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Abstract

Autoignition of high pressure methane jets at engine relveant conditions within a shock tube

is investigated using Conditional Moment Closure (CMC). The impact of two commonly

used approximations applied in previous work is examined, the assumption of homogeneous

turbulence in the closure of the micro-mixing term and the assumption of negligible radial

variation of terms within the CMC equations. In the present work two formulations of

an inhomogeneous mixing model are implemented, both utilizing the β-PDF, but differing

in the respective conditional velocity closure that is applied. The common linear model

for conditional velocity is considered, in addition to the gradient diffusion model. The

validity of cross-stream averaging the CMC equations is examined by comparing results

from two-dimensional (axial and radial) solution of the CMC equations with cross-stream

averaged results.

The CMC equations are presented and all terms requiring closure are discussed. So-

lution of the CMC equations is decoupled from the flow field solution using the frozen

mixing assumption. Detailed chemical kinetics are implemented. The CMC equations are

discretized using finite differences and solved using a fractional step method. To maintain

consistency between the mixing model and the mixture fraction variance equation, the

scalar dissipation rate from both implementations of the inhomogeneous model are scaled.

The autoignition results for five air temperatures are compared with results obtained using

homogeneous mixing models and experimental data.

The gradient diffusion conditional velocity model is shown to produce diverging be-

haviour in low probability regions. The corresponding profiles of conditional scalar dis-

sipation rate are negatively impacted with the use of the gradient model, as unphysical

behaviour at lean mixtures within the core of the fuel jet is observed. The predictions of

ignition delay and location from the Inhomogeneous-Linear model are very close to the

homogeneous mixing model results. The Inhomogeneous-Gradient model yields longer ig-

nition delays and ignition locations further downstream. This is influenced by the higher

scalar dissipation rates at lean mixtures resulting from the divergent behaviour of the

gradient conditional velocity model. The ignition delays obtained by solving the CMC

equations in two dimensions are in excellent agreement with the cross-stream averaged

values, but the ignition locations are predicted closer to the injector.
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Chapter 1

Introduction

1.1 Overview

Turbulent combustion performs a vital role in many engineering applications including

transportation, energy generation, and industrial processes. In 2008 the combustion of

fossil fuels accounted for approximately 84% of the energy used in the United States [1].

Emissions of smog-forming pollutants, particulate matter, and greenhouse gases are of

growing concern, and strict environmental regulations are being introduced to motivate

the design of increasingly efficient combustion devices. The subsequent demand for low

cost and low emission fuels has fostered interest in use of natural gas, as it offers the ben-

efits of lower emissions compared to more common fuels and widespread availability.

Transportation accounts for 25% of greenhouse gas (GHG) emissions in Canada [2].

Emissions in this sector have increased 37%, including a 94% increase in GHG emissions

from heavy-duty diesel engines, from 1990 to 2007 [3]. Diesel engines, which use the heat

of compression rather than a spark plug to ignite the mixture of fuel and air, accounted for

over 28% of the total emissions nitrogen oxides (NOx) across Canada in 2007 [3]. Unlike

spark-ignition engines, ignition within compression-ignition engines occurs before the fuel

and oxidizer are fully mixed [4]. Once autoignition occurs combustion proceeds as the fuel

and oxidizer continue to mix. Thus, the interactions of chemistry and turbulent mixing,

along with the essential process of autoignition, play an enormous role in the overall effi-

ciency and formation of pollutants in these devices.

The development of computational models to aid in the design of increasingly efficient
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combustion devices requires accurate representation of the complex interactions between

chemistry and turbulence. In the operation of compression-ignition engines the process of

autoignition, in which the fuel and oxidizer react in a self-heating fashion, is extremely

important, and accurate prediction of this phenomenon is paramount for successful ap-

plication of turbulent combustion models in these devices. Modelling of the autoignition

process requires a good understanding of the turbulent mixing of fuel and oxidizer, as well

as rigorous consideration of the complex non-linear chemical kinetics of the fuel. However,

a suitable balance of complexity and computational expense must be achieved for success-

ful widespread implementation of a turbulent combustion model in practical applications.

1.2 Objectives

In earlier work the autoignition behaviour of high pressure methane jets at engine relevant

conditions in a shock tube was investigated using the turbulent combustion model Condi-

tional Moment Closure (CMC). Commonly used approximations were applied in this work,

such as assuming homogeneous turbulence in the closure of the micro-mixing term within

the CMC equations, and solving a radially-averaged form of the CMC equations based

on the assumption of negligible radial variation of CMC terms. The autoignition predic-

tions were in reasonable agreement with experimental data, but some discrepancies at the

highest and lowest air temperatures were noted. For the engine relevant conditions being

examined the assumptions of homogeneous turbulence and negligible radial dependence

of the CMC equations could have a significant impact on the predictions of autoignition.

Thus, the objectives of this study are:

1. The derivation and implementation of a mixing model that is based upon inhomo-

geneous turbulence. Two formulations of this model, resulting from the use of two

different closures for the conditional velocity term, are examined. In the early stages

of mixing between a high pressure fuel jet and air the conditions are far from homo-

geneous, and the consideration of inhomogeneous turbulence is expected to improve

the accuracy of the predictions. In contrast to other CMC studies in which an inho-

mogeneous formulation of the turbulent mixing model has been applied, this study

examines autoignition processes in transient conditions.
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2. The derivation and implementation of two-dimensional (axial and radial) solution

of the CMC equations. Cross-stream averaging of the CMC equations was shown

to be valid for self-similar shear flows. In the current study the methane fuel jet is

developing, and thus self-similarity everywhere within jet would not be achieved.

3. Comparison of the predictions of ignition delay and location with experimental data

and overall assessment of the effect of the assumptions of homogeneous turbulence

and negligible radial variation within the CMC equations on the predictions of au-

toignition in CMC.

1.3 Outline

In Chapter 2 the shock tube experiments of methane autoignition, which serve as the basis

for the autoignition problem examined in this thesis, are described. The relevant governing

equations of the flow field and turbulence models are discussed. Concepts important to

the modelling of turbulent reacting flows, along with some examples of commonly used

turbulent combustion models, are presented.

The turbulent combustion modelling approach applied in this study, CMC, is discussed

in Chapter 3. The transport equations of conditional species mass fractions and enthalpy

are summarized, and the terms requiring closure are discussed. The relevant closures used

in this study are introduced. Previous studies that have investigated autoignition be-

haviour using CMC methods are outlined.

The inhomogeneous turbulence-based mixing models utilized within the CMC calcula-

tions, which form the focus of this study, are outlined in Chapter 4. These models provide

closure for an important term in the CMC equations. The two models used for closure of

the conditional velocity term within the inhomogeneous mixing model are described, along

with homogeneous turbulence-based models utilized in previous work.

Chapter 5 describes the computational method used in this study. The overall solution

methodology is summarized, and details are provided on the flow field simulations and

corresponding solution of the CMC equations. The assumptions and simplifications of this

study are discussed.

The performance of the two formulations of the inhomogeneous mixing model are as-

sessed in Chapter 6. Further, the behaviour of the two conditional velocity models used

3



within the inhomogeneous model is examined. The predictions of ignition delay and loca-

tion are compared with results using homogeneous mixing models and with experimental

data.

The use of cross-stream averaging in solving the CMC equations is examined in Chap-

ter 7, as ignition delay and location obtained in a preliminary two-dimensional solution of

the CMC equations are compared with previous results. The overall solution methodology

is outlined. Further, a two-dimensional temperature field obtained through integration of

previous cross-stream averaged temperature results is examined.

The findings of this study are summarized in Chapter 8 and conclusions are stated.
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Chapter 2

Background

In this chapter background information is presented on the autoignition problem that is

examined in this study. The experiments of Wu [5], which provide the basis of this study,

are outlined. The relevant governing equations are presented along with a brief description

of common turbulence models. Simulation of turbulent reacting flows is a very complex

problem, and thus multiple modelling approaches have been suggested. Concepts that are

important to non-premixed combustion are discussed, and a selection of common turbulent

combustion models are summarized.

2.1 Experiments

The shock tube autoignition experiments of Wu [5] provide the physical conditions for the

CMC simulations of methane autoignition in this study. The experiments were designed

to simulate engine-relevant temperature and pressure conditions without the complicat-

ing effects of complex geometry, external ignition sources, multiple fuel jets and unsteady

cylinder temperature and pressure. Thus, these simplifications make them suitable for

comparison with numerical work to study the autoignition behaviour of methane in engine-

relevant conditions.

The autoignition behaviour of pure methane and various methane fuel blends was in-

vestigated. In the present study, the measurements related to only pure methane are
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considered. The shock tube has a circular cross-section with an inner diameter of 0.58 m.

Its total length is 7.90 m, the driver and driven sections being 3.11 m and 4.79 m long,

respectively. An electronically controlled injector was used to inject the gaseous fuel into

the preheated and compressed air within the shock tube. A schematic of the experimental

setup is presented in Figure 2.1. The reflected shock technique was applied to preheat

and compress air into engine-relevant conditions just prior to injection of gaseous fuel.

Post-reflected shock pressure and temperature conditions were achieved before combus-

tion started. The temperature and pressure immediately behind the reflected shock were

determined by perfect gas behaviour. The uncertainty in the temperature and pressure

was found to be 1-2% and 3-4%, respectively. An injector with one central hole of 0.275

mm diameter was used to deliver the fuel at an injection pressure of 120 bar along the

centreline of the shock tube with an injection time of 1 ms. To provide optical access to

the experimental area, a stainless steel section equipped with three windows was attached

to the end of the driven section. A high-speed digital camera (31,000 frames per second)

was used to capture the location of the initial ignition kernel. The location of the ignition

kernel was identified by the appearance of a non-contiguous flame region that is able to

develop into a fully fledged jet flame. The corresponding ignition delay was defined as the

time elapsed from the start of the injection of the fuel to the appearance of the ignition

kernel. The experimental error was evaluated to be approximately between 0.073 ms and

0.106 ms for ignition delays and 2% for the normalized ignition location. The shock tube

test section was maintained at a pressure of approximately 30 bar, while the air tempera-

ture was varied between approximately 1200 and 1400 K in increments of approximately

50 K. The number of measurements in each data set, along with the corresponding average

temperatures used in the present CMC calculations, are given in Table 2.1.

Table 2.1: Experimental data groups

Number of data points Average Air Temperature (K)

4 1385

4 1337

20 1294

4 1238

5 1186
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Figure 2.1: Schematic of experimental shock tube set up. Reproduced from Wu [5].

2.2 Governing Equations

2.2.1 Navier Stokes Equations

The Navier Stokes equations are the set of governing equations of fluid mechanics. This

equation set includes the continuity equation, the conservation of linear momentum, and

the conservation of scalar quantities. The continuity equation requires mass to be con-

served, and is given by

∂ρ

∂t
+
∂(ρui)

∂xi

= 0. (2.1)

The conservation of linear momentum is given by

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj

= − ∂p

∂xi

+
∂τij
∂xj

+Bi, (2.2)

in which p is the static pressure, Bi represents body forces such as gravity, and τij is the

symmetric stress tensor, which is defined as

τij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
− µ

2

3
δij
∂uk

∂xk

, (2.3)
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where δij is Kronecker’s delta. For scalar quantities, such as species concentration, the

transport equation is of the form

∂(ρφ)

∂t
+
∂(ρuiφ)

∂xi

=
∂

∂xi

(
ρDφ

∂φ

∂xi

)
+ ω̇, (2.4)

in which Dφ is the diffusivity and ω̇ is the source term of the scalar φ. For scalar quantities

that are conserved the source term is equal to zero. For species concentrations, Yα, the

transport equation is expressed as

∂(ρYα)

∂t
+
∂(ρuiYα)

∂xi

=
∂

∂xi

(
ρDα

∂φ

∂xi

)
+ ω̇α α = 1, 2, · · ·, Nα. (2.5)

where Nα denotes the total number of species considered and ω̇α is the source term that

accounts for changes in species concentration due to chemical reactions.

2.2.2 Enthalpy

In a multicomponent flow the enthalpy is equal to the mass-weighted sum of the specific

enthalpies of species α

h =
Nα∑
α=1

Yαhα. (2.6)

For an ideal gas, the conditional enthalpy of each species can be calculated from the

temperature through the expression

hα = hα,ref +

∫ T

Tref

cp,α(T )dT, (2.7)

where cp,α is the specific heat capacity of species α at constant pressure. In Equation 2.6

hα,ref is a reference enthalpy that accounts for chemical bond energy within compounds,

while the second term on the right side represents the sensible enthalpy due to temperature.

The specific heat capacity of the mixture is given by a mass-weighed sum of the specific

heat capacities of the individual species.

cp =
Nα∑
α=1

Yαcp,α. (2.8)
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The enthalpy transport equation, with work performed by body forces neglected, is given

by

∂(ρh)

∂t
+
∂(ρuih)

∂xi

=
∂p

∂t
+
∂(uip)

∂xi

+
∂(uiτij)

∂xi

− ∂

∂xi

jq + q̇rad. (2.9)

The first term on the right hand side of Equation 2.9 is the local rate of change of pressure,

the second term represents the pressure work, and the third term is frictional heating. The

term q̇rad represents heat transfer due to radiation, and jq is the diffusive heat flux, given

by the expression

jq = −λ ∂T
∂xi

+
Nα∑
α=1

hαjα. (2.10)

In Equation 2.10 λ is the thermal conductivity and jα is the diffusive species flux repre-

sented as

jα = −ρDα
∂Yα

∂xi

. (2.11)

2.3 Averaging Techniques

The governing equations presented in Section 2.2 involve instantaneous values for quanti-

ties of interest, such as velocity, pressure, and concentrations. In a turbulent flow there

are significant fluctuations in these values, over a range of length and time scales. The

instantaneous quantities can be decomposed into an average and a fluctuation, which pro-

vides a modified form of the governing equations. Reynolds averaging is commonly used

in non-reacting flows, while Favre (or density-weighted) averaging is useful for turbulent

reacting flows.

2.3.1 Reynolds averaging

In a turbulent flow the quantities of interest can be decomposed such as

ψ(xi, t) = ψ(xi, t) + ψ′(xi, t), (2.12)
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where ψ denotes an average value, and ψ′ is the fluctuation about the average. Decompos-

ing the instantaneous quantities in the Navier Stokes equations and averaging the results

yields a set of equations called the Reynolds Averaged Navier Stokes (RANS) equations.

The continuity and momentum equations become

∂ρ

∂t
+
∂(ρui)

∂xi

= 0. (2.13)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj

= − ∂p

∂xi

+
∂τij
∂xj

− ∂(ρu′iu
′
j)

∂xj

+Bi (2.14)

in which density fluctuations have been neglected. The Reynolds averaging process yields

new terms involving correlations of velocity fluctuations, u′iu
′
j, which are termed Reynolds

stresses. Closure of the Reynolds stresses can be obtained using a number of turbulence

models. The scalar transport equation is treated similarly, which results in

∂(ρφ)

∂t
+
∂(ρuiφ)

∂xi

=
∂

∂xi

(
ρDφ

∂φ

∂xi

)
− ∂(ρu′iφ′)

∂xj

+ ω̇, (2.15)

In Equation 2.15 correlations of velocity and scalar fluctuations appear (φ′u′j). These terms

are referred to as turbulent scalar fluxes.

2.3.2 Favre averaging

Density fluctuations that are present in turbulent reacting flows present an added level of

complexity due to correlations that arise between fluctuations in density and fluctuations

in other variables. Fluctuations in temperature due to chemical reaction lead to signifi-

cant density fluctuations that cannot be neglected. The use of density-weighted, or Favre

averaging accounts for the density changes while providing a form of equations similar to

the RANS equations. Favre-averaged quantities are defined as

ψ̃(xi, t) ≡ ρψ(xi, t)

ρ
. (2.16)

The instantaneous quantities present in the governing equations can be decomposed in a

similar method to that used in Reynolds averaging. The instantaneous value is written as

the sum of a Favre-average and a fluctuation about the average

ψ(xi, t) = ψ̃(xi, t) + ψ′′(xi, t). (2.17)
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The Favre-averaged form of the governing equations are

∂ρ

∂t
+
∂(ρũi)

∂xi

= 0, (2.18)

∂(ρũi)

∂t
+
∂(ρũiũj)

∂xj

= − ∂p

∂xi

+
∂τij
∂xj

− ∂(ρũ′′i u
′′
j )

∂xj

+Bi, (2.19)

∂(ρφ̃)

∂t
+
∂(ρũiφ̃)

∂xi

=
∂

∂xi

(
ρDφ

∂φ̃

∂xi

)
− ∂(ρũ′′i φ′′)

∂xj

+ ω̇. (2.20)

2.4 Turbulence Models

Turbulence models in RANS simulations provide closure for the correlations of velocity

fluctuations, or Reynolds stresses, that appear in the averaged forms of the Navier Stokes

equations. Some of the most commonly used turbulence models, such as the k-ε model,

utilize an approximation called the turbulent viscosity hypothesis to provide closure. Al-

ternatively, transport equations for the Reynolds stresses can be solved directly, as in the

Reynolds Stress models. More detailed descriptions of turbulence are provided by Large

Eddy Simulation (LES) and Direct Numerical Simulation (DNS), which yield unsteady

predictions that resolve turbulent flow structures at the cost of increased computational

expense. LES does not used averaged equations, but instead considers filtered forms of the

Navier Stokes equations based upon energy-containing length scales in the flow. In DNS

all scales of motion are resolved, but computational expense rises sharply with Reynolds

number which limits the types of flows in which the approach is feasible.

2.4.1 Turbulent viscosity hypothesis

In the turbulent viscosity hypothesis the Reynolds stresses are assumed to be related to

the mean velocity gradients in a manner analogous to viscous stresses [6].

ρu′iu
′
j = −µt

(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3
ρδijk (2.21)
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In Equation 2.21 µt is referred to as the turbulent viscosity. This relation is known to

be inaccurate for many flows, as experiments have shown that the Reynolds stresses are

not determined by local rate of strain, but instead by the total amount of strain experi-

enced by the turbulence [6]. However, for simple free shear flows, in which the production

and dissipation of turbulent kinetic energy are approximately equal, the approximation is

reasonable. In these types of flows the mean velocity gradients change slowly, following

the mean flow. As a result, the local mean velocity gradients characterize the history of

distortion more closely.

2.4.2 Two equation models

k-ε model

The most widely used two equation model is the k-ε model [7]. The turbulent viscosity is

given by

µt = Cµρ
k̃2

ε
, (2.22)

in which Cµ is a constant equal to 0.09. In this model two transport equations are solved,

one for the turbulent kinetic energy, k, and one for the dissipation of turbulent kinetic

energy, ε.

∂

∂t
(ρk̃) +

∂

∂xi

(ρuik̃) =
∂

∂xi

[(
µt

σk

+ µ

)
∂k̃

∂xi

]
+ Pk +Gk − ρ+ ε̃, (2.23)

∂

∂t
(ρε̃) +

∂

∂xi

(ρuiε̃) =
∂

∂xi

[(
µt

σε

+ µ

)
∂ε̃

∂xi

]
+ Cε1Pk

ε̃

k̃
− Cε2ρ

ε̃2

k̃
. (2.24)

The term Pk that appears in both Equation 2.23 and 2.24 accounts for turbulence produc-

tion, and has the form

Pk = −ũ′′i u′′j
∂ũi

∂xj

. (2.25)
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The term ũ′′i u
′′
j in Equation 2.25 requires closure. The rate of turbulence production is

modelled by the expression

Pk =

(
2

3
δij

[
k̃ − µt

ρ

∂ũk

∂xk

]
−

[
∂ũi

∂xj

+
∂ũj

∂xi

])
∂ũi

∂xj

. (2.26)

The turbulence quantities k and ε form a length scale and a timescale for the flow

L =
k̃3/2

ε̃
, (2.27)

τt =
k̃

ε̃
. (2.28)

The standard model constants are attributed to Launder and Sharma [8].

Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, and σε = 1.3 (2.29)

This model has well known deficiencies, particularly for cases involving rotating flow,

stream-wise pressure gradients, and curved boundary layers [7]. Most relevant to this

study, the k-ε model is known to over-predict the spreading of axisymmetric jets in stag-

nant surroundings. This will be discussed further in Chapter 5.

k-ω model

The k-ω of Wilcox [9] is a two-equation model in which transport equations are solved for

the turbulent kinetic energy, k, and the turbulence frequency, ω. The transport equation

for the turbulent kinetic energy is similar to equation 2.23.

∂

∂t
(ρk̃) +

∂

∂xi

(ρuik̃) =
∂

∂xi

[(
µt

σk1

+ µ

)
∂k̃

∂xi

]
+ µt

(
∂ui

∂xj

+
∂uj

∂xi

)
∂ui

∂xj

− β′kρω, (2.30)

in which β′ = 0.09, and σk1 = 2. The transport equation for the turbulence eddy frequency,

ω, is given by

∂

∂t
(ρω̃) +

∂

∂xi

(ρuiω̃) =
∂

∂xi

[(
µt

σω

+ µ

)
∂ω̃

∂xi

]
(2.31)

+α
ω̃

k̃

[
µt

(
∂ui

∂xj

+
∂uj

∂xi

)
∂ui

∂xj

]
− βρω2
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In Equation 2.31, β, α, and σω are model constants equal to 0.075, 5/9, and 2 respectively.

The eddy frequency is related to the dissipation by

ω̃ =
ε̃

β′k
, (2.32)

from which the turbulent viscosity is calculated directly from the expression

µt = ρ
k̃

ω̃
. (2.33)

The k-ω is known to exhibit a high degree of sensitivity to turbulence characteristics set

at boundary conditions [7]. For boundary-layer flows this model yields superior results to

the k-ε model due to its treatment of the viscous near-wall region and streamwise pressure

gradients. However, non-turbulent boundaries at the free-stream prove problematic, as

non-zero values are ω are required, and the calculated results are known to be sensitive to

the value of ω that is used [6].

2.4.3 Reynolds stress models

The Reynolds stress model does not use an eddy viscosity approximation to define expres-

sions for the Reynolds stresses, instead using six additional transport equations to solve

for the components of the Reynolds stress tensor. For high Reynolds number flows the

transport equations take the form

∂

∂t
(ρu′iu

′
j) +

∂

∂xi

(ρuiu′iu
′
j) =

∂

∂xk

[(
ν +

2

3
Cs
k̃2

ε̃

)
∂u′iu

′
j

∂xk

]
+ Pij + φij − 2

3
δij ε̃. (2.34)

In Equation 2.34, Pij is the exact production term, φij is the pressure-strain correlation,

and Cs is a model constant. A full description of the terms in this model can be found

in references [6, 7]. Since the turbulence dissipation, ε, appears in the above equation, a

transport equation for ε is still required.

The increased number of equations leads to increased computational cost, and decreased

numerical robustness [10]. Since a transport equation for ε is used, the Reynolds stress

model is known to perform just as poorly as the k−ε model in many cases due to identical

issues with the ε equation [7]. While the transport equations for the Reynolds stress com-

ponents provides a model that should provide a more precise description of turbulent flows,
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it has been noted in many case to yield results no better than those from two-equation

models [10]. There are multiple varieties of the Reynolds Stress models, which have differ-

ent model constants and treatment of the pressure-strain correlation.

2.4.4 Large Eddy Simulation

Large Eddy Simulation (LES) uses a filtered form of the Navier Stokes equations, in which

three-dimensional large scale flow structures which contain the majority of the energy are

calculated and a sub-grid scale is utilized to account for the effect of the smaller dissipative

scales. Quantities of interest, such as velocity, are decomposed into a filtered component,

which is calculated, and a residual component, which is modelled. Since unsteady turbu-

lent motion are considered explicitly, LES is attractive for flows in which unsteady large

scale flow structures are significant as it should provide more accurate and detailed pre-

dictions when compared to RANS approaches [6]. In contrast to RANS simulations, LES

does not provided averaged flow predictions but instead yields instantaneous quantities.

The computational expense is considerably higher than those of RANS simulations, as the

required grid spacing is proportional to the filter width, which ideally should be smaller

than the size of the smallest energy containing motions in the flow [6]. For free shear flows

the grid requirements are not as stringent as for wall-bounded flows, but the requirement

for three-dimensional time dependent grids in LES adds considerable computational cost

to axisymmetric flows that can be modelled utilizing symmetry in RANS approaches. In

regard to turbulent reacting flows, LES accounts for large scale instabilities that are of

interest in combustion applications, while RANS simulations tend to suppress instabili-

ties [11]. Processes that are important in reacting flows, such as molecular mixing and

chemical reaction, mostly occur on the subgrid scales which require modelling. Modelling

approaches based upon LES have been used for high-speed compressible flows and reacting

flows [6].
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2.4.5 Direct Numerical Simulation

In Direct Numerical Simulation (DNS) all scales of motion are resolved in the solution of

the Navier Stokes equations, providing more accuracy and a higher level of description for

flows in which it can be implemented. The computational expense, higher than that of

LES, increases rapidly with Reynolds number which limits the flows to which it is feasible.

The grid spacing must be small enough to resolve the small dissipative scales of the flow,

while the timestep is limited by considerations of numerical accuracy [6]. The majority

of the enormous computational expense is associated with resolving the dissipative range

of the flow. DNS studies have been implemented to determine flow statistics that are

extremely difficult to determine experimentally [6]. Statistics from DNS provide valuable

benchmarking data that is frequently used for evaluating performance of simpler models.

2.5 Probability Density Functions

In turbulent reacting flows velocity components and scalar quantities such as species con-

centrations, temperature, and pressure are stochastic variables. The fluctuations in these

stochastic variables are at odds with the deterministic nature of the governing Navier-

Stokes equations. However, these variables can be characterized by their probability den-

sity function (PDF) [6]. For a given stochastic variable, Φ, a corresponding independent

sample space variable, φ, represents the potential values that Φ may take on. The prob-

ability, p, that variable Φ will be less than a given value of the sample space variable φa

can be represented as

pa = p(Φ < φa), (2.35)

where 0 ≤ p ≤ 1, in which 0 represents an impossible event and 1 represents a certain event.

The Cumulative Distribution Function (CDF) can be used to determine the probability of

any event for a given variable. The CDF is defined as

F (φ) = p(Φ < φ). (2.36)

The CDF is a non-decreasing function bounded by 0 and 1. Two important basic properties

of the CDF are

F (−∞) = 0, (2.37)
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F (∞) = 1. (2.38)

The probability that the variable Φ will lie between two values of the sample space variable

φ is given by

p(φa ≤ Φ < φb) = F (φb)− F (φa) φb > φa. (2.39)

The probability density function, PDF, is the derivative of the CDF with respect to the

sample space variable.

P (φ) ≡ dF (φ)

dφ
. (2.40)

The PDF is non-negative due to the fact that the CDF is a non-decreasing function. A

few important properties of the PDF are

∫ ∞

−∞
P (φ)dφ = 1, (2.41)

P (−∞) = 0, (2.42)

P (∞) = 0. (2.43)

The probability of the variable Φ having a value within a given interval in the sample space

is determined by integrating the PDF over the interval of interest.

p(φa ≤ Φ < φb) =

∫ φb

φa

P (φ)dφ. (2.44)

The expectation, or mean value, of Φ is the probability-weighted average of all potential

values of Φ. This is defined as

〈Φ〉 ≡
∫ ∞

−∞
φP (φ)dφ. (2.45)

This expectation can be extended to any function, G, of the variable Φ

〈G(Φ)〉 ≡
∫ ∞

−∞
G(φ)P (φ)dφ. (2.46)
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According to Bayes theorem, the joint probability of two events occurring, P (φa, φb) can

be written as

P (φa, φb) = P (φa|Φb = φb)P (φb), (2.47)

in which P (φa|Φb = φb) is the probability density for Φa having the value of φa for all

realizations of the flow in which the condition Φb = φb is satisfied [12]. The conditional

expectation can therefore be determined by

〈Φa|Φb = φb〉 =

∫∞
−∞ φaP (φa|Φb = φb)P (φb)dφa

P (φb)
. (2.48)

For any function, G(Φa), the conditional expectation can be obtained in a similar manner

〈G(Φa)|Φb = φb〉 =

∫∞
−∞G(φa)P (φa|Φb = φb)P (φb)dφa

P (φb)
. (2.49)

If the variables φa and φb are statistically independent the value of φa does not depend

on φb and thus the unconditional expectation 〈Φa〉 is equal to the conditional expectation

〈Φa|Φb = φb〉. For cases in which φa and φb are statistically independent this can be ex-

tended to functions, 〈G(Φa)〉 = 〈G(Φa|Φb = φb)〉.

2.6 Turbulent Reacting Flows

The accurate representation of the complex interactions between chemistry and turbulence

is essential in modelling of turbulent reacting flows. For combustion to occur fuel and

oxidizer must mix at the molecular level, which occurs at different time and length scales

than many of the turbulent flow structures. The ratio of the turbulent time scale (τt) to

the chemical time scale (τc) is used to characterize reacting flows, and is referred to as the

Damköhler number.

Da =
τt
τc
. (2.50)

For flows in which Da is greater than 1 reactions occur faster relative to turbulent mixing.

For Damköhler numbers significantly larger than unity the reactions are considered to be
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infinitely fast, and combustion may occur in thin reaction zones between the mixing fuel

and oxidizer [13]. In these types of flows the overall rate of combustion is controlled by the

rate of turbulent mixing. When Da is less than 1 the chemical processes occur at a slower

rate than mixing. If Da ¿ 1 turbulent mixing occurs far faster than chemical reaction,

resulting in a ’well-stirred reactor’ [13].

Relevant to this study, autoignition in engines deals with non-premixed combustion,

in which the fuel and oxidizer are initially separate. Air is heated and compressed within

the combustion chamber, and fuel is injected. The fuel and oxidizer mix and react during

continuous interdiffusion which leads to autoignition[11]. In non-premixed combustion the

mixing timescales are typically much larger than the chemical time scales (large Damköhler

number), and thus an assumption of infinitely fast chemistry is often employed [11]. How-

ever, in cases when the mixing time scale is locally of the same order of magnitude as the

chemical time scale finite-rate chemistry must be considered.

2.6.1 Mixture fraction

The mixture fraction, ξ, is a normalized scalar variable that is important in non-premixed

reacting flows. It is defined at any location in the system, and represents the local ratio of

the mass originating from the fuel stream to the total mass of the mixture.

ξ =
mass originating from fuel stream

total mass of mixture
(2.51)

In a two-feed system, in which fuel and oxidizer are supplied separately, the mixture fraction

is given by

ξ =
ṁ1

ṁ1 + ṁ2

(2.52)

where ṁ1 represents the mass flow of fuel stream and ṁ2 represents the mass flow of oxidizer

[11]. Assuming equal species diffusivities, the mixture fraction is a conserved scalar and is

governed by the transport equation

∂(ρξ)

∂t
+

∂

∂xi

(ρuiξ) =
∂

∂xi

(
ρD

∂ξ

∂xi

)
. (2.53)
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Favre-averaging of Equation 2.53 yields

∂(ρ̄ξ̃)

∂t
+

∂

∂xi

(
ρ̄ũiξ̃

)
=

∂

∂xi

(
ρD

∂ξ̃

∂xi

− ρ̄ũ′′i ξ′′

)
. (2.54)

in which transport due to molecular diffusion can been neglected assuming a high Reynolds

number. The turbulent flux term, ũ′′i ξ′′ is modelled using the gradient diffusion hypothesis

ũ′′i ξ′′ = −Dt
∂ξ̃

∂xi

, (2.55)

which is outlined further in Section 3.4.2.

The transport equation for the mean mixture fraction variance, ξ̃′′2, is given by

∂(ρ̄ξ̃′′2)
∂t

+
∂

∂xi

(
ρ̄ũiξ̃′′2

)
= − ∂

∂xi

(
ρ̄ũ′′i ξ′′2

)
+ 2ρ̄Dt

(
∂ξ̃

∂xi

)2

− ρ̄χ̃. (2.56)

The turbulent flux term, ṽ′′ξ′′2 in Equation 2.56 is also modelled using the gradient diffusion

hypothesis.

ũ′′i ξ′′2 = −Dt
∂ξ̃′′2

∂xi

, (2.57)

Another term requiring consideration is the mean scalar dissipation rate, χ̃. A common

closure based upon assuming proportional scalar and flow time scales [11] is given by

χ̃ = 2
ε̃

k̃
ξ̃′′2. (2.58)

Further information about this closure for the mean scalar dissipation rate is given in

Chapter 4.

2.7 Combustion Models

An array of modelling approaches are available for simulating turbulent reacting flows,

varying in computational expense and complexity. Simple models utilize single step reac-

tions or consider only limited combustion chemistry to approximate total energy release

from combustion [7]. The Eddy Break Up model is a commonly used example of a sim-

ple combustion model. The laminar flamelet model accounts for detailed chemistry while
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maintaining simplicity, allowing for intermediate and minor species to be considered. The

PDF transport model does not require modelling of the chemical source term and can

provide predictions considering finite-rate chemistry, but introduces additional terms that

require closure. In this study Conditional Moment Closure is employed, and this model is

discussed in detail in Chapter 3.

2.7.1 Eddy Break Up model

The Eddy Break Up (EBU) model was proposed by Spalding [14] as a closure for the

chemical source term. The model is based upon the assumption that, for mixing-controlled

reacting flows, the rate of chemical reaction is controlled by the same cascade process, from

integral to dissipative length and time scales, that describes turbulent mixing [11]. The

chemical time scale is expressed in terms of the turbulent mixing time scale, given by

k/ε. This model was formulated primarily for premixed combustion, and for use with non-

premixed combustion knowledge of the mixture fraction PDF within the solution domain

is required [11]. Inherent is the assumption of a high Damköhler number, and hence

fast chemistry. Since the local rate of reaction is considered to be mixing controlled it is

specified as function of flow properties. The turbulent dissipation rates for fuel, oxidizer,

and products are considered to be

˜̇ωfuel = −CRρỸfuel
ε

k
, (2.59)

˜̇ωox = −CRρ
Ỹox

s

ε

k
, (2.60)

˜̇ωpr = −C ′Rρ
Ỹpr

1 + s

ε

k
, (2.61)

where s is the stoichiometric oxygen to fuel mass ratio, and CR and C ′R are model constants.

A transport equation for the fuel mass fraction is solved, allowing for the three local

turbulent dissipation rates to be determined [7]. The actual reaction rate of the fuel

is taken to be the slowest of the three dissipation rates. The model constants need to be

adjusted for a particular problem when applied in a CFD application [11]. The dependence
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of the reaction rate on turbulence quantities k and ε makes the resulting predictions utterly

dependent on the performance of the turbulence model. Kinetically controlled reactions

can be considered by calculating the local Arrhenius kinetic reaction rate as an additional

dissipation rate, and taking the actual rate of reaction to be the slowest of the fuel, oxidizer,

products, or kinetic rates [7]. Intermediate and minor species are not considered.

2.7.2 Laminar flamelet model

The laminar flamelet model is a simple combustion model that allows for some detailed

chemistry to be included. In the laminar flamelet model a high Damköhler number is

inherently assumed, and correspondingly combustion occurs in thin sheets where chemical

activity is the highest within the flow. Turbulent flames are considered to be wrinkled

laminar sheets of combustion, called flamelets, that are convected by the flow. For non-

premixed combustion the location of the flamelet is described by an iso-surface of the

stoichiometric mixture fraction, a non-reacting quantity [11]. Thus, the transport equa-

tion for mixture fraction must be solved. Laminar flamelet equations are solved normal to

the flamelet surface to determine profiles of the reactive scalars. From the solution of the

equations, flamelet libraries are generated to describe the relationship between the mix-

ture fraction and the scalar flow properties, such as temperature, species mass fractions,

and density. The scalar dissipation rate, a measure of mixing at the molecular level, is

incorporated in the flamelet libraries to account for the stretching of the laminar flamelets

in the turbulent flow [7].

Detailed chemistry can be included in the laminar flamelet model without significant

computational expense due to the use of the flamelet libraries, allowing for pollutant forma-

tion and intermediate species to be considered. In addition to relations for temperature and

density, information relating to major and minor species are included in the library. The

laminar flamelet structure is reasonable if the laminar flamelet thickness is thin compared

to the smallest eddies in the flow [11].

2.7.3 PDF transport model

The joint PDF transport model of Pope [15] can be used for both premixed and non-

premixed combustion, and does not require modelling for the chemical source term. The
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transport equation for the joint PDF of the velocity and the composition variables is solved,

which introduces complex terms that are conditionally averaged upon both velocity and

composition and require closure. Further information regarding the derivation and form

of the joint PDF transport equation can be found in references [6, 11]. This equation

does not contain scalar gradients, and thus closure of viscous transport and molecular

mixing terms are still required. Closure of the mixing term is a important problem in

PDF methods. Including gradients in the sample space variables considered in the joint

PDF transport equation would remove the need for modelling these two terms, but would

add dimensionality to the problem. Due to the high dimensionality of the PDF transport

equation, stemming from conditional averages based upon multiple sample space variables,

finite-volume and finite-difference techniques are typically not employed [11]. In contrast,

the memory requirements of Monte Carlo methods for problems with high dimensionality

are considerably less, and provide more efficient solution for the PDF transport methods

utilizing Lagrangian methods [16]. The performance of the PDF transport model for re-

acting flows is dependent upon the quality of the models that are implemented for the

unclosed terms. Discussion of closures relevant to the PDF transport model is beyond the

scope of this study.

2.8 Summary

This chapter presented important background information for this study, including de-

scription of the relevant experimental work. The governing equations of turbulent reacting

flows were outlined, and common modelling approaches for turbulence and combustion

were discussed. Favre-averaging, a concept important to turbulent reacting flows, and

PDFs were defined. Non-premixed combustion and important concepts such as mixture

fraction were summarized. In the following chapter a general overview of the first order

Conditional Moment Closure model is provided, terms requiring closure are discussed, and

relevant models are presented.
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Chapter 3

Conditional Moment Closure

In this chapter Conditional Moment Closure (CMC) methods are examined. The derivation

of the conditional species and enthalpy transport equations are presented, and the terms

within the equations that require closure are outlined. Further, the shear flow approxima-

tion, which allows computational expense to be reduced through solving the cross-stream

averaged form of the CMC equations, is discussed. Previous autoignition studies utilizing

CMC are presented.

3.1 Overview

CMC is a combustion modelling approach applicable to non-premixed combustion that was

developed independently by Klimenko [17] and Bilger [18], and presented in a joint paper

[12]. One difficulty in predicting the flow and mixing of reacting scalars is that the rates

of reaction are highly non-linear functions of species concentration and temperature. In

turbulent mixing significant spatial and temporal fluctuations in these scalar quantities are

present, and the non-linearity of the reaction rates leads to terms containing correlations

of the scalar fluctuations. These fluctuations are very difficult to deal with and add fur-

ther complexity to the already difficult problem of predicting scalar mixing. In CMC the

average scalar quantities of interest, such as species concentrations and enthalpy, are con-

ditioned on a given value of mixture fraction, ξ. The advantage of this approach is that the
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fluctuations about the conditional averages are much smaller than the fluctuations about

the unconditional averages. In first-order CMC these fluctuations are neglected, reducing

the complexity of the conditional transport equations to be solved.

Klimenko and Bilger derived the same CMC equations from different starting points.

The derivation of Klimenko [17] started from the PDF transport equation and is referred

to as the joint-PDF method. Bilger [18] used a decomposition approach similar to that

used in Reynolds averaging methods. In the following sections the decomposition approach

of Bilger [18] is followed and the conditional species and enthalpy transport equations are

presented.

3.2 Conditional Species Transport Equation

For a given species α, the conditional average of the mass fraction Yα is defined as:

Qα(η,x, t) =
〈ρYα(x, t)|ξ(x, t) = η〉

〈ρ|η〉 , (3.1)

where ξ is the mixture fraction and η is a sample variable in mixture fraction space. The

angular brackets denote a conditional average over an ensemble of realizations of the flow,

subject to the condition to the right of the vertical bar. Only the specific instances of

the overall ensemble in which the condition is met are included in the average. The mass

fraction of species α, Yα, can be decomposed into

Yα(x, t) = Qα(ξ(x, t),x, t) + y′′α(x, t), (3.2)

in which y′′α(x, t) is the fluctuation about the conditional average. By definition,

〈y′′α(x, t)|η〉 = 0. (3.3)

The conditional species equation is derived from the transport equation for Yα

∂(ρYα)

∂t
+
∂(ρuiYα)

∂xi

=
∂

∂xi

(
ρDα

∂Yα

∂xi

)
+ ω̇ (3.4)

It is assumed that the individual species diffusivities are equal, such that Dα = D. Sub-

stitution of Equation 3.2, followed by conditional averaging over η yields

〈ρ|η〉∂(Qα)

∂t
+ 〈ρ|η〉〈ui|η〉∂(Qα)

∂xi

= 〈ρ|η〉〈χ|η〉
2

∂2Qα

∂η2
+ eQ + ey + 〈ω̇|η〉, (3.5)
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in which

〈χ|η〉 = 2D
∂2Qα

∂η2
(3.6)

is the conditional scalar dissipation rate. The terms eQ and ey are unclosed, and providing

closure for them is referred to as the primary closure hypothesis [12]. These terms are

given by the expressions

eQ =

〈[
∂

∂xi

(
ρD

∂Qα

∂xi

)
+ ρD∇ξ · ∇∂Qα

∂η

]
|η

〉
, (3.7)

ey = −
〈[

ρ
∂y′′α
∂t

+ ρui
∂y′′α
∂xi

− ∂

∂xi

(
ρD

∂y′′α
∂xi

)]
|η

〉
. (3.8)

When the Reynolds number is large, eQ becomes small and can be neglected [12],

eQ ' 0. (3.9)

Following Bilger [18], the basic closure hypothesis used in the decomposition approach is

ey = − 1

P (η)

∂

∂xi

(〈ρ|η〉〈u′′i y′′|η〉P (η)) . (3.10)

Using the definition of the Favre averaged PDF

P̃ (η) =
〈ρ|η〉P (η)

〈ρ〉 (3.11)

in which 〈ρ〉 is the unconditional density, Equation 3.5 becomes

∂(Qα)

∂t
+ 〈ui|η〉∂(Qα)

∂xi

=
1

〈ρ〉P̃ (η)

∂

∂xi

(
〈ρ〉〈u′′i y′′α|η〉P̃ (η)

)
(3.12)

+
1

2
〈χ|η〉∂

2Qα

∂η2
+
〈ω̇|η〉
〈ρ|η〉 ,

On the left hand side of Equation 3.12, the first term represents the local rate of change of

the conditional species mass fraction while the second term is the conditional transport by

convection. On the right hand side the first term accounts for transport by the turbulent

flux, the second term represents mixing at the molecular level, and the third term is the

chemical source representing the change in conditional species mass fraction due to chem-

ical reaction.
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3.3 Conditional Enthalpy Equation

The transport equation for the conditional average enthalpy, Qh = 〈h|η〉, is derived from

the unconditional enthalpy transport equation

∂(ρh)

∂t
+
∂(ρuih)

∂xi

=
∂

∂xi

(
ρDα

∂h

∂xi

)
+
∂p

∂xi

+ q̇rad. (3.13)

Following the procedure used for the species concentrations, the conditional enthalpy is

defined as

Qh(η,x, t) = 〈h(x, t)|ξ(x, t) = η〉, (3.14)

which allows for the enthalpy to be decomposed as

h(x, t) = Qh(ξ(x, t),x, t) + h′′(x, t). (3.15)

Substitution of Equation 3.15 into the enthalpy transport equation, followed by conditional

averaging with respect to η yields

∂Qh

∂t
+ 〈ui|η〉 ∂Qh

∂xi

= − 1

〈ρ〉P̃ (η)

∂

∂xi

(〈ρ〉 〈u′′i h′′|η〉 P̃ (η)) +
1

2
〈χ|η〉 ∂

2Qh

∂η2
(3.16)

+
1

〈ρ|η〉
〈
∂p

∂t
|η

〉
− 〈q̇rad|η〉

〈ρ|η〉 .

On the left hand side of Equation 3.16 the first term is the local rate of change of the

conditional enthalpy, and the second term accounts for conditional convective transport.

On the right hand side the first term represents enthalpy transport by the turbulent flux,

while the second term is enthalpy dissipation. The third term is the pressure work term,

and the fourth term accounts for radiation.

3.4 Terms Requiring Closure

In the conditional species and conditional enthalpy transport equations there are multiple

terms that require closure. The closures used for these terms are discussed in this section.
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3.4.1 Conditional Chemical Source Term

The conditional chemical source term represents the production of species by chemical

reaction. In a simple, one-step irreversible reaction

A+B → Products (3.17)

the chemical source term, representing the rate of formation of products, is given by the

expression

ω̇ = ρk(T )YAYB, (3.18)

in which k(T ) the reaction rate constant and YA and YB are the species mass fractions of

species A and B respectively. The rate constant is calculated using the equation

k(T ) = A0T
βexp

(−Ta

T

)
. (3.19)

In Equation 3.19 A0 is the frequency factor, β is the temperature exponent, and Ta is the

activation temperature.

The unconditional chemical source term, ω̇, is a non-linear function of the species mass

fractions and enthalpy. Thus, the unconditional averages of the ω̇ are not functions of

the unconditional averages of species mass fractions and enthalpy, due to the fluctuations

present in Y and h.

〈ω̇α(Y, T )〉 6= ω̇α(〈Y 〉, 〈T 〉) (3.20)

The unconditional average of the chemical source term requires the fluctuations to be taken

into account.

〈ω̇α(Y, T )〉 = 〈ω̇α(〈Y 〉+ y′, 〈T 〉+ T ′)〉 (3.21)

However, the conditional fluctuations in Y and T are known to be considerably smaller

than the unconditional fluctuations in many cases

y′′ ¿ y′, (3.22)

T ′′ ¿ T ′.
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Therefore, taking the average of the chemical source term, conditioned on a specific value

of mixture fraction,

〈ω̇α(Y, T )|η〉 = 〈ω̇α(〈Y |η〉+ y′′, 〈T |η〉+ T ′′)|η〉 (3.23)

will allow the conditional fluctuations to be neglected in a first-order closure of the chemical

source term.

〈ω̇α(Y, T )|η〉 ' 〈ω̇α(〈Y |η〉, 〈T |η〉)|η〉 (3.24)

= ω̇α(〈Y |η〉, 〈T |η〉).

The accuracy of the first order closure depends on how large the neglected conditional

fluctuations are. For many cases they are small, but their size depends on the configuration

of the flow and the nature of the chemical reactions [12]. Applying the same notation used

in Section 3.2 for the conditional species mass fractions and temperature,

QA = 〈YA|η〉, QB = 〈YB|η〉, QT = 〈T |η〉, (3.25)

Klimenko and Bilger [12] expanded Equation 3.24 using a Taylor series expansion and

conditionally averaged the resulting expression, yielding

〈ω̇|η〉 ' 〈ρ|η〉k(QT )QAQB

[
1 +

〈y′′Ay′′B|η〉
QAQB

+

(
β +

Ta

QT

)(〈y′′AT ′′|η〉
QAQT

+
〈y′′BT ′′|η〉
QBQT

)
(3.26)

+
1

2

(
β(β − 1) +

2(β − 1)TA

QT

+
T 2

a

Q2
T

) 〈(T ′′)2|η〉
Q2

T

]
.

For small fluctuations about the conditional averages of species mass fraction and tem-

perature all terms on the right hand side of Equation 3.26, with the exception of the first

term, can be neglected, giving

〈ω̇|η〉 ' 〈ρ|η〉k(QT )QAQB. (3.27)

Equation 3.27 represents the first order closure of the conditional chemical source term.

The error invoked in this closure will be small if the variances of conditional species mass

fractions and temperature are small relative to the square of their conditional means [12].
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3.4.2 Turbulent Flux

Another unclosed term that requires treatment is the conditional turbulent transport

flux, 〈u′′i φ′′|η〉. This term appears in both the conditional species transport equation (as

〈u′′i y′′α|η〉) and in the conditional temperature equation (as 〈u′′i T ′′|η〉). These terms are mod-

elled using the gradient diffusion hypothesis, which states that the turbulent transport of

a conserved scalar, φ, is down the mean scalar gradient [6]. The transport is treated in a

way analogous to molecular diffusion, such that

〈u′′i φ′′〉 = −DT
∂φ

∂xi

, (3.28)

where DT is the turbulent diffusivity. The turbulent diffusivity is a positive scalar that is

related to the turbulent viscosity, νT , through the expression

DT =
νT

ScT
, (3.29)

in which ScT is the turbulent Schmidt number, which is taken to have a value of 0.9. The

turbulent viscosity is calculated using

νT = Cµ
k2

ε
, (3.30)

where the constant Cµ is equal to 0.09. Substitution of this relation into Equation 3.29

gives a simple expression for the turbulent diffusivity

DT =
Cµ

ScT

k2

ε
. (3.31)

The conditional turbulent flux is found by taking the conditional mean of Equation 3.28.

This yields closure for the flux terms appearing in the conditional species transport and

temperature equations.

〈u′′i y′′α|η〉 = −DT
∂〈yα|η〉
∂xi

, (3.32)

〈u′′i T ′′|η〉 = −DT
∂〈T |η〉
∂xi

. (3.33)
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3.4.3 Conditional velocity

The conditional velocity is an unclosed term that appears directly in the CMC equations.

Two models for the conditional velocity are used in this study: the linear model [19] and

the gradient diffusion model of Pope [20].

Linear model

The linear model [19] is commonly used for the conditional velocity in CMC implementa-

tions [12]. It assumes the conditional velocity has a radial dependence on η, as described

by

〈ui|η〉 = ũi +
ũ′′i ξ′′

ξ̃′′2

(
η − ξ̃

)
, (3.34)

where ũi is the Favre-averaged velocity, ξ̃ the Favre-averaged mixture fraction, ξ̃′′2 the

Favre-averaged mixture fraction variance and ũ′′i ξ′′ the turbulent scalar flux. This expres-

sion is exact for jointly Gaussian turbulence and is considered to be a good approximation

for flows in which values of η are within two standard deviations of ξ̃ [21]. Although ex-

perimental data [19] and DNS [22] support the linear relationship around the local mean

mixture fraction, for large values of |η − ξ̃| the deviations of the conditional velocity from

linear behaviour can be significant, even in simple mixing layers [23]. This model has the

advantage of being simple to implement and is numerically well-behaved for all values of

η.

Gradient model

The gradient diffusion model of Pope [20] is analogous to turbulent transport modelling

using the gradient diffusion hypothesis

〈ui|η〉 = ũi − Dt

P̃ (η)

∂P̃ (η)

∂xi

, (3.35)

in which Dt is the turbulent diffusivity. Unlike the linear model, the gradient model is

the only model that, when used with presumed PDF methods, is completely consistent
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with the moments of conserved scalars [24]. However, the accuracy of the model depends

upon how well the presumed PDF models the true PDF. For the β-PDF, de Bruyn Kops

and Mortensen [23] observed that the conditional velocity diverges to ±∞ when values of

P̃ (η) approach zero, but matched DNS data well in regions where the β-PDF was in good

agreement with the DNS PDF. However, since the departures from expected behaviour

occur at low probability densities, the effect on overall mixing could be small [23]. The

numerical difficulties arising from dividing by the PDF will be examined further.

3.4.4 Probability Density Function

The PDF is a very important unclosed term in CMC. It appears not only in the condi-

tional species and temperature equations but, as outlined in Chapter 4, can also impact

the conditional scalar dissipation rate models. Two commonly used closures for the PDF

are the β-PDF and the clipped Gaussian PDF. Other methods of determining the PDF

have been used, such as the presumed mapping function approach [25], but are beyond the

scope of this study. In this work the β-PDF is implemented.

β-PDF

The β-PDF is commonly used in CMC. It has been implemented for CMC studies of

ignition for methane jets [26, 27], fuel spray [28, 29], n-heptane plume [30], and in many

other applications [31, 32, 33, 34]. The β-PDF is given by the expression

P (η) =
ηα−1(1− η)β−1

Ib
with Ib =

∫ 1

0

ηα−1(1− η)β−1dη. (3.36)

The two parameters that characterize the PDF, α and β, are calculated from the flow field

solution using the Favre-averaged mixture fraction, ξ̃, and its variance ξ̃′′2, using

α = ξ̃


 ξ̃

(
1− ξ̃

)

ξ̃′′2
− 1


 and β =

(
1− ξ̃

)

 ξ̃

(
1− ξ̃

)

ξ̃′′2
− 1


 . (3.37)

Equation 3.36 yields a smooth PDF that asymptotes to infinity when the mixture ap-

proaches the bounds of mixture fraction space, η = 0 and η = 1 [12]. The β-PDF has
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been shown to characterize flow with homogeneous turbulence very well by Girimaji [35],

which is supported by the DNS results of Swaminathan et al. [36]. Similarly, Mortensen

et al. [37] compared β-PDF profiles with DNS data for a scalar mixing layer and found

good agreement. However, there is no physical explanation for this good agreement and

its applicability for inhomogeneous flows may be questionable [38, 39].

Clipped Gaussian PDF

The clipped Gaussian PDF differs most significantly from the β-PDF at the upper and

lower bounds of mixture fraction space, η = 0 and η = 1. Unlike the β-PDF, the clipped

Gaussian form assumes delta function components at the unmixed limits of η. These delta

functions represent an assumption that the statistics in scalar space are intermittent in

nature at the upper and lower bound, and as a result do not asymptote to infinity at these

limits [12]. The expression for the clipped Gaussian PDF is

P (η) = γ1δ(η) + (1− γ1 − γ2)Pt(η) + γ2δ(1− η), (3.38)

where Pt(η) represents the Gaussian PDF form for the mixed fluid, given by

Pt(η) =
G(η)∫ 1

0
G(η)dη

, (3.39)

in which

G(η) =
1

σg

√
(2π)

exp

(
−(η − ξg)

2

2σ2
g

)
. (3.40)

In Equation 3.38 γ1 and γ2 represent the strength of the delta functions in unmixed fluid

states corresponding to η = 0 and η = 1, and δ(x) is the Dirac delta function. The pa-

rameters ξg and σg in Equation 3.38 are the mean and variance of the unclipped Gaussian

form, which can be related to the mean and variance of the mixture fraction [12].

3.4.5 Conditional scalar dissipation rate

The closure of the conditional scalar dissipation rate, 〈χ|η〉, forms the main focus of this

study. Characterizing 〈χ|η〉 is not straightforward, and many models have been proposed.
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Four models are examined, two of which (AMC [40] and the presumed β-PDF model of

Girimaji [39]) invoke assumptions of homogeneous turbulence. The other two mixing mod-

els are different forms of an inhomogeneous model proposed by Devaud et al. [21], differing

only by the conditional velocity model that is used in their respective formulations. Fur-

ther details about these models are provided in Chapter 4.

3.5 Shear Flow Approximation

In self-similar regions of free shear flows, such as the turbulent round jet, the radial depen-

dence of the conditional average of the species concentrations is very small [12]. This fact

is not at all intuitive, as the unconditional means of species concentrations have a strong

radial dependence, but it is supported by asymptotic analysis [41]. However, Klimenko

[17] suggests that the radial dependence of the PDF should be assumed to be greater than

that of the conditional mean concentrations. To account for this dependence, the PDF-

weighted axial component of the CMC equations is integrated in the radial direction. This

procedure allows for the CMC equations to be greatly simplified, reducing the calculations

required from three dimensions to one dimension. This simplification is referred to as the

shear flow approximation. This approximation has been successfully applied in CMC by

De Paola et al. [31] and Markides et al. [30] for n-heptane plumes, and by Woolley et al.

[42] for soot formation in non-premixed flames. In their three-dimensional simulations of

combustion within a diesel engine, De Paola et al. [32] examined the effect of cross-stream

averaging and found that the results compared well with experimental data. In the current

study the methane fuel jet is developing, and thus the assumption of self-similarity may

not be accurate in all regions of the jet. This simplification will be discussed further in

Chapter 5.
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3.6 Previous Autoignition Studies Using CMC

Methods

The previous CMC autoignition work of El Sayed [43] and El Sayed et al. [26, 44] exam-

ined autoignition of high pressure methane jets in a shock tube, based upon experimental

results of Wu [5]. Two homogeneous scalar dissipation rate models, Amplitude Mapping

Closure (AMC) and Girimaji’s presumed β-PDF model, were applied to cross-stream aver-

aged CMC simulations for methane and methane based fuel blends [44] utilizing the same

flow conditions examined in this study. Both models gave similar results. The trend of

predicted ignition delays were in reasonable agreement with experimental data, but an

over-prediction at low air temperatures and an under-prediction at high air temperatures

were noted. Detailed and optimized chemical kinetics were included and were unlikely to

be the source of the discrepancies. The scalar dissipation rate was found to be a dominant

term in the CMC equations, and hence improvement on the turbulent mixing model could

bring more accurate autoignition predictions. Additionally, the autoignition behaviour of

high pressure methane jets from a larger diameter injector was examined [26, 43].

First order CMC has also been successfully applied in autoignition studies of methane

and methane-based blends [27], heptane [30], and spray [28, 29]. Doubly-conditioning

methods have been investigated for simplified cases of ignition [45]. De Paola et al.[31]

applied a complete second order closure model to model autoignition and concluded that

first order closure was sufficient when there was a rapid decay of the conditional scalar

dissipation rate below its critical value. Three-dimensional CMC calculations of diesel en-

gine simulations using Reynolds Averaged Navier Stokes equations (RANS) [32] have been

recently reported.

Bushe and Steiner [46] proposed a modelling approach based upon CMC, called Con-

ditional Source-term Estimation (CSE). In contrast to CMC, CSE does not increase the

dimensionality of the equations. Variations of this approach have been implemented by

Huang and Bushe [47] and Grout et al.[48] to examine autoignition of high pressure methane

jets in a shock tube. Both implementations showed good agreement with experimental

data, although an underprediction of ignition delay at high air temperatures was observed

in the results of Huang and Bushe [47] when utilizing a temperature-based ignition criterion.
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3.7 Summary

This chapter gave an overview of first order CMC. The conditional species and tempera-

ture equations were derived, and terms requiring closure were outlined. Treatment of the

chemical source term with the first order closure was discussed, along with closures for the

turbulent flux and conditional velocity. The presumed form of the β-PDF was explained,

and the required closure of the conditional scalar dissipation rate, which forms the focus

of the next chapter, was introduced. Simplification of the CMC equations through the

use of cross-stream averaging was advocated through the use of the shear flow approxi-

mation. Previous studies using CMC to examine autoignition behaviour were presented.

In the present study two forms of a turbulent mixing model presented by Devaud et al.

[21], based upon inhomogeneous turbulence, are implemented to assess their impact on the

predictions of autoignition. In the following chapter the closure of the conditional scalar

dissipation rate using these turbulent mixing models is discussed.
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Chapter 4

Turbulent Mixing Models

Turbulent mixing models, which provide closure for the conditional scalar dissipation rate,

are the subject of this chapter. The significance of scalar dissipation rate in turbulent

reacting flows is reviewed. Two commonly used models based upon the assumption of ho-

mogeneous turbulence are presented, along with the two formulations of an inhomogeneous

model which serve as the basis for this study. The validity of all four models is discussed.

4.1 Mean Scalar Dissipation Rate

The scalar dissipation rate, χ̃, is an important quantity in turbulent reacting flows as it

describes the rate of mixing at the molecular level. The mean value of χ̃ represents the

average rate at which half the scalar variance declines in homogeneous turbulent mixing

[49], thus it is an important term in the mixture fraction variance transport equation

(Equation 2.56). This term has units of s−1 and is defined as the product of the mean square

gradient of the scalar and the molecular diffusivity of the scalar, given by χ̃ ≡ 2D
(

∂ξ̃
∂xi

∂ξ̃
∂xi

)
.

Higher values of scalar dissipation rate indicate higher levels of molecular mixing. Above a

critical value of χ̃ within a reacting flow, local heat losses exceed chemical heat release, and

extinction can occur [7]. For non-premixed flows with fast chemistry the rate of chemical

reaction is strongly related to the local scalar dissipation [49].
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4.1.1 Closure of mean scalar dissipation rate

Following Peters [11], an expression for the mean value of χ̃ can be obtained assuming

proportionality of timescales. An integral scalar time scale for the mixing field can be

defined as

τi =
ξ̃′′2

χ̃
, (4.1)

and an integral time scale for the flow is

τ =
k̃

ε̃
. (4.2)

The two time scales are commonly set to be proportional to each other, with the constant

of proportionality, Cχ, of the order of unity [11].

τ = Cχτi. (4.3)

Substitution of Equations 4.1 and 4.2 into Equation 4.3 yields

χ̃ = Cχ
ε̃

k̃
ξ̃′′2. (4.4)

Janicka and Peters [50] found that a value of Cχ = 2.0 worked well for an inert jet of

methane. Substitution of this value provides a commonly used expression for calculation

of the mean value of the scalar dissipation rate

χ̃ = 2
ε̃

k̃
ξ̃′′2. (4.5)

In this study Equation 4.5 is implemented as closure for χ̃ in the transport equation for

the mean mixture fraction variance, Equation 2.56. Other closures are available for the

mean value of χ. Pope [51] along with Jones and Musonge [52] suggested using a transport

equation to solve for χ̃. This approach allows for the scalar dissipation rate to be more

dependent on the characteristics of turbulent flow field [11]. However, additional terms

involving the turbulent fluxes in the transport equations require closure.
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4.2 Conditional Scalar Dissipation Rate

In the context of CMC, the conditional average of the scalar dissipation rate at a given value

η, of the mixture fraction, ξ, is of great importance. This term appears as a key term in the

CMC equations. In previous work on autoignition, El Sayed and Devaud [26] showed that

〈χ|η〉 is very significant in the transient mixing prior to ignition, and therefore the scalar

dissipation rate model could have a substantial impact on the predictions of autoignition.

Evaluation of 〈χ|η〉 is not straightforward, and a range of different turbulent mixing mod-

els have been proposed to provide closure for this term. Two of the most commonly used

models, the AMC model and Girimaji’s presumed β-PDF model, incorporate an assump-

tion of homogeneous turbulence. More recently Devaud et al.[21] proposed a turbulent

mixing model without assuming homogeneous turbulence, through the integration of the

PDF transport equation. In the context of CMC, previous studies have implemented mix-

ing models based only upon homogeneous turbulence [26, 27, 28, 29, 30, 31, 32, 33, 44]. In

contrast, only a few studies have used conditional scalar dissipation rate models based upon

inhomogeneous turbulence within CMC. The inhomogeneous model of Devaud et al.[21]

was applied by Cleary and Kent [53] in CMC simulations of hood fires, and by Rogerson

et al.[34] for a bagasse-fired boiler. Both studies used the gradient diffusion model for

conditional velocity within the inhomogeneous mixing model. Sreedhara et al. [54] ap-

plied a similar inhomogeneous mixing model formulation, that was obtained by integrating

the cross-stream averaged PDF transport equation, to piloted jet and bluff-body flames.

In [54] the cross-stream averaged PDF transport equation was used to avoid numerical

difficulty in low probability regions. In [53] the inhomogeneous mixing model was found

to have only a small impact on the conditional species concentrations and temperature.

Sreedhara et al. [54] noted that in their cross-stream averaged mixing model formulation

the difference between using the linear and gradient diffusion conditional velocity models

was negligible. Compared to AMC and Girimaji’s model, their inhomogeneous profiles of

the scalar dissipation rate yielded similar values, but showed asymmetric behaviour that

differed from the symmetric homogeneous models.

While these previous CMC studies have found little improvement in predictions when

using inhomogeneous mixing models, the transient fuel jet development considered in the

present study is significantly different in nature. In the early stages of mixing within a

developing mixing layer the turbulent flowfield is far from homogeneous, and thus mix-
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ing models considering inhomogeneous turbulence are expected to have a larger impact.

In contrast to the previous three studies ([34, 53, 54]), the conditional scalar dissipation

rate model will be solved for transient conditions. To the author’s best knowledge the

inhomogeneous model has never been implemented for transient conditions or for autoigni-

tion problems. Two versions of the inhomogeneous model of Devaud et al. [21] will be

implemented in this study, and compared with previous results obtained using AMC and

Girimaji’s model [44] in addition to the experimental results of Wu [5]. The first version

of the inhomogeneous model utilizes the linear model for conditional velocity, while the

second uses the gradient diffusion model.

4.3 Mixing Models Based on Homogeneous

Turbulence

Two commonly used homogeneous turbulent mixing models, AMC [40] and Girimaji’s

presumed β-PDF model [39], are briefly described. Both models are derived from the

homogeneous PDF transport equation with a double-delta initial distribution, representing

initially unmixed scalars.

4.3.1 Girimaji’s model

The formulation of Girimaji’s model [39] is based upon the observation that the β-PDF

accurately describes the evolution of the scalar PDF in statistically stationary, isotropic

turbulence over all stages of two-scalar, constant density mixing [35]. An expression for

the conditional scalar dissipation rate is obtained by integrating the homogeneous PDF

transport equation over mixture fraction space, yielding

〈χ|η〉 = −2χ̃
ξ̃(1− ξ̃)

ξ̃′′2
J(η)

P̃ (η)
, (4.6)

where χ̃ is the Favre-averaged, unconditional scalar dissipation rate given by Equation 4.5.

J(η) is an integral expression defined as

J(η) =

∫ η

0

{
ξ̃(ln η′ − J1) + (1− ξ̃) [ln(1− η′)− J2]

}
P̃ (η′)(η − η′) dη′, (4.7)
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where

J1 =

∫ 1

0

ln η dη, and J2 =

∫ 1

0

ln(1− η) dη. (4.8)

Girimaji’s model is derived based upon statistically stationary, isotropic turbulence. In its

formulation it is restricted to homogeneous flow conditions, and may not be valid in shear

layers.

4.3.2 Amplitude Mapping Closure

The AMC model utilizes the mapping closure solution of Gao [55] for the PDF in the

homogeneous PDF transport equation. It assumes the PDF initially has a double-delta

distribution and relaxes to a Gaussian distribution. The conditional mean scalar dissipation

rate is described by the expression

〈χ| η〉 = χ0G(η). (4.9)

The function G(η) is determined by

G(η) = exp
{
−2

[
erf−1(2η − 1)

]2
}
, (4.10)

in which erf−1 is the inverse error function. In Equation 4.9 the term χ0 represents the

expression

χ0 =
χ̃∫ 1

0
G(η)P̃ (η)dη

, (4.11)

where χ̃ is the mean value given in Equation(4.5). G(η) is independent of flow field prop-

erties, such as ξ̃ and ξ̃′′2, and yields a maximum value at η = 0.5. The scalar dissipation

rate profile from AMC is symmetrical about η = 0.5. AMC requires some unmixed fluid

to always be present, which can be problematic at later stages of mixing.
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4.4 Mixing Models Based on Inhomogeneous

Turbulence

The turbulent mixing model proposed by Devaud et al. [21] does not invoke the assumption

of homogeneous turbulence. Thus, this new method is applicable to a much wider range

of flows compared to previous homogeneous turbulence based expressions. The model was

presented in two formulations. The first formulation was the result of direct integration

of the PDF transport equation in mixture fraction space, yielding an equation that was

suitable for finite volume discretization with no prior assumption regarding the form of the

PDF required. The second formulation took a two-parameter presumed form of the PDF,

in which the parameters were functions of mixture fraction and the variance. In the present

study, it is found that the first formulation of 〈χ|η〉 is better suited to implementation in

the commercial finite-volume CFD code, CFX [10], due to a smaller number of intermediate

calculations. The derivation is briefly summarized below.

The derivation of the inhomogeneous scalar dissipation rate model is based upon the

PDF transport equation, which is given by

∂〈ρ〉P̃ (η)

∂t
+

∂

∂xi

(
〈ρ〉〈ui|η〉P̃ (η)

)
= − ∂2

∂η2

(
1

2
〈ρ〉P̃ (η)〈χ|η〉

)
, (4.12)

where 〈ui|η〉 is the conditional velocity and P̃ (η) is the Favre-averaged PDF. In Equa-

tion 4.12, macrotransport by molecular diffusion is neglected assuming a large Reynolds

number. The conditional scalar dissipation rate, 〈χ|η〉, can be determined by doubly inte-

grating Equation 4.12. However, in order to complete this process, the conditional velocity,

〈ui|η〉, requires closure.

4.4.1 Linear conditional velocity model

For simplicity, the linear model [19] is commonly used in CMC in order to determine the

conditional velocity and is given by

〈ui|η〉 = ũi +
ũ′′i ξ′′

ξ̃′′2

(
η − ξ̃

)
, (4.13)
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where ũi is the Favre-averaged velocity, ξ̃ the Favre-averaged mixture fraction, ξ̃′′2 the

Favre-averaged mixture fraction variance and ũ′′i ξ′′ the turbulent scalar flux. Further infor-

mation regarding the model is provided in Chapter 3. Substitution of Equation 4.13 into

the PDF transport equation (Equation 4.12) yields

∂〈ρ〉P̃ (η)

∂t
+

∂

∂xi

(
〈ρ〉ũiP̃ (η)

)
+

∂

∂xi

[
〈ρ〉P̃ (η)

ũ′′i ξ′′

ξ̃′′2

(
η − ξ̃

)]
= (4.14)

− ∂2

∂η2

(
1

2
〈ρ〉P̃ (η)〈χ|η〉

)
.

The double integration of Equation 4.14 in mixture fraction space gives an expression for

〈χ|η〉:
1

2
P̃ (η)〈χ|η〉 = − 1

〈ρ〉

[
∂〈ρ〉Ĩ1(η)

∂t
+

∂

∂xi

(
〈ρ〉ũiĨ1(η) + 〈ρ〉 ũ

′′
i ξ
′′

ξ̃′′2
Ĩ2(η)

)]
, (4.15)

where the terms I1 and I2 are given by the following expression

Ĩn =

∫ 1

η

(η0 − η)(η0 − ξ̃)n−1P̃ (η0)dη0, n = 1, 2. (4.16)

Rearranging Equation 4.15, while making use of the equations of continuity and transport

of ξ̃, results in

1

2
P̃ (η)〈χ|η〉 = − ∂

∂t
Ĩ1(η)

︸ ︷︷ ︸
Term I

+

[
−ũi

∂Ĩ1(η)

∂xi

]

︸ ︷︷ ︸
Term II

+

[
−ũ′′i ξ′′

∂

∂xi

(
Ĩ2(η)

ξ̃′′2

)]

︸ ︷︷ ︸
Term III

+ (4.17)

(
Ĩ2(η)

ξ̃′′2

)[
∂ξ̃

∂t
+ ũi

∂ξ̃

∂xi

]

︸ ︷︷ ︸
Term IV

,

Equation 4.17 is in a form that can be implemented into a flow field solver. This version

of the inhomogeneous model for 〈χ|η〉 will be referred to as Inhomogeneous-Linear in the

subsequent sections.

4.4.2 Gradient diffusion conditional velocity model

The validity of the linear model can be questioned for more complex flows where significant

deviations of mixture fraction from its mean are present. In the CMC governing equations
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spatial transport, including the conditional velocity, is usually very small compared to the

other terms, such as micro-mixing and chemical source term. This explains why previous

studies [53, 54] did not observe any significant impact of the conditional velocity model on

their results. However, in the present situation, the model for the conditional velocity is

present in the equation for the conditional scalar dissipation rate, term of prime importance

in CMC at the early stages of mixing. It has been shown that the use of the linear

conditional velocity model is not consistent with the second moment of conserved scalars

with presumed PDF methods [21]. Mortensen [38] proposes to use the gradient diffusion

model of Pope [20], as it is the only known conditional velocity model that is consistent

with the moments of the conserved scalars. Following Mortensen’s work, it is decided to

use the gradient diffusion model for the conditional velocity in the present inhomogeneous

model for 〈χ|η〉. The gradient diffusion model gives

〈ui|η〉 = ũi − Dt

P̃ (η)

∂P̃ (η)

∂xi

, (4.18)

Dt being the turbulent diffusivity. Substitution of Equation 4.18 into Equation 4.12 gives:

∂〈ρ〉P̃ (η)

∂t
+

∂

∂xi

(
〈ρ〉ũiP̃ (η)

)
− ∂

∂xi

(
〈ρ〉Dt

∂P̃ (η)

∂xi

)
= − ∂2

∂η2

(
1

2
〈ρ〉P̃ (η)〈χ|η〉

)
. (4.19)

Following the same methodology as in Section 4.4.1, the conditional scalar dissipation rate

can be found by integrating Equation 4.19 twice in mixture fraction space. The integration

yields

∂〈ρ〉Ĩ1(η)
∂t

+
∂

∂xi

(
〈ρ〉ũiĨ1(η)

)
− ∂

∂xi

(
〈ρ〉Dt

∂Ĩ1(η)

∂xi

)
= −1

2
〈ρ〉P̃ (η)〈χ|η〉. (4.20)

Rearrangement of Equation 4.20. making use of the continuity equation, gives a simplified

form

1

2
P̃ (η)〈χ|η〉 = − ∂

∂t
Ĩ1(η)

︸ ︷︷ ︸
Term I

+

[
−ũi · ∂Ĩ1(η)

∂xi

]

︸ ︷︷ ︸
Term II

+
1

〈ρ〉
∂

∂xi

(
〈ρ〉Dt

∂Ĩ1(η)

∂xi

)

︸ ︷︷ ︸
Term 3

. (4.21)

The first two terms on the right hand side of Equation 4.21 are the same as those in Equa-

tion 4.21, and retain the labels of ’term I’ and ’term II’ used in the Inhomogeneous-Linear

expression. The third term, labelled ’term 3’, is where the Inhomogeneous-Gradient model
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differs from the Inhomogeneous-Linear model. As for Equation 4.17 using the linear model,

Equation 4.21 is implemented directly into the flow field solution within CFX. This version

of the inhomogeneous model using the gradient model for the conditional velocity will be

noted Inhomogeneous-Gradient in the following sections. Further details on the implemen-

tation are given in Section 5.6.

The accuracy of the inhomogeneous turbulent mixing model depends on how well the

presumed form of the PDF and modelled conditional velocity characterize the actual PDF

and conditional velocity of the flow respectively. Even though the β-PDF is known to

characterize the scalar PDF well for homogeneous turbulence, there is no theoretical ex-

planation for this good agreement and its applicability for inhomogeneous flows may be

questionable [38, 39]. Girimaji [35, 39] examined the accuracy of the β-PDF for a range of

simple turbulent flows and concluded that it appears to be a good approximation, partic-

ularly after the early stages of mixing. Devaud et al. [21] compared the results from the

inhomogeneous model (using the linear conditional velocity model) with those of DNS for

turbulent mixing in a channel flow and showed very good agreement. Girimaji’s β-PDF

model was also examined. The inhomogeneous model yielded scalar dissipation rate pro-

files much closer to the DNS data than Girimaji’s model. Girimaji’s model was shown to

predict a peak in scalar dissipation rate at a higher mixture fraction than the inhomoge-

neous model, and significantly overpredicted the DNS data for rich mixtures.

4.5 Summary

This chapter outlined the importance of the scalar dissipation rate in turbulent reacting

flows. Two commonly used mixing models based upon homogeneous turbulence, AMC and

Girimaji’s presumed β-PDF model, were presented. Two forms of a mixing model based on

inhomogeneous turbulence were derived. This model was derived from the PDF transport

equation, and the two formulations differed based on the closure for the conditional velocity

term. The linear and gradient diffusion conditional velocity models were examined. The

computational approach used for the turbulent flow field and in the solution of the CMC

equations are outlined in the following chapter.
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Chapter 5

Computational Method

In this chapter the details of the turbulent flow field solution are provided. The compu-

tational approach of El Sayed et al. [26, 44] serves as the basis for the numerical method

used in this study. The frozen mixing assumption allows the physical flow field to be solved

independently of the CMC calculations. The overall solution methodology for the flow field

and the CMC calculations is outlined, and the computational domain is described. Initial

conditions and boundary conditions are presented, and the implementation of the inho-

mogeneous mixing models in the flow field solution is explained. Model assumptions and

simplifications are discussed.

5.1 Frozen Mixing Assumption

In this study the calculation of the turbulent flow field is decoupled from the CMC rou-

tines. This allows for the flow field calculations to be performed first, and subsequently

used as an input for the CMC calculations. This approximation, referred to as the frozen

mixing assumption, is valid only for early stages of mixing, prior to ignition. Before igni-

tion occurs the density and temperature variations in the jet are small due to slow reaction

rates, and have little effect on the flow field. As a result, the variations can be neglected by

decoupling the flow field solution from the CMC calculations, allowing the flow field to be

solved as a non-reacting field. This approach has been used successfully in previous CMC

46



studies of autoignition [26, 30, 31, 44]. The changes in density and temperature become

very significant after ignition, thus this technique is not applicable in the presence of flames.

5.2 Solution Methodology

The frozen mixing assumption simplifies the autoignition simulations as it allows the solu-

tion to be split into separate steps. The turbulent flow field solution considers the mixing

of fuel and oxidizer within the shock tube, and does not require chemical kinetics to be

considered. Data libraries are exported from the completed flow field solution, and then

cross-stream averaged, to provide the necessary inputs for CMC calculations of species

concentrations and enthalpy. An overview of the solution procedure is presented in Figure

5.1.

A 63 node grid is used in mixture fraction space. This grid has even spacing of 0.00275

between η = 0 and η = 0.1, a region containing the stoichiometric mixture fraction (ηst =

0.055) and the most reactive mixture fraction, which is on the lean side of stoichiometry

(at around η = 0.02 [44]). This lean mixture region is where chemical activity is highest

and ignition will occur, and thus a fine grid is required. For η values above 0.1, the grid is

progressively coarsened up to the pure fuel limit of η = 1. A flow field simulation coupled

with routines to perform the mixing model calculations is performed for each value of η in

the mixture fraction grid. At 50 µs intervals in time 63 output files are generated from the

flow field solutions, one for each of the 63 values in the mixture fraction grid. These output

files each contain radial profiles of flow field data at 28 axial locations, equally spaced by

2.5 mm. A cross-stream averaging routine is implemented for each timestep, reading in

the 63 flow field output files and outputting cross-stream averaged conditional quantities

in one input file for the CMC calculations. In conjunction with previous work [26, 43, 44]

a 75 K rise in the local conditional temperature is used as the criterion for autoignition. El

Sayed [43] examined other ignition criteria for a similar autoignition problem, such as tem-

perature exceeding 2000 K and maximum heat release rate, and found that they yielded

slightly longer ignition delays but similar ignition locations.
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Figure 5.1: Outline of solution procedure.

48



5.3 Turbulent Flow Field Simulation

The axisymmetric computational domain used for the flow field solution has dimensions

of 0.1 m in length and 0.029 m in the radial direction. The domain represents one half

of the experimental shock tube test section due to symmetry in the geometry and flow.

Three-dimensional domains and meshes are required by the CFD code, ANSYS CFX 11.0.

Thus, a 5◦ wedge cutting through the centreline of the shock tube is defined. The compu-

tational domain is shown in Figure 5.2. The overall domain length is shorter than the full

length of the shock tube in the experiments due to the fact that ignition observed in the

experimental study always occurred within the first few centimetres of the injector exit [5].

An axisymmetric unstructured mesh is used, consisting of 259 x 72 x 1 unevenly spaced

nodes in the axial, radial and circumferential directions, respectively. The mesh density

is the highest at the fuel inlet and in the region in which ignition is expected, to more

accurately capture the sharp gradients. Several meshes and domain lengths were tested

and the results presented in this study were shown to be grid independent [44].

kg/s

Adiabatic

No Slip

(1186 K - 1385 K)

V = 605.4 m/s

uel

c c

(1186 K - 1385 K)

C

Figure 5.2: Shock tube computational domain and boundary conditions. Modified from

[26].
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The turbulent mixing field is solved in the commercial CFD software package ANSYS

CFX 11.0 [10] using the standard k-ε model. Additional transport equations for the mean

mixture fraction (Equation 2.54) and its variance (Equation 2.56) are solved within CFX.

These additional variables allow for the calculation of the β-PDF at each location in the

flow field domain. The advection terms are discretized using the second-order high reso-

lution scheme. The time-dependent terms are discretized using the implicit second-order

backwards Euler scheme. An adaptive solution timestep, varied between a minimum of

10−10s and a maximum of 10−6s is utilized to maintain Courant numbers below 5. A max-

imum of 15 coefficient loops are used for each timestep, and solver convergence is based

upon maximum residuals dropping below 10−3.

5.3.1 Initialization and boundary conditions

The domain is initialized with pure air at average temperatures and pressures taken from

the experimental data sets [5]. The boundary conditions are summarized on Figure 5.2.

The walls of the shock tube test section are assumed to be smooth and adiabatic with

no-slip conditions. Due to the very short time periods being examined (less than 3 ms),

there is insufficient time for significant heat transfer from the flow to the walls of the

shock tube. Following the experimental conditions [5], a Mach number equal to 1 (choked

flow) and temperature of 300 K are set at the inlet. The inlet fuel velocity is defined by

assuming an isentropic expansion of the methane jet from the injection pressure of 120

bar to the chamber pressure of approximately 30 bar. The resulting injection velocity was

found to be 608 m/s corresponding to a Reynolds number of 3.57 × 105. Following the

experiments, the injection duration of the methane is 1 ms. After 1 ms the inlet is set to

be a wall boundary condition, and fuel is no longer injected into the computational domain.

5.4 Turbulence Model

The k-ε turbulence model is well known to overpredict the spreading rate of steady state

round jets [6]. The larger rate of spreading directly coincides with an underprediction of
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Table 5.1: k-ε model constants
Cε1 Cε2

Launder and Sharma[8] (standard constants) 1.44 1.92

Pope [56] 1.60 1.92

Ouellette and Hill [57] 1.52 1.92

the penetration length of developing, axisymmetric jets. One method that can be used

to correct this is the modification of the k-ε model constants, Cε1 and/or Cε2. Most

commonly, the value of Cε1 is increased while the standard value of Cε2 is retained. The

standard model constants, as well as two recommended modifications, are presented in

Table 5.1.

One issue with modifying the constants Cε1 or Cε2 is that none of the suggested

modifications are universal. Pope suggests modifying the constant Cε1 to 1.60 to improve

the predictions of turbulent round jets with the k-ε model, but notes that any generality

of the model is lost in doing so [56]. Ouellette and Hill [57] examined predictions of

penetration length predicted by the k-ε model for transient fuel jets at engine relevant

conditions, and found that changing Cε1 to 1.52 improved the results.

5.4.1 Penetration length

No experimental data is available for the turbulent velocity and mixing fields in the shock

tube for the present conditions. Instead, the predicted transient jet penetration length was

compared with the correlation developed by Hill and Ouellette [57] for transient compress-

ible jets at similar conditions. The penetration length is defined as the distance along the

jet centerline extending from the origin to the point where the fuel mass fraction becomes

zero. The correlation was successfully tested against non-reacting experimental data in the

same shock tube used in the present study by Huang and Bushe [47]. The correlation is of

the form

Z

d
√

ρn

ρc

= Γ
(π

4

) 1
4


 unt

d
√

ρn

ρc




1
2

, (5.1)

in which Z is the penetration length, ρn is the density at the nozzle, ρc is the density within

the chamber, un is the velocity at the nozzle, d is the diameter of the nozzle, and Γ is a
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constant equal to 3.0 ± 0.1.

In previous work examining a similar flow configuration utilizing a larger diameter fuel

injector, El Sayed [43] found that setting Cε1 to 1.535 yielded the best agreement with

the penetration length correlation. The modification suggested by Pope [56] (Cε1 = 1.60)

yielded an underprediction of the jet penetration length, while the standard model con-

stant (Cε1 = 1.44) yielded an overprediction [43]. The jet penetration length for the flow

examined in this study utilizing Cε1 = 1.535 is compared with the standard k-ε model

results, and with the correlation of Ouellette and Hill [57] in Figure 5.3.
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Figure 5.3: Penetration length results for Tair = 1337 K.

The jet penetration length results yield identical conclusions to those found by El Sayed

[43]. Setting Cε1 to 1.535 results in the jet penetration length matching the correlation

well. The standard Cε1 value of 1.44 yields lower jet penetration lengths, ranging from

18% lower at 0.05 ms to 10% lower at 1 ms.

However, the homogeneous mixing model results of El Sayed et al. [44] for the same

flow configuration examined in this study use the standard k-ε model constants. The

main objective of this study is to examine the impact of the mixing models based upon

inhomogeneous turbulence on the autoignition predictions, and thus maintaining the same

parameters in the turbulent flow field solution is desirable. To examine the relative effect

on the autoignition results by modifying Cε1 to 1.535, a full autoignition simulation was

performed at Tair = 1337 K using the AMC mixing model. The difference in the igni-

tion delay was found to be less than 2%, while the ignition location moved 5 mm further
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downstream. Thus, with the current results it is concluded that the ignition delays are not

significantly affected by the standard k-ε model, while the resulting ignition locations are

further upstream than they would be with a modified value of Cε1.

5.5 Flow Field Simplification

To reduce the large computational cost of the simulations, the flow field solution for the

air temperature of Tair = 1337 K is used for all five air temperatures examined in this

study. To examine the impact of this simplification, profiles of mean mixture fraction and

its variance are plotted along the centreline (at the ignition time obtained using AMC [44])

and compared with profiles from the other air temperatures in Figures 5.4 to 5.7. For the

two air temperatures closest to 1337 K (Tair = 1385 K in Figure 5.4 and Tair = 1294 K

in Figure 5.5) the difference in the profiles of ξ̃ and ξ̃′′2 is negligible. There are very small

departures from the profiles of the 1337 K flowfield at the tip of the jet, but they are not

expected to have any impact on the autoignition results. The mixture fraction decreases

rapidly along the centreline in the inlet region, from a value of 1 (pure fuel) at the inlet.

Closer to the tip of the jet the decrease in ξ̃ becomes more gradual, due to the spreading of

the fuel jet. The mixture fraction variance reaches a peak early in the inlet region, where

gradients are high, and decreases with increasing axial distance in a manner similar to

mixture fraction.

For the two lowest air temperatures (Tair = 1238 K in Figure 5.6 and Tair = 1186 K

in Figure 5.7), in which ignition is expected after the 1 ms duration of fuel injection, the

difference between the profiles of ξ̃ and ξ̃′′2 are more significant further downstream. Near

the tip of the jet the flow field from Tair = 1337 K predicts higher values of mean mixture

fraction, indicating a slightly higher penetration length. The overall trend of the profiles

remains identical, with a shift of values by a small degree downstream. For Tair = 1238

K and Tair = 1186 K, the differences at the ignition location (from the AMC results [44])

are small. At Tair = 1238 K, ignition was predicted at 30 mm, and for Tair = 1186 K igni-

tion was predicted at 37.5 mm. At both locations the relative difference in mean mixture

fraction and variance are small. Further, the overall predicted behaviour of the flow field

remains the same. The spike in ξ̃′′2 that is observed at the tip of the jet at Tair = 1238 K

and Tair = 1186 K is due to sharp gradients of mixture fraction in the axial direction that
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are present at the tip of the jet. This increase in variance at the jet tip is also present for

the higher air temperatures, but is not as noticeable as it is for the lower temperatures.

The reason for this is that the gradients in the inlet region are much higher for those higher

temperature flow fields due to the fact that the times in which the ξ̃′′2 profiles are being

examined are, unlike the lowest temperatures, during methane injection. The fact that

injection has ceased can be observed in the mixture fraction profiles, which increase with

increasing axial distance, from 0 (pure air) at the inlet rather than 1 (pure fuel). The values

for ξ̃ along the centreline for Tair = 1238 K and Tair = 1186 K are considerably smaller

than those observed for the higher air temperatures, falling below 0.1 and 0.05 respectively.
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Figure 5.4: Centreline profiles of ξ̃ and ξ̃′′2 at t = 0.37 ms.

To examine the difference in the flow fields near expected ignition, the radial profiles of

mean mixture fraction and its variance are also examined for each air temperature at the

time and axial location of predicted ignition from previous results using the AMC model

[44]. These profiles are presented in Figures 5.8 to 5.11. The results coincide with the

trends noted in the profiles of ξ̃ and ξ̃′′2 along the centreline. or the two air temperatures

closest to 1337 K (Tair = 1385 K in Figure 5.8 and Tair = 1294 K in Figure 5.9) the differ-

ence in the profiles of ξ̃ and ξ̃′′2 is negligible. Once again, a larger degree of difference is

noted for the two lowest air temperatures, Tair = 1238 K in Figure 5.10 and Tair = 1186

K in Figure 5.11. The overall trend of the radial profiles remains the same, but the 1337

K flow field predicts higher mean mixture fraction and variance for Tair = 1238 K near
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Figure 5.5: Centreline profiles of ξ̃ and ξ̃′′2 at t = 0.80 ms.
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Figure 5.6: Centreline profiles of ξ̃ and ξ̃′′2 at t = 1.25 ms.
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Figure 5.7: Centreline profiles of ξ̃ and ξ̃′′2 at t = 1.95 ms.
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Figure 5.8: Radial profiles of ξ̃ and ξ̃′′2 at x = 17.5 mm, t = 0.37 ms.
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Figure 5.9: Radial profiles of ξ̃ and ξ̃′′2 at x = 22.5 mm, t = 0.80 ms.
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Figure 5.10: Radial profiles of ξ̃ and ξ̃′′2 at x = 30 mm, t = 1.25 ms.
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Figure 5.11: Radial profiles of ξ̃ and ξ̃′′2 at x = 37.5 mm, t = 1.95 ms.

the centreline. In contrast, the 1337 K flow field yields lower values for both ξ̃ and ξ̃′′2 for

Tair = 1186 K. The reason for the difference can be observed by examining the centreline

profiles in Figures 5.6 and 5.7. At x = 30 mm in Figure 5.6 (for Tair = 1238 K), both ξ̃ and

ξ̃′′2 are in an area of negative slope as this is a location near the tip of the jet, behind the

leading spherical vortex, where gradients of the mean mixture fraction are getting smaller

due to mixing. In the 1337 K flow field the increased jet penetration length means that

this region of decreasing mixture fraction and variance is shifted slightly upstream, which

results in larger values of ξ̃ and ξ̃′′2 across the jet. At x = 37.5 mm in Figure 5.7 (for Tair

= 1186 K), it can be seen that the AMC ignition location is in a region where both mean

mixture fraction and its variance are increasing with axial location. Unlike the 1238 K

flow field, there is not a region behind the tip of the jet in which ξ̃ and ξ̃′′2 are decreasing,

due to the fact that the profiles in Figure 5.7 are at a much later time (considerably after

ignition of fuel has ceased) and far more mixing has taken place. Thus, the increased jet

penetration length in the 1337 K flow field results in lower values of ξ̃ and ξ̃′′2 in the radial

profiles.

The use of the 1337 K flow field for all five air temperatures is not expected to have

a large effect on the autoignition results. The behaviour of mean mixture fraction and its

variance remains identical, and the small difference in the flow fields lies in the degree of

jet penetration. For the lowest two air temperatures, the difference in jet penetration may

cause a small impact on the predicted axial ignition location. However, the downstream
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shift in centreline profiles of ξ̃ and ξ̃′′2 observed in Figures 5.6 and 5.7 is on the order of

the axial grid spacing, and thus the resulting change is expected to be very minor.

5.6 Mixing Model Implementation

Equations 4.17 and 4.21 are implemented into ANSYS CFX 11.0 through the use of FOR-

TRAN routines. For consistency with the CMC calculations, a presumed β PDF form is

selected and is given by

P (η) =
ηα−1(1− η)β−1

Ib
with Ib =

∫ 1

0

ηα−1(1− η)β−1dη. (5.2)

The parameters α and β are calculated from the flow solution using the Favre-averaged

mixture fraction, ξ̃, and its variance ξ̃′′2, using

α = ξ̃


 ξ̃

(
1− ξ̃

)

ξ̃′′2
− 1


 and β =

(
1− ξ̃

)

 ξ̃

(
1− ξ̃

)

ξ̃′′2
− 1


 . (5.3)

In the calculations of α and β, cutoff values of 10−5 and 10−8 are used for ξ̃ and ξ̃′′2,

respectively. Below these cut-off values, the PDF tends to a delta function close to η =

0 or η = 1 and no turbulent mixing takes place. Separate routines are implemented to

calculate I1, I2, and the temporal derivatives of I1 and ξ̃. These terms are used within the

CFX solver to calculate the product of the PDF and the conditional scalar dissipation rate,

P̃ (η)〈χ|η〉, at every location in the domain. All computations are performed in double

precision. The integrations performed in the routines for I1 and I2 utilize the adaptive

quadrative routines of QUADPACK [58], and use a 1000 point grid in mixture fraction

space. To avoid problems of numerical error the integrations for I1 and I2 are performed

between 0 and η for values of η less than ξ̃, and between η and 1 for values of η greater

than or equal to ξ̃, as suggested by Devaud et al.[21]. Using the appropriate boundary

conditions for I1 and I2

Ĩ1(0) = ξ̃, Ĩ1(1) = 0, Ĩ2(0) = ξ̃′′2 and Ĩ2(1) = 0 (5.4)

I1 and I2 are now calculated following Equations 5.5-5.8.

Ĩ1(η) = ξ̃ − η −
∫ η

0

(
η0 − η

)
P̃ (η0)dη0 for η < ξ̃, (5.5)
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Ĩ1(η) =

∫ 1

η

(
η0 − η

)
P̃ (η0)dη0 for η ≥ ξ̃, (5.6)

Ĩ2(η) = ξ̃′′2 −
∫ η

0

(
η0 − η

) (
η0 − ξ̃

)
P̃ (η0)dη0 for η < ξ̃, (5.7)

Ĩ2(η) =

∫ 1

η

(
η0 − η

) (
η0 − ξ̃

)
P̃ (η0)dη0 for η ≥ ξ̃. (5.8)

The inhomogeneous model can potentially give negative values for the conditional scalar

dissipation rate in very low probability regions. Values of 〈χ|η〉 below zero are not physical,

and may arise due to the fact that the linear conditional velocity model is not a good

approximation for η values far from the mean mixture fraction, ξ̃ [21], or that the gradient

model gives excessively high magnitudes of the conditional velocity in low probability

regions [24]. Negative values that are calculated for P̃ (η)〈χ|η〉 are set equal to zero in the

flow field calculations.

5.7 Cross-stream Averaged Solution

Due to the weak dependence of conditional averages of scalars on the radial coordinate in

self similar shear flows, cross-stream averaging is employed to greatly reduce the compu-

tational expense of solving the CMC equations [12, 41]. Klimenko [17] suggests that the

radial dependence of the PDF should be assumed to be greater than that of the conditional

mean concentrations. To account for this dependence the PDF-weighted axial component

of the CMC equations is integrated in the radial direction. This simplification, referred to

as the shear flow approximation, is discussed further in Section 3.5. This procedure allows

for the CMC equations to be greatly simplified, reducing the dimensionality of the prob-

lem. For a given scalar, ψ(x,r,t), in an axisymmetric flow the PDF-weighted cross-stream

average is defined as

ψR+(x, t) =

∫ R

0
ψ(x, r, t)P̃ (x, r, t, η)rdr∫ R

0
P̃ (x, r, t, η)rdr

, (5.9)

where P̃ (x, r, t, η) is the Favre-averaged PDF and R is a cutoff radius larger than the

width of the region of mixing. For each axial location flow field data is exported into data
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libraries to be read in by the cross-stream averaging code. The cut-off radius, R, is set to

be the radial position at which the Favre-averaged mixture fraction, ξ̃, drops below 10−3.

More stringent cut-off values were tested, and yielded negligible changes. A FORTRAN

routine is used to determine the cross-stream averages for quantities that are output from

the flow field solution, on an equally spaced axial grid of 29 points. To reduce error in

numerical integration of Equation 5.9, the radial profiles from the flow field solution are

linearly interpolated onto a 500 point radial grid. The cross-stream averaging routine

uses trapezoidal numerical integration and outputs the necessary cross-stream averaged

conditional quantities into libraries that are used in the solution of the CMC equations.

Applying Equation 5.9 to the conditional species transport equation, and considering

the shear flow approximation, which allows conditional average of scalars to be moved

outside the integral due to their weak dependence on the radial coordinate, yields the

cross-stream averaged equation

∂Qα

∂t
= −

[
{〈ux|η〉}R+ −

{
Dt

〈ρ〉P̃
∂(〈ρ〉P̃ )

∂x

}

R+

−
{
∂Dt

∂x

}

R+

]
∂Qα

∂x
(5.10)

+{Dt}R+

∂2Qα

∂x2
+

1

2
{〈χ|η〉}R+

∂2Qα

∂η2
+
〈ω̇α|η〉
ρη

.

5.8 Fractional Step Method

In the solution of the CMC equations, the fractional step method (also known as operator

splitting) is implemented [59, 60]. In this method a Partial Differential Equation (PDE) is

split into two or more simpler, coupled ODEs which are solved in individual steps over se-

quential fractions of the timestep. The solution of an ODE over one fraction of the timestep

provides initial conditions for the ODE in the subsequent timestep. This approach is valid

provided the change in variables within the ODE are not large over the timestep. The

main advantage in operator splitting lies in being able to treat terms in a complicated

ODE differently based upon their nature. For example, stiff terms can be isolated and

solved with a solution method that would not be necessary for non-stiff terms.

For the conditional species mass fraction transport equations, the fractional step method

is advantageous because it allows for the stiff chemical source term to be treated separately

from the other, non-stiff terms in the equation.
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∂Qα

∂t
= −

[
{〈ux|η〉}R+ −

{
Dt

〈ρ〉P̃
∂(〈ρ〉P̃ )

∂x

}

R+

−
{
∂Dt

∂x

}

R+

]
∂Qα

∂x
+ {Dt}R+

∂2Qα

∂x2

︸ ︷︷ ︸
Physical transport terms

(5.11)

+
1

2
{〈χ|η〉}R+

∂2Qα

∂η2

︸ ︷︷ ︸
Micro-mixing term

+
〈ω̇α|η〉
ρη

.

︸ ︷︷ ︸
Chemical source term

In the first step of the solution process, the non-stiff physical transport terms are solved

using LU-decomposition over the interval [t, t+dt/2]. The physical transport terms deal

only with physical space in the x-coordinate. The conditional species mass fractions from

the first fractional step are used as the initial conditions for the second. In the second step

the stiff chemical source term, as well as the micro-mixing term for convenience, are solved

using a stiff ODE solver, VODE [61], over the interval [t,t+dt]. These two terms both deal

with only the mixture fraction, or η coordinate. The third step consists of the physical

transport terms again being solved over the last half of the timestep, [t+dt/2, t+dt].

5.8.1 Physical transport terms

∂Qα

∂t
= −

[
{〈ux|η〉}R+ −

{
Dt

〈ρ〉P̃
∂(〈ρ〉P̃ )

∂x

}

R+

−
{
∂Dt

∂x

}

R+

]
∂Qα

∂x
+ {Dt}R+

∂2Qα

∂x2
(5.12)

For all internal nodes (1 ≤ i < Nx, where Nx is the total number of axial positions)

first order backward differencing is used for first derivatives, and second order central

differencing for second derivatives.

∂Qα

∂x
=
Qα|i −Qα|i−1

∆x
, (5.13)

∂2Qα

∂x2
=
Qα|i+1 − 2Qα|i +Qα|i−1

(∆x)2
, (5.14)

Substituting the above derivative approximations into Equation 5.12 and making use

of the following simplification

Ψ|t+∆t
i = −

[
{〈ux|η〉}R+ −

{
Dt

〈ρ〉P̃
∂(〈ρ〉P̃ )

∂x

}

R+

−
{
∂Dt

∂x

}

R+

]
, (5.15)
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yields

∂Qα

∂t
= Ψ|t+∆t

i

[
Qα|i −Qα|i−1

∆x

]
+ {Dt}R+

[
Qα|i+1 − 2Qα|i +Qα|i−1

(∆x)2

]
. (5.16)

Integration of Equation 5.16 with respect to time and use of the fully implicit scheme at

node i leads to

Qα|t+∆t
i −Qα|ti = Ψ|t+∆t

i

[
Qα|t+∆t

i −Qα|t+∆t
i−1

∆x

]
∆t (5.17)

+{Dt}R+

[
Qα|t+∆t

i+1 − 2Qα|t+∆t
i +Qα|t+∆t

i−1

(∆x)2

]
∆t.

To simplify Equation 5.17, it can be rewritten

Qα|ti,j = AQα|t+∆t
i−1 +BQα|t+∆t

i + CQα|t+∆t
i+1 (5.18)

where

A =

[
Ψ|t+∆t

i

∆x
− {Dt}R+

(∆x)2

]
∆t, (5.19)

B =

[
1− Ψ|t+∆t

i

∆x
+

2{Dt}R+

(∆x)2

]
∆t, (5.20)

C =

[
−{Dt}R+

(∆x)2

]
∆t, (5.21)

This discretized equation and its corresponding coefficients apply at all interior axial nodes

(1 < i < Nx). At the furthest axial node in the 1-D grid (i = Nx) first order backwards

differencing is used for both first and second derivatives.

∂2Qα

∂x2
=
Qα|t+∆t

i − 2Qα|t+∆t
i−1 +Qα|t+∆t

i−2

(∆x)2
, (5.22)

In a manner similar to that for the internal nodes, the substitution of the above derivative

approximation into Equation 5.12, with subsequent simplification, yields

Qα|ti,j = AQα|t+∆t
i−1 +BQα|t+∆t

i + CQα|t+∆t
i−2 , (5.23)
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in which

A =

[
Ψ|t+∆t

i

∆x
− 2{Dt}R+

(∆x)2

]
∆t, (5.24)

B =

[
1− Ψ|t+∆t

i

∆x
− {Dt}R+

(∆x)2

]
∆t, (5.25)

C =

[
−{Dt}R+

(∆x)2

]
∆t. (5.26)

The composition at the first axial node (Qα|i=1), which corresponds to the injector

inlet, is known at all times. Using Equations 5.18 and 5.22, the system of equations can

be represented by the following matrix.



1 0 0 0 · · · 0 0 0

A2 B2 C2 0 · · · 0 0 0

0 A3 B3 C3 · · · 0 0 0
...

...
. . .

...
...

0 0 0 0 · · · ANx−1 BNx−1 CNx−1

0 0 0 0 · · · ANx BNx CNx




×




Qα|t+∆t
1

Qα|t+∆t
2

Qα|t+∆t
3
...

Qα|t+∆t
Nx−1

Qα|t+∆t
Nx




=




Qα|t1
Qα|t2
Qα|t3

...

Qα|tNx−1

Qα|tNx




This system of equations is solved using the LU-decomposition method. The solution is

implemented with two FORTRAN routines - LUDCMP and LUBKSB [59]. The routine

LUDCMP performs the LU-decomposition using Crout’s algorithm and implicit pivoting

[59]. This is used in conjunction with LUBKSB, which performs the required forward and

back substitutions, to obtain the solution to the equation set.

5.8.2 Chemical source and micromixing terms

The stiff chemical source term, along with the micromixing term, are solved in the second

fractional step, with the solutions from the previous fractional step (solving the physical

transport terms) used as initial conditions.

∂Qα

∂t
=

1

2
{〈χ|η〉}R+

∂2Qα

∂η2
+
〈ω̇α|η〉
ρη

. (5.27)
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Equation 5.27 is solved using the double precision version of the ODE solver VODE [61]

at each axial position. VODE is a variable step ODE solver that utilizes variable coefficient

Backwards Differentiation Formula (BDF) methods for solving stiff systems [62]. The user

interface allows input for the overall time step, absolute and relative solution tolerances,

and maximum number of internal time steps used. For this study the overall time step

implemented is 50 µs, which corresponds to the interval between exported data libraries

from the flow field calculations, along with a maximum of 1500 internal time steps. The

relative tolerance used is 10−5, the absolute tolerance is 10−20. Further details of the VODE

solver can be found in references [61] and [62].

5.9 Linear Coupling of Enthalpy and Mixture

Fraction

For the conditions being examined in this study, enthalpy is conserved. This is because

radiation is negligible prior to ignition, as soot and flames are both absent in the shock

tube. In previous work, El Sayed and Devaud [26] showed that the pressure fluctuations,

and hence the pressure work, was also negligible. With these terms removed, the enthalpy

transport equation takes the form

∂(ρh)

∂t
+
∂(ρuih)

∂xi

=
∂

∂xi

(
ρDα

∂h

∂xi

)
. (5.28)

Equation 5.28 is of identical form to the transport equation for mixture fraction,

∂(ρξ)

∂t
+
∂(ρuiξ)

∂xi

=
∂

∂xi

(
ρDα

∂ξ

∂xi

)
, (5.29)

and is therefore also a conserved scalar. With this simplified enthalpy equation, the en-

thalpy can be related to the mixture fraction by the linear coupling relation

h = h2 + ξ(h1 − h2). (5.30)

in with h1 is the enthalpy of the fuel, and h2 is the enthalpy of the air. Conditionally

averaging this expression with respect to η yields a linear relation for determining the

conditional enthalpy

Qh = 〈h2|η〉+ η(〈h1|η〉 − 〈h2|η〉). (5.31)
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The conditional temperature, QT , can be calculated either from its transport equation, or

from Qh. However, QT is not a linear function of Qh due to the temperature dependence

of Cp. In this study iterative linear interpolation is used to calculate QT from Qh. This

approach is advantageous in that is saves computational expense when compared with solv-

ing the transport equation for conditional temperature. In previous work, El Sayed and

Devaud [26], solved for QT using linear interpolation and through the transport equations,

and found the differences to be negligible.

5.10 Chemical Kinetics

The chemical kinetics package CHEMKIN II [63], developed by Sandia National laborato-

ries for gas-phase reacting flows, is used in this study. This FORTRAN package is used to

compute reaction rates, and important thermodynamic quantities such as specific heats.

The CHEMKIN package consists of five components, two of which are user-supplied files

and must correspond to the format required by CHEMKIN. The chemical kinetics mecha-

nism, specific to the combustion application of the individual study, is provided by the user

along with a database of thermodynamic data for the species involved in the mechanism.

The CHEMKIN Interpreter is a piece of code that reads in the chemical mechanism and

takes the relevant thermodynamic data from the thermodynamic data library. The output

of the Interpreter is called the Linking File. This file contains all important information

regarding elements, species and reactions in the chemical kinetics mechanism. The Linking

File is initialized to create three data arrays that are used within subroutines in the final

part of the package, the Gas-Phase Subroutine Library. This Library contains subroutines

that are used to calculate chemical reaction rates, thermodynamic properties, and all rel-

evant quantities concerning the species and reactions involved in the mechanism. In the

context of this study, these subroutines return the required species production rates in the

solution of the CMC equations.
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5.10.1 Chemical kinetics mechanism

The chemical kinetics mechanism UBC Mech 1.0 [64] is used in this study. This methane

oxidation mechanism consists of 38 species, 192 reactions, and is optimized for methane

combustion at pressure above 16 atmospheres and temperatures between 1000 K and 1350

K. The conditions in which the mechanism is intended match the autoignition problem of

this study. UBC Mech 1.0 is based upon the modified GRI-mech 2.1 mechanism of Petersen

et al. [65], but contains six additional species and utilizes different thermodynamic data.

Performance of the mechanism was evaluated against experimental ignition delay data for

methane autoignition in a shock tube for a range of pressures up to 40 atmospheres and

showed very good agreement [64].

5.11 Summary

The computational nethodology employed in this study was presented in this chapter. The

flow field simulations and the implementation of cross-stream averaging were described.

The well known deficiencies of the k-ε model for free shear flows was addressed, and the

penetration length of the flow field solution was examined. The accuracy of using one air

temperature flow field for all five air temperatures was addressed. The overall behaviour

of the jet development remained the same, but small differences in penetration were noted.

The fractional step approach to solving the cross-stream averaged CMC equations was

outlined, and the linear coupling of mixture fraction and enthalpy was explained. Chem-

ical kinetics mechanism UBC Mech 1.0 was described and its implementation through

CHEMKIN II was summarized. In the next chapter the performance of the two formu-

lations of the inhomogeneous mixing model, and their relevant closures for conditional

velocity, are assessed. Autoignition results are presented and compared with previous re-

sults and experimental data.

67



Chapter 6

Inhomogeneous Model Results

In this section the results from the inhomogeneous mixing model, with the linear and

gradient models for conditional velocity, are presented and compared. In addition to the

cross-stream averaged quantities of interest, profiles of conditional velocity, conditional

scalar dissipation rate, and equation budgets at specific points in physical space are also

examined. Autoignition predictions from the two formulations of the inhomogeneous model

are compared with results using homogeneous mixing models [44] and experimental data

[5].

6.1 Physical Locations for Analysis

Two axial locations and times are selected that represent two important areas of the jet.

The first, at a distance of 0.5 cm from the injector 0.3 ms after injection, illustrates the

mixing field close to the injector at an early stage of mixing. The second, at a distance of

2 cm from the injector 0.7 ms after injection, roughly corresponds to the location and time

of ignition at Tair = 1337 K for the two implementations of the inhomogeneous model. At

both axial locations three radial positions are examined. These three points correspond to

the jet centreline, a point approximately halfway to the edge of the jet, and a point near

the edge of the jet where the mean mixture fraction is near the most reactive mixture.

Figure 6.1 shows the six points in physical space that are examined along with contours of

the mean mixture fraction at 0.3 ms and 0.7 ms respectively.
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Figure 6.1: Physical locations for results comparison with mean mixture fraction contours.

6.2 Conditional Velocity

6.2.1 Conditional velocities without cross-stream averaging

The axial and radial conditional velocity behaviour of the linear and gradient conditional

velocity models provide some insight into the applicability of the models and their influ-

ence on the conditional scalar dissipation rate. Figure 6.2 presents the axial and radial

conditional velocities at x = 5 mm and t = 0.3 ms. At all three radial positions, the

conditional velocities from the gradient model differ considerably from the linear model for

some values of η. Along the centreline, in Figure 6.2 (a), the gradient and linear models

yield similar results for the axial conditional velocity between η values of 0.2 and 0.6. This

region corresponds to roughly three to four standard deviations about the mean mixture

fraction. Below η = 0.2 and above η = 0.6 the gradient model yields sharply increasing

values which depart significantly from the linear relationship. Similar behaviour is ob-

served at a radial position of r = 0.5 mm, shown in Figure 6.2 (c). The gradient and linear

models correspond closely between η values of 0.1 and 0.5, but the gradient model shows

increasing divergent behaviour on both the lean and rich side of that range. In contrast,

near the edge of the jet, in Figure 6.2 (e), the two conditional velocity models are in close

agreement for the entire lean region. The gradient model only diverges from the linear

relationship near η = 0.7, where the axial velocity approaches large negative values. To

explain this behaviour it is useful to examine the plots of the PDF at each of these three
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locations, shown in Figures 6.5 (b), (d), and (f) respectively. The regions in which the gra-

dient model’s conditional axial velocity diverges from the linear relationship corresponds

to regions of very low probability. This causes the gradient conditional velocity model to

yield large positive and negative values in areas in which the PDF approaches zero. The

unphysical behaviour of the gradient model utilizing a β-PDF in low probability regions

was also noticed by Mortensen and de Bruyn Kops [24]. Similar trends in the conditional

velocity have also been noted by Sawford [66] using the Interaction by Exchange with the

Conditional Mean (IECM) model to examine a scalar mixing layer in a Lagrangian frame-

work, and Brethouwer and Nieuwstadt [67] using DNS to investigate conditional statistics

in a turbulent channel flow.

The radial conditional velocities show similar behaviour, as shown in Figures 6.2 (b)

(d) and (f). However, for the centreline the gradient model is in agreement with the linear

model for a much larger range of η values. It is only below η = 0.1 that the gradient model

diverges from the linear relationship, although the magnitude of the velocity remains small.

Similarly in Figure 6.2 (d), for a radial position of 0.5 mm, the gradient model matches

the linear behaviour closely for the range of η values from 0.1 to 1. Below 0.1 the gradient

radial conditional velocity also diverges to very large negative velocities. Near the edge

the jet the radial conditional velocity exhibits similar behaviour to the axial conditional

velocity, with the exception of the gradient model diverging to very large positive values

above η = 0.7 for the radial velocity as opposed to the negative values observed in the

axial direction.

The conditional velocities further downstream at x = 20 mm and t = 0.7 ms, in Figure

6.3 show similar behaviour. Figure 6.3 (a) shows the axial conditional velocities on the

centreline, and the gradient and linear models correspond closely from η = 0 to η = 0.3.

For values of η above 0.3 the gradient model diverges to much higher values than the linear

model. The behaviour at r = 1.5 mm is very similar to the centreline, as shown in Figure

6.3 (c). For η values from 0 to roughly 0.2 the gradient and linear models are in reasonable

agreement, although there is a small sharp increase in values for the gradient model very

close to η = 0. Above η = 0.2 the gradient model diverges to very large positive velocities.

Near the edge of the jet, in Figure 6.3 (e) the trend is the same, however the range over

which the gradient and linear models agree is considerably smaller. The gradient model

axial velocity shows approximately linear behaviour from η ' 0.05 to approximately η =

0.1, after which it yields continually increasing values, as opposed to decreasing values from
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Figure 6.2: Axial (left) and radial (right) conditional velocity profiles at x = 5 mm, t =

0.3 ms.
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the linear model. Examining the PDF profiles at these three points, in Figures 6.6 (b),

(d), and (f) respectively, it can be seen that the range of η values over which the two con-

ditional velocity models are in reasonable agreement roughly corresponds to the width of

the non-zero part of PDF. For the centreline and r = 1.5 mm, after the corresponding PDF

approaches zero, at approximately η = 0.25 and η = 0.2 respectively, the gradient axial

conditional velocities diverge to very large values for richer mixtures. Near the edge of the

jet the range of agreement between the two models is even smaller, which corresponds to

the very narrow PDF observed in Figure 6.6 (f), which approaches zero at approximately

η = 0.15.

The radial conditional velocities at x = 20 mm and t = 0.7 ms exhibit very similar

behaviour. Along the centreline and at r = 1.5 mm, in Figure 6.3 (b) and (d), the gradient

radial conditional velocity diverges from the linear relationship for η values above roughly

0.2, which is similar to the axial velocity behaviour, with the exception of divergence to

large negative instead of positive values. For rich mixtures the gradient model yields rapidly

decreasing values for the velocity, in sharp contrast to the increasing values from the linear

model. Near the edge of the jet, in Figure 6.3 (e), the gradient model yields significantly

different conditional radial velocities for η values greater than 0.1, but without diverging

behaviour. The gradient profile is nearly linear, but with a significantly lower slope than

that of the linear model. These rich regions in which the gradient model shows a clear

departure from the linear model correspond to areas in which the PDF approaches zero,

as shown in Figures 6.6 (b), (d), and (f). Along the centreline the overall magnitude of the

radial conditional velocity from the gradient model remains small, but the divergence from

linear behaviour is still significant as radial velocity along the centreline in an axisymmetric

system should remain at zero. At r = 1.5 mm, the divergence of the gradient model for

very lean mixtures also produces large negative velocities. The diverging behaviour close

to η = 0 corresponds to regions in which the PDFs are also close to zero. While the low

values of PDF in these lean regions did not cause the axial velocity to diverge, the impact

is more noticeable with the radial conditional velocity. Near the edge of the jet the gradient

radial velocity yields values similar to the linear model for only a short range of η values

up to approximately 0.1. After 0.1 the gradient model shows somewhat linear behaviour

rather than divergence to ∞ or −∞, but with a very different slope than that of the linear

model.
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Figure 6.3: Axial (left) and radial (right) conditional velocity profiles at x = 20 mm, t =

0.7 ms.
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6.2.2 Cross-stream averaged conditional velocities

The axial and radial conditional velocities appear in the mixing model expressions, Equa-

tions 4.17 and 4.17, and have a direct impact on the values of 〈χ|η〉 that are obtained.

The conditional velocity also appears in the CMC equations, but since the cross-stream

averaged form of these equations are being solved, only the cross-stream averaged axial

conditional velocity is considered in the CMC equations. Therefore the radial conditional

velocities will only have an impact on the conditional scalar dissipation rate. The cross-

stream averaged axial conditional velocities are shown in Figure 6.4. For x = 5 mm and

t = 0.3 ms the cross-stream averaging yields profiles for the gradient and linear models

that are very similar. From η = 0 to η = 0.6 the curves are nearly identical, and above

η = 0.6 the gradient model produces slightly higher velocities. In the area of interest, for

lean values around the stoichiometric mixture fraction of 0.055, the cross-stream averaged

axial velocities are in good agreement. Further downstream at a later time, at x = 20

mm and t = 0.7 ms, shown in Figure 6.4 (b), the gradient and linear models show close

agreement for the interval η = 0 to η = 0.2. Above η = 0.2 the gradient model shows very

different behaviour than the linear model, decreasing slightly before increasing sharply to

a peak at η = 0.8. The discrepancy with the cross-stream averaged velocities after η =

0.2 corresponds to the divergence seen in Figure 6.3, and is related to the PDF quickly

approaching zero near η = 0.2 for each of the three points examined in the width of the

jet. Due to the fact that the gradient and linear cross-stream averaged conditional velocity

profiles are so similar in the region of interest for autoignition (around the stoichiometric

mixture fraction and the most reactive mixture), this shows that the impact of the two

conditional velocity models will be the greatest through their influence on the conditional

scalar dissipation rate that is obtained through the mixing model.
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Figure 6.4: Cross-stream averaged axial conditional velocity.

6.3 Conditional Scalar Dissipation Rate

6.3.1 Conditional scalar dissipation rate without cross-stream

averaging

The resulting conditional scalar dissipation rates from the inhomogeneous mixing model,

using both the gradient and linear conditional velocity models are examined and com-

pared at the physical locations shown in Figure 6.1. For x = 5 mm and t = 0.3 ms, the

profiles of the conditional scalar dissipation rate-PDF product are shown on the left of

Figure 6.5, while the PDF profiles are shown on the right. The difference between the

Inhomogeneous-Gradient and Inhomogeneous-Linear results are greatest along the centre-

line, shown in Figure 6.5 (a). The peak value of approximately 55000 s−1 for 〈χ|η〉P̃ (η)

from the Inhomogeneous-Gradient model is nearly an order of magnitude greater than the

peak observed for the Inhomogeneous-Linear model. The Inhomogeneous-Gradient model

also exhibits an extensive plateau at the peak value along the centreline, which starts at

very lean values of η and continues past η = 0.2. The plateau region corresponds to η

values in which the PDF, shown in Figure 6.5 (b), is approaching zero. Over the range of η

= 0 to η = 0.7, the Inhomogeneous-Gradient model yields far higher values for 〈χ|η〉P̃ (η),

until both models approach zero for very rich mixtures. At a radial position of r = 0.5

mm, shown in Figure 6.5 (c), the Inhomogeneous-Gradient model also yields much higher
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〈χ|η〉P̃ (η) values than the Inhomogeneous-Linear model, but the large plateau region at

the peak value is no longer present. A small plateau at a value of approximately 12000 s−1

is noticeable at η values near zero, but this is considerably lower than the peak value and

spans a much smaller interval of η than the plateau on the centreline. The small plateau

region is also over values of η in which the PDF approaches zero, as illustrated in Figure

6.5 (d). At η values above 0.05, the Inhomogeneous-Gradient model yields similar trends

to the Inhomogeneous-Linear model, but with considerably higher values. Near the edge of

the jet, presented in Figure 6.5 (e), the Inhomogeneous-Gradient model results correspond

closely to those from the Inhomogeneous-Linear model. This progression shows that the

difference in the 〈χ|η〉P̃ (η) profiles between the two models is greatest at the core of the

jet, and diminishes toward the edge of the mixing layer. In all cases, the linear 〈χ|η〉P̃ (η)

values always tend to 0 towards to the two bounds of mixture fraction space, i.e at η=0

and η= 1, and the location of the peak in mixture fraction closely follows the location of

the PDF peak, consistent with the expected behaviour [12].

Further downstream and later in the mixing process, similar behaviour in the profiles

of 〈χ|η〉P̃ (η) are observed. Figure 6.6 shows the profiles of 〈χ|η〉P̃ (η) on the left, and

the PDF on the right, at x = 20 mm and t = 0.7 ms. Along the centreline, in Figure

6.6 (a), the peak value from the Inhomogeneous-Gradient model is well over an order of

magnitude larger than the peak from the Inhomogeneous-Linear model. Once again, the

Inhomogeneous-Linear model exhibits the general behavioural trend (similar to that of the

PDF) that is expected for the 〈χ|η〉P̃ (η) profile, while the Inhomogeneous-Gradient model

has a large plateau region at its peak value that spans from η = 0 to η = 0.1. As before,

the plateau region of 〈χ|η〉P̃ (η) matches the lean mixture η values at which the PDF is

approaching zero. At a radial position of r = 1.5 mm, in Figure 6.6 (c), the plateau region

for the Inhomogeneous-Gradient model extends over a smaller range of η near η = 0, and

is at a value lower than the peak. In a manner similar to that observed in the upstream

behaviour in Figure 6.5 (c), the Inhomogeneous-Gradient profile exhibits a similar general

trend to the Inhomogeneous-Linear profile after the plateau region, but with significantly

higher values. Close to the edge of the jet the two profiles become close in shape and

magnitude, as shown in Figure 6.6 (e). The peak of the Inhomogeneous-Gradient model is

still higher than the peak from the Inhomogeneous-Linear model, and occurs at a leaner

value of η, but the discrepancy between the profiles is significantly less than it is closer
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Figure 6.5: 〈χ|η〉P̃ (η) (left) and PDF (right) profiles at x = 5 mm, t = 0.3 ms.
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Figure 6.6: 〈χ|η〉P̃ (η) (left) and PDF (right) profiles at x = 20 mm, t = 0.7 ms.
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to the centreline. In both axial locations, shown in Figures 6.5 and 6.6, the discrepancy

between the two implementations of the inhomogeneous model is noted to decrease as the

peak of the PDF moves to leaner mixtures.

The plateau regions being observed in the Inhomogeneous-Gradient profiles of 〈χ|η〉P̃ (η)

near the centreline of the jet are unphysical and correspond to the divergent behaviour ob-

served in the gradient conditional velocity model at the low-probability regions. This in-

dicates that the numerical issues in the gradient conditional velocity model carry through

the inhomogeneous mixing model and cause unphysical behaviour in the profiles of the

conditional scalar dissipation rate. As the PDF increases at low η values the two versions

of the inhomogeneous model yield similar profiles. Near the edge of the jet the gradient

and linear conditional velocity models yield similar predictions in both the axial and radial

directions at lean values of η, as shown in Figures 6.2 (e) and 6.3 (e). As a result, the

profiles of 〈χ|η〉P̃ (η) from the two versions of the inhomogeneous mixing model are very

similar at these points. The discrepancy between the conditional velocities at higher η val-

ues at the edge of the jet (for η values above 0.6 for x = 5 mm, and for η values above 0.2

for x = 20 mm) do not seem to have much effect on the corresponding profiles of 〈χ|η〉P̃ (η).

6.3.2 Plateau Correction

The expected behaviour of the 〈χ|η〉P̃ (η) profile is to increase from zero at η = 0 to a

peak value, followed by a decrease to zero with increasing η, similar to the shape of the

PDF. The numerical issues at low probability regions in the gradient conditional velocity

model yield unphysical values in the profile of 〈χ|η〉P̃ (η) from the Inhomogeneous-Gradient

model. To assess the degree to which the plateau region affects the autoignition results,

the large values in the plateau region are set equal to zero. Since only the values within a

lean plateau are considered, this correction will modify the Inhomogeneous-Gradient model

profiles near the core of the jet substantially, while leaving the profiles near the edge of the

jet, where no plateaus occur, unaltered.
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6.3.3 Consistency with the unconditional mean scalar dissipation

rate

For consistency with the mean mixture fraction variance transport equation (Equation

2.56) the conditional scalar dissipation rate determined by a mixing model should return

the mean Favre-averaged scalar dissipation rate given by the expression

χ̃ = 2
ε̃

k̃
ξ̃′′2. (6.1)

This value can be calculated directly in the flow-field solution. The integration of the

product of the conditional scalar dissipation rate and the PDF should yield the same value

for the mean scalar dissipation rate.

χ̃integration =

∫ 1

0

〈χ|η〉P̃ (η)dη. (6.2)

In the homogeneous mixing models (AMC and Girimaji’s model) the Favre-averaged un-

conditional scalar dissipation rate is a model input, and by the nature of the models the

integration yields the input of mean χ̃. The inhomogeneous model, however, does not use

χ̃ to calculate the 〈χ|η〉. The scalar dissipation rate profile is calculated at each point using

the model equation that is derived through the double-integration of the PDF transport

equation. This model equation includes a model for the conditional velocity and a pre-

sumed form for the PDF itself.

Figures 6.7 and 6.8 show radial profiles of χ̃integration compared with χ̃ at two axial

locations for the Inhomogeneous-Linear and Inhomogeneous-Gradient model, respectively.

For the Inhomogeneous-Linear model the integrated quantity is considerably lower than χ̃

near the centreline, but approaches similar values near the edge of the shear layer. The

Inhomogeneous-Gradient model shows much higher values than χ̃ in the core of the jet,

including a very sharp peak along the centreline, before approaching χ̃ near the edge of the

jet. Figures 6.7 and 6.8 illustrate that the mean scalar dissipation rate resulting from the

inhomogeneous model, with both the linear and gradient conditional velocities models, has

significant discrepancies from in the core of the jet. The conditional velocity model used in

the mixing model can cause the unconditional conditional scalar dissipation rate that is cal-

culated from Equation 6.2 to differ from the value determined from Equation 6.1. Devaud

et al. [21] showed analytically that the Inhomogeneous-Linear model is not fully consis-

tent with the mean mixture fraction variance equation. However, the magnitude of the
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discrepancy from χ̃ is much higher than anticipated. The Inhomogeneous-Gradient model,

however, is expected to be consistent with the Favre-averaged mean scalar dissipation rate.

A central reason for using the gradient diffusion conditional velocity model in the imple-

mentation of the inhomogeneous mixing model is the fact that it allows for the conditional

scalar dissipation rate expression to be consistent with the first and second moment of the

mixture fraction [38]. Thus, the same value for χ̃ used in the variance equation would be

expected to be recovered upon integration of 〈χ|η〉P̃ (η). Figure 6.8 shows that the mean

value from the Inhomogeneous-Gradient model, particularly along the centreline, exhibit

an even larger departure from ξ̃ than observed with the Inhomogeneous-Linear model.

This further illustrates that the diverging behaviour of the gradient diffusion conditional

velocity model has a significantly detrimental affect on the corresponding profiles for the

conditional scalar dissipation rate.

To correct the discrepancy between χ̃integration and the flow-field calculated χ̃, the
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Figure 6.7: Radial profiles of unconditional scalar dissipation rate compared with Equation

6.2 for the Inhomogeneous-Linear model.

conditional scalar dissipation profile, 〈χ|η〉, can be scaled to yield the desired mean scalar

dissipation rate. At each location in the CMC domain, prior to cross-stream averaging,

the scalar dissipation rate is modified by the expression

〈χ|η〉new = 〈χ|η〉old
χ̃

χ̃integration

. (6.3)

This operation scales the conditional scalar dissipation rate profile at a given location by

the same ratio for each value of η to yield a mean scalar dissipation rate that corresponds
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Figure 6.8: Radial profiles of unconditional scalar dissipation rate compared with Equation

6.2 for the Inhomogeneous-Gradient model (not plateau-corrected).

Table 6.1: Peak values of 〈χ|η〉P̃ (η) [s−1] at x = 5 mm, t = 0.3 ms

Radius[mm] Inhom.-Lin. Inhom.-Lin. scaled Inhom.-Grad. Inhom.-Grad. scaled

0 4200 11000 54000 9300

0.5 11000 11000 17000 9100

1 2200 1450 2150 1350

exactly with χ̃ calculated from the flowfield. For the Inhomogeneous-Gradient model, this

scaling is performed after the plateau correction outlined in the previous section. The

scaled and plateau-corrected profiles for the three radial points at x = 5 mm and t = 0.3

ms are presented in Figure 6.9. The corresponding profiles for x = 20 mm, t = 0.7 ms are

presented in Figure 6.10.

At x = 5 mm and t = 0.3 ms the resulting profiles of 〈χ|η〉P̃ (η) have similar peak

values for all three radial positions. Along the centreline, in Figure 6.9 (a), the effect

of the plateau correction on the Inhomogeneous-Gradient model is obvious, as the pro-

file increases suddenly from zero at approximately η = 0.15. While the magnitude of the

peaks are roughly similar, the Inhomogeneous-Gradient profile has its peak around η = 0.2,

which is much leaner than the Inhomogeneous-Linear peak near η = 0.5. The peak of the

Inhomogeneous-Gradient model has dropped from approximately 54,000 to roughly 10,000,

while the peak of the Inhomogeneous-Linear model increased from approximately 4,000 to
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Figure 6.9: Scaled profiles of 〈χ|η〉P̃ (η) at x = 5 mm, t = 0.3 ms.
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over 10,000. At r = 0.5 mm, in Figure 6.9 (b), the scaling also forces the peaks to be closer

in magnitude. The area of the Inhomogeneous-Gradient profile affected by the plateau

correction is very small when compared with the centreline. At the edge of the jet, in

Figure 6.9 (c), the plateau correction does not affect the Inhomogeneous-Gradient profile,

but the peaks are changed due to the scaling. The change in peak values due to the scaling

is illustrated in Table 6.1. As a result of the scaling, the peak of the Inhomogeneous-Linear

model is increased by approximately 160% along the centreline, and decreased by 34% near

the edge of the jet. The Inhomogeneous-Gradient model has its peak along the centreline

reduced by 83% and by 37% near the edge of the jet.

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

η

〈χ
|η
〉P̃

(η
)

(1
/
s)

 

 

Gradient (Eq.4.21)
Linear (Eq.4.17)

(a) r = 0 mm

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

η

〈χ
|η
〉P̃

(η
)

(1
/
s)

 

 

Gradient (Eq.4.21)
Linear (Eq.4.17)

(b) r = 1.5 mm

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

η

〈χ
|η
〉P̃

(η
)

(1
/
s)

 

 

Gradient (Eq.4.21)
Linear (Eq.4.17)

(c) r = 3 mm

Figure 6.10: Scaled profiles of 〈χ|η〉P̃ (η) at x = 20 mm, t = 0.7 ms.
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Table 6.2: Peak values of 〈χ|η〉P̃ (η) [s−1] at x = 20 mm, t = 0.7 ms

Radius[mm] Inhom.-Lin. Inhom.-Lin. scaled Inhom.-Grad. Inhom.-Grad. scaled

0 20 190 900 200

1.5 180 215 410 195

3 130 115 175 113

The results are similar at x = 20 mm and t = 0.7 ms. At the centreline, shown in

Figure 6.10 (a), the plateau correction of the Inhomogeneous-Gradient profile is evident

by the sharp rise in 〈χ|η〉P̃ (η) that occurs at roughly η = 0.06. The effect of the scal-

ing is to bring the peak values of the two profiles to roughly the same value. The peak

of the Inhomogeneous-Gradient model remains at a considerably leaner value of η. At

a radial position of 1.5 mm, presented in Figure 6.10 (b), the plateau correction has a

smaller effect as the profile is forced to zero from η = 0 to approximately η = 0.03. Both

the Inhomogeneous-Linear and Inhomogeneous-Gradient models now yield peaks near 200.

Near the edge of the jet, in Figure 6.10 (c), the plateau correction has no impact on the

Inhomogeneous-Gradient profile, as there was no unphysical plateau to correct. The ef-

fect of the scaling process on the peak values for the two implementations of the mixing

model for these three locations are presented in Table 6.2. For the Inhomogeneous-Linear

model, the change in the peak value ranges from an increase of nearly an order of magni-

tude along the centreline, to a decrease of roughly 11% near the edge of the jet. For the

Inhomogeneous-Gradient model the scaling causes a reduction in the peak value of 78%

along the centreline and 35% near the edge of the jet.

6.3.4 Cross-stream averaged conditional scalar dissipation rate

The conditional scalar dissipation rates from the mixing models are cross-stream averaged

for use in the CMC calculations. The cross-stream averaged profiles of the conditional

scalar dissipation rate and PDF are presented in Figure 6.11 (a) and (b) respectively for

x = 5 mm, t = 0.3 ms and in Figure 6.11 (c) and (d) for x = 20 mm, t = 0.7 ms. For

both locations, {P̃ (η)}R+ peaks at very lean mixtures. At x = 5 and t = 0.3 ms, the

Inhomogeneous-Linear model yields very similar values to AMC for η values between 0

and 0.2. However, the peak values of {〈χ|η〉}R+ are very different, as AMC reaches a much
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higher peak at η = 0.5 while the Inhomogeneous-Linear peak occurs at approximately η =

0.3. For η values above 0.3 AMC produces much higher values, which is consistent with

what Devaud et al. [21] observed in comparing the Inhomogeneous-Linear model with a

different homogeneous mixing model (Girimaji’s model). In the range of η in which the

AMC values are much larger, the PDF (in Figure 6.11 (b)) is small, and thus the differ-

ences in {〈χ|η〉}R+ between the two models for rich mixtures is not expected to have a

significant impact on the CMC predictions of autoignition. The Inhomogeneous-Gradient

model produces higher {〈χ|η〉}R+ values over the lean mixture η values below 0.1, which

encompasses the range of interest including the stoichiometric mixture fraction of 0.055

and the most reactive mixture, which is on the lean side of stoichiometry. The peak in the

Inhomogeneous-Gradient profile occurs at a leaner mixture than the other two models, at

roughly η = 0.1. The overall shape of the gradient profile is similar to the linear profile,

in that it rises from zero, reaches a peak at relatively lean mixtures, and then decreases to

zero with increasing η.

Further downstream, at x = 20 mm and t = 0.7 ms (Figure 6.11 (c) and (d)), the

Inhomogeneous-Linear model reaches a peak of {〈χ|η〉}R+ ' 15 s−1 at approximately η

= 0.08, while again the AMC profile by definition peaks at η = 0.5. Similar to the up-

stream location, the Inhomogeneous-Linear model yields very similar values to AMC up

until its peak. For η values corresponding to richer mixtures than that of the the linear

model’s peak, the AMC results are much larger. Once again, the Inhomogeneous-Gradient

model produces larger values of {〈χ|η〉}R+ in the lean region of η, before reaching a peak of

{〈χ|η〉}R+ ' 11 s−1 near η = 0.06. Although the peak for the gradient model is smaller the

lean region of η below stoichiometry sees larger values of the conditional scalar dissipation

rate, which is expected to have an impact on the autoignition results. The overall shape

of the profiles from the two versions of the inhomogeneous model are in better agreement

than they are at x = 5 mm, as they depict very similar behaviour with differences only in

magnitude and peak η values.

The evolution in time of the conditional scalar dissipation rates, at the ignition mix-

ture fraction and location of the Inhomogeneous-Linear model (ηign = 0.0220, x = 20 mm),

is presented in Figure 6.12 for the two inhomogeneous models and AMC. All three models

see a sharp rise in 〈χ|η〉 at t = 0.2 ms, when the tip of the fuel jet reaches the axial position.

The Inhomogeneous-Gradient and Inhomogeneous-Linear model both see higher peak con-

ditional scalar dissipation rates than the AMC model, with the Inhomogeneous-Gradient
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Figure 6.11: {〈χ|η〉}R+ (left) and P̃ (η)R+ (right) profiles
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peak being highest of the three. After approximately t = 0.5 ms all three models level

out to an approximately constant value of 〈χ|η〉. The AMC and Inhomogeneous-Linear

models level off at values of 〈χ|η〉 ' 1.5 s−1, while the Inhomogeneous-Gradient model

levels off at 〈χ|η〉 ' 3.5 s−1. The larger peak and higher sustained values of 〈χ|η〉 for the

Inhomogeneous-Gradient at this reactive mixture fraction should cause a longer ignition

delay.
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Figure 6.12: Evolution in time of 〈χ|η = 0.022〉 at x = 20 mm.

6.4 Equation Budgets

The individual terms in the two inhomogeneous mixing model expressions, Equations 4.17

and 4.21, are compared by examining their behaviour at the same six physical locations

used previously. The first two terms on the right hand side of both equations (terms I

and II) are identical. The difference in the two versions of the inhomogeneous mixing

model lies in the remaining terms - terms III and IV in the linear version and term 3
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in the gradient version. Figure 6.13 presents the contribution of terms at x = 5 mm

and t = 0.3 ms. At all three locations term I, which is the temporal derivative of the

integral I1, is negligible. For the Inhomogeneous-Linear model, term III is negligible along

the centreline, and the production of term II is counterbalanced by term IV. For the

Inhomogeneous-Gradient model, term 3 is very small along the centreline, which leaves

the production of term II unopposed. This causes the large values of 〈χ|η〉P̃ (η) along the

centreline with an extensive plateau region at lean values of η. At r = 0.5 mm, shown in

Figures 6.13 (c) and (d), term II and term III are source terms for the Inhomogeneous-

Linear model, while term II and term 3 are source terms for the Inhomogeneous-Gradient

model. Once again, the Inhomogeneous-Gradient model does not have a negative term to

counterbalance the effect of these source terms, as term IV does for the Inhomogeneous-

Linear model. The general profiles of term III and term 3 are somewhat similar, although

term 3 does not go to zero at η = 0 like term III does. Near the edge of the jet, in

Figures 6.13 (e) and (f), the equation budgets for the Inhomogeneous-Linear model and

Inhomogeneous-Gradient model look similar. At this location term II has become negative

and counterbalances the production of term III and term IV in the Inhomogeneous-Linear

model, and correspondingly counterbalances term 3 in the Inhomogeneous-Gradient model.

The combined production of term III and term IV appears to be closely matched by that

of term 3, which explains the good agreement in 〈χ|η〉P̃ (η) profiles at this location.

Figure 6.14 presents the contribution of terms in the mixing model equations at x = 20

mm and t = 0.7 ms. Similar to Figure 6.13, term I is negligible at each of the locations.

Since this is the only time dependent term in the mixing model equations, this implies that

computational expense can be saved by solving Equations 4.17 and 4.21 in steady state

with little impact on the solution. Although the temporal derivative of ξ̃ appears in term

IV, this is due to the substitution of the transport equation of ξ̃ used to simplify Equation

4.15. The trends of term II are the same as in Figure 6.13, in which it is the dominant

production term along the centreline and r = 1.5 mm, but becomes negative near the edge

of the jet. In the Inhomogeneous-Linear model, term IV acts to counterbalance term II

along the centreline and at r = 1.5mm, and that balance is missing in the Inhomogeneous-

Gradient model. Once again, the equation budgets near the edge of the jet, in Figures 6.14

(e) and (f), are similar, resulting in similar 〈χ|η〉P̃ (η) profiles.
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Figure 6.13: Equation budgets at x = 5 mm, t = 0.3 ms.
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Figure 6.14: Equation budgets at x = 20 mm, t = 0.7 ms.
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6.5 Cross-stream Averaged CMC Autoignition

Results

Figure 6.15 presents the predicted ignition delays using the two inhomogeneous expressions

and two homogeneous models [44] (AMC [40] and Girimaji’s [39]) with the experimental

data [5]. The numerical values for the four sets of predictions are also included in Ta-

bles 6.3-6.7. As shown in Figure 6.15, the general trend of increasing ignition delay with

decreasing air temperature, due to lower chemical activity at lower temperatures, is well

reproduced for all models. As discussed in previous work by El Sayed and Devaud[26],

both homogeneous scalar dissipation models yield comparable ignition delays, with the

AMC model predicting ignition slightly earlier. This can be explained by the fact that

the conditional scalar dissipation rate determined from Girimaji’s model is slightly higher

than that obtained using the AMC model. At all five air temperatures, the ignition delays

from the Inhomogeneous-Linear model nearly identical to those from Girimaji’s presumed

β-PDF model.

The Inhomogeneous-Gradient model yields higher ignition delays over all air temper-

atures, which corresponds to the larger values of the conditional scalar dissipation rates

predicted in the range of η values corresponding to lean mixtures, where chemical activity

is high. Ignition is known to occur at the most reactive mixture, which is on the lean

side of stoichiometry, when 〈χ|η〉R+ drops below its critical value [44]. The longer ignition

delays for the Inhomogeneous-Gradient model is due to its higher values of 〈χ|η〉R+ in this

lean mixture region, as more time is required for the conditional scalar dissipation rate to

decrease below its critical value and approach the low values associated with ignition. The

increase in ignition delay, relative to the Inhomogeneous-Linear model, ranges from 39%

for the air temperature of 1385 K to 7.5% for the air temperature of 1186 K. This indicates

that the conditional velocity model that is used within the inhomogeneous mixing model

has a significant impact on the prediction of ignition delay. Compared the results from

AMC, the ignition delays from the Inhomogeneous-Linear model range from 12 % higher at

1385 K to 3% higher at 1186 K, while the ignition delays from the Inhomogeneous-Gradient

model are 56% higher than AMC at 1385 K, and 11% higher at 1186 K.

The values of the cross-stream averaged scalar dissipation rate at ignition are also

shown in Tables 6.3-6.7. Ignition always occurs at low scalar dissipation rates, much lower

than the critical value based on flamelet-type calculations as shown by El Sayed and De-
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vaud [26]. The ignition mixture fraction, ηign, is slightly different according to the air

temperature and the mixing model model in agreement with previous findings [68]. The

Inhomogeneous-Linear version always produces values of ηign between those obtained from

AMC and Girimaji’s model, i.e. 0.0138 and 0.0220 depending on the air temperature.

In contrast, the Inhomogeneous-Gradient model results in larger ηign values ranging from

0.0192 for Tair = 1385 K to 0.0275 for Tair = 1238 K. The values found for ηign are consis-

tent with the most reactive mixture fraction (around 0.025) obtained by Kim et al.[27] for

methane jets at high pressure using a different ignition criterion.
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Figure 6.15: Ignition delay.

Table 6.3: Ignition results, air temperature, Tair = 1385 K

Model td (ms) χign (1/s) xign (mm) ηign

Inhomogeneous-Gradient 0.570 3.868 20 0.0192

Inhomogeneous-Linear 0.410 2.355 15 0.0138

AMC [44] 0.365 1.977 15 0.0138

Girimaji’s model [44] 0.415 2.650 17.5 0.0165
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Figure 6.16: Ignition location.

Table 6.4: Ignition results, Tair = 1337 K

Model td (ms) χign (1/s) xign (mm) ηign

Inhomogeneous-Gradient 0.785 2.578 25 0.0220

Inhomogeneous-Linear 0.605 1.534 20 0.0165

AMC [44] 0.550 1.371 20 0.0165

Girimaji’s model [44] 0.610 1.817 20 0.0165

Table 6.5: Ignition results, Tair = 1294 K

Model td (ms) χign (1/s) xign (mm) ηign

Inhomogeneous-Gradient 1.020 1.679 30 0.0248

Inhomogeneous-Linear 0.835 1.475 22.5 0.0192

AMC [44] 0.780 1.017 22.5 0.0192

Girimaji’s model [44] 0.845 1.252 25 0.0165
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Table 6.6: Ignition results, Tair = 1238 K

Model td (ms) χign (1/s) xign (mm) ηign

Inhomogeneous-Gradient 1.465 0.664 35 0.0275

Inhomogeneous-Linear 1.295 0.884 30 0.0220

AMC [44] 1.235 0.666 30 0.0192

Girimaji’s model [44] 1.305 0.719 32.5 0.0220

Table 6.7: Ignition results, Tair = 1186 K

Model td (ms) χign (1/s) xign (mm) ηign

Inhomogeneous-Gradient 2.140 0.094 40 0.0248

Inhomogeneous-Linear 1.990 0.274 37.5 0.0220

AMC [44] 1.935 0.292 37.5 0.0220

Girimaji’s model [44] 2.015 0.218 37.5 0.0220

Generally the autoignition predictions lie close to the experimental data. However, the

scatter in the experimental data is considerable at low air temperatures and the measure-

ments are few in number, making conclusions regarding the fit of the results to experimental

data marginal. The ignition delay results from the Inhomogeneous-Linear model, AMC,

and Girimaji’s model are in good agreement with the experiments at T = 1294 K (cor-

responding to 1000/T ' 0.77), where the experimental data points are most numerous

and closely clustered. At this location the Inhomogeneous-Gradient results overpredict the

experimental ignition delay, which indicates that the higher conditional scalar dissipation

rates due to divergent conditional velocity behaviour is adversely affecting the predictions

of autoignition. For the lowest air temperature, Tair = 1186 K, the previous results ob-

tained using AMC and Girimaji’s model were noted to overpredict experimental values for

low air temperatures [44], and the Inhomogeneous-Gradient model yields an even larger

overprediction. For the highest air temperature, Tair = 1385 K, the previous homogeneous

mixing models results slightly underpredicted the experimental data [44]. The use of the

Inhomogeneous-Gradient mixing model brought the predictions closer to the cluster of

experimental data. However, due to the numerical issues observed with the gradient con-

ditional velocity model due to use of the β-PDF, it cannot be concluded that this improved

agreement with experimental data is due to more accurate modelling of the autoignition

problem.
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Figure 6.16 shows the normalized ignition locations given by the expression

Z∗k = xign/d(pi/po)
1/2, (6.4)

where xign is the axial ignition location, d the injector diameter, pi the fuel injection pres-

sure and po the initial air pressure. The Inhomogeneous-Gradient model ignition locations

are all further downstream than those from the Inhomogeneous-Linear model, ranging from

33% higher for the highest air temperature to 6% higher for the lowest air temperature.

This trend is linked to the higher values of the conditional scalar dissipation rate from the

mixing model, as large values of 〈χ|η〉 are expected to delay ignition and move the ignition

location further downstream. For low air temperatures all four mixing models yield results

that overpredict the experimental data. At higher air temperatures the ignition locations

are closer to the experimental scatter. However, at the air temperature with the most

experimental data available, Tair = 1294 (corresponding to 1000/T ' = 0.77), the pre-

dicted ignition locations are not as in good agreement with the measured locations when

compared with the results of ignition delay. The scatter in experimental data is significant

for all five air temperatures, and the general trend of increasing distance with decreasing

air temperature is not clearly visible from the data, as some of the smallest experimental

values of Z∗k are at the middle air temperature.

For all four of the mixing models, the conditional scalar dissipation rate at igni-

tion decreases with decreasing air temperature. At higher air temperatures ignition oc-

curs at higher χign in the Inhomogeneous-Gradient model when compared with the other

models. However, for lower air temperature the ignition scalar dissipation rate for the

Inhomogeneous-Gradient model is the smallest. Similarly, ignition for the Inhomogeneous-

Linear model is found at χign values higher than those of the AMC model for high air

temperatures, but at a lower value of χign for the lowest air temperature.

6.5.1 Impact of plateau correction

The impact of the plateau correction, or conversely the effect of the unphysical plateau

itself, on the autoignition predictions is examined by comparing the ignition delay and loca-

tion results from Section 6.5 with CMC results obtained using unaltered Inhomogeneous-

Gradient 〈χ|η〉 profiles. The difference in predicted ignition delay, without considering

96



Table 6.8: Inhomogeneous-Gradient ignition delay comparison with and without the

plateau correction

Tair td with plateau correction (ms) td without correction (ms) difference (%)

1385 K 0.655 0.735 10.8

1337 K 0.905 0.950 4.7

1294 K 1.160 1.200 3.3

1238 K 1.630 1.670 2.4

1186 K 2.300 2.335 1.5

Table 6.9: Inhomogeneous-Gradient Ignition location comparison with and without the

plateau correction

Tair xign with plateau correction (mm) xign without correction (mm) difference (%)

1385 K 22.5 25.0 10.0

1337 K 27.5 30.0 8.3

1294 K 32.5 35.0 7.1

1238 K 40.0 40.0 0

1186 K 42.5 42.5 0

scaling of the profiles of 〈χ|η〉P̃ (η), is presented in Table 6.8. For all air temperatures the

end result is a shortened ignition delay. The plateau correction has a larger relative impact

for higher air temperatures, which correspond to the shortest ignition delays. Forcing the

unphysical plateau to zero causes a drop in the ignition delay of nearly 11% for Tair =

1385 K. For lower air temperatures the effect is less pronounced, as the ignition delay is

decreased by only 1.5% for Tair = 1186 K.

Table 6.9 shows the impact of the plateau correction on the ignition locations predicted

by the Inhomogeneous-Gradient model. The trends are very similar to those observed in

ignition delay. For higher air temperatures the ignition location is moved closer toward the

injector, while for low air temperatures there is no change. The reduction in the value for

xign at high air temperatures corresponds to the shortened ignition delay observed with

the plateau correction. At Tair = 1385 K the distance to the ignition location decreases by

10%.

To illustrate why the plateau-correction yields shorter ignition delays, Figure 6.17

shows the effect of the plateau-correction on the profiles of 〈χ|η〉R+ at x = 5 mm, t =
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0.3 ms and at x = 20 mm, t = 0.7 ms. For both locations the plateau-corrected profiles

yield lower values of the conditional scalar dissipation rate for η values on the lean side

of stoichiometry (ηstoich = 0.055), around the most reactive mixture. In this lean mixture

region chemical activity is the highest, and ignition will occur at the most reactive mixture

if the scalar dissipation rate is below its critical value [26]. With a reduction in the values

of 〈χ|η〉R+, this indicates that the scalar dissipation rate will drop below its critical value

earlier due to the effects of the plateau correction, yielding shorter ignition delays and

correspondingly smaller values of xign.
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Figure 6.17: Impact of plateau correction in the Inhomogeneous-Gradient model on (un-

scaled) profiles of 〈χ|η〉R+

6.5.2 Impact of scaling

In a similar manner, the impact of scaling the profiles of 〈χ|η〉P̃ (η) to yield mean χ̃ val-

ues consistent with that from the mixture fraction variance equation (Equation 2.56)

can be examined by comparison of the autoignition results with those obtained with-

out scaling. The impact on the predicted ignition delay for the Inhomogeneous-Gradient

and Inhomogeneous-Linear models are presented in Tables 6.10 and 6.11 respectively. It

should be noted that the results presented with and without scaling for the Inhomogeneous-

Gradient model already include the plateau-correction outlined in Section 6.3.2.
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Table 6.10: Inhomogeneous-Gradient ignition delay comparison with and without scaling

Tair td with scaling (ms) td without scaling (ms) difference (%)

1385 K 0.570 0.655 13.0

1337 K 0.785 0.905 13.3

1294 K 1.020 1.160 12.1

1238 K 1.465 1.630 10.0

1186 K 2.140 2.300 7.0

Table 6.11: Inhomogeneous-Linear ignition delay comparison with and without scaling

Tair td with scaling (ms) td without scaling (ms) difference (%)

1385 K 0.410 0.470 12.8

1337 K 0.605 0.675 10.3

1294 K 0.835 0.910 8.2

1238 K 1.295 1.375 5.8

1186 K 1.990 2.055 3.2

For the Inhomogeneous-Gradient model, the scaling of 〈χ|η〉P̃ (η) causes a noticeable

decrease in the ignition delays for all air temperatures. The relative decrease in ignition

delay for the two highest air temperatures, 1385 K and 1337 K, is slightly higher than the

others at roughly 13 %. At the lowest air temperature, Tair = 1186 K, the relative change

is 7%. A similar trend is observed in the results for the Inhomogeneous-Linear model.

The ignition delays are reduced for all five air temperatures, with the relative change be-

ing the highest for the high air temperatures. The decrease in ignition delays range from

13% for Tair = 1385 K, to 3% for Tair = 1186 K. Comparing the relative change with the

Inhomogeneous-Gradient model, the act of scaling 〈χ|η〉P̃ (η) has roughly the same impact

for high air temperature. However, the scaling causes a larger relative decrease in the

ignition delay for low air temperatures in the Inhomogeneous-Gradient model.

The change in predicted ignition locations for the Inhomogeneous-Gradient and

Inhomogeneous-Linear models are presented in Tables 6.12 and 6.13 respectively. Cor-

responding to the noted decrease in ignition delays, the ignition locations are observed to

decrease with scaling of 〈χ|η〉P̃ (η) as well, with the exception of Tair = 1337 K and 1186

K for the Inhomogeneous-Linear model, which saw no change. For the Inhomogeneous-

Gradient model, the general trend in the impact of scaling on xign is to decrease with
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Table 6.12: Inhomogeneous-Gradient ignition location comparison with and without scaling

Tair xign with scaling (mm) xign without scaling (mm) difference (%)

1385 K 20.0 22.5 11.1

1337 K 25.0 27.5 9.1

1294 K 30.0 32.5 7.7

1238 K 35.0 40.0 12.5

1186 K 40.0 42.5 5.9

Table 6.13: Inhomogeneous-Linear ignition location comparison with and without scaling

Tair xign with scaling (mm) xign without scaling (mm) difference (%)

1385 K 15.0 17.5 14.3

1337 K 20.0 20.0 0

1294 K 22.5 25.0 10.0

1238 K 30.0 32.5 7.7

1186 K 37.5 37.5 0

increasing air temperature, except at Tair = 1238 K, which sees the largest change. The

decrease in xign ranges from 12.5% at Tair = 1238 K to 6 % at Tair = 1186 K. For the

Inhomogeneous-Linear model, the general observed trend in xign reduction is decreasing

impact with decreasing air temperature. Outside of the trend is Tair = 1337 K, at which

xign did not change with scaling. The highest relative change in ignition location is 14%

for Tair = 1385 K.

The impact of scaling the profiles of 〈χ|η〉P̃ (η) on the cross-stream averaged profiles of

the conditional scalar dissipation rate is illustrated in Figure 6.18. For both models the

scaling causes a decrease in values of 〈χ|η〉R+ in the lean mixture region near stoichiometry

(ηstoich = 0.055) and the most reactive mixture fraction. The relative decrease in 〈χ|η〉R+

for the Inhomogeneous-Gradient model is larger than that for the Inhomogeneous-Linear

model, which is in agreement with the generally larger reduction in ignition delay for the

Inhomogeneous-Gradient model, particularly for lower air temperatures. The lower values

for 〈χ|η〉R+ in this important range of η values indicate that the scalar dissipation rate will

drop below the critical value at the most reactive mixture fraction earlier, yielding shorter

ignition delays.
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Figure 6.18: Impact of scaling of 〈χ|η〉P̃ (η) on profiles of 〈χ|η〉R+

6.6 Summary

The behaviour of the gradient conditional velocity model departed significantly from the

linear relationship in some regions. The gradient model showed diverging behaviour at the

rich and lean limits in locations in the flow where the values of the corresponding PDF were

near zero. The conditional velocity obtained by the linear model was in agreement with

that of the gradient model within 1.5 - 4 standard deviations of the mean mixture fraction.

Cross-stream averaging of the conditional velocity yielded profiles that were similar for

both models in the lean region of mixture fraction space where chemical activity can take

place. Consequently, the differences observed in the predicted ignition delay and ignition

location between the two formulations of the inhomogeneous model were only due to the

subsequent effect of the conditional velocity models within the conditional scalar dissipa-

tion rate expression. Only the cross-stream averaged axial component of the conditional

velocity was considered in the CMC calculations, and thus the difference in conditional

velocity models did not impact the convective terms appearing in the CMC equations.

The conditional velocity used in the mixing model equations significantly affected the

magnitude and shape of the conditional scalar dissipation rate within the fuel jet. In par-

ticular, the Inhomogeneous-Gradient expression resulted in some unphysical behaviour of

the conditional scalar dissipation rate in low probability regions and for values of mixture

fraction smaller than the Favre-averaged value. This unphysical behaviour disappeared
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when the PDF moved to leaner mixtures. At locations where the PDF was large at lean

mixtures, such as near the edge of the mixing layer, both inhomogeneous versions produced

qualitatively similar profiles of 〈χ|η〉, with larger values for the Inhomogeneous-Gradient.

When cross-stream averaged, the profiles did not display any implausible values. However,

some significant discrepancies were noticed between the mean value of the scalar dissipation

rate, used in the mixture fraction variance transport equation, and the mean value obtained

by integration of 〈χ|η〉P̃ (η) over mixture fraction space for both models. The discrepancy

was expected for the Inhomogeneous-Linear model as this formulation was shown not to be

consistent with the second moment of mixture fraction [21]. The departure from the mean

value was even larger for the Inhomogeneous-Gradient. This was initially unexpected as

the advantage of using the gradient diffusion model for the conditional velocity was that

it was completely consistent with the unconditional and conditional fluxes of reactive and

passive scalars [38]. However, the discrepancies in the Inhomogeneous-Gradient results are

in agreement with the findings of Mortensen and de Bruyn Kops [24] when they used a β

PDF. The gradient diffusion model is proportional to the gradient of the mixture fraction

PDF, thus the presumed form of the PDF has a direct impact the conditional velocity

model. The β-PDF is known to characterize homogeneous flows accurately, but its use for

inhomogeneous flows may be questionable [38, 39]. Thus, improvement in the description

of the PDF could yield better results with the gradient model. Further comparison for the

scalar dissipation rate may be needed when more accurate experimental measurements of

χ̃ and DNS data for inhomogeneous flows are made available. In particular, it would be

very useful to evaluate the possible uncertainties introduced by the gradient model when

implemented with the β PDF. For consistency, all the scalar dissipation rate profiles at

each position and time were scaled to yield the same mean scalar dissipation rate used in

the mixture fraction variance transport equation.

The Inhomogeneous-Gradient mixing model had a significant effect on the prediction

of ignition delay and location in comparison with the results using AMC or Girimaji’s

model. In contrast, the Inhomogeneous-Linear form did not produce any significant dif-

ferences with the two homogeneous models. The Inhomogeneous-Gradient version yielded

longer ignition delays and predicted ignition locations further downstream when compared

with the Inhomogeneous-Linear form. The difference in predictions between the two forms

of the inhomogeneous model was larger at high air temperatures and decreased with de-

creasing air temperatures. The predicted ignition delays and ignition locations using the
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Inhomogeneous-Gradient conditional scalar dissipation rate equation was larger than those

using the homogeneous mixing models, while maintaining similar trends. These differences

are explained by the different temporal and spatial evolution and magnitude of 〈χ|η〉 in

mixture fraction space determined by the Inhomogeneous-Gradient mixing model compared

to those produced by AMC or Girimaji’s model. The time evolution of the conditional

scalar dissipation rate at a given value of η and position was qualitatively similar for all

models. In all cases, ignition occurred when the scalar dissipation rate was at its lowest

and steady-state value.

In the next chapter a preliminary two-dimensional solution of the CMC equations is

presented, to assess the impact of cross-stream averaging on the autoignition results. Igni-

tion delay and location are also extracted from a two-dimensional temperature field that

is obtained through integration of the PDF and axial conditional temperature results from

the cross-stream averaged CMC solution.
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Chapter 7

Two-dimensional CMC Solution

In addition to solving the cross-stream averaged CMC equations, a preliminary two-

dimensional solution is performed to assess the impact of the shear flow approximation that

is used to justify cross-stream averaging of the CMC equations. In this chapter the two-

dimensional form of conditional species mass fraction is presented along with the solution

methodology. The alternating direction implicit method is outlined, and its implementation

within the fractional step approach is described. The two-dimensional autoignition results

using the AMC mixing model are compared with corresponding cross-stream averaged re-

sults. Further, a two-dimensional temperature field is calculated from the cross-stream

averaged AMC results and used to estimate a two-dimensional ignition delay location.

7.1 Solution Methodology

The autoignition problem examined in this study involves an axisymmetric fuel jet, allowing

for a two dimensional implementation by neglecting any variation in the circumferential

direction of the shock tube. The conditional species mass fraction transport equation for

two dimensions is given by

∂Qα

∂t
= −

[
〈u|η〉 − Dt

〈ρ〉
∂〈ρ〉
∂x

− ∂Dt

∂x

]
∂Qα

∂x
−

[
〈v|η〉 − Dt

〈ρ〉
∂〈ρ〉
∂y

− ∂Dt

∂y

]
∂Qα

∂y
(7.1)

+Dt
∂2Qα

∂x2
+Dt

∂2Qα

∂y2
+

1

2
〈χ|η〉∂

2Qα

∂η2
+
〈ω̇|η〉
〈ρ|η〉 .
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The two-dimensional CMC simulations do not feature implementations of the two forms

of the inhomogeneous mixing model. For simplicity only the homogeneous AMC model is

used. Due to computational expense only the three highest air temperatures (Tair = 1385

K, 1337 K, and 1294 K) are considered. These three air temperatures feature the shortest

ignition delays of the experimental data set and allow for a smaller two-dimensional section

of the shock tube to be used in the solution of the CMC equations. For direct comparison

with the cross-stream averaged autoignition results using the AMC model [44] flow field

simulations are performed in CFX for each of the three air temperatures. In contrast to

the inhomogeneous mixing model implementation discussed in Chapter 5, the conditional

scalar dissipation rate from the AMC model is not calculated within the flow field solution,

but instead is performed after the flow field data libraries have been exported. The reason

for this is that the AMC model is straightforward to calculate using the exported values of

the mixture fraction and its variance, and does not require local gradients to be resolved

as is the case with the inhomogeneous mixing models. Thus, the computational expense

for the flow field solution is significantly lower for the AMC implementation. Flow field

data is exported from CFX simulations at 50 µs intervals in a manner identical to that

outlined in Chapter 5.

A two-dimensional grid in physical space is used for the solution of the CMC equations,

extending 70 mm in the axial direction and 13 mm in the radial direction. This region en-

compasses the full extent of the fuel jet for all three air temperatures being examined, and

autoignition is expected to occur well within its bounds. In the axial direction 29 equally

spaced points are used, identical to those in the cross-stream averaged solution. In the

place of cross-stream averaging implemented previously [44], the data from the flow field

is instead processed and the relevant conditionally averaged quantities are exported at 15

equally spaced radial points. To examine the effect of grid spacing in the radial direction,

a grid with 25 equally spaced points is also examined. The difference in ignition delay

between the two radial grid densities ranged from 5% for the highest air temperature to

1% for the lowest of the three air temperatures. The axial ignition locations were identical

for Tair = 1385 K and 1337 K, while the finer radial grid predicts ignition one grid point

closer to the injector for Tair = 1294K. The results from the 15 point radial grid are

presented in this chapter. The chemical kinetics utilize CHEMKIN II [63] and UBC Mech

1.0 [64], as outlined in Chapter 5. The same ignition criteria as the cross-stream averaged

simulations, a rise in the conditional temperature by 75 K, is employed.
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7.2 Application of the Fractional Step Method

In a manner similar to the cross-stream averaged CMC equations, the two dimensional

equations are solved using the fractional step method. The non-stiff physical transport

terms are split from the stiff chemical source term and the micromixing term. In the first

fractional step, the physical transport terms are solved in spatial coordinates over the in-

terval [t, t+dt/2]. The second fractional step is used for the solution of the chemical source

term and micromixing term in mixture fraction space over the interval [t,t+dt]. Finally

the physical transport terms are solved again in the third fractional step over the interval

[t+dt/2,t+dt]. Due to the added complexity of considering a second spatial coordinate

(the radial coordinate), the solution of the physical transport terms is not as straightfor-

ward as it was in the cross-stream averaged case.

7.2.1 Alternating Direction Implicit method

Due to the addition of a radial dimension, a simple application of LU-decomposition cannot

be used. A procedure called the Alternating Direction Implicit method (ADI) provides a

convenient way to address this problem. This approach falls under the category of operator

splitting, is unconditionally stable, and is second-order accurate in time and space [59].

The idea behind it is to divide the timestep into two equal substeps. In the first substep

one direction (x) is treated implicitly by using finite differences using known values, while

the other direction (y) is treated explicitly by utilizing known values. In the subsequent

substep, the treatments are reversed, with x being treated explicitly and y being treated

implicitly [69].

The ADI method allows for each of the fractional steps in which the physical trans-

port terms are solved to be further split into two substeps. The same LU-decomposition

approach used for the cross-stream averaged solution can then be applied twice, once for

each substep in the ADI method. The first application of the LU-decomposition solves the

transport equation in which the x-direction is treated implicitly, while the second applica-
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tion solves the transport equation in which the y-direction is treated implicitly.

7.2.2 Physical transport terms

In the first fractional step, the equation

∂Qα

∂t
= −

[
〈u|η〉 − Dt

〈ρ〉
∂〈ρ〉
∂x

− ∂Dt

∂x

]
∂Qα

∂x
−

[
〈v|η〉 − Dt

〈ρ〉
∂〈ρ〉
∂y

− ∂Dt

∂y

]
∂Qα

∂y
(7.2)

+Dt
∂2Qα

∂x2
+Dt

∂2Qα

∂y2
,

is solved over the interval [t,t+dt/2]. Following the procedure outlined in the cross-stream

averaged solution, finite differences are used to discretize Equation 7.2. For all internal

nodes first order backward differencing is used for first derivatives, and second order central

differencing for second derivatives. Since the flowfield is an axisymmetric jet, radial deriva-

tives along the centreline are set equal to zero. Spacing is uniform in the axial direction

and the radial direction, but it should be noted that ∆x 6= ∆r.

∂Qα

∂x
=
Qα|t+∆t

i,j −Qα|t+∆t
i−1,j

∆x
, (7.3)

∂Qα

∂r
=
Qα|t+∆t

i,j −Qα|t+∆t
i,j−1

∆r
, (7.4)

∂2Qα

∂x2
=
Qα|t+∆t

i+1,j − 2Qα|t+∆t
i,j +Qα|t+∆t

i−1,j

(∆x)2
, (7.5)

∂2Qα

∂x2
=
Qα|t+∆t

i,j+1 − 2Qα|t+∆t
i,j +Qα|t+∆t

i,j−1

(∆r)2
. (7.6)

Substituting the above derivative approximations into Equation 7.2 and making use of the

following simplifications

Ψ|t+∆t
i,j = 〈u|η〉 − Dt

〈ρ〉
∂〈ρ〉
∂x

− ∂Dt

∂x
, (7.7)
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Ψr|t+∆t
i,j = 〈v|η〉 − Dt

〈ρ〉
∂〈ρ〉
∂r

− ∂Dt

∂r
, (7.8)

the discretized two-dimensional CMC equation for spatial terms becomes

Qα|t+∆t
i,j −Qα|ti,j = −Ψ|t+∆t

i,j

[
Qα|t+∆t

i,j −Qα|t+∆t
i−1,j

∆x

]
∆t−Ψr|t+∆t

i,j

[
Qα|t+∆t

i,j −Qα|t+∆t
i,j−1

∆r

]
∆t(7.9)

+Dt

[
Qα|t+∆t

i+1,j − 2Qα|t+∆t
i,j +Qα|t+∆t

i−1,j

(∆x)2

]
∆t+Dt

[
Qα|t+∆t

i,j+1 − 2Qα|t+∆t
i,j +Qα|t+∆t

i,j−1

(∆r)2

]
∆t.

Equation 7.9 can be rewritten as

Qα|ti,j = AQα|t+∆t
i−1,j +BQα|t+∆t

i,j + CQα|t+∆t
i+1,j +DQα|t+∆t

i,j−1 + EQα|t+∆t
i,j+1, (7.10)

where the coefficients are given by

A =

[
Ψ|t+∆t

i,j

∆x
− Dt

(∆x)2
+

2Dt

(∆r)2

]
∆t, (7.11)

B =

[
1− Ψ|t+∆t

i,j

∆x
− Ψr|t+∆t

i,j

∆r
+

2Dt

(∆x)2
+

2Dt

(∆r)2

]
∆t, (7.12)

C =

[
− Dt

(∆x)2

]
∆t, (7.13)

D =

[
Ψr|t+∆t

i,j

∆r
− Dt

(∆r)2

]
∆t, (7.14)

E =

[
− Dt

(∆r)2

]
∆t. (7.15)

Using the ADI method, the physical transport fractional step must be further split into

two parts. Over the first half of the fractional step (substep 1), the transport equation to

be solved is

Qα|ti,j −DQα|t+∆t
i,j−1 − EQα|t+∆t

i,j+1︸ ︷︷ ︸
Treat as known

= AQα|t+∆t
i−1,j +BQα|t+∆t

i,j + CQα|t+∆t
i+1,j︸ ︷︷ ︸

Solve in LU decomposition

. (7.16)
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For simplicity, the terms on the left hand side are grouped together into one term

Q∗α|t+i,j = Qα|ti,j −DQα|t+∆t
i,j−1 − EQα|t+∆t

i,j+1. (7.17)

The system of equations for the axial direction can be represented by



1 0 0 0 · · · 0 0 0

A2,j B2,j C2,j 0 · · · 0 0 0

0 A3,j B3,j C3,j · · · 0 0 0
...

...
. . .

...
...

0 0 0 0 · · · ANx−1,j BNx−1,j CNx−1,j

0 0 0 0 · · · ANx,j BNx,j CNx,j




×




Qα|t+∆t
1,j

Qα|t+∆t
2,j

Qα|t+∆t
3,j
...

Qα|t+∆t
Nx−1,j

Qα|t+∆t
Nx




=




Q∗α|t1,j

Q∗α|t2,j

Q∗α|t3,j
...

Q∗α|tNx−1,j

Q∗α|tNx,j




The LU-decomposition is performed for each radial position (j=1,2,...Ny). The solution

proceeds in the same manner as the cross-stream averaged solution, using the routines

LUDCMP and LUBKSB [59]. The routine LUDCMP performs the LU-decomposition

using Crout’s algorithm and implicit pivoting [59] while LUBKSB performs the required

forward and back substitutions to obtain the solution to the equation set.

Over the second half of first fractional step (substep 2), the ADI method requires that

the transport equation becomes

Qα|ti,j − AQα|t+∆t
i−1,j − CQα|t+∆t

i+1,j︸ ︷︷ ︸
Treat as known

= DQα|t+∆t
i,j−1 +BQα|t+∆t

i,j + EQα|t+∆t
i,j+1︸ ︷︷ ︸

Solve in LU decomposition

, (7.18)

in which the terms in the axial direction that are calculated in substep 1 are now known

and moved to the left hand side of the equation. Once again, the known terms on the left

hand side of the equation are grouped into a single term.

Q∗α|ti,j = Qα|ti,j − AQα|t+∆t
i−1,j − CQα|t+∆t

i+1,j. (7.19)

This equation set for the radial direction is solved in the same manner as substep 1, and

can be represented by



1 0 0 0 · · · 0 0 0

Di,2 Bi,2 Ei,2 0 · · · 0 0 0

0 Di,3 Bi,3 Ei,3 · · · 0 0 0
...

...
. . .

...
...

0 0 0 0 · · · Di,Ny−1 Bi,Ny−1 Ei,Ny−1

0 0 0 0 · · · Di,Ny Bi,Ny Ei,Ny




×




Qα|t+∆t
i,1

Qα|t+∆t
i,2

Qα|t+∆t
i,3
...

Qα|t+∆t
i,Ny−1

Qα|t+∆t
i,Ny




=




Qα|ti,1
Qα|ti,2
Qα|ti,3

...

Qα|ti,Ny−1

Qα|ti,Ny



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Once again, the routines LUDCMP and LUBKSB [59] are implemented to solve for the

conditional species mass fractions. Due to time constraints, the impact of changing the

axial grid spacing, ∆x, and the timestep are not examined.

7.2.3 Mixture Fraction Space Terms

The stiff chemical source term and micromixing terms are solved in the second fractional

step in the same manner as outlined in Section 5.8.2. The added radial dimension does not

affect the procedure in this fractional step, as both terms being considered are dependant

only on the mixture fraction space variable η. The stiff ODE solver, VODE [61], is called

at each location in the 2D CMC grid, and solves the equation

∂Qα

∂t
=

1

2
〈χ|η〉∂

2Qα

∂η2
+
〈ω̇|η〉
〈ρ|η〉 , (7.20)

over the interval [t,t+dt]. The values of Qalpha from the previous fractional step are used

as initial conditions.

7.3 Two-Dimensional Autoignition Results

In this section the results from the solution of two-dimensional CMC equations utilizing the

AMC mixing model are presented and compared with the cross-stream averaged results.

The ignition delays, along with the radial and axial ignition locations, are listed in Table

7.1. The ignition delays are plotted against the experimental data and cross-stream aver-

aged results in Figure 7.1. The ignition locations are shown in Figure 7.2. The predicted

ignition delays for all three air temperatures are in excellent agreement with the cross-

stream averaged results. The largest difference is noted for Tair = 1337 K (corresponding

to 1/T = 0.75), in which the ignition delay from the two-dimensional solution is 7% lower

than the cross-stream averaged result. These results indicate that the use of cross-stream

averaging to simplify the solution of the CMC equations has little effect on the predictions

of ignition delay.
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Table 7.1: 2D CMC ignition results

Model td (ms) χign (1/s) xign (mm) rign (mm) ηign

1385 K 0.360 0.890 10 2.66 0.0110

1337 K 0.510 0.204 12.5 4.43 0.0138

1294 K 0.770 0.152 15.0 5.32 0.0138
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Figure 7.1: Comparison of 2D ignition delay with cross-stream averaged results.
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Figure 7.2: Comparison of 2D axial ignition location with cross-stream averaged results.

The axial ignition locations from the two-dimensional solution of the CMC equations

are considerably closer to the injector, with a reduction of 50% in the cross-stream aver-

aged values for all three air temperatures. Ignition in the 2D solution is predicted at lower

values of the conditional scalar dissipation rate. The two-dimensional results underpredict

the experimental data for the two highest temperatures, but falls within the considerable

experimental scatter for Tair = 1294 K. This implies that the cross-stream averaging of the

CMC equations could have an impact on the predicted axial location of ignition. However,

the effect of axial grid spacing and timestep within the ADI method that is employed to

solve the two-dimensional equations has not been explored, and could provide additional

insight.

The ignition mixture fractions ηign are all slightly leaner than their corresponding cross-

stream averaged results. Ignition is predicted at η = 0.011 for Tair = 1385 K, compared

to 0.0138 for the cross-stream averaged solution. Tair = 1337 K and 1294 K have ignition

mixture fractions of 0.0138, rather than the cross-stream averaged results of 0.0165 and

0.0195 respectively. Similar to the cross-stream averaged results, ignition occurs at loca-

tions where the scalar dissipation rate is well below its critical value (which is around 25
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s−1 [26] for the present conditions and chemistry).

7.3.1 Integrated two-dimensional temperature field

The two-dimensional predictions of ignition delay and location can be further compared

with the cross-stream averaged results by estimating a two-dimensional unconditional tem-

perature field, T (x, r), based upon the PDF profiles and conditional temperature profiles

that are obtained in the cross-stream averaged solution of the CMC equations. Uncondi-

tional temperature data in the axial and radial directions is obtained by integrating the

product of the conditional temperature, QT at a given axial position, and the PDF, P̃ (η),

from η = 0 to 1.

T̃ (t, x, r) =

∫ 1

0

QT (t, x, η)P̃ (t, x, r, η)dη. (7.21)

The values for QT are obtained at each axial location considered in the cross-stream av-

eraged CMC solution, and output into data libraries. The values for P̃ (η) are calculated

at all grid points in the domain within the flow field solution. This allows PDF values

over a range of radial positions to be used to calculate radial profiles of temperature at

a specific axial position from a single value of QT . Using linear interpolation a 500 point

grid is implemented in η-space for the profiles of QT and P̃ (η), to reduce numerical error

in the trapezoidal integration. The cross-stream averaged solution of the CMC equations

utilizing the AMC model was performed for all five air temperatures, and output files of

conditional temperature and PDF were generated five timesteps past the occurance of ig-

nition to allow calculation of the 2D temperature field over a time interval longer than the

cross-stream averaged ignition delays.

Two ignition criteria are investigated. In contrast to the findings of El Sayed [43], a

rise in unconditional temperature of 75 K over the initial air temperature (based upon the

ignition criterion of a rise in conditional temperature of 75 K used for the cross-stream

averaged solution) resulted in ignition delays significantly longer than the resulting cross-

stream averaged delays. The second criterion, a rise in temperature 1 K over the initial

unconditional air temperature, yields results in much closer agreement to the cross-stream

averaged predictions. This criterion is used for the autoignition results presented here

for the integrated temperature field. The ignition delays and locations are presented in
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Table 7.2. The ignition delays from the integrated temperature field are shown with the

cross-stream averaged and two-dimensional results in Figure 7.3, and the ignition loca-

tions are compared in Figure 7.4. The radial ignition location is 37% higher than the

two-dimensional prediction for Tair = 1385 K, but agreement is much better for the two

lower air temperatures. For Tair = 1337 K the radial ignition locations are within 4%, and

the values at Tair = 1294 K are within 11 %.
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Figure 7.3: Comparison of ignition delay from integrated temperature field with cross-

stream averaged and 2D results.

The resulting ignition delays are very similar to those obtained from both the cross-

stream averaged and two-dimensional solution of the CMC equations. At higher air tem-

peratures the ignition delay is longer relative to the previous results, while at the lowest

air temperature the ignition delay is shorter. For Tair = 1385 K the ignition delay from

the integrated temperature field is 19% longer than the cross-stream averaged prediction,

while the ignition delay at Tair = 1186 K is 7% lower. These differences result in the igni-

tion delays from the integrated temperature field corresponding closer to the experimental

data. The axial ignition locations fall between the two-dimensional and the cross-stream
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Figure 7.4: Comparison ignition location from integrated temperature field with cross-

stream averaged and 2D results.

Table 7.2: CMC ignition results from integrated temperature field

Model td (ms) xign (mm) rign (mm)

1385 K 0.435 15.0 3.65

1337 K 0.605 17.5 4.26

1294 K 0.815 20.0 4.79

1238 K 1.230 25.0 5.91

1186 K 1.875 32.5 7.21
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averaged results. The axial ignition location at Tair = 1385 is the same as the cross stream

averaged results. With decreasing air temperature the ignition location from the integrated

temperature field moves closer to the injector compared to the corresponding cross-stream

averaged predictions. Comparison with the experimental data is marginal due to the high

degree of scatter and small number of points. The decrease in ignition location at the

lowest temperature relative to the cross-stream averaged prediction results in values that

are in better agreement with the few points of experimental data. The ignition location for

Tair = 1385 K, determined from the integrated temperature field, is presented in Figure

7.5. Ignition is predicted to occur on the lean side of the mixing layer, which is consistent

with previous autoignition studies of methane [27, 28, 43, 44]. However, in contrast to the

previous studies, ignition from the integrated temperature fields for all five air tempera-

tures is found to occur in very lean regions of the flow, at mixture fraction values around

0.005. Ignition is expected to occur in lean regions slightly closer to the stoichiometric

mixture fraction of 0.055. Further investigation in regard to the ignition location is needed

to explain this discrepancy.
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Figure 7.5: Integrated temperature field ignition location (black dot) for Tair = 1385 K.

7.4 Summary

The resulting ignition delays for the three highest air temperatures utilizing a two-dimensional

solution of the CMC equations are within 7% of the cross-stream averaged results. This

excellent agreement supports the use of cross-stream averaging to significantly simplify the

solution of the CMC equations. However, the resulting ignition locations are closer to the

injector than the corresponding cross-stream averaged predictions and ignition is predicted

116



at slightly leaner mixture fractions. As these two-dimensional results are preliminary, fur-

ther investigation into the effect of axial grid spacing and timstep within the ADI method

would be useful. Further analysis of the two-dimensional solution would provide greater

insight into the impact of the shear flow approximation on the autoignition results.

Both the ignition delay and location from the integrated temperature field are in bet-

ter agreement with the experimental data. The axial ignition locations are closer to the

injector than the cross-stream averaged results for all but the highest air temperature,

but are still further downstream than the predictions from the two-dimensional solution

of the CMC equations. However, a different ignition criterion, based upon unconditional

temperature rather than conditional temperature, was applied, and thus has an significant

influence on the results.
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Chapter 8

Conclusions

The present research investigated the impact of two modelling assumptions previously used

by El Sayed [43] and El Sayed et al. [26, 44] in simulations of methane autoignition at en-

gine relevant conditions using CMC. In this study the impact of a turbulent mixing model

that is formulated based upon inhomogeneous turbulence on the predictions of autoigni-

tion was examined. Two forms of the inhomogeneous mixing model were implemented, one

utilizing the linear conditional velocity model and the other making use of the gradient

diffusion conditional velocity model. In this thesis the CMC equations were presented, and

the unclosed terms and subsequent closures were discussed. The overall solution method-

ology was outlined. Using the frozen mixing assumption, the flow field calculations were

decoupled from the CMC calculations. For this study this simplification was reasonable

because density and temperature changes prior to autoignition are negligible. The flow

field solution was performed in ANSYS CFX using the standard k-ε turbulence model.

Data was exported from the flow field solution and was cross-stream averaged to create

input files for the CMC calculations. Cross-stream averaging of the CMC equations based

upon the shear flow approximation was discussed, and the impact of cross-stream aver-

aging on the autoignition predictions was further investigated. The CMC equations were

solved using the fractional step method, which allowed for the stiff chemical source term

to be treated separately. The chemical source and micromixing terms were solved using

the stiff ODE solver VODE [61], and the physical transport terms were solved using the

LU-decomposition routines LUDCMP and LUBKSB [59]. The chemical kinetics package

CHEMKIN II [63] and mechanism UBC Mech 1.0 [64] were employed. Differences between
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the two formulations of the inhomogeneous turbulent mixing model were examined, and

the autoignition predictions were compared with previous results using homogeneous mix-

ing models [44] and with the experimental data of Wu [5].

8.1 Impact of Conditional Velocity Model

The behaviour of the linear and gradient diffusion conditional velocity models were ex-

amined and their impact on the predictions of the conditional scalar dissipation rate were

assessed. The gradient diffusion conditional velocity model was shown to depart signifi-

cantly from the linear relationship in mixture fraction space for low probability regions,

diverging toward ±∞ at the lean and rich limits when the corresponding PDF values were

near zero. Similar divergent behaviour for the gradient model, when used with the pre-

sumed β-PDF, was reported by Mortensen and de Bruyn Kops [24]. For regions that were

roughly three to four standard deviations about the mean mixture fraction, the linear and

gradient models yielded similar profiles. Cross-stream averaging of the conditional veloc-

ities produced very similar behaviour in the lean mixture region for both models, as the

divergent behaviour of the gradient model at low probability lean values does not negatively

impact the cross-stream averaged velocity. Below η = 0.2, corresponding to the range of

mixture fraction values where chemical activity is highest, the models were in excellent

agreement. Since only the cross-stream averaged axial conditional velocity appears in the

convective term of the CMC equations, the effect of the conditional velocity model will be

solely in its impact on the predictions of the conditional scalar dissipation rate from the

inhomogeneous mixing model.

The diverging behaviour of the gradient conditional velocity model at low probability

regions caused some unphysical behaviour in the profiles of 〈χ|η〉P̃ (η). The Inhomogeneous-

Linear model yielded profiles consistent with expectations, similar in shape to that of the

PDF. The gradient version showed significant departures from the expected behaviour at

the centreline, where a much larger peak than the linear version was noted and an un-

physical plateau at very lean mixtures was observed. With increasing radial position the

differences between the two versions of the inhomogeneous model decreased, and the pro-

files were similar in shape and magnitude near the edge of the mixing layer. The plateau

region at small mixture fraction values for the Inhomogeneous-Gradient model was cor-
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rected by setting the value of 〈χ|η〉P̃ (η) to zero. When cross-stream averaged both models

yielded profiles with plausible behaviour. The Inhomogeneous-Gradient model exhibited

peak values at lower values of mixture fraction, and predicted higher conditional scalar dis-

sipation rates in the region of interest, near the most reactive mixture. For lean mixtures

the Inhomogeneous-Linear model produced values very similar to those obtained with the

AMC model.

8.2 Consistency With Mean Scalar Dissipation Rate

To maintain consistency with the form of the mean scalar dissipation rate that was imple-

mented in the mean mixture fraction variance transport equation, the profiles of 〈χ|η〉P̃ (η)

were integrated over mixture fraction space to yield unconditional values. Both models

yielded unconditional expectations in poor agreement with the mean χ̃ near the centreline,

with better agreement noted near the edge of the mixing layer. The Inhomogeneous-Linear

model was shown to be not fully consistent with the variance equation by Devaud et al.

[21], thus some discrepancy was expected. However, the magnitude of the difference was

greater than anticipated. One major advantage of the Inhomogeneous-Gradient formula-

tion was that it was supposed to be consistent with the first and second moment of the

mixture fraction [38]. The fact that the value of χ̃ used in the mixture fraction variance

equation is not recovered from integrating 〈χ|η〉P̃ (η) shows that the diverging behaviour

of the gradient conditional velocity model in low probability areas had a significant effect

on the overall predictions of the mixing model.

8.3 Autoignition Results

The Inhomogeneous-Linear model yielded ignition delays and locations very similar to

those obtained with AMC and Girimaji’s model for all air temperatures. In contrast, the

Inhomogeneous-Gradient model produced noticeably higher ignition delays and predicted

ignition to occur further downstream from the injector. For all models ignition was found

to occur when scalar dissipation rates were considerably below the critical value [26] and
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at their steady state value. Ignition for the gradient version was found to occur at slightly

richer mixtures when compared with the Inhomogeneous-Linear model and homogeneous

models. The larger ignition delays of the Inhomogeneous-Gradient model are directly in-

fluenced by the numerical issues observed in the gradient conditional velocity model used

in conjunction with the β-PDF.

8.4 Cross-Stream Averaging

The preliminary solution of the CMC equations using the AMC mixing model in two

dimensions yielded ignition delays that were in excellent agreement with the correspond-

ing cross-stream averaged results. The corresponding ignition locations were found to

be significantly upstream of the cross-stream averaged predictions. A two-dimensional

temperature field was calculated through integrating the product of the PDF and the

conditional temperature results from the cross-stream averaged CMC solution. Judging

ignition to occur when the local temperature exceeded the initial air temperature, the

resulting ignition delays were similar to those from the cross-stream and two-dimensional

results. The overprediction of ignition delay at low air temperatures and underprediction

at high air temperatures was reduced, resulting in better agreement with the experimental

data. The ignition locations from the integrated temperature field were further upstream

than the cross-stream averaged results for most air temperatures, but downstream of the

two-dimensional axial ignition locations. Based on the present findings, the shear flow

approximation appears to be applicable to the autoignition conditions examined in this

thesis. Further investigation of the two-dimensional solution and ignition criteria would be

useful to assess the sensitivity of the axial ignition location in these two-dimensional cases.

8.5 Recommendations

Other parameters within the autoignition problem need to be examined to assess their im-

pact on the autoignition predictions. LES, while more computationally expensive, would

provide a detailed prediction of transient turbulent structures in the mixing field due to its

121



consideration of instantaneous quantities, rather than the averaged quantities considered

in RANS models. Based upon the scatter observed in the experimental data, LES may

be better suited to represent the unsteady turbulent processes and provide predictions for

a number of realizations of the flow. In the context of CMC, higher order closures could

be applied, to account for fluctuations about the conditional averages. The performance

of the gradient diffusion conditional velocity model, and its impact on the predicitons of

scalar dissipation rate using the Inhomogeneous-Gradient mixing model, with alternative

forms of the PDF would provide valuable insight. In future work, the role of the condi-

tional scalar dissipation rate is likely to remain significant even in higher order closures or

multiple conditioning methods.
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