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Abstract 

Effective automated tracking and locating of the thousands of materials on construction sites 

improves material distribution and project performance and thus has a significant positive impact on 

construction productivity. Many locating technologies and data sources have therefore been 

developed, and the deployment of a cost-effective, scalable, and easy-to-implement materials location 

sensing system at actual construction sites has very recently become both technically and 

economically feasible. However, considerable opportunity still exists to improve the accuracy, 

precision, and robustness of such systems. The quest for fundamental methods that can take 

advantage of the relative strengths of each individual technology and data source motivated this 

research, which has led to the development of new data fusion methods for improving materials 

location estimation. 

In this study a data fusion model is used to generate an integrated solution for the automated 

identification, location estimation, and relocation detection of construction materials. The developed 

model is a modified functional data fusion model.  Particular attention is paid to noisy environments 

where low-cost RFID tags are attached to all materials, which are sometimes moved repeatedly 

around the site. A portion of the work focuses partly on relocation detection because it is closely 

coupled with location estimation and because it can be used to detect the multi-handling of materials, 

which is a key indicator of inefficiency.  

This research has successfully addressed the challenges of fusing data from multiple sources of 

information in a very noisy and dynamic environment. The results indicate potential for the proposed 

model to improve location estimation and movement detection as well as to automate the calculation 

of the incidence of multi-handling. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

In industrial and heavy construction, as prefabricated objects such as pipe spools and precast 

concrete elements are assembled and installed on site, the designed facilit takes shape, and its 

progress can be tracked. Decreasing the occurrence of unsuccessful searches for the required 

materials reduces the amount of supervisory time wasted, the amount of idle time for the crew, 

and the number of disruptions to short-interval planning. Concomitantly, understanding the flow 

of materials over time helps to increase labour productivity, reduces the stockpiling of materials, 

and decreases the manpower required for materials management (Bell and Stuckhart, 1986). On a 

large construction site, achieving these goals can involve locating and tracking tens of thousands 

of critical units of materials.  

Effective site materials management can address the problem of unsuccessful searches and also 

contribute significantly to the success of a project.  An optimized materials management system 

can increase productivity, help avoid delays, reduce the number of man hours needed for 

materials management, and lower expenditures for materials by decreasing waste. Such a system 

on a site can ensure that sufficient quantities of materials and equipment are available for 

construction needs and that surplus at the end of the project is minimized.  It can also have a 

significant effect on the project schedule (Thomas 2000). Materials tracking and locating 

technologies are key elements in optimized materials management systems.  

Deficiencies in materials management have been recognized by Thomas et al. (1992) as the most 

significant and common factor affecting construction productivity and have been estimated by 

Nasir et al. (2009) to cause an overall reduction in productivity of up to 40 %.  Late deliveries, re-

handling and misplacement of components, incorrect installation, and other problems intrinsic to 

the existing manual methods of locating highly customized materials can lead to delays in the 

project schedule and increases in labour costs (Ergen, 2007).  

While automated controls are often established for engineered and other critical materials during 

the design and procurement stages of large industrial projects, typical on-site control practices are 

still based on direct human observation, manual data entry, and adherence to processes. These 

methods do not adequately overcome the dynamic and unpredictable nature of construction sites, 

and the resulting unavailability of construction materials at the right place and at the right time 
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has been recognized as having a major negative impact on productivity. Moreover, poor site 

materials management potentially delays construction activities and thus threatens project 

completion dates, which is likely to increase the total installed costs (Grau, 2007a). An accurate 

and automated site materials management system that can identify and localize the materials both 

on the site and further up the supply chain will therefore have a significant positive effect on the 

materials control problem and associated shortages and can also facilitate automated material 

receiving and inventory control. 

In an initial attempt to automate materials tracking, Caldas et al. (2006) implemented a mapping 

approach based on Global Positioning System (GPS) and handheld Geographic Information 

System (GIS) that demonstrated some promise for time savings and reduced materials losses 

under specific conditions.  In this study GPS was used to record the position of pipe spools on an 

industrial construction project. Although this approach may seem an obvious solution for locating 

and tracking the construction materials but attaching a GPS receiver to each construction material 

is expensive and is not a viable option for large scale implementation on construction sites. In 

addition to economical limitations, this approach has a number of other significant limitations 

such as GPS signal blockage due to the orientation of the GPS tags and the high density materials 

and surrounding structures.  

Specific examples of more recent research are demonstrating  that, coupled with mobile 

computers, data collection technologies and sensors can provide cost-effective, scalable, and 

easy-to-implement materials location sensing at actual construction sites (Akinci, 2002; Song, 

2006a; Song,  2006b; Caldas, 2006; Grau, 2007;, Teizer, 2007; Razavi, 2008; El-Omari, 2009). 

One of these examples is the study by Ergen et al. that used a crane-mounted GPS receiver to 

track the discrete movements of the RFID-tagged precast concrete materials on the staging yard 

(Ergen 2007). The results of this study show that 60% of relocated materials were detected 

correctly.   

More sophisticated and automated data collection technologies based on wireless sensor networks 

that use GPS and RFID (Radio Frequency Identification) are being developed for a wide 

spectrum of applications. A cost-benefit analysis for RFID/GPS Based automated materials 

tracking system presented in Appendix D of this thesis shows the significant benefits of utilizing 

this integrated solution for locating materials in construction site (Nasir 2009).  Although a 

number of successful studies have attempted on the application of automated sensing 

technologies for construction materials localization, but some important areas were still 

untouched. While most of these studies were conducted in small-scale ideal-condition 
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experiments, the feasibility of applying these approaches in a fully automated manner is a real-

world construction job site was yet to explore.  In 2008, Grau et al. presented a comprehensive 

study and field experiments that were partly conducted in collaboration with the author’s current 

research study (Grau 2008, Grau 2009, Razavi 2008). Grau et al. assessed and quantified the 

impact of the integrated solution of RFID and GPS for automatically tracking the materials in 

real-world construction projects. In this study, two localization techniques of Centroid and a 

constrained-based technique based on proximity have also been explored and compared to 

estimate the components locations. Results show that Centroid model presents higher 

performance compare to the proximity methods. These techniques have been used in this thesis to 

provide a benchmark for comparing different localization methods in different conditions.  

A key challenge is to find ways of improving the performance of the above-mentioned methods 

while maintaining the cost-effectiveness and scalability. Also with rapid advances in sensing 

technologies, having a method that can be robust to future advances of technology and also be 

sensitive to materials relocation is another important challenge.  

To address this challenge, this research has developed a data fusion model that provides an 

integrated solution for automated identification, location estimation, and relocation detection of 

construction materials. The developed model is a modified functional data fusion model. A 

critical element of this framework is the location estimation problem; developing a data fusion 

method for location estimation that is robust with respect to measurement noise while having a 

reasonable implementation cost would therefore be advantageous. Fusing a variety of sources of 

location and contextual data, such as building information modeling (BIM), is intended to 

increase confidence, achieve better performance for location estimation, and add robustness to 

operational performance.  Particular attention has been paid to relocation detection because it is 

closely coupled with location estimation and because it can be used to detect multi-handling of 

materials, which is a key indicator of inefficiency. The focus of this thesis is therefore on the 

location estimation and relocation detection problems and on the potential of data fusion to solve 

these problems. 

1.2 Research Objectives 

To address the above mentioned challenges, sensors ranging from simple to complex can be 

utilized: RFID transponders, GPS receivers, RFID readers, RFID with GPS chips, UWB, 

ultrasound, infrared, and others. It is assumed that a small subset of sensors will have a priori 

information about their locations because they have been coupled with GPS receivers or GPS 
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chips, or because they have been installed at fixed points with known coordinates. This subset is 

small because no matter how a priori location information is acquired, it is on average one or two 

magnitudes more expensive per sensor node than estimated location information. For example, 

many geomatics solutions exist for tracking items accurately and in real time but at a cost that is 

prohibitive for the problem described here. In addition, even sophisticated and expensive 

solutions experience, to some extent, multipath, dead space, and environmentally related 

interference. Thus, developing a method for location estimation that is robust with respect to 

measurement noise while having a reasonable implementation cost is a challenge. One promising 

approach is to use data fusion. Data fusion is defined as the process of combining data or 

information in order to estimate the state of an entity. In most cases, the state of an entity refers to 

a physical state, such as identity, location, or motion over a period of time; in this case, it refers to 

the location of a construction material. 

Given these factors, the objective of the proposed research is therefore to develop a more accurate 

and reliable location estimation method based on data fusion that is robust to measurement noise 

and to future advances in technologies, scalable to tens of thousands of items, and effective 

enough to be used for automated identification of dislocated materials. 

Field experiments were used to validate the model; to demonstrate the feasibility of employing 

the components, methods, and technologies developed; and to facilitate the deployment of the 

technology and its transfer to industry. These experiments have been underway for three years. 

In summary, the hypothesis to be examined is that data fusion can improve location estimation on 

construction sites and help with the detection of locations and relocations. 

1.3 Research Scope 

This research study was conducted within the following outlined scope: 

 Materials location but not the location of people or equipment 

 Stationary objects that are subject to discrete shifts in location 

 Very large projects with many critical materials (typically >5,000 items) such as 

valves, pipe spools, structural steel, etc. 

 Methods suitable for very noisy, dynamic environments 

 Exploitation of existing or soon-to-be-existing data sources 
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1.4 Research Methodology 

The research began with a problem statement and the definition of the preliminary scope and 

objectives. These led to a comprehensive literature review, which covered a wide spectrum of 

related information, including studies related to multisensor data fusion, wireless sensor networks 

and sensor network localization, construction site materials management, automated material 

management systems and technologies, building information modeling, and  context and context 

aware systems. 

While initial field trials were being conducted, the data fusion architecture and algorithms were 

also gradually designed. Computational experiments for implementing the algorithms and 

integrating them with the existing devices and technologies were then conducted. Field trials were 

performed at a construction site and were continued in order to assess the feasibility of utilizing 

this approach in the real world. Other control experiments were also conducted to support the 

results obtained from the real-world implementation. Fusion model levels 0, 1, and 2 were 

validated using the data acquired from the real-world trial as well as from the control 

experiments. Finally, all the knowledge, experiments, and lessons learned were documented and 

presented along with recommendations for further work. Figure 1.1 shows schematically the 

research methodology outlined and defined as follows: 

 Problem statement: Identify the existing needs and problems in order to define the 

research idea, objectives, and main scope.  

 Literature review. 

 Design of the data fusion algorithm and architecture:  The data fusion model and the 

algorithms at the various levels of the model as well as the approaches used for the 

functional levels were designed.  The approaches for fusing the data include a JDL fusion 

model adapted for the application in this research; Dempster-Shafer evidence-based 

reasoning, hybrid Dempster-Shafer, Centroid , and hybrid weighted averaging methods 

for location estimation; a fuzzy logic inference engine; a Dempster-Shafer algorithm for 

relocation detection; and a validation method. 

 Implementation of the algorithms: The algorithms designed for the functional data 

fusion levels required implementation software that would also integrate them with the 

sensing technologies. 
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Figure 1.1: Research Methodology 

 Technology integration: In this step, the existing physical and developed functional 

componentswere integrated, which included the identification of the communication 

scenarios of the components, such as GPS, RFID, handheld PC, wireless communication, 

and GIS navigation, as well as the development of the data visualization technique. The 

challenges associated with the practical integration of the developed software within the 

framework were also addressed at this stage.  
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 Field trials: Field trials were conducted at a variety of levels. 

o Most of the new developments were first tested in the lab.  Then small-scale field 

trials took place on the University of Waterloo (UW) campus before field trials 

were attempted at the partners’ facilities. Additional small-scale experiments on 

campus were also conducted. 

o Two industrial pilot projects then hosted the field trials, which were conducted at 

sites in Toronto and Texas, providing an opportunity to test the developed 

system. After the experiments were conducted, data were collected, and the 

results were reported to site management. The trials required collaboration with 

partners so that the experimental plans could be detailed for the host projects; 

SNC Lavalin, OPG, and Identec Solutions supported this work.  At the Portlands 

site in Toronto, critical components such as valves, pipe spools, and pipe 

supports were tracked. In other similar trials in Rockdale, Texas, structural steel 

was the target of the tracking. The first step in the field trials was to analyze both 

the current process of handling the materials on the site and the information flow 

for the project. The critical components to be tracked were then selected, the field 

trial scenario was designed, and the data collection procedures were developed 

with the collaboration of SNC Lavalin’s site management personnel. The system 

was then deployed, maps were produced, and the data were collected. 

o A simple control experiment was conducted on a parking lot on campus in order 

to acquire a more controlled version of the data set.  

 Analysis of field data to validate fusion model:  To test the flexibility and power of the 

fusion model, the validating procedure included a variety of sets of experiments and data 

sets. The data collected from the real-world construction site trial and from the control 

experiments were used to run and validate the fusion model. The daily logged data of all 

the sensed information and the existing contextual data constitute the input for the model. 

Location data logs from a high-accuracy GPS are used to validate the output of the 

model, which is comprised of the estimated locations of the tagged construction resources 

as computed by the model.  

 Conclusions and Documentation. 
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1.5 Thesis Organization 

This thesis is organized in six chapters. Chapter One provides an overview of the research 

problem and describes the motivation, objectives, scope, and methodology of the research. 

Chapter Two provides background knowledge about multisensor data fusion, wireless sensor 

networks, sensor network localization, construction site materials management, automated 

materials management systems and technologies, building information modeling, and context and 

context aware systems. Chapter Three presents the field implementation and data acquisition 

framework for the automated construction materials tracking system. The data fusion model and 

the details of the development are presented in chapter Four. Chapter Five discusses the fusion 

levels 0 and 1 toward the objective of materials location detection and Chapter Six presents the 

fusion 2 for relocation detection. Chapter Seven summarizes the proposed research and presents 

possibilities for future work.  
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Chapter 2 

Background and Literature Review 

This thesis presents research that addresses problems in the management of construction site 

materials by developing an integrated solution framework. This integrated solution builds on 

some of the technologies, methods, and concepts used in automated materials management, 

wireless sensor network localization, data fusion, and building information modeling. A review of 

the basic concepts of these areas and related prior studies is provided in this chapter. Figure 2.1 

schematically presents the architecture of the background studies required. 

 

Figure 2.1:  Structure of the literature review for the thesis 

2.1 Construction Site Materials Management 

This research effort was inspired by the studies that showed effective construction site materials 

management systems have significant impact on construction productivity (Bell 1986, Thomas 

1989, and Thomas 2000).  Materials management encompasses storage, identification, retrieval, 

transport, and construction methods (Thomas, 2002). According to the CII materials management 

handbook (1999), project materials are categorized into three groups that require different 

approaches during the planning and construction phase:  
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 Engineered materials: These are items with a unique identification number so that they 

can be uniquely identified during the project life cycle. Some of these materials, such as 

tanks and pumps, are engineered or fabricated specifically for the project while others are 

manufactured according to industry-wide specifications and are also uniquely tagged for 

control purposes. Valves are an example of the latter type of equipment. 

 Bulk materials: These items are manufactured according to industry standards and are 

usually purchased in large quantities, such as pipes, cables, and wiring.  

 Prefabricated materials: These materials are fabricated according to engineering 

specifications at a fabrication shop or at a site separate from the construction site. 

Structural steel, pipe spools, ladders, and platforms are examples of prefabricated 

materials. 

Effective site materials management of all three of the above types of materials can significantly 

contribute to the success of a project. According to the CII materials management handbook 

(1999), materials management is one of the most controllable factors that affect craft 

productivity, and construction schedule. To be effective, however, the site materials management 

activities must be a fundamental part of an overall materials management program. An effective 

materials management system has significant impact on the areas such as craft labor hours, 

number of site materials management personnel, administrative costs for tracking expenditures 

and budgeting, surplus, the risk of schedule delays, and many others.  

An optimized materials control system on the site can ensure that the sufficient quantities of 

materials and equipment are available for construction needs and that surplus at the end of project 

is minimized.  This optimized system can also have a significant effect on the project schedule 

(Thomas 2000). Deficiencies in materials management have been recognized by Thomas et al. 

(1992) as the most significant and common factor affecting construction productivity and have 

been estimated by Nasir (2009) to cause an overall reduction of about 40 %.  These deficiencies 

often occur due to one or more of the following factors (CII Materials Management Handbook 

1999, Thomas 1992): 

 Lost or damaged materials 

 Multiple handling of materials 

 Materials required but not purchased 

 Materials purchased but not received 
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 Sporadic and out-of-sequence deliveries 

 Errors in the material takeoff 

 Variances for additional material requirements 

 Materials that are issued to crafts and are then not used or installed 

In a seminal paper, Bell and Stukhart (1986) identified the attributes of materials management 

systems on large and complex industrial construction projects to include the functions of quantity 

takeoff, vendor evaluation, purchasing, expediting, receiving, warehousing, and distribution. Bell 

and Stukhart (1987) also quantified the costs and benefits of materials management systems and 

concluded that an effective materials management system could reduce typical surpluses of bulk 

materials from 5-10% down to about 1-3% of the bulk materials purchased. Their research 

showed that on projects where there is a lack or absence of a materials management system, craft 

foremen spend up to 20% of their time searching for materials and another 10% tracking purchase 

orders (POs) and expediting. Thomas et al. (1989) studied the impact of materials management on 

labor productivity. Their case study on medium sized commercial construction projects showed a 

benefit/cost ratio of 5.7/1.0 for effective materials management. Adverse materials management 

conditions were identified which include: extensive multiple handling of materials, materials 

improperly sorted or marked, running out of materials, and crew slowdowns in anticipation of 

material shortages. Akintoye (1995) estimated that an efficient materials management and control 

system could potentially increase productivity by 8%. This increase in productivity is mainly 

attributed to the availability of the right materials prior to the commencement of work and the 

ability to better plan the work activities due to availability of materials. Choo et al. (1999) found 

that the biggest problem faced by the field workers is dealing with discrepancies between the 

anticipated, actually needed and available resources, which include materials. Thomas and 

Sanvido (2000) examined three case studies of subcontractor-fabricator relations. Their research 

concluded that inefficient materials management could lead to an increase in field labor hours of 

50% or more. Recent analysis of the Construction Industry Institute’s Benchmarking and Metrics 

program’s data corroborates these results (CII 2009).  

In summary, an efficient materials management system can increase productivity, avoid delays, 

reduce hours needed for materials management, and reduce the cost of materials due to decrease 

in wastage. Implementation of conventional materials management practices continues to vary 

widely, however, and this variability and the inability to handle exceptional circumstances such 

as snow cover and congested delivery patterns limits their potential to improve project 
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performance, thus attention is increasingly becoming more focused on the automation of at least 

some aspects of materials management. 

Late deliveries, re-handling and misplacement of components, incorrect installation, and other 

problems inherent in the existing manual methods of locating highly customized materials can 

lead to delays in the project schedule and increases in labour costs (Ergen 2007). Having an 

accurate and automated site materials management system that can identify and localize the 

materials both on the site and further up the supply chain can have a significant positive effect on 

the materials control problem and associated shortages and can also facilitate automated material 

receiving and inventory control. The next section discusses these automated site materials 

management systems and technologies, with a particular attention to the technologies used in this 

research effort. 

2.1.1 Current site Materials Handling Process 

Effective site materials management tasks are defined beyond the activities of receiving, storing, 

and distributing materials. Personnel assignment, materials control, field procurement, field 

warehousing and craft labor planning comprise a significant part of the site materials 

management tasks (CII 1999).  Grau et al. (Grau 2006) describes the current materials locating 

process based on KBR`s onshore operations for handing pipe spools on industrial project. The 

process begins by receiving materials from the manufacturers and continues until materials are 

distributed to contractors. This includes receiving, unloading, sorting, storing, recalling and 

loading the materials. Laydowns are divided in grids of approximately 30×30 m.  

 Receiving: On-site warehouse personnel receive materials that are marked with its unique 

identification code. During the receiving process, materials are unloaded in predefined 

areas without identifying or classifying them.  The received items are recorded manually 

into the project management system based on the packing list. This database will further 

be used for the availability of the materials on site. 

 Sorting: Warehouse personnel sort the materials based on their category, physical 

characteristics, and identification codes. Sorting and grouping is usually marked down 

with colored tapes. Then material`s unique ID, grid, and color code are entered manually 

into the materials management system. This phase is very labor intensive but helps to 

facilitate the retrieving process.  
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 Storing: Usually materials will remain in the same grid as they have been received and 

sorted. However, they may be moved to facilitate the retrieval of an adjacent material. If 

this moving causes a change in the grid number of the stored material, then the new grid 

information should be recorded and updated in the system.  

 Recalling: When a specific material is recalled, its grid location and color code is 

retrieved based on the material`s identification code. Then the craft labors try to visually 

locate the material in the grid. Because of the visual similarities of many of items, 

sometimes they need to study the drawings and descriptions of the materials to more 

easily detect the component. Once an item is located, a flag is attached to assist and 

facilitate the loading process.  

 Loading: At a predefined schedule, all flagged materials are picked up, loaded, and 

released to the contractors for installation or pre-assembly. 

2.2 Automated Materials Management Systems and Technologies 

Automated materials management systems can provide the communication and information tools 

required for efficient identification, inventory, locating, and tracking of goods as well as the 

reporting and control of their transport to shops and job sites. On large projects, it has been stated 

that proper reporting and control can usually be achieved by a fully integrated materials 

management system (CII 1999). The main aim of using ADC technologies in construction is to 

increase efficiency, reduce data entry errors caused by human transcription, reduce bottlenecks, 

and reduce labor costs. Such a system is generally comprised of integrated computer hardware, 

software, and middleware that identify and  track the materials and report on and facilitate their 

control. The scope of these systems ranges from quantity takeoff through materials control and 

procurement to the construction and startup phases of a project. 

Tracking the precise location of materials on site had generally been considered economically 

prohibitive; however, recent advances in automated data collection technologies have made it 

technically and economically acceptable. Laser scanning, machine vision, and modern 

photogrammetric systems can be used to measure the shape, location, and orientation of objects 

on site, but they lack the ability to perceive information about the nature of an object without 

significant human post-processing (Gong 2009, El-Omari 2008). Thus, they are useful for 

producing as-built models and for rapid local area modeling but are not feasible in themselves for 

comprehensive materials tracking. Automated materials management systems incorporate 
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technologies used for the identification, location sensing, and tracking of construction resources, 

which can be categorized as follows: 

 Ultra-wideband (UWB) and real-time location systems 

 GPS (Global Positioning Systems) used to map and then later to navigate to previously 

mapped locations, whether presently valid or not 

 RFID (Radio Frequency Identification) tags scanned at receiving portals only 

 GPS and RFID combined using proximity and triangulation techniques 

 Wideband frequency-based devices offered by AeroScout, WiseTrack, or Ekahau 

 Ultrasonic (Cricket, Active Bat) 

 LADAR 

 Laser scanning 

 Infrared (Active Badge) 

 Barcode 

 Other technologies 

Past research studies have explored or are currently investigating automated materials tracking 

technologies and sensing devices to collect information for use on construction sites. Jaselskis et 

al. (1995) introduced RFID technology for monitoring valuable materials on construction job 

sites. For technical reasons, it was considered unfeasible at the time, and barcode technology was 

still under study for construction materials management systems. Wakisaka et al. (2000) proposed 

a barcode-based materials management system in a high-rise building construction project, and a 

GIS-barcode-based system was implemented by Cheng et al. (2002) in order to control and track 

the erection of prefabricated concrete components in real time. Soon after RFID tags were 

introduced for use in construction, researchers began to investigate laser scanners for industry 

use. For example, Cheok and Stone (1999) used laser scanners to develop elements of a 3D model 

of a project to facilitate construction management. Akinci et al. (2002) studied RFID as a means 

of locating precast concrete elements with minimal worker input in the storage yard of a precast 

manufacturing plant. Later, Ergen et al. (2007) also demonstrated the basic feasibility of an 

automated system that integrates RFID and GPS technologies for tracking precast pieces in a 

storage yard. The RFID antenna was mounted on the crane cabin rather than on the picking bars 
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close to the centers of the pieces. In another application, Goodrum et al. (2006) assessed the 

feasibility of using RFID technology to track handheld tools on construction sites.  

The FIATECH (Fully Integrated and Automated Technology) consortium studied the use of 

RFID devices to detect and identify pipe spools loaded on a flatbed as they passed through a gate 

(Song, 2006a). In another study conducted by FIATECH, GPS was deployed to locate materials 

in large lay-down yards (Caldas, 2006). GPS provides a high accuracy rate and may seems as an 

obvious solution to track the materials. However, GPS is not designed to work indoors or 

underground, where much construction work and maintenance is conducted (Hightower et al., 

2000). Additionally, the cost of GPS receivers prohibits wide scale deployment on a site, and 

GPS must be integrated with a wireless communication technology to report its location to a host, 

resulting in high expansion costs and more complex device architecture than an RFID tag. GPS 

has been suggested as a means to obtain location information in tracking labor inputs (Navon and 

Goldschmidt, 2003). For outdoor applications in which device density is low, and cost is not a 

major concern, GPS is a feasible option (Patwari et al., 2001). However, tagging a GPS receiver 

to each construction critical component is expensive, and is not a cost-effective approach for 

large scale location sensing systems where tens of thousands of items need to be tracked withcin a 

few square kilometers (Caron 2007). 

The National Institute of Standards and Technology (NIST) conducted a research study for 

establishing data exchange standards to support the deployment of different sensing technologies 

in onsite construction practices (Saidi 2003). A recent study by Jang et al. (2007) introduced a 

hypothetical automated material tracking (AMTRACK) system based on an architecture that 

utilizes ZigBeeTM networks, RFID, and ultrasound.  

Another technology which has been studied for automated tracking is Ultra Wide Band (UWB) 

locating. Teizer et al. (2007; 2008) experimented with UWB technology for data collection in the 

context of materials location tracking and active work zone safety. Giretti et al. (2008) discussed 

the problems related to the use of UWB technologies for accurate and real-time position location 

of workers and construction equipment. Though UWB technology can potentially provide much 

better positional accuracy than the RFID/GPS approach, it requires considerable time for 

infrastructure set up in typical construction environments; at least three receivers for 2D location 

estimation per unit area of coverage, and each tag must be in line-of-site of the receivers (Teizer 

et al. 2007; Giretti et al. 2008).  For the UWB technology to perform effectively in an industrial 

construction environment where mostly metallic items are being tracked and located, it is 
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necessary that tags should be mounted on devices that offset the tags from the metallic items and 

that remain vertically offset from the materials field in order to obtain line-of-site.  

The success of these and other research projects have opened the doors to the potential 

deployment of data collection technologies on construction job sites. Combined with the latest 

versions in portable computers and data communications, these technologies may create the data 

stream necessary for management systems to move materials efficiently on construction job sites, 

substantially modifying current on-site materials operations. 

As automated materials management systems for construction are developed, they will fit into the 

following broad schema of process and elements: 

 Type of materials and project: Industrial and heavy construction projects for which 

engineered materials such as pipe spools, valves, and structural assemblies are critical 

components in terms of productivity and schedule performance are currently areas in 

which the advantages of automated materials management are clear.   

 Physical components of a system: Any automated materials management system 

includes physical components, such as interrogators (readers), antennae, tags, portals, 

rovers, GPS receivers and antennae, notebooks, handheld or tablet PCs, wireless 

infrastructure, and wired or wireless connections to a central computer. These 

components can be off-the-shelf or custom designed. 

 Functional components of a system: Many functional components are associated with 

an automated materials management system, and they can function to support either 

management or field activities. The field support functional components include 

algorithms for dynamic material location estimation and tracking, lay-down yard and site 

navigation solutions and tools, centralized and decentralized information processing 

functions, and architecture for distributed computing and sensing agents. The 

management support components include analysis tools, a database, and visualization 

tools for construction project management decision support systems, as well as 

information integration with automated project processes such as cost, schedule, and 

quality control, procurement systems, inspection and analysis systems, document 

management systems, and information management systems. 

 Re-engineering of the materials management system: The way each project handles 

materials management can vary, so a degree of process re-engineering is required on each 



 

17 

 

job or for each company in order to develop an appropriate materials management 

system. 

 Supply chain and project life cycle perspective: Automated materials management 

systems can be addressed at all levels of the project life cycle and construction supply 

chain. Depending on the location and movement of suppliers, production facilities, and 

distribution centers, automated materials management systems would employ portals and 

reader stations (fixed readers), or probes (mobile readers).  Application areas appropriate 

for probes include lay-down yards, staging areas, and fabricator yards.  Shipping and 

receiving related to fabricators, painters, and constructors are examples of applications 

for portals. 

 Modes of operation: Automated materials tracking systems support inventory 

management, project decision support systems, supply chain management, and the 

complete materials management system. State estimation and updating can be performed 

in real time or can be based on discrete periodic (daily or hourly) batch processing.  

While these envisioned processes, elements, and modes of operation are obviously needed and 

have clear and immediate benefits, they have yet to be fully researched, developed, and deployed.   

For the current research, RFID and GPS have been chosen as the technologies to be studied in a 

comprehensive field experiment. The following sections address the principles of these two 

technologies and their current applications in construction. 

2.2.1 RFID Applications in Construction 

RFID is a promising technology for many applications in construction, but it will take time before 

the technology becomes widely accepted in the field. The first attempt by Jaselskis et al. (1995) 

led to a 1998 Construction Industry Institute (CII) RFID workshop, which discussed current and 

future construction applications of RFID. Potential construction applications were explored in 

engineering/design, materials management, maintenance, and field operations (Jaselskis, 2003a). 

Engineering and design applications that were identified included tracking prefabricated items on 

the site and handling the certification for mechanical machinery. A ―smart chip‖ study at 

FIATECH at about this time proposed similar applications (Akinci, 2004; Caldas, 2004) 

Materials management and procurement categories in which RFID can be beneficial were also 

identified: material takeoff, material requisition, awarding material contracts, material 

inspections, material shipment and export, receipt of materials, material storage, in-storage 
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maintenance of materials, issuance of materials to contractors, material installation, material 

return, equipment startup, and project turnover. Within this category, four groups of commodities 

were identified as areas in which the use of RFID tags could be beneficial: bulk commodities, 

shop-fabricated materials, engineered materials, and construction tools and equipment.  

Potential applications for maintenance were also identified: tool tracking, assisting with the 

inspection process, maintaining a repair history for each piece of equipment, maintaining 

operating data, tracking compliance records, and providing equipment information. Potential 

applications for field operation RFID were discussed as well: personnel management, 

timekeeping, fleet management, and job status. 

Many research projects have been conducted with respect to the application of RFID technology 

in the construction industry (Jaleskis 1995, Hightower 2001, Jaleskis 2003b, Song 2005, Ergen 

2007, Grau 2007b, Goodrum 2006). However, only in a few cases has the technology actually 

been utilized for field experiments on a real construction site. Current research into the use of 

RFID construction, however, includes tracking construction materials on the job site (Grau 2009; 

Ergen 2007, Song 2006c, Caron 2007, Razavi 2008, Jang 2007); construction tool tracking 

(Goodrum, 2006); RFID in construction supply chain management (Wang 2005); progress 

management of structural steel works (Chin, 2008); tracking construction vehicles in building 

construction sites (Lu 2007);  maintaining a history within a facility (Ergen 2007); tracking hot-

mix asphalt from the time it leaves the plant to its arrival at a construction site (Oloufa 2006); 

storing and retrieving on-site construction problem information (Elghamarawy 2009); and 

detecting the location of underground utilities for reducing attacks during the excavating process 

(Dziadak 2009).  

Although a number of successful studies have attempted on the application of automated sensing 

technologies for construction materials localization, but some important areas were still 

untouched. While most of these studies were conducted in small-scale ideal-condition 

experiments, the feasibility of applying these approaches in a fully automated manner is a real-

world construction job site was yet to explore.  In 2008, Grau et al. presented a comprehensive 

study and field experiments that were partly conducted in collaboration with the author’s current 

research study (Grau 2008, Grau 2009, Razavi 2008). Grau et al. assessed and quantified the 

impact of the integrated solution of RFID and GPS for automatically tracking the materials in 

real-world construction projects. In this study, two localization techniques of Centroid and a 

constrained-based technique based on proximity have also been explored and compared to 
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estimate the components locations. These techniques have been used in this thesis to provide a 

benchmark for comparing different localization methods in different conditions.  

A key challenge is to find ways of improving the performance of the above-mentioned methods 

while maintaining the cost-effectiveness and scalability. Also with rapid advances in sensing 

technologies, having a method that can be robust to future advances of technology and also be 

sensitive to materials relocation is another important challenge.  

Some principles of RFID are briefly mentioned in the Appendix A (adopted from RFID Journal 

website). 

2.2.2 Applications of GPS in Construction 

GPS has been also beneficial to the construction industry as well as to other industries. GPS has 

been successfully integrated with earthmoving equipment and procedures for real-time state 

monitoring (Navon and Shapatnisky, 2002). The use of GPS in land surveying is also a very 

common practice in the construction industry as well as in geographical and environmental 

studies. It has also been utilized on construction sites to log the precise position of materials on 

the site. A FIATECH study and field trial was conducted in order to obtain experimental data for 

the use of GPS in the material-handling process at a construction site (Caldas, 2006). For the 

study, a GPS unit and a handheld computer were used in the current receiving, storing, and 

issuing processes in the lay-down yards of a particular industrial project involving fabricated pipe 

spools. In this model, a unit of a positioning system such as a GPS unit and a handheld computer 

with a geographic information system (GIS) were integrated into the specific application in order 

to assess the potential of data collection and positioning technologies, with the goal of improving 

the tracking and locating of materials on construction job sites. The experiments conducted in the 

field trial measured the search times required by field workers. Time measurements were taken 

for a baseline case in which crews used current industry work processes to locate spools. The 

study then measured the times required for other crews to locate the same pipe spools using GPS 

technology.  The field measurements demonstrated an about an 85% improvement in the average 

search time. However, this approach can not keep pace with the movement of materials on many 

sites and is also labour intensive. Also attaching a GPS receiver to each construction materials is 

expensive and is not a viable option for large scale implementation on construction sites. In 

addition to economical limitations, this approach has a number of other significant limitations 

such as GPS signal blockage due to the orientation of the GPS tags and the high density materials 

and surrounding structures.  However, for outdoor applications in which device density is low, 
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cost is not a major concern, and the site has no significant dynamics that arises frequent labour 

intensive data collections, GPS is a feasible option. 

The current applications of GPS in construction show that it is being utilized mostly in 

conjunction with other identification and positioning sensors and algorithms, such as RFID or 

laser scanners (Song, 2006a; Caron 2006). Miller et al. (2009) utilized GPS along with GIS data 

in a visualization tool for a hot mix asphalt (HMA) paving operation. The study showed that the 

use of this technology improves and professionalizes the paving operations of the HMA 

contractor. In another study,  James et al. (2009) examined stringless paving using a combination 

of GPS and laser technologies. The results showed that GPS can effectively control a concrete 

paver. Some principles of GPS are briefly mentioned in the Appendix B (adopted from Timble™ 

website). 

2.3 Building Information Modeling  

Building information modeling (BIM) incorporates geometry, spatial and temporal relationships, 

3D geographic information, and the quantities and properties of building components such as the 

supply chain information for an element. BIM can be used to demonstrate the lifecycle of the 

entire building, including all stages of construction. It is an information-sharing method that eases 

communication between architects, engineers, and construction professionals (Eastman 2008). It 

is usually implemented in the form of a standard and is related to bridge information modeling 

(BrIM) and other similar models.  

The information and required construction documents include the drawings, procurement details, 

environmental conditions, submittal processes, and other specifications for building quality. It has 

been said that BIM can bridge the information gap, that is, the loss associated with handing a 

project from design team to construction team to building owner/operator, by allowing them to 

share information and documents and to add to and reference all the information they acquire 

during their period of contribution to the BIM model. For example, a building owner may find 

evidence of a leak. Prior to exploring the physical building, he may consult his BIM and find that 

a water valve is located in the suspect location. The model could also have recorded the specific 

valve size, manufacturer, part number, and any other information ever recorded in the past, as 

long as adequate computing power is available.  

The first National Standard for Building Information Modeling (NBIMS) is being written by the 

Institute of Building Sciences (NIBS) for the U.S. The standard will create a standardized data 

format that will allow all the users of building information models to be able to utilize the 
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information easily, that will establish minimum requirements that are implied when marketing a 

BIM, and that will provide many other benefits to all the stakeholders (Elvin, 2007). Commercial 

BIMs are already in existence. 

2.4 Multisensor Data Fusion 

The automated data collection technologies, discussed in the previous section, each have their 

own strengths and weaknesses. The need for developing fundamental methods to take advantage 

of the relative strengths of each technology and incorporate other sources of information, through 

Building Information Modeling (BIM) for example,  lead to the development of data fusion 

methods for improving materials location estimation, and movement detection for implementing 

automated multi-handling counts.  

In this research, the state of an entity refers to a physical state, such as identity, location, or 

motion over a period of time. Data fusion, is the process of combining data in order to estimate 

the state of an entity. The human brain is the best example of data fusion in action. 

The initial U.S Joint Directors of Laboratories (JDL) Data Fusion Lexicon defines data fusion as 

follows (White, 1987): 

―A process dealing with the association, correlation, and combination of data and 

information from single and multiple sources to achieve refined position and identity 

estimates, and complete and timely assessments of situations and threats, and their 

significance. The process is characterized by continuous refinements of its estimates and 

assessments, and evaluation of the need for additional sources, or modification of the 

process itself, to achieve improved results.‖  

Klein (1993) generalizes this definition, stating that data can be provided either by a single source 

or by multiple sources. Both definitions are general and can be applied in a variety of fields, 

including remote sensing. In a more recent and generic definition, Wald (1999) has changed the 

focus to the framework used to fuse the data. The author states that "data fusion is a formal 

framework in which are expressed means and tools for the alliance of data originating from 

different sources. It aims at obtaining information of greater quality; the exact definition of 

'greater quality' will depend upon the application." Wald also considers data taken from the same 

source at different instants as different sources. Data fusion is a multi-disciplinary research area 

that borrows ideas from many diverse fields, such as signal processing, information theory, 

statistical estimation and inference, and artificial intelligence.  
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2.4.1 The Benefits of Multisensor Data Fusion  

Performing data fusion has several general advantages, the most important of which include 

enhancing confidence in and therefore the reliability of measurements, improving detection by 

extending spatial and temporal coverage, and reducing data ambiguity (Walts, 1986). In the 

context of Wireless sensor networks, data fusion has been shown to provide the following 

benefits: 

 Wireless sensor networks are often composed of a large number of sensor nodes that pose 

a new scalability challenge caused by potential transmission and collisions of redundant 

data. As well, energy restrictions result from the fact that communication should be 

reduced in order to increase the lifetime of the sensor nodes. When data fusion is 

performed during the routing process, that is, sensor data is fused and only the result is 

forwarded, the number of messages is reduced, collisions are avoided, and energy is 

saved. 

 Processing the data provided by multiple sensors and filtering noise measurements 

provide more accurate information about the monitored entity. 

 Inferences can be made about a monitored entity; for example, given the sensor data and 

a world model, inference algorithms can be used to provide an interpretation of what is 

actually happening in the environment. 

 

Figure 2.2: (Con)fusion of terminology (Steinberg, 2001) 

Confusing terminologies are used interchangeably in some resources. These terminologies and ad 

hoc methods in a variety of scientific, engineering, management, and many other publications 
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show that the same concept has been studied repeatedly. Steinberg (2001) shows the 

―(con)fusion‖ of terminology, as illustrated in Figure 2.2. Table 2.1, adapted from Walts (1986), 

summarizes the quantitative benefits of sensor data fusion.  

 

Table 2.1: Benefits of Multisensor Data Fusion (Walts, 1986) 

Category of Benefit General Benefit 

Robust operational 

performance 

One sensor can contribute information while others are unavailable, are denied, or 

lack coverage of a target or event. 

Extended spatial coverage One sensor can look where another cannot. 

Extended temporal coverage One sensor can detect/measure a target or event when others cannot. 

Increased confidence One or more sensors can confirm the same target or event. 

Reduced ambiguity Joint information from multiple sensors reduces the set of hypotheses about the 

target or event. 

Improved detection Effective integration of multiple measurements of the target/event increases the 

assurance of detection. 

Enhanced spatial resolution Multiple sensors can geometrically form a synthetic aperture capable of greater 

resolution than that of one formed by a single sensor . 

Improved system reliability Multiple sensor suites have an inherent redundancy. 

Increased dimensionality A system that employs different sensors to observe different physical phenomena 

is less vulnerable to disruption by enemy action or by natural phenomena. 

 

Data fusion systems can be studied from several perspectives. Forbes and Boudjemaa (2004) 

presented a taxonomy for fusion type according to which aspect of the system is fused: 

 Sensor fusion: In this case, a number of sensors measure the same property that can be 

fused in order to form more reliable and accurate information about the phenomenon 

under observation. 

 Attribute fusion: A number of sensors measure different attributes of the same 

experimental situation. 

 Fusion across domains: A number of sensors measure the same attribute over a specific 

number of domains or ranges.  
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 Fusion across time: For a more accurate determination, historical information about the 

system, for example, from an earlier calibration, is fused with the current measurement.  

Durrant-Whyte (1988) classifies a sensor fusion system into three basic sensor configurations, or 

scenarios: 

 Competitive-type sensor fusion is a class of fusion applications in which the fusion data 

for the same measurement is combined in order to increase reliability and accuracy and to 

decrease conflicts. The goal of this configuration is to reduce the effects of noisy and 

erroneous measurements. 

 Complementary-type sensor fusion is another class that directly combines incomplete 

sensor data that are not dependent on one another in order to create a more complete 

model. The sensors do not depend directly on one another, but they can be fused in order 

to provide more comprehensive information about the phenomenon under observation. 

 Cooperative-type sensor fusion combines the observations of different sensors that 

depend on one another, resulting in a higher-level measurement. 

These three scenarios may all be present simultaneously in real-world applications so that a 

combination of data fusion methods may therefore be used to deal with concurrent configurations.  

2.4.2 Multisensor Data Fusion Algorithms 

Sensor data is imperfect, that is, uncertain, incomplete, imprecise, inconsistent, and ambiguous, 

or some combination of these. Because it was the only theory available, the probability theory 

was used for a long time to deal with almost all kinds of imperfect information. As a result, 

probabilistic techniques such as grid-based models, Kalman filtering, and sequential Monte Carlo 

simulation have been the most common data fusion techniques. Alternative techniques such as 

interval calculus, fuzzy logic, and evidential reasoning have been proposed as ways to deal with 

the perceived limitations of probabilistic methods with respect to aspects such as complexity, 

inconsistency, lack of precision in the models, and uncertainty about uncertainty (Henderson, 

2008). Recent research has focused on solving problems with data fusion by using an 

optimization framework. Hybrid methods that combine several fusion approaches in order to 

develop a meta-fusion algorithm have also been explored.  

Table 2.2 provides a description of each category of data fusion algorithm. In this study, a hybrid 

fusion method has been developed to pursue the research objectives by leveraging both evidential 

belief reasoning and soft computing techniques. 
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Table 2.2: Data Fusion Methodologies 

Category Characteristics Advantages Disadvantages 

Probabilistic 

Inference 

Usually formulated as a 

Bayesian inference problem to 

be solved using Kalman or 

particle filters 

Well-established and well-

investigated approach for 

dealing with uncertainty 

Rather high degree of  

complexity, inconsistency, 

lack of model precision, 

uncertainty about 

uncertainty 

Evidential Belief 

Reasoning 

 

Fuses sensory data 

represented as beliefs and 

plausibilities using given rules 

for combining evidence   

Provides a generalization of 

probabilistic methods with 

a much richer belief 

representation 

Complexity grows 

exponentially with state 

cardinality 

Soft Computing 

Techniques 

Deploys imprecise fuzzy 

reasoning to combine 

fuzzified sensor data 

Powerful parallel 

processing scheme; close to 

human thinking 

Difficult training procedure 

Optimization-Based 

Data Fusion  

Formulates a fusion problem 

as an optimization of a 

heuristically defined cost 

function 

Ease of integrating new 

performance criteria; 

abundance of optimization 

methods to tackle fusion 

Local extrema issue; 

constrained optimization 

that could be intractable 

Hybrid Fusion 

Approaches 

Combines different fusion 

methods within a unified 

formulation 

Expected to produce a 

comprehensive treatment of 

data uncertainty 

Extra computational burden 

due to multiple fusion units 

 

2.4.2.1 Probabilistic Inference 

Probabilistic methods are usually based on Bayes' rule for combining prior and observed data 

(Henderson, 2008). Bayesian fusion of data may be achieved using Kalman filters or sequential 

Monte Carlo methods. Both methodologies can be formulated within maximum likelihood (ML) 

or maximum a posteriori (MAP) frameworks. ML and MAP are statistical inference methods that 

search for fused data that maximizes either the probability of collected measurements (i.e., ML) 

or a posteriori distribution function (i.e., MAP). MAP inference algorithms assume prior 

knowledge of the estimated state. In contrast to ML, which deems an estimated state to be a fixed 

unknown vector, MAP treats it as a random variable with a previously known probability 

distribution function (pdf).  A brief description of the two probabilistic inference methods is listed 

bellow. 
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 Kalman filters (KF) are one of the most popular fusion methods (Kalman, 1960). They 

are recursive sequential filters typically used for signal-level fusion that assume  linear 

system and measurement models, additive Gaussian noise, and prior knowledge of the 

model of the system’s structure. Extended variations of KFs, such as (Welch 2001) and 

UKF (Julier1997), are applicable to non-linear systems. The main advantage of KFs is 

the use of an (explicit) probabilistic system model represented as a state vector to be 

estimated. On the other hand, as with other least-square estimators, Kalman filters are 

very sensitive to data that is corrupted with outliers.  

 Sequential Monte Carlo methods are very flexible because they do not make any 

assumptions regarding the probability distributions of the data. Particle filters are a 

recursive implementation of sequential Monte Carlo algorithms (Crisan, 2002). They 

provide an alternative for Kalman filtering when non-Gaussian noise and non-linearity 

in the system are involved. Compared to KFs, particle filters are computationally 

expensive as they require a large number of random samples (particles) in order to 

estimate the desired a posteriori probability distribution function (pdf). They are 

generally unsuitable for fusion problems involving high-dimensional state space, 

because the number of particles required in order to estimate a given density function 

increases exponentially with respect to the dimensions.  

A recent trend in research has been to focus on performing probabilistic fusion methods in a non-

centralized manner in order to improve scalability with respect to processing demand and energy 

consumption. Such fusion algorithms can easily be used in applications in wireless sensor 

networks.  

Both KFs and particle filters have been the subject of further study. Non-centralized KF 

algorithms can be divided into decentralized and distributed approaches. The former require 

perfect global communication among all nodes whereas the latter rely only on local 

communication with neighbouring nodes. Speyer (1979) proposed the first decentralized KF 

algorithm in the late 1970s. In a similar approach, Rao et al. (1991) presented a fully 

decentralized KF with a general formulation. More recent work on distributed KFs is based on 

consensus filtering (Olfati 2007), bipartite graphs (Khan 2007), weighted averaging (Alriksson 

2006), and the diffusion process (Lopes 2008). Bosch et al. (2008) provided a critical overview of 

existing non-centralized KFs. As pointed out by Bosch et al. (2008), although many of the 

approaches mentioned demand a low or medium level of processing and/or communication per 
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node, most of them lack robustness with respect to the lost or erroneous data that is common in 

sensor networks.  

The AI community has also seen recent efforts to develop distributed particle filtering algorithms 

(Coates, 2004). The first proposal was perhaps the work of Gordon et al. (2003) on decentralized 

data fusion. The algorithm is based on a query-response system and the use of local particle filters 

at each node in order to determine which measurements are worth sharing. However, this 

algorithm is not guaranteed to maintain a common representation of particles across the network 

at any given instant in time. Coates (2004) presents an alternative solution to distributed particle 

filtering (DPF) that strives to maintain such a common representation at multiple nodes so that 

measured data can be utilized consistently. The adoption of particle filters in sensor networks 

involves two main issues: first, the degree of computational complexity inherent in these 

algorithms is high considering the limitations of computation resources. Second, the specific 

information that must be communicated in order to perform the particle filtering process 

collaboratively is unclear. DPF is focused primarily on mitigating the latter issue by maintaining 

throughout the network a local particle filter at each node selected as the location where the local 

estimation and extensive compression of local measurements before transmission to other nodes 

are performed. Nevertheless, original DPF can be expensive if the communication is not handled 

efficiently. Ing et al.(2005) proposed parallel distributed particle filters (PDPFs) in an attempt to 

reduce the communicational overhead that occurs with PDF by improving on its quantization and 

encoding step and by introducing a new vectorization scheme that allows multiple nodes to run 

parallel particle filters and share measurements extremely efficiently. The development of 

distributed particle filtering architectures that will address issues such as unreliable 

measurements, data association, and sensor selection mechanisms (Ing 2005) requires further 

research. However, some researchers have already begun to evaluate the performance of 

distributed particle filters for real-world applications such as target tracking (Coates 2004, Hu 

2005). 

2.4.2.2 Evidential Belief Reasoning 

The Dempster-Shafer theory of belief functions was initiated in Dempster's (1968) work related 

to understanding and perfecting Gisher's approach to probability inference and was then 

mathematically formalized by Shafer (1976) as a general theory of reasoning based on evidence. 

Dempster-Shager theory is a popular method of dealing with uncertainty and imprecision by 

means of a theoretically attractive evidential reasoning framework. The Dempster-Shafer theory 

introduced the notion of assigning beliefs and plausibilities to a possible measurement hypothesis 
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along with the required combination rules to fuse them. It can be considered a generalization of 

the Bayesian theory that deals with probability mass functions. 

The use of the Dempster-Shafer (D-S) theory for data fusion in a sensor network was first 

presented in 1981 by Lowrance et al. (1981). Unlike Bayesian Inference, Dempster-Shafer theory 

allows the fusion of data provided by different types of sensors, which makes it an appropriate 

method for wireless sensor networks. It also permits each source to contribute information at 

different levels of detail; for example, one sensor can provide information for distinguishing 

individual entities while other sensors can provide information for distinguishing classes of 

entities. Furthermore, D-S theory does not assign a priori probabilities to unknown propositions; 

instead, probabilities are assigned only when the supporting information is available. Choosing 

between Bayesian and Dempster-Shafer inference requires a trade-off between the higher level of 

accuracy offered by the former versus the more flexible formulation of the latter (Horn, 1997). 

The former also requires data that may not be feasible to obtain. 

The Dempster-Shager theory was later extended in a variety of ways. Yager (1983) extended 

Shafer's theory of evidence to include measures of entropy and specificity associated with a belief 

structure, which can indicate the quality of the evidence.   Nguyen (1987) established a 

relationship between random set and belief functions.  

Some studies applied belief functions to uncertain reasoning in the area of artificial intelligence.  

The study by Barrnett (1981) was the first to address the computational problems of 

implementing Dempster's rule of combination. In his proposed algorithm, each piece of evidence 

either confirms or denies a proposition. Gordon and Shortliffe (1984) then proposed an improved 

algorithm that can handle hierarchical evidence. To avoid a very high level of computational 

complexity, the algorithm uses approximation in order to combine the evidence. However, the 

approximation can not well handle cases involving highly conflicting evidence. Shafer and 

Shenoy (2008) demonstrated the applicability of this local computing method to Bayesian 

probabilities and fuzzy logic.  

2.4.2.3 Soft Computing Techniques 

Another category of data fusion algorithms relies on soft computing. These methods tend to 

imitate the human reasoning and cognitive process in extracting knowledge and identifying 

entities from multiple sources of information. Techniques in this category include fuzzy logic 

methods, neural computing, expert systems, evolutionary computing, chaos theory, and chaotic 

systems. Soft computing is the branch of computer science in which algorithms offer approximate 
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solutions to computationally intractable (e.g., NP-complete) problems. Most of these techniques 

are inspired by the computational processes found in biological systems. Fuzzy reasoning and 

neural computing are two soft computing techniques commonly used for data fusion. 

 Fuzzy reasoning is another generalization scheme that has been applied to probability 

theory through the introduction of the notion of partial set membership, which enables 

imprecise (rather than crisp) reasoning. This feature makes fuzzy data fusion an 

efficient solution whereby imprecise or partial sensory data can be fuzzified using a 

membership function. Fuzzy data can then be combined based on fuzzy rules in order 

to produce fuzzy fusion output. A wide variety of studies have employed fuzzy 

reasoning in wireless sensor networks as an alternative solution to the problem of 

imprecise data.  

Efficient routing with respect to energy consumption is one of the areas in which fuzzy 

logic has been successfully employed in wireless sensor network applications. Fuzzy 

reasoning was employed in Riordan’s (2005) work as a means of recognizing the best 

cluster heads in a wireless sensor network with respect to three features: energy level, 

node centrality, and node concentration. Haider (2005) used fuzzy logic for routing in 

order to optimize the energy consumption of the network. While the cost of the 

network was designed as fuzzy output, other variables, such as transmission energy, 

remaining energy, queue size, rate of energy consumption, distance from the gateway, 

and current status, were considered fuzzy input. Srinivasan et al. (2006) also used 

fuzzy logic in wireless sensor network route discovery to enable a node to determine 

whether or not to forward a packet.  To ensure maximum sensor lifetime and minimum 

time delay in wireless sensor networks, and to optimize the data fusion process, 

Weilian (2007) used the Mamdani and Tsukamoto-Sugeno fuzzy inference methods as 

the data fusion algorithm.  

Node localization and topology optimization in wireless sensor networks is another 

area in which the ability of fuzzy logic to deal with imprecise information is useful. 

With the goal of addressing the difficulties created by incomplete, uncertain, and 

approximate sensor information, Ragade et al. (2004) studied the problem of 

controlling the position of sensors used for indicating the location of sources of 

hazardous contaminants..  Shu and Liang (2005) updated the location of each wireless 

sensor node by using a fuzzy optimization algorithm. Their goal was to optimize 



 

30 

 

mobile sensor deployment by fuzzifying the number of each sensor’s neighbours and 

the average distance between them in order to derive an updating rule. 

 Neural networks are a class of supervised learning mechanisms first proposed in the 

early 1960s. Other types of neural networks are unsupervised, such as Kohonen maps 

(Kohonen 1997).  Neural networks provide an alternative to Bayesian and evidence 

based theories for data fusion tasks such as classification and recognition (Pandey 

2008). The main advantage of neural networks is their ability to provide a high level of 

parallel processing. They also can effectively cope with nonlinear problems in the 

process of fusion.  On the other hand, their training procedure is rather complex and 

difficult. Neural networks have been widely used in particular for the multisensory data 

fusion of complementary sensors in automatic target recognition (Jain, 2000).  The 

highly parallel processing capability of neural networks has made them an appropriate 

method for the complex process of tracking targets in wireless sensor networks. Neural 

networks for data fusion have also been employed for other applications in addition to 

Automatic Target Tracking (ATR).   Venkatesh et al. (2001) proposed a fusion scheme, 

which they named Knowledge-Based Neural Network Fusion (KBNNF), in order to 

fuse edge maps from multispectral sensor images acquired from radar, optical sensors, 

and infrared sensors. 

2.4.2.4 Optimization-Based Data Fusion 

Optimization-based data fusion algorithms treat data fusion as the optimization of an often 

heuristically defined objective (cost) function. They use a variety of optimization techniques in 

order to search for a fused representation of data that optimizes a given objective function. The 

objective function is usually associated with specific performance criteria, and the optimization 

process may be regularized by enforcing constraints based on prior knowledge about the observed 

phenomenon. Information-theoretic data fusion methods are a type of optimization-based method 

in which the objective function is defined in terms of information measures such as information 

variation or information entropy (Tang 2008). Minimum description length methods are another 

example of algorithms that search for fused data with a minimum representation size.  

2.4.2.5 Hybrid Fusion Approach 

The key idea behind the development of hybrid fusion algorithms is that different fusion methods, 

such as fuzzy reasoning, the Dempster-Shafer theory, and probabilistic fusion, should not conflict 

because they approach data fusion from different and possibly complementary perspectives. For 
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example, to comprehensively tackle the problem of data uncertainty, Basir and Zhu (2006) 

proposed a fusion method based on fuzzy Dempster-Shafer evidential reasoning that serves as a 

framework for providing a unified formulation that achieves a comprehensive view of the wide-

ranging aspects of uncertainty and reasoning (Basir, 2006). Their experimental results show that a 

hybrid fusion approach outperforms both traditional D-S theory-based and fuzzy reasoning-based 

fusion when applied to an image segmentation problem. Another example is the hybrid fusion 

method of Yan et al. (2006) that leverages fuzzy fusion techniques along with optimization-based 

approaches for enabling systems to learn fusion parameters. They utilized their algorithm to 

correct for sensor drift faults and evaluated its performance using both particle swarm 

optimization and approaches based on genetic algorithms. The experimental results using real-

world data show that the proposed hybrid fusion algorithm can successfully remediate soft faults 

in all cases of sensor failure. 

2.4.3 Data Fusion Models 

Functional, process, and formal models are three different categories of data fusion models. A 

functional model can show the primary functions, the relevant databases, and the 

interconnectivity among the elements. A functional model does not show a process flow within a 

system, which means that levels in a functional fusion model should not necessarily perform 

sequentially. The US Joint Directors of Laboratories (JDL) model is an example of a functional 

model. Process models explain the interactions among the functions in a system. Examples of this 

type of data fusion model include Dasarathy’s model; the UK intelligent cycle and waterfall 

process model by Bedworth and O’Brein; and Boyd’s observe, orient, decide, and act (OODA) 

loop. Formal modeling is another type of modeling that forms a set of rules for manipulating the 

data and entities, examples of which are probabilistic and evidential reasoning frameworks 

(Steinberg, 2001). 

The data fusion model developed in 1985 by the US Joint Directors of Laboratories (JDL) Data 

Fusion Group, along with its revisions, is the most widely used model for classifying functions 

based on data fusion. The JDL Model was designed basically as a functional model. The revised 

JDL data fusion model (Steinberg, 1998) is shown in Figure 2.3. 

Because the JDL is a functional model, the information flow does not necessarily proceed strictly 

in order from level 1 to level 2 and then to level 3. The main purpose of the functional model is to 

facilitate understanding and communication among managers, theoreticians, designers, and 
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evaluators as well as users of the data fusion systems. Improved understating and communication 

leads to more cost-effective system designs, development, and maintenance. 

 

 

Figure 2.3: Revised JDL data fusion model (Steinberg, 1998) 

The data fusion levels in the revised JDL model can be defined as follows (Steinberg, 2001): 

 Level 0 is the estimation and prediction of the signal state. The pixel/signal level data 

source is fused in order to construct an observable state. 

 Level 1 is the estimation and prediction of the entity state. The estimation takes place on 

the basis of inferences from observations, which could be sensors or contextual data. 

 Level 2 is the estimation of the situation state. The assessment is on the basis of inferred 

relations among the entities. 

 Level 3 is the impact assessment. 

 Level 4 is process refinement, which is a control element of resource management. 

A fifth level has recently been added to represent the level of interaction between human and 

computer in order to show the importance of the human in the decision process.  

External 



 

33 

 

Dasarathy’s fusion process model classifies the entire fusion process into three levels of 

abstraction: the data level (Sensor Fusion), the feature level (Feature Fusion), and the decision 

level (Decision Fusion). In the first level, the very raw output of different sensors is fused in order 

to measure the same physical phenomena. In level two, features of the sensed data are extracted 

for those types of sensors that can not directly measure physical phenomena. A 3D laser scanner 

is an example of this type of sensor. In the third level, a decision is made based on the data fused 

at the sensor and feature levels.  

Dasarathy’s model is an abstraction of a more general model called the waterfall model, which 

was introduced by Harris (1998). Figure 2.4 shows this model in a hierarchical architecture, in 

which the data flows from the data level to the decision-making level. The sensors are updated, 

recalibrated, and re-configured by the feedback from the decision-making level. Three distinctive 

levels are thus represented in the waterfall model: 

 In level 1, the raw data is transformed, combined, and then pre-processed to provide 

information about the environment. 

 Level 2 includes extraction and fusion of features. The whole concept underlying this 

level is to minimize the data content and maximize the information inferred. 

 In level 3, according to the information gathered from the libraries, databases, and human 

interaction, an event is related to an object. 

The waterfall model has some similarities to other models, such as the JDL. The first two levels 

of the waterfall model – sensing and signal processing – correspond to JDL level 0, feature 

extraction and pattern recognition correspond to JDL level 1, situation assessment to JDL level 2, 

and decision making to JDL level 3 (Bedworth, 1999). 

Bedworth and O’Brein (date) describe another model called the OODA or Omnibus model. 

OODA is a process model that is a combination of three other models: Dasarathy, waterfall, and 

the Boyd loop. As Figure 2.5 shows, this framework consists of four different modules: Observe, 

Orient, Decide, and Act.  
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Figure 2.4: Data fusion waterfall model (adapted from Esteban (2005)) 

 

 

Figure 2.5: Data fusion waterfall model (adapted from Esteban (2005)) 

Baklouti et al (2009) proposed a new data fusion model based on JDL that comprises two degrees 

of freedom represented by three levels of abstractions, and four layers of situation awareness. 

Fusion researchers can develop their own models or adopt an existing model. The fusion of the 

data results in a number of benefits, both quantitative and qualitative. 

2.4.4 Multisensor Data Fusion Challenges 

A number of issues make data fusion challenging, with the majority of the difficulties being 

related to the data to be fused, the imperfection of the sensor technology, and the nature of the 
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 Data uncertainty: The data provided by sensors is always affected by some level of 

impreciseness and noise in the measurements. Data fusion algorithms should be able to 

exploit data redundancy so that such effects are reduced.  

 Outliers and spurious data: The uncertainties in the sensors arise not only from the 

impreciseness and noise in the measurements but also as a result of the ambiguities and 

inconsistencies present in the environment coupled with the inability to distinguish 

among them (Garg 2006). Data fusion algorithms should be able to exploit data 

redundancy in order to reduce such effects. Sensor data may also contain features that 

are irrelevant with respect to the observed phenomenon. The data fusion algorithm 

must identify such spurious data or attempt to reduce its effect on the outcome of the 

fusion. 

 Data modality: Sensor networks may collect qualitatively similar (homogeneous) or 

different (heterogeneous) data, such as the auditory, visual, and tactile measurements 

of a phenomenon. The data fusion scheme must be able to handle both types of data. 

 Data correlation: This issue is particularly important and is a common problem in 

wireless sensor networks because some sensor nodes may be exposed to the same 

external noise, which thus biases their measurements. If such data dependencies are not 

accounted for, the fusion algorithm may be affected by overconfidence or under 

confidence in the results.  

 Data alignment/registration: Sensor data must be transformed from each sensor's 

local frame into a common frame before fusion can occur. Such an alignment problem 

is often referred to as sensor registration, which deals with the calibration error 

introduced by individual sensor nodes.  

 The role of a human: Data fusion of hard and soft information can result in estimates 

about an observed phenomenon that can not be produced with hard or soft information 

alone. Here, "hard information" refers to information from physics-based sources, and 

"soft information" refers to information from human-based sources, including human 

reports; intercepted text and audio communications; and open sources such as 

newspapers, radio/TV broadcasts, and web sites (Arambel, 2008). 

 The processing framework: Data fusion processing can be performed in a centralized 

or decentralized (distributed) manner. The latter is usually preferable in wireless sensor 

networks because it allows each sensor node to process locally collected data. This 
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method is much more efficient than the communicational burden required with a 

centralized approach in which all measurements must be sent to a central processing 

node for fusion.  

 Operational timing: The area covered by the sensors may span a vast environment. In 

the case of homogeneous sensors, the operating frequencies of the sensors may also be 

different. A well-designed data fusion method should incorporate multiple time scales 

in order to deal with such timing variations in the data. 

 A static versus dynamic environment: The phenomenon under observation may be 

time-invariant or may vary with time. In the latter case, it may be necessary or useful 

for the data fusion algorithm to incorporate the recent history of the measurements into 

the fusion process (Joshi, 1999). The frequency of the variations must also be 

considered in the design or selection of the appropriate fusion approach. 

No single data fusion algorithm is capable of addressing all of these challenges. The methods 

described in the literature focus on solving a subset of the issues, the selection of which is based 

on the specific application under study.  

2.4.5 Multisensor Data Fusion Applications 

Because the funding for most of the early work on data fusion algorithms was for military 

projects, a large number of data fusion applications are related to the military. The discussion of 

fusion applications is therefore presented in the following subsections in two categories: military 

and non-military. 

As with many other information and communication technologies, multisensor data fusion and 

wireless sensor networks originated in military projects. Unattended wireless sensors are a viable 

option that can be rapidly deployed for surveillance and battlefield intelligence in order to provide 

information about the location, quantity, and state of the targets. They can also be deployed for 

chemical, biological, and nuclear applications, the detection of potential terrorist attacks, and 

reconnaissance (Krishnamachari, 2005; Sankaraubramaniam, 2002; Wicker, 2002). Because of 

the reliability, flexibility, and ease of deployment of sensor networks, they can be used in a wide 

range of existing and potential applications, examples of which are listed in Table 2.3 McMullen, 

2004, Estrin  2001, Pottie 2001, Haenggi 2005, Polastre 2002, Wang 2005). Table 2.3 provides a 

summary of the applications of data fusion techniques. 
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Table 2.3: Representative multisensory data fusion applications  

Application Sensor Platforms Data Fusion Objective 

Robotics Robot Platform  Detection and localization of obstacles;  

Identification of targets 

Medical diagnoses   Body  Detection of disease, tumors, and other physical conditions 

Remote sensing  Aircraft 

Satellites 

Ground-based  

 

Identification and localization of mineral deposits, cop and 

forest conditions 

Environmental 

detection and 

monitoring 

Satellites 

Aircraft 

Ground-based 

Underground samples 

Identification and localization of natural phenomena;  

Monitoring habitat;  

Disaster detection;  

Monitoring of freshwater quality; 

Air and swage monitoring; 

Detection of soil composition 

Remote sensing  Aircraft 

Satellites 

Ground-based  

Identification and localization of mineral deposits, cop and 

forest conditions 

Equipment monitoring  Machinery 

Factory  

Condition assessment of equipment; 

Identification of impending fault conditions; 

Localization of equipment  

Intelligent 

transportation systems  

Vehicles 

Aircraft 

Ships 

Infrastructure   

Identification of traffic condition; 

Identification and classification of traffic qualitative and 

quantitative parameters; 

Detection of incident; 

Detection of hazardous conditions 

Tracking of goods in 

supply chain  

Goods 

Vehicles 

Ships 

Infrastructures (e.g. ports, 

warehouses, gates,..)  

 

Tracking and localization  of goods; 

Assessment of the goods condition 

Condition-based 

maintenance and 

monitoring of 

structures   

Ships 

Aircraft 

Infrastructure   

Detection and classification of system faults 

Remote virus 

monitoring  

Ground-based  

 

Detection of the incident of disease; 

Identifying  characteristics of the infected population ; 

Identifying features of the infected area; 

Monitor and predict the breakout of some infectious diseases 
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Integrated patient 

tracking and 

monitoring   

Hospital infrastructure 

Patients  

Tracking and localizing patients; 

Detection of patients’ physical conditions  

Intelligent 

infrastructures  

Infrastructures 

People  

Condition assessment of infrastructure; 

Localization of moving assets 

Detection of unauthorized access  

Disaster prevention 

and relief  

Ground-based    Location detection of victims, potential hazards, or sources of 

emergency 

Law enforcement   Aircraft 

Ground-based   

Identification and tracking of suspects 

 

Tracking of tools, 

materials, and people 

in construction  

Tools 

Materials 

Machinery 

People   

Tracking and localizing tools, materials, and people on the site 

Identification of hazardous situation 

Monitoring physical 

conditions 

Ground-based  Detection of temperature; 

Detection of humidity ; 

Detection of light; 

Detection of pressure; 

Detection of object movement; 

Detection of noise level; 

Object detection and recognition  

Asset monitoring and 

management 

Troops 

Supplies 

Weapons 

Detection of the state of troops, supplies, and weapons 

Surveillance and battle 

space monitoring 

Ground-based 

Aircraft 

Detection of vehicle and personnel movements 

Surveillance of the opposing force 

Urban warfare Buildings that have been 

cleared 

Localization of snipers  

Protection Sensitive objects and 

locations 

Classification of intruders 

Identification of  biological and chemical attacks   

Self-healing minefields Intelligent, dynamic 

obstacles in minefields  

Sensing relative positions and responding to an enemy's 

attempt to breach minefields 

Air-to-air and surface-

to-air defense 

Aircraft  Detection, identification, and tracking of aircraft  

Ocean surveillance Ships 

Aircraft 

Submarines 

Detection, identification, and tracking of targets and events 

Strategic warning and 

defense 

Satellites 

Aircraft 

Detection of impending strategic actions 

Detection and tracking of missiles and warheads  
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2.5 Wireless sensor networks and Sensor Network Localization 

Identifying the location of construction materials through utilization of wireless RFID sensors on 

construction sites is one of the extensive applications of wireless sensor networks. The broad 

range of potential applications of sensor networks along with recent advances in MEMS 

technology have led to increasing interest in this field as an area of research. A wireless sensor 

network is a network of spatially distributed smart devices or nodes that performs an application-

oriented task, such as localization, surveillance, or monitoring. The primary component of such a 

network is the sensor. Each node in these networks may integrate functions for sensing, 

computing, communication, and even actuation. Several key components make up a typical 

wireless sensor network: a low-power embedded processor, memory/storage, a radio transceiver, 

sensors, geopositioning systems, and a power source (Krishnamachari, 2005). 

Sensor networks are distinguishable from other traditional wireless or wired networks because of 

their sensor- and actuator-based interaction with the environment. Such networks have been 

proposed for numerous applications, including search and rescue, disaster relief, target tracking, 

and smart environments.. The location information provided by these networks can be used to 

identify the location from which the sensor readings originate, which has a feasible application in 

material management, such as the automatic tracking of construction labourers and equipment; in 

novel communication protocols that route to geographical areas rather than to IDs; and for 

providing other location-based services, such as sensing coverage and location directory service 

to provide medical information about a nearby patient in a smart hospital (He, 2003). 

Several characteristics are associated with sensor networks, some of which include the wireless 

and ad hoc nature of communication between motes, their dense deployment in massive numbers, 

their propensity for failure, and their associated size and cost constraints that translate into a drain 

on computational resources. With respect to computational resources, the amount of energy 

supplied for each mote is very limited and irreplaceable, which requires extremely energy-

efficient algorithms. These characteristics entail a multitude of challenging problems to be 

tackled through research, such as efficient communication protocols, sensor management 

schemes, and hardware platform development technology. Multi-sensor data fusion (DF) is 

perhaps one of the most significant of these problems, about which numerous studies have been 

reported in the literature.  

Multisensor data fusion is a technology that enables information from several sources to be 

combined in order to form a unified picture. Data fusion systems are now widely used in 

numerous areas, such as sensor networks, robotics, video and image processing, and scientific 
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processing. Data fusion is a wide- ranging subject, with a great deal of confusing terminology that 

is used interchangeably in some resources. The variations in terminology and ad hoc methods 

described in a variety of scientific, engineering, management, and many other publications show 

that the same concept has been studied repeatedly. Although most multisensor data fusion 

applications have been developed relatively recently, the principle of data fusion has always 

existed. In fact, human beings constantly use multisensor data fusion. The brain is an excellent 

example of a sophisticated fusion system that performs extremely well the functions of 

integrating sensory information, namely, sight, sound, smell, taste, and touch data in order to 

perceive the surrounding reality. The data fusion research community has achieved substantial 

advances, especially in recent years. Nevertheless, a perfect emulation of the data fusion capacity 

of the brain is still far from realized. 

2.5.1 Sensor Network Location Estimation Methods 

Most wireless sensor networks need to know or to calculate accurate locations of the sensors. In 

many applications of sensor networks, such as fire surveillance, traffic control, or environmental 

monitoring, sensing data without knowing the locations of the sensed data is useless. Several 

factors affect the decisions made by the system about the location of the sensors: cost, 

localization accuracy, energy, efficiency, and the scalability of the algorithms (Mahalik 2007). 

In general, there are two approaches to localization: fine-grained localization using detailed 

information and coarse-grained localization using minimal information.  The tradeoff between the 

two approaches is obvious: minimal techniques are easier to implement and more likely to 

involve fewer resources and lower equipment costs, but they provide a lower degree of accuracy 

than detailed information techniques.  

2.5.1.1 Fine-Grained Node Localization 

Many sensor network localization algorithms are based on some detailed information. In general, 

the measurement techniques can be categorized into three broad types, as follows: 

 Time of Flight Techniques: These techniques are used for large-scale GPS, but basic 

Time of Flight techniques that use RF signals are not able to provide precise distance 

estimates over the short ranges of typical wireless sensor networks, largely because of the 

limitations with respect to synchronization. Therefore, other techniques previously 

discussed are more often used in wireless sensor network localization. (Krishnamachari 

2005) 
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 Received Signal Strength (RSS) techniques: These techniques are based on a power 

law that states that radio signal strengths diminish with distance. Some fading effects of 

the signal are also involved in modeling the signal strength based on the received power 

at some reference distances. This fading term often has a high variance, which can 

significantly impact the accuracy and quality of the localization. For this reason, 

techniques based on radio frequency RSS provide location accuracy in the order of 

metres or more (Patwari, 2001).  

 Lateration and Angulation Techniques: These techniques compute the position of an 

object by inferring its distance from multiple reference points with known locations, and 

they therefore fall under the broader category of triangulation. The technique used could 

be either lateration or angulation, depending on whether ranges or angles relative to 

reference points are being inferred. As Figure 2.6 shows, while two dimensional (2D) 

angle of arrival (AoA), or angulation, requires two angle measurements and one length 

measurement, such as the distance between the reference points, lateration requires three 

distance measurements between the object being located and three reference points 

(Hightower & Borriello, 2001). Lateration can be further classified into the time-of-flight 

and the received signal strength methods, whereby the ranges to reference points are 

inferred from the time of flight and the signal strength of the communication medium, 

respectively. 

 

Figure 2.6: Lateration and angulation 

 Distance-Estimation using Time Difference of Arrival (TDoA): This method is a more 

promising technique that uses the combination of ultrasound/acoustic and radio signals to 

estimate distance by determining the TDoA of the signals (Savvides, 2001). This 

technique, which is illustrated in Figure 2.7, is conceptually simple.  The principle is that 

both the radio and acoustic signal (audible or ultrasound) are transmitted simultaneously, 

and the times of the arrival at the receiver are measured. The distance then can simply be 
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estimated as srs VTT .  , where sV is the acoustic signal speed. However, this approach 

has limitations; for example, the speed of sound is variable due to factors such as altitude, 

humidity, and temperature.  Acoustic signals also show multipath propagation effects that 

may impact the accuracy of the signal detection on average. According to 

Krishnamachari (2005), acoustic TDoA techniques can be very accurate in practical 

settings, for example, with the use of a noise filter. Savvides et al. (date) claimed that 

location can be estimated within centimeters for nodes that are 3 meters or more apart. 

Achieving this accuracy level would require that  the cost of adding acoustic transceivers 

to RF transceivers be considered.  

 

Figure 2.7.: Localization based on time difference of arrival (Krishnamachari 2005) 

 Pattern Matching (radar): This technique uses a predetermined ―map‖ of signal 

coverage in a location different from the working area and then uses the map to 

determine where a particular node is located by means of a pattern recognition process. 

This technique is more effective than RSS and triangulation but has the drawback of 

being very location-specific and requiring intensive data collection prior to 

implementation or deployment. It also can not be used in areas such as construction sites, 

where the radio characteristics of the environment are highly dynamic (Krishnamachari, 

2005). 

 RF Sequence Decoding Techniques: These techniques use the relative orders of the 

received signal strength at different reference points as the basis for location estimation. 

In this method, the unknown node broadcasts a localization packet, and the multiple 

reference points receive the signal, record the RSSI, and send it to a central computing 

agent. The multiple RSSI readings are ordered from highest to lowest, and the region is 

then investigated in order to find the best match for the acquired sequence. In reality, 

because of the multipath propagation effect, some references that are closer than others to 

srs VTTDist .
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the node may show a lower RSSI, while others that are farther away appear earlier in the 

sequence (Krishnamachari 2005). This technique is used for cell phone localization. 

2.5.1.2 Coarse-Grained Node Localization Using Minimal Information 

Range-free or connectivity-based localization algorithms are those which do not use any of the 

measurement techniques described in the previous section. In this category, some sensors, called 

anchors, have a priori information about their own location. The locations of other sensors are 

estimated based on connectivity information, such as which sensor is within communication 

range of which other sensors. 

The proximity method is the basis of another model for localization, which does not attempt to 

actually measure the distance from an object to reference points, but rather determines whether 

the object is near one or more known locations. The presence of an object within a specific range 

is usually determined by monitoring physical phenomena that have limited range, e.g., physical 

contact with a magnetic scanner, or communication connectivity to access points in a wireless 

cellular network. Some of the proximity-based methods introduced in this section are components 

of the solution presented in this research. The methods of constraints, accumulation arrays, the 

Dempster-Shafer theory, and fuzzy logic are some of the approaches that can be employed 

individually or in combination in proximity-based models. 

The Dempster-Shafer method is one approach to proximity modeling and is based on the 

Dempster-Shafer theory (Dempster, 1968; Shafer, 1976). This method has been implemented and 

tested with real data as part of this research. The Dempster-Shafer theory, also known as the 

Dempster-Shafer theory, is a generalization of the Bayesian theory of subjective probability. 

While the Bayesian theory requires probabilities for each question of interest, belief functions 

allow the degree of belief with respect to one question to be based on probabilities for a related 

question (Shafer, 1992). 

Caron et al. (2005) modeled each Radio Frequency Identification (RFID) tag read by a basic 

belief assignment that is fused to past measurements and then implemented the Dempster-Shager 

theory in a simulation environment for applications involving materials tracking in construction. 

In this environment, when a reader that knows its own location reads a tag, it acquires 

information about the position of the tag. Due to underlying imprecision and uncertainty, the 

information is modeled by a basic belief assignment under a belief theory framework. In this 

formulation, every time the fusion of a new reading is made for the tag, the probability of a tag 

lying in each cell is calculated using the pignistic transformation of this fused belief function. 
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Figure 2.8 shows the evolution of the pignistic probability for each cell as a function of new reads 

as the tag itself moves. 

 

 

Figure 2.8: Evolution of the pignistic probability of each cell as a function of new reads 

Caron et al. (2005) also showed that since this framework explicitly models conflicts among 

reads, it is well suited for indicating that a tag has moved. Conflicts may be caused by moving 

tags, by tags that are overestimated or underestimated, and by malfunctioning readers. When a 

conflict occurs at each virtual reading, the past fused data is discounted in order to favour the last 

reading and to ignore the oldest readings. If the conflict is higher than a predefined threshold, past 

fused data can be rejected, and the newly fused data would then be the latest available. 

Generally, use of the Dempster-Shager theory increases the integrity of the localization of 

wireless communication nodes because it can deal robustly with the uncertainty and imprecision 

of anisotropic and time-varying communication regions. It also manages gracefully the issue of 

moved tags, presenting a scalable and robust approach to handling both static and dynamic sensor 

arrays. A major drawback of the formulation is that, although computationally manageable, it 

increases complexity. 

Another proximity method for locating nodes employs fuzzy logic rather than the Dempster-

Shafer theory in order to decrease the complexity associated with the Dempster-Shafer algorithm.  

While the fuzzy logic method builds on the insights gained through the Dempster-Shafer 

approach, it considers the model to be continuous with respect to some control variables, such as 

moving tags or readers, which are discretized in the other algorithms previously described. This 

conceptual approach has been developed in this research. 
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In proximity models, in order to reduce computational complexity, a discrete representation in 2D 

is employed rather than a more realistic continuous model.  In the discrete view, a rover (any 

reader carrier) moves around in a square region Q with sides of length s, which is partitioned into 

n2 congruent squares called ―cells‖ with an area (s/n)2.  The RF communication region of a read 

is modeled as a square centered at the read and containing (2ρ + 1)2 cells, rather than a disk of 

radius r.  The position of reads as well as tags is thus represented by a cell with grid coordinates, 

rather than by a point with Cartesian coordinates, and one is interested only in finding the cells 

that contain each RFID tag (Figure 2.9). This paradigm is applied mainly in proximity 

approaches.  A more robust approach is to surround the actual read range with the discrete read 

range; for functional modeling purposes the first approach can be advantageous. 

 

Figure 2.9: Modeling the RF communication region under the occupancy cell framework 

(Song 2005) 

Simic and Sastry (2002) presented a distributed algorithm for locating nodes in a discrete model 

of a random ad hoc communication network and presented a bounding model for algorithm 

complexity. Song et al. (2005) adapted this discrete framework, based on the concept that a field 

supervisor or piece of material handling equipment is equipped with an RFID reader and a GPS 

receiver, and thus serves as a ―rover‖ (a platform for effortless reading).  The position of the 

reader at any time is known since the rover is equipped with a GPS receiver, and many reads can 

be generated by the temporal sampling of a single rover moving around the site. If the reader 

reads an RFID tag fixed at an unknown location, then RF communications connectivity exists 

between the reader and the tag, contributing exactly one proximity constraint to the problem of 

estimating the tag location.  As the rover repeatedly comes into communication range with the 

tag, more reads form such proximity constraints for the tag. Combining these proximity 

constraints restricts the feasible region for the unknown position of the tag to the region in which 

the squares centered at the reads intersect with one another (Figure 2.10). 
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Figure 2.10: Illustration of the functioning of proximity methods  

Song et al. (2006b) also implemented the Simic and Sastry algorithm in large-scale field 

experiments that included  RF power transmitted from an RFID reader, the number of tags 

placed, the patterns of tag placement, and the number of reads generated based on random reader 

paths. Analyzing the data collected showed that in 51% of the total of 4,200 instances, the true 

location of a tag was expected to be within ±3 cells from the center of the region given by the 

estimate for the tag. Although this approach was proven to be adequate (3 – 4 m accuracy) for 

static distributions of tags, it can not easily be extended to tracking movements of tags.  Methods 

are being developed for improving the accuracy of this method and its ability to deal with both 

conflicting data and additional data sources.      

             

 

Figure 2.11: Accumulation of cell magnitude after each read using the accumulation array 

method, with a discrete read range of ρ=1 

Using accumulation arrays for discrete modeling of the working space is a conceptual variation 

on proximity localization, based on the concept in Song et al. (2005). However, unlike the 

method of constraints, reads would simply be accumulated cell by cell for each tag (Figure 2.11). 

To handle moving and moved tags, cells for each tag would begin to erode after a fixed number 

of reads while cell value magnitudes would be related to the probability of tag’s location.  This 

model has not yet been implemented; its obvious drawbacks are its potentially slow response to 

Tag is read RFID tag Rover path 
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moves and its large data structure requirement.  However, its appeal is its potential simplicity and 

consequent potential robustness for field application and it has been investigated in this research. 

A few basic factors play important roles in the assessment of the feasibility of each model for 

specific location sensing applications. Cost is one of the most determinative issues. With respect 

to the tags themselves, the communication range, battery life (if the tag is active), ruggedness of 

packaging, data storage capacity, sensing capabilities (such as for temperature or shock) are all 

significant technical issues.  Variable communication ranges, which are anisotropic, time-varying, 

and dependent on tag surroundings can cause uncertainties and imprecision. The presence of 

moving or moved tags may cause conflicts and uncertainty in read data, especially in the case of 

proximity methods.  For RFID tags, where coverage overlaps, the signal from one reader can 

interfere with the signal from another. This effect is called reader collision, and while some 

techniques exist (such as time division multiple access) for avoiding the problem, they add 

another layer of complexity.  An additional consideration is an understanding of why attaching a 

GPS receiver to each item of interest is not feasible in most situations. 

Global Positioning Systems (GPS) are becoming ubiquitous.  Based on systems that use satellites 

and triangulation techniques, GPS provides worldwide, all weather, 24-hour navigation and 

timing information. The accuracy of the position derived varies with the type of instrument used 

for collecting data, the method used in the surveying, the amount of post-processing preformed, 

and the method of the post-processing. Accuracy varies from a few millimeters to several meters 

(Asian GPS Conference, 2002).  However, due to low satellite signal strength, GPS is simply not 

designed to work indoors or underground, where much construction work and maintenance is 

conducted (Hightower 2000). Additionally, the current cost of GPS receivers and chips prohibits 

wide-scale deployment on a site, and a GPS unit must also be integrated with wireless 

communication technology that can report its location to a host, resulting in high expansion costs 

and more complex device architecture than those of an RFID tag. For outdoor applications in 

which device density is low and cost is not a major concern, GPS is a viable option (Patwari, 

2001) and may be useful in applications such as obtaining location information in tracking labour 

input (Navon and Goldschmidt, 2002).   

For the framework developed in this research, the following performance characteristics were 

considered in comparing and choosing localization models: 

 Cost:  The total cost of all equipment must be calculated, including shipping, installation, 

maintenance and training.  
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 Scalability: The ability to extend the current system topology and architecture to many 

tags and readers interacting in different ways must be determined.  

 Computational Complexity: The number of steps or arithmetic operations required to 

estimate the location of tags: reducing system-level computational complexity increases 

the response time, which may be a critical parameter for some real-time applications. 

 Flexibility: The ability to alter the system configurations, based on future circumstances 

must be examined. 

 The Handling of Uncertainty and Imprecision: Qualitative reading errors exist because 

of the technology itself, imprecision in read range is a given, and uncertainty exists 

because tags move; however, these factors are detected indirectly with automated 

approaches, so the ability to handle these phenomena is another important characteristic 

of the system. 

 The Handling of Dynamic Sensor Arrays: For dynamic environments in which tagged 

objects are constantly moving, the ability to manage and graphically represent 

information about the tags in a useful way is important. 

2.6 Context and Context-Aware Systems 

Context, contextual information, and context-aware systems are terms used in different parts of 

this thesis. A brief description of these terms is provided in order to explain the applicability of 

these concepts. However, the definitions of these terms are still under debate. A comprehensive 

study has been carried out by Dey and Abowd (2000) with respect to the most successful attempts 

in the area of context awareness. This study was conducted in order to establish definitions of the 

terms ―context‖ and ―context awareness.‖ Although there have been many more recent 

redefinitions, the following definitions are still the most well-accepted to date: 

 Context: Context is any information that can be used to characterize the situation of an 

entity. An entity is a person, place, or object that is considered relevant to the interaction 

between a user and an application, including the user and the application themselves. 

 Context Aware: A system is context aware if it uses context to provide relevant 

information and/or services to the user, where relevancy depends on the user’s task. 

The concept of a context-aware system can be better understood through an example (Wu 2002): 
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―Suppose the user of a context-aware computing system is new to a place (a city, a mall, 

a tradeshow, etc.) and would like to have the system collect relevant information and give 

him/her a tour. A good context-aware computing technology-enabled system should 

somehow be able to know its user’s available time and his/her interests and preferences. 

It would tentatively plan a tour for the user, obtain his/her feedback, and then guide 

him/her point-to-point through the visit. During the tour, the system should be able to 

sense the user’s emotional states, to guide his/her focus of attention, and to respond to 

changes in state. According to the user’s emotional status change, it would consequently 

adjust the descriptive details of the content, adaptively include or omit some content, and 

control the pace of the delivery of the content, all in the manner that a smart human tour 

guide exhibits naturally.‖ 

2.7 The Knowledge Gap  

Deploying a cost-effective, scalable, and easy-to-implement materials location sensing system at 

actual construction sites has very recently become both technically and economically feasible. 

However, significant opportunity still exists to improve the accuracy, precision, and robustness of 

such systems. As well, a system has not yet been created that can handle the uncertainty and 

unreliability associated with a variety of sensors and observations, and that can validate the 

conceptual components of a system with real data from a construction site in current use. 

Robustness with respect to future advances in location sensing technologies is another gap in the 

existing knowledge: fundamental methods that can take advantage of the relative strengths of 

each current or future technology and data source are needed. 

In this study, a data fusion model is used to develop a robust and integrated framework for the 

automated identification, location estimation, and relocation detection of construction materials. 

The solution developed is scalable, robust with respect to measurement noise and to future 

advances in technologies, and able to handle dislocated materials. Field experiments in an actual 

construction site have been a key element in this study, and the new hybrid fusion algorithms are 

the innovative contribution of this research. 
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Chapter 3 

Field Implementation and Data Acquisition Framework 

Field experiments are necessary for validating the data fusion model and for demonstrating the 

feasibility of employing the components, methods, and technologies developed. Comprehensive 

field trials also help to deploy the technology in Canada and the U.S.  As discussed in section3.1, 

field trials have already been conducted at a number of levels with a variety of objectives. The 

initial trials were conducted on the campus of the University of Waterloo (UW) and in open fields 

in the neighborhood, following which two large industrial projects in Toronto, Ontario, and 

Rockdale, Texas, hosted trials at construction job sites. Because of proximity, the trials at the 

Portlands Energy Centre, the Toronto site, were implemented in person by the author, with 

occasional visits to the Rockdale trial in Texas, where co-researchers were performing the bulk of 

the work. The system was also tested and validated in the more controlled data acquisition 

framework of a control experiment.  

For data acquisition, commercially available hardware and related beta test software were used. 

The Toronto site data, which was captured on a daily basis for more than five months, and the 

controlled experiment data were the two data sets used for validating the algorithms and the 

model.  The algorithms for fusion levels 1 and 2, such as the Dempster-Shafer and weighted 

averaging methods were fully implemented in Visual .NET C# as well as MATLAB. Fusion level 

0 was implemented in a MATLAB fuzzy toolbar. A fuzzy engine was designed based on the 

Mamdani method with four types of input and one type of output. The software implementation 

document for the Visual .NET C# framework is included in Appendix F and the data sets 

acquired are described in more detail in the following sections. 

3.1 Data Acquisition Framework and the Integrated Technology  

The data acquisition framework included physical components such as interrogators (readers), 

antennae, tags, portals, rovers, GPS receivers and antennae, notebooks, handheld or tablet PCs, 

wireless infrastructure, and wired or wireless connections to a central computer. The physical 

elements of this research are illustrated in Figures 3.1 as the system network diagram.  

The technique used in this research combines Global Positioning System (GPS) and Radio 

Frequency Identification (RFID) technologies in order to automatically locate materials on a job 

site. Each RFID tag is assigned to a critical component, and a person traveling around the site 

with GPS and RFID receivers detects the presence of tags around his/her own position. Based on 
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the data collected, mathematical models (Caron 2007,  Razavi, 2009) estimate the positions of the 

RFID tags. 
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Figure 3.1: System network diagram 

Technological alternatives for generating location observations were reviewed in the background 

section of this thesis. For the material identification and localization approach used in these field 

trials, active RFID tags with unique identification numbers were attached to selected construction 

components. In this way, tags were uniquely related to the corresponding components to which 

they were attached.  The RFID reader in the form of a Compact Flash (CF) card was attached to a 

handheld computer that was used to collect data on site. The handheld computer was also able to 

communicate with the GPS receiver via the Bluetooth standard communication protocol. Figure 

3.2 shows the elements involved in the approach.   

An individual equipped with the handheld computer and the GPS walked or drove around the site 

to collect the data. During the data collection, the GPS constantly logs the location information, 

and the RFID reader identifies the tagged items within a specific read range. A GPS location is 

matched with an RFID read to form a read event that is further processed by algorithms to 

generate the location observations. At the Rockdale site, both constraint-based and centre of 

gravity approaches were used, while at Portlands, a proprietary algorithm of the vendor was used 

in day-to-day operations.  
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Figure 3.2: Material tracking technologies used for the research 

In the next step, maps showing these tag locations are printed in the office and given to workers 

so that they can more easily find the items. Another option for these trials would have been the 

use of real-time navigation functions: the handheld computers would show both the position of 

the worker equipped with the RFID-GPS receiver and the estimated location of the tagged 

components. Figure 3.3 shows this procedure schematically. 

 

Figure 3.3: System physical components and their relationships 

A GPS with sub-foot accuracy in post-processing (Figure 3.4) was used once for each material in 

order to provide accurate location information for each tag on the site. This accurate data was 

used to validate the output of the fusion algorithms. 
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Figure 3.4: GPS with sub-foot accuracy in post-processing 

3.2 Uncertainties and Imprecision Due to the Limitations of the Physical 
Components 

Even sophisticated and expensive technologies are not perfect, and the physical components of 

the study thus created limitations that led to uncertainties in the data acquired. The following are 

examples of these constraints: 

 Multipath interference, 

 Dead space  

 Environmentally related interference (e.g., weather, surrounding materials) 

 Antenna characteristics (e.g., orientation, gain)  

 Highly ill-formed instances of RFID tag signal strength  

Developing a method of location estimation that deals with uncertainties and imprecision while 

having a reasonable implementation cost is thus a significant challenge. 

3.3 Preliminary Field Experiments at the University of Waterloo 

Early in the research, field experiments were conducted at the University of Waterloo as a method 

of acquiring familiarity with the experimental equipment and variables. The scope and objectives 

of these series of experiments differ from those of the tests conducted at the construction sites. 

However, most of the new experiments and developments were also initially tested on the UW 

campus or in the open fields around the campus. 



 

54 

 

3.3.1 Objectives 

Field experiments at the University of Waterloo were begun in the summer of 2006, with the 

following objectives: 

 To provide an estimate of the reliability of the solution that could be anticipated at the 

site in terms of the following characteristics of the tags and readers: 

o Power level 

o Read range 

o Variations in antenna gain 

o Topology of orientation 

o Movement 

o Probable conflicts 

o Variations in moving speeds 

o Variations in the number of tags employed (e.g., congestion situation) 

o Variations in environmental conditions  

o Variations in the surrounding area 

 To establish criteria and standards for collecting more reliable results 

To achieve these goals, a variety of tests were conducted on the University of Waterloo campus 

and in the surrounding open fields. The first test – a circular proximity test – was performed in 

order to investigate the reliability of the read range of the tags. Several environmental situations 

were examined in order to obtain information about signal interference from surrounding 

materials and environments. GPS data were also logged and the accuracy after and before post-

processing was compared. 

3.3.2 Obstructing Materials Test for RFID 

Numerous trials were attempted to determine whether the reading was affected by materials 

obstructing the tags. Table 3.1 shows the results obtained through numerous trials in a variety of 

locations and with a variety of materials. For the wood test, trees were used as the probable 

obstructing object, and for the brick test, campus building walls were used. The results for 

another material test with steel were obtained using a steel structure with various shapes and 
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corners as well as other steel elements inside an office. For the masonry test, tags were positioned 

at varied distances, angles, and locations on a 1ft masonry wall. 

Table 3.1: Results of the obstructing materials test 

Material Obstructing 

Wood (tree) Yes 

Brick No 

Steel No/conditional 

Masonry No 

3.3.3 Post-Processing GPS Precision Test 

To experimentally assess the precision of the GPS data before and after post-processing, a series 

of experiments were conducted in a gridded field. The field was divided into 1m square cells 

arranged in a grid measuring 15 squares by 15 squares. The gridding was first laid out with spikes 

and ropes for a test in an open green field and using chalk for other trials conducted in a parking 

lot. The results of the first three trials showed an unacceptable error rate due to the environmental 

conditions. Trimble PathFinder software was used to perform differential correcting of the 

transferred data, which dramatically increased the accuracy of the data collected. Figure 3.5 

shows the data gathered in one of the field experiments both before and after the differential 

correction was performed. The acquired accuracy rate after post-processing was less than 10 cm. 

    

Figure 3.5: GPS data from a sample gridded field before (left side) and after (right side) the 

differential correction was performed 
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The information and experience acquired from these trials were invaluable in the formulation of 

the fusion model and in the planning of the deployment of the prototype at Portlands in Toronto. 

3.3.4 Circular Proximity Test for RFID Read Range Reliability 

To test the actual read range of the specific RFID tags used, the two different types of tags 

available were used in a very plain environment with no obstacles between the tags and the 

readers. Tags with a short read range (i-D) and tags with a long read range (i-Q) were examined 

separately through several runs of the test using the following procedure:  

 In a circular framework space, a single RFID reader connected to a laptop running a 

measurement and logging program was placed at the centre of the circle. 

 Sixteen tags were placed on the perimeter of the circle. 

 Several measurements were taken and logged. 

 The distance of tags from the reader was increased by approximately 1 meter.  

 Steps 3 and 4 were repeated until the error rate became more than 50%. 

To obtain an accurate communication read range, these experiments were conducted in a variety 

of weather conditions on different days, and at different locations in the open fields around 

Columbia Lake in Waterloo, on the University of Waterloo campus, and in parking lots around 

the campus. The average results for the read ranges are illustrated in Figures 3.6 and 3.7. 

 

Figure 3.6: The short read range reliability test results for the active RFID tags (distances are 

in meters) 

Average tag read range reliability for "Short read 

range" setting

1 1
0.9

0.8

0.5

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

distance from the base

r
e
a

d
 r

e
li

a
b

il
it

y

Average tag

read range

reliability



 

57 

 

6  

Figure 3.7: The long read range reliability test results for the active RFID tags (distances are 

in meters) 

3.4 Field Experiments at Industrial Construction Job Sites 

3.4.1 Objectives 

Two field trials were arranged at a real construction site, initially as an attempt to employ a 

number of technologies to support the implementation of a small-scale prototype of an automated 

material tracking system. The prototype was implemented in parallel with the existing project 

materials management system, and the trials had the following objectives: 

1. To provide a platform for collecting the data required in order to test and validate the 

proposed fusion and location estimation algorithms 

2. To assess the feasibility of deploying these locating methods, components, and 

technologies on construction projects 

3. To investigate how best to deploy this technology for the current scenario at the 

construction site 

4. To assess the impact of an automated material tracking system with respect to 

 Reducing the number of lost items 

 Capturing the flow of materials 

 Increasing productivity 

Average tag read range reliability for "Long read 

range" setting

1 1

0.8

0.57

0.3

00

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46

distance from the base

r
e
a

d
 r

e
li

a
b

il
it

y

Average tag

read range

reliability



 

58 

 

3.4.2 Portlands Energy Centre Field Trials 

3.4.2.1 Scope 

The Portlands Energy Centre (PEC) project, a 550 megawatt, natural gas fired, combined-cycle, 

power generation facility (Figure 3.8) in Toronto, Ontario, was the host platform for the 

experiment and trials. The project involved the construction of two identical units consisting of 

turbines, boilers, pipelines, and other components used to operate the facility. Tens of thousands 

of prefabricated and engineered components were required, including pipe spools, safety valves, 

globe valves, control valves, steel members, and pipe supports. The project has taken advantage 

of its proximity to the Toronto port, downtown Toronto, waterfront, and railway support. 

Materials are received in a variety of ways. Large overseas shipments of materials are received at 

the port of Toronto and temporarily stored in the port area to be delivered to the site upon request. 

Through the canal transit, large modules can be delivered directly onto the site. Other materials 

are delivered to the site primarily on flatbed trucks.  

The field trials were conducted from July 2007 to August 2008 and involved the continuous site 

presence of a team of undergraduate and graduate students. Initial field trials focused on tracking 

more than 400 pipe spools, safety valves, and pipe supports when they arrived at the port or on 

the site, or were stored in any of the lay down yards.  The acquired location data was used to 

validate the model in conjunction with other contextual information. 

    

Figure 3.8: The construction site layout (Photo source: The project website and Google map) 

The general methodology and plan of the field experiments are discussed in the following 

sections.  

3.4.2.2 Experimental Plan 

The existing field materials management process was well defined by the contractors.  Warehouse 

personnel were responsible for receiving, storing, tracking, and releasing requested materials to 

the subcontractors.  A work packaging and expediting group worked closely with the warehouse 



 

59 

 

personnel.  Several storage areas were used, including a nearby port warehouse, lay-down yards, 

and staging areas. 

The automated material tracking technology was used on three subsets of critical components that 

had long procurement lead times, had caused crew delays on past projects, and had negatively 

impacted project schedules in the past.  The field trial was conducted with about 400 components 

of one boiler to provide data for later comparisons with the material handling process of another 

unit. The materials initially identified to be tagged and tracked as part of the field trial were 224 

pipe spools for the Unit 2 generator, 22 safety valves, and about 150 pipe supports. The materials 

that were initially received and stored at the port were also tagged with RFID transponders while 

they were still in the port area. Figure 3.9 shows some of the pipe spools that were tagged at the 

port of Toronto.  

 

Figure 3.9: Tagged pipe spools at the receiving point 

The methodology of the experiment is shown as a chart in Figure 3.10. When the materials were 

received on site, RFID tags were attached to each of the selected critical components, and their 

initial position was recorded immediately using the GPS receiver. Positions were then updated 

according to data collected on site on a daily basis. Maps showing the resulting positions of the 

components to be retrieved were handed to the lay-down yard workers, who either flagged the 

materials for their later retrieval or immediately located and loaded them for delivery to the 

preassembly or installation areas. When requested, maps were produced that indicated spool and 

valve locations overlaid on satellite imagery, with a translucent project plan view layer also used 

for orientation (Figure 3.11).  

      



 

60 

 

 

Figure 3.10: Field trial procedure 

   
(a) (b) 

Figure 3.11:  (a) Pipe spools at site lay-down areas (b) Pipe spools at the port 

Pipe spools began arriving on the site via the port of Toronto on July 22, 2007, and by September 

17, 2007, all of the pipe spools had been transferred from the port. During this period, the ability 

to tag the materials at the port helped to track them from the port to the site and also facilitated 

the handling of any confusion with respect to delivery. 

Tracking and locating 22 safety valves was also a component of the experiment. Safety valves 

were received at the port of Toronto in July 2007. An RFID tag was attached to each valve and its 



 

61 

 

location recorded using GPS. The safety valves were relocated to the project warehouse on July 

27, 2007, and the tags remained in the site warehouse for 6 weeks prior to being requisitioned by 

a contractor. The safety valves were relocated to an onsite work area during the week of 

September 21, 2007. Ten valves were immediately installed on a number of boiler units. The 

remaining 12 safety valves were still in storage in the onsite lay-down area at the time this 

document was written. 

3.4.2.2.1 Tagging/Untagging 

Selected components were tagged upon their arrival at the port. Zip ties were used to attach the 

tags to the components (Figure 3.12). For reliable signal transmission, tags need to be placed in a 

horizontal position facing up (if applicable). Unfortunately, during the moving of the materials 

from the port to the site and from one yard to another, the tag might not remain in this preferred 

position. During the tagging process, the unique material ID was correlated to the assigned tag ID 

using datasheets, and the information was then recorded in an electronic format in the office. In a 

full-scale commercial system, this process would, of course, be fully automated and integrated 

starting at the fabricator or vendor. 

 

Figure 3.12: A sample of tagged pipe spools 

RFID tags were removed from the components immediately before their installation or pre-

assembly and were kept in closed steel containers to prevent stray RF signals. These tags were 

then returned to the process to be reused in later stages of the project. 

3.4.2.2.2 Periodic Automatic Material Location Estimating 

Team members moved around the lay-down yard equipped with GPS and RFID readers in order 

to collect field data. Depending on the facilities in the lay-down yard, a bobcat could be driven 

around the perimeter of the lay-down yards in order to expedite the data collection process. The 

data could also be collected ambiently by having a person carry the reader during the normal 
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course of his work as he walks about the site. The more the person walks around the components, 

the more accurate and reliable the data collection becomes. For this experiment, the location data 

collection was performed at least once a day very early in the morning. Because the project lay-

down yards at the Toronto site are small, the site data collection took less than one hour. As soon 

as the data logging was completed, the locating algorithms began estimating the locations, which 

were then saved into a .kml file to be visualized in Google Earth. 

3.4.2.2.3 Material Retrieval  

Having the maps that show the locations of all the requested components helps workers easily 

locate the materials and decide on the shortest retrieval sequence based on the relative positions 

of the tagged items. The initial plan was to supply the lay-down yard workers with maps 

depicting the locations of the materials based on the list of materials to be retrieved from the lay-

down yard area on a given date. 

The Google Earth program was used to provide an image of  the location of each tagged item and 

then  to generate corresponding maps.  The current Google Earth aerial photos of project site, 

were old and did not have enough detail for the purposes of the experiment. An AutoCAD 

drawing of the site plan was therefore overlaid on the Google Earth aerial photo in order to 

provide more landmark reference details for the site locations (Figure 3.13). To allow effective 

visualization by field workers, the maps can be created with different granularity, at a variety of 

scales, and with a zooming feature. 

  

Figure 3.13: Sample maps with different scales, showing RFID tag locations 

Two subcontractors used the proposed technology in the late summer and fall of 2007.  Maps 

were requested for selected items after the subcontractors had allocated significant crew time to 
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searching for the items.  In all cases, the materials were located immediately for the 

subcontractors. 

3.4.3 Field Experiments in Rockdale, Texas 

The other field trials were held at the Sandow Steam Electric Station Unit 5 project in Rockdale, 

Texas, USA. The project involved was a 565 megawatt circulating fluidized bed, lignite-fired 

power plant, which consisted of 2 boilers, 2 bag houses, 1 stack, and 1 turbine. The project 

involved two almost identical steel structures to support the steam generation processes. Both 

structures were composed of steel components and were divided into very similar sequences of 

installation. Each boiler structure had been assigned its own cranes, equipment, foreman, and 

installation crews, working roughly in parallel. The field trials were conducted from August 1, 

2007, to October 19, 2007, with two graduate students continuously on site during this period. 

For the purposes of this study, the job site was divided into two main areas: the lay-down yard 

and the installation area. The 25-acre lay-down yard was used to store the structural steel 

components, and the components retrieved from the lay down yard were then held in the 

installation area prior to their installation.  

In the original materials management process, when the components needed for installation had 

been identified, a list containing these components was submitted by the installation foremen. 

Workers then located and flagged these items based on their grid records and written notes. Once 

the items had been flagged, craft workers hauled the components to the installation area. The 

components were unloaded in the installation area and were not tracked or marked for 

identification. When required for installation, the components were retrieved by workers based on 

their recollection of the location information. Because of their proximity, co-researchers at the 

University of Texas at Austin conducted this field experiment, with occasional participation by 

the author. 

3.4.4 Impacts of the Field Trials and Experiments 

Results from the field trials show the impact of the location and identification technology on site 

material management, as illustrated through a series of case studies. At the Rockdale site, the 

average time to locate a component using an automated tracking system was reduced to 4.6 

minutes from 36.8 minutes, and only 0.54% of components were not immediately found, 

compared to a previous figure of 9.52%. It was observed that 19% of the tagged components were 

moved to a different location in the lay-down yard more than once during the two and one-half 

month trial at Rockdale. The craft productivity for steel workers working on the boiler unit whose 
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components had RFID tags (CII 2008), also increased by 4.2%. At the Portlands site, one of the 

general foremen was able to reduce the crew size from 18 to 12 workers. This increase in craft 

labour productivity, reduction in temporarily lost materials, and reduction in crew size were 

possible due to the confidence created in the foremen that they would not have to allocate 

additional craft resources for materials tracking and locating even if materials were moved 

multiple times.  In essence, there was increased confidence in a predictable flow of work coupled 

with a reduced risk of exceptions.  

As the experiment progressed, the feedback received from the managers and the workers was 

very positive; however, initial resistance was not uncommon.  By the end of the field trials, 

several workers on both sites suggested that all the components in the lay-down yard should be 

tagged so that they could locate materials quickly.   

3.4.5 Acquired Data Set 

The data collected from the Toronto field experiments were used to run and validate the fusion 

model. During the whole course of the experiment, 375 tags were used to test the feasibility of 

tracking and locating specific critical components on a construction site and in its supply chain. 

The data for testing the model are the coordinates of each tag ID in the lay-down yards, which 

were logged on a daily basis for five months.  The estimated size of the data set is 94 days of data 

logging multiplied by, on average, 110 tags on the site per day multiplied by, typically, 12 reads 

per tag per day.  The daily location data were saved in the format of .kml to be opened in the 

Google Earth map environment to enable visualization of the location information.  

Actual (semi-actual) locations of all the tags are also available through the use of a GPS with 

subfoot accuracy for each tagged component as they are laid down in the yards.  For the purposes 

of this research, this task is performed just once for each tag when it reaches in its ultimate 

location in the lay-down yards or whenever the tag is moved significantly within the yards. 

The following fields were logged in order to provide the data sources for part of the application: 

1. Tag ID 

2. Coordinates of the original observations of location 

3. Log date/time 

4. GPS receiver accuracy  
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As stated previously, software supplied by the vendor (Identec) was used to acquire data during 

the field experiments and all the algorithms of different fusion levels were implemented in .NET 

C# and MATLAB during the development of the thesis. The coordinates are in UTM-NAD 83. 

UTM is the Universal Transfer Mercator, which a rectangular metric in mapping coordinate 

system used instead of latitude and longitude; NAD 83 is the North American Datum 1983. A 

sample of the logged data for the tag with ID of 0.200.159.002 is presented  as part of a .kml file 

is shown in Figure 3.14. A more comprehensive sample set of more observations is presented in 

Appendix E. 

 

 
 

Figure 3.14: Illustration of the data fields of a sample .kml file 

3.4.5.1 Limitations of the Acquired Data 

The suppliers’ software had the advantage of a more sophisticated and applicable solution for 

daily use at a construction site but was inflexible with respect to the types of data extracted.  The 

four data sources listed above are not sufficient for all the requirements of the designed 

algorithms. In particular, RSSI and positional delusion of precision (PDOP) are two types of input 

required for the fuzzy fusion level (section 5.1.1) that were not logged through the construction 

job site experiment. However, the use of available GPS archives enabled the corresponding 

PDOP for all the data fields to be retrieved, but the retrieved PDOP values do not have a 

spectrum wide enough to challenge the data fusion model. The lack of RSSI can be neglected due 

to the ability of the model to handle unavailability of signal strength.  
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To demonstrate the flexibility and the power of the model to fuse data from sources with different 

levels of accuracy and also to effectively use BIM as one of the sources of data fusion, the two 

following procedures were implemented: 

 Data simulation to provide high PDOP values 

 Small-scale on-campus experiments to provide more noisy data in a controlled manner, 

as discussed in the next section. 

3.5 Control Experiments 

Another set of field experiments were conducted in a parking lot on the UW campus to validate 

the fusion level 0 and 1. This trial was performed in a more controlled manner to tackle some of 

the limitations mentioned in section 3.4.5.1 and to reinforce the results obtained from the 

simulation-based data set.  

The experiment was conducted in a parking lot with 38 RFID tags (Figure 3.15). The tags were 

deployed in separate blocks to provide spatial information for the site plan. This spatial 

information can be used to easily identify blocks that contained tags and ones that did not. This 

information represents the BIM input for the data fusion model (Section 3.7). 

 

Figure 3.15: Controlled Field experiment in a parking lot 

Tag locations were logged through a specified number of runs of the program for a variety of 

rover paths. Several data-logging runs were carried out when the positional delusion of precision 

(PDOP) was high and low. Three GPS units with different accuracy rates were also used in order 

to demonstrate the power of the model for fusing information from sensors with different levels 

of accuracy or reliability. The georeferenced plan of the deployment, logged with a GPS with 

sub-25cm accuracy, is shown on Figure 3.16 
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Figure 3.16: Georeferenced plan of the deployment of the tags into separate blocks 

Figure 3.17 shows one of the sample logged locations. The overlaid white blocks are the ones that 

contained tags. As can be seen, some of the logged locations were outside the tag blocks. These 

observations provided less reliable information but are supposed to be well handled by the data 

fusion model.  

  

Figure 3.17: Sample results of logging the locations of the tags 
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3.6 Summary 

This chapter has discussed the data acquisition framework and the physical components as well as 

the numerous field experiments that were conducted. The field experiments represent a key factor 

in this research study because they demonstrate the feasibility of employing the components, 

methods, and technologies developed. They also provided the data for validating the data fusion 

model that is introduced in the next chapter.  For data acquisition, commercially available 

hardware and beta test software were used. The algorithms for fusion levels 1 and 2, such as the 

Dempster-Shafer and weighted averaging methods were fully implemented in Visual .NET C# as 

well as MATLAB. Fusion level 0 was implemented in a MATLAB fuzzy toolbar. A fuzzy engine 

was designed based on the Mamdani method with four types of input and one type of output. The 

Toronto site data, which was captured on a daily basis for more than five months, and the 

controlled experiment data were the two data sets used for validating the algorithms and the 

model.  
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Chapter 4 

Data Fusion Model and Evaluation Metrics 

Data fusion can be used to achieve improved performance with respect to location estimation. 

Fusing data from a variety of sensors is more reliable and robust because the extra sensors and the 

contextual information operate as backups if other sources fail. The general benefits of 

multisensor data fusion are discussed in Chapter 2. This chapter discusses the main framework of 

the conceptual components of the developed system presented in the form of a model adapted for 

data fusion.  

4.1 Data Fusion Model and Architecture 

Figure 4.1 describes a modified functional data fusion model for the application of construction 

materials location estimation and relocation detection. It is based on the JDL model which is the 

most widely used system for classifying the data fusion based functions. The first two levels are 

called low level data fusion, the second two are the high level fusion steps, and the last level is 

called a meta-process. In the following figure, the architecture, the data flow and the 

interrelationships among the fusion levels are illustrated. 

The data sources for this model include the following: 

 Physical sensors 

 Location estimation algorithms 

 Context: 

o Received signal strength indicator (RSSI) 

o Positional dilution of precision (PDOP) 

o Time  

o BIM 

 Georeferenced site map/layout and drawings 

 Georeferenced 3D models  

 Schedule (not in the scope of this study) 

 As-builts (not in the scope of this study) 
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 Procurement details (not in the scope of this study) 
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 Figure 4.1: Data fusion model for construction resource location estimation 

Utilizing location sensing technologies such as RFID, GPS, Ultra-wideband, infrared, and others 

provides rough location reads which are referred to as ―read events‖ in this study. These read 

events are used to generate original estimations of location which are further improved through 

the data fusion methods described here. Figure 4.2 illustrates the hierarchical relationship among 

tag read events, observations, and the improved estimated location. 
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Figure 4.2: Hierarchical relationship representation among read events, observations, and the 

improved location estimation through data fusion 

In this thesis, the original estimation of location that is made by a vendor’s algorithms through the 

use of commercially available hardware and beta test software during the field experiments is 

referred to as an ―observation‖. These observations were made using different read events of each 

tag. Then the fusion method uses a certain number of these observations to improve the 

estimation of the location.  

4.2 Data Fusion Level 0 

Observation reliability assessment is the focus of the first phase. The goal of the hybrid fusion 

method is to use a combination mechanism so that the observations can ―properly‖ contribute to 

the ―final locations‖ estimates. The ―final locations‖ are the output of fusion phase two, and 

―properly‖ means with an established level of reliability for the observation. Makkook et al. 

(2008) is a similar effort that formulated a statistical assessment method for estimating the 

reliability of observation conditions. This reliability was further used for an optimal mapping into 

weighting measures using genetic algorithms. 

Observations have a variety of accuracy and reliability factors that differentiate them, and no 

simple solution exists for a proper combination of observations. Combining the contextual 

information about the sensors and other available context about the site layout, for example from 

BIM, is a reasonable means of obtaining the reliability degree of the observation. Because some 

of the context might not be available at all times or for all the sites, using this information is 

optional in the proposed solution. 

A fuzzy inference system is implemented for this fusion phase, with its ability to employ the 

contextual data according to their availability. This fuzzy system needs to be re-engineered for 

new types of sensors utilized. Fuzzy representations and an inference system help define more 

precisely the reliability of an observation. In this regard, observations are no longer valid or 

invalid but instead have a degree of reliability in the range of valid and invalid. In other words, 

the reliability degree of the observation is the output of this fuzzy system, and it is used to adapt 

the fusion algorithms, in the second phase, to this factor.  

4.3 Data Fusion Level 1 

Observations, knowledge, and data from multiple sensors are combined in this level to form a 

final estimation of location. A variety of algorithms can be used and compared in this level to 

obtain a more robust estimation.  Dempster-Shafer theory or the ―theory of belief functions‖ and 
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weighted averaging are the main two algorithms that were examined to pursue the objective of 

this fusion phase. Combined with the fuzzy inference system developed in the first fusion phase, 

these algorithms can form a hybrid framework.  

Having derived the reliability degree of the observations through the fusion level 1, location 

estimation algorithms can be adapted to different reliability degrees of the fusing data. Therefore 

observations with a high degree of reliability contribute more to the final estimated location than 

the ones with low reliability.  This is done through the weighting method of the weighted 

averaging algorithm, and as a discounting factor in the Dempster-Shafer algorithm.  

4.4 Data Fusion Level 2 

Level 2 assesses the situation state by integrating the resource location information from the level 

1 output with contextual information; integrated BIM; and/or other sensor data, such as LADAR, 

ultrasound, or 3D Laser Scanner. The relationships between different construction resources and 

the site layout, as-builts, and even schedules can be extracted based on the results of this level. 

This fusion level can produce a spatial/temporal relationship of elements with the life cycle of the 

building. Fusion Level 2 is a situation assessment based on inferred relations among entities. 

Depending on the physical and contextual information about the approach employed for locating 

the construction materials, a variety of solutions and techniques can function in this fusion level.  

Relocation is defined as the change between discrete sequential locations of critical materials, 

such as special valves or fabricated items, on a large construction project. The main focus of this 

level is to detect these relocations in a noisy information environment in which low-cost RFID 

tags have been attached to each piece of material, and the material is then moved, sometimes only 

a few meters.   

A data fusion algorithm based on a belief function was developed in .NET C# for this level of 

fusion in order to detect relocations of materials. When a tag is dislocated, a new observation may 

be made whose associated basic belief assignments contradict the past measurements. The 

Dempster-Shafer conflict value is used here to detect this contradiction and thus the movements 

of tags in the field.    

Assuming location accuracy of a few meters (because of a noisy but cheap localization method), 

as observations increase, expected location error decreases, despite periodic outliers. However the 

outliers can be early signals of possible relocation, and when a relocation is signaled, location 

estimation improvement with data fusion begins anew (Figure 4.3). 
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Figure 4.3: The effect of relocation detection on the expected localization error 

4.5 Data Fusion Levels 3, 4 and Human/Computer Interaction 

Level 3 is estimating the project state. This level involves integration with the project 

management system and is out of the scope of the current work. Level 4 improves the results of 

the fusion by continuously monitoring and assessing the sensors and the process itself. Additional 

contextual information or sensors may also get evaluated in this level. The need for calibrating 

the sensors or modifying the process may be assessed in this level. Human/Computer interaction 

can also be summarized in a data visualization and navigation module as well. 

The details of the design and development of the proposed data fusion model and algorithms are 

provided in Chapter 5, 6, and 7. 

4.6 BIM Data Fusion 

As stated in section 2.3, BIM incorporates geometry, spatial and temporal relationships, 3D 

geographic information, and the quantities and properties of building components. This 

information may include the drawings, procurement details, environmental conditions, submittal 

processes, and other specifications with respect to the building quality. Integrating any of these 

sources of data falls under BIM. 

Several BIM data sources have the potential of integrating with the current and follow-up 

research studies. The following are some of the potential BIM components for integrating with 

the material location-sensing solution:  

1. Procurement details of the tagged items: In a broader view, items can be tagged up the 

supply chain and stay tagged even after installation. With an integrated BIM system, 

procurement details of a lost, misplaced, or damaged tagged component can be promptly 

retrieved at any stage of the supply chain, during construction or maintenance. 

Procurement details such as item specifications or manufacturer information can be used 
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to replace or reorder the item or to correct problems that occur during the life cycle of the 

infrastructure. 

 Geometry and spatial information of the construction site: Georeferenced 3D or 2D 

CAD drawings and layout maps are other useful BIM elements that can be employed in 

the new integrated solution in order to increase accuracy and efficiency. These sources of 

data can be used to discard invalid and noisy location data that has been captured. The 

relationships between individual construction resources and the site layout also help with 

inferences about which locations are valid. As an example, it can be inferred that data is 

noisy and less valid if location data about an individual piece of material is captured and 

that fits in an area where large modules are laid down. 

 Drawings, georeferenced maps, and aerial photos: Drawings, georeferenced aerial 

photos, and maps that show the layout of the site can be used to provide a means of 

visualizing the location of the construction resources. The location information can be 

shown directly in the building information model if the site has its own BIM. 

 Schedule and as-builts: The temporal relationships of the construction materials can be 

obtained from the schedules, the as-builts, and the current location of the materials. 

Employing some of the BIM components, such as the project schedule and as-builts, in 

conjunction with the estimated location of the materials on the site can help with the 

estimation of the state of the project. 

The second and third of these components are the options that were chosen for BIM integration in 

the current study. The georeferenced data of the boundaries of the lay-down yards can be used in 

the location estimation algorithms for discarding noisy observed data that fits outside the 

boundaries. In a more sophisticated approach, this geographic boundary information can provide 

a reliability degree with respect to the location observations and therefore help to increase 

accuracy. This method was incorporated into level 0 of the new fusion architecture.  

Georeferenced data that are also available at the host construction site can be effectively used to 

test this fusion hypothesis. The visualization technique used in the new method also employs 

spatial information as well as the site drawings combined with aerial photos that are some of the 

BIM components. These data can be also shown directly in the 3D building information model if 

the site incorporates BIM. 



 

75 

 

4.7 Implementation 

A high-level architectural view of the system can be defined in a component diagram. A UML 

component diagram (UML deployment diagram) is used here in order to present a 

physical/deployment view of the research, as shown in Figure 4.4.  

 

 

 

 

 

 

 

 

Figure 4.4: UML Component diagram for a high-level view of the system 

The algorithms for fusion levels 1 and 2, such as the Dempster-Shafer and weighted averaging 

methods were fully implemented in Visual .NET C# as well as MATLAB. Fusion level 0 was 

implemented in a MATLAB fuzzy toolbar. A fuzzy engine was designed based on the Mamdani 

method with four types of input and one type of output. The software implementation document 

for the Visual .NET C# framework is included in Appendix F. 

4.8 Data Fusion Model Evaluation Metrics  

Two metrics were used for evaluating the effectiveness of the fusion algorithms for localization. 

The first metric is accuracy which generally refers to the degree of conformity of a measured or 

calculated location to its true value.  The mean is usually shifted from the true value. The amount 

of this distance is characterized as the accuracy of the measurement. Precision is the second 

metric and is defined by the degree to which further measurements or calculations show similar 

results. As indicated by the standard deviation, individual measurements may not agree well with 

one another. This discrepancy represents the precision of the measurement, and is also sometimes 

called the signal-to-noise ratio. To discuss the performance of the fusion algorithms, accuracy and 

precision are calculated for the estimations of different algorithms of the level 1 fusion as well as 

the observations.  

Data Fusion Level 0Data Fusion Level 1

Visualization

ObservationsEstimated Locations

Validation
True Location Logging (Truth Value)

High Precision GPS Location

Reliability level

Data Fusion Level 2
Disloacation detection
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To discuss the performance of the fusion algorithms, accuracy and precision are calculated for the 

estimations of different algorithms of the level 1 fusion as well as the original observations. 

Figure 4.5 schematically presents the observations and different estimations. 

 

Figure 4.5: Schematic representation of the observations and estimation methods used in the 

fusion level 1 for n pairs of observed locations 

Let n be the number of observed tags at any discrete time, and t is the number of times of 

observation collections (or number of observations per tag),  represents an observed 

location of tag i and  stands for the revised estimated location based on data fusion. 

 are the true location of the tags often referred to as the ground truth in other literature. 

Since all the true locations have been shifted to the centre of the plot, the distribution of the 

shifted corresponding observations, which are now representing the same phenomena, can be 

studied for measuring the above two metrics. In this new shifted coordinate system, the 

coordinates are defined as follows: 
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The last two equations state that the observations and fusion estimations are dislocated with an 

offset equal to the ―error‖ or the amount by which the estimator differs from the location to be 

estimated. Therefore, to follow with calculating the performance metrics, the distribution of the 

individual error estimates is used.  The standard deviation of this distribution is the measure of 

precision and the mean represents the accuracy metric as shown in figure 4.6. 

 

Figure 4.6: Schematic representation of accuracy and precision 

4.9 Summary 

This chapter has presented the main framework of the conceptual components of the developed 

system in the form of a model adapted for data fusion. This data fusion model is based on an 

integrated solution for automated identification, location estimation, and relocation detection of 

construction materials. The fusion model incorporates multiple sources of information, such as 

BIM, in order to increase confidence, to achieve a higher degree of location estimation accuracy, 

and to add robustness to the operational performance. The developed model is a modified version 

of the US Joint Directors of Laboratories (JDL) model. Particular attention has been focused on 

relocation detection in fusion level 2 because it is closely coupled with location estimation and 

because it can be used to detect the multi-handling of materials. The implementation framework 

and evaluation metrics have also been discussed in this chapter. 
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Chapter 5 
Data Fusion Levels 0 and 1: Reliability-Based Location 

Estimation 

 

Through data fusion model levels 0 and 1, a hybrid fusion method has been developed as a means 

of achieving the research objectives by leveraging both evidential belief reasoning and soft 

computing techniques. The two distinct fusion levels (0 and 1) have some intercorrelation in this 

hybrid fusion method. Fusion level 0 focuses on the reliability of the observations, and fusion 

level 1 uses this reliability factor to improve the estimation of locations. A fuzzy inference system 

is used as a soft computing technique in fusion level 0 in order to assess the reliability of the 

observations. In fusion level 1, a variety of location estimation algorithms, such as evidential 

belief reasoning, are used to improve the original observations. These two levels of fusion are 

discussed in detail in the next two sections. 

5.1 Data Fusion-Level 0: Sensor Reliability Detection 

In the fusion architecture defined in the previous chapter, sensor data reliability assessment is the 

focus of level 0. Observations have a variety of accuracy and reliability factors that differentiate 

them, and no simple solution exists for a proper combination of observations. Combining the 

contextual information about the sensors and other available context about the site layout, for 

example from BIM, is a reasonable means of obtaining the reliability degree of the observed 

location. Because some of the contextual information might not be available at all times or for all 

the sites, using this information is optional and is also left to engineering judgment as to 

efficiency. 

A fuzzy inference system is implemented for this fusion level, with its ability to employ the 

contextual data according to their availability. This fuzzy system needs to be re-engineered for 

any new set of sensors utilized.  

Fuzzy representations and an inference system help define more precisely the reliability of an 

observation. In this regard, observations are no longer valid or invalid but instead have a degree 

of reliability in the range of valid and invalid. In other words, the reliability degree of the 

observed location is the output of this fuzzy system, and it is used to weight the next level fusion. 

In the trial scenario with RFID and GPS, any RFID read was initially matched with a location 

from the GPS at the time of the read, which formed the set of read events that are further used to 

generate the location observations.  For this framework, the contextual information about the 
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sensors is the positional dilution of precision (PDOP), the received signal strength index (RSSI), 

and the accuracy level of the GPS sensor. This sensor contextual information and the 

georeferenced boundaries of the lay-down yard can be used to form the input variables of the 

fuzzy inference system. The reliability degree of the observation is the output. 

5.1.1 Why Fuzzy?  

To deal with the imperfection of the construction site data, a number of approaches exist. 

However each approach can address one aspect of data imperfection. According to Smets’ 

classification, data imperfection has two main aspects: uncertainty and imprecision. Data is 

uncertain when its associated confidence degree is less than 1. Imprecise data is the data that 

refers to several, rather than only one, object in the database. Imprecision can represent itself as 

vagueness, ambiguity, as well as incompleteness of data. Vague data is characterized by some 

classes having ill-defined limits, i.e. instead of defining the membership of a known object in an 

ill-known class by a crisp relation, it is considered to be fuzzy. Ambiguity in data refers to our 

inability to clearly distinguish among several classes of objects. Finally, incomplete data is data 

for which the degree of confidence is unknown but the upper limit of confidence is given (Smets 

1997).  

Because of the following reasons the nature of the data imperfection in this level is considered 

fuzzy and fuzzy systems are the best approach to address this type of imprecision: 

 The contextual variables of the sensors, such as signal strength in systems based on radio 

frequency, can validate the reliability of the data, but the boundaries of this variable are 

not well-defined and are fuzzy. All the other variables that can affect the reliability of the 

observations in the current framework also do not have a crisp boundary definition and 

thus can be described the best in a fuzzy framework. These variables are introduced in the 

next section. 

 Different types of sensors with varying levels of precision might be used in any field 

deployment with a somewhat unpredictable degree of spatial and temporal intersection. 

These discrepancies result in varying reliability degrees of observations from different 

sensors. 

5.1.2 Fuzzy Inference System Input Variables 

The input variables for this problem are defined as follows and can be arbitrarily used on the 

basis of availability:  
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 Positional dilution of precision (PDOP) 

 Received Signal Strength Indication (RSSI) 

 Relative location in the lay-down yard of georeferenced boundaries (BIM component) 

 GPS receiver accuracy specification  

Positional dilution of precision (PDOP): This contextual variable can be used as a measure of 

the reliability of the GPS signal. Dilution of precision (DOP) or geometric dilution of precision 

(GDOP) is a GPS term used in geomatics engineering to describe effect of the geometric strength 

of the satellite configuration on GPS accuracy. When visible satellites are close together in the 

sky, the geometry is said to be weak, and the DOP value is high; when they are far apart, the 

geometry is strong, and the DOP value is low. 

A low DOP value thus represents better GPS positional accuracy due to the wider angular 

separation between the satellites used to calculate the position of a GPS unit. The factors that 

affect the DOP are satellite orbits, and the presence of obstructions that make it impossible to use 

satellites in specific areas.  

The terms HDOP, VDOP, PDOP (the most commonly used), and TDOP are used, respectively, 

for horizontal, vertical, position (3-D), and time dilution of precision. These quantities follow 

mathematically from the positions of the usable satellites in the local sky. The PDOP fuzzy 

variable can have values of [Excellent, Good, Fair, Suspect](Table 5.1). Figure 5.1 shows the 

membership functions for this fuzzy input variable. 

Table 5.1: DOP values for GPS signal reliability verification (Binary Logic) 

DOP Value Rating 

Very Good 1-3 

Good 3-5 

Fair 6 

Suspect >6 
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Figure 5.1: Fuzzy contextual variable: PDOP 

Received signal strength indication (RSSI) is another contextual variable, which is a 

measurement of the received radio signal strength. This variable can be used to verify the 

reliability and credibility of the RFID signal. RSSI can have the values of [Reliable and 

Unreliable] and can be represented as shown in Figure 5.2. 

 

Figure 5.2: Fuzzy contextual variable: RSSI  
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User agent GPS accuracy: The measurement accuracy of the GPS depends on many parameters, 

such as receiver or translator design, the antenna design, the accuracy of the satellite ephemeris 

data, relativity and atmospheric effects, and the fixed characteristics of the GPS (Dougherty 

1993). The user agent GPS accuracy can be several meters, or it can be submeter or subfoot. For 

the purposes of this study, fuzzy values for the accuracy levels can be roughly defined as [High, 

Medium, Low, and Unacceptable]. The membership function for this variable is shown in Figure 

5.3. 

Relative location to the georeferenced boundaries of the lay-down yard (BIM component): 

Depending on its availability, this information can significantly help with the detection of noisy 

observations. It is reasonable to discard location observations that are very far from the 

acceptable lay-down yard boundaries because this information can bias the combination of 

observations toward a geographic area that is unacceptable for the materials. At the same time, if 

the observation is outside but close to the acceptable zone, it may help to establish a more 

accurate location as a result of combining all the location observations. It can therefore be 

concluded that location relative to the georeferenced boundaries of the lay-down yard is a fuzzy 

variable that can help establish the reliability degree for the observed data. This fuzzy variable 

can have values of [Inside andOutside] (Figure 5.4). 

 

Figure 5.3: Fuzzy contextual variable: GPS accuracy 
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 Figure 5.4: Fuzzy contextual variable: location relative to the lay-down yard 

5.1.3 Fuzzy Inference System Output Variables 

The output variable is the ―reliability degree‖ of observations based on the sensors or contextual 

data described above. This reliability degree can have the fuzzy values of [Low, Medium-Low, 

Medium-High, and High]. The values for the reliability degree output variable are presented in 

Figure 5.5. 

 

Figure 5.5: Reliability degree as the fuzzy output 
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5.1.4 Fuzzy Inference Rules 

Fuzzy inference rules bridge the gap between the input and output variables. These rules show the 

perception or the knowledge of the expert and are in the form of IF-Then logical statements. The 

rules to be used in the fuzzy inference engine are summarized in Figure 5.6. The fact that some of 

the input data might not be available or might be arbitrarily chosen has been taken into 

consideration.  Figures 5.7 and 5.8 graphically present the process of generating the results for the 

sample input arrays based on the defined rules.  

 

Figure 5.6: Fuzzy inference rules engine  

 

Figure 5.7: Sample of firing fuzzy inference rules for the input set of [7 0 10 12] 



 

85 

 

 

Figure 5.8: Sample of firing fuzzy inference rules for the input set of [4 0 0 8] 

After firing the fuzzy rules of inference, the final output is defuzzified to give an absolute number 

in the range of [0, 1] as the ―reliability degree‖ for that observation. In the next phase, this degree 

is used for weighting the fusion algorithm in order to combine different observations. 

5.1.5 Defuzzification 

Conceptually, defuzzification is a method for converting a fuzzy value to a crisp number. For the 

present application, fuzzy terms are illustrative but not adequate for communicating with the rest 

of the data fusion method. The crisp reliability degree is further used in the second fusion phase 

for weighting the algorithms. There are several methods of defuzzification: centre of gravity, 

centre of sums, or mean of maxima. Because of the simplicity of calculation, the simple centre of 

gravity or Centroid method was chosen for use in this research. 

5.2 Data Fusion-Level 1: Hybrid Location estimation 

In this level of the fusion process, the location of the construction resource is estimated because it 

is the most important indicator of the state of the sensor nodes in a wireless sensor network. 

Observations, knowledge, and data from multiple sensors are combined to form a single 

perception of the location. In this level, a variety of algorithms can be used and compared in order 

to obtain a more improved final estimation.   
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As discussed in section 2.1.2, sensory data are generally imperfect, that is, uncertain, incomplete, 

imprecise, inconsistent, and ambiguous.  In general, this problem has been approached using five 

major frameworks: probabilistic, evidential belief reasoning, soft computing, optimization-based, 

and hybrid methods.  

This study used a hybrid method that combines several fusion approaches in order to develop a 

meta-fusion algorithm for representing data imperfection and for addressing the challenge of 

fusing imperfect data. Dempster-Shafer theory or the ―belief function theory‖ and weighted 

averaging are the main two algorithms that were examined to pursue the objective of this fusion 

phase. Combined with the fuzzy inference system developed in the fusion level 0, these 

algorithms can form a hybrid framework.  

Having derived the reliability degree of the observations through the fusion level 0, location 

estimation algorithms can be adapted to different reliability degrees of the fusing data. Therefore, 

observations with a high degree of confidence contribute more to the final estimated location than 

the ones with low confidence.  The implementation of this method was approached through the 

weighting method of the weighted averaging technique and by means of the discounting factor in 

the Dempster-Shafer algorithm. The next two sections discuss the details of applying the 

consideration of the reliability degree for implementing hybrid location estimation methods. 

5.2.1 The Dempster-Shafer Theory for Hybrid Location estimation 

The Dempster-Shafer theory, also known as the theory of belief, the theory of plausibility, or  the 

evidential theory, is a generalization of Bayesian theory. This theory was originally developed by 

Dempster (Dempster, 1968) and mathematically formalized by Shafer (Shafer, 1976). The 

Dempster-Shafer theory is a popular method of dealing with uncertainty and imprecision within a 

theoretically attractive evidential reasoning framework (Basir, 2005). Caron et al. (2005) showed 

that it can also manage the challenges associated with moving a tag when it is scalable and when 

the granularity of the frame of evidence can shift in real time.  Additional motivations for 

applying Dempster-Shafer theory in this case follow (Sentz and Ferson 2002): 

 The flexibility of the Dempster-Shafer theory for fusing different types of evidence 

obtained from multiple sources has been demonstrated. 

 In the past 15 years, researchers have published a significant number of studies of 

applications of the Dempster-Shafer theory in engineering. 
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 Compared to other nontraditional methods, the Dempster-Shafer method has been the 

subject of a relatively high degree of theoretical development with respect to addressing 

uncertainty. 

 The Dempster-Shafer theory incorporates concepts close to those of traditional 

probability and set theory. 

In this theory, the source of information is called evidence and the possible basic hypotheses are 

called the frame of discernment (E). The frame of discernment is the problem world that one is 

trying to observe and understand. The terms ―evidence‖ and ―observation‖ are used 

interchangeably in this document. 

For the present application, the hypothesis for each tag is of the form, ―It is in location ‖. A set 

of mutually exclusive prepositions based on these hypotheses should be defined to build the 

frame of discernment. So, for each tag, the frame of discernment is the set of non overlapping 

square cells of the region (Figure 5.9).  A circular area based on the ideal reading range of an 

RFID reader is the closest shape to the antenna’s reading zone, but it can not cover the whole area 

of interest without overlapping and adding a lot of computational complexity to the problem. In 

addition, the actual range of any read position in the field is so highly dependent on antenna 

orientation, multipath interference, and other factors such as RFID tag signal strength that it is 

highly ill-formed and not unreasonably modeled as a square. If the construction site is virtually 

partitioned into square cells of , i=1,...,n, j=1,…,m, then the frame of discernment for 

each tag is: 

                                                                                                

For the model proposed here, the RF communication region of a read is modeled as a square, 

centered at the read and containing  cells while R is the ideal read range for the defined 

framework. Thus, the position of reads as well as tags is represented by a cell with grid 

coordinates, rather than a point with Cartesian coordinates, and one is only interested in finding 

the cell(s) that contains each RFID tag. To lower the error rate of the solution, cells are defined as 

squares. The idea is adopted from the discrete framework of Song et al. (2006). 
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Figure 5.9:  Discrete frame of discernment and modeling the RF communication region 

Any observation will be presented by assigning its beliefs over E. This is called the ―mass 

function‖ of the observation and is denoted by  . To take into consideration the whole belief 

that is in the given proposition, all the subsets of E which imply  need to be included. The belief 

is calculated as: 

 

 

For the current purpose, a location observation is a hypothesis. Because of the uncertainty in the 

observed data, due to different factors such as uncertain RFID read range, this information can be 

modeled by a basic belief assignment.  To deal with the uncertain read range, different beliefs are 

assigned to different subsets of cells centered on the reading agent. This belief assignment is such 

that the sum of the all beliefs is equal to one. Let j be the index for p nested square areas centered 

on the RFID reader such that (Caron 2005). For the 

solution proposed here,  for the area with half a read range and  for the 

rest of the area within read range (Figure 5.10). 

 

 

 

Dempster-Shafer theory provides a means to combine different pieces of evidence obtained from 

more than one sensor. The pieces of evidence for fusion can be either the observations or the 

read-events. In this study, due to unavailability of the original sensor read-events, ―observations‖ 

(as defined in section 4.1) are used for the fusion process. 

R 

 

Frame of discernment 
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Observation location 
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In the simplest scenario, due to the environmental and other factors, GPS and RFID may have 

different reliabilities for each ―read event‖. Therefore, observations made by those read events 

can be considered as independent observations that can be fused by the Dempster-Shafer theory.  

                                                     

 

 

 

 

 

Figure 5.10: The proposed solution mass allocation 

For each possible proposition (e.g., It is at location
 

) Dempster-Shafer theory gives a rule for 

combining the observation   and the observation : 

 

 

The Dempster-Shafer combination rule can be generalized by using the same rule of combination 

to consider  as an already combined observation of the sensors. In this research, the 

combination rule given above was used for fusing the information when a new read is acquired. 

This new read might be produced by other sensors or by the same set of sensors but with a 

probable different reliability degree (as produced by the fuzzy inference fusion portion of the 

algorithm). 

A more detailed overview of the Dempster-Shafer theory (Also called belief function theory) and 

the implementation model, along with some explanatory examples are included in the Appendix 

C.  The materials of the Appendix C are adopted from (Duflos 2010) that presents the relocation 

detection approach of this research. 

The system needs to determine in which cell the tag is located, so it must therefore compare the 

masses allocated to each cell after the fusion process. The center of gravity of the cells that have 

the maximum mass is chosen as the location of the tag. 

5.2.1.1 Discounting for Hybrid Dempster-Shafer 

With respect to fusion level 0 of this research, it was established that different evidence has a 

different level of reliability (section 4.2), due to the level of trust associated with the sensors and 

their received signals. However, the Dempster-Shafer rule of combination presented in section 

6.0)1m( E  

Frame of discernment 

4.0)m(E2  

(2R +1) 
Observation location 
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4.2 implies that the same weight of trust is given to each piece of evidence. Therefore, using the 

Demspter-Shafer combination method does not meet the goals of this research. 

To address this challenge, a further aspect of the Dempster-Shager theory was considered: the 

discounting operation allows the combining of observations from a source in the form of a belief 

function with extra knowledge about the reliability of that source (Mercier 2008).  The fuzzy 

inference engine determines the reliability degree for each piece of evidence, and then the crisp 

reliability degree of observations can be used to discount the basic belief assignment. This 

process is adaptive as it adjusts the decision to the degree of reliability of evidence or the 

reliability of the observations. 

Let  be a belief mass given to the  observation and let  be a coefficient which represents 

the reliability degree one has in observation i. Let  denote the belief mass discounted by a 

coefficient 1 −  and defined as: 

 ( ) = . ( )       ∀  ⊂ E 

 (E) = 1 −    +    (E) 

 is called the discounting coefficient. When = 0, it means that the belief mass from source i is 

not reliable at all, where    = 1 means that one has full confidence in the reliability of source i. 

So, the value of  is between the 0 and 1. If   >   , then the belief mass from source i is more 

reliable than the one from the source j. The discounted evidence is deemed to have no conflicts, 

and the classical Dempster’s combination rule can be used to combine them.  

5.2.2 Hybrid Weighted Averaging  

Centroid method (or simple averaging) is another approach for estimating the location that Grau 

studies for location estimation in construction (Grau 2008). Suppose that the construction site is 

represented by two–dimensional Cartesian coordinates. Any given tag on the site has n observed 

coordinates ), i=1,..,n. The estimated location of a given tag j denoted by  is the 

result of averaging the n observed coordinates where the tag j was identified. The following 

equation formulates the method: 

 

This means: 
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The advantage of this approach is its simplicity, which can, however, result in a high estimation 

error in the presence of many outliers.  The localization error also significantly increases when 

the observations are not uniformly distributed around the node’s real location.  This uniformity is 

the only chance of obtaining precise localization results. However, uniformity can not be assured 

during the data collection process in the noisy and harsh conditions present at a construction site 

(Grau 2008). 

Weighted averaging is similar to the Centroid method, and is also called the weighted mean. With 

this method, rather than having each of the data points contribute equally to the final average, 

some data points contribute more than others.  If all the weights are equal, then weighted 

averaging is the same as the centroid method. Instead, with the weighted average method, each 

data point is multiplied by an arbitrary ―'weight‖ and divided by the sum of the weights. 

Assume that the tag j has n observed coordinates ), i=1, ..., n. The estimated location of a 

given tag j is denoted by . A set of non negative weights [  is given as 

means of contribution of each observation. The estimated location in this method is calculated as: 

 

 

This means: 

 

Therefore, observations with a high value of weight contribute more to the final estimated 

location than the ones with a low weight.  The method is simplified when the weights are 

normalized which means they sum up to 1 as illustrated in the following formula: 

 

For the normalized weights, the weighted mean is simply: 
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As discussed in section 0, the fuzzy inference engine determines the reliability degree in each 

piece of evidence (observation), and then the crisp reliability degree of observations can be used 

to assign weights to the hybrid weighted averaging. Again, this process is adaptive because it 

adapts the decision to the degree of reliability in the evidence and the sensors. 

5.3 Field Experiment Setup 

Fusion levels 0 and 1 were validated through the use of the two sample data subsets that are 

described below. For further statistical analysis, the following two conditions were applied to 

both input data sets: 

a. All the true locations were hypothetically shifted to the origin coordinates (0,0), or centre 

of the plot. The respectively shifted measurements then all referred to the same 

phenomena and could be statistically studied together. The process is shown for one of 

the tags in Figure 5.11. 
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Figure 5.11: Scatter chart for the true value (red point) and the measurements (blue points) of 

the tag ID 200.055.096 (a) The original values (b) Values shifted toward the origin 

 

b. For calculating the accuracy and precision of the observations and the algorithms, an 

equal number of observations per tag ID could facilitate the calculations. This equal 

number is 12 for the Portlands trial, and 18 for the Control experiment which had been 

chosen from the first observations.  These observations were used for the validation 

process and statistical analysis. 

The scatter chart in Figure 5.12 displays a collection of observations (location measurements) of 

the Portlands trial, each having the value of easting shifted in UTM coordinates on the horizontal 

axis and the value of northing shifted in UTM coordinates on the vertical axis. 

 

Figure 5.12: Portlands trial: Scatter plot of sample observations after biasing them all to the 

centre 

The next scatter chart (Figure 5.13) shows observations (location measurements) of the Control 

experiment. The same as previous chart, each data sample has the value of easting shifted in 

UTM coordinates on the horizontal axis and the value of northing shifted in UTM coordinates on 

the vertical axis. 
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Figure 5.13: Control experiment: Scatter plot of sample observations after biasing them all to 

the centre 

5.3.1 Portlands Trial Data Subset 

The first case study involved the subset that was captured at the Portlands site warehouse area 

over seven days: July 2, 3, 4, 8, 9, 10, and 11 2007. The data was logged during more than three 

daily cycles of readings. Each reading cycle resulted in one estimated location for each tag. 

A total of 109 RFID tags were logged in the sample data subset, for which more than 25 

estimations of location may be assigned to some while others might have just 12 estimations.  

Benchmark measurements for all the RFID tags were also observed and logged, using the sub-

foot accuracy GPS, representing the real locations or the ―ground truth.‖  

As with all empirical measurements that are different estimations at different times, a certain 

amount of discrepancy exists between the measured and true values. This difference could be 

affected by many factors: GPS satellite visibility, multipath error, dead space and 

environmentally related interferences with respect to RFID power, trajectory of the rover, etc. 

Successive reading cycles help to identify these effects. Figure 5.14 shows the distribution of this 

error for the sample data subset. This error is the difference (distance) between the measurements 

(observed estimated locations of the vendor’s prototype) and the real locations (true values).  This 

distribution has a mean value of 7.98 and a standard deviation of 12.31. 

-50

-40

-30

-20

-10

0

10

20

30

-30 -20 -10 0 10 20 30 40

S
h

if
te

d
 N

o
rt

h
in

g

Shifted Easting

Scatter plot of sample observations after biasing them all to the 

centre



 

95 

 

 

Figure 5.14: Portlands trial: Original location error distribution in the observed sample subset 

Any individual data sample has a location, date, GPS unit accuracy rate, and RFID tag ID.  With 

the use of available GPS archives, the corresponding PDOP values were also retrieved for all the 

individual data fields. A BIM component is also another variable for the fuzzy system that was 

manually identified with the use of GoogleEarth™ images as in the two samples in Figure 5.15.  

   

Figure 5.15: Two samples of the identification of components outside the boundaries for real 

locations (BIM) 

5.3.1.1 Monte Carlo Simulated PDOP 

Only 5% of the observations (estimated locations) had a relative location outside the 

georeferenced boundaries of the lay-down yard (Figure 5.12). As well, only 3% of observations 

had a PDOP value above 4 (fair PDOP).  Any of these two sources of noise can cause a larger 

error in the observed location. The fusion model should be tolerant of those cases of noisy input 

data. However, the low rate of noisy data in the sample data set could not effectively prove the 

power and flexibility of the algorithm.  ―Fair‖ and ―suspect‖ PDOP values were therefore also 

simulated, and the correspondent coordinates were corrupted accordingly. This new data set 
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adopted the Monte Carlo simulation method and added the PDOP values by an error with normal 

random variables. In real world situation, PDOP is high in about %10 of times. So, this discrete 

random variable was simulated with use of the formula VLOOKUP(rand,lookup,2) in Excel and 

variables of (0, 0.9) for the lookup table.  

5.3.2 Control Experiment Data Subset 

The second case study involved the subset which was captured in the control experience on 

September 1, 2009, through several cycles of readings and estimations of locations. A total 

number of 38 RFID tags were logged in the sample data subset, with average of 25 observations 

(location measurements) assigned to the tags. Benchmark measurements for all the RFID tags that 

were also observed and logged using the subfoot accuracy GPS, represent the real locations or the 

―true value.‖  As with the first case study, a certain amount of discrepancy exists between the 

measured and true values. Figure 5.16 represents the distribution of the error for the sample data 

subset. This error is the difference (distance) between the measurements (observed estimated 

locations of the vendor’s prototype) and the real locations (true values).   

 

Figure 5.16: Control experiment: Original location error distribution in the observed sample 

data subset 

5.4 Experimental Results  

As with the other sample data sets, any individual data sample has a location, date, GPS unit 

accuracy rate, and RFID tag ID.  Again with the use of available GPS archives, the corresponding 

PDOP was also retrieved for all the individual data fields. The BIM component is another 

variable that was identified through the post-processing of the data. Because of the low accuracy 

level of the GPS and the tight boundaries, 45% of the control experiment observations have a 

relative location outside the georeferenced boundaries of the lay-down yard (Figure 5.17).  
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Figure 5.17: Sample data with some of the observations having a relative location outside the 

allowed boundaries (BIM) 

5.4.1 Performance Measurement of the Control Experiment 

Acquired data from the control experiment was used for measuring the performance of the fusion 

levels 0 and 1. This data subset was captured through several cycles of running the program and 

logging the observations. A total number of 38 RFID tags were logged in the sample data subset, 

with an average of 25 observations (location measurements) assigned to each tag. Benchmark 

measurements for all the RFID tags that were also observed and logged using the sub-foot 

accuracy GPS, represent the real locations or the ―true value.‖  A certain amount of discrepancy 

exists between the measured and true values. This error is the difference (distance) between the 

measurements (observed locations using the vendor’s prototype) and the real locations.   

Precision measurement results for the control experiment are presented in Table 5.3 and Figure 

5.20.  The standard deviation (measure of precision) is calculated for 18 observations (time 

stamps) denoted by ―t‖, where t refers to the number of observations per tag for any of the 38 

utilized tags. Precision measurement results demonstrate that data fusion helps to improve the 

precision of the location estimations. However, different fusion algorithms have different effects 

on precision. The results shown on Tables 5.4, 5.5, and 5.6 and Figure 5.21 are observed for 10 

iterations of the experiment with random selection of 18 observations out of the total number of 

original observations for each tag. These results illustrate that hybrid weighted averaging has the 

highest impact on improving the precision, while hybrid Dempster-Shafer, Centroid (applied by 

Grau), and Dempster-Shafer methods stand next in an ordered fashion.  Figure 5.18 shows the 

scatter plot for all the original observations and fusion estimations of the 38 tags. 
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Figure 5.18: Control experiment - scatter plot for: (left-top) benchmarks (right-top) original 

observations (left-middle) 18 Centroid  estimates per tag (right-middle)18 hybrid weighted 

averaging estimates per tag  (left-bottom) 18 Dempster-Shafer estimates per tag  (right-

bottom)18 hybrid Dempster-Shafer estimates per tag 

 

The hybrid approach of each algorithm presents more promises of improvement in precision than 

the original method. This statement applies to the hybrid weighted averaging vs. Centroid  as well 
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as the hybrid Dempster-Shafer vs. Dempster-Shafer. Table 5.6 demonstrates the following 

precision improvement for different fusion algorithms: 

 Precision improvement ratio of 4.8:1 for hybrid weighted averaging vs. original 

observations 

 Precision improvement ratio of 3.9:1 for hybrid Dempster-Shafer vs. original 

observations 

 Precision improvement ratio of 3.7:1 for Centroid  vs. original observations 

 Precision improvement ratio of 1.2:1 for Dempster-Shafer vs. original observations 

Accuracy measurement results for the control experiment are also presented Table 5.2 and Figure 

5.19.  As with the other metric, standard deviation (measure of precision) is also calculated for 18 

observations of ―t‖ and for all the 38 utilized tags. Table 5.6 demonstrates the following accuracy 

improvement for the different fusion algorithms. 

 Accuracy improvement ratio of 2.3:1 for hybrid weighted averaging vs. original 

observations 

 Accuracy improvement ratio of 1.9:1 for Centroid  vs. original observations 

 Accuracy improvement ratio of 1.8:1 for hybrid Dempster-Shafer vs. original 

observations 

 Accuracy improvement ratio of  1.1:1 for Dempster-Shafer vs. original observations 

 

Figure 5.19: Control experiment– Mean of absolute error for different localization methods 
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Table 5.2: Control experiment– Mean of absolute error for different localization methods 

(Algorithms’ bias) 

 

 

 

Figure 5.20: Control experiment- Standard deviation of absolute error for different  

localization methods 
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Adaptive DS
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Identec Estimations

Adaptive Weighted 
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Simple Averaging

Number of 

observations/tag 

 

Original 

Observations  

 

Dempster-

Shafer 

(DS) 

Hybrid 

DS 

 

Hybrid 

Weighted 

Averaging 

Centroid  

 

1 3.69 3.82 3.84 3.69 3.69 

2 4.38 3.97 3.72 3.21 3.47 

3 4.13 4.09 3.79 2.91 3.05 

4 3.73 3.98 3.66 2.56 2.78 

5 4.24 4.40 3.99 2.56 2.80 

6 4.85 4.39 3.86 2.69 2.81 

7 4.64 4.46 3.94 2.62 2.85 

8 4.86 4.49 3.93 2.59 2.97 

9 4.35 4.44 3.90 2.59 3.02 

10 5.06 4.37 3.84 2.59 3.13 

11 
4.47 

4.23 3.75 2.45 3.04 

12 
4.32 

4.24 3.74 2.43 3.01 

13 
4.24 

4.23 3.72 2.40 2.96 

14 
4.10 

4.15 3.64 2.39 2.92 

15 
4.27 

4.28 3.75 2.37 2.89 

16 
4.21 

4.28 3.75 2.37 2.88 

17 
4.64 

4.30 3.74 2.35 2.86 

18 
5.72 

4.41 3.79 2.38 2.84 

Original Observations 

 

Hybrid DS 

 

Dempster-Shafer 

 

Original Observations 

 

Hybrid Weighted Averaging 

 

Centroid 
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Table 5.3: Control experiment- Standard deviation of absolute error for different localization 

methods 

Number of 

observations/tag 

 

Original 

Observations  

Dempster-

Shafer 

(DS) 

Hybrid DS 

 

Hybrid 

Weighted 

Averaging 

Centroid  

 

1 2.40 2.47 2.47 2.40 2.40 

2 1.91 2.77 2.14 1.38 1.32 

3 1.94 2.71 2.09 1.15 1.07 

4 2.51 2.80 2.19 1.06 0.96 

5 2.49 2.56 1.90 0.92 0.96 

6 4.28 2.60 1.87 1.29 1.26 

7 4.36 2.49 1.74 1.30 1.30 

8 5.01 2.47 1.84 1.34 1.66 

9 2.09 2.43 1.84 1.25 1.57 

10 5.01 2.46 1.86 1.32 1.88 

11 1.92 2.47 1.87 1.22 1.53 

12 1.80 2.46 1.88 1.20 1.46 

13 1.60 2.44 1.85 1.18 1.40 

14 1.48 2.46 1.88 1.17 1.36 

15 2.50 2.46 1.81 1.11 1.33 

16 2.52 2.46 1.81 1.08 1.32 

17 2.68 2.46 1.82 1.06 1.35 

18 5.06 2.41 1.83 1.05 1.41 

 

Table 5.4: Control experiment– Means of absolute errors for the last observation; obtained  for 10 

different random input data set 

Hybrid Dempster-

Shafer 

Dempster-

Shafer 

Original 

Observations 

Hybrid Weighted 

Averaging Centroid  

3.79 4.41 5.72 2.38 2.84 

3.79 4.46 5.72 2.32 2.76 

4.00 5.96 6.84 3.61 3.98 

4.00 8.93 6.25 3.40 3.92 

4.25 5.90 9.01 3.38 4.11 

4.25 6.97 7.15 3.00 3.76 

4.33 6.93 8.46 3.50 4.11 

4.06 8.78 8.50 3.35 3.84 

4.20 7.11 8.08 3.72 4.17 

4.55 5.30 7.24 3.46 4.02 

          

4.12 6.48 7.30 3.21 3.75 
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Table 5.5: Control experiment– Standard deviation of absolute errors for the last observation; 

obtained for 10 different random input data sets  

 

Table 5.6: Control experiment– Absolute error distribution parameters for the last observation 

of each tag; obtained for 10 different random input data sets 

Distribution 

Parameters  

 

Hybrid DS 

 

 

Dempster-

Shafer (DS) 

 

Original 

Observations 

Hybrid 

Weighted 

Averaging 

Centroid  

 

Standard Deviation 4.12 6.48 7.30 3.21 3.75 

Mean 1.92 6.14 7.41 1.55 2.02 

 

 

Figure 5.21: Control experiment – A comparison of the absolute error distribution parameters 

for the final observation of different fusion algorithms 
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1.81 7.11 9.04 1.46 2.20 
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5.4.2 Performance Measurement of the Portlands Experiment 

This case study involved the subset that was captured at the Portlands site warehouse area over 

seven days: July 2, 3, 4, 8, 9, 10, and 11 2007. Implementation and experiments at this site 

evolved over time and were necessarily opportunistic because construction was a priority over 

technology development. The data was logged during more than three daily cycles of readings. 

Each reading cycle resulted in one estimated location (observation) for each tag. A total of 109 

RFID tags were logged in the sample data subset, for which more than 25 estimations of location 

may be assigned to some while others might have just 12 estimations.  Benchmark measurements 

for all the RFID tags were also observed and logged, using the sub-foot accuracy GPS, 

representing the real locations or the ―ground truth.‖  

As with all empirical measurements that are different estimations at different times, a certain 

amount of discrepancy exists between the measured and true values. This particular measurement 

could be affected by many factors: GPS satellite visibility, multipath error, dead space and 

environmentally related interferences with respect to RFID power, logging agent trajectory, etc.  

Table 5.7: Portlands trial – Mean of absolute error for different localization methods, original 

acquired data with no simulation 

Number of 

observations/tag 

 

Hybrid DS 

 

 

Dempster-

Shafer (DS) 

 

Original 

Observations 

 

Hybrid 

Weighted 

Averaging 

Centroid  

 

1 
21.40 10.27 6.02 6.02 6.02 

2 
6.37 9.83 6.52 5.79 5.99 

3 
6.41 9.73 11.78 7.96 7.50 

4 
6.33 9.84 7.64 7.52 7.30 

5 
6.45 9.85 9.58 7.75 7.52 

6 
6.33 9.86 18.01 8.71 8.53 

7 
6.79 9.73 7.07 7.96 7.83 

8 
6.73 9.73 6.50 7.55 7.51 

9 
7.01 9.70 8.84 7.37 7.38 

10 
6.79 9.66 10.18 7.18 7.25 

11 
6.33 9.24 6.08 6.57 6.63 

12 
6.18 9.19 6.77 6.41 6.46 

 

Figures 5-22 and 5-23 as well as Tables 5.7 and 5.8 present the performance measurement in 

terms of accuracy and precision for the selected data subset of the Portlands data for different 

fusion algorithms.  The results show that hybrid Dempster-shafer has the best performance among 
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all the algorithms. At this stage, original Dempster-shafer doesn`t show a promising performance, 

however, it presents a high robustness to measurement noise. The variance (measure of precision) 

and mean (measure of accuracy) for each fusion approach are calculated for 12 observations of 

―t‖, where t refers to the number of observations per tag for any of the 101 utilized tags.  

Table 5.8: Portlands trial – Standard deviation of absolute error for different localization methods, 

original acquired data with no simulation 

Number of 

observations/tag 

 

Hybrid DS 

 

 

Dempster-

Shafer (DS) 

 

Original 

Observations  

Hybrid 

Weighted 

Averaging 

Centroid  

 

1 
11.04 15.29 8.81 8.81 8.81 

2 
8.69 14.70 9.53 8.76 8.90 

3 
8.64 14.77 23.42 12.25 10.91 

4 
8.69 14.64 11.16 10.31 9.82 

5 
8.61 14.70 13.02 10.63 10.13 

6 
8.70 14.70 15.14 9.52 9.21 

7 
7.84 14.59 10.42 9.13 8.92 

8 
7.89 14.61 11.17 8.97 8.81 

9 
8.32 14.62 12.94 8.86 8.73 

10 
8.32 14.74 14.54 8.74 8.66 

11 
7.13 14.10 9.27 7.72 7.59 

7.09 14.20 10.00 7.65 7.53 

 

Figure 5.22: Portlands trial – Mean of absolute error for different localization methods, 

original acquired data with no simulation 
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Figure 5.23: Portlands trial – Standard deviation of absolute error for different localization 

methods, original acquired data with no simulation 

 

Comparing the performance measurement results of the control and Portlands experiments shows 

that in general absolute error rate is higher in a real construction site (Figure 5.24 and Figure 

5.25). This result reinforces that the noise ratio is higher on a real harsh, construction site due to 

different phenomena such as the multi–path effect.   

 

Figure 5.24:  Comparing the field experiments for mean of absolute error of different 

algorithms  
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Figure 5.25:  Comparing the experiments in terms of standard deviation of absolute error of 

different algorithms  

These results indicate that data fusion helps to improve the accuracy and precision of location 

estimations in real and controlled site conditions experiments. However, different fusion 

algorithms have different effects on accuracy and precision.  The results of both experiments 

show that the hybrid approach of each algorithm improves the location estimation accuracy more 

than the original methods do. However, the control experiment has a significantly higher 

improvement ratio when applying the hybrid algorithms. This distinction is caused due to the 

availability of the contextual information and with a pre-planned high and low noise rate for the 

control experiment. 

5.4.2.1 Simulated noise for the Portlands Data 

To test the robustness of the algorithms to measurement noise, simulated random noise with 

different distribution parameters was introduced to the original Portlands data and the results 

were compared.  As a means for introducing noise, high PDOP values were simulated, and the 

correspondent coordinates were corrupted accordingly. This new data set adopted the Monte 

Carlo simulation method and added the PDOP values by an error with normal random variables. 

In real world situation, PDOP is high in about %10 of times. So, this discrete random variable 

was simulated with use of the formula VLOOKUP(rand,lookup,2) in Excel and variables of (0, 

0.9) for the lookup table.  
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NORMINV(rand(), mu , sigma) in Excel generates a simulated value of a normal random variable 

having a mean mu and standard deviation sigma. Different values of (4, 3) and (20, 10) for mu 

and sigma were tested and the results for each pair of (mu, sigma) are presented separately 

(Figures 5.26 to 5.31). However, Figures 5.22 and 5.23 show the performance results for the 

original data set that has no simulation data. In this original set, the rate of the noise is very low as 

it was collected when PDOP was within an acceptable range. 

Among all the fusion algorithms, hybrid Dempster-Shafer presents the best performance in 

increasing both accuracy and precision for all the tested scenarios. The error distribution 

parameters of Dempster-Shafer theory in the following figures show no abrupt changes which 

means high robustness of this algorithm to the observational error or measurement noise. Also, 

comparing the charts on the Figures 5.22 to 2.31 illustrates that the higher the signal-to-noise 

ratio is, the better Dempster-Shafer performs in improving the precision and accuracy. This 

significant result states that Dempster-Shafer performs better than hybrid weighted averaging and 

Centroid  when the signal-to-noise ratio is high and therefore can be a very appropriate approach 

for the noisy construction environment. 

 

Table 5.9: Portlands trial – Mean of absolute error for different localization methods, simulated 

PDOP and corrupted coordinates with normal error of mu=4 and sigma=3 

Number of 

observations/tag 

 

Hybrid DS 

 

 

Dempster-

Shafer (DS) 

 

Original 

Observations  

Hybrid 

Weighted 

Averaging 

Centroid  

 

1 
21.88 10.89 6.56 6.56 6.56 

2 
7.52 10.57 7.01 6.36 6.43 

3 
7.51 10.60 12.31 8.24 7.90 

4 
7.18 10.86 8.24 7.79 7.68 

5 
7.50 10.82 10.87 8.11 8.00 

6 
7.28 10.79 18.65 9.01 8.93 

7 
7.55 10.72 7.42 8.22 8.20 

8 
7.31 10.71 8.02 7.95 8.03 

9 
7.35 10.73 9.95 7.84 7.91 

10 
7.51 10.68 10.78 7.72 7.88 

11 
7.24 10.19 6.58 7.08 7.22 

12 
6.98 10.23 8.08 6.92 7.06 
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Figure 5.26: Portlands trial – Mean of absolute error for different localization methods, 

simulated PDOP and corrupted coordinates with normal error of mu=4 and sigma=3 

 

 

Table 5.10: Portlands trial – Standard deviation of absolute error for different localization 

methods, simulated PDOP and corrupted coordinates with normal error of mu=4 and sigma=3 

Number of 

observations/tag 

 

Hybrid DS 

 

 

Dempster-

Shafer (DS) 

 

Original 

Observations  

Hybrid 

Weighted 

Averaging 

Centroid  

 

1 
10.91 15.34 8.85 8.85 8.85 

2 
10.33 15.01 9.06 8.60 8.56 

3 
8.92 15.09 23.32 11.95 10.87 

4 
8.61 14.89 10.87 10.08 9.67 

5 
8.44 14.88 13.00 10.36 9.96 

6 
8.54 14.88 15.22 9.47 9.21 

7 
8.09 14.65 10.21 8.98 8.82 

8 
7.79 14.61 12.64 8.82 8.73 

9 
7.82 14.61 13.64 8.76 8.73 

10 
7.93 14.62 14.39 8.57 8.56 

11 
6.57 13.96 9.48 7.38 7.33 

7.15 6.59 14.02 10.04 7.31 
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Figure 5.27: Portlands trial – Standard deviation of absolute error for different localization 

methods, simulated PDOP and corrupted coordinates with normal error of mu=4 and sigma=3 

 

Table 5.11: Portlands trial – Mean of absolute error for different localization methods, simulated 

PDOP and corrupted coordinates with normal error of mu=10 and sigma=5 

Number of 

observations/tag 

 

Hybrid DS 

 

 

Dempster-

Shafer (DS) 

 

Original 

Observations  

Hybrid 

Weighted 

Averaging 

Centroid  

 

1 
21.67 11.65 7.43 7.60 7.60 

2 
8.93 10.56 9.04 7.17 7.40 

3 
8.57 10.24 14.58 9.59 8.98 

4 
8.99 10.22 10.39 9.42 9.08 

5 
8.70 10.27 12.60 9.30 9.00 

6 
8.52 10.27 20.34 10.01 9.86 

7 
8.35 10.13 10.14 9.10 9.04 

8 
7.79 10.16 8.74 8.55 8.57 

9 
7.81 10.18 9.94 8.33 8.38 

10 
7.30 10.15 11.44 8.24 8.33 

11 
6.82 9.70 8.64 7.68 7.77 

12 
6.68 9.63 8.40 7.44 7.50 
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Figure 5.28: Portlands trial – Mean of absolute error for different localization methods, 

simulated PDOP and corrupted coordinates with normal error of mu=10 and sigma=5 

 

Table 5.12: Portlands trial – Standard deviation of absolute error for different localization 

methods, simulated PDOP and corrupted coordinates with normal error of mu=10 and sigma=5 

Number of 

observations/tag 

 

Hybrid DS 

 

 

Dempster-

Shafer (DS) 

 

Original 

Observations  

Hybrid 

Weighted 

Averaging 

Centroid  

 

1 
11.53 15.94 10.02 10.19 10.19 

2 
11.28 15.08 12.55 9.49 9.56 

3 
9.54 14.91 24.37 13.67 11.95 

4 
9.54 14.85 13.17 10.98 10.36 

5 
9.08 14.90 15.59 11.02 10.49 

6 
9.11 14.83 16.84 10.09 9.69 

7 
8.51 14.73 13.34 9.44 9.22 

8 
8.41 14.76 12.64 9.10 8.98 

9 
8.71 14.74 13.01 8.90 8.80 

10 
8.25 14.85 15.79 8.52 8.43 

11 
7.24 14.24 11.32 7.31 7.17 

7.15 14.33 12.44 7.07 6.94 
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Figure 5.29: Portlands trial – Standard deviation of absolute error for different localization 

methods, simulated PDOP and corrupted coordinates with normal error of mu=10 and 

sigma=5 

Table 5.13: Portlands trial – Mean of absolute error for different localization methods, simulated 

PDOP and corrupted coordinates with normal error of mu=20 and sigma=10 

Number of 

observations/tag 

 

Hybrid DS 

 

 

Dempster-

Shafer (DS) 

 

Original 

Observations 

 

Hybrid 

Weighted 

Averaging 

Centroid  

 

1 
21.29 12.67 12.36 12.13 12.13 

2 
8.14 10.37 10.85 12.11 11.74 

3 
6.73 9.79 15.08 13.74 13.35 

4 
6.69 9.91 11.74 12.96 12.79 

5 
6.45 9.88 11.52 12.20 11.92 

6 
6.37 9.89 23.85 12.26 11.97 

7 
6.97 9.76 10.88 11.42 11.16 

8 
6.97 9.77 12.66 11.18 11.01 

9 
6.95 9.70 13.77 11.10 11.00 

10 
6.90 9.17 15.62 11.20 11.18 

11 
6.41 8.76 11.59 10.47 10.49 

12 
6.35 8.69 11.25 10.22 10.26 
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Figure 5.30: Portlands trial – Mean of absolute error for different localization methods, 

simulated PDOP and corrupted coordinates with normal error of mu=20 and sigma=10 

 

 

Table 5.14: Portlands trial – Standard deviation of absolute error for different localization 

methods, simulated PDOP and corrupted coordinates with normal error of mu=20 and sigma=10 

Number of 

observations/tag 

 

Hybrid DS 

 

 

Dempster-

Shafer (DS) 

 

Original 

Observations  

Hybrid 

Weighted 

Averaging 

Centroid  

 

1 
11.16 15.59 19.54 18.48 18.48 

2 
9.94 15.03 17.54 13.80 13.26 

3 
9.17 14.80 25.25 14.53 12.97 

4 
9.37 14.68 16.94 11.87 11.41 

5 
8.62 14.76 15.27 11.44 11.07 

6 
8.69 14.75 20.79 10.24 10.08 

7 
8.16 14.64 16.09 9.39 9.33 

8 
8.22 14.67 19.44 9.08 9.01 

9 
8.24 14.70 18.75 8.92 8.82 

10 
8.27 14.26 23.01 8.56 8.46 

11 
7.16 13.67 16.92 7.48 7.34 

7.15 7.09 13.78 17.75 7.07 
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Figure 5.31: Portlands trial – Standard deviation of absolute error for different localization 

methods, simulated PDOP and corrupted coordinates with normal error of mu=20 and 

sigma=10 

Comparing the performance measurement results of the control and Portlands experiments shows 

that in general absolute error rate is higher in a real construction site (Figure 6.18 and Figure 

6.19). This result reinforces that the noise ratio is higher on a real harsh, construction site due to 

different phenomena such as the multi–path effect.   

These results indicate that data fusion helps to improve the accuracy and precision of location 

estimations in real and controlled site conditions experiments. However, different fusion 

algorithms have different effects on accuracy and precision.  The results of both experiments 

show that the hybrid approach of each algorithm improves the location estimation accuracy more 

than the original methods do. However, the control experiment has a significantly higher 

improvement ratio when applying the hybrid algorithms. This distinction is caused due to the 

availability of the contextual information and with a pre-planned high and low noise rate for the 

control experiment.  

5.5 Summary 

This chapter has described the design, implementation, and validation details of data fusion levels 

0 and 1. Through these data fusion levels, a hybrid fusion method has been developed based on 

evidential belief reasoning and soft computing techniques. Fusion level 0 focuses on the 

reliability of the observations, and fusion level 1 uses this reliability factor to improve the 
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estimation of locations. A fuzzy inference system is used as a soft computing technique in fusion 

level 0, and in fusion level 1, a variety of location estimation algorithms, such as evidential belief 

reasoning, are used to improve the original observations.  

As a part of the validation procedure, the data subsets used for validating the method have been 

described along with the experimental setups. The experimental results show that the hybrid 

fusion approach outperforms the traditional methods of data fusion for location estimation. This 

study has successfully addressed the challenges of fusing data from multiple sensor sources, 

ranging from simple to complex, in a very noisy and dynamic environment. The results presented 

in this chapter indicate potential for the proposed method to provide improved location 

estimation. 
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Chapter 6 

Data Fusion-Level 2: Relocation Detection 

Fusion level 2 provides situation assessment based on inferred relationships among entities. 

Depending on the physical and contextual information provided by the construction material 

locating approach employed, different solutions and techniques can function in this level of 

fusion. The relocation of construction materials on large sites represents critical state changes that 

can be assessed through this level of fusion. The ability to provide automatic detection of 

relocations for tens of thousands of items can ultimately offer significant improvement in project 

performance. The fusion level 0 can provide reliability degree of the observations to be 

discounted in the fusion level 2 to provide more reliable detection rate. However, exploring this 

area is remained for future research.  

6.1 Dempster-Shafer theory for Detecting Relocation  

As stated in section 3.2, due to the physical limitations of the utilized technology, the acquired 

data set has uncertainty and imprecision. Evidential belief reasoning is one of the most popular 

methods to address uncertainty and some aspect of imprecision. Therefore, a belief-function-

based data fusion algorithm was developed for detecting the relocation of materials. However, the 

results are also compared with simple distance thresholding method in 6.3.2. A belief-function-

based data fusion algorithm should gracefully handle noise and read with more confidence than a 

simple threshold method, but to validate this hypothesis, an experiment was conducted within the 

scope of this thesis. The goal was to demonstrate implementation of automated relocation 

detection in the framework of the fusion model. 

Relocation is defined as the change between discrete sequential locations of critical materials, 

such as special valves or fabricated items, on a large construction project. The main focus of this 

study is the detection of these relocations in a noisy information environment where a low-cost 

Radio Frequency Identification (RFID) tag is attached to each piece of material, and the material 

is moved, sometimes by only a few meters. 

When a tag is dislocated, a new reading may be produced whose associated basic belief 

assignments contradict past measurements. A conflict value is used here to detect this 

contradiction and thus the movements of tags in the field. This type of conflict may exist for a 
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variety of reasons: the sources may not be reliable, or the basic belief assignments may be 

modeled incorrectly.    

The conflict management can be handled in four different ways: 

 Discounting of previous basic belief assignments at each time step to favor the latest 

 Reject the old basic belief assignments when the conflict is over the threshold 

 Decrease conflict by enlarging the focal sets 

 Develop a new method in the frame of the Dezert-Smarandache Theory (DSmT). 

 Use other combination rules such as Dubois-Prade’s rule (DP), Dezert-Smarandache 

Theory (DSmT), or some others. 

In this study, conflict is dealt with by rejecting old basic belief assignments when the conflict is 

beyond a predefined threshold. This approach was chosen because of the simplicity of 

computation and the scalability of the method. 

6.2 Field Experiment Setup 

6.2.1 Portlands Trial Data Subset 

A subset of the acquired data from the Portlands experiment was used to evaluate the 

performance of the fusion level 2. This subset was captured at the Portlands site warehouse area 

over four sequential days and is based on three daily cycles of reading and estimating locations. 

Each reading cycle might result in a typical number of ten to fifteen reads per tag.  Figure 6.1 

represents the data specifications with respect to the distance between the estimated location – of 

the prototype based on the reads – and the real location of a tag.  
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Figure 6.1: Location error distribution of all the observations in the data subset 

 

A total number of 57 relocations were created in the sample data subset, among which more than 

one relocation may be assigned to some of the tags. Benchmark measurements in the sample data 

subset – with sub-foot accuracy GPS – shows only a few relocations for the period of observation 

in the sample data subset. Moving large pieces of material for the state of our experiment was 

outside the scope of the construction project budget, so another approach was used to develop an 

experimental data set from the raw field data. To provide a greater number of dislocated samples 

in a controlled manner, 57 samples were created by randomly transposing a sequence of estimates 

and their associated benchmarks for two stationary tags. The figure 6.2 illustrates this method of 

creating relocation samples. 

 

 

 

Figure 6.2: Creating dislocated samples by transposing a subset of estimates sequence and the 

corresponding benchmarks for two tags 

6.2.2 Control Experiment Data Subset 

In the Portlands experimental setting, data were collected on a real construction site but the 

relocations were simulated. In the control experiment setting, data is from the control experiment 

with less materials but where the relocations are real. The way of implementing the fusion 

process is the same. As discussed in 3.5, the experiment was conducted in a parking lot on the 

University of Waterloo campus with 38 RFID tags. The tags were deployed into separate blocks 

to provide spatial information for the site plan. This spatial information can be used to easily 

identify blocks that contained tags and ones that did not.  

6.3 Experimental Results  

6.3.1 Performance Measurement of the Portlands Experiment 

The algorithm described in data fusion level 2, was run through the whole sample data subset to 

allow the observation of the relocation detection rate with respect to the conflict threshold and the 

Tag 1: sequence of observations 

Tag 2: sequence of observations 
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assumed read range in the frame of discernment. The results show a real potential for using the 

Dempster-Shager theory to detect the dislocated materials. 

Table 6.1 shows relocation detection rate with respect to conflict threshold and Figure 6.3 

presents the Receiver Operating Characteristic curve (ROC) for relocation detection rates with 

respect to the conflict threshold. Results indicate that a low conflict threshold causes high 

sensitivity and may result in false relocation-detections. Conversely, with a high conflict 

threshold, some relocations may not be detected. 

Table 6.1: Relocation detection rate with respect to conflict threshold 

Conflict 

threshold 

True-

positive    

(TP) 

False-

positive 

(FP) 

True-

negative 

(TN)   

False-

negative 

(FN) 

0 57 1160 0 0 

0.2 39 39 1121 18 

0.4 37 34 1126 20 

0.6 35 33 1127 22 

0.8 35 34 1126 20 

1 22 29 1131 35 

20 0 0 1160 57 

     

 

 

Figure 6.3: Receiver Operating Characteristic Curve (ROC) for different conflict thresholds 
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Table 6.2 presents relocation detection rate with respect to the hypothetical read range (for 

conflict threshold = 0.4). Figure 6.4 also shows the ROC diagram for the relocation detection 

rates for different hypothetical read ranges in the frame of discernment. The results are obtained 

for the conflict threshold of 0.4 and indicate that a hypothetical range similar to that experienced 

on the site works best. 

Table 6.2: Relocation detection rate with respect to the hypothetical read range (Conflict 

threshold = 0.4) 

Hypothetical 

read range 

(m) 

True-

positive    

(TP) 

False-

positive 

(FP) 

True-

negative 

(TN)   

False-

negative 

(FN) 

0 56 981 187 1 

2 54 347 813 3 

6 46 87 1091 14 

8 40 40 1120 17 

10 37 34 1126 20 

14 35 33 1127 22 

16 31 30 1130 26 

18 27 32 1127 30 
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Figure 6.4: Receiver Operating Characteristic Curve (ROC) for different hypothetical read 

ranges 

Figure 6.5 presents a histogram for the distance between benchmark locations of the true-positive 

detections comparable to the same distribution for the entire dislocated sample’s population. The 

true-positive detection rates shown in this figure are based on the conflict-threshold of 0.8 and the 

hypothetical read range of 16m. This should be considered in context of the accuracy 

measurements described earlier. A comparison of these two histograms shows that the probability 

of detection increases when relocations distances are higher. This is to be expected. 

 

Figure 6.5: Distribution of the distance between benchmark locations of all dislocated sample 

as opposed to true-positive detections, for conflict-threshold = 0.8 and hypothetical read 

range=16m 

 

6.3.2 Performance Measurement of the Control Experiment 

Using the control experiment data, ROC curves have been plotted for different values of the 

nested belief basic assignments. As discussed in 5.2.1, two nested squares represent the two 

different belief areas or the ―focal elements‖ (Figure 6.6).  
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Figure 6.6: Basic belief assignment modeling for the two nested subsets of the frame of 

discernment 

Three different ROC curves are plotted for three different values of the inside nested square with 

side length R (also called the hypothetical read range).  The results were plotted for different ratio 

between the sides of the two nested squares as bellow: 

 R = 4m, ratio 1 to 2 

 R = 6m, ratio 1 to 3 

 R = 8m, ratio 1 to 4 

The corresponding curves are drawn in figure 6.7. As it can be seen in this figure the choice of 

the side length of the focal elements is important as it can significantly impact the ROC curve, 

particularly in the interval [0.2; 0.3] of the false positive rate (i.e. false alarm rate). For instance, 

for a 0.3 false alarm rate, the true positive rate (i.e. true detection rate) is equal to 1 for R = 4m 

and a ratio 1 to 2 whereas it is only equal to 0.7 and 0.85 in the two other cases. ROC curves were 

also plotted for different values of R but for the same ratio of 2:1 for all Rs. The corresponding 

curves are presented in the Figure 6.8. The analysis of these curves shows the importance of the 

ratio between the two nested squares since this time R = 6m leads to the best results in the range 

[0.25; 0.3] of the false alarm rate. There is still a potential for more studies in this area to well 

understand the underlying phenomenon. 
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Figure 6.7: ROC curves for different values of the basic belief assignment and different ratio 

between the focal elements 

It is also clear that when R is too large, the results become undesirable. This is due to the fact that 

the effective (on site) read range is usually lower than 5m. The performances of the proposed 

method are also compared with the performance of a simple threshold on the distance: the 

thresholding was applied to the distance between the new observation and the average of the 

previous observations. If the new observation in beyond the threshold distance, it was considered 

as a relocation event and the old location information was discarded. The corresponding ROC 

curve is plotted along with other curves in the Figure 6.8. The main differences are observed 

within the interval [0.2; 0.4] of the false positive rate. For a 0.3 false alarm rate, the true positive 

rate is equal to one for R= 4m and a ratio 1 to 2 whereas it is only equal to 0.85 in the ―distance 

only‖ based method. The ROC curve of the Dempster Shafer based method exhibits better 

performances within the interval [0.2; 0.4] when, of course, the basic belief assignments 

efficiently model the reality. This point is important because the improvement is localized in the 

low false alarm rate section, where we usually want to maximize the true detection rate. However, 
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as it can be seen on both figures 6 and 8 the true detection rate still needs improvement within the 

interval [0; 0.2] and there is a potential for future studies to improve the method in this section. 

 

Figure 6.8: ROC curves for different values of the basic belief assignment and the same ratio 

between the focal elements (2 to 1). 

6.4 Summary 

The results obtained show quite good detection rates, and the ROC curves have been plotted. As 

expected, the false alarm rate rises with increases in the threshold used to detect the conflict and 

therefore the relocation. Conflict management is at the heart of this method, and the ROC curves 

show a rather high sensitivity to the value of the threshold. This point was therefore studied in 

greater depth, using a method chosen from the following four options: 

 Discount previous basic belief assignments at each time step in order to favor the latest. 

 Reject old basic belief assignments when the conflict is beyond a specified threshold. 

 Decrease conflict by enlarging the focal sets. 
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 Develop a new method in the frame of the Dezert-Smarandache Theory, or use other 

combination rules such as Dubois-Prade’s rule (DP). 

Finally, it should be noted that the results presented here can be easily reproduced in the frame of 

a large sensor network where the aim is to detect the movement of the sensors.   
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Chapter 7 

Conclusions and Future work 

7.1 Conclusions 

This research was inspired by studies that demonstrated that materials tracking and locating 

technologies are significant factors impacting construction productivity.  This lead to the need for 

developing fundamental methods to take advantage of the relative strengths of each material 

locating technology and for incorporating other sources of information, through BIM for 

example. To meet this need, a data fusion model was developed in conjunction with hybrid data 

fusion methods.   

The experimental results show that the hybrid fusion approach outperforms traditional data fusion 

methods for location estimation. This study has successfully addressed the challenges of fusing 

data from multiple sensor sources that range from simple to complex and that operate in a very 

noisy and dynamic environment. The results presented in this thesis indicate potential for the 

proposed method to improve the accuracy and precision of location estimations.  The results also 

indicate a good detection rate for the materials relocation. The Dempster-Shafer theory was 

applied to the materials relocation detection, another application which was dealt with in the 

fusion level 2.  The Dempster-Shafer theory was well-suited for this problem where both 

uncertainty and imprecision are inherent to the problem. 

7.2 Contributions 

This research has three major areas of contributions: (1) contribution to the construction industry 

(2) contribution to the body of knowledge of sensing in civil engineering, and (3) contribution to 

the body of knowledge in data fusion. A brief discussion on these three areas of contribution 

follows. 

1. This study promoted adoption of the used technology by the construction industry, 

through presenting substantial benefits in terms of labour time reduction, lost 

components minimization and increase of visibility within the construction supply 

chain. The field trials and successful technology that was prototyped resulted in several 

large corporations incorporating this technology for several mega projects (e.g. Dow, 

Bechtel and SNC Lavalin). This work also represented a strong academic-industry 

partnership and knowledge transfer to industry. 
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2. This study enriched the existing body of knowledge in the area of sensing in civil 

engineering by: (a) successful real-world implementation of the sensing technologies 

for materials location and relocation detection in construction, and (b) development of 

a cost-effective and reliable sensor location estimation method that is robust to 

measurement noise and to future advances in sensing technologies.  

3. This research contributed to the body of knowledge in data fusion by proposing and 

implementing an innovative hybrid fusion method that comprises soft computing 

techniques as well as evidential belief reasoning. The implemented hybrid method 

outperformed the previously used methods in the application area of this study. 

7.3 Limitations 

Generally, use of the developed hybrid fusion approach increases integrity of localization of 

wireless communication nodes, because it can robustly deal with uncertainty and imprecision of 

anisotropic and time-varying communication regions. It also gracefully manages the issue of 

relocated tags, presenting a scalable and robust approach to handling both static and dynamic 

sensor arrays, high noise ratio and future advances in technology.  Even though the integrated 

framework and the fusion approach presented in this thesis produced promising results, it still has 

some limitations. 

A key drawback of the hybrid method is that it increases complexity, although it is still 

computationally manageable.  In particular, there is an issue of exponential complexity of 

computations in Dempster-Shafer theory (in general worst case scenario). This issue has been 

known and studied in the literature and several complexity reduction approaches based on 

graphical techniques, parallel processing schemes, reducing the number of focal elements, and 

coarsening the frame of discernment to approximate the original belief potential have been 

studied. In general this limitation prohibits the real-time response for a large number of the 

materials. However, it is manageable through future works. 

7.4 Outlook and Future Work 

This thesis investigated the impact of data fusion on materials location and relocation detection 

on construction sites, with a particular focus on industrial construction projects. A number of 

recommendations for areas of future research and work pertaining to data fusion and sensing in 

construction applications are listed below:  
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 Several BIM data sources have the potential of being integrated into follow-up research 

studies. Some potential BIM components for integrating with the material location-

sensing solution are:  

1. Procurement details of the tagged items: In a broader view, items can be tagged 

up the supply chain and stay tagged even after installation. With an integrated 

BIM system, procurement details of a lost, misplaced, or damaged tagged 

component can be promptly retrieved at any stage of the supply chain, during 

construction or maintenance. Procurement details such as item specifications or 

manufacturer information can be used to replace or reorder the item or to correct 

problems that occur during the life cycle of the infrastructure. 

2. Schedule and as-builts: The temporal relationships of the construction materials 

can be obtained from the schedules, the as-builts, and the current location of the 

materials. Employing some of the BIM components, such as the project schedule 

and as-builts, in conjunction with the estimated location of the materials on the 

site can help with the estimation of the state of the project. 

 In this research effort, the JDL fusion model levels 0, 1 and 2 were implemented, and 

incorporating levels 3 and 4 of the proposed model remains for future work. Integration 

with the project management system can be the focus of level 3. Level 4 will improve the 

results of the fusion by continuously monitoring and assessing the sensors and the 

process itself. Additional contextual information or sensors may also get evaluated in this 

level. The need for calibrating the sensors or modifying the process may be assessed in 

this level. Human/Computer interaction can also be summarized in a data visualization 

and navigation module as well. 

 The current BIM data source provides information on geographic boundaries. This source 

of information can affect the reliability degree of the original observations and therefore 

help to increase accuracy.  In the current study, this information is derived based on the 

site drawings and the collected georeferenced boundary information. In a more 

sophisticated approach, a real BIM implementation can be integrated into level 0 of the 

fusion model. 

 Deepen and broaden the experimental results by conducting more control field trials to 

examine different scenarios.  
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 Facilitate the infrastructure maintenance and life cycle analysis by keeping the sensors 

attached to the materials throughout the whole life cycle of the infrastructure. 

 Conflict management is the heart of the relocation detection method. A more in depth 

study on different methods to deal with conflict is recommended for a continuation of 

work on the fusion level 2, including: 

1. Discount previous basic belief assignments at each time step in order to favor the 

latest 

2. Decrease conflict by enlarging the focal sets 

3. Develop a new method in the frame of the Dezert-Smarandache Theory, or use other 

combination rules such as Dubois-Prade’s rule (DP) 

4. Compare performance with simple distance thresholding 

 Investigating the use of this fusion model for different location sensing and tracking 

technologies such as Ultra Wideband, Infrared and others. 

 Exploring the use of reference RFID tags on the site to adjust the estimates. Reference 

points are defined as transmitters with known locations that can be used to estimate or 

correct the location of other sensors in a wireless sensor network application.  In the 

framework of our study, a cost-effective, arbitrary set of simple transponders in some 

fixed and known positions may help to add accuracy to the estimated locations. These 

new set of reference points can be RFID or Ultra-WideBand transponders which, 

depending on the site layout, have been fixed in a robust and correct orientation within 

the job site.  This approach can incorporate the dynamics of the environments that affect 

the detected locations because the reference tags are also affected from the same 

environmental effects as the target tags. In our defined framework, the location of the 

reference tags can be re-estimated in each trial along with the location estimation of the 

target tags. Then the basic idea would be using the vector of difference between pre-

defined and re-estimated locations of the reference points and use this vector to offset the 

newly estimated target tag locations.  Intuitively this should contribute in increasing the 

accuracy of the estimation.  
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Appendix A 

Principles of Radio Frequency Identification Technology 

Radio frequency identification (RFID) is a generic term for technologies that use radio waves to 

identify people or objects automatically. There are several methods of identification, but the most 

common is to store a serial number that identifies a person or object, and perhaps other 

information, on a microchip attached to an antenna. The chip and the antenna together are called 

an RFID transponder or an RFID tag. The antenna enables the chip to transmit the identification 

information to a reader. The reader converts the radio waves reflected back from the RFID tag 

into digital information that can then be passed on to computers programmed to make use of it. 

RFID is a proven technology that has been in use since at least the 1970s. It can be considered the 

next generation of barcode, which uses radio waves rather than light waves to read a tag, which 

means that for construction purposes, it therefore has the great advantage not requiring line of 

sight for positive identification. Until recently, it has been too expensive and too limited to be 

practical for many commercial applications. However, if tags can be made cheaply enough, they 

can solve many of the problems associated with bar codes, such as the requirement for line of 

sight. Radio waves also travel through most non-metallic materials, so they can be embedded in 

packaging or encased in protective plastic for weatherproofing and greater durability. Tags also 

have microchips that can store a unique serial number for every manufactured product in the 

world. 

RFID is used for a multitude of purposes, ranging from tracking animals to triggering equipment 

located down oil wells: applications are limited only by people's imagination. The most common 

applications are payment systems (e.g., Mobil Speed pass and toll collection systems), access 

control, and asset tracking. RFID tags are being used to track goods in warehouses, luggage at 

airports, and vehicles in Intelligent Transportation Systems. In most implementations, tags are 

read as they pass through portals at key locations. Increasingly, companies want to use RFID to 

track goods in their supply chain, to monitor work in process, and for other applications. An 

RFID based system consists of three main components (Figure A.1): (1) tags or transponders, (2) 

readers or interrogator and handheld devices, and (3) a central computer system as a basis for 

control and monitoring. 
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Figure A.1: Schematic RFID-based system framework 

In some resources, such as the Identec i-PORT3 User’s Guide (2006), the antenna is considered 

to be a fourth component of an RFID-based system. An antenna is a device that radiates and picks 

up electromagnetic power from free space. The overall quality of a wireless transmission system 

is dependent on that of its antennas. One categorization system classifies antennas as either 

directional or omni-directional. Directional antennas radiate more in one specific direction as 

opposed to omni-directional antennas, which spread and pick up electromagnetic power in all 

directions. The latter are preferable for the purposes of the application proposed in this research.  
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Appendix B 

Principles of Global Positioning System 

The Global Positioning System (GPS) is currently the only fully functional Global Navigation 

Satellite System (GNSS). Utilizing a constellation of at least 24 medium Earth-orbiting satellites 

that transmit precise radio signals, the system enables a GPS receiver to determine its location, 

speed, and direction. This system was originally developed by the U.S Department of Defense to 

meet military requirements. Today, GPS is widely used in the construction industry to track 

construction equipment. 

The system uses at least 24 satellites in 6 orbital planes so that every object is always observed by 

4 satellites at a time. To date, 30 satellites are orbiting in space at an altitude of 20,200 km, with 

55 degrees of inclination. 

7.4.1.1 GPS Components 

GPS consists of three main components: the space segment, the control segment, and the user 

segment. 

 GPS Space Segment: The space segment (SS) is composed of the orbiting GPS satellites, 

or in GPS parlance, space vehicles (SV). The GPS design calls for 24 satellites to be 

distributed equally among six circular orbital planes. The orbital planes are centered on 

the Earth, not rotating with respect to distant stars. The six planes have an inclination of 

approximately 55° and are separated by 60° right ascension of the ascending node. Each 

satellite, orbiting at an altitude of approximately 20,200 km with an orbital radius of 

26,600 km, makes two complete orbits each sidereal day, so that it passes over the same 

location on Earth once each day. The orbits are arranged so that at least six satellites are 

always within line of sight from almost every location on the Earth's surface. As of April 

2007, 30 satellites are actively broadcasting in the GPS constellation (six are reserved). 

The additional satellites improve the precision of GPS receiver calculations by providing 

redundant measurements. With the increased number of satellites, the constellation has 

changed to a non-uniform arrangement. In the case of multiple satellite failure, the 

reliability and availability of the system has been shown to be better with this 

arrangement than with a uniform system.  

 GPS Control Segment: The control segment consists of 5 ground stations permanently 

installed in Hawaii, Ascension Island, Diego Garcia, Kwajalein, and Colorado Springs. 
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The tracking information is sent to the Air Force Space Command’s master control 

station at Schriever Air Force Base in Colorado Springs, which is operated by the 2d 

Space Operation Squadron (2 SOPS) of the U. S. Air Force (USAF). 2 SOPS contacts 

each GPS satellite regularly with a navigational update, using the ground antennas at 

Ascension Island, Diego Garcia, Kwajalein, and Colorado Springs. These updates 

synchronize the atomic clocks on board the satellites to within one microsecond and 

adjust the ephemeris of each satellite's internal orbital model. The updates are created by 

a Kalman filter, which uses input from the ground monitoring stations, space weather 

information, and a variety of other input.  

 GPS User Segment: The GPS receiver is the user segment of the GPS system. GPS 

receivers are usually composed of an antenna tuned to the frequencies transmitted by the 

satellites, receiver-processors, and a highly stable clock. The receiver may include a 

display for providing location and speed information to the user. The user segment is 

often described by its number of channels, which signifies how many satellites it can 

monitor simultaneously. Originally limited to four or five, this number has progressively 

increased so that, as of 2006, receivers typically have between 12 and 20 channels. 

7.4.1.2 How GPS Works 

A GPS receiver calculates its position by measuring the distance between itself and three or more 

GPS satellites, working on the principle of trilateration. Measuring the time delay between the 

transmission and reception of each GPS radio signal provides the distance to each satellite, since 

the signal travels at a known speed. The signals also carry information about the satellites' 

locations. By determining the position of, and distance to, at least three satellites, the receiver can 

compute its position using trilateration. Receivers typically do not have perfectly accurate clocks 

and therefore track one or more additional satellites in order to correct the receiver's clock error. 

 Differential GPS is useful for providing more precise locations; it involves the cooperation of 

two receivers: one stationary whose position is known precisely, and a second roving one taking 

position measurements (Figure B.1). 
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Figure B.1: Differential GPS positioning 

 Factors that can degrade the GPS signal and thus affect accuracy include the following: 

 Signal multipath: This effect increases the travel time of the signal due to obstacles and 

occurs when the GPS signal is reflected off of objects such as tall buildings or large rock 

surfaces before it reaches the receiver.   

 Ionosphere and troposphere delays: The satellite signal slows down as it passes 

through the atmosphere. The GPS system uses a built-in model that calculates an average 

amount of delay in order to partially correct for this type of error. 

 Receiver clock errors: A receiver's built-in clock is not as accurate as the atomic clocks 

onboard the GPS satellites, and it may therefore have very slight timing errors.  

 Orbital errors: These errors are also known as ephemeris errors and are inaccuracies in 

the satellite's reported location.  

 Relativity: Due to the constant movement of the satellites, the clocks installed in them 

are affected by speed and the gravitational potential. The atomic clocks on board the GPS 

satellites are precisely tuned, making the system a practical application of the theory of 

relativity. 

 Number of satellites visible: The accuracy and efficiency of the GPS system depends on 

the number of satellites that are in range of, i.e., visible to, the receiver. Position errors 

can be created by buildings, electronic interference, or dense foliage.   
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 Satellite geometry/shading: Satellite geometry refers to the relative position of the 

satellites at any given time. This error is minimal if the satellites are located at wide 

angles relative to one another. Poor geometry results when the satellites are located in a 

line or at low angles. The errors due to geometric positions can be minimized by 

increasing the number of satellites visible from a receiver.  

 Intentional degradation of the satellite signal: Selective availability (SA) is an 

intentional degradation of the signal previously imposed by the U.S. Department of 

Defense. It was intended to prevent military adversaries from using the highly accurate 

GPS signals. The government turned off SA in May 2000, which significantly improved 

the accuracy of civilian GPS receivers. 
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Appendix C 
Belief Function Theory: An Overview and the Implementation 

Model1 

 
                                                      

1
 Adopted from a shared collaboration with Ecole Centrale de Lille (Duflos 2010) 
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Appendix D 

Benefit Cost Model for RFID/GPS Based Automated Materials 

Tracking System 

Nasir conducted a cost-benefit analysis for RFID/GPS Based automated materials tracking 

system. This appendix is adopted from Nasir’s Masters’ thesis (Nasir 2009): 

―The fixed and variable cost of the system should be compared with the benefits that are expected 

to be provided by the system. These benefits can be direct benefits such as the number of man 

hours reduced for locating materials and reduction in lost labor hours due to otherwise delayed 

materials locating. The indirect benefits such as increase in productivity should also be 

considered. Estimates of indirect benefits and costs avoided may be based on simple risk analyses 

as described in the following section. Elements of the economic analysis include: 

 Estimating the savings per standard locate reduced duration. 

 Estimating the savings per temporary loss avoided. 

 Estimating the savings per total loss and re-procurement avoided. 

 Estimating benefits of expected improved productivity 

 Total estimated cost for the system. 

 Benefit/Cost ratio. 

Besides the above economic analysis, certain strategic analyses should also be considered such as 

repeatability or reuse of the design elements (once the initial investment is made, how much 

could be used again on future projects). For example the bar codes can be used for one time only, 

whereas the RFID tags are reusable. The life of RFID tags, the purchase of software or per year 

usage charges etc. should also be considered while evaluating the options. 

In the remainder of this section, an example of an analysis based on the preceding principles is 

presented with a typical industrial project in mind. 

Time value of money is not considered because of the project level planning horizon for the 

process described in this chapter. A benefit/cost analysis for a typical industrial project is 

presented in the following Table. This table provides the costs of active RFID tags, antennas, 

readers, GPS units, handheld PCs, and software required for the system. The costs are based on 

current average prices. It is assumed that the duration of the project will be 500 days and the 
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project will be an industrial one which involves thousands of high value engineered materials 

items such as spools, valves, steel members, turbines, and pumps etc. The project has vast 

scattered lay down yards, where the materials are frequently moved around before their final 

installation. 

     Table D.1: Benefit Cost Model for RFID/GPS based automated materials tracking system 
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Three different scenarios are considered; scenario 1 being the least favourable situation where the 

least number of critical items are tagged, and the least expected number of materials’ locates are 

made per day, whereas scenario 3 represents the most favourable situation where the highest 

number of critical items are attached with tags and the expected number of locates per day is 

highest. The time saved per locate of items is based on the experience gained in the field trials at 

Portlands Energy Centre, Toronto, and Rockdale, Texas. 

The benefit cost ratios calculated as shown in the following table are without considering benefits 

of improved productivity and costs avoided due to reduced risk of lost and re-procured items. The 

savings or benefits are high compared to the total cost of the system. Therefore, the estimated 

benefit/cost ratios are also very high from worst to best case scenarios. Even in scenario 1, which 

is considered the least favourable situation, the B/C ratio suggests implementing the system on 

the typical project described. It is interesting that anecdotally, one major constructor on CII RT 

240 estimated a B/C ratio of between 5/1 and 40/1, so it is possible that remaining benefits need 

to be considered.‖ 
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Appendix E 

A Sample Subset of the Acquired Data from the Filed Experiment  

 

 
 

Figure E.1: Illustration of the data fields of a sample .kml file 

 

The following lines present a sample raw acquired data from the Portlands site in kml format.  

 

<kml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://earth.google.com/kml/2.1"> 

  <Document> 

    <Placemark> 

      <Point> 

        <coordinates>-79.33311835355,43.6464036177</coordinates> 

      </Point> 

      <name>200.051.267</name> 

      <Snippet maxLines="0">Tag 200.051.267 at 6/19/08 8:09:28 AM</Snippet> 

      <description>Tag 200.051.267 located at 6/19/08 8:09:28 AM within 6.3 meters.</description> 

    </Placemark> 

    <Placemark> 

      <Point> 

        <coordinates>-79.332644939,43.64656447225</coordinates> 

      </Point> 

      <name>200.051.350</name> 

      <Snippet maxLines="0">Tag 200.051.350 at 6/19/08 8:11:18 AM</Snippet> 

      <description>Tag 200.051.350 located at 6/19/08 8:11:18 AM within 7.0 meters.</description> 

    </Placemark> 

    <Placemark> 
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      <Point> 

        <coordinates>-79.3329196941,43.6465845549</coordinates> 

      </Point> 

      <name>200.055.096</name> 

      <Snippet maxLines="0">Tag 200.055.096 at 6/19/08 8:08:09 AM</Snippet> 

      <description>Tag 200.055.096 located at 6/19/08 8:08:09 AM within 10.9 meters.</description> 

    </Placemark> 

    <Placemark> 

      <Point> 

        <coordinates>-79.3326392579,43.64654522175</coordinates> 

      </Point> 

      <name>200.055.941</name> 

      <Snippet maxLines="0">Tag 200.055.941 at 6/19/08 8:11:13 AM</Snippet> 

      <description>Tag 200.055.941 located at 6/19/08 8:11:13 AM within 9.5 meters.</description> 

    </Placemark> 

    <Placemark> 

      <Point> 

        <coordinates>-79.3327047031,43.64667017785</coordinates> 

      </Point> 

      <name>200.069.300</name> 

      <Snippet maxLines="0">Tag 200.069.300 at 6/19/08 8:10:17 AM</Snippet> 

      <description>Tag 200.069.300 located at 6/19/08 8:10:17 AM within 7.0 meters.</description> 

    </Placemark> 

    <Placemark> 

      <Point> 

        <coordinates>-79.33295590265,43.64654919695</coordinates> 

      </Point> 

      <name>200.069.301</name> 

      <Snippet maxLines="0">Tag 200.069.301 at 6/19/08 8:08:18 AM</Snippet> 

      <description>Tag 200.069.301 located at 6/19/08 8:08:18 AM within 7.0 meters.</description> 

    </Placemark> 

    <Placemark> 

      <Point> 

        <coordinates>-79.3328943992,43.64659374745</coordinates> 

      </Point> 

      <name>200.069.302</name> 

      <Snippet maxLines="0">Tag 200.069.302 at 6/19/08 8:07:37 AM</Snippet> 

      <description>Tag 200.069.302 located at 6/19/08 8:07:37 AM within 10.0 meters.</description> 

    </Placemark> 

    <Placemark> 

      <Point> 

        <coordinates>-79.33260432085,43.6466013544</coordinates> 

      </Point> 

      <name>200.069.307</name> 

      <Snippet maxLines="0">Tag 200.069.307 at 6/19/08 8:10:51 AM</Snippet> 

      <description>Tag 200.069.307 located at 6/19/08 8:10:51 AM within 12.0 meters.</description> 

    </Placemark> 

    <Placemark> 

      <Point> 

        <coordinates>-79.33272870825,43.6467746408</coordinates> 

      </Point> 

      <name>200.069.326</name> 

      <Snippet maxLines="0">Tag 200.069.326 at 6/19/08 8:06:36 AM</Snippet> 

      <description>Tag 200.069.326 located at 6/19/08 8:06:36 AM within 4.5 meters.</description> 

    </Placemark> 

    <Placemark> 
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      <Point> 

        <coordinates>-79.33290704755,43.64652919165</coordinates> 

      </Point> 

      <name>200.070.493</name> 

      <Snippet maxLines="0">Tag 200.070.493 at 6/19/08 8:08:22 AM</Snippet> 

      <description>Tag 200.070.493 located at 6/19/08 8:08:22 AM within 12.2 meters.</description> 

    </Placemark> 

    <Placemark> 

      <Point> 

        <coordinates>-79.3329366161,43.6465994208</coordinates> 

      </Point> 

      <name>200.071.566</name> 

      <Snippet maxLines="0">Tag 200.071.566 at 6/19/08 8:07:41 AM</Snippet> 

      <description>Tag 200.071.566 located at 6/19/08 8:07:41 AM within 5.3 meters.</description> 

    </Placemark> 

    <Placemark> 

      <Point> 

        <coordinates>-79.33292122855,43.64653919915</coordinates> 

      </Point> 

      <name>200.071.568</name> 

      <Snippet maxLines="0">Tag 200.071.568 at 6/19/08 8:08:02 AM</Snippet> 

      <description>Tag 200.071.568 located at 6/19/08 8:08:02 AM within 7.0 meters.</description> 

    </Placemark> 

       <name /> 

    <description>Tagged Object Locations</description> 

  </Document> 

</kml> 
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Appendix F 

Implementation Document for the Software in Visual C# .NET 

 

Table of Contents 

 

Namespace Index ........................................................................................................................ 166 

Class Index .................................................................................................................................. 167 

RFID_GPS_LocationSensing_Project .................................................................................... 168 

RFID_GPS_LocationSensing_Project.Properties ................................................................... 169 

Class Documentation ................................................................................................................... 170 

RFID_GPS_LocationSensing_Project::ReadEvent ................................................................. 170 

RFID_GPS_LocationSensing_Project::FinalTagLocation ...................................................... 178 

RFID_GPS_LocationSensing_Project::Form1 ........................................................................ 185 

RFID_GPS_LocationSensing_Project::GPSData ................................................................... 189 

RFID_GPS_LocationSensing_Project::Program..................................................................... 191 

RFID_GPS_LocationSensing_Project::ReadEvent::Ellipsoid ................................................ 192 

RFID_GPS_LocationSensing_Project::Properties::Resources................................................ 194 

RFID_GPS_LocationSensing_Project::RFID_TAG ............................................................... 196 

Index ............................................................................................... Error! Bookmark not defined. 
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Namespace Index 

I. Package List 

Here are the packages with brief descriptions (if available): 

RFID_GPS_LocationSensing_Project   ............................................................................................ 168 

RFID_GPS_LocationSensing_Project.Properties   ......................................................................... 169 
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Class Index 

II. Class List 

Here are the classes, structs, unions and interfaces with brief descriptions: 

RFID_GPS_LocationSensing_Project.FinalTagLocation (The basic class for fusion level 0 that represents 

an abstraction for the estimated locations ) ..................................................................................... 178 

RFID_GPS_LocationSensing_Project.Form1 (The main windows based user interface )  ......... 185 

RFID_GPS_LocationSensing_Project.GPSData (A basic class for GPS sample data )  .............. 189 

RFID_GPS_LocationSensing_Project.Program   ............................................................................ 191 

RFID_GPS_LocationSensing_Project.ReadEvent (A public class for events of reading RFID tags 

associated with a GPS Lat/Long )  .................................................................................................... 170 

RFID_GPS_LocationSensing_Project.ReadEvent.Ellipsoid (An abstraction for ellipsoidal information ) 
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Namespace Documentation 

III. Package RFID_GPS_LocationSensing_Project 

i Packages 

 package Properties 

ii Classes 

 class FinalTagLocation 

The basic class for fusion level 0 that represents an abstraction for the estimated locations.  

 class Form1 

The main windows based user interface.  

 class GPSData 

A basic class for GPS sample data.  

 class Program 

 class ReadEvent 

A public class for events of reading RFID tags associated with a GPS Lat/Long.  

 class RFID_TAG 

A basic class for RFID sample data before assigning to any GPS read.  
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IV. Package RFID_GPS_LocationSensing_Project.Properties 

iii Classes 

 class Resources 

A strongly-typed resource class, for looking up localized strings, etc.  

 class Settings 
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Class Documentation 

V. RFID_GPS_LocationSensing_Project.ReadEvent Class Reference 

A public class for events of reading RFID tags associated with a GPS Lat/Long.  

iv Classes 

 class Ellipsoid 

An abstraction for ellipsoidal information.  

v Public Member Functions 

 double[] GetLatLong (string PlacemarkString, char[] delimiter) 

Returns the extracted Latitue and Longitute of the observation in the passed XML node.  

 string GetTagID (string PlacemarkString, char[] delimiter) 

Returns the TagID of the observation in the passed XML node).  

 decimal GetAccuracy (string PlacemarkString, char[] delimiter) 

Returns the GPS unit accuracy extracted from the XML node.  

 double[] ConvertLatLongDegreeToDecimal (string dLat, string dLong) 

Converts degree latitute longitute to Decimal.  

 double[] ConvertLatLongToUTM (double dLong, double dLat) 

This Method converts Decimal Latitute Longitute to UTM Nad83;.  

 void GPS_RFID_Match () 

vi Properties 

 DateTime DateTime [get, set] 

 string RFIDTagID [get, set] 

 Decimal RSSI [get, set] 

 double Latitute [get, set] 

 double Longitute [get, set] 

 double UTM_NAD_83_X [get, set] 

 double UTM_NAD_83_Y [get, set] 

 decimal Accuracy [get, set] 

 decimal ConfidenceLevel [get, set] 

vii Private Member Functions 

 double ParseIn (string sIn) 

 void LatLongtoUTM (double Lat, double Long, out double UTMNorthing, out double UTMEasting, out string 

Zone) 

This Method converts Decimal Latitute Longitute to UTM Nad83;.  

 char UTMLetterDesignator (double Lat) 

viii Static Private Member Functions 

 static bool IsSpecificTagID (string tagID) 
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ix Private Attributes 

 string _RFIDTagID 

 DateTime _DateTime 

 Decimal _RSSI 

 double _Latitute 

 double _Longitute 

 decimal _Accuracy 

 decimal _ConfidenceLevel 

 

x Detailed Description 

A public class for events of reading RFID tags associated with a GPS Lat/Long.  

Read Event Class demonstrates a boundle of information such as TagID, RSSI, Lat and Long for each 

observation to be eventually used for Final Tag Location Estimation  

Definition at line 15 of file ReadEvent.cs. 

 

xi Member Function Documentation 

double [] RFID_GPS_LocationSensing_Project.ReadEvent.ConvertLatLongDegreeToDecimal 

(string dLat,   string dLong) 

Converts degree latitute longitute to Decimal.  

degree latitute longitute in the form of DegreeMinutesSeconds would be converted to Lat/Long in the 

form of DD.dddd### 

Parameters: 

dLong The Longitute to be converted  

dLat The Latitute to be converted  

Returns: 

The Decimal representation of the Long/Lat  

See also: 

ConvertLatLongToUTM()  

Definition at line 200 of file ReadEvent.cs. 

References System. 

double [] RFID_GPS_LocationSensing_Project.ReadEvent.ConvertLatLongToUTM (double dLong,   

double dLat) 

This Method converts Decimal Latitute Longitute to UTM Nad83;.  

This Method calls LatLongtoUTM() to do the conversion 
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Parameters: 

dLong The Longitute to be converted  

dLat The Latitute to be converted  

Returns: 

The UTM Easting and Northing  

See also: 

ConvertLatLongDegreeToDecimal()  

Definition at line 230 of file ReadEvent.cs. 

References RFID_GPS_LocationSensing_Project.ReadEvent.LatLongtoUTM(). 

Referenced by RFID_GPS_LocationSensing_Project.FinalTagLocation.ConvertStringToData(). 

decimal RFID_GPS_LocationSensing_Project.ReadEvent.GetAccuracy (string PlacemarkString,   

char[] delimiter) 

Returns the GPS unit accuracy extracted from the XML node.  

 

Definition at line 175 of file ReadEvent.cs. 

References System. 

Referenced by RFID_GPS_LocationSensing_Project.FinalTagLocation.ConvertStringToData(). 

double [] RFID_GPS_LocationSensing_Project.ReadEvent.GetLatLong (string PlacemarkString,   

char[] delimiter) 

Returns the extracted Latitue and Longitute of the observation in the passed XML node.  

 

Parameters: 

PlacemarkString An input string containing lat/long information in the string format  

delimiter is a characted string of delimiters that would be used to split the input string and extract Lat and 

Long.  

Returns: 

Latitute and Longitute in double format  

See also: 

GetTagID() 

The lat/long will be return in "double while they have been received as a part of a string  

Definition at line 147 of file ReadEvent.cs. 

References System. 

Referenced by RFID_GPS_LocationSensing_Project.FinalTagLocation.ConvertStringToData(). 
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string RFID_GPS_LocationSensing_Project.ReadEvent.GetTagID (string PlacemarkString,   char[] 

delimiter) 

Returns the TagID of the observation in the passed XML node).  

 

Definition at line 162 of file ReadEvent.cs. 

Referenced by RFID_GPS_LocationSensing_Project.FinalTagLocation.ConvertStringToData(). 

void RFID_GPS_LocationSensing_Project.ReadEvent.GPS_RFID_Match () 

 

Definition at line 461 of file ReadEvent.cs. 

References System. 

static bool RFID_GPS_LocationSensing_Project.ReadEvent.IsSpecificTagID (string tagID) 

[static, private] 

 

Definition at line 455 of file ReadEvent.cs. 

References System. 

void RFID_GPS_LocationSensing_Project.ReadEvent.LatLongtoUTM (double Lat,   double Long,   

out double UTMNorthing,   out double UTMEasting,   out string Zone) [private] 

This Method converts Decimal Latitute Longitute to UTM Nad83;.  

 

Parameters: 

dLong The Longitute to be converted  

dLat The Latitute to be converted  

Returns: 

The UTM Easting and Northing  

See also: 

ConvertLatLongDegreeToDecimal() 

Latitude is determined by the earth's polar axis. Longitude is determined by the earth's rotation. But 

there is no way to determine your UTM coordinates except by calculation. UTM grids, on the other 

hand, are created by laying a square grid on the earth. This means that different maps will have 

different grids depending on the datum used (model of the shape of the earth). The two basic 

references for converting UTM and geographic coordinates are U.S. Geological Survey Professional 

Paper 1395 and U. S. Army Technical Manual TM 5-241-8. Each has advantages and disadvantages. 

For converting latitude and longitude to UTM, the Army publication is better. Its notation is more 

consistent and the formulas more clearly laid out, making code easier to debug. 

Converting Latitude and Longitude to UTM 

P = point under consideration 
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F = foot of perpendicular from P to the central meridian. The latitude of F is called the footprint 

latitude. 

O = origin 

OZ = central meridian 

LP = parallel of latitude of P 

ZP = meridian of P 

OL = k0S = meridional arc from equator 

LF = ordinate of curvature 

OF = N = grid northing 

FP = E = grid distance from central meridian 

GN = grid north 

C = convergence of meridians = angle between true and grid north 

The other thing needed to be known is the datum being used: 

Datum Equatorial Radius, meters (a) Polar Radius, meters (b) Flattening (a-b)/a Use 

NAD83/WGS84 6,378,137 6,356,752.3142 1/298.257223563 Global 

The most modern datums (jars my Latinist sensibilities since the plural of datum in Latin is data, but 

that has a different meaning to us) are NAD83 and WGS84. These are based in turn on GRS80. 

Differences between the three systems derive mostly from redetermination of station locations rather 

than differences in the datum. 

Converting Latitude and Longitude to UTM: 

These formulas are slightly modified from Army (1973). They are accurate to within less than a meter 

within a given grid zone. 

Symbols: 

• lat = latitude of point 

• long = longitude of point 

• long0 = central meridian of zone 

• k0 = scale along long0 = 0.9996 

• e = SQRT(1-b2/a2) = .08 approximately. This is the eccentricity of the earth's elliptical cross-

section. 

• e'2 = (ea/b)2 = e2/(1-e2) = .007 approximately. The quantity e' only occurs in even powers so it 

need only be calculated as e'2. 

• n = (a-b)/(a+b) 

• rho = a(1-e2)/(1-e2sin2(lat))3/2. This is the radius of curvature of the earth in the meridian plane. 

• nu = a/(1-e2sin2(lat))1/2. This is the radius of curvature of the earth perpendicular to the meridian 

plane. It is also the distance from the point in question to the polar axis, measured perpendicular to 

the earth's surface. 

• p = (long-long0) 

• sin1" = sine of one second of arc = pi/(180*60*60) = 4.8481368 x 10-6. 

Calculate the Meridional Arc 

S is the meridional arc through the point in question (the distance along the earth's surface from the 

equator). All angles are in radians. 

• S = A'lat - B'sin(2lat) + C'sin(4lat) - D'sin(6lat) + E'sin(8lat), where lat is in radians and 

• A' = a[1 - n + (5/4)(n2 - n3) + (81/64)(n4 - n5) ...] 
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• B' = (3an/2)[1 - n + (7/8)(n2 - n3) + (55/64)(n4 - n5) ...] 

• C' = (15an2/16)[1 - n + (3/4)(n2 - n3) ...] 

• D' = (35an3/48)[1 - n + (11/16)(n2 - n3) ...] 

• E' = (315an4/51)[1 - n ...] 

The USGS gives this form, which may be more appealing to some. (They use M where the Army uses 

S) 

• M = a[(1 - e2/4 - 3e4/64 - 5e6/256 ....)lat 

 

 (3e2/8 + 3e4/32 + 45e6/1024...)sin(2lat) 

+ (15e4/256 + 45e6/1024 + ....)sin(4lat) 

 

 (35e6/3072 + ....) sin(6lat) + ....)] where lat is in radians 

Converting Latitude and Longitude to UTM 

All angles are in radians. 

y = northing = K1 + K2p2 + K3p4, where 

• K1 = Sk0, 

• K2 = k0sin21" nu sin(lat)cos(lat)/2 

• K3 = [k0sin41" nu sin(lat)cos3(lat)/24][(5 - tan2(lat) + 9e'2cos2(lat) + 4e'4cos4(lat)] 

x = easting = K4p + K5p3, where 

• K4 = k0sin1" nu cos(lat) 

• K5 = (k0sin31" nu cos3(lat)/6)[1 - tan2(lat) + e'2cos2(lat)] 

Easting x is relative to the central meridian. For conventional UTM easting add 500,000 meters to x.  

compute the UTM Zone from the latitude and longitude  

Definition at line 346 of file ReadEvent.cs. 

References RFID_GPS_LocationSensing_Project.ReadEvent.UTMLetterDesignator(). 

Referenced by RFID_GPS_LocationSensing_Project.ReadEvent.ConvertLatLongToUTM(). 

double RFID_GPS_LocationSensing_Project.ReadEvent.ParseIn (string sIn) [private] 

 

Definition at line 251 of file ReadEvent.cs. 

char RFID_GPS_LocationSensing_Project.ReadEvent.UTMLetterDesignator (double Lat) 

[private] 

 

Definition at line 409 of file ReadEvent.cs. 

Referenced by RFID_GPS_LocationSensing_Project.ReadEvent.LatLongtoUTM(). 

 

xii Member Data Documentation 

decimal RFID_GPS_LocationSensing_Project.ReadEvent._Accuracy [private] 
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Definition at line 22 of file ReadEvent.cs. 

decimal RFID_GPS_LocationSensing_Project.ReadEvent._ConfidenceLevel [private] 

 

Definition at line 23 of file ReadEvent.cs. 

DateTime RFID_GPS_LocationSensing_Project.ReadEvent._DateTime [private] 

RFID Tag ID for the detected RFID tag in the observation  

Definition at line 18 of file ReadEvent.cs. 

double RFID_GPS_LocationSensing_Project.ReadEvent._Latitute [private] 

Recieved signal strength of the detected RFID tag in the observation  

Definition at line 20 of file ReadEvent.cs. 

double RFID_GPS_LocationSensing_Project.ReadEvent._Longitute [private] 

 

Definition at line 21 of file ReadEvent.cs. 

string RFID_GPS_LocationSensing_Project.ReadEvent._RFIDTagID [private] 

 

Definition at line 17 of file ReadEvent.cs. 

Decimal RFID_GPS_LocationSensing_Project.ReadEvent._RSSI [private] 

Data and time of the observation  

Definition at line 19 of file ReadEvent.cs. 

 

xiii Property Documentation 

decimal RFID_GPS_LocationSensing_Project.ReadEvent.Accuracy [get, set] 

 

Definition at line 114 of file ReadEvent.cs. 

Referenced by RFID_GPS_LocationSensing_Project.FinalTagLocation.ConvertStringToData(). 

decimal RFID_GPS_LocationSensing_Project.ReadEvent.ConfidenceLevel [get, set] 

 

Definition at line 126 of file ReadEvent.cs. 

DateTime RFID_GPS_LocationSensing_Project.ReadEvent.DateTime [get, set] 

 

Definition at line 28 of file ReadEvent.cs. 
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double RFID_GPS_LocationSensing_Project.ReadEvent.Latitute [get, set] 

 

Definition at line 67 of file ReadEvent.cs. 

Referenced by RFID_GPS_LocationSensing_Project.FinalTagLocation.ConvertStringToData(). 

double RFID_GPS_LocationSensing_Project.ReadEvent.Longitute [get, set] 

 

Definition at line 79 of file ReadEvent.cs. 

Referenced by RFID_GPS_LocationSensing_Project.FinalTagLocation.ConvertStringToData(). 

string RFID_GPS_LocationSensing_Project.ReadEvent.RFIDTagID [get, set] 

 

Definition at line 41 of file ReadEvent.cs. 

Referenced by RFID_GPS_LocationSensing_Project.FinalTagLocation.ConvertStringToData(), and 

RFID_GPS_LocationSensing_Project.FinalTagLocation.IsSpecificTagID(). 

Decimal RFID_GPS_LocationSensing_Project.ReadEvent.RSSI [get, set] 

 

Definition at line 53 of file ReadEvent.cs. 

double RFID_GPS_LocationSensing_Project.ReadEvent.UTM_NAD_83_X [get, set] 

 

Definition at line 92 of file ReadEvent.cs. 

Referenced by RFID_GPS_LocationSensing_Project.FinalTagLocation.Centroid(), and 

RFID_GPS_LocationSensing_Project.FinalTagLocation.ConvertStringToData(). 

double RFID_GPS_LocationSensing_Project.ReadEvent.UTM_NAD_83_Y [get, set] 

 

Definition at line 103 of file ReadEvent.cs. 

Referenced by RFID_GPS_LocationSensing_Project.FinalTagLocation.Centroid(), and 

RFID_GPS_LocationSensing_Project.FinalTagLocation.ConvertStringToData(). 

 

The documentation for this class was generated from the following file: 

 My Documents/Visual Studio 2008/Projects/RFID GPS LocationSensing Project/RFID GPS 

LocationSensing Project/ReadEvent.cs 
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VI. RFID_GPS_LocationSensing_Project.FinalTagLocation Class Reference 

The basic class for fusion level 0 that represents an abstraction for the estimated locations.  

xiv Public Member Functions 

 void LocationEstimationAlgorithm (ArrayList list) 

The main method to call the related estimation location algorithm.  

 void GetReadEvents () 

An XML_Query method to navigate through XML files and get all the readevents of each tag ID.  

 ReadEvent ConvertStringToData (string PlacemarkString) 

Populate a ReadEvent object from an instance in string format.  

 void Centroid (ArrayList list) 

Centroid location estimation algorithm.  

 decimal Fuzzy (ReadEvent Event) 

Calls the fuzzy inference engine to assign a reliability degree to the readevent.  

 void FuzzyDempsterShafer (ArrayList list) 

The new Fuzzy Dempster Shafer location estimation algorithm.  

 void DempsterShafer (ArrayList list) 

The original Dempster Shafer location estimation algorithm.  

xv Public Attributes 

 string _Algorithm = null 

xvi Properties 

 string RFIDTagID [get, set] 

 Decimal RSSI [get, set] 

 double Latitute [get, set] 

 double Longitute [get, set] 

 double UTM_NAD_83_X [get, set] 

 double UTM_NAD_83_Y [get, set] 

 decimal EstimatedAccuracy [get, set] 

 string Comment [get, set] 

xvii Static Private Member Functions 

 static bool IsSpecificTagID (ReadEvent Event, string TagID) 

Return true if the Tag ID of the observation is the ID we are looking for.  

xviii Private Attributes 

 string _RFIDTagID 

 decimal _RSSI 

 double _Latitute 

 double _Longitute 

 double _UTM_NAD_83_X 
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 double _UTM_NAD_83_Y 

 decimal _EstimatedAccuracy 

 

xix Detailed Description 

The basic class for fusion level 0 that represents an abstraction for the estimated locations.  

FinalTagLocation Class demonstrates a boundle of information such as TagID, RSSI, Lat and Long for 

the estimated locations of tags  

Definition at line 19 of file FinalTagLocation.cs. 

 

xx Member Function Documentation 

void RFID_GPS_LocationSensing_Project.FinalTagLocation.Centroid (ArrayList list) 

Centroid location estimation algorithm.  

An arraylist containing all the readevents of a tag will be passed to the Centroid location estimation 

algorithm. 

Centroid model assign the average of all the observations' coordinates to the estimated location 

Parameters: 

list An arraylist of all the readevents of one tag to be passed to the location estimation algorithms  

See also: 

LocationEstimationAlgorithm()  

Fuzzy()  

FuzzyDempsterShafer()  

Definition at line 266 of file FinalTagLocation.cs. 

References RFID_GPS_LocationSensing_Project.FinalTagLocation.ConvertStringToData(), 

RFID_GPS_LocationSensing_Project.ReadEvent.UTM_NAD_83_X, and 

RFID_GPS_LocationSensing_Project.ReadEvent.UTM_NAD_83_Y. 

Referenced by RFID_GPS_LocationSensing_Project.FinalTagLocation.LocationEstimationAlgorithm(). 

ReadEvent RFID_GPS_LocationSensing_Project.FinalTagLocation.ConvertStringToData (string 

PlacemarkString) 

Populate a ReadEvent object from an instance in string format.  

 

Parameters: 

PlacemarkString A string containing all the fileds of a ReadEvent object  

Returns: 

A ReadEvent object  
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See also: 

GetTagID()  

GetAccuracy()  

GetLatLong()  

FuzzyDempsterShafer()  

Definition at line 237 of file FinalTagLocation.cs. 

References RFID_GPS_LocationSensing_Project.ReadEvent.Accuracy, 

RFID_GPS_LocationSensing_Project.ReadEvent.ConvertLatLongToUTM(), 

RFID_GPS_LocationSensing_Project.ReadEvent.GetAccuracy(), 

RFID_GPS_LocationSensing_Project.ReadEvent.GetLatLong(), 

RFID_GPS_LocationSensing_Project.ReadEvent.GetTagID(), 

RFID_GPS_LocationSensing_Project.ReadEvent.Latitute, 

RFID_GPS_LocationSensing_Project.ReadEvent.Longitute, 

RFID_GPS_LocationSensing_Project.ReadEvent.RFIDTagID, 

RFID_GPS_LocationSensing_Project.ReadEvent.UTM_NAD_83_X, and 

RFID_GPS_LocationSensing_Project.ReadEvent.UTM_NAD_83_Y. 

Referenced by RFID_GPS_LocationSensing_Project.FinalTagLocation.Centroid(). 

void RFID_GPS_LocationSensing_Project.FinalTagLocation.DempsterShafer (ArrayList list) 

The original Dempster Shafer location estimation algorithm.  

An arraylist containing all the readevents of a tag will be passed to the DempsterShafer location 

estimation algorithm. 

Parameters: 

list An arraylist of all the readevents of one tag to be passed to the location estimation algorithms  

See also: 

LocationEstimationAlgorithm()  

Fuzzy DempsterShafer()  

Definition at line 368 of file FinalTagLocation.cs. 

Referenced by RFID_GPS_LocationSensing_Project.FinalTagLocation.LocationEstimationAlgorithm(). 

decimal RFID_GPS_LocationSensing_Project.FinalTagLocation.Fuzzy (ReadEvent Event) 

Calls the fuzzy inference engine to assign a reliability degree to the readevent.  

An object of ReadEvent class will be passed to the fuzzy algorithm to calculate the cofidence level .  

Definition at line 301 of file FinalTagLocation.cs. 

Referenced by RFID_GPS_LocationSensing_Project.FinalTagLocation.LocationEstimationAlgorithm(). 

void RFID_GPS_LocationSensing_Project.FinalTagLocation.FuzzyDempsterShafer (ArrayList list) 

The new Fuzzy Dempster Shafer location estimation algorithm.  

An arraylist containing all the readevents of a tag will be passed to the FuzzyDempsterShafer location 

estimation algorithm. 

Fuzzy Dempster Shafer model uses the fuzzy reliability degree to give some weights to the original 

Dempster-Shafer model  

Parameters: 
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list An arraylist of all the readevents of one tag to be passed to the location estimation algorithms  

See also: 

LocationEstimationAlgorithm()  

Fuzzy()  

DempsterShafer()  

Definition at line 319 of file FinalTagLocation.cs. 

Referenced by RFID_GPS_LocationSensing_Project.FinalTagLocation.LocationEstimationAlgorithm(). 

void RFID_GPS_LocationSensing_Project.FinalTagLocation.GetReadEvents () 

An XML_Query method to navigate through XML files and get all the readevents of each tag ID.  

The method populate two lists with all the detected tag IDs in list1 and all the readevents for any of 

those tag IDs in list2. As soon as list2 is populated for each tag, the LocationEstimationAlgorithm() 

will be called to calculate the location with the pre-selected algorithm 

XQuery is used in this method to extract nodes of the XML file and to search and navigate through 

the XML file 

See also: 

LocationEstimationAlgorithm()  

Load the document into memory  

Definition at line 192 of file FinalTagLocation.cs. 

References RFID_GPS_LocationSensing_Project.FinalTagLocation.LocationEstimationAlgorithm(). 

Referenced by RFID_GPS_LocationSensing_Project.Form1.centroidModelToolStripMenuItem_Click(). 

static bool RFID_GPS_LocationSensing_Project.FinalTagLocation.IsSpecificTagID (ReadEvent 

Event,   string TagID) [static, private] 

Return true if the Tag ID of the observation is the ID we are looking for.  

 

Parameters: 

Event A ReadEvent object  

TagID The RFID tag ID that we are looking for  

Returns: 

True if the object has the same TagID and false if it does not  

Definition at line 136 of file FinalTagLocation.cs. 

References RFID_GPS_LocationSensing_Project.ReadEvent.RFIDTagID. 

void RFID_GPS_LocationSensing_Project.FinalTagLocation.LocationEstimationAlgorithm 

(ArrayList list) 

The main method to call the related estimation location algorithm.  

The estimation location algorithm is selected through the user interface in the main windows form. 

the implemented algorithms are: 
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 Centroid 

 

 Dempster_Shafer 

 

 Fuzzy Centroid 

 

 Fuzzy Dempster Shafer 

Parameters: 

list An arraylist of all the readevents of one tag to be passed to the location estimation algorithms  

See also: 

GetReadEvents()  

Definition at line 160 of file FinalTagLocation.cs. 

References RFID_GPS_LocationSensing_Project.FinalTagLocation._Algorithm, 

RFID_GPS_LocationSensing_Project.FinalTagLocation.Centroid(), 

RFID_GPS_LocationSensing_Project.FinalTagLocation.DempsterShafer(), 

RFID_GPS_LocationSensing_Project.FinalTagLocation.Fuzzy(), and 

RFID_GPS_LocationSensing_Project.FinalTagLocation.FuzzyDempsterShafer(). 

Referenced by RFID_GPS_LocationSensing_Project.FinalTagLocation.GetReadEvents(). 

 

xxi Member Data Documentation 

string RFID_GPS_LocationSensing_Project.FinalTagLocation._Algorithm = null 

 

Definition at line 22 of file FinalTagLocation.cs. 

Referenced by RFID_GPS_LocationSensing_Project.Form1.centroidModelToolStripMenuItem_Click(), and 

RFID_GPS_LocationSensing_Project.FinalTagLocation.LocationEstimationAlgorithm(). 

decimal RFID_GPS_LocationSensing_Project.FinalTagLocation._EstimatedAccuracy [private] 

Estimated Northin in UTM NAD 83 for the RFID tag  

Definition at line 29 of file FinalTagLocation.cs. 

double RFID_GPS_LocationSensing_Project.FinalTagLocation._Latitute [private] 

Received signal strength of the RFID tag  

Definition at line 25 of file FinalTagLocation.cs. 

double RFID_GPS_LocationSensing_Project.FinalTagLocation._Longitute [private] 

Estimated latitute for the RFID tag  

Definition at line 26 of file FinalTagLocation.cs. 
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string RFID_GPS_LocationSensing_Project.FinalTagLocation._RFIDTagID [private] 

The name of algorithms for the location estimation  

Definition at line 23 of file FinalTagLocation.cs. 

decimal RFID_GPS_LocationSensing_Project.FinalTagLocation._RSSI [private] 

The ID of the RFID tag  

Definition at line 24 of file FinalTagLocation.cs. 

double RFID_GPS_LocationSensing_Project.FinalTagLocation._UTM_NAD_83_X [private] 

Estimated longitute for the RFID tag  

Definition at line 27 of file FinalTagLocation.cs. 

double RFID_GPS_LocationSensing_Project.FinalTagLocation._UTM_NAD_83_Y [private] 

Estimated Easting in UTM NAD 83 for the RFID tag  

Definition at line 28 of file FinalTagLocation.cs. 

 

xxii Property Documentation 

string RFID_GPS_LocationSensing_Project.FinalTagLocation.Comment [get, set] 

 

Definition at line 120 of file FinalTagLocation.cs. 

decimal RFID_GPS_LocationSensing_Project.FinalTagLocation.EstimatedAccuracy [get, set] 

 

Definition at line 107 of file FinalTagLocation.cs. 

double RFID_GPS_LocationSensing_Project.FinalTagLocation.Latitute [get, set] 

 

Definition at line 59 of file FinalTagLocation.cs. 

double RFID_GPS_LocationSensing_Project.FinalTagLocation.Longitute [get, set] 

 

Definition at line 71 of file FinalTagLocation.cs. 

string RFID_GPS_LocationSensing_Project.FinalTagLocation.RFIDTagID [get, set] 

Estimated accuracy for the location  

Definition at line 33 of file FinalTagLocation.cs. 
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Decimal RFID_GPS_LocationSensing_Project.FinalTagLocation.RSSI [get, set] 

 

Definition at line 46 of file FinalTagLocation.cs. 

double RFID_GPS_LocationSensing_Project.FinalTagLocation.UTM_NAD_83_X [get, set] 

 

Definition at line 83 of file FinalTagLocation.cs. 

double RFID_GPS_LocationSensing_Project.FinalTagLocation.UTM_NAD_83_Y [get, set] 

 

Definition at line 95 of file FinalTagLocation.cs. 

 

The documentation for this class was generated from the following file: 

 My Documents/Visual Studio 2008/Projects/RFID GPS LocationSensing Project/RFID GPS 

LocationSensing Project/FinalTagLocation.cs 
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VII. RFID_GPS_LocationSensing_Project.Form1 Class Reference 

The main windows based user interface.  

xxiii Public Member Functions 

 Form1 () 

xxiv Private Member Functions 

 void menuItem1ToolStripMenuItem_Click (object sender, EventArgs e) 

 void validationToolStripMenuItem_Click (object sender, EventArgs e) 

 void dataFusionLevel2ToolStripMenuItem_Click (object sender, EventArgs e) 

 void Form1_Load (object sender, EventArgs e) 

 void pictureBox1_Click (object sender, EventArgs e) 

 void identeToolStripMenuItem_Click (object sender, EventArgs e) 

 void identecToolStripMenuItem_Click (object sender, EventArgs e) 

 void IdenteciLINKSviewre_Exited (object sender, EventArgs e) 

 void identecILINKSViewerToolStripMenuItem_Click (object sender, EventArgs e) 

 void process1_Exited (object sender, EventArgs e) 

 void visualisationToolStripMenuItem_Click (object sender, EventArgs e) 

 void visualizationToolStripMenuItem_Click (object sender, EventArgs e) 

 void GoogleEarth_Exited (object sender, EventArgs e) 

 void validationToolStripMenuItem1_Click (object sender, EventArgs e) 

 void centroidModelToolStripMenuItem_Click (object sender, EventArgs e) 

 void toolStripTextBox1_Click (object sender, EventArgs e) 

 void pictureBox1_Click_1 (object sender, EventArgs e) 

 

xxv Detailed Description 

The main windows based user interface.  

Definition at line 13 of file Form1.cs. 

 

xxvi Constructor & Destructor Documentation 

RFID_GPS_LocationSensing_Project.Form1.Form1 () 

 

Definition at line 15 of file Form1.cs. 
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xxvii Member Function Documentation 

void RFID_GPS_LocationSensing_Project.Form1.centroidModelToolStripMenuItem_Click (object 

sender,   EventArgs e) [private] 

 

Definition at line 95 of file Form1.cs. 

References RFID_GPS_LocationSensing_Project.FinalTagLocation._Algorithm, and 

RFID_GPS_LocationSensing_Project.FinalTagLocation.GetReadEvents(). 

void RFID_GPS_LocationSensing_Project.Form1.dataFusionLevel2ToolStripMenuItem_Click 

(object sender,   EventArgs e) [private] 

 

Definition at line 31 of file Form1.cs. 

void RFID_GPS_LocationSensing_Project.Form1.Form1_Load (object sender,   EventArgs e) 

[private] 

 

Definition at line 36 of file Form1.cs. 

void RFID_GPS_LocationSensing_Project.Form1.GoogleEarth_Exited (object sender,   EventArgs 

e) [private] 

 

Definition at line 85 of file Form1.cs. 

void RFID_GPS_LocationSensing_Project.Form1.identecILINKSViewerToolStripMenuItem_Click 

(object sender,   EventArgs e) [private] 

 

Definition at line 62 of file Form1.cs. 

void RFID_GPS_LocationSensing_Project.Form1.IdenteciLINKSviewre_Exited (object sender,   

EventArgs e) [private] 

 

Definition at line 57 of file Form1.cs. 

void RFID_GPS_LocationSensing_Project.Form1.identecToolStripMenuItem_Click (object sender,   

EventArgs e) [private] 

 

Definition at line 51 of file Form1.cs. 
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void RFID_GPS_LocationSensing_Project.Form1.identeToolStripMenuItem_Click (object sender,   

EventArgs e) [private] 

 

Definition at line 46 of file Form1.cs. 

void RFID_GPS_LocationSensing_Project.Form1.menuItem1ToolStripMenuItem_Click (object 

sender,   EventArgs e) [private] 

 

Definition at line 20 of file Form1.cs. 

void RFID_GPS_LocationSensing_Project.Form1.pictureBox1_Click (object sender,   EventArgs e) 

[private] 

 

Definition at line 41 of file Form1.cs. 

void RFID_GPS_LocationSensing_Project.Form1.pictureBox1_Click_1 (object sender,   EventArgs 

e) [private] 

 

Definition at line 110 of file Form1.cs. 

void RFID_GPS_LocationSensing_Project.Form1.process1_Exited (object sender,   EventArgs e) 

[private] 

 

Definition at line 68 of file Form1.cs. 

void RFID_GPS_LocationSensing_Project.Form1.toolStripTextBox1_Click (object sender,   

EventArgs e) [private] 

 

Definition at line 105 of file Form1.cs. 

void RFID_GPS_LocationSensing_Project.Form1.validationToolStripMenuItem1_Click (object 

sender,   EventArgs e) [private] 

 

Definition at line 90 of file Form1.cs. 

void RFID_GPS_LocationSensing_Project.Form1.validationToolStripMenuItem_Click (object 

sender,   EventArgs e) [private] 

 

Definition at line 25 of file Form1.cs. 
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void RFID_GPS_LocationSensing_Project.Form1.visualisationToolStripMenuItem_Click (object 

sender,   EventArgs e) [private] 

 

Definition at line 73 of file Form1.cs. 

void RFID_GPS_LocationSensing_Project.Form1.visualizationToolStripMenuItem_Click (object 

sender,   EventArgs e) [private] 

 

Definition at line 79 of file Form1.cs. 

 

The documentation for this class was generated from the following file: 

 My Documents/Visual Studio 2008/Projects/RFID GPS LocationSensing Project/RFID GPS 

LocationSensing Project/Form1.cs 
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VIII. RFID_GPS_LocationSensing_Project.GPSData Class Reference 

A basic class for GPS sample data.  

xxviii Public Member Functions 

 void Get () 

xxix Properties 

 double Latitute [get, set] 

 double Longitute [get, set] 

 Double UTM_NAD_83_X [get, set] 

 double UTM_NAD_83_Y [get, set] 

 DateTime DateTime [get, set] 

 decimal Accuracy [get, set] 

 decimal PDOP [get, set] 

 String Comment [get, set] 

 

xxx Detailed Description 

A basic class for GPS sample data.  

This class is designed for future developments on this project and the case of having access to Trimble 

Software Development Kit. In this case, a direct communication with the device will take place instead of 

XML batch communication.  

Definition at line 14 of file GPSData.cs. 

 

xxxi Member Function Documentation 

void RFID_GPS_LocationSensing_Project.GPSData.Get () 

 

Definition at line 104 of file GPSData.cs. 

References System. 

 

xxxii Property Documentation 

decimal RFID_GPS_LocationSensing_Project.GPSData.Accuracy [get, set] 

 

Definition at line 72 of file GPSData.cs. 
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String RFID_GPS_LocationSensing_Project.GPSData.Comment [get, set] 

 

Definition at line 94 of file GPSData.cs. 

DateTime RFID_GPS_LocationSensing_Project.GPSData.DateTime [get, set] 

 

Definition at line 61 of file GPSData.cs. 

double RFID_GPS_LocationSensing_Project.GPSData.Latitute [get, set] 

 

Definition at line 17 of file GPSData.cs. 

double RFID_GPS_LocationSensing_Project.GPSData.Longitute [get, set] 

 

Definition at line 28 of file GPSData.cs. 

decimal RFID_GPS_LocationSensing_Project.GPSData.PDOP [get, set] 

 

Definition at line 83 of file GPSData.cs. 

Double RFID_GPS_LocationSensing_Project.GPSData.UTM_NAD_83_X [get, set] 

 

Definition at line 39 of file GPSData.cs. 

double RFID_GPS_LocationSensing_Project.GPSData.UTM_NAD_83_Y [get, set] 

 

Definition at line 50 of file GPSData.cs. 

 

The documentation for this class was generated from the following file: 

 My Documents/Visual Studio 2008/Projects/RFID GPS LocationSensing Project/RFID GPS 

LocationSensing Project/GPSData.cs 
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IX. RFID_GPS_LocationSensing_Project.Program Class Reference 

xxxiii Static Private Member Functions 

 static void Main () 

The main entry point for the application.  

 

xxxiv Detailed Description 

Definition at line 8 of file Program.cs. 

 

xxxv Member Function Documentation 

static void RFID_GPS_LocationSensing_Project.Program.Main () [static, private] 

The main entry point for the application.  

 

Definition at line 14 of file Program.cs. 

 

The documentation for this class was generated from the following file: 

 My Documents/Visual Studio 2008/Projects/RFID GPS LocationSensing Project/RFID GPS 

LocationSensing Project/Program.cs 
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X. RFID_GPS_LocationSensing_Project.ReadEvent.Ellipsoid Class Reference 

An abstraction for ellipsoidal information.  

xxxvi Public Member Functions 

 Ellipsoid (string name, double radius, double ecc) 

xxxvii Public Attributes 

 string ellipsoidName 

 double EquatorialRadius 

 double eccentricitySquared 

 

xxxviii Detailed Description 

An abstraction for ellipsoidal information.  

such as ellipsoidName, EquatorialRadius, eccentricitySquared.  

Definition at line 439 of file ReadEvent.cs. 

 

xxxix Constructor & Destructor Documentation 

RFID_GPS_LocationSensing_Project.ReadEvent.Ellipsoid.Ellipsoid (string name,   double radius,   

double ecc) 

 

Definition at line 446 of file ReadEvent.cs. 

References RFID_GPS_LocationSensing_Project.ReadEvent.Ellipsoid.eccentricitySquared, 

RFID_GPS_LocationSensing_Project.ReadEvent.Ellipsoid.ellipsoidName, and 

RFID_GPS_LocationSensing_Project.ReadEvent.Ellipsoid.EquatorialRadius. 

 

xl Member Data Documentation 

double RFID_GPS_LocationSensing_Project.ReadEvent.Ellipsoid.eccentricitySquared 

 

Definition at line 444 of file ReadEvent.cs. 

Referenced by RFID_GPS_LocationSensing_Project.ReadEvent.Ellipsoid.Ellipsoid(). 

string RFID_GPS_LocationSensing_Project.ReadEvent.Ellipsoid.ellipsoidName 

 

Definition at line 442 of file ReadEvent.cs. 

Referenced by RFID_GPS_LocationSensing_Project.ReadEvent.Ellipsoid.Ellipsoid(). 
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double RFID_GPS_LocationSensing_Project.ReadEvent.Ellipsoid.EquatorialRadius 

 

Definition at line 443 of file ReadEvent.cs. 

Referenced by RFID_GPS_LocationSensing_Project.ReadEvent.Ellipsoid.Ellipsoid(). 

 

The documentation for this class was generated from the following file: 

 My Documents/Visual Studio 2008/Projects/RFID GPS LocationSensing Project/RFID GPS 

LocationSensing Project/ReadEvent.cs 
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XI. RFID_GPS_LocationSensing_Project.Properties.Resources Class 
Reference 

A strongly-typed resource class, for looking up localized strings, etc.  

 

xli Properties 

 static internal global::System.Resources.ResourceManager ResourceManager [get] 

Returns the cached ResourceManager instance used by this class.  

 static internal global::System.Globalization.CultureInfo Culture [get, set] 

Overrides the current thread's CurrentUICulture property for all resource lookups using this strongly 

typed resource class.  

xlii Private Member Functions 

 internal Resources () 

xliii Static Private Attributes 

 static global::System.Resources.ResourceManager resourceMan 

 static global::System.Globalization.CultureInfo resourceCulture 

 

xliv Detailed Description 

A strongly-typed resource class, for looking up localized strings, etc.  

 

Definition at line 25 of file Resources.Designer.cs. 

 

7.4.2 Constructor & Destructor Documentation 

internal RFID_GPS_LocationSensing_Project.Properties.Resources.Resources () [private] 

 

Definition at line 33 of file Resources.Designer.cs. 
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xlv Member Data Documentation 

global::System.Globalization.CultureInfo 

RFID_GPS_LocationSensing_Project.Properties.Resources.resourceCulture [static, 

private] 

 

Definition at line 30 of file Resources.Designer.cs. 

global::System.Resources.ResourceManager 

RFID_GPS_LocationSensing_Project.Properties.Resources.resourceMan [static, private] 

 

Definition at line 28 of file Resources.Designer.cs. 

 

xlvi Property Documentation 

internal global::System.Globalization.CultureInfo 

RFID_GPS_LocationSensing_Project.Properties.Resources.Culture [static, get, set, 

private] 

Overrides the current thread's CurrentUICulture property for all resource lookups using this strongly 

typed resource class.  

 

Definition at line 60 of file Resources.Designer.cs. 

xlvii internal global::System.Resources.ResourceManager 
RFID_GPS_LocationSensing_Project.Properties.Resources.ResourceManager 
[static, get, private] 

Returns the cached ResourceManager instance used by this class.  

 

Definition at line 42 of file Resources.Designer.cs. 

 

The documentation for this class was generated from the following file: 

 My Documents/Visual Studio 2008/Projects/RFID GPS LocationSensing Project/RFID GPS 

LocationSensing Project/Properties/Resources.Designer.cs 
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XII. RFID_GPS_LocationSensing_Project.RFID_TAG Class Reference 

A basic class for RFID sample data before assigning to any GPS read.  

xlviii Public Member Functions 

 void Scan () 

 void Read () 

 void Write () 

 void Ping () 

xlix Properties 

 string RFIDTagID [get, set] 

 decimal RSSI [get, set] 

 DateTime DateTime [get, set] 

 string Comment [get, set] 

 

l Detailed Description 

A basic class for RFID sample data before assigning to any GPS read.  

This class is designed for future developments on this project and the case of direct communication with 

the device instead of XML batch communication.  

Definition at line 14 of file RFID TAG.cs. 

 

li Member Function Documentation 

void RFID_GPS_LocationSensing_Project.RFID_TAG.Ping () 

 

Definition at line 75 of file RFID TAG.cs. 

References System. 

void RFID_GPS_LocationSensing_Project.RFID_TAG.Read () 

 

Definition at line 65 of file RFID TAG.cs. 

References System. 

void RFID_GPS_LocationSensing_Project.RFID_TAG.Scan () 

 

Definition at line 60 of file RFID TAG.cs. 

References System. 
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void RFID_GPS_LocationSensing_Project.RFID_TAG.Write () 

 

Definition at line 70 of file RFID TAG.cs. 

References System. 

 

lii Property Documentation 

string RFID_GPS_LocationSensing_Project.RFID_TAG.Comment [get, set] 

 

Definition at line 50 of file RFID TAG.cs. 

DateTime RFID_GPS_LocationSensing_Project.RFID_TAG.DateTime [get, set] 

 

Definition at line 39 of file RFID TAG.cs. 

string RFID_GPS_LocationSensing_Project.RFID_TAG.RFIDTagID [get, set] 

 

Definition at line 17 of file RFID TAG.cs. 

decimal RFID_GPS_LocationSensing_Project.RFID_TAG.RSSI [get, set] 

 

Definition at line 28 of file RFID TAG.cs. 

 

The documentation for this class was generated from the following file: 

 My Documents/Visual Studio 2008/Projects/RFID GPS LocationSensing Project/RFID GPS 

LocationSensing Project/RFID TAG.cs 
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XIII. RFID_GPS_LocationSensing_Project.Properties.Settings Class 
Reference 

 

 

liii Properties 

 static Settings Default [get] 

liv Static Private Attributes 

 static Settings defaultInstance = 

((Settings)(global::System.Configuration.ApplicationSettingsBase.Synchronized(new Settings()))) 

 

lv Detailed Description 

Definition at line 17 of file Settings.Designer.cs. 

 

lvi Member Data Documentation 

7.4.2.1 Settings RFID_GPS_LocationSensing_Project.Properties.Settings.defaultInstance = 

((Settings)(global::System.Configuration.ApplicationSettingsBase.Synchronized(new 

Settings()))) [static, private] 

 

Definition at line 20 of file Settings.Designer.cs. 

 

lvii Property Documentation 

Settings RFID_GPS_LocationSensing_Project.Properties.Settings.Default [static, get] 

 

Definition at line 23 of file Settings.Designer.cs. 

 

The documentation for this class was generated from the following file: 

 My Documents/Visual Studio 2008/Projects/RFID GPS LocationSensing Project/RFID GPS 

LocationSensing Project/Properties/Settings.Designer.cs 


