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ABSTRACT

Four aspects of ultraviolet radiation (UVR) induced cataractogenesis were
studied. Firstly, the suitability of porcine lens for organ culture study and the feasibility of
using two fluorescent dyes (alamarBlue™ and S-carboxyfluorescein diacetate-
acetoxymethyl ester [CFDA-AM]) for in vitro UVR-lens study were examined. Secondly,
because there were no available data for whole lens in vitro UVR threshold investigation,
an experiment was conducted to determine the in vifro action spectrum for UVR-lens
photodamage with a secondary purpose of assessing the recovery pattern in the exposed
lenses. The third set of experiments investigated the efficacy of the two assay dyes
(alamarBlue™ and CFDA-AM) to quantitatively determine the broadband UVB and
UVA in vitro thresholds for impairing lens cellular function. Simulating environmental
conditions, the fourth objective was to investigate the synergy of sub-solar low level UVB
and UVA exposures in compromising lens integrity.

In all experiments, aseptically dissected porcine lenses were preincubated in organ
culture for approximately one week. Addressing the first objective, the two dyes were
assayed together. The lenses were immersed in the assay medium for fluorescence
measurements at predetermined intervals over a period of 8 weeks. The assay results were
validated with a scanning laser system that measured the optical quality of the same set of
lenses. It was shown that porcine lenses can be cultured for at least 6 weeks without any
compromise in cellular and optical integrity and that the two fluorescent indicator dyes
" are not toxic to the cultured lenses.

The in vitro action spectrum for UVR wavelengths from 270 nm to 370 nm was

determined by subjecting cultured porcine lenses to varying UV radiant exposure levels at

v



defined wavelengths. The action spectrum was derived with probit analysis of the data
using an ascending/descending staircase method for dose determination at each
waveband. In terms of repair, the data indicate shorter latency periods and slower
recovery for higher UV energy levels, while the reverse is the case for lower UV energy
levels. However, this observation is wavelength dependent. The damage and repair data
demonstrate that at twice the threshold levels, permanent damage occurs for both UVB
and UV A wavelengths.

The results from exposures involving UVB alone, UVA alone, and UVA and
UVB in combination, show that exposure to low levels of UVB and moderately high
levels of UVA can cause metabolic stress in the crystalline lens by inhibiting the lens
epithelial cells’ mitochondrial function and disrupting membrane integrity. The synergism
study shows that subthreshold levels of UVB and UVA exposures acting together can
cause decreased lens cellular metabolism and increased permeabilisation of lens epithelial
and fibre cell membranes, triggering glutathione (GSH) depletion in the lens. These UV
phototoxic events would render the lens epithelium incapable of regulating ions and water
homeostasis, thereby causing lens swelling and opacity. Evaluation of the morphological
changes showed that UVB irradiation caused “spoke like” equatorial opacity while UVA
irradiation caused reversible anterior subcapsular vacuoles at almost 100 times the UVB

exposure level.
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Chapter 1

GENERAL INTRODUCTION
1.1 BACKGROUND OVERVIEW

Among the several risk factors for cataract formation, solar ultraviolet (UV)
radiation has been implicated as a major environmental factor. The gradual depletion of
stratospheric ozone due to chlorofluorocarbons (CFCs), aircraft pollutants and other
major industrial pollutants substantially increases the levels of ultraviolet radiation
(UVR), particularly ultraviolet radiation B (UVB) reaching the Earth’s surface (Kerr and
McElroy, 1993). The focus of this thesis is limited to environmental solar radiant energy
in the 290-400 nm range, since shorter wavelength UV below approximately 290 nm, is
absorbed by water, air, and ozone in the upper atmosphere (i.e. stratosphere). Between
altitudes of 30,000 and 100,000 km, the atmospheric ozone absorbs all of the solar UVR
in the 200 - 288 nm wavelength range (Pitts, 1993). This means that UVR wavelengths
from 290 to 400 nm will reach the Earth’s surface. UVR wavelengths from 100 to 400
nm may be referred to as UV energy, and according to Commission Internationale de
I’Eclairage i.e. International Commission on Illumination (CIE, 1987), they are
subdivided into short wavelength UV (UVC: 100-280 nm), middle wavelength UV
(UVB: 280 - 315 nm), and long wavelength UV (UVA: 315 - 400 nm).

For atmospheric and environmental applications, it is sufficient to adopt the
intervals from 290 to 320 nm, and 320 to 400 nm as working definitions of the UVB and
UV A regions, respectively (Parrish et al., 1978; Cullen, 1980; Pitts, 1993). In most cases
it is experimentally useful to consider the effects of UVB and UVA separately, but the

natural environment always contains a mixture of both UVB and UVA (Zigman, 1993).
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Thus UVA and UVB synergism is part of the focus of this thesis. According to Zigman
(1993), the solar UVR in the environment is 97% UVA and 3% UVB, and from direct
sun at an intermediate latitude, the eye would receive approximately 300 kJ/m> (30 J/em?)
of UVA and 10 kJ/m* (1 J/em®) of UVB in 30 minutes.

The effect of solar UVR on cataract prevalence has been a major focus in
epidemiologic and laboratory studies. Cataract in ocular terminology is the opacification
or loss of transparency of the crystalline lens of the eye, which interferes with vision. The
crystalline lens is a transparent, biconvex, and elliptically (round in some animals) shaped
living intraocular tissue. Its transparency and ability to change shape in order to modulate
ocular accommodation makes it an integral part of the optical system of the eye. The lens
contributes approximately 1/3 of the optical power of the human eye, while the comea
contributes the remaining 2/3 (Moses, 1981). The attachment of the zonular fibres
(suspensory ligaments), and the support provided by the vitreous posteriorly and the iris
anteriorly maintain the position of the lens. This support facilitates changes in lens shape
that are essential for accommodation, and to assist the cornea in the focusing of light on
the retina. The lens cells have definite metabolic needs and require a balance in their
plasma membrane integrity in order to maintain optical transparency of the lens. The
crystalline lens is exposed to the UV, visible and infrared (IR) wavebands of the
electromagnetic radiation (EMR) spectrum throughout life.

EMR is a form of energy which is emitted, transmitted or absorbed in wave or
particulate form (Pitts, 1993). The term radiation is often referred to as radiant energy.
Radiant energy is an EMR propagated through space, a vacuum or any medium to

impinge on an object or a molecule. The medium might be isolated cells, intact tissues or
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a whole organ. EMR, often considered as waves by physicists, is characterised by its
wavelength and frequency of oscillation, and these are related by the formula ¢ = v,
where ¢ is equal to the velocity of propagation in the medium, v is the frequency, and A is
the wavelength. Although the frequency (V) of a wave is its more fundamental
characteristic, photobiologists most commonly use the wavelength (nm). EMR acts as
small bundles of energy having many of the properties ascribed to particles. These are
called photons or quanta. Ultraviolet radiation (UVR), which is the spectrum of focus of
this thesis, constitutes the wavelengths between 400 nm and 100 nm of the EMR. The
UVR is an important component of the EMR spectrum because of its abiotic effects, to
which the human eye is constantly exposed environmentally and occupationally. The eye
is the only organ or tissue in the body (aside from the skin) that is particularly sensitive to
the non-ionizing wavelengths of the EMR, from 280 nm to 1400 nm, which is normally
present in our environment (Sliney, 1986). The amount of UVR impinging on a unit area
of surface is called irradiance (unit of measurement: W/m? or W/cm?). The dose of UVR
is the irradiance multiplied by the exposure duration in seconds (Pitts, 1993). The
threshold dose refers to the least radiant energy (Unit: J/cm?) needed to cause an adverse
biological effect. The most damaging UVR waveband to the lens is from 290 nm to 315
nm (Pitts, 1993). The mechanisms by which UV radiation causes cataracts are still not
clear. Several possible mechanisms have been suggested, including tryptophan
degradation leading to decreased levels of ATPase and increased levels of free radicals,
and UVB damage to the lens epithelium leading to a calcium imbalance in the membrane
(Zigman, 1985; Hightower and McCready, 1992a, 1992b). It is agreed that UVB can

cause cataract, but the role of UVA is still controversial (West et al., 1998; Dillon, 1999).
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For cataract studies, experimental methods have involved in vivo and in vitro
approaches. However, concerns for animal welfare have led to a need to reduce the use of
live animals in research. Therefore, scientists now concentrate on in vitro studies to
understand the cellular, molecular, biochemical and biophysical mechanisms of UV

induced human cataracts.

1.2 REVIEW OF LITERATURE

1.2.1 Cataractogenesis and UV Radiation

The rate of blindness is an increasing concern worldwide. Cataract is the commonest
cause of blindness (acuity less than 3/60) in the world, and the second leading cause of
visual impairment (acuity less than 6/18 to 3/60) after uncorrected refractive error (Al
Farran, 1990; Badr, 1993; West and Valmadrid, 1995). It has been stated that
communities in developing countries have enhanced morbidity due to cataract when
compared to developed countries (Steele, 1990; West and Valmadrid, 1995). Part of this
has been attributed to environmental factors, physical agents such as UVR or genetic
and/or disease conditions such as diabetes, diarrhea or malnutrition (Taylor et al., 1988;
Harding, 1991; Taylor, 1995; West and Valmadrid, 1995). Improvements in healthcare,
welfare and diet over the last 3 to 5 decades have resulted in more people living longer.
The process of ageing affects the eye just as any other part of the body. In the United
Kingdom, a study (with a response rate of 71.5%) of people over 75 years living in the
Melton Mowbray area for sight threatening conditions showed the prevalence rates to be
46.1% for age related cataracts and 41.5% for macular degeneration (Gibson et al., 1985).

Although visual loss due to cataract might be remedied surgically, its surgical
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management would continue to cause increasing demands on healthcare and human
resources, and this is currently a major concern worldwide. In the United States, eye
problems will grow as the presently estimated 76 million baby boomers age. Cataracts are
expected to increase from 12.2 million cases in 1995 to 23 million in the year 2030 (this
is an 89% rise, according to Prevent Blindness America, 1996). The US National Society
to Prevent Blindness states that the prevention and slowing of cataract development is
one of their major goals for future vision research projects (Prevent Blindness America,
1996).

In many countries, particularly developing nations, cataract surgical treatment is
not easily attainable. Cataract has been, and still is a major healthcare problem in both
developed and developing countries such as the United States (Kahn et al., 1977a & b;
Hiller et al., 1983; Young, 1991), Canada (Seidman-Ripley and Huang, 1993), Australia
(Livingston et al, 1994), India (Thylefors, 1995; Chartterjee et al., 1982), Nepal (Mitchell
and Lepowski, 1986), Africa (Thylefors, 1995; Zerihun, 1994), England and Wales, and
China and Hong Kong (Yap and Wong, 1992). A report from the United Kingdom in
1998 also supports the implication of cataract as a major cause of blindness with the data
showing a backlog of 16-20 million unoperated cases globally per year (Thylefors,
1998). A waiting period for cataract surgery has been estimated to be approximately 18
months in the United Kingdom (Harding, 1999), with most patients likely spending more
than a tenth of their remaining life expectancy visually impaired on the list. This
information will probably apply to some developed and most developing countries with
longer waiting periods. Also, the cost of cataract surgery is a concern to some authorities,

accounting for 12% of the Medicare budget in the United States (Harding, 1999). This
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underscores the significance of UV cataract studies. Although cataract is believed to be a
multifactorial ocular pathology, the UVR aetiologic component, environmentally and
occupationally, is critical. Therefore it is necessary to continue investigation on the
effects of UVR exposure on the eye (lens in particular), in order to increase the existing
knowledge base.

That exposure of the human eyes to the UVR wavelengths of sunlight may be a
factor in the formation of cataracts has been known for many years (Verhoeff et al., 1916;
Duke-Elder, 1926; Clark, 1935; Pitts et al., 1977b; Zigman, 1977, West et al., 1998).
Duke-Elder and Duke-Elder, (1929) cited that the first series of scientific work on the
production of cataract from UV exposure was carried out by Widmark between 1889 and
1903. Widmark (1889, 1892, 1893, and 1901) found that 2 to 4 hours in vivo exposure of
rabbit eyes to the UV portion of experimental radiation, from a powerful carbon arc,
caused lenticular opacification. Widmark (1892 and 1893) described the morphological
changes to the lens following acute UVR dose and observed that anterior cortical
opacities occurred after irradiation with broad spectrum UVR. He described the opacities
as diffuse milky opalescence and a radial stripe at the anterior lens surface. Also in 1901,
Widmark found that 18 hours or more post-UVR exposure in rabbits showed an increase
in the number of epithelial cells, and damage in the anterior subcapsular zone. This zone
had swollen lens fibres, granular spaces between lens fibres, and sometimes epithelial
cells buried in the anterior cortex. In the early part of the 20" century, Hess (1907),
Martin (1912), Verhoeff et al., (1916), and Duke-Elder and Duke-Elder (1929) performed
experiments with high doses of UVR to lenses in vivo, and found the same microscopic

alterations described by Widmark (1892, 1893, and 1901). Pitts et al., (1977a) described
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the appearance of the lens using slit-lamp biomicroscopy following acute in vivo
exposure to 5 nm bandwith in the 300 nm wavelength region. They found that reversible
changes occurred if the UVR dose was near a threshold level (0.15 J/em? UVBY): the
anterior lens capsule orange-peel appearance was enhanced; the anterior suture line
increased in prominence; and small discrete white dots appeared in the anterior
subcapsular region of the lens epithelium. Permanent damage to the lens occurred at
radiant exposure levels approximately twice the threshold level with coalescence and
migration of the small white dots posteriorly into the anterior cortex, cortical haze
increase, and appearance of vacuoles. Verhoeff et al., (1916) found that crystalline lenses
were maximally sensitive to exposure in the 300 nm wavelength region. Using a double
monochromator with a 5 nm band pass and rabbit eyes in vivo, Pitts et al., (1977a)
confirmed Verhoef et al’s (1916) initial discovery that the lens is maximally sensitive to
UVR in the 300 nm region.

The association of cataract prevalence with UVR from sunlight has been
supported with more recent scientific data (Grover and Zigman, 1972; Pitts et al., 1977a;
Zigman, 1977; Zigman et al., 1977; 1979; Brilliant et al., 1983; Frederick et al, 1989; The
[talian-American Cataract Study Group, 1991; Schein et al., 1994; West et al., 1998).
However, the mechanisms for the development of discrete light scattering cortical and
subcapsular opacities (cataracts) by UVB, require further investigation (Pitts et al., 1977b;
Thomas and Schepler, 1980; Cullen et al., 1994; Stuart and Doughty, 1996).

The current belief amongst some epidemiologic and laboratory investigators is
that only the UVB component of the solar radiation could cause UV induced cortical

cataracts in humans (Taylor et al., 1988; West et al., 1998). However, since the vast
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majority of the environmental UV radiation absorbed by the lens is UVA, we may not
exclude its involvement in the formation of cortical cataracts in humans (Dillon, 1999).
Experimental evidence shows that UV radiation with wavelengths below 300 nm is
absorbed by the comea, and that of wavelengths between 300 nm and 400 nm reach the
lens, and are absorbed, causing abiotic effects (Pitts, 1993). It has been suggested that the
dose of UVR required to induce cataracts would have to be so great that corneal and iris
damage would occur first (Duke-Elder and McFaul, 1972). But experiments by Pitts et
al., (1977a and b), and Jose (1986) have shown that lenticular opacities may occur in in
vivo experiments, without causing observable macroscopic changes to the cornea. As
mentioned earlier, Zigman (1995) calculated that only approximately 3% of the total
UVR wavelengths reaching the surface of the lens are UVB, and it is believed that the 3%
UVB could still be very potent in causing lenticular damage without appropriate
protection (Taylor et al., 1988; West et al., 1998). Supporting the UVA theory, Barron et
al. (1987) and Giblin (1998) showed that UVA causes nuclear light scattering in the
guinea pig and GSHPx knockout mouse, respectively. Linetsky and Orthwerth (1995)
have shown that UVA irradiation of older yellow human lens protein causes the
formation of a number of reactive oxygen species.

Burge et al. (1937) explained that the ionization of phosphate by solar UV is
followed by the formation of insoluble calcium phosphate deposits, which could be a
mechanism underlying senile cataract formation. In addition, Zigman (1985) mentioned
that solar UV would cause tryptophan degradation and calcium imbalance in the lens
membrane. Van Hehningen (1972) compared cataracts removed from patients in Pakistan
to those in England and found more elevated calcium phosphate deposits in brunescent
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cataracts removed from patients in Pakistan, thereby supporting Burge et al. (1937)’s
theory. Hightower and McCready (1994a) following in vitro UVB irradiation of cultured
rabbit lens epithelial cells have reported loss of ion homeostasis in the lens epithelium. In
another theory, Vérétout et al., (1989) mentioned that the “short range” order of the
protein molecules in the crystalline lens is sufficient to ensure transparency, and that any
disruption of the short-range order would cause opacification. Addressing the issue of
mechanisms further, in this thesis, it is hypothesised that both moderately high levels of
UVB and UVA would reduce lens cellular metabolism (particularly mitochondrial
cytochrome activity) and destabilize cell plasma membrane, which might invariably

disrupt the “short range” order of lens protein molecules.

1.2.2 Spectral Transmission of the Anterior Eye Segment

Due to filtering by the cornea, the UVR normally reaching the lens ranges from
290 nm to 420 nm (Kinsey, 1948). The amount of radiation that reaches the ocular lens
from a light source is determined by the transmittance of the cornea and aqueous humour
an‘erior to the lens. For visible and near infrared, there is little difference between the
spectral transmittance of the individual ocular media (Boettner and Wolter, 1962; Barker,
1979; Chou and Cullen, 1984). The near-UV radiation is strongly absorbed in the anterior
segment of the eye by the cornea, aqueous humour and lens. The exception to this is that
in aphakic eyes (i.e. eyes in which the crystalline lens has been removed), the posterior
eye segment can also receive sufficient near-UV energy to be damaged by it (Zigman,
1993; Oriowo, 1996). Since the lens acts as a UV filter, the greatest damage to the retina

in intact eyes is from blue light. The blue retinal photoreceptors absorb blue light for
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vision, but they can also be damaged by intense exposure to it. Blue light and near-UV
radiation induced cellular damage is often enhanced by natural photosensitizers present in
all living cells and body fluids, for example riboflavin (Zigman, 1993). A quantitative
determination of UV radiation absorption by the cornea and aqueous humour is important
to study its effect on the lens. Lembares and co-workers (1997) studied the absorption
spectra of porcine and human comeas from 190 to 350 nm. They found that corneal UV
absorption increases significantly with wavelength decreasing from 240 to 220 both in
porcine and human corneas (Lembares et al., ( 1997). It should be remembered that it is
not (exclusively) the transmittance amount that determines damage but rather the
matching of the tissue receptor to the wavelength of radiation. When this happens one
photon can produce UV biochemical damage (personal communication with Dr. D. G.

Pitts, 1998).

1.2.3 UV Radiation Sources

Sunlight is the chief source of natural UVR. Sunlight is such a common experience for
humans, animals and plants, that sometimes its contribution to our lives and importance
to our environment is not appreciated (Pitts, 1993). UV radiation was discovered in
1801, when Ritter found that silver chloride was blackened, just as it is by light, if placed
at the violet end of the spectrum where there seems to be no light at all (cited by Tousey,
1961). The sun is essentially a sphere of gas around which the Earth and other planets
revolve. It is heated by the nuclear reaction derived from its centre and it provides heat,

light, and energy for the entire solar system.
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All life forms including humans are constantly exposed to solar UVR from the
solar sphere, directly from the sky, and indirectly by diffuse and specular reflection from
various surfaces of the earth. Each of these factors continuously varies with the time of
day, zenith angle of the sun, the cloud cover and changes in reflecting surfaces (Pitts,
1988). These variables make the determination of solar UVR available for exposure very
difficult (Scotto et al., 1976; Frohnlich and Brusa, 1981; Rosenthal et al., 1985; 1988).
Considering the albedo (i.e. reflected rays) from surfaces, the total UV radiation reflected
from grass has been reported to be about 3%, 20 to 30% from sand, and 3 to 5% from
fresh water, but reaches 85 to 95% from fresh snow (Sliney, 1986; Pitts, 1988). This
information indicates that the total amount of environmental UVR reaching the eye is
greatly enhanced by the reflectance of the surroundings such as concrete sidewalk, white
house paint, dull aluminum, open water, sea surf, sand and snow.

The solar radiation received on the Earth’s surface from sunlight is called direct
while the scattered solar rays as the result of water vapour, turbidity and Rayleigh and
other scatter is called indirect solar radiation. The combination of both direct and indirect
is called sunlight total or global spectral radiation. The solar UVR in the environment
exceeds that directly from sunlight, because the total UVR in the environment includes
both the direct and indirect solar UV irradiation. Figure 1.1 shows the direct solar spectral
output in the UV and visible wavelength range (280-700 nm) measured in June 1999,
noontime at Waterloo, Ontario, Canada (43 30N) at a sun elevation of 75-85 degree. The
solar spectral irradiance is the distribution of the solar constant as a function of
wavelength (Mecherikunnel et al., 1983). The measured solar spectral irradiance in

Waterloo compares well with the data of Mecherikunnel et al., (1983). The literature
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indicates that over 96% of the solar spectral irradiance on Earth is contained in the
wavelength range beginning at about 270 nm and extending to 2600 nm while 49% lies in
the visible spectrum in the 400 to 700 nm waveband. This means that half of the solar
radiation is in the wavelength range that serves human vision (Pitts, 1988). Solar
radiation on Earth called sunlight consists of approximately 13% UVR, 44% visible and
43% infrared (Pitts, 1988).

For the general population, the second largest potential source of UVR normally
encountered, is from high-temperature lamps, which have become popular for workplace
illumination, exhibition lighting systems, other indoor areas of activity, or for special
occupation or health related-activities which may expose humans to near-UV (i.e., UVA:
320-400; UVB: 295-320 nm) energy (Zigman, 1985; Pitts, 1993). Pitts (1993) gave a list
of occupations with light sources producing excess UVR that affects the eye. These light
sources include welder’s arc, light curing generators for dental procedures etc. Oriowo et
al. (1997) have shown that the light sources used in glassblowing operations also produce
some near-UVR. Baum and Pitts (1997) reported a case of 46-year old male caucasian
with no other known risk factors, who developed bilateral posterior subcapsular cataracts
18 months after occupational repeated exposure to a non-filtered UVR device. All of

these points emphasize the importance of further understanding the mechanisms of UV

damage to the lens.
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Figure 1.1. Solar spectral output as measured at Waterloo, Ontario, Canada on June 18, 1999 at noontime.
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1.2.4 Ozone and Solar UV Radiation
It is known that the ozone layer helps protect all life forms from harmful UV radiation.
Evidence in the literature shows that ozone depletion is actively ongoing. The importance
of the ozone story to humans, animals and plants is that the lower wavelength and the
intensity of the UVR falling on the Earth depends on the integrity of the ozone layer and
the air mass of the atmosphere. Ozone (O:) is formed through the action of short
wavelength UV radiation on molecular oxygen by photolysis: O + Oz = O3; Oz + hv =
20, then 20 + Oz = Os. It has been concluded that chlorofluorocarbons (CFCs) could
harm the stratosphere by interacting with Os to produce O and result in net increase in
the UVR reaching the Earth. Prior to last 3 decades, CFCs were used as refrigerants in
some industrial and household appliances. As well, the development and use of
supersonic transport (SST) within the last 3 decades has created concern that the
propulsion effluents from the SST aircraft engines could result in a degradation of the
stratospheric ozone. Subsequently, studies were designed to analyze the impacts of the
propulsion effluents of aircraft engines on the stratospheric ozone (Anon, 1979). These
studies predicted an increase in solar UV radiation due to partial loss of ozone and
changes in temperature and precipitation associated with the increase in pollutants such as
aerosol sulphates and water vapour (Pitts, 1993).

Molina and Rowland (1974) first suggested that CFCs or chlorofluoromethanes
(CFMs) could reduce the stratospheric ozone layer. Alyea et al., (1975), using the effluent
production of the nitrogen oxides (Nox)s by the SST, predicted an annual depletion of

12% in the stratospheric ozone in the northern hemisphere and a depletion of 8% in the
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southern hemisphere. By the late 1970s, different studies had established ozone depletion
rates of 7.5%, 10.8% and 16.5% thus supporting Molina and Rowland (1974)’s
hypothesis (Anon, 1979). In addition, Gille et al., (1984) reported a 12% reduction in
stratospheric ozone over an 11 year solar cycle at a rate of 1.09% reduction per year in
support of the ozone depletion hypothesis.

Clearly, the literature indicates that the plant and animal life, especially of the
Antarctic is being affected by the increase in solar UV (Frederick and Lubin, 1988). The
recognition by the United States, Canada, Europe, and other countries of the adverse
impact of the increase in solar UV on humans, animals and plants led to an ozone treaty
which was endorsed by more than 40 countries at a meeting in Montreal in September,
1987 (Montreal Ozone treaty, 1987). The purpose of the treaty was for countries to limit
the production of CFCs, since it has been generally believed that a progressive decrease
in atmospheric ozone globally would increase the amount of UVB reaching the Earth’s
surface (Bowman, 1988; Pitts, 1990; Blumthaler and Ambach, 1990). This belief was
officially recognized in Europe in 1989, when the European Economic Community (EEC)
banred all uses of CFCs by the end of the 20" century (Dickson and Marshall, 1989).
Data supporting the hypothesis that decrease in ozone will increase UVR intensity comes
from Kerr and McElroy (1993) who monitored UVB (from 300 nm) levels as well as
ozone thickness over Toronto (44°N), Canada between 1989 and 1993. They found that a
downward trend in total ozone thickness (~4% per year in winter and ~2% in summer)
was accompanied by increase in UVB intensity of 35% per year in winter and 7% per year
in summer. Kerr and McElroy (1993) also found that total daily UVB ambient dose
routinely reached levels of 0.01 J/cm? as measured on a flat surface. In 1988, Taylor and
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associates, predicted a 1% increase in the prevalence of UVR-induced age related cortical
cataracts with each year of exposure to sunlight.

Another factor that affects the solar UVR hypothesis is that in winter when
temperatures in the stratosphere are very low (near —100 degree C), ice particles form in
the stratosphere. These are called polar stratospheric clouds (PSCs). At low temperatures,
PSCs become part of the process that destroys the ozone layer (Wardle et al., 1997). It has
been mentioned that the buildup of carbon dioxide and other greenhouse gases
contributes to cooling of the polar stratosphere which favours the formation of PSCs
(Austin et al., 1992). The various reports of O; measurements show conclusively that the

stratospheric ozone has decreased over the last 3 decades (Kerr, 1997).

1.2.5 The Crystalline Lens

The crystalline lens is one of the tissues in front of the retina which must be transparent to
light for optimum vision to be maintained at the appropriate physiologic level (Harding,
1991). It is an avascular, cellular structure within an acellular capsule. The lens
epithelium like other epithelia constantly produces new cells. However, since the
basement membrane is located externally, new cell growth is directed inward. This makes
the lens unique among the tissues of animals because all the fibres produced at all stages
of life are retained within the adult lens (Hoyer, 1982). New cell growth is restricted to
the peripheral equator so that older lens material is concentrated toward the centre as the
number of lens cells increases through life (Duke-Elder, 1958). The lens, just as the
corneal epithelium, is formed from the surface ectoderm, and yet lies deep within the eye

(Pearson and Weleber, 1972). The lens has an onion-like layered structure (Wanko and
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Gavin, 1958) and its refractive index is variable (higher at core). Figures 1.2A and B

illustrate schematic diagrams of the crystalline lens regions and components.

Figure 1.2A. Diagramatic cross section of vertebrate lens with the various regions indicated as C, capsule;

E, epithelium; GZ, germinative zone; PZ, preequatorial zone; CZ, centarl zone; MR, meridional rows; and
DC, differentiating cells (Adapted from Harding et al., 1971).

Figure 1.2B. Schematic representation of half of the crystalline lens showing the capsule, epithelium, cortex
and nuclear zone. (Adapted from Hogan et al., 1971).
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The crystalline lens provides 1/3 of the refractive power of the human eye.
Although the comea provides 2/3 of the refractive power in humans (Moses, 1981), it
only provides a fixed refractive power. The human crystalline lens functions primarily to
focus images onto the retina over a range of focal distances. The lens mainly consists of
elongated cells within the cortex known as lens fibres. Anteriorly and laterally, 2 layer of
cuboidal epithelial cells that secrete the basement membrane covers the cortex. This
elastic basement membrane encapsulates the entire lens structure and is known as the lens
capsule. The anterior capsule is over 5 times thicker than the posterior.

'I'hemetabolicsy‘stemsinthelensmasenﬁaﬂythesameminothertissu&c
(Harding, 1997). Cell nuclei, mitochondria and ribosomes are abundant mostly in the
epithelium and outer fibres (Maisel, 1985; Harding, 1997). Mitochondria are the
membranous cytoplasmic organelles capable of trapping chemical energy released by
oxidation of compounds derived from nutrients (Weiss, 1988). Mitochondria then fix the
trapped energy in form of adenosine triphosphate (ATP) that is readily utilizable by the
cell. Maintenance of mitochondrial biogenesis is an important component of lens
metabolism including normal differentiation of epithelial cells to lens fibres
(fibrogenesis). It allows adaptive responses to biogenetic challenges such as ocular
accommodation, exercise, and systemic influences like diabetes. The major source (80%)
of energy for the lens is through anaerobic glycolysis of glucose, in the epithelial cells,
with the end product, lactate, eliminated into the aqueous fluid (Maisel, 1985; Harding,
1997). Approximately 10-15% of the glucose is metabolised by the hexose
monophosphate shunt (Maisel, 1985). The remaining 5% of the glucose is metabolised
via the citric acid (Krebs) cycle pathway, through which an appreciable amount of ATP is
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produced. For the performance of cellular function, oxidative metabolism through the
Krebs cycle is of greatest importance due to its high caloric yields. Blocking oxidation
through Krebs cycle would cause cell death (Weiss, 1988). The cell constantly fixes and
stores ATP through the electron-transfer system of cytochromes, since the energy
resulting from the oxidation of pyruvate to carbon dioxide and water would, by itself,
yield only heat. Both the Krebs cycle enzymes and electron-transfer system of
cytochromes are present in mitochondria (Weiss, 1988). The ATP is required for all
pumping activities and for synthesis of macromolecules and glutathione. For instance, the
amino acids required for protein synthesis are transported in from the aqueous humour
(Harding, 1997).

A high level of glutathione (GSH), a thiol tripeptide is synthesized by the lens and
is found almost entirely in the reduced form (Kinoshita and Masurat, 1957; Reddy, 1971;
Reddy et al., 1980). GSH, present in high levels in the epithelium, is thought to protect
lens proteins against oxidation and other forms of chemical attack (Harding, 1997,
Stewart-DeHaan et al., 1999). It is known to help in maintaining tissue levels of ascorbate
and tocopherol (Meister, 1992). Also, GSH protects NaK-ATPase and thus helps to
maintain cation levels in the lens (Reddy and Giblin, 1984). The defense systems
protecting the lens from oxidation are so efficient that essentially no protein or GSH
disulfide is observed in the normal lens (Maisel, 1985). The synthesis of GSH requires
two enzymatic (glutathione synthetase and y-glutamyl-cysteine synthetase) reactions both
using ATP (Harding, 1997). When GSH functions as an antioxidant it is converted to
oxidized glutathione (GSSG). Restoration of the reduced form (GSH) is achieved by
another enzyme, glutathione reductase using NADPH. By initiating repair whether by
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reduction of GSSH or by de novo systhesis, the lens effectively maintains its GSH in a
reduced state constantly (Reddy and Giblin, 1984). Other enzymes that detoxify
deleterious oxidizing agents in the lens include GSH catalase, GSH peroxidase, and

superoxide dismutase (Maisel, 1985).

1.2.6 Lens Epithelium and Cortical Fibres

The lens epithelium is the primary location of the pumping processes that preserves lens
hydration (Jacob, 1999). Inside the lens anterior capsule is a single layer of epithelial
nucleated cuboidal cells (Wheater et al., 1993). It is generally agreed that the main
location of lens metabolism is in the epithelium. The elaborate system of gap junctions
allows cells deep within the lens to communicate with the outer cell layers (Paterson and
Delamere, 1992; Delamere and Dean, 1993). While the central epithelial cells are
quiescent, the equatorial epithelial cells undergo mitosis and differentiate into fibre cells
which in turn elongate throughout life to form the lens core (Harding et al., 1971;
Harding, 1997). Thus damage to the epithelium from uncontrolled exposure to €X0genous
agents such as UVR can be expressed later in life in the cortical fibres (Worgul et al.,
1989).

It has been shown that exposure of the anterior surface of the cultured rabbit lens
to UVB radiation causes alterations in Na* and Ca” concentrations, a lowering of reduced
glathatione, a reduction in NaK-ATP activity, and the induction of lens opacification
(Hightower and McCready, 1992a). They showed that UV exposure of the posterior side
of the lens, that lacks an epithelial layer, did not cause ionic imbalances or opacification.

These findings suggest that the lens epithelium is of vital importance in the maintenance
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of lens homeostasis. There is still the need for continued research efforts to determine the
exact targets and the detailed mechanisms that are responsible for UV induced cataracts
(Andley et al., 1994; Stuart and Doughty, 1996). Phammacologic agents such as
dexamethasone and prednisolone affect lens epithelial function and may cause cataract
(Urban and Cotlier, 1986) by increasing cation permeability, inhibiting NaK-ATPases
(Miller et al., 1979; Mayman et al., 1979), and disrupting the structure of the lens
epithelium (Karim et al., 1989). The important functional role of the lens epithelium is
reinforced by the loss of ion homeostasis and subsequent opacification when it is
damaged by factors such as UV irradiation (Hightower et al., 1994a). It has been
suggested that oxidation of membrane components (including pumps, channels and
transporters) is the initiating event of cataract (Spector, 1984). Kise et al., (1994) showed
that oxidative stress causes aerobically incubated rat lenses to swell, lose their electrolyte
balance and opacify as a result of decreased epithelial NaK-ATPase activity. An
hypothesis presented in this thesis is that UVR (UVB and/or UVA) would disrupt lens

plasma membrane integrity and inhibit epithelial cell metabolism due to oxidative stress.

1.2.7 Pathophysiology of UVR-Induced Cataracts

There is currently general agreement that the photodamage mechanism of UVR-induced
or enhanced cataracts is photochemical. Usually, exposure to UVR (especially UVB)
exhibits a phototoxic effect on the lens by causing cellular proliferation in the subcapsular
epithelium which may develop into swelling and partial (repairable) or complete
destruction of the epithelium and the cortical fibres. Free radicals and unpaired electrons
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are generated wherever some radiation energy process such as UVR (Pathak, 1986;
Soéderberg, 1990) breaks up molecules. Frequent exposure to low levels of UVR without
adequate protection will damage ocular tissues photochemically by changing the chemical
structure or composition of the intra- and extracellular biomolecules (Cullen, 1980;
Bergmanson and Soderberg, 1995). In contrast, it has been suggested that exposure to
higher levels of UVR, particularly the longer UVR wavelengths and shorter visible light
wavelengths, will often initiate thermal damage (Sliney, 1986). However, it is not clear
whether or not the mechanisms for acute and chronic UVR phototoxic effects are
identical for the crystalline lens, making it difficult to correlate results from laboratory
experiments on acute response with the chronic response in epidemiologic studies
(Sliney, 1986; Pitts, 1993).

A predominant mechanism in the formation of cataracts involves a decrease in
lenticular reduced glutathione (GSH), a component involved in the protection of lens
proteins (Harding, 1991). In much phototoxic damage to the lens, the amount of GSH
decreases, and as a result the amount of oxidised glutathione (GSSH) increases. The exact
mechanism in this case involves the attachment of GSSH to the lens protein, the
crystallins, and subsequent formation of mixed disulfides (Harding, 1991). These mixed
disulfides, in turn are susceptible to photochemical insult and protein aggregation. This
cycle might go on as long as exposure to the phototoxic agent continues, and subsequent
partial or complete opacification of the crystalline lens results. Also, lipid peroxidation
has been shown to be involved in the pathogenesis of some types of cataract (Bhuyan et
al., 1983; Babizhayev et al., 1988). Cholesterol is an essential component of lens plasma

membrane (Girao et al., 1999). During fibre cell differentiation there is 1000 fold
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enhancement of lens plasma membrane (Piatigorsky, 1981), requiring an active de novo
synthesis of cholesterol (El-Sayed and Cenedella, 1987). Changes in cholesterol
homeostasis particularly during cell differentiation have been associated with some types
of cataract (Cenedella, 1996). As other unsaturated lipids, lens membrane cholesterol is

prone to oxidation by most reactive oxygen species (Zelenka, 1984).
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1.3 THE PURPOSE AND RELEVANCE OF THIS THESIS

1.3.1 RATIONALE FOR STUDY

The mechanisms of the pathogenic effects of ultraviolet radiation (UVR) on human
crystalline lens remain controversial (Stuart and Doughty, 1996; Baum and Pitts, 1997;
Dillon et al., 1999b). Most laboratory and epidemiological data have supported the
concept of association between solar UVR exposure and cataract formation (Hiller et al,
1983; Taylor et al., 1988; Dolin, 1994; West et al., 1998). Recently, opposing views have
been expressed about the concept of association between sunlight and cataract. Young
(1991, 1993) suggests that sunlight is the primary causal factor in cataractogenesis, and
strongly advocates protection by the use of sunglasses to prevent cataract. However,
Harding (1992) had an opposing stance that sunlight is not a major factor in human
cataractogenesis. Dillon (1999) argued that even UVA cannot be excluded from UV
enhanced cataracts. Though limited, evidence existing in the literature still points to the
fact that exposure to solar UVB causes cortical opacities in the human lens (Taylor et al.,
1988; Schein et al., 1994; West et al., 1998).

Several authors have proposed that the increased pigmentation may have resulted
from the generation of free radicals after exposure to near-UVR (Lerman and Borkman,
1978). This free radical hypothesis postulates that tryptophan exposed to near-UVR is
involved in the increased pigmentation in a nondestructive fashion by generating free
radicals and other oxidants. It may be argued that in vitro investigation cannot be
assumed to mimic in vivo condition, but results from in vitro studies can be at least
suggestive (Rafferty et al., 1997). It was the goal in this thesis to develop a new in vitro

assay technique for UV-lens study.
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1.3.2 DEVELOPING A NEW BIOASSAY TECHNIQUE
One aim of this thesis is to explore the applicability of two fluorescent indicator dyes; 5-
carboxyfluorescein diacetate-acetoxymethyl ester (CFDA-AM), and alamarBlue™ to UV
cataractogenesis studies in order to be able to study the cellular and biophysical aspects of
a whole organ cultured crystalline lens without having to separate the component layers,
or using lens homogenates. These two fluorescent dyes target different cellular activities
in the lens. They have different and non-interfering excitation and emission wavelengths;
thus the dyes can be assayed together. The CFDA-AM measures the integrity of plasma
membranes, while the alamarBlue™ measures cellular metabolic activity, respectively
(Schirmer et al., 1997). Bearing in mind that assay dyes used for a non-terminal and long
term in vitro study must be non-toxic to the cells, the author carried out pilot study with
non-irradiated lenses to investigate if assaying cultured lenses with the dyes would not
demonstrate any toxicC trend. In order to verify the data collected from the assay method,
the optical quality of the same lenses was assessed with a laser scanning system (Sivak et
al., 1986; Weerheim and Sivak, 1991). The findings from the pilot study and other
subsequent experiments with the assay system will be discussed in the following chapters.
In order that extrapolation of animal cataract data to the human may be repeatable
among investigators, further development of a viable, practical and repeatable
experimental model is necessary. Most previous UVR cataract studies have used rabbit,
monkey, cow, fish and mouse eyes as in vivo and in vitro experimental models. Coupled
with earlier mentioned limitations, it is becoming increasingly expensive to use live
animals for laboratory research. Therefore, the organ cultured porcine crystalline lens was
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examined as a viable in vitro biochemical model for UV cataract study. The pig eye was
chosen because of its close similarity to the humans (Duke-Elder, 1958; Zubay, 1985),
and similar lenticular dimensions (Elliott, 1993). As well, Beauchemin (1974) found that
the ultrastucture of porcine retina resembles that of humans, although it is afoveate and
there is no true macula (Vestre, 1984). Biochemical studies have demonstrated that
leucine aminopeptidase (LAP) is present in the epithelium and outer cortex of porcine
lenses just as it is in bovine lenses and human (Taylor et al., 1983; Stuart and Doughty,
1996). It may be argued that inter-species differences in ocular anatomy and physiology
can greatly affect the applicability of animal data to human. However, Geeraets et al.
(1963), Cavonius et al. (1974), and Pitts (1978) have suggested that if experimental
animal data were scaled by the appropriate weighting factors they can be applicable to
human situations.

Most laboratory UV cataract studies have concentrated on bovine, rabbit, squirrel,
rat and fish lenses. Apart from the fact that the traditional use of rabbits for in vivoa UVR
studies, requiring a large number of subjects for acute and chronic UV radiation studies
has become difficult, the rabbit eye is nocturnal with a retinal photoreceptor population
very different from humans. The lens of a diurnal animal tends to be relatively flatter than
that of a nocturnal animal, and has some degree of yellow colouration (Chou, 1982).
Furthermore, the retinal circulation of rabbit is superficial, penetrating only to the nerve
fibre layer, while that of human eye penetrates to the outer plexiform layer (Duke-Elder,
1958; Newell, 1992). As mentioned earlier, Beauchemin (1974) has shown the porcine
and human retinal vasculature to be closely similar. The retinal vascular system in pig is

trilaminar with the capillary network extending externally to the outer part of the inner
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nuclear layer, and internally to the ganglion layer, except in the peripapillary area where
capillaries are also found in the nerve fibre layer. The presence of capillaries in porcine
nerve fibre layer in the peripapillary region explains why the nerve fiber layer was found
to be thicker than in humans (Hogan et al., 1971). Beauchemin (1974) also noted the
abundance of cones distributed among the rods in porcine eye, however the implication of
this on whether the pig is predominantly diurnal has not been fully studied. Evidence in
the literature shows that porcine lenses have not been fully explored as a possible viable
and comparable in vitro animal model for cataract and lens research. To date just a few in
vivo studies using pig’s eye as a model (Boisvenue et al., 1978; Begue and Moran, 1979;
Sanford and Dukes, 1979; Sanford et al., 1981; Creighton et al., 1982) have been done.
Thus, it was deemed necessary to revisit the use of pig eyes as experimental model, and
based on the results, to possibly propose the porcine crystalline lens as a model for future

in vitro UV-lens investigations.

In summary the objectives of this thesis were to:

1. Determine the suitability of porcine lens as a model for long-term organ culture study.
2. Determine the in vitro action spectrum for UVB and UVA radiation phototoxicity
using organ cultured porcine lenses.

3. Determine the UVB threshold for damage using a fluorometric bioassay technique.

4. Determine the UVA threshold for damage using the same method as in the UVB study.
5. Investigate the synergistic effects of UVB and UVA together on lens epithelial cell
mitochondrial integrity (hypothesis - synergism will lower UVB and UVA radiant energy
level required to induce phototoxicity in the crystalline lens in vitro).
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Chapter 2

Organ Cultured Porcine Lens as an In vitro Experimental Model for
Ultraviolet Induced Cataract Studies

2.1 Abstract

The purpose of this section of my thesis was to investigate the suitability of using
cultured porcine lens to study lens damage by UV radiation, and to determine how long
the porcine lenses could be cultured without deterioration. Intact porcine crystalline
lenses aseptically dissected from pig eyes obtained from a local abattoir were immersed in
a culture medium in two-chambered containers. The culture medium was comprised of
modified medium M199 supplemented with 1% penicillin/streptomycin and 4% sterile-
filtered porcine serum. Lenses were incubated at 37°C with 4% CO; and 96% air. Lenses
were assessed in terms of cell biology and optical function. The cell biology technique
involved the use of two fluorescent indicator dyes, alamarBlue™ and CFDA-AM which
have been reported to be non-radioactive and non-toxic for cell culturing. The two dyes
were assayed together and used to monitor lens metabolism and membrane physiology at
one week intervals, for up to 8 weeks. For the assay measurements lenses were
transferred into a 24-well culture plate with one lens per well. The assay solution was
added to each well containing a lens, and the lenses were incubated for 50 minutes. After
the 50 minute incubation with the assay, fluorescence values were measured with a
computer controlled CytoFluor™ II fluorescence multi-well plate reader. The optical

quality of the same lenses was monitored as a measure of focal length variability
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(sharpness of focus) with an automated laser scanning system (Sivak et al., 1986) at
approximately the same interval as the assay measurements. The first sets of readings,
taken at week one of culture, were compared to subsequent readings using a paired ¢ test
with P values set at 0.05 level. Beginning from week seven there was a significant
decrease in lens cellular metabolism (P = 0.005) and membrane integrity (P = 0.0006) as
indicated by alamarBlue™ and CFDA-AM measurements, respectively. Also, the optical
quality of the lenses showed some deterioration (P = 0.02 for both mean focal length and
focal length variability) at week seven of culture. These findings show that in an
appropriate physiological medium, the intact porcine lenses could be cultured for at least
six weeks with no significant compromise of integrity. This confirms that porcine lens is

a viable experimental model for in vitro cataract studies.

2.2 Introduction

Acute and chronic exposures to solar ultraviolet radiation (UVR) have been
implicated in a wide range of dermal and ocular pathologies including UV induced
cataract. Cataract (opacification or compromised clarity of the crystalline lens) is the
leading cause of blindness in the world (Harding, 1999). The mechanisms underlying UV
cataract formation are still not fully understood. An in vitro optical method using a laser
scanning approach for long-term study of the intact cultured crystalline lens was
developed by Sivak et al., (1986). The present study was designed to develop an in vitro
cell biology approach that can be used to study UV toxicity in organ cultured whole lens

on a long-term basis.
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Various in vitro approaches have been used to assess UV effects on the crystalline
lens. Morphologic methods, including ultrastructural studies, do not easily yield
quantifiable results. Moreover, these methods involve the destruction of the sample (Van
Hom et al., 1970). There are limitations to methods that monitor cellular morphology and
function of an intact “living” lens over a long period of time. For instance, assaying RNA
synthesis with [*H]-uridine, and assessment of protein synthesis in lens membranes by
measuring the rate of ['*C]-histidine incorporation (Hightower et al., 1994b), both of
which involve the use of radioactive isotopes to study normal epithelial cell metabolism,
are toxic approaches. The use of radioisotopes is a terminal, labour-intensive procedure
with handling and disposal problems. Therefore, repeated measurements at different time
intervals cannot be made on the same tissue sample for a long period. Most previous
studies using the porcine lens have used lens homogenates (Sen and Pfeiffer, 1982; Wang
et al., 1997).

The present study investigated the possible use of the cultured intact porcine lens
for UV cataract study on a long-term basis, under conditions similar to those in siru, and
addressed a concern in the literature as to whether or not porcine lenses from abattoir-
supplied pig eyes are suitable for organ culture. The present study used a fluorometric
bioassay (FB) and an optical laser scanning lens monitor (SLM) as approaches to assess
the viability of the porcine lenses in vitro. The SLM system, an objective in vitro device,
developed by Sivak et al. (1986), has been used in several studies for quantitative
assessment of the optical characteristics of the crystalline lens from different animal
species. The SLM method incorporates a relatively simple computer-operated device that
objectively measures focal length characteristics of the intact lens (Sivak et al,, 1994).
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Change in lens focal characteristics is a sensitive measure of change in lens biology (Saar
et al., 1989). The fact that the lens maintains its refractive function in culture makes it
easy to quantify and evaluate repeatedly (Sivak et al., 1994). Increase in the focal length
variability has been shown to be associated with lens opacification (Sivak et al., 1990)

A novel fluorometric bioassay approach involving the use of a fluorescent
indicator dye, the alamarBlue™ assay (MEDICORP Inc., Montreal, Quebec, Canada; US
Patent No. 5,501,959), to quantify reduced enzyme activity at the cellular metabolic level
in the intact crystalline lens was explored. The alamarBlue™ assay is water soluble,
stable in solution, non-toxic, and produces easily quantifiable changes. The use of this
non-toxic dye to study UV effects on cultured intact crystalline lens has not been
previously reported. The possible use of S-carboxyfluorescein diacetate-acetoxymethyl
ester (CFDA-AM) (Molecular Probes Inc., Eugene, Oregon, USA; cat. no. C-1354).
another fluorescent indicator dye was explored as well. The CFDA-AM fluorescent
indicator dye is an esterase substrate that can penetrate living cells.

The goals of this research are:

@ To develop a valid and inexpensive in vitro assay procedure that can be used to
monitor the cellular function of the cultured porcine lens.

@ To determine how long intact porcine lenses can be cultured.

@ To correlate findings from the assay procedure with findings from the automated

optical laser scanning lens system.
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2.3 Materials and Methods

Experimental procedures conformed to the Association for Research in Vision and
Ophthalmology (ARVO) statement for the Use of Animals in Ophthalmic and Vision
Research.

2.3.1 Porcine Lenses and Culture Medium

Whole eyes, from 6-8 month old pigs (weight ~90kg) were obtained from a local abattoir,
usually within % to 2 hours post-mortem, and held at room temperature until the
dissection of the lenses, 2 to 4 hr post-mortem. To isolate the lens, the posterior of the eye
was aseptically dissected, the suspensory ligaments of the lens were cut, and the adhering
vitreous removed. The lens was placed in a custom designed two-compartment
borosilicate glass chamber containing culture medium, with the anterior surface facing up
throughout the incubation and during experimental procedures. Both lens surfaces were
bathed in approximately 25 mL of sterile medium. The culture medium comprised of
modified medium M199 (9.8 g/L) with Earl’s salts, without phenol red (Sigma Chemical
Co., St. Louis, MO, USA, Catalogue. No. M-3769), supplemented with 1% antibiotics
(100 units/mL penicillin and 100 pg/mL streptomycin: Sigma Chemical Co., cat. no. P-
0781) and 4% sterile-filtered porcine serum (Sigma Chemical Co., cat. no. P-9783), 2.2
g/L sodium bicarbonate and 596 g/ HEPES (N-2-hydroxyethylpiperazine-N'-2-
ethanesulfonic acid) as buffers, and 0.1 g/L. L-glutamine. The culture medium was
replaced with sterile medium every 48 hours. Cultured lenses were maintained in a water-

jacketed incubator at 37°C and in a 4% CO- - 96% air atmosphere for the duration of

experiments. The culture medium was kept at a pH of 7.610.2.
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2.3.2 Bioassay and Fluorometry

The alamarBlue™ assay is a proprietary assay designed to quantify cell
proliferation, cytotoxicity, and viability by incorporating resazurin and resorufin as a
fluorometric-colorimetic oxidation-reduction (Redox) indicator that fluoresces and
changes colour in response to reduction resulting from cell metabolism (Pagé et al., 1993;
Larson et al., 1997). Experimentally, alamarBlue™ assay reduced fluorescence equals
reduced metabolic activity. AlamarBlue™ acts as an intermediate electron acceptor in the
electron transport chain between the final reduction of O2 and cytochrome ¢ oxidase by
substituting for molecular oxygen as an electron acceptor (Pagé et al., 1993). Since the
proximity of its excitation (530 nm) and emission (590 nm) wavelengths, is not close,
distortion of fluorescence would be minimal. Following the protocol of Schirmer et al.,
(1997), S-carboxyfluorescein diacetate-acetoxymethyl ester (CFDA-AM), another
fluorescent indicator dye that quantifies change in lens membrane integrity, was assayed
together with the alamarBlue™ dye. Cells with intact plasma membrane maintain a
cytoplasmic milieu that supports esterase activity and the production of the fluorescent
probe. Increase or decrease in CFDA-AM assay fluorescence would suggest disrupted
membrane. CFDA can moderately permeate most cell membranes, with uptake greater at
pH 6.2 than at pH 7.4 (Haugland, 1996). The pH of culture medium in this study was kept
constant at 7.6+0.2. The esterases in the cytoplasm cleave CFDA-AM, releasing
carboxyfluorescein (CF), which is fluorescent in contrast to the nonfluorescent CFDA-
AM. The excitation and emission wavelengths for the CFDA-AM dye are 485 nm and

530 nm, respectively.
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At one week after preincubation, the experimentally enhanced fluorescence levels
of the lenses were measured with a prepared bioassay containing the two fluorescence
indicator dyes. The readings obtained at week one were taken to be a baseline, and
compared to subsequent readings taken at one-week intervals. Figure 2.1A illustrates a
flow chart for the assay protocol. The alamarBlue™ was diluted into the culture medium
(modified M199 and other culture media ingredients mentioned above) without serum, to
5% (v/v). Serum has been reported to interfere with alamarBlue™ readings (Goegan et
al., 1995). Each micro-culture well containing a lens received 1.5-mL of the assay
solution using a sterile 250-uL adjustable pipette tip and Eppendorf Repeater™ pipette
(VWR Canlab, Mississauga, Canada).

Because of CFDA-AM’s low water solubility, high quality, anhydrous
dimethylsufoxide (DMSO) was used to dissolve it as recommended by the manufacturer
(Molecular Probes Inc.). A previous study in our laboratory (Motluk and Cullen, 1994
unpublished data) found DMSO (1.8%) to be minimally toxic to organ cultured bovine
crystalline lenses. With the above information and based on the report of Schirmer et al.,
(1997) DMSO was used as the organic solvent to dissolve the CFDA-AM to 4 mM stock
solution, which was kept in a well sealed bottle and stored at —20°C in a container with
desiccant beads. The manufacturer recommends a final working concentration of between
1 and 10 pM. A low concentration is needed to reduce potential artifacts from
overloading of the cells, including incomplete hydrolysis, compartmentalisation and
possible toxic effects of hydrolysis by-products such as formaldehyde or acetic acid. In

this study, the stock solution was diluted in the culture medium without serum to give a
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4-uM CFDA-AM concentration. CFDA-AM assay loading time of 15 to 60 minutes is
recommended by the manufacturer. A fifty minutes loading time was used in this study.
For fluorometry, the alamarBlue™ (5% v/v) and CFDA-AM (4 uM) were assayed
together using a 100 pL capacity pipette tip and Eppendorf® “Tip-Ejector” microlitre
pipette. The lenses were transferred into a sterile flat bottom 24-well culture plate
(Falcon® tissue culture plate, Becton Dickinson Labware, Franklin Lakes, NJ, USA) with
one lens per well. The culture medium containing serum was carefully aspirated, and the
lenses rinsed with 2 mL of experimental medium with no serum. Then 1.5 mL of the dual
assay solution was added to each well containing a lens. The lenses were then incubated
for 50 minutes. To prevent possible precipitation, the assay solution was prepared
immediately before each use. At the end of 50-minute incubation, the fluorescence
measurements were then taken with a CytoFluor™ II fluorescence multi-well plate reader
(PerSeptive Biosystems Inc., Framingham, MA, USA) shown in Figure 2.1B.
Measurements were carried out as 2 scans per one cycle of reading. Prior to
measurements, the excitation / emission wavelengths settings on the cytoFluor™ plate
reader were adjusted to 530/590 nm and 485/530 nm for alamarBlue™ as scan 1 and for
CFDA-AM as scan 2, respectively, with the sensitivity gain set at 50, and temperature at
37°C. The plate reader probe scans through 10 different positions in each lens. Thus, an
average of 10 readings was obtained for every lens with both the alamarBlue™ and
CFDA-AM dyes. Each scan by the plate reader probe was programmed to take 10
readings each time to obtain the lens fluorescence values, and each lens was measured on
at least 8 different weekly sessions. An additional protocol in each measurement session

involved replacing the assay medium in each well with serum-free cuiture medium after
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each cycle, and then taking a second set of readings. The results reported here are based
on the first set of minimum of 2400 quantitative fluorescence readings of the lenses. All

procedures were carried out under sterile conditions.

Figure 2.1A. Flow chart illustrating the assay protocols for 8 weeks.

Fluorescent dye Lenses were dissected aseptically

1. AlamarBlee

measures
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oxidase in epithelial cells

ii. Reduction in cell metabolism

2. CFDA-AM
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esterase activity

Decrease in fluorescence
1. Loss of cells
2. Loss of cell contents
(i.c. membrane integrity
3. Inactivation of enzyme in living cells

Incresse in fluorescence

1. Increase of cell numbers (fibre cells)

2. Increase in permeability of CFDA-AM
into the lens interior as a result of
epithelial cell damage suggesting more
exposure to esterases.
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Figure 2.2. A schematic diagram of the scanning iaser monitor system
(modified from Dorfman-Hecht, 1993 and Elliott, 1993).

—

6 1) CameraX
2) CameraY
3) Lensculure chamber

4) Helium-neon laser source
S) Mirror
6) Computer monitor

38



2.3.3 Automated Scanning Laser Monitoring

The automated scanning laser “lens” monitor (SLM) as previously described by Sivak et
al., (1986 and 1994) was used to objectively assess the optical integrity of the lenses for
the duration of the culture. Preincubation of lenses for one week before optical
measurements were taken, was necessary because pilot experiments showed that it takes
approximately a week for porcine lenses to become homeostatically stable and visually
clear in culture media. Each lens was cultured in a specially designed two-chamber
container filled with the porcine lens culture medium. The lens container was then placed
in the automated scanning laser monitor (Figure 2.2), to obtain a quantitative analysis of
the optical characteristics of the lens. The initial measurements taken after incubating the
lenses for one week were used as a baseline. These baseline measurements were
compared to subsequent ones at one-week intervals through the eight-week study
duration.

The laser scanner consists of a low power (2.0 mW) helium-neon laser (A 632.8
nm), mounted on a computer directed X-Y table using stepping motors, two television
cameras and a video frame digitizer (Sivak et al., 1986). The two cameras, 90 degrees
from each other, capture the laser beam image and transfer it to a computer where the
beam’s initial position and the slope of the refracted beam are recorded. The SLM was
programmed to scan across the lens in the axial direction, at 23 positions in 0.3-mm steps
for a total range of 6.9 mm, while the digitizer determined the exit direction of each beam
after it was refracted by the lens. The threshold of the image analyzer was constant for all
the measurements. The laser scanner first locates the optical centre of the lens being
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measured by finding the point where the slope of the laser beam approaches infinity.
After finding the optical centre, the program determines the focal length at each of the 23
beam positions across the lens. Equivalent focal lengths were measured from the
principal plane (intercept of the incident beam with exiting beam) to the intercept of the
beam with the optical axis. Figures 2.3A — C show representative focal length profiles of
a porcine lens at three different times during culture. Data collected for all lenses are
expressed graphically either as mean focal length (for all 23 beam positions) or as focal
length variability (i.e., sharpness of focus) (SEM of the average focal length). Thus,
change in mean focal or focal length variability could be used to monitor lens focal
characteristics over time. Twenty-three lenses were used in this section of the study. Eight
lenses were discarded during the study because of culture contamination or handling
mishaps. Since each scan by the laser produces 23 measurements of focal length, and
each lens was scanned at least 8 times, the results reported here are based on minimum of
2,760 objective measures of the optical function of the lenses. Both focal lengths and
focal length variability were calculated and used as indicators of change in lens optical
function over time in culture.

A paired Student  statistical test (p < 0.05) was used to compare the baseline
measurements with subsequent ones. Repeated measures analysis of variance (using the
Greenhouse-Geisser test) was applied to verify the assumptions or hypotheses that: 1)
variance within the samples is homogeneous, 2) the samples are random and normally
distributed. The relationship between SLM and Fluorometric bioassay (FB) measurement
variables in the same set of lens was considered using correlation analysis (e.g. y = o + fix
[regression line]; where a is the intercept and P is the slope of the regression line).
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f this investigation, samples of porcine lenses totaling 445 were

[n the course O
equatorial diameter+SEM (mm) and

randomly used to obtain the wet weight+SEM (),
g a digital balance

axial thickness=SEM (mm). The lens dimensions were measured usin

and a vernier caliper.
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2.4 Results

Twenty-three porcine lenses were used for the assay and optical scanning laser
measurements. Only data for 15 out of the 23 lenses are reported due to discontinuation
of 8 lenses as a result of contamination or damage. The 15 lenses which lasted the 8 week
duration stayed transparent throughout this time period. The Greenhouse-Geisser test of
the assay and SLM measurements of the 15 lenses gave a P-value of 0.6937, indicating
that the variance within the samples is homogeneous, and that samples are random and
normally distributed. The original size and shape of the lenses seemed unaffected by the
experimental procedures throughout the duration of study. For instance, P values for
week 6 versus week 1 lenticular dimensions did not indicate any significant difference
between week 1 and week 6 measurements (Table 2.3). The assay readings are presented
in arbitrary units. The results show that the porcine lenses used in this study have an
average lenticular fluorescence ranging from ~7887 to ~11445 arbitrary fluorescent units
(AFU) with alamarBlue™ assay, and ~31263 to 43328 AFU with CFDA-AM assay.
Table 2.1 shows the mean (xSTD) fluorescence readings for both alamarBlue™ and
CFDA-AM. From week 7, there is a significant reduction in cellular metabolic activity
and plasma membrane integrity (esterase activity).

Optical analysis shows that average focal lengths of porcine lenses range from 27
to 32 mm, while focal length variability ranges from 0.2 to 1.1 mm (Table 2.2). The SLM
data show that there is a significant perturbation in average focal length of the lenses at
week 7 (P = 0.019), and focal length variability at week 6 (P = 0.016). Focal length
variability appears to be nonmonotonic for all lenses, however, in general, the focal

lengths for beams further from the optical axis are longer (see figure 2.3A — C) than focal
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lengths for beams located close to the centre (negative spherical aberration). Some lenses
exhibit both negative and positive spherical aberration, i.e. non-monotonic, thus
suggesting that focal length variability should be used along with average focal length as
indicators of change in lens optical quality over time. Some extraneous values were noted
near the optical centre. It is likely that the paraxial rays hit the lens sutures, which may
often produce an erratic scatter and change in equivalent focal length (Kuszak et al.,
1991). Therefore, focal length values more than 2!4 times the general average focal
lengths (~28 mm) were arbitrarily removed from the calculations.

Concerning the correlation analysis, the relationship y = o + Bx is not expected to
hold for every lens in each sample (Rosner, 1990). Thus, an error term e, which
represents the variance among all lenses needs to be introduced into the equation, i.e., y =
o + Bx + e. However, it can be assumed that the term e follows a normal distribution
with mean “0”; thus, the linear regression equationis y=a+Bx+e = y=a + fix. For
the purpose of relating SLM and FB variables, “y " is referred to as the dependent variable
and “x” as the independent variable in the equation and plots. In Figures 2.5 — 2.8, the
slope is almost equal to zero (weak correlation). This may indicate that the SLM and FB
measurements are independent of one another. However, except for Figure 2.5 showing
slight (close to zero) positive trend, the slope trends in Figures 2.5 — 2.8 show a fair
negative relationship.

In terms of lens dimensions, there was no difference between measurements taken

at 48hr (97 lenses) and 168hr (1 week) (340 lenses) of lens culture (Table 2.3).



Table 2.1. The mean (£STD) fluorescence with alamarBlue™ and CFDA-AM dyes over

8-week period.

(n=15) AlamarBlue™ P value CFDA-AM mean+STD | P value
mean+STD Contrast to Contrast to
week 1 week 1
Week1 9609.4:1004.6 35573.1+4040.2
Week2 | 9257.2+1090.5 | 0.303 37478.8+7311.6 0.168
Week3 9442 .4+930.3 0.494 38320.5+5960.1 0.105
Week4 | 9107.3+1301.8 | 0.085 39432.3+6908.7 0.096
WeekS | 9068.6+1056.1 | 0.157 38063.7+£5319.2 0.151
Week6 | 9836.9+1028.5 | 0.487 37260.1+5190.2 0.333
Week7 8585.9+742.80 | 0.005* 43103.7+5686.2 0.001*
Week8 8083.3+674.90 | 0.0001* 39506.1+4270.2 0.038*

Note: P values with asterisk (*) indicate that the fluorescence readings were significantly

different from baseline.
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Table 2.2. The mean (£STD) focal lengths (AFL) and the mean (xSTD) focal length

variability (FLV) of all lenses over 8-week culture period.

(n=15) | AFL mean+STD | P value Mean FLV mean+STD | P value
Contrast to week1 Contrast to week1

Weekl | 29.695+1.35 0.535+.28

Week2 | 28.691+1.12 0.001 0.533+0.23 0.982

Week3 | 29.015+1.23 0.081 0.821+0.45 0.084

Week4 | 29.467+1.25 0.551 0.746+0.35 0.073

WeekS | 29.179+1.19 0.184 0.712+0.41 0.055

Week6 | 29.082+1.21 0.141 0.784+0.25 0.016

Week7 | 28.659+1.79 0.019 0.745+0.34 0.019

Week8 | 29.886+2.67 0.737 1.088+0.63 0.005

Table 2.3. Mean (zSEM) dimensions and P values as a function of culture time for

samples of porcine crystalline lenses.

Dimension Time in organ culture P value 2-tail
Mean +SEM
48hr (n =97) | 168hr (n = 340) | 48hr Vs 168hr | 1008hr Vs 168hr
Wet Weight (g) 0.406 + 0.008 | 0.402 + 0.003 0.63 0.33
Axial thickness (mm) | 7.496 + 0.044 | 7.585 + 0.020 0.07 0.64
Equatorial Diameter (mm) | 9.369 = 0.062 | 9.450 + 0.027 0.24 0.12

Note: 168 hours equal 1 week in culture, and 1008 hours equal 6weeks in culture. The

number of lenses used for week 6 measurements was 32.
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2.5 Discussion

The need to develop more in vitro experimental models for UV cataract studies arises
from the increasing concemns for animal welfare, which have become central features of
society (Sivak et al., 1994; Malakoff, 1999). These concerns have led to a decrease in or
elimination of in vivo animal studies. The data in the present study indicate that the
cultured porcine lens is a good model for organ culture studies relating to lens biology.
The assay methodology developed in this study offers a new valid and reproducible in
vitro cell biology approach to UV cataract and other crystalline lens investigations. Sivak
et al., (1994) noted that lens refractive effects are a resuilt of more than one variable,
curvature and refractive index distribution, with the effect of change in one variable being
neutralized by the other, and suggested that both the average focai length and focal length
variability (sharpness of lens focus) could be used as indicators of change in optical
function. The data in this study show that both the average focal length (AFL) and focal
length variability (FLV) are good indicators of lens change at between weeks 6 and 7,
with FLV showing a significant increase (P = 0.016) at week 6, and AFL a significant
decrease (P = 0.019) at week 7 (Table 2.2). Evaluating the correlation between the two
optical variables, AFL and FLV, Figure 2.4 shows that lenses with higher AFL tend to
have higher FLV (r = 0.76). In terms of correlation between SLM and the bioassay
measurements, it cannot be readily predicted that a lens with a large average focal length
or increased focal length variability will give high fluorescence values with alamarBlue™
or CFDA-AM or vice versa because of the relatively weak correlation between the

cellular and optical variables (Figure 2.5 — 2.8). However, interestingly the alamarBlue™
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and CFDA-AM readings (Tables 2.1) also begin to show significant alteration at the
cellular level at week 7, the same as AFL and FLV (see Tables 2.1 and 2.2), which
suggests that the time limit to culture porcine lenses with the culture medium used in this
study would be 6 to 7 weeks.

Table 2.3 shows that the wet weight of porcine lenses (age 6-8 month) is 0.406 g,
while the ex-vivo axial thickness and equatorial diameter are 7.496 mm and 9.369 mm,
respectively. Some lenses exhibit little spherical aberration in agreement with Sivak and
Kreuzer (1983), however the majority of the lenses in the present study exhibit negative
spherical aberration (see Figure 2.3A-C), which is in agreement with Elliott (1993) and
Roorda and Glasser (1999). The average focal length was found to be ~28 mm in the
present study while Elliott (1993) reported 24 mm for porcine lenses. This could be due
to difference in age of animals or to differences in the culture medium. The latter study
used 0.9% NaCl within three hours of dissection, while the present study used M199
supplemented with other ingredients. The measurements in Elliott’s (1993) study were
taken 3-8 hrs after dissection, whereas, measurements in the present study were done at
48 hr and 168 hr (1 week). The above reasons may also explain why an average equatorial
diameter of 9.3 mm was obtained in the present study as opposed to 8.5 mm for porcine
average lens diameter reported by Elliott (1993). However, the focal length profiles
appear the same in both studies. Because majority of the lenses appeared hazy until
approximately one week, a l-week preincubation was chosen for this study. There
appears to be no difference in the lens physical dimensions between 48 hour and 168 hour

(1 week).
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The first study to report the successful use of the porcine lens for organ culture
was by Wang et al., (1997). This study compared pig lenses obtained from commercial
and non-commercial sources, and concluded that porcine lenses from local commercial
sources are not suitable for organ culture since abattoirs routinely use boiling water or hot
steam to remove pig hair. They found that 6-8 months old pig lenses kept in TC-199
media supplemented with 1% porcine serum could maintain viability and transparency for
up to six days (Wang et al., 1997).

In another study, Wu et al., (1998) used organ cultured porcine lenses to test the
effect of commercial balanced salt solution which is used as an irrigating solution during
intraocular surgery on crystalline lens. They found that commercial balanced salt solution
might increase the risk for lens opacity because of the calcium contained in the solution.
The culture duration of Wu et al.’s (1998) study was 7 days, which was approximately the
same duration as the study of Wang et al., (1997). Thus, it is evident that there is no
previous report in the literature where porcine lens has been cultured longer than 7 days.
However, the present study shows that, in an appropriate physiological medium, porcine
lenses from abattoir-supplied eyes can be cultured for at least 6 weeks. The lenses used in
this study maintained their viability and transparency for up to 6 weeks, as shown by the
quantitative measurements obtained from both the fluorometric bioassay and SLM
procedures. The fluorometric bioassay approach described in this study appears to be a
potential useful methodology for crystalline lens studies. In conclusion, there appears to
be agreement in findings from the assay methodology and optical scanning laser system
(Tables 2.1 and 2.2) in that both indicate that the porcine lens can be successfully cultured
for a minimum of about 6 to 7 weeks.

54



Chapter 3

Determination of in vitro action spectrum and recovery for UV induced

photodamage using organ cultured porcine crystalline lens

3.1 Abstract

To determine the median effective dose (EDsp) of UVB and UVA required for induction
of UV cataract formation and the action spectrum for acute in vitro UV cataractogenesis,
the organ cultured intact whole porcine lenses were used as a model. The recovery pattern
was also investigated. Aseptically dissected lenses were preincubated in culture medium
maintained at 37°C and 4% CO- and 96% air for one week. At one week, lenses were
exposed to a predetermined UV radiant exposure (J/cm?) at specific waveband ranging
from 270 nm to 370 nm. The UV energy was generated from a PRA integrated arc lamp
system using a water cooled 1000 W high pressure xenon lamp. The output was limited
with a water filter, a monochromator, and secondary optics. The monochromator was
used to select a specific wavelength. The exposure time was controlled using a preset
electronic shutter. The EDsp was determined by using probit analysis of responses versus
number of lenses exposed at defined energy levels by up-and-down (staircase) method.
Irradiated spots (3.06 mm?) on the lenses were monitored every 6-12 hrs up to 48 hr post
irradiation for any morphologic changes (i.e. UV photodamage) with photomicrography.
Mean (+STD) induction time was 44+4.7 hr. Permanent UV induced cataract was
obtained at twice the threshold values for UVB and UVA. An action spectrum for in vitro

UV induced cataract using whole organ cultured lens is established. The recovery pattern
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appears to be similar to the in vivo situation. The relationship between these in vitro data

and the data from previous studies is discussed.

3.2 Introduction

It is a generally agreed that high solar UVB irradiance levels in the environment would
increase the risk of cataract, skin cancer, and perhaps immune problems in humans,
terrestrial and aquatic animals (Brown, 1999). Moreover, elevated UVB levels may
perturb marine ecology, killing important algae and bacteria. Atmospheric scientists first
detected the ozone hole over the South Pole in 1985, the apparent result of chemical
reactions caused by chlorofluorocarbons (CFCs) and other pollutants in the stratosphere.
Ever since, their calculations have predicted that loss of stratospheric ozone (which
absorbs much of the harmful UVB radiation (290-315 nm) would allow more abiotic
UVR to reach the surface of the Earth. Recently scientists at the National Institute of
Water and Atmospheric Research in Lauder, New Zealand reported that over the past 10
years, peak levels of dermatogenic and DNA-damaging UV rays have gradually been
increasing in New Zealand, just as the concentrations of stratospheric ozone have
decreased (McKenzie et al., 1999). According to their report, by the summer of 1998-99,
peak sunburning UV levels were about 12% higher than they were during similar periods
earlier in the decade. Their report provides the strongest evidence yet that degradation of
the stratospheric ozone layer is ongoing, and causes more hazardous UV exposure
conditions for life on the Earth’s surface (Brown, 1999). It is evident that stratospheric
ozone thinning is occurring not just in the sparsely populated polar regions, but also

above populous mid-latitude regions such as northern Europe, Canada, New Zealand, and
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Australia (Brown, 1999). This underscores the need for further UV induced cataract and
lens research.

In the eye, it is believed that UV photochemical damage occurring in the
crystalline lens can persist for a long time, causing temporary or permanent impairment of
vision. The exact targets and the detailed mechanisms that are responsible for UV-
induced cataracts remain to be determined. An important aspect of solar UVR
investigation is the UV cataractogenic action spectrum in the waveband to which humans
are exposed. In terms of UV-lens research, the in vivo UV action spectrum by Pitts et al.,
(1977a and 1977b), and the in vitro UV action spectrum for lens epithelial cells by
Andley et al., (1994; 1995), are available in the literature. However, in vitro UV action
spectrum data for the cultured intact whole lens are lacking. Since many experimental
models now focus on the intact cultured whole lens, and because the cellular targets and
mechanisms of action of UVR vary as a function of wavelength, it is necessary to
establish an in vitro UV action spectrum for the cultured crystalline lens. From the action
spectrum, the mechanisms of UV effects within the wavelength range can be effectively
studied.

The action spectrum of a biological response is the variation in magnitude of the
response with wavelength. The shape of the resulting curve is related to the absorption of
the radiation-absorbing molecule initiating the response. This section of my thesis
determined the action spectrum for in vitro UVR cataract formation (gross superficial
opacities) using organ cultured whole porcine crystalline lens. Pitts et al., (1977a and
1977b), developed the current data on the crystalline lens in vivo UV action spectrum for

wavelengths from 295 nm to 365 nm. These data are the best existing data on in vivo UV
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action spectrum for cataractogenesis (Soderberg, 1990). The effort to reduce or eliminate
the use of live animals in biomedical research is now shifting experimental approaches
from in vivo to in vitro. The data of Pitts et al., (1977a and 1977b) have been used for
some time for most in vivo UV experimental applications. More recently, a series of
experiments on in vitro UV action spectra for isolated lens epitheliai cells has been
reported by Andley et al., (1994). Their data may not be directly applicable to studies
involving the whole intact lens. Thus, the purpose of this study was to determine the in
vitro action spectrum for UV lenticular damage in porcing lens and to study the recovery
pattern. The cultured porcine lens was used. Since its embryological growth and
development is typical of mammals, and its shape and size are similar to the human lens,

some inferences may be made to the human lens.

3.3 Methods and Materials

3.3.1 Tissue Preparation and UV Exposure

Porcine eyes were collected from a local abattoir. The lenses were aseptically dissected
1-3 hr post-mortem and placed in a two-compartment chamber for preincubation for one
week in culture medium maintained at 37°C and 4% CO- and 96% air. The composition
of the culture medium is the same as reported in chapter 3. At one week, the anterior
surface of the lens was exposed to a predetermined UV radiant exposure (J/cm?) at a
specific waveband with the bandwidth centred on 270, 275, 280, 285, 290, 295, 300, 305,
310, 315, 320, 330, 340, 350, 360, 365 and 370 nm wavelengths. During exposure, the

medium was reduced so that approximately 1 mm remained on top of the anterior surface
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of the lens. The lens exposures to different UV radiant energy levels at the defined

wavelengths were done at room temperature.

3.3.2 UVR Exposure System
UV energy was generated from a Photochemical Research Associates (PRA) integrated
arc lamp system using a water cooled 1000 W high pressure xenon arc (Photochemical
Research Associates Inc., London, Ontario, Canada), (see Figure 3.1). The source for
UVB and UVA radiation was controlled by a PRA lamp power supply (model 301),
which is water-cooled for optimal stability. In the power supply, provision is made for
automatic shutdown if the supply temperature exceeds preset limits in case of coolant
failure. An automatic reset resumes power supply operation when safe temperature limits
are re-established. Figure 3.2 shows a schematic diagram of the UV irradiation apparatus.
The infrared (IR) output was absorbed by a 9 cm long quartz-enclosed de-ionised distilled
water chamber placed between the arc source exit and a quartz condensing lens. The
quartz condensing lens (~5 cm diameter) placed between the water chamber and
monochromator focused the UV radiation to the entrance slit of the monochromator.
Monochromatic radiation at desired wavelengths was obtained using an Oriel
monochromator (Oriel Corporation, Stamford, Connecticut, USA; model 7240) with a
2400 lines / mm holographic grating blazed at 200-400 nm and secondary optics
including transmittance and reflectance filters. The monochromator wavelength reading
was multiplied by the wavelength dial and bandwidth factor of 0.5, for each wavelength
setting by the investigator. A front surface mirror was used to deflect the beam by 90° to
impinge on the lens anterior surface at a distance of 8 cm. A 50.8 mm diameter quartz-
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condensing lens (Edmund Scientific Co., Barrington, New Jersey, USA) was placed at the
entrance, and another 25.4 mm diameter quartz-condensing lens at the exit aperture of the
mirror housing, respectively. The UV beam area on the lens was 3.06 mm>. A black
bellows was used to join the monochromator exit slit and the front surface mirror housing
to reduce any room light effect, and also to eliminate radiation leakage. The shortest and
the longest wavelengths for this study were 270 nm and 370 nm, respectively. The
wavelengths and corresponding average irradiance levels used for the action spectrum
determination are given in Table 3.1. The average bandwidth at half peak ranged from 12
to16 nm for the wavebands. As examples, Figures 3.3A and B show the spectral outputs
of 305 nm and 365 nm wavebands. The arc lamp and optical system were enclosed, and
before each use purged with nitrogen to prevent ozone formation. Before each irradiation
of a lens, the UV output in yW was measured with an 88XL Photodyne radiometer
together with a model 450 UV sensor head (serial no. 10205A; Optikon Corp., Kitchener,
Ontario, Canada) which was cross calibrated against a standard source traceable to US
National Institute of Science and Technology (NIST). The 88XL radiometer is a current
measuring meter with a digital display. The conversion from irradiant power to electrical
current takes place in the plug in sensor head. The UV sensor head connected to the
radiometer with a Photodyne extension cable model #3001 was placed in the position to
be occupied by the anterior surface of the cultured lens. During the exposure, the lens was
centred normally to the UV beam. The lens in its culture chamber was placed on a
container holder (from an Olympus light microscope) for accurate alignment and distance
(Figures 3.1 and 3.2). Stray UV energy was measured to be less than 0.1%; and since this
amount is negligible, it was ignored in the evaluation of the radiant exposures.
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Figure 3.3 (A and B). Spectral outputs of 305 nm and 365 nm wavebands.
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To convert the radiometer measurement to irradiance, the measured value was multiplied
by area irradiated on the lens and the linear multiplication factor from the calibration
curve. The irradiated area at the lens surface was 3.06 mm> (0.0306 cmz). The reciprocal
of 0.0306 equals 32.68; thus, the unit area multiplication factor for conversion to
irradiance was 32.68 throughout this experiment. For example, the linear multiplication
factor for 300 nm was 1.08; therefore, a reading of 48uW would be equal to 1694 (i.e.
48x1.08x32.68) uW/cm? as irradiance. Radiant exposure time was determined using the
following radiometric equation:
t=H/E;,

where t = exposure duration (seconds), H = radiant exposure (J/cmz), and E; = measured
irradiance (W/cm?). The duration of exposure was controlled by a preset electronic
counter, which automatically closed the shutter after each predetermined exposure. The
shutter system allowed the control of exposure duration to any length. In this study

exposure time ranged from 49 seconds to ~22 hours.

3.3.3 Exposure Sequence and Assessment

A modified staircase (up-and-down) method (Finney, 1971), with doubling, 50%, 25%
and 10% decrement / increment steps, was used to obtain threshold values for each
waveband from 270 to 370 nm. Five lenses were irradiated for each energy level at each
waveband. If none of the S lenses at a given exposure level showed damage, then the dose
was doubled. If all S lenses showed damage, the dose was reduced by 50%. If 3 out of 5
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lenses did not show damage, the energy level was arbitrarily increased by 25% or 10% of
the immediate previous dose. This was continued until at least 3 out of 5 lenses were
observed to show damage before proceeding to the next energy level or waveband.

For the purpose of deciding on the starting point, the threshold data of Pitts,
Cullen and Hacker (1977a and b) were used. They found that the most efficient waveband
for lenticular damage was 300 nm, which had a radiant exposure threshold of 0.15 J/em?.
An approximate UV energy level of 0.2 J/cm?® at 300 nm was chosen as the starting point
in the present study. Therefore, the first exposure was made at 300 nm, with 0.2 J/em?®
delivered to the anterior lens surface. The sequence involved irradiation for wavelengths
from 300 to 270 nm in S nm intervals, and then 305 to 370 nm, in S nm or 10 nm
intervals. Observation time was limited to a maximum of 36 to 48 hr after irradiation.
Irradiated spots on the lenses were monitored every 6-12 hrs for any morphologic lesions
(i.e. superficial or subcapsular opacities), induction time and lesion pattern with
photomicrography (NIKON dissecting microscope, Japan). During photomicrography, the
eyepiece magnification was set at 10X and microscope magnification at 2.5X.

Photographs of the lesions patterns (square-shaped area of 3.06mm?%) were
randomly taken at appearance or during recovery. UV irradiated lenses were visually
compared to untreated controls. Again, if no lesion was found at 36-48 hr, the dose was
doubled or increased by 50%, 25% or 10% for the next exposure. If there was a lesion
with the increase, the dose was arbitrarily decreased by 25% or 10% until there was no
lesion. For each subsequent set of lenses, the dose was decreased or increased on the basis
of the response of the previous set of lenses lens to a lower radiant exposure, until

moderate or severe lesions were observed in at least 3 lenses out of 5. The EDsg (i.€. 50%
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probability of damage, with 95% confidence interval) was then calculated by using probit
analysis (Finney, 1971) (Appendix 7.1B — 7.17B). Induction time, how many lenses were
used per dose and other observations were recorded. Table 3.3 shows how the data were
arranged for probit analysis. With probit analysis EDsq was determined for wavelengths
270, 275, 280, 285, 290, 295, 300, 305, 310, 315, 320, 330, 340, 350, 360, 365 and 370
nm. The 365 nm waveband was included because most studies on UVA effects centre on
this wavelength. The EDs, values were plotted as a function of wavelength to determine
the action spectrum curve.

The second part of this section of the study was to investigate the time course for
recovery of in vitro UV induced cataract at 300 nm and 350 nm, for UVB and UVA,
respectively. The threshold values obtained in the first part were used as reference radiant
energy levels. Organ cultured porcine lenses (group 1) were irradiated with 300 nm UVB
at threshold level (0.07 J/cm?), two times threshold (group 2), and five times threshold
(group 3). Group 4 lenses were exposed to 222.6 J/em? of 350 nm UVA, which was two
times threshold. Each irradiated spot on the anterior lens surface (3.06 mmz) was
monitored by photomicrography for 4 weeks post-irradiation. The lenses were examined
every 12-24 hrs in the first 2 weeks and then once each week post-exposure. UVR
experimental cataract was defined as a cluster of discrete dots in the lens anterior
subcapsular layer. The criterion for recovery was the complete disappearance of the

lesions.
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3.3.4 Damage Grading

The severity of the lesions in the lenses was graded as follows:

1) (-) no damage

2) (+) moderate or threshold damage, lesions < half of square pattern

3) (+ +) severe damage, lesions fill more than half of square pattern

4) (+ -) lesions disappearing (sign of recovery)

5) (- -) lesions completely disappeared (full recovery)

Any lens having a (+) sign means that the lens showed damage at that particular energy
level (dose). For analysis, a lens with (+) or (+ +) grade is counted with the number of
lenses damaged. Any lens with a lesion showing recovery was graded (+ —), and the time
that the repair trend was observed was recorded. If a lens lesion showed complete
recovery, it was graded (- -), and the time of the observation noted. Any lens with a
damaged capsule was discarded. The control lenses were also observed for any

morphological changes.
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3.4 Results

Part I: Approximately six hundred and forty-eight lenses were used in this study. The
irradiated spots on the lenses showed anterior subcapsular discrete dot opacities, which
appeared initially as small white dots and slowly coalesced into a white patch within the
irradiated spot. The pattern of the discrete dot opacities (lesion) was graded using the
scheme explained in section 3.3.4. Using the 300 nm waveband data as an example, an
EDso value of 0.06952 (95% confidence interval, 0.05746 — 0.08781) was obtained for
300 nm using probit analysis. Table 3.2 shows the EDsp (with 95% confidence interval)
for all wavebands. Figure 3.4 is a representative plot of the 50% probability of damage
for defined radiant exposures at the 300 nm waveband. The 50% probability radiant
exposures (i.e., EDso values) were significantly dependent on wavelength (Figure 3.5).
The data indicate shorter damage latency and slower recovery for higher UV energy
levels, while the reverse is the case for lower energy levels.

Data arrangements for all wavebands are shown in Appendices 7.1A to 7.17A.
The summary of the probit analysis for other wavebands are shown in Appendix 7.1B —
7.17B. Graphically, a threshold can be obtained by connecting the 50% probability on the
Y axis to the corresponding radiant exposure value on the X axis through the regression
line intercept. The different EDs; values of all the wavebands were collated and plotted to
obtain the action spectrum (see Figure 3.5). It should be noted that at 370 nm, the highest
dose that could practically be given produced no visually observable lesion. At some
high dose levels, e.g. for a 47.45 J/em? dose at 330 nm waveband, a lesion was observed
earlier at about 18-24 hr post irradiation ( see Appendix 7.1A — 7.17A). For example, a

0.065 J/cm? dose at 275 nm waveband gave an earlier lesion at 24 hr post-irradiation (see
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Appendix 7.2A). The contribution of the adjacent wavelengths was considered to be

relatively negligible.

Part 2: With respect to damage reversibility, group | lenses showed lesions at 36
to 48 hr post exposure, and complete recovery after 10 days (Figure 3.6). In group 2
lenses, lesions were visible at 24 hr, with no complete recovery occurring at week 4 after
exposure (Figure 3.7). The lesions in group 3 lenses appeared at 12 to 24 hr, and 40% or
more of the lesions persisted with suture prominence in all lenses at least 4 weeks post-
exposure (Figure 3.8). Among group 4 lenses, lesions were visible at 24 hr post
irradiation, with approximately 50% of the lesions persisting in all the lenses up to the 4

week duration of study (Figure 3.9).
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Table 3.1. Wavelengths and average irradiances used for the action spectrum

determination.
Wavelength (nm) Irradiance (uW/cm®)

270 499

275 695

280 1408
285 1553
290 1553
295 1447
300 1768
305 2365
310 2753
315 2753
320 2682
325 2549
330 2576
340 4589
350 5336
360 5529
365 5591
370 5794
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Table 3.2. Summary of probit analysis (EDso: 50% probability and 95% confidence

limits) for effective dose for respective wavebands.

Wavelength EDsg Radiant exposure 95% confidence limits
(nm) (em’) Lower Upper
270 0.05718 N/A 0.06754
275 0.04215 0.03060 0.05007
280 0.02776 0.02014 0.03113
285 0.02193 0.01977 0.02455
290 0.02720 0.24690 0.03017
295 0.02949 0.01396 0.03154
300 0.06952 0.05746 0.08781
305 0.09576 0.07406 0.11240
310 0.23400 0.19787 0.28886
315 0.74254 0.54887 0.89013
320 3.13211 2.47667 4.14227
325 18.7036 15.55044 23.47022
330 28.0106 24.94882 32.33166
340 48.2662 34.96831 55.54889
350 111.269 N/A N/A
360 164.030 N/A N/A
365 137.193 N/A N/A
370* N/A (*445.92) N/A N/A

Note: *No damage was obtained with ~7 trial exposures for 370nm at 445.92J/cm” which
was greater than 3X EDso for 365nm. N/A indicates not available, could not be

determined, or negative values.
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Table 3.3. An example of data arrangement for probit analysis at the 300 nm waveband.

Set of lenses Radiant exposure (J/cm®) # of +ve responses | # observed
1 0.0500 0 5
2 0.0625 2 5
3 0.0780 4 5
4 0.1000 5 5
5 0.2000 5 5

Note: Using the SPSS for Windows involved the following steps:

1) Go to SPSS for Windows under program,

2) click on SPSS 10.0 for Windows, enter data using data editor [with columns as I) set of

lenses; IT) radiant exposure; II) # of positive response (i.e. damage); and IV) number of

lenses observed for the particular radiant exposure],

3) go to “analyse” and click on “probit” under “regression,

4) in the probit interface put: a) response under the Response frequency, b) number under

the Total observed, c) exposure under Covariate, and

5) ensure to check probit under Model, then click OK.
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Table 3.4. Relative effectiveness of the in vitro UV action spectrum to induce cataracts.

Wavelength (nm) Threshold Radiant exposure (J/cm") Relative efficiency
270 0.05718 0.5
275 0.04215 0.7
280 0.02776 1.1
285 0.02193 1.3
290 0.02720 1.1
295 0.02949 1.0
300 0.06952 0.4
305 0.09576 0.3
310 0.23400 0.1
315 0.74254 0.04
320 3.13211 0.009
325 18.7036 0.002
330 28.0106 0.001
340 48.2662 0.001
350 111.269 0.0
360 164.030 0.0
365 137.193 0.0

Note: The relative efficiency is with respect to the 295nm waveband.
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3.5 Discussion

Probit analysis is useful in that it enables the conversion of subjective, non-parametric
data into parametric data (e.g. calculating so® percentile), thus allowing for the derivation
of EDsp (median effective dose), which represents 50% probability of a defined UV
radiant exposure causing photodamage. Simply stated, the EDso or EDSO0 is the dose that
will produce a response in half the population (Finney, 1971) of the exposed lenses. The
action spectrum of UVR on the cultured intact crystalline lens gives the relative
effectiveness per incident photon at each waveband for a single UV exposure. Biological
effects of solar radiation on the lens epithelium would result from many exposures to both
UVB and UVA radiation over decades (Andley et al., 1994). Figure 3.5 illustrates the
derived action spectrum for in vitro UVR cataract formation for porcine lenses in the
current study. Pitts et al., (1977a) reported that the action spectrum for UV-induced lens
opacities in rabbits in vivo begins at 295 nm and extends to 320 nm. Radiation at 300 nm,
using a 6.6 nm full bandpass, was found to be 30 times as effective as 315 nm radiation in
producing lens opacities in vivo.

The in vitro action spectrum obtained in this study shows a similar trend to the in
vivo data of Pitts et al., (1977a) that extended from 295 to 395 nm. Because of the
absence of corneal absorption, it was possible to induce lenticular opacity with shorter
wavelengths down to 270 nm in the present study. This was done so that future in vitro
UV lens damage investigations may extend below 290 nm. Therefore, the data in the
present study involved wavelengths from 270 to 370 nm at 5 or 10 nm intervals. The limit
at the longer UV wavelengths was at 370 nm in the present study because no observable

damage could be induced with the highest radiant exposures at the 370 nm waveband.
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This tends to agree with Andley et al., (1994) who reported that the highest dose at the
405 nm waveband in their study produced no adverse effect on lens epithelial cells. Also,
using 162 J/cm® radiant exposure at 365 nm waveband, which was the highest dose in
their study, Pitts et al., (1977a) could not achieve any lenticular opacities in vivo in rabbit.

By comparison, at 300 nm, the present study found 0.069 J/cm? as threshold,
while Pitts et al., (1977a) found 0.15 J/cm®, and Andley et al., (1994) and Andley and
Weber (1995) found 0.068 J/cm® and 0.052 J/em? at 302 nm respectively, using rabbit
and human lens epithelial cells. Data in the present study showed radiation at 295 nm
waveband to be 25 times more effective than 315 nm radiation in producing UV induced
lens anterior subcapsular lesions (Table 4.2), while the data of Pitts et al., (1977a) showed
that 295 nm radiation was 6X more effective than 315 nm radiation. The data of Andley
et al., (1994) and Andley and Weber (1995) found the radiation at 297 nm to be 171 and
261 times more effective than the 313 nm radiation used in their respective studies with
rabbit and human lens epithelial cells. The difference in relative effectivity is not
surprising because of the absence of corneal absorption in the in vitro conditions.
Moreover, in isolated epithelial cells, the influence of overlying capsule, underlying
cortex and adjacent cells are absent or minimal with respect to the impact of the radiation.
The in vitro radiant exposure values in this study are 29X lower at 295 nm, ~2X lower at
300 nm, ~3X at 305 nm, ~3X at 310 nm, 6X at 315 nm, ~4X at 320 nm, than in vivo data
reported by Pitts et al., (1977a) for UV-induced lens opacities in rabbits. Beginning from
approximately 330 nm, both the in vitro and in vivo thresholds are similarly high. This

may be due to the fact that the comea transmits all UV wavelengths above ~325 nm.
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The data in the current study showed that very high radiant exposure is needed
from wavelengths above ~325 nm to induce subcapsular lesions in vitro; this agrees fairly
well with Pitts (1978) who mentioned that radiant exposures above 320 nm need to be
quite high to have an effect for in vivo experiments. The increased radiant exposure
required at longer wavelengths to produce lenticular damage is not surprising due to the
lower relative effectiveness of longer UV wavelengths (Table 3.4). Although different
endpoints were used in the current study compared to those of Pitts et al., (1977a and
1977b); Andley et al., (1994); and Andley and Weber (1995) the present study is
generally in agreement with the wavelengths of UVR that are most effective at inducing
cataractous changes in the crystalline lens in vivo (Pitts et al., 1977a and b). The in vitro
action spectrum in the present study begins at 270 nm and extends to about 365 nm while
the in vivo action spectrum begins at 295 nm and extends to about 335 nm (Pitts et al.,
1977b). Pitts et al., (1977b) found the lens and cornea curves to be relatively parallel from
300 nm up to about 320 nm. The present study found the threshold radiant exposure at
300 and 305 nm wavebands to be similar to values reported for corneal damage (Pitts et
al., 1977b). This similarity between lenticular and corneal UV thresholds is not surprising
since both the cornea and the lens derive embryologically from the surface ectoderm.

The relatively low radiant exposures in the 270 nm to 315 nm wavelength range
might imply that the most effective wavelength range for producing UV cataract in vitro
was from 270 to 315 nm. Looking at the trend of the action spectrum (Figure 3.5), it
would be expected that wavelengths below 285 nm should be more effective with lower
thresholds because the shorter the UV wavelength the higher the photon energy.

However, there was a fair rise in radiant exposure below 285 nm (Figure 3.5), which
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might indicate that a different mechanism is responsible for UVR lenticular toxicity
below 285 nm. Another possible explanation is that UVR does not affect crystalline lens
biomolecules in the same way for each waveband (Pitts, 1978). The action spectrum
curve shows that 285 nm is the most effective wavelength for UV toxicity on porcine
lens. This is relatively close to 280 nm, the shorter absorption maximum of human
crystalline lens which has been reported to demonstrate absorption maxima at 280 and
370 nm (Maisel, 1985). At the long UV wavelengths, 365 nm appears to be more
effective than 360 nm in causing cataract. These might indicate that the porcine lens has
absorption maxima at 365 nm and 285 nm for longer and shorter UV wavelengths,
respectively. The inability to obtain UV induced damage at 370 nm might indicate that
the porcine crystalline lens transmits all UV wavelengths from 370 nm and above. The
present study has established the in vitro UV action spectrum for cultured porcine lens
using gross morphological changes (anterior subcapsular opacities) as damage criteria.
However, extrapolations from the data can be applied to the study of in vitro UV-induced
cataracts using lenses from other animal species.

In terms of recovery from UV damage, the present study confirms the findings by
Pitts et al., (1977a and b) that radiant exposure at two times threshold level results in
permanent opacity (Figure 3.7). Also, at two times UVA threshold exposures, there was
no full recovery (Figure 3.9), confirming that UVA is cataractogenic. At five times UVB
threshold exposure, the photodamage gave rise to prominence of the suture, which might
be an indication of permanent opacity with no chance of recovery (Figure 3.8). Data in
the present study support the theory that repair would generally occur for UVR induced
cataract at threshold and subthreshold radiant energy levels (Figure 3.6). This may tempt
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one to speculate that the temporary blurring of vision often experienced due to UVR
induced photokeratoconjunctivitis may arise from not only the cornea but also from the

lens.
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Chapter 4

Application of a novel fluorometric bioassay methodology and laser

scanning system for UV cataractogenesis study

4.1 Abstract

This study investigated the feasibility of using a new nontoxic fluorometric bioassay
approach to monitor induced UV damage in cultured porcine crystalline lenses. In an
attempt to validate this new bioassay comprising alamarBlue™ and S-carboxyfluorescein
diacetate, acetoxymethyl ester (CFDA-AM), a scanning laser monitoring system was
employed to assess the optical quality of the same set of lenses following UV exposure.
Whole, aseptically dissected, porcine lenses were cultured in modified M199 medium
supplemented with 1% penicillin/streptomycin (100 units/mL) and 4% porcine serum.
After one week of preincubation in 37°C, 4% CO,, 96% air, baseline (pre-exposure)
fluorescence and optical quality measurements were taken. The lenses were then
irradiated with determined levels of broadband UVB radiant exposures in a custom built
UV irradiation system with 5% CO; and 95% membrane filtered air. During the
irradiation, temperature ranged from 33 to 36°C, with 62% relative humidity. The control
lenses were protected from UV radiation. After irradiation, lenses were further incubated
for 4 weeks, with fluorescence and optical measurements carried out every 48h in the first
9 days post exposure and then once each week. For fluorometry, both treated and control
lenses were transferred into a 24-well plate with one lens per well. Each lens was

immersed in a mixture of the assay solution and the basal medium for S0 minutes each
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time, and readings taken with a fluorescence plate reader. For optical quality assessments,
each lens was transferred to a custom-designed lens container and placed in the scanning
laser monitor. Analyses based on each energy level showed a statistically significant
difference between baseline and follow-up measurements (p < 0.05) of cellular
metabolism, cell membrane integrity, and optical quality as indicated by the fluorometric
bioassay and SLM techniques respectively. UV-induced damage was obtained at the
0.038 J/cm? but not at the 0.019 J/cm? energy level, suggesting the threshold for in vitro

broadband UVB energy for cataractogenesis to be >0.019 J/cm? and < 0.038 J/cm®.

4.2 Introduction

Cataract as a major cause of blindness worldwide constitutes a public and occupational
health concern because, apart from environmental exposure, many industrial operations
use UV radiation in their process. The number of blind people in the world and the
proportion due to cataract is increasing due to population growth and increasing longevity
(Foster, 1999). There is currently an estimated backlog of 16-20 million unoperated cases
globally (Thylefors, 1998). The furtherance of UV cataract research is essential due to the
following reasons: First, cataract stands out as the first priority among major causes of
preventable blindness, and the alarming indication in the literature of potential doubling
of the world’s blindness burden by 2020. Second, the role of UVB and/or UVA in the
pathogenesis of humnan cataracts is still controversial. Third, approximately S000 cataract
surgeries per million people per year are carried out in the United States, while the figures
are ~200, 500-1500, ~2000, and ~3000 for Africa, Latin America, India, and Europe,

respectively (Thylefors, 1998). Recent reports indicate that there are approximately 20
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million people blind from cataract in the world, the majority of whom do not have access
to affordable cataract surgery (Foster, 1999). Even for those who have access to cataract
surgery, it has been reported that posterior capsular opacification, a common
complication of cataract surgery, occurs in up to 50% of patients by 2 to 3 years after their
surgery (Spalton, 1999). Thus, cataract prevention or delay in progression would
represent a major achievement for human welfare.

It cannot be overemphasized that cataract still represents the leading cause of blindness
throughout the world. Therefore more research effort is necessary in furthering the
understanding of the biological basis of UV radiation effects on lens morphology,
function, and pathology. From the literature, it is evident that countries that are plagued
with high cataract prevalence are underserved with cataract surgical personnel and
facilities. This further underscores the need to intensify basic research in UV
cataractogenesis and preventive modalities. Therefore, the present study was undertaken
to investigate the feasibility of using two fluorescent dyes, alamarBlue™ and S5-
carboxyfluorescein diacetate, acetoxymethyl ester (CFDA-AM) to study pathogenesis of
UV-induced cataract at the cellular level. The alamarBlue™ assay has been used in
studies of lymphocyte proliferation (Ahmed et al., 1994), and to quantify the
phototoxicity of fluoranthene to a rainbow trout gill cell line (Schirmer et al., 1997;
1998). These studies (Ahmed et al., 1994; Schirmer et al., 1997; 1998) reported that
alamarBlue™ is a sensitive assay to monitor changes in intracellular mitochondrial
integrity, which is a measure of cellular viability. The CFDA-AM fluorescent assay is a
good indirect measure of plasma membrane integrity (O’Connor et al., 1991; Schirmer et

al., 1997), and an accurate method for quantifying cells growth in vitro (Hanthamrongwit
87



et al., 1994). The secondary goal was to use the established scanning laser monitor
approach to validate this novel in vitro dual fluorometric bioassay methodology in

monitoring UV damage on cultured porcine lens.

4.3 Materials and Methods

Whole aseptically dissected porcine lenses were cultured in modified M199 (no phenol
red), 1% antibiotics (penicillin/streptomycin 100 units/mL) and 4% porcine serum, with
sodium bicarbonate and HEPES as buffers. All culture ingredients were purchased from
the Sigma Chemical Company except otherwise stated. Figure 4.1A illustrates the pre-
and post-UV exposure protocol for the study (5 week) duration. The lenses were
preincubated at 37°C, 4%C0O,, 96% air for one week pre-exposure. At one week, the
fluorescence levels of the lenses were measured with a bioassay containing alamarBlue™
and 5-carboxyfluorescein diacetate-acetoxymethyl ester (CFDA-AM) dyes. The optical
quality measurements were taken as well pre-exposure to UV. The measurements at one
week were taken as baseline for control and exposed lenses.

The lenses were irradiated with predetermined actual energy levels at 0.96, 0.48,
0.24, and 0.12 J/cm? of broadband UVB exposures in a custom built UV irradiation
system (Figure 4.1B) with 5% CO, and 95% membrane filtered air. For comparative
purposes to other studies, it was necessary to calculate the biologically effective UVB
(290 — 320 nm) doses of the four radiant energy levels (i.e., 0.96, 0.48, 0.24, and 0.12
J/cm?) utilized in this study based on an 8 hr exposure. The calculation was carried out
using the American Conference of Governmental Industrial Hygienists (ACGIH) spectral

weighting functions with the following formula: 3205 90 Ha x Ax x Sa, where Hj, is the
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actual radiant exposure (J/cm?) at a specific wavelength as obtained from
spectroradiometer, Aj is the wavelength interval (nm), and S, is the UVR spectral
weighting function or relative spectral effectiveness (unitless). Therefore, the calculated
biologically effective radiant energy level, to be used in subsequent discussion were
0.152, 0.076, 0.038, and 0.019 J/cm? respectively (Table 4.1). The UV fluorescent tubes
were purchased from Microlites Scientific (Scarborough, Ontario, Canada). A sterile
sheet of cellulose acetate measured to be opaque to wavelengths below 290 nm was
placed on top of the containers holding the lenses during exposure to filter out all the
wavelengths below 290 nm. The spectral distribution of the UVB fluorescent tubes used
(Figure 4.2) extends from 290 nm to about 370 nm wavelengths. However, since it was
found that the contribution of the wavelengths within the 320 to 370 nm waveband was
only 0.1%, this was ignored.

During the irradiation, temperature ranged from 33 to 36°C with 62% relative
humidity. Before irradiation, the spectral output of the UVB source (with cellulose acetate
sheet placed on top of the integrating sphere) was measured with a calibrated Instaspec II
diode-array spectroradiometer (Oriel Corporation, Stratford, CT., USA). Control lenses
were protected from UV radiation by covering their containers with a sterile plastic sheet
opaque to UV and visible radiation. Lenses were further incubated for 4 weeks post-
irradiation, with fluorescence and optical quality measurements carried out every 48h in
the first 9 days, and then once each week thereafter. For fluorescence measurements, both
treated and control lenses were transferred into a 24-well cell culture plate, with one lens
per well. Each lens was immersed in a mixture of the assay and basal medium and

incubated for 50 minutes. Measurements were then taken with a CytoFluor™
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fluorescence plate reader (PerSeptive Biosystems Inc., Framingham, MA, USA). The
optical quality measurements were obtained approximately 8 hour after the fluorescence
measurements. This was to allow the assay dyes to diffuse out of the lenses. Each lens
was transferred to a two-compartment container filled with culture medium (with serum),
and placed in the SLM for the optical quality assessment. It should be noted that the same
sets of lenses were assessed using the assay technique and the scanning laser monitor at
each energy level. Photomicrographs of lens samples were randomly obtained. Statistical
analysis of individual radiant exposure was performed using repeated measures analysis
of variance (MANOVA) with general linear model. P values, set at 0.05 significance
level were calculated using F-test. Fifty-two exposed and 32 control lenses were used in

this study.

90



Figure 4.1A. Flow chart illustrating the pre (baseline) and post-UV exposure protocols for
5 weeks.

Lenses were dissected aseptically

Step A:

Load lenses with
bioassay comprising
AlamarBlue and
CFDA-AM fluorescent
dyes and incubate for
50 minutes.

Step B:

Fluorescence readings
taken with a fluorescence
plate reader.

Step C:
Optical quality readings taken
with the scanning laser monitor.
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Figure 4.2. A representative plot of spectral emission of the UVB fluorescent tubes used
for the broadband UVB exposure.
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4.4 Results

4.4.1 Fluorometric Bioassay

Based on the fluorometric bioassay technique, a total of 11,760 (i.e. 5,880 for
alamarBlue™ and 5,880 for CFDA-AM dyes) quantitative measurements were obtained,
with each fluorescence measurement providing an average of 10 readings per scan, and
each lens subjected to two scans (first scan for alamarBlue™, and the second scan for
CFDA-AM assay readings, respectively) at least 7 times through the study duration. The
control lenses did not show significant change in both the bioassay and the SLM
measurements throughout the experiment duration (Tables 4.2 — 4.13). With the
exception of the 0.019 J/em® UVB energy level (Table 4.8), all the UVB energy levels
(Tables 4.2, 4.4, & 4.6) caused significant decrease (P < 0.05) in the alamarBlue™ assay
readings post-irradiation. Sometimes alamarBlue™ readings rebounded indicating a
recovery trend from the UV damage but none returned to baseline readings (Figures 4.3).
For the CFDA-AM assay, non-significant P values were obtained for 0.152 J/em? at
48hr, 96hr, 336hr and 672hr; and for 0.076 J/cm? at 48hr post exposure (Tables 4.3 &
4.5). However, as shown in Table 4.7 with the same CFDA-AM assay, a significant
decrease (P < 0.05) in fluorescence was obtained for the 0.038 J/cm* UVB exposure
beginning from 48hr (P = 0.0001) with no indication of recovery at 672hr (P = 0.0008).
Significantly higher (P < 0.05) fluorescence readings were obtained for 0.152 J/em? at
144hr and 192hr (Table 4.3); and for 0.076 J/cm? at 96hr through 672hr (Table 4.5). As
with alamarBlue™, the CFDA-AM fluorescence readings did not show any significant
change compared to baseline readings at the 0.019 J/cm? UVB exposure level (Figures

43 & 4.4).
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4.4.2 Optical Quality Monitoring
For the optical quality measurements, each scan by the SLM produced 23 measures of
focal length in each lens, and each lens was scanned 7 times. Thus the SLM results are
based on at least 13,524 quantitative optical measures for both exposed and control
lenses. As in bioassay measurements, the optical quality measurements did not show any
significant change compared to the baseline at the 0.019 J/em®> UVB exposure (Table
4.13; Figures 4.5 & 4.6). The 0.152 J/cm? UVB energy level caused a significant increase
in average focal length at 192 hr, and an increase in focal length variability at 336 hr and
672 hr (Table 4.10). It should be noted that due to severe opacity induced by the 0.152
J/cm? UVB radiant exposure, some of the exposed lenses could not be scanned at certain
times post-exposure, therefore, only 6 out of 11 exposed lenses could be used for
statistical analysis at this particular energy level. For the 0.076 J/cm? UVB exposure, a
significant decrease in average focal length was obtained at 48 hr and 96 hr, with a cross
over to a significant increase at 144 hr and 336 hr, and recovery at 672 hr (Table 4.11).
The lenses exposed to 0.152 J/em® UVB showed a consistent increase in AFL
from 48 hr post exposure (Figure 4.5). The lenses exposed to 0.076 J/cm? UVB showed
an upward trend in FLV from the 96 hr (Figure 4.6) however, the upward trend was only
significant at the 336 hr post exposure (Table 4.11). The 0.038 J/cm® UVB energy level
caused a significant decrease in AFL at 48 hr, and an increase at 96 hr (Figure 4.5) with
recovery being shown from about 144 hr; the upward trend at 192 hr was not significantly
different from baseline (Table 4.12). With respect to FLV, the 0.038 J/cm® UVB energy

level caused a significant increase at 144 hr and 692 hr (Table 4.12). The error bars in the
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Figures 4.3 to 4.6 represent S.E.M. Figure 4.7 shows a representation of one sample of

photomicrographs.

Table 4.1. The direct UV radiant energy from the UVB source and calculated biologically

effective dose with corresponding exposure duration for the different energy levels

utilised in this study.
Radiant exposure (J/cm®) Exposure duration (seconds)
Direct energy Biologically effective dose
0.96 0.152 7272
0.48 0.076 3636
0.24 0.038 1818
0.12 0.019 909

Note: The biologically effective dose was calculated using the ACGIH biological spectral

weighting function for respective (UVB) wavelengths from 290 to 320 nm.
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4.5 Discussion

The main objective of this study was to determine if the CFDA-AM and alamarBlue™
fluorescence indicator dyes in a combined assay would be a valid and repeatable cell
biology approach to detect and monitor UV damage in organ cultured crystalline lens.
The assay measurements and monitoring of the UVB induced damage on the lenses were
done using a protocol that is similar to the one developed by Schirmer et al., (1997). The
assay measurements were supplemented by the assessment of the relative changes in the
average focal length and focal length variability of the lenses using the computer
controlled scanning laser monitor developed by Sivak et al., (1986).

The CFDA-AM assay measurements showed a fair indication of the lens epithelial
cell plasma membrane compromise at 48 hr post-exposure with both 0.152 J/em? and
0.076 J/cm®> UVB radiant exposures compared to control lenses (Tables 4.3 and 4.5).
However, the lenses exposed to 0.152 J/em? UVB showed an early recovery tendency at
about 96 hr (Table 4.3). Beginning from 96 — 144 hr, significant change in cell plasma
membrane integrity was obtained in lenses exposed to 0.152 J/cm? and 0.076 J/em®? UVB
energy levels with an indication of recovery in 0.152 J/em® UVB treated lenses, while the
0.076 J/cm? UVB treated lenses did not show recovery. Surprisingly, while lenses treated
with 0.152 J/cm? and 0.076 J/cm? UVB radiant exposures showed an upward trend
(Tables 4.3 and 4.5) in mean fluorescence (MF), those treated with 0.038 J/em? UVB
radiant exposure showed a consistently significant decrease (P < 0.05) in MF beginning
from about 48 hr post-exposure with no sign of recovery through the study duration

(Table 4.7 and Figure 4.3). The results obtained for 0.038 J/cm® UVB treated lenses was
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in line with expectation, because a decrease in fluorescence readings is a direct measure
of decline in cellular esterase activity due to loss of appropriate cellular milieu (Schirmer
et al., 1997) from the UVB exposure. Also, substantially suprathreshold or high UVB
radiant energy might induce UV damage via a passive diffusion process and there is an
additional fluorescent component from the possible UVB-induced generation of intrinsic
fluorogenic products (fluorogens or fluorescent chromophores) in the exposed crystalline
lenses. This may imply that the increase in lenticular fluorescence post- exposure in the
0.152 J/cm®> and 0.076 J/cm® UVB treated lenses might be accounted for possibly by the
UVB-induced production of the fluorescent chromophore in the lens, and not just the
CFDA-AM enhanced fluorescence. This explanation is supported by the fact that only
viable epithelial cells can deacetylate the non-fluorescent CFDA-AM to
carboxyfluorescein (which is fluorescent) and accumulates inside the cells for the
fluorescence reading at each measurement time.

Studies that have shown the existence of fluorescent chromophores in the lens
include that of Lerman and Borkman (1978) who demonstrated the presence of a
fluorescent region (approximately 420-435 nm excitation and 500-520 nm emission)
which becomes apparent in human crystalline lenses after the first decade of life. They
explained that fluorogens in the human lens tend to increase with age. Of interest is that
the emission wavelength region (500-520nm) of the fluorogens reported by Lerman and
Borkman (1978) is close to the emission wavelength of CFDA-AM (530 nm). Therefore,
the fluorescence reading obtained at high UVB exposure levels might be a combination of
the fluorescence from both the CFDA-AM/esterase cleavage and the lens fluorescent

chromophores. It has been shown that the generation of fluorogens (Lerman et al., 1976;
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Lerman and Borkman, 1978; Zigman et al., 1977) is a sign of aging in the lens. More
recently, Aquilina et al., (1997) demonstrated that 3-OH-kynurenine (3-HK) oxidation
products can bind to lens protein causing macromolecular changes that occur with age
such as protein aggregation, pigmentation, and fluorescence formation. The results in the
current study suggest that, 0.038 J/cm®> UVB radiant exposure might be the in vitro
threshold for UVB acceleration of fluorogen generation in the lens. Overall, these results
show that the CFDA-AM assay is a convenient method for quantifying UVB toxicity on
lens plasma membrane integrity.

The results of the alamarBlue™ assay measurements show that UVB irradiation
of lenses with 0.152 J/cm?, 0.076 J/cm? and 0.038 J/cm? UVB radiant exposures induce
significant reduction in the lens epithelial cellular metabolic activity beginning from 48 hr
post-exposure and no indication of recovery from the UV damage (Tables 4.2; 4.4 and
4.6). The alamarBlue™ assay measurements show that the free radicals generated by
UVB photochemical reaction in the lens cells at 0.038 — 1.52 J/cm® UVB radiant
exposures could inhibit mitochondrial function in the lens epithelial cells. Comparing
both CFDA-AM assay results (Table 4.5) to the alamarBlue™ results (Table 4.4) at the
48 hr assessment of the 0.076 J/cm® UVB treated lenses, it appears the impairment effect
of UVB on cellular metabolic activity precedes plasma membrane damage. This study
presents a quantitative evaluation of UV effect on mitochondrial function in the lens. The
CFDA-AM results (Figure 4.4) indicate that UVB enhances aging of cell membranes, an
event in cataract formation.

As with the assay results, all lenses except those treated with 0.019J/cm* UVB

demonstrated significant increases or decreases in mean focal length and focal length
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variability (sharpness of focus) relative to both baseline and control measurements. The
average focal length of the lenses treated with 0.152 J/em? did not demonstrate recovery
from UV damage. The significant increase/increase in mean focal length of lenses treated
with 0.038 and 0.076 J/cm?® exposures exhibited recovery (Tables 4.11 and 4.12). It was
deemed necessary to compare between the assay and optical measurements. To do this,
the 0.076 J/cm® next to the highest exposure level used in this study was chosen.
Therefore taking the 0.076 J/cm? data, it is shown in Tables 4.4, 4.5 and 4.11 that cellular
and optical changes caused by UVB exposure commenced at about the same times post-
exposure. No significant change in the plasma membrane integrity was shown until 96 hr
post-exposure (Table 4.5). This delay may indicate that UVB damage of lens plasma
membranes is preceded by perturbation of the lens epithelial cell mitochondrial and
optical function. However, the optical changes showed recovery, but the cellular damage
did not show any recovery through the duration of the study.

The increased focal lengths observed in some lenses could be a result of reduced
refractive index caused probably by a UVB induced disruption of the normal water
balance within the lens (Stuart et al., 1991). Widmark (1892) noted the disruption in
water balance in UV damaged lenses when he described morphological signs of water
imbalance through microscopic analysis. The findings of the current study show that
relatively low dose of UVB radiation does not cause permanent damage in the lens
cellular and optical integrity. Stuart et al., (1991) found that cultured bovine lenses treated
with UVB radiant exposures ranging from 0.03 to 0.05 J/cm® demonstrated only
temporary UV damage. The results of the current study suggest in vitro UVB lens damage

to be between 0.019 and 0.038 J/cm?, and show that the recovery from UV damage by
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porcine lenses is similar to what has been reported for other experimental animal models
for in vivo and in vitro conditions (Pitts et al., 1977b; Stuart et al., 1991).

Some photomicrographs were randomly taken during the course of this study.
Comparing the morphological data in the present in vitro study with in vivo and in situ
conditions, the findings support the view of Jose (1986) that if the lens anterior
epithelium is disrupted metabolically or morphologically by UVB, its interaction with the
bow fibres in turn may be altered or eliminated. The normal lens epithelium-bow
interaction involves the epithelial cells becoming elongated fibres, and during the
elongation, nuclei are transformed and the DNA is degraded (Trevithick et al., 1987).
Jose (1982), noted that such disruption might occur if the genome of the epithelial cells
were damaged by UVB. This could cause metaplasia of the epithelium and cortical fibres
especially in the bow region thereby producing the characteristic UV radiation induced
cortical opacification in the lens equatorial region (Schein et al., 1994). Equatorial
opacities would normally not affect vision, but vision may become threatened when
capsular wrinkling and cortical fibre plaques encroach on the visual axis. These plaques
may be due to unrepaired coalesced vacuoles. Figure 4.7 is presented to illustrate the
above point. This figure shows the microscopically visible experimentally induced UVB
equatorial opacification. This equatorial opacification was thought to have resulted from
the coalesced small vacuoles observed at about 48 hour post-exposure (note: time of first
observation of vacuoles depends on the smount of UVB radiant exposure). The specific
mechanisms for equatorial opacification by UVB as shown in this study remain to be
confirmed. Jose and Pitts (1985) hypothesised that chronic UV damage to the lens

epithelium may disrupt normal differentiation into non-nucleated fibres at the bow. Jose
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(1986) speculated that UV exposure of lens epithelium might cause loss of DNA cues
required for normal differentiation that pass from the epithelium to the fibres.
Consequently, the epithelial cells and nucleated fibre cells fail to differentiate normally.
Thus, the nucleated fibre cells neither lose their nuclei nor do they elongate toward the
locus of the anterior-posterior sutures (Jose, 1986). Instead the cells may migrate and
aggregate in areas within the lens cortex, which may act as a light-scattering element
(Cullen et al., 1994). Zigman (1995) mentioned that lens anomalies occur initially in the
epithelial cells, followed by anterior outer cortical fibre damage, and subsequently
anterior cortical opacity. The observation of radial equatorial opacification may explain
why cortical spokes are often clinically observed in the lens of older persons around the
age of 60 years who might have had some exposure to UVB (Schein et al., 1994; West et
al. 1998). These points demonstrate that photomicrography could be used for assessing
UVB induced lens damage experimentally. However, it is a qualitative approach
compared to the bioassay and SLM methods as presented in the current study.

In summary, in terms of quantifying UV damage and recovery, these experimental
results show a fair correlation between the assay and SLM methods, thus confirming that
alamarBlue™ and CFDA-AM assay would be a reliable and convenient in vitro cell
biology methodology to study how UVB causes damage to the lens epithelial enzymes,
mitochondrial function and lens membrane integrity. The significance of the assay
method presented in the current study for UV cataract investigation, is that alamarBlue™
fluorescent dye measures UV damage to lens cellular metabolism, while CFDA-AM

fluorescent dye measures UV damage to lens membranes, respectively.
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Chapter 5

Relative phototoxicity of broadband UV A and UVB radiation on organ
cultured porcine crystalline lens

5.1 Abstract

The relative phototoxicity of broadband ultraviolet A (UVA) alone, and UVA plus UVB
combined, was investigated by analyzing changes in cellular integrity as measured with
fluorescence dye assay and optical quality, in terms of focal length and focal length
variability (i.e. sharpness of lens focus) of the cultured porcine crystalline lens. The
fluorescence capability of the lenses was measured using a dual bioassay approach, which
incorporated the use of two cell culture fluorescent dyes (carboxyfluorescein-diacetate-
acetoxymethyl ester [CFDA-AM] and alamarBlue™). The lens optical integrity was
assessed using a scanning laser system. Lenses aseptically dissected from pig eyes were
kept in culture medium comprising modified M199, 1% penicillin/streptomycin (100
units/mL) and 4% porcine serum. A fter one week of preincubation in 37°C, 4% CO,, 96%
air, the lenses were exposed to predetermined broadband UVA and UVB energy levels.
Prior to UV exposure, baseline cellular and optical function measurements were taken.
Lenses treated with 86 J/cm? of UVA alone showed a significant (P < 0.05) decrease in
cellular metabolism and loss of optical integrity at 48 hr post exposure, but recovered
from the UVA damage. The lenses treated with 43 J/cm®> UVA alone did not show any
significant damage compared to baseline and control measurements. Lenses treated with
radiant exposure of both 15.63 J/cm®> UVA and 0.019 J/cm®* UVB experienced a

significant decrease (P < 0.05) in cellular and optical function, but some recovery was
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achieved in terms of plasma membrane integrity (no recovery was shown in terms of
cellular metabolic activity and sharpness of focus). These findings show that a relatively
high UVA dose alone can induce lenticular damage, while relatively low UVA combined
with relatively low UVB radiant energy can exhibit synergistic adverse UV effects. These

results confirm that UVA is also cataractogenic.

5.2 Introduction

Evidence is mounting in the literature to the view that ultraviolet A (UV A) radiation
contributes to cataract formation. Environmentally, atmospheric ozone does not absorb
solar UVA radiation, but scattering of UVA by other atmospheric molecules such as N3
and O, is significant (Frederick and Alberts, 1992). Some occupational, therapeutic and
recreational conditions predispose individuals to UVA exposure as well. Zigman (1983)
reported that the irradiance levels of solar UVA peaked at 365 nm to be 50 W/m® at
Woods Hole, Massachusetts, U.S.A. in July, and 80 W/m? in January in Sarasota, Florida.
Hietanem (1991) found irradiance levels of broadband UVA (320-400 nm) in Helsinki,
Finland ranged from 18 W/m? in March to 48 W/m® in August. In comparison with
Hietanem’s (1991) data, the data reported in Figure 1.1 in section 1.2.3 of this thesis,
showed the levels of broadband solar UVA (320-400 nm) to be 48.77 W/m? on June 18,
1999 in Waterloo, Ontario, Canada. The solar broadband UVB irradiance level on the
same day in Figure 1.1 was 2.76-W/m?2, which is substantially higher than the values
ranging between 0.065 to 0.2955 W/m’ reported by Green et al., (1974) and
Merchikunnel et al., (1983). From the foregoing, it is apparent that terrestrial UVA

irradiance levels can influence the development of cataracts in human and other animals.
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The mechanisms by which UVA radiation could cause damage to the crystalline
lens or to the ability of the lens to recover from such damage are not yet clear (Pitts,
1988). According to Grothus-Draper’s law, some amount of radiation must be absorbed
by a tissue for damage to be elicited. Pirie (1971), proposed that low-power, long term
exposure to UVR was the cause of brown nuclear cataract in humans, and Zigman and
Vaughan (1974) observed cataracts in mice raised under elevated near-ultraviolet
irradiance levels. They found that subcapsular and cortical punctate lenticular opacities
appeared after 35 weeks after 12 hour daily exposure to of 4.5 W/m? UVB from black-
light fluorescent tubes (Zigman and Vaughan, 1974). The role of solar UVA
cataractogenesis proposed by Zigman (1983) has been challenged. Using different
research protocols, the studies by Bachem, (1956), Pitts et al., (1977 a and b), and Jose
and Pitts, (1985) concluded that UVB radiation between 295 and 315 nm induces anterior
lenticular opacities, but that exposure to UVA radiation between 320 and 400 nm does
not cause cataracts. Jose (1986) offered an explanation by noting that Zigman and
Vaughan (1974) used a black light fluorescent tube that emitted a small amount of UVB
radiation which might have caused the observed opacities.

In common with the human lens, the porcine lens contains low-molecular weight
compounds with maximal absorption at approximately 360 nm and 265 nm (Cooper and
Robson, 1969; van Heyningen, 1971). Therefore, it is expected that lenticular damage
from UV radiation in the porcine lens would be similar to damage in human lenses and to
that reported previously in other species such as rabbit (Pitts et al., 1977b) and cow
(Stuart et al., [1991]; Dovrat and Weinreb, 1995 and 1999). In most reported in vitro
studies, the damage observed in the lens included microscopically visible opacities,
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decreased ATP, morphological defects in epithelial cells, loss of enzyme activities (such
as catalase, NaK-ATPase), cytoskeletal actin breakdown, and cationic imbalances. There
is great variability in the values for damage thresholds (Zigman, 1995). It has been
calculated that only approximately 3% of the total solar UV radiation reaching the surface
of the lens is UVB, and this might be sufficient to induce cataract (Zigman, 1995)
because UVB contains more photon energy than UVA.

Barron et al., (1987), and Giblin (1998) showed that UVA causes nuclear light
scattering in the guinea pig and knockout mouse. Linetsky and Ortwerth (1995) showed
that UVA irradiation of older yellow human lens proteins caused the formation of free
radicals. A recent in vitro study by Dovrat and Weinreb (1999) showed that exposure of
organ cultured bovine lenses to 33 J/em? UVA peaked at 365 nm and caused reversible
damage to both the lens optics and NaK-ATPase activity. The present study was
undertaken to investigate if the UVA radiation alone or combined with an experimentally
determined subthreshold UVB level would have an effect on crystalline lens optics,

plasma membranes and cellular metabolic activity.

5.3 Materials and Methods

5.3.1 Organ Culture and UV Exposure

Fresh eyes from 6-8 month old pigs were obtained from a local slaughterhouse
approximately 1 hr post-mortem and held at room temperature until dissection, which
was usually performed from 2 to 4 hr post-mortem. Visually clear lenses were aseptically

dissected from the globe, with the adhering vitreous and ciliary body removed. The lens
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was placed in a custom designed two-compartment glass chamber containing modified
M199 culture medium with Earl’s salts, without phenol red (phenol red is known to
absorb UV radiation), plus 4% porcine serum (SIGMA Chemical), antibiotics (100
units/mL penicillin and 0.1 mg/mL streptomycin) and L-glutamine (0.1 g). The lenses
were first maintained in organ culture for 168 hour (1 week) and only lenses without
visible haze or opacities after the preincubation period were selected for the experiment.
The reason for the one week preincubation was that it took 5-7 days for the lenses to
attain homeostasis in the culture. The lenses randomly assigned to control and exposed
groups were maintained in a water-jacketed incubator at 37°C, 4% CO, 96% air
atmosphere, except during the UV irradiation period during which time they were kept in
a custom built UV irradiation system with controlled temperature and humidity. Lenses
were placed with the anterior surface facing up throughout the duration of the study. Both
lens surfaces were bathed in a total of 25 mL of the culture medium which was replaced
with sterile medium every 48 hr. The UV irradiation system had a membrane filtered air
supply to keep the atmospheric condition of 4% CO- and 96% air. The relative humidity
and temperature during irradiation were kept at 62% and 33°C to avoid heat effect. At one
week of incubation, before exposing the lenses assigned for UV treatment, baseline
fluorescence and optical quality measurements were taken using a fluorometric bioassay
and optical laser scanning methods, respectively as described in chapter 4.

Approximately 12 hr after the baseline measurements, the treated lenses were
exposed to broadband 86 J/cm? UVA (group 1); broadband 43 J/em? UVA (group 2); and
broadband 0.019 UVB combined synergistically with broadband 15.63 Jem® UVA
(group 3). The experiments for the different groups were conducted at different times.
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Before irradiation, the culture medium was removed from the top of the lens in culture
chamber so that just enough (approximately 1 mm) was left to cover the lens to prevent
drying, but not enough to interfere with the process of irradiating the lens. For the 86 and
43 J/cm® UVA exposures, the UV source to the lens anterior surface was 15 cm, and
exposure duration was 12 hr 30 seconds for 86 J/cm” UVA and 6 hr 15 seconds for 43
J/em? UVA. Zigman (1995) reported in his review that the average UVA threshold for in
vitro irradiated rabbit and squirrel lenses was 40 J/cm?. Dovrat and Weinreb (1995) found
no recovery of optical and enzyme activity with 44.8 J/cm? UVA imradiation of bovine
lenses in vitro. Since there is no data for porcine lenses, it was decided to use 43 J/cm®
UVA as the lower exposure level and double it for the higher UVA exposure in the
present study.

For the synergism study, the lenses were exposed for 20x 10> seconds in order to
obtain a maximum of 0.12 J/cm? UVB (biological effective dose equals 0.019 Jcm®).
This duration gave a simultaneous radiant exposure of 15.63 J/em® UVA. The distance
from the UV source to the anterior lens surface was 9 cm for the synergism experiment. It
was decided to limit the duration of UVA exposure to the duration required for 0.019
J/em? UVB because this UVB energy level has been found in earlier work (reported in
chapter 4 of this thesis) not to cause apparent UVB lens-damage. Since the average UVA
threshold for in vitro exposure is reported to be 40 J/cm? (Zigman, 1995), any damage
observed with simultaneous UVA exposure must be due to UVB and UVA combined
effect (synergism). A piece of cheesecloth was used to screen the UVB fluorescent tube in
order to reduce UVB irradiance so as to achieve a sufficient UVA exposure. In order to

prevent exposure to wavelengths below 290 nm, a cellulose acetate sheet measured to be
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opaque to UV wavelengths below 290 nm, was placed on top of the lens containers
during exposure. For comparative purposes, it was necessary to calculate the biologically
effective UVB dose utilized for group 3 lenses. The calculation was carried out using
ACGIH spectral weighting functions as described in chapter 4. As reported in chapter 4,
the calculated UVB effective dose of 0.12 J/cm® UVB (actual energy) from the
experimental UVB source was equivalent to 0.019 J/em®. Hence, for comparative
purposes in subsequent discussions, 0.019 J/cm* UVB will be used. The UVA and UVB
irradiation was achieved with 1 UVB and 3 UVA fluorescent tubes (Southern New
England Ultraviolet Co., Branford, CT, USA; purchased from Microlites Scientific,
Scarborough, Ontario, Canada). The spectral output of the UVB tubes is the same as
described in chapter 4. The UVA fluorescent (black light) tubes produced a broadband
emission from 350 nm to 410 nm, peaking at 365 nm. The spectral output distribution of
the UVA fluorescent tubes is shown in Figure 5.1. The UVA fluorescent tubes did not
emit any UVB wavelengths.

Before each irradiation procedure, the spectral output of the UVA and UVB
sources were measured with an InstaSpec II photodiode array spectroradiometer (Oriel
Corporation, Stratford, CT, USA) calibrated with a 1 kW quartz halogen lamp. The
experimental UVA source produced an irradiance of 19.41 W/m? (1.941 mW/cm?) for the
exposure of groups 1 and 2 lenses. In comparison to Zigman et al., ( 1992) who used 2.5
mW/cm? in their study of UVA effects on lens actin, the UVA provided by the irradiation
system in the present study is at subsolar level. For exposure of group 3 lenses the
UVB/UVA source produced an irradiance of 0.06 W/m? UVB and 7.815 W/m? UVA,

respectively. During the exposure, the lenses were oriented so that the anterior surface
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faced the incident UV irradiation. Control lenses were protected from UV radiation by

covering their containers with a black plastic sheet measured to be opaque to UV and

visible radiation.

5.3.2 Cellular and Optical Integrity Assessment

All lenses were kept sterile and further incubated for 4 weeks post-irradiation, with the
fluorescence and optical quality measurements carried out every 48 hr in the first 9 days,
and then weekly. Fluorometric bioassay and optical measurements were the same as
described in chapter 4. Statistical analysis for the different groups of lenses was
performed using repeated measures analysis of variance. Probability values, set at the

0.05 significance level, were calculated using the F-test.
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Figure 5.1. A representative plot of spectral output of the UVA fluorescent tubes used for
the UV A exposures.
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5.4 Results
5.4.1 Single UVA Exposure Experiment
A total of 12 control and 19 treated lenses were used in this experiment. Both the control
and treated lenses were maintained in culture medium for a period of 672 hours except
during measurements, UV irradiation (for treated lenses) and when changing the medium.
The bioassay results are based on a total of 4,340 quantitative measures since each
fluorescence measurement provides an average of 10 readings per scan, and each lens
went through a cycle of 2 scans, one for alamarBlue™ and the second for CFDA-AM
dyes at 7 different times. The optical quality results are based on 4,991 quantitative
measures for the 31 lenses since each lens was scanned 7 times, and the SLM produced
3 measures of focal length each time. Figures 5.2 shows one representative plot of focal

length profile of a porcine lens aged approximately 7 months.
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Figure 5.2. A representative focal length profile for a single porcine lens. Equivalent focal
length (mm) is shown on the horizontal axis. Eccentricity (mm) of laser beam position
from optic axis (0.0) is shown on the vertical axis. The plus signs indicate where the

beam crossed the axis at each eccentric position.

\
}

\

11

I

\
I

0.0

|
I

|

=
L 5.0
5.0 ~

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

130



5.4.2 Lens Cellular Integrity Assessment

Lenses used for the 86 and 43 J/em® UVA irradiation experiments had baseline mean
fluorescence values ranging between 8277 (Table 5.4) and 11205 (Table 5.1) arbitrary
fluorescence units (AFUs), as indicated by the alamarBlue™ assay and between 31957
(Table 5.5) and 51924 AFUs (Table 5.2) as indicated by the CFDA-AM assay. For clarity
of presentation of the results, some collective data for all lenses are expressed graphically
as mean fluorescence versus measurement time, with the error bars representing the
standard error of the mean (S.E.M) (Figures 5.3 and 5.4). With the alamarBlue™ assay,
the data in Tables 5.1 and 5.10 show that lenses treated with 86 J/cm® UVA exhibited
some significant reduction in fluorescence (11%) at 48 hr (P = 0.013) and 10% at 96 hr
(P = 0.036). These lenses demonstrated recovery from the UVA damage beginning from
114 hr (Table S5.1). Table 5.10 also shows that lenses treated with 43 J/em? UVA
demonstrated significant reduction in cellular metabolism of 8% at 48 hr (P = 0.042) with
recovery commencing at 96 hr (Table 5.4). In terms of UVA damage of lens plasma
membranes as indicated by the CFDA-AM assay, 86 J/em® UVA irradiation led to a
significant perturbation in esterase activity (P = 0.013) in the treated lenses at 48 hr, with
quick recovery from 96 hr (Table 5.2). The lenses treated with 43 J/cm® UVA irradiation
did not demonstrate any significant compromise in esterase activity (plasma membrane

integrity) throughout the study duration.
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5.4.3 Lens Optical Quality Assessment

The optical quality measurement results indicate the baseline mean focal lengths of both
the control and treated lenses used for 86 and 43 J/cm® UVA irradiation ranged from 28.7
mm (Table 5.3) and 30.2 mm (Table 5.6) in control and treated lenses. The baseline mean
focal length variability (FLV) ranged from 0.37 mm (Table 5.3) to 0.57 mm (Table 5.6)
in all lenses. Some collective data for all lenses are expressed graphically as mean focal
length variability (Figure 5.5) and mean focal lengths (Figure 5.6) over time with the
error bars representing + S.E.M of individual data point (not the focal length variability).
The optical quality results, as indicated by the focal variability data, show that lenses
treated with 86 J/cm® UVA exhibited a significant increase in FLV, as shown by a
reduction in sharpness of focus beginning with 158% at 48 hr (P = 0.0002) with no
recovery through to the end of the study (Tables 5.3 and 5.11). Table S.11 shows that
lenses treated with 43 J/cm? UVA did not demonstrate any significant reduction in lens

sharpness of focus throughout the study period.

5.4.4 UVA/UVB Synergistic Irradiation

A total of 10 control and 15 exposed lenses were used in this experiment. The bioassay
results here are based on a total of 3,500 quantitative measurements while the optical
quality results are based on 4,025 quantitative measurements. The 15.63/0.019 J/em?
UVA / UVB synergistic irradiation produced significant reduction in cellular metabolic
activity beginning from 48 hr (P = 0.0002) with no indication of recovery in the treated

lenses (Table 5.7 and 5.10; Figure 5.7). However, lens plasma membrane damage was
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only observed at 192 hr (P = 0.04) and 336 hr (P = 0.0002) with recovery at 672 hr (Table
5.8; Figure 5.8).

In terms of optical quality, the treated lenses demonstrated a significant increase in focal
length variability (sharpness of focus) beginning from 96 hr (P = 0.03) post-irradiation
with no recovery from the UV damage through to the end of study, while a significant
change (P = 0.012) in mean focal length was observed only at 192 hr, which exhibited
recovery by 336 hr (P = 0.84) (Table 5.9; Figures 5.9 and 5.10). This might explain why

focal length variability (FLV) is more sensitive than average focal length (AFL).
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5.5 Discussion

5.5.1 Predominantly UVA Exposure

The crystalline lens is a surface tissue that continues to grow throughout life with new
cells formed on the outer surface and old concentrated toward the interior (Mann, 1969).
Many experimental studies have shown that exposure to UVR in the range of 290 to 400
nm, whether from sunlight or an artificial source induces photochemical changes in the
crystalline lens. It is generally agreed that chronic exposure to UVR in the 290-400 nm
range over a lifetime leads to the generation and increased accumulation of chromophores
with an associated increase in the amount of insoluble protein within lens fibres (Zigman,
1986; Stevens and Bergmanson, 1989; Liang, 1991; Dillon et al,, 1999a). Previous in
vitro and in vivo experiments (van Heyningen, 1972; Zigman et al., 1991) indicated that
UVR exposure converts tryptophan within the lens into an oxidised form which cross-
links to other proteins. The resultant protein aggregations lead to opacities in the lens
(Stevens and Bergmanson, 1989).

The results in this study show that a radiant exposure of 86 J/cm? UVA causes
considerable damage to the cellular and optical integrity of the crystalline lens in vitro,
some of which showed recovery and some not. The alamarBlue™ and CFDA-AM assay
data show that the stress on the lens metabolic activity and esterase activity induced by
the 86 J/cm> UVA exposure gradually dissipated through the lens repair systems in the
lenses. Clearly, as shown in Table 5.3, the 86 J/cm® UVA exposure caused significant
permanent degradation in sharpness of focus (i.e. focal length variability) in the treated

lenses, but the average focal lengths of the lenses were not affected. This might not be
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surprising since the variables of shape and refractive index changes may neutralise each
other. However, it may indicate that focal length variability is a more sensitive indicator
of UVA damage in crystalline lenses. The 43 J/em? UVA radiation is shown to cause
subtle reversible damage to lens cellular metabolic activity at 48 hr (Table 5.4), the
esterase activity at 336 hr (Table 5.5), and the lens optics at 672hr (Table 5.6). Dovrat
and Weinreb (1995) using cultured bovine lenses found partial recovery of UV damage of
lens optics, and 80-90% recovery of enzyme activity in lenses irradiated with 33.6 J/cm’
UVA, and no recovery of damage in lenses irradiated with 44.8 J/em? UVA. Dovrat and
Weinreb (1999) aiso found that 33 J/cm®> UVA exposure caused reversible damage of
bovine lens NaK-ATPase activity in vitro. Although the endpoints and times are
somewhat different, the findings of the present study that 43 J/em® UVA could induce
reversible damage to the lens in vitro tend to agree closely with those of Dovrat and
Weinreb (1999). The results of the current study and that of Dovrat and Weinreb (1995,
1999) suggest that a radiant exposure between 33 J/cm® and 43 J/cm? is the in vitro UVA

threshold range for lens damage.

5.5.2 UVA /UVB Synergism

Tables 5.7 and 5.8 show that lens cellular metabolism and esterase activity (plasma
membrane integrity) suffer significant damage due to the UVA/UVB synergism. The
reduction of lens cellular metabolic activity, which began at about 48 hr post-irradiation,
did not demonstrate any recovery. By comparison, damage to the lens esterase activity
only occurred at 192 hr and 336 hr post-exposure. This might suggest that UV induced

mitochondrial impairment, leading to reduced cellular metabolic activity, precedes
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general plasma membrane damage in the lens. According to Zigman (1995), the UVA and
UVB radiation that penetrates the cornea would first impinge on the lens epithelial cells.
Therefore, lens anomalies would be expected to occur initially in the epithelial cells,
followed by anterior outer cortical fibre damage, and subsequent anterior cortical opacity
(Zigman, 1995).

The use of the infero-nasal location of cortical opacities as biomarkers of solar
UVR-induced cataract in humans has been suggested (Sliney, 1986), and this was
confirmed by Schein et al. (1994), who reported an association of sunlight exposure with
cortical cataracts located mostly at the infero-nasal quadrant of the lens. The biochemical
reason for this could be explained on the basis of a report by Blanquet and Courtois
(1989) that metabolic interactions between cytoskeletal proteins differ in different regions
of the lens epithelium. Thus, it could be speculated that the cytoskeleton proteins in the
infero-nasal quadrant of the lens contain weak metabolic interactions, which might make
UVR damage more effective at the lens infero-nasal quadrant. Altematively, anterior eye
focusing of ambient environmental ultraviolet radiation, particularly reflected rays
(albedo) has been proposed as the likely reason for the more prevalent infero-nasal
cortical cataract in outdoor workers (Coroneo, 1990; Cullen et al., 1997). In general, in
vitro experimental results such as those of the current study, support UVR as a causative
factor in human cataractogenesis. Anterior cortical opacity was observed 2 weeks and 4
weeks post-irradiation in some treated lenses in the current experiment as well.

The trend in the CFDA-AM and alamarBlue™ assay results (Figures 5.7 and 5.8)
also suggests that alamarBlue™ is more sensitive in showing the UV toxic effect.
Although not statistically significant (Table 5.8), a decrease in membrane integrity
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(reduced esterase acitivity) was evident from the 96 hr data which did not seem to recover
to the baseline level. That the alamarBlue™ assay results appear significant from 48 hr
may not be surprising because there is the possibility that the ATP production in the
mitochondria was quickly diminished due to UV damage, causing significant
destabilization of epithelial cell metabolism. This possibility may be supported by the
findings of Thomas et al., (1991) who found a drop in the ATP level of squirrel lenses
exposed to near-UV radiation as measured by [*'P]NMR procedures. Also, it may be that
since esterase activity is not only present in the epithelium but also in other lens
components, particularly the fibres, that the CFDA-AM assay is measuring general
membrane damage of the lens. This would suggest the CFDA-AM dye as a good non-
toxic fluorescence indicator to use in the study of the role of UV in lens membrane aging.
Taking the assay and optical results together, the UVA/UVB synergistic degrading
effect on lens cell metabolic activity and membrane integrity appears to follow a similar
trend in term of the degradation of lens optics, especially as indicated by the focal length
variability results. These show a significant decrease (Table 5.9), beginning at 96 hr, with
no recovery tendency to the end of the study (Figure 5.9). The findings in the current
study support the view that UVA involvement cannot be excluded in the formation of
cataracts in humans (Zigman, 1993; Dillon, 1999). Using in vivo UVB exposure, Jose and
Yielding (1977) proposed that the active repair mechanism noted in rat lens epithelium is
through unscheduled DNA synthesis. Stuart et al., (1991) noted that DNA synthesis might
not be the mechanism for recovery in in vitro UV exposure. Rather, it is possible that
UVB damages the enzyme NaK-ATPase, allowing a water imbalance that produces
temporary swelling and opacification to take place (Torriglia and Zigman, 1988). Zigman
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(1991), using cultured squirrel lenses, found that predominantly UVA irradiation could
damage lens epithelial NaK-ATPase activity, while Dovrat and Weinreb (1999), using
cultured bovine lenses, found that UVA damage to lens epithelial NaK-ATPase activity
was repairable.

Previous studies have provided information on UV-lens damage for
predominantly UVB exposure (Hightower and McCready, 1992b) or predominantly UVA
exposure (Zigman et al., 1992; Weinreb and Dovrat, 1996). The results of the present
study indicate that both UVB and UVA exposures show similar trends of damage and
recovery in terms of lens cellular and optical integrity, however, higher UVA energy is
required. In conclusion, the present study demonstrates, with both cell biology and
optical methods, that the synergistic effects of substantially low, sub-solar UVB and UVA
exposures can adversely affect lens cellular and optical properties. Overall, this study
supports the hypothesis that UVA contributes to the disruption of lens epithelial in vivo,

and that it should be considered to be an aetiologic factor in human cataractogenesis.
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Chapter 6
SUMMARY and CONCLUSIONS
Using the newly developed assay methodology and the optical scanning laser system
developed by Sivak et al., (1986), this thesis has examined the suitability of the porcine
crystalline lens for organ culture studies of UV-induced cataractogenesis and other lens
related investigations. Contrary to Wang et al., (1997) the results in this thesis confirm
that porcine lenses from commercial sources can be cultured for up to six weeks without
compromising their transparency, optical or cellular integrity, with an appropriate culture
medium formulation as described in this study.

In order to further address the mechanisms of UV cataractogenesis, and given the
concern for animal welfare, continued in vitro research efforts are worthwhile. An in vitro
UV-cataract action spectrum for the organ cultured intact lens was established using
probit statistical protocol. The in vitro action spectrum for UV lens damage appears to
follow a similar pattern to in vivo action spectra obtained for the cornea and lens (Pitts,
Cullen and Hacker, 1977a and b). This may not be surprising, since the comea and lens
epithelium are both derived from the same embryological origin, the surface ectoderm.
The characteristic of repair from UV damage in the porcine lens was also examined. In
terms of UV damage and repair, the magnitude and recovery of the lesions were both
wavelength and dose dependent.

The development of a new methodology warrants its testing and validation.
Therefore, the feasibility of the new assay approach described in chapter two, to

quantitatively measure UVB and UVA damage in cultured lenses was investigated. The
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evidence as validated with the scanning laser monitor system indicates that lens cellular
measures obtained with the new technique are valid.

A question that is currently a subject of debate is whether or not UVA is
cataractogenic. The new assay method was employed to address this question, and to
evaluate synergistic effects of UVA and UVB. Since mitochondrial function is the
hallmark of cell metabolism, UVB and UVA were shown to cause a decrease in lens
cellular metabolic activity. Thus, the results presented in chapters four and five suggest
that UVB and UVA damage to the lens cells is through the inhibition of mitochondrial
function. The results also support the view that UVA is cataractogenic, and that
simultaneous subthreshold UVA and UVB exposure in combination can cause damage to
the lens. The irreversibility of UV damage observed at certain radiant exposures, as
indicated by the alamarBlue™ and CFDA-AM assay data, suggests that the damaged
lenses are unable to replenish damaged ATPases and membrane proteins containing ion
channels or transporters.

The results of this study suggest several directions of further research. New
fluorescent indicator dyes are emerging; especially those that can be used to selectively
quantify the apoptotic phenomenon in living cells. Thus, pathologic phenomena can be
studied using the newly developed assay method, for example, to investigate if UVB
and/or UVA causes lens damage by apoptosis, necrosis or a combination of both. Also, it
could be possible to label DNA in cultured lens to study UV effects on lens DNA in live
epithelial cells. This approach could elucidate the importance of apoptosis in relation to
repair in UV-lens damage. In terms of comparative study of cellular and biochemical
properties of lenses from different animal species, the new bioassay approach would be
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an excellent tool. It could be speculated from the present results of the assay method that
UV irradiation causes lens damage by destabilizing lens plasma protein and lipid
substrate. It is known that intracellular calcium concentration (regulated by endoplasmic
reticulum proteins), regulates a variety of cellular functions including secretion,
contraction-relaxation, cell differentiation, cytoplasmic metabolism, apoptosis, protein
synthesis and folding. The assay method could be used to study the role of endoplasmic
reticulum in UV cataractogenesis, and to investigate if UV causes lens damage by directly
inhibiting protein synthesis or by causing an increase in intracellular calcium (an increase
in calcium content is known to inhibit lens protein synthesis [Hightower and McCready,
1997)).

Taken together, the results from this thesis are in agreement with previous in vivo
and in vitro studies in finding that crystalline lens epithelial and fibre cells are important
targets of UVB and UVA. The fluorometric bioassay model as now developed for lens
research, is a potential addition to the ocular drug efficacy testing battery, particularly for
pharmacological agents that are being developed for cataract prevention. Finally, the data
in this thesis have shown that the combination of UVB and UVA can have a deleterious
effect on the lens, thus confirming that preventive strategies against ultraviolet radiation

should also consider the UV A waveband.
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Chapter 7
APPENDICES
Appendix 7.1A. Action spectrum data arrangement for exposed lenses at 270 nm
waveband. Note: under damage grade column, ‘no dam’, ‘mod(er)’ or ‘sev’ means no UV

damage, moderate damage or severe damage, respectively.

4 sets (20 lenses) at 270 nm

Set | lens # time of lesion damage grade Radiant exposure J/cm2
1 48 no dam 0.0522
2 48 no dam 0.0522
3 36 mod 0.0522
4 48 mod 0.0522
5 48 no dam 0.0522
increase by 50%
Set 2 lens # time of lesion Radiant exposure J/cm2
1 36 sev 0.0783
2 36 sev 0.0783
3 48 mod 0.0783
4 48 moder 0.0783
) 24 moder 0.0783
reduce by 25%
Set 3 lens # time of lesion Radiant exposure J/cm2
1 36 sev 0.0587
2 48 no dam 0.0587
3 36 mod 0.0587
4 48 no dam 0.0587
S 48 no dam 0.0587
increase by 10%
Set 4 lens # time of lesion Radiant exposure J/cm2
1 36 sev 0.0646
2 36 mod 0.0646
3 36 mod 0.0646
4 48 no dam 0.0646
5 36 sev 0.0646
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Appendix 7.2A. Action spectrum data for exposed lenses at 275 nm waveband.

Set | lens #
1

w W N

Set 2 lens #
1

wn b W N

lens # 3

LT - VYT S R

lens #4

n L W N -

lens #5

wn hH W N -

5 sets (25 lenses) at 275 nm

time of lesion
48
48
36
48
48

time of lesion
48
36
48
48
36

time of lesion
36
24
36
24
36

time of lesion
36
36
36
48
36

time of lesion
48
48
48
48
36

damage grade
no dam
no dam
mod
mod
no dam
increase by 50%

no dam
sev
no dam
no dam
mod
increase by 25%

sev

mod

mod

mod

sev
reduce by 10%

sev
mod
mod
mod
sev
reduce by 10%

mod
no dam
mod
mod
mod
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radiant exposure J/cm2
0.0345
0.0345
0.0345
0.0345
0.0345

radiant exposure J/cm2
0.0518
0.0518
0.0518
0.0518
0.0518

radiant exposure J/cm2
0.0647
0.0647
0.0647
0.0647
0.0647

radiant exposure J/cm2
0.058
0.058
0.058
0.058
0.058

radiant exposure J/cm2

0.0522
0.0522
0.0522
0.0522
0.0522



Appendix 7.3A. Action spectrum data for exposed lenses at 280 nm waveband.

Set | lens #
1

wn & W

Set 2 lens #
1

wn W N

Set 3 lens #
1

wn & W

Set 4 lens #
1

wn & W N

Set 5 lens #

wn h W -

5 sets (25 lenses) at 280 nm

damage grade

time of lesion
36
36
36
48
36

time of lesion
36
48
36
36
36

time of lesion
36
48
48
48
48

time of lesion
36
48
48
48
48

time of lesion
36
48
48
48
36

increase by 50%

reduce by 25%

increase by 10%

increase by 10%
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no dam

no dam
mod
mod

no dam

sev
mod
mod
sev
mod

mod

mod
no dam
no dam
no dam

mod
no dam

mod

mod
no dam

mod
mod
mod
mod
sev

radiant exposure J/cm2
0.0253
0.0253
0.0253
0.0253
0.0253

radiant exposure J/cm2
0.03795
0.03795
0.03795
0.03795
0.03795

radiant exposure J/cm2
0.0285
0.0285
0.0285
0.0285
0.0285

radiant exposure J/cm2
0.0314
0.0314
0.0314
0.0314
0.0314

radiant exposure J/cm2
0.0345
0.0345
0.0345
0.0345
0.0345



Appendix7.4A. Action spectrum data for exposed lenses at 285 nm waveband.

Set 1 lens #

Set 2 lens # (reduce by 50%)
1

wv A wN

Set 3 lens # (increase by 25%)

wn & W N

Set 4 lens # (increase by 10%)

wn W N -

Set 5 lens # (increase by 10%)

n & W N -

Set lens # (increase by 10%)

W ha WwWwN -

6 sets (30 lenses) at 285 nm

time of lesion
36
36
36
48
36
time of lesion
48
48
48
48
48
time of lesion
48
48
48
48
48
time of lesion
48
36
36
48
36
time of lesion
48
48
48
48

36
time of lesion
48
36
36
48
36
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damage grade
sev
sev
sev
mod
sev

no dam
no dam
no dam
no dam
no dam

no dam
no dam
no dam
mod
no dam

no dam

no dam
mod
mod

no dam

mod
no dam
no dam
no dam

mod

mod
mod
mod

mod

radiant exposure J/cm2
0.03025
0.03025
0.03025
0.03025
0.03025
radiant exposure J/cm2
0.01513
0.01513
0.01513
0.01513
0.01513
radiant exposure J/cm2
0.0189
0.0189
0.0189
0.0189
0.0189
radiant exposure J/cm2
0.0208
0.0208
0.0208
0.0208
0.0208
radiant exposure J/cm2
0.023
0.023
0.023
0.023

0.023
radiant exposure J/cm2
0.0253
0.0253
0.0253
0.0253
0.0253



Appendix 7.5A. Action spectrum data for exposed lenses at 290 nm waveband.

Set 1 lens #

“n & W N

Set 2 lens #

wn & W N

Set 3 lens #
1

wn bW

Set4 lens #

wn W N

Set S lens #

WV s Wi -

5 sets (25 lenses) at 290
nm
time of lesion

36
36
36
48
36

time of lesion
48
48
48
48
48

time of lesion
48
48
48
48
48

time of lesion
48
36
36
48
36

time of lesion
48
36
36
48
36
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damage grade
sev
sev
sev
mod
sev
reduce by 50%

no dam

no dam

no dam

no dam

no dam
increase by 25%

no dam
no dam
no dam
mod
no dam
increase by 10%

no dam
no dam
mod
mod
no dam
increase by 10%

mod
mod
mod

sev
mod

radiant exposure J/cm2
0.04
0.04
0.04
0.04
0.04

radiant exposure J/cm2
0.02
0.02
0.02
0.02
0.02

radiant exposure J/cm2
0.025
0.025
0.025
0.025
0.025

radiant exposure J/cm2
0.0275
0.0275
0.0275
0.0275
0.0275

radiant exposure J/cm2
0.03025
0.03025
0.03025
0.03025
0.03025



Appendix 7.6A. Action spectrum data for exposed lenses at 295 nm waveband.

Set | lens #
1

[ I S VS I S

Set 2 lens # (reduce dose by 50%)

LW

5
Set 3 lens # (reduce dose by 50%)

Set 4 lens # (increase dose by 25%)
1

w» s W

Set 5 lens # (increase dose by 25%)

wv b W

Set 6 lens # (increase dose by 25%)

[V SRV 6 I

6 sets (30 lenses) at
295 nm
time of lesion

36
36
36
48
36
time of lesion
48
36
36
48
36
time of lesion
48
48
48
48
48
time of lesion
48
36
36
48
36
time of lesion
48
36
36
48

36
time of lesion
48
36
36
48
36
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damage grade
sev
sev
sev
mod
sev

mod

mod

no dam
no dam
no dam
mod
no dam

no dam
no dam
no dam
no dam
no dam

mod
mod
no dam

no dam

mod
mod
sev
sev

radiant exposure J/cm2
0.08
0.08
0.08
0.08
0.08
radiant exposure J/cm2
0.04
0.04
0.04
0.04
0.04
radiant exposure J/cm2
0.02
0.02
0.02
0.02
0.02
radiant exposure J/cm2
0.025
0.025
0.025
0.025
0.025
radiant exposure J/cm2
0.03125
0.03125
0.03125
0.03125

0.03125
radiant exposure J/cm2
0.0391
0.0391
0.0391
0.0391
0.0391



Appendix 7.7A. Action spectrum data for exposed lenses at 300 nm waveband.

Set | lens #
1

b & W N

Set 2 lens #
1

w b W

Set 3 lens #
i

w K W

Set 4 lens #

LV TP - VS S

Set 5 lens #
1

wnoh W

5 sets (5 lenses per set = 25) at 300 nm

time of lesion
48
48
36
36
48

time of lesion
48
48
48
36
48

time of lesion
48
48
48
48
48

time of lesion
48
48
48
48
48

time of lesion
48
48
48
48
48

167

damage grade
moder
seve
moder
moder
seve
reduce by 50%

moder
seve
moder
moder
moder
reduce by 50%

no dama
no dama
no dama
no dama
no dama
increase by 25%

no dama
moder
moder
no dama
no dama
increase by 25%

moder
moder
moder
no dama
seve

radiant exposure J/cm2
02
0.2
0.2
0.2
02

radiant exposure J/cm2
0.1
0.1
0.1
0.1
0.1

radiant exposure J/cm2
0.05
0.05
0.05
0.05
0.05

radiant exposure J/cm2
0.0625
0.0625
0.0625
0.0625
0.0625

radiant exposure J/cm2
0.078
0.078
0.078
0.078
0.078



Appendix 7.8A. Action spectrum data for exposed lenses at 305 nm waveband.

Set 1 lens #

HOLN

5
Set 2 lens # (Double the dose)

1
2
3
4
5

Set 3 lens # (reduce dose by 25%)
1
2
3
4
5

Set 4 lens # (reduce dose by 25%)

S LN -

5
Set 5 lens # (increase dose by 10%)
i
2
3
4
5
Set 6 lens # (increase by 10%)

[V I - VS I S

6 sets (30 lenses) at 305 nom

time of lesion
48
48
48
48
48
time of lesion
36
48
48
36
48
time of lesion
48
48
48
48
48
time of lesion
48
48
48
48
48
time of lesion
48
48
48
48
48
time of lesion
36
48
48
36
36

168

damage grade
no dam
no dam
no dam
moder
no dam

moder
seve
moder
moder
moder

moder
moder
moder
seve
no dama

no dama
moder
moder

no dama

no dama

no dama

no dama
moder

no dama
moder

moder
no dam
seve
moder
moder

radiant exposure J/cm2
0.078
0.078
0.078
0.078
0.078
radiant exposure J/cm2
0.156
0.156
0.156
0.156
0.156
radiant exposure J/cm2
0.117
0.117
0.117
0.117
0.117
radiant exposure J/cm2
0.0878
0.0878
0.0878
0.0878
0.0878
radiant exposure J/cm2
0.0966
0.0966
0.0966
0.0966
0.0966
radiant exposure J/cm2
0.1063
0.1063
0.1063
0.1063
0.1063



Appendix 7.9A. Action spectrum data for exposed lenses at 310 nm waveband.

Set llens #
\
2
3
4
5
Set 2 lens # (double the dose)
i
2
3
4
5
Set 3 lens # (double the dose)
1

wn & Wi

Set 4 lens # (reduce by 25%)

Set 5 lens # (reduce by 25%)

W W N -

Set 6 lens # (increase by 10%)

W W -

6 sets (30 lenses) at

310 om
time of lesion
48
48
48
438
48
time of lesion
48
48
48
48
48
time of lesion
48
48
48
48
48
time of lesion
48
48
48
48
48
time of lesion
48
48
48
48
48
time of lesion
36
48
48
36
36
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damage type
no dam
no dam
no dam
moder
no dam

moder
no dam
no dam
no dam
no dam

moder

moder

moder
seve
seve

moder

moder
no dama
moder

no dama
no dama

no dama
moder

moder
seve

no dam

moder
seve

radiant exposure J/cm2
0.1063
0.1063
0.1063
0.1063
0.1063
radiant exposure J/cm2
0.2126
0.2126
0.2126
0.2126
0.2126
radiant exposure J/cm2
0.4252
0.4252
0.4252
0.4252
0.4252
radiant exposure J/cm2
0.3189
0.3189
0.3189
0.3189
0.3189
radiant exposure J/cm2
0.2392
0.2392
0.2392
0.2392
0.2392
radiant exposure J/cm2
0.263
0.263
0.263
0.263
0.263



Appendix 7.10A. Action spectrum data for exposed lenses at 315 nm waveband.

set | lens #
1
2
3
4
5
set 2 lens # (double the dose)
1

[V I "R VIR N )

set 3 lens # (double the dose)

W W e

set 4 lens # (reduce by 25%)

[V I N VYR S

set 5 lens # (increase by 10%)

[V TR~ VS B S

5 sets (25 lenses) at 315

nm

time of lesion
48
48
48
48
48

time of lesion
48
48
48
48
48

time of lesion
36
48
36
48
48

time of lesion
48
48
48
48
48

time of lesion
48
48
48
48
48
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damage grade
no dam
no dam
no dam
no dam
no dam

moder
no dam
no dam
no dam
no dam

moder

moder

moder
seve
seve

no dam
moder
moder

no dama
no dam

seve
moder
moder

no dama
moder

radiant exposure J/cm2
0.263
0.263
0.263
0.263
0.263
radiant exposure J/cm?2
0.526
0.526
0.526
0.526
0.526
radiant exposure J/cm2
1.052
1.052
1.052
1.052
1.052
radiant exposure J/cm2
0.789
0.789
0.789
0.789
0.789
radiant exposure J/cm2
0.868
0.868
0.868
0.868
0.868



Appendix 7.11A. Action spectrum data for exposed lenses at 320 nm waveband.

set | lens #
1
2
3
4
5
set 2 lens # (double the dose)

U

5
set 3 lens # (double the dose)
1
2
3
4
5
set 4 lens # (double the dose)
l
2
3
4
5
set 5 lens # (reduce by 25%)
1
2
3
4
5
set 6 lens # (reduce by 25%)
1

(V. -V Iy S

set 7 lens # (reduce by 10%)

W L W -

7 sets (35 lenses) at 320 nm

time of lesion
48
48
48
48
48
time of lesion
48
48
438
48
48
time of lesion
36
48
438
48
48
time of lesion
48
36
48
36
36
time of lesion
48
48
48
36
48
time of lesion
24
48
48
48
48
time of lesion
48
48
18
48
48

171

damage grade radiant exposure J/cm2
no dam 0.868
no dam 0.868
no dam 0.868
no dam 0.868
no dam 0.868
radiant exposure J/cm2
no dam 1.7358
no dam 1.7358
moder 1.7358
no dam 1.7358
no dam 1.7358
radiant exposure J/cm2
moder 3.472
no dam 3.472
no dam 3472
no dam 3472
no dam 3472
radiant exposure J/cm2
seve 6.944
moder 6.944
moder 6.944
seve 6.944
seve 6.944
radiant exposure J/cm2
seve 5.208
moder 5.208
moder 5.208
seve 5.208
moder 5.208
radiant exposure J/cm2
conta 3.906
moder 3.906
moder 3.906
moder 3.906
moder 3.906
radiant exposure J/cm2
no dam 3.515
moder 3.515
conta 3.515
moder 3.515
moder 3.515



Appendix 7.12A. Action spectrum data for exposed lenses at 325 nm waveband.

set 1 lens #
1
2
3
4
5
set 2 lens # (double the dose)

WO -

5
set 3 lens # (double)

1
2
3
4
5

set 4 lens # (double the dose)
1
2
3
4
5

set 5 lens # (reduce by 25%)
1
2
3
4
5

set 6 lens # (increase by 25%)
1
2
3
4
5

set 7 lens # (reduce by 10%)

W0 oW -

7 sets (35 lenses) at 325 nm

time of lesion
48
48
48
48
48
time of lesion
48
48
48
48
48
time of lesion
48
43
48
48
48
time of lesion
48
36
48
36
36
time of lesion
48
48
48
36
48
time of lesion
48
48
48
48
48
time of lesion
48
48
48
48
36

damage grade
no dam
no dam
no dam
no dam
no dam

no dam
no dam
moder
no dam
no dam

no dam
no dam
no dam
moder
no dam

seve

moder

moder
seve
seve

moder
moder
no dam
no dam
no dam

seve
moder
moder
moder
moder

no dam
moder
no dam
moder
seve

172

radiant exposure J/cm2
3.518
3.515
3.515
3.515
3.515
radiant exposure J/cm?2
7.03
7.03
7.03
7.03
7.03
radiant exposure J/cn2
14.06
14.06
14.06
14.06
14.06
radiant exposure J/cm2
28.12
28.12
28.12
28.12
28.12
radiant exposure J/cm2
21.09
21.09
21.09
21.09
21.09
radiant exposure J/cm2
26.36
26.36
26.36
26.36
26.36
radiant exposure J/cm2
23.724
23.724
23.724
23.724
23.724



Appendix 7.13A. Action spectrum data for exposed lenses at 330 nm waveband.

set | lens #
1
2
3
4
5
set 2 lens # (double dose)

1
2
3
4
5

set 3 lens # (reduce by 25%)
1
2
3
4
5

set 4 lens # (reduce by 25%)
1
2
3
4
5

set 5 lens # (increase by 10%)
1

[V VSR S ]

time of lesion
48
48
48
48
48
time of lesion
24
18
24
12
12
time of lesion
24
48
30
42
30
time of lesion
48
36
48
48
48
time of lesion
48
48
48
36
48
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5 sets (25 lenses) at 330 nm

no dam
no dam
no dam
no dam
no dam

s¢ve
seve
seve
seve
s¢ve

seve
moder

seve
moder
moder

no dam
moder
no dam
no dam
no dam

moder
moder
no dam
seve
moder

radiant exposure J/cm2
23.724
23.724
23.724
23.724
23.724
radiant exposure J/cm2
47.448
47.448
47.448
47.448
47.448
radiant exposure J/cm2
35586
35.586
35.586
35.586
35.586
radiant exposure J/cm2
26.689
26.689
26.689
26.689
26.689
radiant exposure J/cm2
29.358
29.358
29.358
29.358
29.358



Appendix 7.14A. Action spectrum data for exposed lenses at 340 nm waveband.

set | lens #
1
2
3
4
S
set 2 lens # (double preceding dose)

1
2
3
4
5

set 3 lens # (reduce by 25%)
1
2
3
4
5

set 4 lens # (increase by 25%)

[ R R R S

4 sets (20 lenses) at 340 nm

time of lesion
48
48
48
48
48
time of lesion
42
36
42
48
36
time of lesion
48
48
48
48
30
time of lesion
48
36
48
48
36

174

damage grade
no dam
no dam
no dam
no dam
no dam

moder
seve
seve

moder
seve

no dam
moder
no dam
no dam
moder

no dam
moder
moder
no dam
moder

radiant exposure J/cm2
29.358
29.358
29.358
29.358
29.358
radiant exposure J/cm2
58.72
58.72
58.72
58.72
58.72
radiant exposure J/cm2
44.04
44.04
44.04
44.04
44.04
radiant exposure J/cm2
55.05
55.05
55.05
55.05
55.05



Appendix 7.15A. Action spectrum data for exposed lenses at 350 nm waveband.

set | lens #
1
2
3
4
S
set 2 lens # (double dose)

P ' PY NS

5
set 3 lens # (increase by 25%)
1

= W

S
set 4 lens # (increase by 10%)
1

W & Wi

set 5 lens # (reduce by 10%)

[ I VS

5 sets (24 lenses) at 350 nm

time of lesion
48
48
48
48
48
time of lesion
48
48
42
48
48
time of lesion
48
36
36
48
24
time of lesion
48
36
48
48
48
time of lesion
48
36
48
48
48
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damage type
no dam
no dam
no dam
no dam
no dam

no dam
moder
moder
no dam
no dam

seve
moder
moder
moder

contaminated

no dam
moder
moder
moder
moder

no dam
seve
no dam
moder
moder

radiant exposure J/cm2
55.05
55.08
55.08
55.05
55.05
radiant exposure J/cm2
11C.1
110.1
110.1
110.1
110.1
radiant exposure J/cm2
137.63
137.63
137.63
137.63

radiant exposure J/cm2
123.87
123.87
123.87
123.87
123.87
radiant exposure J/cm2
111.48
111.48
111.48
111.48
111.48



Appendix 7.16A. Action spectrum data for exposed lenses at 360 nm waveband.

3 sets (14 lenses) at

360 nm
set | lens # time of lesion damage grade radiant exposure J/cm2
1 48 no dam 111.48
2 48 no dam 111.48
3 48 no dam 111.48
4 48 no dam 111.48
5 48 no dam 111.48
set 2 lens # (double the dose) time of lesion radiant exposure J/cm2
1 48 moder 222.96
2 36 moder 222.96
3 42 seve 22296
4 48 seve 222.96
5 18 contaminated
set 3 lens # (reduce by 25%) time of lesion radiant exposure J/cm2
1 48 no dam 167.22
2 36 moder 167.22
3 36 moder 167.22
4 48 no dam 167.22
5 36 moder 167.22

176



Appendix 7.17A. Action spectrum data for exposed lenses at 365 nm waveband.

set lens #
1
2
3
4
5
set 2 lens # (reduce by 50%)
1

W b wN

set 3 lens # (increase by 25%)

wn LW -

set 4 lens # (increase by 10%)

W AW N -

4 sets (19 lenses) at 365 nm

time of lesion
48
48
42
48
30
time of lesion
48
48
42
48
48
time of lesion
48
48
48
48
48
time of lesion
48
36
36
48
30

damage grade
moder
moder
sev
sev
contaminated

moder
no dam
no dam
no dam
moder

moder
moder
no dam
no dam
no dam

moder
moder
no dam
moder
no dam

177

radiant exposure J/cim2
22296
222.96
22296
22296

radiant exposure J/cm?2
111.48
111.48
111.48
111.48
111.48
radiant exposure J/cim2
139.35
139.35
139.35
139.35
139.35
radiant exposure J/cxn2
153.29
153.29
153.29
153.29
153.29



Appendix 7.1B. Probit Analysis showing 95% confidence limits
for effective radiant exposure at 270 nm waveband.

95% Confidence Limits
Probability Dose (J/ cm?) Lower  Upper

0.01 0.03546 N/A 0.04788
0.02 0.03801 N/A 0.04927
0.03 0.03962 N/A 0.05016
0.04 0.04084 N/A 0.05084
0.05 0.04182 N/A 0.0514
0.06 0.04266 N/A 0.05188
0.07 0.0434 N/A 0.05231
0.08 0.04406 N/A 0.05269
0.09 0.04466 N/A 0.05305

0.1 0.04521 N/A 0.05338
0.15 0.0475 N/A 0.05481

0.2 0.04932 N/A 0.05604
0.25 0.05088 N/A 0.0572

0.3 0.05228 N/A 0.05839
0.35 0.05358 N/A 0.0597

0.4 0.05481 N/A 0.06131
0.45 0.056 N/A 0.06358

0.5 0.05718 N/A 0.06754
0.55 0.05835 0.01303 0.07716

0.6 0.05954 0.04046 0.10418
0.65 0.06077 0.05054 0.15037

0.7 0.06207 0.05471 0.20551
0.75 0.06347 0.05714 0.26708

0.8 0.06503 0.05895 0.33654
0.85 0.06685 0.06057 0.41799

0.9 0.06914 0.06226 0.52083
0.91 0.06969 0.06263  0.5457
0.92 0.07029 0.06303 0.57274
0.93 0.07095 0.06345 0.60247
0.94 0.07169 0.06391 0.63568
0.95 0.07253 0.06443 0.67358
0.96 0.07352 0.06502 0.71812
0.97 0.07473 0.06574 0.77289
0.98 0.07635 0.06666 0.84571
0.99 0.07889 0.06809 0.96053
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Appendix 7.2B. Probit analysis showing 95% confidence limits
for effective radiant exposure at 275 nm waveband.

95% Confidence limits
Probability Dose (J/cm?) Lower  Upper
0.01 0.01056 N/A  0.02907
0.02 0.01426 N/A  0.03119
0.03 0.01661 N/A  0.03256
0.04 0.01838 N/A  0.03359
0.05 0.01982 N/A  0.03443
0.06 0.02104 N/A  0.03516
0.07 0.02211 N/A 0.0358
0.08 0.02307 N/A  0.03637
0.09 0.02395 N/A 0.0369
0.1 0.02475 N/A  0.03739
0.15 0.02808 N/A  0.03944
0.2 0.03072 N/A  0.04113
0.25 0.03299 N/A  0.04264
0.3 0.03503 N/A  0.04406
0.35 0.03692 N/A  0.04546
0.4 0.03871 N/A  0.04689
0.45 0.04045 N/A  0.04841
0.5 0.04215 0.00331 0.05012
0.55 0.04386 0.0121 0.05214
0.6 0.0456 0.02051 0.05471
0.65 0.04739 0.02833 0.05825
0.7 0.04928 0.03516 0.06339
0.75 0.05132 0.04064 0.07082
0.8 0.05359 0.04485 0.08099
0.85 0.05623 0.04826 0.09435
0.9 0.05956 0.05143 0.11226
0.91 0.06036 0.0521 0.11669
0.92 0.06124 0.05279 0.12153
0.93 0.0622 0.05352 0.12688
0.94 0.06327 0.05431 0.13289
0.95 0.06449 0.05518 0.13978
0.96 0.06593 0.05617  0.1479
0.97 0.0677 0.05734 0.15792
0.98 0.07005 0.05884 0.1713
0.99 0.07375 0.06114 0.19246
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Appendix 7.3B. Probit analysis showing 95% confidence limits
for effective radiant exposure at 280 nm waveband.

95% Confidence limits
Probability Dose (J/cmz) Lower Upper
0.01 0.01737 N/A 0.02308
0.02 0.01859 N/A 0.0238
0.03 0.01936 N/A 0.02426
0.04 0.01994 N/A 0.02461
0.05 0.02042 N/A 0.02489
0.06 0.02082 N/A 0.02514
0.07 0.02117 N/A 0.02536
0.08 0.02149 N/A 0.02555
0.09 0.02177 N/A 0.02573
0.1 0.02204 N/A 0.0259
0.15 0.02313 N/A 0.02661
0.2 0.024 0.00131 0.0272
0.25 0.02475 0.005 0.02774
0.3 0.02542 0.00828 0.02826
0.35 0.02604 0.01127 0.02878
0.4 0.02663 0.01405 0.02933
0.45 0.0272 0.01666 0.02995
0.5 0.02776 0.01912 0.03067
0.55 0.02832 0.02139 0.03157
0.6 0.02889 0.02344 0.03275
0.65 0.02948 0.0252 0.03432
0.7 0.0301 0.02665 0.0364
0.75 0.03077 0.02781 0.03903
0.8 0.03152 0.02878 0.04228
0.85 0.03239 0.02967 0.04631
0.9 0.03348 0.0306 0.05159
091 0.03375 0.0308 0.05288
0.92 0.03404 0.03101 0.05429
0.93 0.03435 0.03124 0.05585
0.94 0.0347 0.03149 0.0576
0.95 0.03511 0.03177 0.0596
0.96 0.03558 0.03208 0.06196
0.97 0.03616 0.03246 0.06486
0.98 0.03693 0.03296 0.06874
0.99 0.0381S5 0.03371 0.07488
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Appendix 7.4B. Probit analysis showing 95% confidence limits
for effective radiant exposure at 285 nm waveband.

95% Confidence limits

Probability Dose (J/cm?®) Lower Upper

0.01 0.01548 0.00072 0.0183S
0.02 0.01623 0.00319 0.01884
0.03 0.01671 0.00475 0.01916
0.04 0.01707 0.00592 0.0194
0.05 0.01737 0.00687 0.0196
0.06 0.01762 0.00768 0.01977
0.07 0.01783 0.00838 0.01993
0.08 0.01803 0.00901 0.02007
0.09 0.01821 0.00957 0.0202
0.1 0.01837 0.0101 0.02032
0.15 0.01905 0.01223 0.02084
0.2 0.01959 0.01388 0.02131
0.25 0.02006 0.01525 0.02175
0.3 0.02047 0.01643 0.0222
0.35 0.02086 0.01745 0.02269
0.4 0.02122 0.01834 0.02324
0.45 0.02158 0.01911 0.02385
0.5 0.02193 0.01977 0.02455
0.55 0.02227 0.02034 0.0253S5
0.6 0.02263 0.02084 0.02624
0.65 0.02299 0.02128 0.02723
0.7 0.02338 0.02169 0.02833
0.75 0.0238 0.02208 0.02956
0.8 0.02426 0.02248 0.03098
0.85 0.0248 0.0229 0.03267
0.9 0.02548 0.0234 0.03483
0.91 0.02564 0.02352 0.03536
0.92 0.02582 0.02364 0.03593
0.93 0.02602 0.02378 0.03656
0.94 0.02624 0.02393 0.03727
0.95 0.02649 0.02409 0.03808
0.96 0.02678 0.02429 0.03903
0.97 0.02714 0.02453 0.04021
0.98 0.02762 0.02484 0.04177
0.99 0.02838 0.02532 0.04425
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Appendix 7.5B. Probit analysis showing 95% confidence limits
for effective radiant exposure at 290 nm waveband.

95% Confidence limits
Probability Dose (J/cm®) Lower  Upper
0.01 0.0227 0.00004 0.02501
0.02 0.02323 0.00321 0.02533
0.03 0.02356 0.00521 0.02555
0.04 0.02381 0.00671 0.02571
0.05 0.02402 0.00793 0.02585
0.06 0.02419 0.00897 0.02597
0.07 0.02435 0.00987 0.02608
0.08 0.02448 0.01068 0.02617
0.09 0.02461 0.01141 0.02626
0.1 0.02472 0.01209 0.02635
0.15 0.0252 0.01485 0.02673
0.2 0.02557 0.017 0.02707
0.25 0.0259 0.0188 0.02742
0.3 0.02619 0.02034  0.0278
0.35 0.02646 0.0217 0.02823
0.4 0.02671 0.02287 0.02874
0.45 0.02696 0.02387 0.02938
0.5 0.0272 0.02469 0.03017
0.55 0.02745 0.02535 0.03112
0.6 0.02769 0.02587 0.03223
0.65 0.02795 0.02631 0.03349
0.7 0.02822 0.02667 0.03491
0.75 0.02851 0.027 0.0365
0.8 0.02883 0.02732 0.03833
0.85 0.02921 0.02764  0.0405
0.9 0.02968 0.028 0.04328
0.91 0.0298 0.02809 0.04396
0.92 0.02992 0.02817 0.04469
0.93 0.03006 0.02827  0.0455
0.94 0.03021 0.02837 0.04641
0.95 0.03039 0.02849 0.04745
0.96 0.03059 0.02862 0.04867
0.97 0.03084 0.02879 0.05018
0.98 0.03118 0.029 0.05218
0.99 0.0317 0.02932 0.05535
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Appendix 7.6B. Probit analysis showing 95% confidence limits
for effective radiant exposure at 295 nm waveband.

Probability Dose (J/cm2)

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

0.01607
0.01764
0.01864
0.01939
0.02
0.02052
0.02098
0.02139
0.02176
0.0221
0.02351
0.02463
0.0256
0.02646
0.02727
0.02803
0.02876
0.02949
0.03021
0.03095
0.03171
0.03251
0.03338
0.03434
0.03547
0.03688
0.03722
0.03759
0.038
0.03845
0.03897
0.03958
0.04034
0.04133
0.0429
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95% Confidence limits

Lower Upper
N/A 0.02186
0.00003 0.02296
0.00238 0.02368
0.00413 0.02423
0.00555 0.02468
0.00675 0.02507
0.0078 0.02542
0.00873 0.02574
0.00957 0.02604
0.01035 0.02631
0.0135 0.0275
0.01592 0.02852
0.01793 0.02947
0.01966 0.0304
0.02118 0.03134
0.02253 0.03232
0.02376 0.03335
0.02487 0.03446
0.0259 0.03566
0.02685 0.03696
0.02776 0.03839
0.02864 0.03997
0.02951 0.04176
0.03041 0.04382
0.03138 0.04629
0.03253 0.04948
0.0328 0.05026
0.03309 0.05111
0.0334 0.05205
0.03374 0.0531
0.03412 0.05431
0.03457 0.05574
0.03511 0.0575
0.03582 0.05985
0.03691 0.06358



Appendix 7.7B. Probit analysis showing 95% confidence limits
for effective radiant exposure at 300 nm waveband.

95% Confidence limits

Probability Dose (J/. cmz) Lower Upper

0.01 0.04273 N/A 0.05576
0.02 0.04587 N/A 0.05777
0.03 0.04786 N/A 0.05908
0.04 0.04936 N/A 0.0601
0.05 0.05058 N/A 0.06094
0.06 0.05161 N/A 0.06168
0.07 0.05252 N/A 0.06235
0.08 0.05334 N/A 0.06296
0.09 0.05408 N/A 0.06353
0.1 0.05476 N/A 0.06406
0.15 0.05759 0.0127 0.06646
0.2 0.05983 0.02291 0.06868
0.25 0.06175 0.03132 0.07093
0.3 0.06348 0.03845 0.07337
0.35 0.06509 0.04452 0.07617
04 0.06661 0.04966 0.07945
0.45 0.06808 0.05394 0.08331
0.5 0.06952 0.05746 0.08781
0.55 0.07097 0.06035 0.09293
0.6 0.07244 0.06276 0.09866
0.65 0.07396 0.06484 0.105
0.7 0.07557 0.06671 0.112
0.75 0.07729 0.06846 0.11982
0.8 0.07922 0.07019 0.12875
0.85 0.08146 0.07202 0.13935
0.9 0.08429 0.07412 0.15288
0.91 0.08497 0.0746 0.15618
0.92 0.08571 0.07512 0.15976
0.93 0.08652 0.07568 0.16371
0.94 0.08743 0.07629 0.16813
0.95 0.08847 0.07698 0.17319
0.96 0.08969 0.07778 0.17914
0.97 0.09119 0.07875 0.18647
0.98 0.09318 0.08001 0.19624
0.99 0.09632 0.08196 0.21167
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Appendix 7.8B. Probit analysis showing 95% confidence limits
for effective radiant exposure at 305 nm waveband.

Probability Dose (J/cm?)

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

0.04643
0.05221
0.05588
0.05864
0.06088
0.06279
0.06447
0.06596
0.06733
0.06858
0.07378
0.07791
0.08145
0.08464
0.08759
0.09038
0.09309
0.09576
0.09842
0.10113
0.10393
0.10687
0.11006
0.1136

0.11773
0.12293
0.12418
0.12555
0.12705
0.12872
0.13063
0.13287
0.13563
0.1393

0.14508
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95% Confidence limits
Lower Upper
N/A 0.07058
N/A 0.07397
N/A 0.07615
N/A 0.0778
N/A 0.07916
N/A 0.08033
N/A 0.08137
N/A 0.08231
N/A 0.08317
N/A 0.08397
N/A 0.08741
N/A 0.09033
0.01119 0.09307
0.02672 0.09584
0.04068 0.09883
0.05329 0.1023
0.0645 0.10665
0.07406 0.1124
0.08173 0.12005
0.08758 0.12976
0.09205 0.14138
0.09566 0.15472
0.09881 0.16985
0.10181 0.18722
0.10491 0.20786
0.10848 0.23417
0.1093 0.24056
0.11018 0.24752
0.i1114 0.25518
0.1122 0.26375
0.11339 0.27354
0.11477 0.28506
0.11644 0.29924
0.11864 0.31812
0.12205 0.34793



Appendix 7.9B. Probit analysis showing 95% confidence limits
for effective radiant exposure at 310 nm waveband.

95% Confidence limits

Probability Dose (J/om?) Lower  Upper

0.01 0.00481 N/A 0.11035
0.02 0.03161 N/A 0.12705
0.03 0.04862 N/A 0.13778
0.04 0.06141 N/A 0.14594
0.05 0.07182 N/A 0.15265
0.06 0.08067 N/A 0.15841
0.07 0.08844 N/A 0.16351
0.08 0.09539 N/A 0.16813
0.09 0.10172 N/A 0.17236
0.1 0.10754 N/A 0.1763
0.15 0.13164 N/A 0.19313
0.2 0.15079 N/A 0.20735
0.25 0.16722 N/A 0.2205
0.3 0.18198 0.01394 0.23346
0.35 0.19565 0.0545 0.24694
0.4 0.20863 0.09104 0.26167
0.45 0.22118 0.12382 0.27849
0.5 0.23354 0.15278 0.29835
0.55 0.24589 0.17784 0.3221
0.6 0.25845 0.19922 0.35034
0.65 0.27142 0.21752 0.3833
0.7 0.2851 0.23363 042123
0.75 0.29985 0.24848 0.46469
0.8 0.31629 0.26299 0.5151
0.85 0.33544 0.27822 0.57557
0.9 0.35954 0.29581 0.6532
0.91 0.36536 0.29988 0.67213
0.92 0.37168 0.30425 0.69275
0.93 0.37864 0.30899 0.71549
0.94 0.3864 0.31421 0.74095
0.95 0.39526 0.32009 0.77006
0.96 0.40567 0.32692 0.80436
0.97 0.41846 0.3352 0.84662
0.98 0.43546 0.34606 0.90295
0.99 0.46226 0.36291 0.992
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Appendix 7.10B. Probit analysis showing 95% confidence limits
for effective radiant exposure at 315 nm waveband.

95% Confidence limits

Probability Dose (J/cmz) Lower Upper

0.01 0.3147 N/A 0.52288
0.02 0.36484 N/A 0.55512
0.03 0.39664 N/A 0.57592
0.04 0.42057 N/A 0.5918
0.05 0.44004 N/A 0.60489
0.06 0.4566 N/A 0.61618
0.07 0.47113 N/A 0.6262
0.08 0.48414 N/A 0.63528
0.09 0.49596 N/A 0.64365
0.1 0.50685 N/A 0.65144
0.15 0.55193 0.0137 0.68495
0.2 0.58776 0.12429 0.71352
0.25 0.6185 021713 0.74007
0.3 0.6461 0.29819 0.76622
0.35 0.67168 0.37058 0.79317
04 0.69595 0.43599 0.82203
0.45 0.71943 0.49528 0.85395
0.5 0.74254 0.54887 0.89013
0.55 0.76566 0.59698 0.93178
0.6 0.78914 0.63994 0.98002
0.65 0.81341 0.67835 1.03588
0.7 0.83899 0.71315 1.10043
0.75 0.86659 0.74555 1.17524
0.8 0.89733 0.77701 1.26316
0.85 0.93316 0.80946 1.36987
0.9 0.97824 0.84609 1.50833
0.91 0.98913 0.85445 1.54226
0.92 1.00095 0.86336 1.57929
0.93 1.01396 0.87298 1.62019
0.94 1.02849 0.88353 1.66606
0.95 1.04505 0.89533 1.7186
0.96 1.06452 0.90895 1.78058
0.97 1.08844 0.92537 1.85709
0.98 1.12025 0.94676 1.95925
0.99 1.17039 0.97968 2.12105
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Appendix 7.11B. Probit analysis showing 95% confidence limits
for effective radiant exposure at 320 nm waveband.

Probability Dose (J/cm2)

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
09

091
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

0.66101
0.95057
1.13429
1.27249
1.38491
1.4806
1.56449
1.63961
1.70793
1.77082
2.03119
2.23812
2.41565
2.57508
2.72282
2.863
2.99863
3.13211
3.26559
3.40122
3.54141
3.68914
3.84857
4.0261
4.23304
4.49341
4.55629
4.62461
4.69973
4.78363
4.87932
499173
5.12994
5.31365
5.60321
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95% Confidence limits
Lower Upper

N/A 1.78336
N/A 1.97495
N/A 2.09845
N/A 2.19263
N/A 2.27021
N/A 2.33704
N/A 2.39633
N/A 2.45004
N/A 2.49946
N/A 2.54548
N/A 2.74283
0.20734 2.91029
0.65159 3.06499
1.0383 3.21617
1.38254 3.37036
1.69271 3.53315
1.97357 3.70988
2.22804 3.90576
2.45843 4.12571
2.66741 4.37433
2.8586 4.6561
3.03668 4.97645
3.2074 5.34362
3.37787 5.77211
3.55808 6.29006
3.76594 6.96064
3.81388 7.12487
3.86517 7.30408
3.92071 7.50198
3.98181 7.72394
4.05045 7.97813
4.12985 8.278
4.22593 8.6482
435147 9.14248
4.54549 9.9254



Appendix 7.12B. Probit analysis showing 95% confidence limits
for effective radiant exposure at 325 nm waveband.

95% Confidence limits

Probability Dose (J/cmz) Lower Upper

0.01 1.07015 N/A 8.25383
0.02 3.13642 N/A 9.68281
0.03 44474 N/A 10.6011
0.04 5.4336 N/A 11.2994
0.05 6.23579 N/A 11.8732
0.06 6.91859 N/A 12.3663
0.07 7.51727 N/A 12.8027
0.08 8.05331 N/A 13.197
0.09 8.54082 N/A 13.559
0.1 8.98958 N/A 13.8954
0.15 10.84755 N/A 15.3268
0.2 12.3242 2.24655 16.5246
0.25 13.59104 4.75092 17.6131
0.3 14.7287 6.93409 18.6564
0.35 15.78291 8.88357 19.6967
0.4 16.78325 10.6501 20.7673
0.45 17.75109 12.265 21.8973
0.5 18.70359 13.7496 23.114
0.55 19.65609 15.1213 24.4437
0.6 20.62393 16.3979 25.9119
0.65 21.62427 17.6007 27.5463
0.7 22.67848 18.7556 29.3812
0.75 23.81614 19.8957 31.4676
0.8 25.08298 21.0647 33.8914
0.85 26.55963 22.3295 36.8146
0.9 28.4176 23.8178 40.5956
091 28.86635 24.1646 41.5215
0.92 29.35386 24.5369 42.5319
0.93 29.88991 249414 43.6476
0.94 30.48859 25.3879 44.8991
0.95 31.17138 25.891 46.3324
0.96 31.97358 26.475 48.0235
0.97 32.95978 27.1841 50.1114
0.98 34.27076 28.1139 52.8996
0.99 36.33703 29.5567 57.3169
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Appendix 7.13B. Probit analysis showing 95% confidence limits
for effective radiant exposure at 330 nm waveband.

95% Confidence limits
Probability Dose (J/cm?)  Lower  Upper
0.01 24.35196 N/A  26.3457
0.02 24.78068 N/A 26.607
0.03 25.05268 N/A  26.7787
0.04 25.2573 N/A  26.9119
0.05 25.42374 N/A  27.0234
0.06 25.56541 N/A  27.1209
0.07 25.68963 N/A  27.2089
0.08 25.80085 N/A  27.2899
0.09 25.902 0.59915 27.3657
0.1 25.9951 1.82182 27.4375
0.15 26.3806 6.85591 27.7629
0.2 26.68698 10.8067 28.0717
0.25 26.94982 14.1325 28.4003
0.3 27.18587 17.0296 28.7848
0.35 27.4046 19.5786 29.2769
0.4 27.61215 21.7832 29.9579
0.45 27.81296 23.5905 30.9424
0.5 28.01059 249488 32.3317
0.55 28.20822 25.8943 34.1338
0.6 28.40903 26.5435 36.2764
0.65 28.61658 270112 38.6943
0.7 28.83531 273743 41.3722
0.75 29.07135 27.6796 44.3486
0.8 29.3342 279573 47.7253
0.85 29.64058 282316 51.7105
0.9 30.02607 28.5325 56.7692
0.91 30.11918 28.6001 57.996
0.92 30.22033 28.672 59.3305
0.93 30.33155 28.7492 60.7995
0.94 30.45577 28.8334 62.4422
0.95 30.59744 28.9274 64.3178
0.96 30.76388 29.0353 66.5239
0.97 30.9685 29.1649 69.2392
0.98 31.2405 203328  72.853
0.99 31.66922 29.5897 78.5564
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Appendix 7.14B. Probit analysis showing 95% confidence limits
for effective radiant exposure at 340 nm waveband.

95% Confidence limits
Probability Dose (J/cm?) Lower  Upper
0.01 28.49927 N/A  39.0539
0.02 30.81554 N/A 404776
0.03 32.28513 N/A  41.3964
0.04 33.39065 N/A  42.0976
0.05 34.28991 N/A  42.6757
0.06 35.05532 N/A 43.174
0.07 35.72643 N/A  43.6165
0.08 36.32733 N/A 440175
0.09 36.87383 N/A  44.3868
0.1 37.37688 N/A 44.731
0.15 39.45964 N/A  46.2099
0.2 41.11496 6.72233  47.471
0.25 42.53507 12.7623 48.6444
0.3 43.81037 18.0804  49.804
0.35 44.99213 22.8785 51.0085
0.4 46.11351 27.2656 52.3173
0.45 47.19845 31.2925 53.8012
0.5 48.26619 34.9683 55.5489
0.55 49.33393 38.2731 57.6676
0.6 50.41887 41.1798 60.2717
0.65 51.54025 43.6848 63.4626
0.7 52.72201 45.8299 67.3201
0.75 53.99731 47.6988 71.929
0.8 55.41742 49.3985 77.4426
0.85 57.07274 51.0528 84.1963
0.9 59.1555 52.8339 92.9943
0.91 59.65855 53.2308 95.1526
0.92 60.20505 53.6509 97.5084
0.93 60.80595 54.1012 100.11
0.94 61.47706 54.5917 103.029
0.95 62.24247 55.1374 106.371
0.96 63.14173 55.7628 110.313
0.97 64.24725 56.5125 115.179
0.98 65.71684 57.4827 121.673
0.99 68.03311 58.9665 131.955
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Appendix 7.15B. Probit analysis showing 95% confidence limits
for effective radiant exposure at 350 nm waveband.

95% Confidence limits
Probability Dose (¥/cm2) Lower Upper
0.01 82.43693 N/A N/A
0.02 85.81541 N/A N/A
0.03 87.95895 N/A N/A
0.04 89.57145 N/A N/A
0.05 90.8831 N/A N/A
0.06 91.99951 N/A N/A
0.07 92.97839 N/A N/A
0.08 93.85486 N/A N/A
0.09 94.65197 N/A N/A
0.1 95.38572 N/A N/A
0.15 98.42362 N/A N/A
02 100.83804 N/A N/A
0.25 102.9094 N/A N/A
03 104.76955 N/A N/A
0.35 106.49325 N/A N/A
0.4 108.12887 N/A N/A
0.45 109.71136 N/A N/A
0.5 111.26876 N/A N/A
0.55 112.82615 N/A N/A
0.6 114.40864 N/A N/A
0.65 116.04427 N/A N/A
0.7 117.76797 N/A N/A
0.75 119.62811 N/A N/A
0.8 121.69948 N/A N/A
0.85 124.1139 N/A N/A
0.9 127.1518 N/A N/A
091 127.88554 N/A N/A
0.92 128.68265 N/A N/A
0.93 129.55912 N/A N/A
0.94 130.538 N/A N/A
0.95 131.65442 N/A N/A
0.96 132.96606 N/A N/A
0.97 134.57856 N/A N/A
0.98 136.7221 N/A N/A
0.99 140.10059 N/A N/A
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Appendix 7.16B. Probit analysis showing 95% confidence limits
for effective radiant exposure at 360 nm waveband.

95% Confidence limits
Probability Dose (J/cm2) Lower Upper
0.01 134.48255 N/A N/A
0.02 137.94481 N/A N/A
0.03 140.14151 N/A N/A
0.04 141.794 N/A N/A
0.05 143.13817 N/A N/A
0.06 144.28228 N/A N/A
0.07 145.28543 N/A N/A
0.08 146.18364 N/A N/A
0.09 147.00052 N/A N/A
0.1 147.75246 N/A N/A
0.15 150.86569 N/A N/A
0.2 153.33999 N/A N/A
0.25 155.46272 N/A N/A
0.3 157.369 N/A N/A
0.35 159.13545 N/A N/A
0.4 160.81164 N/A N/A
0.45 162.43337 N/A N/A
0.5 164.02939 N/A N/A
0.55 165.62541 N/A N/A
0.6 167.24714 N/A N/A
0.65 168.92333 N/A N/A
0.7 170.68978 N/A N/A
0.75 172.59605 N/A N/A
0.8 174.71878 N/A N/A
0.85 177.19308 N/A N/A
0.9 180.30632 N/A N/A
0.91 181.05826 N/A N/A
0.92 181.87514 N/A N/A
0.93 182.77335 N/A N/A
0.94 183.7765 N/A N/A
0.95 184.9206 N/A N/A
0.96 186.26478 N/A N/A
0.97 187.91727 N/A N/A
0.98 190.11396 N/A N/A
0.99 193.57623 N/A N/A
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Appendix 7.17B. Probit analysis showing 95% confidence limits
for effective radiant exposure at 365 nm waveband.

95% Confidence limits
Probability Dose (JJem?) ~ Lower  Upper
0.01 25.91159 N/A N/A
0.02 38.95138 N/A N/A
0.03 47.22471 N/A N/A
0.04 53.44841 N/A N/A
0.05 58.51092 N/A N/A
0.06 62.8199 N/A N/A
0.07 66.59804 N/A N/A
0.08 69.98091 N/A N/A
0.09 73.0575 N/A N/A
0.1 75.8895 N/A N/A
0.15 87.61474 N/A N/A
0.2 96.9336 N/A N/A
0.25 104.92834 N/A N/A
0.3 112.10787 N/A N/A
0.35 118.76078 N/A N/A
0.4 125.07373 N/A N/A
0.45 131.18159 N/A N/A
0.5 137.19261 N/A N/A
0.55 143.20363 N/A N/A
0.6 149.31149 N/A N/A
0.65 155.62444 N/A N/A
0.7 16227734 N/A N/A
0.75 169.45687 N/A N/A
0.8 177.45162 N/A N/A
0.85 186.77047 N/A N/A
0.9 198.49572 N/A N/A
0.91 201.32772 N/A N/A
0.92 204.40431 N/A N/A
0.93 207.78718 N/A N/A
0.94 211.56531 N/A N/A
0.95 215.8743 N/A N/A
0.96 220.9368 N/A N/A
0.97 227.16051 N/A N/A
0.98 235.43383 N/A N/A
0.99 248.47363 N/A N/A
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