Object Histories in Java
by

Aakarsh Nair

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Applied Science
in
Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2010

(© Aakarsh Nair 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

Developers are often faced with the task of implementing new features or diagnosing
problems in large software systems. Convoluted control and data flows in large object-
oriented software systems, however, make even simple tasks extremely difficult, time-
consuming, and frustrating. Specifically, Java programs manipulate objects by adding
and removing them from collections and by putting and getting them from other objects’
fields. Complex object histories hinder program understanding by forcing software main-
tainers to track the provenance of objects through their past histories when diagnosing
software faults.

In this thesis, we present a novel approach which answers queries about the evolution
of objects throughout their lifetime in a program. On-demand answers to object history
queries aids the maintenance of large software systems by allowing developers to pinpoint
relevant details quickly.

We describe an event-based, flow-insensitive, interprocedural program analysis tech-
nique for computing object histories and answering history queries. Our analysis technique
identifies all relevant events affecting an object and uses pointer analysis to filter out ir-
relevant events. It uses prior knowledge of the meanings of methods in the Java collection
classes to improve the quality of the histories.

We present the details of our technique and experimental results that highlight the
utility of object histories in common programming tasks.

1l

Acknowledgments

I would like to express my sincere thanks and gratitude to my advisor Dr. Patrick Lam.
He is truly exceptional and I am thankful T had the opportunity to learn from him. His
breadth and depth of knowledge, instinct, guidance, and motivation were critical to the
completion of my research.

I would also like to thank my thesis committee members Dr Lhotdk and Dr. Tan for
taking the time and effort to read my thesis despite their extremely busy schedules. I also
appreciate their insightful comments and suggestions.

['am also thankful to my colleague Jon Eyolfson, who helped me with the many problems
I faced in completion of this degree. I also appreciate Xavier Nombassi and Hang Chu for
taking the time to discuss my obstacles and brainstorm solutions.

v

Dedication

This thesis is dedicated to my parents. I could not have completed it without their
unconditional support. I truly appreciate their encouragement, guidance, and the sacrifices
they made that enabled me to pursue my studies.

Contents

[List of Tables|

[List of Figures|

(I__Introduction|

(1.5 Thesis Organization|.

Object Histories|

2.1 Motivating Example] oo

[2.2 Preprocessing Phase| oo .

[2.2.1 Intraprocedural History Analysis|

[2.2.3 Aggregating Field Events|. 00000
[2.2.4 Handling Java Collections|

2.3 Answering Queries|

[2.3.1 Comprehensive Example]
2.4 Filtering]
[2.4.1 Filtering Context|,

vi

ix

xi

(@ G = L

J

3

Realizing Object Histories|

[3.1 Background| 00000
[3.1.1 Static Analysis|

[3.1.2 Pointer Analysis and SPARK]

(3.1.4 Jimplel

[3.2 Preprocessing|

[3.2.1 Intraprocedural History Analysis|

[3.3 Answering Queries|

[3.3.1 Handling Collections|
[3.4 Filteringl
[3.5 Graphical User Interfacel

Experimental Results|

[4.1.1 Finding Erroneous State|
[4.1.2 Change Support|.

[4.4 Object History Size Distributions|
[4.5 Effect of Filtering|

B Related Workl

[>.1 ~Points-to Analysis|.

[5.2 Program Slicing|
(.2.1 Thin Slicing|

[>.3 Program Exploration Approaches

vii

29
29
30
30
31
31
33
33
37
38
40
40
43
46
48

49
49
50
53
57
60
61
62

6 Conclusions and Future Workl
6.1 Future Workl.

[References]

viil

List of Tables

[2.1 Intraprocedural History Analysis for method in Figure[2.3| 11
[2.2 Method Summaries for program in Figure[2.4l| 13
[2.3 Aggregated field events for program in Figure[2.5] 16
[2.4 Method Summaries for program in Figure[2.6| 19
[2.5 Method summary for method Main: Object foo(M) shown in Figure [2.7,| . 23
[2.6 Aggregated field events for M.1ist for program in Figure[2.7{. 24
[3.1 Jimple representation of the origins of variables from Figure|3.3| 35
[3.2 Data flow set organization in the intraprocedural history low analysis| . . 36
[3.3 Jimple representation for static and instance field events.| 39
4.1 Benchmark characteristics) oL 61
[4.2 Time required for preprocessing and size of events database.| 61
[4.3 Average Filtered and Unfiltered Object History Sizes.| 65

X

List of Figures

[2.1 Architecture for computing object histories.| 7
[2.2 Example Java Program. 0000 8
2.3 Example Method.| 11
[2.4 Example Java program for demonstrating method summaries.| 12
[2.5 Example Program with Field Events.| 15
[2.6 Example Program highlighting collection events.|. 18
[2.7 Comprehensive example used to illustrate object histories.| 22
[2.8 Java program highlighting the use of filtering.| 27
[3.1 Java method in original form. 32
[3.2 Jimple representation for Java method in Figure|3.1l} 32
[3.3 Example method showing different intrapocedural origins.| 34
[3.4 Graphical front-end for extracting object histories.|. 48
[4.1 Java program containing a bug found by using object histories.|. o1
[4.2 Object history for item in method checkout () from Figured.1}| 52
[4.3 Object history for field item.price in method checkout() from Figure|4d.1]| 53
[4.4 Code Change Example.|., 54
[4.5 Object history for fields A.al and A.a2 from Figureld.4| 56
[4.6 Object history for key in method GanttLanguage.getText().| 58
[4.7 Object History Size Distribution for Benchmarks.| 62
[4.8 Filtered vs unfiltered object history sizes for variables assigned from instance |

fields in jGraphX.|. 63

[4.9 Filtered vs unfiltered object history sizes for variables originating from in- |

stance method invocations in jGraphX.| 64

X1

Chapter 1

Introduction

To implement new features or diagnose problems in large software systems, developers
must first understand them. Given the drastic increase in complexity of modern software
systems, understanding is often difficult, time-consuming, and frustrating. To perform
even simple operations, developers must understand complex call chains and class hierar-
chies. Understanding large software systems is difficult since these systems typically contain
masses of implementation details. Finding a particular implementation detail needed for a
task at hand can be extremely challenging, time consuming and frustrating. More specif-
ically, programs often store objects on the heap and later retrieve and use them. Worse
yet, Java programs often put objects in the Java collection classes such as ArrayList and
HashMap and then later get objects from them. To successfully understand the program,
a developer must be able to trace the origin of any object in the program, including the
original creation site and all changes to the object while it is stored on the heap. Currently,
however, the only way of doing this is to manually trace an object through the call chain,
while accounting for adds and removes from collections all over the program.

This thesis presents a novel approach for extracting the evolution of objects from Java
programs as they pass through the heap using static analysis. Object histories provide a
succinct description of the events an object undergoes throughout the program’s execution.
Events include instantiation, reads from other objects’ fields or collections, writes to object
fields or collections, being passed to methods, as well as being returned from a method call.
These events incorporate the important changes an object undergoes as it moves through
the heap.

By using object histories, a developer can find the origin of any object and changes
made to it, anywhere in the program. This approach enables the developer to focus on
details relevant to the problem at hand. For example, suppose an object in a program has
an incorrect state causing a fault. A developer can simply obtain the object’s history to
find the buggy statement and rectify the problem quickly and efficiently.

1.1 Approach

The basic approach is to use static analysis techniques to build a database of key informa-
tion necessary to compute object histories. The database supports object history queries
to obtain the history of any object in the program. The database contains information
about each method that appears in the application as well as information about changes
to fields in the program. Individual object histories can be computed on-demand once
a developer identifies an object by a local variable name and containing method using a
database query.

The querying algorithm essentially works backward, starting with the current method
and variable name, and recursively extracts additional events from the database. The
algorithm progresses based on the history of the object found so far (e.g. field, parameter,
etc) and continues until no further information can be extracted. Pointer analysis is also
used during this process to filter out irrelevant events. Once the algorithm terminates, the
developer is presented with a trace of the object’s provenance through a graphical interface.

The information about each method contains a list of callers of the method, a list
of methods invoked within the method body, information about each argument used in
the method invocations, and an intraprocedural history analysis of the method. The list
of callers is used to traverse the call chain if the object of interest is a parameter or a
copy of a parameter to the method. The list of invoked methods and information about
arguments are useful for answering object history queries about variables that were passed
as arguments to other methods.

The intraprocedural history analysis of the method is a data flow analysis that gathers
the history of each object-typed local variable within the method. Variables are classified
as formal parameters, reads from fields, return values from a method call, new object
instantiations, or exceptions. Given the histories for all variables in the method body, our
system can answer queries efficiently. As mentioned earlier, the intraprocedural history
analysis for each method enables it to quickly find the immediate history of any object in
any method. History information also helps identify the steps required to gather additional
history details for the object of interest outside the method body such as traversing the
call chain or looking for field writes.

The other required component of our approach is information on fields in the program.
All events that happen to a field of a class are captured and stored. A field change includes
information on the kind of change (e.g. write, collection add), a reference to the abstract
object being mutated (the subject of the change), a reference to the abstract object being
added or removed (the indirect object of the change), and any relevant method arguments.

The approach described above is field based: we group events that happen to all fields
f of a particular class c. When querying the changes to field £ of object o, an instance of

class c, we use pointer analysis to filter out changes to all other fields £ of known different
instances o’ of class c. This approach is especially effective in Java program since most
field accesses happen on the this object due to setter and getter methods. We also found
that this filtering technique provides most of the advantages of a field-sensitive approach,
where we would store information about each instance separately.

Suppose we wish to obtain the history for object z in the method main () for the simple
Java program below.

1 class C {
> Object f, g;

1+ public static void main(String [] argv) {
5 C o =new C();

6 Cm=new C();

7 Object y = new Object ();

0 m.f = new Object ();
10 o.f = y;

11 o« o s e

12 Object x = o.f;

13

14 P-g = XJ

15

16

17 // Get object history for z
18 Object z = p.g;

19

20}

21 }

We compute the history of z in main() as follows. We observe that z is assigned from
a read of field g of an object of class C. Our field-based analysis tells us that the field
write at statement 14 is related to the read of C.g at statement 18, so the value for z
comes from the local variable x. The same local variable x is read from field C.f (line 12),
which was written at line 10 from variable y. This branch of the history terminates at the
instantiation of y at line 7. We filter out the other write to C.f at line 9 because its base
object, m, may not alias the base object o.

Object histories report all of the events that may happen to an object. Histories start
from a given program point, and include all related program events (both in the past and
the future, for objects that are stored on the heap at some point). In particular, object

histories include field reads and writes as well as collection manipulations involving the
object, and reach back to the original instantiation points of the object.

1.2 Results

In order to validate the feasibility and utility of object histories in real-world software
systems, we present two case studies, a bug fix in a medium-sized, open source Java
program, as well as some experimental results.

Specifically, we show the utility of using object histories for finding bugs related to a
variable v holding an erroneous state. To fix these types of bugs, we can simply extract
v’s object history to find the event that assigned v the erroneous state.

We also show how object histories can be used to better understand code change tasks.
For example, if we are interested in changing class C, we begin by simply extracting the
histories for all fields £ of C. The combined object histories help us to identify 2 key pieces
of information: 1) classes that are dependent on C, and 2) an estimate of the size of the
task. We can identify dependencies on class A by simply looking at the program points
where values for the fields of A originate. Thus, we know that when we change A, we must
also change dependent classes accordingly. We can get an estimate of the size of the task
by counting all the program points that contain events on fields of A.

Next, we present a sample bug fix from Gantt Project [2] as an example to demonstrate
the usefulness of object histories in real-world software systems. Gantt Project is an open-
source project management and scheduling tool that is maintained by an online community
of developers. It contains roughly 64,000 lines of code in 482 classes. We show how to fix a
typical user interface bug in Gantt Project with minimal understanding of the source code
by using object histories.

Finally, we present some quantitative results from studying three open source Java pro-
grams. Specifically, we discuss the distribution of object history sizes and the effectiveness
of our filtering algorithm.

1.3 Limitations

The research on object histories outlined in this thesis has some limitations due to design
decisions and available frameworks. This section briefly describes the limitations in the
implementation of the object histories.

Our implementation accounts for only methods that appear in the application classes.
Aside from Java collection methods, library methods are not accounted for while computing

4

method summaries. The main reasons for this decision are twofold: 1) in our experience,
we found that the Java collection library classes are the most relevant libraries that affect
object histories. While other library classes could also have an impact, we believe the effect
to be minimal because library classes generally do not manipulate fields of application
objects. 2) The computational overhead of including all library classes is significant, so
the memory requirements and time for running the algorithm would rise sharply. There
is, however, no conceptual barrier to including library classes.

Our approach for computing object histories is context-insensitive. This means that we
consider all callers of a method m when extracting the history of a parameter p to method
m. Context-sensitivity would allow us to eliminate callers that are not included in the
execution path leading the program point of the query.

Our approach is also flow-insensitive at the interprocedural level. In particular, we do
not account for the order of events that occur in a variable v’s object history. We simply
report all events on v. However, our intraprocedural history analysis is flow-sensitive at
the method level, which enables us to omit some irrelevant events within any method m.

1.4 Thesis Contributions

The major contribution of this thesis is to provide a fast, efficient, and easy to understand
solution for computing object histories enabling developers to quickly understand relevant
portions of large software systems. This thesis presents a novel approach which answers
queries about the evolution of objects throughout their lifetime in a program. These
on-demand object histories greatly aid in the maintenance of large software systems by
allowing developers to pinpoint relevant details quickly.

This thesis makes the following contributions.

e Notion of Object Histories: This thesis presents the idea of object histories.
Object histories are collections of relevant events which affect an object throughout
its lifetime in a software system. Developers can use the histories of important objects
in order to quickly understand key details essential for the task at hand.

e Filtering Histories: Object histories may contain a long list of events that may
not be relevant. In this thesis, an approach for filtering out irrelevant details (where
possible) is also presented. Filtering is accomplished by employing pointer analysis
and comparing points to sets for appropriate objects that appear in a given object
history.

e Algorithm for Computing Object Histories: Computing object histories can
be a difficult and time consuming task. This thesis presents a quick and efficient
algorithm for computing object histories without the need for building complex in-
terprocedural program dependence graphs. Initially, the algorithm builds a core set
of information for the entire program, which can later be queried repeatedly for
extracting the object histories for any object that appears in the program.

e Implementation of Algorithm and User Interface: The algorithm described
in the thesis is implemented in Java along with a graphical user interface. The
implementation allows developers to generate the core database and query it order
to obtain the history for any object in the program.

¢ Experimental Results: Finally, this thesis contains experimental results from using
the implementation on a number of realistic benchmark programs. The open source
programs used for experimental results vary in size and complexity, but confirm the
applicability and utility of our approach.

1.5 Thesis Organization

The remainder of this thesis is organized as follows.

We describe the notion of object histories in Chapter 2. We present each phase in
computing object histories by using easy to understand examples.

In Chapter 3, we present the details of computing object histories. We begin the chapter
with relevant background information and provide all details (including algorithms) about
our implementation of object histories.

In Chapter 4, we present our experimental results. We present two case studies to
highlight the usefulness of object histories for finding erroneous state and code change
tasks. Next, we demonstrate the utility of object histories for finding a bug in a real-world,
medium-sized, open source Java program. We conclude the chapter with some quantitative
analysis showing where we discuss the distribution of object history sizes along with the
effectiveness of our filtering algorithm.

We present research related to our work on object histories in Chapter 5. Finally, we
present our conclusions and directions for future work in Chapter 6.

Chapter 2

Object Histories

An object history summarizes the key events that happen to an object during its lifetime
in a program. In particular, an object history for object o is a set of events e, beginning
with o’s instantiation, that happen to it over the course of program execution. Events in
an object’s history include its instantiation, writes of o into a field, reads of fields, being
passed to a method as an argument (including being added to or removed from collections),
and being returned from a method as a return value.

Object histories are computed in two phases as shown in the boxes in Figure 2.1 The
first phase consists of preprocessing where our system first builds a database of necessary
information for the program of interest. Specifically, the database only contains information
about the application methods and field events. The second phase consists of an algorithm
for answering queries that queries the database on-demand to construct object histories
for any object in the program.

Target Object

R

; Querying
Preprocessin .
F}F'haE:at ? p| Event Algorithm Object
(Section 2.2) Database w/ Filtering History

(Sections 2.3, 2.4)

Figure 2.1: Architecture for computing object histories.

The next section provides a simple example to explain the concept of object histories
and demonstrate the high level process for computing them. Next, we present details about
the preprocessing phase followed by the querying algorithm which actually computes object
histories. Finally, we present the details of filtering object histories to eliminate irrelevant
events in an object’s history.

2.1 Motivating Example

This section provides a high level explanation of our approach to building a database of
events and computing individual object histories. Figure shows a simple Java program
that will be used to highlight our approach.

1 class X {
2 Object f;

s)

s public class Main {

6 public static void main(String[] args) {
7 X x1 = new X();

5 X x2 = new X();

9

10 fOO(Xl);

11 fOO(XQ);

12

13 bar(xl);

14 }

15
16 public static void foo(X x) {
17 x.f = new Object ();

18 }

19

20 public static void bar(X x) {

21 Object t = new Object ();
22

23 t =x.f;

24

25 // Get history for t

26 }
27 }

Figure 2.2: Example Java Program.

As mentioned previously, computing object histories consists of 2 stages. The first
stage preprocesses the program to compute a database of key events for all objects in the
program. The second stage consists of querying the database repeatedly to obtain the final
object history for a given object.

The first stage performs an intraprocedural history analysis for each method in the
program. This analysis computes the history of all variables at the method level. For the
example in Figure[2.2] the intraprocedural history analysis for method main () would mark
x1 and x2 as local instantiations due to the “new() X” statements within the method. The
variable args is marked as formal parameter 0 to the method. The intraprocedural history
analysis properly handles multiple definitions of a local variable at different points in the
method. For example, in method bar (), the variable t refers to a local instantiation until
line 22, but a field copy after line 23. Our analysis properly distinguishes the two different
t variables.

Given intraprocedural histories for all application methods, the next step is to compute
method summaries. The method summaries organize information necessary to compute
object histories for efficient look-up by our querying algorithm (Section. They include
a list of callers of the method, a list of invocations of other methods along with the list
of arguments passed to them, and the return values, if any. For method main() in the
program in Figure[2.2] the method summary would include 2 invocations of method foo ()
at lines 10 and 11 with parameters x1 and x2 and 1 invocation of method bar () at line
13 with parameter x1. Since the method is void and has no callers from the call graph,
nothing is recorded for its return value and its list of callers is empty. Method summaries
only need to be computed once for each program.

The final part of the preprocessing stage is to capture field events. We capture field
events separately from method summaries to quickly identify all changes to a field £ of
class C. Field events are field-based, meaning that we group events relevant to field £ of
all instances of a particular class, C. Of course, such an approach records many potentially
irrelevant events. We introduce filtering to eliminate many irrelevant events during the
querying stage. Filtering is a technique that compares relevant points-to-sets to determine
whether an event should be included in an object’s history.

In Figure[2.2] field £ of class X would be marked with 2 WRITE events in method foo ()
at line 17 (1 for each call to method foo()) as well as a READ event in method bar() at
line 23.

Once the preprocessing stage has been completed, we have a database of field and
method events that can be queried to obtain object histories. Consider a query for the
history of object t after line 23 in Figure It can be computed as follows:

1. Use method bar()’s intraprocedural history analysis to obtain history of t within
method bar () after line 23. The history will contain an assignment of field x.f to t
at line 23.

2. Query list of field events for all events that happened to field £ of class X. The list
will contain 1 field READ at line 23, 1 field WRITE at line 17 from call to foo() at

line 10, and 1 field WRITE at line 17 from call to foo() at line 11. Note that the
second WRITE is actually irrelevant to the history of object t since the parameter
used is x2. Step 3 therefore trims the set of events.

3. Filter irrelevant events by using the points-to-set for the instance of x at line 23
(which is x1) and intersecting it with each of the points-to-sets for the events in the
field history of X.£f. Only keep events that have a non-empty intersection. This will
eliminate the irrelevant field WRITE caused by the method invocation of foo() at
line 11 where x2 was passed.

The process described in this section is a high level overview of computing object
histories. The next sections will cover each stage of the process in greater detail.

2.2 Preprocessing Phase

We next discuss preprocessing in more detail. Recall that the preprocessing phase in
computing object histories consists of building a database of method and field events that
can be queried to compute object histories, and that this stage only needs to be run once for
a given program. The preprocessing stage collects intraprocedural history analysis results,
method events and field events, as well as some information necessary for the querying
algorithm. We next present the details of each of these sub-stages.

2.2.1 Intraprocedural History Analysis

The intraprocedural history analysis captures the method-level history of all variables
within a method body. Only changes to an object’s history within the scope of the method
are considered in this phase. More specifically, for each method m and each local variable
Unm, We compute the possible sources of wv,,. There are five possible sources: 1) m’s for-
mal parameters, 2) reads from fields, 3) return values from method calls, 4) new object
instantiations, and 5) catch exception handling blocks.

Figure [2.3] shows a simple Java method and Table [2.1] shows the results of its intrapro-
cedural history analysis.

10

public Object foo(Object pl) {
Object a = new Object ();

= w [V -

Object b = null;

try {
b = bar ();

} catch (Exception e) {
System.out.println (e.getMessage ());

}

1 Object ¢ = null;

12

13 if (b !: null)

© oo ~ (=] (e

14 c = pl;
15 else

16 C = a;
17

18 return c;
o}

Figure 2.3: Example Method.

Table 2.1: Intraprocedural History Analysis for method in Figure [2.3

Variable Name Origin Additional Information

pl PARAMETER._0O Line 1, Object pl

a LOCAL_INSTANTIATION Line 2, Object a = new Object()

b NULL_CONSTANT Line 4, Object b = null
METHOD_INVOCATION Line 6, b = bar()
EXCEPTION Line 7, catch (Exception e)
NULL_CONSTANT Line 11, Object ¢ = null
PARAMETER._0O Line 14, ¢ = pl

LOCAL_INSTANTIATION Line 16, ¢c = a

A variable v in a given method’s body may have multiple origins. This can occur
due to multiple assignments to v. For instance, variable ¢ has multiple possible sources
depending on whether b is null. In case a method has multiple exit points (due to multiple

11

return statements), the intraprocedural history analysis will be a union of all the individual
history analyses since it is necessary to capture all possible origins of local variables.

2.2.2 Method Summaries

We compute method summaries after completing the intraprocedural history analysis for all
application methods. Method summaries contain information which the querying algorithm
will use to compute an object history.

Method summaries for object histories contain relevant events and information required
for computing object histories. Specifically, they include 4 components: 1) the intraproce-
dural history analysis for the method, 2) a list of callers of the method, 3) a list of methods
invoked (along with their arguments), and 4) the return values, if any.

Figure [2.4] shows a simple Java program and Table |2.2] shows the associated method
summaries.

1 Main {

2 public void main() {

3 Object a = new Object ();
4

5 Object b = foo(a);

s}

5 public Object foo(Object x) {

9 Object o = new Object ();
10 “ .

1 Object x1 = x;

12 PN

13 return bar(x1);

14 }

16 public Object bar(Object b) {

18 if (b != null)
19 return new Object ();
20 return null;

21 }
22 }

Figure 2.4: Example Java program for demonstrating method summaries.

12

Table 2.2: Method Summaries for program in Figure [2.4]

Method Summary Component
Name

void main() Intraprocedural History Analysis

List of Callers
Invoked Methods

Return Values

Object foo() Intraprocedural History Analysis

List of Callers
Invoked Methods

Return Values

Object bar() Intraprocedural History Analysis
List of Callers
Invoked Methods

Return Values

There are a few points to note:

e Constructor Calls: The method summaries described above do not distinguish
constructor calls from regular method calls. This is because an object’s instantiation

may originate from a constructor call.

e Recursive Methods: Recursive methods are marked off with a flag to enable the

querying algorithm to identify them easily.

e Points-to-Sets: Points-to-sets for base objects in instance method invocations and
instance field reads or writes are also recorded in method summaries.
portant because we use a filtering technique based on pointer analysis to eliminate

irrelevant events from object histories.

13

Information

a: LOCAL_INSTANTIATION
b: METHOD_INVOCATION

Object() constructor
foo(): argument_0: a

x: PARAMETER.0

o: LOCAL_INSTANTIATION
x1: PARAMETER_O

main()

Object() constructor

bar(): argument_0: x1
METHOD_INVOCATION:
bar()

b: PARAMETER_0O

foo()

Object() constructor
LOCAL_INSTANTIATION
NULL_CONSTANT

This is im-

e Return Values: A method m may have multiple return values based on the control
flow graph. For example, method bar () in Table returns the null constant or a
local object depending on the value of b.

2.2.3 Aggregating Field Events

Field events are recorded separately from method summaries in our approach. Trying
to compute all possible field events in a program by simply using method summaries is
difficult. The difficulty arises since a field f of class C can be modified in several different
methods. By using method summaries alone, we cannot identify exactly which methods
modify £. The problem is further complicated because classes often use Java collections like
HashMap and ArrayList as fields and frequently manipulate them by adding and removing
objects to them. We use a field-based approach where events for all fields £ of class C
are grouped. This allows us to find changes to a field throughout the program efficiently,
but adds potentially irrelevant events to object histories. As mentioned previously, we use
a filtering technique based on comparing relevant points-to-sets to omit many irrelevant
events.

Field events are defined as writes to fields (o.f = x), reads from fields (x = o.f), and
method invocations where the field is the base of the invocation (x.f.add(o)). Figure
shows a simple Java program and Table shows the results of aggregating field events
on the program.

14

[w [-

© oo ~ (=] (e

class X {
public Object f;
private ArrayList 1;

public X() {
1 = new ArrayList ();
= new Object ();
¥

public void add(Object a) {
1.add(a)

}
}

class Main {

void main() {
X x = new X();
Object o = new Object ();
x.add(o);

Object ¢ = x.f:

int h = c.hashCode ();
}

void bar() {
X x1 = new X();
Object a = new Object ();
x1.f = a;
}
}

Figure 2.5: Example Program with Field Events.

15

Table 2.3: Aggregated field events for program in Figure [2.5]

Field Event Location Additional Information
X.f WRITE Line 7, X: X() f = new Object()
READ Line 22, Main: main() Object ¢ = x.f
METHOD_INVOKE Line 24, Main: main() c.hashCode()
WRITE Line 30, Main: bar() xl.f=a
X.1 WRITE Line 6, X: X() 1 = new ArrayList()

METHOD_INVOKE Line 11, X: add(Object) ladd(), argument_0: a

We aggregate field events to also capture events on variables that alias fields. In
the example shown in Figure 2.5 the method hashCode () is invoked on object ¢, which
aliases field x.f as a result of the assignment on line 22. Thus, we infer that the method
hashcode () is invoked on field x.f.

There can also be a case where one field is assigned the value of another field (x.f =
y.g). In this case, we record a field read event for y.g and a field write event for x.f.
This ensures that we account for events that may occur from aliasing. For instance, if we
wish to extract the history for x.f, our querying algorithm will also extract the history
of y.g because they are aliased. Note that aliasing occurs through temporary variables in
our implementation.

Our approach also accounts for changes to private fields from getter and setter meth-
ods. For example, in Figure above, suppose that class X contains getter (getF()) and
setter (setF()) methods for field f. In this case, we would record a field read from X.f in
method getF () and a field write to X.f in method setF () because we identify this object
with class X. Our approach is object-insensitive, however our filtering algorithm described
in Section has some advantages of object sensitivity.

The major problem with a field-based approach is that all field events on all instances
of class X are grouped. In Figure [2.5] we cannot distinguish the base objects in field write
x1.f = a (line 30) and £ = new Object() (line 7) because our algorithm simply treats
both events as a WRITE to X.f. If computing the history of x.f on line 22, both events
would be reported, even though x1.f = a on line 30 is clearly irrelevant because it does
not affect x.f in method main(). We present a more detailed description of the problem
and a technique for filtering out irrelevant events from object histories in Section [2.4]

16

2.2.4 Handling Java Collections

Java collection classes like HashMap and ArrayList are frequently used by Java programs
to store and retrieve objects so we must handle them. This section presents our approach
for handling collections.

Java provides collection interfaces and implementations of common collection data
structures. The fundamental Java collection interfaces are java.util.Map and java.util.
Collection. All Java collection classes directly or indirectly implement one of these inter-
faces. For example, java.util.ArrayList implements java.util.List, which extends
java.util.Collection. Therefore, we would mark java.util.ArrayList as a collection
class.

Aside from the Java collection classes, developers can also create custom collections.
We assume that developers mark these collections by directly or indirectly implementing
one of the fundamental collection interfaces. Thus, we identify collection classes by simply
checking whether a class directly or indirectly implements one of the fundamental collection
interfaces.

To account for additions and removals from collections, we track relevant collection
interface method invocations such as add(), put(), remove(), etc along with the argu-
ments passed to them and the target collection. These method invocations are marked
with a special COLLECTION_READ or COLLECTION_WRITE flag. The information
on collection method invocation and arguments is used to track what objects were added
to and removed from a particular collection.

Collection classes are typically used as fields of classes, parameters to a method, or as
a short-term data structure having scope within a method. Our approach for handling
collections is therefore structured accordingly:

e Collections as Fields: If a collection is a field of a class, all method invocations on
it will be recorded as part of the field events approach described in Section [2.2.3] In
particular, method invocations along with information about the arguments passed
and the base collection will be recorded. Additionally, if the invoked method adds to
or removes from a collection, it is marked with a special COLLECTION_READ or
COLLECTION_WRITE flag.

e Collections as Parameters: If a collection 1 is passed to a method m as a param-
eter, all method invocations on 1 will be recorded as part of m’s method summary.
Recall that m’s method summary contains all method invocations within m along
with a list of arguments passed to the invoked method. Again, if the method invo-
cation adds or removes from a collection, it is marked with COLLECTION_READ
or COLLECTION_WRITE flag.

17

e Collections with Method Level Scope: Collections that have method level scope
will also be recorded as part of the method summary. Specifically, the method sum-
mary will show the instantiation point of the collection and hold all invocations on
the collection with information about the arguments passed.

Figure [2.6) shows a sample Java program that contains various uses of collections. The

method addToList () simply adds an object to the 1ist field of class M. Method operate ()
uses a local collection, tempList, to store some objects it gets from parameter collection

pl.

[

1

13

14

15

16

17

18

19

20

21

22

23

24

import java.util.ArrayList;

class M {
private ArrayList list;

public void addToList(Object o) {
list .add(0);
}

}

class N {
public void operate(List pl, List p2) {
ArrayList tempList= new ArrayList ();

Object a = pl.get (0);
Object b = p2.get (0);

tempList.add(a);

M m = new M();
m.addToList (b);

Figure 2.6: Example Program highlighting collection events.

18

Table 2.4: Method Summaries for program in Figure [2.6]
Summary Information

M:void addToList(Object)
Intraprocedural History Analysis o: PARAMETER_0O
list: FIELD: M.list
List of Callers N: void operate(List, List)
Invoked Methods list.add(): arg 0: o, COLLECTION_WRITE
Return Values -

N: void operate(List, List)
Intraprocedural History Analysis pl: PARAMETER_0
p2: PARAMETER_1
tempList: LOCAL_INSTANTIATION
a: METHOD_INVOCATION, pl.get()
b: METHOD_INVOCATION, p2.get()
m: LOCAL_INSTANTIATION
List of Callers -
Invoked Methods List: pl.get(): arg 0: 0, COLLECTION_READ
List: p2.get(): arg-0: 0, COLLECTION_READ
ArrayList: tempList.add():
arg_0: a, COLLECTION_WRITE
M: m.addToList(): arg 0: b
Return Values -

The collection 1ist in method addToList () is a field of class M. Field event aggregations
capture a method invocation of add() with argument a and base list at line 7.

Table 2.4 shows the method summaries for the program in Figure The summary for
addToList () identifies 1ist as an ArrayList and thus marks the invocation of 1ist.add ()
as a COLLECTION_WRITE.

The summary for method operate() identifies parameters pl and p2 as collections
and thus marks invocations of pl.get() and p2.get() as COLLECTION_READs. The
local collection tempList is also marked off as an ArrayList and thus the invocation to
tempList.add () on line 18 is marked as a COLLECTION_WRITE.

The example discussed above shows that adds and removes from Java collection classes
are recorded within the method summaries or field events along with special collection

19

flags. These flags are later used to distinguish collection events and are used by the
querying algorithm which handles collections specially.

Our approach also accounts for iterators that read from collections. We map each
iterator to the collection that it traverses. For instance, in the statement Iterator i =
list.iterator(), we associate i with the collection 1ist. We mark an invocation of
i.next() as a COLLECTION_READ of 1list. Thus, when extracting the history of an
object obtained from an iterator (x = i.next()), we look for COLLECTION_WRITEs to
list.

The java.util.ListIterator interface allows programmers to add to a list object us-
ing the add () and set () methods of ListIterator. In this case, we mark each invocation
of add () and set() as a COLLECTION_WRITE to the collection being traversed.

2.3 Answering Queries

By combining intraprocedural object histories from several methods and field events, our
system provides useful information to developers about the provenance of objects of interest
in a program. This section presents an overview of our querying algorithm along with a
detailed example.

An object history query consists of a pair (m,v) where m is a method and v is a local
variable belonging to m. Our system answers a query with a sequence of history events.
Recall that events are instantiation, writes, reads, being passed to methods as an arguments
(including being added to or removed from collections), and being returned from a method
as a return value.

We combine local object histories to answer queries. Starting at method m, we report
events on variable v. If v is a return value from method m’/, we retrieve the method
summary for m’ and recursively report events for the return value of m’ using its history.
Similarly, if v is parameter n of method m, we use the call graph to fetch a list C' of callers
to m and recursively report events for actual parameter n of each call ¢ € C' to m. The first
two types of events are local effects, where the parameter is directly passed as a parameter
or return value from one method to another.

Finally, if v was read from field £ of class K, we report object histories for each write to
field £ of K. If v was retrieved from a collection ¢, we report histories for each addition to
collection ¢. (Our filtering algorithm helps eliminate irrelevant events.) These events are
non-local effects, where the object travels across the heap from one method to another. We
collect most of our history information from local effects but we also account for non-local
effects.

20

2.3.1 Comprehensive Example

Consider the example shown in Figure It presents interesting heap and collection-
based behaviour. More specifically, it creates a pair of Objects, stores them in collections,
and retrieves them again. To make the example more interesting, the program uses helper
methods to store and retrieve the objects from an underlying ArrayList field. This high-
lights the interprocedural techniques used in our approach.

21

= w [-

© oo ~ (=] (e

import java.util.ArrayList;
class M {
private ArrayList list;

public M() {
list = new ArrayList ();

}
public boolean addToL(Object a) {

return list .add(a);

}

public ArrayList getList () { return list; }

}

public class Main {
public static void main(String [] args) {
M m = new M();
M n = new M();

Object a = new Object ();
Object b = new Object ();

m.addToL(a);
n.addToL(b);

Main main = new Main ();
Object x = main.bar (m);
// x and a aliased after bar()

System.out.println (x);

1
public Object foo(Mm) {

return m. getList (). get (0);
}

public Object bar(Mm) {

return foo (m);
}

}

Figure 2.7: Comprehensive example used to illustrate object histories.

22

Suppose that we are interested in computing the object history of x in method main()
(line 26). Recall that the first step in answering queries is to build a database of core
events. For conciseness, we assume that the intraprocedural histories, method summaries,
and field events have already been computed as described in Section

The object history of x is computed as follows:

1. The first step is to obtain the intraprocedural history of x within main(). The
intraprocedural history analysis of main() would report that x was assigned from
invoking method bar () at line 26. Thus, we must find the origin of the return value
of bar ().

2. The summary for bar()’s will show that bar () returns a value from an invocation
of foo() at line 35. Thus, we must find the origin of the return value of foo().

3. The summary for foo() is interesting and shown in Table [2.5] Notice that intermedi-
ate variable, temp$0 is introduced to hold the ArrayList returned by m.getList ().
The return value for foo() comes from an invocation of method temp$0.get().
Because temp$0 has declared type ArrayList, the invocation of temp$0.get() is
marked off as a COLLECTION_READ. Thus, the return value of foo() comes from
collection temp$0 and we must find: 1) the original collection, 2) all COLLEC-
TION_WRITE events that added objects to the collection, and 3) the origins of each
object that was added to the collection.

Table 2.5: Method summary for method Main: Object foo(M) shown in Figure [2.7]

Summary Component Information

Intraprocedural m: PARAMETER_0

History Analysis temp$0: METHOD_INVOCATION:
M: ArrayList m.getList()

List of Callers Main: Object bar(M)

Invoked m.getList()

Methods temp$0.get(), argument_0: 0

Return Values METHOD_INVOCATION:

temp$0.get(), COLLECTION_READ

23

. To find the original collection, we need a stable name for the collection pointed to by

temp$0. We note that temp$0 comes from the return value of M: getList() using
the intraprocedural history analysis of foo (). Thus, we next look at the return value
of getList ().

. The intraprocedural history analysis for M: getList() will show that the return

value is the field list of class M at line 11. Hence, temp$0 in foo() points to
M.list. We must now find all COLLECTION_WRITE events to the field M.1list.

. To find COLLECTION_WRITE events on field M.1ist, we use the field events in-

formation for M.1list shown in Table The only COLLECTION_WRITE event
occurs in method addToL() on line 9 with argument a. Thus, we must now find the
origin of a.

Table 2.6: Aggregated field events for M.1list for program in Figure 2.7

Event Location Additional Information

WRITE Line 6, M: M() list = new ArrayList()
METHOD_INVOKE Line 9, M: boolean addToL() list.add(): argument_0: a,

COLLECTION_WRITE

READ Line 11, M: ArrayList getList() return list

10.

Using the intraprocedural history analysis of addToL (), we find that a is parameter
0 to the method. Thus, the true origin of a could be any argument that was passed
to addToL (). We must now find all callers of addToL() and obtain the history of
argument 0 in the invocations. Note that our approach does not account for the
order of invocations of addToL ().

Using the method summary for addToL (), we find that it was invoked twice in method
M: main() at lines 22 and 23 with arguments a and b respectively. The bases in the
invocations are m and n, respectively. We must now find the history of arguments a
and b in method M: main().

Method M: main()’s method summary immediately informs us that a and b are local
instantiations at lines 19 and 20.

Because there are no further paths that can be expanded, the algorithm terminates
by concluding that x originates from a or b in method M: main() at lines 19 and 20
respectively.

24

By looking more closely at the code, we note that x is really the variable a from method
M: main(). Only the call to addToL () at line 24 is relevant because the base, m, was passed
to method bar () at line 29. Therefore, the invocation n.addToL() at line 25 is irrelevant
in the object history of x. The next section on filtering explains our approach to eliminate
the call to addToL () at line 25 from the history of x.

2.4 Filtering

Our approach for handling field events is field based. While this method is fast, it causes
irrelevant events to be included when computing object histories. Irrelevant events in an
object history can also occur by simply using method summaries since different instances of
the receiver object cannot be distinguished in a context-insensitive analysis of the method
body. This section describes our approach for filtering out irrelevant events in object
histories.

Consider the instance field READ v = o.f of field £ belonging to class C. Our raw algo-
rithm considers all WRITESs to field C. £, which would include several irrelevant WRITEs.
Filtering reduces this set of WRITEs by running a points-to analysis query on every write
to p.f checking that o may alias p.

Object history queries encounter instance invokes n.foo() when traversing the in-
traprocedural history information, say for a method m(). But the intraprocedural history
information also contains information about all of the callers to m(), including points-to in-
formation about the base and parameters tom() at each of the sites calling it. Our filtering
information rejects the call to n.foo() if it is inconsistent with the points-to information
it has collected.

Filtering is therefore a postprocessing phase which filters the analysis results based
on pointer analysis information before presenting the results to the user. To implement
filtering, we augment our abstraction with all relevant points-to sets, and record them as we
compute our intraprocedural histories, summaries, and aggregate field events. In response
to a query, we filter method invocation events which correspond to calls to instance invoke
statements as well as READ field events corresponding to reads of instance fields. (Our
histories also account for static methods and fields.) The next section presents details on
identifying filtering criteria.

2.4.1 Filtering Context

In order to filter successfully, it is important to know what points-to-sets to compare at
different points in the querying algorithm. To address this problem, we introduce the

25

notion of a filtering context. The filtering context provides the relevant points-to-sets for
every point in our filtering algorithm. More specifically, a filtering context contains 1)
the points-to-set for the base of instance method invocations and instance field events, 2)
the points-to-sets for each of the parameters to the method being analyzed, and 3) the
points-to-set for this.

We determine the filtering context as the first step when extracting the object history
of a variable. As the querying algorithm moves through different method and field events,
we update the filtering context to always contain relevant points-to-sets for the base of
instance methods and fields, the parameters, and this.

Consider the Java program shown in Figure 2.8l Suppose we wish to compute the
object history of x on line 19. We would first look up the return value of foo() and find
that it returns the field C.f. Next, we simply look up all WRITE events to C.f and find
2 WRITE events on lines 14 and 15. However, we cannot eliminate the WRITE event
on line 15 without using filtering. More specifically, we compare the points-to-set for the
instance ¢ on line 25 with the points-to-set for c1 and c2. These comparisons yield that c
may alias c1, but does not alias c2, hence we can eliminate the field WRITE on line 15.

As mentioned before, tracking the filtering context throughout the querying algorithm
helps to correctly identify which points-to-sets to use. The process of computing the object
history of x using filtering is described as follows:

1. The object x was assigned from the invocation of instance method N: foo(C). The
filtering context points-to-sets at this point are: (base=n), (param0=cl), (this=n).

2. The return value of N: foo(C) originates from an instance field READ of C.f. The
filtering context points-to-sets at this point are: (base=cl), (paramO=cl), (this=n).

3. There are 2 field WRITE events on field C.f on lines 14 and 15 with bases c1 and
c2 respectively. The intersection of the points-to-set for the base, c1, in the filtering
context in Step 2 with the points-to-set for c1 is non-empty. Therefore, field WRITE
on line 14 should be included in the object history of x. However, the intersection of
the points-to-set for the c1 and c2 will be empty and thus the field WRITE on line
15 will be eliminated because it is irrelevant.

26

1 class C {
2 Object f;

s}

s public class N {

7 void main() {

5 C ¢l = new C();

o C ¢2 = new C();

10

1 Object a = new Object ();
12 Object b = new Object ();
13

14 cl. f = a;

15 c2.f = b;

16

17 N n = new N();

18

19 Object x = n.foo(cl);

20

a

22

23 Object foo(C c¢) {
24 return c.f;

25 }

%6}

Figure 2.8: Java program highlighting the use of filtering.

The approach described above is also used to filter out irrelevant instance method
invocations. In this case, we simply look up the callers of a method m and reject each caller
c where its base points-to-set has an empty intersection with the this points-to-set of m.
Intuitively, this type of filtering eliminates other callers of m; such callers are inconsistent
with the current context of m. We next revisit the example shown in Figure to highlight
this approach.

Recall that in Section [2.3.1] we described the process for computing the object history
of x at line 26 without filtering. In particular, our raw algorithm was unable to eliminate
the call to addToL() at line 23. However, we can use the filtering context to eliminate it
as follows:

27

1. At the query statement (line 26), the filtering context points-to-sets are: (base=null),
(param0=m), (this=main). The filtering context remains the same after our algo-
rithm inspects bar ().

2. In method foo (), we must change the filtering context before analyzing M. getList ().
In particular, we must map the points-to-set for m to the points-to-set for this in M.
The filtering context points-to-sets are now: (base=null), (param0O=null), (this=m).

3. Recall that to find the history of a in addToL(), we must analyze each invocation
of addToL(). However, we only include invocations where the base object in the
invocation may alias this, in the context of the original query. In particular, we
intersect the points-to-set for each base object b in all invocations b.addToL () with
the points-to-set for this in the filtering context. We only include events where
there is a non-empty intersection. In our example, we intersect the points-to-set for
this in the filtering context with the points-to-sets for m and n at lines 22 and 23
respectively. Because the points-to-set for this in the filtering context is the same as
the points-to-set for m, we keep the invocation m.addToL () and discard n.addToL().

28

Chapter 3

Realizing Object Histories

In Chapter 2, we described the notion of object histories. We also showed how we compute
object histories in two phases using various examples. In this chapter, we provide detailed
descriptions of computing object histories as well as details on our implementation.

The first phase of building object histories consists of preprocessing a target Java pro-
gram and building a database of key events. The database contains events that happen to
fields, summaries for methods, and relevant points to sets. The second phase responds to
user queries by repeatedly querying the database to extract the target object’s history as
it moves through the heap during the program’s execution.

Our approach for computing object histories employs static analysis techniques. To
build the database of events, we analyze and organize all program statements, objects,
and methods in the target program. Because we analyze Java programs, we wrote our
implementation using the Soot [24] bytecode analysis and transformation framework.

This chapter describes our implementation of object histories along with relevant back-
ground information. Section|3.1|will provide background information on static analysis and
some implementation details. Next, we present the details of the algorithms for querying
the events database along with our approach for filtering irrelevant events. We conclude
the chapter with a brief look at the user interface of our implementation.

3.1 Background

In this section, we present relevant background on techniques we used to compute object
histories. In particular, we perform static analysis on the target program for building
our events database and employ a filtering technique based on pointer analysis to discard
irrelevant events in object histories. Our implementation of object histories uses the Soot

29

framework with SPARK for points-to information. Thus, we present some background
information on static analysis, pointer analysis, SPARK, and Soot in the next few sections.

3.1.1 Static Analysis

Static analysis is a technique for analyzing the source code of a program to estimate a
program’s runtime behaviour without actually executing it. Because the program is never
executed, fully-precise static analysis is generally undecidable and must use approxima-
tions [10, [I]. Most practical difficulties arise from estimating the effects of conditional
statements and values of pointers. For example, consider the following snippet of code:

if (...)
y=1
else

y=0

During program execution, y is either 0 or 1 because only one branch in the conditional
statement is executed. However, which branch is executed cannot be determined statically,
most importantly due to the Halting Problem [10]. To tackle this problem, static analysis
assumes that both branches are executed. Generally speaking, static analysis assumes that
all paths in a program are executable [I]. While there has been some work in identifying
branches that cannot be executed (for example [25 3] [I8]), these approaches can only
approximate the runtime behaviour of software.

3.1.2 Pointer Analysis and SPARK

Static analysis of languages with pointers and dynamic storage such as Java and C is
hard: finding the exact runtime values of variables in static analysis is generally uncom-
putable [I0]. In particular, two or more variables could point to the same memory location.
The concept of aliasing is used to describe this situation. We say that variables x and y
alias each other if they point to the same memory location at some point in the execution
of a program. In that case, a write to x will also change the value of y, implying that
the object pointed to by y might change unexpectedly. Finding these aliases statically is
challenging [12, [T1].

There are two types of aliasing: may alias and must alias. If variables x and y alias
in some execution of the program, we say that x and y may alias. If x and y alias on all
executions of the program, we say that x and y must alias. We can extract may alias and
must alias information for a program by using pointer analysis.

30

Pointer analysis (points-to analysis) [7] is a technique for determining the set of memory
locations to which a variable may point. Pointer analysis essentially divides the heap into
discrete abstract locations. Each abstract location corresponds to memory locations in
concrete executions of the program. A points-to set for a variable x represents a set of
heap locations that x may point to. By using points-to sets, we can determine whether
a pair of variables x and y alias by simply intersecting their points-to sets. An empty
intersection means that x and y do not alias.

In the context of object histories, we use points-to sets to filter out irrelevant events
when computing object histories (Sections , . Specifically, we intersect points-to
sets relevant to our query with points-to sets for an event e. We only report e if there is a
non-empty intersection. Our methodology ensures that event e is relevant to our query.

To obtain points-to-sets for variables in a target program, we use the SPARK [I3]
Java points-to analysis framework. We chose SPARK because it is easy to use and it is
integrated into the Soot Java bytecode analysis framework, enabling static analysis on
Java programs using a single analysis framework. In the next section, we present some
background information on Soot.

3.1.3 Soot

Soot [24, 23] is a Java bytecode analysis framework. Its purpose is to enable the analysis
and transformation of Java bytecode. Soot can be used as a tool to inspect class files or
as a framework to develop software that operates on Java bytecode.

Soot transforms Java bytecode into intermediate representations to perform various
optimizations. We implement our preprocessing stage (Sections as a bytecode
transformation module that operates on the Jimple intermediate representation of a target
Java program. Specifically, our object history module performs the intraprocedural object
history analysis, builds method summaries, and aggregates field events. We present details
of the Jimple intermediate representation in the next section.

3.1.4 Jimple

Jimple [24] 23] is an intermediate representation of Java bytecode used by Soot. Jimple
was introduced because Java bytecode is difficult to manipulate and optimize. The diffi-
culty arises because Java bytecode is stack-based, which introduces implicit dependencies
between statements.

Jimple is a typed, 3-address code representation of Java bytecode. Figure |3.2] shows
the Jimple representation for the example program shown in Figure [3.1].

31

1 public static long fibonacci(int n) {
2 if (n <= 1) {

3 return n;
o}
5 return fibonacci(n—1) 4+ fibonacci(n—2);

5)

Figure 3.1: Java method in original form.

public static long fibonacci(int)

{

int n, temp$1l, temp$4;
long temp$0, temp$2, temp$3, temp$s, temp$6;
n := @parameter(: int;
if n <= 1 goto labelO;
goto labell;

labelO:
nop;
temp$0 = (long) n;
return temp$0;

labell:
nop;
temp$l = n - 1;
temp$2 = staticinvoke <Example: long fibonacci(int)>(temp$1);
temp$3 = temp$2;
temp$4 = n - 2;
temp$5 = staticinvoke <Example: long fibonacci(int)>(temp$4);
temp$6 = temp$3 + temp$5;
return temp$6;

}

Figure 3.2: Jimple representation for Java method in Figure [3.1]

Because Jimple is a 3-address code, it introduces temporary stack variables such as
temp$1 and temp$2 to hold intermediate values in complex statements. Also, note that all
variables are given explicit types. Thus, the Jimple representation of a program greatly
simplifies analyses and transformations. We describe the relevant parts of Jimple repre-
sentation for computing object histories, as needed, in the next few sections.

32

3.2 Preprocessing

Having described relevant background information, we now present details of our imple-
mentation of object histories. We start by describing the preprocessing phase. The goal
of this phase is to build a database of events that can be queried to extract object histo-
ries. The preprocessing phase is written in Java using the Soot Java bytecode analysis and
transformation framework and operates on the Jimple intermediate representation for the
target program. Preprocessing consists of performing an intraprocedural history analysis
on each application method, computing method summaries, and aggregating field events.
The next 3 sections describe each of these steps in detail.

3.2.1 Intraprocedural History Analysis

The intraprocedural history analysis is a fundamental component of the events database.
It holds information about the origin of all variables within a method body. The intrapro-
cedural history analysis executes on every application method and the results are recorded
as part of the method’s summary:.

The intraprocedural history analysis is a flow-sensitive data flow analysis. The analysis
processes each statement and identifies the origin of each variable encountered. Origins of
variables are propagated forward until the end of the method body.

Variable values in a method may originate from a local instantiation (x = new Foo()),
an exception handling block (catch e), a return value from a method invocation (return
x), a field read (x = o.f), or a formal parameter to the method. Our data flow analysis
simply looks for definition statements and uses the type of the right operand to determine
a variable’s intraprocedural origin.

Figure [3.3] shows a sample Java program and Table [3.1] shows the origin of each of the
variables along with the relevant Jimple representation.

33

10

11

12

13

14

15

16

17

public class Main {
static Object f;
public static void main(String [] args) {

Object o = new Object ();

try {
exceptionThrowingMethod ();

} catch (Exception e) {

}
Object x = m();
Object y = f;

Figure 3.3: Example method showing different intrapocedural origins.

34

Table 3.1: Jimple representation of the origins of variables from Figure [3.3

Name Origin Right Jimple Representation
Operand
o Local New Expression temp$0 = new java.lang.Object;
Instantiation specialinvoke
temp$0.<init>()>;
0o = temp$0;
e Exception Exception e := Qcaughtexception;
Handling Reference
Block
X Method Invoke temp$0 =
Invocation Expression staticinvoke
<Main: java.lang.0bject m()>();
x = temp$l;
y Field Read Field Reference y = <Main: java.lang.Object £>;
args Formal Parameter args:=@parameter(: java.lang.String[];
Parameter Reference

From Table [3.1] we can see that all necessary information about the origin is found
within the Jimple representation. For instance, consider the Jimple representation for x
= m() in the Table[3.1] The Jimple representation informs us that m() is a static method
from class Main that accepts no parameters and returns a java.lang.0Object.

Variables may have different origins at different points in the method. For example,
the conditional assignment x=foo() below means that x’s intraprocedural origin may be
from a local instantiation, from the return value of foo() or the return value of bar().

Object x = new Object();

it ()

x = foo();
else
x = bar();

35

In order to account for multiple assignments, we store all possible origins of a variable.
At control-flow merges, we take a union of the data flow sets (representing variable origins)
from each conditional branch.

We define the data flow set used in the flow analysis as a map of key-value pairs. The
key is the variable name and the value is a list of possible origins along with relevant
information. Table shows what information is kept depending on the origin of a

variable.

Table 3.2: Data flow set organization in the intraprocedural history flow analysis.

Variable

Name

name

Origin

LOCAL_INSTANTIATION

EXCEPTION

METHOD_INVOCATION

FIELD _READ

PARAMETER

Additional Information

[Line Number]
[Points-to-set]
[Program Statement]

[Line Number]
[Points-to-set]
[Program Statement]

[Line Number]

[Points-to-set]

[Method Signature]

[Base Name] if instance invocation
[Base Points-to-set]

[Line Number]
[Points-to-set]
[Field Name]
[

Base Points-to-set] if instance field

[Line Number]
[Points-to-set]
[Parameter Number]

The data flow analysis populates the data flow set by extracting the necessary infor-
mation from the Jimple representation of assignment statements, as shown in Table [3.1]
As mentioned previously, the intraprocedural history analysis is performed for each ap-

36

plication method and the results are stored in the method’s summary. The next section
describes the implementation details of method summaries.

3.2.2 Method Summaries

Once we have executed the intraprocedural history analysis on a method m, we combine
the results with additional information about m to form method summaries. Method
summaries are crucial in answering queries about the history of a particular object. They
contain information about events that occur in a method body. Method summaries by
themselves are enough to answer queries for objects which are never read from fields nor
written to them.

Our implementation for computing method summaries is simple. We analyze the Jim-
ple [24] representation for each program statement and extract appropriate information.
Recall that method summaries are composed of 4 parts: 1) the intraprocedural history
analysis of the method, 2) a list of callers of the method, 3) a list of methods invoked with
a list of arguments passed to them, and 4) the return values, if any. A method summary
also contains the relevant points-to-sets for objects in its body.

The information in the method summaries is used by our querying algorithm to extract
object histories on-demand. The intraprocedural history analysis of the method informs
us about the method level origin of each variable in the method. A list of callers is used
to extract the history of a parameter to the method by finding its history in each of the
callers. The list of invoked methods allows us to find the call sites for invoked methods
and the arguments that were passed. Finally, if a variable was assigned from the return
value of method m, the return values in m’s method summary allow us to quickly find all
origins for each of m’s return values.

The information for each component of the method summary is obtained as follows:

1. Intraprocedural History Analysis: The intraprocedural history analysis is com-
puted as described in Section for each application method and the results are
stored once the analysis is completed.

2. List of callers: The list of callers to a method is extracted from the call graph of
the program. This list contains each caller ¢ of method m only once even if there
are multiple invocations of m. We do, however, hold different invocations of m in the
caller’s method summary.

3. List of invoked methods and arguments: If the method contains a method in-
voke expression, we include information about the invoke in our method summary.

37

Specifically, we include the signature of the invoked method, the names of the ar-
guments used in the invocation, their points-to-sets, and the name and points-to-set
for the base object, if it is an instance method invocation. This information is then
added to the list of invoked methods.

4. Return Values: Extracting return values is simple using the Jimple representation.
If the method is not void, we identify return statements and record the return value.
Multiple return values are recorded if there are multiple return statements based on
the control flow graph.

Once the method summary is completed for a given method, the summary is stored in
a global method summary map of key value pairs. The key is the method’s signature and
the value is its method summary. This map is part of the events database that is built
during the preprocessing phase.

3.2.3 Field Events

To build a complete events database, we also build information about field events. Fields
in classes can be modified by several methods within the class body as well as methods
from other classes. Simply using method summaries to extract the history of a field would
be extremely inefficient. Therefore, we aggregate field events to quickly extract the history
of events on a field.

Field events are the second and final component of the events database. During pre-
processing, we store information about events that occur on fields. Field events are defined
as READS, WRITES, or method invocations on fields throughout a program. Recall that
our approach for aggregating field events is field-based, meaning that we group all events
on field f of all instances of class C. Of course, this approach will lead to several events in
the object history which may not be relevant to a particular instance of C. To eliminate
irrelevant events in the history of an object, we apply pointer analysis based filtering to
identify relevant field events and discard the rest.

Field events are easily identified in the Jimple representation of program statements.
Table[3.3|shows the Jimple representation of a field READ, WRITE, and method invocation
on static (STAT) and instance (INST) fields.

38

Table 3.3: Jimple representation for static and instance field events.

Java Statement Event Type Jimple Representation

X.f=a; STAT FIELD WRITE <X: java.lang.0bject f> = a;

a = X.f; STAT_FIELD_READ temp$0=<X:java.lang.0Object £>;
a = temp$0;

X.f.toString() STAT_FIELD_INVOKE temp$0=<X:java.lang.Object f>;

temp$l = virtualinvoke
temp$0.<java.lang.0Object:
java.lang.String toString()>Q);

x.f = a; INST_FIELD WRITE x.<X:java.lang.Object f> = a;

a = x.f; INST_FIELD_READ temp$0=x.<X: java.lang.Object f>;
a = temp$0;

x.f.toString() INST_FIELD_INVOKE temp$0=x.<X: java.lang.Object f>;

temp$l = virtualinvoke
temp$0.<java.lang.0Object:
java.lang.String toString()>Q);

There are a few points to note:

Static vs. Instance fields: Instance fields are identified if the Jimple representation
contains a base for the field reference. For instance, the Jimple statement for x.f =
a contains a x. before the class name, identifying x as an instance of class X. Static
fields on the other hand, have no base specified. This is clear by looking at the Jimple
representation for X.f = a that contains only the class name, X, and the field name,
f.

Field Copy variables: To properly handle field events, we must also account for
events that happen to variables that originate from a field read. Note that the
Jimple representation for static or instance FIELD READS or method invocations
introduces intermediate variables. In Table [3.3] the intermediate variable temp$0 is
introduced in both static and instance field reads.

To account for these intermediate variables, we introduce a FIELD_COPY label to
represent a value that originates from a field READ. The original field is stored
with the FIELD_COPY variable name for easy access later. In Table [3.3] temp$0
would be marked as a FIELD _COPY because the right operand in its definition is
a field reference. When our analysis encounters the Jimple statement a = temp$0,
we immediately mark the event as a static FIELD_READ on X.f because we know

39

that temp$0 is a static FIELD_COPY of X.f. A similar approach is used to identify
method invocations on fields by using FIELD_COPY variables.

e Points-to-Sets: Once a field event is identified, relevant points-to-sets are also
stored to be used by our filtering algorithm. For instance field events and method
invocations, the points-to-set for the base is recorded along with the points-to-sets
for the arguments passed, if any. Our filtering algorithm compares points-to-sets to
determine if events are relevant to a target query. We intersect the target points-
to-set with the points-to-sets for a given event and if there is an empty intersection,
we discard the event. We will present details about our technique for filtering in

Section B.4]

Field events are stored in a global field events map composed of key-value pairs. The
key is the fully qualified field name, and the value is the list of field events. The field
events map is simply written to disk as part of the events database. Once field events
have been aggregated, the events database is complete and several queries can be answered
on-demand.

3.2.4 The Events Database

As mentioned previously, we store information about events on all variables and methods
in an events database to be used by our querying algorithm later. The events database is
composed of a method summaries map and a field events map. The method summaries
map contains key-value pairs where the key is a method signature and the value is the
corresponding method summary. The field events map also contains key-value pairs with
the key being the fully qualified field name and the value is a list of events that happen to
the field along with other useful information about the event.

3.3 Answering Queries

By combining method summaries and aggregated field events, our system can compute the
history of any object in a program. To answer object history queries, we recursively query
the events database until no further events relevant to the target object can be extracted.
This section presents the algorithm in detail.

Recall that an object history query consists of a pair (m,v) where m is a method and v
is a local variable belonging to m. Our system answers a query with a sequence of history
events. Events are instantiation, writes, reads, being passed to a method as an argument

40

(including being added to or removed from collections), and being returned from a method
as a return value.

The querying algorithm to obtain the history of variable v in method m is shown in
Algorithm Algorithm produces a list of events that describe the object history
for variable v found in method m. This history will report all possible origins of v along
with details about each origin (e.g. passed as parameter, field read, etc.) and the location
of each of the events (e.g. line number, method name, etc).

The algorithm accepts the target object’s name v and the method name m as parameters

41

and recursively reports v’s history.

Algorithm 3.3.1: GETHISTORY (v, m)

summary <« GETMETHODSUMMARY (m)

originList < GETORIGINLIST(summary, v)

for each origin € originlList

(if origin is local instantiation or origin is exception
then report line number and instantiation statement

else if origin is parameter,
(report origin is parameter n and line number
caller List «— GETLISTOFCALLERS(m)
for each caller € callerList
caller Summary < GETMETHODSUMMARY (caller)
do ¢ arg «— GETARGNAMEININVOKE(n, m, caller Summary)
\ GETHISTORY (arg, caller)
else if origin is field
report origin as a field and line number
do then < fieldName «— GETFIELDNAME(origin)
GETFIELDHISTORY (fieldName)
else if origin is method invocation
(invokedM ethod «+ GETINVOKEDMETHOD (origin)
if invokedMethod is a collection method
report origin is from a collection
then < base <« GETCOLLECTIONBASE(origin)
GETCOLLECTIONHISTORY (base, m)
report origin is from method invocation
iSummary «— GETMETHODSUMMARY (invokedM ethod)
else < returnValList «— GETRETURNVALUES(iSummary)
for each returnVal € returnValList
do GETHISTORY (returnVal, invokedM ethod)

then

then

\ \
return

In the outside loop, we explore each origin for v to extract its history. If origin is a
local instantiation or from an exception block, the algorithm terminates.

If origin is parameter n to method m, we obtain the list of callers of m, caller List,
from m’s method summary. For each caller, caller, we get the caller’s method summary,
caller Summary, and the argument n used in the invocation of m. Finally, we extract the
object history of argument in method caller.

42

If origin is a field, we simply obtain the history of all events on the target field,
fieldName. The algorithm for obtaining the field history simply reports all field events
on fieldName.

Finally, if origin is returned from a method invocation, we check whether the invoked
method has a COLLECTION_READ or COLLECTION_WRITE flag attached to it. If a
collection flag is present, we extract the history of the collection, base, in method m. We
present the details of obtaining the collection history in Section [3.3.1]

If the invoked method is not a collection method, we simply obtain a list of its return
values, if any, from its method summary. Next, for each return value, returnVal, we obtain
its object history.

3.3.1 Handling Collections

In Section [2.2.4] we described our approach to handling events on a collection. This section
presents details on identifying collections and the algorithm for computing collection events.

To properly extract the histories of objects that get stored in collections, we must find
additions and removals from collections. Recall that we identify a variable v as a collection
by checking whether v’s type directly or indirectly implements one of the fundamental
collection interfaces, java.util.Map or java.util.Collection. Once v is identified as a
collection, we compare the signature of each instance method invocation with v as the base
with known collection method signatures that add or extract objects from collections. For
instance, suppose c is an instance of ArrayList. Then, we mark the invocation, c.get (0)
as a COLLECTION_READ because the invoked method signature, ArrayList: Object
get (int) belongs to a known collection method.

Once we identify a variable v as a collection, we must find all collection events on v.
Collection events are method invocations that add to or remove from collection v. To
find the history of an object that was retrieved from a collection, we simply look for all
additions to the collection and obtain the history for each addition.

The first step in finding collection events is to look for them in the current method m.
The algorithm for computing collection events for a collection base found in method m is
shown in Algorithm [3.3.2] The algorithm looks for collection methods invoked in m and

43

obtains the history of the arguments used in the invocations.

Algorithm 3.3.2: GETCOLLECTIONHISTORYINMETHOD (base, m)

summary <« GETMETHODSUMMARY (m)
invokedMethodList < GETINVOKEDMETHODS(summary)
for each invokedMethod € invokedM ethodList
if invokedMethod is a collection method
report addition to collection
then < argument «— GETARGUMENTFORMETHOD (invokedM ethod)
GETHISTORY (argument, m)

do

return

To find all events on a collection, we must also consider the origin of the collection itself.
For example, if an object is obtained from collection ¢ in method m and c is a parameter
to m, we must get callers of m and obtain the history of the collection ¢ to report all
collection reads and writes on c. For each origin for a collection ¢, we must get the history
of all objects that were added to c.

Algorithm presents our methodology for finding the origin of a collection base in
method m and extracting the history of all additions to it. Note that it is very similar to the
algorithm for answering queries shown in Algorithm because the process for finding
the origin of a variable, regardless of whether it is a collection or not, remains the same. We
choose to implement a collection customized algorithm to handle COLLECTION_READ
and COLLECTION_WRITE events and find the histories for objects that were added to

44

these collections.

Algorithm 3.3.3: GETCOLLECTIONHISTORY (base, m)

GETCOLLECTIONEVENTSINMETHOD (base, m)
summary < GETMETHODSUMMARY (m)
originList « GETORIGINLIST(summary, base)
for each origin € originlList
(if origin is parameter,
(report collection is parameter n and line number
caller List < GETLISTOFCALLERS(m)
for each caller € callerList
caller Summary < GETMETHODSUMMARY (caller)
do { arg < GETARGNAMEININVOKE(n, m, callerSummary)
\ GETCOLLECTIONHISTORY (arg, caller)
else if origin is field
report origin as a field and line number
then < fieldName «— GETFIELDNAME(origin)
GETFIELDCOLLECTIONHISTORY (field N ame)
else if origin is method invocation
invokedSummary < GETMETHODSUMMARY (invoked M ethod)
returnValList < GETRETURNVALUES(invokedSummary)
for each returnVal € returnValList
do GETCOLLECTIONHISTORY (returnVal, invokedM ethod)

then

do

then

\
return

The first step in the algorithm above is to extract the history of all collection events
found within m. This is accomplished by invoking Algorithm [3.3.2]

Next, we use the method summary for m, summary, to obtain a list of origins for
base. Note that if the base is a local instantiation, the algorithm terminates because all
collection events would be found by Algorithm [3.3.2]

If base is parameter n to m, for each caller caller of m, we obtain argument n in the
invocation of m, and recursively extract collection events.

If base is a field, we find the original field, field Name and extract all field events on it.
We only report COLLECTION_READ and COLLECTION_WRITE events in this case.

Finally, if base is the return value from invocation of a method, invokedMethod, we
extract a list of return values for invokedMethod and extract the history for each return
value.

45

Note that the algorithms presented in this section do not filter any results. Specifically,
the algorithms shown above will report events that may be irrelevant to a given query
because we do not filter the results. We describe our approach to filtering out irrelevant
events in object histories in detail in the next section.

3.4 Filtering

Filtering enables us to discard irrelevant events in an object’s history. Our raw querying
algorithms report irrelevant field events because our approach is field-based, meaning that
we group all events on field f of class C. Additionally, if the origin of a variable v is a
parameter to method m, events from all callers of method m are reported even if some
invocations of m may be irrelevant. That is, we do not check if the base in the invocation
to m aliases this for our query.

In this section, we present details on our approach to filtering. Recall that we filter
instance field and method invocations by intersecting points-to-sets for the base with the
points-to-sets relevant to the query. Intersecting points-to-sets informs us whether two
objects may alias or not. If we find an empty intersection, we know that the two objects
are distinct. We obtain and store points-to-sets for variables during the preprocessing
phase.

While answering queries, we must ensure that events we report are relevant to our target
object. To keep track of what is relevant, we use the notion of a filtering context. The
filtering context holds relevant points-to-sets used in filtering instance method and instance
field events. Specifically, the filtering context contains the points-to-sets for the relevant
base in instance fields or instance method invocations, arguments passed to an invoked
method, parameters, and this. Each time the querying algorithm searches for history
events outside a method, the filtering context is updated and passed on as a parameter to
the recursive query. This ensures that the context in the original query is preserved as the
algorithm recursively extracts an object’s history.

Our filtering technique filters instance field events and instance method invocations by
intersecting the appropriate points-to-sets in the filtering context with the base points-to-
set in instance fields or instance method invocations.

Specifically, the filtering context is computed depending on whether the origin of a tar-
get is a parameter, field, or method invocation. We update the filtering context throughout
the querying algorithm and always pass it as a parameter at each querying step that leaves
the current method. At any given point in the algorithm, we simply intersect the base in
the filtering context with the base of instance method invocations or instance fields. An
empty intersection means that the two objects do not alias. We discard events if there

46

is an empty intersection. Because bases in instance field and method invocations may be
parameters to a method, we track points-to-sets for parameter or arguments to keep track
of the original context of the query.

Algorithm shows the filtering context for an origin, origin, for query variable v
in method m. The filtering context is the set of points-to-sets (PTS) given by (basePT'S,
argPTS, paramPTS, thisPTS).

Algorithm 3.4.1: GETFILTERINGCONTEXT(0rigin,, m)

if origin, is parameter
base PTS «— GETTHISPTS(m)
then < argPTS «— GETPARAMPTS(m)
filteringContext «— (basePT Set,argPT Sets,null, null)
else if origin, is instance field
then {basePTSet — GETBASEPTS(origin, m)
filteringContext «— (basePT Set,null, null, null)
else if origin, is instance method invocation
invokedM ethod < GETINVOKEDMETHOD (origin,,)
paramPTS «— GETARGPTSFORINVOKE (invoked M ethod, m)
thisPTS «— GETBASEPTSFORINVOKE(invokedMethod, m)
filteringContext « (null,null, paramPTS, thisPTS)
return (filteringContext)

then

Recall that if the origin of query v, origin,, is parameter n to method m, the querying
algorithm looks up callers of m, and for each caller obtains the history of argument n
in the invocations to m. To filter out irrelevant invocations of m, we intersect m’s this
points-to-set with base points-to-sets in invocations of m within each caller’s body. We
only extract the history of argument n if the intersection is not empty.

If origin, is an instance field, we simply obtain the points-to-set for the base and set it
as the filtering context base points-to-set. When extracting field events, our algorithm will
simply discard instance field events where the base points-to-set has an empty intersection
with the filtering context base points-to-set. This will eliminate all instance field events,
e, where the base class of e is not potentially the same object as the base in the filtering
context.

Finally, if origin, is an instance method invocation, the querying algorithm gets the
history of the return value of the method. In this case, we filter events in the invoked
method, invokedMethod, by comparing the base points-to-set in its invocation in m with
events on this within invokedMethod’s body. To accomplish this, we simply set the
base in the invocation to the this points-to-set in the filtering context. We also set the

47

parameter points-to-sets in the filtering context to the points-to-sets for arguments used
in the invocation.

3.5 Graphical User Interface

We implemented a simple graphical user interface to enable queries to our events database.
A screenshot of our implementation is shown in Figure [3.4

Application Methods (you may use the box below to search for a particular method):

ma

=< Main: void mainJava.lang.String[D =
<Main: void mar(>
<Main: void maz =

Locals:
|
m

X

Get History []Use pointer analysis based filtering

Figure 3.4: Graphical front-end for extracting object histories.

The interface presents the user with a list of application methods and variables defined
within each method. Users can search for a particular method of interest. Once a user
selects a method m and a variable within its body v, the interface simply invokes the

querying algorithm with the pair (m,v) and displays v’s object history. The interface also
allows the user to enable and disable filtering on-demand.

48

Chapter 4

Experimental Results

We have implemented our object histories analysis and examined its effectiveness on a
number of benchmarks. Our hypothesis is that object histories can be used to directly
fix bugs where an object o is assigned a faulty value. By extracting o’s object history, a
developer can quickly identify erroneous statements that change o’s state and fix the bug.
Developers are often required to maintain and update their code or make small changes in
code behaviour. Making these changes without properly understanding the implications
of the change on dependent code can lead to the creation of faults. Object histories can
help identify dependent code and allow developers to make changes with confidence.

To support our hypothesis about object histories, we explore their usability in various
applications in this chapter. Section presents two sample use cases where object histo-
ries enhance program understanding. In Section [4.2] we present a bug we fixed in an open
source project using our implementation of object histories. In Section 4.3} we describe our
experience with computing object histories for three open source Java benchmarks. We
explore object history size distributions in our benchmarks in Section [4.4] Finally, in Sec-
tion we demonstrate the effectiveness of our filtering technique to eliminate irrelevant
events from object histories.

4.1 Case Studies

We believe object histories can significantly contribute to developers’ understanding of
large software systems: by extracting the object history for key objects, our system leads
developers to key parts of a program that are relevant to the task at hand. To highlight the
utility of object histories in program understanding, we present two use cases where object
histories help developers understand programs better. In Section [£.1.1] we demonstrate

49

the use of object histories in bug fixing. Next, in Section [4.1.2 we use object histories to
help us in changing code.

4.1.1 Finding Erroneous State

In large programs, finding the source of bugs can be prohibitively difficult because variables
can be read and modified at several program points. The standard fault/failure model
states that for a fault to be observed, the location of the fault must be reached, the state
of the program must be infected, and finally, the infected state must propagate to cause
some erroneous output [4, [I7]. Thus, an obvious application for using object histories is
to find the reachable point where the program state was infected. Object histories enable
developers to examine the propagation path of the infected state from the fault to the
output.

Figure [£.1] shows parts of a plausible online shopping system we wrote to illustrate
the usefulness of object histories in finding erroneous state. Note that we omit details for
brevity. Each item is represented by an instance of the Item class. The ShoppingCart
class contains various items and provides features to manipulate them. Once a customer
is ready to check out, the system invokes method checkout () to finalize the purchases.

The program in Figure 4.1 contains a bug in method checkout (), where occasionally,
the total cost for all items in a shopping cart is not computed correctly. The bug arises
because the method addSelectedItem() does not check whether the price returned by
getPrice() is positive.

20

10

11

12

13

14

15

16

18

19

20

21

22

23

24

25

27

28

29

30

31

32

34

35

36

37

38

import java.util.ArrayList;
class Ttem {

int productID;

int price;

}

class ShoppingCart {
private ArrayList<ltem> items;

public void addItem (Item item) {
items.add (item);

}

public ArrayList<Item> getltems () {return items;}

}

public class Actions {
public void checkout (ShoppingCart cart) {
ArrayList<Item> items = cart.getltems ();
int total = 0;
for (int i = 0; i < items.size(); i++) {
[tem item = items.get(i);
total 4= item. price;

}
}

public void addSelectedItem (int productld,
ShoppingCart cart){
[tem item = new Item ();

item.price = getPrice(id);
cart .addltem (item);
}

public int getPrice(int productld) {
if (!validProductID (productld) < 0)
return —1;
return getPriceFromDB (productID);

}
}

Figure 4.1: Java program containing a bug found by using object histories.

o1

Even in this simple example, it is not immediately obvious where the bug lies. These
types of bugs are often extremely time consuming to find in large code bases. However, by
using object histories, the bug can be solved extremely quickly.

Because the code in method checkout () seems correct, we can infer that there must be
an item in the shopping cart with an incorrect price. Finding all additions to the shopping
cart is not immediately obvious even in this small example. Specifically, we cannot simply
perform textual search (grep) to determine the erroneous statement due to collections
used in the program. However, by using object histories, we can simply extract the object
history of item in method checkout () to find all program points where items were added
to a shopping cart. Figure shows the (lightly formatted) output of our object history
tool for the history of item in method checkout ().

Object history for method: checkout() and variable: item

item was assigned from invocation of method: <ArrayList: get()> (1n 23)
..variable came from collection: items (ln: 20)
..Looking up events on collection items
..Collection items was returned from method <ShoppingCart: getItems()> (1n 20)
...Looking up return value of <ShoppingCart: getItems()>
...... Variable is copy of field <ShoppingCart: ArraylList items>
...... Looking up all additions to collection <ShoppingCart: ArraylList items>
...... Found add() call to collection (ln 11)
...... Getting History of argument to add(): item
......... item was parameter number: O to method: <ShoppingCart: addItem()>
......... <ShoppingCart: addItem()> was invoked in <Actions: addSelectedItem()> (1n 32)
......... item was argument O in invocation
......... Looking up argument O ’s history
............ Variable is local (1n 29)

Figure 4.2: Object history for item in method checkout () from Figure [4.1

The object history for item in method checkout() immediately leads us to method
addSelectedItem() which adds items to a shopping cart at line 32. Upon inspection
of this method, we immediately find that the price field of an item is assigned from an
invocation of method getPrice() at line 31. Next, we note that method getPrice() may
return a negative price and at this point, we have found our bug. Now, we can simply fix
the bug by adding a check for a negative price returned by getPrice() at line 31.

Note that we could have also extracted the history of field item.price in method
checkout () to find the program points where an item’s price was set. The output for the
object history of item.price in method checkout () is shown in Figure [4.3]

52

Object history for method: checkOut() and variable: <Item: price>

<Item: int price> is a field object. Information on all changes to this field:
...Field was changed in method: <Actions: addSelectedItem()>

...Field was assigned from an invocation of method <Actions: getPrice()> (1n 31)
...Looking up history of return values

...... Variable is local: -1 (1n 36)

...... Variable was returned from method <Actions: getPriceFromDB()>

Figure 4.3: Object history for field item.price in method checkout () from Figure [4.1]

The field history of item.price immediately informs us that a negative price was set
at line 36. Therefore, we can apply the fix in method addSelectedItem() to solve the
bug.

By obtaining object histories for relevant objects in the program, we were able to
quickly pinpoint the source of the bug. In this simple example, we could have fixed the
bug by inspection. However, in large object-oriented software systems, following complex
call hierarchies and finding all points where a variable is changed to an erroneous state can
be extremely difficult and time consuming. We show the application of object histories to
finding bugs in a large open source program in Section

4.1.2 Change Support

Developers of large software systems must constantly maintain and update their code. A
common kind of change is refactoring, which should not change the semantics of the code.
However, developers also often need to slightly change the behaviour of code. Ad-hoc
changes of program behaviour can trigger faults in code which depends on the modified
code. Object histories can help identify dependent code and enable developers to confi-
dently carry out needed changes.

Object histories can help developers identify dependencies between classes and under-
stand how the each class is used. For instance, suppose a developer must change class
C. To understand what effect the change may have, the developer can simply extract
the object history for each field f of class C. The object histories will show the program
points where f is modified. The combined object histories for all fields of C' can help the
developer to understand the dependencies between C' and the rest of the program. The
object histories will also contribute to the developer’s understanding of how C'is used by
the rest of the code. Finally, object histories can also be used to better understand the
scope of a refactoring task by studying the dependencies between classes.

23

We present a simple example shown in Figure to highlight this approach. Suppose

we are interested in changing class A in the example shown in Figure 4.4 Class A is used
as a field in B and also used in method foo() in class C for some operations.

17

18

20

21

22

23

26

27

28

29

30

31

32

class A {
private Object al;
private Object a2;

public void setAl(Object a) {
al = a;

}
public void setA2(Object a) {

a2 = a;

}

}
class B {

private A a;

public B(Object al, Object a2) {
A a =new A();
a.setAl(al);
a.setA2(a2);
this.a = a;
}
}

class C {
public void foo(Object o) {
B b = new B(o, new Object ());

A a = new A();
a.setAl(o);

Figure 4.4: Code Change Example.

To properly modify A, we must first understand how to make changes to A without

o4

causing bugs in other parts of the program. By using object histories, we can simply
extract the object history for fields A.al and A.a2 to easily identify program points where
A is used and modify them accordingly. The field histories of A.al and A.a2 using our
object history implementation are shown in Figure [4.5

25

Object history for method: setAl() and variable: <A: al>

<A: al> is a field object. Information on all changes to this field:
Field was changed in method: <A: setA1()>

...Field was assigned parameter O in method <A: setA1()>

...a was parameter number: O to method: <A: setA1()>

...Looking up history of a

...... Method: <A: setA1()> was invoked in method: <C: foo()> (1n 29)
...... a was argument O in invocation.

...... Looking up argument O ’s history

...... o was parameter number: O to method: <C: foo()>

...... Looking up history of o

...... Method: <A: setA1()> was invoked in method: <B: <init>()> (1n 18)
...... a was argument O in invocation.

...... Looking up argument O ’s history

...... al was parameter number: O to method: <B: <init>()>

...... Method: <B: <init>()> was invoked in method: <C: void foo()> (1n 32)
...... al was argument O in invocation.

...... Looking up argument O ’s history

...... o was parameter number: O to method: <C: foo()>

Object history for method: setA2() and variable: <A: a2>

<A: a2> is a field object. Information on all changes to this field:
..Field was changed in method: <A: setA2()>
..Field was assigned parameter O in method <A: setA2()>

...Getting history of parameter O

...a was parameter number: O to method: <A: setA2()>

...... Method: <A: setA2()> was invoked in method: <B: <init>()> (1n 19)
...... a was argument O in invocation.

...... Looking up argument O ’s history

...... a2 was parameter number: 1 to method: <B: <init>()>

...... Method: <B: <init>()> was invoked in method: <C: void foo()> (1n 26)
...... a2 was argument 1 in invocation.

......... Looking up argument 1 ’s history

............ Variable is local (1n 26)

Figure 4.5: Object history for fields A.al and A.a2 from Figure [4.4]

To obtain the object histories of fields A.al and A.a2, we simply query our tool in
methods setA1() and setA2(), respectively. As expected, the tool recursively reports the
history of events to these fields. Specifically, the tool immediately informs us that A.al is

26

changed in methods C: foo() at line 29 and in the constructor of B at line 18. The tool
also tells us that o was assigned to A.al in method foo(). We choose to omit the history
for o for conciseness.

We get a similar history for field a2. Specifically, we are informed that a2 is changed in
the constructor of B and the constructor is invoked method foo () in class C. We are also
told that A.al is assigned a new Object() in method foo() at line 26.

By inspecting the object histories for fields A.al and A.a2, we know that classes B and
C are dependent on A. Specifically, we must change code in B’s constructor and foo() in
C to be consistent with changes we make to A. Thus, the scope of changing A is limited to
modifying two methods in two classes.

Through this simple example, we have shown the utility of object histories in modifying
code. In larger programs with hundreds of classes and complex call chains, finding all uses
of a class can be tricky, time consuming, and lead to the creation of bugs. By using object
histories, however, developers can quickly identify all the program points where a given
class is used to identify dependencies between classes. The developer can then change all
dependent classes accordingly. Additionally, object histories also provide a quick estimate
of the size of the task by identifying program points that must be inspected to ensure that
no additional bugs have been introduced.

4.2 Bug Fix

In this section we present the utility of object histories to fix bugs in real-world software
systems. We use Gantt Project as an example to show how object histories can be used to
fix bugs quickly and with minimal understanding of the source code.

As with most open source software, bugs in Gantt Project are reported by users via a
public bug tracking tool. These bugs are then verified and fixed by several contributors
with varying degrees of familiarity and understanding of the source code.

We choose a typical bug in Gantt Project’s user interface to highlight our approach.
The bug report states that when a user tries to open a Gantt project from a server, the
window title is “Save to a server” instead of “Open from a server”.

We begin by inspecting the main class of Gantt, GanttProject. We observe that it
contains a field GanttLanguage.language, which (based on the comments) is used for
internationalization (i18n). That is, the GanttLanguage class provides strings in the local
language to be used in various parts of the program.

By looking at methods of class GanttLanguage, we find the method getText () returns
the text in a local language for a given key. Thus, we know that this method must be

o7

invoked to obtain text “Save to a server”. To find the program points where text was
extracted, we extract the object history of key (shown in Figure . On inspecting the
object history, we note two interesting key strings, “saveToServer” and “openFromServer”,
which may lead us to the underlying problem. We show the relevant parts of the output
below.

1: Object history for method: getText() and variable: key

2:

3: key was parameter number: O to method: getText()

4:

5: Method: getText()> was invoked in:<...gui.GanttURLChooser:void <init>()> (1n 66)
6: key was argument O in invocation.

7: Looking up argument O’s history

8: ..Variable is local: ("openFromServer”) (In 66))

9:

10: Method: getText() was invoked in method:

11: <...gui.GanttURLChooser: void <init>()> (1n 67)

12: key was argument O in invocation.

13: Looking up argument 0’s history

14 : ..Variable is local: ("saveToServer”) (In 67))

15:

16: Method: getText() was invoked in method:

17: <...gui.server.ConnectionPanel: void <init>()> (I1n 44)

18: key was argument O in invocation.

19: Looking up argument O ’s history

20: ..Variable is local: ("openFromServer”) (In 44))

21:

22: Method: getText() was invoked in method:<...action.GPAction: getI18n()> (1n 89)
23: key was argument O in invocation.

24: Looking up argument 0’s history

25: ...argument O was parameter number: O to method: <...action.GPAction: getI18n()>
26: ...Looking up callers of getI18n()

27: ... Method: <...action.GPAction: getI18n()> was invoked in method:

28: <...action.project.SaveURLAction: getLocalizedName()> (1n 19)
29: key was argument O in invocation.

30: Looking up argument O’s history

31: ... Variable is local: (”saveToServer”) (In 19))

32: ..., Method: <...action.GPAction: getI18n()> was invoked in method:

33: <...OpenURLAction: getLocalizedName()> (1ln 28)

34: key was argument O in invocation.

35: Looking up argument O’s history

36: ... Variable is local: ("openFromServer”) (In 28))

Figure 4.6: Object history for key in method GanttLanguage.getText ().

o8

From Figure [4.6] we note that there are two calls to getText () from the constructor of
class GanttURLChooser in the gui sub-package. This seems to be a promising lead because
we have a user interface issue, so logcially it may lie within the gui package. We can also
see that the origin of the key in the constructor is either “openFromServer” on line 4 or
“saveToServer” on line 10. Next, we inspect the code for GanttURLChooser’s constructor.
The relevant portion of code in class GanttURLChooser is shown below.

1 public class GanttURLChooser extends JDialog {

3 public GanttURLChooser (Frame parent, boolean opening,
4 String currentURL ,

5 String currentUser ,

6 String currentPass) {

7

8 super (parent , opening 7 (GanttProject.correctLabel(

9 GanttLanguage. getInstance (). getText (

10 "openFromServer”))) : (GanttProject.correctLabel(
1 GanttLanguage. getInstance (). getText (

12 "saveToServer”))), true);

13

14

From the code above, we can see that title of the super class, JDialog, is set to “open-
FromServer” or “saveToServer” depending on the value of opening. This is the correct
behaviour, so the problem must lie in an incorrect assignment of opening. Thus, we extract
opening’s object history (shown below).

Object history for method: void <init>()> and variable: opening

opening was parameter number: 1 to method: <init>()

Method: <init>() was invoked in method:
<...gui.ProjectUIFacadeImpl: showURLDialog()> (1n 241)

opening was argument 1 in invocation.

Looking up argument 1 ’s history

...Variable is local (boolean: false) (1ln 241)

From the last line in the output, we find that opening is always set to false, causing
the open Gantt project from server window title to always be “Save to a server”. We have
now located the bug!

29

We next look at the code for the origin of opening in the showURLDialog() method
(shown below). We can see false being passed as parameter 1 to GanttURLChooser’s
constructor at line 7.

1 public class ProjectUIFacadelmpl implements ProjectUIFacade {

3 private Document showURLDialog(IGanttProject project) {

1 Document document = project.getDocument ();
5 GanttURLChooser uc = new GanttURLChooser (
6 myWorkbenchFacade . getMainFrame () ,

7 false ,

10

To apply the fix, we can extract the object history of the parameter project to find
that it originates from methods openRemoteProject() and saveProjectRemotely() in
the same ProjectUIFacadeImpl class. Thus we conclude that the root cause of the bug
is that the same title string is used regardless of whether a project is being opened from a
server or being saved remotely. A simple fix is to change the showURLDialog() method to
accept a boolean opening and pass it onto GanttURLChooser’s constructor. Of course, we
must also change methods openRemoteProject () and saveRemoteProjectRemotely() to
pass true and false respectively.

We have demonstrated the utility of object histories in finding a bug in a medium-sized,
open source program. By using object histories, we were able to fix the bug with minimal
understanding of the code base.

4.3 Benchmarks

In this section, we show feasibility of computing object histories for three open source
Java projects using our implementation. The Gantt project [2] is an open source project
scheduling and management tool, jGraphX [I4] is a graph drawing component, and Cober-
tura [6] is a tool for calculating the code coverage of tests. Table shows information
about these benchmarks.

60

Table 4.1: Benchmark characteristics.

Gantt Project jGraphX Cobertura

Lines of code 64,000 45,500 62,000
Number of Classes 481 82 283
Number of Methods 4,443 1,722 3,302

Tablel4.2[shows the time required by our preprocessing phase for each of the benchmarks
as well as the size of the events database. The tests were run on a desktop machine with
a 2.66Ghz core 2 duo E6700 processor with 4GB RAM. We ran our analysis on a new Sun
JDK, but analyzed the benchmarks as if they were running Sun JDK 1.4.2 using at most
2.5 GB of heap space. Note that times for querying are omitted because our querying
algorithms run almost instantaneously.

Table 4.2: Time required for preprocessing and size of events database.

Gantt Project jGraphX Cobertura

Soot + SPARK Time (s) 207 218 253
Object History Preprocessing Time (s) 3.6 1.8 4.2
Total Time (s) 210.6 219.8 257.2
Size of Events Database (kb) 6,126 1,920 3,663

From Table [4.2] we can see that computing object histories takes only 3-4 minutes on
our benchmarks and the events database is only a few megabytes. Once the events database
is constructed, no additional computational overhead is required to answer object history
queries.

4.4 Object History Size Distributions

In this section we present details about the distribution of object history sizes in each of
the benchmarks described in Section [£.3] We define the size of an object history as the
number of events reported to the user given an object history query. We randomly selected
2,000-5,000 objects from each of our benchmarks and computed their object histories as
shown in Figure [4.7]

61

Object History Size Distribution
80
L 70 B Gantt
g' [jGraphX
o 60] Cobertura
n
cC 50_
8 404
o
o) 30
8 20
o
= ._‘ d_| -__'_ﬂ
0 T T T
<5 <10 <15 <20 >=20
Number of Events

Figure 4.7: Object History Size Distribution for Benchmarks.

The majority of objects in all the projects have between 5 and 10 events in their
object histories. This result is intuitive because developers often create local objects for
computations and discard them as soon as they obtain the results leading to short object
histories.

Interestingly, there are a small subset of objects with large histories (more than 20
events) in each project. Upon closer inspection, we found that these objects are typically
parameters to methods that are called frequently in the program. User interface methods
or logging methods are good examples. For instance, in Gantt, the parameter text in
the user interface method GanttStatusBar.setFirstText () has a lengthy object history
because setFirstText () is called each time Gantt’s status bar text has to be updated.

4.5 Effect of Filtering

Recall that we group events on instance field £ for all instances of class C and later ap-
ply pointer analysis based filtering to discard events that are not relevant to the query.
Additionally, when extracting the history of objects assigned from an instance method
invocation a.m(), our raw algorithm considers all paths starting with the return value of
m(). In some cases, however, we can prune some of the paths using our filtering algorithm
(one such example is shown in Figure [2.7)).

In this section we show the effectiveness of our filtering technique to significantly reduce
the number of events reported to the user. Figure [4.§ shows filtered vs unfiltered object

62

history sizes for roughly 700 randomly selected objects that were assigned from instance
fields (a = x.f) in jGraphX. In particular, we found objects that were directly assigned
from a field read for each method and then randomly decided whether to include them in
our sample set.

100
S 80
n
%‘ < 5 Objects
E 60 < 10 Objects
b3 < 25 Objects
2 :
S 40 *
@ > 50 Objects
5]
Z :

[] [J
2 » ®@e ocodo o ° °

20 40 60 80 100
Unfiltered Object History Size

Figure 4.8: Filtered vs unfiltered object history sizes for variables assigned from instance
fields in jGraphX.

Each point in Figure [4.§ represents the number of events in a target object’s history. A
point’s x coordinate shows the number of events in its unfiltered object history and the y
coordinate shows the number of events in its filtered history. The color of the point shows
the number of objects that share a particular history size.

We can clearly see that filtering significantly reduces the number of events in an object’s
history in many cases (71.6% to be exact). The mean of the object history size drops from
47.5 events without filtering to 10.3 events with filtering. Filtering reduces the number
of events reported by a factor of 4.6 in jGraphX. This result is expected because we are
filtering out irrelevant events that we grouped earlier to simplify our handling of field
events.

We next consider the effect of filtering in cases where an object is assigned from an
instance method invocation. Figure shows filtered vs unfiltered object history sizes for

63

roughly 1000 randomly selected objects that originated from instance method invocations
(a = x.foo()) in jGraphX. As with our approach before, we simply found objects that
were directly assigned from a method invocation and randomly decided whether to include
them in our sample set.

30
o 25
N
=
>
§ 20 < 5 Objects
é < 10 Objects
§ 15 < 25 Objects
g
= 10 > 50 Objects
3
~ 5 .

[X X] e & o oo o

5 10 15 20 25 30
Unfiltered Object History Size

Figure 4.9: Filtered vs unfiltered object history sizes for variables originating from instance
method invocations in jGraphX.

From Figure we see that filtering reduces the size of an object’s history in only
some cases (9.1% of object history queries in our sample). The object history size for
many objects is the same regardless of filtering. There are, however, a few objects with
larger histories, where filtering makes a difference. We can see these objects towards the
bottom of Figure [£.9, The mean history size without filtering is 5.9 events. By using our
filtering technique, the mean drops to 2.9 evens. Filtering reduced the number of events
reported by a factor of 2.03 in this case.

Table shows the average filtered and unfiltered history sizes for objects originating
from instance fields and instance method invocations in our benchmarks.

64

Table 4.3: Average Filtered and Unfiltered Object History Sizes.

Gantt Project jGraphX Cobertura

Instance Fields

Average Unfiltered History Size 34.7 47.5 14.2
Average Filtered History Size 18.9 10.3 3.6
Reduction Factor 1.8 4.6 3.9

Instance Method Invocations

Average Unfiltered History Size 3.4 5.9 3.6
Average Filtered History Size 3.1 2.9 2.9
Reduction Factor 1.1 2.0 1.2

Based on Table [4.3] we can see that filtering makes a significant difference when objects
originate from instance fields. Filtering also helps eliminate some irrelevant events for
objects originating from instance method invocations in some cases, but the reduction is
not as drastic.

65

Chapter 5

Related Work

We discuss three main areas of related work in this section: points-to analysis (and its
applications to program understanding), program slicing, and program exploration ap-
proaches.

5.1 Points-to Analysis

Our approach for filtering out irrelevant events in an object history relies on good points-to
analysis information. We use the default Spark implementation of points-to analysis [13],
which computes call graph and context-insensitive field-sensitive points-to information for
Java programs. The pointer analysis is flow-insensitive, but incorporates some benefits of
flow-sensitivity.

Points-to analysis is useful for program understanding; for instance, Ghiya [8] describes
how displaying the read and write sets associated with particular program points can help
developers with program understanding. Object histories help make points-to information
more helpful to developers by showing the evolution of abstract memory locations (points-
to sets) over time.

5.2 Program Slicing

Object histories can answer queries about a program variable by identifying a set of pro-
gram events potentially relevant to the history of that variable. Program slicing [20], 22]
attempts to identify a minimal executable subset of the program which affects a variable
at a given program point.

66

A key difference between our approach and program slicing is that our approach is
flow-insensitive at an interprocedural level. Typical slicing approaches compute a Program
Dependence Graph, or, interprocedurally, a System Dependence Graph [9] and identify all
statements which exert control or data dependencies on the variable being queried. Such
dependencies are paths through the PDG or SDG. Our approach instead computes a set
of events in the program, organized by method, and recursively queries this set of events
to build object histories. We have chosen to define an event e to be relevant to a query
on variable v if v is transitively data-dependent on e. Our flow-insensitive, event-based
approach preserves much less state and hence makes queries significantly easier to answer:
instead of needing to traverse the entire program, we can construct a list of relevant events
by querying the suitably-indexed set of events from our events database.

Furthermore, because object histories focus on summarizing the behaviour of reference-
typed variables, and need not deal with scalar variables (which program slicing typically
devotes significant effort to understanding), we could use object-specific events such as
instantiation and field reads in our summaries. Pointer analysis information is thus par-
ticularly meaningful for summarizing events. Our experience was that object histories,
in conjunction with the flow-insensitive, context-insensitive pointer information, provided
useful information about program behaviour.

Program slicing includes information about the base object in instance field queries.
For instance, the program slice for the seed statement x.f = a will include information
about x as well as x.f. This typically causes the slice to become unmanageably large
without yielding any significant insight into statements affecting x.f [21]. Our approach,
however, records events on x.f separately from x thereby drastically reducing the number
of events reported to the user.

If a seed statement lies within a conditional block of code, program slicing also includes
the conditional statement in the slice. This leads to the addition of several program
statements that are not directly related to the original query. Our approach, however,
ignores conditional statements and in our experience we found that this is sufficient for
most practical applications.

Kaveri [20] is an Eclipse plugin providing a front-end to the Indus slicer for Java pro-
grams. Our filtering by pointer information, in particular, is similar to Indus’s use of share
entities [19]. Our results, however, indicate that detailed pointer analysis information elim-
inates much of the need for considering complex dependence graphs which summarize the
whole program; instead, our object-insensitive, field-based approach combined with field-
sensitive pointer analysis successfully identifies a useful set of events for understanding the
behaviour of heap-manipulating Java programs.

Another important difference between our approach and typical program slicing is our
special treatment of collection classes. Because Java programs use collections extensively,

67

encoding the semantics of collection manipulations into our algorithms enables our histo-
ries to express what happens to objects over their lifetime more succinctly than it could
otherwise.

5.2.1 Thin Slicing

Thin slicing [21] is an improvement over traditional slicing. This approach significantly
reduces the number of statements in a program slice by only considering producer state-
ments relevant to a seed statement. Thin slicing omits slices for base objects in instance
fields as well as conditional statements. Similar to our approach, context insensitive thin
slicing employs pointer analysis based filtering for instance fields. Statements where the
base of an instance field assignment does not alias the base of the instance field in the seed
statement are omitted. The paper also proposes context-sensitive slicing, but the authors
note that it was extremely expensive and did not provide much benefit.

While thin slicing is similar to our approach, there are a few important distinctions.
Thin slices are demand driven and accept a collection of seed statements as input. Once
the thin slice is computed, the user can specify additional statements for slicing. Using thin
slicing to debug problems in a large program can be time consuming because each query
takes up to 5 minutes [2I]. Our two stage approach, however, preprocesses the program
once and allows unlimited queries without requiring additional time.

Thin slicing only uses object sensitivity [16] to distinguish between different instances
of container classes to omit statements irrelevant to the seed statement. However, by
using filtering contexts we obviate the need for object sensitivity for collections without
losing precision in our results. Additionally, unlike thin slicing, our filtering algorithm also
provides some benefits of object sensitivity outside container classes.

Like traditional slicing, thin slicing also does not include support for handling Java
collection classes and iterators. Our approach identifies read and write events on Java
collections directly as well as through iterators.

5.3 Program Exploration Approaches

Demsky and Rinard present a technique for program exploration and understanding where
object states depend on their dynamic membership in collections, or roles [5]. In their
approach, a role represents a set of referencing relationships from and to a particular heap
object; membership in collections is represented by inbound references to that object.
They compute enhanced method interfaces by analyzing program execution traces. These

68

enhanced method interfaces summarize the read and write effects of methods, similar to
our intraprocedural object histories.

Another event-based program exploration and verification approach is the Program
Query Language [15]. As with object histories, PQL also abstracts programs into a set of
events and proposes a query language over this set of events and uses pointer analysis to
improve the relevance of its query results. However, PQL was designed to support queries
which find application errors and security flaws, and it therefore focuses on finding all
points in a program which satisfy a query (i.e. execute a certain set of events), rather than
displaying the events leading up to a query consisting of a specific program point.

69

Chapter 6

Conclusions and Future Work

In this thesis, we presented the idea of object histories, how to compute them, an im-
plementation, and experimental results. An object history for object o is a set of events
e, beginning with o’s instantiation, that happen to it over the course of program execu-
tion. Events in an object history include its instantiation, writes of o onto a field, reads of
fields, being passed to a method as an argument (including being added to removed from
collections), and being returned from a method as a return value.

We compute object histories in two phases. In the first phase, we preprocess a Java
program and build a database of events. The second phase queries the events database
repeatedly to extract the object history of a variable v.

The database of events consists of two parts: 1) method summaries for all application
methods, and 2) field events that are aggregated throughout the program. Method sum-
maries are composed of an intraprocedural history analysis of the method, a list of callers,
a list of invoked methods (with arguments), and the return values, if any. The intraproce-
dural history analysis simply finds the method level history of all variables found within
a method body. Our approach for aggregating field events is field-based, meaning that
we group events on field f of all instances of class C throughout the program. Of course,
this leads to irrelevant events when extracting the object history of a field in a particu-
lar instance of C. To eliminate irrelevant events, we use a pointer analysis based filtering
strategy.

To extract an object history for variable v in method m, we start with m’s intrapro-
cedural history analysis and recursively report events leading to the origin of v. We only
report an event e if it is relevant to our query for v. We determine relevance by intersecting
points to sets (for the base in instance field or instance method invocations) in the filtering
context for v with the points to sets found in an event e. We only include an event e if there
is a non-empty intersection implying that the objects may alias. We determine the filtering

70

context to be the set of points to sets for the base in instance fields or instance method
invocations, parameters to the method, arguments used in an invocation, and this. We
update the filtering context constantly and pass it as a parameter to the recursive query
to ensure that we hold onto the original context in the query (v, m).

We implemented our analysis using the Soot [24] Java bytecode analysis framework and
used SPARK [I3] for computing points-to sets.

We also reported experimental results for object histories. Specifically, we presented
the utility of object histories in bug fixing and code change tasks. We also showed how
to fix a sample bug in a medium-sized, open source Java program, Gantt Project [2].
Through this example, we demonstrated how to use object histories to fix bugs quickly
with minimal understanding of the source code. We concluded the chapter with some
quantitative results and discussed the distribution of object history sizes as well as the
effectiveness of our filtering algorithm.

6.1 Future Work

Our analysis for constructing object histories is context-insensitive. Thus, when looking
up the history of a parameter p in a method m, we consider all callers of m. A future
direction is to explore context-sensitive object histories, where we look up a caller of m
only if m was invoked in the execution path leading to the queried program point. We
believe that context-sensitive object histories will yield more specific object histories.

While our interprocedural history analysis is flow-sensitive, our interprocedural ap-
proach for computing object histories is flow-insensitive. This means that we cannot de-
termine the order of events in an object’s history and we simply report all of them. We can
explore methods to compute flow-sensitive object histories which would eliminate events
that happen to a variable v after the program point where the query was made.

Another application of computing flow-sensitive object histories is to answer queries
about events that happen to v in the future. This set of future events would allow de-
velopers to understand how a given variable v is used after a given program point. For
instance, a future events query at the instantiation of v could inform us about how v is
used throughout the rest of the program.

Finally, our implementation of a graphical user interface is stand-alone and text-based.
Specifically, it is cumbersome because output must be interpreted and developers must
follow program points and call chains manually. We can easily improve the user experience
of our tool by integrating it into common IDEs such as Eclipse or NetBeans via a plug-in.
A plug-in would make it significantly easier to query object histories directly from the

71

source code. We could also provide a visualization of the object history of a variable along
with direct links to program statements.

72

References

1]

[10]

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: principles, techniques, and tools.
Reading, MA,, 1986.

D. Barashev and A. Thomas. The gantt project. http://www.ganttproject.biz,
February 2010. [4] [60]

P.Y. Chang, E. Hao, T.Y. Yeh, and Y. Patt. Branch classification: a new mecha-
nism for improving branch predictor performance. In Proceedings of the 27th annual
international symposium on Microarchitecture, pages 22-31. ACM, 1994.

RA DeMilli and AJ Offutt. Constraint-based automatic test data generation. IEEE
Transactions on Software Engineering, 17(9):900-910, 1991.

Brian Demsky and Martin Rinard. Role-based exploration of object-oriented pro-
grams. In ICSE °02: Proceedings of the 24th International Conference on Software
Engineering, pages 313-324, New York, NY, USA, 2002. ACM.

M. Doliner and SAS. Cobertura project. http://cobertura.sourceforge.net/,
February 2010.

M. Emami, R. Ghiya, and L.J. Hendren. Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and implementation, pages 242-256.

ACM, 1994.

Rakesh Ghiya. Putting Pointer Analysis to Work. PhD thesis, McGill University, May
1998.

Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using depen-
dence graphs. In Proceedings of the ACM SIGPLAN 1988 conference on Programming
Language Design and Implementation, pages 35-47, June 1988.

W. Landi. Undecidability of static analysis. ACM Letters on Programming Languages
and Systems (LOPLAS), 1(4):337, 1992.

73

http://www.ganttproject.biz
http://cobertura.sourceforge.net/

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

W. Landi and B.G. Ryder. Pointer-induced aliasing: A problem classification. In
Conference Record of the Fighteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 93-103, 1991.

W.A. Landi. Interprocedural aliasing in the presence of pointers. PhD thesis, Rutgers,
The State University of New Jersey, 1992.

Ondrej Lhotak. Spark: A flexible points-to analysis framework for Java. Master’s
thesis, McGill University, December 2002. [31]

JGraph Ltd. jgraphx. http://www.jgraph.com/jgraphx.html, February 2010.

Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding application errors
and security flaws using PQL: a program query language. In OOPSLA °05: Proceed-
ings of the 20th annual ACM SIGPLAN conference on Object oriented programming
systems languages and applications, pages 365—-383, 2005.

A. Milanova, A. Rountev, and B.G. Ryder. Parameterized object sensitivity for points-
to analysis for Java. ACM Transactions on Software Engineering and Methodology
(TOSEM), 14(1):1-41, 2005.

LJ Morell. A theory of fault-based testing. IEEE Transactions on Software Engineer-
ing, pages 844-857, 1990. [50]

S.T. Pan, K. So, and J.T. Rahmeh. Improving the accuracy of dynamic branch
prediction using branch correlation. ACM SIGPLAN Notices, 27(9):84, 1992.

Venkatesh Prasad Ranganath and John Hatcliff. Pruning interference and ready de-
pendence for slicing concurrent java programs. In Proceedings of Compiler Construc-
tion (CC’04), pages 39-56, 2004.

Venkatesh Prasad Ranganath and John Hatcliff. Slicing concurrent java programs
using Indus and Kaveri. Int. J. Softw. Tools Technol. Transf., 9(5):489-504, 2007.

M. Sridharan, S.J. Fink, and R. Bodik. Thin slicing. In Proceedings of the 2007 ACM
SIGPLAN conference on Programming language design and implementation, pages
112-122. ACM, 2007. [67}, [6§]

Frank Tip. A survey of program slicing techniques. Journal of Programming Lan-
guages, 3(3):121-189, 1995.

R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot-a
Java bytecode optimization framework. In Proceedings of the 1999 conference of the
Centre for Advanced Studies on Collaborative research, page 13. IBM Press, 1999.

74

http://www.jgraph.com/jgraphx.html

[24] Raja Vallée-Rai. Soot a Java optimization framework. Master’s thesis, McGill Uni-
versity, July 2000. 29| [31]

[25] M.N. Wegman and F.K. Zadeck. Constant propagation with conditional branches.
ACM Transactions on Programming Languages and Systems (TOPLAS), 13(2):181—
210, 1991. [30]

[26] Mark Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352-357, 1984.

75

	List of Tables
	List of Figures
	Introduction
	Approach
	Results
	Limitations
	Thesis Contributions
	Thesis Organization

	Object Histories
	Motivating Example
	Preprocessing Phase
	Intraprocedural History Analysis
	Method Summaries
	Aggregating Field Events
	Handling Java Collections

	Answering Queries
	Comprehensive Example

	Filtering
	Filtering Context

	Realizing Object Histories
	Background
	Static Analysis
	Pointer Analysis and SPARK
	Soot
	Jimple

	Preprocessing
	Intraprocedural History Analysis
	Method Summaries
	Field Events
	The Events Database

	Answering Queries
	Handling Collections

	Filtering
	Graphical User Interface

	Experimental Results
	Case Studies
	Finding Erroneous State
	Change Support

	Bug Fix
	Benchmarks
	Object History Size Distributions
	Effect of Filtering

	Related Work
	Points-to Analysis
	Program Slicing
	Thin Slicing

	Program Exploration Approaches

	Conclusions and Future Work
	Future Work

	References

