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Abstract

In the first part of this thesis we discuss some details of properties of graphene

and we explain the tight-binding approach to find the energy spectrum in graphene.

In the second part of the thesis, we solve a nonlinear integral equation for the elec-

trostatic potential in doped graphene due to an external charge, arising from a

Thomas-Fermi (TF) model for screening by graphene’s π electron bands. In partic-

ular, we study the effects of a finite equilibrium charge carrier density in graphene,

non-zero temperature, non-zero gap between graphene and a dielectric substrate,

as well as the nonlinearity in the band density of states. Effects of the exchange

and correlation interactions are also briefly discussed for undoped graphene at zero

temperature. Results from the nonlinear model are compared with results from

both the linearized TF model and the dielectric screening model within the random

phase approximation (RPA). In addition, the image potential of the external charge

is evaluated from the solution of the nonlinear integral equation and compared to

the results of linear models. We have found generally good agreement between the

results of the nonlinear TF model and the RPA model in doped graphene, apart

from Friedel oscillations in the latter model. However, relatively strong nonlinear

effects in the TF model are found to persist even at high doping densities and large

distances of the external charge.
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for ~vF = 6.576 eV.Å and t′ = 0 (solid line), the linear approximation

(dotted line), and the higher approximation to it (up to c2 in Eq. (2.69)

(dashed line). (b) The relative error of the two approximations. Note

that, for |ε| < 0.5 t, the error is less than 10 %. . . . . . . . . . . . . . 30

2.6 (a) The density of electrons of graphene, derived from the tight-binding
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Chapter 1

Introduction
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1.1 History and Motivation

Carbon is the most fascinating element in nature. Because of the flexibility of their

bonding, carbon atoms are able to form many different structures. Carbon is the

fundamental element in organic chemistry and is the basis for the existence of life

as we know it. There are also many different systems made of only carbon atoms.

Diamond and graphite are known from antiquity, but some of the other structures

of carbon networks, e.g. fullerenes [1, 2, 3] and nanotubes [4], were discovered 10-20

years ago. The different physical properties of different allotropes of carbon origi-

nate, in great part, from the dimensionality of those structures. However, we have

been studying the theory of the systems with fewer or more than 3 dimensions for

more than 50 years, but before discovering the nanotubes, it seemed that in nature

we are stuck with three spatial dimensions. For example, physicists have studied

the physical properties of layered semiconductors, as a two dimensional system,

but any layered semiconductor has a thickness of typically from 10 to 100 atomics

layers. In 2004, a research group led by Andre Geim and Kostya Novoselov [5], at

the University of Manchester, succeeded in obtaining graphene, which is a one atom

thick sheet of carbon atoms. They used an unusual approach to isolate graphene,

starting with three dimensional graphite, and extracted a single graphene layer.

Graphite may be viewed as a stack of graphene layers weakly coupled together by

van der Waals forces. Therefore by pressing graphite against a SiO2 substrate,

one produces graphene stacks, and somewhere among them, there could be indi-

vidual graphene. Because electron microscopy cannot distinguish monolayers from

nanometer thick flakes, it cannot help much in finding individual graphene; on the

other hand, the atomic-force and scanning-tunneling microscopes need an atomi-

cally smooth substrate to provide the required atomic resolution to detect the step
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1.1. HISTORY AND MOTIVATION

between the substrate and the monolayer of graphene. The optical properties of

graphene allow its observation with an optical microscope [6]. The interference

pattern on the reflected light from the substrate, produced by layers of graphene,

provides a visible contrast, such that the human eye can detect it using an opti-

cal microscope. This simple method makes large (up to 100 µm in size) and high

quality graphene crystallites. However, although these high quality crystals are

sufficient for physical studies, proof-of-concept devices, and electronic circuits, the

drawing technique is not appropriate for industrial-scale applications.

Graphene is one of the best studied carbon allotropes theoretically. It is the

starting point for studying graphite, carbon nanotubes and fullerenes. Graphene

is made of a honeycomb structure of carbon atoms. Fullerenes may be assumed

as wrapped-up graphene, where, replacing some of the hexagons of the graphene

lattice by pentagons creates the needed curvature defects; therefore, from a physical

point of view, they are considered as zero dimensional objects with discrete energy

states. Carbon nanotubes may be viewed as rolled graphene along a given direction

and reconnected carbon bonds, and may be considered as one dimensional systems.

Graphite, made out of a stack of graphene layers, has been known for a long time.

However, graphene was isolated in 2004 for the first time, while P. R. Wallace

in 1946 [7] studied the band structure of graphene as a starting point to study

graphite, and he showed the unusual semimetallic behavior of graphene. A simple

nearest-neighbor tight-binding approximation (see the next chapter), describes the

electronic structure of graphene. The symmetry of the honeycomb lattice causes

electrons in graphene to mimic a relativistic behavior, i.e., the speed of electrons is

independent of the momentum; in other words, electrons act like massless particles,

so-called massless Dirac fermions. Because of this similarity of the graphene hamil-

tonian to that of massless relativistic particles, it has many properties related to

3



relativistic quantum mechanics. For example, an interesting feature of a massless

Dirac fermion is its ability to penetrate a potential barrier of any height and width

without making a reflective component; in other words, the transmission proba-

bility is 1. This effect, which is called the Klein paradox and predicted decades

ago in quantum electrodynamics, has never been observed in particle physics ex-

periments. But it occurs in graphene routinely, in the tunneling of Dirac fermions

without reflection through potential barriers and contributes to enhance graphene’s

conductivity.

Since 1991, the research on nanotubes has led to many applications. The sim-

ilarity between graphene and nanotubes, and the unusual electronic properties of

graphene, makes it a promising candidate in many electronic applications. Some

possibilities that comes to mind are as follows: using its tunability by an external

electric field in superconductivity and in ultra-sensitive chemical detectors, using

its robustness and light weight in micromechanical resonators, and using its atomic

thinness in field emitters and in transparent membranes for electron microscopy.

Because of the negligible spin-orbit interaction, graphene is a promising candidate

for spin-value transistors [8], where spin polarization should survive over submicron

distances.

Another possibility for graphene application is that it may be a replacement for

silicon in smaller integrated circuits. Because of the stability and conductivity of

graphene at the molecular scales, it may be scaled down even to a single benzene

ring to be used in the circuits. The ultranarrow strips of graphene, nanoribbons,

may behave as semiconductors with gaps due to quantum confinement of electrons

[9], which make it possible to have graphene based semiconductors, operating in

the same way as silicon based ones.

Graphene may be used in some other applications such as gas sensors. It has

4



1.1. HISTORY AND MOTIVATION

been shown [10] that graphene can absorb gas molecules from the environment,

which leads to doped graphene with electrons or holes depending on the nature

of the absorbed gas. One can find the concentrations of gases by measuring the

change in resistivity of graphene.

Over the period of just 5 years since its first inception in the laboratory [5],

graphene has developed into one of the currently most active research areas in the

nano-scale physics [11]. One of the most important, and certainly most elusive,

problems in graphene research is concerned with its electrical conductivity, espe-

cially in the regime close to zero doping of graphene, where the conductivity exhibits

a peculiar minimum [12, 13, 14, 15, 16]. Besides several other scattering mecha-

nisms for charge carriers in graphene, it is believed that a special role in graphene’s

conductivity is played by the carrier scattering on charged impurities, which are

ubiquitous in graphene’s surroundings. In that context, significant progress has

been made in understanding the conductivity of graphene by using the Boltzmann

transport theory for charge carrier scattering on linearly screened charged impuri-

ties within the random phase approximation (RPA)[17, 18, 19]. However, because

of the reduced dimensionality, and especially because of the semi-metallic nature

of graphene’s π electron bands, the problem of screening of charged impurities re-

mains open. In that context, other approaches have also been undertaken, including

a full scattering theoretical treatment of Coulomb impurities embedded within the

graphene plane [20, 21, 22, 23], as well as nonlinear screening of external charges

studied by means of the Thomas-Fermi (TF) [24, 25, 26, 27], Thomas-Fermi-Dirac

(TFD) [28], and Density Functional Theoretical (DFT) schemes [29].

While graphene’s applications in nanoelectronics are primarily concerned with

charged impurities trapped in an insulating substrate [30, 31], screening of external

charges is also of interest for sensor applications of graphene in detecting atoms
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or molecules [10], which may be either adsorbed on the upper surface of graphene

[32, 33], or intercalated in the gap between the graphene and the substrate [34].

Further applications include image-potential states of electrons near graphene [35,

36], as well as the image and friction forces on slowly moving ions that may affect

the kinetics of chemical reactions taking place in the vicinity of graphene [27, 37].

All these aspects of screening of external charges by graphene are expected to be

strongly influenced by the presence of nearby dielectric materials [38, 39, 40, 41, 42].

One of the most important issues in theoretical studies of screening of external

charges is concerned with applicability of the linear response theory for intrinsic,

or undoped, graphene. Namely, with its valence and conducting π electron bands

touching each other only at the K and K ′ points of the Brillouin zone [11], graphene

behaves as a zero-gap semiconductor, so that its polarizability is greatly reduced

when its Fermi level lies close to the neutrality point characterizing the regime

of zero doping. In that context, it was shown within the RPA approach that

screening of external charges by intrinsic graphene at T = 0 is characterized merely

by a renormalization of graphene’s background dielectric constant due to inter-

band electron transitions [17, 43, 44]. However, when graphene is doped up to a

certain number density n (per unit area) of charge carriers, e.g., by applying an

external gate potential, then its Fermi level shifts away from the neutrality point

and the linear screening theory is expected to become appropriate, even at T = 0.

It is therefore desirable to determine the parameter range where nonlinear effects in

screening of an external charge set in, by comparing the results from linear screening

models with those from available nonlinear models, such as TF and DFT.

In that context, Katsnelson [25] and Fogler et al. [26] have solved the nonlinear

TF model, first proposed by DiVicenzo and Mele [24] for intrinsic graphene (i.e.,

n = 0) in the presence of an external point charge. These authors found unusually

6



1.2. THESIS SUMMARY

long ranged induced density of charge carriers in the plane of graphene [26], and

showed that the linear approximation to the TF model for the induced potential

is likely to overestimate the contribution of scattering on charged impurities to

the resistivity of graphene [25]. However, performance of the TF model has been

recently criticized for intrinsic graphene in the presence of sufficiently weak periodic

perturbations validating linear screening within the RPA [45]. On the other hand,

the above nonlinear TF model, augmented by the exchange (or Dirac) interaction

in the local density approximation (LDA), proved to be valuable in estimating

the effective potential fluctuations in doped graphene due to randomly distributed

multiple charged impurities [28]. A similar problem in the presence of multiple

charged impurities was also tackled by a more advanced DFT approach including

both the exchange and correlation (XC) interactions in LDA [29]. All the above

models were formulated assuming T = 0, linear density of states (DOS) of the π

electron bands, and no gap between graphene and substrate.

1.2 Thesis Summary

In this work, we take up the simple TF model for a single point charge Ze, a

distance z0 away from graphene [24, 25, 26, 45], where e(> 0) is the charge of a

proton. and generalize it to include the effects of a non-zero ground-state charge

carrier density n, a non-zero temperature T , and the presence of a substrate at

a non-zero distance h from graphene [27]. We assume that the external charge

is weak/distant enough to have negligible effects on the structures of graphene’s

DOS, apart from its shift due to local charging of graphene, but we allow for large

displacements of the Fermi level away from the neutrality point by including the

nonlinear corrections to the DOS in our model [11]. By varying the magnitude |n|,
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we are able to examine the effects of doping, whereas any dependence on the sign

of n will be a signature of nonlinear effects in screening by graphene. (Note that

changing the sign of n with fixed sign of the external charge Z in the TF model is

equivalent to changing the sign of Z with fixed sign of n.)

We perform a series of numerical solutions of the nonlinear integral equation

resulting from the TF model for the in-plane value of total electrostatic potential

for a range of values of n and z0, for both zero and room temperature, in the

cases of both free graphene and an SiO2 substrate with the gaps h = 0 and 1 Å.

In a special case of free, intrinsic graphene at T = 0, we also solve the nonlinear

TF model augmented by the XC energy terms of Polini et al. [29] in order to

estimate the importance of the exchange and correlation interactions within the

TF approach to screening of an external charge. While the results obtained for

the radial dependence of the in-plane potential could be directly used to discuss

nonlinear effects in graphene’s conductivity within the Boltzmann transport theory,

we turn our attention in the present work to using our numerical solutions of the

TF model to evaluate the nonlinear image potential of an external charge, which

provides an integrated measure of graphene’s screening ability and is also of interest

in recent studies of the electron image states [35, 36]. Finally, we compare our

nonlinear results for both the in-plane potential and the image potential with those

from the linearized TF (LTF) model and the temperature dependent RPA dielectric-

function approach [17, 43, 44].

In chapter 2, we discuss Dirac fermions and the energy spectrum of graphene

using a tight-binding approach, and we find the densities of energy and electrons in

graphene. The definition of the problem is mentioned in the chapter 3, where we

go through the details of the Thomas-Fermi method deriving a nonlinear integral

equation for the electrostatic potential, Density Functional Theory (DFT), and

8



1.2. THESIS SUMMARY

the Random Phase Approximation (RPA). In chapter 4 we discuss the numerical

method we use to solve the nonlinear integral equation. We discuss the results in

chapter 5 and present our concluding remarks in chapter 6. Note that gaussian

electrostatic units are used throughout unless otherwise explicitly indicted.
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Chapter 2

Properties of Graphene
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2.1 Properties of Graphene

Graphene is a 2-dimensional honeycomb lattice of carbon atoms, as shown in Fig.

2.1(a). The orbital structure of the 6 electrons in a carbon atom is 1s2 2s2 2p2.

The 1s electrons are close to the nucleus and strongly bound so that they do not

contribute to the chemical bond. The hexagonal atomic structure in graphene is

constructed from the σ bond joining a carbon atom to each of its three neighbors.

When carbon atoms are placed in the graphene lattice, the orbitals of the atoms

overlap. Considering symmetry, one realizes that the electron in the 2pz orbital

does not overlap with the 2s, 2px or 2py orbitals, because carbon atoms are in a

plane (a hybridization of 2s, 2px, 2py and 2pz forms the sp3 orbital which causes

the three-dimensional lattice of diamond). The 2s, 2px and 2py orbitals (in-plane

orbitals) hybridize to form three sp2 orbitals. Each atom shares one electron in an

sp2 orbital with a neighboring atom to form a σ bond. Because of symmetry, the

angle between those chemical bonds is 120o. Those strong σ bonds are responsible

for the mechanical properties of graphene. The energy spectrum originating from

the σ bands in the Bloch bond description contains a large energy gap of ∼ 12

eV between the bonding and antibonding states. Since the separations between

the two states and the Fermi level are large, σ bonds are usually neglected in the

theory of explaining the electrical properties of graphene related to the energies

around the Fermi energy. The pz orbitals, which are perpendicular to the graphene

plane, hybridize to form the π bonds and each pz orbital contributes one electron.

Such a system with one electron per lattice site is called a ”half-filled” system. The

unusual electronic properties of graphene are determined by the π orbitals which

form the electronic valence and conduction bands.

The graphene lattice may be seen as a set of two triangular sublattices (denoted

12



2.1. PROPERTIES OF GRAPHENE

(a) The honeycomb lattice of graphene (b) The reciprocal lattice of graphene

Figure 2.1: (a) The honeycomb lattice of graphene. The unit cell contain two atoms,

denoted A and B. a1 and a2 are the lattice vectors. (b) The reciprocal-lattice of graphene.

The shaded hexagon is the first Brillouin zone. b1 and b2 are the reciprocal-lattice vectors.

The Dirac points are denoted by K and K′, placed at the corners of the first Brillouin

zone.

by A and B in Fig. 2.1(a)). However, the other possibility is to consider the lattice

as a triangular lattice with basis of two atoms per unit cell, one A and one B.

The π orbitals contribute to the bonding and antibonding π states in the energy

spectrum. The bonding π states (at lower energies) form the valence band and the

antibonding π states (at higher energies) form the conduction band. The valence

and conduction bands touch each other at the six corners of the Brillouin zone and

have a quasi-linear dispersion. Since each carbon atom shares one electron in a π

bond, the valence band in graphene is completely filled; therefore graphene is a zero-

gap semiconductor or a semi-metal. The (quasi-) linear dispersion is responsible

for the unusual electronic properties of graphene. The linear dispersion leads to

13



massless Dirac fermions, and the six corners of the Brillouin zone are called the

Dirac points.

2.2 Tight-Binding Approach

As mentioned before, the structure of graphene may be viewed as a triangular

lattice with a basis of two atoms per unit cell. An option of the lattice vectors is

a1 =
a

2
(
√

3, 3), a2 =
a

2
(−
√

3, 3), (2.1)

where a ≈ 1.42 Å is the carbon-carbon distance in the lattice. Respectively, the

reciprocal-lattice vectors are given by

b1 =
2π

3a
(
√

3, 1), b2 =
2π

3a
(−
√

3, 1). (2.2)

Note that the nearest neighbors in real space are

~δ1 =
a

2
(
√

3, 1), ~δ2 =
a

2
(−
√

3, 1), ~δ3 = −a(0, 1), (2.3)

and the position of the Dirac points in the momentum space are given by

K =

(
4π

3
√

3a
, 0

)
, K′ =

(
2π

3
√

3a
,

2π

3a

)
. (2.4)

Painter and Ellis [46] applied an ab initio type of variational approach to find

the energy spectrum of graphite in a monolayer crystal model (graphene). In their

approach they used a linear combination of the atomic orbitals basis of Bloch

states. Their result shows a linear dispersion close to the Dirac points (see Fig.

2.2). The group speed at the linear dispersion regime (around Dirac points) is

very high, that is ∼ c/300, where c is the speed of light in vacuum. Charged

14



2.2. TIGHT-BINDING APPROACH

Figure 2.2: (a) Electronic band structure of graphene’s π and π∗ bands from ab-initio

calculation [solid lines] and nearest neighbor tight binding [dashed lines]. (b) Difference

∆E between the ab-initio and tight binding band structures. Adapted from Reich et al.,

2002 [48]. (c) More detail of band structure from ab-initio calculations. The bonding σ

and the antibonding σ∗ bands are separated by a large energy gap (∼ 12 eV). The highest

valence band, π, and the lowest conduction band, π∗, show a quasi-linear behavior around

the Dirac point K (K’). Note that the Fermi energy is set to zero. Adapted from Charlier

et al. [47].

particles should be described by the relativistic Dirac equation rather than the non-

relativistic Schrödinger equation, because, as mentioned before, charge carriers in

the linear dispersion mimic the behavior of the massless Dirac fermions.

In the tight-binding approach, one considers the solution of the corresponding

Schrödinger equation

HΨ(r) = εΨ(r), (2.5)

whereH = − ~2
2m
∇2+V (r). The many-body potential energy V (r) has the symmetry

of the lattice

V (r−R) = V (r), (2.6)
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where R = n1a1 + n2a2 is a lattice vector (n1 and n2 are integers). The symmetry

of the graphene lattice requires the wave function to satisfy the Bloch theorem

Ψ(k, r−R) = exp(−ik ·R)Ψ(k, r), (2.7)

where ~k is the electron momentum. The overlap between the π (pz) orbitals and

the s, px and py is strictly zero by symmetry; therefore we use the pz orbitals as

the basis for the wave functions. Each atom is defined by one orbital per atom site

pz(r − ri − rA/B) where ri is the site vector and rA/B is the position of the atom

A/B in the site. The wave function may be expanded as:

Ψ(k, r) = cA(k)PA
z (k, r) + cB(k)PB

z (k, r), (2.8)

where

PA
z (k, r) =

1√
N

∑
i

eik·ripz(r− ri − rA),

PB
z (k, r) =

1√
N

∑
i

eik·ripz(r− ri − rB), (2.9)

N is the number of the unit cells and i is the cell position index. We neglect the

overlap integrals of two pz orbitals of two atoms (orthogonal tight-binding scheme);

therefore,

〈PA
z |PA

z 〉 =
1

N

∑
i,j

eik·(ri−rj)
∫
dr p∗z(r− rj − rA) pz(r− ri − rA)

' 1

N

∑
i,j

eik·(ri−rj)δi j

= 1, (2.10)

and, in the same way, 〈PA
z |PB

z 〉 = 0. P
A/B
z (k, r) and hence Ψ(k, r) satisfy the Bloch

16



2.2. TIGHT-BINDING APPROACH

condition, Eq. (2.7):

PA/B
z (k, r−R) =

1√
N

∑
i

eik·ripz(r−R− ri − rA/B)

=
1√
N

∑
j

eik·(rj−R)pz(r− rj − rA/B)

= e−ik·R PA/B
z (k, r), (2.11)

where we have used the periodicity of the lattice and renamed rj = ri + R. Using

this notation, the Schrödinger equation becomes HAA(k) HAB(k)

HBA(k) HBB(k)

 cA(k)

cB(k)

 = ε

 cA(k)

cB(k)

 (2.12)

where

HAA(k) = 〈PA
z |H|PA

z 〉 =
1

N

∑
i, j

eik·(rj−ri)〈pA, iz |H|pA, jz 〉, (2.13)

HBB(k) = 〈PB
z |H|PB

z 〉 =
1

N

∑
i, j

eik·(rj−ri)〈pB, iz |H|pB, jz 〉, (2.14)

HAB(k) = 〈PA
z |H|PB

z 〉 =
1

N

∑
i, j

eik·(rj−ri)〈pA, iz |H|pB, jz 〉, (2.15)

where p
A/B,i
z = pz(r− ri − rA/B). Hence, solving the Schrödinger equation reduces

to diagonalization of a 2× 2 matrix or

det

 HAA(k)− ε HAB(k)

HBA(k) HBB(k)− ε

 = 0. (2.16)

To go further, we redefine the energy reference of the system such that 〈pA,iz |H|pA,iz 〉 =

〈pB,jz |H|pB,jz 〉 = 0. As a good approximation we restrict the interaction to first and

next-nearest neighbors only, namely

〈pA,iz |H|pB,jz 〉 =

 −t for nearest neighbor atoms

0 otherwise
(2.17)
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and

〈pA,iz |H|pA,jz 〉 = 〈pB,iz |H|pB,jz 〉 =

 −t′ for second nearest neighbor atoms

0 otherwise
(2.18)

where t(≈ 3 eV) [47] is the nearest-neighbor hopping energy (transfer integral) and

t′ is the next nearest neighbor hopping energy (hopping in the same sublattice).

The value of t′ is not well known but, Reich at al. [48], by ab initio calculation

showed that 0.02 t . t′ . 0.2 t. Deacon et al. [49] by a tight-binding fitting to

the cyclotron resonance experiments found t′ ≈ 0.1 eV. Note that the hamiltonian

of the system satisfies the spin constancy in hopping. Therefore, up to the second

nearest neighbor interactions, one gets

HAB(k) =
1

N

∑
i

[
〈pA,0z |H|pB,0z 〉+ e−ik·a1〈pA,0z |H|pB,−a1

z 〉+ e−ik·a2〈pA,0z |H|pB,−a2
z 〉

]
= −t

(
1 + e−ik·a1 + e−ik·a2

)
= −t α(k), (2.19)

and

HAA(k) =
1

N

∑
i

[e−ik·a1〈pA,0z |H|pA,−a1
z 〉+ eik·a1〈pA,0z |H|pA,a1

z 〉

+e−ik·a2〈pA,0z |H|pA,−a2
z 〉+ eik·a2〈pA,0z |H|pA,a2

z 〉

+eik·(a2−a1)〈pA,0z |H|pA,a2−a1
z 〉+ e−ik·(a2−a1)〈pA,0z |H|pA,a1−a2

z 〉]

= −t′ [2 cos(k · a1) + 2 cos(k · a2) + 2 cos[k · (a2 − a1)]]

= −t′ f(k). (2.20)

Similarly,

HBB = −t′ f(k). (2.21)
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2.2. TIGHT-BINDING APPROACH

The hamiltonian determinant, Eq. (2.16), reduces to

det

 −t′ f(k)− ε −t α(k)

−t α?(k) −t′ f(k)− ε

 (2.22)

The assumptions mentioned above may be clarified more if we use the creation

and annihilation operators:

H = −t
∑
〈i,j〉, σ

(
a†σ, ibσ, j + h.c.

)
−t′

∑
〈〈i,j〉〉, σ

(
a†σ, iaσ, j + b†σ, ibσ, j + h.c.

)
, (2.23)

here, σ(=↑, ↓) denotes the electron’s spin and ai,σ (a†i,σ) annihilates (creates) an

electron with spin σ on site i on sublattice A (an analogous definition is used for

sublattice B). 〈i, j〉 and 〈〈i, j〉〉 denotes that the summation applies only on the first

and second nearest neighbors atoms.

By diagonalizing the matrix of hamiltonian, we find the energy eigenvalues:

ε±(k) = ±t |α(k)| − t′ f(k)

= ±t
√

3 + 2 cos(k · a1) + 2 cos(k · a2) + 2 cos[k · (a2 − a1)]− t′ f(k)

= ±t
√

3 + f(k)− t′ f(k)· (2.24)

Substituting the lattice vectors we find

f(k) = 2 cos

(
3

2
kya+

√
3

2
kxa

)
+ 2 cos

(
3

2
kya−

√
3

2
kxa

)
+ 2 cos

(√
3kxa

)
= 4 cos

(√
3

2
kxa

)
cos

(
3

2
kya

)
+ 2 cos

(√
3kxa

)
, (2.25)

where the plus sign gives the upper band π? and the minus sign gives the lower

band π. If t′ = 0, at Dirac points, K and K′ (Eq. (2.4)), the energy is zero and

19



the spectrum around them is symmetric. Since we are interested in the spectrum

around Dirac points, it is useful to redefine the vectors of momentum space as

k = K + q, or k = K′ + q where |q| � |K|. Then for case k = K + q

fK(q) ≡ f(K+q) = 4 cos

(
2π

3
+

√
3

2
qxa

)
cos

(
3

2
qya

)
+ 2 cos

(
4π

3
+
√

3qxa

)

=

[
−2
√

3 sin

(√
3

2
qxa

)
− 2 cos

(√
3

2
qxa

)]
cos

(
3

2
qya

)
−cos(

√
3qxa) +

√
3 sin(

√
3qxa), (2.26)

and for case k = K′ + q

fK′(q) ≡ f(K′ + q) = 4 cos

(
π

3
+

√
3

2
qxa

)
cos

(
π +

3

2
qya

)
+2 cos

(
2π

3
+
√

3qxa

)
=

[
2
√

3 sin

(√
3

2
qxa

)
− 2 cos

(√
3

2
qxa

)]
cos

(
3

2
qya

)
−cos(

√
3qxa)−

√
3 sin(

√
3qxa). (2.27)

We note that

fK/K′(qx, qy) = fK/K′(qx, −qy),

fK(qx, qy) = fK′(−qx, ±qy). (2.28)

Expanding fK(q) up to O(|q|3), we find

fK(q) ' −3 +
9a2

4

(
q2
x + q2

y

)
− 9a3

8
qx
(
q2
x − 3q2

y

)
−27a4

64

(
q4
x + q4

y

)
− 27a4

32
q2
xq

2
y , (2.29)

or

fK(q) ' −3 +
9a2

4
|q|2 − 9a3

2
q3
x +

27a3

8
qx|q|2 −

27a4

64
|q|4

' −3 +
9a2

4
|q|2

(
1− 2q3

x/|q|2 +
3

2
qx −

3

16
|q|2
)
. (2.30)
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2.2. TIGHT-BINDING APPROACH

Substituting fK(q) into Eq. (2.24), up to the second order in |q|/|K|, we find

εK± (q) ' ±3ta

2
|q|
(

1− 2q3
x/|q|2 +

3

2
qx −

3

16
|q|2
) 1

2

+ 3t′ − 9t′a2

4
|q|2

' ±3ta

2
|q| ± 3ta2

8

(
−4q3

x/|q|3 + 3qx/|q|
)

+ 3t′ − 9t′a2

4
|q|2. (2.31)

By defining θq = arcsin(qx/|q|), the spectrum equation may be rewritten in the

form:

εK± (q) ' 3t′ ± ~vF |q|+
(
±3ta2

8
sin(3θq)− 9t′a2

4

)
|q|2, (2.32)

where vF = 3ta/2~ is the Fermi speed. For K′ we have

εK
′

± (q) ' 3t′ ± ~vF |q|+
(
∓3ta2

8
sin(3θq)− 9t′a2

4

)
|q|2. (2.33)

The band structure is shown in Fig. 2.3 for two different sets of values of t and t′.

Note that if t′ = 0, then the energy spectrum in the first order is

ε±(q) ≈ ±~vF |q|+O[(|q|/|K|)2]. (2.34)

It is clear that the spectrum is symmetric around Dirac points. The electron-hole

symmetry is broken for non-zero values of t′. The linear relation between energy

and momentum indicates that, close to the Dirac points, the speed of an electron

(hole) does not depend on the energy or momentum,e.g., the speed is constant and

equal to vF as a massless particle. In other words, the electron (hole) energy may

be seen as the limit of the Einstein equation E =
√
m2c4 + p2c2, with m = 0 and

c = vF , similarly to the case of light. Eq. (2.33) shows the presence of t′ shifts the

position of the Dirac points in energy.

To find the form of the wave function, we consider the region of low energies

where the wave vector k lies around the Dirac points. The wave function has the

form of Eq. (2.8). We assume t′ = 0, when the non-zero elements of the hamiltonian
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(a) Energy spectrum for t = 3.08 eV and t′ = 0 (b) Zoom in

(c) Energy spectrum for t = 3.08 eV and t′ = −0.2t (d) Zoom in

Figure 2.3: Energy spectrum of graphene, Eq. (2.24), (a) for t = 3.08 eV and t′ = 0;

(b) zoom in of the energy spectrum close to the Dirac point K; (c) for t = 3.08 eV and

t′ = −0.2t; (d) zoom in of the energy spectrum close to the Dirac point K.
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2.2. TIGHT-BINDING APPROACH

(a) The contribution of second nearest neighbor hopping (b) Zoom in

Figure 2.4: The contribution of second nearest neighbor hopping to the energy spectrum

of graphene, for t = 3.08 eV and t′ = −0.2t; (b) zoom in of the energy spectrum close to

Dirac point K.

determinant, Eq. (2.16), are HAB(k) = −tα(k) and HBA(k) = −tα?(k). One can

expand the α(k) around K (|q| � |K|) as

αK(k) ≡ α(K+q) = 1 + e−i(K+q)·a1 + e−i(K+q)·a2

' 1 + e−iK·a1(1− iq · a1) + e−iK·a2(1− iq · a2)

' −3a

2
qx + i

3a

2
qy, (2.35)

or

HK
AB ≈

3ta

2
qx − i

3ta

2
qy = ~vF qx − i~vF qy = −i~vF |q|eiθq . (2.36)

In the same way we find

HK
BA ≈ ~vF qx + i~vF qy = i~vF |q|e−iθq . (2.37)
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Therefore the coefficients cA(k) and cB(k) in the wave function Eq. (2.8) are given

by the solution of 0 −i~vF |q|eiθq

i~vF |q|e−iθq 0

 cA

cB

 = ±~vF |q|

 cA

cB

 . (2.38)

that is,

cA =
1√
2

eiθq/2,

cB = ± i√
2

e−iθq/2, (2.39)

and the wave function is

Ψ±,K(k, r) =
1√
2

(
eiθq/2 ±ie−iθq/2

) PA
z (k, r)

PB
z (k, r)

 , (2.40)

where PA
z (k, r) and PB

z (k, r) are given by Eq. (2.9). In the same way, if we expand

α(k) around K′, we find

αK′(k) ≡ α(K′ + q) ' 3a

2
qx + i

3a

2
qy. (2.41)

Then

HK′

AB ≈ −~vF qx − i~vF qy = −i~vF |q|e−iθq , (2.42)

and

HK′

BA ≈ −~vF qx + i~vF qy = i~vF |q|eiθq . (2.43)

Solving the corresponding matrix equation, we find

cA =
1√
2

e−iθq/2,

cB = ± i√
2

eiθq/2, (2.44)
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and the wave function is

Ψ±,K′(k, r) =
1√
2

(
e−iθq/2 ±ieiθq/2

) PA
z (k, r)

PB
z (k, r)

 . (2.45)

Note that Eq. (2.38) may be rewritten as

~vFσ · q

 cA

cB

 = ±~vF

 cA

cB

 , (2.46)

where σ is a matrix made of Pauli matrices

σx =

 0 1

1 0


σy =

 0 −i

i 0


σ = (σx σy) , (2.47)

and, for the states around K′, this equation becomes

~vFσ? · q

 cA

cB

 = ±~vF

 cA

cB

 , (2.48)

where σ′ = (σx−σy). Note that the minus sign is absorbed in the sign of the energy’s

eigenvalue. This is the starting point of finding an effective mass approximation

equation for graphene.

2.3 Dirac Fermions

In this section we derive an effective mass approximation equation for graphene.

We use the second quantization notation. The hamiltonian of the system has the

25



form of Eq. (2.23). Here, we assume t′ = 0. The definition of the bases for the wave

function, Eq. (2.9), is equivalent to defining the Fourier transform of the creation

and annihilation operators

ai =
1√
N

∑
k

e−ik·ria(k)

bi =
1√
N

∑
k

e−ik·rib(k), (2.49)

where, for simplicity in notation, we have dropped the spin index, but we keep in

mind that there is a summation on spin which leads to the degeneracy of two spin

states. Inserting the Fourier transforms in the hamiltonian Eq. (2.23), we find

H = −t
∑
〈i,j〉

(
1

N

∑
k

eik·ria†(k)
∑
k′

e−ik
′·rjb(k) +H.C.

)

= −t
∑
k,k′

 1

N

∑
〈i,j〉

eik·ri−ik
′·rja†(k)b(k′) +H.C.


= −t

∑
k

(
α(k)a†(k)b(k) +H.C.

)
(2.50)

Thus, the hamiltonian is

H =
∑
k

(
a†(k) b†(k)

) 0 −tα(k)

−tα?(k) 0

 a(k)

b(k)

 (2.51)

We are interested in physical properties of the system in the region of low

energies where the wave vector k lies around the Dirac points. The fact that, at

low energies, mostly the states around Dirac points are occupied, leads to another

way of expanding the wave function, and an effective-mass approximation for the

coefficient of expansion. As we found before, up to first order in |q|, the hamiltonian

Eq. (2.51), in the region of low energy may be seen as a summation of two states,

state with momentum vector k around K and the other state with momentum
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vector k around K′:

H =
∑

k=K+q

(
a†(k) b†(k)

) 0 ~vF qx − i~vF qy
~vF qx + i~vF qy 0

 a(k)

b(k)


+

∑
k=K′+q

(
a†(k) b†(k)

) 0 −~vF qx − i~vF qy
−~vF qx + i~vF qy 0

 a(k)

b(k)

 ,

(2.52)

or

H = ~vF
∑

k=K+q

(
a†(k) b†(k)

)
σ · q

 a(k)

b(k)


+ ~vF

∑
k=K+q

(
a†(k) b†(k)

)
σ? · q

 a(k)

b(k)

 , (2.53)

where, again we absorb the sign of the second summation into its eigenvalue. We

define the new set of operators

ai = e−iK·ria1 i + e−iK
′·ria2 j

bi = e−iK·rib1 i + e−iK
′·rib2 j (2.54)

In fact, we assume that each operator may be expanded as a summation of two

new operators near the Dirac points, and then

a(k) =
1√
N

∑
i

(
ei(k−K)·ria1 i + ei(k−K

′)·ria2 i

)
b(k) =

1√
N

∑
i

(
ei(k−K)·rib1 i + ei(k−K

′)·rib2 i

)
(2.55)

Inserting operators Eq. (2.55) in the Eq. (2.53), we find

H = ~vF
∑
q

1

N

∑
i, j

( e−iq·rja†1 j e−iq·rjb†1 j

)
σ · q

 eiq·ria1 i

eiq·rib1 i


+ ~vF

∑
q′

1

N

∑
i, j

( e−iq
′·rja†2 j e−iq

′·rjb†2 j

)
σ? · q′

 eiq
′·ria2 i

eiq
′·rib2 i

 ,(2.56)
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where q = k−K and q′ = k−K′. Note that

σ · q = −iσ · ∇ (2.57)

where ∇ applies on ri. Thus the hamiltonian reduces to

H = −i~vF
∑
i

( ∑
q e−iq·ria†1 i

∑
q e−iq·rib†1 j

)
σ · ∇

 ∑
q eiq·ria1 i∑
q eiq·rib1 j


+
( ∑

q′ e
−iq′·ria†2 i

∑
q′ e
−iq′·rib†2 j

)
σ? · ∇

 ∑
q′ e

iq′·ria2 i∑
q′ e

iq′·rib2 j

 . (2.58)

One can see that Eq. (2.58), in first quantized language, indicates that the total

wave function may be viewed as a superposition of two basis wave functions, ex-

panded around the Dirac points, so that the 2-component coefficient of expansion,

ψ(r), close to Dirac points, obeys the 2-dimensional Dirac equation

− i~vFσ · ∇ψ(r) = Eψ(r), (2.59)

and

− i~vFσ? · ∇ψ(r) = Eψ(r). (2.60)

In momentum space, as we found before, the wave function, around K has the form

ψ±,K(k) =
1√
2

 eiθq/2

±ie−iθq/2

 (2.61)

and, around K′,

ψ±,K′(k) =
1√
2

 e−iθq/2

±ieiθq/2

 (2.62)

We note that if we rotate the phase θ by 2π, the wave function changes sign indi-

cating a phase of π. This is called Berry’s phase, and shows that the wave function

acts like a 2-component spinor.
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2.4. DENSITY OF STATES

2.4 Density of States

The density of states may be found using the energy spectrum

ρ±(ε) =
gd

(2π)2

∫
dk δ(ε− ε±(k)) (2.63)

where gd = 4 is the band degeneracy factor (2 for spin and 2 for the two Dirac

points). At the first order we find

ρ±(ε) =
gd
2π

∫
k dk δ(ε∓ ~vF k) = ± gdε

2π(~vF )2
H(±ε) (2.64)

or

ρ(ε) =
gd|ε|

2π(~vF )2
(2.65)

which is valid as long as the approximation ε ≈ ±~vFk is good.

Considering the full tight-binding spectrum, Hobson and Nierenberg [50], have

derived an analytical expression for the density of states, for the case t′ = 0:

ρ+(ε) = ρ−(ε) = ρ(|ε|) =
gd
√

3

2π2

|ε|
(~vF )2

1√
Λ0

K

(√
Λ1

Λ0

)
,

Λ0 =


(
1 + | ε

t
|
)2 − [(ε/t)2−1]

2

4
, −t ≤ ε ≤ t

4| ε
t
|, −3t ≤ ε ≤ −t or t ≤ ε ≤ 3t,

Λ1 =

 4| ε
t
|, −t ≤ ε ≤ t(

1 + | ε
t
|
)2 − [(ε/t)2−1]

2

4
, −3t ≤ ε ≤ −t or t ≤ ε ≤ 3t,

(2.66)

where K(x) is the complete elliptic integral of the first kind [51].

A series expansion of the density of states, Eq. (2.66), at low energies may be

found as follows. We define

ϕ

(
|ε|
t

)
=

√
3

π

1√
Λ0

K

(√
Λ1

Λ0

)
(2.67)
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(a) The density of states

(b) The relative error

Figure 2.5: (a) The density of states of graphene, derived from tight-binding approach

for ~vF = 6.576 eV.Å and t′ = 0 (solid line), the linear approximation (dotted line), and

the higher approximation to it (up to c2 in Eq. (2.69) (dashed line). (b) The relative

error of the two approximations. Note that, for |ε| < 0.5 t, the error is less than 10 %.
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then

ρ(ε) =
gd
2π

|ε|
(~vF )2 ϕ

(
|ε|
t

)
. (2.68)

For x ≡ |ε|
t
. 1

2
, the function ϕ(x) may be expanded as

ϕ(x) ∼=
∑
j=0

cj x
2j (2.69)

where

c0 = 1,

c1 = 1/3,

c2 = 5/27,

c3 = 31/243,

c4 = 71/729,

c5 = 517/6561,

...

Fig. 2.5 shows the density of states and the approximation to it up to the third

term. As we see, the linear approximation may be considered as an acceptable

approximation for |ε| . 0.5 t, although the approximation with two more terms in

the expansion shows a better approach even for the energies around 0.8 t.

2.5 Density of Electrons

We treat graphene as a uniform 2-dimensional background of positive ions. We

assume that the ground state of such a system, under the gating conditions at
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temperature T , is characterized by a uniform density per unit area of charge carriers

in the graphene, given by

n(µ) =

∞∫
0

dε ρ+(ε)f(ε, µ) −
0∫

−∞

dε ρ−(ε) [1− f(ε, µ)] , (2.70)

where f(ε, µ) is the Fermi-Dirac distribution,

f(ε, µ) =
1

1 + exp [β (ε− µ)]
, (2.71)

where β ≡ (kBT )−1, and µ is the chemical potential. ρ±(ε) is the density of states in

graphene’s π electron (hole) bands given by Eq. (2.66). Note that for electron (hole)

doping, one has n > 0 (n < 0) and consequently µ > 0 (µ < 0), whereas intrinsic

graphene is characterized by n = 0 and µ = 0. Since ρ+(ε) = ρ−(ε) = ρ(|ε|) (Eq.

(2.66)), the density of charge carriers becomes

n(µ) =

∞∫
0

dε ρ(ε)

[
1

1 + eβ(ε−µ)
− 1

1 + eβ(ε+µ)

]
. (2.72)

For sufficiently low doping levels, such that, e.g., |µ| ∼ kBT � t (close to the

Dirac points), one may use the linearized band density of states [11], ρ(ε) ≈ gd|ε|
2π(~vF )2

,

giving

n(µ) ≈ gd
2π

1

(~vFβ)2

[
dilog

(
1 + e−βµ

)
− dilog

(
1 + eβµ

)]
, (2.73)

where dilog is the dilogarithm function defined, for x > 0, by [51]

dilog(x) =

x∫
1

lnt

1− t
dt. (2.74)

We note that, at room temperature, e.g., T = 300 K, kBT ≈ 0.026 eV; therefore

Eq. (2.73) is valid for room temperature, but nevertheless, the chemical potential
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2.5. DENSITY OF ELECTRONS

should be less than 1 eV. An approximation to Eq. (2.73) is

n(µ) ≈ gd
4π

(
µ

~vF

)2

sign(µ)

α
√1 + γ2

(
kBT

µ

)2

− 1

+ 1

 , (2.75)

where α = 24(ln2)2

π2 and γ = π2

6 ln2
.

At T = 0, Eq. (2.72) reduces to

n0(µ) = sign(µ)

|µ|∫
0

dε ρ(ε). (2.76)

Inserting the series expansion of the density of states, Eq. (2.69), into the integral

we find

n0(µ) ' sign(µ)
gd
4π

(
µ

~vF

)2 ∑
j=0

cj
j + 1

(µ
t

)2j

. (2.77)

Figure 2.6 shows the difference and percentage error. Considering only the linear

term in the density of states, the density of electrons becomes

n0(µ) ≈ gd
4π

(
µ

~vF

)2

sign(µ). (2.78)

We see that the temperature effects manifest themselves mostly when µ ∼ kBT ,

while the effect of nonlinear terms in the density of states appears for large µ.

Expanding Eq. (2.75), up to the second order of kBT/µ (µ� kBT ), we find

n(µ) ≈ gd
4π

(
µ

~vF

)2

sign(µ)

[
1 +

π2

3

(
kBT

µ

)2
]
, (2.79)

and Eq. (2.77) up to the second term is

n0(µ) ≈ gd
4π

(
µ

~vF

)2

sign(µ)

[
1 +

1

6

µ2

t2

]
. (2.80)

Comparison of the second terms in the two approximations shows that, at room

temperature, the higher terms of the nonlinear density of states are comparable to
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(a) The density of electrons

(b) The relative error

Figure 2.6: (a) The density of electrons of graphene, derived from the tight-binding

approach for ~vF = 6.576 eV.Å and t′ = 0 (solid line), the linear density of states approx-

imation (only c0 in Eq. (2.77)) (dotted line), and the higher approximation of it (up to

c2 in Eq. (2.77) (dashed line). (b) The relative error of the two approximations. We note

that using the expansion in the density of states shows a good approximation.
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2.5. DENSITY OF ELECTRONS

Figure 2.7: The relative error in the density of electrons calculated from Eq. (2.81) with

respect to the one calculated from Eq. (2.72). For the range of parameters we use, the

approximation method is good.
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the effect of the temperature when µc '
√√

2π t kBT ≈ 0.59 eV for T = 300 K.

Since the region of the effect of the temperature and that of the nonlinear density

of states are different, one may take the summation of the two approximations as

a valid approximation for both the effects of the temperature and the nonlinear

terms,

n0(µ) ' sign(µ)
gd
4π

(
µ

~vF

)2
{∑
j=1

cj
j + 1

(µ
t

)2j

+

α
√1 + γ2

(
kBT

µ

)2

− 1

+ 1

 . (2.81)

Fig. 2.7 shows the relative error in the approximated formula with respect to

the full density of carriers. As we see the approximated formula is accurate for

sufficiently small chemical potentials (µ� t).

2.6 Local Density of Electrons: Effect of Electric

Potential

In order to analyze the response of graphene to an external charge, we need to find

the effect of the electric potential on the local density of charge carriers. We use

the approach of Ryzhii et al. [52] based on the Vlasov-type equations. If fe (p, r, t)

and fe (p, r, t) stand for the graphene’s π electron and hole distribution functions,

respectively, then they should obey the following kinetic equations:

∂fe
∂t

+ vp ·
∂fe
∂r

+ Fe(r, t) ·
∂fe
∂p

= Ie,

∂fh
∂t

+ vp ·
∂fh
∂r

+ Fh(r, t) ·
∂fh
∂p

= Ih, (2.82)
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where p ≡ ~k = (px, py) is the electron (or hole) in-plane momentum, vp = ∂εp/∂p

is the velocity of an electron (hole) with momentum p, and Fe(h) is the force on an

electron (hole) in the graphene plane, which in our problem is simply the in-plane

force, due to the total electric potential Φ (r, t); Ie and Ih denote the processes

of electron and hole scattering and recombination, respectively. Eqs. (2.82) are

simply the continuity equations for the electron and hole distributions. The second

term in each equation governs the incoming and outgoing electrons and holes to

the spatial elements of the phase space, and the third term governs the changes in

the momentum elements of the phase space. We restrict discussion to the static

case, when the Vlasov equations (2.82) reduce to:

∂εp
∂p
· ∂fe
∂r

+ e
∂Φ

∂r
· ∂fe
∂p

= 0,

∂εp
∂p
· ∂fh
∂r
− e ∂Φ

∂r
· ∂fh
∂p

= 0. (2.83)

The static form of the Vlasov equations implies that the electron and hole distribu-

tion functions should have the forms fe = fe (εp + eφ(r)) and fh = fh (εp − eφ(r)),

respectively. In equilibrium and absence of external charges, the electron and

hole distribution functions are given from the Fermi-Dirac distribution, Eq. (2.71),

fe = f(ε) and fh = 1 − f(ε). Therefore the local density of charge carriers (per

unit area) in the graphene, is given by replacing µ by µ+ eφ(r) in Eq. (2.70), e.g.,

n(r, µ) = n(µ+ eφ(r)). (2.84)

2.7 Gated Graphene

A direct result of Eq. (2.84) is that the chemical potential of graphene may be

imposed easily, by applying a gate voltage. We consider an infinite layer of graphene
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on top of a substrate with the width Wg. We choose the plane z = 0 to be

at the graphene surface and the denote the gap between graphene and substrate

by h. Under the substrate the gate potential is applied. We assume that the

graphene is grounded, so that the electric potential on the graphene surface is zero;

consequently, the electric field above the graphene is zero. Applying a fixed gate

potential induces charges on the surfaces of both the substrate and graphene. One

may easily determine the induced charge density on the graphene, σ0
gr, as a funtion

of the gate potential, Vgate. Symmetry of the system indicates that the electric field

is perpendicular to the surfaces, and for the different regions, the electric field is

E⊥(z) ≡ −∂φ(z)

∂z
=


0, z ≥ 0

−0−Vsub
h

, −h < z < 0

−Vsub−Vgate
Wg

, z < −h,

(2.85)

where Vsub is the potential in the surface of substrate. The boundary conditions

are

D⊥(z = 0+)−D⊥(z = 0−) = 0− ε1

(
Vsub

h

)
= 4π σ0

gr

⇒ σ0
gr =

−1

4π

ε1

h
Vsub, (2.86)

E⊥(z = −h+ 0+)− E⊥(z = −h− 0−) =
Vsub

h
− Vsub − Vgate

Wg

= 4π σ0
sub

⇒ σ0
sub =

−1

4π

[
Vsub

(
1

h
+

1

Wg

)
− Vgate

Wg

]
, (2.87)

and

D⊥(z = −h+ 0+)−D⊥(z = −h− 0−) = ε1

(
Vsub

h

)
− ε2

(
−Vsub − Vgate

Wg

)
= 0
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⇒ Vsub = Vgate
ε2/Wg

ε1/h+ ε2/Wg

, (2.88)

where, ε1 is the dielectric constant of the environment of the graphene and ε2 is the

dielectric constant of the substrate. Solving the set of equations for σ0
gr respect to

Vgate, we find

σ0
gr = − ε2

4π

Vgate

Wg

1

1 + ε2
ε1

h
Wg

. (2.89)

In the limit h� Wg

σ0
gr ≈ −

ε2

4π

Vgate

Wg

. (2.90)

Therefore the excess electron number density n0 is

n0 = −
σ0

gr

e
' − ε2

4πe

Vgate

Wg

. (2.91)

n0 ≷ 0 defines the ground state density of charges on the gated graphene. However,

the local density of charges changes in the presence of an external potential. The

corresponding ground chemical potential of the gated graphene is given by the so-

lution of Eq. (2.72) for µ as a function of n0. The ground state chemical potential

should be inserted in Eq. (2.84), in order to find the local density charge induced

by the external potential due to the presence of the charge impurities in the envi-

ronment. In other words, if φtot(R) is the total electric potential at the surface of

graphene, then the total induced charge on the graphene is

σind
gr = −e (n (µ+ e φtot(R))− n0) . (2.92)

This is the starting point to attack the problem, which we define in detail in the

next chapter.
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Chapter 3

Basic Theory
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Figure 3.1: Schematic view of the problem.

3.1 Definition of Problem

We wish to evaluate the total electrostatic potential in the system, Φ(r, z), due

to an external point charge Ze placed at a fixed position {0, z0}, where e(> 0) is

the charge of a proton. A schematic view of the problem is presented in Fig. 3.1.

This perturbation induces surface charges on the surface of the substrate and on the

graphene with the densities (per unit area) σsub(r) and σgr(r), respectively [27]. We

treat the effects of both substrate and graphene as though they are structureless,

allowing us to take both σsub(r) and σgr(r) as slowly varying functions of r. The

total (screened) electric potential in the system, Φ, should satisfy the corresponding

Poisson equation for the system. If the external charge is above graphene surface,

or between graphene and substrate, z0 > −h, the Poisson equation is (assuming

42



3.1. DEFINITION OF PROBLEM

the dielectric constant is 1) ∇2Φ(r, z) = −4π [Ze δ2(r) δ(z − z0) + σgr(r) δ(z)] z > −h,

∇2Φ(r, z) = 0 z < −h,
(3.1)

The boundary conditions are

Φ(−h+0) = Φ(−h−0), (3.2)

and

∂Φ

∂z

∣∣∣∣
z=−h+0

= εs
∂Φ

∂z

∣∣∣∣
z=−h−0

. (3.3)

where εs is the dielectric constant of the substrate. We use the Fourier transform

with respect to coordinates in the graphene plane, r → k, to convert the Poisson

Eq. (3.1) to a simpler equation

Φ(r, z) =

∫
d2k

(2π)2
eik.rΦ̃(k, z). (3.4)

The Poisson equation becomes ∂2

∂z2
Φ̃− k2Φ̃ = −4π [Ze δ(z − z0) + σ̃gr(k) δ(z)] z > −h,

∂2

∂z2
Φ̃− k2Φ̃ = 0 z < −h.

(3.5)

The solution of the equation is Φ̃>(z) = 2πZe
k

e−k|z−z0| + 2π
k
σ̃gr e−k|z| + A ekz +B e−kz z > −h,

Φ̃<(z) = C ekz +D e−kz z < −h,
(3.6)

where A, B, C and D are coefficient (which depend on k, in general) to be de-

termined by applying the boundary conditions. Because the potential must not

diverge when |z| → ∞, we set A = D = 0. By applying the continuity condition,

Eq. (3.2), we get

2πZe

k
e−k(h+z0) +

2π

k
σ̃gr e−kh +B ekh = C e−kh, (3.7)
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and by applying the condition Eq. (3.3) we find

2πZe e−k(h+z0) + 2πσ̃gr e−kh −Bk ekh = εsCk e−kh. (3.8)

By solving these two equations we find

B =
1− εs
1 + εs

[
2πZe

k
e−k(2h+z0) +

2π

k
σ̃gr e−2kh

]
, (3.9)

and

C =
2

1 + εs

[
2πZe

k
e−kz0 +

2π

k
σ̃gr

]
. (3.10)

By substituting B and C into Eq. (3.6), we find the potential Φ̃>(z) = 2π
k

{
Ze e−k|z−z0| + σ̃gr e−k|z| + 1−εs

1+εs

[
Ze e−k(z+2h+z0) + σ̃gr e−k(z+2h)

]}
Φ̃<(z) = 2π

k
2

1+εs

[
Ze ek(z−z0) + σ̃gr ekz

]
.

(3.11)

We note that the piecewise form of the total potential, Eq. (3.11) may be rewritten

in a single formula which is valid for all values of z

Φ̃(k, z) =
2πZe

k

(
e−k|z−z0| +

1− εs
1 + εs

e−k|z+h|−k(z0+h)

)
+

2π

k
σ̃gr(k)

(
e−k|z| +

1− εs
1 + εs

e−k|z+h|−kh
)
. (3.12)

If the external charge is buried inside the substrate (z0 < −h), the Poisson

equation is  ∇2Φ(r, z) = −4π σgr(r) δ(z) z > −h,

∇2Φ(r, z) = −4π
εs
Ze δ2(r) δ(z − z0) z < −h,

(3.13)

and the boundary conditions are the same as before, Eqs. (3.2, 3.3). The total

potential in this case is

Φ̃(k, z) =
2π

k

Ze

εs

(
e−k|z−z0| − 1− εs

1 + εs
e−k|z+h|+k(z0+h)

)
+

2π

k
σ̃gr(k)

(
e−k|z| +

1− εs
1 + εs

e−k|z+h|−kh
)
. (3.14)
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The total potential for both cases may be rewritten as

Φ̃(k, z) =
2π

k

Ze

εh

(
e−k|z−z0| +

1− εs
1 + εs

e−k|z+h|−k|z0+h|sign(z0 + h)

)
+

2π

k
σ̃gr(k)

(
e−k|z| +

1− εs
1 + εs

e−k|z+h|−kh
)
, (3.15)

where sign is the signum function and εh is the dielectric constant of the “host”

environment in which that charge resides (εh = 1 for z0 > −h and εh = εs for

z0 < −h).

From the physical point of view, the total potential may be written as the

superposition of potential of external and induced charges

Φ̃ = Φ̃ext + Φ̃ind, (3.16)

where

Φ̃ext(k, z) =
2π

k

Ze

εh
e−k|z−z0| (3.17)

is the potential of the external charge screened by the dielectric constant, εh, and

Φ̃ind(k, z) = Φ̃gr(k, z) + Φ̃sub(k, z) =
2π

k

[
σ̃gr(k) e−k|z| + σ̃sub(k) e−k|z+h|

]
(3.18)

is the total induced potential in the system. σ̃sub(k) denotes the charge density

induced on the substrate. One may use the boundary condition

− ∂Φ̃

∂z

∣∣∣∣∣
z=−h+0

+
∂Φ̃

∂z

∣∣∣∣∣
z=−h−0

= 2π σ̃sub (3.19)

to find the σ̃sub(k):

σ̃sub(k) =
1− εs
1 + εs

[
Ze

εh
sign(h+ z0)e−k|h+z0| + σ̃gr(k)e−kh

]
. (3.20)

Substituting σ̃sub(k) into Eq. (3.18), we find the total induced potential

Φ̃ind(k, z) =
2π

k
σ̃gr(k)

(
e−k|z| − εs − 1

εs + 1
e−k|z+h|−kh

)
−2π

k

Ze

εh

εs − 1

εs + 1
e−k|z+h|−k|z0+h| sign(z0 + h). (3.21)
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We note that the last term is the classical image of the point charge Ze, in the

substrate with dielectric constant εs, whereas the second term (in the brackets) is

the image of the induced charge density on the surface of graphene.

By using the inverse Fourier transform, we find

Φind (r, z) = −Ze
εh

εs − 1

εs + 1

sgn(z0 + h)√
r2 + (|z0 + h|+ |z + h| )2

+

∫
d2r′ σgr(r

′)

[
1√

(r− r′)2 + z2

−εs − 1

εs + 1

1√
(r− r′)2 + (|z + h|+ h)2

 . (3.22)

The Fourier transform of Eq. (3.15) gives the total potential as a function of r:

Φ (r, z) =
Ze

εh

 1√
r2 + (z − z0)2

− εs − 1

εs + 1

sign(z0 + h)√
r2 + (|z0 + h|+ |z + h| )2


+

∫
d2r′ σgr(r

′)

[
1√

(r− r′)2 + z2

−εs − 1

εs + 1

1√
(r− r′)2 + (|z + h|+ h)2

 . (3.23)

Further, in the spirit of a temperature-dependent TF model, we express the induced

charge density in graphene as [27, 56, 57]

σgr(r) = −e [n (µ+ eφ(r))− n (µ)] , (3.24)

where n (µ) is given by Eq. (2.70). We note that we have denoted the total elec-

trostatic potential in the graphene plane by

φ(r) ≡ Φ(r, z)|z=0 . (3.25)
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3.2. LINEARIZED THOMAS-FERMI MODEL

Inserting Eq. (3.24) in Eq. (3.23) and setting z = 0, one obtains the following

non-linear integral equation for φ(r), [27]

φ(r) = φ0(r)− e
∫
d2r′ [n (µ+ eφ(r′))− n (µ)]

×

[
1

‖r− r′‖
− εs − 1

εs + 1

1√
(r− r′)2 + 4h2

]
, (3.26)

where

φ0(r) =
Ze

εh

 1√
r2 + z2

0

− εs − 1

εs + 1

sign(z0 + h)√
r2 + (|z0 + h|+ h)2

 (3.27)

is the value of the potential due to the external charge in the presence of the

substrate alone, evaluated at z = 0. Once the integral equation, Eq. (3.26), is

solved for the total potential in the plane of graphene, one may use Eq. (3.24) to

evaluate the induced charge density in graphene, whose Fourier transform may be

used in Eq. (3.21) to yield the total induced potential for any value of z.

3.2 Linearized Thomas-Fermi Model

One should solve Eq. (3.26) in a self-consistent way. Because the density of charge

carriers, inside the integral, is such a complicated function of potential, there is no

analytical solution for the equation. As the simplest approximation, people usually

use the linearized TF model. When |n| is large so that e|φ(0)| � |µ|, one may

approximate the density of charge carriers as a linear expansion at ground chemical

potential, for small perturbation of potential,

nind(r) ≈ eφ(r)
∂n

∂µ
, (3.28)
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where n as a function of µ is given by Eq. (2.72). By substituting the Fourier

transform of Eq. (3.28) into Eq. (3.15) and setting z = 0, we find

φ̃lin(k) =
2π

k

Ze

εh

[
e−k|z0| − εs − 1

εs + 1
e−kh−k|z0+h|sign(z0 + h)

]
−2πe2

k

∂n

∂µ
φ̃lin(k)

(
1− εs − 1

εs + 1
e−2kh

)
. (3.29)

Using the definition of the background dielectric constant due to substrate,

εbg(k) =

(
1− εs − 1

εs + 1
e−2kh

)−1

, (3.30)

defining vC(k) = 2πe2/k, and recalling the definition of the polarization function of

free graphene, Π(k), which is constant in the LTF model, given by ΠTF ≡ ∂n(µ)/∂µ,

one may write the solution of the linear Eq. (3.29) as

φ̃lin(k) =
εbg(k)

εbg(k) + vC(k)Π(k)
φ̃0(k), (3.31)

where φ̃0(k) is the Fourier transform of the potential in Eq. (3.27), which is given

by

φ̃0(k) =
2πZe

k


e−kz0
εbg(k)

if z0 > 0

ekz0 +
[

1
εbg(k)

− 1
]

e−kz0 if − h < z0 < 0

ekz0

ε0bg
if z0 < −h,

(3.32)

where ε0bg ≡ εbg(0) = (εs + 1) /2. By taking the Fourier transform of Eq. (3.31),

we find the linearized solution of the TF model. Similar to the nonlinear case, one

may write a self-consistent integral equation for the linearized TF model (see Eq.

(3.26))

φlin(r) = φ0(r)− qs

2πε0bg

∫
d2r′ φlin(r′)

[
ε0bg

‖r− r′‖
−

ε0bg − 1√
(r− r′)2 + 4h2

]
, (3.33)

where φ0(r) is given by Eq. (3.27), and qs = 2πe2ΠTF is the Thomas-Fermi inverse

screening length of free graphene.
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3.3. DENSITY FUNCTIONAL THEORY

We note that at zero temperature intrinsic graphene (µ = 0), linearized TF

predicts no screening for the external charges because

∂n

∂µ

∣∣∣∣
µ=0, T=0

=
∂

∂µ

(
sign(µ)

∫ |µ|
0

dε ρ(ε)

)∣∣∣∣∣
µ=0

= ρ(0) = 0, (3.34)

and therefore qs = 0 so that φlin(r) = φ0(r). One may realize that zero external

charge screening leads to zero conduction according to Boltzmann conductivity

theory.

In the zero gap limit, one obtains from Eq. (3.31) a more compact expression

for the total potential in the LTF model,

φ̃(k) =
2πZe

kε0bg + qs
e−k|z0|, (3.35)

where the inverse screening length of free graphene, qs, is obtained from Eq. (2.73)

within the linearized DOS as [17]

qs ≈
2gde

2

β (~vF )2 ln [2 cosh (βµ/2)] . (3.36)

It is clear then that, at zero temperature, intrinsic graphene cannot screen external

charges in the LTF model because qs → 0 [17]. On the other hand, when either

n 6= 0 or T > 0 or both, the inverse Fourier transform of Eq. (3.35) gives a total

potential with the asymptotic form [25] φ(r) ∼
(
Zeε0bg

)
/ (q2

sr
3) for r � q−1

s � |z0|,

and with the limiting value at the origin φ(0) =
[
Ze/

(
ε0bgz0

)] [
1− ζ eζ E1 (ζ)

]
,

where ζ ≡ qsz0/ε
0
bg and E1 is the exponential integral function [51].

3.3 Density Functional Theory

We found the energy spectrum of graphene, using the tight-binding approach, in

the previous chapter. Here we should emphasize that, in a real physical situation
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we need to include electron-electron interaction. Including that interaction in the

hamiltonian of the system, the ground state energy, ε, of the corresponding elec-

tronic system could be found either by solving the Schrödinger equation or from

the Rayleigh-Ritz minimal principle,

ε = minΨ〈Ψ|H|Ψ〉, (3.37)

where Ψ is a trial function for the system. Hohenberg and Kohn [53], formulated

another minimal principle in terms of trial densities n(r), rather than the trial wave

functions. Following their method one may first fix a trial density n(r) and name

the class of trial function which gives n(r) by Ψα
n. we define

E[n(r)] ≡ minα〈Ψα
n|H|Ψα

n〉

=

∫
Vext(r)n(r)dr + minα〈Ψα

n|T + U |Ψα
n〉, (3.38)

where T is the kinetic part of hamiltonian, U is the electron-electron interaction,

and Vext is the external potential. Then the ground state energy is given by mini-

mizing E[n(r)] with respect to n(r)

ε = minn(r)E[n(r)]. (3.39)

We note that density dependent expressions for both the exchange and corre-

lation energy per electron in graphene, are available in the local density approxi-

mation (LDA) only for density variations with respect to the equilibrium case of

intrinsic, or undoped, graphene having µ = 0, in the limits of zero temperature,

zero gap, and linearized band DOS [28, 29]. At low energies where the electrons

in graphene are described by massless Dirac-fermions, the Thomas-Fermi kinetic

energy functional is [45]

T [n(r)] = ~vF
2
√
π

3
sign[n(r)]|n(r)|3/2. (3.40)
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3.3. DENSITY FUNCTIONAL THEORY

The full energy functional is

E[n(r)] = ~vF
[

2
√
π

3

∫
dr sign(n)|n|3/2 +

rs
2

∫
dr′
∫
dr
n(r)n(r′)

|r− r′|

+
Exc[n]

~vF
+

1

~vF

∫
drVextn(r)− µ

~vF

∫
drn(r)

]
, (3.41)

where rs = e2/(~vF εbg). The second term in Eq. (3.41) is the Hartree part of the

Coulomb interaction, Exc is the energy contribution due to exchange-correlation,

and the fourth term is the potential of external charge. In order to find the energy,

one may set the derivative of E[n], with respect to n, equal to zero:

δE

δn
= ~vF sign(n)

√
π|n|+ e2

εbg

∫
dr′

n(r′)

|r− r′|
+ Vxc + Vext −

µ

~vF
= 0. (3.42)

We note that, except for the exchange-correlation term, the other terms are the

same as in the TF Eq. (3.26), when h = 0, T = 0, and µ = 0; therefore, the density

of charge carriers n, as a function of potential energy U , is obtained from Eq. (2.73)

in the limit of zero temperature as follows:

n(U) =
U2sign(U)

π(~vF )2
. (3.43)

3.3.1 Exchange-Correlation Potential for Intrinsic Graphene

The exchange-correlation potential, Vxc(r), is a functional of the ground state den-

sity of charge carriers, although the exact expression for Vxc is unknown. However,

it may be found approximately by applying the local-density approximation to get

[29]

Vxc(r) = V hom
xc (n)|n→nc(r), (3.44)

where V hom
xc (n) is the reference exchange-correlation potential of a uniform 2D liquid

of massless Dirac fermions with carrier density n. The relation between V hom
xc (n)
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and the ground-state energy per excess carrier, δεxc(n) is

V hom
xc (n) =

∂ [nδεxc(n)]

∂n
. (3.45)

The expression used for εxc(n) depends on the zero of energy. Usually it is chosen

such that V hom
xc (n = 0) = 0. In the next section we provide a convenient expres-

sion for the excess exchange-correlation energy, calculated at the random-phase

approximation (RPA) level.

A. Exchange Potential

The first order exchange contribution to δεxc(n) is [29]

δεx(n) = εFαgrF (Λ), (3.46)

where εF is the Fermi energy, which is given by

εF = sign(n)~vFkF . (3.47)

Here kF = (4π|n|/gd) is the Fermi wave vector. The quantity αgr is defined as

αgr = gde
2/(εbg~vF ) ≡ gdαee, where αee is the graphene’s fine structure constant.

The ultraviolet cut-off Λ is defined as Λ = kmax/kF . kmax is chosen from [29]

πk2
max = η

(2π)2

A0

, (3.48)

where A0 is the area of the unit cell of graphene lattice, A0 = 3
√

3a2/2 ∼ 5.2 Å
2

and η is a dimensionless number with η ∈ (0, 1]. The optimal value of η should be

determined by comparing the model’s predictions with experiment, although this

has not yet been done. The Λ may be rewritten as

Λ(n) =
√
gdη

1√
|n|A0

=

√
n0

|n|
. (3.49)
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3.3. DENSITY FUNCTIONAL THEORY

By substituting Eq. (3.46 in Eq. (3.45), we find

V hom
x (n) ≡ ∂ [nδεx(n)]

∂n
= δεx(n) + n

∂

∂n
(δεx(n))

= εFαgrF (Λ) + αgrn
∂εF
∂n

F (Λ) + εFαgrn
∂F

∂Λ

∂Λ

∂n
. (3.50)

It is easy to check that

n
∂εF
∂n

=
1

2
εF , (3.51)

and

n
∂Λ

∂n
= −1

2
Λ. (3.52)

Polini et al. chose the following formula for F (Λ) to parameterize their data:

F (Λ) =
1

6gd
ln(Λ) +

ae
1 + beΛce

, (3.53)

where the first term is calculated analytically, and the numerical constants are given

by

ae = 0.0173671,

be = 3.6642× 10−7, (3.54)

ce = 1.6784.

From Eq. (3.53) we find

∂F

∂Λ
=

1

6gd

1

Λ
− aebece

(1 + beΛce)2

Λce

Λ
. (3.55)

Therefore the exchange potential is

Vx =
3

2
εFαgrF (Λ)− 1

2
εFαgrΛ

[
1

6gd

1

Λ
− aebece

(1 + beΛce)2

Λce

Λ

]
, (3.56)
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or

Vx =
3

2
εFαgr

1

6gd

[
−1

3
+ ln(Λ) + 6gd

ae
1 + beΛce

− 1

3
+ 2gd

aebece

(1 + beΛce)2 Λce

]
. (3.57)

In terms of n we get

Vx =

√
π

12

e2

εbg

sign(n)
√
|n|
[
−1 +

3

2
ln

(
n0

|n|

)
+

72 ae
1 + beΛce

+
24 aebece

(1 + beΛce)2 Λce

]
,

(3.58)

where n0 = ηgd/A0 ≈ η × 7635× 1012 cm−2. By substituting

n(U) =
U2

π (~vF )2 sign(U), (3.59)

we find

Vx =
1

12

e2

εbg

U

~vF

[
−1 + 3 ln

(
U0

|U |

)
+

72 ae
1 + be (U0/|U |)ce

+
24 aebece

(1 + be (U0/|U |)ce)2

(
U0

|U |

)ce]
. (3.60)

For n→ 0 the exchange potential goes to zero as follows:

V hom
x (n→ 0) ∝ −sign(n)αgr

√
|n| ln|n|. (3.61)

B. RPA Correlation Potential

The RPA correlation energy is given by [29]

δεRPA
c (n) = − 1

6gd
εF α

2
gr ξ(αgr) ln(Λ) + εF α

2
gr

ac(αgr)

1 + bc(αgr)Λcc(αgr)
, (3.62)

where

ac(αgr) = −1/(63.0963 + 57.351226αgr),

bc(αgr) = (7.75095− 0.08371α1.61167
gr )× 10−7, (3.63)

cc(αgr) = 1.527 + 0.0239αgr − 0.001201α2
gr,
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3.4. RANDOM PHASE APPROXIMATION (RPA)

and

ξ(αgr) =
1

2

∫ ∞
0

dx

(1 + x2)2 (√1 + x2 + παgr/8
) . (3.64)

Then the RPA correlation potential is given by

V hom
c (n) ≡

∂
[
nδεRPA

c (n)
]

∂n
= δεRPA

c (n) + n
∂

∂n
δεRPA

c (n)

=
1

12gd
εF α

2
gr ξ(αgr) [−3 ln(Λ) + 1]

+
1

2
εF α

2
gr

[
3 ac

1 + bcΛcc
+

acbccc

(1 + bcΛcc)2 Λcc

]
. (3.65)

In terms of n we find

V hom
c (n) =

1

2
sign(n)~vF

√
π|n|

(
4e2

εbg~vF

)2

×
[
− 1

16
ξ(αgr) ln

(
n0

|n|

)
+

1

24
ξ(αgr)

3 ac
1 + bcΛcc

]
. (3.66)

In the limit n→ 0 we have

V hom
c (n→ 0) ∝ sign(n)α2

grξ(αgr)
√
|n|ln|n|. (3.67)

3.4 Random Phase Approximation (RPA)

Using the polarization function of graphene, we found the linear Thomas-Fermi

approximation for the total potential, Eq. (3.31). This expression may be used to

include the electron-electron interaction based on the RPA by renormalizing the

polarization function. As mentioned before, near a K point, electronic states are

described by the k.p equation (see Eq. (2.58)). The wave function is

−→
ψ sk(r) =

1

L
Fskexp(ik.r), (3.68)
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with

Fsk =
1√
2

 eiθk/2

sie−iθk/2

 , (3.69)

where L2 is the area of the system, s = 1 and −1 denote the conduction and valance

bands, respectively, and θk = arcsin(kx/|k|).

(a) (b)

Figure 3.2: (a) Feynman diagram of the matrix elements of the Coulomb interaction.

(b) Diagram of the polarization function.

Fig. 3.2 shows the Feynman diagram for the matrix elements of the Coulomb

interaction, which are given by [17]

V(s′1k1+q,s1k1)(s2k2,s′2k2+q) =
2πe2

ε0bgq
〈F†s′1k1+q|Fs1k1〉〈F

†
s2k2
|Fs′2k2+q〉, (3.70)

where

〈F†sk|Fs′k′〉 =
1

2

(
e−iθk/2 −sieiθk/2

) eiθk′/2

s′ie−iθk′/2


=

1

2
ei(θk−θk′ )/2

[
ei(θk′−θk) + ss′

]
. (3.71)

The static polarization function is given by [17]

Π(q) = − gd
L2

∑
s,s′,k

(fsk − fs′k+q)
|〈F†sk|Fs′k+q〉|2

εsk − εs′k+q

, (3.72)
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3.4. RANDOM PHASE APPROXIMATION (RPA)

where fsk is the Fermi-Dirac distribution. Because the system is isotropic, the

polarization function is independent of the direction of the q vector. We find

|〈F†sk|Fs′k+q〉|2 =
1

4

[
1 + (ss′)2 + ss′

(
ei(θk′−θk) + e−i(θk′−θk)

)]
= (1 + ss′cosθkk′) /2, (3.73)

where cosθkk′ ≡ cos(θk′ − θk).

In Eq. (3.72), the effects of polarization of electrons in the valence band due to

virtual interband transitions into the conduction band, Π0(q), is included. However,

for a correct description of the static polarization function, we need to deduce it

from the Eq. (3.72) [17]. Π0(q) is defined by

Π0(q) ≡ − gd
L2

∑
s,s′,k

(
f 0
sk − f 0

s′k+q

) |〈F†sk|Fs′k+q〉|2

εsk − εs′k+q

, (3.74)

where

f 0
sk =

 1 if s = −1

0 if s = +1
. (3.75)

We define

f̃sk = fsk − f 0
sk. (3.76)

Then the polarization function is

Π(q) = − gd
L2

∑
s,s′,k

(
f̃sk − f̃s′k+q

) |〈F†sk|Fs′k+q〉|2

εsk − εs′k+q

. (3.77)

Doing the summation over ss′, the polarization function stet

Π(q) = − gd
2L2

∑
k


[
f̃k+ − f̃k′+

]
(1 + cosθkk′)

εk − εk′
+

[
f̃k+ − f̃k′−

]
(1− cosθkk′)

εk + εk′

−

[
f̃k− − f̃k′+

]
(1− cosθkk′)

εk + εk′
−

[
f̃k− − f̃k′−

]
(1 + cosθkk′)

εk − εk′

 . (3.78)
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Rearranging the terms, one may write the polarization function as

Π(q) = Π+(q) + Π−(q), (3.79)

where

Π+(q) = − gd
2L2

∑
k


[
f̃k+ − f̃k′+

]
(1 + cosθkk′)

εk − εk′
+

[
f̃k+ + f̃k′+

]
(1− cosθkk′)

εk + εk′

 ,
(3.80)

Π−(q) = +
gd

2L2

∑
k


[
f̃k− − f̃k′−

]
(1 + cosθkk′)

εk − εk′
+

[
f̃k− + f̃k′−

]
(1− cosθkk′)

εk + εk′

 ,
(3.81)

where k′ ≡ k + q and we have used the linear expression of the energy spectrum,

εk± = ±~vF |k|. In the limit of a large system, that is of closely-spread k-values,

we replace the summation with an integral, according to the prescription

1

L2

∑
k

→ 1

(2π)2

∫
dk. (3.82)

Because of the symmetry of the integrand, for the integral involving the terms of

f̃k′± one may just use change the variable k → k + q to write the polarization

function terms as

Π+(q) = − gd
(2π)2

∫
dk

[
f̃k+ (1 + cosθkk′)

εk − εk′
+
f̃k+ (1− cosθkk′)

εk + εk′

]

= − 2gd
(2π)2

∫
dk

[
f̃k+ (εk + εk′cosθkk′)

ε2
k − ε2

k′

]
, (3.83)

Π−(q) = +
gd

(2π)2

∫
dk

[
f̃k− (1 + cosθkk′)

εk − εk′
+
f̃k− (1− cosθkk′)

εk + εk′

]

= +
2gd

(2π)2

∫
dk

[
f̃k− (εk + εk′cosθkk′)

ε2
k − ε2

k′

]
. (3.84)
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3.4. RANDOM PHASE APPROXIMATION (RPA)

Since θkk′ is the angle between the k and k + q, it is related to angle between k

and q, φ,

k · (k + q) = k|k + q|cosθkk′ = k2 + k · q = k2 + kqcosφ, (3.85)

and

cosθkk′ = (k + qcosφ) /|k + q|. (3.86)

Substituting the cosθkk′ in the integrals, we find

Π+(q) =
2gd

(2π)2

1

~vF q

∫
dk dφ k

f̃k+ (2k + qcosφ)

q + 2kcosφ
, (3.87)

and

Π−(q) = − 2gd
(2π)2

1

~vF q

∫
dk dφ k

f̃k− (2k + qcosφ)

q + 2kcosφ
. (3.88)

The angular integral is∫ 2π

0

2k + qcosφ

q + 2kcosφ
dφ = 2

∫ π

0

dφ
q

2k
+ 2

(
χ2

2k

)∫ π

0

dφ
1

q + 2kcosφ

= 2
πq

2k
+
χ

k

 −2tan−1
(
χ tan(φ/2)
q+2k

)∣∣∣π
0

q > 2k

ln
(
χ tan(φ/2)+q+2k
χ tan(φ/2)−q−2k

)∣∣∣π
0

q < 2k

=
2πq

2k
+
χ

k

 −π q > 2k

non-physical answer q < 2k,
(3.89)

where χ =
√
|4k2 − q2|. Therefore, doing the angular integral, we find

Π+(q) =
2gd

(2π)2

π

~vF

{∫ ∞
0

dkf̃k+ −
∫ q/2

0

dkf̃k+

√
1− (2k/q)2

}
, (3.90)

and

Π−(q) =
2gd

(2π)2

π

~vF

{∫ ∞
0

dkf̃k− −
∫ q/2

0

dkf̃k−
√

1− (2k/q)2

}
. (3.91)
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Taking the first integral in each expression, we have

Π+(k) =
gd

πβ (~vF )2

[
1

2
ln [2 cosh (βµ/2)]− k

2qt

∫ 1

0

du

√
1− u2

1 + euk/qt−βµ

]
, (3.92)

and

Π−(k) =
gd

πβ (~vF )2

[
1

2
ln [2 cosh (βµ/2)] +

πk

8qt
− k

2qt

∫ 1

0

du

√
1− u2

1 + euk/qt+βµ

]
,(3.93)

where we have defined a thermal inverse screening length by qt = 2/(β~vF ). The

total polarization function is

Π(k) =
gd

πβ (~vF )2

{
ln [2 cosh (βµ/2)] +

πk

8qt

− k

2qt

∫ 1

0

du
√

1− u2

(
1

1 + euk/qt−βµ
+

1

1 + euk/qt+βµ

)}
. (3.94)

Note that µ, which is used in Eq. (3.94), may be obtained from Eq. (2.73) for any

given temperature and equilibrium charge carrier density n. In the zero temperature

limit, µ → εF , where εF = ~vFkF sign(n) is the Fermi energy with kF =
√
π|n|

being the Fermi momentum in graphene with the equilibrium charge carrier density

n, so that one obtains

Π+(k) =
gdkF

2π~vF

 1− k
8kF

k ≤ 2kF

1− 1
2

√
1− 4k2F

k2
− k

4kF
sin−1 2kF

k
k > 2kF ,

(3.95)

and

Π−(k) =
gdk

16~vF
. (3.96)

Hence

Π(k) =
gdkF

2π~vF

1 +

 k

4kF
arccos

(
2
kF
k

)
− 1

2

√
1−

(
2
kF
k

)2
H(k − 2kF )

 ,

(3.97)
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3.5. IMAGE FORCE AND IMAGE POTENTIAL

where H is the Heaviside step function. Unlike the LTF case, we see that ΠRPA(k) =

k/ (4~vF ) in intrinsic graphene at zero temperature. Since this is also the short

wavelength limit of ΠRPA(k) when n 6= 0, one may assert that the RPA result will

yield a value for the total potential that is reduced by an approximate factor of[
1 + πrs/

(
2ε0bg

)]−1
, where rs ≡ e2/ (~vF ) ≈ 2.2, when compared to the correspond-

ing value from the LTF approach for kF
√
r2 + z2

0 � 1 at zero temperature and zero

gap. On the other hand, one may expect that the total potential will exhibit Friedel

oscillations for kF r � 1 due to non-analyticity of the RPA polarization function

(3.97) at k = 2kF , which will be gradually dampened as the temperature increases

[43].

3.5 Image Force and Image Potential

Once the integral equation, Eq. (3.26), is solved for the total potential in the plane

of graphene, one can use Eq. (3.24) to evaluate the induced charge density in

graphene, whose Fourier transform may be used in Eq. (3.21) to yield the total

induced potential for any value of z. This may be then used to calculate the

nonlinear image force on the external charge from the definition

Fim(z0) = −Ze ∂

∂z
Φind(r, z)

∣∣∣∣
r=0,z=z0

. (3.98)

Once the z0 dependence of the image force is determined, the corresponding image

potential may be obtained from the definition Vim(z0) =
∫∞
z0
dz′0 Fim(z′0). While in

the nonlinear TF case this integration must be done numerically, in a linear theory

one may use instead the usual definition of image potential as a classical self-energy

[55], Vim(z0) = 1
2
ZeΦind(r=0, z=z0), which gives for z0 > 0 [37]

Vim(z0) =
1

2
(Ze)2

∫ ∞
0

dk e−2kz0

[
1

εbg(k) + vC(k)Π(k)
− 1

]
. (3.99)
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By using the LTF model, where vC(k)ΠTF = qs/k, one obtains in the zero-gap case

Vim(z0) =
(Ze)2

4z0ε0bg

[
1− ε0bg − 2ζ e2ζ E1 (2ζ)

]
, (3.100)

where ζ ≡ qsz0/ε
0
bg. It is worthwhile mentioning that this expression gives asymp-

totically Vim ∼ − (Ze)2 [1/ (4z0)− 1/ (8qsz
2
0)], for a heavily doped graphene and/or

sufficiently large distance, such that qsz0 � 1. On the other hand, in the oppo-

site limit, qsz0 � 1, one finds to the leading order Vim ∼ (Ze)2 (1/ε0bg − 1
)
/ (4z0),

as if graphene were totally absent. When the RPA polarization function at zero

temperature, Eq. (3.97), is used in Eq. (3.98) in the zero-gap case, one can show

that similar limiting forms of the image potential exist, except that the effective

background dielectric constant, ε0bg, is to be replaced by ε0bg + πrs/2 ≈ ε0bg + 3.44

when kF z0 � 1 [37].
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Chapter 4

Numerical Method
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4.1 One-dimensional Nonlinear Integral Equation

As we discussed, the total electric potential in the system at the surface of graphene

is given by Eq. (3.26). In this chapter we explain the numerical method we used

to solve the nonlinear integral equation. Based on the symmetry of the system it

is evident that the potential is a function of magnitude of r (|r| = r) only:

φ(r) = φ0(r) − e

∫ ∞
0

dr′r′nind(r
′)

[∫ 2π

0

dϑ√
r2 + r′2 − 2rr′cosϑ

−εs − 1

εs + 1

∫ 2π

0

dϑ√
r2 + r′2 + 4h2 − 2rr′cosϑ

]
, (4.1)

where φ0(r) is given by Eq. (3.27) and nind(r
′) = n (µ+ eφ(r′)) − n (µ). One may

perform the angular integral∫ 2π

0

dϑ√
r2 + r′2 − 2rr′cosϑ

= 2

∫ π

0

dϑ√
r2 + r′2 − 2rr′cosϑ

= 4

∫ π
2

0

dϕ

(r + r′)
√

1− 4rr′

(r+r′)2
sin2ϕ

=
4

(r + r′)
K

(
2
√
rr′

r + r′

)
, (4.2)

where ϕ = 1
2

(π − ϑ), and K(x) is the complete elliptic integral of the first kind

K(x) =

∫ π
2

0

dϕ√
1− x2sin2ϕ

. (4.3)

In the same way∫ 2π

0

dϑ√
r2 + r′2 + 4h2 − 2rr′cosϑ

=
4√

(r + r′)2 + 4h2
K

(
2
√
rr′√

(r + r′)2 + 4h2

)
.(4.4)

Therefore the nonlinear integral Eq. (4.1) reduces to

φ(r) = φ0(r) − e

∫ ∞
0

dr′r′nind(r
′)

[
4

(r + r′)
K

(
2
√
rr′

r + r′

)

−εs − 1

εs + 1

4√
(r + r′)2 + 4h2

K

(
2
√
rr′√

(r + r′)2 + 4h2

)]
. (4.5)
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4.1. ONE-DIMENSIONAL NONLINEAR INTEGRAL EQUATION

There are two important issues here, and they are as follows:

• The integrand is singular at the point r′ = r, i.e., K
(

2
√
rr′

r+r′

)∣∣∣
r=r′

= K(1) =

∞. The singularity is the consequence of the fact that we include the electrical

self-energy of the elements of the surface. More explicitly, in the angular

integral, when r = r′ for the first element of angle ϑ we include the self-

energy of it which causes the infinity. (see Fig. 4.1). We explain how to avoid

the singularity in the integral in the next section.

• The upper limit of the integral is infinity, but, in numerical calculations we

must define a cut-off for the upper limit. Although, when r → ∞ then

φ(r) → 0, but the electrical interaction is a long-range interaction, and the

upper limit must be sufficiently large in order to get convergent numerical

solutions.

Figure 4.1: Schematic view of the element of elliptic integral and the angular element

that causes the singularity.
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Before explaining the details of solving these issues, we go through the details of

the numerical steps.

4.2 Numerical Steps

The steps in the coding are as follows:

1. Input parameters:

• Z, the external charge, we usually put Z = 1.

• z0, the distance of charge away from graphene.

• h, the gap between graphene and substrate; h = 0 is usually used in

the literature. Non-zero h represent a physical situation and the limit

h→∞ represents free graphene.

• εs, the dielectric constant of the substrate. We usually assume that the

substrate is SiO2 with εs = 3.9. The other way of representing free

graphene is to put εs = 1.

• T , the temperature.

• N , number of points we use in the scheme to solve the discretized integral

equation.

• n0, the areal density of charge carriers in the unperturbed graphene. As

it is discussed in chapter 2, n0 is determined by a gate potential. The

corresponding chemical potential, µ, is determined for the given n0. We

come back to the details of calculating µ from a given n0 later.

2. Constant parameters:
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4.2. NUMERICAL STEPS

• a ≈ 1.42 Å, The carbon-carbon distance in graphene lattice.

• t ≈ 3.08 eV, the nearest neighbor hopping energy and consequently,

~vF = 3
2
at ≈ 6.56 eVÅ.

• t′ = 0, the second nearest neighbor hopping energy.

3. Determining the chemical potential, µ, related to given input parameters: the

local density of electrons is related to the equilibrium chemical potential and

the local electrical potential via Eq. (2.84). One may use Eq. (2.72) in order

to find the chemical potential µ, corresponding to given n0 and T . Once we

use one specific equation to find µ from a given n0, we confine ourselves to

use the same expression to find the local density of electrons in the presence

of an electric field due to external charge in the entire coding. However, the

expression mentioned above is the most accurate expression when we use the

density of electrons, ρ(ε), given by Eq. (2.66), but it takes a long time to solve

the equation. Therefore, depending on the case in each calculation, we may

use and compare one of the following approximate methods:

• Case T = 0: We saw that at zero temperature the density of electrons

reduces to Eq. (2.76). Using the series expansion of the density of states,

we found an accurate approximation Eq. (2.77) for the density of elec-

trons. We discuss the accuracy of considering the whole integral, the

series expansion, and the result of keeping only the first term of the

expansion.

• Case T > 0 and low doping levels: for sufficiently low doping levels such

that only low energy states in the energy spectrum may be occupied,

one may use the linearized density of states, leading to the dilog func-

tion Eq. (2.73) for the density of electrons. However, using the dilog
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function in coding makes the computing slow, therefore one may use the

approximate expression Eq. (2.75) instead of the dilog function.

• Case T > 0 and large doping levels: since the effect of temperature

in this case appears at the tail of the screening potential, we consider

the summation of the two approximations mentioned above, i.e., Eq.

(2.81), as the suitable approximation in computation. We show that

this approximation works well.

4. Changing the variable in the integral: we change the variable such that the

interval, [0,∞) changes to [0,1]:∫ ∞
0

drF (r)⇒
∫ 1

0

dxF̃ (x). (4.6)

We discuss more details in the next section.

5. Converting the integral into a summation, i.e., converting the nonlinear inte-

gral equation into a nonlinear matrix equation: we replace the integral by a

summation: ∫ 1

0

dxF̃ (x)⇒
N∑
i=0

∆xiF̃ (xi), (4.7)

where ∆xi = xi+1 − xi, xi = 1
2
(xi+1 + xi), x0 = 0 and xN+1 = 1. We discuss

more details in the next section.

6. Solving the nonlinear matrix equation to find the total electric potential in

the surface of graphene: we use the fsolve routine in MATLAB. The result

may be used to compute the other quantities, e.g., image potential, density

of induced charge and conductivity.

7. Using the solution to determine the induced charge density in the surface of

graphene, image force and image potential, conductivity, etc.
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4.3. PARTITIONING THE INTEGRAL

4.3 Partitioning the Integral

As we mentioned before, we need to partition the integral equation, i.e., convert it

to a matrix equation. Eq. (4.5) involves an infinite upper bound, i.e., r ∈ [0,∞);

but we must have a cut-off on the upper bound in numerical computations of the

integral. Since the electric interaction is long-range, the upper bound cut-off has to

be sufficiently large compared to other distance parameters in the system. Because

the potential reaches its maximum around the origin, and drops to zero for large

r, and because it will be a slowly varying function at large r, one may think of

defining a new variable x as:

x =
r

r + |z0|
⇔ r = |z0|

x

1− x
, (4.8)

where x ∈ [0, 1]. Then ∫ ∞
0

drF (r)⇒
∫ 1

0

dxF̃ (x). (4.9)

We apply the trapezoid rule in order to convert the integral to a summation. We

partition the interval [0, 1] into N equal spaces. If xi denotes a middle point of

partition i, then ∫ 1

0

dxF̃ (x) ≈
N∑
i=1

∆xF̃ (xi)

(4.10)

where ∆x = xi+1 − xi = x2 − x1. By substituting the new variable in the integral

Eq. (4.5), we end up with a nonlinear matrix equation of the form

UN×1 = U0
N×1 − ΞN×N × nindN×1 (UN×1) , (4.11)

where ΞN×N is the matrix kernel of the integral and nindN×1 is the vector of density

of charge carriers. We should mention that we also tried the Simpson’s rule which
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approximate the integrant by a parabola and it is supposed to be more accurate

compared to trapezoid rule which approximate the integrant by a straight line.

The Simpson’s rule led to very small corrections to the trapezoid rule, therefore we

confined ourselves to trapezoid rule.

4.4 Diagonal Terms

Because the elliptic integral in Eq. (4.5) is singular at r = r′, the kernel matrix Ξ

is singular at diagonal terms; i.e.,

K

(
2
√
rr′

r + r′

)∣∣∣∣∣
r=r′

⇒ K

(
2

√
xy(1− x)(1− y)

x(1− y) + y(1− x)

)∣∣∣∣∣
x=y

→∞. (4.12)

which is singular when x = y. The singularity is a direct consequence of includ-

ing the electrostatic self-energy of a small element of area, when we calculate the

angular integral at the points r = r′ (x = y). In order to compute the integral

numerically we must find a way to eliminate the singularity of the diagonal terms.

Choosing appropriately normalized diagonal terms leads to faster convergence

into the ”real” solution. One may expect the following results/benefits from an

appropriate method:

1. A zero slope of potential, U(r), at r = 0. The radial component of electric

field is zero at r = 0, by symmetry; therefore, the tangent of the potential

curve must be horizontal at r = 0.

2. The solution by the best method should converge to final results faster than

other methods; in other words, by increasing the number of points in the

summation there should be the least change in the result comparing to the

other methods.
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4.4. DIAGONAL TERMS

3. The results of the other methods should converge to the result of the best

method as the number of points in the computations is increased.

However, the most important outcome of checking different methods, is the test of

the trustworthiness of the computation. From physical and mathematical points of

view, one may expect very small changes in the solution due to different normaliz-

ing the diagonal points, particularly for large numbers of calculation points. But

from the numerical point of view, it is a test that the solution must not change

dramatically on changing the diagonal terms in a reasonable way. As we see in

the following discussion, our numerical solution satisfies our expectation. We went

through several different mathematical and physical methods, and eventually found

a method that works very well even for very small numbers of points, such as 400.

Since the singularity is due to the terms related to response of graphene to an exter-

nal potential, and the substrate does not contribute to the singularity, for simplicity

in the following comparison, we consider only the problem of free graphene at zero

temperature, and compare the results of different methods in only that case.

Some of the methods we considered are as follows:

1. Setting the diagonal terms to zero. This naive approach is to ignore the sin-

gularity and set the diagonal terms to zero, i.e., K(x, y)|x=y = 0. However, it

is clear that by this method we ignore the interaction of the different elements

of a ring, and it is not a suitable method. It is expected that by increasing the

number of points of partitioning the integral, the solution converges to the

”real” solution. This is because the larger the number of points we use, the

narrower ring we get and therefore the smaller contribution of the self-energy

of rings. Also, because of the scheme we chose, a larger number of points

leads to larger cut-off in the upper bound of the integral. Results show large
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gaps between neighboring solutions using different numbers of points by this

method. The largest number we chose is 2400, which is imposed by the con-

straint of the size of the matrix that MATLAB can handle in computation.

The other point is that the slope at r = 0 is not zero, and the curve heads

down around the origin. Zero diagonal terms, especially at the first terms, are

responsible for the ”downturn” in U(r) as r = 0 is approached from positive

r. That is a consequence of the fact that the contribution of well-normalized

self energy to the total interaction is bigger, respectively, for the first few

points than for the middle points. This is because the first few rings interact

only with next rings, but, in the middle, each ring interacts with rings from

both smaller and bigger radiuses.

2. The best method we found is to replace the diagonal term with a guessed self

energy of the ring which depends on the radius. Using this idea and several

attempts, we end up with a method that shows good accuracy, in the sense

that the solution shows very small changes when we increase the number of

points in computing. On the other hand, using this method, the fsolve routine

needs less iterative steps to find the solution compared to the first method.

For example, for 800 points, the first method takes 15 iterative steps, while

this method just takes 7 steps. A comparison between these two method is

shown in Fig. 4.2.

4.5 Other Tests of the Code

• We substitute the solution into the density of electrons and verified that its

spatial integral yields −Ze. The numerical solution we perform gives typically
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4.5. OTHER TESTS OF THE CODE

Figure 4.2: Comparison of the two methods of considering diagonal terms. While the

guessed diagonal terms we found show good accuracy such that the result of computing

with 400 and 800 points (dashed [black] line and solid [red] line, respectively) are even-

tually on top of each other, the result of eliminating diagonal terms shows less accuracy

and a ”head-down” near origin.

∼ −0.99Ze for this case, indicating that all is well.

• The result for the case free graphene, εs = 1 is close to the result for the case

with a very large gap.

• The result of solving the integral equation when we substitute the linear

approximation of the density of electrons (matrix nindN×1) is well matched with

the inverse Fourier transform of Eq. (3.31).
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Chapter 5

Results
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We first analyze in Fig. 5.1 the effects of doping with different gap values for

graphene at zero temperature with a charge in close proximity to graphene by

comparing the nonlinear TF model with the two linear models. This is followed

by a discussion of temperature effects in Figs. 5.2, 5.4, and 5.4 for the nonlinear

TF and the RPA models when charge is separated further away from graphene.

We discuss in more detail the RPA model in Figs. 5.5, 5.6, and 5.7. The effects

of temperature and charge separation on nonlinear screening are summarized and

discussed in Fig. 5.8. Errors due to using the linearized DOS and neglecting the

exchange and correlation effects are estimated in Fig. 5.9 for intrinsic graphene at

zero temperature. Finally, effects of nonlinear screening on both the image force

and image potential are discussed in Figs. 5.10 and 5.11, respectively. In Fig. 5.12

we show the image force as a function of position of the charge.

5.1 Comparison of Models for a Charge Close to

Graphene

We first consider the case of a positive charge with Z = 1 a distance 2 Å above

graphene lying on an SiO2 substrate (εs = 3.9) with several gap heights h, several

equilibrium charge carrier densities n, and zero temperature. This situation may

be representative of a Li atom adsorbed on top of supported graphene, where the

effective charge transfer is found to be around Z = 0.9, whereas the local DOS

exhibits a resonant feature at about 0.9 eV above the neutrality point of graphene’s

π electron band due to hybridization with lithium’s 2s orbital [32]. Besides undoped

graphene with n = 0, which was studied previously [24, 25, 26], we also analyze

the cases of both electron (n > 0) and hole (n < 0) doping of graphene by a gate
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5.1. COMPARISON OF MODELS FOR A CHARGE CLOSE TO GRAPHENE

potential, making sure that the Fermi level stays well below any chemisorption

resonances in graphene’s DOS (n . 1013 cm−2 for Li [32]).

In Fig. 5.1 we show in the left column (1) the results for the potential energy

U(r) = eφ(r), with φ(r) obtained from the nonlinear TF equation Eq. (3.26) at zero

temperature for n = 0 (the upper thick solid line), ±1012 (thin solid and dashed

lines, respectively), and ±1013 cm−2 (the lower thick solid and thick dashed lines,

respectively), and with h = 0 (panels a), 1 Å (panels b), and∞ (i.e., free graphene,

panels c). For the purpose of comparison, we also show in the right column (2)

of Fig. 5.1 the corresponding results obtained from both the LTF (dash-dotted

lines) and the RPA (dotted lines) models (with the line thicknesses matching those

in the left column), with φ(r) calculated from Eq. (3.31) using the appropriate

polarization functions at zero temperature. [As a reference, note that, for free

graphene, the LTF result with n = 0 actually shows the value of the unscreened

potential in the plane of graphene, U0(r) = eφ0(r) with φ0(r) given in Eq. (3.27),

whereas the corresponding RPA result shows that same potential reduced by the

dielectric constant of intrinsic graphene, 1 + πrs/2 ≈ 4.44.] We see in Fig. 5.1

that the main effects on the potential come from increasing the doping density |n|.

While all models exhibit strong variation with n at large distances r, we notice

that both the nonlinear TF and the RPA results are surprisingly concentrated

in a relatively narrow range of values for the potential at short distances for all

densities n. This seems to corroborate conclusions from a DFT study that the

induced density variations in graphene seem to saturate with increasing level of

doping [29].

While the LTF model appears to be a rather poor approximation to the non-

linear TF results at short distances r, their agreement improves at large distances

with increasing density |n|, as expected. Most strikingly, the RPA model gives a
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Figure 5.1: The potential energy, U(r) = eφ(r) (in eV), due to an external proton at

distance z0 = 2 Å above graphene at zero temperature, as a function of the radial distance

r (in Å) in the plane of graphene lying on an SiO2 substrate with the gap heights h = 0

(panels a), 1 Å (panels b), and ∞ (free graphene, panels c). Results from the nonlinear

TF model are shown in column 1 for equilibrium densities n = 0 (upper thick [black]

solid line), ±1012 (thin [red] solid and dashed lines, respectively), and ±1013 cm−2 (lower

thick [blue] solid and dashed lines, respectively). Results from the linearized TF model

and the RPA model are shown, respectively, by dash-dotted and dotted lines in column

2 for densities |n| = 0 (upper thick [black] lines), 1012 (thin [red] lines), and 1013 cm−2

(lower thick [blue] lines).
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5.1. COMPARISON OF MODELS FOR A CHARGE CLOSE TO GRAPHENE

surprisingly good approximation to the nonlinear TF results at short distances for

all densities n, while exhibiting Friedel oscillations around the LTF results at large

distances for n 6= 0, with wavelengths that clearly scale with k−1
F [43]. However, for

n = 0, one sees an increasing disagreement between the nonlinear TF and the RPA

models with increasing distance, which may be attributed to a poor performance of

the TF model in intrinsic graphene for induced charge carrier densities below 1011

cm−2, as suggested recently by Brey and Fertig [45]. On the other hand, the TF

model presumably gives a correct order of magnitude for nonlinear effects, if any,

when the doping density |n| increases, which are best seen by analyzing the effect

of changing the sign of n (or equivalently, the sign of Z), because linear models are

insensitive to this sign. In that respect, one can clearly notice in the left column of

Fig. 5.1 differences between the potentials U+(r) for n > 0 and U−(r) for n < 0 in

the nonlinear TF model, which are further discussed in Fig. 5.8 below.

Finally, one notices in Fig. 5.1 that, while the presence of a non-zero gap between

graphene and substrate does not affect the qualitative behavior of the results, its

quantitative effects may not be neglected in the values of the potential for all

densities shown. While this is particularly clear at short distances for the nonlinear

TF results, it is also interesting to see how Friedel oscillations in the RPA model

increase in amplitude with increasing gap. In fact, we have found that the RPA

potential may even change its sign at large distances r for free graphene with large

enough |n| [see Fig. 5.5]. Given that the size of gap is a poorly defined parameter,

with a plausible value of around h = 1 Å [32, 58], one should be aware of its role

in the total potential in graphene due to external charges.
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5.2 Effects of Temperature

We next consider in Fig. 5.2 graphene on an SiO2 substrate with the gap h = 1 Å,

both at zero (panels a and b) and room (T = 300 K, panels c and d) temperatures,

with a charge Z = 1 placed at larger distances of z0 = ±10 Å away from graphene.

With z0 = 10 Å (panels a and c) we can represent a distant charge above graphene,

such as a slowly moving ion [37], or an electron in an image-potential state [36],

whereas the case z0 = −10 Å (panels b and d) represents a technologically relevant

case of a charged impurity trapped deep in the SiO2 substrate [30, 31]. We compare

the nonlinear TF results with those from the RPA model for |n| = 0, 1012, and 1013

cm−2, shown with the same line styles and thicknesses as in Fig. 5.1. While the

RPA results seem to be quite close, apart from the Friedel oscillations, to those of

the nonlinear TF model for n > 0, the agreement between those two models seems

to have worsened at short distances for n = 0 when compared to Fig. 5.1, which

may have to do with the problematic performance of the nonlinear TF model in

intrinsic graphene exposed to weak perturbations, as mentioned previously [45].

On the other hand, one notices in Fig. 5.2 a much greater spread in the relative

magnitudes of the potential at short distances than in Fig. 5.1. This is partly due to

the effect of doping in the presence of a much weaker external perturbation in Fig.

5.2 than in Fig. 5.1, so that the induced density variations involved in the results

in Fig. 5.2 have not reached the effect of saturation mentioned in Ref.[29] Another

cause for a larger spread of the potential at short distances in Fig. 5.2 comes from

the nonlinear effects, which are further discussed in Fig. 5.8.

As regards the effect of non-zero temperature, one notices that its main role

is to dampen the potential in intrinsic graphene at distances r & 10 Å, both in

the nonlinear TF and the RPA cases. This may be explained by assessing the TF
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5.2. EFFECTS OF TEMPERATURE

Figure 5.2: The potential energy, U(r) = eφ(r) (in eV), due to an external proton at

distances z0 = ±10 Å (left and right columns, respectively) from graphene at T = 0 (top

row) and T = 300 K (bottom row), as a function of the radial distance r (in Å) in the

plane of graphene lying on an SiO2 substrate with the gap height h = 1 Å. Results from

the nonlinear TF model are shown for equilibrium densities n = 0 (upper thick [black]

solid line), ±1012 (thin [red] solid and dashed lines, respectively), and ±1013 cm−2 (lower

thick [blue] solid and dashed lines, respectively). Results from the RPA model are shown

by dotted lines for densities |n| = 0 (upper thick [black] line), 1012 (thin [red] line), and

1013 cm−2 (lower thick [blue] line).
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inverse screening length in Eq. (3.36) in the zero density and the zero tempera-

ture limits, giving qs → 4rsqt ln 2 and qs → 4rskF , respectively. Therefore, one

may conclude that screening of the potential at large distances due to a non-zero

temperature will prevail only for low enough charge-carrier densities, such that

|n| < [2 ln 2kBT/ (~vF )]2 /π ≈ 1011 cm−2 at room temperatures. We have checked

that nonlinear TF results for |n| = 1011 cm−2 at zero temperature as shown in Fig.

5.3 are quite close to the result for intrinsic graphene at room temperature. The

effects of temperature on the nonlinearity of the potential is further discussed in

Fig. 5.8. On the other hand, while the Friedel oscillations are still visible in Fig. 5.2

in the RPA results for zero temperature at large distances r for n 6= 0, they seem to

be reduced in relative amplitude by the increased distance |z0| when compared to

the oscillations seen in Fig. 5.1, and we see that the increased temperature dampens

the Friedel oscillations in Fig. 5.2, as expected.

We finally note that, by analyzing the asymmetry in the results with respect to

the change in sign of z0 in Fig. 5.2, we again emphasize the role of a non-zero gap,

because all results would be independent of that sign in the zero gap case. It is

remarkable that a gap of only h = 1 Å affects, not only the values of the potential

at short distances, but also the magnitudes of the asymmetry in the nonlinear TF

results with respect to the sign of n 6= 0 at short distances.

We continue by considering the case of a positive charge with Z = 1 a distance 2

Å away from graphene, lying on an SiO2 substrate with εs = 3.9 and the gap height

of h = 4 Å [38]. Again, the case with z0 = 2 Å represents, e.g., an alkali-metal atom

adsorbed on graphene [24, 32], whereas the case z0 = −2 Å may represent an alkali-

metal atom intercalated in the middle of the gap between the graphene and the

substrate [34]. Note that results for an external charge of the opposite sign could be

recovered by simply changing the sign of n. In Fig. 5.4 we show the results for the
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5.2. EFFECTS OF TEMPERATURE

Figure 5.3: The potential energy (in eV), due to an external proton at distance z0 = 2

Å from free graphene at T = 0 (thick lines) and T = 300 K (thin lines), as a function of

radial distance r (in Å) in the plane of graphene. Result from the nonlinear TF model

are shown for equilibrium densities n = 0 (dotted lines), +1011 cm−2 (solid lines) and

−1011 cm−2 (dashed lines).

potential energy U(r) = eφ(r), with φ(r) obtained from the non-linear TF equation

Eq. (3.26) for both at T = 0 (panel a and b) and room (T = 300 K, panel c and

d) temperatures, for |n| = 0, 1012 and 1013 cm−2. We also show the corresponding

results obtained from the RPA model , shown in the same line styles and thicknesses

as in Fig. 5.1. The asymmetry in the corresponding potential energy in electron

(n > 0) and hole (n < 0) doped graphene, seen in Figs. 5.1 and 5.2, is clear in Fig.

5.4 also; most strikingly, in the case that a proton is intercalated in the middle of
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Figure 5.4: The potential energy, U(r) = eφ(r) (in eV), due to an external proton at

distances z0 = ±2 Å (left and right columns, respectively) from graphene at T = 0 (top

row) and T = 300 K (bottom row), as a function of the radial distance r (in Å) in the

plane of graphene lying on an SiO2 substrate with the gap height h = 4 Å. Results from

the nonlinear TF model are shown for equilibrium densities n = 0 (upper thick [black]

solid line), ±1012 (thin [red] solid and dashed lines, respectively), and ±1013 cm−2 (lower

thick [blue] solid and dashed lines, respectively). Results from the RPA model are shown

by dotted lines for densities |n| = 0 (upper thick [black] line), 1012 (thin [red] line), and

1013 cm−2 (lower thick [blue] line).
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5.3. DETAILS OF THE RPA

the gap between the graphene and the substrate, the potential energies of n > 0 and

n < 0 cross. As regards the effects of the sign of z0, there are only small variations

in the shapes of curves for nonlinear potential at intermediate distances, indicating

that the proximity of the substrate has negligible effect at such a short distance

from graphene as |z0| = 2 Å. However, it shows more changes compared to Figs.

5.1 and 5.2. Specially, it seems that the opposite induced charge on the surface

of the substrate in the case z0 = −2 Å (which is stronger than the case z0 = 2

Å), causes the ”wiggling” in the potential energy around radial distances r = 10

Å . The non-zero temperature in Fig. 5.4 mostly affects the results for intrinsic

graphene (n = 0), as is expected at room temperature.

5.3 Details of the RPA

In order to find a better view of Friedel oscillations, a close-up of the result of

RPA and LTF shown in Fig. 5.1, is reploted in Fig. 5.5. In panel (a), the result

for equilibrium density |n| = 1012 cm−2 is shown for the case h = 0 (thin [black]

lines) and free graphene (thick [colorful] lines). RPA and LTF results are shown by

solid lines and dashed lines, respectively. In panel (b), the results for equilibrium

density |n| = 1013 cm−2 are shown, with the same line style as panel (a). Inter-

estingly, Friedel oscillations are strong enough to change the sign of the potential

for intermediate distances several times. The positions of peaks of the oscillations

are almost independent of the presence of the substrate, but the magnitudes of

the oscillations depend strongly on it, such that, in the presence of the substrate,

the sign changes do not occur. To illustrate the magnitude and the wavelength of

Friedel oscillations, we plot the ratio of the RPA and LTF potentials, in Fig. 5.6 for

equilibrium charge carrier densities |n| = 1012 and |n| = 1013 cm−2 (solid [red] line
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Figure 5.5: Close-up of the potential energy (in eV), from RPA model (solid lines) and

PTF model (dashed lines), due to an external proton at distance z0 = 2 Å from graphene

at T = 0, as a function of radial distance r (in Å) in the plane of graphene lying on

an SiO2 substrate with the gap heights h = 0 (upper thin [black] lines) and ∞ (free

graphene, lower thick [colorful] lines). Result from the RPA and LTF models are shown

for equilibrium densities |n| = 1012 (panel a) and 1013 cm−2 (panel b).
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5.3. DETAILS OF THE RPA

Figure 5.6: The ratio URPA/ULTF of the potential energies URPA and ULTF, correspond-

ing to, respectively, the RPA and LTF models of the equilibrium charge carrier densities

|n| = 1012 (solid [red] line), and |n| = 1013 cm−2 (dashed [blue] line), is shown as a func-

tion of the radial distance r (in Å) in the plane of free graphene for a proton at distance

z0 = 2 Å above the graphene, with T = 0.
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Figure 5.7: The RPA potential energy, (in eV), due to an external proton at distance

z0 = 10 Å from free graphene at T = 0 (thin [black] solid line), T = 50 K ([blue] dashed

line), T = 100 K ([green] dashed-dotted line), T = 200 K ([red] dotted line), and T = 300

K (thick [red] solid line), as a function of the radial distance r (in Å) in the plane of free

graphene, for equilibrium density of charge carriers |n| = 1012 cm−2.
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5.4. NONLINEAR SCREENING

and dashed [blue] line, respectively) for free graphene. Again the change in sign

of the RPA potential is clear. Both magnitude and wavelength of oscillations de-

crease on increasing the density of charge carrier, indicating that wavelengths scale

with k−1
F . However, the wavelength of oscillations is independent of r, but, with

increasing r, the magnitude of oscillations increases asymptotically to a maximum.

The effect of temperature in the RPA model is shown in Fig. 5.7, in which the

RPA result due to an external proton at distance z0 = 10 Å from free graphene,

at different temperatures for equilibrium density |n| = 1012 cm−2 is shown. As

expected, non-zero temperature suppresses the Friedel oscillations, particularly at

large distances where the total potential is weak. Even low temperature T = 50 K

shows a strong damping of the oscillations, while room temperature, T = 300 K, is

high enough to almost eliminate the oscillations.

5.4 Nonlinear Screening

Nonlinear effects in screening of an external charge by doped graphene, seen in Figs.

5.1(b1) and 5.2(a), are summarized in Fig. 5.8, with the inclusion of the results for

doping density of |n| = 1011 cm−2. We show the ratio U−(r)/U+(r) of the potential

energies U−(r) and U+(r), which are obtained from Eq. (3.26) with, respectively,

negative (hole doping) and positive (electron doping) signs of densities |n| = 1011

(solid lines), 1012 (dashed lines), and 1013 cm−2 (dash-dotted lines), for a charge

Z = 1 at two distances with two temperatures: z0 = 2 Å and T = 0 (panel a),

z0 = 10 Å and T = 0 (panel b), and z0 = 10 Å and T = 300 K (panel c), for

graphene lying on an SiO2 substrate with the gap h = 1 Å. One notices in Fig. 5.8

that the ratio U−(r)/U+(r) may reach quite large values (up to 2), indicating that

nonlinear effects in screening of external charges may be very strong. In particular,
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this ratio reaches maximum values at certain distances rc that clearly depend on

both the doping density |n| and the strength of external perturbation determined

by z0. [We note that the difference U−(r)−U+(r) is always found to peak at r = 0.]

The maxima in the ratios, seen in Fig. 5.8, may be explained by the fact that,

for the hole doping (n < 0) of graphene in the presence of a positive external charge,

there will be a local re-doping with electrons, or discharging of graphene, giving

rise to a local shift of the π electron band DOS, such that the condition U−(rc) ≈

~vFkF may be reached, indicating that the Fermi level is pushed back to cross the

neutrality point at some distance r = rc. Since there are fewer states available in

the DOS around the neutrality point, the screening ability of graphene is reduced

around r = rc when n < 0, resulting in a higher value of the total potential than

in the case of electron doping (n > 0), so that one may expect that an inequality

U−(r) > U+(r) > 0 will hold for a range of distances r around rc. For example, in

Fig. 5.8(a), the external charge is so close to graphene at zero temperature that it

provides a strong enough perturbation, giving rise to the local discharging for all

three doping densities, |n| = 1011, 1012, and 1013 cm−2, so that three maxima in the

ratio U−(r)/U+(r) occur around distances rc ≈ 35.6, 12.7, and 4.8 Å, respectively.

The corresponding values of the potential U−(rc) at these distances are found to be

0.037, 0.137, and 0.495 eV, respectively, which scale reasonably close to the Fermi

level shift at the three doping densities, |εF | = ~vFkF ≈ 0.037, 0.117, and 0.368

eV.

On the other hand, when the charge is removed to distance z0 = 10 Å at zero

temperature in Fig. 5.8(b), the perturbation is still strong enough to discharge

graphene for the two lower doping densities [with the peaks occurring at similar

distances, rc ≈ 47.8 and 15.0 Å, and with similar potential values, U−(rc) ≈ 0.041

and 0.153 eV, as in Fig. 5.8(a)], but is not sufficient to force the Fermi level to
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5.4. NONLINEAR SCREENING

Figure 5.8: The ratio U−(r)/U+(r) of the nonlinear potential energies U−(r) and U+(r)

corresponding to, respectively, negative (hole doping) and positive (electron doping) signs

of the equilibrium charge carrier densities |n| = 1011 (solid [green] lines), 1012 (dashed

[red] lines), and 1013 cm−2 (dash-dotted [blue] lines), is shown as a function of the radial

distance r (in Å) in the plane of graphene for a proton at distances z0 = 2 Å with T = 0

(panel a), z0 = 10 Å with T = 0 (panel b), and z0 = 10 Å with T = 300 K (panel c),

above graphene lying on an SiO2 substrate with the gap h = 1 Å.
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cross the neutrality point for the highest density of |n| = 1013 cm−2, for which a

maximal local discharging of graphene occurs directly below the external charge.

Furthermore, when the temperature is raised to T = 300 K for z0 = 10 Å, the

ratio U−(r)/U+(r) for the two higher doping densities is barely affected, but the

ratio for the lowest density |n| = 1011 cm−2 appears to be largely suppressed in

Fig. 5.8(c) as compared to Fig. 5.8(b). One can still see a maximum in this ratio

around a distance similar to that in Fig. 5.8(b), i.e., rc ≈ 37.2 Å with U− ≈ 0.045

eV, but the peak value of the ratio U−(r)/U+(r) for |n| = 1011 cm−2 has dropped

from about 1.8 for T = 0 to about 1.2 for T = 300 K. While the results in Fig.

5.8(c) confirm the conclusion drawn from Fig. 5.2 that, at room temperature, the

screening ability of graphene is affected for sufficiently low doping densities, such

that |n| . 1011 cm−2, it is now clear that the role of elevated temperature, when it

prevails over the effects of doping density, is to the suppress the nonlinear effects.

5.5 Effects of the Nonlinear DOS and Exchange

and Correlation Interaction

All results shown in Figs. 1-8 were obtained by taking into account in Eq. (2.70)

the effects of nonlinearity in the band DOS of graphene, ρ(ε), because we suspected

that the value of the potential U(r) may exceed locally (that is, directly bellow the

external charge) the cutoff value of about 1 eV that validates the linear approxima-

tion for ρ(ε). Our calculations show that the effect of this nonlinearity is relatively

weak, giving corrections up to several percent for distances |z0| > 1.5 Å. This is

illustrated in Fig. 5.9 for free, intrinsic (µ = 0) graphene at zero temperature with

a charge Z = 1 placed at z0 = 2 Å, where we show by the dash-dotted line the
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5.5. EFFECTS OF THE NONLINEAR DOS AND EXCHANGE AND
CORRELATION INTERACTION

Figure 5.9: The relative error in the potential energy, U(r) = eφ(r) (in %), from the

nonlinear TF model for a proton at distance z0 = 2 Å from free, intrinsic (n = 0) graphene

at zero temperature, due to the inclusion of the exchange and correlation energies [29],

with values of the cutoff parameter η = 1 (solid [red] line), 0.75 (dashed [green] line), and

0.5 (dotted [blue] line), as well as due to the nonlinear correction to graphene’s π electron

band density of states (dash-dotted [black] line).

relative error in the total potential when Eq. (3.26) is solved with density n from

Eq. (2.73) and from Eq. (2.70) with a nonlinear DOS ρ(ε) [11]. One can see that

the peak error of about 2 % occurs at the origin and diminishes at distances greater

than a few Angstroms.

We further estimate the effects of the exchange and correlation interactions,

which have been neglected so far in solving the nonlinear TF equation (3.26). We

use the expression Vxc(n) for the XC potential energy given by Polini at al.[29] in the
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LDA and, since the formalism providing Vxc(n) is restricted to intrinsic graphene

at zero temperature within the linear approximation for ρ(ε) [29], we solve the

nonlinear equation, Eq. (3.42) with Eq. (3.43), for free graphene (ε0bg = 1) with the

charge Z = 1 a distance z0 = 2 Å away. The result is compared to the solution

when Vxc is set to zero by showing in Fig. 5.9 the relative error of such a comparison

for several values of the cutoff parameter η [29]. One can see in Fig. 5.9 that the

relative error due to the XC interactions is relatively small at short distances r, and

is comparable to the error due to the nonlinear band DOS. However, the error due

to the XC interactions increases and reaches a maximum of about 5% at distances

on the order of r = 10 Å or more, changes its sign at still greater distances of

about r = 100 Å or more, and presumably continues growing further in magnitude.

While this is a relatively small error at radial distances where the total potential

has a significant value, we note that the error due to the XC interaction may be

larger when external charge is placed further away from graphene, as noted in

Ref.[29]. However, because of the limitation of the theory for XC interactions to

local perturbations of charge carrier density relative to intrinsic graphene at T = 0

[28, 29], we no longer pursue the analysis of the XC effects in our nonlinear TF

approach.

5.6 Image Interaction

While the results in Figs. 1-9 clearly local properties of the solution of the nonlinear

TF equation, Eq. (3.26), we now turn to analyzing the image force Fim on a point

charge as a quantity that provides integrated information on the effects of doping

and nonlinear screening in graphene. We first consider free graphene at T = 0, and

represent the nonlinear image force in the form reminiscent of the classical image
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5.6. IMAGE INTERACTION

force of a point charge Ze in vacuum, a distance z0 away from a layer of dielectric

material with an effective dielectric constant ε∗, given by

Fim =
(Ze)2

4z2
0

[
1

ε∗(z0)
− 1

]
. (5.1)

In this way, the z0 dependent parameter ε∗ provides a measure of the polarizability

of free graphene. We use the same line styles and thicknesses as in Fig. 5.1 to show

in Fig. 5.10 the results of the nonlinear TF calculations of ε∗ as a function of z0 for

|n| = 0, 1012, and 1013 cm−2, along with the corresponding LTF and RPA results

obtained from Eq. (3.98) with an appropriate polarization function by taking the

derivative, Fim = −dVim/dz0. One can see in Fig. 5.10 a strong dependence of

the nonlinear TF image force on both the magnitude and the sign of charge carrier

density n, whereas the linear results seem to work only at large enough distances z0,

with the RPA model showing better agreement with the nonlinear TF results than

with the LTF model. We note that the slopes of the LTF lines follow from taking

the derivative of the asymptotic limit of the image potential in Eq. (3.100), and are

given for n 6= 0 by the zero temperature limit of the inverse screening length in Eq.

(3.36), qs = 4rskF . On the other hand, the nearly horizontal lines for the nonlinear

TF and the RPA models with n = 0 show that intrinsic graphene behaves as a layer

of material with effective dielectric constants of ≈ 3.57 and ≈ 1 + πrs/2 ≈ 4.44,

respectively.

We analyze in Fig. 5.11 the image potential on a point charge Z = 1 above

free graphene (panel a) and in the presence of a SiO2 substrate with zero gap

(panel b), at zero temperature. We show the results due to the nonlinear TF

and the RPA models for n = 0 (thick solid and dotted lines, respectively) and

±1013 cm−2 (thin solid and dashed lines for the nonlinear TF, and thin dotted line

for the RPA model), as well as the results due to the LTF model for |n| = 1013
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Figure 5.10: The effective dielectric constant ε∗ in the image force, written as Fim =

−(Ze/2z0)2(1/ε∗−1), as a function of distance z0 (in Å) for a proton above free graphene

at T = 0. Results from the nonlinear TF model are shown for equilibrium densities n = 0

(lower thick [black] solid line), ±1012 (thin [red] solid and dashed lines, respectively), and

±1013 cm−2 (upper thick [blue] solid and dashed lines, respectively). Results from the

linearized TF model and the RPA model are shown, respectively, by dash-dotted and

dotted lines for densities |n| = 0 (lower thick [black] lines), 1012 (thin [red] lines), and

1013 cm−2 (upper thick [blue] lines).
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cm−2 (thin dash-dotted line). We note that the nonlinear results were obtained

by integrating the corresponding image force from z0 up to typically 400 Å. One

notices a relatively close grouping of all results, indicating that the linear models

provide good approximations, especially at high density and large distances z0.

However, the effects of doping of graphene are seen to be still quite strong,

giving, e.g., in the nonlinear TF model for free graphene the image potential of

Vim ≈ −0.33 eV at z0 = 10 Å when |n| = 1013 cm−2, as opposed to Vim ≈ −0.26 eV

found at the same distance above intrinsic graphene. This points to possibly strong

effects of doping in the asymptotic region of distances of relevance to the image

potential states [36]. While the discrepancy between the RPA and the nonlinear TF

results, seen in Fig. 5.11 for free graphene at zero doping, stems from the difference

seen in Fig. 5.10 between the effective dielectric constants of intrinsic graphene in

those two models, one notices very good agreement of the RPA model with the

nonlinear TF model in graphene doped by electrons to n = 1013 cm−2. However,

nonlinear effects are still quite strong, especially at short distances, as illustrated

by the observed asymmetry in the nonlinear TF model with respect to the sign of

n 6= 0. For example, one finds in Fig. 5.11(a) that the image potential takes the

value of Vim ≈ −2 eV at z0 ≈ 1.5 Å above free graphene with n = 1013 cm−2,

as opposed to Vim ≈ −1.64 eV at the same distance with n = −1013 cm−2. This

asymmetry due to doping of graphene by electrons or holes may have interesting

and important consequences for, e.g., chemisorption of a Li atom, where the image

potential shift of its 2s orbital level may be controlled by the applied gate potential

and used to move around the resonance in the local DOS, and even possibly break

the ionic bond between the Li atom and graphene. We note that we have estimated

numerically the effects of non-zero temperature and the XC interactions in the

nonlinear image potential for intrinsic graphene, and found that both these effects
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Figure 5.11: Results from the nonlinear TF model are shown for equilibrium densities

n = 0 (upper thick [black] solid line) and ±1013 cm−2 (lower thin [blue] solid and dashed

lines, respectively). Results from the RPA model are shown by dotted lines for densities

|n| = 0 (upper thick [black] line) and 1013 cm−2 (lower thin [blue] line), as well as from

the linearized TF model for density |n| = 1013 cm−2 (thin [blue] dash-dotted line).
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are negligible compared to the above effects of the doping density and nonlinear

screening.

Finally, we analyze the image force on a point charge in the presence of a SiO2

substrate with the gap h = 4 Å at T = 0. In Fig. 5.12 we show the image force versus

distance in the range |z0| ≤ 10 Å, going from a region deep inside the substrate to

distances well above the graphene. In this way, we analyze the screening effects of

the substrate. In Fig. 5.12, nonlinear results are shown only for intrinsic graphene

and for the highest density of |n| = 1014 cm−2, whereas the linear results cover a full

range of densities. We note that the nonlinear results for intermediate densities are

concentrated in a relatively narrow range between the cases n = 0 and |n| = 1014

cm−2, whereas the linear results are much more spread out. One can see that the

nonlinear effects in the image force are strongest close to graphene, whereas they

almost completely vanish close to the surface of the substrate and inside its bulk.

It is interesting to note that the variation with the sign of n is also strong even

at such high density as |n| = 1014 cm−2, as noticed in all previous examples. The

linear results in Fig. 5.12 are seen to be a rather poor approximation at distances

close to graphene and at low densities |n|, but they gradually improve inside the

substrate and at large densities.
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Figure 5.12: The image force Fim (in eV/Å) on a proton as a function of position z0 (in

Å), with graphene placed at z0 = 0 and an SiO2 substrate occupying the region z0 ≤ −4

Å, at T = 0. Nonlinear results are shown for n = 1014 cm−2 (solid red curves) and n =

-1014 cm−2 (dashed red curves), as well as for intrinsic graphene (n = 0, black dash-dot

curves). The linear results are shown by dotted (red, blue, green and pink) curves for

|n| = 1011, 1012, 1013, and 1014 cm−2, displaying an increasing degree of divergence from

the nonlinear curves with decreasing values of |n|.
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Chapter 6

Conclusion
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6.1 Concluding Remarks

We have solved a nonlinear TF equation for the radial dependence of electric po-

tential in the plane of single-layer graphene due to an external point charge in the

presence of a dielectric substrate with a graphene-substrate gap, h, paying special

attention to the effects of equilibrium charge carrier density n, temperature T , and

separation |z0| between the charge and graphene. Large effects were found due to

variations in both the magnitude and the sign of n, illustrating the importance of

both doping of graphene and the nonlinear screening, respectively. Temperature

was found to mostly affect screening at low doping densities, satisfying the inequal-

ity kF =
√
π|n| . kBT/ (~vF ), in such a way as to suppress the nonlinear effects.

In addition, the existence of a non-zero gap, h, between the substrate and graphene

was found to exert non-negligible effects on the potential, mostly at short radial

distances. We have moreover analyzed the effects in the potential due to nonlinear

corrections in the density of states of graphene’s π electron bands, as well as due

to the exchange and correlation interactions for the case of free, intrinsic graphene

at T = 0. While the former effect gives corrections of up to a few percent at po-

sitions directly bellow the external charge and diminishes at distances further out,

the latter effect gives rise to the corrections of up to 5 % at intermediate and large

radial distances.

Comparisons were made with the results from a linearized TF (LTF) equation

and from the RPA model of dielectric screening in graphene. While the LTF results

are generally close to the nonlinear TF results at large radial distances and high

densities |n| only, the RPA model also exhibits an improved agreement with the

nonlinear TF model at short radial distances, owing to the short wavelength dielec-

tric constant of graphene, which results from the inter-band electron transitions
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captured by the RPA model [44, 29]. Unlike the TF models, the RPA results ex-

hibit Friedel oscillations around the potential from the linearized TF model at large

radial distances in doped graphene, with amplitudes that increase with increasing

gap h, but are dampened by increasing separation |z0| and increasing temperature.

Our most important conclusion is that nonlinear effects are strong over a broad

range of radial distances, even at high doping densities |n| and large separations

|z0|, as illustrated by the large ratios of the potentials evaluated from the nonlinear

TF model with the same amounts of doping by holes (n < 0) and by electrons

(n > 0). This may be explained by a local shift of graphene’s density of states

so that the Fermi level is forced to cross the neutrality point in that density of

states at a certain radial distance, thereby reducing graphene’s polarizability when

doping occurs with carriers of the same charge sign as the external particle. This

asymmetry in the scattering potential for charge carriers in graphene with respect

to the sign of n may be responsible for the observed asymmetry in graphene’s

conductivity as the sign of the gate potential changes [59]. However, such an effect

of nonlinear screening of external charges will be suppressed at low doping densities

when the temperature is sufficiently elevated, as described above.

Finally, we have analyzed the image interaction of an external charge due to

polarization of graphene, where we compared the results evaluated from the solution

of the nonlinear TF equation with those from the LTF and RPA models. After

elucidating the strong doping and nonlinear effects in the image force above free

graphene at zero temperature, we have presented results for an image potential

obtained by numerical integration of the nonlinear image force up to large distances

from graphene, and compared them with the results of the linear models. The

nonlinear image potential was found to exhibit relative variations due to doping of

graphene up to |n| = 1013 cm−2, which can reach about 30 % at distances |z0| ∼ 10
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Å, as well as due to the nonlinear screening, where relative variation with the sign

of n may reach some 20 % at short distances, on the order of |z0| ∼ 1 Å. These

variations in the image potential were found to be somewhat reduced in the presence

of an SiO2 substrate.

Our results for the electric potential in the plane of graphene due to external

charge may be relevant for calculations of its conductivity based on the Boltzmann

transport model [11, 19], where this potential may be used directly in an expression

for the transport relaxation time in the Born approximation, to reveal the effects

of doping, nonlinear screening and temperature on conductivity. While this task

is left for a future contribution, we comment here that our nonlinear TF results

are likely to yield calculable effects due to the asymmetry in charge of the external

particles [59], based on the presently observed asymmetry with respect to the sign

of n for a positive external charge. Moreover, our results for the nonlinear image

potential may be found helpful in studying chemical processes near graphene, e.g.,

alkali atom chemisorption and intercalation [32], as well as in the recent work on

the electron image-potential states near graphene [36].
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