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Abstract

In recent years, the moments of L-functions has been a topic of growing interest in

the field of analytic number theory. New techniques, including applications of Random

Matrix Theory and multiple Dirichlet series, have lead to many well-posed theorems and

conjectures for the moments of various L-functions. In this thesis, we theoretically and

numerically examine the integral moments of quadratic Dirichlet L-functions. In particular,

we exhibit and discuss the conjectures for the moments which result from the applications

of Random Matrix Theory, number theoretic heuristics, and the theory of multiple Dirichlet

series. In the case of the cubic moment, we further numerically investigate the possible

existence of additional lower order main terms.
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Chapter 1

Introduction

Over the past 40 years, the utilization of Random Matrix Theory has lead to several ad-

vancements in the theory of L-functions. The marriage of these two theories was first

conceived by Montgomery [22] in connection with his conjecture for the two-point correla-

tions between the non-trivial zeros of the Riemann zeta function. Specifically, Montgomery

realized the intimate connection such correlations held with the eigenvalues distributions

of random unitary matrices. In recent years, correlations between the zeros of L-functions

and the eigenvalues of random unitary matrices have become more prominent, rendering

Random Matrix Theory a fundamental tool in today’s study of L-functions. For example,

in a paper of Conrey et al [11], random matrix theorems concerning the eigenvalue distri-

butions of random unitary matrices were used to verify their conjectures for the integral

moments of many different L-functions.

The L-functions of interest in this thesis are intimately connected to quadratic number

fields and their associated characters in the following respect. Let K be the quadratic

number field Q
(√

D
)

, with D 6= 0, 1 a square-free integer, and let d be the discriminant

1



of K:

d :=

D if D ≡ 1 (mod 4),

4D if D ≡ 2, 3 (mod 4).

Each such discriminant induces a corresponding character, namely, the quadratic Dirichlet

character χd(n) given by Kronecker’s extension of the Legendre symbol. To be more precise,

let n be a positive integer with prime decomposition n = pα1
1 · · · pαrr . Then(

d

n

)
=

(
d

p1

)α1

· · ·
(
d

pr

)αr
defines the Kronecker symbol of d modulo n, with each factor characterized by the Legendre

symbol

(
d

p

)
p>2 prime

=


0, if p|d

1, if p - d and x2 ≡ d (mod p) has solutions x ∈ Z,

−1, otherwise,

and the following extensions:

(
d

1

)
= 1, and

(
d

2

)
=


1, if d ≡ 1, 7 (mod 8),

−1, if d ≡ 3, 5 (mod 8),

0, otherwise.

Now, the Dirichlet L-series which these quadratic Dirichlet characters induce, namely

L(s, χd) =
∞∑
n=1

χd(n)

ns
,

is an analytic function of s ∈ C for <(s) > 1. In fact, as a result of Dirichlet’s class number

formula, L(s, χd) analytically continues to an entire function of C, and in this case, we call

this function a quadratic Dirichlet L-function.

2



The primary focus of this thesis is to study the asymptotic behavior of the expression∑
d∈D(X)

L

(
1

2
, χd

)k
. (1.1)

Here, k is a positive integer and

D(X) := {d : d is a discriminant of K with |d | ≤ X} .

Such an expression defines the integral moments of L
(

1
2
, χd
)
.

Remark. An estimate for the cardinality of D(X) is

|D(X) | = 6

π2
X +O

(
X

1
2

)
.

In fact, if D(X)+ and D(X)− denote the set of positive and negative discriminants of K

with |d | ≤ X, respectively, then∣∣D(X)+
∣∣ =

∣∣D(X)−
∣∣ =

1

2
|D(X) | = 3

π2
X +O

(
X

1
2

)
.

Several conjectures exist for the asymptotics of such moments. For instance, Keating

and Snaith [19] – motivated by the fundamental work of Katz and Sarnak [18] and based

on an analogous result in Random Matrix Theory – conjectured a formula for the leading

asymptotics of (1.1). Specifically, they conjectured that as X →∞,

1

|D(X) |
∑

d∈D(X)

L

(
1

2
, χd

)k
∼ ak

k∏
j=1

j!

(2j)!
log(X)

k(k+1)
2 , (1.2)

where ak is an arithmetic factor which, due to the efforts of Conrey and Farmer [10], takes

the form

ak =
∏
p

(
1− 1

p

) k(k+1)
2

1 + 1
p


(

1− 1√
p

)−k
+
(

1 + 1√
p

)−k
2

+
1

p

 .

This conjecture, including Conrey and Farmer’s arithmetic factor ak, agrees with theorems

of Jutila [17] for k = 1, 2 and Soundararajan [25] for k = 3.
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With respect to the full asymptotics of (1.1), the services of Random Matrix Theory

were once again enlisted when Conrey et al., in their paper [11], conjectured the following

asymptotic expansion:

∑
d∈D(∞)

L

(
1

2
, χd

)k
g(|d |) =

∑
d∈D(∞)

Qk(log |d |)
(

1 +O
(
|d |−

1
2

+ε
))

g(|d |) . (1.3)

Here, g is some suitable weight function and Qk is a polynomial of degree k(k + 1)/2

whose leading coefficient agrees with the Keating-Snaith conjecture (1.2) (under the correct

selection of g(|d |)). 1

Although Random Matrix Theory served as a fundamental tool in the above conjectures,

it is important to make note of an alternative approach. In particular, one can obtain a

similar result for the cubic moments of L
(

1
2
, χd
)

by appealing to the philosophy of multiple

Dirichlet series, as is described by Diaconu et al. in [13]. In this instance, the structure of

the asymptotics are (heuristically) derived from the polar behavior of the double Dirichlet

series

Z3(s, w) =
∑

d∈D(∞)

L(s, χd)
3

|d |w
, s, w ∈ C.

Notice the use of the word similar in the above paragraph; we motivate its use as

follows. When applying the philosophy of multiple Dirichlet series to the cubic moments of

L
(

1
2
, χd
)
, Diaconu et al. uncovered some particularly interesting structure in the associated

remainder term. Specifically, due to the functional behavior of Z(s, w), an additional lower

order term (coined an “exception main term”) of the form bX
3
4 , for some computable

constant b, comes to fruition. In fact, by building on the work of Diaconu et al. and

performing some rather complicated residue calculations, Zhang [28] further discovered

that b ≈ −.2154, provided some technical conditions involving the analytic continuation

and growth of Z3(s, w) are assumed.

1The general definition of the polynomial Qk is described in §4.1.
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Unfortunately, the existence of additional lower order terms in the asymptotics of higher

moments (k ≥ 4) remains a mystery, due to the complicated functional behavior of the

associated multiple Dirichlet series. Nonetheless, Diaconu et al. remain confident that

such terms do exist in the general moments of L
(

1
2
, χd
)
, contrasting the structure of the

remainder term conjectured by Conrey et al.

To address the viability of such conjectures, a numerical perspective is beneficial. The

computations for the moments of L
(

1
2
, χd
)

which we present in this thesis hinge on the

efficient computation of L
(

1
2
, χd
)

itself for many d values. And this computation is split

into two cases according to whether d is positive or negative. In the former case, we

exploit a useful algebraic relationship between L(s, χd) and the Dedekind zeta function

associated to quadratic fields. Once derived, we then show that the Dedekind zeta function

(evaluated at the critical point s = 1
2
) yields a computationally friendly expansion in terms

of K-bessel functions.2 The latter case focuses on more traditional methods, whereby the

functional behavior of L(s, χd) is exploited. Specifically, we calculate L
(

1
2
, χd
)

using the

corresponding smooth approximate functional equation for L(s, χd), which is representable

as a combination of certain gamma functions.

The structure of this thesis is as follows. In Chapters 2 and 3, we investigate the

computation of L
(

1
2
, χd
)

for negative and positive discriminants d, respectively. Firstly, we

derive their respective application formulas mentioned above. Secondly, for X the upper

bound appearing in (1.2), we then show that the implementation of each formula has

complexity O
(
X

3
2

+ε
)

, with the ε representing several powers of log(X). 3 In Chapter 4,

an closer examination of the conjectures by Conrey et al. and Diaconu et al is undertaken.

The former involves an heuristic derivation via the recipe set forth by Conrey et al. in

[11]. The latter conjecture is an application of the philosophy of multiple Dirichlet series.

2The K used here should not be confused with the K representing the quadratic field Q
(√

D
)

. Rather

than K-bessel function, some authors prefer to say modified Bessel function of a second kind.
3The powers of log(X) yielding the ε differ slightly in each case.
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In this instance, the functional behavior of Z3(s, w) yields an exceptional main term in

the cubic moments of L
(

1
2
, χd
)
, namely bX

3
4 for some effectively computed constant b. In

Chapter 6, we compare the various conjectures for the moments of L
(

1
2
, χd
)

numerically.

And finally, in Chapter 7, we outline three possible directions of further study.

6



Chapter 2

Computing L
(

1
2, χd

)
for d < 0

In this chapter, we introduce the Dedekind zeta function ζK(s) associated to quadratic

fields K = Q
(√

D
)

and produce a formula for computing many values of L
(

1
2
, χd
)
, d < 0,

via the algebraic identity1

ζK(s) = ζ(s)L(s, χd) . (2.1)

2.1 The Dedekind Zeta Function and Binary Quadratic

Forms

Let OK denote the ring of integers of K and for any nonzero integral ideal a ⊆ OK , let

N (a) be the absolute norm of a defined as the positive integer2 for which

aā =(N (a))OK .
1ζ(s) denotes the Riemann zeta function.
2The fact that kOK = (−k)OK for any k ∈ Z validates the restriction to only positive integers without

incurring any loss in generality.
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For a continuous variable s ∈ C, the Dedekind zeta series (associated to K) is defined by

the series3

ζK(s) =
∑

a⊆OK

1

N (a)s
, (2.2)

where the sum ranges over all nonzero integral ideals in OK .

The region of absolute convergence and the analytic continuation of ζK(s) are most

easily exhibited by first expressing ζK(s) as an infinite product over all prime ideals in OK
(Euler product) and then examining the factoring behavior of rational primes in OK . To

this end, we begin by (formally) writing

ζK(s) =
∏

p⊆OK

(
1− 1

N (p)s

)−1

. (2.3)

The (formal) existence of such an Euler product representation follows from the unique

prime factorization of ideals in OK and the completely multiplicative nature of N (which

clearly follows by definition).4

Let us now classify the factorization of rational primes in OK . First note that any

rational integer a yields N (aOK) = a2. Thus, if we consider a rational prime, say p, with

decomposition in OK given by

pOK = pe11 pe22 . . . , e1, e2, . . . ∈ Z,

then taking norms of both sides yields three possibilities:
N (p1) = N (p2) = p, if e1 = e2 = 1,

N (p1) = p2, if e1 = 1,

N (p1) = p, if e1 = 2.

(2.4)

3Notice that if K = Q, the ζK(s) = ζ(s).
4The ring of integers OK of any algebraic number field K is a Dedekind domain. Hence, any ideal

a ⊆ OK factors as a product of prime ideals (in OK) in a unique way.
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Consequently, we see that

pOK =


pq, if N (p) = N (q) = p (p splits),

p, if N (p) = p2 (p is inert),

p2, if N (p) = p (p is ramified),

which in terms of the Kronecker symbol
(
d
p

)
, reads

pOK =


pq, if and only if

(
d
p

)
= 1;

p, if and only if
(
d
p

)
= −1;

p2, if and only if
(
d
p

)
= 0.

(2.5)

Now, observe that (2.4) implies that if p is a factor in the prime factorization of pOK ,

then N (p) = p or p2. Using this fact, one can (formally) extend the Euler product of

ζK(s) to an infinite product over all rational primes in the following way. Let δp = 1 or 2

according as N (p) = p or p2. Then

ζK(s) =
∏

p

(
1− 1

N (p)s

)−1

=
∏
p

∏
p|pOK

(
1− 1

psδp

)−1

. (2.6)

The absolute convergence and analytic continuation of ζK(s) can now be readily ex-

tracted from (2.6). For the former, observe that (2.6) and the factorization of rational

primes in OK immediately yields ζK(s) ≤ ζ2(s), giving the absolute convergence of ζK(s)

for <(s) > 1. For the latter, we further decompose (2.6) in terms of the Kronecker symbol.

Namely, we write

ζK(s) =
∏
p

∏
p|pOK

(
1− 1

psδp

)−1

=
∏

( dp)=−1

(
1− 1

p2s

)−1 ∏
( dp)=1

(
1− 1

ps

)−2 ∏
( dp)=0

(
1− 1

ps

)−1

9



=
∏
p

(
1− 1

ps

)−1∏
p

1−

(
d
p

)
ps

−1

= ζ(s)L(s, χd),

where the squared factor is indicative of p splitting for
(
d
p

)
= 1. As a result, the analytic

continuation of ζK(s) mimics that of ζ(s); that is, it admits a meromorphic continuation

to all of C, with a simple pole at s = 1. 5

In conclusion, we see that ζK(s) is in fact a Dirichlet series, absolutely convergent in

<(s) > 1, which analytically continues to the entire complex plane, except for a simple

pole at s = 1. Moreover, on establishing (2.1), we see that the Dirichlet coefficients of

ζK(s) are given by the divisor sum ∑
m|n

χd(m). (2.7)

Conveniently, this divisor sum (and hence ζK(s)) can be further identified by appealing to

the theory of binary quadratic forms. Before exhibiting this identification, however, let us

digress for a moment and take time to introduce binary quadratic forms and discuss some

of their properties.

2.1.1 Binary Quadratic Forms

Let a, b, c ∈ Z and suppose that k, l are integral indeterminants. We say that a function

Q(k, l) = ak2 + bkl + cl2 =
(
k l

) a b/2

b/2 c

 k

l


is an (integral) binary quadratic form (or simply, a form) of discriminant

D := b2 − 4ac.

5The residue of the simple pole at s = 1 yielding the analytic continuation of ζK(s) is significantly more

complicated than that of ζ(s).
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For brevity, one often writes Q = (a, b, c).

First observe that D ≡ 0, 1 (mod 4) since the square of any integer is congruent to 0 or

1 modulo 4. Conversely, any integer D ≡ 0, 1 (mod 4) can be realized as the discriminant

of a form; simply take the so-called principal form(
1, D (mod 4),

D (mod 4)−D
4

)
. (2.8)

Ergo, we always know there exists at least one binary quadratic form of discriminant D.

The set of all binary quadratic forms can be partitioned into equivalence classes by

saying two forms are equivalent if there exists a unimodular substitution between. More

precisely, if two forms Q1 = (a1, b1, c1) and Q2 = (a2, b2, c2) are equivalent, written Q1 ∼

Q2, then

Q2(k, l) = Q1(rk + sl, tk + ul),

 r s

t u

 ∈ SL2(Z).

This indeed defines an equivalence relation on the set of all binary quadratic forms and

hence partitions the set of such forms into equivalence classes of equivalent forms. In fact,

∼ partitions the set of all binary quadratic forms of discriminant D, as equivalent forms

share discriminant values (as one may easily check).

By further exploiting the nature of ∼, several additional refinements to the aforemen-

tioned partition may be attained. Before witnessing such refinements, however, let us first

restrict our discussion to only forms for which D < 0. (The reason for such a restriction

is clarified below, when the notion of automorphs of forms is introduced.) Such forms

occur in two types according as the leading coefficient is positive or negative. To see this,

assume that D is not a perfect square, so that both a and c are nonzero. Then for a > 0

(resp. a < 0), Q is positive definite (resp. negative definite); that is, Q(k, l) ≥ 0 (resp.

Q(k, l) ≤ 0) for all (k, l) ∈ Z2. Indeed, on completing the square of Q to get

Q(k, l) =
1

4a

[
(2ak + bl)2 −Dl2

]
,

11



it is obvious that a determines the stated types.

Importantly, ∼ preserves integer representation. That is, if Q1 ∼ Q2, then there exists

k1, l1 ∈ Z such that Q1(k1, l1) = n ∈ Z if and only if there exists k2, l2 ∈ Z such that

Q2(k2, l2) = n. Therefore, the forms lying within a particular equivalence class will either

be all positive definite or all negative definite. Further, notice that positive and negative

definite forms are in 1-1 correspondence with the negative definite forms, the latter being

obtained from the former by the mapping (a, b, c) 7→ (−a,−b,−c). Thus, it suffices to only

consider positive definite forms of discriminant D < 0, with ∼ partitioning the set of such

forms accordingly.

Our final refinement is the link which connects the discriminants of binary quadratic

forms to the discriminants of quadratic fields. Suppose Q is a binary quadratic form

with relatively prime coefficients. Then we say that Q is primitive and call its discrim-

inant fundamental. In addition to being preserved under ∼ (as one may easily check),

the introduction of primitivity finds substance in the fact that fundamental discriminants

correspond identically to discriminants of quadratic fields. Therefore, since the Dirichlet

coefficients of the Dedekind zeta function involves the quadratic Dirichlet character χd(n)

indexed by discriminants of quadratic fields, the primitivity refinement is justified.

In conclusion, the binary quadratic forms of relevance in this thesis are the primitive,

positive definite forms of negative fundamental discriminant d.

2.1.2 Connecting ζK(s) and Binary Quadratic Forms

Let us now establish the aforementioned connection between the Dedekind zeta function

and binary quadratic forms. To begin with, we define the class number associated to

d as the number of equivalence classes of primitive, positive definite forms of negative

fundamental discriminant d. Importantly, h(d) is a finite positive number. Certainly,

12



h(d) is positive since the principal forms (2.8) always exist and hence define the so-called

principal class. For finiteness, we use the following theorem of Lagrange.

Theorem 2.1 (Lagrange). Each equivalence class of primitive, positive definite forms of

negative fundamental discriminant d contains at least one form, say Q = (a, b, c), for which

|b | ≤ a ≤ c.

With this theorem in hand, observe that if Q =(a, b, c) is a primitive, positive definite

form of discriminant d < 0, then

|d | = 4ac− b2 ≥ 3a2 =⇒ a ≤
√
|d |
3
.

Hence, by Theorem 2.1, there are only finitely many values for a and b. Moreover, as c is

determined by the equation

c =
b2 + |d |

4a
,

we see that c is also finite.

Now, suppose Q1, . . . , Qh(d) are representatives for the h(d) equivalence classes of prim-

itive, positive definite forms of negative fundamental discriminants d. Let rQ(n) denote

the number of representations of n ∈ Z by a form Q, i.e., the number of pairs (k, l) ∈ Z2

with Q(k, l) = n. Put

r(n) =

h(d)∑
j=1

rQj(n).

As part of Dirichlet’s original proof of his class number formula, it was revealed that

r(n) = ω
∑
m|n

χd(m), (2.9)

where

ω =


2, if d < −4,

4, if d = −4,

6, if d = −3.

(2.10)
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Two equivalent interpretations of ω exist. In algebraic number theory, ω represents

the number of roots of unity in the quadratic field of discriminant d. Alternatively, ω

represents the number of automorphs of a binary quadratic form of discriminant d; that

is, the number of forms which, under ∼, are self-equivalent.6

Notice that the divisor sum appearing in (2.9) is precisely the Dirichlet coefficient of

ζK(s). As a result, the following alternative representation of ζK(s) exists:

ζK(s) =
1

ω

∑
n≥1

r(n)

ns
=

1

ω

h(d)∑
j=1

∑
n≥1

rQj(n)

ns
. (2.11)

As a final observation, we further identify the right hand side of (2.11) by introducing

another Dirichlet series. Specifically, let Q be a binary quadratic form. Then the Epstein

zeta series associated to Q is given by

ζQ(s) =
∑′ 1

Q(k, l)s
, <(s) > 1,

where
∑′ denotes the sum over all pairs (k, l) ∈ Z2, (k, l) 6= (0, 0). Importantly, one can

easily observe that

ζQj(s) =
∑
n≥1

rQj(n)

ns

for each Qj in our representative set of forms listed above. Therefore, on appeal to (2.11),

we obtain

ζK(s) =
1

ω

h(d)∑
j=1

ζQj(s). (2.12)

6For details, see [12, Chapter 6].
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2.2 ζK(s) as a Series of K-Bessel Functions

In this section, we derive a rapidly convergent expansion for ζK(s) in terms of K-Bessel

functions via the Epstein zeta function ζQ(s). Specifically, define

B(s) =
8πs2s−

1
2

a
1
2 |d |

(2s−1)
4 Γ(s)

∑
n≥1

ns−
1
2σ1−2s(n) cos

(
πnb

a

)
Ks− 1

2

(
πn |d |

1
2

a

)
, (2.13)

where σ is the divisor sum function

σν(n) =
∑
r|n

rν , (2.14)

Γ is the gamma function

Γ(z) =

∫ ∞
0

tz−1e−tdt, <(z) > 0, (2.15)

and Kν is the K-Bessel function

Kν(z) =
1

2

∫ ∞
0

exp

(
−z

2

(
y +

1

y

))
yν−1dy, <(z) > 0. (2.16)

Then we aim to prove the following result.

Theorem 2.2 (Chowla-Selberg). Let Q = (a, b, c) be a primitive, positive definite binary

quadratic form of negative fundamental discriminant d. Then ζQ(s) analytically continues

to all s ∈ C, except for a simple pole at s = 1, and satisfies

ζQ(s) =
2ζ(2s)

as
+

2as−1π
1
2 Γ
(
s− 1

2

)(
|d |

1
2 /2

)2s−1

Γ(s)
ζ(2s− 1) +B(s) . (2.17)

Remark 1. The simple pole at s = 1 being claimed in Theorem 2.2 emanates from the

ζ(2s− 1) factor. The only other possible pole can occur at the simple pole s = 1
2

of ζ(2s).

As our goal is to eventually specialize to the critical point s = 1
2
, we must somehow ensure

that ζQ(s) does not diverge at this point. Fortunately, this pole is not problematic in this

respect and is effectively handled in the proof of Theorem 2.4 below.
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Remark 2. The proof we present here follows the one given by Chowla and Selberg in

[5], whereby the derivation mimics Riemann’s classical proof of the functional equation for

ζ(s).

For ζK(s), we appeal to (2.12) and immediately deduce that:

Theorem 2.3. Let Q1, . . . , Qh(d) be representatives for the h(d) equivalence classes of prim-

itive, positive definite binary quadratic forms of negative fundamental discriminant d, with

Qj =(aj, bj, cj) for 1 ≤ j ≤ h(d). Then ζK(s) admits the following expansion:

ζK(s) =
1

ω

h(d)∑
j=1

2ζ(2s)

asj
+

2as−1
j π

1
2 Γ
(
s− 1

2

)(
|d |

1
2 /2

)2s−1

Γ(s)
ζ(2s− 1) +B(s)

 . (2.18)

Remark. Although the analytic continuation of ζK(s) to all s ∈ C was previously estab-

lished in §2.1, notice that the combination of Theorem 2.2 and equation (2.12) provides

further justification.

Proof of Theorem 2.2. Assume that <(s) > 1. By distinguishing the term corresponding

to l = 0, observe that

ζQ(s) =
∑′ 1

Q(k, l)s
=

2ζ(2s)

as
+
∑
k∈Z

∑
l∈Z

′ 1

(ak2 + bkl + cl2)s
,

where
∑′ indicates that l = 0 has been removed. Further, on factoring out a−s and

completing the square, the double sum becomes

1

as

∑
k∈Z

∑
l∈Z

′
[(
k +

lb

2a

)2

+
l2 |d |
4a2

]−s
. (2.19)

Label the double sum in (2.19) by F (s). Then we have

ζQ(s) =
2ζ(2s)

as
+

1

as
F (s). (2.20)
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The key at this step is to follow Riemann’s proof of the functional equation of ζ(s). To

this end, we introduce the gamma factor π−sΓ(s) and consider the expression

π−sΓ(s)F (s) =
1

πs

∫ ∞
0

ts−1e−t

(∑
k∈Z

∑
l∈Z

′
[(
k +

lb

2a

)2

+
l2 |d |
4a2

]−s)
dt. (2.21)

If we now substitute

t =

[
π

(
k +

lb

2a

)2

+ π
l2 |d |
4a2

]
x,

we get

π−sΓ(s)F (s) =

∫ ∞
0

xs−1
∑
k∈Z

∑
l∈Z

′
exp

(
−

[
π

(
k +

lb

2a

)2

+ π
l2 |d |
4a2

]
x

)
dx

=

∫ ∞
0

xs−1
∑
l∈Z

′
exp

(
−πl

2 |d |
4a2

x

)∑
k∈Z

exp

(
−π
(
k +

lb

2a

)2

x

)
dx.

Using the identity∑
n∈Z

exp
(
−(n+ α)2πx

)
=

1√
x

∑
n∈Z

exp

(
−n

2π

x

)
cos(2πnα)

on the second sum gives∫ ∞
0

xs−1
∑
l∈Z

′
exp

(
−πl

2 |d |
4a2

x

)(
1√
x

∑
k∈Z

exp

(
−πk

2

x

)
cos

(
πklb

a

)
dx

)
Further, by distinguishing the term corresponding to k = 0 and using symmetry, we have

π−sΓ(s)F (s) = 2

∫ ∞
0

xs−
3
2

∑
l≥1

exp

(
−πl

2 |d |
4a2

x

)
dx

+ 4

∫ ∞
0

xs−
3
2

∑
k,l≥1

exp

(
−πl

2 |d |
4a2

x− πk2

x

)
cos

(
πklb

a

)
dx. (2.22)

Now, let I1 and I2 denote the former and latter integrals in (2.22), respectively. For I1,

observe that (
4a2

π |d |

)s− 1
2

Γ

(
s− 1

2

)
1

l2s−1
=

(
4a2

π |d |

)s− 1
2
∫ ∞

0

ts−1e−t
1

l2s−1
dt

=

∫ ∞
0

xs−
3
2 exp

(
−πl

2 |d |
4a2

x

)
dx,
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on substitution of

t =
πl2 |d |

4a2
x.

Thus, on summing over l ≥ 1, we obtain

I1 =

(
4a2

π |d |

)s− 1
2

Γ

(
s− 1

2

)
ζ(2s− 1) .

For I2, we substitute

x =
2ak

l |d |
1
2

y,

and get

I2 =

(
2a

|d |
1
2

)s− 1
2 ∫ ∞

0

ys−
3
2

∑
k,l≥1

(
k

l

)s− 1
2

cos

(
πklb

a

)
exp

(
−
πkl
√
|d |

2a

[
y +

1

y

])
dy

=
2 · (2a)s−

1
2

|d |
(2s−1)

4

∑
k,l≥1

(
k

l

)s− 1
2

cos

(
πklb

a

)
Ks− 1

2

(
πkl |d |

1
2

a

)
.

Further, if we let kl = n ≥ 1, then

∑
kl=n

(
k

l

)s− 1
2

=
∑
kl=n

(kl)s−
1
2

l2s−1
= ns−

1
2σ1−2s(n) . (2.23)

Hence, I2 becomes

I2 =
2 · (2a)s−

1
2

|d |
(2s−1)

4

∑
n≥1

ns−
1
2σ1−2s(n) cos

(
πnb

a

)
Ks− 1

2

(
πn |d |

1
2

a

)
.

Therefore, on combining the formulas for I1 and I2, dividing through by the gamma

factor π−sΓ(s), and plugging the resulting expression for F (s) back into (2.20), we obtain

(2.17) as desired.
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2.3 Application Formula for L
(

1
2, χd

)
As we intend to study the integral moments of L

(
1
2
, χd
)

in this thesis, let us now specialize

to s = 1
2

and formulate the desired result. To this end, let γ denote Euler’s constant:

γ = lim
m→∞

(
m∑
n=1

1

n
− logm

)
= −

∫ ∞
0

e−t log tdt; (2.24)

let σ0(n) be the number of positive divisors of an integer n ≥ 1:

σ0(n) =
∑
r|n

1;

and let K0(z) be the K-bessel function

K0(z) =

∫ ∞
1

exp

(
−z

2

(
y +

1

y

))
y−1dy, <(z) > 0.

Then, we have:

Theorem 2.4. For Q = (a, b, c) a primitive, positive definite binary quadratic form of

negative fundamental discriminant d, we have

ζQ

(
1

2

)
=

2

a
1
2

(
γ + log

(
|d |

1
2

8πa

))

+
8

a
1
2

∑
n≥1

σ0(n) cos

(
πnb

a

)
K0

(
πn |d |

1
2

a

)
. (2.25)

Consequently, we may appeal to (2.12) yet again and immediately deduce the following

theorem.

Theorem 2.5. Suppose Q1, . . . , Qh(d) are representative forms adhering to the description

given in Theorem 2.3. Then we have

ζK

(
1

2

)
=

1

ω

h(d)∑
j=1

 2

a
1
2
j

(
γ + log

(
|d |

1
2

8πaj

))

+
8

a
1
2
j

∑
n≥1

σ0(n) cos

(
πnbj
aj

)
K0

(
πn |d |

1
2

aj

) . (2.26)
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Remark 1. Notice that the limits of integration in the definition of K0 differ from the

general definition (2.16). Indeed, if we write

K0(z) =
1

2

(∫ 1

0

+

∫ ∞
1

)
exp

(
−z

2

(
y +

1

y

))
1

y
dy,

and observe that under the substitution u = y−1,∫ 1

0

exp

(
−z

2

(
y +

1

y

))
1

y
dy =

∫ ∞
1

exp

(
−z

2

(
u+

1

u

))
1

u
du,

then K0 is precisely as presented in Theorem 2.4.

Remark 2. Notice that on appeal to (2.1), Theorem 2.5 now yields

L

(
1

2
, χd

)
=

1

ζ
(

1
2

)ζK(1

2

)
=(−0.68476523608994) ζK(s), (2.27)

giving a nice application formula for calculating values of L
(

1
2
, χd
)
.

Proof of Theorem 2.4. Observe that the last term appearing in (2.25) is simply B
(

1
2

)
,

since B(s) is free of poles at s = 1
2
.

The realization of the leading term in (2.25) is far less obvious and ultimately requires

the cancellation of the simple pole at s = 1
2

emanating from ζ(2s) factor. To accomplish this

cancellation, we express the leading terms of (2.17) in terms of their Laurent expansions

about s = 1
2
. In effect, the Laurent expansion for the second term in (2.17) reveals an

additional simple pole at s = 1
2
, one which negates the existence of a simple pole at s = 1

2

in the expression

2ζ(2s)

as
+

2as−1π
1
2 Γ
(
s− 1

2

)(
|d |

1
2 /2

)2s−1

Γ(s)
ζ(2s− 1) .

To observe these circumstances more explicitly, we let s = 1
2
+ε with ε→ 0 and establish

the following list of expansions:

(1)
2

as
=

2

a
1
2

+ε
=

2

a
1
2

(1− ε log a+ · · · ).
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(2) ζ(2s) = ζ(1 + 2ε) =
1

2ε
+ γ + · · · .

(3) 2π
1
2as−1 = 2π

1
2a−

1
2

+ε =
2π

1
2

a
1
2

(1 + ε log a+ · · · ).

(4)

(
|d |

1
2

2

)1−2s

=

(
|d |
4

)−2ε

= 1− ε log

(
|d |
4

)
+ · · · .

(5) Γ

(
s− 1

2

)
= Γ(ε) =

1

ε
(1− γε+ · · · ).

(6)
1

Γ(s)
=

1

Γ
(

1
2

+ ε
) =

1

π
1
2

(1 +(2 log 2 + γ) ε+ · · · ).

(7) ζ(2s− 1) = ζ(2ε) = −1

2
− ε log(2π) +O

(
ε2
)
.

Suppose, for the moment, that we expansions (1)-(7) at our disposal. Observe that

lim
s→ 1

2

2ζ(2s)

as
= lim

ε→0

[
2

a
1
2

(1− ε log a+ · · · )
(

1

2ε
+ γ + · · ·

)]
= lim

ε→0

[
1

a
1
2 ε

+
2γ

a
1
2

− log a

a
1
2

]
,

on combining (1) and (2). Further, on combining (3)-(7) and expanding the resulting

product, the second term in (2.17) has an ε−1 term of the form

lim
ε→0

[
2π

1
2

a
1
2

· 1

ε
· 1

π
1
2

· −1

2

]
= lim

ε→0
− 1

a
1
2 ε
,

and a constant term of the form

lim
ε→0

[
− 1

a
1
2

(
log a− γ − log

(
|d |
4

)
+ 2 log 2 + γ + 2 log 2π

)]
=

1

a
1
2

log

(
|d |

64π2a

)
.
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Consequently, the poles of the two leading terms in (2.17) (i.e. the ε−1 terms) cancel and

we obtain

lim
s→ 1

2

2ζ(2s)

as
+

2as−1π
1
2 Γ
(
s− 1

2

)(
|d |

1
2 /2

)2s−1

Γ(s)
ζ(2s− 1)

 =
2γ

a
1
2

− log a

a
1
2

+
1

a
1
2

log

(
|d |

64π2a

)

=
2

a
1
2

(
γ + log

(
|d |

8π2a2

))
.

Therefore, on plugging this expression and B
(

1
2

)
into (2.17), we obtain (2.25).

So, it remains to prove expansions (1)-(7). Expansions (1), (3), and (4) follow from

writing tz = ez log t (z ∈ C) and expanding using the power series expansion for ez.

For expansion (2), recall that ζ(z) admits a meromorphic continuation to all of C with

a simple pole of residue 1 at z = 1. Such information is encoded in its Laurent series

expansion about z = 1:

ζ(z) =
1

z − 1
+
∑
n≥0

(−1)n

n!
γn(z − 1)n, (2.28)

where

γn = lim
m→∞

(
m∑
k=1

logn(k)

k
− logn+1(m)

n+ 1

)
are called the Stieltjes constants. So, on replacing z with 1+2ε, where 1+2ε→ 1 as ε→ 0,

we see that the Laurent expansion for ζ(2z) about z = 1
2

+ ε is precisely expansion (2) (at

least the first two terms are clear from this analysis).

Next, recall that

Γ(z) =

∫ ∞
0

tz−1e−tdt, <(z) > 0,

which on appeal to the well-known functional Γ(z) = 1
z
Γ(z + 1) reads

Γ(z) =
1

z

∫ ∞
0

tze−tdt.
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To obtain (5), we begin by expanding tz as follows:

tz = ez log t =
∞∑
k=0

(z log t)k

k!
.

Recall that the exponential function ez has an infinite radius of convergence (when viewed

as a power series) and converges uniformly for any bounded subset of C. As a result, we

may pass the integral through the summation and obtain

Γ(z) =
1

z

∞∑
k=0

zk

k!

∫ ∞
0

e−t logk(t)dt =
1

z
(1− γz + · · · ) , (2.29)

from which expansion (5) follows on taking z = ε.

To obtain expansion (6), we consider the following Maclaurin series expansion:

1

Γ
(

1
2

+ ε
) =

1

Γ
(

1
2

) +

[(
1

Γ
(

1
2

+ ε
))′ (0)

]
ε+ · · · = 1

Γ
(

1
2

)(1−
Γ′
(

1
2

)
Γ
(

1
2

) ε+ · · ·

)
.

First note that Γ
(

1
2

)
=
√
π, as is immediately obvious on appeal to the well-known formula

Γ(z)Γ(1− z) =
π

sin(πz)
.

Further, by using the Weierstrass product formula

1

Γ(z)
= zeγz

∞∏
n=1

(
1 +

z

n

)
e−z/n,

one can write

− log Γ(z) = log z + γz +
∞∑
n=1

(
log
(

1 +
z

n

)
− z

n

)
.

Thus, on differentiating both sides with respect to z, we get

−Γ′(z)

Γ(z)
=

1

z
+ γ +

∞∑
n=1

(
1

1 + z
n

· 1

n
− 1

n

)
=

1

z
+ γ +

∞∑
n=1

(
1

n+ z
− 1

n

)
,

which at z = 1
2

yields

−
Γ′
(

1
2

)
Γ
(

1
2

) = 2 + γ + 2

(
∞∑
n=1

(−1)n+1

n
− 1

)
= 2 + γ + 2(log 2− 1) = 2 log 2 + γ,
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as desired.

Finally, let us establish expansion (7). Consider the following version of the functional

equation for ζ(z):

ζ(1− z) = 2(2π)−z cos
(π

2
z
)

Γ(z)ζ(z).

Solving for ζ(z) and plugging in 2ε then gives

ζ(2ε) =
1

2
·(2π)2ε · sec(πε) · 1

Γ(2ε)
· ζ(1− 2ε)

=
1

2
(1 + 2ε log(2π) + · · · ) ·

(
1 +

1

2
(πε)2 + · · ·

)
1

Γ(2ε)
· ζ(1− 2ε)

=
1

2
(1 + 2ε log(2π)) ·

(
1 +O

(
ε2
)) 1

Γ(2ε)
ζ(1− 2ε)

where we have invoked the power series expansions

(2π)2ε =
∞∑
n=0

(2ε log(2π))n

n!
and secx = 1 +

1

2
x2 +

5

24
x4 + · · · .

Now, by the Laurent series expansion (2.28) for ζ(z), we have

ζ(1− 2ε) = − 1

2ε
+ γ +O(ε) = − 1

2ε

(
1− 2γε+O

(
ε2
))
.

Further, on appeal to (2.29) we have

1

Γ(2ε)
=

2ε

1− 2γε+O(ε2)
.

Therefore, the quotient ζ(1− 2ε)/Γ(2ε) yields a contribution of -1 and we are left with

ζ(2ε) = −1

2
(1 + 2ε log(2π)) ·

(
1 +O

(
ε2
))

= −1

2
− ε log(2π) +O

(
ε2
)
,

as required.

2.4 Analysis of Implementation

Given a negative fundamental discriminant d, the computation of L
(

1
2
, χd
)

is now a rel-

atively easy application of formula (2.27). However, as we intend to compute L
(

1
2
, χd
)
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for large sets of negative discriminants, the need for efficiency (in addition to accuracy)

is paramount. To avoid possible inefficiencies, we analyze the implementation more rigor-

ously. Such an analysis is based on several factors, including the incorporation of various

mathematical tools, the implementation of numerous hacks (both trivial and clever), and

a thorough understanding of how the CPU interprets, and inevitably executes, the code.

For the moment, however, let us ignore such intricacies and focus on providing a broader

description of the program. We begin by considering many negative fundamental discrim-

inants simultaneously. Specifically, we let 0 < |d | ≤ X for some X and partition the

interval into blocks, say X1 ≤ |d | ≤ X2, of length ∆X = X2 −X1. We then search for all

integers a, b, c satisfying the following properties:

|d | = 4ac− b2, 0 < a ≤
√
X2

3
, 0 ≤ |b | ≤ a ≤ c,

b2 +X1

4a
≤ c ≤ b2 +X2

4a
.

The motivation for employing such criteria is as follows. Suppose we have found a triple

(a, b, c) satisfying each of the above constraints. Then the binary quadratic form furnished

by these coefficients (in addition to being primitive, positive definite and having negative

fundamental discriminant d) is said to be reduced. Importantly, each equivalence class of

primitive, positive definite binary quadratic forms of negative fundamental discriminant

d contains one and only one reduced form. Therefore, since the implementation of our

application formula (2.27) inevitably requires the selection of a representative set of forms,

we see that considering only reduced forms suffices here.

Now, suppose Qj = (aj, bj, cj), 1 ≤ j ≤ h(d), are the reduced forms which constitute

a representative set for the h(d) equivalence classes of primitive, positive definite binary

quadratic forms of negative fundamental discriminant d. Provided we make the ratio

|d |
1
2/aj large for each 1 ≤ j ≤ h(d), ζK

(
1
2

)
can be accurately approximated using (2.26).

This follows from the exponential decay of K0(x) as x→∞. Indeed, if one writes

y +
1

y
=
(
y

1
2 − y−

1
2

)2

+ 2,
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then on making the substitution u = x
1
2

(
y

1
2 − y− 1

2

)
, one can observe that

|K0(x) | ≤ 2e−x√
x

∫ ∞
0

e−
u2

2 · 1

y

(
y−

1
2 + y−

3
2

)−1

du ≤ e−x√
x

∫ ∞
0

e−
u2

2 du,

since 1
y

(
y−

1
2 + y−

3
2

)−1

≤ 1
2
. Moreover, we have∫ ∞

0

e−
u2

2 du =

√
π

2
.

For observe that ∫ ∞
0

e−
u2

2 du =
1

2

∫ ∞
−∞

e−
u2

2 du =

√
π

2
,

as (∫ ∞
−∞

e−
u2

2 du

)2

=

∫ ∞
−∞

∫ ∞
−∞

e−
(u2+v2)

2 dudv =

∫ 2π

0

∫ ∞
0

e−
r2

2 rdrdθ = 2π.

Therefore, we obtain

|K0(x) | ≤
√

π

2x
e−x, as x→∞, (2.30)

giving us exponential decay as claimed.

With this exponential decay comes many computational conveniences. For example,

only 7 terms of the K-Bessel sum in (2.26) are needed to obtain 16 digits precision. To

see this, simply consider the extreme case |d | = 3 (so a = 1) and use (2.30) to (crudely)

observe that

n ≥
⌈

16 log(10)√
3π

⌉
= 7 =⇒

∣∣∣K0

(
πn
√

3
)∣∣∣ ≤ 10−16. (2.31)

Furthermore, we can avoid the integration associated with the K-Bessel function itself by

using a precomputed table of Taylor series expansions. As the size of |d |
1
2/aj is in direct

correlation with the rate of decay, the number of terms needed in the Taylor expansion is

governed by this quantity. More precisely, if we want Digits precision, then the number of

terms in the Taylor expansion is roughly

aj(Digits) log(10)

π |d |
1
2

, (2.32)

for a given 1 ≤ j ≤ h(d).
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2.4.1 Hacks

By the preceding comments, it is evident that the exponential decay of the K-Bessel func-

tion removes accuracy as an obstacle. Efficiency, however, requires more ingenuity and

tricks of implementation, as well as some familiarity with the interaction between the pro-

cesses of fetching data from RAM and accessing the CPU cache. We begin by taking note

of the following useful hacks.

Trivial Hacks.

• Since cos(x) is an even function and bj gets squared in the discriminant equation

|d | = 4ajcj − b2
j , we can group ±bj together and restrict to only non-negative bj

values.

• Terms such as
2

a
1
2
j

(γ − log(8πaj))

appearing in the leading term of (2.26), depend solely on aj. As such, it is to our

advantage to compute this, and all other terms depending solely on aj, outside the bj

and cj loops. Similarly, we compute expressions like gcd(aj, bj) outside the cj loop,

and so on.

• For a given aj, bj, only one cosine needs to be computed. Indeed, given cos
(
πbj
aj

)
, we

can compute cos
(
πnbj
aj

)
, for n = 1, 2, . . . , 7, using standard trigonometric identities.

For instance, the double angle identity computes the expression for n = 2.

• It is a well-known fact that performing divisions in computer programming require

(on average) twice as many arithmetic operations than multiplication. Consequently,

it is favorable to avoid divisions where possible.
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• Experiment with the compiler. A compiler will not optimize your code; the structure

of the program and the types of tools being employed ultimately determines the

amount of time the compiled program needs to perform arithmetic operations and

access RAM and/or CPU cache. For instance, sometimes it is more effective to use

pointers to arrays rather than fetching data from RAM in accordance with array

indices.

Clever Hacks.

• To test for primitivity, we must compute gcd(aj, bj, cj) for each 1 ≤ j ≤ h(d). Such

gcd computations can cause a bottleneck if handled incorrectly (as witnessed by

profiling the code). However, if one computes gaj ,bj := gcd(aj, bj) outside the cj

loop as previously mentioned, then for a given gaj ,bj , we can compute one gcd per cj

(mod gaj ,bj) and obtain7

gcd(aj, bj, cj) = gcd
(
gaj ,bj , cj (mod gaj ,bj)

)
.

• An expensive procedure in programming is non-sequential array accessing. When

reading an array, the computer loads blocks of consecutive bytes of an array from

RAM into the CPU’s cache. For this reason, it is much faster to simply access the

CPU’s cache rather than fetching data from RAM. For instance, in the cj loop, the

values of d are decremented by 4aj in accordance with d = b2
j − 4ajcj, leading to a

potentially large decrease in d. Thus, given an array containing the values of L
(

1
2
, χd
)
,

one should ‘prefetch’ the next value of L
(

1
2
, χd
)
, corresponding to the decremented

d, in anticipation of d being decreased in such a way. C++ contains the necessary

tools to perform such a prefetch and should thus be employed accordingly.

7An extra improvement could be achieved here by sieving through a table of factors. However, this

simple hack removes the gcd computation as a bottleneck, so it suffices.
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• It is advantageous to precompute a table of logarithms for the log(|d |) factor ap-

pearing in (2.26). In this instance, however, both fetching and prefetching from the

resulting log table are expensive. Fortunately, we can alleviate some of the cost here

by storing L
(

1
2
, χd
)

and log |d | together as a pair (in a ‘struct’). In doing so, a single

prefetch is needed to obtain both values at once.8

• Since we partitioned the interval 0 < |d | ≤ X into blocks X1 ≤ |d | ≤ X2, it is

efficient to distribute the blocks across several processors. This will be justified later

when we show that the speed at which the program runs is inversely proportional to

the size of ∆X = X2 −X1.

2.4.2 Complexity

Given that we partition the domain 0 < |d | ≤ X into uniform blocks of length ∆X and the

fact that for each such d < 0 we search for every triple (a, b, c) yielding a reduced form of

discriminant d, it is quite clear that the computation of L
(

1
2
, χd
)

for many values of d < 0

involves four main loops; namely, the loops corresponding to d, a, b, and c, in that order.

Here we investigate the amount of work needed to execute this computation, ultimately

leading us to establish the previously claimed complexity O
(
X

3
2

+ε
)

.

To begin with, there is a natural contribution to the complexity which arises from

the aggregate of all constant-time calculations (i.e., O(1) computations). To quantify this

contribution, and for the convenience of arguments to follow, it is conducive to (more

explicitly) partition the domain 0 < |d | ≤ X as follows:

0, . . . ,∆X︸ ︷︷ ︸
Block 1

,∆X + 1, . . . , 2∆X︸ ︷︷ ︸
Block 2

, . . . , (m− 1)∆X + 1, . . . ,m∆X︸ ︷︷ ︸
Block m

, . . . ,

8On combining the last two hacks, the overall running time of the program sped up by a factor of 2

and the array access portion sped up by a factor of 4.
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where ∆X is some predetermined block length and the number of blocks (up to X) is given

by X
∆X

. 9 So, if Lneg denotes the overall length of all loops, then we have

Lneg =
∑

m≤ X
∆X

∑
a≤
√

m∆X
3

∑
b≤a

∑
cm−1<c≤cm

1,

where m, a ≥ 1, b ≥ 0, and

cm−1 =
b2 + (m− 1)∆X

4a
, cm =

b2 +m∆X

4a
.

We now observe that

Lneg ≤
∑

m≤ X
∆X

∑
a≤
√

m∆X
3

∑
b≤a

∆X

4a
≤ ∆X

4

∑
m≤ X

∆X

∑
a≤
√

m∆X
3

2 =
∆X

2

∑
m≤ X

∆X

⌊√
m∆X

3

⌋
,

where by using the notation bxc = x − {x}, with 0 ≤ {x} < 1 the fractional part of x,

further evaluation yields

Lneg ≤
∆X

3
2

2
√

3

∑
m≤ X

∆X

√
m.

Finally, we appeal to the simple integral bound

M∑
m=1

√
m ≤

∫ M

1

√
xdx =

2

3

(
M

3
2 − 1

)
(2.33)

to get

Lneg ≤
∆X

3
2

3
√

3

[(
X

∆X

) 3
2

− 1

]
≤ X

3
2

3
√

3
, (2.34)

from whence it follows that Lneg = O
(
X

3
2

)
.

9Note that
⌈
X

∆X

⌉
yields a more precise quantity for the number of blocks. However, in our computations

we shall institute that the choice of ∆X be made privy to the condition X
∆X ∈ Z, in which case

⌈
X

∆X

⌉
= X

∆X .

Moreover, to achieve the desired complexity O
(
X

3
2 +ε
)

, we will eventually take ∆X = O
(√

X
)

, so it is

good to keep this in mind.
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Further O(1) computations include the K-Bessel expansion associated to ζK
(

1
2

)
and the

arithmetic involved in checking for fundamental discriminants. The former follows from

the fact that the Taylor series expansion invoked only requires

aDigits log(10)

π |d |
1
2

terms to achieve Digits precision, with each such term only needing simple arithmetic

operations. For the latter check, we simply note that given any integer in our block, say d,

it is only a constant-time computation to check if d is a fundamental discriminant, i.e. to

check if d or d/4 is square-free and then perform the necessary modular arithmetic checks.

Thus, since each individual check requires O(1) work, the entire checking process (for each

block) requires O(∆X) work. Indeed, to keep track of the fundamental discriminants, we

must initialize an array of length ∆X for each block. Therefore, across all blocks the work

is given by

O

(
∆X · X

∆X

)
= O(X) ,

which gets swallowed by O
(
X

3
2

)
contribution previously established.

Besides these constant-time computations, the only other significant contribution to the

overall complexity emanates from the gcd computations. As explained in the hacks listed

above, for each triple (a, b, c) we compute gcd(a, b, c) by first computing ga,b := gcd(a, b)

outside the c-loop and then computing gcd(ga,b, c (mod ga,b)) inside the c-loop, with the

latter calculation being performed at most once per residue class modulo ga,b. Following

these instructions, we begin by computing ga,b using the Euclidean algorithm, whose run-

time is well-known to be O
(
log2X

)
(since a crude approximation for the binary length of

both a and b is log
√
X). Therefore, the contribution for computing ga,b is

O

log2X
∑

m≤ X
∆X

∑
a≤
√

m∆X
3

a

 = O

log2X
∑

m≤ X
∆X

m∆X

 = O

(
X2 log2X

∆X

)
,
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where we have twice applied the asymptotic formula∑
a≤x

a =
bxc(bxc+ 1)

2
=
x2

2
+O(x) . (2.35)

Next, to compute gcd(ga,b, c (mod ga,b)) we initialize an array of residues modulo ga,b

to 0. Since there are precisely ga,b such residues, this initialization requires

O

 ∑
m≤ X

∆X

∑
a≤
√

m∆X
3

∑
b≤a

ga,b


work. We now claim that∑

a≤x

∑
b≤a

ga,b =
x2 log x

2ζ(2)
+O

(
x2
)

=
3

π2
x2 log x+O

(
x2
)
. (2.36)

To see this, we first distinguish the b = 0 term to give∑
a≤x

∑
b≤a

ga,b =
∑
a≤x

a+
∑
a≤x

∑
b≤a

′
ga,b =

x2

2
+
∑
a≤x

∑
b≤a

′
ga,b +O(x) ,

where
∑′ indicates the removal of the b = 0 term. The inner sum

∑
b≤a

′ga,b, which we shall

denote P (a), is called Pillai’s arithmetic function, named after S. S. Pillai, who first intro-

duced these sums in [23]. It was in this paper that Pillai discovered an intimate connection

between P (a) and Euler’s totient function φ. Specifically, he proved the following identity:

P (a) =
∑
k|n

a

k
φ(k).

Indeed, every term which appears in P (a) is a factor of a. Moreover, each such factor, say

g, appears precisely φ
(
a
g

)
times. This clearly follows from the well-known property that

ga,b = g if and only if g|a, g|b, and gcd
(
a
g
, b
g

)
= 1. Therefore, by extending this argument

over all divisors of a, we obtain

P (a) =
∑
g|a

gφ

(
a

g

)
=
∑
k|a

a

k
φ(k).
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Now, write ∑
a≤x

P (a) =
∑
a≤x

∑
k|a

a

k
φ(k) =

∑
a≤x

(f ∗ h) (a),

where for f(n) = n and h(n) = φ(n), f ∗ h denotes the Dirichlet convolution

(f ∗ h) (a) =
∑
k|a

f
(a
k

)
h(k).

Further, let e = f ∗ h and define

E(x) =
∑
n≤x

e(n), F (x) =
∑
n≤x

f(n), and H(x) =
∑
n≤x

h(n).

Then, by the generalized Dirichlet convolution [1]

E(x) =
∑
n≥x

f(n)H
(x
n

)
=
∑
n≤x

h(n)F
(x
n

)
,

we have ∑
a≤x

∑
k|a

a

k
φ(k) =

∑
a≤x

P (a) = E(x) =
∑
a≤x

φ(a)F
(x
a

)
,

where

F (x) =
∑
n≥x

n =
x2

2
+O(x) .

Consequently, we have

∑
a≤x

P (a) =
∑
a≤x

φ(a)

[
1

2

(x
a

)2

+O
(x
a

)]
=
x2

2

∑
a≤x

φ(a)

a2
+O

(
x
∑
a≤x

φ(a)

a

)
,

where by employing the asymptotic formulae [1]

(1)
∑
a≤x

φ(a)

a
=

x

ζ(2)
+O(log x), and

(2)
∑
a≤x

φ(a)

a2
=

log x

ζ(2)
+ C +O

(
log x

x

)
, where C is a constant,
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we obtain (2.36).

Appealing to (2.36), we see that the work associated with initializing the array of

residues modulo ga,b is given by

O

 ∑
m≤ X

∆X

∑
a≤
√

m∆X
3

∑
b≤a

ga,b

 = O

 ∑
m≤ X

∆X

m∆X log(m∆X)


= O

∆X
∑

m≤ X
∆X

m logm+ ∆X log(∆X)
∑

m≤ X
∆X

m


= O

(
∆X

[(
X

∆X

)2

log

(
X

∆X

)]
+ ∆X log(∆X)

(
X

∆X

)2
)

= O

(
X2 logX

∆X

)
,

where we have used summation by parts to write∑
m≤N

m logm = O
(
N2 logN

)
, for some N ∈ N.

Finally, we calculate gcd(a, b, c) via the computation of gcd(ga,b, c (mod ga,b)). Since

there are precisely ga,b residue classes modulo ga,b and the Euclidean algorithm requires

O
(
log2X

)
work, the above arguments yield

O

 ∑
m≤ X

∆X

∑
a≤
√

m∆X
3

∑
b≤a

ga,b log2X

 = O

(
X2 log3X

∆X

)
.

Therefore, the complexity of our algorithm is O
(
X

3
2

+ε
)

, provided we choose ∆X of

size
√
X.
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Chapter 3

Computing L
(

1
2, χd

)
for d > 0

In this chapter, we derive the smooth approximate functional equation for L(s, χd) via the

modified L-function

Λ(s, χd) :=

(
d

π

) s
2

Γ
(s

2

)
L(s, χd),

and use it to compute many values of L
(

1
2
, χd
)

for d > 0. More specifically, we show that

Λ(s, χd) satisfies the (symmetric) functional equation

Λ(s, χd) = Λ(1− s, χd) , (3.1)

from which the desired smooth approximate functional equation is an easy deduction.

3.1 The Smooth Approximate Functional Equation

for L
(

1
2, χd

)
Although it is possible to derive the desired functional equation using local properties, it

is more informative, and no more tedious, to consider any primitive Dirichlet character χ
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modulo q and first derive the functional equation for Λ(s, χ). To this end, we let

Λ(s, χ) =
( q
π

) s
2

Γ
(s

2

)
L(s, χ)

and first show that

Λ(s, χ) =
1

2

∫ ∞
1

[
x
s
2
−1ψ(x, χ) +

√
q

G(1, χ̄)
x−

1
2
(s+1)ψ(x, χ̄)

]
dx, (3.2)

where ψ and G are functions to be defined below and χ̄ represents the complex conjugate

of χ. More symmetrically stated, this reads

Λ(s, χ) =
G(1, χ)
√
q

Λ(1− s, χ̄) . (3.3)

3.1.1 Functional Equation of Λ(s, χ)

Recall that the quadratic characters χd are precisely the real primitive Dirichlet characters

associated to the quadratic field K := Q
(√

D
)

. Further, as we are assuming that d > 0

in this instance, χd(−1) = 1 (i.e. χd is even). Accordingly, it is acceptable to restrict our

discussion here to only even primitive Dirichlet characters modulo q.

The derivation we present here follows the presentation given in [12], which is in turn

based on a proof by de la Vallée Poussin (1896), who established the result by mimicking

Riemann’s proof of the functional equation of ζ(s). We begin by considering the gamma

function Γ
(
s
2

)
. Substituting t = n2πx

q
, we get

Γ
(s

2

)
=

(
π

q

) s
2

ns
∫ ∞

0

x
s
2
−1 exp

(
−n

2πx

q

)
dx, <(s) > 0.

Thus, on dividing through by
(
π
q

) s
2
ns, multiplying through by χ(n) and summing both

sides over all n ≥ 1, we obtain

Λ(s, χ) :=
( q
π

) s
2

Γ
(s

2

)
L(s, χ) =

∫ ∞
0

x
s
2
−1

[∑
n≥1

χ(n) exp

(
−n

2πx

q

)]
dx, (3.4)
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for <(s) > 1. Further, since χ(0) = 0 by definition and χ(−1) = 1 by assumption, the

summation on the right hand side of (3.4) can be extended to a sum over all integers n.

Specifically, we can write

Λ(s, χ) =
1

2

∫ ∞
0

x
s
2
−1ψ(x, χ) dx, ψ(x, χ) :=

∑
n∈Z

χ(n) exp

(
−n

2πx

q

)
. (3.5)

Remark. The interchange of summation and integration in (3.4) is justified by the uniform

convergence of ∑
n≥1

χ(n)

∫ ∞
0

x
s
2
−1 exp

(
−n

2πx

q

)
dx, x ≥ 0.

Indeed, for x ≥ 1, the Weierstrass M -test implies the uniform convergence of∑
n≥1

χ(n) exp

(
−n

2πx

q

)
;

simply observe that∣∣∣∣χ(n) exp

(
−n

2πx

q

)∣∣∣∣ ≤ exp

(
−n

2πx

q

)
<

q

n2πx
≤ q

n2π
, x ≥ 1.

Similar upper bounds can be obtained for 0 ≤ x < 1 on appeal to the functional equation

(3.8) given below.

Now, in Riemann’s proof of the functional equation of ζ(s), the introduction of an

auxiliary function is a crucial step. Specifically, one must introduce the so-called θ-function

θ(x) :=
∑
n∈Z

exp
(
−n2πx

)
, x > 0, (3.6)

and apply its corresponding functional equation

θ

(
1

x

)
=
√
x θ(x) (3.7)

in order to obtain the desired functional equation for ζ(s). In a similar fashion, we introduce

the function ψ(x, χ) and derive its corresponding functional equation

G(1, χ)ψ(x, χ) =

√
q

x
ψ

(
1

x
, χ

)
(3.8)
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where G(n, χ) denotes the Gaussian sum

G(n, χ) :=

q∑
k=1

χ(k) exp

(
2πink

q

)
.

In fact, as we shall see, a more general form of the functional equation (3.6) is precisely

the key ingredient needed to formulate (3.8).

On the way to proving (3.8), and for the benefit of what follows, there are several

standard results which need be incorporated. For convenience, we collect those results

here and refer interested readers to [12] for details and proofs.

Proposition 3.1. Any even primitive Dirichlet character modulo q can be written as

χ(n) =
1

G(1, χ)

q∑
m=1

χ(m) exp

(
2πinm

q

)
=
G(n, χ)

G(1, χ)
, for all n ∈ N. (3.9)

Proposition 3.2. For any even primitive Dirichlet character for the modulus q, we have1

q = |G(1, χ) |2 = G(1, χ)G(1, χ) = G(1, χ)G(1, χ). (3.10)

Proposition 3.3. For all x > 0 and α ∈ R, we have∑
n∈Z

exp

(
−(n+ α)2π

x

)
=
√
x
∑
n∈Z

exp
(
−n2πx+ 2πinα

)
. (3.11)

With each of these preliminaries in hand, the functional equation (3.8) is now a simple

deduction. First observe that Proposition 3.1 gives

G(1, χ)ψ(x, χ) =
∑
n∈Z

(
q∑

m=1

χ(m) exp

(
2πimn

q

))
exp

(
−n

2πx

q

)
.

So, by combining the exponentials and applying Proposition 3.3, we get

G(1, χ)ψ(x, χ) =

q∑
m=1

χ(m)

√
q

x

∑
n∈Z

exp

(
−(n+m/q)2πq

x

)

=

√
q

x

q∑
m=1

χ(m)
∑
n∈Z

exp

(
−(nq +m)2π

xq

)
.

1The last equality follows from the fact that χ(−1) = 1.
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Finally, put k = nq +m. Then χ(m) = χ(k) and so

G(1, χ)ψ(x, χ) =

√
q

x

∑
k∈Z

χ(k) exp

(
−k

2π

xq

)
=

√
q

x
ψ

(
1

x
, χ

)
.

We now return to (3.5), splitting the integral into two parts as follows:

Λ(s, χ) =
1

2

[∫ 1

0

x
s
2
−1ψ(x, χ) dx+

∫ ∞
1

x
s
2
−1ψ(x, χ) dx

]
=

1

2

∫ ∞
1

[
x
s
2
−1ψ(x, χ) + x−

s
2
−1ψ

(
1

x
, χ

)]
dx, (3.12)

with the last line produced by substituting x = t−1. Further, on replacing χ by χ in the

functional equation (3.8) and noting that

G(1, χ)G(1, χ) = G(1, χ)G(1, χ) = q

by Proposition 3.2, observe that

ψ

(
1

x
, χ

)
=
√
x
G(1, χ)G(1, χ)
√
q G(1, χ)

ψ(x, χ) =

√
q

G(1, χ)

√
xψ(x, χ) .

Hence, on plugging this into (3.12), we obtain the functional equation (3.2).

Importantly, the right hand side of (3.2) defines a holomorphic function of s, thus

giving the analytic continuation of L(s, χ) to the entire complex plane. Further, notice

that (3.2) is invariant, up to a factor depending on q and χ, under the mappings s 7→ 1− s

and χ 7→ χ. Specifically, observe that the effect of multiplying through by
√
q/G(1, χ) is

exactly identical to replacing s by 1 − s and χ by χ. Therefore, for any even primitive

Dirichlet character, (3.2) has the more symmetric form given in (3.3).

3.1.2 Functional Equation of L(s, χd)

The functional equation of L(s, χd) is now a simple consequence of (3.2). Given a funda-

mental discriminant d > 0, χd is an real even primitive Dirichlet character modulo d, so
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χd = χd and χd(−1) = 1. Thus, (3.2) becomes

Λ(s, χd) =
1

2

∫ ∞
1

[
x
s
2
−1ψ(x, χd) +

√
d

G(1, χd)
x−

1
2
(s+1)ψ(x, χd)

]
dx, (3.13)

and (3.3) becomes

Λ(1− s, χd) =

( √
d

G(1, χd)

)
Λ(s, χd). (3.14)

Further, we claim that G(1, χd) =
√
d. Indeed, by Proposition 3.2 we have

√
d = |G(1, χd) | =(G(1, χd)G(1, χd))

1
2 =

(
G(1, χd)

2
) 1

2 = G(1, χd).

Therefore, the factor
√
d/G(1, χd) equals 1 in both (3.13) and (3.14), displaying total

invariance under the mapping s 7→ 1−s and thus yielding the required functional equation

(3.1).

Remark. For the benefit of later discussions, we record a unified functional equation of

Λ(s, χd) for both positive and negative discriminants d. In particular, if we let

a =

0 if d ≥ 0,

1 if d < 0,

then we may write(
|d |
π

) s+a
2

Γ

(
s+ a

2

)
L(s, χd) =

(
|d |
π

) 1−s+a
2

Γ

(
1− s+ a

2

)
L(1− s, χd), (3.15)

where |d | is the modulus of χd. More symmetrically stated, this reads

L(s, χd) = |d |
1
2
−sX(s, a)L(1− s, χd), (3.16)

where X(s, a) represents the gamma factor

X(s, a) = πs−
1
2

Γ
(

1−s+a
2

)
Γ
(
s+a

2

) . (3.17)

40



3.1.3 Smooth Approximate Functional Equation for L
(1

2 , χd
)

The smooth approximate functional equation for L
(

1
2
, χd
)

can now be easily deduced from

the functional equation (3.1). Let G(z, w) denote the normalized incomplete gamma func-

tion

G(z, w) :=

∫ ∞
1

tz−1e−wtdt = w−z
∫ ∞
w

xz−1e−x = w−zΓ(z, w),

with Γ(z, w) the incomplete gamma function.2 Noting that

ψ(x, χd) = 2
∑
n≥1

χd(n) exp

(
−n

2πx

d

)
in this instance, the functional equation (3.13) can be rewritten as

Λ(s, χd) =
∑
n≥1

χd(n)G

(
s

2
,
n2π

d

)
+
∑
n≥1

χd(n)G

(
1− s

2
,
n2π

d

)
. (3.18)

So, on specializing to s = 1
2
, (3.18) yields(

d

π

) 1
4

Γ

(
1

4

)
L

(
1

2
, χd

)
:= Λ

(
1

2
, χd

)
= 2

∑
n≥1

χd(n)G

(
1

4
,
n2π

d

)
.

Therefore, we have

L

(
1

2
, χd

)
= 2
(π
d

) 1
4
∑
n≥1

χd(n)
G
(

1
4
, n

2π
d

)
Γ
(

1
4

) = 2
∑
n≥1

χd(n)√
n

Γ
(

1
4
, n

2π
d

)
Γ
(

1
4

) , (3.19)

giving the smooth approximate functional equation for L
(

1
2
, χd
)
.

3.2 Analysis of Implementation

Similar to the investigation conducted in §2.4, we analyze the process of implementing

the smooth approximate functional equation (3.19) and quantify the associated numerical

2The notation G(z, w) should not be confused with the Gaussian sum notation G(n, χ) used above.

41



complexity here. As it turns out, the complexity in this instance is alsoO
(
X

3
2

+ε
)

, matching

the complexity for d < 0. Unlike the implementation for d < 0, however, there are several

numerical issues which crop up here. For instance, due to the sporadic value distribution

of χd(n), calculating the amount of cancellation involved and the correct truncation point

become important factors to be handled carefully. The remainder of this section is devoted

to treating these numerical issues and establishing the aforementioned complexity.

3.2.1 Numerical Issues

To motivate why cancellation is such a numerical issue, it is instructive to consider the

following example. Consider the problem of naively computing the series expansion

e−x =
∑
n≥0

(−x)n

n!

at, say, x = 100. Then

e−100 = 1− 100 +
1002

2!
− 1003

3!
+ · · · ,

so initially the terms, and the intermediate partial sums, tend to be rather large relative

to the final answer. This suggests the occurrence of a considerable amount of cancellation

and indeed this is the case. As a result, it becomes essential to maintain a certain degree

of extra precision in order to capture the cancellation involved.

Such a phenomena is quite common when performing floating point computations.

Typically, one is forced to keep track of how large the terms get relative to the final

answer, so as to determine the loss in precision incurred. Fortunately for us, however,

the smooth approximate functional equation (3.19) is not problematic in this respect.

Nonetheless, determining the cancellation involved and the correct truncation point can

be easily achieved, so we continue to pursue these endeavors here.
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Put

f(t) =
2√
t

Γ
(

1
4
, t

2π
d

)
Γ
(

1
4

) ,

and note that f(t) = O
(
t−

1
2

)
since the latter ratio is close to 1 if t2/d is large. In fact,

f(t) → 0 as t → ∞ since Γ(z, w) ∼ e−wwz−1. Now, observe that summation by parts

yields ∑
n≤N

χd(n)f(n) = f(N)
∑
n≤N

χd(n)−
∫ N

1

(∑
n≤t

χd(n)

)
f ′(t)dt. (3.20)

Thus, on letting N →∞, we obtain

L

(
1

2
, χd

)
=
∑
n≥1

χd(n)f(n) = −
∫ ∞

1

(∑
n≤t

χd(n)

)
f ′(t)dt. (3.21)

Moreover, by subtracting (3.20) from (3.21), we get an estimate for the tail:

∞∑
n=N+1

χd(n)f(n) = −f(N)
∑
m≤N

χd(m)−
∫ ∞
N

(∑
m≤t

χd(m)

)
f ′(t)dt. (3.22)

One could use the trivial bound |χd(n) | ≤ 1 here and get reasonable estimates for the

size of the partial sums and the associated tail. However, something closer to the truth is

obtained by using the conjectured (more realistic) bound∑
n≤x

χd(n) = O
(
x

1
2

+εd ε
)
. (3.23)

The purpose of using this more realistic bound is to provide a more accurate measure for

the amount of cancellation actually taking place. Of course, to perform more rigorous

computations, one is encouraged to use a more explicit bound. Nonetheless, by employing

the more realistic bound (3.23), we get

f(N)
∑
n≤N

χd(n) = O((Nd)ε) , (3.24)

and ∫ N

1

(∑
n≤t

χd(n)

)
f ′(t)dt = O

(
d ε
∫ N

1

t
1
2

+εf ′(t)dt

)
= O((Nd)ε) , (3.25)
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where we have applied integration by parts to get the last equality in (3.25). Therefore,

by plugging (3.24) and (3.25) back into (3.20), we obtain∑
n≤N

χd(n)f(n) = O((Nd)ε) . (3.26)

Formula (3.26) gives us an estimate for the degree of extra precision required to capture

the cancellation involved. A similar analysis shows that the tail of the series satisfies

∞∑
n=N+1

χd(n)f(n) = O

(
(Nd)ε · exp

(
−N

2π

d

))
. (3.27)

So, focusing on the exponential factor in (3.27), we get an estimate for the truncation

point:

N =

√
d

π
log(10) ·Digits. (3.28)

Here, Digits denotes the working precision invoked plus a small amount, say O(ε log d), to

overcome the d ε factors in the cancellation bound and the tail.

3.2.2 Hacks

The implementation of various hacks, both trivial and nontrivial, played an instrumental

role in the computation of critical values L
(

1
2
, χd
)

for negative fundamental discriminants

d < 0. The role of hacks is slightly diminished here. Nonetheless, they remain an important

aspect of computation, so we list a few which were helpful in the implementation of the

smooth approximate functional equation (3.19).

• χd(n) can be efficiently computed by repeatedly extracting powers of 2 and applying

quadratic reciprocity when useful.

• As in the case for d < 0, it is to our advantage to partition the domain 0 < d ≤ X

into blocks X1 ≤ d ≤ X2 and farm the work out to many processors.
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• Due to the presence of χd(n) in the (3.19), it is more efficient to place the d-loop on

the inside and the n-loop on the outside. This swap alleviates the need of applying

quadratic reciprocity each time we want to calculate χd(n) for a new pair d, n.

• Because n is typically much smaller than d (going up to |d |
1
2

+ε), it pays to store a

precomputed table of χd(n) (regarded as a character modulo n or 8n0, for n0 the odd

part of n) so long as each residue class gets hit, on average, more than once (perhaps

slightly more because of the overhead involved in storing the values and looking up

the array.) In our implementation, with blocks of length 106, 0 < d < 1010, or so,

and 16 digits working precision, it conducive to do so.3

• Compute the normalized incomplete gamma function G(z, w), evaluated at z = 1
4

and w = n2π
d

, as follows. For w > 37, return 0 (since exp(−37) < 10−16). For

1 < w < 37, use a precomputed table of Taylor series, centering each Taylor series at

multiples of .01 (so nearly 4000 Taylor series) and taking terms up to degree 7 (less

for larger w because of the exponential decay.) Otherwise, for w < 1, employ the

complimentary incomplete gamma function

γ(z, w) := Γ(z)− Γ(z, w) =

∫ w

0

e−xxz−1dx, <(z) > 0, |argw | < π.

Specifically, set

g(z, w) = w−zγ(z, w) =

∫ 1

0

e−wttz−1dt,

so G(z, w) = w−zΓ(z)− g(z, w), and integrate by parts to yield

g(z, w) = e−w
∞∑
j=0

wj

(z)j+1

,

3One could also create a larger precomputed table of χd(n) values for all the jobs (i.e. for each block

of 106). Further, one could also save a bit by factoring n and only constructing tables for prime n. In the

end, however, doing so would have made things a bit too complicated, and would not have reduced the

main bottleneck, which is executing a sum of length
√
d.
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where

(z)j =

z(z + 1) · · ·(z + j − 1) if j > 0;

1 if j = 0.

Then, by calculating Γ(z) and g(z, w) efficiently (truncating the sum once the tail is

less than 10−16), one can obtain a value for G(z, w).

3.2.3 Complexity

Both methods, for d < 0 and d > 0, yield the same estimate for the number of arithmetic

operations needed for 16 digits precision: O
(
X

3
2

+ε
)

. The powers of log(X) appearing in

both estimates (hence the presence of an extra power of ε in O
(
X

3
2

+ε
)

) can be controlled

by taking ∆X slightly larger than
√
X (e.g.,

√
X log2(X) or

√
X log3(X), depending on

implementation). In the case that d < 0, we have already seen this to be true. In the

present case, we jusitfy this claim as follows.

For d < 0, the powers of log(X) came from computing gcds. In this instance, they come

from computing the character χd(n) via quadratic reciprocity. The time required to create

a precomputed table of characters χd(n) can be quantified by considering the expression∑
m≤ X

∆X

∑
n≤M

(a
n

)
,

where

M =

√
m∆X

π
log(10) ·Digits.

Each character
(
a
n

)
can be calculated in time O(size(a)size(n)) (see [6] for details). Thus,

since both a and n are of size X in this case, the precomputation time needed here is given

by

O

log2(X)
∑

m≤ X
∆X

∑
n≤M

1

 ,
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which after two applications of the estimate (2.35), reduces to

O

(
X2 log2(X)

∆X

)
.

So, by choosing ∆X a bit larger than
√
X, the number of arithmetic operations per-

formed (for 16 digits precision) in both cases is indeed O
(
X

3
2

+ε
)

.

Of course, one may inquire about the necessity of precomputing a table of character

values. In carrying out computations, issues such as storage become important aspects to

be handled carefully. To this point, one must ask whether it is better to precompute and

store a table of roughly 1010 characters χd(n) (for all residue classes modulo n = O
(√
|d |
)

)

valid for all blocks of one million, or to read from disk and transfer portions of an enormous

table into RAM? Moving huge amounts of memory from disk to RAM and then cache could

end up being more of a bottleneck, in practice, performing a precomputation for each block

separately. In practice, we did the latter.

Due to the estimate for the number of arithmetic operations in both cases, one can re-

duce the time spent on the gcd and quadratic reciprocity computations entirely by choosing

∆X slightly larger than
√
X at the expense of having larger arrays. As ∆X increases, there

is a tradeoff between doing less computation and having larger arrays. There is a definite

advantage (by a constant factor depending on the particular hardware) to having arrays

that fit entirely within the cache memory of the cpu, but at some point the logarithm

factors begin to outweigh that advantage.

In the case of binary quadratic forms (d < 0), the nice thing is that, on average, the

number of triples a, b, c that are required is O
(√
|d |
)

, which does not depend on the

desired precision. Precision becomes a factor only in regards to computing the particular

contribution from each triple (e.g., the number of terms needed for the various K-Bessel

Taylor series expansions).

In the case of the smooth approximate functional equation (d > 0), both the length
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of the sum and the amount of work needed to compute the individual terms of the sum

depends on the desired precision. So, the main difference in these two approaches is the

length of the sum.

For d < 0, an estimate for the length of the sum is

Lneg ≤
1

3
√

3
X

3
2 = .19...X

3
2 ,

as was calculated in §2.4.2. In the case of d > 0, the length of the main d, n loops, summed

over all blocks of length ∆X, is quantified by

Lpos =
∑

m≤ X
∆X

∑
(m−1)∆X<d≤m∆X

∑
n≤N

1,

with N given by (3.28). And this quantity simplifies as follows. Applying the integral

bound (2.33) twice gives

Lpos ≤
√

log(10) ·Digits

π

∑
m≤ X

∆X

2

3

[
(m∆X)

3
2 −((m− 1) ∆X)

3
2

]
,

with the summand appearing here yielding a simplification via the Binomial Theorem.

Specifically, observe that

(m− 1)
3
2 =

∞∑
k=0

(
3/2

k

)
m

3
2
−k(−1)k = m

3
2 − 3

2
m

1
2 +

3

8
m−

1
2 − · · · ,

where the binomial coefficients are calculated using(
r

k

)
=
r(r − 1) · · · (r − k + 1)

k!
.

Thus, the summand is bounded above by m
1
2 ∆X

3
2 , yielding

Lpos ≤
√

log(10) ·Digits

π
·∆X

∑
m≤ X

∆X

m
1
2 .

Finally, we apply the integral bound (2.33) once more and obtain

Lpos ≤
2

3

√
log(10) ·Digits

π
X

3
2 .
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So, if Digits = 16, then Lpos ≤ 2.28 . . . X
3
2 , which is about ten times larger than Lneg.

In practice, the run-time for d < 0 was an order or so of magnitude faster, consistent with

the lengths of the loops.
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Chapter 4

Integral Moments of L
(

1
2, χd

)
As previously mentioned in the introduction, Keating and Snaith [19] conjectured a formula

for the leading asymptotics of ∑
d∈D(X)

L

(
1

2
, χd

)k
, k ∈ Z+.

When investigating the asymptotic behavior of any function, however, one often desires to

go beyond the leading asymptotics and determine the full asymptotics of the associated

main term(s), as well as reveal the structure of the remainder term (if possible). Today’s

knowledge about the moments of L-functions is the aggregate of work, both classical and

recent, accredited to a plethora of mathematicians. Due to their efforts, many theorems

and conjectures for the moments of various L-functions exist. Here we focus our efforts on

the integral moments of L
(

1
2
, χd
)
.

4.1 A Conjecture for the Integral Moments of L
(

1
2, χd

)
Under a correlation assumption between the value distributions of moments of L-functions

and the eigenvalue distributions of random unitary matrices, Conrey et al. [11] were able
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to apply number theoretic heuristics to derive an asymptotic expansion for the integral

moments of L
(

1
2
, χd
)
. Specifically, they conjectured the following.

Conjecture 4.1 (Conrey, Farmer, Keating, Rubinstein, Snaith). Suppose g(t) is a suitable

weight function with support in either (0,∞) or (−∞, 0), and let

Xd(s) = |d |
1
2
−sX(s, a),

where X(s, a) is the gamma factor given in the functional equation (3.16). Summing over

fundamental discriminants d, we have

∑
d∈D(∞)

L

(
1

2
, χd

)k
g(|d |) =

∑
d∈D(∞)

Qk(log |d |)
(

1 +O
(
|d |−

1
2

+ε
))

g(|d |) , (4.1)

where Qk(x) denotes the polynomial of degree k(k + 1)/2 given by the k-fold residue

Qk(x) =
(−1)

k(k−1)
2 2k

k!(2πi)k

∮
· · ·
∮
G(z1, . . . , zk)∆(z2

1 , . . . , z
2
k)

2∏k
j=1 z

2k−1
j

e
x
2

Pk
j=1 zjdz1 . . . dzk. (4.2)

Here ∆ is the Vandermonde

∆(z1, . . . , zk) =
∏

1≤i<j≤k

(zi − zj) ,

and

G(z1, . . . , zk) = Ak(z1, . . . , zk)
k∏
j=1

X

(
1

2
+ zj, a

)− 1
2 ∏

1≤i≤j≤k

ζ(1 + zi + zj) , (4.3)

where Ak is the Euler product, absolutely convergent for |<(zj) | < 1
2
, defined by

Ak(z1, . . . , zk) =
∏
p

∏
1≤i≤j≤k

(
1− 1

p1+zi+zj

)
×

1 +

(
1 +

1

p

)−1 ∞∑
j=1

∑
e1,...,ek∈Z

e1+···+ek=2j

k∏
i=1

1

pei(s+zi)

 .

(4.4)
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Remark. If we take g(|d |) = χ[0,X](|d |) (the characteristic function on [0, X]) and use

the estimate

|D(X) | = 6

π2
X +O

(
X

1
2

)
,

then Conjecture 4.1 can be stated as∑
d∈D(X)

L

(
1

2
, χd

)k
=

6

π2
XQk(logX) +O

(
X

1
2

+ε
)
. (4.5)

Here, Qk is a polynomial of degree k(k + 1)/2 whose leading coefficient agrees with the

Keating-Snaith conjecture (1.2).

4.2 Heuristic Derivation of Conjecture 4.1

In this section we heuristically derive Conjecture 4.1. To achieve this, we adhere to the gen-

eral recipe for conjecturing moments of L-functions set forth by Conrey et al. in [11, §4.1].

The recipe is flawed in the fact that individual steps are performed without rigorous jus-

tification (as carefully emphasized by the authors of [11]). Nonetheless, when considered

as a whole, the recipe serves to generate a conjecture for the moments of L
(

1
2
, χd
)

which

is consistent with its random matrix analogues.

So, for a fixed k, we would like to produce an asymptotic expression for the moment∑
d∈D(∞)

L

(
1

2
, χd

)k
g(|d |) , (4.6)

with g a suitable weight function supported on (−∞, 0) or (0,∞). Although many tra-

ditional surveys of this problem (and of the moments of other L-functions) focus on the

moments of central values L
(

1
2
, χd
)
, it is more informative to perturb the critical values by

small shifts, say α1, . . . , αk, and instead consider the moment∑
d∈D(∞)

L

(
1

2
+ α1, χd

)
· · ·L

(
1

2
+ αk, χd

)
g(|d |) . (4.7)
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By introducing such shifts, hidden structure in the moments is revealed in the form of

symmetries. Further, these shifts tend to keep calculations relatively simple by removing

higher order poles. At the appropriate time, of course, we can simply let each of α1, . . . , αk

tend to 0 and obtain results for the desired moment (4.6).

To ease notation and make our arguments more aesthetically pleasing, we develop

an asymptotic expansion for the moments of a slightly different L-function. Namely, we

consider the Z-function

Z(s, χd) = Xd(s)
− 1

2L(s, χd),

where Xd(s) is given in the statement of Conjecture 4.1 above. Notice that Z(s, χd) satisfies

the more symmetric functional equation Z(s, χd) = Z(1− s, χd) since Xd(s)Xd(1− s) = 1.

So, we would like to, in turn, produce an asymptotic expansion for the k shifted moment

Ld(s) :=
∑

d∈D(∞)

Z(s;α1, . . . , αk) , Z(s;α1, . . . , αk) =
k∏
j=1

Z(s+ αj, χd) .

To do so, we adhere to the following recipe.

1. Start with the product of k shifted L-functions Z(s;α1, . . . , αk).

2. Take note of the approximate functional equation for L(s, χd) and replace each Z-

function by its corresponding approximate functional equation, ignoring the remain-

der term. Multiply out to get an expression of the form

(product of Xd(s) factors)
∑

n1,...,nk

(summand) .

3. Average the resulting expression over all fundamental discriminants. Simplify the

summand by appealing to the orthogonality relation for quadratic Dirichlet charac-

ters.

4. Extend each of n1, . . . , nk to all positive integers and call the total M(s;α1, . . . , αk).
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5. The conjecture is∑
d∈D(∞)

Z

(
1

2
;α1, . . . , αk

)
g(|d |) =

∑
d∈D(∞)

M

(
1

2
;α1, . . . , αk

)(
1 +O

(
|d |−

1
2

+ε
))
g(|d |) .

Let us now exhibit the technical details involved in each of these steps. We begin by

taking note of the approximate functional equation1

L(s, χd) =
∑
n<x

χd(n)

ns
+Xd(s)

∑
n<y

χd(n)

n1−s + error. (4.8)

When applied to Z(s, χd), this yields

Z(s, χd) = Xd(s)
− 1

2

∑ χd(n)

ns
+Xd(1− s)−

1
2

∑ χd(n)

n1−s + error.

So, since s = 1
2

+ αj implies that 1− s = 1
2
− αj, we have

Ld(s) =
∑

d∈D(∞)

k∏
j=1

(
Xd

(
1

2
+ αj

)− 1
2 ∑ χd(n)

n
1
2

+αj
+Xd

(
1

2
− αj

)− 1
2 ∑ χd(n)

n
1
2
−αj

+ error

)

=
∑

d∈D(∞)

∑
εj∈{−1,1}

k∏
j=1

(
Xd

(
1

2
+ εjαj

)− 1
2 ∑ χd(n)

n
1
2

+εjαj
+ error

)
.

We then ignore the error term and multiply out to get2

Ld(s) =
∑

d∈D(∞)

∑
εj∈{−1,1}

(
k∏
j=1

Xd

(
1

2
+ εjαj

)− 1
2

) ∑
n1,...,nk

χd(n1 · · ·nk)∏k
j=1 n

1
2

+εjαj
j

. (4.9)

The next step is to average over all fundamental discriminants d. As a preliminary

task, we prove the following orthogonality relation for quadratic Dirichlet characters.

1The values of x and y are irrelevant here, since the ranges of summation will eventually be extended

to infinity, as explained in step 4. We only include them here for esthetic reasons.
2Here we have rearranged the terms in the expansion even though absolute convergence is absent, as

well as used the fact that χd is completely multiplicative.
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Lemma 4.2. Let am =
∏

p|m

(
1 + 1

p

)−1

. Then

1

|D(∞) |
∑

d∈D(∞)

χd(m) =

am if m = 2 (i.e., a perfect square),

0 otherwise.

(4.10)

Proof. We prove the main contribution here and refer the interested reader to either [11]

or [17, Lemma 1] for the proof when m is squarefree.

Fix a perfect square number m. In this instance, we know that χd(m) = 1 unless

gcd(d,m) > 1 (in which case χd(m) = 0). So, for gcd(d,m) = 1 we are simply pulling out

the subset of fundamental discriminants with no common divisor with m. To quantify the

size of this subset, we must first count fundamental discriminants.

The set of fundamental discriminants consists of all square-free integers congruent to

1 modulo 4 (i.e. odd fundamental discriminants) and all such numbers multiplied by −4

and ±8 (i.e. even fundamental discriminants). The odd fundamental discriminants may

be counted by considering the series ∑
d odd

? 1

|d |s
,

where the sum ranges over all odd fundamental discriminants. In fact, this is a Dirichlet

series. For observe that∑
d odd

? 1

|d |s
= 1 +

1

3s
+

1

5s
+

1

7s
+ · · · =

∏
p>2

(
1 +

1

ps

)
=

ζ(s)

ζ(2s)

(
1 +

1

2s

)−1

,

where
ζ(s)

ζ(2s)
=
∞∑
n=1

|µ(n) |
ns

is the Dirichlet series which generates the square-free numbers. So, by following the defi-

nition of fundamental discriminants given above, we can count fundamental discriminants
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using the Dirichlet series(
1 +

1

4s
+

2

8s

)
ζ(s)

ζ(2s)

(
1 +

1

2s

)−1

=

(
1 +

1

4s
+

2

8s

)∏
p>2

(
1 +

1

ps

)
︸ ︷︷ ︸

lp(s)

. (4.11)

Now, to omit those discriminants with gcd(d,m) > 1, we just omit the corresponding

factors in lp(s). What’s missing is ∏
p>2
p|m

(
1 +

1

ps

)
,

so the relative density (compared to all fundamental discriminants d) can be quantified

using
1

lp(s)
·
∏
p>2
p-m

(
1 +

1

ps

)
=
∏
p>2
p|m

(
1 +

1

ps

)−1

.

The main contribution here comes from the simple pole at s = 1, just as is the case in the

proof of the prime number theorem. In fact, p = 2 also fits at s = 1 since 1+ 1
4

+ 2
8

= 1+ 1
2
.

Thus, we obtain
1

|D(∞) |
∑

d∈D(∞)

χd(m) =
∏
p|m

(
1 +

1

p

)−1

,

as desired.

We now use Lemma 4.2 to simplify the summand in (4.9). This yields the heuristic

expression

Ld

(
1

2

)
=

∑
d∈D(∞)

∑
εj∈{−1,1}

k∏
j=1

Xd

(
1

2
+ εjαj

)− 1
2

Rk

(
1

2
; ε1α1, . . . , εkαk

)
︸ ︷︷ ︸

:= M

(
1

2
; ε1α1, . . . , εkαk

)
. (4.12)

Here, Rk denotes the double sum

Rk

(
1

2
;α1, . . . , αk

)
=

∞∑
m=1

∑
n1···nk=m2

am

n
1
2

+α1

1 · · ·n
1
2

+αk
k

, (4.13)
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indicating the extension of n1, . . . , nk to all positive integers.

The recipe now leads us to the following conjecture:∑
d∈D(∞)

Z

(
1

2
;α1, . . . , αk

)
g(|d |) =

∑
d∈D(∞)

M

(
1

2
;α1, . . . , αk

)(
1 +O

(
|d |−

1
2

+ε
))

g(|d |) .

(4.14)

The stated conjecture is problematic, however, with respect to convergence. Specifically,

the sum which defines Rk(s;α1, . . . , αk) actually diverges at s = 1
2

for most choices of

α1, . . . , αk. For instance, it converges absolutely when s = 1
2

and all the αj > 0, but

diverges if any of the αj < 0.

To rectify this situation, we eliminate these divergent sums by replacing each with their

corresponding analytic continuation. This is, in turn, established by expressing Rk in terms

of its Euler product representation. To this end, we write Rk =
∏

pRk,p, where

Rk,p(s;α1, . . . , αk) = 1 +

(
1 +

1

p

)−1 ∞∑
j=1

∑
e1+···+ek=2j

k∏
i=1

1

pei(s+αi)
. (4.15)

Indeed, for each p|m in (4.13), we want the overall power of p (from the product of nj’s)

to be even. Thus, if we suppose that pej ||nj, then
∑
ej must be even as

∏
nj = m2, which

is precisely what the summation in (4.15) indicates.

The leading order poles of Rk can now be readily identified by expressing the main

contribution of Rk,p in powers of 1/p2. To obtain this form, we first recall the expansion(
1 +

1

p

)−1

= 1− 1

p
+

1

p2
− 1

p3
+ · · · ,

and write Rk,p as

Rk,p = 1 +
∞∑
l=0

∞∑
j=1

∑
e1+···+ek=2j

k∏
i=1

(−1)q

pei(s+αi)+l
.

We now remark that only the terms for which e1 + · · ·+ ek = 2 produce poles. For observe

that Rk,p can be written as

Rk,p = 1 +
∑

1≤i≤j≤k

1

p2s+αi+αj
+O

(
p−1−2s+ε

)
+O

(
p−3s+ε

)
, (4.16)
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where the main summation emanates from the case l = 0 and j = 1 (i.e. e1 + · · ·+ ek = 2).

Written in product form, (4.16) reads

Rk,p =
∏

1≤i≤j≤k

(
1 +

1

p2s+αi+αj

)
×
(
1 +O

(
p−1−2s+ε

)
+O

(
p−3s+ε

))
. (4.17)

Now, since ∏
p

(
1 +

1

p2s

)
=
ζ(2s)

ζ(4s)

has a simple pole at s = 1
2

and∏
p

(
1 +O

(
p−1−2s

)
+O

(
p−3s

))
is analytic in <(s) > 1

3
, we see that

∏
pRk,p has a pole at s = 1

2
of order k(k + 1)/2 if

α1 = · · · = αk = 0. In particular, the Euler product is now convergent at s = 1
2

for each

αj’s in some sufficiently small neighborhood of 0.

With the divergent sums replaced by their analytic continuation and the leading order

poles clearly identified, we now put the conjecture (4.14) in a more desirable form. To this

end, we first rewrite Rk as

Rk(s;α1, . . . , αk) =
∏

1≤i≤j≤k

ζ(2s+ αi + αj)
∏
p

(
Rk,p(s;α1, . . . , αk)

∏
1≤i≤j≤k

(
1− 1

p2s+αi+αj

))

=

( ∏
1≤i≤j≤k

ζ(2s+ αi + αj)

)
Ak(s;α1, . . . , αk). (4.18)

Here, Ak defines an absolutely convergent Dirichlet series for <(s) > 1
2

+ δ for some δ > 0

and for all αj’s in some sufficiently small neighborhood of 0. Subsequently, we have

M

(
1

2
; ε1α1, . . . , εkαk

)
=

∑
εj∈{−1,1}

k∏
j=1

Xd

(
1

2
+ εjαj

)− 1
2

Ak

( ∏
1≤i≤j≤k

ζ(1 + αi + αj)

)
,
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where Ak = Ak
(

1
2
; ε1α1, . . . , εkαk

)
, and the conjectured asymptotic expansion takes the

form ∑
d∈D(∞)

Z

(
1

2
;α1, . . . , αk

)
g(|d |)

=
∑

d∈D(∞)

∑
εj∈{−1,1}

k∏
j=1

Xd

(
1

2
+ εjαj

)− 1
2

Ak
∏

1≤i≤j≤k

ζ(2s+ αi + αj) (4.19)

Finally, to obtain the polynomial Qk(x) as stated in Conjecture 4.1, we substitute

Xd

(
1

2
+ εjαj

)− 1
2

= |d |
1
2
(εjαj) X

(
1

2
+ εjαj, a

)
, j = 1, . . . , k,

and borrow the following lemma from [11].

Lemma 4.3. Suppose F is a symmetric function of k variables, analytic near (0, . . . , 0),

and f(s) has a simple pole of residue 1 at s = 0 and is otherwise analytic in a neighborhood

of s = 0, and let

K(a1, . . . , ak) = F (a1, . . . , ak)
∏

1≤i≤j≤k

f(ai + aj) .

If αi + αj are contained in the region of analyticity of f(s), then∑
εj∈{−1,1}

K(ε1α1, . . . , εkαk) =

(−1)k(k−1)/2

(2πi)k
2k

k!

∮
· · ·
∮
K(z1, . . . , zk)

∆(z2
1 , . . . , z

2
k)
∏k

j=1 zj∏
1≤i,j≤k(zi − αj)(zi + αj)

dz1 · · · dzk,

where the paths of integration encloses each of the ±αj’s.

4.3 Mathematical Violations

Executing the recipe outlined in the previous section requires us to make several heuristic

assumptions without providing rigorous justification. Here, we expose these mathematical
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violations and briefly explain the extent to which each bends reality. Following the recipe

step-by-step, we have:

1. Definition.

2. Approximate functional equations often play a significant role in the analytic study

of L-functions. Due to the impending structure of the recipe, the ranges of the two

summations appearing in (4.8) become irrelevant. When considering the reality of

the situation, however, it is worth noting that the bounds x, y ultimately depend

on the modulus |d |. Specifically, both x and y have size O
(
|d |

1
2

+ε
)

. Neglecting

this connection is one of the more subtle heuristics made in this recipe, one which

continues to propagate throughout the remaining steps.

3. Off-diagonal terms are completely ignored in this step due to the application of the

orthogonality relation for quadratic Dirichlet characters. The derivation of the or-

thogonality relation we presented in the previous section fixed each of n1, . . . , nk as

positive integers (whether perfect square or not) and allowed the modulus |d | to

become arbitrarily large. This, in addition to neglecting the aforementioned connec-

tion between the nj’s and the modulus |d |, is problematic for the following reason.

Studying moments rigorously involves the examination of a double sum: one over

integers n and one over fundamental discriminants d. By fixing n, the bound which

one gets is not strong enough to yield moments. For our heuristic purposes, however,

it is enough to know what happens for fixed n (since we only want a sense of which

terms contribute) and this has the effect of completely ignoring a (perhaps nontrivial)

contribution from off-diagonal terms.

4. By extending each of n1, . . . , nk to all positive integers, we have again ignored the

relationship these indices share with the modulus |d |.
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5. Complete disregard with respect to divergence is undertaken in this step. Indeed,

the replacement of each diverging sum Rk

(
1
2
;α1, . . . , αk

)
by its corresponding analytic

continuation increases our chances of further deviating from reality.

4.4 Multiple Dirichlet Series and the Cubic Moments

of L
(

1
2, χd

)
In the field of mathematics, the existence of several solutions to the same problem is a

recurrent theme. With respect to the moments of L
(

1
2
, χd
)
, such a theme continues to

persist. In particular, due to the efforts of Diaconu et al. [13], the moments of L
(

1
2
, χd
)

appearing in Conjecture 4.1 can be reformulated (at least conjecturally) by appealing to

the philosophy of multiple Dirichlet series. In their paper, it was revealed that the analytic

properties of L
(

1
2
, χd
)
, and more importantly its moments, were somehow encoded in the

double Dirichlet series

Zk(s, w) =
∑

d∈D(∞)

L(s, χd)
k

|d |w
.

In fact, they showed that one may formulate a conjecture for the cubic moments of L
(

1
2
, χd
)
,

which is similar to that formulated in Conjecture 4.1, by investigating the polar behavior

of Z3(s, w).

Surprisingly, there is a slight discrepancy in the conclusions which the respective ap-

proaches yield in this case (hence the use of the word similar). As is evident by (4.5), the

application of Random Matrix Theory to the moments of L
(

1
2
, χd
)

yields an associated

remainder term of size O
(
X

1
2

+ε
)

. A sufficient condition for obtaining this optimal error

term is the meromorphic continuation of Zk
(

1
2
, w
)

up to <(w) > 1
2
, which although widely

believed to be true, remains unproven. In the special case k = 3, the best known approx-

imation to this optimal error term is given by Diaconu et al. [13], where on establishing
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the meromorphic continuation of Z3

(
1
2
, w
)

up to <(w) > 4
5
, they proved that

∑
d∈D(X)

L

(
1

2
, χd

)3

= XR3(logX) +O
(
X

47−
√

265
36

+ε
)
. (4.20)

Here, R3 is a polynomial of degree 6 whose leading coefficient agrees with the Keating-

Snaith conjecture (1.2).

During the process of obtaining this optimal statement, evidence indicating the possible

existence of lower order terms of the form bXα, 1
2
< α < 1, came to fruition. Specifically,

Diaconu et al. conjectured that∑
d∈D(X)

L

(
1

2
, χd

)3

= XR3(logX) + bX
3
4 +O

(
X

1
2

+ε
)
, (4.21)

for some nonzero constant b, which they claimed could be effectively computed. In fact,

although higher moments were never investigated explicitly in [13], Diaconu et al. con-

veyed to the reader that additional lower order terms were expected to persist in such

circumstances.

Building on the foundations of Diaconu et al. in the cubic moment case, Zhang [28]

used a suitable growth condition to conjecture the constant b ≈ −.2154.3 The conjectural

nature of this constant (and the impending asymptotic expansion) is due to the fact that

Zhang’s arguments are completely dependent on the assumption that Z3

(
1
2
, w
)

admits a

meromorphic continuation up to <(w) > 1
2
, which, as indicated above, is only conjectural.

For this reason, a skeptic may argue that b should be zero, in which case bX
3
4 is not a true

main term and Zhang’s conjecture, as well as that of Diaconu et al., reduces to coincide

with Conjecture 4.1 (for k = 3).

As the emergence of such a lower order main term in the cubic moment of L
(

1
2
, χd
)

was

the inspiration from which this thesis emanated, we digress for the moment and take time

3In fact, Zhang electronically communicated to my supervisor, Dr. Rubinstein, that the constant b is

approximately −.07 for d < 0 and −.14 for d > 0.
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to investigate the application of multiple Dirichlet series to this case. In particular, we

explore the evidence which led Diaconu et al. and Zhang [28] to conjecture the existence

of and coefficient of such an exceptional main term, respectively.

4.4.1 The Functional Equations of Z3(s, w)

Many traditional applications of multiple Dirichlet series to the moment problem typically

involve a thorough investigation of the analytic properties of Zk(s, w), with special emphasis

placed on its polar behavior. Continuing in this tradition, we begin by establishing the

following functional equations of Z3(s, w):

α : (s, w) 7→
(

1− s, w + 3s− 3

2

)
, β : (s, w) 7→

(
s+ w − 1

2
, 1− w

)
. (4.22)

Although heuristic circumstances exist (see below) in which these functional equations

are easily verified, working directly with Z3(s, w) to derive them is, in general, an exhaustive

approach. To compensate for these difficulties, Diaconu et al.[13] adapted their arguments

by extending Z3(s, w) to a sum over all integers d. In turn, this requires the introduction of

suitable correction factor and hence the introduction of analogous multiple Dirichlet series.

More precisely, we must introduce the (related) multiple Dirichlet series

ZM(s, w; a, b) =
∑

(d,M)=1

L(s, χaχd0)3 χb(d0)P a
d (s)

dw

∏
p|M

(
1− χa(p)χd0(p)

ps

)3

. (4.23)

Then, on applying the correct sieving process needed to isolate fundamental discriminants,

it can be shown that ZM(s, w; a, b) is precisely the utility which yields all analytic properties

of Z3(s, w), including its analytic continuation, functional equations α and β, and polar

behavior.4

4Importantly, these new multiple Dirichlet series are meant to act as the building blocks of Z(s, w),

with each block satisfying the functional equations α and β (at least in s and w aspect).
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Let us clarify some of the notation used here. In this situation, d is a positive integer

with square-free part d0 (so d = d0d
2
1), M is a positive square-free even integer, a, b are some

relatively prime divisors (both positive and negative) of M , and P a
d (s) is some suitable

Dirichlet polynomial. In fact, the Dirichlet polynomial P a
d (s) can be uniquely specified

by introducing an auxiliary Dirichlet polynomial Qb
n(w), n = n0n

2
1 with n0 square-free,

satisfying the following two properties.

(1) (Functional Equations)

d3s
1 P

a
d (s) = d

3(1−s)
1 P a

d (1− s), nw1 Q
b
n(w) = n1−w

1 Qb
n(1− w).

(2) (Quadratic Reciprocity Law)

ZM(s, w; a, b) =
∑

(d,M)=1

L(s, χaχd0)3 χb(d0)P a
d (s)

dw

∏
p|M

(
1− χa(p)χd0(p)

ps

)3

=
∑

(n,M)=1

L(w, χbχ̄n0)χa(n0)Qb
n(w)

ns

∏
p|M

(
1− χb(p)χ̄n0(p)

pw

)
:= Z∗M(s, w; a, b),

where, in this instance, χ̄d0 =
(
·
d0

)
is obtained by applying quadratic reciprocity to

χd0 . 5

In this way, P a
d (s) and Qb

n(w) are precisely the (unique) Dirichlet polynomials required

to ensure that ZM(s, w; a, b) satisfies functional equations of the form α and β, respectively.

An explicit formulation of both functional equations is given in [13] and [28]. Here, we

shall motivate this claim by giving a simple heuristic derivation of α and β in the special

case that every integer, d and otherwise, is a positive fundamental discriminant.

5Notice that the roles of s and w have interchanged and the power on the L-function has been reduced

to first order.
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Since d is a (positive) fundamental discriminant, χd is primitive and L(s, χd) satisfies

the functional equation

L(s, χd) = d
1
2
−sX(s, a)L(1− s, χd),

with X(s, a) the gamma factor given in (3.17). If we ignore the gamma factor, admitting

the simplified functional equation

L(s, χd) = d
1
2
−sL(1− s, χd), (4.24)

then

Z3(s, w) =
∑

d∈D(∞)

L(s, χd)
3

dw
=

∑
d∈D(∞)

L(1− s, χd)3

dw+3s− 3
2

= Z3

(
1− s, w + 3s− 3

2

)
, (4.25)

which agrees with the functional equation α. 6

To obtain β, first observe that

L(s, χd)
3 =

∑
n1≥1

χd(n1)

ns1

∑
n2≥1

χd(n2)

ns2

∑
n3≥1

χd(n3)

ns3
=
∑
n≥1

d3(n)χd(n)

ns
,

where d3 is the divisor sum

d3(n) =
∑

n1n2n3=n

1.

It then follows that

Z3(s, w) =
∑

d∈D(∞)

L(s, χd)
3

dw
=

∑
d∈D(∞)

1

dw

∑
n≥1

d3(n)χd(n)

ns
.

A weak version of the quadratic reciprocity law, namely

χd(n) = χn(d),

6It is quite evident that there is connection between the functional equation (4.24) and the functional

equations of P ad (s) and Qbn(w). In fact, one can view these as analogues, giving some justification that

property (1) is used to ensure that ZM (s, w; a, b) satisfies the functional equation α.
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can now be invoked to give

Z3(s, w) =
∑
n≥1

d3(n)

ns

∑
d∈D(∞)

χn(d)

dw
=
∑
n≥1

d3(n)L(w, χn)

ns
. (4.26)

Thus, on application of the simplified functional equation (4.24) yet again, we have

Z(s, w) =
∑
n≥1

d3(n)L(w, χn)

ns
=
∑
n≥1

d3(n)L(1− w, χn)

ns+w−
1
2

= Z

(
s+ w − 1

2
, 1− w

)
, (4.27)

yielding the other functional equation β. 7

Of course, this example is indeed a heuristic as we have clearly over-simplified several

properties. Remarkably, however, by using ZM(s, w; a, b) and the subsequent collection

of properties associated to its correction factor, this heuristic can be made precise in

the derivation of the (extended) functional equations of α and β. For explicit formulas

defining the functional equations of ZM(s, w; a, b) and depicting the relationship between

ZM(s, w; a, b), as well as in depth discussion about the sieving process (which sieves back

to Z3(s, w)), see [13] and [28].

4.4.2 Poles of Z3(s, w) and Zhang’s Constant

Using Bochner’s theorem and successive application of the functional equations α and β, Di-

aconu et al. [13, Proposition 4.10] obtained the meromorphic continuation of ZM(s, w; a, b)

to all s and w in C. Using similar treatments, they deduced that ZM
(

1
2
, w; a, b

)
was a mero-

morphic function of w, with the only possible poles appearing at w = 1 and w = 3
4
.

7Just as in property (2), the roles of s and w have interchanged and the power on the L-function has

been reduced to first-order (as exhibited in (4.26)). This, in addition to using a weak version of quadratic

reciprocity, clearly indicates a connection between (4.27) and property (2). In fact, just as before, one

may view these properties as analogues, giving some evidence that property (2) does indeed ensure that

ZM (s, w; a, b) satisfies the functional equation β.

67



These poles can be observed as follows. Indeed, the pole at w = 1 appears in the

buliding block Z∗M
(

1
2
, w; a, 1

)
(and subsequently in ZM

(
1
2
, w; a, 1

)
), where for n = 1 (hence

n0 = 1), we have

L(w, χ̄n0χb) = ζ(w).

Now, any other pole of ZM
(

1
2
, w; a, 1

)
must emanate as the image of the pole at w = 1

under transformations involving α and β. To this end, we first observe that

α

(
1

2
, w

)
=

(
1

2
, w

)
and β

(
1

2
, w

)
=(w, 1− w) .

Thus, α fixes w and β sends w 7→ 1 − w, yielding another possible pole of ZM
(

1
2
, w; a, 1

)
at w = 0. This pole may be disregarded, however, as it lies outside the region of assumed

continuation (i.e <(w) > 1
2
).

Next, we consider where the transformation αβ sends w = 1. Observe that

αβ(s, w) = α

(
s+ 2− 1

2
, 1− w

)
=

(
3

2
− s− w, 3s+ 2w − 2

)
,

so that on specializing to s = 1
2
, we have

αβ

(
1

2
, w

)
=

(
1− w, 2w − 1

2

)
.

Thus, we obtain a possible pole at

2w − 1

2
= 1 =⇒ w =

3

4
,

which does lie within the region of assumed continuation.

No other transformations need be checked, since α, β and αβ characterize all possible

images of the pole at w = 1. This follows from the fact that the set of functional equations

generated by α and β form the finite group D6 (the dihedral group of order 6) under
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multiplication.8 Indeed, one may easily check that

α2 = β2 =(αβ)6 =(βα)6 = id.

Due to the difficulties involved with the sieving process, especially convergence of in-

finite series, the analyticity of Z3

(
1
2
, w
)

becomes significantly constricted. For example,

Diaconu et al. [13], by subduing some of the difficulties involved, managed to obtain the

meromorphic continuation of Z3

(
1
2
, w
)

up to <(w) > 4
5
, with the only pole being the one

of order 7 at w = 1. By then proceeding with complex Tauberian theorems, they were able

to establish (4.20), the best known approximation for the error term involved in the cubic

moments of L
(

1
2
, χd
)
.

What of the pole at w = 3
4
? Is it possible to analytically continue Z3

(
1
2
, w
)

to a larger

region with the promise of attaining a legitimate pole at w = 3
4
? Such questions lead

naturally to the work of Zhang [28], who further conjectured that, under suitable technical

conditions, Z3

(
1
2
, w
)

admits a simple pole at w = 3
4

with complex residue

Res
w= 3

4

Z3

(
1

2
, w

)
≈ −0.1616.

Using this and complex Tauberian theorems, Zhang conjectured the existence of an excep-

tional main term, namely bX
3
4 with b ≈ −.2154, in the asymptotic expansion for the cubic

moments of L
(

1
2
, χd
)
.

As indicated above, however, there is a rather significant contingency associated with

Zhang’s arguments. Throughout his paper [28], it is assumed that Z3

(
1
2
, w
)

can be con-

tinued to a meromorphic function of w up to <(w) > 1
2
, which, as previously mentioned

above, is widely believed to be true, but remains unproven. Due to the difficulties involved

with the application of the sieving process and complex Tauberian theorems, obtaining the

8It is unfortunate to note that the finiteness of the group generated by the functional equations asso-

ciated to ZM (s, w; a, b) (and hence, to Z3(s, w)) does not persist for higher moments. Indeed, even when

encountering the fourth moments of L
(

1
2 , χd

)
, for example, the group of functional equations is infinite.
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analyticity of Z3

(
1
2
, w
)

up to <(w) > 1
2

seems to be quite the formidable task. However,

if one assumes that such analyticity can be obtained, then the following conjecture seems

plausible.

Conjecture 4.4 (Zhang). Let w = σ + it and assume that Z3

(
1
2
, w
)

satisfies the growth

condition

Z3

(
1

2
, σ + it

)
�(2 + | t |)r+ε ,

for any ε > 0 and some positive constant r < 3− 4σ. Then we have∑
d∈D(X)

L

(
1

2
, χd

)3

= XR3(logX) + bX
3
4 +O

(
X

r+σ
r+1

)
,

where R3 agrees with the polynomial appearing in (4.21) and b ≈ −.2154 (with b ≈ −.07

if d < 0 and b ≈ −.14 if d > 0).

Remark. The residue calculations needed to prove this conjecture are far to technically

involved to be explicitly included here. We refer the interested reader to [24, §4] for details.
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Chapter 5

Numerical Data

In this chapter, we compare the various conjectures for the moments of L
(

1
2
, χd
)

from a

numerical perspective. Due to physical limitations, we restrict our examination here to

the first eight moments of L
(

1
2
, χd
)
. As expected, the collected data further verfifies the

main term appearing in the moments of L
(

1
2
, χd
)
. With respect to the remainder term,

however, there are several instances in which the numerics seem to suggest the presence

of additional structure. For example, in the case of the cubic moments of L
(

1
2
, χd
)
, the

collected data tends to agree with the conjectures of Diaconu et al. and Zhang regarding

the existence of an exceptional main term.

To witness these intriguing properties, two quantities are of particular importance.

Namely, the ratio

Rk(X) :=

∑
d∈D(X)±

L

(
1

2
, χd

)k
∑

d∈D(X)±

Qk(log |d |)
, (5.1)

and difference

Dk(X) :=
∑

d∈D(X)±

L

(
1

2
, χd

)k
g(|d |) −

∑
d∈D(X)±

Qk(log |d |) g(|d |) , (5.2)
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for k = 1, . . . , 8 and both positive and negative discriminants d. 1 The former quantity

measures the consistency of the main term, while the latter yields information about the

associated remainder term. The numerator of (5.1) is calculated by computing many

values of L
(

1
2
, χd
)

while the denominator uses numerically approximated values of Qk

(computed in the same manner performed in [11]). The left- and right-hand terms of (5.2)

are computed in a similar way.

Tables 5.1 and 5.2, reproduced from [11], list the various coefficients for the polynomials

Qk. Table 5.3 examines, for k = 1, . . . , 8 and g(|d |) = 1− |d |
X

, the ratio Rk(X) and difference

Dk(X) restricted to negative fundamental discriminants d. This information, including the

mean up to X (indicated by the green line), is depicted in Figures 1 and 3, respectively.

In the former figure, notice that each graph clearly hovers above and below one, with the

extent of fluctuation involved becoming progressively amplified as k increases (as indicated

by the varying vertical scales). One can attribute this property to the size of L
(

1
2
, χd
)

for

higher values of k. The mean up to X does, however, remains fairly close to one, validating

the main term. The latter figure also depicts fluctuation which amplifies with the order

k. In this instance, however, the range of fluctuation tends to be much more dramatic (as

indicated by the dramatic variation in the vertical scales). As a result, there are several

instances (e.g. k = 3) in which the mean up to X clearly deflects away from the zero line.

Such deviations raise questions about the structure of the associated remainder terms.

In the cubic moment case, for instance, such deviations tend to reinforce the conjectured

asymptotics of Zhang, as we show below.

Table 5.4 and Figures 2 and 4 compare and depict the same ratio and difference,

respectively, but for d > 0. Similar fluctuations and deviations occur here as well.

To obtain the plots for Rk(X) and Dk(X) in both instances (i.e. d < 0 and d > 0),

1We use the notation D(X)± to emphasize that these quantities were calculated separately for positive

and negative discriminants.
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the data was sampled and collected at X = 100000, 200000, . . .. For d > 0, we stopped the

sampling at 1.2× 1010, yielding approximately 10000 data points. In the case of d < 0, the

sampling was stopped at 5× 1010, yielding approximately 50000 data points.

5.1 Analyzing the Cubic Moment Data

Let us now concentrate our efforts on the cubic moments of L
(

1
2
, χd
)

and analyze the

associated data more thoroughly. Figures 5 and 6 depict the difference D3(X) for d > 0

and d < 0, respectively. In both instances, the mean up to X (indicated by a green line)

and a line indicating the (running) average of the differences (indicated by a blue line) are

plotted. For d > 0, a downward shift begins to (visibly) occur around 2× 109 for both the

mean line and average line (as depicted in Figure 5). For d < 0, the amplified number of

data points tends to hide both the mean and average line (as one can clearly observe in

Figure 6). Nevertheless, we can zoom in on the data and observe that a similar downward

shift persists in this case. This is the content of Figure 7.

The depicted average line is developed as follows. For the first M differences, we sample

the average of D3(X) at X = m ·106, for m = 1, . . . ,M . That is, for X = m · 106, we

consider the expression

1

M

M∑
m=1

D3(X) =
1

M

M∑
m=1

 ∑
d∈D(X)±

L

(
1

2
, χd

)3

g(|d |)−
∑

d∈D(X)±

Q3(log |d |) g(|d |)

 .

According to Diaconu et al., this expression takes the conjectured form

1

M

M∑
m=1

(
b ·
(
m ·106

) 3
4 +O

((
m ·106

) 1
2

+ε
))

,

where by Zhang’s conjecture, b ≈ −.14 or b ≈ −.07 according as d > 0 or d < 0. The

main term which appears here can be simplified using an easy integral bound. Specifically,
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observe that

b ·
(
106
) 3

4 · 1

M

M∑
m=1

m
3
4 ∼ b ·

(
106
) 3

4 · 1

M

∫ M

1

t
3
4dt ∼ 4

7
bx

3
4 ,

for x = M ·106.

The nature of these downward shifts and the description of the average lines certainly

tend to corroborate the conjectures of Diaconu et al. and Zhang. It is reasonable to contest

that some sort of bias exists here, perhaps due to human error in the calculation of D3(X).

In an effort to alleviate such concerns, both here and with respect to other moments, the

computations yielding our numerics were executed again (in a limited way) using higher

precision. As anticipated, these higher precision results remained consistent with the initial

results, reducing the possibility of such a bias existing.

5.2 Tables and Figures
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r dr(1) dr(2) dr(3) dr(4)
0 .3522211004995828 .1238375103096e-1 .1528376099282e-4 .31582683324433e-9
1 .61755003361406 .18074683511868 .89682763979959e-3 .50622013406082e-7
2 .3658991414081 .17014201759477e-1 .32520704779144e-5
3 -.13989539029 .10932818306819 .10650782552992e-3
4 .13585569409025 .18657913487212e-2
5 -.23295091113684 .16586741288851e-1
6 .47353038377966 .59859999105052e-1
7 .52311798496e-2
8 -.1097356195
9 .55812532
10 .19185945
r dr(5) dr(6) dr(7) dr(8)
0 .671251761107e-16 .1036004645427e-24 .886492719e-36 .337201e-49
1 .23412332535824e-13 .67968140667178e-22 .98944375081241e-33 .59511917e-46
2 .35711692341033e-11 .20378083365099e-19 .51762930260135e-30 .500204322e-43
3 .31271184907852e-9 .36980514080794e-17 .16867245856115e-27 .2664702284e-40
4 .17346173129392e-7 .45348387982697e-15 .38372675160809e-25 .1010164552e-37
5 .63429411057027e-6 .39728668850800e-13 .64746354773372e-23 .29004988867e-35
6 .15410644373832e-4 .2563279107877e-11 .84021141030379e-21 .65555882460e-33
7 .2441498848698e-3 .12372292296e-9 .85817644593981e-19 .11966099802e-30
8 .2390928284571e-2 .44915158297e-8 .70024645896e-17 .17958286298e-28
9 .127561073626e-1 .1222154548e-6 .4607034349989e-15 .22443685425e-26
10 .24303820161e-1 .2461203700e-5 .2455973970377e-13 .2357312577e-24
11 -.333141763e-1 .3579140509e-4 .106223013225e-11 .20942850060e-22
12 .25775611e-1 .3597968761e-3 .3719625461492e-10 .15805997923e-20
13 .531596583 .230207769e-2 .1048661496741e-8 .10159435845e-18
14 -.325832 .7699469185e-2 .2357398870407e-7 .55665248752e-17
15 -1.34187 .4281359929e-2 .416315210727e-6 .25985097519e-15
16 -.2312387714e-1 .564739434674e-5 .103134457e-13
17 .109503 .56831273239e-4 .346778002e-12
18 .2900464 .40016131254e-3 .982481680e-11
19 -.9016 .1755324808e-2 .232784142e-9
20 -.89361 .340409901e-2 .456549799e-8
21 -.181 -.2741804e-2 .7309216472e-7
22 .353555e-3 .9368893764e-6
23 .117734 .9348804928e-5
24 .20714e-1 .69517414e-4
25 -.9671 .356576507e-3
26 -.284 .1059852e-2
27 1.3 .8242527e-3
28 -1. -.206921e-2

Table 5.1: Coefficients ofQk(x) = d0(k)xk(k+1)/2 + d1(k)xk(k+1)/2 + · · · , for k = 1, . . . , 8
and d < 0. 75



r er(1) er(2) er(3) er(4)
0 .3522211004995828 .1238375103096e-1 .1528376099282e-4 .31582683324433e-9
1 -.4889851881547 .6403273133043e-1 .60873553227400e-3 .40700020814812e-7
2 -.403098546303 .51895362572218e-2 .19610356347280e-5
3 .878472325297 -.20704166961612e-1 .4187933734219e-4
4 -.4836560144296e-1 .32338329823195e-3
5 .6305676273171 -.7264209058150e-3
6 -1.23114954368 -.97413031149e-2
7 .6254058547e-1
8 .533803934e-1
9 -1.125788
10 2.125417
r er(5) er(6) er(7) er(8)
0 .671251761107e-16 .1036004645427e-24 .886492719e-36 .337201e-49
1 .2024913313373e-13 .6113326104277e-22 .91146378e-33 .556982629e-46
2 .261100345555e-11 .16322243213252e-19 .437008961e-30 .43686422e-43
3 .187088892376e-9 .2605311255687e-17 .1297363095e-27 .216465856e-40
4 .8086250862418e-8 .2766415183453e-15 .2670392090e-25 .7604817313e-38
5 .2126496335545e-6 .2056437432502e-13 .404346681e-23 .201532781e-35
6 .319415704903e-5 .10957094998959e-11 .46631481394e-21 .418459324e-33
7 .21201987479e-4 .42061728711797e-10 .41831543311e-19 .698046515e-31
8 -.33900555230e-4 .11491097182922e-8 .29548572643e-17 .951665168e-29
9 -.775061385e-3 .21545094604323e-7 .1652770327e-15 .1073015400e-26
10 .333997849e-2 .25433712247032e-6 .73192383650e-14 .1008662234e-24
11 .22204682e-1 .1448397731463e-5 .25506469557e-12 .7945270901e-23
12 -.1538433 -.2179868777201e-5 .6901276286e-11 .5257922143e-21
13 -.19794e-1 -.54298634893e-4 .141485467e-9 .2924082555e-19
14 2.01541 .1698771341e-3 .210241720e-8 .1363867915e-17
15 -4.451 .22887524e-2 .20651382e-7 .5311448709e-16
16 -.1042e-1 .101650951e-6 .1714154659e-14
17 -.4339429e-1 -.16979129e-6 .453180963e-13
18 .343054 -.37367e-5 .9644403068e-12
19 -.1947171 .97069e-5 .160742335e-10
20 -3.16910 .18351e-3 .200188929e-9
21 7.31266 -.54878e-3 .16931900e-8
22 -.5621e-2 .7257434e-8
23 .284e-1 -.14329111e-7
24 .639e-1 -.25913136e-6
25 -.7 .6473933e-6
26 .86 .138673e-4
27 5. -.2339e-4
28 -.1e2 -.48124e-3

Table 5.2: Coefficients of Qk(x) = e0(k)xk(k+1)/2 + e1(k)xk(k+1)/2 + · · · , for k = 1, . . . , 8
and d > 0. 76



k moment conjecture ratio difference
1 25458527125.3765 25458526443.0851 1.00000002680011 682.291400909424
1 52401254983.3979 52401252573.3514 1.00000004599215 2410.04650115967
1 79904180421.7457 79904180600.9019 0.999999997757862 -179.156204223633
1 107770905413.087 107770904521.066 1.00000000827701 892.021011352539
1 135908144579.9 135908144595.649 0.99999999988412 -15.7490081787109
2 695798091128.962 695797942880.624 1.00000021306234 148248.338012695
2 1505736931971.68 1505736615081.97 1.00000021045494 316889.709960938
2 2362905062077.15 2362905209666.86 0.999999937538878 -147589.709960938
2 3251727763805.56 3251727486319.23 1.00000008533505 277486.330078125
2 4164586513531.53 4164586544704.79 0.999999992514681 -31173.2602539062
3 35923488939395.6 35923434720073.8 1.00000150930228 54219321.8046875
3 82792501873632.1 82792433101707.4 1.00000083065471 68771924.6875
3 134707236936019 134707230960903 1.00000004435631 5975116
3 190139826789407 190139791751013 1.00000018427702 35038394
3 248315000391821 248315015388794 0.99999993960505 -14996973
4 2.62216772015079e15 2.62215426148555e15 1.00000513267485 13458665240
4 6.48460654252297e15 6.48459187992768e15 1.00000226114389 14662595290
4 1.09871964707935e16 1.09871878848222e16 1.00000078145303 8585971300
4 1.59561231814031e16 1.5956125546013e16 0.999999851805509 -2364609900
4 2.12995355148029e16 2.12995409110151e16 0.999999746651244 -5396212200
5 2.35419374721785e17 2.3541622006477e17 1.00001340033841 3154657015008
5 6.27717267114645e17 6.2771414322685e17 1.0000049766089 3123887794944
5 1.11068908536146e18 1.1106862772711e18 1.000002528248 2808090359936
5 1.66286324284991e18 1.66286838497409e18 0.999996907678186 -5142124179968
5 2.27240250776101e18 2.27240484232311e18 0.999998972646926 -2334562099968
6 2.42254871622434e19 2.42247808189372e19 1.00002915788223 706343306199040
6 6.98802246409075e19 6.98795544874549e19 1.000009590122 670153452601344
6 1.29379682106315e20 1.29378875862885e20 1.00000623164659 806243429990400
6 1.99967529784789e20 1.99970133063147e20 0.999986981664121 -2.60327835798733e15
6 2.80059250886771e20 2.8006019455853e20 0.999996630468102 -943671758979072
7 2.74712571777423e21 2.74697762671744e21 1.00005391054348 1.48091056789914e17
7 8.59431066562339e21 8.59415893116067e21 1.00001765553371 1.51734462720246e17
7 1.66743403869214e22 1.66740957094856e22 1.00001467410527 2.44677435799372e17
7 2.66330275023537e22 2.66339641977569e22 0.999964830792884 -9.36695403200381e17
7 3.82588166641253e22 3.8259132201782e22 0.999991752618564 -3.15537656693916e17
8 3.35169775526293e23 3.35140684068409e23 1.00008680371935 2.90914578839655e19
8 1.13946580450882e24 1.13942904804314e24 1.00003225867003 3.67564656800128e19
8 2.31935906884942e24 2.31928230131293e24 1.00003309969487 7.67675364899952e19
8 3.83145462724565e24 3.83173855869501e24 0.999925900098608 -2.83931449359721e20
8 5.64909301637731e24 5.6491832095572e24 0.999984034297252 -9.01931798900947e19

Table 5.3: Moments of L
(

1
2
, χd
)

up to X versus conjectured asymptotics up to X, for
k = 1, . . . , 8 and d < 0. Each block is sampled at X = 1010, 2× 1010, . . . , 5× 1010.
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k moment conjecture ratio difference
1 4074391863.44469 4074392042.93877 0.999999955945801 -179.494079589844
1 8445624718.02429 8445624023.31381 1.00000008225686 694.710479736328
1 12928896894.5904 12928896383.1457 1.00000003955826 511.444700241089
1 17484928279.5793 17484927921.5002 1.0000000204793 358.0791015625
1 22095062063.1137 22095062690.7385 0.999999971594342 -627.624797821045
2 76310075816.4656 76310057832.3198 1.00000023567202 17984.1458129883
2 168051689378.933 168051603484.026 1.00000051112221 85894.9070129395
2 266303938917.289 266303916920.62 1.00000008259987 21996.6690063477
2 368948427173.219 368948308826.37 1.0000003207681 118346.848999023
2 474942139636.155 474942177549.675 0.999999920172346 -37913.5199584961
3 2478393690176.25 2478391641054.51 1.00000082679497 2049121.74023438
3 5878735240405.92 5878729153410.41 1.00000103542711 6086995.50976562
3 9720154390088.39 9720158187579.47 0.999999609317975 -3797491.08007812
3 13873264940981.6 13873252832528.8 1.00000087279119 12108452.7988281
3 18271480140004.1 18271496263135.1 0.99999911758015 -16123131
4 108684254847368 108684097510165 1.00000144765616 157337203
4 279749805201690 279749156684971 1.00000231820795 648516719
4 484732760732189 484733296056915 0.99999889563038 -535324726
4 714931674293147 714929616642460 1.00000287811645 2057650687
4 965640462899128 965643346476594 0.999997013827645 -2883577466
5 5.7022430562904e15 5.70223224068973e15 1.000001896731 108684097510165
5 1.59997376762599e16 1.5999653478756e16 1.00000526245797 84197503900
5 2.91304302919673e16 2.91304950122491e16 0.999997778263577 -64720281800
5 4.44827164173005e16 4.4482376920928e16 1.00000763215448 339496372496
5 6.17072908903673e16 6.17077088697785e16 0.999993226463616 -417979411200
6 3.36582908140978e17 3.3658163201404e17 1.00000379143369 1276126937984
6 1.03269331133762e18 1.03268168488978e18 1.00001125850106 11626447840000
6 1.97924258066123e18 1.97925154912564e18 0.999995468759687 -8968464409856
6 3.13323798444742e18 3.13318904016406e18 1.00001562123534 48944283359744
6 4.46859415120687e18 4.46864874024817e18 0.999987783993669 -54589041299968
7 2.15991539085973e19 2.15989246212753e19 1.00001061568231 229287322001408
7 7.26312167991914e19 7.26295668030914e19 1.00002271796697 1.64999610000179e15
7 1.46733199899907e20 1.46734533114348e20 0.999990914105816 -1.33321444099686e15
7 2.41042340833943e20 2.41036160843122e20 1.0000256392684 6.17999082097869e15
7 3.5369407873606e20 3.53700808054158e20 0.999980974547005 -6.72931809801011e15
8 1.47589977366401e21 1.47585964179895e21 1.00002719219628 4.01318650597868e16
8 5.44909066717911e21 5.44885361218154e21 1.00004350548105 2.37054997569733e17
8 1.16160296153376e22 1.16162279275691e22 0.999982928001005 -1.983122315013e17
8 1.98161815943723e22 1.98155052338218e22 1.00003413289454 6.76360550497649e17
8 2.99340300076072e22 2.99348464881333e22 0.999972724746512 -8.16480526100595e17

Table 5.4: Moments of L
(

1
2
, χd
)

up to X versus conjectured leading term up to X, for
and k = 1, . . . , 8 and d > 0. Each block is sampled at X = 2× 109, 4× 109, . . . , 1010.
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d average of moments average of conjectures ratio of average
< 0 3.26052668116201e23 3.26058331976247e23 0.99998262930436
> 0 1.68629369822128e21 1.68629519213256e21 0.999999114086739

Table 5.5: Average of moments versus average of conjectured asymptotics.
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Figure 1: These plots depict the ratio Rk(X) for k = 1, . . . , 8 and d < 0, sampled
at X = 100000, 200000, . . . , 5 × 1010. The horizontal axis is X, the vertical axis is the
difference Rk(X), and the line through the data is the mean up to X.
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Figure 2: These plots depict the ratio Rk(X) for k = 1, . . . , 8 and d > 0, sampled at
X = 100000, 200000, . . . , 1.2 × 1010. The horizontal axis is X, the vertical axis is the
difference Rk(X), and the line through the data is the mean up to X.
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Figure 3: These plots depict the difference Dk(X) for k = 1, . . . , 8 and d < 0, sampled
at X = 100000, 200000, . . . , 5 × 1010. The horizontal axis is X, the vertical axis is the
difference Dk(X), and the line through the data is the mean up to X.
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Figure 4: These plots depict the difference Dk(X) for k = 1, . . . , 8 and d > 0, sampled
at X = 100000, 200000, . . . , 1.2 × 1010. The horizontal axis is X, the vertical axis is the
difference Dk(X), and the line through the data is the mean up to X.
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Figure 5: This graph depicts the difference D3(X) for d > 0. The lines through the data
are the mean up to X and the running average of D3(X) up to X. Observe that both the
mean line and average line deflect away from 0 in a similar fashion.

-3e+08

-2e+08

-1e+08

 0

 1e+08

 2e+08

 3e+08

 4e+08

 0  1e+10  2e+10  3e+10  4e+10  5e+10re
d:

 M
om

en
t(

X
)-

C
on

je
ct

ur
e(

X
),

 g
re

en
: m

ea
n 

up
 to

 X
, b

lu
e:

 -
.0

7 
4/

7x
^{

3/
4}

X

k=3

Figure 6: This graph depicts the difference D3(X) for d < 0. The lines through the data
are the mean up to X and the running average of D3(X) up to X.
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Figure 7: This is a zoomed plot of the difference D3(X) for d < 0. The lines through
the data are the mean up to X and the running average of D3(X) up to X. Observe that
both the mean line and average line deflect away from 0.
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Chapter 6

Further Advancements

Current stages of investigation seem to indicate three possible avenues to pursue further.

6.1 Complexity Improvements

At a recent number theory conference (Automorphic Forms and L-functions: Computa-

tional Aspects) held at the University of Montreal, A. Booker and D. Goldfeld communi-

cated several ideas to my supervisor (Dr. M. Rubinstein) which may prove to significantly

enhance the efficiency of our algorithms. Specifically, they indicated the promising fact

that the L-values in question appear as the Fourier coefficients of a certain Eisenstein se-

ries of half weight. As a result, it would then seem plausible to borrow Hejhal’s phase

two algorithm – developed for computing Fourier coefficients of Maass forms – to design

a version based on the Fast Fourier Transform (FFT) and then apply it to our situation.

This promises to reduce the complexity of our algorithm from O
(
X

3
2

+ε
)

to O(X1+ε). For

the practical implementation of the FFT portion, we would consult with Bill Hart and

Gonzalo Tornaria who recently carried out an FFT on polynomials of degree one trillion.
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6.2 Theoretical Investigation

As previously indicated, Diaconu et al. recently used the philosophy of multiple Dirichlet

series to conjecture the existence of an exceptional main term of the form bX
3
4 appearing

in the cubic moments of L
(

1
2
, χd
)
. In his thesis, Zhang determined that b ≈ −.2154. The

numerical data collected above appears to support the existence of such a lower order

main term, though Zhang’s constant seems to be a bit off. Accordingly, questions now

arise concerning the possible existence of extra lower order main terms in the asymptotic

expansions of other moments. In certain cases, especially the first two moments, the

collected data reveals interesting structure in the associated remainder term, and it would

be worthwhile to study this further.

6.3 Generalizations

The family of quadratic Dirichlet L-functions is merely one example within the class of

all L-functions. As a result, it is natural to wonder if properties such as the existence

of lower order main terms in the moment expansions of more general L-functions persist.

In particular, we could consider the moments for the family of quadratic twists of elliptic

curve L-functions (sometimes referred to as the Hasse-Weil L-function). An elliptic curve

L-function can be represented by an L-function whose coefficients are indicative of the

underlying properties of the elliptic curve. For example, if we suppose that E is an elliptic

curve over the rational field Q (which is typically the only case of interest in the theory

of elliptic curves), then the coefficients of the induced elliptic curve L-function count,

roughly, the number of points (in the finite field of p elements) which “miss” the curve E.

Importantly, the ideas given above might lead to the existence of a lower order term in

the moments of, for example, quadratic twists of a given elliptic curve. Presumably the

constant factor in this lower term would depend on the properties of the underlying elliptic
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curve, giving a whole set of testable predicitons that ought to be convincing one way or

the other.
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