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Abstract 

The focus of this thesis is on the development of sensing devices based on optical fiber 

sensors, specifically optical Fiber Bragg Gratings (FBG), using laser microfabrication 

methods. FBG is a type of optical fibers whose spectral response is affected by applied strain 

and temperature. As a result, it can be calibrated for the measurement of physical 

parameters manifesting themselves in the changes of strain or temperature. The unique 

features of optical fiber sensors such as FBGs have encouraged the widespread use of the 

sensor and the development of optical fiber-based sensing devices for structural 

measurements, failure diagnostics, thermal measurements, pressure monitoring, etc. These 

features include light weight, small size, long-term durability, robustness to electromagnetic 

disturbances, and resistance to corrosion. Despite the encouraging features, there are some 

limitations and challenges associated with FBGs and their applications. One of the 

challenges associated with FBGs is the coupling of the effects of strain and temperature in 

the optical response of the sensors which affects the reliability and accuracy of the 

measurements. Another limitation of FBGs is insensitivity to the index of refraction of their 

surrounding medium. In liquids, the index of refraction is a function of concentration. 

Making FBGs sensitive to the index of refraction and keeping their thermal sensitivity intact 

enable optical sensors with the capability of the simultaneous measurement of concentration 

and temperature in liquids. Considering the unique features of FBGs, embedding of the 

sensors in metal parts for in-situ load monitoring is a cutting-edge research topic. Several 

industries such as machining tools, aerospace, and automotive industries can benefit from 

this technology. The metal embedding process is a challenging task, as the thermal decay of 

UV-written gratings can starts at a temperature of ~200 oC and accelerates at higher 

temperatures. As a result, the embedding process needs to be performed at low 

temperatures.  

The objective of the current thesis is to move forward the existing research front in the 

area of optical fiber sensors by finding effective solutions to the aforementioned limitations. 

The approaches consist of modeling, design, and fabrication of new FBG-based sensing 

devices. State-of-the-art laser microfabrication methods are proposed and implemented for 

the fabrication of the devices. Two approaches are adopted for the development of the FBG-

based sensing devices: the additive method and the subtractive method. In both methods, 

laser direct microfabrication techniques are utilized. The additive method deals with the 
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deposition of on-fiber metal thin films, and the subtractive method is based on the selective 

removal of materials from the periphery of optical fibers. 

To design the sensing devices and analyze the performance of the sensors, an opto-

mechanical model of FBGs for thermal and structural monitoring is developed. The model is 

derived from the photo-elastic and thermo-optic properties of optical fibers. The developed 

model can be applied to predict the optical responses of a FBG exposed to structural loads 

and temperature variations with uniform and non-uniform distributions. The model is also 

extended to obtain optical responses of superstructure FBGs in which a secondary 

periodicity is induced in the index of refraction along the optical fiber.  

To address the temperature-strain coupling in FBGs, Superstructure FBGs (SFBG) with 

on-fiber metal thin films are designed and fabricated. It is shown that SFBGs have the 

capability of measuring strain and temperature simultaneously. The design of the sensor 

with on-fiber thin films is performed by using the developed opto-mechanical model of 

FBGs. The performance of the sensor in concurrent measurement of strain and temperature 

is investigated by using a customized test rig.  

A laser-based Direct Write (DW) method, called Laser-Assisted Maskless 

Microdeposition (LAMM), is implemented to selectively deposit silver thin films on optical 

fibers and fabricate the superstructure FBGs. To attain thin films with premium quality, a 

characterization scheme is designed to study the geometrical, mechanical, and 

microstructural properties of the thin films in terms of the LAMM process parameters. 

A FBG, capable of measuring concentration and temperature of liquids is developed, and 

its performance is tested. Femtosecond laser micromachining is successfully implemented as 

a subtractive method for the sensor fabrication. For this purpose, periodic micro-grooves are 

inscribed in the cladding of regular FBGs so as to increase their sensitivity to the 

concentration of their surrounding liquid while keeping their thermal sensitivity intact. This 

type of sensors has the potential for applications in biomedical research, in which the in-situ 

measurement of the properties of biological analytes is required. 

Another accomplishment of this thesis is the development of FBG sensors embedded in 

metal parts for structural health monitoring using low temperature embedding processes. In 

this regard, the opto-mechanical model is extended to predict the optical response of the 

embedded FBGs. The embedding process involves low temperature casting, on-fiber thin 

film deposition, and electroplating methods. The performance of the embedded sensors is 

evaluated in structural loading and thermal cycling. 
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Chapter 1 

Introduction 

Photonics technology is one of the primary research areas in the 21st century, called the 

“photon century”. In this regard, optical fibers have attracted researchers to develop new 

generations of optical fiber-based sensing devices. According to the “Fiber Optic Sensors” 

report from BCC Research in 2008 (Report Code: IAS002D), the optical fiber sensors market 

in the USA is estimated to reach $1.6 billion by the year of 2014 from $235 million in 2007, 

indicating a huge boost in the applications of optical fibers in the coming years [1]. 

In addition to telecommunication applications, optical fibers are widely used for 

monitoring physical parameters such as strain, stress, force, pressure, temperature, index of 

refraction, and liquid concentration [2]. Fiber grating is a type of optical fibers that is widely 

utilized for sensing the physical parameters such as strain and temperature. Fiber gratings 

are periodic modulations of the index of refraction in optical fibers [2]. Optical fibers, made 

of amorphous silica, have a core with a diameter of 8 to 10 m in single-mode fibers and 50 

or 62.5 m in multimode optical fibers with a cladding diameter of 125 m. The modulation 

of the index of refraction, called grating, is inscribed in optical fibers by UV or femtosecond 

laser radiation [2]. In short period fiber gratings (with a period of ~500 nm), called Fiber 

Bragg Gratings (FBG), the gratings are inscribed in the core of single-mode optical fibers. 

When FBG is exposed to a broadband spectrum of light, due to the coupling of the contra-

directional core modes, the light at a specific wavelength, called the Bragg wavelength, with 

a specific bandwidth is reflected back [3]. The sensing characteristics of FBGs arise from 
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photo-elastic and thermo-optic properties of optical fibers [4, 5]. The index of refraction of 

silica is related to the applied strain and temperature variations. At no-load conditions, 

silica is optically isotropic, that is, the index of refraction components in all directions are 

equal. When an optical fiber is exposed to strain distributions and temperature variations, 

the components of the index of refraction are not necessarily equal in all directions, and the 

material becomes optically anisotropic. This optical anisotropy affects the propagation of the 

light and the core-mode coupling. The period of the grating is also affected by the applied 

strain and temperature. These effects manifest themselves in the spectral response of the 

FBG. The shift in the Bragg wavelength and the modification of the reflection spectrum are 

the effects seen in loaded FBGs. The optical response is calibrated based on the parameter 

that is intended to be measured. 

The distinctive features of FBGs encourage the development of embedded sensors in 

metal parts for in-situ load measurements, structural health monitoring, and failure 

diagnostics. Promising applications can be sought for FBGs in various industrial sectors 

including, but not limited to, aerospace, petroleum, nuclear, and automotive industries. For 

instance, embedded FBG sensors in machining tools enable the in-situ monitoring of 

structural and thermal loads applied on the tools during the manufacturing process. 

Compared with conventional electric and electromagnetic sensing devices such as MEMS 

pressure and temperature sensors, optical fiber sensors are significantly advantageous. They 

are known for their light weight, small size, long-term durability, and long-range linearity. 

Moreover, they are robust to external electromagnetic noises and disturbances and are 

corrosion-resistant. In addition, arrays of sensors can be produced on a single strand of 

optical fiber to capture the measurement data at multiple points. As a result, masses of 

wires which are typically observed in thin film transducers are not required. When it comes 

to remote sensing, optical fibers can transfer the data at long distances with very low losses 

as opposed to electric sensors which are prone to Ohmic losses. The attenuation of standard 

single-mode optical fibers (Corning SMF-28) used for telecommunication applications is less 

than 0.22 db/km [6]. One of the limitations that can impede the extensive application of 

optical fiber sensing is the cost of the measurement devices. The light sources and spectrum 

analyzers can cost thousands of dollars. 
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1.1 State-of-the-Art FBG Sensors Technology  

The aforementioned features of optical fiber sensors encourage the development of 

innovative technologies for the production of FBG-based sensing devices. One of the 

promising applications of FBGs is structural health monitoring and failure diagnostics.  

Surface mounted or embedded FBG sensors can replace strain gauges. According to the 

literature, several methods have been proposed to embed FBGs in composite materials, 

concrete, and metals [7-10]. Compared with electrical and electromagnetic sensors, such as 

thin film thermocouples, strain gauges, and MEMS transducers, optical fibers are electrically 

insulated. As a result, metal-embedding process does not require the inclusion of insulators 

[11, 12]. In addition, arraying of the FBG sensors on optical fibers enable in-situ load 

measurement at multiple points in the metal structures using only one strand of optical 

fiber. Casting, electroplating, brazing, and ultrasonic consolidation are the methods that 

have been used to embed FBGs in metal parts [13-16].  

In addition to temperature and strain measurements, FBGs can also be used for the 

monitoring of the concentration of liquids. Surface modifications need to be performed to 

convert FBGs to concentration sensors. To do so, the cladding layer is etched with 

Hydrofluoric acid (HF). In this way, the propagation of the light in the cladding-etched 

optical fiber is affected by the index of refraction of the liquid surrounding the optical fiber. 

Since the index of refraction in liquids can be correlated to the concentration of liquids, the 

optical response of the FBG can be calibrated for the measurement of concentration. [17-21]. 

1.2 Limitations and Challenges in the Applications of FBGs 

Despite the numerous applications of FBGs and their extensive usage for structural 

health monitoring, the FBG technology involves limitations and challenges. The effects of 

strain and temperature are coupled in the reflection spectrum of FBGs. As a result, they can 

barely be efficient in environments in which both parameters are fluctuating. This limitation 

necessitates the development of methods to compensate for the effect of one parameter or 

enable the simultaneous measurement of both parameters.  Several methods have been 

proposed to compensate for the effect of temperature or enable FBGs to measure strain and 

temperature simultaneously. The approaches are based on multiple FBGs, use of bi-material, 
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combined FBG Fabry-Perot Cavity, surface mounted FBGs on beams, and UV written 

superstructure FBGs [22-30]. 

Although the proposed methods can effectively resolve the strain-temperature coupling 

in FBGs, there are some limitations with their applications. Using additional materials and 

structures makes the size of the sensors large which hinders the miniaturization of the 

sensor. Moreover, the use of a secondary sensor and optical cavity such as Fabry-Perot 

increases the volume of the captured data for analysis. 

Another limitation associated with the application of FBGs is related to the insensitivity 

of the sensor to the index of refraction of the surrounding environment. The index of 

refraction does not affect the core-cladding mode coupling in the reflection spectrum of 

FBGs. In liquids, the index of refraction is a function of concentration. If FBGs become 

sensitive to the index of refraction of their surrounding medium, while retaining their 

thermal sensitivity, they can be utilized for the simultaneous measurement of temperature 

and concentration in liquids, which has numerous applications in biomedical research. As 

mentioned before, HF etching is the most common method to make FBGs sensitive to the 

concentration of liquids. However, the HF-etched sensor cannot be used for the simultaneous 

measurement of temperature and concentration in liquids, and a secondary FBG sensor is 

used to measure the temperature separately [20]. In addition, the mechanical strength of the 

HF-etched optical fibers degrades due to the diametric reduction of the optical fiber.  

Another challenge associated with the applications of FBGs is related to metal-

embedded optical fiber sensors. The unique characteristics of FBG sensors, which were 

discussed in the previous section, encourage the development of FBG-based sensing devices 

for in-situ load monitoring in metal structures. The challenge arises from the sensitivity of 

FBGs to high temperatures. The UV-written gratings in FBGs can start to degrade at a 

temperature of ~200 oC and the decay speed increases with temperature [2, 31]. In addition, 

the optical fiber can structurally been damaged at very high temperatures. The glass 

transition temperature for fused silica is around 1200 oC [32].  

As mentioned in the previous section, low temperature casting, electroplating, brazing, 

and ultrasonic consolidation have been proposed for the metal-embedding process. Although 

casting and brazing can be performed at temperatures below the decay temperature of the 

gratings, they can cause the formation of residual stress on the optical fiber and the metal 

surrounding the glass fiber. The residual stress can cause material delamination and crack 

formation. Electroplating is a low temperature process that can be used for this purpose. 
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However, optical fibers are electrically non-conductive and they cannot be plated directly 

with metals. As a result, on-fiber metal interlayer is needed for the electroplating process 

[10]. 

1.3 Thesis Objective 

The main objective of the thesis is to move the research front in the area of optical fiber 

sensors by implementing novel solutions for the aforementioned limitations associated with 

the applications of FBGs. For this purpose, different approaches including superstructure 

FBGs, laser surface micromachining of FBGs, and low temperature processes for embedding 

FBGs in metal parts are explored. 

1.4 Superstructure FBGs for Strain and Temperature Measurements: 

Modeling, Design, and Fabrication 

In this thesis, a superstructure FBG is developed by the selective deposition of on-fiber 

silver films. The superstructure FBG has the capability of measuring strain and temperature 

simultaneously. The superstructure FBG is produced by the deposition of periodic metal 

thin films on regular FBGs. The applied strain and temperature on the FBG not only shifts 

the Bragg wavelength but also forms equally spaced side bands in the reflection spectrum. 

The reflectivity of the side bands is tuned by the applied strain and temperature. The Bragg 

wavelength combined with the reflectivity measurements are used for the simultaneous 

measurement of strain and temperature. For the design of the sensor, an opto-mechanical 

model is developed to study the effects of the geometrical features of on-fiber thin films on 

the optical response of FBGs. The model is based on the photo-elastic and thermo-optic 

properties of optical fibers. The state of stress and strain in an optical fiber selectively 

coated with metal films and exposed to temperature variations and/or structural loading is 

obtained. The strain components are used in the photo-elastic and thermo-optic formulations 

to obtain the distribution of modified index of refraction in the optical fiber, as well as the 

modified grating pitch. The results are combined with Coupled-Mode Theory (CMT) to 

obtain the spectral response of the metal-coated FBG. 
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1.5 Metal-Embedded FBG Sensors for Structural Health Monitoring 

In this thesis, FBGs are embedded in metal structures by using two low temperature 

processes: (1) casting with a low melting point metal, (2) metal thin-film deposition followed 

by electroplating. The deposited thin film acts as conductive interlayer for the electroplating 

process. To realize smart machining tools, the embedding process is followed by Laser Solid 

Freeform Fabrication (LSFF) of tungsten carbide reinforced in cobalt (WC-Co) on the 

surface of the part with embedded FBG sensor.  

To have an efficient embedding process, an opto-mechanical model is required not only 

to design the embedded sensor but also to gain insight into the quality of the embedding 

process by comparing the experimental and modeling results. As a result, a model is 

developed, based on both the structural analysis of the metal part and the optical model of 

FBGs.  

1.6 On-Fiber Metal Thin Films 

The superstructure FBGs for strain and temperature measurements and the metal 

embedding process require the deposition of on-fiber metal thin films. The coating of optical 

fibers with metal thin films has been reported in the literature for various applications such 

as dispersion compensation in Bragg gratings, tunable Bragg gratings, and sensitivity 

enhancement at cryogenic temperatures. The conventional methods available for the 

deposition of thin films on optical fibers are electrowinning, sputtering, electron beam 

evaporation, and electroplating [33-36]. These methods lose their efficiency in selective and 

customized coating of optical fibers. They increase the time and cost by incorporating masks 

for addition and removal of materials. In addition, some of these methods such as sputtering 

have low deposition rate making them inefficient for micro-scale coatings. Direct Write 

(DW) methods have superior advantages to the conventional methods for patterning and 

selective thin-film deposition. In this regard, one of the contributions of this thesis is to 

deploy a laser-based direct deposition process for the selective deposition of on-fiber thin 

films. 
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1.7 Laser-Assisted Deposition of On-Fiber Metal Thin Films 

The technique that is adopted for on-fiber thin-film deposition in this research is Laser-

Assisted Maskless Microdeposition (LAMM). In the LAMM technology, which is categorized 

as a Laser Direct Write (LDW) process, the deposited material is in the form of 

nanoparticles suspended in a liquid. The nanoparticles suspension is atomized to an aerosol 

form. The aerosol is carried to a deposition head and ejected toward a moving substrate. 

The substrate is programmed to move beneath the deposition head for the production of 

different patterns. After deposition, the deposited material is radiated by a laser beam to 

evaporate the suspension liquid, heat the deposited material, and sinter the nanoparticles. 

The LAMM process is maskless which makes it less expensive and more flexible than the 

conventional methods. Moreover, by incorporating the laser beam as a heat source for local 

post-heating, the deposition process becomes faster and more efficient than bulk heating in a 

furnace or hot plate. Compared with other direct write technologies such as inkjet printing, 

LAMM has the capability of depositing conformal patterns on non-planar surfaces and three-

dimensional substrates. This makes the LAMM process suitable for on-fiber thin film 

deposition. 

In this technology, the quality of the deposited materials including electrical 

conductivity, mechanical bonding, and surface morphology depends significantly on the 

process parameters. The parameters associated with the deposition and laser sintering 

processes need to be optimized to achieve films with the desired quality. Since the laser 

interacts directly with the deposited material, the laser processing parameters, which are 

laser power and laser scanning velocity, have significant effects on the final quality of the 

deposited films. One of the contributions of this thesis is to develop a characterization 

procedure to tune the process parameters for the selective deposition of conformal patterns 

on optical fiber gratings with the desired geometrical features and mechanical properties.  

1.8 Femtosecond Laser Micromachining of FBGs: Simultaneous 

Measurement of Temperature and Concentration  

As mentioned before, the index of refraction of the surrounding medium can barely affect 

the reflection spectra of FBGs. As a result, FBGs in their original shape are not capable of 

monitoring the index of refraction which is an indication of liquid concentration. It is 
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demonstrated in this thesis that the selective inscription of micro-grooves on the outer 

surface of optical fibers makes FBGs sensitive to the index of refraction and the 

concentration of the surrounding medium. Laser direct micromachining is chosen for the 

inscription of micro-grooves. Ultrashort laser pulses in the range of femtosecond (10-15 s) 

enable the fabrication of features with submicron precision in a large group of materials, 

specifically transparent dielectrics such as silica. Due to the non-linear phenomena occurring 

in the interactions of ultrashort pulse lasers with dielectric materials, these lasers can 

effectively be used for micromachining and structural modifications of transparent materials, 

such as silica. In this regard, micromachining of optical fiber sensors can be performed with 

femtosecond lasers. In this thesis, a femtosecond pulse laser is utilized to micromachine 

FBGs to enhance their performance for multi-parameter sensing, that is, simultaneous 

measurement of temperature and concentration. 

1.9 Thesis Contributions 

Following the assigned objectives of this research work, the main contribution of the 

thesis is 

Design, modeling, and fabrication of optical fiber-based sensing 

devices with enhanced sensing capabilities. 

To realize the aforementioned contribution, the following tasks are conducted: 

1. Opto-mechanical modeling of optical fiber gratings coated with periodic metal thin 

films and/or embedded in metallic structures, 

2. Characterization of the LAMM process for metal thin-film deposition on the non-

planar surface of optical fibers, 

3. Design and fabrication of superstructure FBGs for simultaneous measurement of force 

and temperature by the deposition of periodic on-fiber silver thin films, 

4. Development of FBG sensors for the simultaneous measurement of temperature and 

concentration by femtosecond laser micromachining of FBGs, 

5. Characterization of the femtosecond laser micromachining process for the inscription 

of periodic micro-grooves on FBGs, 

6. Development of low temperature processes to embed optical fibers in metal parts for 

structural health monitoring. 
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1.10 Thesis Outline 

The present thesis consists of eight chapters. The problem definition and the statement 

of objectives and contributions are provided in Chapter 1. Chapter 2 is concerned with the 

background and the literature review of fiber grating sensors. In this chapter, FBGs and 

their characteristics for sensing physical parameters are introduced. The opto-mechanical 

modeling of FBGs is described in Chapter 3. In Chapter 4, laser microfabrication methods 

for the development of optical fiber-based sensing device are addressed. The chapter includes 

the characterizations of the LAMM and femtosecond laser micromachining processes. 

Chapter 5 addresses the modeling, design, and fabrication of superstructure FBGs with on-

fiber silver thin films for the simultaneous measurement of strain and temperature. Chapter 

7 covers the experimental results for the development of FBG sensors for the simultaneous 

measurement of temperature and concentration by employing femtosecond laser 

micromachining. Chapter 6 consists of the implementation of low temperature methods for 

embedding FBGs in metal structures for health monitoring and structural diagnostics. The 

thesis ends with Chapter 8 containing conclusions and future work. 
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Chapter 2 

Background and Literature Review 

In this chapter, the principles of optical fiber gratings, applications for sensing physical 

parameters, sensing limitations, and the existing literature are reviewed. 

2.1 Fiber Gratings 

Fiber gratings are permanent modulations of the index of refraction in optical fibers. 

Fiber gratings are classified into two groups according to their grating pitch length (L ): 

 Fiber Bragg Grating (FBG), also known as short period or reflection grating 

 Long Period Grating (LPG), also known as transmission grating 

Figure  2-1 depicts a FBG with gratings inscribed in the core of an optical fiber. An 

optical fiber is a cylindrical optical waveguide, made of fused silica, with a central core 

surrounded by a cladding layer. In single-mode optical fibers, the core has a diameter of 8 to 

10 m, and the cladding outside diameter is 125 m [37]. The core has dopants such as 

germanium to increase the index of refraction ( coren ). The index of refraction of the core is 

slightly higher than that of cladding ( cladn ). In Corning SMF-28TM single-mode optical 

fibers, which are standardized optical fibers for telecommunication applications, the 

difference between the indices of refraction of core and cladding is 0.36%. Accordingly, the 
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numerical aperture, defined as 2 2. . core claddingN A n n= - , is 0.14 for SMF-28 optical fiber in 

vacuum [6]. To protect optical fibers against physical damage, they are covered by a 

polymer coating of polyimide or acrylate, during the fiber production process (Figure  2-2). 

The working wavelengths for optical fibers are typically 1310 nm and 1550 nm in which the 

hydroxyl absorption loss is minimum. 

 

Figure  2-1: FBG with periodic modulation of the index of refraction in the core of optical fiber 

  

Figure  2-2: Structure of a single-mode optical fiber 
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A fiber Bragg grating, with a sub-micron periodic modulation of the index of refraction, 

functions as the filter. When a Bragg grating is exposed to a broadband spectrum of light, 

the guided light wave, propagating along the optical fiber, is scattered by each grating 

plane. As a result, parts of the spectrum at specific wavelengths are reflected back. The 

coupling between the forward and backward propagating modes results in a resonance 

condition. The resonance occurs at a specific wavelength called the Bragg wavelength ( )Bl . 

Wavelengths not coincident with the Bragg condition degenerate progressively with weak 

reflections, whereas wavelengths close to the resonance wavelength determined by the Bragg 

condition (2.1), undergo strong reflections. Figure  2-3 shows the spectral response of a 

uniform Bragg grating. The Bragg wavelength is related to the effective propagating mode 

index of refraction ( effn ) and the grating parameters, as defined in the Bragg condition     

[2, 38] 

 2B effnl = L  (2.1) 

where L  is the grating pitch length. 

Typically, the modulation of the index of refraction ( ( )n zD ) along the fiber axis is 

expressed as [3] 

 

Figure  2-3: Spectral response of a uniform fiber Bragg grating 
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where ( )n zD  is the spatially averaged index change along the fiber, fn  is fringe visibility, 

( )zF  is the grating chirp determining the variations of the grating pitch length along the 

fiber, and the z  direction is coincident with the fiber axis. 

LPGs have longer periods of modulation than FBGs (typically larger than 100 m) [39]. 

There is no reflection propagation mode in LPGs. However, the coupling between the 

propagating core mode and the cladding modes leads to a resonance condition in the 

transmitted spectrum. The transmitted spectrum of LPG contains a series of attenuation 

bands at specific wavelengths, as shown in Figure  2-4.  Each attenuation band corresponds 

to the coupling with a cladding mode [39]. The wavelengths of the attenuation bands are 

obtained from 

 ( )i
i eff cladn nl = - L  (2.3) 

where 
i
cladn  is the index of refraction of the thi  cladding mode, and L  is the grating pitch. 

 

Figure  2-4: Spectral response of LPGs 
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2.2 Types of Fiber Bragg Gratings 

FBGs are categorized into different groups in terms of the grating modulation function 

[38] as follows: 

 Common Bragg Reflector 

This is the simplest and the most popular type of FBG. The grating pitch is uniform 

along the fiber, and the grating planes are normal to the axis of the fiber (Figure  2-5a). 

 Blazed Bragg Grating 

In this type of FBGs, the gratings are tilted at an angle to the fiber axis (Figure  2-5b). 

They are used in erbium-doped fiber amplifiers for telecommunication applications. 

 Chirped Bragg Grating 

In chirped Bragg grating, the grating pitch length is not constant and varies along the 

fiber axis (Figure  2-5c). In this type, the reflected spectrum bandwidth is large because of 

the varying pitch length. 

 Apodized Grating 

To eliminate side lobes in the reflection spectrum of FBGs, gratings with non-uniform 

distribution of the modulations of the index of refraction, known as apodized gratings, are 

written in optical fibers. In apodized gratings, the amplitude of the average index change 

( )nD  varies along the fiber axis [3]. The average index modulations for two common types of 

apodization are depicted in Figure  2-6. In Gaussian apodization, nD  is described as [3] 

 

2
2

36ln2

( )
z

Ln z ne

æ ö÷ç ÷-ç ÷ç ÷çè øD = D  (2.4) 

and the raised-cosine apodization profile is obtained from [3] 
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where L  is the grating length. 
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Figure  2-7: Reflection spectra of (a) uniform grating, nD =5×10-5, fn = 1.9, L=14 mm
 
and (b) 

Gaussian apodized, nD =1×10-5, fn = 25, L=14 mm  

2.3 Materials and Fabrication Techniques for Fiber Bragg Gratings 

2.3.1 Photosensitivity of Optical Fibers: UV Exposure 

Photosensitivity results in permanent changes in the index of refraction on exposure of 

optical fibers to radiation. The conventional method of grating inscription in optical fibers is 

UV radiation to create periodic index changes in the core of optical fibers. The 

photosensitivity of optical fibers arises from defects in the glass structure. The core of 
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optical fibers is doped with germanium which manifests itself as germanium oxides ( nGeO  

n=1 to 4) and forms defect bonds (Si-Ge/Ge-Ge) in the amorphous structure of silica glass. 

The defect bonds are absorbent to UV radiation and break upon exposure, and form GeE’ 

color centers leading to the changes in the index of refraction [2]. 

 The photosensitivity in germanosilicate fibers is increased by hydrogen loading. 

Hydrogen reacts with germanium to form G-H bonds. On UV exposure, due to bond 

breakages, Si-OH and/or Ge-OH, and Ge oxygen deficient centers form, resulting in the 

changes of the index of refraction [2]. 

2.3.2 Femtosecond Laser Induced Index Change 

Femtosecond laser pulses can also be used for the inscription of gratings in optical fibers. 

High intensity laser pulses, bursting at ultrashort time steps in the range of femtosecond, 

result in structural changes such as the changes in the index of refraction of dielectric 

materials, due to the nonlinear phenomenon of multi-photon ionization [40-43]. 

2.3.3 Methods for Grating Inscription 

Gratings are inscribed in optical fibers either by UV radiation or femtosecond laser 

micromachining. Despite the differences in the design and implementation, the methods have 

one common component, a laser as the radiation source. The methods for the grating 

inscription are as follow: 

 Interferometric Writing 

This method is based on the recombination of waves passing at different distances and 

producing interferometric fringe patterns. By changing the fringe patterns, different types of 

gratings are written into the fiber [38]. 

 Phase Mask Writing 

Phase mask is a groove-shape grating etched in silica. The principles of the operation are 

based on the diffraction of the UV or IR femtosecond laser beams, passing through the phase 

mask to form a fringe pattern. The fringe pattern is focused on the optical fiber for the 

grating inscription [38, 40]. 
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 Point-by-Point Writing 

In this method, the laser beam passes through an ultra narrow slit, and a lens projects 

the image of the slit on the fiber, or the beam is focused by a lens in the case of femtosecond 

laser. With this method, the index of refraction is changed locally [38, 43]. 

2.4 Fiber Grating Sensors 

One of the pertinent applications of fiber gratings is to sense physical parameters. In 

FBGs, the index of refraction and the grating pitch are functions of temperature and strain 

applied on the optical fiber. Consequently, the Bragg condition in FBGs and the attenuation 

bands wavelengths in LPGs are altered, when the fiber is subject to strain or temperature 

variations. By calibrating the spectral response of fiber gratings, they can be incorporated in 

the measurement of stress, strain, force, pressure, and temperature. The change in the Bragg 

wavelength ( BlD ), in terms of the variations of  effn  and L  under uniform elongation and 

temperature variations, is expressed as [38] 
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 (2.7) 

Non-uniform elongation and temperature distribution along FBGs results in the non-

uniform variations of effn  and L  which changes the shape of the reflection spectrum . In 

this case, numerical methods should be incorporated to solve coupled-mode equations [3] to 

obtain the actual reflection spectrum. Figure  2-8 depicts the reflection spectra of a FBG at 

no-load conditions and a FBG with a linear distribution of axial strain along the optical 

fiber. The details of the coupled-mode equations to obtain the reflection spectrum of FBGs 

are discussed in Chapter 3. 
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the core of high birefringence and polarization-maintaining optical fibers. The authors also 

developed a finite element model to obtain a scheme for the sensor calibration. Silva-Lopez 

et al. [48] investigated the influence of transverse loading on the peak splitting in the 

reflection spectrum of multi-core FBGs. 

 

Figure  2-9: Reflection spectra of a uniform FBG with (a) equal transverse strain components and 
(b) unequal transverse strain components causing birefringence 

2.6 Structural-Thermal Coupling in Fiber Grating Sensors 

According to (2.6), a linear coupling exists between the effects of temperature and strain 

on the shifts in the Bragg wavelength. When it comes to sensing, the structural-thermal 
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coupling can cause inaccuracies in monitoring one parameter, while the other parameter is 

changing. For instance, structural sensing in environments with temperature fluctuations  

such as power plant generators is not possible with only one sensor. In other words, the 

influence of temperature and strain cannot be determined by reading the Bragg wavelength 

shifts. 

2.7 Multi-Parameter FBG Sensors for Structural-Thermal Sensing 

As mentioned in the previous section, one of the limitations of FBGs is the linear 

coupling of the effects of temperature and strain. If the sensor is subject to the simultaneous 

variations of strain and temperature, their effects cannot be discriminated in the spectral 

response. FBG strain gauge rosettes, which are temperature independent, have been 

developed for multi-parameter measurements. In the design of such strain gauges, more than 

one FBG is used so that one of them can be used for the temperature compensation [22, 23]. 

By inscribing a chirped grating in a tapered optical fiber, Xu et al. [49] developed a 

temperature independent FBG. It was shown that the bandwidth of the reflected spectrum 

was only the function of strain. Hsu et al. [24] developed a temperature compensated 

pressure sensor with a FBG. A bi-material was used to compensate for the effect of 

temperature. Yoffe et al. [25] proposed a technique for the temperature compensation of 

FBGs by using two materials with different thermal expansions. The FBG was mounted in a 

passive mechanism under tension. For the simultaneous measurement of strain and 

measurement, Du et al.[50] designed a combined FBG and Fabry-Perot, called Grating 

Fabry-Perot Cavity (GFPC). James et al. [26] devised a FBG sensor for the simultaneous 

measurement of temperature and strain by inscribing gratings in two fibers with different 

diameters and splicing them as a single sensor. Yu et al. [51] developed a FBG sensor for the 

simultaneous measurement of displacement and temperature. The FBG was mounted on the 

surface of a triangular cantilever beam. The deflection of the beam causes non-uniform 

grating pitch, whereas the temperature variations result in the Bragg wavelength shift. 

Zhang et al. [52] used a FBG mounted on a bilateral beam to measure force/displacement 

and temperature simultaneously. Dong et al. [27] presented a displacement sensor, based on 

FBGs that were mounted on a slanted cantilever beam. It was found that the bandwidth of 

the reflection spectrum was insensitive to temperature. To reduce the temperature 

dependence of FBGs, Iwashima et al. [28] developed a technique by packaging FBGs in 
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liquid crystalline polymer tubes with negative coefficient of thermal expansion. Tanaka et al. 

[53] studied FBGs embedded in a carbon fiber reinforced plastic. They proposed two 

methods, namely, the hybrid sensor and laminate sensor, to eliminate the effect of 

temperature. The use of UV-written superstructure FBGs has also been proposed for the 

simultaneous measurement of strain/pressure and temperature [29, 30] 

2.8 FBGs for Structural Health Monitoring 

Optical fibers exhibit promising features, distinguishing them from other types of electric 

and electromagnetic sensors. These characteristics are classified as light weight, small size, 

long-term durability, long-range linearity, immunity to electromagnetic noises and 

disturbances, and resistance to corrosion. These features encourage the development of 

methods and systems for structural health monitoring with FBGs. They can be used as 

embedded sensors for structural diagnostics. Furthermore, some embedding methods can be 

devised to enhance the performance of the sensor and eliminate some inherent limitations. 

Recently, embedding optical fiber gratings in composite laminates for the delamination 

diagnostics and the structural sensing has been reported. Guemes et al. [7] studied embedded 

FBGs in composite laminates. They investigated the effect of transverse and longitudinal 

stresses in a composite laminate on the spectral response of the embedded FBG. Kuang et 

al. [54] reported embedding of FBGs in a fiber-metal laminate composite during the 

fabrication process to monitor the residual strains after processing. Lau et al. [8]used 

embedded FBGs in composite-strengthened concrete structures for structural health 

monitoring. Ling et al.[16, 55, 56] studied the feasibility of embedding FBGs in composite 

laminates for non-uniform strain sensing, delamination diagnostics, and dynamic strain 

measurements. 

Metal-embedded optical fibers have also been reported in the literature. Embedding 

optical fibers in metal parts is a challenging process. Optical fibers are susceptible to high 

temperatures which can degrade the gratings or damage the fiber permanently. Gratings 

thermal degradation begins at temperatures as low as 200 oC, depending on the fiber 

dopants. Therefore, any embedding process involving high temperatures cannot be directly 

used for the embedding process. In addition, high temperature processes can cause failure by 

forming large residual stresses in the optical fiber. Some techniques have been proposed for 

embedding optical fibers in metals. Casting, which is a high temperature process, can be 
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used for embedding optical fibers in metal elements with low melting points. Seo et al. [57] 

proposed a numerical model to analyze optical fibers coated with molten tin. Lee et al. [58] 

studied the performance of fiber optic Fabry-Perots embedded in aluminium by casting in 

graphite moulds. Lin et al. [59] demonstrated that the thermal sensitivity increases for FBG 

sensors coated with solder. Lupi et al. [13] coated FBGs with zinc and copper. They used 

electrowinning for the deposition of the metal layer preceded by pre-coating the optical fiber 

with aluminium. 

Another recognized embedding methodology is electrodeposition. In this method, a 

protective layer is fabricated around the fiber prior to further steps that might involve high 

temperature processes. Li et al. [9, 60] investigated the embedding of FBGs in nickel and 

steel using electrodeposition, followed by Shape Deposition Manufacturing (SDM). 

Electrodeposition was used for the fabrication of a protective layer around the fiber. Since 

fibers are not conductive, the electrodeposition cannot be used directly to grow metal 

coatings on fibers. A thin layer of titanium was deposited on the fiber prior to the nickel 

electrodeposition. Afterwards, SDM, involving laser material processing with powder 

injection, was employed for the final embedding step. Sandlin et al. [14] proposed a method 

of coating FBGs using electroplating and brazing. Prior to electroplating, the optical fiber 

was coated with a thin silver interlayer by the reduction of silver ammonium complex 

([Ag(NH3)2]
+) with glucose in strongly alkaline conditions. Then, electroplating was used to 

deposit a nickel layer on the optical fiber. The nickel-coated fiber was embedded in a 

substrate of Inconel by vacuum brazing technique. Another low temperature method for 

embedding optical fibers is ultrasonic consolidation. Kong et al. [15] chose this process to 

embed optical fibers in aluminium parts. 

Embedding optical fibers in materials such as rubber and epoxy for the fabrication of 

customized sensors has also been reported. Tjin et al. [61] developed a shear test sensor 

based on FBGs. The FBG was embedded in a rubber part placed between two plates of 

carbon composite material. The shear stress applied to the plates changes the period of the 

grating and the reflection spectrum. Peters et al. [62] investigated the response of FBGs 

embedded in epoxy under non-homogeneous strain fields. 

Since the coefficient of thermal expansion of silica is small at cryogenic temperatures, its 

sensitivity is reduced for very low temperature measurements. The optical fiber sensor can 

be embedded in or attached to a part made of a material with a larger cryogenic coefficient 

of thermal expansion to increase the sensitivity of the measurements. Gupta et al. [63] 
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developed an embedded FBG for sensing temperatures as low as 80 K. Mizunami et al. [64] 

studied the performance of FBGs mounted on a Teflon substrate at temperatures as low as 

77 K. Teflon has a large coefficient of thermal expansion at low temperatures relative to 

optical fibers. 

In addition to the fabrication of parts with embedded optical fiber sensors, the modeling 

of the embedded sensor is of primary importance for design optimization and sensor 

calibration. Using an embedded fiber optic Fabry-Perot, Kim et al. explored the 

measurement of strain and temperature changes [4]. They developed a model of embedded 

fiber optic Fabry-Perot sensors to relate the changes in strain and temperature to the 

sensor’s spectral response. They used the linear photo-elastic and thermo-optic models of 

optical waveguides. Prabhugoud et al. [65] developed a finite element model for the analysis 

of the spectral response of embedded FBG sensors. 

2.9 FBGs with On-Fiber Thin Films 

Some research studies have been conducted to deposit metal thin films on FBGs for 

dispersion compensation, tunable Bragg gratings, and sensitivity enhancement at cryogenic 

temperatures. On-fiber thin films have also been deposited conductive interlayer for 

embedding optical fibers in metallic structures. Electrowinning, sputtering, electron beam 

evaporation, and electroplating techniques are conventional methods that have been 

employed for the deposition of on-fiber Ti, Ag, Au, Pt, Zn, Pd, and Cu films [13, 33-36]. 

Figure  2-10 shows a FBG coated with Zn by using electrowinning. The Zn layer was 

deposited on a pre-coated layer of Al. 

Li et al. studied the thermal response of tunable FBGs coated with Ti, Pt, and Ni both 

analytically and experimentally [33]. Fox et al. developed on-fiber resistive and piezoelectric 

thin films for the fabrication of tunable FBGs using sputtering [35]. Ahuja et al. [66] devised 

a tunable FBG by depositing metal thin films on optical fibers. By joule heating, the index 

of refraction of the coated fiber at the deposition locations was modified due to the thermo-

optic effect. They showed that by the periodic deposition of metal thin films with different 

thicknesses, superstructure FBGs with tunable sideband reflectivities can be produced. 

Eggleton et al. [67] deposited gold layers on FBGs with variable thickness along the fiber for 

dispersion compensation in FBGs. When the coating is heated, a chirp pattern is generated 

in the grating because of the non-uniform distribution of temperature along the fiber. Rogers 
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They also presented a method to interrogate the reflection spectrum of FBGs for distributed 

strain sensing with a spatial resolution of 1 mm [70]. Skaar et al. [71] suggested a method 

based on the combination the Runge-Kutta method and a genetic algorithm for the 

synthesis of FBGs. Cormier et al. [72] developed a decoding method using genetic algorithm 

for parameter synthesis. The method can be used for designing fiber gratings and 

reconstructing the measured parameters. For the reconstruction of FBG parameters, Azana 

et al. [73] used time-frequency signal analysis. Casagrande et al. [74] proposed an 

interrogation method for the distributed uni-axial strain sensing by applying genetic 

algorithm. Gill et al. [75] developed a genetic algorithm to reconstruct the axial strain 

applied to the fiber. 

2.12 Thin-Film Fabrication Processes: Laser Direct Write Methods 

Ever increasing requirements for inexpensive and rapidly produced thin films have 

prompted the development of novel direct fabrication technologies. Over the past decades, 

the conventional methods such as photolithography and screen-printing have been 

extensively used for the fabrication of thin films in the microelectronics industry. When it 

comes to surface patterning, the conventional methods involve the addition and removal of 

materials incorporating masks, which makes the deposition process slow and expensive. 

Furthermore, most of the available techniques involve high temperature processes. This 

limits the selection range of substrate materials and creates thermally induced residual 

stresses which can result in delamination and materials failure. Although, photolithography 

techniques are efficient for the fabrication of thin films with nano-scale feature sizes, these 

techniques lose their efficacy in large sizes (10-100 m), as the material waste increases due 

to the material removal. Furthermore, the requirement for temperature/pressure controlled 

chambers in some thin-film fabrication processes increases the cost and production time.  

To address the issues related to conventional thin-film fabrication processes, direct 

fabrication techniques have been considered as alternatives. Despite different names for 

direct writing technologies, all of them share a common feature:  selective and layer-by-layer 

deposition without the use of masks. In this regard, with the recent advances in laser 

material processing, the laser beam has also been incorporated in a variety of direct write 

technologies. The characteristics of the laser beam, i.e. coherence and monochromaticity, 
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provide the potential for the development of micro-scale laser-assisted additive 

manufacturing technologies.  

Considering their advantages, direct write technologies can be alternatively incorporated 

for on-fiber thin-film deposition. In the following, various laser-assisted direct thin-film 

writing processes are reviewed. 

2.12.1 Laser Chemical Vapor Deposition 

Laser Chemical Vapor Deposition (LCVD) is a type of Chemical Vapor Deposition 

(CVD) process for the localized deposition of thin films. The LCVD equipment consists of a 

chamber with inlets for reagent gases. In the chamber, the reagent gases are decomposed by 

the heat generated from a focused laser beam to form metal and ceramic depositions on a 

substrate. The laser heating is performed locally. As a result, patterning and direct writing 

are achievable by moving the focused laser beam relative to the substrate. The deposition 

rate in the CVD process is dependent on the diffusion of gases into and out of the process 

zone. Since, in LCVD, the diffusion paths are distributed in a three-dimensional 

semispherical region above the focused laser spot on the substrate rather than one-

dimensional diffusion paths in CVD, the deposition rate in LCVD is much higher than CVD 

[76].  

2.12.2 Laser Induced Forward Transfer 

Laser Induced Forward Transfer (LIFT) was introduced by Bohandy in 1986 [77]. In this 

technology, the deposited material is pre-coated with a thickness less than a few hundreds of 

nanometers on one side of a transparent support, called target or donor. The substrate, or 

the receptor, is mounted in a very small standoff length (25-75 m) from the donor in such a 

way that the thin film faces the substrate. The transparent support is radiated by a focused 

pulse laser beam from the back side, causing the laser energy to be absorbed by the pre-

coated material [78]. The generated heat ablates the film from the support, and in an ideal 

case, the ablated material is transferred to the substrate. Typical laser pulse durations for 

the ablation and transfer process are in the range of nanosecond to femtosecond [79]. 

Patterning can be performed by moving the laser beam, relative to the substrate. The 

thickness of the deposited patterns is controlled by the repetition of the laser radiation 

process.  
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The LIFT process has been incorporated for the deposition of various metals, oxides, 

polymers, semiconductors, and biological materials. Dielectric inks [80], Au/Sn [79], Au for 

contact masks [81], Ni [82], InOx active optical structures [83] have been deposited using 

LIFT. LIFT has also been used for semiconductor die transfer [84]. 

2.12.3 Matrix-Assisted Pulse Laser Evaporation Direct Write 

Matrix-Assisted Pulse Laser Evaporation Direct Write (MAPLE DW) is similar to LIFT 

in terms of the application of laser to radiate a transparent support to induce material 

transfer. However, the materials for the deposition are solved in a matrix solvent and pre-

coated on a support forming a ribbon. The incident focused laser beam evaporates or 

decomposes the solvent, causing its loss of adhesion to the support. The solute is separated 

from the support, and the vapor pressure of the solvent pushes it toward the substrate. The 

solvent vapor is pumped away by the flow of a gas to hinder the formation of residues. 

This process has been employed for the conformal direct deposition of GPS antennas on 

a spherical substrate. For this application, the substrate is rotated under the deposition head 

in addition to its linear movements [85]. 

2.12.4 Laser Induced Thermal Imaging 

Laser Induced Thermal Imaging (LITI) is a surface patterning process with specific 

applications in organic electronics [86, 87]. In LITI, the material that is deposited is pre-

coated on a donor film, vacuumed to the substrate or the receptor. The donor is selectively 

exposed to a laser radiation. The donor has a light-to-heat conversion layer, an ejection 

layer, and the final layer which is the material for the deposition. The generated heat 

decomposes the organic material layer to gas, which expands and propels the final layer to 

the substrate [86]. A writing accuracy of 2-5 um is achieved in this technology. 

2.12.5 Drop-on-Demand (DOD) Inkjet Printing and Laser Curing of Nanoparticles 

Inkjet printing assisted by laser curing has been used to deposit metal nanoparticles, e.g. 

gold and silver nanoparticles. In inkjet printing, electric pulses at a specific frequency are 

applied to a piezoelectric actuator, surrounding a tube connected to a reservoir or connected 

to a membrane at one side of the reservoir. The reservoir is filled with conductive inks such 

as nanoparticle suspensions. The pressure impulse, generated from the piezo actuator in the 
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reservoir creates droplets, with a diameter of 60-100 um which exit through an orifice.. The 

droplets contain the solvent and the nanoparticles [88]. To reach an optimum viscosity of 

the liquid, the reservoir is maintained at a constant temperature. By applying electric pulses 

to the piezo actuator, droplets are continuously deposited on a moving substrate. To 

improve the deposition quality, the substrate can be heated. 

The deposited material contains the suspension liquid and nanoparticles. To produce 

conductive patterns, the nanoparticles should agglomerate and make clusters. After the 

deposition, a laser beam is used to cure the as-deposited material, evaporate the solvent, and 

sinter the nanoparticles.  

2.12.6 Aerosol Jet Deposition 

Aerosol Jet deposition is a flow-based direct write process for the deposition of thin 

coatings of various materials, including metals, resistors, dielectrics, organic semiconductors, 

and carbon nanotubes [89-94]. When it comes to the deposition of metal films, the process 

incorporates laser for the post-annealing of the deposited materials.  

Aerosol Jet deposition technology has been introduced by Optomec Inc. Laser-Assisted 

Maskless Mirodeposition (LAMM) is a version of Aerosol Jet deposition technology at the 

University of Waterloo. The LAMM workstation has a Continuous Wave (CW) erbium-

doped fiber laser at a wavelength of 1550 nm for post-sintering of deposited metal 

nanoparticles. 

The deposition of metal thin films by using LAMM is conducted in two steps:  (1) micro-

deposition, in which metal nano-particles suspended in liquid are atomized to aerosols and 

injected from the deposition head toward a moving substrate, (2) laser post-processing, in 

which the laser beam is directed for post-heating and sintering of the as-deposited material. 

The micro-deposition and sintering processes can be conducted at room temperature. 

Figure  2-12 shows the flow mixing mechanism in the deposition head of LAMM and the 

aerosol flow exiting from the deposition tip. LAMM has the capability of depositing 

conformal patterns on non-planar surfaces and three-dimensional objects. 

The LAMM process is superior to the conventional thin film deposition technologies such 

as physical vapor deposition methods in different aspects. LAMM is a maskless and direct 

write process which eliminates the addition and removal of materials. This can reduce the 

production time and cost significantly. Thicknesses in the range of 500 nm to tens of micro-
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multi-parameter sensing with FBGs, are so complex for real-world applications. Most of the 

methods require additional mechanisms to compensate for the effect of temperature, which 

compromises the miniaturization of the sensing modules. 

In addition, research on embedded FBG sensors for structural health monitoring in 

metallic structures has not matured yet. New manufacturing methods need to be devised 

and implemented to develop such sensors. In addition, opto-mechanical models should be 

developed for the design and optimization of embedded optical fiber sensors. 

To the best knowledge of the author, there is no record of design and modeling of 

superstructure FBGs with on-fiber films for multi-parameter sensing. The optimized design 

of such sensors necessitates the development of a comprehensive model with the capability of 

predicting the spectral response of the sensor at various loading conditions, i.e. structural 

and thermal loading. 

According to the literature, there is no record of on-fiber thin-film fabrication using 

direct write methods. Given the particular features and advantages of direct write methods, 

development of new generations of optical fiber-based sensors can be facilitated by the 

selective deposition of on-fiber thin films. The process for on-fiber thin-film deposition 

requires process characterization to determine the films morphological features and 

mechanical properties in terms of the process parameters. 

According to the reviewed literature, HF etching of optical fibers is the only method for 

the enhancement of the sensitivity of FBGs to the concentration of their surrounding 

medium. Laser micromachining with ultrashort pulse lasers has not been reported for this 

application. Given the advantages of ultrashort pulse lasers in micromachining dielectric 

materials such as glass, the development of FBG-based concentration sensors can be 

facilitated by ultrashort pulse laser micromachining. Laser micromachining enables selective 

patterning and material removal from the outer surface of optical fibers. This makes them 

sensitive to the concentration of liquids. 
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Chapter 3 

FBG Theory and Opto-Mechanical 

Modeling 

This chapter covers the theory and opto-mechanical modeling of FBGs. The chapter 

includes the opto-mechanical properties of optical fibers, induced optical anisotropy in 

optical fibers caused by temperature and structural loading, light propagation in optically 

anisotropic optical fibers, and the coupled mode-theory to obtain the spectral response of 

FBGs. In addition, the theory of superstructure FBGs is elaborated at the end of this 

chapter. 

3.1 Opto-Mechanical Properties of Optical Fibers 

The index of refraction in silica which is a dielectric material is a function of the applied 

strain and temperature. Due to photo-elastic and thermo-optic effects, strain and 

temperature induce changes in the index of refraction [95].  

Figure  3-1 shows a dielectric medium (W ) exposed to temperature and strain 

distributions, ( , , )T x y z
 
and ( , , )ie x y z  

respectively, in the xyz coordinates. The index of 

refraction tensor in dielectric materials in the Cartesian coordinates is given by 
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Figure  3-1: Dielectric material under temperature and strain distributions 
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Since the tensor is symmetric, it is represented by six elements as follows: 
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The photo-elastic and thermo-optic effects are defined by introducing dielectric 

impermeability tensor ( [ ]B ) [95], where 

 2

1
1,2, 3

0 4,5,6

i
i

i

B i
n

B i

= =

= =
 (3.3) 

By neglecting the second-order terms, the change in the impermeability tensor ( iBD ), 

due to the applied strain (photo-elastic effect) and temperature (thermo-optic effect), is 

obtained by [4, 5] 

 , 1...6i i ij jB Q T p e i jD = D + =  (3.4) 
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where [ ]p  is the strain-optic tensor, called Pockel’s photo-elastic constant. For an isotropic 

material, [ ]p  is expressed as 
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je ’s are the elements of the strain tensor, 
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and iQ  is defined as 

 i i ij jQ Q p a¢= -  (3.7) 

where 
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For an optically isotropic material, 
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where /n T¶ ¶  is constant, and ja ’s  are the coefficient of thermal expansion of the 

dielectric material. For isotropic materials 
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The substitution of (3.9) and (3.10) in (3.4) leads to 
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By linear approximation, 2 3(1 / ) 2 /i i i iB n n nD = D » - D , (3.11) is written as 
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Equations (3.11) and (3.12) show that structural loads and temperature variations, 

applied to the optical fibers, induce optical anisotropy changing the index of refraction. 

Since the dielectric constant is a function of the index of refraction, the strain/temperature 
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induced optical anisotropy affects the propagation of the light wave in the dielectric material 

(Section 3.3). 

3.2 FBGs with Structurally and Thermally Induced Index Changes 

Optical anisotropy induced by the external loads and temperature variations cause 

changes in the spectral response of FBGs. Assume that a FBG is subject to a uniform 

temperature change ( TD ) and a strain field with principal components 1e , 2e , 3e , where 1e  

is in the direction of the grating vector, and 2e  and 2e  are the transverse strain components, 

as shown in Figure  3-2. Accordingly, the non-zero components of the index of refraction 

along the principle axes are
 1
n , 2n , and

 3n . 

In FBGs, the gratings are inscribed in single-mode optical fibers which are weakly guided

( )clad coren n» . For guided modes, the effective mode index of refraction ( effn ) satisfies 

clad eff coren n n< < . Therefore, the modified effective mode index of refraction for the optical 

fiber exposed to strain components or temperature variations can be approximated as 

2effn n»  or 3effn n» , where 2n  and 3n  are the transverse components of the index of 

refraction in the optical fiber.  If 2 3e e¹ , there exist two orthogonal guided modes with two 

effective indices of refraction (
1eff

n  and 
2eff

n ). By substituting 2n  and 3n  with 
1eff

n  and 
2eff

n  

in (3.12), the changes in the effective modes index of refraction are given by 
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Equation (2.6) can be rewritten as 

 ( ) ( )
0 0

2 2
i

B eff eff eff effT e
n n n nl

D = =
D = LD + DL + LD + DL  (3.14) 

where 1eDL = L . By substituting (3.13) in (3.14), 
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Figure  3-2: FBG subject to strain field 
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The splitting of the reflectivity spectrum of FBGs into two peaks with Bragg 

wavelengths 
1B

l  and 
2B

l  is called birefringence, as shown in Figure  3-3a. Since it is caused 

by external loads, it is also known as stress induced birefringence. If the transverse 

components are equal ( 2 3e e= ), there is no peak splitting (Figure  3-3b), and (3.15) is 

reduced to 
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3.3 Light Propagation in Optical Fibers with Induced Optical 

Anisotropy 

The general form of light propagation in a dielectric material is obtained from Maxwell’s 

equations as follows [37] 
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Figure  3-3: FBG reflectivity and The Bragg wavelength shift (a) unequal transverse strain 
components causing birefringence and (b) equal transverse strain components 
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Considering a time-harmonic solution, Maxwell’s equations can be reformulated as 
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where E , D , H , and B  are electric field,  electric displacement, magnetic field, and 

magnetic induction, respectively. e  and m  are electric permittivity and magnetic 

permeability of the dielectric material. Through this study, it is assumed that the material is 

only electrically anisotropic; the anisotropy is caused by only the index of refraction, and the 

magnetic permeability of the medium ( m ) is constant and equal to that of free space. In the 

general form, the dielectric tensor [ ]e  is written as 

 2
0( , , ) 1,...,6i ix y z n ie e= =  (3.19) 
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where 0e  
is the free space electric permittivity. The considered Cartesian coordinates xyz  

are shown in Figure  3-4. 

By taking the curl of the first equation in (3.17) and substituting from the second 

Maxwell’s equation, 

 2w m´´ =E E  (3.20) 

By expanding (3.20), 
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The solution is written as 

 ( , , ) ( , ) ix y z x y e b-=E E  (3.22) 

where b  is the propagation constant. By substituting (3.22) into (3.21) 
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The dielectric tensor in an anisotropic material is expressed as 
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where  

 
2

0k me w=  (3.31) 

Equations (3.29) and (3.30) are eigenvalue problems that are solved to find the 

propagation constants ib , which are the solutions of the eigenvalue problem. The effective 

mode index of refraction for the thi propagation mode (
eff

in ) is defined by 

 
eff

i in
k

b
=  (3.32) 

Equations (3.29) and (3.30) are planar PDEs, and should be solved in the cross section 

(xy plane) of the optical fiber. A given length of fiber (L ) is divided into small longitudinal 

segments with length zD , as shown in Figure  3-5. The solution of the light propagation 

PDE results in the effective mode index of refraction at each wavelength along the fiber       

( ( , )effn zl ). 

The length of the subsections ( zD ) should be chosen appropriately. Smaller values of 

zD  yield more precise results. However, the selection depends on the desired resolution and 

strain or temperature gradients along the fiber. If the variations of strain and temperature 

along the fiber are large, smaller values of zD  should be selected.   

The boundary conditions for (3.29) and  (3.30) are 
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Figure  3-5: (a) Optical fiber divided into longitudinal segments for (b) surface normal unit 
vectors 
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which implies that at the core-cladding interface, the tangential components of the electric 

fields and the normal components of the displacement fields are continuous. At the 

periphery of the optical fiber, the boundary condition is 

 2ˆ 0clad cladr r´ = =n E  (3.34) 

where 1n̂  and 2n̂  are the surface normal unit vector. 

There is no analytical solution for anisotropic optical fibers, and numerical methods such 

as finite element method can be used to solve the partial differential equations. However, a 

closed form analytical solution can be derived for a load-free optical fiber which is optically 

isotropic. Appendix A contains the details of closed form solution for load-free isotropic 

fibers. The FEM formulation to find the effective mode index of refraction is available in 

Appendix B. 

3.4 Coupled-Mode Theory 

The coupled-mode theory is a useful tool for the quantitative analysis of the spectral 

response of FBGs. Considering a dielectric medium with a dielectric tensor perturbation eD , 

the optical waves propagate in an infinite number of modes. According to the coupled-mode 
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theory (Appendix C), the infinitesimal variation of amplitude
 mA  of the

 
thm

 
mode, denoted 

by mdA , due to the coupling with the thl  mode in the region between z  and z dz+  is 

 ( )| |
( ) ( ) m li zm
m l ml
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dA z i A z K e b bb
b

-= - å  (3.35) 

where mlK  is the coupling coefficient between the thl and the thm modes, defined by 

 * ( , ) ( , , ) ( , )
4ml m l

S

K x y x y z x y dxdy
w

e= Dò E E  (3.36) 

Equation (3.35) is a set of coupled differential equations describing the coupling between 

an infinite number of modes in the light propagation.  

Based on the direction of the propagating mode, the coupling can be co-directional, 

where the modes propagate in the same direction, or contra-directional, where the modes 

propagate in opposite directions.  

3.5 Derivation of Coupled-Mode Theory for FBGs with Uniform Grating 

In FBGs, the mode coupling occurs between two contradirectional core modes, as shown 

in Figure  3-6 [3].  

 

Figure  3-6: Forward and backward modes in FBG 
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As a result, the coupled-mode equation (3.35) can be simplified to 

 ( )1 21
11 1 12 2

( )
( ) ( ) i zdA z

iK A z iK A z e
dz

b b-= - -  (3.37) 

 ( )2 12
21 1 22 2

( )
( ) ( )i zdA z

iK A z e iK A z
dz

b b-= +  (3.38) 

where 1( )A z  and 2( )A z  are the amplitudes of the forward and backward propagating modes, 

respectively. Since FBG is a periodic modulation in the index of refraction, the perturbation 

in the dielectric tensor ( eD ) is written as 

 
2

0( ) ( )z n ze eD = D  (3.39) 

By assuming small variations of the index of refraction, 

 02 n ne eD » D  (3.40) 

where nD  is described by 

 
2

( ) ( ) 1 cos ( )n z n z z z
p

n
é æ öù÷çê úD = D + +F ÷ç ÷ç ÷ê úè øLë û

 (3.41) 

In a uniform grating ( )n zD  is constant and can be replaced by nD . nD  can also be 

expressed as 

 

2 2
( ) ( )

( ) 1
2

i z z i z z
n z n e e

p p
n

æ ö æ ö÷ ÷ç ç÷ ÷+F - +Fç ç÷ ÷ç ç÷ ÷ç çè ø è øL L
é æ öù÷çê ú÷ç ÷D = D + +çê ú÷ç ÷ê úç ÷çè øë û

 (3.42) 

By substituting (3.42) into (3.36), mlK  is rewritten as 

 

2 2
( ) ( )

* *0 1 ( , ) ( , )
2 2

, 1,2

i z z i z z

ml m l

S
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m l

p p
we n

æ ö æ ö÷ ÷ç ç÷ ÷+F - +Fç ç÷ ÷ç ç÷ ÷ç çè ø è øL L
é æ öù÷çê ú÷ç ÷= + + Dçê ú÷ç ÷ê úç ÷çè øë û

=

ò E E
 (3.43) 
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For two contra-directional modes with propagation constants 1b  and 2b  in FBG, 

 1 2

1 2

0

( , ) ( , )x y x y

b b b= - = >
=E E

 (3.44) 

Equation (3.43) is used to obtain 11K , 12K , 21K , and 22K . By substituting them in 

(3.37), 
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p p
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 (3.45) 

From the orthogonality of the propagating modes [96], 

 *
1 1

2
( , ) ( , )

S

x y x y dxdy
wm
b

=ò E E  (3.46) 

By substituting (3.46) into (3.45), 
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 (3.47) 

where 
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2AC dcK K
n

=  (3.49) 

In apodized gratings nD  is not constant along the fiber and can vary according to (2.4) 

or (2.5). As a result, the coupling coefficients  dcK  and ACK  are not constant along the 

grating. 

The net variation of amplitude 1( )A zD  over a distance L , which is much larger than the 

grating period and much smaller than the variation scale of the amplitude, is 
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(3.50) 

According to (3.50), for the integral of the exponential terms to be non-vanishing, at 

least one of the exponents must be zero. For uniform gratings ( ( ) 0zF = ), it is evident that 

2 / 0p L ¹   and 0b ¹ . Thus, one of the following conditions should be satisfied: 

 
2

2 0
p

b + =
L

 (3.51) 

 
2

2 0
p

b - =
L

 (3.52) 

Since  b  is a positive number, (3.51) cannot be satisfied; therefore, the only condition is 

(3.52). Equation (3.52) is called the “phase matching” condition, describing the resonance in 

the coupling of the propagating modes [96]. The Bragg condition in FBG is obtained directly 

from (3.52).  

 
p

b =
L

 (3.53) 
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Substitution of effknb = in (3.53) results in the Bragg condition 

 2B effnl = L  (3.54) 

Eliminating the vanishing terms from (3.47) results in 

 

2
2 ( )

1
1 2

( )
( ) ( )

i z z

dc AC

dA z
iK A z iK A z e

dz

p
b

æ ö÷ç ÷- -Fç ÷ç ÷çè øL= - -  (3.55) 

In the same way, (3.38) can be simplified to 

 

2
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2 1
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i z z
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dA z
iK A z iK A z e

dz

p
b

æ ö÷ç ÷- -Fç ÷ç ÷çè øL= - +  (3.56) 

Equations (3.86) and (3.87) are further simplified by assuming that 

 1( )
1( ) ( ) i zA z R z e y=  (3.57) 

 2( )
2( ) ( ) i zA z S z e y=  (3.58) 

where 

 1 2( ) ( )z zy y=-  (3.59) 

The substitution of (3.57) and (3.58) in (3.55) and (3.56) gives 
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 (3.60) 

and 
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 (3.61) 

Equation (3.61) can be rewritten as: 
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 (3.62) 

Equation (3.61) is a set of first order differential equations describing the spectral 

response of FBGs. To find the reflectivity of FBG, (3.61) is solved with specific boundary 

conditions. For a FBG with length L , (3.61) can be integrated from / 2L  to / 2L-  with 

the following boundary conditions [3] 

 
( / 2) 1

( / 2) 0

R L

S L

- =
=

 (3.63) 

After integration, the reflectivity of the FBG at each wavelength ( ( )r l ) is 

 

2
( / 2)

( )
( / 2)

S L
r

R L
l

-
=

-
 (3.64) 

3.6 Coupled-Mode Theory for Superstructure FBGs 

Following the procedures described for the development of the coupled-mode theory for 

regular FBGs (in which ( )n zD  is constant), the coupled mode equation for superstructure 

FBGs is formulated.  In superstructure FBGs, the average index of refraction ( ( )n zD ) varies 

periodically along the optical fiber with a period of G  which is larger than the UV written 

gratings, as shown in Figure  3-7. In superstructure FBGs G  ranges from a few micron to a 

few millimeters. The secondary periodic variations of ( )n zD can be induced in the grating 

during the writing process or by the deposition of on-fiber thin films with periodic 
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geometrical features, i.e. the periodic variation of the thickness along the grating. If the FBG 

with periodic on-fiber thin films is exposed to the variations of temperature or structural 

loadings, periodic strain components are formed along the grating. This leads to the periodic 

variations of the index of refraction due to the photo-elastic and thermo-optic effects in 

dielectric materials (3.4). 

The secondary periodic variations of ( )n zD  in FBGs with uniform grating profiles can be 

described by a Fourier series as follows: 

 
( ) ( )( )2 / 2 /

0
1

1 1
( )

2 2
i k z i k z

k
k

n z a a e ep p
¥

G - G

=

D = + +å   (3.65) 

where ka ’s are constants. In apodized gratings the periodicity is applied on the initial 

Gaussian or cosine grating profile. 

By substituting (3.65) in (3.48), (3.49), and (3.50) the procedures for non-vanishing 

exponential terms in Section 3.6 can be followed to obtain the “phase matching” conditions 

for superstructure FBGs. The exponential components for superstructure FBGs are 
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 (3.66) 



 52 

 

Figure  3-7: SFBG with periodic variation of nD  along the fiber for a uniform grating 

By considering 0b >  and G ³ L , conditions 1, 3, and 5 cannot be satisfied. As a result, 

the phase matching conditions are: 
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 (3.69) 

where (3.67) is the same as the Bragg condition and (3.68) and (3.69) are the new 

conditions. Accordingly, the resonance wavelengths are obtained as follows 

 

0 2

2
1,2,...

2
1,2,...

B eff

eff
k

eff
k

n

n
k

k
n

k
k

l l

l

l

-

+

= = L

GL
= =

G + L
GL

= =
G - L

 (3.70) 

According to (3.70), the resonances occur on the sides of the main Bragg wavelength( )Bl . 

The wavelength spacing of resonances (( 0k
l l+ - ) or ( 0 k

l l -- )) is equal to 

z

n
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By considering kG L , and using 0 2 effnl = L , (3.71) can be written as 

 

2
0

0 0 2k k
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G
  (3.72) 

 

Figure  3-8: Reflection spectrum of SFBG, the equally spaced side bands are located at 

wavelengths k
l + and kl - . 

As a result, the wavelength spacing of the resonance peaks ( lD ) in a superstructure 

FBG is expressed as: 
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In the reflection spectrum of SFBGs, in addition to the main Bragg resonance, equally 

spaced resonance peaks or sidebands, occur at wavelengths 
k

l +  and 
k
l - . A typical reflection 

spectrum of a SFBG is plotted in Figure  3-8. The reflectivity of the sidebands is obtained by 

solving the coupled mode equations for superstructure FBGs. The solution of the coupled-

mode equations for SFBGs is described in Chapter 5. 

3.7 Summary 

Modeling of FBGs for thermal and structural sensing was elaborated in this chapter. The 

modeling was based on the photo-elastic and thermo-optic properties of dielectric materials 

resulting in anisotropic index of refraction in optical fibers exposed to strain and 

temperature changes. The propagation of the light in temperature and strain induced 

anisotropic optical fibers was studied and the general form of the light propagation PDE for 

optically anisotropic FBGs was obtained. It was shown that the optical anisotropy affects 

the light propagation constants ( ib ) of the guided mode in FBGs. The general form of the 

coupled-mode theory for FBGs was obtained. The coupled-mode equations are first-order 

ordinary differential equations that are solved in the grating segments of the optical fiber to 

calculate and analyze the reflection spectrum of FBGs.  Furthermore, the procedures for the 

development of coupled-mode theory for uniform FBGs were extended to obtain the 

equations and the resonance conditions for superstructure FBGs.  
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Chapter 4 

Laser Microfabrication Processes for 

Modification of FBGs 

 

This chapter addresses the laser microfabrication processes implemented in this thesis for 

the development of the FBG-based sensors. Two laser-based approaches, including additive 

and subtractive methods, are considered through the course of this research to increase 

FBGs’ sensitivity and develop new sensors. In the additive method, thin films with specific 

patterns are fabricated on the outer surface of FBGs. In subtractive methods, sections of the 

FBG cladding layer are selectively removed. Laser direct microfabrication methods, 

including laser-assisted maskless microdeposition and femtosecond laser micromachining are 

used for additive and subtractive methods, respectively. The chapter contains the process 

development and characterization of each method. 

4.1 Laser-Assisted Fabrication of Thin Films 

As a part this research, on-fiber metal thin films were required for the production of 

superstructure FBGs, as well as conductive interlayer for further embedding processes. 

Various methods have been proposed for the fabrication of metal films on optical fibers.  
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As discussed in Chapter 2, conventional deposition methods have been utilized for on-

fiber thin-film fabrication. Another group of technologies that can be considered for the 

fabrication of on-fiber coatings is the Direct Write (DW) methods. In the DW methods, 

categorized as layered manufacturing technologies, the materials are selectively deposited in 

a layer-by-layer fashion at specific locations on substrates. Compared with conventional 

coating methods, the DW methods do not involve masks, and they are fast and inexpensive. 

Patterning with conventional thin-film deposition methods requires the addition and 

removal of materials which makes the use of masks inevitable. 

The DW method that has been proposed and implemented in this research is Laser-

Assisted Maskless Microdeposition (LAMM). As mentioned in Section 2.12.6, in addition to 

the characteristics of the DW methods, LAMM has some distinguishing features enabling 

the deposition of thin films on optical fibers. The key feature of the LAMM process is 

conformal deposition on non-planar surfaces. Compared with other DW methods such as 

ink-jet printing in which the gap between the depositing head and the substrates is less than 

a few tens of microns, the gap in LAMM is around 1-5 mm. This enables the conformal and 

selective deposition on non-planar surfaces and three-dimensional substrates. In the 

following, the details of the LAMM process are explained. 

4.1.1 LAMM Process 

The LAMM equipment consists of four major components: 

1. Atomizers (ultrasonic and pneumatic), 

2. Deposition unit (including processing head, nozzles, shutter, sheath gas, atomizer 

gas, and tubing), 

3. Laser and optical head (including a CW Erbium fiber laser with the wavelength 

of 1550 nm ), 

4. Positioning stage. 

Thin-film fabrication using the LAMM process is performed in two steps: (1) micro 

deposition, in which metal nanoparticles suspended in a liquid are atomized to aerosols, 

injected from the deposition head and impinge on a moving substrate and (2) laser post-

processing, in which the laser beam is used for post-heating and sintering of the as-deposited 

material. 
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the nanoparticle solution. When the solution is exposed to the ultrasonic waves, minuscule 

droplets of the liquid are ejected at the gas-liquid interface and form a dense mist in the 

surrounding gas. This phenomenon is well described by cavitation and capillary wave 

hypotheses [97, 98]. 

In the pneumatic atomizer, a high velocity gas stream is used to shear a liquid stream 

into droplets. The liquid stream is generated through the Bernoulli effect which creates the 

flow of nanoparticle suspension from the reservoir. The atomizer systems have the capability 

to generate mist with droplet sizes of 1-5 microns. For the best performance, the values of 

viscosities of the liquid in the atomizers should be 0.7-10 cP for the ultrasonic atomizer and 

1-2500 cP for the pneumatic atomizer. 

The gas flow from the ultrasonic atomizer is directed to the deposition head. However 

the gas flow rate in the pneumatic atomizer is high for the deposition head. The aerosol 

generated in the pneumatic atomizer passes through Virtual Impactor module, where the 

excess gas is removed by a vacuum pump, and the aerosol and the remaining gas are carried 

to the deposition head.  

The aerosol is carried to the deposition head by the flow of nitrogen gas. At the 

deposition head, the aerosol stream is mixed with a secondary gas stream of nitrogen, called 

sheath gas flow, and passes through a co-axial nozzle. This causes the aerodynamic focusing 

of the aerosol stream which then passes through a deposition tip with a diameter of 100 to 

250 m. The sheath flow focuses the main stream down to 10% of the size of the deposition 

tip, as demonstrated in Figure  4-2. 

The substrate is mounted on a two-degree-of-freedom moving stage, controlled by a 

motion control module. By moving the substrate relative to the deposition head, the desired 

patterns are produced in a layer-by-layer fashion. An electric heater, embedded in the stage, 

can heat the substrate up to 200 oC. 

For the deposition on optical fibers, an in-house rotational stage was designed and 

manufactured to equip LAMM with one additional degree of freedom. As illustrated in 

Figure  4-3, the connectorized and stripped optical fiber is mounted at each end of the 

concentric rotational holders. The entire setup is mounted on the translational stage of the 

LAMM workstation. 

For the laser post-processing, a CW single-mode erbium fiber laser with a wavelength of 

1550 nm along with the associated optics was added to the LAMM workstation, as shown in 
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4.1.2 Laser-Assisted Sintering of Nanoparticles 

The laser sintering mechanism of nanoparticles is shown in Figure  4-4. When the 

nanoparticles solution is radiated by the laser beam, the solvent evaporates and the particles 

agglomerate to form solid structures. As shown in Figure  4-4, the agglomerated particles 

produce “neck-shape” structures [99-101]. Agglomeration, which leads to the reduction of 

surface energy, occurs as a result of the atomic diffusion between the nanoparticles. Different 

diffusion mechanisms can occur in the laser sintering process: surface diffusion, grain 

boundary diffusion, and lattice diffusion. In the laser sintering of nanoparticles, the 

dominance of a diffusion mechanism depends on the size of nanoparticles. In the early stages 

of the sintering process, surface diffusion and grain boundary diffusion, with lower activation 

energies than lattice diffusion, are dominant. Applying the laser energy to the process 

increases the density of the deposited films, resulting in an increased electrical conductivity 

[102]. The laser sintering of nanoparticle solutions involve liquid evaporation and 

densification. As a result, weight loss and the formation of residual stress are prevalent in 

this process. 

4.1.3 LAMM Process Parameters 

The parameters involved in the LAMM process fall into two groups of deposition and 

laser sintering, and are provided in Table  4-1. 

 

Table  4-1: LAMM process parameters  

Deposition Process Parameters Laser Sintering Process Parameters

Pneumatic Atomizer Laser power (W)
Atomizer gas flow rate (cm3/min) Laser scanning speed (mm/s) 
Sheath gas flow rate (cm3/min) Focused laser beam diameter (m) 
Virtual impactor gas flow rate (cm3/min)
Deposition speed (mm/s)

Deposition tip diameter (m) 
 

Ultrasonic Atomizer 
Atomizer gas flow rate (cm3/min)
Sheath gas flow rate (cm3/min)
Atomizer voltage (V) 
Deposition speed (mm/s)

Deposition tip diameter (m) 
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Figure  4-4: Laser sintering mechanism of nanoparticles (a) before sintering, (b) liquid 
evaporation, (c) start of agglomeration, and (d) end of agglomeration 

4.1.4 LAMM Process Characterizations 

As listed in Table  4-1, the LAMM process involves various parameters. To attain films 

with desired geometrical features and mechanical and microstructural properties, and 

investigate the effects of the process parameters on the final quality and characteristics of 

the deposited films, the process needs to be characterized. In the LAMM process, the 

deposition parameters primarily affect the geometrical features such as the thickness and 

width of the films. For the analysis of the microstructural and mechanical properties, the 

effects of the laser processing parameters should be investigated. The final goal is the 
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deposition on the non-planar surface of optical fibers. However, in the current 

characterization scheme, the optimum parameters are obtained for planar substrates. Then, 

the parameters are further tuned for the deposition on the non-planar surface of optical 

fibers. 

4.1.5 Experimental Procedures 

Silver nanoparticles suspended in ethylene glycol (C2H4(OH)2) were used in the 

experiments. The suspension contained 50 wt. % of silver nanoparticles with an average 

particle size of 50 nm, supplied by Nano-Size Ltd.   

The deposition, followed by laser sintering, was performed on planar silica (SiO2) 

substrates at different process parameters. After the deposition and laser sintering, the 

samples were examined by optical microscope and scanning electron microscope (SEM) to 

study the microstructure of the deposited tracks. A BH2-UMA model Olympus microscope 

and a LEO 1530 Field Emission Scanning Electron Microscope (FE-SEM) were used for this 

purpose. In addition, white light interferometry using optical profilometery (WYKO NT 

1100 optical profiling system, Veeco, Plainview, NY, USA) was utilized to study the 

geometrical features of the deposited films. The laser power at the process zone was 

measured by a power meter (L30A Thermal Head, OPHIR, Logan, UT, USA). The 

crystalline structure of the thin films was examined with X-ray Diffraction (XRD) by using 

a micro X-ray diffraction machine with Cu-K radiation. To obtain the effect of laser 

parameters on the mechanical properties of the deposited thin films, nano-indentation tests 

were performed. For these tests, Hysitron TI 900 TriboIndenter (Hysitron, Inc., Minneapolis, 

MN, USA) was utilized. 

4.1.6 Optimized Process Parameters for the Deposition of Silver Films 

A Design of Experiments (DOE), based on the Taguchi method, was developed to 

optimize the process parameters and gain insight into the effects of the process parameters 

on the properties of the films. The optimization of the process parameters was based on the 

width and the thickness of the deposited films. The details of the DOE method are available 

in Appendix D. The optimized process parameters for the deposition with pneumatic 

atomizer and ultrasonic atomizer are listed in Table  4-2 and Table  4-3. These process 

parameters result in fine-edge films with thicknesses of about 1 m and widths of 20-50 m. 
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Table  4-2: Deposition process parameters for pneumatic atomizer 

Parameter Value 

Atomizer flow rate (cm3/min) 740-750 
Sheath gas flow rate (cm3/min) 100-110 
Virtual impactor gas flow rate (cm3/min) 700
Deposition velocity (mm/s) 3-5

Deposition tip diameter (m) 200

 

Table  4-3: Deposition process parameters for ultrasonic atomizer 

Parameter Value 

Atomizer flow rate (cm3/min) 7-12
Sheath gas flow rate (cm3/min) 40-55
Atomizer voltage (V) 35-40
Deposition velocity (mm/s) 0.5-10

Deposition tip diameter (m) 150

4.1.7 Deposition on Planar Surfaces 

Trials were conducted to deposit silver on planar fused silica substrates. Figure  4-5 

presents spiral and straight line patterns. The topography images of the samples taken by 

the optical profiling system are illustrated in Figure  4-6. 

4.1.8 Microstructure Analysis 

Samples were fabricated with different laser powers at a laser speed of 0.25 mm/s. Laser 

powers of 1.35 W, 2.41 W, and 3.28 W at the process zone with a beam spot diameter of 200 

m were used in the experiments. Figure  4-7 and Figure  4-8 depict the microstructure of the 

samples taken by FE-SEM at magnifications of 20 kX and 35 kX. The figures show the 

changes in the microstructure during laser sintering. As seen, at the laser power of 1.35 W, 

the nanoparticles have been slightly sintered, and neck-shape formation is rarely seen in this 

sample. As the laser power increases, the agglomeration and neck-shape formation are 

observed in the nanoparticles. At the power of 3.28 W, which is the maximum achievable 

power in the LAMM system, close-packed sintered particles are observed. 
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Figure  4-7: In-lens images of the microstructure of the silver thin films sintered at 1.35 W taken 
at magnifications of (a) 20 kX and (b) 35 kX 
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Figure  4-8: In-lens images of the microstructure of the silver thin films sintered at 3.28 W at 
magnifications of (a) 20 kX and (b) 35 kX  
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4.1.9 Crystal Structure 

In the characterization of the process, the crystal structure of silver films was also 

investigated. Figure  4-9 shows the XRD spectra of unsintered films and the films sintered at 

laser powers of 2.41 W and 3.28 W. The existence of multiple peaks in the XRD spectra 

implies that the silver nanoparticles are polycrystalline. The magnified peaks at 44o 

associated with (200) planes are also shown in Figure  4-10. According to the magnified 

image, the peak of the untreated sample is broader than that of laser-sintered samples. The 

Full-Width-at-Half-Maximum (FWHM) of the unsintered sample, and the samples sintered 

at 2.41 W and 3.28 W are  is 0.77o, 0.65o, and 0.63o, respectively. The increase of the FWHM 

in the X-ray diffraction is related to the crystallite structure [103]. As the laser power 

increases, the particles agglomerate and the level of periodic arrangement in the crystals 

increases. This results in sharper peaks when the X-ray beam is diffracted. 

4.1.10 Mechanical Properties 

Another part of the characterization process was to investigate the mechanical properties 

including modulus of elasticity and hardness of the silver films by using nanoindentation 

tests. For the nanoindentation tests, an image of each sample was obtained by the 

nanoindenter tip, and six locations which were 10 m apart were located. A maximum load 

of 1000 N was applied at each location, and the load-displacement curves were obtained. 

Figure  4-11 shows the indentation profiles of six locations in a sample taken by the 

nanoindenter tip. 

Figure  4-12 shows the load-displacement curves for each sample at five indentation 

locations of Figure  4-11. According to the Oliver-Pharr method [104], the indentation 

hardness (H ) is obtained from  

 mPH
A

=   (4.1) 

where mP  is the maximum applied load and A  is the contact area between the indenter and 

the silver layer.  
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The hardness and modulus of elasticity, obtained from the nanoindentation test results, 

are plotted in Figure  4-13 and Figure  4-14. It is clear that hardness and modulus of 

elasticity increase by increasing the laser power. This is the result of the agglomeration and 

sintering of nanoparticles. Close values of hardness have been reported for silver thin films 

[106, 107]. In these experiments, the maximum obtained value for modulus of elasticity is 65 

GPa, which is 21% less than that of bulk silver (83 GPa). This can be caused by the 

differences in the samples microstructure, affected by the type of the fabrication process 

[106]. In addition, the agglomeration of the nanoparticles might not be complete and contain 

porosity. The surface morphology such as the roughness of the deposited silver layers can 

also cause the discrepancies. 

4.2 LAMM for On-Fiber Film Deposition 

4.2.1 Materials 

Silver was selected as the coating material for FBGs. Among the precious materials that 

are available as nanoink, silver has a good adhesion with silica. In addition, the coefficient of 

thermal expansion of silver is high ( silvera = 18.9×10-6 oC-1), compared with that of silica       

( silicaa =0.55×10-6 oC-1), which increases the thermal sensitivity of the FBG sensor. 

A FBG with a Bragg wavelength of 1550 nm and grating length of 14 mm (O/E LAND 

Inc., Quebec, QC, Canada) was selected. The optical fiber was coated with a polymeric layer 

to protect it during shipping and handling. The polymer coating was chemically stripped by 

immersing the fiber in acetone for 15 min. 

4.2.2 Path Planning and Process Parameters 

During the deposition process, the FBG was mounted on the rotational stage in 

Figure  4-3 and fixed at the ends to keep it straight under the deposition head. The films 

were deposited on the optical fiber by moving it in a programmed path relative to the 

deposition head. To coat a desired length of the fiber, silver tracks were deposited adjacent 

to each other with a distance of 20 to 25 m. Figure  4-15 shows the relative path followed 

by the deposition head. 
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Figure  4-15: Path followed by the deposition head of LAMM relative to the optical fiber for the 
deposition of on-fiber silver thin films 

During the deposition process, only one side of the optical fiber was exposed to the 

aerosol of silver nanoparticles. This causes non-uniformity in the thickness of the films 

around the fibers. To get a uniform coating thickness, the optical fiber was rotated by 90o in 

each round of depositions, as displayed in Figure  4-16. The process parameters used for the 

deposition of on-fiber silver films are listed in Table  4-4. 

 

Figure  4-16: (a) Schematic diagram of the LAMM deposition tip and the optical fiber and (b) for 
each set of depositions the fiber is rotated by 90o. 
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4.3 Femtosecond Laser Micromachining of Optical Fibers 

One of the approaches of this research is to increase the sensitivity of FBGs to the 

concentration of the surrounding media while retaining its thermal sensitivity intact. The 

new developed sensor is utilized for the simultaneous measurement of concentration and 

temperature in liquids. Reduction of the diameter of FBGs is a method that is used to make 

them sensitive to the index of refraction and concentration [17-21]. HF etching is typically 

used for the material removal and the reduction of the diameter of optical fibers. The 

etching rate is slow and the process is isotropic and non-directional. Etching rates of 1.8 

m/min with 52% HF solution [17], 80 nm/min in buffered oxide etch (BOE) [18], and 650 

nm/min in 24% buffered HF solution [19] have been reported for the reduction of the 

cladding diameter of FBGs.  

In this thesis, the selective micromachining of the outer surface of FBGs using 

femtosecond laser pulses is proposed to remove the materials from the cladding.  Compared 

with HF etching, the femtosecond laser micromachining process is faster and can be easily 

controlled for patterning on optical fibers. The optical fiber, made of silica, is transparent to 

the visible and Near-Infrared (NIR) electromagnetic radiation. Long pulse lasers (pulse 

durations of 10 ps and larger) cannot be absorbed by silica for micromachining. However, 

ultrashort laser pulses (tenth of picoseconds or femtosecond) in the NIR range enable both 

surface and bulk micromachining of silica. 

4.3.1 Interaction of Femtosecond Laser Pulses with Silica 

The interaction of femtosecond laser pulses with dielectric materials such as silica was a 

research topic in the past years [108-111]. The interaction of ultra-short laser pulses with 

materials differs completely from that of long pulse lasers. In the interaction of long pulse 

lasers (pulse durations larger than 10 ps) with materials, the laser energy absorption 

mechanism is electronic excitation due to the absorption of electromagnetic radiation and 

the electron-lattice interaction to convert the energy to heat [112]. 

The interaction of femtosecond laser pulses with dielectrics such as silica involves some 

fundamental processes. When silica is irradiated by intense femtosecond laser pulses, the 

index of refraction of the material becomes intensity dependent. The energy of a single 

photon is not sufficient to excite the electrons in the valence band and transfer them to the 

conduction band. As a result, in the interaction of high density laser pulses, the electrons in 
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the valence band are excited through the absorption of multiple photons which is called 

multi-photon ionization. The rate of the multi-photon ionization is a function of the laser 

intensity. The electrons in the conduction band can absorb more laser energy through free-

carrier absorption. If the energy of the conduction electrons increases by an amount higher 

than that of the band gap, the conduction electrons can ionize more valence electrons 

through impact ionization. This process continues as long as the laser energy is available, 

and results in increase of the plasma density, which is known as avalanche ionization. [112]. 

After the formation of the plasma, various mechanisms can cause damage in the dielectric 

material. The transfer of energy from the high density plasma results in melting, 

vaporization, and ablation of the material. The transfer of energy from the high density 

plasma to the lattice occurs in a time scale much smaller than the thermal diffusion time, 

which reduces the heat affected zone. [109, 110, 113]. The damage can also result from the 

defects originated from the creation and relaxation of Self-Trapped Excitons (STE). The 

generated defects in silica are oxygen vacancy (E’ center), peroxy radical/linkage, and Non-

Bridging Oxygen Hole Center (NBOHC) [114].  

In addition to surface micromachining and material removal, structural modifications, 

including changes in the index of refraction and stress induction, can be achieved in the 

interaction of femtosecond laser pulses with silica [115-117]. Femtosecond lasers have been 

used for the induction of birefringence in optical fibers by exposing the cladding to the laser 

radiation [42] and for direct writing of Bragg gratings in the core of optical fibers for sensing 

and fiber laser applications [40, 41, 43, 118]. The fabrication of intracore Bragg gratings by 

the lateral illumination of optical fibers using phase mask scanning technique has been 

reported to enhance the sensing performance of FBGs [118]. Femtosecond lasers have been 

used for the inscription of high-temperature stable Bragg gratings in Polarization 

Maintaining (PM) optical fibers. The photo-enhanced birefringence, caused by the 

femtosecond pulses, resulted in FBG sensors with a dual-parameter sensing capability in a 

wide range [41]. Bragg gratings have also been inscribed in the core of the Yb-doped optical 

fibers used in fiber lasers [119].  

4.3.2 Femtosecond Laser Micromachining Setup 

 Figure  4-20 shows the workstation setup of the femtosecond laser facility, used for this 

research work at the Laser Processing Research Centre (LPRC) of the University of 
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Chapter 5 

Superstructure FBGs for Multi-

Parameter Sensing 

In this chapter the modeling, design, and fabrication of Superstructure FBGs (SFBG) 

are addressed for the simultaneous measurement of temperature and strain. The procedures 

for the development of a structural model, along with the opto-mechanical model of FBGs 

are presented. The modeling simulation results are also provided. The chapter ends with the 

experimental results consisting of the optical response of SFBG exposed to structural loading 

and temperature variations, and also, the simultaneous measurement of strain and 

temperature. 

5.1 Superstructure FBGs with Periodic On-Fiber Films 

In SFBGs, the modulations of the index of refraction vary periodically along the fiber 

axis with a longer period (typically larger than 100 m) than that of the grating . The long-

period variations of the index of refraction cause the formation of equally spaced sidebands 

in the reflection spectrum of FBG, as described in Chapter 3 (Figure  3-8).  
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Figure  5-1: Periodic films on FBG and their effects on the average index of refraction ( nD ) 
when the optical fiber is exposed to axial tensile force and/or temperature variations 

The concept of SFBG can also be realized by the deposition of periodic metal films on 

FBGs, as shown in Figure  5-1. In a SFBG with periodically deposited on-fiber films, a 

periodic distribution of strain is induced along the grating, when the fiber is exposed to axial 

force  (F ) or thermal heating/cooling ( TD ). This is due to the differences in the geometries 

and the thermal expansions of the films and the optical fiber. The periodic distribution of 

the strain components along the grating causes the periodic variations of the average index 

of refraction ( nD ) due to photo-elastic effect. In addition to the index of refraction, the 

grating pitch (L ) varies periodically along the fiber. The sideband spacing in a FBG, coated 

with metal films with period of G  is derived from the phase matching condition (3.73) as 

described in Chapter 3: 

 

2

2
B

effn

l
lD =

G
  (5.1) 

The periodically spaced sidebands in the reflection spectrum of SFBG have a broad 

range of applications in fiber lasers and tunable filters [66]. In contrast to the superstructure 

FBGs fabricated by UV exposure, the reflectivity of the sidebands in SFBGs with on-fiber 

films can be tuned by changing temperature and force. The concept of tunable SFBG by the 

fabrication of metal films on optical fibers has been elaborated on in the paper of Ahuja et 

al. [66]. They proposed tunable SFBGs for wavelength-division multiplexing, optical sensing, 

z

nD



 84 

and fiber lasers. In their work, thin films of gold with periodic variable diameters were 

deposited on a pre-deposited on-fiber titanium thin film by using electron beam evaporation. 

They showed that joule heating causes a periodic distribution of temperature along the fiber. 

This creates sidebands whose reflectivities are tuned by electric current.  

From the sensing point of view, SFBGs with periodic metal coatings can be used for 

simultaneous parameter measurements, which eliminates the inherent limitations of FBGs in 

the thermal and structural measurements. The intensity of the sidebands generated in 

SFBGs is regulated by the applied temperature and force on the optical fiber. The intensity 

of the sidebands combined with the Bragg wavelength shift can be used to discriminate the 

coupled effects of temperature and strain. To the best knowledge of the author, there is no 

report on the implementation of SFBGs with on-fiber films for the concurrent measurement 

of temperature and strain. UV induced SFBGs have been used for multi-parameter sensing. 

In the work of Guan [29] et al. the transmission spectrum of a UV-exposed SFBG was used 

for the simultaneous measurement of strain and temperature. The measurements were based 

on the analysis of the attenuation bands generated by cladding mode couplings. 

In this thesis, the LAMM process was adopted for the fabrication of on-fiber thin films, 

which was explained in Chapter 4. The rest of this chapter elaborates on the modeling, 

design, and test of SFBG sensors with on-fiber thin films.  

5.2 Opto-mechanical Modeling 

To design the SFBGs with multi-parameter sensing capabilities, an opto-mechanical 

model is developed. The model consists of two components: (1) structural model of SFBGs 

to find the state of stress and strain in optical fibers, and (2) opto-mechanical model 

consisting of the photo-elastic and thermo-optic effects to find the reflection spectrum of 

SFBGs. 

5.2.1 Structural Modeling of SFBGs Exposed to Force and Temperature Variations 

For the structural modeling, it is assumed that the optical fiber is uniformly heated by 

TD and is exposed to an axial tensile force of F . The approach is similar to the modeling of 

thick-wall cylinders under structural loading and temperature variations [120]. Figure  5-2 

demonstrates the coated segment of the optical fiber in cylindrical coordinates ( , ,r zq ). It is 
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which yields 

 ( )rr
d
r

dr qqs s=  (5.5) 

The stress-strain-temperature relations are written as 
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 (5.6) 

where n  is the Poisson’s ratio, E  is the modulus of elasticity, and a
 
is the coefficient of 

thermal expansion. By integrating (5.3) and (5.5) and using (5.6), the stress components in 

the optical fiber and the coating are obtained as follows: 
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where 1
cC , 1

fC , and 2
cC
 
are integration constants and the superscripts f and c are associated 

with the optical fiber and the coating, respectively. Considering the following boundary 

conditions,  
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f
zzs , c

zzs , 1
cC , 1

fC , and 2
cC  are obtained, which are substituted in (5.7) and (5.6) to find the 

strain components. 

5.2.2 Opto-mechanical Modeling of SFBG with Periodic On-Fiber Films 

The results of the structural modeling are used in the opto-mechanical model to find the 

anisotropic index of refraction by using (3.12), and the modified effective mode index of 

refraction by using (3.13) in the coated and uncoated segments of the optical fiber. 

Afterwards, the coupled-mode equations (3.62) are solved to obtain the spectral response of 

SFBG. By defining, 

 
( )

( )
( )

S z
z

R z
r =  (5.9) 

and taking the derivative of (5.9),  

 
( ) ( ) ( ) ( )1

( ) ( )

d z dS z z dR z

dz R z dz R z dz

r r
= -  (5.10) 

Substitution of ( )R z  and ( )S z  from (3.62) in (5.10), results in a new form of the 

coupled-mode equations as follows: 

 2
2( ) 1

2
2

eff
AC dc AC

nd z d
iK i K iK

dz dz

pr p
r r

l

æ öF ÷ç ÷ç= + - - + +÷ç ÷ç ÷Lè ø
 (5.11) 

which is in the form of the Riccati equation. Accordingly, ( )r l  in (3.64) is written as 

 ( ) 2( ) / 2r Ll r= -  (5.12) 

The boundary condition is 

 ( / 2) 0Lr =  (5.13) 

The Riccati ODE (5.11) can be solved by direct integration. A 4th-order Runge-Kutta 

algorithm was developed for this purpose in MATLAB, which is available in Appendix E. 
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5.3 Simulation Results 

In this section, the simulation results are presented to investigate the effects of different 

parameters on the optical response of the SFBG sensor. The optical constants for the 

simulations are listed in Table  4-4. The values are obtained for the FBGs supplied from 

external suppliers. 

The coefficient ˆ 2 / / / 2eff dcK n d dz Kp l p= - L - F +
 
in (5.11) is plotted along a FBG 

at different forces and temperatures at the wavelength of 1550 nm in Figure  5-3 and 

Figure  5-4. It is assumed that the original grating is Gaussian apodized. The graphs are 

obtained for the periodically spaced on-fiber silver coatings with a thickness of 9 m and a 

period of 2 mm (Figure 4-18 and Figure  5-5). There exists seven silver films on a 14 mm 

long grating, and the length of coated segments is 1.5 mm.  

As shown in Figure  5-3 and Figure  5-4, K̂  changes with the same period as the thin 

films, and its amplitude increases as force and temperature increase.  

When FBG is under tensile force F , K̂  in the coated segments of the optical fiber is less 

than that in the uncoated segments due to the  larger strain in the uncoated segments. 

As a result of the temperature increase, K̂  in the coated segments is larger than that of 

the uncoated segments. This is attributed to larger strain components in the coated 

segments of the fiber due to the differences in the coefficients of thermal expansions. 

Table  5-1: Modeling constants  

Parameter Value 

silicaE  73 GPa 

fiberE  83 GPa 

effn (initial) 1.44405 

11p 0.113 

12p  0.252 

nD 1×10-5 

fn  25 

(nm)L  537  

/n T¶ ¶ 1.2×10-5 

(mm)L  14 
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Figure  5-5: Geometrical dimensions of periodic silver films deposited on FBG 

 Figure  5-6 shows the reflection spectra of the SFBG as a function applied axial loads for 

5, 7, and 9 m silver film thicknesses. The simulations were run for the SFBG design shown 

in Figure  5-5. The silver films are 1.5 mm long with a period of 2 mm. Figure  5-7 and 

Figure  5-8 show the reflectivity of the first upper sideband and the Bragg wavelength of 

SFBG as functions of the applied axial force at different film thicknesses. Table  5-2 contains 

the Bragg wavelength sensitivity to axial load for different film thicknesses. As seen the 

sensitivity of the Bragg wavelength to the applied axial load decreases with increasing the 

film thickness. At the film thickness of 1 m the sensitivity is 1.32 nm/N and is reduced to 

1.05 nm/N at the thickness of 15 m. Increasing the film thickness results in the reduction 

of the average strain along the grating which leads to the reduction of the sensitivity of the 

Bragg wavelength. The sensitivity of the sidebands reflectivity increases with thicker films; 

however, the trend of the variations of reflectivity with axial force is not linear. The film 

thickness manifests itself in the amplitude of the periodic variation of strain along the 

grating.  

Table  5-2: Bragg wavelength sensitivity to axial force for different film thicknesses 

Film Thickness (m) 
Bragg Wavelength 
Sensitivity (nm/N) 

1 1.32
5 1.23
7 1.17
9
 

1.10
15 1.05

 

The reflection spectra at various temperatures are plotted in Figure  5-9. The Bragg 

wavelength vs. temperature and reflectivity vs. temperature graphs are plotted in 

Figure  5-10 and Figure  5-11. Table  5-3 summarizes the Bragg wavelength sensitivity to 

temperature for different film thicknesses. The thermal sensitivity of the Bragg wavelength 

to temperature increases from 14.2 pm/oC at a film thickness of 1 m to 18.8 pm/oC at a 
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The reflection spectra of the FBGs were taken by sm125 FBG interrogation system 

(Micron Optics Inc., Atlanta, GA, USA). 

5.6 Optical Response Analysis 

The reflection spectra of the SFBG before and after the fabrication of the silver films are 

exhibited in Figure  5-13. A comparison of the two graphs signifies the presence of sidebands 

in the reflectivity after the deposition of the silver films.  This is attributed to the formation 

of residual stresses in the optical fiber after the agglomeration and sintering of the 

nanoparticles. Sintering of nanoparticles involves solvent evaporation and thickness 

reduction, which lead to stress formation in the film and the optical fiber. In addition, after 

sintering and on cooling, due to the difference between the Coefficients of Thermal 

Expansions (CTE) of silver and silica ( silvera = 18.9×10-6 oC-1 and silicaa =0.55×10-6 oC-1), 

tensile/compressive stresses build up in the silver films/optical fiber. In Figure  5-13, the 

wavelength spacing of the reflectivity peaks is ~400 pm which is consistent with the results 

obtained from (5.1) with 2 mmG = . The Bragg wavelength shift to lower wavelengths is the 

result of compressive stress in the coated segments of the fiber. The graph obtained from the 

modeling is also plotted in the figure showing that the modeling results and the experimental 

results are in good agreement. 

5.6.1 SFBG under Temperature Variations 

Figure  5-14 shows the reflectivity of the upper sideband as a function of the Bragg 

wavelength in a thermal cycle ranging from 45 oC to 85 oC. It was observed that the 

response of the reflectivity curve has a hysteresis behavior at temperatures lower than 45 oC. 

This can be attributed to the existence of micro-porosity within the silver films. At 

temperatures higher than 45 oC, the reflectivity reduces monotonically from 20% to 3% as 

temperature rises.  

Figure  5-15 depicts the Bragg wavelength shift as a linear function of temperature with a 

sensitivity of 17.3 pm/oC. In addition, the results obtained from modeling are plotted in 

Figure  5-14 and Figure  5-15, showing agreement between the modeling and the experimental 

results with a deviation of 5%. The variations of the reflectivity with temperature are the 

results of the changes in the amplitude of the strain components along the fiber. As 



 96 

mentioned before, the deposition and laser sintering of silver films cause the formation of 

residual stress in the coated segments of the optical fiber. This leads to a periodic 

distribution of strain, and as a result, the periodic variations of effn  
 
and L  along the 

optical fiber. On heating, the state of stress in the silver films changes from tensile to 

compressive, whereas the reverse occurs in the optical fiber. In the uncoated segments of the 

optical fiber, the strain components are generated because of thermal expansions that are 

equal to silica Ta D . The strain components in the coated and uncoated segments of the FBG 

are schematically plotted in Figure  5-16.  As shown, the difference between the strain 

components reduces with temperature, which causes the reduction of the amplitude of effn  
 

and L  and as a result the coefficient K̂  in (5.11).  
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Figure  5-16: Strain components in the coated and uncoated segments of the optical fiber 

5.6.2 Structural Loading 

The structural parameter that is measured by FBGs is strain. To induce strain, an axial 

load is applied on the optical fiber. For axial loading, the SFBG was installed on the test rig 

and tensile loads of 0-0.9 N were applied to the fiber. Figure  5-17 shows the reflectivity of 

the first upper sideband as a function of the Bragg wavelength at a temperature of 45 oC 

during the tensile loading. According to this figure, the reflectivity increases to 32% by 

applying a tensile load of 0.9 N. Due to the existence of periodic films, tensile forces acting 

on the optical fiber produce the periodic strain distribution along the grating. The tensile 

force increases the amplitude of the strain distribution and that of effn  
and L , which 

amplifies the sidebands reflectivity. The results, obtained from the opto-mechanical modeling 

in the figure are in agreement with the experimental data.  

Figure  5-18 shows the corresponding Bragg wavelength shift as a function of the axial 

force. The shift of the Bragg wavelength has a sensitivity of 1.2 nm/N deviating from the 

modeling results by 9%. The linear behavior of the Bragg wavelength variations implies that 

the silver films are in elastic region, and there is no crack or delamination in the silver films 

and between the films and the optical fiber. 
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It should be noted that the behavior of the modeling graphs is dependent on the initial 

residual stress formed in the coated segments of the optical fiber. In the analyses performed 

in this research, the model was tuned to fit the experimental data. The tuning was done by 

finding the initial residual stress for the best fit. In spite of this tuning, the model predicts 

the gradient and tendency of the results. Obtaining accurate values for the residual stress 

components requires microstructural analysis of the films. 

5.6.3 Simultaneous Measurement of Strain and Temperature 

The capabilities of the developed SFBG sensor for the simultaneous measurement of 

strain and temperature were investigated. The experimental results are displayed in 

Figure  5-19 to Figure  5-21. Figure  5-19 provides the spectra of SFBG at different 

temperatures and tensile forces. It is apparent from the figures that both structural loading 

and temperature shift the Bragg wavelength. As discussed in the previous sections, 

structural load, inducing strain on the optical fiber, increases the reflectivity of the 

sidebands; however, temperature inversely affects the reflectivity. This feature enables the 

simultaneous measurement of strain and temperature using a single FBG. Figure  5-20 

contains the reflectivity vs. Bragg wavelength graphs for SFBG in multi-parameter sensing. 

The graphs are obtained by measuring the reflectivity and the Bragg wavelength in thermal 

cycles while the sensor is under tensile force.  

When the sensor is exposed to tensile force and temperature variations, the strain can be 

directly obtained from Figure  5-20 by locating the corresponding force graph from the Bragg 

wavelength and the reflectivity readings. The strain on the optical fiber is related to the 

applied force. Temperature is obtained by using the Bragg wavelength vs. temperature 

curves in Figure  5-21. 

For each sensor, a set of characteristic curves should be obtained to enable multi-

parameter measurements. The characteristic curves are in the form of reflectivity vs. Bragg 

wavelength and Bragg wavelength vs. temperature. The characteristic curves are 

schematically plotted in Figure  5-22. The plots consist of a series of constant-strain curves. 

Strain can be measured by using the reflectivity vs. Bragg wavelength graph. To obtain 

temperature, the corresponding constant strain curve is located in Bragg wavelength vs. 

temperature graph in Figure  5-22b. 
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Figure  5-22: Characteristic curves for SFBG with periodic on-fiber thin films (a) reflectivity as a 
function of Bragg wavelength and (b) Bragg wavelength as a function of temperature 

5.7 Comparison with State-of-the-Art Technology 

The experimental results of this chapter showed that the developed SFBG can 

simultaneously monitor temperature and strain in a temperature range of 45 oC to 90 oC and 

an axial force range of 0 N to 1.75 N. Compared with the state-of-the-art technology for the 

simultaneous measurement of strain and temperature and the compensation of the effect of 

temperature using FBGs, the developed SFBG sensor has some distinguished characteristics. 

One of the features of the developed sensor is the measurement of two parameters using a 

single reflection spectrum of FBG. As a result, the new sensor does not increase the volume 

of the captured data, as opposed to the methods proposing the use of multiple sensors such 

as two FBGs or combined FBG-Fabry Perot cavity [22, 23, 50]. Compared with the methods 

that have been proposed only for temperature compensation in such a way that the actual 

value of temperature is not monitored [49], the developed SFBG can be utilized for the 

simultaneous measurement of strain and temperature in addition to temperature 

compensation.  

When it comes to packaging, the size of the sensor is not increased significantly from the 

original FBG; only a few micron thin-film coating is added to the optical fiber. This 

facilitates the miniaturization of the sensing packages. Consequently, there is no need for the 
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development of new packaging technologies to accommodate this type of sensor. The 

methods that have been proposed using bi-materials [24] make the sensing device bulky and 

are not applicable in miniaturized packages.  

As discussed before, the thin-film fabrication process induces residual stress in the thin 

films and the optical fiber resulting in the formation of residual sidebands in the reflection 

spectrum. To have a systematic calibration procedure, the values of the residual stresses 

need to be known. The residual stresses can be predicted by using the sintering model of 

nanoparticles and also by the analysis of the crystal structure of the thin films. A 

characterization scheme can be developed to correlate the magnitude of the residual stress in 

the thin films to the geometrical features and the process parameters. 

5.8 Summary 

In this chapter, the modeling and design of SFBGs with periodically spaced on-fiber 

silver thin films were described. The LAMM process was successfully utilized for the 

deposition of on-fiber silver thin films with a thickness of 9 m. The developed SFBG was 

successfully tested for the simultaneous measurement of strain and temperature. To analyze 

the sensitivity of the developed sensor to strain, the SFBG sensor was loaded axially in a 

test rig. The temperature sensitivity was investigated by heating the optical fiber. The 

reflection spectrum of the SFBG has equally spaced sidebands whose intensities are tunable 

with temperature and strain. It was shown that by concurrent reading of the sidebands 

reflectivities and the Bragg wavelength shift, the effects of temperature and strain can be 

separated in the reflection spectrum. A series of characteristic curves can be obtained for the 

calibration of the SFBG sensor. The characteristic curves consist of sideband reflectivity vs. 

Bragg wavelength and Bragg wavelength vs. temperature curves. 
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Chapter 6 

Multi-Parameter FBG for Temperature 

and Concentration Measurement in 

Liquids 

This chapter is concerned with the modifications of as-fabricated FBGs by using laser 

micromachining. Femtosecond laser micromachining is implemented to modify the optical 

performance of FBG sensors through surface ablation and on-fiber micro-groove inscription. 

The sensing performance of the modified FBGs is investigated for the simultaneous 

monitoring of the temperature and concentration of liquids.  

6.1 FBGs Radiated by Femtosecond Laser Pulses 

As mentioned in Chapter 3, the effective mode index of refraction ( effn ) in FBGs is a 

function of the indices of refraction of the core and cladding. If the index of refraction at a 

segment of the grating is changed, the Bragg reflection peak is split into two reflection peaks 

at 
1B

l
 
and 

2B
l , as shown in

 
Figure  6-1. As discussed in Chapter 3, the temporary changes of 

effn  
can be caused by structural loading and/or temperature variations due to photo-elastic 
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and thermo-optic effects. However, femtosecond laser pulses can cause permanent changes in 

the effective mode index of refraction. This results from the structural changes such as 

change of the index of refraction in silica imposed by femtosecond laser pulses as described 

in Section 4.3.1. 

In a FBG, if a segment of the grating length is radiated with femtosecond laser pulses, 

the Bragg wavelength peak splits into two peaks. The resonance wavelengths spacing ( ¡ ) is 

obtained by 

 
2 1

2B B effnl l¡ = - = D L   (7.1) 

However, if the wavelength spacing is small enough, the individual peaks are combined 

to form one single resonance peak with a larger bandwidth. If the entire length of the 

grating is radiated by femtosecond laser pulses, ¡  is zero, and only a permanent red shift in 

the Bragg wavelength is observed. 

In addition to structural changes such as the modifications of the index of refraction, 

femtosecond laser pulses can cause material ablation from the surface of optical fibers, as 

described in Chapter 4.  

Since there is no coupling between the cladding and core modes of regular FBGs in the 

reflection spectrum, FBGs are not sensitive to the changes in the index of refraction of their 

surrounding medium. If a FBG which has had the cladding selectively removed by the laser 

micromachining process is moved from one medium to another with a different refractive 

index, the effective mode index of refraction and as a result the Bragg wavelength are 

altered. Since the index of refraction of a liquid is an indication of its concentration, 

monitoring and analyzing the reflection spectra allows the measurement of concentration. In 

this regard, the modified FBGs can be employed effectively as chemical and biological 

sensors. Since the FBGs are electrically isolated, the sensors are suitable for the 

measurements in environments in which the use of electricity is hazardous. 

As discussed in Chapter 2, HF etching is a common method for the reduction of the 

diameter of FBGs and removal of cladding to make the sensors sensitive to the index of 

refraction. However, the HF-etching process has some limitations including very low etch 

rate, non-directional etching, and mask requirements for selective etching. Femtosecond laser 

micromachining is an alternative fabrication method for the material removal from the 

surface of optical fibers. The details of the micromachining of silica using femtosecond laser 
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Figure  6-3a displays corrugated structures with a pitch of 50 m, inscribed on an optical 

fiber using Ti:Sapphire femtosecond laser with an average power of 40 mW (corresponding 

to a laser pulse energy of 40 J at a repetition rate of 100 kHz) and laser scanning speed of 

100 m/s. Figure  6-3b is the schematic diagram of the optical fiber cross section before and 

after micromachining. The width (w) and the depth (h) of the structures, obtained by white 

light interferometry (WYKO NT1100 optical profiling system, Veeco Metrology Inc., 

Tucson, AZ, USA), are 22 m and 32 m, respectively. The number of pulses per spot is 220 

on the center line at the laser scanning speed of 100 m/s. 

6.3 Optical Responses of FBGs Micromachined by Femtosecond Lasers 

In this section the reflection spectrum of FBGs micromachined by femtosecond laser are 

provided and compared to the reflection spectrum of the as-received FBGs. Different cases 

including the permanent shift of the Bragg wavelength, split of the Bragg peak into two 

peaks, and increase in the bandwidth are observed.  

6.3.1 Shift of the Bragg Wavelength 

In the first experiment, the laser beam was attenuated to an average power of 40 mW 

(equal to 40 J pulse energy), and the F BG was moved continuously with a pitch of 50 m 

and a scanning speed of 100 m/s. Laser micromachining was performed on the full length of 

the grating (10 mm). The laser-fiber distance was set in such a way that the exposure area 

on the optical fiber was 20 m. This was obtained by measuring the trace width of the 

irradiated regions.  As a result, the pulse intensity was 3.2×1013

 W/cm2. The initial and final 

reflection spectra of the FBG and the schematic diagram of the micromachined optical fiber 

are plotted in Figure  6-4. As observed, the central wavelength of the FBG is shifted by 

BlD =465 pm. The red shift in the Bragg wavelength is attributed to the change in the 

index of refraction of the optical fiber. The effective mode index of refraction at the locations 

exposed to the femtosecond laser pulses increases, resulting in the changes in the reflection 

spectrum. The change in the effective mode index of refraction at the points of laser 

exposure obtained from / 2eff Bn lD = D L  is effnD » 4×10-4. 
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Figure  6-4: Initial and micromachined FBGs reflection spectra, laser pulse intensity: 

3.2×1013 W/cm2  

6.3.2 Dual Peak Reflection Spectrum 

In another experiment, the laser beam was attenuated to a power of 17.5 mW (equal to 

a pulse energy of 17.5 J). The exposure area on the optical fiber was 10 m, resulting in a 

pulse intensity of 5.57×1013

 W/cm2. The optical fiber was moved continuously with a pitch 

of 10 m and a scanning speed of 100 m/s to radiate half of the length of the grating (5 

mm). The reflectivity spectra and the schematic diagram of the micromachined optical fiber 

are shown in Figure  6-5. Two resonance wavelengths are generated in the reflection 

spectrum of the FBG at 1550.33 nm and 1550.99 nm ( BlD = 660 pm). Accordingly, the 

change in the effective index of refraction is effnD » 6×10-4. 

6.3.3 Bandwidth Increase 

Figure  6-6 demonstrates the results of an experiment in which the FBG was moved 

periodically with a pitch of 50 m, and half of the length of the grating (5 mm) was 

micromachined with a laser power of 40 mW and a laser scanning speed of 100 m/s. The  
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Figure  6-5: Initial and micromachined FBGs reflection spectra, laser pulse intensity: 

5.57×1013 W/cm2 

 

Figure  6-6: Initial and micromachined FBGs reflection spectra, laser pulse intensity: 

2.21×1013 W/cm2 
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exposure area was 24 m, resulting in a pulse intensity of 2.21×1013
 W/cm2. In this 

experiment, the bandwidth of the reflectivity signal was increased. The Full-Width-at-Half-

Maximum (FWHM) for the initial and final spectra are 304 pm and 510 pm, respectively.  

6.3.4 Discussion on Optical Responses of Micromachined FBGs 

According to the experimental results, three different cases occurred in the interaction of 

femtosecond laser pulses with FBGs. The modifications are attributed to the change in the 

index of refraction of the FBGs and the geometrical changes induced by laser ablation..In 

the interaction of femtosecond pulses with silica, the index of refraction is increased in the 

exposed areas [116]. The change in the index of refraction is a function of the pulse intensity; 

higher pulse intensities result in larger index changes. In Figure  6-4, the Bragg wavelength 

has permanently shifted to a higher wavelength, because the entire length of the grating is 

exposed to laser pulses. However, in Figure  6-5, the micromachining was conducted on half 

of the length of the grating. This resulted in two resonance peaks. In Figure  6-6, there exist 

two resonance peaks. However, due to the lower laser pulse intensity, the Bragg peaks 

spacing is small, and they are combined as a single peak with a larger bandwidth. Another 

factor that has an opposite effect on the permanent changes of the Bragg wavelength is 

related to the stress release in the micromachined segments of the optical fiber. During the 

fabrication of optical fibers, residual stress forms in the fiber which can be released by the 

inscription of grooves. The release of stress can cause a blue shift in the Bragg wavelength in 

Figure  6-4. However, the effect of the femtosecond laser pulses in changing the index of 

refraction is more dominant. As a result, a red shift is observed in the reflection spectrum. 

Due to the inscription of periodic micro-grooves on the FBGs, a superstructure behavior, 

that is equally spaced sidebands, is expected to be observed in the spectral response. 

According to(3.73), the wavelength spacing for a period of 50 m is ~15.6 nm which is not 

observed in the captured wavelength range shown in Figure  6-4. 

In addition to the aforementioned modifications of the spectral response, the reduction of 

the sharpness (observed in Figure  6-4, Figure  6-5, and Figure  6-6), increase of the out-of-

band background level (observed in Figure  6-5 and Figure  6-6), and grating strength 

reduction (observed in Figure  6-4) are observed. 

The modifications of the index of refraction obtained in these experiments are 

comparable with the results reported in the literature [117, 121]. The experiments indicate 
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that by tuning the laser parameters and characterizing the process, the optical performance 

of the FBGs can be selectively customized. 

6.4 Sensing Performance of Micromachined FBGs 

6.4.1 Dual Parameter Sensor 

The sensing performance of the micromachined FBGs was assessed by placing them in 

solutions of Polyvinyl Butyral (PVB) in ethanol. Figure  6-7 illustrates the changes in the 

reflection spectrum of a micromachined FBG sensor with a single resonance peak at different 

temperatures in ethanol and 4.8% solution of PVB in ethanol. Increasing the liquid 

concentration at a constant temperature results in a red shift in the Bragg wavelength. 

Figure  6-8 presents the Bragg wavelength shift in terms of temperature for the 

micromachined FBG in ethanol and a solution of 4.8% PVB in ethanol. According to this 

figure, the average change in the Bragg wavelength from ethanol to 4.8% solutions of PVB 

in ethanol is 9%. It is clear that by increasing the temperature or concentration the Bragg 

wavelength increases accordingly. According to these graphs, the sensitivity of the FBG 

sensors to temperature is around 10 pm/oC which is comparable to the previously reported 

results [21]. To compare the results with those of an unmachined FBG, the thermal 

responses of an unmachined FBG in ethanol and 4.8% solution of PVB in ethanol are 

plotted in Figure  6-9. The slope of both curves is 10.9 pm/oC indicating that the 

unmachined FBG is not sensitive to the concentration of the surrounding medium. However, 

the capabilities of the FBG for the measurement of the concentration, as well as the 

temperature have been increased by the inscription of micro-grooves.  

The variations of the Bragg wavelength as a function of concentration at temperatures of 

40 oC, 50 oC, 55 oC, 60 oC are plotted in Figure  6-10. As shown, both temperature and 

concentration affect the Bragg wavelength. Increasing the concentration results in a red shift 

in the Bragg wavelength. For the measurement of each parameter (concentration or 

temperature) the sensor needs to be calibrated separately. 
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of refraction in liquids is concentration which can be monitored by this type of sensors. In 

addition, according to the experimental results, the FBGs are sensitive to temperature which 

implies that, in contrast to the previous FBG sensors reported in the literature ( [21, 122]), a 

single sensor of the type developed here can be used for the simultaneous measurement of 

temperature and concentration of liquids. 

6.5 Comparison with the State-of-the-Art Technology 

Compared with the available technologies for the measurement of the liquids 

concentration using FBGs, the developed method in this thesis has some advantages. Due to 

the selective nature of the laser micro-micromachining process, the geometrical features of 

the micro-grooves can be easily controlled. In addition, the sensor fabricated by this method 

has a better mechanical strength as opposed to the HF etched FBGs in which the diameter 

of the entire optical fiber is reduced. Only a single spectrum of light is needed to be analyzed 

for the simultaneous measurement of concentration and temperature. The speed of the 

fabrication process is another advantage of this method. The reported HF etching rates for 

optical fibers are 1.8 m/min with 52% HF solution [17], 80 nm/min in buffered oxide etch 

(BOE), and 650 nm/min in 24% buffered HF solution [19].  

In spite of the advantages, there are some limitations with this type of sensor that need 

improvement. The sensitivity of the sensor is smaller than that of previously reported HF 

etched FBGs. A nonlinear Bragg wavelength shift of 2.5 nm for the variation of the index of 

refraction from 1 to 1.378 have been reported for HF etched fibers with a reduced diameter 

of 6 m [17]. It has been shown that the sensitivity of the FBG sensors to concentration 

depends on the cladding diameter [18, 19]. The sensitivity is also affected by the area of the 

micromachined surfaces. In the micromachined FBGs, only the micromachined grooves are 

the effective surfaces for the concentration measurement. The characteristics of the 

micromachined surface such as roughness can also affect the sensitivity of the 

micromachined FBGs. Surface roughness can also cause signal loss due to light scattering. 

The effects of surface roughness need to be further studied. 
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6.6 Summary 

In this chapter, the experimental procedures for the development of a combined 

temperature-concentration FBG sensor were explored. Femtosecond laser micromachining 

using Ti:Sapphire laser was successfully incorporated for the inscription of micro-grooves and 

corrugated structures on as-fabricated FBGs. The performance of the developed sensors was 

investigated through experiments in liquid solutions of PVB in ethanol with various 

concentrations. The results showed that the FBG with laser-inscribed micro-grooves not only 

became sensitive to the concentration of the surrounding liquid, but also retained its 

sensitivity to temperature variations.  
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Chapter 7 

Development of Metal-Embedded FBG 

Sensors 

 

This chapter addresses embedded FBG sensors in metal parts for structural health 

monitoring. The fabrication procedures to embed FBGs along with numerical modeling and 

experimental results are discussed in this chapter. 

7.1 Metal Embedded FBG Sensors 

As mentioned in Chapter 2, the unique features of FBGs such as light weight, small size, 

long-term durability, long-range linearity, robustness to noise, and corrosion resistance 

encourage the development of methods and technologies thereafter to embed them inside 

metallic structures for in-situ load monitoring. For instance, the measurement of loads 

applied to machining tools, used for cutting, milling, and drilling, is essential for high 

precision manufacturing. In addition, tools failure diagnostics necessitate the real-time 

monitoring of applied thermal and structural loads during the machining process. In 

conventional surface-mounted sensors, such as strain gauges the measurements are limited to 
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peripheral surfaces. However, embedded sensors can monitor the loads at desired locations 

not accessible by surface-mounted sensors. 

Although conventional sensors such as strain gauges can be used as embedded sensors, in 

case of embedding in metal parts, the requirement for insulation of such sensors adds more 

difficulties; whereas optical fiber sensors are electrically nonconductive and do not require 

any insulation.  

7.2 Steps toward Embedding FBGs in Metallic Structures 

Optical fibers are sensitive to high temperatures; high temperatures can degrade gratings 

and damage optical fibers permanently. The decay of gratings can start at a temperature of 

~200 oC [2, 31]. Since most of the metal fabrication processes involve high temperatures, 

embedding optical fibers in metal parts is a challenging task. Some techniques have been 

proposed and developed to embed optical fibers in metallic structures. 

Two techniques can be considered for embedding optical fibers. One is electrodeposition 

techniques such as electroplating and the other one is casting. Since optical fibers are not 

conductive, the pre-deposition of a thin layer of a conductive material on the optical fiber is 

required prior to the electrodeposition process. Conventional deposition techniques such as 

sputtering can be utilized for this purpose. Sputtering of Ti as a conductive interlayer on 

optical fibers has been reported in the literature [10]. Another recognized method is casting, 

in which a low temperature molten metal is casted around the optical fiber [57]. In this 

method, a low melting point material with good adhesion to silica can be melted and poured 

in a mold with a pre-placed optical fiber. The shortcoming of this method is the formation of 

large residual stresses after solidification. To diminish the effect of residual stresses on the 

optical response of the sensor, the optical fiber is held under tension during the casting 

process [123]. 

7.3 Embedded FBG Sensors in Smart Tools 

In order to fabricate smart machining tools with embedded FBG sensors, the embedding 

processes described in the previous section can be followed by laser solid freeform fabrication 

(LSFF) process to deposit layers of tungsten carbide-cobalt (WC-Co).  WC—Co is a hard 

material used in the production of cutting tools. Due to the existence of both tungsten 
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carbide (WC) and cobalt (Co), WC-Co has a combination of hardness and toughness 

together. The sample made by this fabrication protocol has a core of steel with embedded 

FBG sensors and a hard material on the surface used for machining. After the embedding 

process and deposition of WC-Co, the part is machined to the shape of tools.  

The LSFF process at the University of Waterloo has been characterized for the 

deposition of WC-Co on steel [123, 124]. Two LSFF workstation setups were used for the 

deposition of WC-Co. One setup consists of a 1 kW pulse Nd:YAG laser system (LASAG, 

Thun, Switzerland) at a wavelength of 1064 nm, and the other one consists of a 1 kW CW 

Ytterbium fiber laser (IPG Photonics, Oxford, MA, USA) at an emission wavelength of 

1070-1080 nm. In the LSFF workstation, argon gas is used as both shield and carrier gas.  

In the LSFF process, the substrate is mounted on a CNC table to move it beneath the 

laser beam. The laser beam melts a thin layer of the substrate and creates a melting process 

zone. Metal powders are injected to the process zone through a nozzle connected to a powder 

feeder. After solidification, a thin layer of the secondary material forms on the substrate 

[124].  

7.4 Embedding of FBGs Using Casting 

7.4.1 Fabrication Procedures 

The steps of the embedding process are shown in Figure  7-1. The optical fiber was 

placed in a block of steel (35×30×15 mm3) with a machined channel with the size of 25×20×5 

mm3, and an alloy of tin-lead (Sn-Pb) with 65 wt% Sn was casted around the fiber. Sn-Pb 

alloy has a low melting point of 185 oC. To compensate for the effect of residual thermal 

stresses on the optical response of FBG, a constant tensile stress of 80 MPa was applied on 

the optical fiber during the embedding process. A FBG with a peak wavelength of ~1550 nm 

(Micron Optics, Inc., Atlanta, GA, USA) was used for the embedding process. The LSFF 

process was characterized for the deposition of WC-Co layers [123]. 

Table  7-1 summarizes the range of the optimized process parameters used in the 

experiments. Figure  7-2 shows a prototyped sample.  
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A groove with a depth of 200 m and a width of 150 m was fabricated on a block of 

steel. The silver-coated optical fiber was placed in and aligned with the groove. Then, the 

sample was transferred to the Ni electroplating bath. A nickel sulfamate bath was used for 

the electrodeposition. Before plating, the recipient surfaces were polished, and the surfaces 

that did not need nickel plating were covered by Kapton tape. Prior to plating in the 

sulfamate bath, the sample was placed in steel activator bath, in which a current density of 

0.215 mA/mm2 with the reverse polarity was applied for 2 to 3 min. It was followed by a 

forward current density of 0.215 mA/mm2 for 2 min. Then, the sample was rinsed with 

distilled water, dried, and placed in the nickel sulfamate bath. A current density of 

0.215 mA/mm2 was applied for about 14-16 hours, resulting in a plated nickel layer with a 

thickness of 230 m. The chemical compositions of the electroplating baths are given in 

Table  7-4. A prototyped sample with embedded FBG is shown in Figure  7-7. 

 

Table  7-2: LAMM process parameters for the deposition of on-fiber silver interlayer 

Parameter Value 

Atomizer flow rate (cm3/min) 740-750 
Sheath gas flow rate (cm3/min) 100
Virtual impactor gas flow rate (cm3/min) 700

Deposition tip diameter (m) 200

Deposition velocity (mm/s) 3
Laser power at the process zone (W) 3.3
Laser scanning speed (mm/s) 0.25

Laser spot size (m) 200

 

 

Table  7-3: LSFF process parameters for the deposition of WC-Co using CW Ytterbium fiber 
laser  

Parameter Value 

Laser power (W) 400
Laser scanning speed (mm/s) 6
Powder feed rate (g/min) 8
Laser spot diameter (mm) 1.5
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7.6 Summary 

This chapter addressed the experimental procedures for embedding FBGs in metallic 

parts for structural health monitoring. Two approaches were explored for the embedding 

process: (1) casting and (2) thin film deposition followed by electroplating. Casting is a high 

temperature process causes residual stress in the optical fiber. Electroplating was 

implemented as a low temperature process and the results showed that residual stresses are 

minimal. To realize smart machining tools, the embedding processes were followed by the 

deposition of WC-Co, a hard material for machining tools, by using the LSFF process. The 

microstructural imaging of the prototyped samples proved good layers integrity without 

cracks, porosity, or delamination between layers. The performance of the prototyped samples 

was tested in structural loading and thermal cycling. The results showed that the FBG 

sensors retained their linear behavior after embedding. A model was also developed based on 

structural-thermal analysis of the parts with embedded FBG sensors and the opto-

mechanical properties of optical fibers. It was shown that there is a good agreement between 

the model and the experimental results. 
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Chapter 8 

Conclusions and Future Work 

This thesis contributed to the field of optical fiber sensing by the design, modeling, and 

fabrication of FBG-based sensing devices. The developed sensing devices not only addressed 

the limitations associated with the applications of optical fiber sensors, but also moved 

forward the research front for the fabrication of optical fiber-based sensing devices. For this 

purpose, laser-based microfabrication processes including laser-assisted microdeposition of 

thin films and femtosecond laser micromachining were implemented. The main achievements 

of this thesis are as follows: 

8.1 Superstructure FBG for Simultaneous Measurement of Strain and 

Temperature 

Coupling of the effects of strain and temperature has been a long-lasting limitation in 

the field of optical fiber sensors. Development of methods and technologies to compensate 

the effect of temperature has been an active research topic. The use of multiple FBGs, 

combined FBG and Fabry Perot Cavity, and bi-material were the methods proposed for the 

compensation of the effect of temperature and/or multi-parameter measurement using 

FBGs. The superstructure approach that was proposed and implemented in this thesis added 

a new method for the simultaneous measurement of strain and temperature using a single 

FBG. Compared with the methods proposed in the literature, the superstructure FBG 
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provides an efficient and applicable solution not only for the compensation of the effect of 

temperature, but also for the simultaneous measurement of strain and temperature. The 

developed SFBG was based on periodic thin films with a thickness of 9 m deposited on 

regular FBGs. It was shown that the reflectivities of the sidebands generated in the 

reflection spectrum of the SFBG are tunable with applied strain and temperature variations 

on the optical fiber. This property combined with the Bragg wavelength shift were used for 

the simultaneous measurement of strain and temperature in FBGs. The performance of the 

developed sensor was tested in a temperature range of 45 oC to 90 oC and an axial force as 

high as 1.75 N. Characteristic curves can be obtained for the SFBG to calibrate the response 

in terms of the measured values of strain and temperature.  

8.2 Embedded FBG Sensors in Metal Structures for Health Monitoring 

The unique features of optical fiber sensors, especially FBGs, encourage embedding of 

such sensors inside metal structures for in-situ load monitoring. The gratings inscribed in 

FBGs start to degrade at temperatures above 200 oC. As a result, any embedding process 

dealing with high temperatures cannot be used for this purpose. Low temperature casting 

was used in this thesis to embed FBGs in a steel structure. To do so, Sn-Pb alloy with a 

melting point of 185 oC was casted around an optical fiber. The casting process involves the 

solidification of the molten alloy which generates residual stress on the optical fiber. The 

residual stress can affect the optical response of the sensor. Another technique that was used 

for embedding FBGs in metal structures was electroplating. Since optical fibers are not 

conductive, a conductive interlayer is needed for the embedding process. As a result, FBGs 

were coated with a silver (LAMM) technology. Subsequently, nickel electroplating was used 

to embed FBGs in a steel part. The samples with embedded FBG sensors were loaded and 

the reflection spectra of the embedded FBGs were obtained. The result showed a linear 

trend in the response of the embedded FBGs. The linear response indicates the integrity of 

the layers and the absence of cracks and porosity. An opto-mechanical model was developed 

to predict the response of FBGs embedded in metal structures. The model was based on the 

photo-elastic and thermo-optic properties of FBGs. Microscopic imaging of the metal part 

and the embedded optical fiber exhibited mechanical integrity of layers that are free of 

cracks, porosity, and delamination. 
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8.3 FBG for Simultaneous Measurement of Concentration and 

Temperature in Liquids 

FBGs on their original shape are not sensitive to the index of refraction of their 

surrounding medium, as the changes in the index of refraction of the medium do not affect 

the core-confined propagating mode and core-mode coupling. The reduction of the diameter 

of FBGs using HF etching has been the most common method for increasing the sensitivity 

of the sensor to the index of refection of liquids. The HF etched fibers suffer from the loss of 

mechanical strength due to the core diameter reduction. In addition, the developed sensors 

are not temperature compensated. In this thesis, femtosecond laser micromachining was 

implemented to inscribe micro-grooves on the cladding of regular FBGs. The selective nature 

of the laser micromachining process allows of the inscription of the micro-grooves at specific 

locations and with desired geometrical features on the optical fiber. It was shown that the 

micromachined FBGs became sensitive to the index of refraction while preserving their 

original sensitivity to temperature. As a result, a combined concentration temperature sensor 

was developed using on-fiber micro-groove inscription. The sensitivity of the developed 

sensor to the index of refraction is a function of the micro-grooves geometry (depth and 

width). Although, the sensitivity of the developed sensor cannot beat that of HF etched 

FBGs, this type of sensors has the capability of the simultaneous measurement of 

concentration and temperature of  liquids. In addition, the mechanical strength loss due to 

the formation of the micro-grooves is smaller than that of etched fiber, as the diameter 

reduction is smaller and is not all the way along the optical fiber. The performance of the 

developed sensor for concentration and temperature measurements was investigated by 

placing the sensor in solutions of PVB in ethanol in the range of 0% to 4.8%. The reflection 

spectrum of the sensor contains two resonance peaks. The wavelength spacing of the peaks is 

a function of the concentration of the surrounding liquids. The experimental results showed 

that the wavelength spacing reduces with increasing the concentration. 

To achieve the aforementioned contributions in the field of optical fiber sensors, the 

following tasks were performed during the course this PhD thesis: 

1. Opto-mechanical Modeling of Optical Fiber Sensors and the Sensing Devices Based on 

Optical Fiber Sensors 

A model, based on the photo-elastic and thermo-optic properties of optical fibers, was 

developed to obtain the response of FBG sensors exposed to temperature variations and 



 142 

structural loads. In the developed model, the state of strain in the optical fiber is mapped to 

the changes in the index of refraction. The results were used in light propagation equations 

to obtain the propagation constants, and the coupled-mode theory was utilized to obtain the 

spectral response. The model was also extended to predict the spectral response of 

superstructure fiber Bragg gratings with periodic on-fiber thin films.  

2. Laser Direct Deposition of On-Fiber Metal Thin Films 

In this thesis, a laser-based direct write method, called laser-assisted maskless 

microdeposition, was implemented for the selective deposition of on-fiber silver thin films 

with thicknesses of 1 to 9 m and a minimum width of around 20 m.  The thin films were 

used for the development of the superstructure FBGs and also as the conductive interlayer 

in the electroplating process for embedding optical fibers in metal parts. The LAMM process 

was characterized to deposit silver thin films from a solution of silver nanoparticles on 

planar surfaces of silica and the non-planar surface of optical fibers. In the process 

characterization, the effects of the deposition process parameters on the geometrical features, 

microstructure, crystal structure, and mechanical properties of the thin films were 

investigated.  The geometrical features of the deposited films were mainly dependent on the 

deposition process parameters: atomizer and sheath gas flow rates and the deposition 

velocity.  It was found that the laser processing parameters including laser power and laser 

scanning velocity have significant effects on the mechanical and microstructural properties of 

the thin films. To investigate these effects, several tests, including optical profilometry, 

scanning electron microscopy, X-ray diffraction, and nanoindentation were performed. 

3. Femtosecond Laser Micromachining of FBGs 

The multi-parameter FBG sensor for the simultaneous measurement of temperature and 

concentration of liquids was fabricated by the inscription of micro-grooves on the outer 

surface of FBGs.  The fabrication process was performed by using a Ti:Sapphire femtosecond 

pulse laser. For the micro-groove inscription, the femtosecond laser micromachining process 

was characterized to find the correlation between the geometry of micro-grooves and the 

laser processing parameters: laser pulse energy and laser scanning velocity. Micro-grooves 

with widths of 10 m to 22 m and depth of 32 m were inscribed in the cladding of FBGs.  
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8.4 Future Work 

To continue the research and extend the achievements of this thesis, the following 

research topics are recommended for future work:  

1. Development of Optical Fiber Biosensors for Multi-parameter Measurements in 

Biological Analytes  

In recent years, biophotonic sensors have opened new gates in biomedical research for 

the detection of analytes in biological agents. This new family of sensors has attracted the 

attention of researchers as the biomedical technology strives to meet the ever-increasing 

demands for accuracy, precision, repeatability, and low detection limits. Optical fiber 

biosensors can be incorporated in the detection of various biomolecules. Despite the 

widespread use of optical fibers for biomedical sensing, there is still an urgent need for 

biological sensors with multi-parameter sensing capabilities for multi-agent biological species. 

The use of optical fibers with multi-parameter sensing capabilities can reduce the size and 

the cost of sensing modules. In this way, multi-purpose portable measurement devices can be 

developed for both in vitro and in vivo applications. For instance, in cardiovascular surgery, 

the physical properties of blood can be monitored using these portable devices.  

2. Optical Fiber Biosensors for Multi-parameter Measurement in Cancerous Tissues 

The success of cancer chemotherapy highly depends on having accurate information 

about parameters such as the interstitial fluid pressure, level of oxygen, and PH in cancer 

tissues. These parameters directly affect the drug action, drug delivery, and the spread of 

metastasis. Optical fiber biosensors have the potential to open their way into research on 

cancer therapy to measure these parameters. Optical fiber sensor probes with multi-

parameter sensing capability can be developed for the measurements in tumors. The use of 

an individual strand of optical fiber requires only a single spectrum to be captured and 

analyzed to obtain the values of parameters. As a result, a single optical fiber can replace 

multiple electrical and electromagnetic sensors requiring masses of wires and electrical 

insulation. 

3. Machining Tools with Embedded Optical Fiber Sensors for High-precision 

Manufacturing Processes 

Manufacturing industry dealing with the fabrication of optical devices such as lenses, 

mirrors, etc entails high precision during the fabrication process. The structural and thermal 
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loads generated during the fabrication process, can directly affect the precision of the final 

product. This necessitates the development of load monitoring techniques for the machining 

closed-loop control system.  The applications of optical fiber sensors for structural health 

monitoring have been increasing rapidly during the past years. These sensors can be used for 

load monitoring in the machining tools. Their unique features encourage the use of 

embedded optical fibers in the metallic structure of machining tools.  

4. Monitoring and/or Predicting Induced Residual Stresses in On-Fiber Thin Films 

Deposited by LAMM 

The deposition of metal thin films by using LAMM induces residual stresses in the films 

and the optical fiber which affect the optical response of the sensor. For the systematic 

calibration of the developed sensors, research can be conducted to monitor and/or predict 

the residual stresses and obtain the correlation between the magnitude of the residual 

stresses and the fabrication process parameters. 

5. Heterogeneous On-Fiber Thin Films: Modeling, Design and Fabrication 

The development of thin films with heterogeneous material properties is recommended to 

enhance the sensing capabilities of optical fibers. For instance, tunable superstructure FBGs 

can be developed by the deposition of thin films with heterogeneous material properties. A 

model should be developed to design the geometrical features of the thin films, as well as to 

select the materials in terms of their mechanical properties. The heterogeneous thin films 

can be selectively deposited on optical fibers by using direct write technologies such as the 

LAMM process. 
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Appendix A  

Closed-form Solution of Light 

Propagation in Isotropic Optical Fibers 

The closed-form solution of the light propagation PDE in an isotropic optical fiber is 

found by the method of separation of variable.  The solutions of electric field components in 

cylindrical coordinates are given in Table A-1 [37]. The cylindrical coordinates are shown in 

Figure  A-1. 

 

Figure  A-1: Cylindrical coordinates in an optical fiber  
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Table  A-1: Electric field components for a load free optical fiber 
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A, B, C, and D are constants, and Jq and Kq are ordinary and modified Bessel functions 

of the first kind, respectively. u  and w  are defined as 
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The eigenvalue equations are obtained by applying the continuity condition to all 

tangential components of the electric and magnetic fields in the core-cladding interface [37]. 

By considering the weak guidance approximation ( core cladn n» ), which is the case in single-

mode optical fibers, the eigenvalue equation is expressed as  
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Equation (A.2) can be reformulated as 
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In each equation for each value of q , there exists m  solutions. Modes that are obtained 

by (A.3) are called transverse electric (TE0m) and transverse magnetic (TM0m). In the modes 

obtained from (A.4) and (A.5), none of the components become zero. As a result, they are 

called hybrid modes (EHqm or HEqm). By introducing the variable l , (A.3), (A.4) and (A.5) 

are expressed as [37] 
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In weakly guided optical fibers, a group of EH, HE, TE and TM modes superimposes 

and makes composite modes with the eigenvalue equation (A.6). These modes are called 

linearly polarized, and are denoted by LPlm . 

To study the characteristics of the light propagating in optical fibers, it is helpful to 

define two parameters called normalized frequency (V ) and phase constant (b), 

 ( )1/22 2 2 2( )core core cladV u w r k n n= + = -  (A.7) 
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where the approximation is based on the weak-guidance ( core cladn n» ) characteristic of 

single-mode optical fibers.  
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The normalized frequency is a constant number depending on the wavelength of the 

propagating light, fiber geometry, and the refractive indices of the core and the cladding. 

The phase constant as a function of the normalized frequency for different LP modes is 

plotted in Figure  A-2. As shown, for all of the core guided modes in an optical fiber, b  must 

be in the range 0 1b< < .  According to this figure, the 01LP  mode has the highest phase 

constant for all values of V . This mode is the most guided mode in single-mode optical 

fibers, and its cut-off frequency is zero [37]. 

 

Figure  A-2: Phase constant in terms of normalized frequency [37] 
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Appendix B  

Finite Element Method to Obtain the 

Effective Mode Index of Refraction 

 Finite Element Analysis (FEA) can be used to solve the light propagation PDEs and 

obtain the effective mode index of refraction in optical fibers. In the FE analysis, the optical 

fiber is divided into longitudinal segments. The cross section of the optical fiber is 

discretized to elements at each segment (Figure  B-1), and the light propagation PDEs are 

solved at each cross section.  

 

Figure  B-1: Optical fiber divided into longitudinal segments and meshing of optical fiber cross 
section in COMSOL Multiphysics 
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The triangular element is shown in Figure  B-2. By defining the element local coordinates 

x , h ,  and z , the transformation to Cartesian coordinates is [125] 
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1 2 3

1 1 1 1

x x x x

y y yy
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 (B.1) 

and the element shape function {N} is 

 2 2 2{ } [2 2 2 4 4 4 ]TN x x h h z z xh hz xz= - - -  (B.2) 

 

Figure  B-2: Triangular quadratic element 

The components of the electric field ( xE and yE ) are expressed as 
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The Perpendicular Hybrid-Mode Wave physics was selected in COMSOL Multiphysics. 

The UMFPACK solver for mode analysis was chosen. This solver is a linear solver using the 

Gaussian elimination method. 

To investigate the mesh independency and to find the optimum number of elements, 

several sample problems were solved with different numbers of elements. The variations of 

the eigenvalue ( b ) with increasing number of elements were studied. It was found that in 
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the solutions, where the number of meshes was higher than 1,280, the effect of the increasing 

mesh number on the final results was negligible. 

 B.1 FBG Subject to Non-uniform Strain Distribution 

The spectral response of FBGs, subject to non-uniform strain fields, is presented in this 

section. It is assumed that the grating is placed in a linearly varying axial strain field, as 

denoted in Figure  B-3. The simulation parameters are listed in Table B-1. The optical fiber 

is divided into longitudinal section and the distribution of the index of refraction is obtained 

for each segment. The light propagation PDEs are solved using COMSOL Multiphysics and 

MATLAB to obtain the effective mode index of refraction along the fiber ( ( )effn z ). The 

effective mode index of refraction is shown in Figure B-2. As seen, the effective mode index 

of refraction decreases along the grating, which is attributed to the non-uniform strain 

distribution. 

 

Table  B-1: Simulation parameters 

Parameter Value 

silicaE 73 GPa 

L 6 mm

11p 0.113 

12p 0.252 

coren 1.4457 

cladn 1.4378 

nD 2.5´10-4 

fn  1 
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Figure  B-3: FBG subject to linear non-uniform axial strain 

 

 

Figure  B-4: Effective mode index of refraction along a FBG subject to linear non-uniform axial 

strain 
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Appendix C  

Derivation of Coupled-Mode Theory for 

Optical Fiber Gratings 

Coupled-mode theory is a useful tool for the quantitative analysis of the spectral 

response of fiber gratings. In this theory, the grating is modeled as a periodic perturbation in 

the dielectric tensor of the medium in which light is propagating. The perturbed dielectric 

tensor is written as 

 ( , , ) ( , ) ( , , )p x y z x y x y ze e e= +D  (C.1) 

where ( , )x ye  is the unperturbed part of the dielectric tensor, and ( , , )x y zeD  is the periodic 

perturbation in z  direction. By considering the propagation of light in an unperturbed 

dielectric, the propagation of electric field ( ( , , )x y zE ) can be written as a linear combination 

of the normal modes, 

 
( )( , , ) ( , ) li t z

l l
l

x y z A x y e w b-= åE E  (C.2) 

where lA ’s are constant coefficients, and ( , )l x yE  is the thl  normal propagation mode in the 

unperturbed medium satisfying 
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 2 2 2( , ) ( ) ( , ) 0t l lx y k x yb + - =E E  (C.3) 

where  

  (C.4) 

and 

 
1/22 ( , )k x yw meé ù= ê úë û  (C.5) 

The propagation of the electric field in the perturbed medium can also be expressed as a 

linear combination of unperturbed normal modes; however, the expansion coefficients are 

functions of z . This is derived from the method of variation of constants [96]. As a result, 

the electric field is written as 
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By substituting (C.6) into the wave equation, 
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Equation (C.7) is rewritten as 
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Then, 
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By substituting (C.3) in (C.10), 
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By assuming weak perturbations, the variation of the amplitude ( )lA z  is small. It can be 

inferred that the second order term 2 2( ) /lA z z¶ ¶  is much smaller than 2 ( ) /li A z zb¶ ¶ . 

Therefore, (C.11) is simplified to 

 

2( )
2 ( , ) ( , , ) ( ) ( , ) 0l li z i zl

l l l l
l l

A z
i x y e x y z A z x y e

z
b bb w m e- -¶

- + D =
¶å åE E  (C.12) 

The Multiplication of (C.12) by * ( , )m x yE  and the integration over the xy  plane lead to 
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By using the othogonality of propagation modes [96], (C.13) is expressed as 
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Equation (C.14) is rewritten as 
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where mlK  is the coupling coefficient between the thl and the thm modes, defined by 

 * ( , ) ( , , ) ( , )
4ml m l

S

K x y x y z x y dxdy
w

e= Dò E E  (C.16) 

Equation (C.15) is a set of coupled differential equations, describing the coupling among 

an infinite number of modes in the light propagation. By getting the conjugate transpose of 

(C.16),  

 *
ml mlK K=  (C.17) 

Based on the direction of the propagating mode, the coupling can be co-directional, in 

which the modes propagate in the same direction, or contra-directional, in which the modes 

propagate in the opposite directions. 
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Appendix D  

Design of Experiments to Identify the 

Effective Parameters in the LAMM 

Process 

By using the Taguchi method, several sets of experiments were designed to study the 

effects of the process parameters on the geometrical features (width and thickness) of the 

deposited thin films.  

D. 1 Deposition Width 

The parameters deemed to be effective on the deposition width along with the selected 

levels and the degrees of freedom (DOF) are listed in Table D-1 The parameters and their 

levels are selected based on prior knowledge, whereas the degree of freedom of each factor 

was selected according to the chosen number of levels. In addition, the interactions between 

factors A and B (flow rates of atomizer gas and sheath gas) and between factors E and F 

(laser power and scanning velocity) are also investigated. Studying these interactions enables 

understanding of the levels of factors in which they are more effective. According to the 

total degree of freedom, which is eight, the L16 table is used to design the experiments [126]. 
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In the experiments, the deposition width varies from 15.51 m to 70.00 m for various 

process parameters. 

The results transferred to the analysis of variance (ANOVA) table to statistically study 

the results and obtain the F-test value of each experimental result. F-test is a statistical test 

to show the significance of the parameters. The F-test value is obtained based on a desired 

level of confidence (a  and the degrees of freedom of the parameters. The percentage of 

contribution can be used to show quantitatively the effects of the significant parameters  

[126].  

By selecting the level of confidence of 90%, a  is 0.1 and Fa =3.59. According to this 

selection, the most significant factors are A, C, and AB (interaction of A and B) in which 

the F-test value is larger than F

The average widths for different factor levels are shown Figure  D-1. These values are 

obtained by finding the average of the width data for the samples in which A, B,..., F  are in 

level 1 or 2. A1, B1,..., F1 represent the experiments in which factors A, B,..., F are in level 

1, and A2, B2,..., F2 are also defined in the same way. It is obvious that the changes in A 

and C have the most significant effects on the results; increasing the atomizer flow rate 

and/or reducing the deposition velocity results in wider depositions. 

The effect of AB is shown in Figure  D-2. It is obvious that the effect of factor A on the 

average width, which is the variations of the width due to the change in the level of A, 

depends on the level of factor B. When factor B is in level 1, the effect of A is larger than 

when it is in level 2. Since the effect of parameters E and F are not significant, their 

interaction is not effective.  

 

Table  D-1: Controlled parameters for the analysis of the films width 

Factors Description Level 1 Level 2 DOF 

A Atomizer gas flow rate (cm3/min) 7 12 1 
B Sheath gas flow rate (cm3/min) 40 55 1 
C Deposition velocity (mm/s) 1 10 1 
D Number of layers 5 20 1 
E Laser scanning velocity (mm/s) 0.5 6 1 
F Laser power (W) 0.75 1.345 1 
AB Interaction of A and B NA NA 1 
EF Interaction of E and F NA NA 1 

  Total DOF: 8
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experiments, in which the sheath gas flow rate is low, the atomizer flow rate is more 

effective than the ones in which the sheath gas flow rate is high. Since the sheath and 

atomizer flows are mixed in the deposition head, increasing the sheath flow rate reduces the 

prominent role of the atomizer flow rate in the deposition width. This phenomenon was 

observed in the experiments by the formation of over-sprayed material and satellites on the 

sides of the deposition tracks at high sheath gas flow rates. 

D.2 Deposition Thickness 

A separate set of experiments was designed to study the effective parameters on the 

thickness of the depositions. The parameters supposed to be effective on the thickness are 

listed in Table  D-2. The selection of the parameters and their levels were based on previous 

experience. According to the total degree of freedom, the L8 table is used solution for the 

design of experiments. In the experiments, the thickness varies from 0.5 m to 2.68 m at 

different process parameters. 

An ANOVA table was also constructed for this set of experiments. By considering the 

level of confidence of 90%, the most significant factors are the laser power (F) and the 

number of layers (D). 

The average thickness results for different factor levels are shown in Figure  D-3. 

According to this figure, it is evident that the change in D and F has the most significant 

effect on the results. Apparently, reducing the laser power and/or increasing the number of 

deposited layers result in thicker films. Although, the laser scanning velocity affects the 

thickness, its effect is less than that of the laser power and the number of layers. 

The effect of FE is shown in Figure  D-4. It is observed that the interaction of F and E is 

not significant in the final results; the individual effect of E or F is independent of the value 

of the other parameter. 

Table  D-2: Controlled parameters for the analysis of the thickness 

Factors Description Level 1 Level 2 DOF 

D Number of layers 5 10 1 
E Laser scanning velocity (mm/s) 0.75 5.5 1 
F Laser power (W) 0.75 1.35 1 
EF Interaction EF NA NA 1 

  Total DOF: 4
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Appendix E  

MATLAB Codes for Solving Riccati 

Differential Equation for SFBGs 

%Solution of Riccati Coupled-Mode ODEs for SFBG 
%Developed by: Hamidreza Alemohammad 
  
function R=runge_kutta4_FBG(a, b, N, alpha) 
  
h = (b-a)/N;        %the step size 
z(1) = a;            
w(1) = alpha;       %the initial value 
  
for i = 1:N 

k1 = h*f(z(i), w(i)); 
k2 = h*f(z(i)+h/2, w(i)+(k1)/2); 
k3 = h*f(z(i)+h/2, w(i)+(k2)/2); 
k4 = h*f(z(i)+h, w(i)+k3); 
w(i+1) = w(i) + (k1 + 2*k2 + 2*k3 + k4)/6; 
z(i+1) = a + i*h; 

end 
  
R=[z',w']; 
  
function dy = f(z, y) 
global k sigma_h gamma_0 lambda fl1 e_com1 e_com2 dT F L alfa; 
  
alfa=0.5e-6; 
n_eff=1.44405; 
% uniform grating 
% del_n_eff=0.5e-4; 
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% nu_op=1.9; 
% lambda_D=1549.015e-9; 
 
% apodized Gaussian 
lambda_D=1549.65e-9;  
del_n_eff=0.1e-4*exp(-4*log(2)*z^2/(L/3)^2); 
nu_op=25; 
gamma_0=lambda_D/2/n_eff; 
gamma_s=0*1e-7; 
 
nu=0.17; 
p11=0.113; 
p12=0.252; 
dn_dT=1.241e-5; 
pe=n_eff^2/2*(p12-nu*(p11+p12)); 
de1_dz=0; 
N_seg=7; 
L1=1.5e-3; 
L2=0.5e-3; 
shift=0; 
   
if z>=0 
if (rem(abs(z),L/N_seg)>=L1/2+shift) && 
(rem(abs(z),L/N_seg)<=(L1/2+L2)+shift)%Small diameter 
    e1=e_com1(1); 
    e2=e_com1(2); 
    e3=e_com1(3); 
    n_eff_i=-n_eff^3/2*(p12*e2+p12*e1+p11*e3-2/n_eff^3*(dn_dT)*dT- 
    (p11+2*p12)*alfa*dT)+n_eff; 
    gamma=(gamma_0+gamma_s*z)*(1+e1); 
     
else %Large diameter 
    e1=e_com2(1); 
    e2=e_com2(2); 
    e3=e_com2(3); 
    n_eff_i=-n_eff^3/2*(p12*e2+p12*e1+p11*e3-2/n_eff^3*(dn_dT)*dT- 
    (p11+2*p12)*alfa*dT)+n_eff;                                                  
    gamma=(gamma_0+gamma_s*z)*(1+e1); 
end 
end 
if z<0 
if (rem(abs(z),L/N_seg)>=L1/2-shift) && (rem(abs(z),L/N_seg)<=(L1/2+L2)-
shift)%Small diameter 
    e1=e_com1(1); 
    e2=e_com1(2); 
    e3=e_com1(3); 
    n_eff_i=-n_eff^3/2*(p12*e2+p12*e1+p11*e3-2/n_eff^3*(dn_dT)*dT- 
    (p11+2*p12)*alfa*dT)+n_eff; 
    gamma=(gamma_0+gamma_s*z)*(1+e1); 
     
else %Large diameter 

e1=e_com2(1); 
e2=e_com2(2); 
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e3=e_com2(3);  
n_eff_i=-n_eff^3/2*(p12*e2+p12*e1+p11*e3-2/n_eff^3*(dn_dT)*dT- 
(p11+2*p12)*alfa*dT)+n_eff; 
gamma=(gamma_0+gamma_s*z)*(1+e1); 

end 
end 
  
del_n_eff=del_n_eff*n_eff_i/n_eff; 
n_eff=n_eff_i; 
gamma=(gamma_0+gamma_s*z)*(1+e1); 
dgamma_dz=gamma_s*(1+e1)+(gamma_0+gamma_s*z)*(de1_dz); 
dgamma_dz=0; 
phi_prime=2*pi*(-z/gamma^2*dgamma_dz+1/gamma-1/gamma_0)*0; 
sigma_h=2*pi*n_eff*1/lambda-pi/gamma+2*pi*del_n_eff/lambda-0.5*phi_prime; 
k=pi/lambda*nu_op*del_n_eff; 
dy=(-i*k-2*i*sigma_h*y-i*k*y^2); 
  
global lambda L fl1 e_com1 e_com2 dT fem0 F alfa; 
alfa=0.55e-6; 
L=0.014; 
Ref_M_1=[]; 
Ref_M_2=[]; 
Ref_M=[]; 
lambda_M=[]; 
lambda_min=1548.5e-9; 
lambda_max=1552e-9; 
d_lambda=0.01*1e-9; 
phase_M_1=[]; 
nu=0.16; 
Ref_up_b=[]; 
T=[]; 
F_M=[]; 
lamb_max=[]; 
   
for F=0:0.1:0 
for dT=0:10:75  
     e0=0; 

%   thickness 15 Microns 
     ezz=0.7532617110e-3*F+0.7094274902e-5*dT; 
     err=-0.1459564732e-3*F+0.2269263208e-5*dT;              
     

%   thickness 9 microns 
%   ezz=0.5005585679e-5*dT+0.8654364913e-3*F; 
%   err=0.1769036815e-5*dT-0.1612325541e-3*F;        
      
%   thinkness 8 microns 
%   ezz=0.8282630358e-3*F+0.5757545074e-5*dT; 
%   err=-0.1573385087e-3*F+0.2069938674e-5*dT; 
%          
%   thickness 7 microns 
%   ezz=0.5248601220e-5*dT+0.8547878560e-3*F; 
%   err=0.1923052999e-5*dT-0.1606565650e-3*F; 
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     e_com2=[ezz;err;err]-e0; 
e_com1=[0.1086497746e-2*F+5.499999876*10^(-7)*dT;-0.1847046168e-     
3*F+5.499999822*10^(-7)*dT;-0.1847046168e-3*F+5.499999822*10^(-
7)*dT]; 

      Ref_M_1=[]; 
     Ref_M_2=[]; 
     Ref_M=[]; 
     lambda_M=[]; 
     fl1=1; 
for lambda=lambda_min:d_lambda:lambda_max; 
      R=runge_kutta4_FBG(L/2,-L/2,400,0); 
      z=R(:,1); 
      ro=R(:,2); 
      Ref_M_1=[Ref_M_1 abs(ro(length(ro)))^2]; 
      lambda_M=[lambda_M lambda]; 
end; 
fl1=2; 
for lambda=lambda_min:d_lambda:lambda_max; 
      R=runge_kutta4_FBG(L/2,-L/2,400,0); 
      z=R(:,1); 
      ro=R(:,2); 
      Ref_M_2=[Ref_M_2 abs(ro(length(ro)))^2]; 
end;   
     Ref_M=(Ref_M_1+Ref_M_2)/2; 
end 

end 
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