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Abstract

We are interested in investigating the number of integral points on quadrics.

First, we consider non-degenerate plane conic curves defined over Z. In partic-

ular we look at two types of conic sections: hyperbolas with two rational points at

infinity, and ellipses. We give upper bounds for the number of integral points on

such curves which depends on the number of divisors of the determinant of a given

conic.

Next we consider quadratic surfaces of the form q(x, y, z) = k, where k is an

integer and q is a non-degenerate homogeneous quadratic form defined over Z. We

give an upper bound for the number of integral points (x, y, z) with bounded height.
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Chapter 1

Introduction

The study of integral points on affine curves has always drawn attention of many

mathematicians. But only recently, Silverman [Sil00] gave the conditions deter-

mining whether a given irreducible affine curve defined over Z has finite or infinite

set of integral points. It was proven earlier by Siegel [Sie29] that a geometrically

irreducible affine curve has only finitely many integral points unless it has geomet-

ric genus 0 and at most two points at infinity. Silverman gave a necessary and

sufficient condition for a curve of that type to possess a finite number of integral

points. There was a small mistake in his statement that was later corrected by

Poulakis [Pou02].

Knowing that a given curve has finitely many integral points leads to the next

questions: ”How many integral points does the curve have?” and ”How to find

those points?”. An explicit bound for the number of integer solutions for curves of

genus 0 with at least 3 points at infinity was obtained by Poulakis [Pou93]. Such
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a bound also follows from Bilu [Bil93]. The bounds were too large to provide a

good method to find the actual points, so later on, Poulakis and Voskos [PV00]

gave a practical general method for finding integral points on curves of genus 0

with at least three points at infinity. Two years later they gave a practical method

for finding integral points on curves of genus 0 with at most two points at infinity

[PV02]. Other mathematicians also worked on answering the above questions. One

remarkable example is due to Corvaja and Zannier [CZ03].

Consider irreducible conic curves defined over Z. We can divide such curves

into four types: (i) parabolas; (ii) ellipses; (iii) hyperbolas with two rational points

at infinity; (iv) hyperbolas with two points at infinity that are conjugates over a

real quadratic field. It follows from [Sil00] that there are either none or an infinite

number of integral points on curves of types (i) and (iv). Same conclusion also

follows from the work of Niven [Niv42]. Explicit algorithms for finding a complete

set of integral points on those curves can be found in [Nag64], [Dic71]. Thus, we

narrow our focus to hyperbolas with rational points at infinity, and ellipses.

Using the method described in our proof, one can compute effectively all the

integer solutions, but there are other algorithms to solve the above type of equa-

tions, see [MA], [Nag64], [Dic71]. Moreover, in the hyperbola case, ”Mathematica”

implements an algorithm, which is different from ours, that can also be used to get

the same maximum number of integer solutions. However, an explicit bound is not

given in the above sources.

After examining integral points on quadratic curves we can ask similar questions

in a higher dimensional case. So we are interested in upper bounds for the number
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of integral points of bounded height on quadratic surfaces. Such questions were also

studied before. For example, Scourfield [Sco61] looked at a particular quadratic

surface, defined by the equation x2 +y2−z2 = 1, and found an asymptotic estimate

for the number of integral points of height bounded by B to be CB log B (where C is

a constant that does not depend on B). Duke, Rudnik and Sarnak [DRS93] proved

results for more general cases (at the same time, Eskin and McMullen [EM93]

also worked on similar questions) using techniques from harmonic analysis. In the

case of quadratic forms they claim that the following asymptotics can be deduced:

CB or CB log B. However in their paper they omit the details, including stating

precisely when the asymptotic formula is CB and when it is CB log B. We obtain

our estimates for the number of integral points with bounded height for a general

smooth quadratic surface with infinitely many integral points, using a completely

different approach that involves a geometric argument. Our techniques are much

more elementary.

The thesis is organized as follows. In Chapter 2 (Background) we will give

background which will be helpful in understanding and proving the main theorems.

Due to the nature of the problems we are interested in this thesis, we will not need

too much background, but few definitions will still be essential. In particular, we

will talk about projective n-space, quadratic forms and conic sections.

Chapter 3 (Main Theorems) consists of Section 3.1 (Integral Points on Quadratic

Curves) and Section 3.2 (Integral Points on Quadratic Surfaces). In the first section

of Chapter 3 we will investigate integral points on non-degenerate quadratic curves

defined over Z of two types: hyperbolas with two rational points at infinity, and
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ellipses. We will give upper bounds for the number of integral points on such curves

that depend on the number of divisors of the determinant of a given curve.

In particular, hyperbolas with two rational points at infinity can be defined as

follows:

ax2 + bxy + cy2 + dx + ey + f = 0 with D = b2 − 4ac = m2

for some non-zero integer m, and the determinant ∆ = 4acf+bde−ae2−b2f−cd2

4
6= 0. We

will show that the number of integral points on hyperbolas with two rational points

at infinity is bounded from above by 4d(4∆), where (4∆) is the determinant of a

given curve and d(4∆) denotes the number of positive divisors of 4∆.

Next we will consider ellipses:

ax2 + bxy + cy2 + dx + ey + f = 0 with D = b2 − 4ac < 0.

As before we define the determinant of the curve denoted by ∆ to be 4acf+bde−ae2−b2f−cd2

4

and we assume it is nonzero. A trivial upper bound for the number of integral points

on ellipses is

(⌊
8
√
−a(4∆)

−D

⌋
+ 2

)
, but we are interested in an upper bound that de-

pends on the number of divisors of the determinant. We will show that the number

of integral points is not greater than 24d(−16a(4∆)), where d(−16a(4∆)) denotes

the number of positive divisors of −16a(4∆). Note that our bound also depends

on the coefficient in front of x2. It is easy to adjust our argument to get an upper

bound 24d(−16c(4∆)), and in particular this latter bound can be used if |a| > |c|.

In the second section of Chapter 3 we will give an upper bound for the num-
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ber of integral points with bounded height on non-degenerate quadratic surfaces.

Let q(x, y, z) = k, where k is an integer and q is a non-degenerate homogeneous

quadratic form defined over Z. We will show that an upper bound for the number

of integral solutions (x, y, z) with |x|, |y|, |z| ≤ B is KB log B with an exception

that in some cases it is KB(log B)2, where K is a constant that depends on the

coefficients of the original polynomial but not on B. We will be using bounds ob-

tained in Section 3.1 to get our estimates. The idea in the proofs is to transform a

given surface to a surface that we can slice with planes z = C ′ (as C ′ varies) where

each slice is a hyperbola with two rational points at infinity (so the surface can be

expressed as a family of hyperbolas) or an ellipse (so the surface can be expressed

as a family of ellipses). There will be only finitely many integral points on each

slice. Then we will sum up integral points on those slices to get our bounds.

Chapter 4 contains the conclusion.
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Chapter 2

Background

2.1 Projective n-space

Definition 1. Let K be a field. We define projective n-space over K, denoted

by Pn or Pn(K), to be the set of equivalence classes of (n+1)-tuples [a1 : . . . : an+1]

of elements of K, not all zero, under the equivalence relation given by

[a1 : . . . : an+1] ∼ [λa1 : . . . : λan+1]

for all λ ∈ K,λ 6= 0 (see Section I.2 of [Har77]).

An element of Pn(K) is called a point in Pn(K).

Points at infinity in Pn are points with the last coordinate zero, i.e. points of

the form [a1 : . . . : an : 0].
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A point [a1 : . . . : an+1] of Pn(Q) is in reduced form if a1, . . . , an+1 are integers

and gcd(a1, . . . , an+1) = 1.

The height of [a1 : . . . : an+1] (in reduced form) is defined to be

H([a1 : . . . : an+1]) = max(|a1|, . . . , |an+1|).

2.2 Quadratic Forms

Quadratic forms are homogeneous quadratic polynomials in n variables. Using

homogeneous coordinates, a non-zero quadratic form in n variables defines an (n−
2)-dimensional quadric in (n− 1)-dimensional projective space.

Any n × n real symmetric matrix S determines a quadratic form. Conversely,

given a quadratic form in n variables, its coefficients can be arranged into an n×n

symmetric matrix. For example, if we are given a ternary quadratic form

q(x, y, z) = ax2 + bxy + cy2 + dxz + eyz + fz2

we associate the following matrix S with it:

S =




a b
2

d
2

b
2

c e
2

d
2

e
2

f




.

If none of the eigenvalues of matrix S are zero (or equivalently if detS 6= 0)
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then the corresponding quadratic form is called non-degenerate. This includes

positive definite, negative definite, and indefinite quadratic forms. Throughout the

thesis we will be considering non-degenerate quadratic forms. A quadratic form

q(x1, x2, . . . , xn) is called

-positive definite, if q(x1, x2, . . . , xn) > 0 for all (x1, x2, . . . , xn) 6= (0, 0, . . . , 0)

-negative definite, if q(x1, x2, . . . , xn) < 0 for all (x1, x2, . . . , xn) 6= (0, 0, . . . , 0)

-indefinite, otherwise.

We can determine what type of form we have by looking at the eigenvalues

of the corresponding matrix S. Thus, if all the eigenvalues of S are positive, we

have a positive definite quadratic form, if all the eigenvalues are negative, we get a

negative definite quadratic form, and if a matrix S has both positive and negative

eigenvalues, the corresponding form is indefinite.

We define the signature of a non-degenerate quadratic form to be a pair (sp, sn),

where sp is the number of positive eigenvalues of S and sn is the number of negative

eigenvalues of S.

2.3 Conic Sections

Conic sections are curves generated by the intersections of a plane with one or two

nappes of a cone. The image below is taken from Wolfram MathWorld web page

[MW].
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Consider irreducible (non-degenerate) conic curves defined over Z. We can

divide such curves into four types:

(i) parabola (one rational point at infinity);

(ii) ellipse (two imaginary points at infinity);

(iii) hyperbola (two rational points at infinity);

(iv) hyperbola (two points at infinity that are conjugates over a real quadratic

field).

It follows from [Sil00] that there are either none or an infinite number of integral

points on curves of types (i) and (iv). Explicit algorithms for finding a complete set

of integral points on those curves can be found in [Nag64], [Dic71]. In this thesis

we will look closer at the curves of types (ii) and (iii) which are known to have only

finitely many integral points.
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Let C be a non-degenerate plane conic curve defined over Z. In particular, we

are given a bivariate quadratic equation

q(x, y) = ax2 + bxy + cy2 + dx + ey + f = 0

with a, b, c, d, e, f,∈ Z, gcd(a, b, c, d, e, f) = 1, and a, b, c are not all zero.

The discriminant of the curve is defined to be D = b2 − 4ac.

Let Ch : ax2 + bxy + cy2 + dxz + eyz + fz2 = 0 be the corresponding curve in

the projective plane. Then (X, Y ) is a solution of C if and only if [X : Y : 1] is a

solution of Ch.

Points at infinity that lie on Ch are points with z = 0, i.e. they have to satisfy

the equation ax2 + bxy + cy2 = 0.

Assuming that there are two distinct rational points at infinity on Ch is the same

as assuming that D = b2 − 4ac = m2 for some non-zero integer m. Such curves are

hyperbolas with two rational points at infinity and are known to have finitely many

integral points.

If D < 0, i.e. there are two imaginary points at infinity on a given curve, then

the curve is an ellipse.

Let

S =




a b
2

d
2

b
2

c e
2

d
2

e
2

f




.
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Then S is a symmetric matrix associated to Ch; i.e.

Ch :

[
x y z

]
S




x

y

z




= 0.

We define the determinant, denoted by ∆, of the curve C to be the determinant

of this matrix S.

∆ = det(S) =

∣∣∣∣∣∣∣∣∣∣

a b
2

d
2

b
2

c e
2

d
2

e
2

f

∣∣∣∣∣∣∣∣∣∣

=
4acf + bde− ae2 − fb2 − cd2

4
.
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Chapter 3

Main Theorems

3.1 Integral Points on Quadratic Curves

In this section we will consider non-degenerate quadratic curves of two types; in

particular we will look at hyperbolas with two rational points at infinity and ellipses.

We will give upper bounds for the number of integral points on such curves.

3.1.1 Hyperbolas with Two Rational Points at Infinity

Let C be a non-degenerate plane conic curve defined over Z, with the property of

having two distinct rational points at infinity in the projective plane. We give an

upper bound for the number of integer points on C. The bound depends only on

the determinant of the conic.
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In particular, we are given a bivariate quadratic equation

q(x, y) = ax2 + bxy + cy2 + dx + ey + f = 0

with a, b, c, d, e, f,∈ Z, gcd(a, b, c, d, e, f) = 1, b2 − 4ac = m2 for some non-zero

integer m, and 4acf+bde−ae2−b2f−cd2

4
6= 0. The last quantity also defines the determi-

nant of the curve denoted by ∆. We show that the the number of integer solutions

to this quadratic equation does not exceed 4d(4∆), where d(4∆) is the number of

positive divisors of 4∆.

The proof involves solving the above equation to determine what conditions

are necessary in order for the solution to be integral. We apply some of those

restrictions to get an upper bound for the number of integer solutions. Observing

that the bound depends only on the determinant of the curve if the equation has

coefficients a 6= 0 and c = 0, we show that we can always find a linear transformation

that sends the original curve to a curve in the required form (i.e. a 6= 0 and c = 0),

satisfying all the initial assumptions, and having the same number of integer points

and the same determinant as the original curve.

Theorem 1. Let C be a non-degenerate curve in A2, defined by a bivariate

quadratic equation with integer coefficients. Let Ch denote the corresponding ho-

mogenized curve C in P2 and assume that Ch has two distinct rational points at

infinity. Let ∆ 6= 0 denote the determinant of the quadratic curve. Then the num-

ber of integer points on C is not greater than 4d(4∆), where d(4∆) is the number

of positive divisors of 4∆.

Note: It should be noted that ∆ 6= 0 is immediate from the fact that we are
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restricting our attention to non-degenerate curves.

Proof: Given the following quadratic curve

C : ax2 + bxy + cy2 + dx + ey + f = 0,

with a, b, c, d, e, f,∈ Z, gcd(a, b, c, d, e, f) = 1 and a, b, c are not all zero. By ho-

mogenizing the above equation we get the corresponding curve in the projective

plane

Ch : ax2 + bxy + cy2 + dxz + eyz + fz2 = 0.

First we will show that, without loss of generality, we can assume that a 6= 0

and c = 0.

Let M ∈ SL3(Z) be in the form




u g 0

v h 0

0 0 1




. Then the linear transformation

defined by M sends the curve Ch to a curve C ′h with the property that C and C ′ have

the same number of integer solutions. To see that, first observe that the inverse of

M is given by




h −g 0

−v u 0

0 0 1




. So we have

M




x

y

1




=




ux + gy

vx + hy

1




and M−1




x′

y′

1




=




hx′ − gy′

−vx′ + uy′

1




.
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Hence, the above transformation gives us a one to one correspondence between the

points on Ch in the form [x : y : 1] with x, y ∈ Z and the points on C ′h in the form

[x′ : y′ : 1] with x′, y′ ∈ Z.

It is easy to see that since Ch has two distinct rational points at infinity, C ′h
will also have two distinct rational points at infinity. The property that C ′ is

non-degenerate will follow from the fact that this linear transformation preserves

the determinant of the curve. To prove that, consider the symmetric matrix S

associated with Ch, that we described in Section 2.3. Then

C ′h :

[
x y z

]
(M−1)T SM−1




x

y

z




= 0.

Consequently, a symmetric matrix that represents C ′h is (M−1)T SM−1 and since

det(M) = 1, then ∆′ = ∆.

So, such a matrix M preserves the determinant, the number of integer points,

and the property that it has two rational points at infinity. It remains to show that

we can pick M such that a′ 6= 0 and c′ = 0. This would imply that we can continue

our argument assuming that a 6= 0 and c = 0.

Observe that C ′h satisfies the required property - the coefficient in front of x2 is

non-zero and the coefficient in front of y2 is zero - if and only if the two points at

infinity on C ′h are [0 : Z : 0] and [X : Y : 0] with X,Y, Z 6= 0. Hence, to show that

we can find the required linear transformation we need to show that we can find

M in the form described above that sends two points at infinity of Ch to rational

15



points [0 : Z : 0] and [X : Y : 0] with X, Y, Z 6= 0.

We can have the following four possibilities for the coefficients a and c in the

original curve Ch :

i) a 6= 0 and c = 0;

ii) a = 0 and c = 0;

iii) a = 0 and c 6= 0;

iv) a 6= 0 and c 6= 0.

Clearly, in the first case we already have the curve in the required form. By

symmetry in x and y, case iii) is the same as case i).

For the second case, the two points at infinity on Ch are P = [1 : 0 : 0] and

Q = [0 : 1 : 0], then we let M =




0 −1 0

1 1 0

0 0 1




. We see that

MP =




0

1

0




and MQ =




−1

1

0




giving two points at infinity of the the required form.

In the final case, the points at infinity are

P = [p : r : 0] and Q = [q : r : 0],

where p = −b +
√

b2 − 4ac, q = −b−
√

b2 − 4ac and r = 2a.
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Note that by our assumptions, p, q, and r are all integers, but they may not be

coprime.

We will find M with det(M) = 1 such that

MP =




u g 0

v h 0

0 0 1







p

r

0




=




up + gr

vp + hr

0




=




0

gcd(p, r)

0




and

MQ =




u g 0

v h 0

0 0 1







q

r

0




=




uq + gr

vq + hr

0




with (uq + gr)(vq + hr) 6= 0. Note also that gcd(p, r) 6= 0, since P = [p : r : 0]. Let

u = r
gcd(p,r)

and g = − p
gcd(p,r)

. Then up + gr = 0 and uq + gr = −2u
√

b2 − 4ac 6= 0.

Next, we want to find integers v and h such that vp+hr = gcd(p, r) and vq+hr 6= 0.

The first condition also implies that uh− gv = 1, i.e. the determinant of M is one.

Clearly, there are infinitely many solutions to vp+hr = gcd(p, r), so suppose (v, h)

is one of them. Then the equation vq + hr = gcd(p, r) − 2v
√

b2 − 4ac = 0 has

at most one integer solution for v. Since there are many possibilities for choosing

(v, h) we can always find the pair such that vq + hr 6= 0, and thus we can always

get the required matrix M.

Therefore, we can always find a linear transformation that sends a given curve

to a curve that satisfies all the original assumptions, has the same number of integer

points, and, moreover, has the property that the coefficient in front of x2 is non-zero
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and the coefficient in front of y2 is zero. For that reason, without loss of generality,

we can assume that we are given a curve C : ax2 + bxy + cy2 + dx + ey + f = 0,

where a 6= 0 and c = 0. Note that the determinant becomes ∆ = bde−ae2−fb2

4
and

b2 − 4ac > 0 implies that b 6= 0.

So we have the equation

ax2 + bxy + dx + ey + f = 0.

By fixing y and thinking about the equation in terms of x we get

ax2 + (by + d)x + (ey + f) = 0.

We can use the quadratic formula to get

x =
−(by + d)±

√
(by + d)2 − 4a(ey + f)

2a
.

In order for x to be an integer we need to find y ∈ Z, such that

1) (by + d)2 − 4a(ey + f) = A2 for some integer A;

2) 2a divides −(by + d)± A.

Let us look at equation 1). By rearranging the terms in that equation, we get

b2y2 + (2bd− 4ae)y + (d2 − 4af − A2) = 0.

18



Again, we can use the quadratic formula to get

y =
−(2bd− 4ae)±

√
(2bd− 4ae)2 − 4b2(d2 − 4af − A2)

2b2
.

Since we want y to be an integer, we need the following two conditions satisfied:

1) (2bd− 4ae)2 − 4b2(d2 − 4af − A2) = B2 for some integer B;

2) 2b2 divides −(2bd− 4ae)±B.

The first condition gives us the following equation in terms of A and B :

B2 − 4b2A2 = (2bd− 4ae)2 − 4b2(d2 − 4af)

=⇒ B2 − 22b2A2 = −16a(4∆)

=⇒ (B − 2bA)(B + 2bA) = −16a(4∆).

So we write

B − 2bA = h

B + 2bA = n

then

B = h+n
2

A = n−h
4b

where hn = −16a(4∆).

In order for B to be an integer, h and n have to be both even or both odd.

Since their product is even and thus they cannot be both odd, h and n are both

even.
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In order for A to be an integer, n ≡ h mod 4. If h ≡ 2 mod 4, then h = 2k1

where k1 is odd, and therefore n = −8k2 ≡ 0 mod 4 and h 6≡ n mod 4. For that

reason, we want both h and n be divisible by four. So, let h = 4α, and n = 4β.

(A,B) =

(
(β − α)

b
, 2α + 2β

)
, where αβ = −a(4∆).

The next step is to go back and express x and y in terms of α and β. For each

(A,B) we have four solutions:

S1 =





y = −(2bd−4ae)+B
2b2

= −(bd−2ae)+(α+β)
b2

x = −(by+d)+A
2a

= −2ae+(α+β)+(β−α)
2ab

S2 =





y = −(2bd−4ae)+B
2b2

= −(bd−2ae)+(α+β)
b2

x = −(by+d)−A
2a

= −2ae+(α+β)−(β−α)
2ab

S3 =





y = −(2bd−4ae)−B
2b2

= −(bd−2ae)−(α+β)
b2

x = −(by+d)+A
2a

= −2ae−(α+β)+(β−α)
2ab

S4 =





y = −(2bd−4ae)−B
2b2

= −(bd−2ae)−(α+β)
b2

x = −(by+d)−A
2a

= −2ae−(α+β)−(β−α)
2ab

Observe that due to the obvious symmetry pairs (α, β), (β, α), (−α,−β) and

(−β,−α) give rise to the same set of solutions. Thus the first thing we notice

from the above argument is that to count pairs (α, β) that produce distinct sets of

solutions we can consider only positive divisors of a(4∆).
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Next, for each pair (α, β) we have the following four possibilities for x:

(i) : x =
−ae + β

ab
=⇒ a divides β

(ii) : x =
−ae + α

ab
=⇒ a divides α

(iii) : x =
−ae− α

ab
=⇒ a divides α

(iv) : x =
−ae− β

ab
=⇒ a divides β.

Consequently, in order for x to be an integer in at least one of the above four cases,

a has to divide at least one of β or α, thus we can exclude the pairs (α, β), where

both α and β are not divisible by a. Since αβ = −a(4∆), and we showed earlier

that (α, β) and (β, α) give the same set of solutions, without loss of generality, we

can let α = aα′, and we count the pairs (aα′, β), where α′β = −4∆. Let d(4∆)

denote the number of positive divisors of (4∆). Then, using the above argument,

we can conclude that the bound for the number of integer solutions on C is not

greater then 4d(4∆).

This completes the proof.
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3.1.2 Ellipses

In this section we will give an upper bound for the number of integer points on an

ellipse which depends on the number of divisors of the determinant of the conic.

In particular, we are given a bivariate quadratic equation

q(x, y) = ax2 + bxy + cy2 + dx + ey + f = 0

with a, b, c, d, e, f,∈ Z, gcd(a, b, c, d, e, f) = 1, and D = b2 − 4ac < 0. As before we

define the determinant of the curve, denoted by ∆, to be 4acf+bde−ae2−b2f−cd2

4
and

we assume it is nonzero.

The proof in this thesis involves solving the above equation to determine what

conditions are necessary in order for the solution to be integer. We apply some of

those restrictions to show that the number of integral points on a given ellipse is

bounded by the number of solutions of the corresponding equation X2 − DY 2 =

−16a(4∆). We will show that the number of integral solutions on this latter equation

is not more than d(−16a(4∆)).

Theorem 2. Let C be a non-degenerate curve in A2, defined by a bivariate

quadratic equation with integer coefficients. Let ∆ 6= 0 denote the determinant of

the quadratic curve. Let D = b2− 4ac < 0. Then the number of integer points on C
is not greater than 24d(−16a(4∆)), where d(−16a(4∆)) is the number of positive

divisors of −16a(4∆).

Note: The fact that C is non-degenerate implies that ∆ 6= 0. The fact that D < 0

implies that we are looking at an ellipse.
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Proof: Let

C : ax2 + bxy + cy2 + dx + ey + f = 0

with a, b, c, d, e, f,∈ Z, gcd(a, b, c, d, e, f) = 1 and a, b, c are not all zero.

By fixing y and thinking about the equation in terms of x we get

ax2 + (by + d)x + (cy2 + ey + f) = 0.

We can use the quadratic formula to get

x =
−(by + d)±

√
(by + d)2 − 4a(cy2 + ey + f)

2a
.

In order for x to be an integer we need to find y ∈ Z such that

1) (by + d)2 − 4a(cy2 + ey + f) = A2 for some integer A;

2) 2a divides −(by + d)± A.

Let us look at equation 1). By rearranging the terms in that equation, we get

(b2 − 4ac)y2 + (2bd− 4ae)y + (d2 − 4af − A2) = 0.

Again, we can use the quadratic formula to get

y =
−(2bd− 4ae)±

√
(2bd− 4ae)2 − 4(b2 − 4ac)(d2 − 4af − A2)

2(b2 − 4ac)
.

Since we want y to be an integer, we need the following two conditions satisfied:
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1) (2bd− 4ae)2 − 4(b2 − 4ac)(d2 − 4af − A2) = B2 for some integer B;

2) 2(b2 − 4ac) divides −(2bd− 4ae)±B.

The first condition gives us the following equation in terms of A and B :

B2 − 4(b2 − 4ac)A2 = (2bd− 4ae)2 − 4(b2 − 4ac)(d2 − 4af)

=⇒ B2 − 4(b2 − 4ac)A2 = −16a(4acf + bde− ae2 − cd2 − fb2)

=⇒ B2 − 4DA2 = −16a(4∆).

Thus we see that a necessary condition for (x, y) to be an integer solution is

the existence of the corresponding solution on the curve X2 − 4DY 2 = −16a(4∆).

Note that not every integral solution on this new curve will correspond to and an

integral solution on the original curve. Since we only look for an upper bound, we

will examine integral solutions of X2 −DY 2 = −16a(4∆).

Remark. Since we assumed that D < 0, there are no integral solutions if

−16a(4∆) < 0.

We can write the above expression in the following form

(X −
√

DY )(X +
√

DY ) = −16a(4∆).

Let d1(α) be the number of ways to factor an integer α as α = (X−√DY )(X +
√

DY ) for integers X and Y. We will show that

d1(α) ≤ 6d(α)
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where d(α) is the number of positive divisors of α.

Let d2(α) denote the number of ways to factor an ideal (α) as (α) = II for an

ideal I of the ring of integers of Q(
√

D).

Claim 1. d1(α) ≤ 6d2(α)

Each factorization of α as α = (X − √
DY )(X +

√
DY ) will give an ideal

factorization (α) = (X − √DY )(X +
√

DY ) up to multiplication by units. Since

D < 0, there can be at most 6 units in the ring of integers of Q(
√

D) (see p.230 of

[DF04]) so we get d1(α) ≤ 6d2(α).

Claim 2. d2(α) ≤ d(α)

First, let us show that d2(α) is multiplicative. Let α and β be integers such

that gcd(α, β) = 1. We will show that there is a one-to-one correspondence between

factorizations (αβ) = II of (αβ) and pairs of factorizations (α) = UU and (β) =

V V .

Let (αβ) = II. Set U = (α) + I and V = (β) + I. Then

UU = ((α) + I)((α) + I) = (α2) + αI + αI + II = (α2) + αI + αI + (αβ) = (α)

since gcd(α, β) = 1. Similarly we can see that V V = (β). So we get the following

map Φ

(αβ) = II
Φ−→





(α) = ((α) + I)((α) + I) = UU

(β) = ((β) + I)((β) + I) = V V

To define a map going in the other direction - call this map Ψ - assume (α) = UU
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and (β) = V V . Let I = UV then II = (UV )(UV ) = (αβ).





(α) = UU

(β) = V V

Ψ−→ (αβ) = (UV )(UV ) = II.

We still need to show that the above maps give us a bijection, i.e

Ψ ◦ Φ = Φ ◦Ψ = identity.

We start with (αβ) = II.

(αβ) = II
Φ−→





(α) = ((α) + I)((α) + I)

(β) = ((β) + I)((β) + I)

Ψ−→ (αβ) = (((α) + I)((β) + I))(((α) + I)((β) + I)

So we want to show ((α) + I)((β) + I) = I.

((α)+I)((β)+I) = (αβ)+(β)I+(α)I+I2 = II+I((α)+(β))+I2 = I(I+(1)+I) = I.

On the other hand, let (α) = UU and (β) = V V .





(α) = UU

(β) = V V

Ψ−→ (αβ) = (UV )(UV )
Φ−→





(α) = ((α) + UV )((α) + UV )

(β) = ((β) + UV )((β) + UV )
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So we need to show that ((α) + UV ) = U and ((β) + UV ) = V .

((α) + UV ) = UU + UV = U(U + V ) = U.

The last equality holds since α ∈ U and β ∈ V and gcd(α, β) = 1 implying that

1 ∈ (U + V ). Similarly

((β) + UV ) = V V + UV = V (V + U) = V.

We have just shown that d2(α) is multiplicative. Let α = pγ, where p is a prime

in Z.

A prime ideal (p) of Z when viewed as an ideal of the ring of the integers of

Q(
√

D) can behave in the following three ways.

1) (p) remains a prime ideal

2) (p) = L2

3) (p) = LL.

In the first case, the only ideal factorization can be (pγ) = (p
γ
2 )(p

γ
2 ) and it is

only possible if γ is even. In the second case we get the unique ideal factorization

(pγ) = (Lγ)(Lγ). In the last case (pγ) = (LnLm)(LmLn), where m + n = γ. Thus

the number of such ideal factorizations are γ + 1, i.e. is equal to d(pγ). Combining

all three cases together we see that d2(p
γ) ≤ d(pγ).
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Since both d2(α) and d(α) are multiplicative we conclude the following

d2(α) ≤ d(α).

This implies that

d1(α) ≤ 6d2(α) ≤ 6d(α)

and the number of integral solutions of X2−DY 2 = −16a(4∆) is at most 6d(−16a(4∆)).

For each pair of solutions of X2 − DY 2 = −16a(4∆) we can get at most 4 corre-

sponding integral solutions on the original curve. Thus the number of integral

points on an ellipse is bounded from above by 24d(−16a(4∆)).

This completes the proof.
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3.2 Integral Points on Quadratic Surfaces

In this section we are considering the following question. Let q(x, y, z) = k, where

k is an integer and q is a non-degenerate homogeneous quadratic form defined over

Z. If q is a definite form, then the real points of q(x, y, z) = k form an ellipsoid

(if there are any real points at all), and there are finitely many integral points

(possibly zero). We will not consider that case. We will assume that the above

form q is not definite. So, by multiplying both sides of the equation by (−1) if

necessary, without loss of generality we may assume that q(x, y, z) has signature

(1, 2); i.e. the matrix representation for the quadratic form has one positive and

two negative eigenvalues. We are interested in estimating an upper bound for the

number of integral solutions (x, y, z) with |x|, |y|, |z| ≤ B.

In other words, we are given the following quadratic equation:

ax2 + bxy + cy2 + dxz + eyz + fz2 = k

where a, b, c, d, e, f,∈ Z, and gcd(a, b, c, d, e, f) = 1. The determinant of the quadratic

form is given by ∆ = 4acf+bde−ae2−b2f−cd2

4
. Note that ∆ > 0 since we assumed that

the signature is (1, 2).

We will look at two cases. In Theorem 3 we assume that there is a rational

point at infinity on the closure of this surface in P3, and in Theorem 4 we consider

the general case. Even though the bounds in both theorems and the main idea are

the same, we use slightly different techniques which makes both theorems worth

stating. The idea in the proofs is to transform a given surface to a surface that we
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can slice with planes z = C ′ (as C ′ varies) and each slice is a hyperbola with two

rational points at infinity (Theorem 3) or an ellipse (Theorem 4). There will be

only finitely many integral points on each slice. Then we will sum up the number

of integral points on those slices to get our estimates.

3.2.1 Hyperbola Case

Theorem 3. Let q(x, y, z) = k, where k is an integer and q is a non-degenerate

homogeneous quadratic form defined over Z with signature (1, 2). Moreover, we

assume that there is a rational point at infinity. For any B > 0, an upper bound for

the number of integral solutions (x, y, z) with |x|, |y|, |z| ≤ B is KB log B if
√

−k
4∆

is not in Q, and KB(log B)2 otherwise, where K is a constant that depends only

on the coefficients of the original polynomial, and not on B.

Proof: Assume that there is a rational point [X : Y : Z : 0] that lies on the

following variety in P3

V : ax2 + bxy + cy2 + dxz + eyz + fz2 = kw2.

Then we can find a linear map M with det(M) = 1, such that M(V ) contains the

point [0 : 1 : 0 : 0] and M induces a bijection between integral points on V and on

M(V ). Furthermore, there exists a constant C such that for all x̄ ∈ V

1

C
H(M(x̄)) ≤ H(x̄) ≤ CH(M(x̄)).
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To see that such M ∈ SL4(Z) exists, consider the following argument. We

assume that a rational point at infinity [X : Y : Z : 0] is in reduced form, i.e.

X, Y, Z ∈ Z with gcd(X, Y, Z) = 1. If [X : Y : Z : 0] = [0 : 1 : 0 : 0], then we

simply let M be the identity matrix, otherwise let M be as follows:

M =




a11 gcd(X,Z) a13 0

a21 a22 a23 0

Z
gcd(X,Z)

0 −X
gcd(X,Z)

0

0 0 0 1




where a11, a13, a21, a22, a23 are integers that satisfy

a21X + a22Y + a23Z = 1

a11
X

gcd(X,Z)
+ a13

Z

gcd(X,Z)
= −Y.

Then det(M) = 1 and M sends [X : Y : Z : 0] to [0 : 1 : 0 : 0]. So M gives us

the required change of coordinates map. Moreover, this transformation preserves

the determinant of the original quadratic form.

Thus, without loss of generality, we may assume that [0 : 1 : 0 : 0] ∈ V , implying

that c = 0. We may also assume that b 6= 0, since if b happens to be zero, we can

use an additional change of variables to get a surface with b 6= 0.

So we have the following equation:

ax2 + bxy + dxz + eyz + fz2 = k.
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By keeping z ∈ Z fixed, we get the following conic section:

ax2 + bxy + (dz)x + (ez)y + (fz2 − k) = 0.

We can count the number of solutions (x, y) to the above equation. This is a

hyperbola with two rational points at infinity, unless it is degenerate, and in that

case it is a union of two lines.

The matrix representation for the conic section is

Az =




a 1
2
b 1

2
dz

1
2
b 0 1

2
ez

1
2
dz 1

2
ez fz2 − k




.

The determinant is given by

∆Az = det(Az) =
(4∆)z2 + kb2

4
.

The conic section is degenerate if ∆Az = 0. This happens if z = ±
√

−kb2

4∆
.

First we will assume that
√

−k
4∆

is not in Q. In that case the conic section is not

degenerate for all −B ≤ z ≤ B. Moreover, if we consider 4∆Az = (4∆)z2 + kb2 as

a polynomial in z we can conclude that it is irreducible over Z.

Using Theorem 1, we know that an upper bound for the number of integer

solutions to ax2 + bxy +(dz)x+(ez)y +(fz2−k) = 0 for fixed z is 4d(4∆Az) where

d(µ) denotes the number of positive divisors of µ. Thus as z varies from −B to B
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an upper bound for the number of integer solutions on the surface is given by

B∑
z=−B

4d(4∆Az) = 4d(4∆A0) + 2
B∑

z=1

4d(4∆Az)) =

4d(2b2) + 2
B∑

z=1

4d(4∆z2 + kb2).

Erdős [Erd52] proves an upper bound for the sum of the divisors of a quadratic

function f(z), assuming that the given polynomial is irreducible. We already saw

that 4∆Az = 4∆z2 + kb2 (considered as a polynomial in z) is irreducible over Z, so

we may apply Erdős’ result to it:

4d(kb2) + 2
B∑

z=1

4d(4∆z2 + kb2)

≤ c0 + 2c1B log(B) ≤ KB log B

where K is a constant that depends on the coefficients of the original polynomial,

but not on B.

Now consider the case when
√

−k
4∆

is in Q. In that case there might be two z ∈ Z
such that the corresponding conic section becomes degenerate, i.e the union of two

lines. There are at most 8B points on those conic sections, so we may neglect them.

What is more important in that case, is that if
√

−k
4∆
∈ Q, then 4∆Az = (4∆)z2+kb2

when considered as a polynomial in z is reducible. We will use results of Ennola

[Enn68] for the sums of divisors of reducible polynomials to get the following upper

bound for the number of integer solutions on the surface.
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B∑
z=−B

4d(4∆Az) = 4d(4∆A0) + 2
B∑

z=1

4d(4∆Az))

= 4d(2b2) + 2
B∑

z=1

4d(4∆z2 + kb2) ≤ KB(log B)2

where K is a constant that depends on the coefficients of the original polynomial,

but not on B.

This finishes the proof of Theorem 3.

3.2.2 Ellipse Case

Theorem 4. Consider q(x, y, z) = k, where k is an integer and q is a non-degenerate

homogeneous quadratic form defined over Z with signature (1, 2). For any B > 0,

an upper bound for the number of integral solutions (x, y, z) with |x|, |y|, |z| ≤ B is

KB log B if
√

−kD
4∆

is not in Q, and is KB(log B)2 if
√

−kD
4∆

∈ Q, where K, D are

constants that depend on the coefficients of the original polynomial, and ∆ is the

determinant of q.

Proof: We first reduce to the case that D = b2 − 4ac < 0.

Let

` :=





A1x + A2y + A3z = 0

w = 0

be defined over Q and such that V ∩ ` consists of two points conjugate over an
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imaginary quadratic field. We can find a matrix M3 =




a11 a12 a13 0

a21 a22 a23 0

A1 A2 A3 0

0 0 0 1




with

det(M3) = 1 and integer entries that induces a bijection between integral points on

V and on M3(V ). There exists a constant C such that for all x̄ ∈ V

1

C
H(M(x̄)) ≤ H(x̄) ≤ CH(M(x̄)).

Thus , in particular, if we prove Theorem 4 for M3(V ), we will have proven Theorem

4 for V . We therefore lose no generality by assuming V = M3(V ). Since M3(`) is

the line z = w = 0, the family of planes z = C ′, as C ′ varies, expresses the surface

V as a family of ellipses. In other words, V can be expressed as

a′x2 + b′xy + c′y2 + d′xz + e′yz + f ′z2 = k with b′2 − 4a′c′ < 0.

By letting z vary from −B to B, at each step the type of conic section that we get

by keeping z fixed is an ellipse. To find an upper bound for the number of integer

solutions (in a given range) to the above equation, we will count solutions on each

of those ellipses as z varies from −B to B and then take the sum.

By keeping z fixed, the above equation describes an ellipse in R2 with deter-

minant ∆Az = 4∆z2+kD
4

. There are only finitely many integer points on an el-

lipse. Using results from Theorem 2, the number of integral points is bounded by

24d(−16a(4∆Az)).
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Note that in order for the above bound to make sense we require

−16a((4∆)z2 + kD) ≥ 0.

Thus we will have the following cases according to the values of k and a.

If a < 0 and k ≤ 0, then since D < 0 and ∆ > 0, the above inequality holds

for all z. Then an upper bound for the number of integer solutions of ax2 + bxy +

cy2 + dxz + eyz + fz2 = k with |z| ≤ B is given by

B∑
z=−B

24d(−16a(4∆Az)).

Note in this case −16a(4∆Az) = −16a((4∆)z2 + kD) when considered as a

polynomial in z is irreducible over Z and using similar argument as in Theorem 3

we get an upper bound KB log B, where K is a constant that does not depend on

B.

If a < 0 and k > 0, then −16a((4∆)z2 + kD) ≥ 0 for |z| ≥
√

−kD
4∆

, meaning

that for |z| <
√

−kD
4∆

there are no solutions. Thus an upper bound for the number

of integer solutions of ax2 + bxy + cy2 + dxz + eyz + fz2 = k with |z| ≤ B is given

by

2
B∑

z=d
√−kD

4∆
e

24d(−16a(4∆Az)).

If
√

−kD
4∆

is not in Q, then −16a(4∆Az) = −16a((4∆)z2 + kD) when considered
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as a polynomial in z is irreducible and using a result of Erdős [Erd52], we obtain an

upper bound of KB log B. If
√

−kD
4∆

∈ Q, then −16a(4∆Az) = −16a((4∆)z2 + kD)

when considered as a polynomial in z is reducible. We use results of Ennola [Enn68]

for the sums of divisors of reducible polynomials to get KB(log B)2 for an upper

bound for the number of integer solutions on the surface. In both cases K is a

constant that depends on the coefficients of the polynomial but not on B.

The following argument shows that under our assumptions on the surface, the

case a > 0 never happens.

For a contradiction we will assume that there exists a surface ax2 + bxy + cy2 +

dxz + eyz + fz2 = k with a > 0, b2 − 4ac < 0, and thus c > 0. The corresponding

quadratic form has ∆ = 4acf+bde−ae2−b2f−cd2

4
> 0 and signature (1, 2).

The condition that ∆ > 0 gives us the following inequality:

ae2 − bde + cd2 + f(b2 − 4ac) < 0.

It is easy to see that the quadratic form ae2 − bde + cd2 in variables d and e is

positive definite implying that ae2− bde+ cd2 ≥ 0 for any integers d and e. We can

rewrite the above inequality as

f >
ae2 − bde + cd2

−(b2 − 4ac)
.

Thus we can conclude that f > 0.
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The characteristic polynomial of the quadratic form is given by

char(λ) = −λ3 + (a + c + f)λ2 + (
e2 + b2 + d2 − 4ac− 4af − 4fc

4
)λ + ∆.

Using the assumption that the signature is (1,2), we know that the above poly-

nomial has two negative and one positive roots. By taking the derivative of char(λ)

we can analyze the local maxima and minima.

char′(λ) = −3λ2 + 2(a + c + f)λ + (
e2 + b2 + d2 − 4ac− 4af − 4fc

4
).

Critical values occur at λ1,2 =
2(a+c+f)±

√
4(a+c+f)2+3(e2+b2+d2−4ac−4af−4fc)

6
. Since (a+

c + f) > 0, the only way we can get two negative and one positive roots of char(λ)

is when (e2 + b2 + d2 − 4ac− 4af − 4fc) > 0, i.e.

f <
e2 + d2 + b2 − 4ac

4(a + c)
.

Now, combining both inequalities involving f we get the following

ae2 − bde + cd2

−(b2 − 4ac)
<

e2 + d2 + b2 − 4ac

4(a + c)
.

This is true if and only if

4(a + c)(ae2 − bde + cd2) + (b2 − 4ac)(e2 + d2 + b2 − 4ac) < 0

(4a2 + b2)e2 + (4c2 + b2)d2 − (4ab + 4cb)ed < −(b2 − 4ac)2.
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The quadratic form in variables e and d on the LHS of the above inequality is

positive definite. This gives us the desired contradiction since the value of the RHS

is always negative. Thus a ≤ 0. Since b2 − 4ac < 0 implies that a 6= 0, we can

conclude that a < 0.

In particular, a > 0 is only possible when the surface is ellipsoid.

This completes the proof.
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Chapter 4

Conclusion

In this thesis we have found upper bounds for the number of integral points

on quadratic curves and the number of integral points with bounded height on

quadratic surfaces.

Quadratic Curves.

We considered non-degenerate quadratic curves defined over Z of two types.

Hyperbolas with two rational points at infinity:

ax2 + bxy + cy2 + dx + ey + f = 0 with b2 − 4ac = m2

for some non-zero integer m, and determinant ∆ = 4acf+bde−ae2−b2f−cd2

4
6= 0. We

have shown that the number of integral points is bounded from above by 4d(4∆),

where d(4∆) denotes the number of positive divisors of 4∆.
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Ellipses:

ax2 + bxy + cy2 + dx + ey + f = 0 with b2 − 4ac < 0

and determinant ∆ = 4acf+bde−ae2−b2f−cd2

4
6= 0. We have shown that the number

of integral points is not greater than 24d(−16a(4∆)), where d(−16a(4∆)) denotes

the number of positive divisors of −16a(4∆).

Remark. In the hyperbola case the bound only depends on the determinant

of a given curve, while in the case with ellipses, our bound also depends on the

coefficient in front of x2. Note that it is easy to adjust our argument to get an

upper bound 24d(−16c(4∆)), and in particular this latter bound can be used if

|a| > |c|.

Quadratic Surfaces.

Next we considered quadrics in higher dimension; in particular we looked at

non-degenerate quadratic surfaces defined over Z of the following type:

ax2 + bxy + cy2 + dxz + eyz + fz2 = k.

We have shown that an upper bound for the number of integral points with

height bounded by B is given by KB log B with an exception that in some cases it

is KB(log B)2, where in both cases K is a constant that depends on the coefficients

of the original polynomial but not on B.
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