
Settling Time Reducibility Orderings

by

Clinton Loo

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Pure Mathematics

Waterloo, Ontario, Canada, 2010

c© Clinton Loo 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

It is known that orderings can be formed with settling time domination and strong settling

time domination as relations on c.e. sets. However, it has been shown that no such ordering

can be formed when considering computation time domination as a relation on n-c.e. sets

where n ≥ 3. This will be extended to the case of 2-c.e. sets, showing that no ordering can

be derived from computation time domination on n-c.e. sets when n ≥ 2.

Additionally, we will observe properties of the orderings given by settling time dom-

ination and strong settling time domination on c.e. sets, respectively denoted as Est and

Esst. More specifically, it is already known that any countable partial ordering can be em-

bedded into Est and any linear ordering with no infinite ascending chains can be embedded

into Esst. Continuing along this line, we will show that any finite partial ordering can be

embedded into Esst.

iii

Acknowledgements

This thesis would not have been possible without all the pats on the back and slaps upside

my head. I cannot even begin to express how grateful I am for all of those that have helped

me along the way.

I would like to thank my supervisor, Barbara Csima. I could not have made it this far

without all of her guidance, support, and long distance phone calls.

I would also like to thank Bernard Anderson and Johanna Franklin for their weekends

spent in front of a chalkboard trudging through my work.

iv

To Mom

v

Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

Table of Contents vi

1 Introduction 1

2 Settling Time Domination 6

3 Computation Time Domination 13

4 Strong Settling Time Domination 28

Bibliography 50

vi

Chapter 1

Introduction

In this thesis, two main results will be presented. The first will be an extension to the

case n = 2 of an argument made in [2] which shows that the computation time domination

relation does not result in a well defined ordering on n-c.e. sets where n ≥ 3. The second

gives that any finite partial ordering can be embedded into the ordering derived from the

strong settling time domination relation on c.e. sets.

Both of these results have their roots in the settling time domination relation and its

ordering on c.e. sets. The notion of settling time domination initially came about for the

sake of Nabutovsky and Weinberger’s work in differential geometry [5]. Essentially, settling

time domination provides a means of comparing the complexities of the settling times of

c.e. sets. Note that the notation and terminology appearing in this thesis correspond to

those in Cooper’s Computability Theory [1] and Soare’s Recursively Enumerable Sets and

Degrees [6].

Definition 1.1. For a c.e. set A with an associated enumeration {As}s∈ω, the settling

(modulus) function mA is defined by the following:

mA(x) = (µs)[As��x = A��x]

where A �� x = {y ∈ A | y ≤ x}. That is, mA(x) gives the least stage such that the

approximation settles up to x.

We can compare the complexities of the settling times of approximations of c.e. sets by

extending the concept of domination.

1

Definition 1.2. A function f is said to be dominant if for each computable function g,

for all but finitely many x, f(x) > g(x). In particular, a function f is said to dominate a

function g if for all but finitely many x, f(x) > g(x).

Definition 1.3. For c.e. sets A and B with fixed enumerations {As}s∈ω and {Bs}s∈ω,

{As}s∈ω is said to settling time dominate {Bs}s∈ω if for each computable function f , for

all but finitely many arguments x, mA(x) > f ◦mB(x). When the fixed enumerations of

A and B are understood, this is denoted by A >st B.

Intuitively, A >st B means that the approximation of A settles so much slower than

the settling time of B’s approximation, that there is no computable means of slowing the

settling times of B’s approximation to those of A’s approximation. It has been shown by

Nies (see [4]) that settling time domination is actually independent of the chosen approx-

imations of the c.e. sets. This being the case, the relation >st induces a relation on c.e.

sets. We use the same notation for this new relation on c.e. sets, and write A >st B to

denote that the c.e. set A settling time dominates the c.e. set B. Furthermore, we denote

by Est the structure of c.e. sets with the relation <st. Naturally, it was asked whether such

an ordering could be extended to ∆0
2 sets.

Definition 1.4. A set is said to be ∆0
2 if it is limit computable. That is, A is ∆0

2 if there

is a computable sequence {As}s∈ω of finite sets such that for all x, limsAs(x) exists and

lims As(x) = A(x).

In general, it was shown that such an ordering could not be derived from settling time

domination with regards to ∆0
2 sets [2]. Indeed, it fails for the following subset of ∆0

2 sets.

Definition 1.5. A set A is said to be n-c.e. if there is a computable sequence {As}s∈ω
such that A0 = ∅, As(x) ∈ {0, 1}, limsAs = A, and for any given x,

|{s : As(x) 6= As+1(x)}| ≤ n.

In particular, the sequence {As}s∈ω is said to be an n-c.e. approximation, and A is said

to be properly n-c.e. if it is n-c.e. and not m-c.e. for all m < n. Essentially, an n-c.e. set

is a set with a computable approximation such that any number can be enumerated and

removed from the approximation at most n times.

2

To be specific, it is shown in [2] that settling time domination is not well defined with

respect to n-c.e. sets for n ≥ 2. Since an ordering comparing the complexities of the

approximations of ∆0
2 sets could not be constructed based on their settling time, it was

then natural to try to see if this could be done with regards to computation time.

Definition 1.6. For a ∆0
2 set A with an approximation {As}s∈ω, the computation function

CA is defined as

CA(x) = (µs ≥ x)[As��x = A��x].

In other words, CA(x) is the first stage greater than or equal to x such that the approxi-

mation appears correct up to the number x.

To try to compare the computation times of ∆0
2 sets, the following relation is used which

is basically the same as the notion of settling time domination but with the computation

function in the place of the settling function.

Definition 1.7. Let A and B be ∆0
2 sets with respective approximations {As}s∈ω and

{Bs}s∈ω. The approximation {As}s∈ω is said to computation time dominate the approxi-

mation {Bs}s∈ω if for each computable function, f , for all but finitely many arguments x,

CA(x) > f ◦ CB(x).

Note that with regards to a ∆0
2 set, A, the settling function is defined as

mA(x) = (µs)(∀t ≥ s)[At��x = A��x].

Essentially, when dealing with ∆0
2 sets the computation function gives the first stage at

which the approximation appears correct on an initial segment, while the settling function

gives the first stage at which the approximation appears correct and remains constant on

an initial segment. In general, these stages will differ. However, when dealing with c.e.

sets these two stages coincide and as such, the computation function and settling function

behave similarly. With ∆0
2 sets, it is quite natural to use the computation function rather

than the settling function as ∆0
2 approximations generally do not have the simplicity of the

approximations of c.e. sets. Although the computation function and settling function were

essentially the same with regards to c.e. sets, in general they behave differently. Indeed,

3

the computation function of a ∆0
2 set A is Turing equivalent to A but the same cannot

necessarily be said of the settling function of A [1].

Even with the computation function used in the place of the settling function the

relation still failed to be well defined with regards to n-c.e. sets where n ≥ 3 [2]. However,

the question remained whether it was possible for the computation time domination relation

to order the particular case of the 2-c.e. sets even though it failed in general with regards

to ∆0
2 sets. In Chapter 3, it is shown that an ordering will also fail to come about with

2-c.e. sets, essentially, closing the door on trying to generalize some notion of a settling

time domination ordering to n-c.e. sets.

On the other end of the spectrum is the strong settling time domination relation.

Indeed, whereas computation time domination came about from trying to extend the notion

of settling time domination to ∆0
2 sets, the strong settling time domination relation is a

subset of the settling time domination relation with regards to c.e. sets.

Definition 1.8. For c.e. sets A and B with respective enumerations {As}s∈ω and {Bs}s∈ω,

A is said to strongly settling time dominate B if for all computable functions f and g, for

all but finitely many arguments x, mA(x) > f ◦mB ◦ g(x). This is denoted by A >sst B.

Further, we denote by Esst the structure of c.e. sets with the relation <sst.

It is shown in [3] that any computable partial ordering can be embedded into the

structure Est. It remains unknown whether or not such an embedding is possible for the

strong settling time domination ordering. However, it has been shown that any computable

linear ordering with no infinite ascending sequences can be embedded into the strong

settling time domination ordering [3]. Continuing along this line, it is shown in Chapter 4

that any finite partial ordering can also be embedded into Esst.

Before proceeding, some basic conventions and notation that are used throughout this

thesis are given. It is assumed that for a partial computable function, ϕe, if ϕe,s(x) ↓ then

for all y < x, ϕe,s(y) ↓ and s > ϕe(x), x, e. Further, we assume that for all m < n that

ϕe(m) ≤ ϕe(n) if both ϕe(m) and ϕe(n) converge. That is, we use an enumeration of the

non-decreasing partial computable functions with initial segments of ω as domains. Notice

that this will still suffice although the definitions of settling time domination and strong

settling time domination call for any computable function. Indeed, any computable func-

tion will have all of ω as a domain and as such any statement made regarding all or almost

4

all partial computable functions with an initial segment of ω as a domain will hold for the

computable functions. Moreover, the requirements of settling time domination and strong

settling time domination will still hold when regarding just the non-decreasing partial com-

putable functions with initial segments of ω as domains. Suppose ϕ is a partial computable

function with an initial segment of ω as a domain but not necessarily non-decreasing and

consider the function ϕ∗ defined by ϕ∗(0) = ϕ(0) and ϕ∗(x) = max{ϕ(x), ϕ∗(x − 1)} for

x > 0. Now ϕ∗ is non-decreasing and for all x if ϕ(x) ↓ then ϕ∗(x) ≥ ϕ(x). Thus, for

c.e. sets A and B, if mA(x) > ϕ∗ ◦mB(x) then mA(x) > ϕ∗ ◦mB(x) ≥ ϕ ◦mB(x) and so,

mA(x) > ϕ ◦mB(x) as we desire.

Also, throughout this paper by partial ordering we mean strict partial ordering. Lastly,

we write ∀∞x to denote for all but finitely many x and ∃∞x to denote there exists infinitely

many x.

5

Chapter 2

Settling Time Domination

As mentioned in the previous chapter, settling time domination provides a means of com-

paring the complexity of the settling times of approximations of c.e. sets. Indeed, the ap-

proximation {As}s∈ω is said to settling time dominate the approximation {Bs}s∈ω, A >st B,

if {As}s∈ω settles so much slower than {Bs}s∈ω that there is no computable means of raising

the settling times of {Bs}s∈ω to those of {As}s∈ω. In this chapter several theorems regard-

ing settling time domination and the structure Est are given. In addition, an example

demonstrating the techniques used to embed a partial ordering into Est is provided.

First, we show that settling time domination is independent of the chosen approxima-

tions of the c.e. sets. That is, the ordering in Est is well defined.

Theorem 2.1 (Nies, see [4]). If {Âs}s∈ω and {Ãs}s∈ω are two c.e. approximations of the

set A and {B̂s}s∈ω and {B̃s}s∈ω are two c.e. approximations of the set B and Â <st B̂ then

Ã <st B̃.

Proof. Before proceeding we will need the following lemma.

Lemma 2.2. Given two c.e. approximations, {Âs}s∈ω and {Ãs}s∈ω, of a set A there exists

a computable function f such that for all x, f ◦ mÃ(x) ≥ mÂ(x). Indeed, there exists a

strictly increasing computable function f ′ such that f ′ ◦mÃ(x) ≥ mÂ(x).

Proof. First let f(0) = 0. For n > 0, let sn > n be the least stage such that there is some

number y that enters Ã. Now let tn > sn be the least stage such that Ãtn�� y = Âtn�� y.

6

Such a tn must exist, as {Âs}s∈ω and {Ãs}s∈ω approximate the same set. Define f(n) = tn

for all n > 0. This function meets the requirements of the lemma.

Verification: Suppose n = mÃ(x) for some x. Note that as n = mÃ(x) and sn > n,

the element, y, that enters Ã at stage sn must be greater than x. Since {Ãs}s∈ω is a c.e.

approximation, x < y, and f(n) = tn > n it is the case that Ãn�� x ⊂ Ãf(n)�� y. Then as

n = mÃ(x), we have that A�� x ⊂ Ãf(n)�� y. So the fact that Ãf(n)�� y = Âf(n)�� y gives

A��x ⊂ Âf(n)��y and thus, f(n) ≥ mÂ(x). Hence, f ◦mÃ(x) ≥ mÂ(x) as desired.

To obtain a strictly increasing computable function satisfying the requirements above,

define f ′(0) := f(0) and f ′(n) := max{f(n), f ′(n− 1) + 1} for n > 0.

Now Lemma 2.2 gives strictly increasing computable functions f and g such that:

1. For all x, f ◦mB̃(x) ≥ mB̂(x)

2. For all x, g ◦mÂ(x) ≥ mÃ(x).

Let h be a computable function. Our conventions give that h is non-decreasing and so

from (2) we have that (∀x)[h ◦ g ◦mÂ(x) ≥ h ◦mÃ(x)]. Since f is strictly increasing we

get,

(∀x)[f ◦ h ◦ g ◦mÂ(x) ≥ f ◦ h ◦mÃ(x)].

Now as f , g, and h are computable so is f ◦ h ◦ g. From our assumption that B̂ >st Â,

it follows that for all but finitely many x, mB̂(x) > f ◦ h ◦ g ◦ mÂ(x). So then (1)

gives that (∀∞x)[f ◦ mB̃(x) > f ◦ h ◦ mÃ(x)]. Lastly, from f ’s monotonicity we have

(∀∞x)[mB̃(x) > h ◦mÃ(x)]. Hence, B̃ >st Ã.

This gives that <st is well defined on c.e. sets. In other words, settling time domination

is independent of the particular c.e. enumerations chosen. Thus, we have that <st is,

indeed, an ordering on c.e. sets and as such, it actually makes sense to study the structure,

Est.

7

Theorem 2.3 (Csima, Shore [3]). Any countable partial ordering can be embedded into

Est.

The following is an example demonstrating the techniques, used in Theorem 2.3, to

embed a partial ordering into Est. In particular, it demonstrates how to build c.e. sets

incomparable in the >st ordering (a technique which is later needed in Chapter 4).

Example 2.4. The partial ordering P defined by

1

�������

=======

2 3

4

Figure 2.1

can be embedded into Est. That is, we can build c.e. sets A1, A2, A3, and A4 such that

Ap >st Aq if and only if p >P q.

Proof. We build these sets stage by stage ensuring that:

Rp>P q : If p >P q then for each total f, we have (∀∞x)[mAp(x) > f ◦mAq(x)]

Rp≯P q : If p ≯P q then (∃∞x)[mAq(x) ≥ mAp(x)].

For the sake of the requirement Rp>P q, if p >P q we have elements that guard Ap’s settling

time domination of Aq. To do this, the commitment is made that a possible entrant x is

appointed to Aq at some stage s only if there are appointed guards x0, x1,. . . , and xs less

than x such that the guard xi will enter Ap at the stage t when ϕi(s) ↓. Recall from our

conventions that t > ϕi(s) and so, we will get that mAp(x) > ϕi ◦mAq(x).

For the sake of the requirement Rp≯P q, if p ≯P q then at each stage s an element nqs
is chosen and enumerated into Aq with the intention of enumerating an element less than

nqs into Aq at any stage t ≥ s such that an element less than or equal to nqs is enumerated

8

into Ap. From these actions we get that mAq(nqs) ≥ mAp(nqs) and since we choose an nqs for

every stage s we, indeed, have that (∃∞x)[mAq(x) ≥ mAp(x)].

Following the above plan, it is the case that at any given stage there are only finitely

many elements entering or committed to enter any given Ap. Further note that since

A2 ≯st A4 and A3 >st A4 we get A2 ≯st A3 for free, otherwise we would have

A2 >st A3 >st A4 and hence, A2 >st A4. That said, to preserve the incomparability in the

partial ordering it suffices to just build A2, A3, and A4 such that A2 |st A4, A3 ≯st A2. To

preserve the relation >P , we build A1, A2, A3, and A4 such that A1 >st A2, A1 >st A3,

and A3 >st A4. We now proceed on to the construction.

Construction:

Stage s: We will first choose an n2
s and then, in turn, an n4

s. Note that when choosing

n2
s we must keep in mind that we have to build A2 and A1 so that A2 <st A1. To ensure

that A2 <st A1, for each possible entrant x appointed to A2 in this current stage we will

choose numbers x0, . . . , xs < x with the commitment that xi will enter A1 at the stage

when ϕi(t) ↓ where t denotes the stage when x enters A2. Additionally, to account for n2
s,

itself, we will choose (s + 1)-many guards less than n2
s such that the ith guard will enter

A1 at the stage when ϕi(s) ↓. Now n2
s will be chosen to allow room for all of these guards

and with the intention that whenever an element less than it enters A3 or A4, there will

be some number less than n2
s that enters A2.

Similarly, n4
s will be chosen with the chain A4 <st A3 <st A1 in mind. That is, for

each possible entrant y appointed to A4 at this stage there must be (s + 1)-many guards

y0, . . . , ys less than y with the commitment that the guard yi enters A3 at the stage

when ϕi(t
′) ↓ where t′ denotes the stage when y enters A4. Additionally, there will be

(s + 1)-many guards less than n4
s such that the ith guard enters A3 at the stage when

ϕi(s) converges. In turn, for each possible entrant z appointed to A3 at this stage we must

have guards z0, . . . , and zs such that the ith guard enters A4 at the stage when the partial

computable function ϕi converges with the stage when z enters A3 as its argument. Now

n4
s will be chosen with the intention that whenever a number less than it enters A2, there

will be a number less than n4
s that enters A4 while also allowing enough room for all of the

necessary guards of A3 and A4.

Before proceeding further note that choosing the incomparability markers in this par-

ticular order is not necessary. Indeed, an n4
s could be chosen first and then an n2

s.

9

We now choose the incomparability markers n2
s and n4

s. Since there are only a finite

number of possible entrants appointed to A3 and A4 from previous stages and thus far in

this current stage, say k many, we may choose n2
s and guards x1, x2, . . . , xk to be greater

than any number discussed thus far in the procedure. Furthermore, we may choose n2
s and

corresponding guards that are spread out enough to provide enough room for the guards

that are needed for the sake of A2 <st A1 and the functions ϕ0, . . . , ϕs. The n2
s guard xi

has the commitment of entering A2 when the ith possible entrant less than or equal to n2
s

enters A3 or A4. Now enumerate n2
s into A2.

We now choose an n4
s. As only finitely many elements are appointed to enter A2 from

commitments made from previous stages and this current stage, say j many such elements,

we may choose an n4
s and elements y1, y2, . . . , yj < n4

s greater than any number discussed

thus far and spread out enough to provide room for guards for the partial computable

functions ϕ0, . . . , ϕs and for the sake of both A4 <st A3 and A3 <st A1. These yi have the

commitment of entering A4 when the ith possible entrant less than or equal to n4
s enters

A2. Now enumerate n4
s into A4.

To ensure that A2 <st A1, choose for each possible entrant, x, appointed to A2 at this

stage numbers x′0, . . . , x
′
s < x such that x′i enters A1 at the stage when ϕi(t) ↓ where t

denotes the stage when x enters A2. To account for the marker n2
s, choose for (s+1)-many

guards less than n2
s so that the ith guard enters A1 at the stage when ϕi(s) ↓. For the sake

of A4 <st A3 we perform similar actions. Choose for each possible entrant, z, appointed to

A4 at this stage (there are only finitely many), numbers z0, . . . , zs < z such that zi enters

A3 at the stage when ϕi(u) ↓ where u denotes the stage when z is enumerated into A4.

Additionally, to account for n4
s, choose (s+ 1)-many guards less than n4

s such that the ith

guard enters A3 at the stage when ϕi(s) ↓. Similarly, for the sake of A3 <st A1, choose for

each possible entrant, w, appointed to A3 at this stage (s+ 1)-many guards such that the

ith guard enters A1 at the stage when ϕi(v) converges where v denotes the stage when w

enters A3. Notice that we may do this as the yi from the previous paragraph were chosen

to be spread out enough to provide room for these guards.

Note that when each nps is chosen, it and its guards are chosen to be greater than any

number discussed up to that point. So then we have that these markers and their guards

will not be less than previously appointed markers and guards. That being the case, they

will not affect the number of possible entrants previously appointed. As such, we have

only appointed finitely many possible entrants to enter any given Ap. Moreover, choosing

10

the nps in such a manner will prevent any previous commitments from being undermined.

That is, the number of possible entrants less than a given nps will not increase after the nps
is chosen and as such, it has an appropriate guard accounting for each of these possible

entrants.

Notice that at any point in the above construction there are only finitely many possible

entrants being discussed and only finitely many functions are considered (for example, at

stage s we will only consider ϕ0, . . . , ϕs). That said, when we choose an nps we can always

compute how many guards will be needed to preserve the ordering of P and choose nps and

its guards accordingly. This guarantees that we can always choose our markers spaced far

enough apart so as to provide enough room for the required number of guards.

Lemma 2.5. If p >P q then Ap >st Aq.

Proof. Suppose f is a total function and suppose that i is the index such that f = ϕi. Let

s ≥ i be the stage such that every entrant that was appointed to enter Aq prior to stage

i that will actually enter Aq has already done so. That being the case, any x that enters

Aq after stage s was appointed to enter Aq after stage i. So then ϕi is considered when x

is appointed and an xi < x is appointed to enter Ap at the stage such that ϕi(t) ↓ where t

is the stage when x enters Aq. That all said, we have that for all x entering Aq after stage

s, mAp(x) > ϕi ◦mAq(x). Now as only finitely many numbers could have entered Aq prior

to stage s, we have (∀∞x)[mAp(x) > ϕi ◦mAq(x)] as was desired.

Lemma 2.6. If p ≯P q then Ap ≯st Aq.

Proof. At each stage s an nqs is enumerated into Aq and for each x < nqs enumerated into

Ap after stage s, there is an element y < nqs, namely one of the guards belonging to nqs,

appointed to enter Aq at the same stage. This gives that mAq(nqs) ≥ mAp(nqs). Hence,

there are infinitely many x, namely the nqs for s ∈ ω, such that mAq(x) ≥ mAp(x) and so

Ap ≯st Aq.

Thus, A1, A2, A3, and A4 are as desired and as such, the partial ordering P can be

embedded into Est.

11

Naturally, one would ask if an analogous statement of Theorem 2.3 would hold in the

strong settling time domination setting. Although, the question remains open we will take

a step in attempting to answer it in the positive by showing in Chapter 4 that any finite

partial order can be embedded in Esst.

In the following chapter, we see that although the settling time domination relation

can order the c.e. sets, it will, in general, fail as an order on ∆0
2 sets. In particular, the

relation >st fails to be well defined on n-c.e. sets for n ≥ 2. It is also seen that the relation

fails to be well defined on these sets even when considering computation times rather than

settling times.

12

Chapter 3

Computation Time Domination

Given how well behaved the settling time domination relation is on c.e. sets, it is natural

to see if it could be lifted to ∆0
2 sets. Unfortunately, the approximation independence from

Theorem 2.1 does not generalize to n-c.e. sets and their n-c.e. approximations when n ≥ 2.

Indeed, we have the following result.

Theorem 3.1 (Csima [2]). For any n ≥ 2 there exists a properly n-c.e. set A with two

n-c.e. approximations {As}s∈ω and {Ãs}s∈ω such that for any computable function f , for

all but finitely many x, mÃ(x) ≥ f ◦ mA(x). In fact, such an A can be found in every

proper n-c.e. degree.

Note that when n = 1, an n-c.e. set is simply a c.e. set and so approximation indepen-

dence holds. However, unlike c.e. sets the computation times of ∆0
2 sets do not necessarily

coincide with their settling times. That being the case, even though an ordering fails to

come about with regards to the settling times of ∆0
2 sets, one could try comparing ∆0

2 sets

with regards to the computation times of their approximations.

In this chapter we discuss computation time domination. As mentioned, the use of the

computation function is much more fitting when considering ∆0
2 sets rather than c.e. sets

which have relatively simplistic approximations. In particular, we consider computation

time domination with regards to n-c.e. sets. As seen in Theorem 3.1 it is known that

settling time domination is not well defined with regards to n-c.e. approximations of n-

c.e. sets where n ≥ 2. In this chapter we show that an analogous theorem holds when

considering computation time domination. That is, when replacing the settling function

13

with the computation function an ordering of the ∆0
2 sets still fails to come about. Indeed,

even trying to order the ∆0
2 sets by comparing their computation times still fails to be well

defined with regards to n-c.e. sets for n ≥ 3. This result is extended to the case when n = 2

which shows that not only does computation time domination fail to order ∆0
2 sets, it fails

for even the n-c.e. sets where n ≥ 2. First note that when considering c.e. approximations

of c.e. sets, the computation function behaves much like the settling function and as such

computation time domination is well defined with regards to c.e. approximations of c.e.

sets.

Theorem 3.2 (Csima [2]). There exists a c.e. set A with a 3-c.e. approximation {Ãs}s∈ω
and a c.e. approximation {As}s∈ω such that for any computable function f , for all but

finitely many x, CA(x) > f ◦ CÃ(x).

The key technique used to build the approximations in Theorem 3.2 is the idea of a

temptation. A temptation is performed by enumerating and then subsequently removing an

element from one of the approximations. As these are 3-c.e. approximations one may still

enumerate these numbers back into both sets. The key point of a temptation is to provide

one approximation with an earlier configuration that may be returned to by re-enumerating

elements into the approximation. Now when these elements are enumerated into both

sets, the other approximation will not have seen this configuration before and as such

this approximation will have higher computation values than those of the approximation

returning to an old configuration.

As a basic example illustrating the techniques used to build the approximations in

Theorem 3.2 we build A and Ã with only the number 0 and the partial computable function

ϕ0 in mind. Indeed, we build A and Ã so that CA(0) > ϕ0 ◦CÃ(0). At stage s, enumerate

0 into Ã and subsequently remove it from Ã at stage s+ 1. Note that A is not acted upon

during the temptation. At the stage t that ϕ0(s + 1) ↓, enumerate 0 into both sets. As

0 had already been enumerated into Ã at stage s we have that CÃ(0) = s. On the other

hand, A is not acted upon at all until 0 was enumerated into it at stage t. Thus, we have

that

CA(0) = t > ϕ0(s+ 1) ≥ ϕ0(s) = ϕ0 ◦ CÃ(0),

where ϕ0(s+1) ≥ ϕ0(s) holds by our convention that the partial computable functions are

non-decreasing.

14

In fact, we have that Theorem 3.2 extends to properly n-c.e. sets when n ≥ 3. That

is, rather than just observing a 3-c.e. approximation of a c.e. set we have that for any

n ≥ 3, there exists a properly n-c.e. set with two n-c.e. approximations such that one

computation time dominates the other. Using the same techniques from 3.2 while also

coding in a properly n-c.e. set D gives the following.

Theorem 3.3 (Csima [2]). For any n ≥ 3 and any properly n-c.e. set D there is an n-c.e.

set A ≥m D where A has two n-c.e. approximations {As}s∈ω and {Ãs}s∈ω such that for

any computable function f , for all but finitely many x, CA(x) > f ◦ CÃ(x).

The technique of using a temptation to build 3-c.e. approximations such that one

computation time dominates the other does not, however, carry over to 2-c.e. approxi-

mations. The most obvious problem is that elements are enumerated, removed, and then

re-enumerated, which cannot happen in a 2-c.e. approximation. One may think then to just

enumerate into an approximation and then remove based on the convergence of the partial

computable functions. Although we are doing such actions in the proof of the following

theorem, our techniques stray from those used for 3-c.e. sets, in that we must perform sim-

ilar actions for the other approximation as well. Indeed, if the other approximation is left

alone as it was in the temptation process, what would we do when the partial computable

functions converged? If we enumerated into one approximation, while removing elements

from the other, there would be no guarantee that they would end up approximating the

same set. As shown in the following theorem, there is an enumeration process such that

elements are enumerated into both approximations and elements are removed from both

approximations due to the convergence of the partial computable functions.

Theorem 3.4. There exists a 2-c.e. set A with two 2-c.e. approximations, {Ãs}s∈ω and

{Âs}s∈ω, such that for any computable function f , for all but finitely many x,

CÂ(x) > f◦CÃ(x). That is, computation time domination is not approximation-independent

when considering only 2-c.e. approximations of 2-c.e. sets.

Proof. To meet the requirements of the theorem, we seek to build Â and Ã stage by

stage using an enumeration process on blocks of consecutive numbers that results in any

initial segment of Ã eventually settling on a configuration that appears in an earlier stage

during the construction and the initial segment of Â settling on the same configuration,

but unlike the case with Ã, this configuration is entirely new to Â. To do this, for some

15

given block, the numbers in the block are enumerated into one approximation in ascending

order and in descending order for the other and any element that is removed is done

so simultaneously from both approximations. Thus, any initial segment can only have

differing configurations in the two approximations for finitely many stages and as such,

the approximations eventually match on the initial segment and no longer change. Indeed,

as Ã returns to an old configuration and Â has never seen this configuration before, the

computation times of Â are higher than those of Ã.

Now, we must have that the computation times of Â are so much higher than those

of Ã, that Â actually computation time dominates Ã. To achieve this, any element that

is removed is done so based on the convergence of a partial computable function with

the stage at which the enumeration process is completed on the block containing that

number as an argument. So then any initial segment of Ã settles on a configuration that

appears during the enumeration process on some block containing members of the initial

segment. However, the same initial segment in Â does not settle on that configuration until

a partial computable function converges with the last stage of that enumeration process

as its argument.

Before proceeding to the main construction, a couple of basic examples illustrating the

element enumeration and removal techniques of the construction are discussed. First, only

the partial computable function ϕ0 and the pair of numbers 0 and 1 are considered and we

will show how to construct c.e. sets Ã and Â such that CÂ(1) > ϕ0 ◦CÃ(1). Note that the

configurations of the characteristic functions of Ã and Â in the following process appear

as in Figure 3.1 on the next page.

At stage 1, enumerate 1 into Ã and 0 into Â and then at stage 2 enumerate 0 into Ã

and 1 into Â. That is, enumerate 0 and 1 in ascending order into Â and in descending

order into Ã. Now if ϕ0(2) ↓ at a later stage t then remove 0 from both sets. As 0 and

1 were enumerated into Ã in descending order, the configuration of Ã at stage 1 matches

the current one. As 0 and 1 were enumerated into Â in ascending order, this current

configuration is new to Â. Hence,

CÂ(1) = t > ϕ0(2) ≥ ϕ0(1) = ϕ0 ◦ CÃ(1)

where ϕ0(1) = ϕ0 ◦ CÃ(1) holds since CÃ(1) = 1.

16

The configurations of the characteristic functions of Ã and Â in the process outlined

above appear as:

Ã Â
01 01

Stage 0 00 00
Stage 1 01 10
Stage 2 11 11

...
...

...
Stage t 01 01

Figure 3.1

As Figure 3.1 shows, Ã has a configuration at stage 1 that matches the final configu-

ration at stage t and Â does not have such a configuration until stage t. Note that the

enumeration process is not performed until stage 1 so any actions will affect the computa-

tion values of both 0 and 1.

Now in the case that ϕ0(2) does not converge, the configuration at stage 2 remains

fixed in both approximations. That being the case, Ã and Â are equal regardless if ϕ0 is

total or not. Additionally, ϕ0 does not affect Â’s computation time domination of Ã since

only total computable functions are taken into account.

Note that we do not get CÂ(0) > f ◦ CÃ(0) from the process above. This may appear

troublesome as domination must hold for almost every element but even when considering

just 0 and 1 we already do not have domination for an element. However, as it will turn

out, 0 is the only problematic element when considering just ϕ0. To illustrate this, another

example is given where ϕ0 and the numbers from 0 to 3 are considered.

First divide the numbers into two blocks, B0 and B1, where B0 consists of the numbers

0 and 1 and B1 consists of the remaining numbers. The following process is quite similar to

the previous procedure in that the elements of a given block are enumerated in ascending

order into Â and descending order into Ã and any elements that are removed are done so

based upon the convergence of ϕ0. However, now that there are more elements taken into

consideration, the procedure must also act for the block B1 consisting of the numbers 2

and 3.

Much like the previous process we wait for ϕ0(s) to converge where the enumeration

process for B0 was completed at stage s and then remove 0 from both sets. It is after

17

this stage that we enumerate the elements of B1 into both sets. Again, we follow our

enumeration process and enumerate the elements of B1 in ascending order into Â and

descending order into Ã. This enumeration provides Ã with an old configuration that it

returns to if any more elements are removed from B1. Note that as B0 is no longer acted

upon, the configurations resulting from B1’s enumeration are not compromised.

At stage 3, perform the enumeration process for the elements of B0, enumerating in

ascending order into Â and descending order into Ã, which completes at stage 4. Now

at the stage t when ϕ0(4) ↓ remove 0 from both sets. Following this stage, perform the

enumeration process for the elements of B1 which completes at stage t + 2. At the stage

u when ϕ0(t + 2) converges remove the number 2 from both sets. As was the case in the

previous procedure, if ϕ0 does not converge then Ã and Â still appear the same and ϕ0

will not affect Â’s computation time domination of Ã as it is not total. Also note that as

the procedure does not start until stage 3, all of the actions outlined in the process above

affect the computation values in both blocks.

The configurations of the characteristic functions of Ã and Â during the process appear

as:

Ã Â
B0 B1 B0 B1

01 23 01 23
Stages 0− 2 00 00 00 00

Stage 3 01 00 10 00
Stage 4 11 00 11 00

...
...

...
...

...
Stage t 01 00 01 00

Stage t+ 1 01 01 01 10
Stage t+ 2 01 11 01 11

...
...

...
...

...
Stage u 01 01 01 01

Figure 3.2

As one can see from Figure 3.2, Ã and Â match at the final stage u. Furthermore, at

stage t when 0 is removed from both sets, there is an earlier matching configuration of B0

in Ã at stage 3. Similarly at stage u when 2 is removed from both sets there is a matching

configuration in Ã at stage t+ 1. However, there are no earlier matching configurations in

18

Â. The argument for CÂ(1) > ϕ0 ◦ CÃ(1) is similar to the one in the previous example.

Now the final configuration of the initial segment up to 3 matches the configuration in Ã

at stage t + 1 and does not appear in Â until the stage u when ϕ0(t + 2) converges. So

then,

ϕ0 ◦ CÃ(3) = ϕ0(t+ 1) ≤ ϕ0(t+ 2) < u = CÂ(3)

where ϕ0 ◦CÃ(3) = ϕ0(t+ 1) holds since CÃ(3) = t+ 1. Lastly, consider the configurations

of the initial segment up to the number 2. As seen earlier, the first element of B0 is

problematic since Â fails to computation time dominate Ã on the number 0 but there are

no such issues with the first element of B1. The final configuration of the initial segment

up to 2 in Figure 3.2 at stage u is 010 which appears earlier in Ã at stage 3 during the

enumeration process for B0 but does not appear in Â until stage t when ϕ0(4) converges.

That being the case,

ϕ0 ◦ CÃ(2) = ϕ0(3) ≤ ϕ0(4) < t = CÂ(2).

Essentially, the actions taken to ensure CÂ’s domination in B0 took care of the domination

for the first element of B1. That said, this indicates that the problem that the number 0

posed will not re-appear for other elements when the procedure is generalized to consider

all of ω.

As a last example, the case where two partial computable functions, ϕ0 and ϕ1, and

the numbers 0 to 7 are discussed. As before we still have the two blocks B0 and B1 but

now B1 consists of the numbers 2 through 7. We show that it is possible to preserve

CÂ’s domination over ϕ0 ◦ CÃ in both blocks, as it was in the previous example, while

also granting CÂ domination over ϕ1 ◦ CÃ in the second block. Before, proceeding note

that Figure 3.3 on page 21 gives the configurations of Ã and Â as they appear during the

following procedure.

Since we are considering two partial computable functions B1 must now be divided into

sub-blocks B1,0 and B1,1 each consisting of three numbers. Indeed, with two functions in

play we can no longer wait for ϕ0 to converge before proceeding on to the block B1 since ϕ0

may not be total and as such, we potentially will never act for the sake of ϕ1. That all said,

we now have to perform the enumeration process for B1,1 while waiting for ϕ0 to converge

for the first block. Suppose that the enumeration process for B0 completes at stage s and

19

the enumeration process for B1,1 completes at stage t. If ϕ0(s) converges before ϕ1(t) then

the number 0 is removed from both sets which renders the enumeration process performed

for B1,1 obsolete, as the configurations seen during the enumeration process had both 0

and 1 enumerated in. We now have to perform the enumeration process for the sub-block

B1,0 to account for the change in B0.

Further notice that the sub-blocks of B1 must also consist of three elements rather

than two. If each sub-block consisted of two elements and the two functions ϕ0 and ϕ1

are total then it is possible for the initial segment up to 3 in Ã and Â to settle on the

configuration appearing at stage t in Figure 3.2 which gives the numbers 4 and 5 the same

computation values in Ã and Â. That is, since B1,0 is completely removed from both sets,

the actions taken upon it after the enumeration process was performed on B1,1 do not affect

the computation times of B1,1. Now as 4 and 5 have the same computation times, these

numbers are problematic as we will want CÂ(x) > ϕ0 ◦ CÃ(x) for all x > 0. To remedy

this, the size of each sub-block is increased by one so we do not have the case where an

entire sub-block is removed due to the convergence of the functions and as such the actions

taken upon B1,0 do actually affect the computation times of the elements of B1,1. So then

B1,0 consists of the numbers 2, 3, and 4 and B1,1 consists of 5, 6, and 7. We now proceed

to build Ã and Â.

At stage 7, perform the usual enumeration process for B0 in Ã and Â which ends at

stage 8. As in the second example, go on to perform the enumeration process for B1,1

which completes at stage 11 while waiting for ϕ0(8) to converge. It is at this stage that the

procedure differs from the previous example. As a second partial computable function, ϕ1,

is now considered when dealing with B1 we must wait to see which is the first to converge,

ϕ0(8) or ϕ1(11) and act accordingly. Note that we are not waiting for the convergence

ϕ0(11) since our conventions give that ϕ0(8) must converge first. Suppose that ϕ1(11) is

the first to converge at some stage t. Now remove the least element of B1,1 from both

approximations and wait for the convergence of ϕ0(8). When ϕ0(8) does converge at

some later stage, say stage u, remove 0 from both sets and then proceed to perform the

enumeration process for B1,0 in Ã and Â, completing at stage u + 3. Now we wait for

the convergence of ϕ0(u + 3) and ϕ1(u + 3). Suppose that ϕ0(u + 3) converges first at

some stage v, now remove the least element of B1,0 from both sets. When ϕ1(u+ 3) later

converges at some stage w remove the least remaining element of B1,0 from the two sets.

The configurations of Ã and Â resulting from the process discussed above appear as

20

Ã Â
B0B1,0B1,1 B0B1,0B1,1

01 234 567 01 234 567
Stages 0− 6 00 000 000 00 000 000

Stage 7 01 000 000 10 000 000
Stage 8 11 000 000 11 000 000
Stage 9 11 000 001 11 000 100
Stage 10 11 000 011 11 000 110
Stage 11 11 000 111 11 000 111

...
...

...
...

...
...

...
Stage t 11 000 011 11 000 011

...
...

...
...

...
...

...
Stage u 01 000 011 01 000 011

Stage u+ 1 01 001 011 01 100 011
Stage u+ 2 01 011 011 01 110 011
Stage u+ 3 01 111 011 01 111 011

...
...

...
...

...
...

...
Stage v 01 011 011 01 011 011

...
...

...
...

...
...

...
Stage w 01 001 011 01 001 011

Figure 3.3

21

in Figure 3.3. As can be seen from the diagram, the final configurations of Ã and Â at

stage w match. Further note that this configuration matches the configuration of Ã at

stage u + 1 while it is not seen in Â until stage w. The argument for CÂ(1) > ϕ0 ◦ CÃ(1)

is handled similarly as to before. Now as we are considering two total functions the first

two elements of B1 are removed. Similar to how 0 was a problematic element in B0 when

dealing with ϕ0, the two numbers 2 and 3 are problematic for ϕ1. However, these elements

do not negatively affect CÂ’s dominance over ϕ0 ◦ CÃ. Indeed, the computation values of

these elements in Ã and Â are completely determined by the computation values of the

number 1 in Ã and Â respectively. So for 1 ≤ x ≤ 3 we have

ϕ0 ◦ CÃ(x) = ϕ0(7) ≤ ϕ0(8) < u = CÂ(x).

Now for any x > 3 we have CÃ(x) = u + 1 while CÂ(x) = w. So then for x > 3,

ϕ0 ◦ CÃ(x) = ϕ0(u+ 1) ≤ ϕ0(u+ 3) < v < w = CÂ(x).

When considering ϕ1 in B1 we only have CÂ(x) > ϕ1 ◦ CÃ(x) for the numbers x > 3.

As mentioned, for x > 3, we have that CÃ(x) = u+ 1 while CÂ(x) = w so then

ϕ1 ◦ CÃ(x) = ϕ1(u+ 1) ≤ ϕ1(u+ 3) < w = CÂ(x).

Although B0 and the first two elements of B1 are problematic for CÂ’s domination of

ϕ1 ◦ CÃ, they are the only such elements similar to the case with ϕ0 and the number 0.

Now if we had instead assumed that ϕ0(8) had converged first rather than ϕ1(11), the

configurations above would have appeared the same except that the number 5 would have

remained enumerated in both sets. Similar arguments to those above would have shown

that ϕ0 ◦ CÃ(x) < CÂ(x) for x > 0 and ϕ1 ◦ CÃ(x) < CÂ(x) for x > 3.

If ϕ1 had not converged at all then it would have been as in the second example. If ϕ0

had not converged at all then B1,0 would not have been acted upon and ϕ1◦CÃ(x) < CÂ(x)

would only hold for x > 4. However, this situation is quite like the second example and

similar arguments can be made to show that if more blocks were introduced, we would have

ϕ1 ◦ CÃ(x) < CÂ(x) for all elements x of those blocks. Now if neither function converged,

only the elements of B0 and B1,1 would have been enumerated into both sets and would not

have been removed and as such Ã and Â would be equal. Further, since neither function is

total they would not be considered when discussing computation time domination. We now

22

move on to the procedure that actually builds the sets Ã and Â, and their approximations

{Ãs}s∈ω and {Âs}s∈ω, to meet the requirements of the theorem.

The more general idea is to divide all of ω into blocks B0, B1, B2, . . . where B0 consists

of a single sub-block of a pair of bits and for n > 0, Bn will have (n × b(n − 1)) + 1

many sub-blocks, Bn,0, . . . , Bn,n×b(n−1), such that each sub-block has n + 2 many bits and

b(n− 1) denotes the number of sub-blocks of Bn−1. The enumeration process discussed in

the examples is then performed for these blocks. In particular, the enumeration process

for Bn,k at stage s is performed by enumerating the elements of Bn,k one at a time from

greatest to least into Ã and from least to greatest into Â finishing at stage s+n+1. Let sn

denote the most recent stage at which the enumeration process is completed on a sub-block

of Bn.

Now if ϕe(sn) ↓ for some 0 ≤ e ≤ n at some stage s then remove from both sets

the least element of Bn that is still enumerated in Ã and Â which will be an element of

some sub-block Bn,k. For the blocks following Bn that have already been acted upon, we

shift down a sub-block and perform the enumeration process on this sub-block to provide

a new configuration that takes Bn’s recent change into account. As we enumerated the

elements of Bn,k from greatest to least into Ã, the initial segment up to max{Bn} in Ã

has a configuration appearing during the enumeration process for Bn,k that matches the

configuration appearing at stage s when ϕe(sn) converges. On the other hand, the initial

segment in Â does not have such an earlier matching configuration since the elements of

Bn,k were enumerated in from least to greatest. That is, this configuration does not appear

in Â until the stage when ϕe(sn) converges.

As Bn has (n × b(n − 1)) + 1 many sub-blocks there are enough sub-blocks to allow

the shift mentioned above. Indeed, there are enough sub-blocks to allow each ϕi(sk) to

converge, where 0 ≤ i ≤ n − 1 and sk can take on at most b(n − 1) many values (one for

each sub-block of Bn−1). This accounts for each partial computable function that Bn−1

takes into consideration and all the stages of which the enumeration process was completed

on a sub-block of Bn−1. Furthermore, since each sub-block of Bn consists of n + 2 many

bits and Bn only considers the partial computable functions ϕe where e ≤ n, there are

enough elements to remove as the ϕe converge.

Before proceeding to the construction some terminology is explained. A sub-block is

declared active if the most recent enumeration process performed on its respective block

23

was performed on that sub-block. As such, a block can only have a single active sub-block

at any given moment. That is, when Bn,k is activated, Bn,k+1 will be deactivated. We

deem a block active if it has an active sub-block. Additionally, since the following process

is a step by step procedure where a single step may involve several stages of action and

computation we use stage(t) to keep track of the stage appearing at the start of step t and

s to keep track of the current stage.

Construction:

Step 0: Set stage(0):=0 and stage(1):=1.

Step t: Set s:=stage(t). If ϕe,s(sn) ↓ (again, where sn denotes the most recent stage at

which the enumeration process was completed on a sub-block of Bn) for some n, and some

e ≤ n, such that Bn has an active sub-block, Bn,k, then remove from both Ã and Â the least

element x ∈ Bn,k such that x ∈ Ãs−1 and x ∈ Âs−1, and reset s := s+ 1. Now in ascending

order of m > n where Bm has an active sub-block, Bm,`, perform the enumeration process

for Bm,`−1 and declare the sub-block Bm,`−1 active. Reset sm := s+m+ 1 and s := sm.

In ascending order of the m such that s > max{Bm+1} and Bm does not have an

active sub-block, declare Bm,m×b(m−1) active and perform the enumeration process for that

sub-block. Now define sm := s+m+ 1 and reset s := sm.

If neither of the situations above occur then reset s := s+ 1.

Define stage(t+ 1) := s.

This completes the construction process.

Note that any element that is enumerated into Ã and Â during the enumeration process

on a sub-block and then later removed due to the convergence of a partial computable

function never enters either approximation again. As such, we have that the sets are, in

fact, 2-c.e.

For any sub-block that is activated, all of the elements of that sub-block are enumerated

into Ã and Â during the enumeration process and any number that is removed due to the

convergence of a partial computable function is removed simultaneously from both sets.

This being the case, we have that Ã = Â. That is, {Ãs}s∈ω and {Âs}s∈ω will approximate

the same 2-c.e. set as desired.

24

Further note that as we do not act on block Bn until a stage s > max{Bn+1}, any

action taken on this block will not only affect the computation values of its own elements

but the elements of the following block as well. The following lemma shows that Â does,

in fact, computation time dominate Ã.

Lemma 3.5. If ϕe is total then (∀n > e)(∀x ∈ Bn)[CÂ(x) > ϕe ◦ CÃ(x)].

Proof. Let ϕe be total and consider Bn where n > e. Let y be the least element of Bn

that is in Ã and Â. Suppose Bn,k is the sub-block such that y ∈ Bn,k. Now it must be the

case that the blocks preceding Bn have already settled prior to the enumeration process

being performed on Bn,k otherwise Bn,k−1 would have been activated which implies that an

element of Bn,k−1 is in Ã and Â, contradicting the assumption that y is the least element

of Bn in Ã and Â.

First consider the set Ã. Since the elements of Bn are enumerated into Ã in descending

order, we have that y is also the last element of Ã in Bn that is enumerated in Ã. Now,

as the elements of Bn,k that are removed are done so in ascending order, for each x ∈ Bn

such that x ≥ y we have x is not acted upon after its initial enumeration into the two

sets and so, CÃ(x) = CÃ(y). Additionally, since the preceding blocks have already settled,

the enumeration process performed on Bn,k provides Ã with a configuration of the initial

segment up to max{Bn} that appears correct. That said, CÃ(y) ≤ sn. Ergo, for all x ∈ Bn

such that x ≥ y, CÃ(x) = CÃ(y) ≤ sn and consequently, ϕe ◦CÃ(x) = ϕe ◦CÃ(y) ≤ ϕe(sn).

Now consider Â. Since ϕe is total we have that ϕe(sn) ↓ at some stage s. At this stage

an element z < y, z ∈ Bn,k, is removed from Â. Since the elements of Bn,k were enumerated

into Â in ascending order, we have that such a configuration has not appeared earlier and

as a result, CÂ(x) ≥ s > ϕe(sn) for all x ≥ y where x ∈ Bn. Hence, for all x ∈ Bn such

that x ≥ y,

CÂ(x) ≥ s > ϕe(sn) ≥ ϕe ◦ CÃ(x)

where ϕe(sn) ≥ ϕe ◦ CÃ(x) holds from the argument in the previous paragraph.

Lastly, for all x ∈ Bn such that x < y, we must have that x /∈ Ã and x /∈ Â since y

is the least element of Bn that is in both sets. Since Bn−1 is not activated until a stage

t > max{Bn}, the actions taken on Bn−1 affect the computation values of Bn. Now as

x /∈ Ã and x /∈ Â for all x ∈ Bn such that x < y, we have that the computation times of x

25

are completely determined by Bn−1. In particular, we have that CÃ(x) = CÃ(max{Bn−1})
and CÂ(x) = CÂ(max{Bn−1}). An argument as given above will show that

CÂ(max{Bn−1}) > ϕe ◦ CÃ(max{Bn−1}).

Thus, for each x ∈ Bn such that x < y, we have CÂ(x) > ϕe ◦CÃ(x). Hence, for all x ∈ Bn,

CÂ(x) > ϕe ◦ CÃ(x).

The lemma verifies that for any computable function, f , (∀∞x)[CÂ(x) > f ◦ CÃ(x)].

Hence, the requirements of the theorem have been met.

Although Theorem 3.4 provides a counter-example to the well-definedness of compu-

tation time domination on 2-c.e. approximations of 2-c.e. sets, an analogous construction

cannot be made for the case of 2-c.e. approximations of c.e. sets, as the next proposition

shows.

Proposition 3.6. Given a c.e. set, A, with two 2-c.e. approximations, {Ãs}s∈ω and

{Âs}s∈ω, there exists a computable function, f , such that for all x, f ◦ CÃ(x) ≥ CÂ(x).

In particular, there is a strictly increasing computable function, f ′, such that for all x,

f ′ ◦ CÃ(x) ≥ CÂ(x).

Proof. Since A is c.e. there exists an index, e, such that A = We. Now define f as follows:

f(s) = (µt ≥ s)[Ãt��s = We,t��s = Ât��s]

Such a t in the above definition of f must exist as {Ãs}s∈ω and {Âs}s∈ω approximate A

and A = We. This function meets the requirements of the theorem.

Verification: Let n = CÃ(x) for some x, note that n ≥ x by the definition of the compu-

tation function. We have that Ãn��x = We��x and since {Ãs}s∈ω is a 2-c.e. approximation,

it is the case that Ãn �� x ⊆ Ãm �� x for all m ≥ n. By the definition of the function f ,

Ãf(n)��n = We,f(n)��n = Âf(n)��n. Then as f(n) ≥ n we get,

We��x = Ãn��x ⊆ Ãf(n)��n = We,f(n)��n.

26

As We is c.e. we have that for all t, We,t �� x ⊆ We �� x. That said, We �� x ⊆ We,f(n) �� x

gives We,f(n) �� x = We �� x. So, Âf(n) �� x = We,f(n) �� x = We �� x = A �� x and as such,

CÂ(x) ≤ f(n) = f ◦ CÃ(x).

To obtain a strictly increasing computable function, f ′, with the desired properties,

define f ′(0) = f(0) and f ′(n) = max{f(n), f ′(n− 1) + 1} for n ≥ 1.

Proposition 3.6 gives that the 2-c.e. set of Theorem 3.4 cannot be a c.e. set and as such,

we get the following result for free.

Corollary 3.7. There exists a properly 2-c.e. set, A, with two 2-c.e. approximations,

{Ãs}s∈ω and {Âs}s∈ω, such that for any computable function, f , (∀∞x)[CÂ(x) > f ◦CÃ(x)].

This gives that computation time domination is not well defined when considering

properly n-c.e. sets when n > 1. Now from Proposition 3.6, one sees that no two 2-c.e.

approximations of a given c.e. set can computation time dominate one another. However,

something much stronger can be stated about 2-c.e. approximations of c.e. sets.

Corollary 3.8. If A and B are c.e. sets with 2-c.e. approximations Ã, Â, B̃, and B̂ such

that Â computation time dominates B̂ then Ã computation time dominates B̃ as well. That

is, computation time domination is well-defined in regards to 2-c.e. approximations of c.e.

sets.

Proof. The proof follows analogously from the proof of Theorem 2.1 with the computation

function now playing the role of the settling function.

As computation time domination is not well defined on n-c.e. sets where n > 1, there

is no ordering on n-c.e. sets with regards to computation time domination that can be

introduced and studied unlike the case with settling time domination on c.e. sets and the

structure Est.

27

Chapter 4

Strong Settling Time Domination

The definition of strong settling time domination takes into regard a second computable

function so now rather than just a computable function acting on the settling time of

an element x as was the case with settling time domination, we also have a computable

function acting on x itself. However, like settling time domination, strong settling time

domination is well defined with respect to c.e. sets. In fact much more can be said, strong

settling time domination is actually well defined on the wtt-degrees with respect to c.e.

sets.

Definition 4.1. A set B is weak truth table reducible to a set A, denoted B ≤wtt A, if

there is a Turing reduction B = ΦA
e and a computable function h such that the use of the

reduction ϕAe (x) is less than or equal to h(x).

Theorem 4.2 (Csima, Shore [3]). Strong settling time domination is well defined on wtt-

degrees. That is, if A, B, and C are c.e. sets with respective associated enumerations

{As}s∈ω, {Bs}s∈ω, and {Cs}s∈ω such that A ≤wtt B <sst C or A <sst B ≤wtt C then

A <sst C.

Proof. First we will need the following lemma.

Lemma 4.3 (Csima, Shore [3]). Suppose that A and B are c.e. sets such that B is infinite

and A ≤wtt B with the use of the reduction bounded by a computable function h. Then there

is a strictly increasing computable function f ′ such that for all x, mA(x) ≤ f ′ ◦mB ◦ h(x).

28

Proof. The proof is similar to Lemma 2.2.

Suppose that A ≤wtt B <sst C. Additionally, let f and g be computable functions.

Lemma 4.3 gives a strictly increasing computable function f ′ such that

mA ◦ g(x) ≤ f ′ ◦mB ◦ h ◦ g(x),

where h is a computable function bounding the use of the wtt-reduction from B to A. By

our conventions the function f is non-decreasing and as such,

f ◦mA ◦ g(x) ≤ f ◦ f ′ ◦mB ◦ h ◦ g(x).

Since h and g are computable so is h ◦ g. Similarly, f ◦ f ′ is also computable. So then the

assumption that B <sst C gives that for almost every x,

f ◦mA ◦ g(x) ≤ f ◦ f ′ ◦mB ◦ h ◦ g(x) < mC(x).

Thus, A <sst C.

Now consider the case such that A <sst B ≤wtt C. Since B ≤wtt C, Lemma 4.3 gives a

strictly increasing computable function g′ such that for all x,

mB(x) ≤ g′ ◦mC ◦ h(x),

where h is a computable function bounding the use of the wtt-reduction from C to B. As

g and h are computable so is g ◦ h(x+ 1). Similarly, g′ ◦ f is also computable. So then the

assumption that A <sst B gives that

(∀∞x)[g′ ◦ f ◦mA ◦ g ◦ h(x+ 1) < mB(x) ≤ g′ ◦mC ◦ h(x)].

Now, from the monotonicity of g′ we have

(∀∞x)[f ◦mA ◦ g ◦ h(x+ 1) < mC ◦ h(x)].

As mentioned earlier, since h is a bound on the use function, we can assume it is non-

decreasing. Additionally, we may assume that these sets are not finite and as such, h is

not bounded. So then for all y, there is some x such that h(x) ≤ y ≤ h(x+ 1). Hence, for

all but finitely many y,

29

f ◦mA ◦ g(y) ≤ f ◦mA ◦ g ◦ h(x+ 1) ≤ mC ◦ h(x) ≤ mC(y).

Thus, A <sst C and so strong settling time domination is well defined on the wtt-degrees.

Corollary 4.4 (Csima, Shore [3]). The strong settling time domination ordering is well

defined with regards to c.e. sets.

Proof. To see that<sst is well defined with regards to c.e. sets, suppose thatA andB are c.e.

sets such that A >sst B. Further, suppose that {Ãs}s∈ω and {B̃s}s∈ω are approximations

respectively for A and B. Since {Ãs}s∈ω approximates A we have that A ≡wtt Ã with the

use of the reduction bounded by the identity function. Similarly, B̃ ≡wtt B. Theorem 4.2

then gives that B̃ <sst Ã.

With strong settling time domination being well defined with regards to c.e. sets, we

now proceed to study the structure Esst of c.e. sets with the relation <sst. First, we show

that Esst is non-trivial.

Theorem 4.5 (Csima, Shore [3]). There exist c.e. sets A and B such that A >sst B and

B is non-computable.

Proof. A and B are built stage by stage meeting the following:

R〈i,j〉: If ϕi and ψj are total then for all but finitely many x, mA(x) > ϕi ◦mB ◦ ψj(x).

Ne: B 6= Φe.

Note that ϕi and ψj respectively play the roles of the functions f and g in the definition

of strong settling time domination and the reason for the difference in notation is due to

this difference in their roles. This notational difference is solely for the sake of clarity.

Indeed, we use the same enumeration of the partial computable functions for ϕi and ψj.

To ensure that the R〈i,j〉 requirements are met we will use markers, Γl, with guards,

[i, j, k]l, between Γl−1 and Γl such that 0 ≤ i, j, k ≤ l. The Γpl guard [i, j, k]l (where k > 0)

is the guard that corresponds to the functions ϕi and ψj and the kth possible entrant of B

less than s where s denotes the stage when ψ(Γl+1) ↓. The guard Γpl [i, j, 0]l is the guard

30

that corresponds to the functions ϕi and ψj and will enter A even if there are no elements

entering B that are less than s.

Now if ψj(Γl+1) ↓ at stage s then all of the elements of lower priority than Γl appointed

to enter B will be moved to be greater than s. The commitment is then made that whenever

an element less than or equal to s enters B at a stage t > s there will be a Γl guard that

will enter A at the stage when ϕi(t) ↓. Further, an element is enumerated into A at the

stage when ϕi(s) ↓ as well. Note that all of the markers and guards are distinct from one

another. For the sake of the Ne requirements there are numbers x0 < x1 < . . . such that

for each total Φe we have that B(xe) 6= Φe(xe). We now proceed to the construction of A

and B.

Construction:

Stage 0: Set x0
m = m for all m ≥ 0 and place the Γl markers spread out enough to

provide room for their guards.

Stage s + 1: For the least e such that Ne is unsatisfied and Φe(x
s
e) ↓= 0, enumerate

xse into B and declare Ne satisfied. If ψj(Γl+1) ↓ where j ≤ l, set all xs+1
e to be greater

than s+ 1 for all e ≥ l such that Ne is unsatisfied. Make the commitment that [i, j, 0]l will

enter A at the stage when ϕi(s + 1) ↓. Let t1, t2, . . . , tn denote the stages greater than

s + 1 such that an xe ≤ s + 1 enters B. Note that since all xe such that e ≥ l and Ne is

unsatisfied have been moved, we have that n ≤ l. Declare that at the stage when ϕi(tk) ↓,
[i, j, k]l is enumerated into A.

Lemma 4.6. The Ne are satisfied.

Proof. It is the case that xse is moved only when ψj(Γl+1) ↓ for the first time for some

partial computable function ψj and marker Γl+1 such that j ≤ l ≤ e. As that may only

occur a finite number of times we have that lim
s→∞

xse < ∞. Since all the xe eventually

settle we have that if Φe is total then Φe(xe) 6= B(xe). Indeed, if Φe(xe) = 0 then xe is

enumerated into B and xe does not enter B otherwise.

Lemma 4.7. The R〈i,j〉 are satisfied.

Proof. Suppose ϕi and ψj are total. It suffices to show that for all but finitely many x

that whenever some y ≤ ψj(x) enters B at some stage s then some number less than or

31

equal to x will be enumerated into A at some later stage t > ϕi(s). Let x be such that

Γl ≤ x ≤ Γl+1 for some l ≥ i, j. From the construction process it is declared that at the

stage s when ψj(Γl+1) ↓ there are Γl guards assigned with the commitment of entering A

at the stage when ϕi(t) ↓, where t denotes a stage greater than s such that an entrant less

than or equal to ψj(Γl+1) enters B. Further, there are guards assigned to enter A even if

there are no future entrants enumerated into B that are less than ψj(Γl+1).

The previous lemmas give that the c.e. sets A and B are as desired.

In addition to showing that Esst is non-trivial, Theorem 4.5 demonstrates the technique

used to build c.e. sets such that one strongly settling time dominates the other. Drawing

from this technique, it has been shown that some linear orderings may be embedded into

Esst.

Theorem 4.8 (Csima, Shore [3]). Given a computable partial ordering P on N with no

infinite ascending sequence there is a computable sequence {Ap}p∈ω of c.e. sets such that if

q <P p then Aq <sst Ap.

In fact, we show here it is also possible to embed any finite partial ordering into Esst.
Notice that as these are partial orders rather than linear orders we must preserve the

incomparability amongst the elements as well. Indeed, Theorem 4.8 is only concerned with

the preservation of the comparability amongst the elements.

Theorem 4.9. Every finite partial order can be embedded into Esst.

Proof. Let P be a finite partial ordering with M -many elements. We may assume without

loss of generality that the elements of P are 1, 2, . . . , M . We shall build c.e. sets A1,

A2,. . ., AM stage by stage meeting the following requirements:

Rp>P q : If p >P q then for all computable functions f and g we have

(∀∞x)[mAp(x) > f ◦mAq ◦ g(x)]. That is, if p >P q then Ap >sst Aq.

Rp |P q : If p |P q then (∃∞x)[mAq(x) ≥ mAp(x)] and (∃∞x)[mAp(x) ≥ mAq(x)]. That is,

if p |P q then Ap |sst Aq.

32

To meet the Rp>P q requirements we use a technique similar to that used in Theorem

4.5 to build c.e. sets such that one strong settling time dominates the other. That is, for

the sake of the requirement Rp>P q, we use domination markers Γpl , l ∈ ω, with guards

[i, j, c]pl between Γpl−1 and Γpl . Similar to Theorem 4.5, the marker Γpl requires a guard

corresponding to ϕi and ψj such that i, j ≤ l + 1 and each possible entrant less than

ψj(Γ
p
l+1) of an Aq such that p >P q. Additionally, Γpl also requires a guard corresponding

to ϕi and ψj each time Γpl+1 moves. So then the Γpl guard [i, j, c]pl corresponds to ϕi and

ψj and c is some number less than the sum of the number of times Γpl+1 moves and the

number of possible entrants less than ψj(Γ
p
l+1) of the Aq such that p >P q.

Now if ψj(Γ
p
l+1) ↓ at a stage s for some partial computable function ψj such that j ≤ l+1

then all of the possible entrants of Aq with lower priority than Γpl+1 (an explanation on

the priority of the entrants is given on page 34) will be moved to be greater than s. Note

that when a marker is moved to be greater than s, all of its guards are also moved to be

greater than s (in general, when it is said that a marker is greater than another marker it

is meant that all of its guards will be greater than that marker as well). The commitment

is then made that whenever an element less than or equal to s enters Aq at a stage t > s,

there will be some Γpl guard, [i, j, c]pl , that will enter Ap at the stage when ϕi(t) ↓ where

i ≤ l + 1. In addition, a guard is enumerated into Ap at the stage when ϕi(s) ↓ even if

there are no elements less than s that are later enumerated into Aq.

Now if ψj and ϕi are total and x is such that Γpl ≤ x ≤ Γpl+1 for some l where i, j ≤ l+1

then by our conventions it is the case that ψj(x) ≤ ψj(Γ
p
l+1). So from the process above, if

ψj(Γ
p
l+1) converges at stage s then whenever a number less than or equal to ψj(x) (and hence

less than s) enters Aq at a stage t > s, a Γpl guard (which is less than x) enters Ap at the

stage when ϕi(t) ↓ and a guard also enters Ap at the stage when ϕi(s) ↓, even if no elements

less than ψj(Γ
p
l+1) enter Aq after stage s. So then we have that mAp(x) > ϕi ◦mAq ◦ψj(x).

To meet the Rp |P q requirements we use techniques similar to those used in Example

2.4 to preserve any incomparability among elements. That is, if p |P q then we use

incomparability markers nqk and npk, k ∈ ω, and their associated guards to ensure that

Ap |sst Aq. In particular, the guards of nqk are less than nqk and have the commitment that

whenever an element less than or equal to nqk enters Ap after nqk has been enumerated into

Aq, a guard is enumerated into Aq. These actions ensure that there are infinitely many x,

namely the nqk, such that mAq(x) ≥ mAp(x) and as such Ap ≯sst Aq. Similar commitments

are made for the guards of npk. These actions ensure that Aq ≯sst Ap and as a result, we

33

have that Ap |sst Aq.

Unlike in Example 2.4 where we enumerated the incomparability marker nqk into Aq

at stage s for all q ∈ P such that there is some p ∈ P where p |P q, we instead, at a

given stage, only enumerate the marker nqk for a single fixed q such that there is some

element in P incomparable to q. In a sense, the incomparability markers associated to the

sets A1, A2, . . . , and AM take turns based on the increasing order of the indices of their

associated c.e. set with respect to the usual ordering on the naturals. Indeed, at each stage

s we act for the nqk such that s = Mk + q (recall that P has M -many elements) and there

is some p ∈ P where p |P q.

Notice that meeting these requirements suffices when embedding a finite partial ordering

into Esst. Indeed, we have that if p >P q then Ap >sst Aq from the requirement Rp>P q.

Note that if Ap >sst Aq then we have that Aq ≯sst Ap as well since >sst is a strict ordering.

Furthermore, if p ≯P q then there are two possible cases, one where q >P p and the other

where p |P q. In the first case, we meet the requirement Rq>P p, giving that Aq >sst Ap and

as a result Ap ≯sst Aq. Now in the second case the requirement Rp |P q is met and again

we get Ap ≯sst Aq. Thus, we have p >P q if and only if Ap >sst Aq as desired.

A brief outline of the interaction and priority between the possible entrants stated

above is now given. Note that if a marker is moved, its guards will also move along with

it. Consider the marker Γpl . If ψj(Γ
p
l) converges at stage s for some j ≤ l then all Γql′ such

that p >P q and l ≤ l′ will be moved to be greater than s. Additionally, all nqk such that

p >P q and l < Mk + q will be moved to be greater than s. These movements are done

so as to keep the number of possible entrants of Aq that are less than ψj(Γ
p
l) bounded and

in doing so, keeping the number of guards that Γpl−1 will require bounded. That all said,

if ψj(Γ
p
l) converges the markers in Aq such that p >P q that will not be moved are all Γql′

such that l′ < l and all nqk such that Mk + q ≤ l and as such Γpl−1 will require guards for

all of these markers and their associated guards.

Now if the marker npk is moved then so will all Γql such that p |P q and Mk + p ≤ l. In

addition, all incomparability markers nqk′ such that:

1. k < k′ in the case that p |P q and q < p in the ordering of the naturals or

2. k ≤ k′ in the case that p |P q and p < q in the ordering of the naturals

34

will be moved. Similar to the case with the domination markers, these movements are done

to keep the number of possible entrants of Aq that are less than npk bounded and as such,

keep the number of guards of npk bounded. Now the only entrants of the set Aq, where

p |P q, that are less than npk will be the markers nqk′ and Γql such that l < Mk + p and

k′ ≤ k in the case that q < p or k′ < k in the case that p < q. Thus, npk requires guards

for these markers and their associated guards. Notice that the incomparability marker npk
can only move due to the convergence of a partial computable function on a domination

marker of higher priority as outlined in the paragraph above. That said, the movement of

any marker in this procedure is, ultimately, due to the convergence of a partial computable

function on a domination marker.

Note that the order amongst the markers being moved is maintained. That is, if Γql′ is

moved then it will be maintained that Γql′ < Γql′+1. Additionally, if q |P r and r < q then if

nrk and nqk are both moved then the markers will be moved so that nrk < nqk continues to hold.

Further, it will be maintained that nqk < nqk+1. Lastly, it will be maintained that npk < Γql
if p |P q and Mk + p ≤ l. Again, note that when a marker is greater than another marker

it is implied that all of its guards are greater than the marker as well. These relationships

must be maintained so that we may compute exactly which possible entrants are less than

a given marker. Indeed, by maintaining these relationships, the possible entrants that a

marker requires guards to account for will precisely be the entrants of higher priority.

With the priority of the possible entrants decided we may now begin the process of

defining the computable functions h(p, l) and g(p, k) that, respectively, bound the number

of times that the domination markers, Γpl , and incomparability markers, npk, can move.

We first define the computable functions ηh(p, l) and ηg(p, k) that give the indices of the

domination markers that can move Γpl and npk respectively. That is, ηh(p, l) gives the

indices, (q, k), of the domination markers such that the convergence of a partial computable

function ψj, j ≤ k, on Γqk results in Γpl moving. Similarly, ηg(p, k) gives the indices of the

domination markers that can potentially move the marker npk. With the knowledge of

which markers can move each other we show that each time a marker has to move, it only

moves a finite distance. From this we have that it is worthwhile to show that each marker

only moves finitely many times which ultimately gives that each marker eventually settles.

Recall from the explanation of the interaction of the markers that for a given marker

Γpl , the markers Γql′ such that q >P p and l′ ≤ l and the markers nrk such that r |P p and

Mk + r ≤ l can move it. Further recall that the incomparability markers do not move of

35

their own accord. That is, a marker, nrk, ultimately only moves due to the convergence of

some partial computable function on some domination marker. The function ηh(p, l) gives

the indices of the domination markers that have the potential to move Γpl whether it be

directly or indirectly.

Now consider the incomparability marker nqk. From our priority, nqk can be directly

moved by markers of the form Γpl where p >P q and l < Mk+ q and the markers nrk′ where

r |P q and k′ < k if q < r or k′ ≤ k if r < q. Again, the incomparability markers ultimately

only move due to the convergence of a partial computable function on a domination marker.

That all said, ηg(q, k) is the collection of the indices of the domination markers that can

directly or indirectly move nqk.

Notice that as Γpl can be moved by the incomparability markers nqk such that q |P p

and Mk + q ≤ l, the function ηh will be recursive in ηg since it must take into account all

the possible domination markers that move such nqk. Likewise, since the incomparability

markers can move each other, the function ηg will be recursive in itself.

Define the functions ηh and ηg as:

ηh(p, l) = {(q, l′) : (p <P q) ∧ (l′ ≤ l)} ∪
⋃
r |P p

and Mk+r≤l

ηg(r, k)

and

ηg(p, k) = {(q, l) : (l < Mk + p) ∧ (p <P q)} ∪
⋃
r |P p

and k′<k

ηg(r, k
′) ∪

⋃
r |P p
and r<p

ηg(r, k)

An explanation of the definitions of the functions is now given and then we will proceed

to show that the sets of indices given by these functions are computable and finite. First

consider the definition of the function ηh(p, l). The first set in the union gives the indices

of the domination markers that can directly move the marker Γpl . That is, it gives the

indices (q, l′) of all the domination markers, Γql′ such that q >P p and l′ ≤ l. Recall that

the convergence of a partial computable function ψj on Γql′ such that q >P p, j ≤ l′, and

l′ ≤ l results in Γpl moving. The union ⋃
r |P p

and Mk+r≤l

ηg(r, k)

36

in the definition of ηh(p, l) collects the indices of the domination markers that can move

the incomparability markers nrk that can move Γpl . Recall that the markers of the form nrk
such that r |P p and Mk + r ≤ l are of higher priority than Γpl and as such, can move Γpl .

As we will show, ηg(r, k) gives the indices of the domination markers that can move the

marker nrk and thus, gives the indices of the domination markers that can indirectly move

Γpl by moving nrk.

Essentially, ηh(p, l) gives the indices of the domination markers that can directly move

Γpl and the indices of the domination markers that can move the incomparability markers

that can directly move Γpl . Now if Γql′ moves Γpl it can only do so directly or by ultimately

moving an incomparability marker that directly moves Γpl and as such ηh(p, l) will give the

indices of all the domination markers that can move Γpl .

Now consider the definition of the function ηg(p, k). The first set in the union gives the

indices of the domination markers that can directly move the incomparability marker npk.

Indeed, the convergence of a partial computable function ψj on a domination marker, Γql
such that j ≤ l < Mk + p and q >P p results in npk moving. Now notice that if r |P p and

k′ < k then when nrk′ moves so will npk. The union⋃
r |P p

and k′<k

ηg(r, k
′)

gives the indices of the domination markers that can move these incomparability markers.

That is, it gives the indices of the domination markers that can indirectly move npk through

moving the previously mentioned nrk′ . Now in the case that r < p in the usual ordering

and r |P p the marker nrk can move npk. That said, the union⋃
r |P p
and r<p

ηg(r, k)

gives the indices of the domination markers that can indirectly move npk through such nrk.

So then ηg(p, k) gives the indices of the domination markers that can either directly move

npk or can ultimately move an incomparability marker that can directly move npk. We now

inductively show that ηh(p, l) and ηg(p, k) are computable and give finite sets.

Lemma 4.10. The functions ηh(p, l) and ηg(p, k) are computable and give finite sets.

37

Proof. Consider the marker Γp0. From our priority we have that Γp0 can only be moved by

the convergence of the partial computable function ψ0 on a marker Γq0 such that q >P p.

Now as the partial order P is finite, the set {(q, 0) : p <P q} will be finite and as such

ηh(p, 0) is finite. Moving on, consider the incomparability marker n1
0. It is the case that

n1
0 only moves due to the convergence of ψ0 on some Γp0 such that p >P 1 and as such,

ηg(1, 0) = {(p, 0) : p >P 1}.

Thus, we have that ηg(1, 0) is computable and gives a finite set.

Continuing inductively, consider ηh(p, l) and ηg(q, k) such that Mk+q = l+1. Suppose

that ηh(p
′, l′) and ηg(r, k

′) have been computed and are finite for p′ ∈ P , l′ < l, and

Mk′ + r ≤ l. The marker Γpl can only directly be moved by markers of the form Γql′ and

nrk′ where q >P p, p |P r, l′ ≤ l, and Mk′ + r ≤ l. We have that the set of indices of these

Γql′ is finite as q ∈ P and l′ ≤ l. From our induction hypothesis ηg(r, k
′) is computable and

finite and as such, the union ⋃
r |P p

and Mk′+r≤l

ηg(r, k
′)

is finite and computable. Thus, ηh(p, l) gives the finite set of all the indices of the domi-

nation markers that can move Γpl .

Moving on, consider ηg(q, k). The marker nqk can be directly moved by markers of the

following forms:

1. Γpl′ such that p >P q and l′ < Mk + q

2. nrk′ such that r |P q and k′ < k

3. nrk such that r |P q and r < q.

The set of indices of the domination markers of the form Γpl′ , that can directly move nqk, is

finite since P is finite and l′ < Mk+ q. From our induction hypothesis, ηg(r, k
′) computes

a finite set since Mk′ + r < Mk + q = l + 1. Along the same line, we have that ηg(r, k)

computes a finite set since Mk + r < Mk + q = l + 1. So then the unions,⋃
r |P p

and k′<k

ηg(r, k
′) and

⋃
r |P q
and r<q

ηg(r, k)

38

are finite. Now any domination marker that can move nqk does so either directly or indirectly

by ultimately moving a marker of the form (2) or (3) from above. That being the case, if

a domination marker can move nqk, its index will be in the set

{(p, l) : (l < Mk + q) ∧ (q <P p)} ∪
⋃
r |P q

and k′<k

ηg(r, k
′) ∪

⋃
r |P q
and r<q

ηg(r, k).

In particular, the index of such a marker will be in the finite set given by ηg(q, k). Thus,

we have shown that the functions ηh(p, l) and ηg(q, k) are computable and give finite sets

consisting of the indices of the domination markers that can respectively move the markers

Γpl and nqk.

Now that we have determined that a given marker can be moved by only finitely many

domination markers we now proceed to show that each time a marker does move, it only

moves finitely much. First consider the markers of the form Γp0. Now if ψ0 converges at

stage s on some Γq0 such that q >P p then Γp0 will be moved such that its least guard will

be greater than s. Recall from the explanation on the priority and ordering of the markers

on page 34 that Γp0 only has to be greater than s. That is, there are not any markers that

have to be less than Γp0 aside from Γq0 which will not have to move and is less than s. That

said, whenever any marker of the form Γp0 moves, it only moves a finite amount.

Moving on, consider the incomparability marker n1
0. Similar to the case with the marker

Γp0, if n1
0 is forced to move due to the convergence of the partial computable function ψ0

on some marker Γq0 such that q >P 1 at stage s, it will only have to move so that its least

guard will be greater than s. Again the priority and ordering of the markers does not

require any markers to be less than n1
0 when it is moved other than Γq0, which will not have

to move and will be less than s.

Continuing inductively, consider the markers Γpl and nqk such that Mk + q = l + 1.

Suppose that for all Γpl′ where p ∈ P and l′ < l that if a partial computable function ψj

converges on some Γrm such that (r,m) ∈ ηh(p, l′) and j ≤ m then Γpl′ only moves a finite

distance. Further, suppose for all nrk′ where Mk′ + r ≤ l that if a partial computable

function ψj converges on some Γr
′
m such that (r′,m) ∈ ηg(r, k′) and j ≤ m then nrk′ only

has to move a finite amount.

First we show that whenever the marker Γpl does move, it only moves a finite distance.

If Γpl has to move it will be due to the convergence of a partial computable function ψj at

39

some stage s on a Γq
′

l′ such that j ≤ l′ and (q′, l′) ∈ ηh(p, l). Now from the ordering and

priority of the markers, Γpl moves to be greater than s, any markers Γpm where m < l that

are moved, and any markers nrk′ where r |P p and Mk′ + r ≤ l that are moved. From our

induction hypothesis these markers only move a finite distance and so, Γpl only has to move

a finite amount. Now if there is a convergence of a partial computable function at stage s

on a marker Γp
′

l such that p′ >P p, Γpl will only have to move to be greater than s since

there are not any markers that are moved that have to be less than Γpl . Thus, whenever

the marker Γpl has to move, it only moves a finite distance.

Now consider the marker nqk. From our priority if the marker Γpl′ has the ability to move

nqk then l′ < Mk + q = l + 1. If l′ < l and ψj converges on Γpl′ such that j ≤ l′ at stage s

then from the priority and ordering of the markers nqk will have to be moved to be greater

than:

1. The number s

2. Any marker of the form nrk′ , where r |P q and Mk′ + r < Mk + q, that also has to

move

3. Any marker of the form nqk′ , where k′ < k, that also has to move.

Notice that nqk only has to be moved to be greater than s and a finite number of markers

which, from our induction hypothesis, only have to move a finite amount. That is, nqk only

has to move a finite distance. Now consider the case where ψj converges at stage s on a Γpl
such that j ≤ l and p >P q. In this situation nqk only has to be moved to be greater than

s as there are no markers that are moved that have to be less than nqk. Thus, nqk will only

ever have to move a finite distance.

Now that we have completely determined that only a finite a number of markers can

move a given marker and that any such movement is finite we go on to show that these

markers only move a finite number of times. This gives that all of our markers will eventu-

ally settle. We finally define the computable functions h(p, l) and g(p, k) that, respectively,

bound the number of times that the domination markers, Γpl , and incomparability markers,

nqs, will move to be:

h(p, l) =
∑

(q,k)∈ηh(p,l)

[(h(q, k) + 1)(k + 1)]

40

and

g(p, k) =
∑

(q,l)∈ηg(p,k)

[(h(q, l) + 1)(l + 1)].

First consider the function h(p, l). We have that ηh(p, l) is the collection of all indices

(q, k) such that Γqk has the ability to move the marker Γpl . Indeed, the convergence of some

partial computable function ψj on such a marker Γqk where j ≤ k results in Γpl moving.

That said, given such a Γqk, we only consider (k + 1)-many partial computable functions

and Γqk can only move h(q, k)-many times. Hence, this convergence can only occur at most

((h(q, k) + 1)(k + 1))-many times.

Continuing, consider the function g(p, k). The function ηg(p, k) gives the collection of

all indices (q, l) such that the convergence of some partial computable function ψj on Γql
where j ≤ l can move the marker npk. From an argument similar to the one in the previous

paragraph we have that this can occur at most ((h(q, l) + 1)(l + 1))-many times.

We now show that h(p, l) and g(p, k) are both computable and finite. First recall that

if the partial computable function ψj converges on the marker Γpl where j ≤ l then the

markers that will be moved are

1. Γql′ such that p >P q and l ≤ l′

2. nrk such that p >P r and l < Mk + r.

Notice that none of the incomparability guards, nrk, that move have the priority to move

Γpl since l < Mk+ r. Now as the partial ordering P is a strict partial ordering and p >P q,

it cannot be the case that q >P p. That said, the convergence of a partial computable

function on the marker Γql does not result in Γpl moving. So then the convergence of a partial

computable function on Γpl does not ultimately result in Γpl moving. We now inductively

show that any given marker can move only finitely many times. That is, we show that

h(p, l) and g(p, k) are finite.

Lemma 4.11. The functions h(p, l) and g(p, k) are finite.

Proof. If p is a maximal element with regards to the ordering <P then Γp0 never moves

and as such, h(p, 0) = 0. With the movements determined for the maximal elements, we

41

may inductively determine h(p, 0) for all p ∈ P since Γp0 can only be moved due to the

convergence of the partial computable function, ψ0, on a Γq0 such that q >P p. Then having

determined h(p, 0) for all p ∈ P we can compute g(1, 0) since the marker n1
0 can only be

moved by the convergence of ψ0 on a Γp0 such that p >P 1.

Continuing inductively, consider h(p, l) and suppose that h(q, k) has been determined

for all q ∈ P and k < l. With such h(q, k) determined we can compute h(p, l) for all

maximal p since Γpl can only be moved by markers of the form nqk′ such that q |P p and

Mk′ + q ≤ l. These nqk′ , in turn, can, ultimately, only be moved by the convergence of

some partial computable function on a marker Γrl′ such that l′ < Mk′+q (and hence l′ < l)

and either r >P q or there is some p′ where r >P p
′ and p′ |P q (this is the case where Γrl′

has the ability to indirectly move nqk′). Regardless of the situation, any movement of Γpl
is, ultimately, due the convergence of a partial computable function on some Γqk such that

k < l and by our assumption we have bounded the number of times Γqk can move and so we

may determine h(p, l). Again, with the number of movements determined for the maximal

elements we can inductively determine h(p, l) for all p ∈ P .

Now consider g(q, k) and suppose we have determined h(p, l) for all p ∈ P and l <

Mk + q. From our discussion on the priority of the markers and their interaction, it is

the case that nqk, essentially, is only moved due to the convergence of a partial computable

function on some Γpl such that l < Mk+ q. From our assumption, we have determined the

number of times these markers can move and thus we can, in turn, compute g(q, k).

From the arguments above we can inductively compute h(p, l) and g(q, k) for all p, q ∈ P
and k, l ∈ ω. Thus, any given marker can only move finitely many times and as such, will

eventually settle.

Since we have decided the priority of the markers and have defined functions that bound

the number of times they may move, we can now define the computable functions counting

the number of guards the markers will require. If we can determine the number of guards

that a marker requires we will be able to assign the correct number of guards to our markers

at the start of our procedure and place the markers such that there will be room for their

guards. Additionally, we must guarantee that any given marker will only require a finite

number of guards to ensure that this process will be successful. The function α(p, l) counts

the number of guards needed for the domination markers, Γpl , while the function β(p, k)

counts the number of guards needed for the incomparability markers, npk. First declare

42

that α(p, l) = 0 if there is no element q ∈ P such that p >P q. Additionally, we have that

β(p, k) = 0 if there is no q ∈ P such that p |P q.

α(p, l) =
∑

Mk+q≤l+1,
and q<P p

[(β(q, k) + 1)(l + 2)2(g(q, k) + 1)] +
∑
k≤l,

and q<P p

[(α(q, k) + 1)(l + 2)2(h(q, k) + 1)]

+ (h(p, l + 1) + 1)(l + 2)2

and

β(q, k) =
∑

l<Mk+q,
and p |P q

[α(p, l)(h(p, l) + 1)] +
∑

Mk′+p<Mk+q,
and p |P q

β(p, k′)

First consider the definition of the function α(p, l). Following the plan outlined earlier,

if q <P p and ψj(Γ
p
l+1) ↓ at some stage s for some ψj such that j ≤ l + 1 then when

ϕi(t) ↓ where i ≤ l + 1 and t denotes a stage where an element less than or equal to s

enters Aq, a Γpl guard is enumerated into Ap. The first sum in the definition of α(p, l)

counts the number of guards needed to account for the possible entrants of Aq (such that

p >P q) due to Aq’s incomparability markers and their associated guards of higher priority

than Γpl+1. Indeed, (β(q, k) + 1) accounts for such an nqk and its guards, (l + 2)2 accounts

for the convergence of the partial computable functions ϕi and ψj such that i, j ≤ l + 1,

and (g(q, k) + 1) accounts for the number of times nqk may move. Similarly, the second

sum in the definition of α(p, l) counts the number of guards needed to account for the

possible entrants of Aq due to Aq’s domination markers of higher priority than Γpl+1 and

their associated guards. Lastly, the expression (h(p, l+ 1) + 1)(l+ 2d)2 counts the number

of guards needed to guarantee domination even if Aq has no possible entrants less than

ψj(Γ
p
l+1) where j ≤ l+1. That is, if ψj(Γ

p
l+1) converges at a stage s then at the stage when

ϕi(s), where i ≤ l + 1, converges there will be a guard enumerated into Ap.

Now consider the definition of the function β(q, k). The commitment has been made

that after the incomparability marker nqk has been enumerated into Aq, any element less

than nqk that enters an Ap such that p |P q results in an nqk guard entering Aq. That being

the case, the sum ∑
l<Mk+q,
and p |P q

[α(p, l)(h(p, l) + 1)]

43

counts the number of guards required due to the domination markers of higher priority

in Aq and their associated guards. Additionally, as the incomparability markers npk′ have

priority over nqk for Mk′ + p < Mk + q the sum∑
Mk′+p<Mk+q,

and p |P q

β(p, k′)

counts the guards needed to account for the entrants due to these markers. We now show

that these functions are finite and in doing so, show that any given marker only requires a

finite number of guards.

Lemma 4.12. The functions α(p, l) and β(q, k) are finite.

Proof. If p is a minimal element then Ap will not need to strong settling time dominate

another set. That being the case, Γp0 does not require guards which gives that α(p, 0) = 0.

Let q be such that q ≯P 1. With α(p, 0) determined for all minimal p we can inductively

compute α(q, 0) since Γq0 only requires guards for the Γr0 such that q >P r. Note that

since q ≯P 1 and q >P r, it is the case that r ≯P 1. Now consider β(1, 0). Since we

have determined α(q, 0) for all q such that q ≯P 1 we know the number of guards that n1
0

requires. Indeed, n1
0 only requires guards for those Γq0 such that q |P 1 and we know α(q, 0)

for all q ≯P 1 and hence for all q such that q |P 1. Thus, we may compute β(1, 0). With

this determined, we can go on to compute α(p, 0) for the remaining p ∈ P .

Continuing inductively, consider α(p, l) and β(q, k) where Mk + q = l+ 1 and suppose

that we have determined α(p′, l′) and β(q′, k′) for all p′ ∈ P , l′ < l, and Mk′+ q′ ≤ l. Now

if p is a minimal element then α(p, l) = 0. Suppose p is such that p ≯P q. Since p ≯P q,

Ap does not need to dominate Aq and as such, Γpl does not require guards to account for

the entrants of Aq. However, Γpl will require guards for the entrants due to the markers

Γq
′

k′ such that p >P q
′ and k′ < k, the number of which we have determined. Additionally,

for such a p, Γpl will also require guards for the entrants due to the markers nq
′

k′ such that

p >P q
′ and Mk′ + q′ ≤ l, again, the number of which we have determined by assumption.

Lastly, such a Γpl will also require guards for the entrants due to the Γq
′

l where p >P q′.

Now if p >P q
′ and p ≯P q then we must have that q′ ≯P q as well. Consider the minimal

q′ such that p >P q
′. As mentioned, since q′ is minimal we get that α(q′, l) = 0 and from

this we can inductively determine α(r, l) for all r ∈ P such that r >P q
′ and r ≯P q.

44

Having computed α(r, l) for all r ≯P q, we may determine β(q, k). Indeed, nqk requires

guards for the entrants due to the markers of the form Γp
′

l′ such that p′ |P q (and hence

p′ ≯P q) and l′ < Mk+ q = l+ 1, the number of which has been determined. Additionally,

nqk requires guards for the entrants due to the markers of the form np
′

k′ where p′ |P q and

Mk′+ p′ < Mk+ q = l+ 1, the number of which has also been determined by assumption.

With β(q, k) determined we can compute α(p, l) for the remaining p ∈ P since we have

now counted all of the entrants the guards of Γpl will have to account for. Essentially, we

have shown that every marker only needs guards to account for the possible entrants due

to a finite number of markers which, themselves, only have a finite number of guards and

as such, every marker only requires a finite number of guards.

With the number of guards for each marker determined we proceed to the actual con-

struction of the c.e. sets A1, A2, . . . , and AM .

Construction:

Stage 0: Spread out the markers such that there is enough room for the guards as

counted by the functions α(p, l) and β(q, k).

Stage s+1: If ψj(Γ
p
l+1[s]) ↓ for some j ≤ l+1 declare that (p, l, j) has received attention.

Additionally, for all q <P p move the Γql′ such that l+1 ≤ l′ and all nqk such that l < Mk+q

to be greater than s+ 1.

Let a denote the number of previous stages such that (p, l, j) has received attention.

Note that a ≤ h(p, l + 1) since h(p, l + 1) bounds the number of times Γpl+1 moves and

hence the number of times ψj(Γ
p
l+1) can converge. Declare that [i, j, a]pl [t] enters Ap at the

stage t when ϕi(s+ 1) ↓ where i ≤ l + 1.

Now from previous counting there are at most∑
Mk+q≤l+1,
and q<P p

[(β(q, k) + 1)(g(q, k) + 1)] +
∑
k<l+1,
and q<P p

[(α(q, k) + 1)(h(q, k) + 1)]

many possible entrants of higher priority in the sets of the form Aq such that p >P q that

are not moved upon the convergence of ψj(Γ
p
l+1).

Let s1, s2, . . . , sU denote the stages greater than s + 1 such that an incomparability

marker or guard less than or equal to s+ 1 enters an Aq such that p >P q. Note that

45

U ≤
∑

Mk+q≤l+1,
and q<P p

[(β(q, k) + 1)(g(q, k) + 1)].

Declare that at the stage t when ϕi(su) ↓ where i ≤ l + 1 and 1 ≤ u ≤ U , the Γpl guard

[i, j, h(p, l + 1) + u]pl [t]

is enumerated into Ap.

Let t1, t2, . . . , tV denote the stages greater than s + 1 such that a Γqk guard less than

or equal to s+ 1 enters an Aq such that p >P q. Note that

V ≤
∑
k<l+1,
and q<P p

[(α(q, k) + 1)(h(q, k) + 1)].

Declare that at the stage t when ϕi(tv) ↓ where i ≤ l + 1 and 1 ≤ v ≤ V , that the guard

[i, j, h(p, l + 1) +
∑

Mk+q≤l+1,
and q<P p

[(β(q, k) + 1)(g(q, k) + 1)] + v]pl [t]

is enumerated into Ap. Notice that α(p, l), indeed, gives the number of guards required by

this process.

Now consider the element p such that p ≡ (s + 1)(mod M). Enumerate into Ap the

marker npk such that s+1 = Mk+p. Make the commitment that from here on in whenever

a number less than or equal to npk enters an Aq such that p |P q, an npk guard will enter Ap.

Now from previous counting there are at most∑
l<Mk+p,
and p |P q

[α(q, l)(h(q, l) + 1)] +
∑

Mk′+p<Mk+q,
and p |P q

β(p, k′)

many possible entrants of the sets, Aq, where p |P q, that are less than or equal to npk.

Declare that at the stage when the nth such possible entrant enters one of these Aq, the

nth guard of npk enters Ap.

This concludes the construction process.

Lemma 4.13. The Rp |P q are satisfied.

46

Proof. If p |P q then at every stage s where q ≡ s (mod M), an nqk is placed in Aq such

that s = Mk+ q with the commitment that whenever a number less than nqk enters Ap an

nqk guard enters Aq. Similarly at every stage t such that p ≡ t (mod M), an npj is placed in

Ap such that t = Mj+p with the commitment that whenever a number less than npj enters

Aq an npj guard enters Ap. Now, as we have defined a computable function g bounding

the number of times nqk and npj may move, these incomparability markers eventually settle.

That said, it is the case that mAq(nqk) ≥ mAp(nqk) for all nqk that have settled where k ∈ ω.

Additionally, we have that mAp(npj) ≥ mAq(npj) for all npj that have settled where j ∈ ω.

Thus, we have that (∃∞x)[mAq(x) ≥ mAp(x)] and (∃∞x)[mAp(x) ≥ mAq(x)] as well, giving

that Ap ≯sst Aq and Aq ≯sst Ap. Hence, Ap |sst Aq as desired.

Lemma 4.14. The Rp>P q are satisfied.

Proof. Suppose p >P q and ϕi and ψj are total. It suffices to show that for all but finitely

many x that whenever a y ≤ ψj(x) is enumerated into Aq at some stage s then some

number less than or equal to x is enumerated into Ap at some later stage t ≥ ϕi(s). Let x

be such that Γpl ≤ x ≤ Γpl+1 for some l+ 1 ≥ i, j where Γpl and Γpl+1 have settled. Note that

as we had previously defined a computable function h bounding the number of times the

domination markers move, we, indeed, have such settled markers, Γpl and Γpl+1. Now from

our construction process at stage s when ψj(Γ
p
l+1) ↓ there are Γpl guards assigned with the

commitment of entering Ap at the stage when ϕi(t) ↓ where t denotes a stage greater than

s such that some entrant less than ψj(Γ
p
l+1) enters Aq. That said, whenever a y ≤ ψj(x)

is enumerated into Aq at some stage t, a Γpl guard will enter Ap at the stage when ϕi(t) ↓
since y ≤ ψj(x) ≤ ψ(Γpl+1). This is as what we desire since any Γpl guard is less than Γpl
and hence less than x. Additionally, there are guards assigned to enter Ap even if there

are no numbers less than ψj(Γ
p
l+1) later enumerated into Aq. Thus, we have Ap >sst Aq.

The previous lemmas give that A1, A2, . . . , and AM are as desired.

Notice that the proof above greatly depends on the partial ordering being finite. Indeed,

as the partial order is finite there can only be a finite number of incomparable elements and

47

as such we are essentially able to take turns in performing the actions necessary to preserve

the incomparability of each element. That is, at any given stage in the construction process

we are only acting to preserve the incomparability p |P q for a fixed element, p, by making

the appropriate commitments regarding some marker npk. Since the partial order is finite

we are able to do things in such a particular order and can still be assured that every

incomparability in the partial ordering is eventually be accounted for.

Similarly, for any given p ∈ P , p can only be in finitely many <P chains, all of which

would be of finite length. The procedure above leans quite heavily on this fact to guarantee

that a marker is not moved infinitely many times and only requires finitely many guards.

Indeed, the marker Γpl requires guards to account for the possible entrants due to the

markers Γql′ such that l′ ≤ l and p >P q and there will only be a finite number of these

markers. Additionally, the marker Γpl requires guards to account for the possible entrants

due to markers of the form nqk such that p >P q and Mk + q ≤ l + 1 and since there are

only finitely many such markers, Γpl only requires finitely many guards for the sake of these

incomparability markers.

Along a similar line, as there are only finitely many elements in the ordering P there are

only finitely many markers that can move a given marker Γpl and as seen in the procedure,

each movement is finite and only occurs finitely many times. The use of this fact is most

apparent in the definition of our functions h, g, α, and β bounding the number of move-

ments and the number of guards of the domination and incomparability markers. Since

our ordering is finite, we can guarantee the existence of maximal and minimal elements.

Indeed, we know that there are finitely many. This fact, essentially, provides us with a

starting point to build our functions. As can be seen in the inductive definition of the

function h, a maximal element is needed in the base case from which we could go on to

define h on the other markers. Similarly, in the inductive definition of the function α, we

appeal to the existence of minimal elements to establish a base case to grow from. Now

in the setting of an infinite partial ordering, we can no longer guarantee the existence of

minimal or maximal elements and as such, there is no obvious starting point from where

we can start building our functions and hence our c.e. sets.

The explanation above provides one of several difficulties that comes along with trying

to embed a countably infinite partial ordering into Esst. Some of these issues are the result

of not being able to maintain such a rigid control of where the markers are placed with

regards to each other and how they interact. Indeed, we are no longer able to take turns

48

with the incomparability markers as is done in the finite case but at the same time we

still must ensure that the appropriate actions are eventually performed for these markers.

In addition to this, one must be cautious in deciding the interaction of the markers since

the domination and incomparability markers play off one another which may result in

a marker requiring infinitely many guards or never settling. For example, consider the

situation where there are markers arranged such that Γpl < nqk < nrk < Γpl+1 where p >P r,

r |P q, and p |P q. Now if we were to assign guards to Γpl to account for the entrants due

to nrk as is done in the finite case then there would end up being a loop where Γpl would

require infinitely many guards. Indeed, there would be the situation where Γpl would require

guards for nrk which would require guards for nqk and in turn, nqk would require guards for

Γpl . Essentially, Γpl would require guards to account for its own guards. Furthermore, since

the domination markers can cause the incomparability markers to move and vice versa,

one must take caution to ensure that the markers all eventually settle. In particular, we do

not want the situation where the movements caused by a marker force the marker, itself,

to move.

To embed a countably infinite partial ordering one cannot be as particular as in the

proof of Theorem 4.9, the success of which relies quite heavily on the partial order being

finite, but at the same time avoid some of the pitfalls noted above. Nevertheless, there

has been no indication that such embeddings cannot be possible. Indeed, the fact that

any finite partial ordering and the linear orderings from Theorem 4.8 can be embedded

into Esst support the possibility of generalizing Theorem 4.9 to the countably infinite case.

That said, we close this thesis with the following conjecture.

Conjecture 4.15. Any countable partial order can be embedded into Esst.

49

Bibliography

[1] Barry S. Cooper. Computability Theory. CRC Press, Inc., Boca Raton, FL, USA, 2002.

[2] Barbara F. Csima. The settling time reducibility ordering and ∆0
2 sets. J. Logic

Comput., 19(1):145–150, 2009.

[3] Barbara F. Csima and Richard A. Shore. The settling-time reducibility ordering. J.

Symbolic Logic, 72(3):1055–1071, 2007.

[4] Barbara F. Csima and Robert I. Soare. Computability results used in differential

geometry. J. Symbolic Logic, 71(4):1394–1410, 2006.

[5] Alexander Nabutovsky and Shmuel Weinberger. The fractal nature of Riem/Diff. I.

Geom. Dedicata, 101:1–54, 2003.

[6] Robert I. Soare. Recursively enumerable sets and degrees. Springer-Verlag New York,

Inc., New York, NY, USA, 1987.

50

