea behind concave analysis [6] is that we can say a request sequence has locality of
reference if the number of distinct pages in a window of size n is small. Consider a function that
represents the maximum (average) number of distinct pages in a window of size n, in a request
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sequence, in terms of n. Extensive experiments with real data show that this function is nearly
concave for practical request sequences [6]. Let f be an increasing concave function. There are
two possible ways to model locality of reference. In the Max-Model we say that a request sequence
is consistent with f if the number of distinct pages in any window of size n is at most f(n), for
any n ∈ N . In the Average-Model we consider a request sequence consistent with f if the average
number of distinct pages in a window of size n is at most f(n), for any n ∈ N . Now we can
model locality by considering only those request sequences that are consistent with f .

Albers et al. consider a slightly more restrictive class of functions called concave? functions,
defined as follows.

Definition 3.15. [6] A function f : N → R+ is concave? if

1. f(1) = 1 and

2. ∀n ∈ N : f(n+ 1)− f(n) ≥ f(n+ 2)− f(n+ 1).

In the Max-Model we additionally require that f be surjective on the integers between 1 and its
maximum value.

Albers et al. [6] consider the fault rate for measuring the performance of paging algorithms.
They define the fault rate of a paging algorithm with respect to a function as follows.

Definition 3.16. [6] The fault rate of a paging algorithm A with respect to a concave? function
f is

FA(f) = inf{r | ∃n ∈ N : ∀σ, σ consistent with f, |σ| ≥ n : FA(σ) ≤ r}.

They provide results for several paging algorithms in both models. For the Max-Model they
prove a lower bound on the fault rate of any deterministic online paging algorithm and show that
LRU matches this lower bound; therefore LRU is an optimal deterministic paging algorithm in
this model. They also prove lower bounds and upper bounds for the fault rate of FIFO and FWF.
The results show that these algorithms are not optimal as the lower bound is strictly greater than
the fault rate of LRU, although they are very close. Finally they give some bounds on the fault
rate of LFD. All these bounds are expressed in term of f−1, the inverse function of f , defined as

f−1(m) = min{n ∈ N|f(n) ≥ m}.

In other words, f−1(m) denotes the minimum size of a window that contains at least m distinct
pages. For example we have FLRU(f) = k−1

f−1(k+1)−2
and k−1/k

f−1(k+1)−1
≤ FLRU(f) ≤ k

f−1(k+1)−1
.

Therefore this model distinguishes between LRU and FIFO, although the gap between their
fault rates is very small.

They also prove some bounds for these algorithms in the Average-Model. In this model both
LRU and FIFO are optimal and we have FLRU(f) = FFIFO(f) = f(k+1)−1

k . Finally they compare
these bounds to the fault rates obtained in some experiments. The rates are close in the Max-
Model but not close in the Average-Model. Note that the Average-Model allows more request
sequences and may contain some bad sequences that have a large fault rate but do not occur in
practice.
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3.15 Lookahead

Intuitively, giving an online algorithm partial information about the future makes it more pow-
erful and therefore we expect that an online algorithm with finite lookahead should have better
competitive ratio. Unfortunately in many cases competitive analysis does not support this intu-
ition. For example it is well known that giving finite lookahead l to a paging algorithm does not
improve its competitive ratio. This is because the adversary can replicate each request l times,
making the lookahead useless for the online algorithm.

There are two types of solutions for this counter-intuitive feature. One of them is to define
other measures that reflect the effect of lookahead in improving the performance of online algo-
rithms. Max/Max ratio and relative worst order ratio are two such measures. Another solution
is to modify the definition of lookahead, ensuring that it provides some useful information for the
online algorithm and the adversary cannot make it useless. We describe three such alternative
definitions in this section.

Consider weak lookahead as the standard definition of lookahead, i.e., an online algorithm has
weak lookahead of size l if it sees the current request together with the next l requests. Young
proposes resource-bounded lookahead as an alternative for weak lookahead [152]. An online paging
algorithm has resource-bounded lookahead of size l if it sees the current request together with
the maximal sequence of future requests for which it incurs at most l faults. Young describes
a deterministic marking algorithm that achieves the competitive ratio of max{2k/l, 2} in the
resource-bounded lookahead model. Note that the number of pages seen by the algorithm at each
time depends on its behaviour in the past and also it can be very large.

Albers introduces strong lookahead as a more practical model of lookahead [4]. An online
paging algorithm with strong lookahead of size l sees the current request together with the minimal
sequence of future requests that contains l pairwise distinct pages other than the current request.
She shows that a variant of LRU achieves competitive ratio k− l in the strong lookahead model
with l ≤ k − 2 and that this is the best possible for any deterministic online paging algorithm in
this model.

Natural lookahead is another model of lookahead for the paging problem that is proposed by
Breslauer [50]. An online paging algorithm A has natural lookahead l if it sees the current request
together with the maximal sequence of future requests that contains at most l+ 1 distinct pages
that are not in A’s current cache. He proves that a variation of LRU achieves a competitive ratio
k+l
l+1 in the natural lookahead model.

Note that these alternative models do not reflect how lookahead works in a CPU pipeline.
In the pipeline all one can do is look ahead a constant number of instructions into the future,
which does not match any of the definitions above. The effect of lookahead for some other online
problems is studied in [55, 94, 87, 103].

3.16 Comparative Ratio

The comparative ratio was proposed by Koutsoupias and Papadimitriou [111] as an extension of
the competitive ratio to reflect the influence of lookahead.

Definition 3.17. For two classes of algorithms A and B, where typically A ⊆ B, the comparative
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ratio is defined as follows:

R(A,B) = max
B∈B

min
A∈A

max
σ

A(σ)
B(σ)

.

They provide the following game-theoretic interpretation of this definition: B wants to prove
to A that it is a more powerful class of algorithms. B selects an algorithm B from its class. A
responds by selecting A, one of its algorithms. Finally B chooses a sequence σ that maximizes
the ratio A(σ)

B(σ) . The goal of B is to maximize this ratio, while A’s objective is to minimize it. The
larger the ratio, the more powerful B compared to A. Note that by selecting B as the class of
all algorithms and A as the class of all online algorithms, we get the competitive ratio definition.
Thus competitive analysis is a special case of the comparative analysis.

Koutsoupias and Papadimitriou [111] prove that finite lookahead of size l is beneficial for
paging algorithms. Let A be the class of online paging algorithms and B be the class of paging
algorithms with lookahead l. They show the influence of lookahead by proving R(A,B) = min{l+
1, k}.

3.17 Adequate Analysis

Panagiotou and Souza propose adequate analysis as a model for explaining the efficiency of LRU
in practice [129]. In their work, they classify request sequences according to some parameters and
prove an upper bound on the competitive ratio of LRU as a function of these parameters. Then
they argue that, in practice, typical request sequences have parameters that lead to a constant
competitive ratio for LRU.

For each request σi to a page p in a given sequence σ, let di be the number of distinct pages that
have been requested since the last request to p (not including p). Let cj be the number of requests
σi for which di = j. We have LRU(σ) =

∑
j≥k cj . They prove that opt(σ) ≥

∑
j≥k

j−k+1
j cl. An

(α, β)-adversary can only choose sequences for which

αk−1∑
j=k

cj ≤ β
∑
j≥αk

cj .

The competitive ratio of LRU against (α, β)-adversaries is at most

2(1 + β)
(

1 +
1

α− 1

)
+ ε,

for some 0 ≤ ε ≤ 1. They argue that sequences in practice have large α and small β, and thus
the competitive ratio of LRU on them is small.

3.18 Conclusion

In this chapter we reviewed various alternative measures for analysis of online algorithms. We
also briefly described their weaknesses and strengths, as well as the results that we can get by
using them. Figure 3.1 summarizes the relationships among these measures, as well as other
alternative measures that we will introduce later in this thesis.
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Figure 3.1: Relationships among different alternative measures.
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Chapter 4

Bijective Analysis and Average
Analysis

In this chapter we introduce two alternative measures for the analysis of online algorithms, namely
Bijective Analysis and Average Analysis. These measures are closely related and directly compare
two online algorithms on all sequences of the same length. We apply Bijective Analysis and
Average Analysis to paging and building upon the ideas of concave analysis by Albers, Favrholdt,
and Giel [6], we prove strict separation between LRU and all other paging strategies under locality
of reference assumptions. That is, we show that LRU is the unique optimum strategy for paging
among all deterministic strategies. This is the first deterministic model to provide full theoretical
backing to the empirical observation that LRU is preferable in practice.

Our results We begin by showing that all lazy paging algorithms are equivalent under Bijective
Analysis. In contrast, we show that LRU is strictly better than FWF (note that the latter
is not a lazy strategy). Both of these results describe natural, “to-be-expected” properties of
the corresponding paging strategies which competitive analysis nevertheless fails to yield. The
equivalence of lazy algorithms provides strong evidence of an inherent difficulty in separating
algorithms in any general setting. In fact, it implies that in order to obtain a theoretical separation
between paging algorithms we must either induce a partition of the space of request sequences
(e.g. as in Albers et al. [6]) or assume a distribution on the sequence space (e.g. as in Koutsoupias
and Papadimitriou [111], Young [154] and Becchetti [25]). The latter group of approaches uses
probabilistic assumptions on the sequence space. However, since we are interested in separating
algorithms under a deterministic model, we adopt concave analysis as introduced by Albers et
al., which we then apply in the context of Average Analysis. Using this approach, we show
formally our main result: namely that LRU is never outperformed in any possible subpartition
on the request sequence space induced by concave analysis (cf. Corollary 4.1), while it always
outperforms any other paging algorithm in at least one subpartition of the request-sequence space
(cf. Theorem 4.5). This result proves separation between LRU and all other algorithms and
provides theoretical backing to the observation that LRU is preferable in practice.

Structure of chapter In Section 4.1 we give formal definitions of the concepts of Bijective
Analysis and Average Analysis. In Subsection 4.2.1 we show strong equivalence between all lazy
algorithms according to Bijective Analysis. These results formalize ideas that while perhaps
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familiar to many researchers of online algorithms had yet to be proved in a rigorous manner.
We also show that LRU is strictly better than FWF under this measure. In Subsection 4.2.2
we present our main result, i.e., separation between LRU and all other paging strategies using
Average Analysis coupled with concave analysis.

4.1 Bijective Analysis and Average Analysis

In this section we provide formal definitions of a new technique for comparing the performance
of online algorithms. At a high level, this is achieved by pairwise comparisons of the cost of
algorithms over all possible request sequences of the same size.

For an online algorithm A and a request sequence σ, let A(σ) be the cost incurred by A on
σ, and let In be the set of all request sequences of length n. The first comparison model we
introduce is Bijective Analysis. In this model, we aim to pair-up request sequences for A and B
using a bijective mapping in such a way that the cost of A on sequence σ is no more than the
cost of B on the image of σ. More formally, we obtain the following definition.

Definition 4.1. We say that an online algorithm A is no worse than an online algorithm B
according to Bijective Analysis if there exists an integer n0 ≥ 1 such that for each n ≥ n0, there
is a bijection b : In ↔ In satisfying A(σ) ≤ B(b(σ)) for each σ ∈ In. We denote this by A �b B.
Otherwise we denote the situation by A 6�b B. Similarly, we say that A and B are the same
according to Bijective Analysis if A �b B and B �b A. This is denoted by A ≡b B. Finally we
say A is better than B according to Bijective Analysis if A �b B and B 6�b A. We denote this by
A ≺b B.

Observe that, as in the Max/Max ratio, this measure considers sequences of the same length
and allows direct comparison of two online algorithms. However, it induces a comparison of their
performance on all sequences in In, rather than only on the worst sequence. A related, and less
stringent comparison model can be obtained by considering the average number of faults that a
paging algorithm incurs on request sequences of a certain length.

Definition 4.2. We say that an online algorithm A is no worse than an online algorithm B
according to Average Analysis if there exists an integer n0 ≥ 1 such that for each n ≥ n0,∑

I∈In A(I) ≤
∑

I∈In B(I). We denote this by A �a B. Otherwise we denote the situation by
A 6�a B. A ≡a B, and A ≺a B are defined as for Bijective Analysis.

Observation 4.1. If A 6�a B, then A 6�b B. As well, if A �b B, then A �a B with similar
statements holding for ≡b and ≺b.

Example 4.1. We use a simple example to illustrate the above definitions. Let A, B, and C be
three online algorithms and In = {σ1, σ2, · · · , σ10} be the set of all possible request sequences of
length n. Suppose that the cost of A, B, C, and the optimal offline algorithm OPT on request
sequences are as follows:
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σ A(σ) B(σ) C(σ) OPT (σ)
σ1 5 6 6 3
σ2 7 8 8 2
σ3 3 4 3 3
σ4 9 4 3 1
σ5 7 10 8 3
σ6 5 7 6 4
σ7 3 6 4 2
σ8 7 6 7 5
σ9 5 8 5 2
σ10 7 10 9 3

We have
∑

σA(σ) = 58,
∑

σ B(σ) = 69, and
∑

σ C(σ) = 59. Therefore A ≺a B, A ≺a C, and
C ≺a B. We have B 6�b A, because B 6�a A. We also have A �b B by considering the bijection
that maps σ1, σ2,. . . , σ10 to σ1, σ2, σ3, σ5, σ6, σ7, σ4, σ9, σ8, and σ10, respectively. Therefore A
is better than B according to Bijective Analysis, i.e., A ≺b B. Note that although A is better than
C according to Average Analysis, the two algorithms are not comparable according to Bijective
Analysis. Since A ≺a C, we conclude that C 6�b A. We also have A 6�b C because C incurs a
cost less than 5 on 3 sequences while A incurs a cost less than 5 only on 2 sequences. As a last
example, consider the competitive ratio of these algorithms. The competitive ratio of A, B, and
C is 9, 4, and 4 respectively. Although A seems to have better overall performance than B and C,
its bad performance on a single sequence, namely σ4, results in a bad competitive ratio.

Suitability of the Measure Note that rather than considering a worst case sequence, these
measures take into account all sequences of the same length. To be precise, Bijective Analysis
compares the performance of two algorithms over pairs of different inputs of the same size. A
natural question is if this is a reasonable comparison. To answer this, it is necessary to briefly
review standard worst case analysis. Worst case analysis of an algorithm A considers the running
time of A over all possible inputs of a given size n and selects as representative for this set the
maximum or worst case time observed in that class. Let IA,n denote this worst case input of size
n for A. Now when the worst case performance of A is compared to that of algorithm B, worst
case analysis compares the execution time of A on IA,n with that of B on IB,n. Observe that in
general IA,n 6= IB,n and hence Bijective Analysis is no different than worst case analysis in terms
of pairing different inputs of the same size. The main difference is that Bijective Analysis studies
the performance of both algorithms across the entire spectrum on inputs of size n as opposed to
the worst case. This is similar to average case analysis which also measures performance across
all inputs of a given size.

4.2 LRU Separation

4.2.1 Separation Between Certain Paging Algorithms

As a warm-up, we will first show that LRU is better than FWF according to Bijective Analysis
(recall that these algorithms have the same competitive ratio). We also prove that all lazy
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algorithms are equivalent according to Bijective Analysis. For the remainder of this section let
N denote the number of pages in slow memory.

Lemma 4.1. LRU �b FWF.

Proof. We prove that for every n ≥ 1 there is a bijection bn : In ↔ In so that LRU(σ) ≤
FWF(bn(σ)) for each σ ∈ In. We show this by induction on n, the length of request sequences.
For n ≤ k, this is trivial as each sequence has at most k distinct pages and LRU and FWF
behave the same. Assume that it is true for all n ≤ h, where h ≥ k. We prove that it is also
true for n = h+ 1. We define a new bijection bh+1 : Ih+1 ↔ Ih+1, which maps the continuations
of a sequence σ to the continuations of the sequence bh(σ) in the image and more specifically,
maps LRU’s last-fault continuation sequences of σ into FWF’s last-fault continuation sequences
of bh(σ).

First assume that σ has at least k distinct pages. Then LRU’s cache contains k pages
after serving σ. Therefore, there are k last-hit sequences and N − k last-fault sequences in the
continuation of σ for LRU. In turn, FWF’s cache contains at most k pages after serving bh(σ).
Thus there are at least N − k last-fault sequences for FWF in the continuation of σ.

Alternatively, if σ has k′ < k distinct pages then from our construction b(σ) also contains
exactly k′ distinct pages and the number of last-fault and last-hit continuations for each algorithm
match. Hence in either case the number of last-fault sequences in LRU is no larger than the
number of last-fault sequences for FWF and we can define an injective mapping bh+1 from
the former into the latter. We then arbitrarily map the remaining (last-hit) LRU continuation
sequences of σ to the remaining unused sequences in the continuation of bh(σ). Clearly from the
construction the bijection maps a request sequence in LRU to a request sequence of FWF with
the same or more number of page faults, as claimed.

This shows that LRU’s performance is as good as FWF’s. We now show that the converse
does not hold.

Lemma 4.2. FWF 6�b LRU.

Proof. We prove this by contradiction. Assume that we have FWF �b LRU and so there is
an n0 ≥ 1 so that for each n ≥ n0 we have the bijection bn : In ↔ In. Recall that we can
partition a sequence into a number of consecutive phases so that each phase contains exactly k
distinct pages. LRU incurs at most k faults in each phase. On the other hand, FWF empties
its cache at the beginning of each phase and incurs exactly k faults in each phase. Therefore we
have LRU(σ) ≤ FWF(σ) for each sequence σ. Thus the desired bijection exists only if we have
FWF(σ) = LRU(σ) for every sequence of length n ≥ n0. Consider a sequence σ = p1p2 . . . ph
(h ≥ n0) so that σ contains at least k distinct pages and ph is the first page of a phase. Therefore
ph causes FWF to flush its cache, which now contains only one page after serving σ. Now consider
the set of continuations of σ. The number of last-fault sequences among these for LRU and FWF
is N−k and N−1, respectively. Therefore there are at least k−1 sequences for which the cost of
LRU is strictly less than the cost of FWF and hence a bijection as required does not exist.

Combining Lemma 4.1 and Lemma 4.2 we obtain strict separation between the performance
of LRU and FWF.

Theorem 4.1. LRU ≺b FWF.
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Note that we can use exactly the same argument as in Lemma 4.1 to prove the following
theorems.

Theorem 4.2. FIFO �b FWF, FIFO �b LRU, and LRU �b FIFO. Thus we have LRU ≡b
FIFO.

Theorem 4.3. Let A and B be two arbitrary lazy algorithms. Then we have A ≡b B.

Remark 1. Theorem 4.3 implies that all lazy paging algorithms are equivalent according to the
Max/Max ratio as well. In general, when two algorithms are equivalent according to Bijective
Analysis then they have the same Max/Max ratio, as their worst performance on sequences of the
same length would be equal.

These results explain why most measures are unable to separate lazy algorithms such as LRU
and FIFO, in that the multisets of the costs incurred by the algorithms on all requests of the
same length are identical. In fact, Theorem 4.3 supports the observation that unless we constrain
the space of request sequences to the ones most often appearing in practice, it is unlikely to
separate different paging algorithms. Since locality of reference is a definitive characteristic of
typical sequences in paging, this naturally leads to the question of how it affects the comparison
of algorithms, according to our measures.

4.2.2 Paging with Locality of Reference

Above, we proved that all lazy algorithms are strongly equivalent according to Bijective Analysis.
However, this analysis ignored that in practice request sequences exhibit locality of reference. We
follow the Max-Model of concave analysis for modelling locality of reference (cf. Section 3.14).
Let If denote the set of request sequences that are consistent with a given concave? function f
as defined in page 34. We can apply Bijective and Average Analysis over this restricted set of
sequences, by adapting Definition 4.1 and Definition 4.2 appropriately, i.e., by replacing the set
I with the set If . We denote the corresponding relations by A �fb B, A �fa B, etc. Note that we
can make any sequence consistent with f by repeating every request a sufficient number of times.
Therefore even if we restrict sequences to those with high locality of reference, there is a still a
worst case sequence for LRU that is consistent with f . Therefore the competitive ratio of LRU
is the same as in the standard model1. Figure 4.1 illustrates the partition of the request-sequence
space induced by the choice of function f . Observe that the performance of a paging algorithm is
now evaluated within the subset of request sequences of a given length whose locality of reference
is consistent with f .

Note that the inductive argument used to prove that all lazy algorithms are equivalent accord-
ing to Bijective Analysis does not necessarily carry through under concave analysis. The problem
is that the bijective mapping could map a sequence consistent with f to a sequence which is not
consistent with f .

Consider a fixed concave? function f . Let Ifn denote sequences of length n in If and A be an
arbitrary paging algorithm. We call a sequence bad for A if A incurs a fault on its last request;
otherwise we call it a good sequence for A. Let Bh(A) be the number of sequences in Ifh that
are bad for A. For a sequence σ ∈ Ifh , let Bh+1(A |σ) denote the number of sequences in Ifh+1

1This is one of the reasons that Albers et al. [6] use the fault rate, instead of overall cost, as a performance
measure.

42



If1
2

If2
2

If1
4

If2
4

Σ2 Σ3Σ1 Σ4
Σ∗

Figure 4.1: Partition of the input space induced by different choices of f .

that have σ as their prefix and are bad for A. Define Gh(A) and Gh+1(A |σ) in an analogous
way for good sequences. Intuitively, a good algorithm maintains its good sequences in the set of
sequences with high locality of reference and hence can safely perform the continuation. Observe
that LRU naturally fits this criterion: the most recently accessed pages are exactly those that are
in its cache, and therefore good (i.e. last-hit) sequences for LRU are more likely to be sequences
with high locality of reference. We formalize this intuition in the rest of this section.

Lemma 4.3. For any integer h > 0 and any paging algorithm A, Bh(LRU) ≤ Bh(A).

Proof. We prove this by induction on h. If h = 1, then every sequence of Ih is consistent with f
and each algorithm incurs a fault on its last request (recall that algorithms start with an empty
cache). Therefore we have B1(LRU) = |If1 | = N = B1(A). If h > 1, consider an arbitrary
sequence σ ∈ Ifh−1. If σ has at most k distinct pages, then LRU and A have the same pages
in their cache after serving σ and therefore Bh(LRU |σ) = Bh(A |σ). Otherwise LRU has filled
its cache with k pages after serving σ, while A’s cache contains at most k pages. The next page
requested can be an arbitrary page, provided that adding that page does not violate consistency
with f .

From the definition of f , repeating the last request of a sequence σ ∈ Ifh−1 is always consistent
with f . Repeating the second to last sequence may or may not be consistent with f , however if the
second to last sequence is not consistent neither is any other request. This implies that for every
good request for A that is consistent with f , there is a good request for LRU that is consistent with
f . Hence Gh(LRU |σ) ≥ Gh(A |σ). Now since the good and bad continuations form a partition
of the set of continuations of σ consistent with f , the inequality above implies Bh(LRU |σ) ≤
Bh(A |σ). To conclude observe that Bh(X) =

∑
σ∈Ih−1

Bh(X |σ) for any algorithm X. Hence

Bh(LRU) =
∑

σ∈Ih−1

Bh(LRU |σ) ≤
∑

σ∈Ih−1

Bh(A |σ) = Bh(A)

as claimed.

Lastly, we show that LRU strictly outperforms all other paging algorithms.

Definition 4.3. Let m be an integer, A and B be online algorithms, and f be a concave? function.
A is said to (m, f)-dominate B if we have∑

σ∈Ifm

A(σ) ≤
∑
σ∈Ifm

B(σ).
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A is said to dominate B if there exists an integer m0 ≥ 1 so that for each m ≥ m0 and every
concave? function f , A (m, f)-dominates B.

Observation 4.2. A �fa B if and only if there exists an integer m0 ≥ 1 so that A (m, f)-
dominates B for each m ≥ m0.

Lemma 4.4. For every paging algorithm A, LRU dominates A.

Proof. Let f be an arbitrary concave? function and m be a positive integer. For any 1 ≤ i ≤ m,
let Fi,m(A) be the number of sequences in Ifm for which A incurs a fault on the ith request. We
will show that Fi,m(LRU) ≤ Fi,m(A) for any 1 ≤ i ≤ m which will imply optimality of LRU.
For i = 1, we have F1,m(LRU) = F1,m(A) = |Ifm|. Now assume that i > 1. Let σ be an arbitrary
sequence of length i− 1, and let Tσ denote the set of sequences in Ifm that have σ as their prefix.
Denote by Fi,m(A |σ) the number of sequences in Tσ for which A incurs a fault on the ith request.

If σ contains at most k distinct pages, then LRU and A behave the same on σ and we have
Fi,m(LRU |σ) = Fi,m(A |σ). Assume then that σ has more than k distinct pages. We can
partition Tσ into four subsets: (1) T 1

σ : sequences in which neither LRU nor A incur a fault on
the ith page request, (2) T 2

σ : sequences in which both LRU and A incur a fault on the ith page
request, (3) T 3

σ : sequences in which A incurs a fault on the ith page request, but LRU does not,
and (4) T 4

σ : sequences in which LRU incurs a fault on the ith page request, but A does not.

We have Fi,m(LRU |σ) = |T 2
σ |+ |T 4

σ |, and Fi,m(A |σ) = |T 2
σ |+ |T 3

σ |. We show that |T 4
σ | ≤ |T 3

σ |
by proving that there exists a one-to-one mapping d from T 4

σ to T 3
σ . For 1 ≤ q ≤ 4, let P qσ be

the set of pages that are requested as the ith page of a sequence in T qσ . Let ρ ∈ Ifi be a sequence
that contributes to Bi(LRU |σ) and p be its ith request. Denote by τ the sequence of length m
obtained by appending requests to page p to ρ. Since ρ is consistent with f and p is the last
request of ρ, τ is consistent with f and thus τ ∈ Tσ. Note that LRU incurs a fault on the ith

request of τ . Therefore τ belongs to either T 2
σ or T 4

σ and p is in one of the sets P 2
σ and P 4

σ . Also
any page in P 2

σ ∪ P 4
σ contributes to Bi(LRU |σ). To see this, let p be a page in P 2

σ ∪ P 4
σ . Then p

is the ith request of a sequence ρ ∈ T 2
σ ∪T 4

σ . Let τ ∈ Ifi be the prefix of ρ that contains i requests.
LRU incurs a fault on the last request of τ . Thus τ is a bad sequence for LRU and p contributes
to Bi(LRU |σ). Hence we have Bi(LRU |σ) = |P 2

σ | + |P 4
σ |. Using analogous arguments we get

Bi(A |σ) = |P 2
σ | + |P 3

σ |. We know that Bi(LRU |σ) ≤ Bi(A |σ) from the proof of Lemma 4.3;
therefore |P 4

σ | ≤ |P 3
σ | and there is a one-to-one mapping r from P 4

σ to P 3
σ .

We use the mapping r to define the desired mapping d. Consider an arbitrary sequence
S = p1p2 . . . pm ∈ T 4

σ . Let pi = x and y = r(x). According to definitions we know that on the ith

request of a sequence in Tσ, x is a fault for LRU and a hit for A, while y is a hit for LRU and a
fault for A. Let σx ∈ Ifi be the sequence obtained by appending the page x to σ, and σy ∈ Ifi be
the sequence obtained by appending the page y to σ. On serving σx, the last page (x) is a fault
for LRU; therefore x is not among the last k distinct pages in σ. LRU does not incur a fault on
the last page of σy; thus y is among the last k distinct pages of σ. Hence if starting from the ith

request, we convert each x in a sequence in Tσx to y, we will obtain a sequence that is consistent
with f , i.e., a sequence in Tσy . This gives us a one-to-one mapping from Tσx to Tσy . By a similar
process for the pages in P 4

σ , we obtain a one-to-one mapping from T 4
σ to T 3

σ . Therefore

|T 4
σ | ≤ |T 3

σ | ⇒ Fi,m(LRU |σ) ≤ Fi,m(A |σ). (4.1)
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Since

Fi,m(LRU) =
∑

σ∈Ii−1

Fi,m(LRU |σ) (4.2)

and

Fi,m(A) =
∑

σ∈Ii−1

Fi,m(A |σ), (4.3)

we get Fi,m(LRU) ≤ Fi,m(A). We also have∑
σ∈Ifm

LRU(σ) =
∑

1≤i≤m
Fi,m(LRU) (4.4)

and ∑
σ∈Ifm

A(σ) =
∑

1≤i≤m
Fi,m(A). (4.5)

Therefore ∑
σ∈Ifm

LRU(σ) ≤
∑
σ∈Ifm

A(σ). (4.6)

Thus LRU (m, f)-dominates A for every concave? function f , and every integer m ≥ 1. Hence
LRU dominates A.

Corollary 4.1. For any concave? function f and any paging algorithm A, LRU �fa A.

Therefore LRU is an optimal algorithm when we restrict request sequences to those with high
locality of reference. A natural question is whether or not LRU is a unique optimal algorithm.
The following theorem answers this question in the affirmative.

Theorem 4.4. No paging algorithm (other than LRU) dominates LRU.

Proof. Consider a paging algorithm A which is different from LRU. We will show that there
exists a concave? function f such that A 6�fa LRU. In fact, we will prove a slightly stronger
result, we will show that this holds for every concave? function other than the identity. First, if
the content of the cache of LRU and A is always the same there is nothing to show. Hence we
focus on situations where their cache content differs. As in the proof of Lemma 4.4 we need only
focus on T 3

σ and T 4
σ . We use the same notation as that proof.

Let σ′ denote a sequence consistent with f up to the point at which LRU’s cache contents
first differ from those of A. That is, a request for a page p caused an eviction of a page pa in
LRU while it caused the eviction of a page pb in A. We have P 3

σ′ ⊆ {pb} and P 4
σ′ ⊆ {pa}. We

add some requests to p to get a sequence σ for which P 3
σ = {pb}. Let |σ| = i − 1. We can

use the same one-to-one mapping d that was defined in the proof of Lemma 4.4 to show that
|T 4
σ | ≤ |T 3

σ |. Thus each sequence ρ ∈ T 4
σ is mapped to a distinct sequence d(ρ) ∈ T 3

σ . We prove
that |T 4

σ | < |T 3
σ | by showing that there is a sequence ρ′ in T 3

σ such that d(ρ) 6= ρ′ for any ρ ∈ T 4
σ .

Let Q = {q0, q1, . . . , qr} be pages that do not appear in σ and σ0 be the suffix of σ starting just
after the last request for pa. Observe that the number of distinct pages in σ0pa and σ0pb is k+ 1
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and k, respectively. Let ρ1 and ρ2 be continuations of σpa and σpb, respectively, defined as follows.
We add new pages from Q to ρ1 and ρ2 until adding a new page qt causes an inconsistency with
f in the suffix starting with σ0pa in ρ1. This will always eventually occur as the percentage of
distinct pages in the sequence as extended approaches (a+m)/(b+m) where m is the length of
the continuation past σpa, a is the number of distinct pages in σ before pa and |σ| = b. Observe
that as m goes to infinity this ratio approaches one. This contradicts the easy to verify fact that
every concave? function except the identity is such that f(n) ≤ (1 − ε)n where ε is a positive
constant that depends on f . Note that ρ2 (but not ρ1) would remain consistent with f as the
number of distinct pages in σ0pb is one less than the number of distinct pages in σ0pa. There is
a small caveat in this construction. We might first violate consistency with f in a subsequence τ
of ρ1 and ρ2 that does not start with σ0. There are two cases:

1. τ starts after σ0. Let q be the last page of τ , i.e., the first inconsistency occurred by adding
q and let q′ be the page requested just before q. In this case we add a sufficient number of
requests to q′ just before the first request to q to resolve the inconsistency.

2. τ starts before σ0, say at the mth request. We change our construction slightly to rule out
this case. Let σ1 be the prefix of σ that ends just before the start of σ0 and let C be the
set of pages that are either in the cache of LRU after serving σpa or in the cache of A
after serving σpb. Denote by R = {r1, . . . , rt} the pages not in C that are requested in
σ1, ordered by their last request in σ1. Now to construct ρ1 and ρ2, we use pages from
r1, r2, . . . , rt, q1, . . . , qr in this order (note that we might not need all these pages to get our
desired sequences). We claim that we cannot have an inconsistency with f in a subsequence
of ρ1 that starts at position m before the desired inconsistency at the suffix that starts with
σ0. Assume for the sake of contradiction that the first inconsistency occurs after adding a
page q on a subsequence that starts at position m while the subsequence of ρ1 that starts
by σ0 remains consistent with f . If q = ru ∈ R, then since this is the first inconsistency in
ρ1, ru is a new page in τ and has not been requested before. Therefore τ does not contain
rv for v > u. However the suffix of σ that starts with σ0 also has all requests to rv for
v ≤ u and thus τ does not contain any additional pages, as compared to σ0. Hence σ0

contains the same number of distinct pages as τ while τ is a longer sequence, so σ0 cannot
be consistent with f , which is a contradiction. Else q = qu ∈ Q. Since we have already
requested all pages of R, a page requested by τ has also been requested in the subsequence
that starts by σ0.

Now consider the sequence S2 that we have constructed in this way. We have S2 ∈ T 3
σ but

it is easy to see that no sequence in T 4
σ is mapped by d to ρ2 (in fact d(ρ1) = ρ2 but ρ1 is not

consistent with f). Therefore |T 4
σ | < |T 3

σ | which leads to∑
σ∈Ifm

LRU(σ) ≤
∑
σ∈Ifm

A(σ),

for any m > |S1| by the same arithmetic manipulation as in equations 4.1-4.6 in the proof of
Lemma 4.4.

From Bijective Analysis analysis we know that on unconstrained sequences many algorithms
match the performance of LRU. The previous lemmas show that outside of that realm, LRU is
the sole optimum.
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Theorem 4.5. Let A be a paging algorithm other than LRU. Then there is a concave? function
f so that A 6�fa LRU which implies A 6�fb LRU.

4.3 Conclusions

In this chapter we introduced Bijective Analysis and Average Analysis as two new techniques
for comparing the performance of online algorithms. These measures compare online algorithms
over all sequences of the same length, rather than the worst case sequences alone. In this line of
research we set as a goal to propose a model that would more accurately reflect the performance
of known online paging algorithms. After examining a variety of options, we chose the model of
Albers et al. as the best starting point for our endeavours. We then proceeded to further refine
the measure using Bijective Analysis. It then became apparent that this combined new model,
proposed purely from first principles, would naturally provide separation between well known
paging algorithms.

We demonstrated how the proposed measure can be applied to paging. We showed that the
new comparison techniques overcome some of the shortcomings of competitive analysis, namely
they are able to separate the performance of LRU and FWF. In the next chapter, we will show
that they also reflect the influence of lookahead for paging. We next proved that all lazy algorithms
are equivalent according to Bijective Analysis. This result provides an intuitive explanation why it
is difficult, or even impossible, for several known measures to distinguish between the performance
of known algorithms. Although a negative result at first sight, it suggests that unless one considers
typical request sequences for the problem, it is not likely that a meaningful measure can separate
any two algorithms.

In view of this result, we turned our attention to the definitive property of typical request
sequences for the paging problem, namely locality of reference. As a model of sequences with
locality of reference, we relied on a natural model due to Albers et al. [6], namely concave analysis.
We then showed that combining average and concave analysis, LRU emerges as the sole optimal
online paging algorithm. More specifically, we proved that when we restrict the input to sequences
with high locality of reference, LRU is never outperformed by another paging algorithm according
to Average Analysis, while it outperforms any other paging algorithm according to Average
Analysis (and thus according to Bijective Analysis as well). Since, in practice, input sequences
are known to exhibit locality of reference, this justifies theoretically why LRU is believed to have
the best practical performance among online paging algorithms.
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Chapter 5

Other Applications of Bijective and
Average Analysis

In Chapter 4 we introduced Bijective Analysis and Average Analysis as two new models for the
analysis of online algorithms and applied them to paging. In this chapter, we apply these models
to other problem domains. First, we provide concrete evidence that in the context of paging,
lookahead is beneficial. Specifically, we show that under Bijective Analysis, LRU with lookahead
as small as one (that is, the sequence is revealed to the algorithm as overlapping consecutive pairs
of requests) is strictly better than LRU without any lookahead. Second, we turn our attention
to another fundamental problem in online computation, namely the list update problem. We
first show that under the modified cost model, all online list update algorithms are equivalent
according to Bijective Analysis. We then address the issue of locality of reference in the context
of list update. In particular, we show how the model of Albers et al. [6] can be extended, so as to
properly capture the effect of locality of reference in list update applications related to compression
algorithms. We provide experimental results obtained on the Calgary Corpus, which is frequently
used as a standard benchmark for evaluating the performance of compression algorithms (and by
extension for list update algorithms, e.g. [19]). We thus resolve the open problem posed by Hester
and Hirschberg [89], in that we provide a theoretical model which captures the effect of locality
in list update applications. Our main result proves that under both the standard cost model as
well as under the modified cost formulation, MTF is the unique optimal algorithm according to
Average Analysis.

Our results on list update also address a question posed by Mart́ınez and Roura [122], namely
the question of defining an alternative measure to the competitive ratio that demonstrates the
superiority of MTF in the modified cost model. This is motivated by the observation that in
the modified cost model, all list update algorithms have asymptotically the same non-constant
competitive ratio [122]. Our results provide evidence that Bijective and Average Analysis are not
tied to the paging problem, but rather can be applied, with success, to other online optimization
problems.

5.1 Influence of Lookahead

In this section we demonstrate that Bijective Analysis can properly capture the effects of looka-
head in the paging problem. We consider the setting in which the paging algorithm has the
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capacity to know, at any given point while serving a request sequence, the next ` pages that will
be requested.

Let LRU(`) be the modification of LRU defined for a lookahead of size ` as follows [4]: on a
fault, LRU(`) evicts the page in the cache that is least recently used among the pages that are not
in the current lookahead. We will show that our model reflects the influence of lookahead in that
LRU(`) ≺b LRU, i.e. LRU(`) is better than LRU according to Bijective Analysis. Intuitively,
we obtain that LRU(`) �b LRU because LRU(`) behaves almost the same as LRU except when
it knows it can perform better.

Lemma 5.1. The cost of LRU(`) is no more than the cost of LRU on any given sequence of
requests, that is LRU(`) �b LRU.

Proof. Assume for the sake of contradiction that there is a sequence σ = p1 . . . pm on which
LRU(`) incurs strictly more faults than LRU. Let a be the smallest index so that pa is a hit for
LRU and a fault for LRU(`). Suppose that the most recent eviction of pa by LRU(`) is at time
r on the request pr. Therefore we have pi 6= pa for r ≤ i ≤ a and furthermore LRU does not
evict pa at any time t, where r ≤ t ≤ a. Let pr1 , pr2 , . . . , prk be the pages in LRU’s cache at time
r so that pri is less recently used than prj at time r if and only if i < j. Note that since a is the
smallest index so that pa is a hit for LRU and a fault for LRU(`), LRU incurs a fault on pr and
evicts pr1 . Note that prx = pa for some 1 < x ≤ k. Let Lr the set of pages in the lookahead of
size ` at time r. We consider two cases:

Case 1: All the pages pr1 , pr2 , . . . , prx−1 are in LRU(`)’s cache at time r. Since LRU(`)
evicts prx = pa at time r, we should have pri ∈ Lr for 1 ≤ i ≤ x− 1. Let y be the largest index
so that r ≤ y ≤ r + `, py ∈ {pr1 , pr2 , . . . , prx−1}, and LRU incurs a fault at time y. Note that
since pr1 ∈ Lr and LRU evicts pr1 at time r, y exists. We claim that LRU should evict prx = pa
at time y. Since pa has not been requested between times r and y, the only pages that can be
less recently used than pa are pr1 , pr2 , . . . , prx−1 . Assume, by way of contradiction, that at time y,
LRU evicts the page prz for some 1 ≤ z ≤ x−1. Note that prz cannot be a request between times
r and y; otherwise pa would be less recently used than it. We know that prz ∈ Lr and therefore
prz will be requested at least once between the times y + 1 and r + `. The first such request is a
fault on a page (prz) that is in {pr1 , pr2 , . . . , prx−1}; this contradicts the choice of y. Therefore pa
is the least recently used page for LRU at time y and LRU evicts it. This contradicts the fact
that LRU does not evict pa on a fault at any time r ≤ t ≤ a.

Case 2: There is a page p ∈ {pr1 , pr2 , . . . , prx−1} that is not in LRU(`)’s cache at time r.
Let r′ < r be the last time that LRU(`) has evicted p. Since p is in LRU’s cache and not in
LRU(`)’s cache at time r, we have pi 6= p for r′ ≤ i ≤ r− 1 and furthermore LRU does not evict
p at any time t, where r′ ≤ t ≤ r− 1. This reduces to the situation discussed at the beginning of
this proof, with a = r and r = r′. Since a is a finite number and we strictly decrease our time of
interest, after a finite number of applications of case 2 this reduces to case 1.

Thus we cannot have any request on which LRU(`) incurs a fault and LRU does not, and
hence LRU(`) does not incur more faults than LRU on any sequence.

Lemma 5.2. There exists a sequence in which LRU(`) outperforms LRU, therefore LRU 6�b
LRU(`).
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Proof. From Lemma 5.1, we know that LRU has the same or higher number of page faults as
LRU(`) on each sequence of length at least n0. So it suffices to show that on at least one sequence
LRU(`) strictly outperforms LRU. Consider a sequence σ of size n1 ≥ n0, as in Definition 4.1,
which contains several consecutive copies of the subsequence p1p2 . . . pkpk+1. LRU incurs a fault
on all pages of σ and therefore the cost of LRU on σ is n1. The cost of LRU(`) on the other
hand is n1/(`+ 1).

Lemmas 5.1 and 5.2 imply the following theorem.

Theorem 5.1. LRU(`) ≺b LRU.

5.2 The List Update Problem

Recall the problem posed by Mart́ınez and Roura: “an important open question is whether there
exist alternative ways to define competitiveness such that MTF and other good online algorithms
for the list update problem would be competitive, even for the [modified] cost model”. In this
section we address this open problem by showing that under locality of reference assumptions,
MTF is the unique optimal algorithm for list update. First, we show that under the modified
cost model all list update algorithms are equivalent. This result parallels the equivalence of all
lazy paging algorithms under Bijective Analysis as shown in Subsection 4.2.1.

Theorem 5.2. Let A and B be two arbitrary online list update algorithms. Under the modified
cost model, we have A ≡b B.

Proof. We prove that for every n ≥ 1 there is a bijection bn : In ↔ In so that A(σ) ≤ B(bn(σ))
for each σ ∈ In. We show this by induction on n, the length of the input sequence. Since A
and B start with the same initial list, they incur the same cost on each sequence of length one.
Therefore the statement trivially holds for n = 1. Assume that it is true for n = k. Thus there is
a bijection bk : Ik ↔ Ik so that A(σ) ≤ B(bk(σ)) for each σ ∈ Ik. Let σ be an arbitrary sequence
of length k and σ′ = bk(σ). Denote by Ik+1(σ) the set of sequences in Ik+1 which have σ as
their prefix. We map Ik+1(σ) to Ik+1(σ′) as follows. Let L(A, σ) = (a1, a2, . . . , a`) be the list
maintained by A after serving σ and L(B, σ′) = (b1, b2, . . . , b`) be the list maintained by B after
serving σ′. Consider an arbitrary sequence σ1 ∈ Ik+1(σ) and let its last element be a request
to item ai. We map σ1 to the sequence σ2 ∈ Ik+1(σ′) that has bi as its last request. Since
A(σ) ≤ B(σ′) and A’s cost on the last request of σ1 is the same as B’s cost on the last request
of σ2, we have A(σ1) ≤ B(σ2). Therefore we get the desired mapping from Ik+1(σ) to Ik+1(σ′).
We obtain a bijection bk+1 : Ik+1 ↔ Ik+1 by considering the above mapping for each sequence
σ ∈ Ik. Thus our induction statement is true and we have A �b B. Using a similar argument,
we can show B �b A. Therefore we have A ≡b B.

We term a list update algorithm economical if it does not use paid exchanges, assuming the
standard cost model. Since an economical list update algorithm does not incur any cost for
reorganizing the list we can prove the following statement using an argument analogous to the
proof of Theorem 5.2.

Corollary 5.1. All economical online list update algorithms are equivalent according to Bijective
Analysis under the standard cost model.
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The results above suggest that so long as we consider the space of all possible request se-
quences, all on-line list update algorithms are equivalent in a strong sense. In the following
section we address the issue of locality of reference in typical list update sequences, and its effect
in the relative performance of online algorithms.

5.2.1 List Update with Locality of Reference

Unlike the paging problem, the prevalence of locality of reference in list update is less self-evident.
In practice, input sequences of list update algorithms indeed exhibit locality of reference [89,
137, 35] and on-line list update algorithms try to take advantage of this property [89, 132]. In
particular, locality is prevalent in applications of list update algorithms for data compression (see
e.g. [19]).

The lack of formal models led Hester and Hirschberg [89] to pose the question of providing a
satisfactory formal definition of locality of reference for list update as an open problem. In [12]
we addressed the problem of list update under locality of reference. To the best of our knowledge,
this was the first formal study of locality of reference for list update. Recently, Albers and Lauer
[7] proposed another model for list update with locality of reference that is based on the concept of
runs; here a run is a subsequence of requests to the same list item. It has been commonly assumed,
based on intuition and experimental evidence, that MTF is the best algorithm on sequences with
high locality of reference. For instance, Hester and Hirschberg [89] claim: “move-to-front performs
best when the list has a high degree of locality” (see also [8], page 327). The results of Albers and
Lauer [7] confirm, in a theoretical manner, that MTF has excellent performance at high locality.

Following the model of concave analysis for the paging problem of Albers et al. [36], we
say that a request sequence σ for list update is consistent with f if the maximum number of
distinct items in a window of w consecutive items in σ is at most f(w). In section 5.2.1 we
provide experimental results that demonstrate that for applications of list update related to data
compression, the function f has an overall concave shape. Hence, the experimental evidence
suggest that concave analysis can be applied not only in the paging problem but also in list
update.

Perhaps not surprisingly, this measure seems to parallel MTF’s behaviour as the latter has
been tailored to benefit from locality of reference. This should not be construed as a drawback of
the measure, but rather as evidence of the fact that the design of the MTF algorithm incorporates
the presence of locality of reference into its choices. Our theoretical proof of the optimality of
MTF in this context is then perhaps not surprising, yet this fact had eluded proof until now.

As with the paging problem, we can apply bijective and/or Average Analysis by restricting the
set of request sequences to those consistent with f . We will make use of the notation introduced
in Subsection 4.2.2.

Lemma 5.3. For every online list update algorithm A, MTF dominates A.

Proof. Let f be an arbitrary concave? function and m be a positive integer. For any 1 ≤ i ≤ m,
let Fi,m(A) be the total cost A incurs on the ith request of all sequences in Ifm. We will first
show that Fi,m(MTF) ≤ Fi,m(A) for any 1 ≤ i ≤ m. For i = 1, we have F1,m(MTF) = F1,m(A),
as all algorithms start with the same list. Now suppose that i > 1. Let σ be an arbitrary
sequence of length i − 1, Tσ denote the set of all sequences in Ifm that have σ as their prefix,
and Fi,m(A |σ) be the total cost A incurs on the ith request of all sequences in Tσ. Denote by
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L(MTF, σ) = (a1, a2, . . . , a`) and L(A, σ) = (b1, b2, . . . , b`) the lists maintained by MTF and A
after serving σ, respectively. Suppose that cj (resp., dj) sequences in Tσ have aj (resp., bj) as
their ith request, for 1 ≤ j ≤ `. Note that

∑
1≤j≤l cj =

∑
1≤j≤l dj = |Tσ| and (d1, d2, . . . , d`) is a

permutation of (c1, c2, . . . , c`).

We first show that cj+1 ≤ cj for 1 ≤ j < `. Let Cj and Cj+1 denote the set of sequences in
Tσ that have aj and aj+1 as their ith request. We provide a one-to-one mapping from Cj+1 to
Cj which proves that |Cj+1| ≤ |Cj |. We map every sequence τ in Cj+1 to a sequence τ ′ in Cj
by replacing every aj with aj+1 and every aj+1 by aj , starting from position i. Since aj occurs
before aj+1 in MTF’s list after serving σ, we know that the last request to aj occurs after the
last request to aj+1 in σ. Therefore if τ is consistent with f , so is τ ′. Thus every sequence in
Cj+1 is mapped to a unique sequence in Cj and we have cj+1 = |Cj+1| ≤ |Cj | = cj .

Therefore (c1, c2, . . . , c`) is a permutation of (d1, d2, . . . , d`) in non-increasing order, and thus
Fi,m(MTF |σ) =

∑
1≤j≤` j × cj ≤

∑
1≤j≤` j × dj = Fi,m(A |σ) . Now since

Fi,m(MTF) =
∑

σ∈Ii−1

Fi,m(MTF |σ) and Fi,m(A) =
∑

σ∈Ii−1

Fi,m(A |σ),

we get Fi,m(MTF) ≤ Fi,m(A). We have∑
σ∈Ifm

MTF(σ) =
∑

1≤i≤m
Fi,m(MTF) ≤

∑
1≤i≤m

Fi,m(A) =
∑
σ∈Ifm

A(σ).

Thus MTF (m, f)-dominates A for every concave? function f , and every integer m ≥ 1. Hence
MTF dominates A.

Corollary 5.2. For any concave? function f and any online list update algorithm A,

MTF �fa A.

Corollary 5.2 demonstrates that MTF is an optimal algorithm according to Average Analysis
on sequences with locality of reference. As in the case of the paging problem (and optimality of
LRU), a natural question is whether MTF is a unique optimum or not. The following theorem
shows that no other list update algorithm can be optimal in this model (assuming that the
algorithm is oblivious of the function f .)

Theorem 5.3. No online list update algorithm (other than MTF itself) dominates MTF.

Proof. Assume by way of contradiction that an online list update algorithm A dominates MTF
and that A is different from MTF. According to the definition, there exists an integer m0 ≥ 1 so
that for each m ≥ m0 and every concave? function f , A (m, f)-dominates MTF, i.e.,∑

σ∈Ifm

A(σ) ≤
∑
σ∈Ifm

MTF(σ).

Following the proof of Lemma 5.3, this holds only if Fi,m(A |σ) = Fi,m(MTF |σ) for every
m ≥ m0, 2 ≤ i ≤ m, and every sequence σ of length i − 1. Let σ ∈ Ifi−1 be a sequence so that
L(A, σ) is different from L(MTF, σ), k be the largest index so that x = ak 6= bk = y (for ak and
bk defined as in Lemma 5.3), and p be the smallest index so that σ[p..i−1] contains at most k−1
distinct items. Select the concave? function f so that bf(i−p)c = bf(i−p+1)c = k−1. Observe
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that σ[p..i− 1] = {a1, a2, . . . , ak−1}, y ∈ {a1, a2, . . . , ak−1}, and x = ak. Therefore y ∈ σ[p..i− 1],
and x 6∈ σ[p..i − 1]. Thus we have ck = 0 < dk (the sequence of length m > i obtained by
repeating y in all positions starting from ith position is consistent with f). Therefore

Fi,m(MTF |σ) =
∑

1≤j≤`
j × cj <

∑
1≤j≤`

j × dj = Fi,m(A |σ),

which is a contradiction.

We have thus obtained the following.

Theorem 5.4. Let A be an online list update algorithm other than MTF. Then MTF �fa A and
there exists at least one concave? function f so that

A 6�fa MTF, which implies A 6�fb MTF.

We can prove separation with respect to Bijective Analysis between MTF and specific algo-
rithms, e.g., TR, for a much larger family of concave? functions.

Theorem 5.5. For all concave? functions f such that f(`) < ` (` is the size of list),

TR 6�fb MTF.

Proof. Let L0 = (a1, a2, . . . , a`) be the initial list. Assume by way of contradiction that TR �fb
MTF. Therefore there is an integer n0 ≥ 1 so that for each n ≥ n0, there is a bijection b : Ifn ↔ Ifn
satisfying TR(σ) ≤ MTF(b(σ)) for each σ ∈ Ifn . Now consider a sequence σ of length m ≥ n0

obtained by considering the prefix of size m of the infinite sequence a`a`−1a`a`−1 . . .. TR incurs a
cost of ` on each request and we have TR(σ) = m×`. Note that σ is consistent with f , because it
has two distinct items.1 Thus σ ∈ Ifm and from the assumption there should exist some sequence
σ′ ∈ Ifm so that m × ` = TR(σ) ≤ MTF(σ′). Therefore MTF should incur a cost of ` on each
request of σ′. Hence σ′ should be a prefix of the sequence a`a`−1a`−2 . . . a1a`a`−1a`−2 . . . a1 . . ..
Note however that any window of size ` in σ′ has ` distinct items. Since we started with f(`) < `,
σ′ is not consistent with f and this contradicts the assumption that σ′ ∈ Ifm.

Experimental Results and Analysis

In this section we test the validity of the locality of reference assumption as described in Sec-
tion 5.2.1 against experimental data. For our experiments, we considered the fourteen files of
the Calgary Compression Corpus [151] which are frequently used as a standard benchmark for
file compression. Recall that list update algorithms can be used in a very direct way in file
compression. For each file, we computed the maximum number of characters in windows of all
possible sizes, up to the size of the whole file. Figures 5.1 and 5.2 show the resulting graphs.
Note that since we observed that the maximum number of distinct items does not change much
as we increase the size of window to values more than 3500, we only show the results for windows
of size up to 3500.

As can be seen from these graphs, the curves have an overall concave shape. We should
note that for some of the input files, the function we obtained is not concave for some intervals.

1We can assume that f(2) = 2 because otherwise we are restricted to sequences that contain only one item.
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Figure 5.1: Maximum number of distinct characters in windows of size up to 3500 for the files in
Calgary Compression Corpus.
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Figure 5.2: Maximum number of distinct characters in windows of size up to 3500 for the files in
Calgary Compression Corpus.
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However, this is not a major concern, since we can bound said function by any concave function f
which is such that f(i) is an upper bound on the maximum number of distinct items in windows
of size i. For instance, we can take the upper convex hull of the data points. In fact, Albers et al.
[6] observed that similar non-concavity (mostly localized within small intervals) was present in
their experimental results in typical request sequences for the paging problem. Albers et al. put
forth this argument to justify the fact that local small deviations from concavity do not impose
a serious problem.

Albers and Mitzenmacher [8] compared the efficiency of MTF and TS algorithms for com-
pressing the files of the Calgary Compression Corpus. After accessing an item a, TS inserts a in
front of the first item b that appears before a in the list and was requested at most once since the
last request for a. If there is no such item b, or if this is the first access to a, TS does not reor-
ganize the list. They compared MTF and TS in two settings: with or without Burrows-Wheeler
transform (BWT). Informally, BWT transforms a string to one of its permutations that has more
locality of reference, which is hence more readily compressible [51, 106]. We will describe the
BWT in more detail in Chapter 10. Their results show that although TS outperforms MTF
on compression without BWT, MTF usually has better performance when we use BWT. This
is consistent with our results as BWT is a transform designed with the goal of increasing the
locality of reference in the representation of the string.

5.3 Conclusions

In this chapter we applied Bijective Analysis and Average Analysis to paging with lookahead
and list update. We first showed that unlike competitive analysis, Bijective Analysis reflects the
influence of lookahead for paging. We then turned our attention to the list update problem, in
particular under the cost formulation of Mart́ınez and Roura, and Munro. We showed that under
this cost model, all algorithms for list update are equivalent according to Bijective Analysis, a
result that parallels the equivalence of all lazy paging algorithms. Next, we investigated the issue
of locality of reference in list update, which, unlike the paging problem, has received considerably
less attention in the literature. We provided experimental evidence that the model of Albers et
al. can be adapted to applications of list update that emerge from text compression. We then
applied Average Analysis over request sequences exhibiting locality of reference, and proved that
MTF is the unique optimal algorithm.

In future work we intend to apply bijective and Average Analysis to other online problems.
Natural candidates here are the k-server problem and file caching. We would be very interested
to extend these techniques so as to be able to compare randomized online algorithms. Since the
introduction of these measures, further applications of these techniques emerged. More specifi-
cally, Angelopoulos and Schweitzer [14] extended the optimality of LRU to Bijective Analysis.
In addition, Boyar, Irani and Larsen [42] showed that the greedy algorithm is optimal according
to Bijective Analysis for the 2-server problem on three co-linear points. Last, but not least, we
would be interested in the study of relaxed versions of Bijective Analysis, e.g., by requiring that
A(σ) ≤ cB(π(σ)), for some constant c.
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Chapter 6

Relative Interval Analysis

In this chapter we give a finer separation of several known paging algorithms using a new technique
called relative interval analysis. This technique compares the fault rate of two paging algorithms
across the entire range of inputs of a given size rather than in the worst case alone. Using this
technique we characterize the relative performance of several paging algorithms. We also show
that lookahead is beneficial for a paging algorithm under this model as well.

In Chapter 4 we introduced Bijective Analysis and Average Analysis which combined with
the locality model of Albers et al. [6], shows that LRU is the sole optimal paging algorithm on
sequences with locality of reference. This resolved an important disparity between theory and
practice of online paging algorithms, namely the superiority in practice of LRU.

A remaining question however, is how to characterize the full spectrum of performance of
the various known paging algorithms. The competitive ratio focuses on the worst case which
in this setting is known to be the same for all algorithms. In this chapter we compare instead
the performance of two algorithms across the entire range of inputs; in that comparison we
use the fault rate measure instead of the competitive ratio. Aside from artifacts introduced by
the comparison to an offline algorithm, practitioners find the fault rate a better indicator of
performance. The idea behind the fault rate is that sequences on which A incurs very few faults
compared to the number of requests are not that important, even if the number of faults happens
to be much higher than what can be achieved by an offline (or even online) optimum. We show
this using an example. Let A and B two online paging algorithms. Suppose that the fault rate
of A is generally much lower than that of B, so clearly A is preferable to B. However, if there
happens to be an “easy” sequence σ of length 1000000 on which A incurs 100 faults, B incurs 10
faults and optimal offline algorithm can serve σ by only 2 faults, then the competitive ratio of A
is 50 while that of B is 5 suggesting the opposite of the logical conclusion. Note that the fault
rate of A and B on σ is 0.01 and 0.001, respectively, which is miniscule and thus of no relevance
to the actual performance of a system using either algorithm.

Our results In this chapter we aim to provide a tool for finer study and separation—as com-
pared to the competitive ratio—of the relative performance characteristics of online paging algo-
rithms. We propose the relative interval which directly compares two online paging algorithms
A and B, without any reference to the optimal offline algorithm. They are compared across their
entire performance spectrum (rather than on the worst case alone) using a normalized measure
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Table 6.1: Summary of the results for relative intervals of several paging algorithms.
LRU FWF FIFO LIFO LRU-2

LRU

FWF [0, k−1
k ]

FIFO ⊇ [−k−1
k , k−1

2k−1 ] [−k−1
k , 0]

LIFO [−k−1
k , 1] [−k−1

k , 1]
LRU-2 ⊇ [−k−1

2k ,
k−1
k+1 ]

of performance, similar to the fault rate. Informally the relative interval of two algorithms re-
flects the range of the difference between the fault rate of those algorithms. For every two online
paging algorithms A and B we define a relative interval I(A,B) = [α, β], where −1 ≤ α ≤ 1
and 0 ≤ β ≤ 1. Intuitively, β > −α shows that B is better than A the according to the relative
interval. The greater the difference, the better B is compared to A. Table 6.1 shows the summary
of our results about the relative intervals of well known paging algorithms. These results show
that LRU and FIFO are better than FWF, a result expected from practice and experience, yet
not fully reflected by the competitive ratio model. We also show that the relative interval has
another good feature, namely we prove that it reflects the influence of lookahead.

6.1 Relative Interval

In relative interval analysis we directly compare two online algorithms, i.e., we do not use the
optimal offline algorithm as the baseline of our comparisons. LetA and B be two online algorithms
for the same minimization problem, e.g., paging. Denote the cost of A on a sequence σ by A(σ).
We define the following two functions:

MinA,B(n) = min
|σ|=n
{A(σ)− B(σ)},

and
MaxA,B(n) = max

|σ|=n
{A(σ)− B(σ)}.

Using these functions we define

Min(A,B) = lim inf
n

MinA,B(n)
n

, and Max(A,B) = lim sup
n

MaxA,B(n)
n

.

Note that Min(A,B) = −Max(B,A) and Max(A,B) = −Min(B,A). Now we are ready to
define the relative interval of A and B as

I(A,B) = [Min(A,B),Max(A,B)].

This interval gives useful information about the relative performance of A and B. If Max(A,B) >
|Min(A,B)| then B has better performance than A in this model. In particular, if I(A,B) = [0, β]
for β > 0 we say that B dominates A. Note that in this case A does not have better performance
than B on any sequence (asymptotically), while B outperforms A on some sequences. Also if
Max(A,B) is close to 0 then we can conclude that A is not much worse than B on any sequences.
We can interpret other situations in an analogous way.
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Example 6.1. We use a simple example to illustrate the above definitions. Let A and B be two
online algorithms and In = {σ1, σ2, · · · , σ10} be the set of all possible request sequences of length
n = 5000. Suppose that the cost of A, B, and the optimal offline algorithm OPT on request
sequences are as follows:

σ A(σ) B(σ) OPT (σ) A(σ)− B(σ)
σ1 200 800 100 -600
σ2 600 550 500 50
σ3 70 90 40 -20
σ4 20 10 2 10
σ5 1000 2000 700 -1000
σ6 500 600 200 -100
σ7 120 100 80 20
σ8 1386 2007 1360 -621
σ9 140 270 50 -130
σ10 2007 2000 1981 7

We have MinA,B(n) = −1000 and MaxA,B(n) = 50. The difference between the fault rates of
A and B on these sequences ranges between -20% and 1%. Restricting our attention to sequences
of length 5000 we can say I(A,B) = [−20%, 1%]. Therefore A is better than B according to
relative interval analysis. On the other hand, the competitive ratio of A and B on these sequences
is 10 (occurring on σ4) and 8 (occurring on σ1), respectively. Although A has better performance
than B on most sequences, its bad performance on a single sequence, namely σ4, results in a worse
competitive ratio.

We compute the value of Min(A,B) and Max(A,B) for various choices of A and B. In some
cases we obtained bounds or approximation of the values thereof. We say that [α, β] approximates
the relative interval of A and B if Min(A,B) ≤ α and β ≤ Max(A,B). We denote this by
I(A,B) ⊇ [α, β].

6.2 Comparison to Other Measures

We can directly compare two online algorithms using relative interval analysis. Recall from
Chapter 3 that the other measures which directly compare two online algorithms are the Max/Max
ratio, the relative worst order ratio, Bijective Analysis, and Average Analysis. The Max/Max
ratio reflects the influence of lookahead, but it does not provide better separation than the
competitive ratio, e.g., LRU and FWF are equivalent under this measure. The relative worst
order ratio reflects the advantage of lookahead and separates the performance of LRU and FWF.
Thus this measure gives results comparable to the relative interval. However, it is not intuitive
why we should consider all permutations of a sequence for comparing two online paging algorithms
(this might be more straightforward for other problems, e.g., bin packing.). Furthermore, the
relative interval provides a more comprehensive measure by considering the whole range of possible
differences between the performance of two algorithms. Note that in the Max/Max ratio and the
relative worst order ratio we only consider the worst case sequence (among all sequences of the
same length and all permutations of a sequence, respectively).
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The influence of lookahead is reflected by bijective analysis and average analysis. These
measures also separate the performance of LRU and FWF. However, all lazy paging algorithms
are equivalent according to Bijective Analysis and Average Analysis. Therefore most paging
algorithms have the same performance under these measures. However, under the locality of
reference model of [6] LRU is the unique optimal deterministic online algorithm under average
analysis. This is consistent with the well known fact that LRU is the superior paging algorithm
in practice. The relative interval does not reflect the unique optimality of LRU, but this also
applies to all other measures that do not incorporate the locality of reference assumption. An
interesting extension to this work would be to combine the relative interval with models for
locality of reference. We believe that this will lead to better separation results. For example,
although LRU beats LIFO under the relative interval, they have close performance. This is not
consistent with practice, where LRU behaves much better than LIFO. However, note that LIFO
and LRU are equivalent under plain bijective analysis and average analysis. Their performances
are only separated when we assume locality of reference. We believe that this would be the case
for the relative interval as well.

Finally, we explain a potential drawback of the relative interval. This drawback is due to the
fact that the relative interval does not consider the whole distribution of the difference between
the performance of two algorithms. Instead, it only considers the extreme values (minimum and
maximum). This dependence on extreme cases simplifies the model and makes it more practical,
but it leads to the same potential shortcomings as measures based on the worst-case analysis.
We elaborate this using a simple example. Consider the difference between the performance of
two algorithms A and B on all sequences of length n. Assume that A(σ) − B(σ) is -2000 for a
single sequence and it gets values between −1 and 1000 for all other sequences. This shows that
a single sequence can considerably affect the relative interval.

6.3 Relative Interval Applied to Paging Algorithms

In this section we compare several well known paging algorithms using the new model.

Theorem 6.1. For any two online paging algorithms A and B,

0 ≤Max(A,B) ≤ 1.

Proof. For any n, there is a sequence σ of length n so that A(n) = n, i.e., A incurs a fault on
every request of σ. This sequence can be obtained by requesting, at each step, the page that
is evicted by A in the previous step. B incurs at most n faults on every sequence of length n.
Therefore B(σ) ≤ n and A(σ)−B(σ) ≥ 0. Thus max|σ|=n{A(σ)−B(σ)} ≥ 0. Since this holds for
every n, we have Max(A,B) ≥ 0. For the upper bound, note that for every sequence σ of length
n, we have

A(n) ≤ n ⇒ A(n)− B(n) ≤ n ⇒ A(n)−B(n)
n

≤ 1.

Therefore Max(A,B) ≤ 1.

Corollary 6.1. For any two online paging algorithms A and B,

−1 ≤Min(A,B) ≤ 0.
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Theorem 6.2. I(FWF,LRU) = [0, k−1
k ].

Proof. Let σ be an arbitrary sequence of length n and consider the partition of σ to phases
of marking algorithms. At each phase, FWF incurs exactly k faults while LRU incurs at
most k faults. Therefore the cost of LRU on σ is at most the cost of FWF on σ and we
have Min(FWF,LRU) ≥ 0. According to Corollary 6.1 we have Min(FWF,LRU) = 0.
At each phase, LRU incurs at least one fault and each phase has length at least k. There-
fore Max(FWF,LRU) ≤ k−1

k . Consider the following sequence for some arbitrary integer m:
σ = {p1p2 · · · pkpk+1p2p3 · · · pk}m. We have FWF(σ) = 2k×m and LRU(σ) = k+1+2× (m−1)
and thus Max(FWF,LRU) ≥ k−1

k .

We can extend this argument to all lazy conservative and lazy marking algorithms.

Theorem 6.3. Let A be an arbitrary lazy conservative or lazy marking algorithm. Then we have
I(FWF,A) = [0, k−1

k ].

Proof. Let σ be an arbitrary sequence and ϕ be an arbitrary marking phase of σ. Any marking
algorithm incurs at most k faults on ϕ. Also since ϕ contains k distinct pages, any conservative
algorithm incurs at most k faults in this phase as well. Thus A incurs at most k faults on ϕ. Since
FWF incurs exactly k faults on ϕ we have Min(FWF,A) ≥ 0. Then we get Min(FWF,A) = 0
by applying Corollary 6.1. Now we prove Max(FWF,A) ≥ k−1

k by constructing the following
sequence σ which contains k + 1 distinct pages and starts by p1p2 · · · pkpk+1. After this the
sequence contains several blocks of size k. At the beginning of each block B the cache of FWF
contains only one page, say p. Also since A is a lazy paging algorithm its cache contains all
of these pages save one (say q). B consists of requests to each of these distinct pages with the
exception of p, thus it has length exactly k. In addition, we make sure that the request to q is
the last request in B. Thus the last request of B is a fault for both algorithms on which A evicts
one page while FWF flushes its cache and brings only that last request to its cache. Now we
can construct a new block in a similar way. Therefore on each block of length k, FWF and A
incur cost k and 1, respectively and we have Max(FWF,A) ≥ k−1

k . At each marking phase ϕ,
FWF incurs k faults and A incurs at least one fault. Also ϕ has length at least k. Therefore
Max(FWF,A) ≤ k−1

k .

Theorem 6.4. For any conservative algorithm A and any online algorithm B, we have Max(A,B) ≤
k−1
k .

Proof. Let σ be an arbitrary sequence of length n and partition σ into blocks so that B incurs a
fault only on the first request of each block. Therefore each block has at most k distinct pages
and A incurs at most k faults in each block. Let b1, b2, · · · , bd be the sizes of blocks of σ. Then
we have B(σ) = d and A(σ) ≤

∑
bi≤k bi +

∑
bi>k

k. Therefore

A(σ)− B(σ)
n

≤
∑

bi≤k bi +
∑

bi>k
k − d∑

bi≤k bi +
∑

bi>k
bi

≤
∑

bi≤k(bi − 1) +
∑

bi>k
(k − 1)∑

bi≤k bi +
∑

bi>k
k

.
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If bi ≤ k, we have bi−1
bi
≤ k−1

k and thus∑
bi≤k(bi − 1)∑

bi≤k bi
≤ k − 1

k
.

Also we have ∑
bi>k

(k − 1)∑
bi>k

k
≤ k − 1

k
.

Therefore A(σ)−B(σ)
n ≤ k−1

k . Since this is true for any σ, we have Max(A,B) ≤ k−1
k .

Theorem 6.5. I(LIFO,LRU) = [−k−1
k , 1].

Proof. Since LRU is conservative, according to Theorem 6.4 we have

Max(LRU,LIFO) ≤ k − 1
k
⇒Min(LIFO,LRU) ≥ −k − 1

k
.

Now consider the sequence σ = {p1p2 · · · pkpk+1}m. LRU incurs a fault on every request of σ
while LIFO incurs a fault on every kth request. Thus

Min(LIFO,LRU) ≤ −k − 1
k
⇒Min(LIFO,LRU) = −k − 1

k
.

For the other direction consider the sequence σ = p1p2 · · · pkpk+1{pkpk+1}m. LIFO incurs a
fault on every request while LRU only incurs a fault on the first k + 1 pages. Since m can
be arbitrarily large, we have Max(LIFO,LRU) ≥ 1. This, together with Theorem 6.1 imply
Max(LIFO,LRU) = 1.

A similar argument on the same sequences implies the following theorem.

Theorem 6.6. I(LIFO,FIFO) = [−k−1
k , 1].

Theorem 6.7. I(FIFO,LRU) ⊇ [−k−1
k , k−1

2k−1 ].

Proof. Max(FIFO,LRU): Consider the following sequence σ that consists of k+1 distinct pages:
σ starts with σ0 = p1p2 . . . pk. After this initial subsequence, σ consists of several blocks. Each
block starts right after the previous block and contains 2k − 1 requests to k distinct pages. The
first k blocks of σ are shown in Fig. 6.1. The blocks repeat after this, i.e., the (k + 1)th block
is the same as the first block, the (k + 2)th block is the same as the second block and so on.
It is easy to verify that FIFO incurs a fault on the last k requests of each block while LRU
only incurs a fault on the middle request of every block. Let σ have m blocks. Then we have
FIFO(σ) = k +m× k and LRU(σ) = k +m. Therefore

FIFO(σ)− LRU(σ)
|σ|

=
m(k − 1)

k +m(2k − 1)
,

and for sufficiently large values of m, this value becomes arbitrarily close to k−1
2k−1 .

Min(FIFO,LRU): Consider the following sequence σ′ that consists of k + 1 distinct pages: σ′

starts with σ′0 = p1p2 . . . pkpk−1pk−2 . . . p1. After this initial subsequence, σ′ consists of m blocks.
The first k blocks of σ′ are shown in Fig. 6.2. The blocks repeat after this, e.g., the (k + 1)th
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pk−1 pk−2 · · · p2 p1 pk+1 p1 p2 · · · pk−1

pk−2 pk−3 · · · p1 pk+1 pk pk+1 p1 · · · pk−2

pk−3 pk−4 · · · pk+1 pk pk−1 pk pk+1 · · · pk−3
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
pk pk−1 · · · p3 p2 p1 p2 p3 · · · pk


Figure 6.1: Blocks of the sequence σ in the proof of Theorem 6.7; each row of the matrix represents
a block.



pk+1 pk pk−1 · · · p3 p2

p1 pk+1 pk · · · p4 p3

p2 p1 pk+1 · · · p5 p4
...

...
...

...
...

...
...

...
...

...
...

...
pk pk−1 pk−2 · · · p2 p1


Figure 6.2: Blocks of sequence σ′ in the proof of Theorem 6.7.

block is the same as the first block. It is easy to verify that LRU incurs a fault on all k requests
of each block while FIFO only incurs a fault on the first request of every block. Then we have
LRU(σ) = k +m× k and FIFO(σ) = k +m. Therefore

FIFO(σ)− LRU(σ)
|σ|

=
−m(k − 1)
k +mk

,

and for sufficiently large values of m, this value becomes arbitrarily close to −k−1
k .

Theorem 6.8. Max(LRU-2,LRU) ≥ k−1
k+1 .

Proof. Consider the sequence σ obtained by repeating m times the block
p1p2 . . . pk−1pkpkpk−1 . . . p1pk+1pk+1. In the first block, LRU incurs k + 1 faults. In every other
block, it only incurs two faults, one on the first request to pk, and the other on the first request to
pk+1. Therefore we have LRU(σ) = k+ 1 + 2(m− 1) = 2m+ k− 1. LRU-2 incurs k+ 1 faults in
the first block and 2k faults in every other block; it has a hit only on the second requests to pk and
pk+1 in each block (other than the first block). Therefore we have LRU-2(σ) = k+1+2k(m−1) =
2km− k + 1. Thus

LRU-2(σ)− LRU(σ)
|σ|

=
2km− k + 1− 2m− k + 1

m(2k + 2)
=
m(2k − 2)− 2k + 2

m(2k + 2)
,

and for sufficiently large values of m, this value becomes arbitrarily close to 2k−2
2k+2 = k−1

k+1 .

Theorem 6.9. Max(LRU-2,LRU) ≤ k−1
k .
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Proof. Let σ be an arbitrary sequence of length n and partition σ into blocks so that LRU incurs
a fault only on the first request of each block. Let B1, B2, . . . , Bd be the blocks of σ, and bi be the
size of block Bi. Then we have LRU(σ) = d and LRU-2(σ) ≤

∑
1≤i≤d bi. We show that LRU-2

incurs at most k faults in each block. We first show Bi contains at most k distinct pages. B1

contains requests to one page and LRU-2 incurs one fault on it. Consider an arbitrary block Bi
for i > 1, let p be the first request of Bi, and let p1, p2, . . . , pk−1 be the k − 1 most recently
used pages before the block Bi in this order. We have p 6∈ P = {p1, p2, . . . , pk−1}, because LRU
incurs a fault on p. We claim that each request of Bi is either to p or to a page of P . Assume
for the sake of contradiction that Bi contains a request to a page q 6∈ {p} ∪ P and consider the
first request to q in Bi. All pages p, p1, p2, . . . , pk−1 are requested since the previous request to
q. Therefore at least k distinct pages are requested since the last request to q and LRU incurs a
fault on q. This contradicts the definition of a block. Therefore Bi contains at most k distinct
pages.

We claim that LRU-2 incurs at most one fault on every page q in block Bi. Assume that
this is not true and LRU-2 incurs two faults on a page q in Bi. Therefore q is evicted at some
point after it is first requested in Bi. Assume that this eviction happens on a fault in a request
to a page r and consider the pages that are in LRU-2’s cache just before that request. Since
r ∈ {p} ∪ P is not in the cache and |{p} ∪ P | = k, there is a page s 6∈ {p} ∪ P in the cache. Let
t be the time of the last request to pk−1 before the block Bi. The last request to s is before t,
while the second to last request to q is at time t or afterwards. Therefore LRU-2 does not evict
q on this fault, which is a contradiction. Hence LRU-2 incurs at most k faults in each block of
σ. Therefore

LRU-2(σ)− LRU(σ)
n

≤
∑

bi≤k bi +
∑

bi>k
k − d∑

bi≤k bi +
∑

bi>k
bi

≤
∑

bi≤k(bi − 1) +
∑

bi>k
(k − 1)∑

bi≤k bi +
∑

bi>k
k

.

If bi ≤ k, we have bi−1
bi
≤ k−1

k and thus∑
bi≤k(bi − 1)∑

bi≤k bi
≤ k − 1

k
.

Also we have ∑
bi>k

(k − 1)∑
bi>k

k
≤ k − 1

k
.

Therefore
LRU-2(σ)− LRU(σ)

n
≤ k − 1

k
.

Since this is true for any σ, we have Max(LRU-2,LRU) ≤ k−1
k .

Theorem 6.10. Min(LRU-2,LRU) ≤ −k−1
2k .

Proof. Consider the following sequence σ that consists of k + 1 distinct pages. σ starts with
σ0 = p1p2 . . . pk. After this initial subsequence, σ consists of m blocks. Each block starts right
after the previous block. The ith block consists of one of the subsequences shown in Figure 6.3,
depending on the parity of i. It is easy to verify that LRU incurs a fault on the last k requests
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Odd: pk pk−1 . . . p2 p1 pk+1 pk pk−1 . . . p3 p2

Even: p2 p3 . . . pk pk+1 p1 p2 p3 . . . pk−1 pk

Figure 6.3: A block of sequence σ in the proof of Theorem 6.10.

of each block while LRU-2 only incurs a fault on the middle request of every block, i.e., pk+1 in
Odd blocks and p1 in Even blocks. Then we have LRU(σ) = k +m× k and LRU-2(σ) = k +m.
Therefore

LRU-2(σ)− LRU(σ)
|σ|

=
−m(k − 1)
k +m(2k)

,

and for sufficiently large values of m, this value becomes arbitrarily close to −k−1
2k .

Therefore while Max( LRU-2,LRU) is almost 1, we have proven so far an upper bound of
almost -1/2 for Min( LRU-2,LRU). A natural question is whether we can improve this bound, i.e.,
prove that Min( LRU-2,LRU) is less than -1/2. We believe that this is not true and prove it for
the case that we only have k+1 distinct pages (note that all our examples are using k+1 distinct
pages). While this is a counterintuitive result, in the sense that LRU-2 is preferable in practice it
adds to our understanding of the relative advantages of LRU and LRU-2. This results indicates
that in the fault rate model LRU is also preferable to LRU-2 and hence additional assumptions
need to be made (such as the independency of requests [123]) so that it accurately reflects the
superiority of LRU-2 observed in practice.

Theorem 6.11. If we have at most k + 1 distinct pages then Min( LRU-2,LRU)≥ −1/2.

Proof. We call a request a “disparity” if it is a fault for LRU and a hit for LRU-2. Note that
only a disparity may reduce the value of Min( LRU-2,LRU). Consider an arbitrary sequence
σ = σ1σ2 . . . σn and an arbitrary page p. Let S be the set of all k distinct pages other than p. We
prove that between any two requests for p in σ causing a disparity there should be a request to p
that is not a disparity. Assume for the sake of contradiction that this is not the case: σa and σb
are disparity requests to p, and there is no request to p between them. Let σx be the last request
to p before σa. Since pa is a fault for LRU, it has evicted p between px and pa. Therefore all
members of S are requested between px and pa. Similarly all pages of S are requested between
pa and pb. Since p is at LRU-2’s cache right before pa, there should be at least one page in S
that is not in its cache at that time. As all pages of S are requested between pa and pb, LRU-2
incurs at least one fault in this interval. Let py be the last request between pa and pb on which
LRU-2 incurs a fault. We claim that LRU-2 should evict p on the request py. Assume that
LRU-2 evicts a page q ∈ S on the fault py. The next request to q would be a fault for LRU-2
and since py is its last fault between pa and pb and q is requested in this range, we conclude that
q has been requested between pa and py. However this means that the second last request to q
is after px, while the second last request to p is at px. Thus LRU-2 should evict p at py, and
pb is a fault for LRU-2 which is a contradiction. Hence corresponding to each request that may
reduce the value of Min( LRU-2,LRU) there is at least one request that does not. This proves
the bound of −1/2 for Min( LRU-2,LRU).
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Influence of lookahead

We demonstrate that the relative interval reflects the effects of lookahead. Consider the algorithm
LRU(`) as defined in Subsection 5.1. We showed there that LRU(`) incurs no more faults
than LRU on any sequence. Therefore Min(LRU,LRU(`)) = 0. Now consider the sequence
σ = {p1p2 . . . pkpk+1}m. LRU incurs a fault on every request of σ while LRU (`) incurs a fault
on every lth request. Hence

Max(LRU,LRU(`)) ≥ 1− 1/l,

and thus LRU(`) dominates LRU.

6.4 Conclusions and Open Questions

We introduced a fault rate based metric to compare paging algorithms and using this metric,
we showed the superiority of LRU and FIFO over FWF. The metric also reflects the beneficial
influence of lookahead.

Several natural open questions remain: filling in the remaining entries in Table 6.1 as well as
refining the bounds that are not tight. Additionally we believe that the relative interval can be
of interest in other online settings and even perhaps for the comparison of offline algorithms.
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Chapter 7

Parameterized Analysis of Online
Algorithms

As noted in Chapter 3, it is well-established that input sequences for paging and list update have
locality of reference. In this chapter we analyze the performance of algorithms for these problems
in terms of the amount of locality in the input sequence. We define a measure for locality that is
based on Denning’s working set model and express the performance of well known algorithms in
term of this parameter.

This introduces parameterized-style analysis to online algorithms. The idea is that rather
than normalizing the performance of an online algorithm by an (optimal) offline algorithm, we
explicitly express the behavior of the algorithm in terms of two more natural parameters: the size
of the cache and Denning’s working set measure. This technique creates a performance hierarchy
of paging algorithms which better reflects their intuitive relative strengths. Also it reflects the
intuition that a larger cache leads to a better performance. We obtain similar separation between
list update algorithms. Lastly, we show that, surprisingly, certain randomized algorithms which
are superior to MTF in the classical model are not so in the parameterized case, which matches
experimental results.

Recall that locality of reference for paging means that when a page is requested it is more
likely to be requested in the near future. In the early days of computing, Denning recognized the
locality of reference principle and modeled it using the well known working set model [64, 65].
He defined the working set of a process as the set of most recently used pages and addressed
thrashing using this model. According to [66], the word “locality” was first used by Denning in
discussions with Dennis and Belady. They noticed that programs showed locality behavior even
when it was not explicitly planned. After the introduction of the working set model, the locality
principle has been adopted in operating systems, databases, hardware architectures, compilers,
and many other areas. Therefore it holds even more so today. Indeed, [66] states “locality of
reference is one of the cornerstones of computer science.”

Our results We apply parameterized analysis to paging and list update. We express the
performance of well known paging and list update algorithms in terms of some measures of
locality of reference. For paging, this leads to better separation than the competitive ratio.
Furthermore, in contrast to competitive analysis it reflects the intuition that a larger cache leads
to a better performance. We also provide experimental results that justify the applicability of our
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measure in practice. We obtain bounds on the parameterized performance of several list update
algorithms and prove the superiority of MTF. We also apply our measures to randomized list
update algorithms and show that, surprisingly, certain randomized algorithms which are superior
to MTF in the classical model are not so in the parameterized case.

7.1 Parameterized Analysis of Paging Algorithms

As stated before input sequences for paging show locality of reference in practice. We want to
express the performance of paging algorithms on a sequence in terms of the amount of the locality
in that sequence. Therefore we need a measure that assigns a number proportional to the amount
of locality in each sequence. None of the previously described models provide a unique numerical
value as a measure of locality of reference1. We define a quantitative measure for non-locality of
paging instances.

Definition 7.1. For a sequence σ = (σ1, σ2, . . . , σn) we define dσ[i] as either k + 1 if this is
the first request to page σi, or otherwise, the number of distinct pages that are requested since
the last request to σi (including σi).2 Now we define λ(σ), the “non-locality” of σ, as λ(σ) =
1
|σ|
∑

1≤i≤|σ| dσ[i]. We denote the non-locality by λ if the choice of σ is clear from the context.

If σ has high locality of reference, the number dσ[i] of distinct pages between two consecutive
requests to a page is small for most values of i and thus σ has low non-locality. Note that while
this measure is related to the working set model [64] and the locality model of [6], it differs
from both in several aspects. Albers et al. [6] consider the maximum/average number of distinct
pages in all windows of the same size, while we consider the number of distinct pages requested
since the last access to each page. Also our analysis does not depend on a concave function f
whose identification for a particular application might not be straightforward. Our measure is
also closely related to the working set theorem in area of self-organizing data structures [141]. For
binary search trees (like splay trees), the working set bound is defined as

∑
1≤i≤|σ| log (dσ[i] + 1).

The logarithm can be explained by the logarithmic bounds on most operations in binary search
trees. Thus our measure of locality of reference can be considered as variant of this measure in
which we remove the logarithm.

Example 7.1. Let k = 3 denote the size of the cache and consider the request sequence σ =
(p1, p2, p3, p4, p5, p4, p5, p3, p5, p5, p1, p2, p6, p4, p5). We have dσ[i] = k + 1 = 4 for both 1 ≤ i ≤ 5
and i = 13 as these are the first requests to their corresponding pages. Following Definition 7.1
we have dσ[6] = 2, dσ[7] = 2, dσ[8] = 3, dσ[9] = 2, dσ[10] = 1, dσ[11] = 5, dσ[12] = 5, dσ[14] = 6,
dσ[15] = 5. Thus

λ(σ) =
1
|σ|

∑
1≤i≤|σ|

dσ[i] =
1
15

(5× 4 + 2 + 2 + 3 + 2 + 1 + 5 + 5 + 4 + 6 + 5) =
44
15
.

The rest of this section is organized as follows. In Subsection 7.1.1 we study the non-locality
measure of sequences from a set of real-life traces. We then provide bounds on the performance

1Formally a measure is a function that assigns a numerical non-negative value to an object, assigns the value of
zero to the empty set and is additive over disjoint objects.

2Asymptotically, and assuming the number of requests is much larger than the number of distinct pages, any
constant can replace k + 1 for the dσ[i] of the first accesses.
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espresso li eqntott compress tomcatv ear sc swm gcc

Distinct 3913 3524 9 189 5260 1614 561 3635 2663

λ 193.1 195.2 1.7 2.3 348.3 34.1 5.4 166.7 90.6

Ratio 4.9% 5.5% 19.3% 1.2% 6.6% 2.1% 1.0% 4.6% 3.4%

Table 7.1: Locality of address traces collected from SPARC processors running the SPEC92
benchmarks.

of well known paging algorithms in terms of the non-locality measure in Subsection 7.1.2. In
Subsection 7.1.3 we apply our model to the case where the input is restricted to sequences with
high locality of reference in model of Albers et al. [6]. We see two other possibilities for locality
measure of paging in Subsection 7.1.4. Finally, in Subsection 7.1.5 we discuss the connection
between our approach and adaptive analysis.

7.1.1 Experimental Evaluation of the Measure

In order to check validity of our measure we ran some experiments on traces of memory reference
streams from the NMSU TraceBase [149]. Here we present the results of our experiments on
address traces collected from SPARC processors running the SPEC92 benchmarks. We considered
a page size of 2048 bytes and truncated them after 40000 references. The important thing to
notice is that these are not special cases or artificially generated memory references, but are access
patterns which a real-life implementation of any paging algorithm might face. The results for the
corresponding nine program traces are shown in Table 7.1. The first row shows the number of
distinct pages, the second row shows λ, and finally the third row shows the ratio of the actual
locality to the worst possible locality. The worst possible locality of a trace asymptotically equals
the number of distinct pages in that trace. It is clear from the low ratios that in general these
traces exhibit high locality of reference as defined by our measure.

7.1.2 Theoretical Results

Next we analyze several well known paging algorithms in terms of the non-locality parameter.
We consider the fault rate, the measure usually used by practitioners. Recall that the fault rate
of a paging algorithm A on a sequence σ is defined as A(σ)/|σ|, i.e., the number of faults A
incurs on σ normalized by the length of σ. The fault rate of A, FA, is defined as the asymptotic
worst case fault rate of A on any sequence. The bounds are in the worst case sense, i.e., when we
say FA ≥ f(λ) we mean that there is a sequence σ such that A(σ)

|σ| ≥ f(λ(σ)) and when we say

FA ≤ g(λ) we mean that for every sequence σ we have A(σ)
|σ| ≤ g(λ(σ)). Also for simplicity, we

ignore the details related to the special case of the first few requests (the first block or phase).
Asymptotically and as the size of the sequences grow, this can only change the computation by
additive lower order terms. Most of the proofs below use constructions similar to the ones found
in [35]. This is an advantage as we reuse the same techniques to prove sharper results.

Lemma 7.1. For any deterministic paging algorithm A, λ
k+1 ≤ FA ≤

λ
2 .

Proof. For the lower bound consider a slow memory containing k+ 1 pages. Let σ be a sequence
of length n obtained by first requesting p1, p2, . . . , pk, pk+1, and afterwards repeatedly requesting
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the page not currently in A’s cache. Since A(σ)
|σ| = n/n = 1, and λ is at most k + 1 (there are

k + 1 distinct pages in σ), the lower bound follows.

For the upper bound, consider any request sequence σ of length n. If the ith request is a fault
charged to A, then dσ[i] ≥ 2 (otherwise σi cannot have been evicted). Hence, 2A(σ) ≤

∑n
i=1 dσ[i]

and the upper bound follows.

We now show that LRU attains the best possible performance in terms of λ.

Theorem 7.1. FLRU = λ
k+1 .

Proof. It follows from Lemma 7.1 and the observation that LRU faults on the request σi if and
only if dσ[i] ≥ k + 1, which implies LRU(σ) ≤ λ

k+1 |σ|.

Next, we show a general upper bound for conservative and marking algorithms.

Lemma 7.2. Let A be a conservative or marking algorithm, then FA ≤ 2λ
k+3 .

Proof. Let σ be an arbitrary sequence and let ϕ be an arbitrary phase in the decomposition
of σ. A incurs at most k faults on ϕ. For any phase except the first, the first request in ϕ,
say σi, is to a page that was not requested in the previous phase, which contained k distinct
pages. Hence, dσ[i] ≥ k + 1. There are at least k − 1 other requests in ϕ to k − 1 distinct pages,
which all could have been present in the previous phase. But these pages contribute at least∑k−1

j=1(j + 1) = k− 1 + k2−k
2 to λ. It follows that the contribution of this phase to |σ|λ is at least

k + 1 + k − 1 + k2−k
2 = k2+3k

2 . Hence,

A(σ)
|σ|λ

≤ k
k2+3k

2

=
2

k + 3
⇒ FA ≤

2λ
k + 3

.

There is a matching lower bound for FWF.

Lemma 7.3. FFWF ≥ 2λ
k+3 .

Proof. Consider σ = {p1p2 . . . pkpk+1pkpk−1 . . . p2}n. FWF(σ) = 2kn, since FWF faults on all
the requests. Now consider any block except the first. First, consider a page pi, 2 ≤ i ≤ k.
The first and second request to pi contribute i and k + 2− i to |σ|λ, respectively, giving a total
contribution of k + 2. The requests to p1 and pk+1 contribute k + 1 each. Hence, the total
contribution (for all phases except the first) is (k − 1)(k + 2) + 2(k + 1) = k2 + 3k. Therefore

FWF(σ)
|σ|λ

=
2k

k2 + 3k
=

2
k + 3

.

Thus FWF has approximately twice as many faults as LRU on sequences with the same
locality of reference, in the worst case. FIFO also has optimal performance in terms of λ.
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Lemma 7.4. FFIFO ≤ λ
k+1 .

Proof. Let σ be an arbitrary sequence. Consider a fault σi on a page p and let σj1 , σj2 , . . . , σjm be
the requests to p since p last entered the cache. By definition all the requests σj1 , σj2 , . . . , σjm are
hits and p is evicted between σjm and σi. Observe that for p to get evicted at least k distinct pages
other than p have to be requested since p entered the cache, hence dσ[i] +

∑m
h=1 dσ[jh] ≥ k+ 1. It

follows that for each fault charged to FIFO we have at least a contribution of k + 1 to |σ|λ.

Lemma 7.5. FLFU ≥ 2λ
k+3 .

Proof. Consider the (usual) sequence σ = pn1p
n
2 . . . p

n
k−1{pkpk+1}n, where LFU(σ) = k − 1 + 2n.

For |σ|λ, each of the pages p1, p2, . . . , pk−1 contributes k + 1 + n − 1 = k + n, and the pages pk
and pk+1 contribute (k + 1) + 2(n − 1) each. Hence, |σ|λ = (k − 1)(k + n) + 2(k + 2n − 1) =
(k + 3)n+ k2 + k − 2, and therefore

LFU(σ)
|σ|λ

=
2n+ k − 1

(k + 3)n+ k2 + k − 2
,

which becomes arbitrarily close to 2
k+3 as n grows.

In contrast LIFO has much poorer performance than most other paging algorithms (the worst
possible) in terms of λ.

Lemma 7.6. FLIFO ≥ λ
2 .

Proof. Consider the sequence σ = p1p2 . . . pkpk+1{pkpk+1}n. We have LIFO(σ) = k+ 1 + 2n and
|σ|λ = (k + 1)(k + 1) + 2 · 2n, and the bound follows.

Recall that LRU-2 (defined in Section 1.1) has been shown to have good performance in
certain instances. The following result confirms this.

Lemma 7.7. 2kλ
(k+1)(k+2) ≤ FLRU-2 ≤ 2λ

k+1 .

Proof. Let σ be the sequence {p1p2 . . . pk−1pkpkpk−1 . . . p1pk+1pk+1}n. Now, consider any repeti-
tion except the first. LRU-2 faults on all requests except the second request to pk and the second
request to pk+1, giving a total of 2k faults. The first request to pi, 1 ≤ i ≤ k − 1, contributes
i to |σ|λ and the second request to pi contributes k + 2 − i. Hence, each of these k − 1 pages
contributes k+ 2. For the pages pk and pk+1, their first request contributes k+ 1 and the second
only 1 to |σ|λ. This gives a total contribution of (k + 1)(k + 2), and asymptotically the result
follows.

For the upper bound, consider three consecutive faults on some page p. At least k other
distinct pages should be requested since the first fault on p (at least k − 1 other pages with at
least 2 request and at least one other page).

While no deterministic on-line paging algorithm can have competitive ratio better than k,
there are randomized algorithms with better competitive ratio. The randomized marking algo-
rithm MARK, introduced by Fiat et al. [77], is 2Hk-competitive, where Hk is the kth harmonic
number. On a fault, MARK evicts a page chosen uniformly at random from among the unmarked
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pages. Let σ be a sequence and ϕ1, ϕ2, . . . , ϕm be its phase decomposition. A page requested
in phase ϕi is called clean if it was not requested in phase ϕi−1 and stale otherwise. Let ci be
the number of clean pages requested in phase ϕi. Fiat et al. proved that the expected number of
faults MARK incurs on phase ϕi is ci(Hk −Hci + 1).

Lemma 7.8. FMARK = 2λ
3k+1 .

Proof. Let σ be {p1p2 . . . pkpk+1pk+2 . . . p2kpkpk−1 . . . p1p2k . . . pk+1}n. This sequence has 4n phases.
All pages of each phase are clean. Therefore we have ci = k for 1 ≤ i ≤ 4n and the expected num-
ber of faults MARK incurs on each phase is k× (Hk−Hk + 1) = k. Thus E(MARK(σ)) = 4nk.
We have |σ|λ = 4n(k + 1 + k + 2 + · · ·+ 2k) = 4n(k2 + k(k + 1)/2) = 2n(3k2 + k). Hence

E(MARK(σ))
|σ|λ

=
4nk

2n(3k2 + k)
=

2
3k + 1

,

which proves the lower bound.

For the upper bound, consider an arbitrary sequence σ and let ϕ1, ϕ2, . . . , ϕm be its phase
decomposition. Suppose that the ith phase ϕi has ci clean pages. Therefore the expected cost of
MARK on phase i is at most ci(Hk −Hci + 1). The first request to the jth clean page in a phase
contributes at least k+j to |σ|λ (k pages from previous phase and j−1 clean pages that have been
seen so far). The first request to the jth stale page in a phase contributes at least j+1. Therefore
the contribution of phase i to |σ|λ is at least

∑ci
j=1 (k + j)+

∑k−ci
j=1 (j + 1) = (2c2

i−2ci+k2+3k)/2,
and

E(MARK(σ))
|σ|λ

≤ 2ci(Hk −Hci + 1)
2c2
i − 2ci + k2 + 3k

,

where 1 ≤ ci ≤ k. This is an increasing function in terms of ci and attains its maximum at ci = k.
Thus we have

E(MARK(σ))
|σ|λ

≤ 2k(Hk −Hk + 1)
2k2 − 2k + k2 + 3k

=
2

3k + 1
.

Finally we prove bounds on the performance of LFD. Recall that on a fault, LFD evicts the
page whose next request is farthest in the future.

Lemma 7.9. λ
3k+1 ≤ FLFD ≤ 2λ

3k+1 .

Proof. Let σ be {p1p2 . . . pkpk+1pk+2 . . . p2kpkpk−1 . . . p1p2k . . . pk+1}n. This sequence has 4n phases.
Each two consecutive phases of σ contain 2k distinct pages. LFD contains at most k pages in
its cache before serving these phases and thus it would incur at least k faults on serving any two
consecutive phases. Thus we have LFD(σ) ≥ 2kn. We have |σ|λ = 4n(k+ 1 +k+ 2 + · · ·+ 2k) =
4n(k2 + k(k + 1)/2) = 2n(3k2 + k). Hence

LFD(σ)
|σ|λ

≥ 2nk
2n(3k2 + k)

=
1

3k + 1
.

Recall that any randomized algorithm can be viewed as a probability distribution on a set of
deterministic algorithms. Since the performance of LFD on any sequence is at least as good as
the performance of any deterministic algorithm on that sequence, the performance of LFD is
no worse than the expected performance of a randomized algorithm on any sequence. Thus the
upper bound follows from Lemma 7.8.
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Algorithm Lower Bound Upper Bound

Deterministic λ
k+1

λ
2

LRU λ
k+1

λ
k+1

Marking λ
k+1

2λ
k+3

FWF 2λ
k+3

2λ
k+3

FIFO λ
k+1

λ
k+1

LFU 2λ
k+3

λ
2

LIFO λ
2

λ
2

LRU-2 2kλ
(k+1)(k+2)

2λ
k+1

MARK 2λ
3k+1

2λ
3k+1

LFD λ
3k+1

2λ
3k+1

Table 7.2: Bounds for paging.

The results are summarized in Table 7.2. According to these results, LRU and FIFO have
optimal performance among deterministic algorithms. Marking algorithms can be twice as bad
and FWF is among the worst marking algorithms. LIFO has the worst performance possible and
LRU-2 is almost twice as bad as LRU. The performance of the randomized algorithm MARK is
better than any deterministic algorithms: it behaves almost 2/3 better than LRU. Observe that
LFD, an optimal offline algorithm, is only a factor of 3 better than LRU under this measure.
Contrast this with the competitive ratio for which LFD is k times better than LRU.

7.1.3 Inputs with Locality of Reference

We can further incorporate a locality of reference assumption by restricting the inputs to those
with high locality of reference in the Max-model proposed by Albers et al. [6] (Cf. Section
3.14). We model locality of reference by restricting the input to If , the set of sequences that are
consistent with f . Table 7.3 shows the fault rate of paging algorithms in terms of λ when we
restrict the input to If . Recall that f−1(m) denotes the smallest size of a window in a sequence
consistent with f that contains m distinct pages, i.e., f−1(m) = min{n ∈ N | f(n) ≥ m}. Most
of the proofs below use constructions similar to the ones given by Albers et al. [6].

Lemma 7.10. For any deterministic online paging algorithm A,

(k − 1)λ
k(k − 1) + f−1(k + 1)− 2

≤ FA(f) ≤ λ

2
.

Proof. The upper bound follows from the general upper bound proved in Lemma 7.1. For the
lower bound, given the function f and algorithm A, we construct a sequence σ as follows. We use
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Algorithm Lower Bound Upper Bound

General λ
k+b , b = f−1(k+1)−2

k−1
λ
2

Marking λ
k+b , b = f−1(k+1)−2

k−1
2λ

k+1+2b , b = f−1(k+1)−1
k

LRU λ
k+b , b = f−1(k+1)−2

k−1
λ
k+b , b = f−1(k+1)−2

k−1

FWF 2λ
k+1+2b , b = f−1(k+1)−1

k
2λ

k+1+2b , b = f−1(k+1)−1
k

FIFO λ
k+b , b = f−1(k+1)−1

k−1
λ

k−1+b , b = f−1(k+1)
k

Table 7.3: The fault rate of paging algorithms in terms of λ with respect to a concave? function
f .

k + 1 distinct pages. The sequence σ is constructed in phases, each with length f−1(k + 1)− 2,
where each phase consists of k − 1 blocks. Each block contains several requests to the page that
was not in A’s cache just before the first request of the block. Hence, A faults on the first request
of each block and incurs k − 1 faults on each phase. In each phase, block j, 1 ≤ j ≤ k − 1,
starts with request f−1(j + 1)− 1. The construction is well-defined and is consistent with f ([6,
Theorem 1]). For an upper bound on the non-locality of a phase, observe that since there are only
k+ 1 distinct pages, the first request of each block of the phase contributes at most k+ 1 to |σ|λ.
Each of the following requests in the block, contributes 1. Since there are k − 1 blocks, the total
contribution of the first request to each and all of the blocks to |σ|λ is at most (k+1)(k−1). Since
there are f−1(k+ 1)− 2− (k− 1) other requests in a phase, each contributing 1 to |σ|λ, we get a
total contribution of at most (k+ 1)(k− 1) + f−1(k+ 1)− 2− (k− 1) = k(k− 1) + f−1(k+ 1)− 2,
and the result follows.

Lemma 7.11. FLRU(f) ≤ (k−1)λ
k(k−1)+f−1(k+1)−2

.

Proof. Let σ be an arbitrary sequence consistent with f . Partition σ into phases such that each
phase contains k − 1 faults made by LRU, except possibly the last, and is maximal subject to
that constraint. Hence, the request just before and just after a phase is a fault for all phases
except the first and last phases. Let ϕ be any such phase. In [6, Theorem 2] it is shown
that ϕ has length at least f−1(k + 1) − 2. Since LRU faults on the ith request if and only
if dσ[i] ≥ k + 1, each of the k − 1 faults made by LRU in ϕ contributes at least k + 1 to
|σ|λ. All other requests contribute at least 1. Hence, the total contribution to |σ|λ is at least
(k+ 1)(k−1) +f−1(k+ 1)−2− (k−1) = k(k−1) +f−1(k+ 1)−2, and the upper bound follows.

Lemma 7.12. For any marking algorithm A, FA(f) ≤ 2k·λ
k(k+1)+2(f−1(k+1)−1)

.

Proof. Let σ be an arbitrary sequence and consider the decomposition of σ. A incurs at most k
faults on each phase. For any phase ϕ except the last, the next phase begins with a request to

73



a page not in ϕ. Hence, the subsequence consisting of ϕ and the first request of the next phase
contains k + 1 distinct pages and has length at least f−1(k + 1). It follows that the length of ϕ
is at least f−1(k + 1) − 1. For any phase ϕ except the first, the first request, say i, in ϕ is to
a page that was not requested in the previous phase, which contained k distinct pages. Hence,
dσ[i] ≥ k + 1. Now, consider any phase ϕ except for the first and last phase. The first request
contributes at least k + 1 to |σ|λ. There are at least k − 1 other requests in ϕ to k − 1 distinct
pages, which all could have been present in the previous phase. These pages contribute at least∑k−1

j=1(j+ 1) = k− 1 + k2−k
2 to |σ|λ. The remaining f−1(k+ 1)− 1− k requests in P (requests to

pages already requested in ϕ) all contribute at least 1. It follows that the contribution to |σ|λ of
ϕ is at least

k + 1 + k − 1 +
k2 − k

2
+ f−1(k + 1)− 1− k =

k(k + 1) + 2(f−1(k + 1)− 1)
2

.

Hence,
A(σ)
|σ|λ

≤ k
k(k+1)+2(f−1(k+1)−1)

2

=
2k

k(k + 1) + 2(f−1(k + 1)− 1)
.

Lemma 7.13. FFWF(f) ≥ 2k·λ
k(k+1)+2(f−1(k+1)−1)

.

Proof. We construct a sequence σ as follows. We use k + 1 pages, p1, p2, . . . , pk+1. σ consists of
phases (corresponding to the phases of FWF) and each phase is composed of k blocks, where
each block is a subsequence of requests to the same page. In each phase, block j, 1 ≤ j ≤ k, has
length f−1(j + 1)− f−1(j). By Proposition [6, Proposition 1], the block lengths are well-defined,
i.e., they are non-zero, non-decreasing in a phase, and the total length of a phase is f−1(k+1)−1.

In the first phase, the jth block consists of requests to pj (1 ≤ j ≤ k). Now we inductively
define the (i + 1)st phase. The first block consists of f−1(2) − f−1(1) = 2 − 1 = 1 requests to
the unique page that was unmarked at the end of the ith phase. That causes FWF to fault and
flush the cache (and all pages become unmarked). The second block consists of requests to the
page that was requested in the last block of the ith phase. The third block consists of requests
to the page that was requested in the second to last block of the ith phase. The following k − 2
blocks are defined similarly. By [6, Theorem 4], the construction is consistent with f .

FWF faults k times in each phase. For the non-locality of the sequence consider any phase
except the first or the least. The first request contributes k + 1 to |σ|λ. There are k − 1
other distinct pages requested in the phase, and the first request to each of these contributes∑k−1

j=1(j + 1) = k − 1 + k2−k
2 . Each of the remaining f−1(k + 1) − 1 − k requests (requests to

pages already requested in the phase), contributes one unit to |σ|λ, and the result follows as in
the previous lemma.

Lemma 7.14. (k− 1
k

)λ

(k−1)(k+1)+f−1(k+1)−1
≤ FFIFO(f) ≤ k·λ

(k−1)(k+1)+f−1(k+1)
.

Proof. The lower bound follows from the construction in [6, Theorem 5]. For the non-locality,
observe that the first request in each block contributes k+ 1 units to |σ|λ. The following request
to pk contributes 2 and any following request to pk contributes 1. Hence, each block contributes
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k + 1 + |block|, and since there are k − 1 blocks in a phase and k phases in a super phase, the
total contribution to |σ|λ of a super phase is

k(k − 1)(k + 1) + |super phase| = k(k − 1)(k + 1) + k(f−1(k + 1)− 1),

and the lower bound follows.

For the upper bound, first consider a fault σi for a page p and let σj1 , σj2 , . . . , σjm be the
requests to p since p last entered the cache. By definition all the requests σj1 , σj2 , . . . , σjm are hits
and p is evicted between request σjm and σi. Observe that for p to get evicted at least k distinct
pages different from p have to be requested since it entered the cache, hence dσ[i]+

∑m
h=1 dσ[jh] ≥

k + 1. It follows that for each fault charged to FIFO we have at least a contribution of k + 1
to |σ|λ. Now, partition the sequence into phases that contains exactly k faults by FIFO and
starts with a fault. Since a subsequence consisting of a phase and the following request, contains
k + 1 faults it must have a length of at least f−1(k + 1). Hence, a phase has length at least
f−1(k+ 1)− 1. By the above observation the k faults in a phase contribute k(k+ 1) to |σ|λ. The
remaining f−1(k+ 1)− 1− k requests contribute at least 1. It follows that the total contribution
of a phase is k(k + 1) + f−1(k + 1) − 1 − k = (k − 1)(k + 1) + f−1(k + 1). The upper bound
follows.

7.1.4 Alternative Measures of Non-locality

A natural question is whether there are better measures for non-locality of paging instances. In
this subsection, we consider two other natural non-locality measures for paging. We will see
that these measures are not as effective as λ. Thus, λ is a good, if not the right, measure for
non-locality of paging sequences. The first alternative is a simple measure that is based on the
phase decomposition of sequences.

Definition 7.2. For a sequence σ, let |D(σ)| be the number of phases of σ. We define λ̃(σ), the
“non-locality” of σ, as |D(σ)|/|σ|. We denote the non-locality by λ̃ if the choice of σ is clear from
the context.

We can easily get results comparable to competitive analysis using this simple definition of
non-locality. First we obtain a lower bound on the performance of any deterministic online
algorithm.

Lemma 7.15. For any deterministic online algorithm A we have FA ≥ k · λ̃.

Proof. We construct a sequence σ that contains k+ 1 distinct pages by requesting the page that
is not in A’s cache at each time. A incurs a fault on each request of σ and we have A(σ)/|σ| = 1.
Since the length of each phase is at least k, we have |D(σ)| ≤ |σ|/k ⇒ λ̃(σ) ≤ 1/k. Therefore
A(σ)/|σ| ≥ k · λ̃(σ).

As in competitive analysis, all marking and conservative paging algorithms have optimal
performance. This follows from the fact that any marking or conservative algorithm incurs
at most k faults in each phase. The performance of LIFO and LFU cannot be bounded in
terms of λ̃. For LIFO, consider the sequence σ = p1p2 . . . pkpk+1{pkpk+1}n for an arbitrary
integer n. LIFO incurs a fault on all requests of σ, while we have |D(σ)| = 2. Therefore
LIFO(σ)/|σ| = 1 = |σ|

2 λ̃(σ). For LFU, consider the sequence σ = pn1p
n
2 . . . p

n
k−1{pkpk+1}n for an
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arbitrary integer n. We have |D(σ)| = 2 and LFU incurs a fault on all last 2n requests. Hence
LFU(σ) = 2n/|σ| = n · λ̃(σ). Since we can select an arbitrarily large n, LFU does not have a
bounded fault rate in terms of λ̃.

Thus the phase-based definition of non-locality does not give better separation results than
competitive analysis. A more elaborate definition can be obtained as follows.

Definition 7.3. Consider a sequence σ. We call a request “non-local” if it is the first request to
a page or at least k distinct pages have been requested since the previous request to this page in
σ. The non-locality of σ, λ̂, is defined as the number of non-local requests in σ, divided by |σ|.

If a sequence has high locality of reference, there are not many distinct pages between two
consecutive requests to a page. Therefore there are not many non-local requests and the sequence
has small non-locality. First we show that LRU achieves the optimal fault rate in terms of λ̂.

Theorem 7.2. FLRU = λ̂.

Proof. LRU always maintains in its cache the last k distinct pages that are requested. Therefore
a request is a fault for LRU if and only if it is a non-local request. Thus we have LRU(σ)/|σ| =
λ̂(σ).

Lemma 7.16. For any deterministic online paging algorithm A, FA ≥ λ̂.

Proof. Consider a sequence σ obtained by requesting an item that is not in A’s cache at each
time. We have A(σ) = |σ|. On the other hand, σ has at most |σ| non-local requests and we have
λ̂(σ) ≤ 1. Therefore A(σ)/|σ| = 1 ≥ λ̂(σ)

The following lemma shows that marking algorithms are a reasonable choice in general, even
if not always optimal.

Lemma 7.17. For any conservative or marking algorithm A, we have FA ≤ k · λ̂.

Proof. Let σ be an arbitrary sequence and let ϕ be an arbitrary phase of the decomposition
of σ. We know that A incurs at most k faults on ϕ. We claim that the first request of ϕ is
always non-local. If this is the first phase, then this is the first request to a page and is non-local
by definition. Otherwise, it should be different from k distinct pages that are requested in the
previous phase. Therefore it is not requested in the previous phase and at least k distinct pages
are requested since the last request to this page. Thus we have at most k faults and at least one
non-local request in each phase and this proves the desired upper bound.

Other well known algorithms are not optimal in terms of λ̂.

Lemma 7.18. FFIFO = k · λ̂.

Proof. Upper bound follows from Lemma 7.17. For the lower bound, consider a sequence σ that
starts with σ0 = p1p2 . . . pkp1p2 . . . pk−1pk+1p1p2 . . . pk−1 and contains k+ 1 distinct pages.. After
the initial subsequence σ0, σ consists of several blocks. Each block starts right after the previous
block and contains 2k− 1 requests to k distinct pages. Let p be the page that is not in the cache
at the beginning of a block B, q be the page that is requested just before B, and P be the set
of k − 1 pages that are requested in the previous block and are different from q. B starts by an

76



p1 p2 . . . pk

p1 p2 p3 . . . pk−1 pk+1 p1 p2 p3 . . . pk−1

pk+1 p1 p2 . . . pk−2 pk pk+1 p1 p2 . . . pk−2

pk pk+1 p1 . . . pk−3 pk−1 pk pk+1 p1 . . . pk−3

. . . . . . . . . . . .

Figure 7.1: The sequence σ in the proof of Lemma 7.18.

arbitrary permutation π of P , then has a request to page p, and finally ends by another copy of
π. Initial blocks of a possible representation of σ are shown in Figure 7.1.

It is easy to verify that FIFO incurs a fault on the last k requests of each block while only
the middle request of every block is non-local. Let n be the number of blocks of σ. We have
FIFO(σ) = n · k and λ̂(σ) = n and the lower bound follows.

We can obtain a similar lower bound for FWF by considering the sequence obtained by
sufficient repetitions of the pattern p1p2 . . . pkpk+1pkpk−1 . . . p2.

Lemma 7.19. FFWF = k · λ̂.

Lemma 7.20. The fault rate of LFU and LIFO cannot be bounded in terms of λ̂.

Proof. Consider the sequence σ = pn1p
n
2 . . . p

n
k−1{pkpk+1}n. LFU incurs a fault on the last 2n

requests of σ. Only the first request to a page is non-local in σ and we have λ̂(σ) = (k +
1)/|σ|. Therefore LFU(σ)/|σ| = 2n/|σ| = 2n

k+1 λ̂(σ). Since n can be selected arbitrarily larger
than k, the fault rate of LFU is not bounded in terms of λ̂. For LIFO, consider the sequence
p1p2 . . . pkpk+1{pkpk+1}n. LIFO incurs a fault on all requests of σ, while we have λ̂(σ) = (k +
1)/|σ|. Therefore LIFO(σ)/|σ| = 1 = |σ|

k+1 λ̂(σ).

Theorem 7.3. FLRU-2 = k · λ̂.

Proof. [Lower bound] Let σ be the sequence introduced in the proof of Lemma 7.7, i.e., σ =
{p1p2 . . . pk−1pkpkpk−1 . . . p1pk+1pk+1}n. As we proved there, LRU-2 incurs 2k faults in each
block. In each block except the first, only two requests are non-local, namely the first request
to pk and the first request to pk+1. Consider a page pi for 1 ≤ i ≤ k − 1 and a block bj for
2 ≤ j ≤ n. There are at most k − 1 distinct pages between the first request to pi in bj and the
previous request to pi (which is in the previous block), since pk is not requested in this period.
Thus the first request to pi in bj is local. Also pk+1 is not requested between the two requests to
pi in bj . Therefore the second request to pi in bj is local too. The first request to pk and the first
request to pk+1 in bj are non-local. Thus at each block we have two non-local requests, while
LRU-2 incurs 2k faults and the lower bound follows.
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[Upper bound] Let σ be an arbitrary sequence of page requests. Partition σ into a set of consecu-
tive blocks so that each block consists of a maximal sequence that contains exactly one non-local
request. Note that each block starts with a non-local request and all other requests of the block
are local. We prove that LRU-2 incurs at most k faults in each block. Let B1, B2, . . . , Bm be
the blocks of σ. B1 contains requests to one page and LRU-2 incurs one fault on it. Consider an
arbitrary block Bi for i > 1, let p be the first request of Bi, and let p1, p2, . . . , pk−1 be the k− 1
most recently used pages before the block Bi in this order. We have p 6∈ P = {p1, p2, . . . , pk−1},
because p is a non-local request. We claim that each request of Bi is either to p or to a page of
P . Assume for the sake of contradiction that Bi contains a request to a page q 6∈ {p} ∪ P and
consider the first request to q in Bi. All pages p, p1, p2, . . . , pk−1 are requested since the previous
request to q. Therefore at least k distinct pages are requested since the last request to q and q is
non-local. This contradicts the definition of a block. Hence Bi contains at most k distinct pages.

We claim that LRU-2 incurs at most one fault on every page q in phase Bi. Assume that this
is not true and LRU-2 incurs two faults on a page q in Bi. Therefore q is evicted again at some
point after its first request in Bi. Assume that this eviction happened on a fault on a page r and
consider the pages that are in LRU-2’s cache just before that request. Since r ∈ {p} ∪ P is not
in the cache and |{p} ∪ P | = k, there is a page s 6∈ {p} ∪ P in the cache. The last request to s is
before the last request to pk−1 before the block Bi, while the second last request to q is after this
request. Therefore LRU-2 does not evict q on this fault, which is a contradiction. Thus, LRU-2
contains at most k distinct pages in each block and incurs at most one fault on each page. Hence,
LRU-2(σ)/|σ| ≤ km/|σ| = k · λ̂(σ).

The performance of MARK in terms of λ̂ is worse than LRU but better than other well
known deterministic algorithms.

Theorem 7.4. FMARK = Hk · λ̂.

Proof. [Lower bound] Consider the sequence σ = {p1p2 . . . pkpk+1pkpk−1 . . . p2}n for some integer
n. σ has 2n phases, each odd numbered phase has the form p1p2 . . . pk and each even numbered
phase has the form pk+1pk . . . p2. Also each phase has only one clean page, namely its first request.
Therefore we have ci = 1 for 1 ≤ i ≤ 2n and the expected number of faults MARK incurs on
each phase is 1 × (Hk −H1 + 1) = Hk. Thus E(MARK(σ)) = 2nHk. Only the first request of
each phase is non-local and we have λ̂(σ) = 2n/|σ|. Hence

E(MARK(σ))
|σ|

= 2nHk ·
λ̂(σ)
2n

= Hk · λ̂(σ).

[Upper bound] Consider an arbitrary sequence σ and let ϕ1, ϕ2, . . . , ϕm be its phase decomposi-
tion. Suppose that the ith phase ϕi has ci clean pages. Therefore the expected cost of MARK on
σ is

∑n
i=1 ci(Hk −Hci + 1) ≤

∑n
i=1 ciHk. The first request to a clean page in a phase is non-local

because it is not among the k distinct pages that are requested in the previous phase. Therefore
we have |σ|λ̂(σ) ≥

∑n
i=1 ci. We have

E(MARK(σ))
|σ|

≤
∑n

i=1 ciHk∑n
i=1 ci

· λ̂(σ) = Hk · λ̂(σ).
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Algorithm Lower Bound Upper Bound

Deterministic λ̂ unbounded

LRU λ̂ λ̂

Marking λ̂ k · λ̂

FWF k · λ̂ k · λ̂

FIFO k · λ̂ k · λ̂

LFU unbounded unbounded

LIFO unbounded unbounded

LRU-2 k · λ̂ k · λ̂

MARK Hk · λ̂ Hk · λ̂

LFD (M − k)λ̂/M λ̂

Table 7.4: Bounds for paging algorithms in terms of λ̂.

If there is no restriction on the number of distinct pages in the sequence, we can prove a
lower bound of λ̂ on the fault rate of LFD, by always requesting a page that has not been
requested so far. Each request is non-local and LFD incurs a fault on it. Thus LFD does
not have a better performance than LRU on this general settings. If we restrict the number
of distinct pages to M then the performance of LFD could be better than LRU. In this case
we can get a lower bound of (M − k)/M on the fault rate of LFD by considering the sequence
σ = {p1, p2, . . . , pM}n. In each block there are M distinct pages. Since the size of cache is k,
LFD incurs at least M −k faults in each block. All requests are non-local and we have λ̂(σ) = 1.
Thus LFD(σ)/|σ| = (M − k)/M = M−k

M λ̂(σ). The results are summarized in Table 7.4.

Comparison of three measures We have seen three possible measures for non-locality of
sequences for paging. We get different results in our parameterized framework by using each
measure. The measure λ̃ is simplest among them, but it does not give separation results better
than standard competitive analysis. Therefore it shares most of the shortcomings of competitive
analysis described in Chapter 2. The remaining two measures provide better separation between
paging algorithms. They both separate the performance of LRU from FWF. However, they do
not always give equivalent results. According to λ, LRU and FIFO are both optimal deterministic
online algorithms. Also the performance of MARK is better than LRU. In contrast, when we
consider λ̂, LRU has strictly better performance than both FIFO and MARK. Furthermore,
FIFO, LRU-2, and FWF have the same performance. The performance of MARK is between
LRU and FIFO. It seems that the definition of λ̂ is tailored to the behavior of LRU, as it considers
a clear distinction between local and non-local requests. We remark that a similar distinction
was used in adequate analysis [129]. A good feature of λ is that we get better performance by
increasing the size of the cache, while the reverse is true for the other measures. Overall, λ̂ and
λ both have their own merits and shortcomings, but λ seems to be the preferable choice.
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7.1.5 Adaptive Analysis

In this subsection we study the connection between the λ measure and adaptive analysis. Recall
from Subsection 2.2 that the adaptive performance of an algorithm is obtained by describing its
traditional worst-case performance in terms of the size and difficulty of the instance. Observe that
the competitive ratio can be seen as a special case of adaptive analysis, namely the case where the
measure of difficulty is the performance of the off-line OPT. Our model can be expressed in terms
of adaptive analysis by considering the non-locality of each sequence as its difficulty measure.

Thus we can generalize this framework to other online problems too. For each problem, we can
choose the measure that best reflects the difficulty of the input. As in the case of parameterized
complexity and previous adaptive analysis results, choosing the right measure of difficulty is a
non-trivial task which can require several iterations. For example see the survey by Estivill-
Castro and Wood [73] for several difficulty measures for the sorting problem. In the case of
on-line problems, it is unlikely that the off-line OPT is a good measure for all or even most cases.
We have seen several alternative measures for paging in this section.

In certain online problems, competitive analysis might force the algorithm to make a move
that is suboptimal in most cases except for a pathological worst case scenario. If the applica-
tion is such that these pathological cases are agreed to be of lesser importance, then the online
strategy can perform somewhat more poorly in these and make the choice that is best for the
common case. This means that the input is no longer assumed to be adversarially constructed.
This better reflects the case of paging, in which programmers, compilers, instruction schedulers
and optimized virtual machines (such as HotSpot) go to great lengths to maintain and increase
locality of reference in the code. Hence it is more realistic to assume that paging sequences are
not adversarial and that furthermore, the user/programmer fully expects code with low locality
of reference to result in a degradation in performance. The same observation has been made
in scenarios such as online robot exploration and network packet switching, in which a robot
vacuuming a room or a router serving a packet sequence need only concentrate in well behaved
common cases. A vacuuming robot need not efficiently vacuum a maze, neither does the router
have to keep up with denial-of-service floods. We will see adaptive analysis of robot navigation
in Chapter 9.

7.2 Parameterized Analysis of List Update Algorithms

In this section we study the parameterized complexity of list update algorithms in terms of locality
of reference. We define the non-locality of sequences for list update in an analogous way to the
corresponding definition for paging (Definition 7.1). The only differences are:

1. We do not normalize the non-locality by the length of the sequence, i.e., λ(σ) =
∑

1≤i≤|σ| dσ[i].

2. If σi is the first access to an item we assign the value ` to dσ[i]3.

Theorem 7.5. For any deterministic online list update algorithm A we have
λ ≤ A(σ) ≤ ` · λ.

3As for paging, asymptotically, and assuming the number of requests is much larger than `, any constant can
replace ` for the dσ[i] of the first accesses.
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Proof. [Upper bound] Consider an arbitrary sequence σ of length n. Since the maximum cost
that A incurs on a request is `, we have A(σ) ≤ n`. We have dσ[i] ≥ 1 for all values of i. Thus
λ ≥ n. Therefore A(σ)

λ
≤ n`

n = `.

[Lower bound] Consider a sequence σ of length n obtained by requesting the item that is in the
last position of list maintained by A at each time. We have A(σ) = n`. Also we have dσ[i] ≤ `

because σ has at most ` distinct items. Therefore λ ≤ n`, and A(σ)

λ
≥ n`

n` = 1.

Theorem 7.6. MTF is optimal in terms of λ: MTF(σ) ≤ λ.

Proof. Consider the ith request of σ. If this is the first request to item σi, then dσ[i] = `, while
the cost of MTF on σi is at most `. Otherwise, the cost of MTF is dσ[i]. Thus the cost of
MTF on σi is at most dσ[i]. Hence, MTF(σ) ≤

∑
1≤i≤n dσ[i] = λ, and the upper bound follows.

Theorem 7.5 shows that this bound is tight.

The following lemmas show that other well known list update algorithms are not optimal in terms
of λ.

Lemma 7.21. TR(σ) ≥ `·λ
2 .

Proof. Let L0 = (a1, a2, . . . , a`) be the initial list. Consider a sequence σ of length n obtained by
several repetitions of pattern a`a`−1. We have TR(σ) = n ·`. Also we have dσ[i] = ` for 1 ≤ i ≤ 2
and dσ[i] = 2 for 2 < i ≤ n. Therefore λ = 2`+ 2n− 4, and

TR(σ)
λ

=
n · `

2`+ 2n− 4
,

which becomes arbitrarily close to `/2 as n grows.

Lemma 7.22. FC(σ) ≥ (`+1)λ
2 ≈ `·λ

2 .

Proof. Let L0 = (a1, a2, . . . , a`) be the initial list and n be an arbitrary integer. Consider the
following sequence: σ = an1a

n
2a

n
3 . . . a

n
` . On serving σ, FC does not change the order of items in its

list and incurs cost
∑`

i=1 ni = n
∑`

i=1 i = n `(`+1)
2 . We have λ =

∑`
i=1(`+ (n−1)) = ` ·n+ `2− `.

Therefore
FC(σ)
λ

=
n `(`+1)

2

` · n+ `2 − `
=

n(`+ 1)
2(n+ `− 1)

,

which approaches `+1
2 as n grows.

Lemma 7.23. TS(σ) ≥ 2`·λ
`+1 ≈ 2λ.

Proof. Let L0 = (a1, a2, . . . , a`) be the initial list and n be an arbitrary integer. Consider the
sequence σ obtained by the repetition of the block a2

`a
2
`−1 . . . a

2
1 n times. Let B be an arbitrary

block of σ. Each item ai is accessed twice in B. TS does not move ai after its first access in B,
because each item has been accessed twice since the last access to ai. After the second access,
TS moves the item to the front of the list. Therefore each access is to the last item of the list
and TS incurs a cost of ` on each access. Thus, we have TS(σ) = 2`2n. Next we compute λ.
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The first and second access to a in block B contribute ` and 1 to λ, respectively. Thus we have
λ = `(`+ 1)n. Therefore

TS(σ)
λ

=
2`2n

`(`+ 1)n
=

2`
`+ 1

.

Observe that parameterized analysis by virtue of its finer partition of the input space resulted
in the separation of several of the strategies which were not separable under the classical model.
This introduces a hierarchy of algorithms better reflecting the relative strengths of the strate-
gies considered above. We can also apply the parameterized analysis to randomized list update
algorithms by considering their expected cost.

In the next theorem we show that, surprisingly, certain randomized algorithms which are
superior to MTF in the standard model are not so in the parameterized case. Observe that in
the competitive ratio model a deterministic algorithm must serve a pathological, rare worst case
even if at the expense of a more common but not critical case, while a randomized algorithm can
hedge between the two cases, hence in the classical model the randomized algorithm is superior to
the deterministic one. In contrast, in the parameterized model the rare wost case, if pathological,
has a larger non-locality measure, leading to a larger λ factor. Hence such a cases can safely be
ignored, with a resulting overall increase in the measured quality of the algorithm.

The algorithm Bit, considers a bit b(a) for each item a and initializes these bits uniformly and
independently at random. Upon an access to a, it first complement b(a), then if b(a) = 0 it moves
a to the front, otherwise it does nothing. Bit has competitive ratio 1.75, thus outperforming any
deterministic algorithm [131]. In the parameterized model this situation is reversed.

Theorem 7.7. E(Bit(σ)) ≥ (3`+1)λ
2`+2 ≈ 3λ/2.

Proof. Let L0 = (a1, a2, . . . , a`) be the initial list and n be an arbitrary integer. Consider the
sequence σ = {a2

`a
2
`−1 . . . a

2
1}n. Let σi and σi+1 be two consecutive accesses to aj . After two

consecutive accesses to each item, it will be moved to the front of the list with probability 1.
Therefore aj is in the last position of the list maintained by Bit at the time of request σi and Bit
incurs cost ` on this request. After this request, Bit moves aj to the front of the list if and only
if b(aj) is initialized to 1. Since b(aj) is initialized uniformly and independently at random, this
will happen with probability 1/2. Therefore the expected cost of Bit on σi+1 is 1

2(`+ 1) and the
expected cost of Bit on σ is n`(`+ `+1

2 ). We have λ = `(`+ 1)n. Therefore

E(Bit(σ))
λ

=
n · `(`+ `+1

2 )
`(`+ 1)n

=
3`+ 1
2`+ 2

.

The results are summarized in Table 7.5. According to these results, MTF has the best
performance among well known list update algorithms. TS has performance at least twice as bad
as MTF. The performance of TR and FC is at least `/2 times worse than MTF. The performance
of Bit is worse than MTF, while its competitive ratio is better. Experimental results of [19] show
that MTF has better performance than Bit in practice. Thus our measure leads to more realistic
result than competitive analysis in this case.
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Algorithm Lower Bound Upper Bound

General λ ` · λ

MTF λ λ

TR `·λ
2 ` · λ

FC ≈ `·λ
2 ` · λ

TS ≈ 2λ ` · λ

Bit ≈ 3
2λ

Table 7.5: Bounds for list update.

7.3 Conclusions

We applied parameterized analysis in terms of locality of reference to paging and list update
algorithms and showed that this model gives promising results. The plurality of results shows
that this model is effective in that we can readily analyze well known strategies. Using a finer,
more natural measure we separated paging and list update algorithms which were otherwise
indistinguishable under the classical model. We showed that a randomized algorithm which
is superior to MTF in the classical model is not so in the cooperative case, which matches
experimental evidence. This confirms that the ability of the online adaptive algorithm to ignore
pathological worst cases can lead to the selection of algorithms that are more efficient in practice.
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Chapter 8

Paging with Locality of Reference

As stated before, an apparent reason for the shortcomings of competitive analysis for paging is that
the model does not take into account the locality of reference evidenced by actual input sequences.
In this chapter we consider two previously proposed models of locality of reference, described in
Section 3.13 and Section 3.14. We observe that even if we restrict the input to sequences with
high locality of reference in these models the performance of every online algorithm in terms of
the competitive ratio does not improve. Then we prove that locality of reference is useful under
some other cost models, which suggests that a new model combining aspects of both proposed
models can be preferable. We also slightly modify one of the models to show that the performance
of randomized marking algorithm MARK improves as locality of reference increases. Finally we
generalize the existing models to several variants of the caching problem.

In Chapter 3 we described several models for paging with locality of reference [36, 97, 148,
6, 129]. In this chapter we consider the models proposed by Torng [148] and Albers et al. [6].
Recall from Section 3.13 that L(σ, k) is the average phase length in the decomposition of σ.
Torng models locality by restricting the input to a-local sequences: sequences σ for which we
have L(σ, k) ≥ a · k. Recall that in the working set model, a request sequence has high locality
of reference if the number of distinct pages in a window of size n is small. For a concave function
f , we say that a request sequence is consistent with f if the number of distinct pages in any
window of size n is at most f(n), for any n ∈ N . In this way, Albers et al. model locality by
restricting the input to sequences that are consistent with a concave function f . Refer to Sections
3.13 and 3.14 for complete definition of the models, as well as the relevant results. Torng shows
that marking algorithms perform better on sequences with high locality under the full access cost
model. Recall that Torng [148] uses the full access cost model, while Albers et al. [6] use the fault
rate.

Our Results. First we formally show that under the standard cost model the competitive ratio
of every online paging algorithm remains the same under the Albers et al. and the Torng locality
of reference models. Hence, new results about paging algorithms necessitate a change to the cost
model. We apply the fault rate cost model to the k-phase model and the full access cost model to
the working set model. These two had been previously studied under the alternate combination.
The full access cost model compares online algorithms to the optimal offline algorithm, while the
fault rate cost model does not. Therefore there is not a direct relationship between the two cost
models and our results cannot be directly concluded from the results of Torng [148] and Albers
et al. [6].
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Furthermore, we propose a new model for locality of reference and show that the randomized
marking algorithm of [77] benefits from the locality of reference assumption. Finally we apply this
assumption to the caching problem which is a generalization of the paging problem for which pages
have different sizes and retrieval costs. We extend the existing models of locality of reference and
show that certain caching algorithms perform better on sequences with good locality of reference
under this model.

8.1 Limitations of the Competitive Ratio Model

We prove that restricting input sequences to those with high locality of reference is not reflected
in an improvement on the competitive ratio.

Observation 8.1. If we restrict the input to sequences that are consistent with a concave function
f , the competitive ratio of deterministic online paging algorithms does not improve.

Proof. The proof idea is the same as the one used to show that finite lookahead does not improve
the competitive ratio of online paging algorithms [35]. Let A be a deterministic paging algorithm
and σ be an arbitrary sequence. We can obtain a sequence I ′ such that σ′ is consistent with f ,
A(σ) = A(σ′), and opt(σ) = opt(σ′). σ′ is obtained by repeating each request of σ a sufficient
number of times. Since we only consider demand paging algorithms, every paging algorithm has
the same number of faults on σ and σ′.

A similar result for the k-phase model can be proven, as we can make any sequence a-local
by repeating each request a times.

Observation 8.2. If we restrict the input to a-local sequences, the competitive ratio of determin-
istic online paging algorithms does not change.

8.2 The Fault Rate of the k-phase Model

We obtain new results based on the k-phase model by considering the fault rate as the cost
model. The fault rate of an algorithm A on a-local sequences is defined as FA(a) = inf{r | ∃n ∈
N : ∀σ, L(σ, k) ≥ ak, |σ| ≥ n : FA(σ) ≤ r}. Also recall that FA(σ) denotes the fault rate of A on
an arbitrary sequence σ. We obtain the following bound for the fault rate of marking algorithms.

Theorem 8.1. Let A be an arbitrary marking algorithm and a > 0 be a constant. Then FA(a) ≤
1/a.

Proof. Consider an arbitrary a-local sequence σ of size at least n. We show that FA(σ) ≤ 1/a.
Consider the decomposition D(σ, k) of σ. A does not fault more than once on a page p in a phase
ϕ because after the first fault, it marks p and does not evict it in the reminder of ϕ. Since each
phase contains at most k distinct pages, A does not fault more than k times in a phase. Thus A
incurs at most k · |D(σ, k)| faults on σ and we have FA(σ) ≤ k·|D(σ,k)|

|σ| . Using

L(σ, k) = |σ|/|D(σ, k)|,
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we get

FA(σ) ≤ k

L(σ, k)
≤ k

ak
= 1/a.

This theorem shows that the fault rate of any marking algorithm decreases as the locality of
reference of the input increases. Note that this holds for every algorithm A that incurs at most k
faults in each phase. Since any phase contains at most k distinct pages, we obtain the following
result.

Corollary 8.1. Let A be an arbitrary conservative algorithm and a > 0 be a constant. Then
FA(a) ≤ 1/a.

8.3 The Working Set Model under Full Access Cost Model

In this section we apply the full access cost model to the working set model. Earlier we proved
that the standard competitive ratio does not improve for sequences with high locality of reference
in this model. Now we show that the competitive ratio of the classical algorithms in the full
access cost model improves for such sequences.

First we use some results of Albers et al. [6] about the fault rate of paging algorithms. These
results are expressed in term of f−1, the inverse function of f , defined in Section 3.14. Recall
that f−1(m) denotes the minimum size of a window that contains at least m distinct pages.

Theorem 8.2. The competitive ratio of LRU with respect to a concave function f in the full
access cost model is at most

p · k · (k − 1) + k(f−1(k + 1)− 2)
p · (k − 1) + k(f−1(k + 1)− 2)

.

Proof. Albers et al. proved that the fault rate of LRU is at most k−1
f−1(k+1)−2

[6]. Consider an
arbitrary sequence σ that is consistent with f . Suppose that LRU and opt incur m and m′

faults on σ, respectively. We have

m

|σ|
≤ k − 1
f−1(k + 1)− 2

=⇒ |σ| ≥ m · (f−1(k + 1)− 2)
k − 1

.

Since m′ ≥ m/k, we have optFA(σ) = p ·m′ + |σ| ≥ p ·m/k + |σ|. We also have LRUFA(σ) =
p ·m+ |σ|, and therefore

LRUFA(σ)
optFA(σ)

≤
p ·m+ m·(f−1(k+1)−2)

k−1

p ·m/k + m·(f−1(k+1)−2)
k−1

=
p · k · (k − 1) + k(f−1(k + 1)− 2)
p · (k − 1) + k(f−1(k + 1)− 2)

.

Since σ was an arbitrary sequence, this proves the theorem.

As p increases, the upper bound of Theorem 8.2 approaches k. When p is not too large, the
term (f−1(k + 1) − 2) becomes important. For a fixed p, the larger the value of f−1(k + 1),
the better the upper bound of the theorem. This supports our intuition that LRU has better
performance on sequences with more locality of reference.
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It is also known that FFIFO(f) ≤ k
f−1(k+1)−1

and FA(f) ≤ k
f−1(k+1)−1

for any marking algo-
rithm A [6]. We can use these results to prove the following theorem in an analogous way to
Theorem 8.2.

Theorem 8.3. Let A be a marking algorithm or FIFO. The competitive ratio of A with respect
to a concave function f in the full access cost model is at most

p · k + (f−1(k + 1)− 1)
p+ (f−1(k + 1)− 1)

.

Finally we prove a result for all marking and conservative algorithms.

Theorem 8.4. Let A be a marking or conservative algorithm. The competitive ratio of A with
respect to a concave function f in the full access cost model is at most

p · k + f−1(k)
p+ f−1(k)

.

Proof. Let σ be a sequence consistent with f and consider the decomposition D(σ, k) of σ. We
know that A incurs at most k faults in each phase. Let m denote the number of faults A incurs
on σ. We have m ≤ k · |D(σ, k)| ⇒ |D(σ, k)| ≥ m/k. Each phase has length at least f−1(k)
because σ is consistent with f . Therefore |σ| ≥ |D(σ, k)| · f−1(k) ≥ m · f−1(k)/k, and

AFA(σ)
optFA(σ)

≤ p ·m+ |σ|
p ·m/k + |σ|

≤ p ·m+m · f−1(k)/k
p ·m/k +m · f−1(k)/k

=
p · k + f−1(k)
p+ f−1(k)

.

8.4 A New Model for Locality of Reference

In this section we introduce a new model for locality of reference that can be used to show that the
randomized marking algorithm MARK benefits from locality of reference. We described MARK
in Section 7.1. Intuitively, a sequence with locality of reference does not have many clean pages
in a phase. Recall that a page is called clean if it is not requested in the previous phase. In order
to formalize this intuition we generalize the k-phase model as follows.

Definition 8.1. Let σ be a sequence and consider its phase decomposition. For constants a > 1
and b < 1, σ is called (a, b)-local if L(σ, k) ≥ ak and each phase of D(σ, k) has at most bk clean
pages.

Now we can define the fault rate of an algorithm A on (a, b)-local sequences, FA(a, b), by
restricting the input sequences to (a, b)-local sequences.

The following theorem shows that MARK works better on sequences that are “more” local.

Theorem 8.5. For any constants a > 1 and b < 1,

FMARK(a, b) ≤ b · (Hk −Hbk + 1)
a

.
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Proof. Consider an arbitrary (a, b)-local sequence σ such that |σ| ≥ n. We need to show that
FMARK(σ) ≤ b·(Hk−Hbk+1)

a . Consider the phase decomposition of σ. Let li denote the number
of clean pages of phase ϕi. Fiat et al. proved that the expected number of faults of MARK in
phase ϕi, fi, is at most Bi = li · (Hk −Hli + 1) [77]. Note that 1 ≤ li ≤ bk; the first page of each
phase is clean and σ is an (a, b)-local sequence. Since Bi is strictly increasing for li ≤ k, we get
fi ≤ b · k · (Hk −Hbk + 1). Therefore the expected number of faults that MARK incurs on σ is
at most bk · (Hk −Hbk + 1) · |D(σ, k)|. On the other hand we have |σ| ≥ ak · |D(σ, k)|. Therefore

FMARK(σ) ≤ bk · (Hk −Hbk + 1) · |D(σ, k)|
ak · |D(σ, k)|

=
b · (Hk −Hbk + 1)

a
.

Since Hn ≈ lnn, we obtain an upper bound of b · (1 − ln b)/a for FMARK(a, b). Thus the
fault rate of MARK decreases as a increases and b decreases. Note that several other results
can be obtained by imposing more restrictions on input sequences. For example if σ is an a-local
sequence that contains only k + 1 distinct pages we have li = 1 for each phase ϕi and therefore

FMARK(σ) ≤ 1 · (Hk −H1 + 1)|D(σ, k)|
ak|D(σ, k)|

=
Hk

ak
.

8.5 Caching with Locality of Reference

In the paging problem, all pages have the same size and the same retrieval cost on a fault.
However, in some applications such as caching files on the Web, pages have different sizes and
the cost of bringing a page to the cache varies for different pages. We can generalize the paging
problem in different ways. These generalized variants of the problem are usually called caching
problems. We can have different models for the caching problem [156, 96]:

• General Model: pages have arbitrary sizes and arbitrary retrieval costs.

• Weighted Caching: pages have uniform sizes, but they can have arbitrary retrieval costs
(weights).

• Fault Model: pages have arbitrary sizes, however, they have uniform retrieval costs.

• Bit Model: pages have arbitrary sizes and the retrieval cost is proportional to their size.

Each of these models is appropriate for certain applications. Irani describes various applications
in Web caching that are best modeled using the Fault/Bit model [96]. In this section we study
the behaviour of marking caching algorithms on sequences with high locality of reference.

8.5.1 Weighted Caching

For weighted caching, we need some new notation. Consider an online paging algorithm A.
Each page π has a weight w(π). In the full access cost model, the cost of a hit is 1 and the
cost of a fault on a page π is p · w(π) + 1 for some parameter p. Let WA(σ) be the total
weight of pages on which A incurs a fault when it serves a sequence σ and Wopt(σ) be the
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same value for the optimal offline algorithm. Define the average weight of faults in a phase as
AWA(σ) = WA(σ)/|D(σ, k)| and AWopt(σ) = Wopt(σ)/|D(σ, k)|. Note that the full access cost of
A and opt on σ is |σ|+p·WA(σ) and |σ|+p·Wopt(σ), respectively. Let CFA(A, σ) = |σ|+p·WA(σ)

|σ|+p·Wopt(σ) ;
then we have CFA(A) = supσ CFA(A, σ).

Now assume that σ is an a-local sequence, i.e. L(σ, k) ≥ ak for some constant a > 1. We
have

CFA(A, σ) =
L(σ, k) + p ·AWA(σ)
L(σ, k) + p ·AWopt(σ)

≤ ak + p ·AWA(σ)
ak + p ·AWopt(σ)

.

Note that the standard competitive ratio of A is

C(A) = sup
σ

AWA(σ)
AWopt(σ)

.

Therefore when p is large, CFA(A) approaches the standard competitive ratio. For smaller values
of p, CFA(A) improves as the locality of reference increases.

8.5.2 Bit Model

There is a close connection between the Bit model and the full access cost model. Let s(π) denote
the size of a page π and k be the size of cache. In the Bit model, the retrieval cost of π is r · s(π)
for some fixed constant r. In the full access cost model, the cost of a hit is 1 and the cost of a
fault is p+ 1 for some parameter p. Therefore we can have a generalization of the full access cost
model for the Bit model as follows. The cost of a hit is 1 and the cost of a fault on a page π is
q · s(π) + 1 for some parameter q.

We obtain results in this model using the idea of a k-decomposition. However since pages
can have arbitrary sizes, we modify the definition of the decomposition. We upper bound the
total size of distinct pages in a phase, rather than the number of distinct pages. For an input
sequence σ and an integer m > 1, the m-decomposition D(σ,m) is defined as partitioning σ into
consecutive phases so that each phase is a maximal subsequence that contains a set Π of distinct
pages such that the total of pages in Π adds up to at most m units of information.1 Note that
each phase may contain a set of distinct pages whose total size is strictly less than m. |D(σ,m)|
and L(σ,m) are as before.

A marking algorithm in this model works in phases. At the beginning of each phase all pages
in the cache are unmarked. A page is marked when it is requested. On a fault, the algorithm
brings the requested page to the cache and evicts as many (unmarked) pages as necessary from
the cache to make room for this page. If all pages in the cache are marked, the phase ends and
all pages are unmarked. As before, we call a sequence σ a-local if L(σ, k) ≥ ak for some constant
a > 1. Also assume that we have normalized the sizes of pages so that the smallest pages have
unit size.

Theorem 8.6. Let A be an arbitrary marking algorithm on an a-local input sequence. Then
under the Bit model we have CFA(A) ≤ 1 + q/a.

Proof. Consider an arbitrary a-local sequence σ. A incurs at most one fault on any page π in
any phase ϕ because π is marked after the first fault and will not be evicted in the remaining

1Depending on the application, the unit of information can be: bit, byte, word, etc.
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steps of ϕ. Since the total size of distinct pages in a phase is at most k, the full access cost of
A on σ is at most |σ| + |D(σ, k)| · (q · k). On the other hand, according to the definition of the
decomposition, the optimal offline algorithm should incur at lease one fault in each phase and
therefore its full access cost is at least |σ|+ |D(σ, k)| · (q · 1). Therefore we get

CFA(A, σ) ≤ |σ|+ |D(σ, k)| · (q · k)
|σ|+ |D(σ, k)| · (q · 1)

=
L(σ, k) + q · k
L(σ, k) + q · 1

.

Now since σ is an a-local sequence, L(σ, k) ≥ ak and

CFA(A, σ) ≤ ak + q · k
ak + q · 1

= 1 +
(k − 1)
ak/q + 1

< 1 + q/a.

This completes the proof as σ is an arbitrary a-local sequence.

8.6 Conclusions

In this chapter we studied selected models for paging with locality of reference. In particular
we proved that in general the competitive ratio does not improve on input sequences with high
locality of reference under the models of Torng [148] and Albers et al. [6]. We also proposed a
new model for locality of reference and proved that the randomized marking algorithm has better
fault rate on sequences with high locality of reference. Finally we generalized the existing models
to several variants of the caching problem.
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Chapter 9

Adaptive Searching in One and Two
Dimensions

Searching in a geometric space is an active area of research, predating computer technology. The
applications are varied, ranging from robotics to search-and-rescue operations in the high seas
[133, 120], to avalanche rescue [33], to office discovery automation [90, 60, 91], to scheduling
of heuristic algorithms for solvers searching an abstract solution space [104, 105, 119, 13, 116].
Within academia, the field has seen two marked boosts in activity. The first was motivated by
the loss of weaponry off the coast of Spain in 1966 in what is known as the Palomares incident
and of the USS Thresher and Scorpion submarines in 1963 and 1966 respectively [133, 146]. A
second renewed thrust took place in the late 1980s when the applications for autonomous robots
became apparent.

Geometric searching has proven to be a fertile ground within computational geometry for the
design and analysis of search and recognition strategies under various initial conditions [92, 90, 52,
60, 61, 115, 117]. The basic search scenarios consist of exploring a one dimensional object, such
as a path or office corridor, usually modeled as the real line, and of exploring a two dimensional
scene, such as a room or a factory floor, usually modelled as a polygonal scene. However, in spite
of numerous advances in the theoretical understanding of both of these scenarios, so far such
solutions have generally had a limited impact in practice.

Over the years various efforts have been made to address this situation, both in terms of
isolated research papers attempting to narrow the gap, as well as in organized efforts such as the
Algorithmic Foundations of Robotics conference and the Dagstuhl seminars on online robotics
which bring together theoreticians and practitioners. From these it is apparent that the cost
model and hence the solutions obtained from theoretical analysis do not fully reflect real life
constraints. Several efforts have been made to resolve this, such as including the turn cost, the
scanning cost, and error in navigation and reckoning [62, 74, 102, 117, 115].

In this chapter we address one more shortcoming of the standard model. Consider for ex-
ample a vacuuming robot—such as Roomba(TM). Such a robot explores the environment using
sophisticated motion planning algorithms with the goal of attaining complete coverage of the
floor surface within a reasonable amount of time. It is not hard to devise worst case floor plans
(such as complex mazes) which would not be covered very efficiently. In practice this is not a
concern since (i) most rooms are relatively simple and (ii) if the robot ever encounters such a
complex scene a drop in performance is only to be expected and users would not mind a severe
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degradation in the time required to complete the task. As discussed previously, this naturally
leads to the concept of adaptive algorithms, in which on simpler inputs the robot must perform
more efficiently than on more complex ones.

In this chapter we consider adaptive analysis of two basic geometric primitives: searching
on the real line and looking around the corner. Searching on the real line consists of finding a
target t on the real line located at an unknown distance d (in either direction) from a search
robot. The robot detects t upon contact. The optimal strategy visits the rays under a doubling
strategy with competitive ratio of 9 [27, 82, 20, 118]. We refer the reader to the survey of Alpern
and Gal [11] for a thorough discussion. However upon being presented by the optimal doubling
strategy practitioners routinely report that they find the answer non-intuitive and generally “not
optimal”. This holds for the optimal strategy for either the average or the worst case. There
are several non-mutually exclusive explanations for this disparity. In particular we incorporate
the observation that in some settings, exploration is a valuable task in which case the goal is to
simultaneously minimize the time to the target, and maximize the amount of information gained
during the search. For this case we obtain an optimal strategy that is, subjectively, more pleasing
to practitioners.

For the second case study we consider searching around a corner. Icking et al. [92] provided
an algorithm with competitive ratio c ≈ 1.21218 and proved that this is the best competitive
ratio possible. We extend this result by applying adaptive analysis to this problem.

9.1 Searching on the Real Line

Without loss of generality, we assume the robot searches starting from the origin x1 units to left,
then it returns to the origin and moves past it x2 units to the right. In general in the ith phase,
it goes xi units from origin to the left or right (depending on the parity of i) and returns to
the origin. The search ends when the robot finds the target. In the doubling strategy we have
xi = 2i−1. In the standard cost model, we minimize the ratio of the distance travelled by the
robot to the straight distance from the target to the origin, which is termed the competitive ratio.
As stated before, the doubling method has competitive ratio 9, which is optimal.

In order to reflect the underutilization of robot resources when traversing a region that has
already been explored, we propose a dual cost model. It costs one unit whenever the robot
traverses one unit of distance of unknown territory, while it costs c units (c ≥ 1) when the robot
traverses a region that has already been explored.

In order to find the worst case for doubling method under the new cost model, assume that
the target is located at distance 2k + ε from the origin, for some integer k. Therefore robot will
find the target at phase k + 3. For 3 ≤ i ≤ k + 2, let C(i) be the cost robot incurs at phase i.
At phase i, the robot goes 2i−1 units away from the origin and then returns to the origin. Of
the first 2i−1 units, 2i−3 units are already explored and 2i−1 − 2i−3 = 3 × 2i−3 units are newly
explored. All 2i−1 units on the robot’s return to the origin are already explored. Therefore we
have C(i) = 2i−3(5c + 3). Thus the total cost of the first k + 2 phases is (1 + c) + (2 + 2c) +∑k+2

i=3 2i−3(5c+ 3) = (5×2k−2)c+3×2k. In the last phase, the robot finds the target at distance
2k + ε, incurring cost 2kc+ ε. Thus the competitive ratio of doubling is

(6× 2k − 2)c+ 3× 2k + ε

2k + ε
,
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which becomes arbitrarily close to 6c + 3 as k grows. Note that for c = 1 we get the standard
competitive ratio of 9.

Observe that the doubling might no longer be the optimal strategy under the new model.
As usual we consider the family of geometric search strategies Ar: we have xi = ri−1 for an
arbitrary real number r > 1 (the doubling strategy corresponds to A2). Using arguments similar
to the analysis of the doubling method, the cost of robot at phase 3 ≤ i ≤ k + 2 is C(i) =
ri−3((r2 + 1)c+ (r2 − 1)) and the total cost of Ar is(

r + 1 +
(
r2 + 1

)(rk − 1
r − 1

)
+ rk

)
c+

(
r2 − 1

)(rk − 1
r − 1

)
+ ε.

Thus the competitive ratio of Ar for this case is

CR(Ar) =

(
r + 1 +

(
r2 + 1

) (
rk−1
r−1

)
+ rk

)
c+ (r + 1)

(
rk − 1

)
+ ε

rk + ε
,

which becomes arbitrarily close to (r + 1)
(

1 + rc
r−1

)
as k grows. Through symbolic manipulation,

we find out that the competitive ratio is minimized for r = 1+
√

2c
c+1 . As c goes to∞, this optimal

value of r goes to 1+
√

2 = 2.414213 . . . with a search cost of
(
3 + 2/

√
2
)
c+2+

√
2 ≈ 5.83c+3.41.

This improves over the 6c+ 3 cost of doubling for large c.

Furthermore, this is optimal, as it can be shown using the Gal-Schuierer functional theorem
[82, 136] as follows. For any given strategy, let X = x0, x1, x2, . . . denote the (infinite) sorted
sequence of turn points incurred by the strategy. Then using ideas similar to [119] we can lower
bound the competitive ratio by CR ≥ cost(ALG)/cost(OPT ), where cost(ALG) = (x0 + cx0) +
(x1 + cx1)+(x2 − x0 + cx0 + cx2)+ . . .+(xk+1 − xk−1 + cxk−1 + cxk+1)+cxk, and cost(OPT ) =
xk. Therefore, we have that

CR(X, k) ≥
(c+ 1)

∑k+1
i=0 xi + (c− 1)

∑k−1
i=0 xi + cxk

xk
(9.1)

Let X+i = (xi, xi+1, . . .) denote the suffix of a sequence X = (x0, x1, . . .) starting at xi.

Theorem 9.1 ([136]). Let X = (x0, x1, . . .) be a sequence of positive numbers, r an integer, and
a = lim supn→∞(xn)1/n, for a ∈ R ∪ {+∞}. If Fk, k ≥ 0, is a sequence of functionals which
satisfy
(1) Fk(X) only depends on x0, x1, . . . , xk+r,
(2) Fk(X) is continuous, ∀xi > 0, with 0 ≤ i ≤ k + r,
(3) Fk(αX) = Fk(X), ∀α > 0,
(4) Fk(X + Y ) ≤ max(Fk(X), Fk(Y )), and
(5) Fk+i(X) ≥ Fk(X+i), ∀i ≥ 1,
then sup0≤k<∞ Fk(X) ≥ sup0≤k<∞ Fk(Ar).

It is not hard to verify that the hypotheses of the theorem hold for the modified cost model,
and hence it suffices to consider xi of the form ri−1 in the expression for CR(X, k) above. Note
that the left-hand side of inequality 9.1 above is precisely the expression we derived when upper-
bounding the competitive ratio. Therefore, substituting r with 1 +

√
2 yields a lower bound on
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: (Potential) Position of the Robber

: Our Intial Position 

: Optimal Path if We know the Angle 

Figure 9.1: Discovering the presence of the robber using minimum movement.

CR(X, k) which is identical to the upper bound, which in turn implies that the geometric strategy
with r = 1 +

√
2 is in fact asymptotically optimal.

We can extend the dual cost model to cases in which c < 1, i.e., revisiting is less expensive than
discovering. The case c = 0 can also be used to model two sequential communicating searchers.
If c < 0, the robot can reduce its cost by revisiting the discovered territories ad infinitum and
no optimal strategy exists. For 0 < c < 1, we can use an analysis analogous to the case c ≥ 1 to
show that Ar with r = 1 +

√
2c
c+1 is optimal. For c = 0, the optimal strategy is Ar with r = 1 + ε

for a very small constant ε and this leads to the competitive ratio 2 + ε.

9.2 Looking Around a Corner

Consider the following scenario: a robber might be hiding behind a corner. Naturally one would
like to determine as soon as possible if this is the case. The situation is complicated by the fact
that two walls forming the corner are not necessarily perpendicular. The question is what path
to follow so that we discover at the earliest possible time the presence/absence of the robber.
Observe that if we knew the angle formed by the wall, we would simply move on a direction
perpendicular to it, to the closest point formed by the extension of the wall (See Figure 9.1). We
will formally define the problem in the next paragraph. An optimal competitive strategy for this
problem is presented in [92]. In this section we consider the problem in a man-made environment
in which there is a preferential occurrence of orthogonal and near orthogonal angles. We wish to
explore the change in the nature of the solution when this assumption is made.

We follow the same approach as [92] and formulate the problem using a differential equation.
Therefore we use similar terminology and notation and just highlight the differences between the
methods; refer to [92] for omitted details. First we formally define the problem. Figure 9.2 shows
a typical instance of the problem. The corner is placed at the origin O and one of its halflines
coincides with the negative y axis. The other halfline of the corner makes an angle 0 ≤ ϕ ≤ π
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O

W

M(ϕ)

sin(ϕ)

1

Figure 9.2: A typical instance of the corner problem.

with the positive y axis. A mobile robot is located at point W = (0,−1) and is equipped with an
on-board vision system facing O. When ϕ > 0, the robot cannot see the other halfline (wall) of
the corner and his goal is to discover that (invisible) halfline by minimum movement. The robot
sees the invisible line the first time it visits any point on the prolongation M(ϕ) of the invisible
line. Let a(ϕ) be the distance between W and M(ϕ). We have

a(ϕ) =


sinϕ if 0 ≤ ϕ ≤ π/2

1 if π/2 < ϕ ≤ π

(9.2)

If the robot knows ϕ then it can discover the invisible wall by the optimal movement a(ϕ).
However this is not the case and the robot should come up with a strategy S that works for all
0 ≤ ϕ ≤ π. Let AS(ϕ) be the length of the path generated by S from W to the first point on
M(ϕ). Then the competitive function of S is defined as fS(ϕ) = AS(ϕ)

a(ϕ) and the competitive factor
of S is defined as cS = supϕ∈(0,π] fS(ϕ).

In practical robot navigation most corners have angles close to π/2 and usually we do not
have angles close to 0 or π. As a first attempt for applying adaptive analysis ideas we consider
d(ϕ) = 1/

√
sinϕ as difficulty measure. Figure 9.3 shows the behaviour of d(ϕ) for 0 < ϕ < π. We

normalize the competitive function further by d(ϕ) and the new competitive function is defined
as

gS(ϕ) =
fS(ϕ)
d(ϕ)

=


AS(ϕ)√

sinϕ
if 0 ≤ ϕ ≤ π/2

AS(ϕ)
√

sinϕ if π/2 < ϕ ≤ π
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Figure 9.3: Plot of d(ϕ) = 1√
sinϕ

for 0 < ϕ < π.

Icking et al. [92] describe the strategies by curves of form S = (ϕ, s(ϕ)) in polar coordinates
about O that satisfy certain properties, e.g., s(0) = 1. They show that the optimal competitive
strategy is given by the solution to

fR(ϕ) =
AR(ϕ)
sinϕ

= c,

for all ϕ ∈ [0, π/2] and for some constant c (the smallest c if there are several solutions). For our
cost model, the corresponding equation becomes gR(ϕ) = AR(ϕ)√

sinϕ
= c. We have

AR(ϕ) = c
√

sinϕ⇒ c cosϕ
2
√

sinϕ
= A

′
R(ϕ) =

√
r′2(ϕ) + r2(ϕ)

⇒ r′(ϕ) = −

√
c2 cos2 ϕ

4 sinϕ
− r2(ϕ).

We take the negative square root because in an optimal strategy the robot should always come
closer to the corner. By replacing r(ϕ) by cu(ϕ) we get the differential equation

u′(ϕ) +

√
cos2 ϕ

4 sinϕ
− u2(ϕ) = 0, (9.3)

with initial condition u(0) = 1/c. Therefore, our problem reduces to:

Problem Find the minimum c > 1, such that the ordinary differential equation (9.3) has a
solution on some interval [0, σ] ⊆ [0, π/2], subject to the following constraints:

1. u(0) = 1/c

2. u(ϕ) > 0 for ϕ ∈ [0, σ]

3. u(σ) = 0
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Figure 9.4: Robot’s optimal path in the new model.
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Figure 9.5: Robot’s optimal path in the previous model.

Since this type of differential equations generally do not have a closed form we use numerical
methods to compute the solution c ≈ 1.08. The strategy with this competitive factor is shown in
Figure 9.4. We can prove the optimality of this strategy using arguments analogous to [92].

The optimal strategy in the standard model is shown in Figure 9.5. It has competitive factor
≈ 1.21 [92]. Observe that since less weight is given to small angles the solution takes a shorter
path to reach sightlines for angles around π/4.
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Chapter 10

List Update Algorithms for Data
Compression

List update algorithms have been widely used as subroutines in compression schemes, most no-
tably as part of Burrows-Wheeler compression. The Burrows-Wheeler transform (BWT), which
is the basis of many state-of-the-art general purpose compressors applies a compression algorithm
to a permuted version of the original text. List update algorithms are a common choice for this
second stage of BWT-based compression. As well, list update algorithms have been shown to
be a reasonable alternative to simple compression schemes such as Huffman coding [31]. In this
chapter we perform an experimental comparison of various list update algorithms both as stand
alone compression mechanisms and as a second stage of the BWT-based compression. Our ex-
periments show MTF outperforms other list update algorithms in practice after BWT. This is
consistent with the intuition that BWT increases locality of reference and the predicted result
from the locality of reference models described in Chapters 4 and 7. Lastly, we observe that due
to an often neglected difference in the cost models, good list update algorithms may be far from
optimal for BWT compression and construct an explicit example of this phenomena. This is a
fact that had yet to be supported theoretically in the literature.

10.1 Introduction

It has long been observed that list update algorithms can be used in compression. In 1986,
Bentley et al. [31] proposed a compression scheme that uses MTF as a subroutine. They proved
that their compression scheme, based on MTF is guaranteed to be within twice the compression
ratio of the best static Huffman code. Experimentally their algorithm performs even better
achieving compression ratios equal or better than Huffman’s. In principle MTF can be replaced
with any other online list update algorithm, which may or may not improve the compression
rate. Albers and Mitzenmacher [8] studied the use of timestamp and showed theoretical and
experimental evidence for its efficiency in data compression. Several online list update algorithms
were compared according to their efficiency in compression by Bachrach et al. [19]. Surprisingly,
their results show that some algorithms with bad competitive ratios outperform those that are
optimal according to competitive analysis in terms of compression ratio.

A second application of list update is to Burrows and Wheeler compression. The Burrows-
Wheeler transform (BWT) rearranges a string of symbols to one of its permutations and in doing
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so brings the issue of higher order entropy into play. Then MTF is used to encode this transform
in a way similar to the scheme proposed by Bentley et al. [31]. The resulting scheme is shown to
be very effective in theory and practice and many improvements and several variants have been
proposed [51, 106, 53, 127, 67, 76, 21, 22]. The well known compression program bzip2 [138] is
based on the BWT.

Our study was motivated by recent theoretical results on the impact of locality of reference
assumptions for online algorithms [12, 68], as described in Chapters 4 and 7. Compression via
list update hinges on an implicit assumption that the text (raw or after the BWT transform)
exhibits locality of reference which can then be used advantageously by list update algorithms.
In this paper we systematically study different sensible choices for the list update algorithm as
well as for the basic compressor.

Our Results. We perform an experimental comparison of the latest list update algorithms for
compression, both in stand alone form and as part of BWT based compression. We show that in
most cases MTF is the best choice. Additionally, we observe that list update algorithms optimize
for a similar but different objective than a compressor and give an example of an algorithm which
is a good choice for list update but not for compression, a fact that had yet to be reported in the
literature.

10.2 Preliminaries

10.2.1 Compression Schemes

Bentley et al. [31] proposed using list update algorithms as subroutines in compression. The idea
is simple enough: both the encoder and the decoder maintain a list L of all symbols in the file
and agree on some online list update algorithm A as well as an initial arrangement for L. The
encoder encodes every symbol by its current position in L and then rearranges L according to A.
It uses some variable length prefix-free binary code to transmit these integers (positions). Since
the decoder knows the initial arrangement of L and the list update algorithm, it can maintain the
same list as the encoder and recover all the symbols. Several variable length prefix-free binary
codes can be used in this scheme, e.g., Elias encoding, δ-encoding, and ω-encoding. We refer the
reader to [19] for a full description.

10.2.2 Burrows-Wheeler Transform.

Burrows and Wheeler [51] introduced the idea of a preprocessing phase based on the BWT which
is combined with a compression scheme on the transformed text. Informally, the BWT rearranges
a string of symbols to one of its permutations in a reversible way so that the resulting string is
“more compressible” or has more “locality of reference”. The permutation is such that high order
entropy is in line with locality of reference. Recall that a string has high locality of reference
if when a symbol occurs in some position of the string, it is more likely to occur in a nearby
position. For a detailed explanation of the BWT we refer the reader to [51, 106].
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10.3 Competitiveness of List Update Algorithms for Compres-
sion

A list update algorithm A incurs cost i to access the ith item of the list. However, when we
use A as a subroutine for compression we need Θ(log i) bits to represent that the symbol is at
the ith position of the list. Other papers that have studied the use of list update algorithms
in compression are silent on this issue and apparently simply assumed that competitive list
update algorithms are also competitive for compression. We show via an example that this is not
necessarily the case, i.e. there exist algorithms which are competitive under one model but not
the other.

Consider the Move-Fraction (MF) family of deterministic list update algorithms as in-
troduced by Sleator and Tarjan [140]. Upon a request to an item in the ith position, MF(k)
moves that item di/ke-1 positions towards the front. MF(k) is known to be 2k-competitive [140],
therefore algorithm MF(2) is 4-competitive for list update. We show that under the Θ(log i) cost
model, MF(2) does not have constant competitive ratio. Let the cost of compressing for an item
in the ith position be cblog ic+ b for some constants c and b. For simplicity assume that we have
l = 2p symbols for some integer p. Suppose that symbols are initially ordered as a1a2 · · · al in the
list. Now consider the sequence σ1 = apl . On the ith request to al, MF(2) incurs cost at least
cblog 2p

2i−1 c + b = c(p − i + 1) + b and moves al to a position of index at least 2p

2i
. Therefore the

cost of MF(2) on σ1 is at least

p∑
i=1

(c(p− i+ 1) + b) =
cp(p+ 1)

2
+ bp = Θ(log2 l).

On the other hand, MTF moves al to the front of the list and incurs cost cblog lc+ b+ (p− 1)b =
(b + c) log l on σ1. Thus the cost of OPT on this sequence is at most (b + c) log l = Θ(log l).
We can request the item that is now in the lth position of MF(2)’s list p times. Therefore the
competitive ratio of MF(2) is at least

c× log l(log l + 1)/2 + b log l
(b+ c) log l

=
c(log l + 1)

2(b+ c)
+

b

b+ c
= Θ(log l),

which is not a constant. The same holds for MF(k) for k ≥ 3. This fact had been observed
empirically by Bachrach et al. [19], who reported on the poor performance of this family for data
compression purposes. It remains an open question to determine the competitive ratios of the
various list update algorithms under the cblog ic+ b cost of access model.

10.4 Experimental Results

We consider two experimental setups. The first one consists of a straightforward compression
scheme similar to that of Bentley et al. [31] or Albers et al. [8]. While in practice these compression
techniques are unlikely to be of use, the study of their behaviour allows us to understand their
differences and advantages. The second setup consists of the realistic setting of BWT based
compression. To be more precise, given a text we compute its BWT and then compare the role
of various list update algorithms for compressing the transformed string.
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10.4.1 Experimental Settings

We compare the compression ratios achieved by different list update algorithms on files in the
Calgary Corpus [151] and the Canterbury Corpus [15]. These are standard benchmarks for data
compression. We consider the list update algorithms described in Section 1.2 (namely Move-To-
Front (MTF), Transpose (TR), Frequency-Count (FC), Timestamp (TS), and Sort-
By-Rank (SBR)) as well as MTF′; this algorithm, on the ith access to an item a, moves a to
the front of the list if i is even and does not change a’s position if i is odd. We considered two
implementations for frequency-count depending on the order of items with the same frequency
count. In FC, an item that is less recently used precedes an item that is more recently used
and has equal frequency count. FC′ adopts the reverse of this ordering. We consider different
parameters for SBR since a compressor can, at time of compression, select the parameter α which
achieves the most compression and then prepend the compressed file with the choice of α. If not
explicitly mentioned otherwise, we use the standard prefix integer encoding of Elias [70] that
encodes an integer i using 1 + 2blog ic bits. Observe that nonetheless we propose and evaluate
other alternative ways for encoding integers.

10.4.2 Sort-By-Rank Parameters

Recall that SBR (0) is equivalent to MTF and SBR (1) is equivalent to TS modulo handling of
the first few accesses. Additionally, intuitively SBR (α) mediates between the behaviour of MTF
and TS. We test this intuition in the case of compression. Figure 10.1 shows the percentage of
the size of the file obtained using SBR(α) as compared to the original file size for different values
of parameter α and four files of the Calgary Corpus. Figure 10.2 presents the results for the same
files after applying BWT. Observe that as α goes from 0 to 1, the behaviour of SBR (α) goes
from MTF to TS. This change in behaviour is faster for small values of α. Although SBR (α)
usually achieves best compression for the extremal values of α (α = 0 or α = 1), there are a few
cases in which the optimal value of α is different. For example for file book1 after BWT, the best
compression is 32.34% and it is achieved by SBR (0.32).

10.4.3 Comparing List Update Algorithms

We compare the effect of different list update algorithms on text files of the Calgary Corpus
and the Canterbury Corpus before and after BWT. Table 10.1 shows their performance as stand
alone compression algorithms while Table 10.2 shows their performance as a second stage of BWT
compression. From Table 10.1 we can see that TR and FC usually outperform MTF and TS.
This is in contrast with competitive analysis in which MTF and TS are superior to TS and FC.
MTF has the worst performance on all the files and TR is the best algorithm in most cases.
MTF′ and FC′ always have performance close to their variants, i.e., MTF and FC, respectively.
Note that the results for MTF and TS were also reported by Albers and Mitzenmacher [8],
who observed that TS outperforms MTF. SBR(0.5) always mediated between the performance
of MTF and TS. Thus our experimental results are not consistent with theory. This has been
observed by other researches as well [19].

However, for the BWT transform of the files, the situation is different. Table 10.2 shows
that in this case MTF has the best performance for most of the files. In general, MTF and
TS (and thus MTF′ and SBR(0.5)) have comparable performance and always outperform FC
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Figure 10.1: Compression using SBR(α) for files in the Calgary Corpus in terms of α.
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Figure 10.2: Compression using SBR(α) for files in the Calgary Corpus after BWT in terms of
α.
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File Size (bytes) MTF SBR (0.5) TS FC TR MTF′ FC′

bib 111261 95.69 89.55 89.08 81.42 81.64 94.16 81.42

book1 768771 83.82 76.64 75.67 81.34 69.62 81.27 81.34

book2 610856 84.35 78.36 77.55 75.74 72.44 82.35 75.74

news 377109 88.50 82.68 82.20 88.10 77.87 87.08 87.99

paper1 53161 86.79 80.96 80.35 79.48 74.87 85.19 79.45

paper2 82199 84.47 78.34 77.43 79.27 71.02 82.26 80.45

progc 39611 88.74 84.02 83.62 81.59 77.67 88.16 81.54

progl 71646 77.01 73.62 73.25 82.61 69.02 76.50 82.40

progp 49379 81.09 76.15 75.45 82.41 71.64 80.00 81.68

trans 93695 87.58 84.96 84.59 91.21 83.02 87.36 91.18

alice29.txt 152089 83.69 76.49 75.62 74.74 69.24 81.48 74.85

asyoulik.txt 125179 88.54 81.71 80.67 79.36 73.92 86.44 79.36

cp.html 24603 92.45 91.47 91.90 87.12 85.53 93.01 88.31

fields.c 11150 84.05 80.05 79.81 74.41 73.52 83.73 74.25

grammar.lsp 3721 79.82 75.30 73.45 77.88 68.56 78.63 77.69

lcet10.txt 426754 82.50 76.07 75.23 79.14 69.91 80.42 85.39

plrabn12.txt 481861 86.16 77.67 76.29 88.48 69.98 82.85 88.48

Table 10.1: Compression of the Calgary and Canterbury Corpus without BWT.
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and TR. The compression ratio they achieve after the BWT is much better than without the
BWT, as one would expect given that the BWT increases the amount of locality in the string.
The superiority of MTF to other algorithms is consistent with the recent result of Angelopoulos
et al. proving that MTF outperforms all other online list update algorithm on sequences with
high locality of reference [12]. Hence, this provides evidence that the locality of reference model
proposed accurately reflects reality. We emphasize that our focus here is comparing the effect
of different list update algorithms and therefore we have not applied any post-optimizations to
the compression scheme, in the presumption that these optimizations are orthogonal and hence
would generally benefit all schemes equally.

File Size (bytes) MTF SBR (0.5) TS FC TR MTF′ FC′

bib 111261 30.49 31.66 32.32 93.42 39.81 31.99 93.33

book1 768771 35.74 34.42 34.71 76.63 36.31 36.04 76.50

book2 610856 31.14 31.03 31.48 80.44 35.31 31.96 80.11

news 377109 36.21 37.75 38.67 85.27 44.90 38.26 85.53

paper1 53161 34.70 36.62 37.70 83.42 47.73 36.87 83.34

paper2 82199 34.86 35.35 36.04 79.00 41.28 36.17 76.46

progc 39611 35.04 37.32 38.54 79.03 51.09 37.54 78.91

progl 71646 26.31 28.52 29.43 81.23 36.18 28.33 79.77

progp 49379 26.00 29.08 30.22 89.11 41.13 28.57 86.08

trans 93695 24.12 27.64 28.71 96.08 41.52 26.76 90.22

alice29.txt 152089 33.15 32.97 33.45 81.34 37.43 33.99 81.37

asyoulik.txt 125179 36.96 36.53 37.08 83.08 41.50 37.79 80.96

cp.html 24603 36.10 38.22 39.37 91.54 49.62 38.58 89.03

fields.c 11150 29.96 33.24 35.03 80.73 51.75 32.84 78.74

grammar.lsp 3721 34.64 38.48 40.85 74.36 52.06 39.26 70.63

lcet10.txt 426754 30.76 30.55 31.01 76.49 34.21 31.51 76.64

plrabn12.txt 481861 36.30 35.23 35.57 78.88 37.13 36.65 78.88

Table 10.2: Compression of the Calgary and Canterbury Corpus after BWT.

We also observe that FC and FC′ perform badly compared to other algorithms. One explana-
tion for this is the fact that FC considers the global rather than local environment. For example
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if an item is frequently accessed near the beginning and then it is not accessed at all, FC will
maintain it close to the front of the list.

10.4.4 Alternative Techniques for Encoding of Integers

We consider other possibilities for the last step of list update based compression schemes, i.e.,
the prefix-free binary code for integers. All these algorithms apply the following intuition: there
is considerable locality of reference in the BWTs of text files intuitively a competitive list update
algorithm leads to a sequence with many small integers. Hence, the algorithms we considered as-
sign smaller codes to small integers. In particular, there are many “1”s in the sequence. Therefore
almost all these algorithms use a form of run length encoding on “1”s.

RL(1)+Elias. This algorithm combines Elias encoding with run length encoding for the value
1, i.e. when the encoded integer is 1, the following Elias-encoded integer shows the number of
consecutive 1’s starting from that 1. Otherwise, is the next integer encoded in Elias encoding.

File Size (bytes) MTF SBR (0.5) TS FC TR MTF′ FC′

bib 111261 27.87 28.92 29.55 93.42 37.06 29.28 93.42

book1 768771 35.78 34.50 34.77 76.78 36.46 36.02 78.68

book2 610856 29.72 29.56 30.00 80.52 33.98 30.48 80.53

news 377109 35.51 36.82 37.71 85.33 43.96 37.37 85.50

paper1 53161 34.60 36.32 37.38 83.36 47.56 36.64 84.96

paper2 82199 34.59 35.01 35.66 79.00 41.02 35.80 78.96

progc 39611 34.83 36.89 38.07 79.15 50.83 37.15 82.32

progl 71646 24.15 26.17 27.07 81.25 33.96 26.07 84.32

progp 49379 23.87 26.68 27.80 89.14 38.92 26.29 91.77

trans 93695 20.92 24.26 25.31 95.58 38.32 23.46 102.71

Table 10.3: Compression of the Calgary Corpus using RL(1)+Elias after BWT.

RL(1)+1-2. This algorithm encodes 1 with a single bit 0, and encodes all other numbers with
their binary representations prepended by 1. We need dlog2 le bits for this binary representation.
For most of the cases, this gives a code of length 8 for each integer greater than 1, as 64 ≤ l < 128.
Also it uses run length on “1”s.
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File Size (bytes) MTF SBR (0.5) TS FC TR MTF′ FC′

bib 111261 36.36 37.77 38.18 87.44 43.09 37.44 87.44

book1 768771 59.33 57.89 57.92 98.47 59.05 59.25 96.34

book2 610856 47.94 47.89 48.10 97.96 50.78 48.47 97.96

news 377109 51.60 53.52 54.16 97.87 58.28 53.09 97.87

paper1 53161 52.15 54.29 54.93 88.66 62.02 53.56 88.66

paper2 82199 54.25 54.92 55.35 99.97 59.67 55.24 99.97

progc 39611 50.31 53.00 53.93 85.96 61.76 52.06 99.40

progl 71646 36.93 40.08 41.04 99.76 47.21 38.94 99.76

progp 49379 36.20 39.70 40.80 99.72 48.68 37.97 99.72

trans 93695 30.01 34.98 35.70 90.49 45.81 31.78 99.99

Table 10.4: Compression of the Calgary Corpus using RL(1)+1-2 after BWT.

RL(1)+2-2-3: This algorithm encodes 1 and 2 with “00” and “01”, respectively, and encodes
all other numbers with their binary representations prepended by 1. It also uses run length on
“1”s.

RL(1)+1-5-6-17: This algorithm encodes 1 by “0”, 2 to 9 by “10000”, “10001”, . . . , “10111”,
10 to 17 by “110000”, “110001”, . . . , “110111”, and integers greater than 17 by their binary
representation prepended by “111”. Note that there are l − 17 such numbers, and so we can use
a fixed code of length dlog2 (l − 17)e for their binary representations. It also uses run length on
“1”s, i.e., when it encodes a “1” the following integer, encoded using the same scheme, denotes
the number of consecutive ones started from that “1”.

Tables 10.3-10.6 show the performance of these algorithms on text files of the Calgary Corpus
after BWT. According to these results, RL(1)+Elias leads to the best compression among these
algorithms, then RL(1)+5-6-17, then RL(1)+2-2-3, and finally RL(1)+1-2. Comparing Table
10.3 to Table 10.2 shows that using RL(1) improves the compression factor for most list update
algorithms. For algorithms other than FC and FC′, the improvement is considerable. This can be
explained by the fact that BWTs of text files have many repetitions. Each such repetition leads
to a 1 in the sequence of integers. Therefore we will have many 1’s and RL(1) should be effective.
Also according to Tables 10.3-10.6, replacing Elias with other proposed integer encodings does
not give better compression ratios.

Modified Huffman. Inspired by the fact that there are many blocks of “1”s in the integer sequence
we treat them as symbols of our alphabet. Thus our alphabet is {1, 2, · · · , l, 11, 111, · · · , 1n},
where 1n means n consecutive “1”s. Then Huffman encodes the elements of this alphabet. The
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File Size (bytes) MTF SBR (0.5) TS FC TR MTF′ FC′

bib 111261 31.74 32.83 33.32 86.54 38.76 32.78 86.54

book1 768771 48.54 47.29 47.51 93.96 48.94 48.67 94.98

book2 610856 39.16 39.05 39.47 97.93 42.77 39.75 97.93

news 377109 44.63 45.94 46.66 97.89 51.72 45.98 97.89

paper1 53161 44.31 46.15 47.03 88.68 55.53 45.97 88.68

paper2 82199 45.67 46.42 47.02 88.92 52.06 46.78 88.92

progc 39611 42.64 44.85 45.73 83.80 55.28 44.27 86.35

progl 71646 31.09 33.16 33.94 86.96 41.10 32.55 86.96

progp 49379 29.87 32.87 33.80 97.04 43.30 31.53 99.70

trans 93695 26.40 29.71 30.64 88.14 41.64 27.90 92.06

Table 10.5: Compression of the Calgary Corpus using Algorithm RL(1)+2-2-3 after BWT.

results are shown in Table 10.7. Note that we should also encode the Huffman tree. This cost
becomes negligible for large files, especially if one considers implicit representations of the portions
of the Huffman code corresponding to 1k. Indeed the Huffman tree has an impact in the order of
0.3% of compressed size uniformly across the different variants for these rather modest file sizes.

According to these results, this scheme outperforms all other algorithms in our study. Figure
10.3 reports the mean, median and variance of the comparison of other compression algorithms
to the modified Huffman algorithm.

10.4.5 Splay Trees

Recall from Section 1.2 that list update algorithms belong to the area of self-organizing data
structures and that another well known self-organizing data structure is the splay tree [141].
The splay tree is a binary search tree which applies a splay operation after each access to an
item. This operation reorganizes the tree such that the most recently accessed item is moved to
the root of the tree. Splay trees are believed to have good performance on sequences with high
locality of reference. The working set theorem of [141] shows that splay trees have the working
set property. The working property is based on the idea that an operation on a recently accessed
item should take less time. Informally, a structure has the working set property if it performs
well on sequences with high locality of reference. As stated before there is usually high locality
of reference in texts (especially after applying BWT) and thus splay trees are in principle good
candidates for text compression. Jones [100] and Grinberg et al. [85] have already studies the
application of splay trees to data compression, but they did not consider the BWT.

We studied the effect of using splay trees instead of list update algorithms in our compression
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File Size (bytes) MTF SBR (0.5) TS FC TR MTF′ FC′

bib 111261 29.54 30.61 31.10 82.72 37.22 30.53 82.25

book1 768771 40.43 39.41 39.50 74.74 40.77 40.41 73.34

book2 610856 33.50 33.49 33.76 77.62 36.98 33.98 77.64

news 377109 38.36 39.68 40.44 82.37 45.62 39.69 82.68

paper1 53161 37.80 39.51 40.33 76.96 48.98 39.20 78.38

paper2 82199 38.10 38.54 39.04 77.75 43.43 38.92 77.72

progc 39611 37.90 39.92 40.94 75.69 51.50 39.53 84.28

progl 71646 26.93 29.02 29.89 80.58 35.73 28.37 83.62

progp 49379 26.73 29.40 30.52 85.70 40.28 28.29 86.80

trans 93695 22.53 26.10 27.01 90.77 38.38 24.03 96.63

Table 10.6: Compression of the Calgary Corpus using 1-5-6-17+RL(1) after BWT.

schemes. We constructed a splay tree on the characters of the text file. Each character corresponds
to a node of the tree and has a binary code that corresponds to the path from the root to its node,
i.e., starting from the root, append 0 for each left traversal and 1 for each right traversal. Note
that as we proceed with the compression process, the tree changes dynamically and thus the codes
for characters are changing as well. Since characters can be in internal nodes, the corresponding
codes are not prefix-free. To obtain a prefix-free code, we first add a single 1 to the beginning
of each code. Then we consider the number that corresponds to this binary representation and
encode these integers using Elias encoding. Note that the code for the root character would be 1.

We can also apply alternative techniques for encoding integers proposed in Subsection 10.4.4.
We tested the RL(1)+Elias and the modified Huffman techniques. The compression percentages
obtained by applying these schemes to the text files of the Calgary Corpus after BWT are shown
in Table 10.8. According to these results, the modified Huffman algorithm is again the best
technique for encoding integers and splay trees lead to less compression compared to the best list
update algorithms.

10.5 Conclusions

We have considered a variety of list update algorithms in the context of data compression with
and without the Burrows-Wheeler transform. We observed that list update algorithms optimize
for a similar but different objective than a compressor and gave an example of an algorithm
which is a good choice for list update but not for compression. Our experiments showed that
competitive list update algorithms are not very effective as compressors without BWT, while
they perform well after BWT. We also considered several schemes for encoding the sequence of
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File Size (bytes) MTF SBR (0.5) TS FC TR MTF′ FC′

bib 111261 26.25 27.01 27.53 65.70 33.29 27.34 65.70

book1 768771 32.54 31.66 31.89 56.91 33.49 32.71 56.86

book2 610856 27.70 27.61 27.99 59.93 31.58 28.30 59.94

news 377109 33.44 34.25 34.91 64.55 39.64 34.75 64.63

paper1 53161 32.96 34.17 35.06 59.46 42.78 34.51 59.48

paper2 82199 32.39 32.75 33.30 58.72 37.65 33.33 58.67

progc 39611 33.21 34.76 35.64 62.38 44.96 34.99 64.78

progl 71646 23.43 24.82 25.53 60.39 31.22 24.91 61.83

progp 49379 23.22 25.40 26.26 62.51 34.74 25.24 62.56

trans 93695 20.42 22.99 23.84 65.59 33.45 22.51 71.19

Table 10.7: Compression of the Calgary Corpus using Modified Huffman after BWT.

integers that is obtained after applying a list update algorithm. Furthermore, we experimentally
tested the efficacy of splay trees in data compression and observed that they are not as effective
as list update algorithms.
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Figure 10.3: Relative compression ratio versus modified Huffman. For each file, Modified Huffman
equals 1.

File Size (bytes) Elias RL(1)+Elias Modified Huffman

bib 111261 37.76 35.14 31.43

book1 768771 44.91 44.94 40.40

book2 610856 38.53 37.12 33.75

news 377109 46.05 45.35 40.49

paper1 53161 43.63 43.53 38.94

paper2 82199 43.71 43.44 38.97

progc 39611 44.14 43.95 39.06

progl 71646 32.14 29.98 27.43

progp 49379 31.34 29.21 26.63

trans 93695 28.92 25.71 23.32

Table 10.8: Compression of the Calgary Corpus using splay Tree Based Schemes after BWT.
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Chapter 11

Conclusions

In this thesis we introduced several new models for analysis of online algorithms. We applied
these models to paging and list update and showed that they overcome many of the shortcomings
of competitive analysis for these problems.

In Chapter 4 we introduced Average Analysis and Bijective Analysis as two new models for
comparing the performance of online algorithms. They directly compare two algorithms on all
sequences of the same length. We proved that LRU is better than FWF according to these
models. However, all lazy paging algorithms have the same performance with respect to Bijective
Analysis and Average Analysis. By incorporating the locality of reference assumption of [6], we
proved that LRU is the unique best online paging algorithm according to Average Analysis. This
resolved a long standing open problem. In Chapter 5 we showed that Bijective Analysis reflects
influence of lookahead. Furthermore, we proved superiority of MTF to other online list update
algorithms in the presence of locality of reference.

In Chapter 6 we introduced relative interval analysis. In this model we consider the difference
between the performance of two algorithms on sequences of the same length. We compared paging
algorithms using this model. We also proved that relative interval analysis shows the effect of
lookahead for paging. An obvious open problem is filling the missing cells in Table 6.1. Another
open problem is combining relative interval analysis with a model for paging with locality of
reference.

So far, these three models have been applied to a few other online problems. Recently, Boyar
et al. [42] applied Bijective Analysis to a variant of the server problem. Paging is the only problem
studied under relative interval analysis. A remaining task for the future is to apply these models
to other online algorithms. We remark that Average Analysis, Bijective Analysis, and relative
interval analysis can be used to compare the performance of offline algorithms too. For example,
we can have two approximation algorithms with vastly different performance in practice that have
the same approximation ratio. As for competitive ratio, this can be due to the pessimistic nature
of the approximation ratio. In this case, we might get more useful information by comparing the
two algorithms using Average Analysis, Bijective Analysis, or relative interval analysis.

In Chapter 7 we applied adaptive analysis to paging and list update. We provided a few
natural definitions for the amount of locality in input sequences for paging and list update. We
then expressed the performance of well known paging and list update algorithms in terms of these
measures of locality. The performance of paging algorithms improves as we increase the size of
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the cache, while the reverse holds for competitive analysis. Also the performance of LRU is only
a constant factor worse than opt.

In Chapter 8 we further studied two existing models for paging with locality of reference.
We proved that these models are not effective if we use standard cost models, while they work
well with some alternative cost models. We also extended these locality models to a few variants
of caching. In Chapter 9 we applied adaptive analysis to two basic geometric search problems,
namely searching on the real line and looking around a corner. Our results showed that optimal
solutions in the new model are different from the standard models and are closer to what we
expect in practice. A remaining future work is to extend these ideas to more complex search
problems, e.g., exploring a polygon.

In Chapter 10 we tested the performance of various list update algorithms in the context
of data compression. We provided and analyzed results of comprehensive experiments. Our
results showed that list update algorithms are effective when used in combination with BWT and
MTF usually is the best algorithm in this context. Also splay trees are not as effective as MTF.
Furthermore, we observed that we should use a different cost model for analyzing the performance
of list update algorithms as part of a compression schema. We showed that performance of list
update algorithms can be different in this cost model. A remaining open problem is to compute
the competitive ratio of well known list update algorithms in the new cost model.
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