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Abstract

The use of wireless networks has grown significantly in contemporary times, and continues

to develop further. The broadcast nature of wireless communications, however, makes them

particularly vulnerable to eavesdropping. Unlike traditional solutions, which usually handle

security at the application layer, the primary concern of this dissertation is to analyze and

develop solutions based on coding techniques at the physical-layer.

First, in chapter 2, we consider a scenario where a source node wishes to broadcast two

confidential messages to two receivers, while a wire-tapper also receives the transmitted sig-

nal. This model is motivated by wireless communications, where individual secure messages

are broadcast over open media and can be received by any illegitimate receiver. The secrecy

level is measured by the equivocation rate at the eavesdropper. We first study the general

(non-degraded) broadcast channel with an eavesdropper, and present an inner bound on

the secrecy capacity region for this model. This inner bound is based on a combination

of random binning, and the Gelfand-Pinsker binning. We further study the situation in

which the channels are degraded. For the degraded broadcast channel with an eavesdropper,

we present the secrecy capacity region. Our achievable coding scheme is based on Cover’s

superposition scheme and random binning. We refer to this scheme as the Secret Super-

position Scheme. Our converse proof is based on a combination of the converse proof of

the conventional degraded broadcast channel and Csiszar Lemma. We then assume that

the channels are Additive White Gaussian Noise and show that the Secret Superposition

Scheme with Gaussian codebook is optimal. The converse proof is based on Costa’s entropy

power inequality. Finally, we use a broadcast strategy for the slowly fading wire-tap channel

when only the eavesdropper’s channel is fixed and known at the transmitter. We derive the

optimum power allocation for the coding layers, which maximizes the total average rate.

Second, in chapter 3 , we consider the Multiple-Input-Multiple-Output (MIMO) scenario

of a broadcast channel where a wiretapper also receives the transmitted signal via another

MIMO channel. First, we assume that the channels are degraded and the wiretapper has the

worst channel. We establish the capacity region of this scenario. Our achievability scheme

is the Secret Superposition Coding. For the outerbound, we use notion of the enhanced
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channels to show that the secret superposition of Gaussian codes is optimal. We show that

we only need to enhance the channels of the legitimate receivers, and the channel of the

eavesdropper remains unchanged. We then extend the result of the degraded case to a

non-degraded case. We show that the secret superposition of Gaussian codes, along with

successive decoding, cannot work when the channels are not degraded. We develop a Secret

Dirty Paper Coding scheme and show that it is optimal for this channel. We then present

a corollary generalizing the capacity region of the two receivers case to the case of multiple

receivers. Finally, we investigate a scenario which frequently occurs in the practice of wireless

networks. In this scenario, the transmitter and the eavesdropper have multiple antennae,

while both intended receivers have a single antenna (representing resource limited mobile

units). We characterize the secrecy capacity region in terms of generalized eigenvalues of

the receivers’ channels and the eavesdropper’s channel. We refer to this configuration as the

MISOME case. We then present a corollary generalizing the results of the two receivers case

to multiple receivers. In the high SNR regime, we show that the capacity region is a convex

closure of rectangular regions.

Finally, in chapter 4, we consider a K-user secure Gaussian Multiple-Access-Channel

with an external eavesdropper. We establish an achievable rate region for the secure discrete

memoryless MAC. Thereafter, we prove the secrecy sum capacity of the degraded Gaussian

MIMO MAC using Gaussian codebooks. For the non-degraded Gaussian MIMO MAC, we

propose an algorithm inspired by the interference alignment technique to achieve the largest

possible total Secure-Degrees-of-Freedom . When all the terminals are equipped with a single

antenna, Gaussian codebooks have shown to be inefficient in providing a positive S-DoF.

Instead, we propose a novel secure coding scheme to achieve a positive S-DoF in the single

antenna MAC. This scheme converts the single-antenna system into a multiple-dimension

system with fractional dimensions. The achievability scheme is based on the alignment of

signals into a small sub-space at the eavesdropper, and the simultaneous separation of the

signals at the intended receiver. We use tools from the field of Diophantine Approximation

in number theory to analyze the probability of error in the coding scheme. We prove that

the total S-DoF of K−1
K

can be achieved for almost all channel gains. For the other channel

gains, we propose a multi-layer coding scheme to achieve a positive S-DoF. As a function of

channel gains, therefore, the achievable S-DoF is discontinued.
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Chapter 1

Introduction

Security protocols are the most critical elements involved in enabling the growth of the wide

range of wireless data networks and applications. The broadcast nature of wireless commu-

nications, however, makes them particularly vulnerable to eavesdropping. With the prolifer-

ation of more complex modern infrastructure systems, there is an increasing need for secure

communication solutions. Cryptography is a traditional field that provides computationally-

secure protocols at the application layer. The goal of cryptography has recently been diver-

sified from providing the critical confidentiality service, to other issues including authentica-

tion, key exchange and management, digital signature, and more. Unlike the cryptographic

approaches, the recently reintroduced physical-layer security aims to develop effective secure

communication schemes exploiting the properties of the physical layer. This new paradigm

can strength the security of existing systems by introducing a level of information-theoretic

security which has provable security, as compared with computational security. Note that the

physical-layer security has a complementary role and can integrated with existing security

solutions to enhance the total level of security for communication systems.

1.1 Security Issues in Wireless Communications

Security issues arising in communication networks can be classified into four main areas in-

cluding confidentiality, integrity, authentication, and non-repudiation. Confidentiality guar-

antees that legitimate recipients successfully obtain their intended information while the

information are protected against eavesdropping. Integrity provides communicating parties

with the assurance that a message is not modified during its transmission. Authentication

ensures that a recipient of information be able to identify the sender of the information.

Non-repudiation protects against denial by one of the entities involved in a communication
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of having participated in all or part of the communication.

In addition to standard security issues, the inherent receptiveness of wireless signals

has imposed extra security vulnerabilities on the wireless communication systems. Wireless

channels are susceptible to channel jamming. An attacker can easily jam physical communi-

cation channels and prevent users from accessing the network. The goal of a jammer, here, is

to interrupt the communication traffic instead of intercepting the transmitted information.

Secondly, without a proper authentication mechanism, an attacker can have an unauthorized

access to the network resources and bypass the security infrastructures. Finally, due to the

openness of wireless media, eavesdropping can be performed easily. In particular, legitimate

users in a network can be regarded as potential eavesdroppers.

To solve the aforementioned security issues, a layered protocol approach has been con-

sidered by many wireless service providers. Protocol layering is a common technique used

to simplify networking designs, by dividing them into functional layers, and assigning pro-

tocols to perform each layer’s task. Figure 1.1 illustrates the various layers considered in a

typical wireless communication protocol, and indicates their specific purposes. For instance,

channel coding is implemented at the Physical (PHY) layer to provide an error-free medium

for the above layers, and admission control is handled at the Medium Access Control layer.

Note that the design of modern communication protocols does not follow a strict layered

approach. The protocol layering, however, is a convenient conceptual representation that we

use in this dissertation.

Security solutions are handled in different layers; for examples, spread-spectrum modu-

lation techniques are used at the PHY layer to mitigate channel jamming, authentication

mechanisms are implemented at the link layer to prevent unauthorized access, and crypto-

graphic message encryption is performed at the application layer to protect the messages

against eavesdropping. Therefore, channel jamming and unauthorized access, which are vul-

nerabilities at the PHY layer and link layer, respectively, are performed by security solutions

at their layers. Eavesdropping, however, which is also a PHY layer vulnerability is tradition-

ally handled by a solution at the application layer. A natural question to ask is whether the

physical phenomena occurring at the PHY layer can be exploited against eavesdropping.

1.2 Physical-Layer Security

To illustrate the general concept of physical layer security, consider the example of a three

node wireless network in Figure 1.2. In this configuration, the communication between

terminal A and B is being eavesdropped by terminal E. The communication channel between

the legitimate users is called the main channel, whereas the communication channel between
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Figure 1.1: Layerd Protocol Architecture

terminals A and E is referred to as the eavesdroppers’s channel. When the terminals B and

C are not collocated, the observed signals by the legitimate receiver and the eavesdropper are

usually different. The most notable effects for wireless communications are fading and path-

loss. Fading is a self-interference phenomena that results from the multi-path propagation

of the signals, while path-loss is simply the attenuation of signal amplitude with distance.

If the transmission distance over the main channel is much smaller than the transmission

distance over the eavesdropper’s channel, the detected signal at terminal B is much stronger

than at terminal E. For instance, if A broadcasts a video stream, the signal obtained by

E is significantly degraded compared to the one received by B. This degradedness can

be used at terminal A to prevent E from understanding the content of the video stream.

Cryptographic security solutions implemented at application layer completely ignore these

effects and operate as if the eavesdropper channel is an error-free channel. In contrast, the

key idea of physical-layer security is to explicitly consider differences at the PHY layer to

better protect the messages exchanged over the main channel.

In this dissertation, we study the physical-layer security from an information-theoretic

and coding perspective, but we acknowledge that the scope of physical-layer security goes well

beyond these considerations. In particular, we do not consider a large class of techniques

that aim to modify the PHY layer to impair potential eavesdropping. Examples of such

techniques are coded-division multiple-access signaling, which converts the signals into a
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Figure 1.2: Illustration of Eavesdropping Scenario in Wireless Networks

noise level appearance, and beamforming with smart antenna, which essentially prevents the

eavesdropper from detecting the transmitted signals.

Historically, the notion of information theoretic secrecy in communication systems was

first introduced by Shannon in [1]. The information theoretic secrecy requires that the

received signal of the eavesdropper not provide any information about the transmitted mes-

sages. Shannon considered a pessimistic situation where both the intended receiver and

the eavesdropper have direct access to the transmitted signal (which is called ciphertext).

Under these circumstances, he proved a negative result showing that perfect secrecy can be

achieved only when the entropy of the secret key is greater than, or equal to, the entropy of

the message. In modern cryptography, all practical cryptosystems are based on Shannnon’s

pessimistic assumption. Due to practical constraints, secret keys are much shorter than

messages; therefore, these practical cryptosystems are theoretically susceptible to breaking

by attackers. The goal of designing such practical ciphers, however, is to guarantee that no

efficient algorithm exists for breaking them.

Wyner in [2] showed that the above negative result is a consequence of Shannon’s re-

strictive assumption that the adversary has access to precisely the same information as the

legitimate receiver. Wyner considered a scenario in which a wiretapper receives the trans-

mitted signal over a degraded channel with respect to the legitimate receiver’s channel.

He further assumed that the wiretapper has no computational limitations and knows the

codebook used by the transmitter. He measured the level of ignorance at the eavesdrop-

per by its equivocation and characterized the capacity-equivocation region. Interestingly, a

non-negative perfect secrecy capacity is always achievable for this scenario.
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1.3 Wiretap Channel Model

In this section, we highlight the implicit assumptions inherent in the wiretap channel model

and all the other generalized models.

1. Knowledge of Channel-State-Information: In the wiretap channel model, it is

assumed that the Channel-State-Information (CSI) about the main channel and the

eavesdropper’s channel are perfectly available at the transmitter. While it is reason-

able to assume that the main channel CSI is perfectly known, the availability of the

eavesdropper’s CSI is questionable. In the situations where transmitter is a wireless

base station and the eavesdropper is a user in the network, however, the eavesdropper’s

CSI is in fact known at the transmitter. Moreover, the knowledge of the exact CSI

can be replaced by a conservative assumption based on geographical information. As

an example, the transmitter can certainly upper bound the signal-to-noise ratio at the

eavesdropper, if it is known to be located outside a given region.

2. Authentication: The wiretap channel model implicitly assumes that the main chan-

nel is authenticated. As the authentication mechanisms can be implemented in the

upper layers of the protocol stack, this particular assumption is not restrictive.

3. Passive Eavesdropper: In the wiretap channel model, the adversary is restricted to

passive eavesdropping strategies. Therefore, additional techniques are required to cope

with jamming.

4. Availability of Random Generator: Unlike traditional encoders which are deter-

ministic functions, wiretap encoders are stochastic and rely on the availability of perfect

random generators. In practice, strong pseudo-random generators could be used. The

initialization mechanism of these generators need to be carefully considered.

1.4 Literature Review

Here, we summarize some of the most important definitions and results obtained on physical-

layer security for wireless channels.

1.4.1 Gaussian and General Channel

The secrecy capacity for the Gaussian wiretap channel is characterized by Leung-Yan-Cheong

in [3]. Wyner’s work is then extended to the general (non-degraded) broadcast channel with
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confidential messages by Csiszar and Korner [4]. They considered transmitting confidential

information to the legitimate receiver while transmitting common information to both the

legitimate receiver and the wiretapper. They established a capacity-equivocation region for

this channel.

1.4.2 Fading Channel

Barros et. al. [5] provided a detailed characterization of the outage secrecy capacity of

slow fading channels, and showed that fading alone guarantees that information-theoretic

security is achieved, even when the eavesdropper has a better average signal-to-noise ratio

than the legitimate receiver. The secrecy capacity of ergodic fading channels was derived

independently by Liang et. al. [6, 7], Li et. al. [8], and Gopala et. al. [9], where the power

and rate allocation schemes for secret communication over fading channels were presented.

1.4.3 Multiple-Input Multiple-Output Wiretap Channel

The extension of the wiretap channel when all the three nodes have multiple antennae

were considered by different researchers. A closed form expression for the secrecy capacity

of MIMO Gaussian wiretap channel was derived independently by Oggier et. al., Khisti

et. al., and Liu et. al. in [10], [11], and [12], respectively. The special case where the in-

tended receiver has a single antenna, is referred to as Multiple-Input Single-Output Multiple-

Eavesdropper (MISOME) and is characterized by Khisti et. al. along with the optimum

beam-forming in [13]. In [14, 15, 16] the MIMO wiretap channel is generalized to the case

in which both receivers are to receive legitimate messages intended for each receiver, while

being kept ignorant of each other’s messages.

1.4.4 Relay Channel

The relay channel with confidential messages is studied in the works of [17], [18], [19], [20] and

[21]. In this setup, one party communicates with another party directly, as well as through

a relay node, which is used to increase the capacity between the two parties. The relay

node, in this case, must be kept totally ignorant of the secret messages being transmitted.

In a slightly different scenario of [22], the relay node is used to increase the capacity for the

eavesdropper instead.
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1.4.5 Interference Channel

The interference channel with confidential messages with and without an external eaves-

dropper is considered in [23, 24, 25, 26, 27, 28, 29]. In this scenario, the legitimate users try

to communicate with each other through an interference channel when either the messages

must be kept secret from other users or from an external eavesdropper.

1.4.6 Feedback Channel

The presence of feedback provides the wiretap channel with several advantages. First, when

the legitimate channel is more noisy than the wiretap channel, feedback may permit uncon-

ditional secrecy, whereas without feedback this is not possible [30, 31]. Secondly, when both

forward and feedback channels are noisy, it may be possible to increase the secrecy capacity

to the usual capacity without secrecy constraint [32, 33]. Finally, the role of feedback in

multiple user channels has been explored and found to aid secrecy in [34].

1.4.7 Wiretap Channel with Distortion Measure

In [35], rather than enforcing a minimum equivocation rate on the eavesdropper, a mini-

mum distortion has been enforced. This alternative criterion could be useful for securing

multimedia content such as video or voice.

1.4.8 Broadcast Channel

The broadcast channel with confidential messages has been considered in [36, 37, 38, 39]. This

channel has recently been further studied in [23, 25, 40, 41], where the source node transmits

a common message to both receivers, along with two additional confidential messages, each

aimed at one of the two receivers. Here, the confidentiality of each message is measured with

respect to the other user, and there is no external eavesdropper. In [42], the wiretap channel

is extended to the parallel broadcast channels and also to the fading channels with multiple

receivers. In [42], the secrecy constraint is a perfect equivocation for each of the messages,

even if all the other messages are revealed to the eavesdropper. The secrecy sum capacity

for a reverse broadcast channel is derived subject to this restrictive assumption.

1.4.9 Multiple-Access-Channel

The secure Gaussian MAC with/without an external eavesdropper is introduced in [43, 44,

45, 46]. The secure Gaussian MAC with an external eavesdropper consists of an ordinary
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Gaussian MAC and an external eavesdropper. The capacity region of this channel is still an

open problem in the information theory field. For this channel, an achievable rate scheme

based on Gaussian codebooks is proposed in [46], and also the sum secrecy capacity of

the degraded Gaussian channel is found in [44]. For some special cases, upper bounds,

lower bounds, and some asymptotic results on the secrecy capacity exist, see for example

[19, 47, 48, 49]. For the achievability part, Shannons random coding argument proves to be

effective in these works.

1.5 Outline of the Dissertation

This dissertation is organized as follows: In chapter 2, we consider a scenario where a source

node wishes to broadcast two confidential messages to two receivers, while a wiretapper also

receives the transmitted signal. We study the general broadcast channel with an eavesdrop-

per and the situation where the channels are degraded. We also characterize the secrecy

capacity region when the channels are Additive White Gaussian Noise. Based on the rate

characterization of the secure broadcast channel, we then use the broadcast strategy for the

slow fading wiretap channel when only the eavesdropper’s channel is fixed and known at the

transmitter. In chapter 3, we establish the secrecy capacity region of the MIMO broadcast

channel of chapter 2. Our achievability scheme is a combination of the dirty paper coding

of Gaussian codes and randomization within the layers. To prove the converse, we use the

notion of enhanced channel and show that the secret dirty paper coding of Gaussian codes

is optimal. We investigate practical characterizations for the specific scenario in which the

transmitter and the eavesdropper have multiple antennae, while both the intended receivers

have a single antenna. We characterize the secrecy capacity region in terms of generalized

eigenvalues of the receivers channels and the eavesdropper channel. In chapter 4 we establish

the secrecy sum capacity of the degraded Gaussian MIMO MAC using random bininng of

Gaussian codebooks. For the non-degraded channel, we present an algorithm inspired by

the notion of signal alignment to achieve the largest Secure Degrees-of-Freedom (S-DoF)

by using Gaussian codebooks. We then use the notion of real alignment to prove that for

almost all channel gains in the secure K user single-antenna Gaussian MAC, we can achieve

the S-DoF of K−1
K

. Here, our scheme uses structure codes instead of Gaussian codebooks.

In the case of the channel gains that the S-DoF of K−1
K

cannot be achieved, we propose

a multi-layer coding scheme to achieve a positive S-DoF. Finally, chapter 5 concludes our

works and presents an outline for the future researches. The results of this dissertation have

been published/submitted in [50, 51, 52, 53, 54, 55, 56]. It should be noted that parallel to

our works, references [57, 58, 59, 60], have independently derived some the results of this

8



dissertation.
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Chapter 2

Secure Broadcasting

In this chapter, we consider a scenario in which a source node wishes to broadcast two con-

fidential messages to two receivers, while a wiretapper also receives the transmitted signal.

This model is motivated by wireless communications, where individual secure messages are

broadcast over open media and can be received by any illegitimate receiver. The secrecy

level is measured by the equivocation rate at the eavesdropper. We first study the general

(non-degraded) broadcast channel with an eavesdropper. We present an inner bound on

the secrecy capacity region for this model. This inner bound is based on a combination

of random binning, and the Gelfand-Pinsker binning. We further study the situation in

which the channels are degraded. For the degraded broadcast channel with an eavesdropper,

we present the secrecy capacity region. Our achievable coding scheme is based on Cover’s

superposition scheme and random binning. We refer to this scheme as the Secret Superpo-

sition Scheme. Our converse proof is based on a combination of the converse proof of the

conventional degraded broadcast channel and Csiszar Lemma. We then assume that the

channels are Additive White Gaussian Noise (AWGN) and show that the Secret Superpo-

sition Scheme with Gaussian codebook is optimal. The converse proof is based on Costa’s

entropy power inequality. Finally, we use a broadcast strategy for the slowly fading wiretap

channel when only the eavesdropper’s channel is fixed and known at the transmitter. We

derive the optimum power allocation for the coding layers, which maximizes the total average

rate.

2.1 Preliminaries

Consider a Broadcast Channel with an Eavesdropper (BCE), as depicted in Figure 2.1.

In this confidential setting, the transmitter wishes to send two independent messages

10
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Figure 2.1: Broadcast Channel with an Eavesdropper (BCE)

(W1,W2) to the respective receivers in n uses of the channel and prevent the eavesdropper

from having any information about the messages. A discrete memoryless broadcast channel

with an eavesdropper is represented by (X , P,Y1,Y2,Z), where X is the finite input alphabet

set, Y1, Y2 and Z are three finite output alphabet sets, and P is the channel transition

probability P (y1, y2, z|x). The input of the channel is xn ∈ X n and the outputs are yn
1 ∈ Yn

1 ,

yn
2 ∈ Yn

2 , and zn ∈ Zn for Receiver 1, Receiver 2, and the eavesdropper, respectively. The

channel is discrete memoryless in the sense that

P (yn
1 , yn

2 , zn|xn) =
n∏

i=1

P (y1,i, y2,i, zi|xi). (2.1)

A ((2nR1 , 2nR2), n) code for a broadcast channel with an eavesdropper consists of a stochastic

encoder

f : ({1, 2, ..., 2nR1} × {1, 2, ..., 2nR2}) → X n, (2.2)

and two decoders,

g1 : Yn
1 → {1, 2, ..., 2nR1} (2.3)

and

g2 : Yn
2 → {1, 2, ..., 2nR2}. (2.4)

The average probability of error is defined as the probability that the decoded messages are

not equal to the transmitted messages; that is,

P (n)
e = P (g1(Y

n
1 ) 6= W1 ∪ g2(Y

n
2 ) 6= W2). (2.5)

The knowledge that the eavesdropper can extract about W1 and W2 from its received

signal Zn is measured by

I(Zn,W1) = H(W1)−H(W1|Zn), (2.6)

I(Zn,W2) = H(W2)−H(W2|Zn), (2.7)
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and

I(Zn, (W1,W2)) = H(W1,W2)−H(W1,W2|Zn). (2.8)

Perfect secrecy revolves around the idea that the eavesdropper should not obtain any infor-

mation about the transmitted messages. Perfect secrecy thus requires that

I(Zn, W1) = 0 ⇔ H(W1) = H(W1|Zn), (2.9)

I(Zn, W2) = 0 ⇔ H(W2) = H(W2|Zn),

and

I(Zn, (W1,W2)) = 0 ⇔ H(W1,W2) = H(W1,W2|Zn). (2.10)

where n →∞. The secrecy levels of confidential messages W1 and W2 are measured at the

eavesdropper in terms of equivocation rates which are defined as follows:

Definition 1. The equivocation rates Re1, Re2 and Re12 for the broadcast channel with an

eavesdropper are:

Re1=
1

n
H(W1|Zn), (2.11)

Re2=
1

n
H(W2|Zn),

Re12=
1

n
H(W1,W2|Zn).

The perfect secrecy rates R1 and R2 are the amount of information that can be sent to

the legitimate receivers in a reliable and confidential manner.

Definition 2. A secrecy rate pair (R1, R2) is said to be achievable if for any ε > 0, ε1 >

0, ε2 > 0, ε3 > 0, there exists a sequence of ((2nR1 , 2nR2), n) codes, such that for sufficiently

large n, we have:

P (n)
e ≤ ε, (2.12)

Re1≥ R1 − ε1, (2.13)

Re2≥ R2 − ε2, (2.14)

Re12≥ R1 + R2 − ε3. (2.15)

In the above definition, the first condition concerns the reliability, while the other condi-

tions guarantee perfect secrecy for each individual message and the combination of the two

messages, respectively. Since the messages are independent of each other, the conditions of

(2.13) and (2.15) or (2.14) and (2.15) are sufficient to provide perfect secrecy.

The capacity region is defined as follows.

Definition 3. The capacity region of the broadcast channel with an eavesdropper is the

closure of the set of all achievable rate pairs (R1, R2).
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2.2 Achievable Rates for General BCE

In this section, we consider the general broadcast channel with an eavesdropper and present

an achievable rate region. Our achievable coding scheme is based on a combination of the

random binning, superposition coding, rate splitting, and Gelfand-Pinsker binning schemes

[61]. Our binning approach is supplemented with superposition coding to accommodate the

common message. We call this scheme the Secret Superposition Scheme. Additional binning

is introduced for the confidentiality of private messages. We note that these double binning

techniques have been used by various authors for secret communication (see e.g. [25, 41]).

The following theorem illustrates the achievable rate region for this channel.

Theorem 1. Let RI denote the union of all non-negative rate pairs (R0, R1, R2) satisfying

R0≤ min{I(U ; Y1), I(U ; Y2)} − I(U ; Z), (2.16)

R1 + R0≤ I(V1; Y1|U)− I(V1; Z|U) + min{I(U ; Y1), I(U ; Y2)} − I(U ; Z),

R2 + R0≤ I(V2; Y2|U)− I(V2; Z|U) + min{I(U ; Y1), I(U ; Y2)} − I(U ; Z),

R1 + R2 + R0≤ I(V1; Y1|U) + I(V2; Y2|U)− I(V1, V2; Z|U)− I(V1; V2|U)

+ min{I(U ; Y1), I(U ; Y2)} − I(U ; Z),

over all joint distributions P (u)P (v1, v2|u)P (x|v1, v2)P (y1, y2, z|x). Then, any rate pair

(R0, R1, R2) ∈ RI is achievable for the broadcast channel with an eavesdropper and with

common information.

Please see section 2.6.1 for the proof.

Remark 1. If we remove the secrecy constraints by removing the eavesdropper, the above

rate region becomes Marton’s achievable region with common information for the general

broadcast channel.

Remark 2. If we remove one of the users, e.g. user 2 and the common message, then we

get Csiszar and Korner’s secrecy capacity for the other user.

2.3 The Capacity Region of the Degraded BCE

In this section, we consider the degraded broadcast channel with an eavesdropper and es-

tablish its secrecy capacity region.

Definition 4. A broadcast channel with an eavesdropper is said to be physically degraded, if

X → Y1 → Y2 → Z forms a Markov chain. In other words, we have

P (y1, y2, z|x) = P (y1|x)P (y2|y1)P (z|y2).
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Definition 5. A broadcast channel with an eavesdropper is said to be stochastically degraded

if its conditional marginal distributions are the same as that of a physically degraded broadcast

channel, i.e., if there exist two distributions P
′
(y2|y1) and P

′
(z|y2), such that

P (y2|x)=
∑
y1

P (y1|x)P
′
(y2|y1),

P (z|x)=
∑
y2

P (y2|x)P
′
(z|y2).

Lemma 1. The secrecy capacity region of a broadcast channel with an eavesdropper depends

only on the conditional marginal distributions P (y1|x), P (y2|x) and P (z|x).

Proof: It suffices to show that the error probability of P
(n)
e and the equivocations of

H(W1|Zn), H(W2|Zn) and H(W1,W2|Zn) are only functions of the marginal distributions

when we use the same codebook and encoding schemes. Note that

max{P (n)
e,1 , P

(n)
e,2 } ≤ P (n)

e ≤ P
(n)
e,1 + P

(n)
e,2 . (2.17)

Therefore, P
(n)
e is small if, and only if, both P

(n)
e,1 and P

(n)
e,2 are small. On the other hand, for

a given codebook and encoding scheme, the decoding error probabilities P
(n)
e,1 , P

(n)
e,2 and the

equivocation rates depend only on the marginal channel probability densities of PY1|X , PY2|X
and PZ|X . Thus, the same code and encoding scheme gives the same P

(n)
e and equivocation

rates.

In the following theorem, we fully characterize the capacity region of the physically

degraded broadcast channel with an eavesdropper.

Theorem 2. The capacity region for transmitting independent secret information over the

degraded broadcast channel is the convex hull of the closure of all (R1, R2) satisfying

R1≤ I(X; Y1|U)− I(X; Z|U), (2.18)

R2≤ I(U ; Y2)− I(U ; Z), (2.19)

for some joint distribution P (u)P (x|u)P (y1, y2, z|x).

Please refer to section 2.6.2 for the proof.

Remark 3. If we remove the secrecy constraints by removing the eavesdropper, then the

above theorem becomes the capacity region of the degraded broadcast channel.
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The coding scheme is based on Cover’s superposition coding [62] and random binning.

We refer to this scheme as the Secure Superposition Coding scheme. The available resources

at the encoder are used for two purposes: to confuse the eavesdropper so that perfect secrecy

can be achieved for both layers, and to transmit the messages into the main channels. To

satisfy confidentiality, the randomization used in the first layer is fully exploited in the second

layer. This makes an increase of I(U ; Z) in the bound of R1.

Remark 4. As Lemma 2 bounds the secrecy rates for the general broadcast channel with an

eavesdropper, then Theorem 2 is true when only the legitimate receivers are degraded.

2.4 Capacity Region of Gaussian BCE

In this section, we consider the Gaussian Broadcast Channel with an Eavesdropper (G-

BCE). Note that optimizing (2.18) and (2.19) for AWGN channels involves solving a non-

convex functional. Usually nontrivial techniques and strong inequalities are used to solve

the optimization problems of this type. In [3], Leung-Yan-Cheong successfully evaluated the

capacity expression of the wiretap channel by using the entropy power inequality [63, 64].

Alternatively, it can also be evaluated using a classical result from the Estimation Theory

and the relationship between mutual information and minimum mean-squared error estima-

tion. On the other hand, the entropy power inequality is sufficient to establish the converse

proof of a Gaussian broadcast channel without secrecy constraint. Unfortunately, the tradi-

tional entropy power inequality does not extend to the secure multi-user case. Here, by using

Costa’s version of the entropy power inequality, we show that secret superposition coding

with Gaussian codebook is optimal.

Figure 2.2 shows the channel model. At time i the received signals are Y1i = Xi + N1i,

Y2i = Xi + N2i and Zi = Xi + N3i, where Nji is a Gaussian random variable with zero

mean and V ar(Nji) = σ2
j for j = 1, 2, 3. Here σ2

1 ≤ σ2
2 ≤ σ2

3. Assume that the transmitted

power is limited to E[X2] ≤ P . Since the channels are degraded, the received signals can

alternatively be written as Y1i = Xi + N1i, Y2i = Y1i + N
′
2i and Zi = Y2i + N

′
3i, where N1i’s

are i.i.d N (0, σ2
1), N

′
2i’s are i.i.d N (0, σ2

2 − σ2
1), and N

′
3i’s are i.i.d N (0, σ2

3 − σ2
2). Figure 2.3

shows the equivalent channels for the G-BCE. The following theorem illustrates the secrecy

capacity region of G-BCE.

Theorem 3. The secrecy capacity region of the G-BCE is given by the set of rates pairs
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(R1, R2) satisfying

R1≤ C

(
αP

σ2
1

)
− C

(
αP

σ2
3

)
, (2.20)

R2≤ C

(
(1− α)P

αP + σ2
2

)
− C

(
(1− α)P

αP + σ2
3

)
. (2.21)

for some α ∈ [0, 1] and C(x) = 1
2
log(1 + x).

Please see section 2.6.3 for the proof.

Figure 2.4 shows the capacity region of a degraded Gaussian broadcast channel with and

without any secrecy constraint. In this figure P = 20, N1 = 0.9, N2 = 1.5 and N3 = 4.

2.5 A Multilevel Coding Approach to the Slowly Fad-

ing Wiretap Channel

In this section, we use the secure degraded broadcast channel from the previous section to

develop a new broadcast strategy for a slow fading wiretap channel. This strategy aims

to maximize the average achievable rate where the main channel state information is not

available at the transmitter. By assuming that there is an infinite number of ordered receivers
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Figure 2.4: Secret versus Non-Secret Capacity Region of a Degraded Broadcast Channel.

The gap between the regions corresponds to the cost of securing the system. The power

used at the transmitter is beneficial for both the intended receiver and the eavesdropper

such that the secure sum rate will be saturated in high SNR.

which correspond to different channel realizations, we propose a secret multilevel coding

scheme that maximizes the underlying objective function. First, some preliminaries and

definitions are given, and then the proposed multilevel coding scheme is described. Here,

we follow the steps of the broadcast strategy for the slowly fading point-to-point channel of

[65]. This method is used in several other papers; see, for example [66, 67, 68].

2.5.1 Channel Model

Consider a wiretap channel as depicted in Figure 2.5. The transmitter wishes to communicate

with the destination in the presence of an eavesdropper. At time i, the signal received by

the destination and the eavesdropper are given as follows

Yi = hMXi + N1i (2.22)

Zi = hEXi + N2i

where Xi is the transmitted symbol and hM , hE are the fading coefficients from the source to

the legitimate receiver and to the eavesdropper, respectively. The fading power gains of the

main and eavesdropper channels are given by s = |hM |2 and ŝ = |hE|2, respectively. N1i, N2i

are the additive noise samples, which are Gaussian i.i.d with zero mean and unit variance.

We assume that the channels are slowly fading, and also assume that the transmitter only
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knows the channel state information of the eavesdropper channel. A motivation for this

assumption is that when both channels are unknown at the transmitter, we assume that

ŝ = |hE|2 denotes the best-case eavesdropper channel gain. For each realization of hM there

is an achievable rate. Since the transmitter has no information about the main channel and

the channels are slowly fading, then the system is non-ergodic. Here, we are interested in the

average rate for various independent transmission blocks. The average shall be calculated

over the distribution of hM .

2.5.2 The Secret Multilevel Coding Approach

An equivalent broadcast channel for our channel is depicted in Figure 2.6. wherein the

transmitter sends an infinite number of secure layers of coded information. The receiver is

equivalent to a continuum of ordered users. For each channel realization hk
M with the fading
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power gain sk, the information rate is R(sk, ŝ). We drop the superscript k, and the realization

of the fading power random variable S is denoted by s. Therefore, the transmitter views the

main channel as a secure degraded Gaussian broadcast channel with an infinite number of

receivers. The result of the previous section for the two receivers can easily be extended to

an arbitrary number of users. According to theorem 3, the incremental differential secure

rate is then given by

dR(s, ŝ) =

[
1

2
log

(
1 +

sρ(s)ds

1 + sI(s)

)
− 1

2
log

(
1 +

ŝρ(s)ds

1 + ŝI(s)

)]+

, (2.23)

where ρ(s)ds is the transmit power of a layer parameterized by s, intended for receiver s.

As log(1 + x) ≈ x for x ≤ 1 then the log function may be discarded. The function I(s)

represents the interference noise of the receivers indexed by u > s which cannot be canceled

at receiver s. The interference at receiver s is therefore given by

I(s) =

∫ ∞

s

ρ(u)d(u). (2.24)

The total transmitted power is the summation of the power assigned to the layers

P = I(0) =

∫ ∞

0

ρ(u)d(u). (2.25)

The total achievable rate for a fading realization s is an integration of the incremental rates

over all receivers, which can successfully decode the respective layer

R(s, ŝ) =
1

2

∫ s

0

[
uρ(u)du

1 + uI(u)
− ŝρ(u)du

1 + ŝI(u)

]+

. (2.26)

Our goal is to maximize the total average rate over all fading realizations with respect to

the power distribution ρ(s) (or equivalently, with respect to I(u), u ≥ 0) under the power

constraint of 2.25. The optimization problem may be written as

Rmax= max
I(u)

∫ ∞

0

R(u, ŝ)f(u)du, (2.27)

s.t

P= I(0) =

∫ ∞

0

ρ(u)d(u),

where f(u) is the probability distribution function (pdf) of the power gain S. Noting that

the cumulative distribution function (cdf) is F (u) =
∫ u

0
f(a)da, the optimization problem

may be written as

Rmax=
1

2
max
I(u)

∫ ∞

0

(1− F (u))G(u)du, (2.28)

s.t

P= I(0) =

∫ ∞

0

ρ(u)d(u),
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where G(u) =
[

u
1+uI(u)

− ŝ
1+ŝI(u)

]+

ρ(u). Note that ρ(u) = −I
′
(u). Therefore, the functional

in (2.28) may be written as

J(x, I(x), I
′
(x)) = (2.29)

−(1− F (x))

[
x

1 + xI(x)
− ŝ

1 + ŝI(x)

]+

I
′
(x). (2.30)

The necessary condition for the maximization of an integral of J over x is

JI − d

dx
JI

′ = 0, (2.31)

where JI means the derivation of function J with respect to I, and similarly JI
′ is the

derivation of J with respect to I
′
. After some manipulations, the optimum I(x) is given by

I(x) =

{
1−F (x)−(x−ŝ)f(x)

ŝ(1−F (x))+x(x−ŝ)f(x)
, max{ŝ, x0} ≤ x ≤ x1;

0, otherwise,
(2.32)

where x0 is determined by I(x0) = P , and x1 by I(x1) = 0.

As a special case, consider the Rayleigh flat fading channel. The random variable S is

exponentially distributed with

f(s) = e−s, F (s) = 1− e−s, s ≥ 0. (2.33)

Substituting f(s) and F (s) into the optimum I(s) and taking the derivative with respect to

the fading power s yields the following optimum transmitter power policy

ρ(s) = − d

ds
I(s) =

{
−s2+2(ŝ+1)s−s

′2
(s2−ŝs+ŝ)2

, max{ŝ, s0} ≤ s ≤ s1;

0, otherwise,
(2.34)

where s0 is the solution of the equation I(s0) = P , which is

s0 =
−1 + Ps

′
+

√
P 2s′2 + 2P (1− 2P )ŝ + 4P + 1

2P
, (2.35)

and s1 is determined by I(s1) = 0, which is

s1 = 1 + ŝ. (2.36)

2.6 Proofs for Chapter 2

2.6.1 Proof of Theorem 1

We split the private message W1 ∈ {1, 2, ..., 2nR1} into W11 ∈ {1, 2, ..., 2nR11} and W10 ∈
{1, 2, ..., 2nR10}, and W2 ∈ {1, 2, ..., 2nR2} into W22 ∈ {1, 2, ..., 2nR22} and W20 ∈ {1, 2, ..., 2nR20},
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Figure 2.7: The Stochastic Encoder

respectively. W11 and W22 are only to be decoded by the intended receivers, while W10 and

W20 are to be decoded by both receivers. Now, we combine (W10,W20,W0) into a single

auxiliary variable U . The messages W11 and W22 are represented by auxiliary variables V1

and V2, respectively. Here, R10 + R11 = R1 and R20 + R22 = R2.

1) Codebook Generation: The structure of the encoder is depicted in Figure 2.7. Fix

P (u), P (v1|u), P (v2|u) and P (x|v1, v2). The stochastic encoding is as follows. Define

L11= I(V1; Y1|U)− I(V1; Z, V2|U), (2.37)

L12= I(V1; Z|V2, U),

L21= I(V2; Z|V1, U)

L22= I(V2; Y2|U)− I(V2; Z, V1|U),

L3= I(V1; V2|U)− ε,

Note that,

L11 + L12 + L3= I(V1; Y1|U)− ε, (2.38)

L22 + L21 + L3= I(V2; Y2|U)− ε,

We first prove the case where

R11≥ L11 ≥ 0, (2.39)

R22≥ L22 ≥ 0. (2.40)
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Generate 2n(R10+R20+R0) independent and identically distributed (i.i.d) sequences un(k) with

k ∈ {1, 2, ..., 2R10+R20+R0}, according to the distribution P (un) =
∏n

i=1 P (ui). For each

codeword un(k), generate 2L11+L12+L3 i.i.d codewords vn
1 (i, i

′
, i
′′
), with i ∈ {1, 2, ..., 2nL11},

i
′ ∈ {1, 2, ..., 2nL12} and i

′′ ∈ {1, 2, ..., 2nL3}, according to P (vn
1 |un) =

∏n
i=1 P (v1i|ui). The

indexing presents an alternative interpretation of binning. Randomly distribute these se-

quences of vn
1 into 2nL11 bins indexed by i, for the codewords in each bin, randomly dis-

tribute them into 2nL12 sub-bins indexed by i
′
; thus i

′′
is the index for the codeword in each

sub-bin. Similarly, for each codeword un, generate 2L21+L22+L3 i.i.d codewords vn
2 (j, j

′
, j

′′
)

according to P (vn
2 |un) =

∏n
i=1 P (v2i|ui), where j ∈ {1, 2, ..., 2nL21}, j

′ ∈ {1, 2, ..., 2nL22} and

j
′′ ∈ {1, 2, ..., 2nL3}.

2) Encoding : To send messages (w10, w20, w0), we calculate the corresponding message

index k and choose the corresponding codeword un(k). Given this un(k), there exists

2n(L11+L12+L3) codewords of vn
1 (i, i

′
, i
′′
) to choose from for representing message w11. Evenly

map 2nR11 messages w11 to 2nL11 bins, then, given (2.39), each bin corresponds to at least

one message w11. Thus, given w11, the bin index i can be decided.

1. If R11 ≤ L11 + L12, each bin corresponds to 2n(R11−L11) messages w11. Evenly place the

2nL12 sub-bins into 2n(R11−L11) cells. For each given w11, we can find the corresponding

cell. We, then, randomly choose a sub-bin from that cell, thus the sub-bin index i
′
can

be decided. The codeword vn
1 (i, i

′
.i
′′
) will be chosen properly from that sub-bin.

2. If L11+L12 ≤ R11 ≤ L11+L12+L3, then each sub-bin is mapped to at least one message

w11, therefore, given w11; i
′
can be decided. In each sub-bin, there are 2n(R11−L11−L12)

messages. The codeword vn
1 (i, i

′
.i
′′
) will be chosen randomly and properly from that

sub-bin.

Given w22, we select vn
2 (j, j

′
, j

′′
) in the exact same manner. From the given sub-bins ,

the encoder chooses the codeword pair (vn
1 (i, i

′
, i
′′
), vn

2 (j, j
′
, j

′′
)) that satisfies the following

property,

(vn
1 (i, i

′
, i
′′
), vn

2 (j, j
′
, j

′′
)) ∈ A(n)

ε (V1, V2, U) (2.41)

where A
(n)
ε (U, V1, V2) denotes the set of jointly typical sequences un, vn

1 , and vn
2 with respect

to P (u, v1, v2). If there is more than one such pair, the transmitter randomly chooses one; if

there is no such pair, an error is declared.

Given vn
1 and vn

2 , the channel input xn is generated i.i.d. according to the distribution

P (xn|vn
1 , vn

2 ) =
∏n

i=1 P (xi|v1i, v2i).
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3) Decoding : The received signals at the legitimate receivers, yn
1 and yn

2 , are the outputs

of the channels P (yn
1 |xn) =

∏n
i=1 P (y1,i|xi) and P (yn

2 |xn) =
∏n

i=1 P (y2,i|xi), respectively.

The first receiver looks for the unique sequence un(k) such that

(un(k), yn
1 ) ∈ A(n)

ε (U, Y1). (2.42)

If such un(k) exists and is unique, set k̂ = k; otherwise, declare an error. Upon decoding k,

this receiver looks for sequences vn
1 (i, i

′
, i
′′
) such that

(vn
1 (i, i

′
, i
′′
), un(k), yn

1 ) ∈ A(n)
ε (V1, U, Y1). (2.43)

If such vn
1 (i, i

′
, i
′′
) exists and is unique, set î = i, î

′
= i

′
, and î

′′
= i

′′
; otherwise, declare

an error. Using the values of k̂, î, î
′

and î
′′
, the decoder can calculate the message indices

ŵ0, ŵ10 and ŵ11. The decoding for the second decoder is similar.

4) Error Probability Analysis : Since the region of RI is a subset of Marton’s region, then

the error probability analysis is the same as [69].

5) Equivocation Calculation: To meet the secrecy requirements, we need to prove that

the common message W0, the combination of (W0,W1), the combination of (W0,W2), and

the combination of (W0, W1,W2) are perfectly secured. The proof of secrecy requirement for

the message W0 is straightforward and is therefore omitted.

To prove the secrecy requirement for (W0, W1), we have

nRe10 = H(W1,W0|Zn) (2.44)

= H(W1,W0, Z
n)−H(Zn)

= H(W1,W0, U
n, V n

1 , Zn)−H(Un, V n
1 |W1,W0, Z

n)−H(Zn)

= H(W1,W0, U
n, V n

1 ) + H(Zn|W1,W0, U
n, V n

1 )−H(Un|W1,W0, Z
n)

− H(V n
1 |W1,W0, Z

n, Un)−H(Zn)
(a)

≥ H(W1,W0, U
n, V n

1 ) + H(Zn|W1,W0, U
n, V n

1 )− nεn −H(Zn)
(b)
= H(W1,W0, U

n, V n
1 ) + H(Zn|Un, V n

1 )− nεn −H(Zn)
(c)

≥ H(Un, V n
1 ) + H(Zn|Un, V n

1 )− nεn −H(Zn)

= H(Un) + H(V n
1 |Un)− I(Un, V n

1 ; Zn)− nεn

(d)

≥ min{I(Un; Y n
1 ), I(Un; Y n

2 )}+ I(V n
1 ; Y n

1 |Un)− I(V n
1 ; Zn|Un)− I(Un; Zn)− nεn

(e)

≥ nR1 + nR0 − nεn,

where (a) follows from Fano’s inequality that bounds the term H(Un|W1,W0, Z
n) ≤ h(P

(n)
we0)+

nP n
we0Rw0 ≤ nεn/2 and the term H(V n

1 |W1, W0, Z
n, Un) ≤ h(P

(n)
we1) + nP n

we1Rw1 ≤ nεn/2 for
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sufficiently large n. Here P n
we0 and P n

we1 denote the wiretapper’s error probability of decod-

ing un and V n
1 in the case that the bin numbers w0 and w1 are known to the eavesdropper,

respectively. The eavesdropper first looks for the unique un in bin w0 of the first layer,

such that it is jointly typical with zn. As the number of candidate codewords is small

enough, the probability of error is arbitrarily small for a sufficiently large n. Next, given

un, the eavesdropper looks for the unique vn
1 in the bin w1 which is jointly typical with

zn. Similarly, since the number of available candidates is small enough, then the proba-

bility of a decoding error is arbitrarily small. (b) follows from the fact that (W1, W0) →
Un → V n

1 → Zn forms a Markov chain. Therefore, we have I(W1,W0; Z
n|Un, V n

1 ) = 0,

where it is implied that H(Zn|W1,W0, U
n, V n

1 ) = H(Zn|Un, V n
1 ). (c) follows from the

fact that H(W1,W0, U
n, Xn) ≥ H(Un, Xn). (d) follows from that fact that H(Un) ≥

min{I(Un; Y n
1 ), I(Un; Y n

2 )} and H(V n
1 |Un) ≥ I(V n

1 ; Y n
1 |Un). (e) follows from Lemma 11

of the Appendix.

By using the same approach it is easy to show that,

nRe20 = H(W2,W0|Zn) (2.45)

≥ nR2 + nR0 − nεn.
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Therefore, we only need to prove that (W0,W1,W2) is perfectly secured; we have

nRe120 = H(W1,W2,W0|Zn) (2.46)

= H(W1,W2,W0, Z
n)−H(Zn)

= H(W1,W2,W0, U
n, V n

1 , V n
2 , Zn)−H(Un, V n

1 , V n
2 |W1,W2,W0, , Z

n)−H(Zn)

= H(W1,W2,W0, U
n, V n

1 , V n
2 ) + H(Zn|W1, W2,W0, U

n, V n
1 , V n

2 )

− H(Un, V n
1 , V n

2 |W1,W2,W0, Z
n)−H(Zn)

(a)

≥ H(W1,W2,W0, U
n, V n

1 , V n
2 ) + H(Zn|W1, W2,W0, U

n, V n
1 , V n

2 )− nεn −H(Zn)
(b)
= H(W1,W2,W0, U

n, V n
1 , V n

2 ) + H(Zn|Un, V n
1 , V n

2 )− nεn −H(Zn)
(c)

≥ H(Un, V n
1 , V n

2 ) + H(Zn|Un, V n
1 , V n

2 )− nεn −H(Zn)
(d)
= H(Un) + H(V n

1 |Un) + H(V n
2 |Un)− I(V n

1 ; V n
2 |Un) + H(Zn|Un, V n

1 , V n
2 )

− nεn −H(Zn)
(e)

≥ min{I(Un; Y n
1 ), I(Un; Y n

2 )}+ I(V n
1 ; Y n

1 |Un) + I(V n
2 ; Y n

2 |Un)− I(V n
1 ; V n

2 |Un)

− I(Un, V n
1 , V n

2 ; Zn)− nεn

(f)

≥ min{I(Un; Y n
1 ), I(Un; Y n

2 )}+ I(V n
1 ; Y n

1 |Un) + I(V n
2 ; Y n

2 |Un)− I(V n
1 ; V n

2 |Un)

− I(V n
1 , V n

2 ; Zn|Un)− I(Un; Zn)− nεn

(g)

≥ n min{I(U ; Y1), I(U ; Y2)}+ nI(V1; Y1|U) + nI(V2; Y2|U)− nI(V1; V2|U)

− nI(V1, V2; Z|U)− nI(U ; Z)− nεn

≥ nR1 + nR2 + nR0 − nεn,

where (a) follows from Fano’s inequality, which states that for sufficiently large n, we have

H(Un, V n
1 , V n

2 |W1,W2, W0, Z
n) ≤ h(P

(n)
we ) +nP n

weRw ≤ nεn. Here P n
we denotes the wiretap-

per’s error probability of decoding (un, vn
1 , vn

2 ) in the case that the bin numbers w0, w1, and

w2 are known to the eavesdropper. Since the sum rate is small enough, then P n
we → 0 for suffi-

ciently large n. (b) follows from the following Markov chain: (W1,W2,W0) → (Un, V n
1 , V n

2 ) →
Zn. Hence, we have H(Zn|W1,W2,W0, U

n, V n
1 , V n

2 ) = H(Zn|Un, V n
1 , V n

2 ). (c) follows from

the fact that H(W1,W2, W0, U
n, V n

1 , V n
2 ) ≥ H(Un, V n

1 , V n
2 ). (d) follows from that fact that

H(Un, V n
1 , V n

2 ) = H(Un)+H(V n
1 |Un)+H(V n

2 |Un)− I(V n
1 ; V n

2 |Un). (e) follows from the fact

that H(Un) ≥ min{I(Un; Y n
1 ), I(Un; Y n

2 )} and H(V n
i |Un) ≥ I(V n

i ; Y n
i |Un) for i = 1, 2. (f)

follows from the fact that I(Un, V n
1 , V n

2 ; Zn) = I(Un; Zn) + I(V n
1 , V n

2 ; Zn|Un). (g) follows

from Lemma 11 in the Appendix. This completes the achievability proof.
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2.6.2 Proof of Theorem 2

Achievablity : We need to show that the region of (2.18) and (2.19) is a subset of the achiev-

ability region of Theorem 1. In the achievability scheme of Theorem 1, if we set W2 = ∅ and

rename W0 with W2, then using the degradedness, we obtain the following region,

R1 + R2≤ I(V ; Y1|U)− I(V ; Z|U) + I(U ; Y2)− I(U ; Z), (2.47)

R2≤ I(U ; Y2)− I(U ; Z).

Note that since the first receiver decodes both messages, the total rate of this receiver is

R1 ← R1 + R2 and we have

R1≤ I(UV ; Y1|U) + I(U ; Y2)− I(UV ; Z), (2.48)

R2≤ I(U ; Y2)− I(U ; Z).

Now, since U → V → X → Y2 → Z is a markov chain, then the following region is a subset

of the above region, and consequently, it is achievable,

R1≤ I(X; Y1|U) + I(U ; Z)− I(X; Z), (2.49)

R2≤ I(U ; Y2)− I(U ; Z).

which is the same as that of region (2.18) and (2.19). This completes the achievability proof.

Converse: The transmitter sends two independent secret messages W1 and W2 to Receiver

1 and Receiver 2, respectively. Let us define Ui = (W2, Y
i−1
1 ). The following Lemma bounds

the secrecy rates for a general case of (W1,W2) → Xn → Y n
1 Y n

2 Zn:

Lemma 2. For the broadcast channel with an eavesdropper, the perfect secrecy rates are

bounded as follows,

nR1≤
n∑

i=1

I(W1; Y1i|W2, Zi, Y
i−1
1 , Z̃i+1) + nδ1 + nε3, (2.50)

nR2≤
n∑

i=1

I(W2; Y2i|Zi, Y
i−1
2 , Z̃i+1) + nδ1 + nε2.

Proof: We need to prove the second bound. The first bound can similarly be proven. nR2

is bounded as follows:

nR2

(a)

≤ H(W2|Zn) + nε2 (2.51)
(b)

≤ H(W2|Zn)−H(W2|Y n
2 ) + nδ1 + nε2

= I(W2; Y
n
2 )− I(W2; Z

n) + nδ1 + nε2
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where (a) follows from the secrecy constraint that H(W2|Zn) ≥ H(W2) − nε2. (b) follows

from Fano’s inequality that H(W2|Y n
2 ) ≤ nδ1. Next, we expand I(W2; Y

n
2 ) and I(W2; Z

n) as

follows.

I(W2; Y
n
2 ) =

n∑
i=1

I(W2; Y2i|Y i−1
2 ) (2.52)

=
n∑

i=1

I(W2, Z̃
i+1; Y2i|Y i−1

2 )− I(Z̃i+1; Y2i|W2, Y
i−1
2 )

=
n∑

i=1

I(W2; Y2i|Y i−1
2 , Z̃i+1) + I(Z̃i+1; Y2i|Y i−1

2 )− I(Z̃i+1; Y2i|W2, Y
i−1
2 )

=
n∑

i=1

I(W2; Y2i|Y i−1
2 , Z̃i+1) + ∆1 −∆2,

where, ∆1 =
∑n

i=1 I(Z̃i+1; Y2i|Y i−1
2 ) and ∆2 =

∑n
i=1 I(Z̃i+1; Y2i|W2, Y

i−1
2 ). Similarly, we

have,

I(W2; Z
n) =

n∑
i=1

I(W2; Zi|Z̃i+1) (2.53)

=
n∑

i=1

I(W2, Y
i−1
2 ; Zi|Z̃i+1)− I(Y i−1

2 ; Zi|W2, Z̃
i+1)

=
n∑

i=1

I(W2; Zi|Y i−1
2 , Z̃i+1) + I(Y i−1

2 ; Zi|Z̃i+1)− I(Y i−1
2 ; Zi|W2, Z̃

i+1)

=
n∑

i=1

I(W2; Zi|Y i−1
2 , Z̃i+1) + ∆∗

1 −∆∗
2,

where, ∆∗
1 =

∑n
i=1 I(Y i−1

2 ; Zi|Z̃i+1) and ∆∗
2 =

∑n
i=1 I(Y i−1

2 ; Zi|W2, Z̃
i+1). According to

Lemma 7 of [4], ∆1 = ∆∗
1 and ∆2 = ∆∗

2. Thus, we have,

nR2 ≤
n∑

i=1

I(W2; Y2i|Y i−1
2 , Z̃i+1)− I(W2; Zi|Y i−1

2 , Z̃i+1) + nδ1 + nε2 (2.54)

=
n∑

i=1

H(W2|Zi, Y
i−1
2 , Z̃i+1)−H(W2|Y2i, Y

i−1
2 , Z̃i+1) + nδ1 + nε2

(a)

≤
n∑

i=1

H(W2|Zi, Y
i−1
2 , Z̃i+1)−H(W2|Y2i, Zi, Y

i−1
2 , Z̃i+1) + nδ1 + nε2

=
n∑

i=1

I(W2; Y2i|Zi, Y
i−1
2 , Z̃i+1) + nδ1 + nε2,
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where (a) follows from the fact that conditioning always decreases the entropy.

Now according to the above Lemma, the secrecy rates are bounded as follows:

nR1

(a)

≤
n∑

i=1

I(W1; Y1,i|W2, Zi, Y
i−1
1 , Z̃i+1) + nδ1 + nε3 (2.55)

=
n∑

i=1

I(W1; Y1,i|Ui, Zi, Z̃
i+1) + nδ1 + nε3

(b)

≤
n∑

i=1

I(Xi; Y1,i|Ui, Zi, Z̃
i+1) + nδ1 + nε3

(c)
=

n∑
i=1

I(Xi; Y1,i, Ui, Zi|Z̃i+1)− I(Xi; Zi|Z̃i+1)− I(Xi; Ui|Zi, Z̃
i+1) + nδ1 + nε3

(d)
=

n∑
i=1

I(Xi; Y1,i|Ui, Z̃
i+1) + I(Xi; Ui|Z̃i+1)− I(Xi; Zi|Z̃i+1)− I(Xi; Ui|Zi, Z̃

i+1)

+ nδ1 + nε3

(e)
=

n∑
i=1

I(Xi; Y1,i|Ui, Z̃
i+1)− I(Xi; Zi|Z̃i+1) + I(Zi; Ui|Z̃i+1)− I(Zi; Ui|Xi, Z̃

i+1)

+ nδ1 + nε3

(f)
=

n∑
i=1

I(Xi; Y1,i|Ui, Z̃
i+1)− I(Xi; Zi|Z̃i+1) + I(Zi; Ui|Z̃i+1) + nδ1 + nε3,

where (a) follows from the Lemma (2). (b) follows from the data processing theorem.

(c) follows from the chain rule. (d) follows from the fact that I(Xi; Y1,i, Ui, Zi|Z̃i+1) =

I(Xi; Ui|Z̃i+1)+I(Xi; Y1,i|Ui, Z̃
i+1)+I(Xi; Zi|Y1,i, Ui, Z̃

i+1) and from the fact that Z̃i+1Ui →
Xi → Y1,i → Y2,i → Zi forms a Markov chain, which means that I(Xi; Zi|Y1,i, Ui, Z̃

i+1) =

0. (e) follows from the fact that I(Xi; Ui|Z̃i+1) − I(Xi; Ui|Zi, Z̃
i+1) = I(Zi; Ui|Z̃i+1) −

I(Zi; Ui|Xi, Z̃
i+1). (f) follows from the fact that Z̃i+1Ui → Xi → Zi forms a Markov chain.

Thus, I(Zi; UiZ̃
i+1|Xi) = 0 which implies that I(Zi; Ui|Xi, Z̃

i+1) = 0.
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For the second receiver, we have

nR2

(a)

≤
n∑

i=1

I(W2; Y2,i|Y i−1
2 , Zi, Z̃

i+1) + nδ2 + nε1 (2.56)

=
n∑

i=1

H(Y2,i|Y i−1
2 , Zi, Z̃

i+1)−H(Y2,i|W2, Y
i−1
2 , Zi, Z̃

i+1) + nδ2 + nε1

(b)

≤
n∑

i=1

H(Y2,i|Zi, Z̃
i+1)−H(Y2,i|W2, Y

i−1
1 , Y i−1

2 , Zi, Z̃
i+1) + nδ2 + nε1

(c)
=

n∑
i=1

H(Y2,i|Zi, Z̃
i+1)−H(Y2,i|Ui, Zi, Z̃

i+1) + nδ2 + nε1

=
n∑

i=1

I(Y2,i; Ui|Zi, Z̃
i+1) + nδ2 + nε1

=
n∑

i=1

I(Y2,i; Ui|Z̃i+1) + I(Y2,i; Zi|Ui, Z̃
i+1)− I(Y2,i; Zi|Z̃i+1) + nδ2 + nε1

=
n∑

i=1

I(Y2,i; Ui|Z̃i+1)− I(Zi; Ui|Z̃i+1) + I(Zi; Ui|Y2,i, Z̃
i+1) + nδ2 + nε1

(d)
=

n∑
i=1

I(Y2,i; Ui|Z̃i+1)− I(Zi; Ui|Z̃i+1) + nδ2 + nε1,

where (a) follows from the lemma (2). (b) follows from the fact that conditioning always

decreases the entropy. (c) follows from the fact that Y i−1
2 → W2Z̃

i+1Y i−1
1 → Y2i → Zi forms

a Markov chain. (d) follows from the fact that Z̃i+1Ui → Y2,i → Zi forms a Markov chain.

Thus I(Zi; UiZ̃
i+1|Y2i) = 0 which implies that I(Zi; Ui|Y2i, Z̃

i+1) = 0. Now, following [62], let

us define the time sharing random variable Q which is uniformly distributed over {1, 2, ..., n}
and independent of (W1,W2, X

n, Y n
1 , Y n

2 ). Let us define U = UQ, V = (Z̃Q+1, Q), X =

XQ, Y1 = Y1,Q, Y2 = Y2,Q, Z = ZQ, then R1 and R2 can be written as

R1≤ I(X; Y1|U, V ) + I(U ; Z|V )− I(X; Z|V ), (2.57)

R2≤ I(U ; Y2|V )− I(U ; Z|V ). (2.58)

Note that the boundary of this region is characterized by the maximization of R1 +µR2 over

this region for µ ≥ 1. On the other hand we have,

R1 + µR2 ≤ I(X; Y1|U, V ) + I(U ; Z|V )− I(X; Z|V ) + µ (I(U ; Y2|V )− I(U ; Z|V )) (2.59)

Since conditional mutual information is the average of the unconditional ones, the largest

region is achieved when V is a constant. This proves the converse part.
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2.6.3 Proof of Theorem 3

Achievability : Let U ∼ N (0, (1 − α)P ) and X
′ ∼ N (0, αP ) be independent and X =

U + X
′ ∼ N (0, P ). Now consider the following secure superposition coding scheme:

1) Codebook Generation: Generate 2nI(U ;Y2) i.i.d Gaussian codewords un with average

power (1−α)P and randomly distribute these codewords into 2nR2 bins. Then index each bin

by w2 ∈ {1, 2, ..., 2nR2}. Generate an independent set of 2nI(X
′
;Y1) i.i.d Gaussian codewords

x
′n with average power αP . Then, randomly distribute them into 2nR1 bins. Index each bin

by w1 ∈ {1, 2, ..., 2nR1}.
2) Encoding : To send messages w1 and w2, the transmitter randomly chooses one of the

codewords in bin w2, (say un) and one of the codewords in bin w1 (say x
′n). The transmitter

then simply transmits xn = un + x
′n.

3) Decoding : The received signal at the legitimate receivers are yn
1 and yn

2 , respectively.

Receiver 2 determines the unique un such that (un, yn
2 ) are jointly typical and declares the

index of the bin containing un as the message received. If there is none of such or more than

one of such, an error is declared. Receiver 1 uses the successive cancelation method; it first

decodes un and subtracts it from yn
1 and then looks for the unique x

′n such that (x
′n, yn

1 −un)

are jointly typical and declares the index of the bin containing x
′n as the message received.

It can be shown that if R1 and R2 satisfy (2.20) and (2.21), the error probability analysis

and equivocation calculation is straightforward and may therefore be omitted.

Converse: According to the previous section, R2 is bounded as follows:

nR2 ≤ I(Y n
2 ; Un|Zn) = h(Y n

2 |Zn)− h(Y n
2 |Un, Zn), (2.60)

where h is the differential entropy. The classical entropy power inequality states that:

2
2
n

h(Y n
2 +N

′n
3 ) ≥ 2

2
n

h(Y n
2 ) + 2

2
n

h(N
′n
3 ) (2.61)

Therefore, h(Y n
2 |Zn) may be written as follows:

h(Y n
2 |Zn) = h(Zn|Y n

2 ) + h(Y n
2 )− h(Zn) (2.62)

=
n

2
log 2πe(σ2

3 − σ2
2) + h(Y n

2 )− h(Y n
2 + N

′n
3 )

≤ n

2
log 2πe(σ2

3 − σ2
2) + h(Y n

2 )− n

2
log(2

2
n

h(Y n
2 ) + 2πe(σ2

3 − σ2
2)).

On the other hand, for any fixed a ∈ R, the function

f(t, a) = t− n

2
log(2

2
n

t + a) (2.63)
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is concave in t and has a global maximum at the maximum value of t. Thus, h(Y n
2 |Zn) is

maximized when Y n
2 (or equivalently Xn) has a Gaussian distribution. Hence,

h(Y n
2 |Zn) ≤ n

2
log 2πe(σ2

3 − σ2
2) +

n

2
log 2πe(P + σ2

2)−
n

2
log 2πe(P + σ2

3)

=
n

2
log

(
2πe(σ2

3 − σ2
2)(P + σ2

2)

P + σ2
3

)
. (2.64)

Note that another method to obtain (2.64) is using the worst additive noise lemma (see

[70, 71] for details). Now consider the term h(Y n
2 |Un, Zn). This term is lower bounded with

h(Y n
2 |Un, Xn, Zn) = n

2
log 2πe(σ2

2) which is greater than n
2

log 2πe(
σ2
2(σ2

3−σ2
2)

σ2
3

). Hence,

n

2
log 2πe(

σ2
2(σ

2
3 − σ2

2)

σ2
3

) ≤ h(Y n
2 |Un, Zn) ≤ h(Y n

2 |Zn). (2.65)

Inequalities (2.64) and (2.65) imply that there exists an α ∈ [0, 1] such that

h(Y n
2 |Un, Zn) =

n

2
log

(
2πe(σ2

3 − σ2
2)(αP + σ2

2)

αP + σ2
3

)
. (2.66)

Substituting (2.66) and (2.64) into (2.60) yields the desired bound

nR2 ≤ h(Y n
2 |Zn)− h(Y n

2 |Un, Zn) (2.67)

≤ n

2
log

(
(P + σ2

2)(αP + σ2
3)

(P + σ2
3)(αP + σ2

2)

)

= nC

(
(1− α)P

αP + σ2
2

)
− nC

(
(1− α)P

αP + σ2
3

)
. (2.68)

Note that the left hand side of (2.66) can be written as h(Y n
2 , Zn|Un) − h(Zn|Un) which

implies that

h(Y n
2 |Un)− h(Zn|Un) =

n

2
log

(
αP + σ2

2

αP + σ2
3

)
. (2.69)

Since σ2
1 ≤ σ2

2 ≤ σ2
3, there exists a 0 ≤ β ≤ 1 such that σ2

2 = (1−β)σ2
1 +βσ2

3, or equivalently,

σ2
2 = σ2

1 + β(σ2
3 − σ2

1). Therefore, since Y n
1 → Y n

2 → Zn forms a Markov chain, the received

signals Zn and Y n
2 can be written as Zn = Y n

1 + Ñn and Y n
2 = Y n

1 +
√

βÑn where Ñ is an

independent Gaussian noise with variance σ̃2 = σ2
3 − σ2

1. All noises are Gaussian random

n-vector with a positive definite covariance matrix. Costa’s entropy power inequality [72]

states that (see also [73] for its linear version),

2
2
n

h(Y n
1 +

√
βÑn|Un) ≥ (1− β)2

2
n

h(Y n
1 |Un) + β2

2
n

h(Y n
1 +Ñn|Un) (2.70)
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for any random n-vector Y n
1 and Gaussian random n-vector of Ñn. Equivalently we have,

2
2
n

h(Y n
2 |Un) ≥ (1− β)2

2
n

h(Y n
1 |Un) + β2

2
n

h(Zn|Un) (2.71)

After some manipulations of (2.71), we obtain

h(Y n
1 |Un)− h(Zn|Un)

≤ n

2
log

(
αP + σ2

2 − β(αP + σ2
3)

(1− β)(αP + σ2
3)

)

=
n

2
log

(
αP + σ2

1

αP + σ2
3

)
. (2.72)

The rate R1 is bounded as follows

nR1 ≤ I(Xn; Y n
1 |Un)− I(Xn; Zn) + I(Un; Zn) (2.73)

= h(Y n
1 |Un)− h(Y n

1 |Xn, Un) + h(Zn|Xn)− h(Zn|Un)

= h(Y n
1 |Un)− h(Zn|Un) +

n

2
log(

σ2
3

σ2
1

)

(a)

≤ n

2
log

(
αP + σ2

1

αP + σ2
3

σ2
3

σ2
1

)

= nC

(
αP

σ2
1

)
− nC

(
αP

σ2
3

)
,

where (a) follows from (2.72).
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Chapter 3

Secure Gaussian MIMO Broadcast

Channel

In this chapter, we consider a scenario where a source node wishes to broadcast two confi-

dential messages for two respective receivers via a Gaussian MIMO broadcast channel. A

wiretapper also receives the transmitted signal via another MIMO channel. First, we assume

that the channels are degraded and the wiretapper has the worst channel. We establish the

capacity region of this scenario. Our achievability scheme is a combination of the superpo-

sition of Gaussian codes and randomization within the layers, which we will refer to as the

Secret Superposition Coding. For the outerbound, we use notion of the enhanced channels

to show that the secret superposition of Gaussian codes is optimal. We show that we only

need to enhance the channels of the legitimate receivers, and the channel of the eavesdropper

remains unchanged. We then extend the result of the degraded case to a non-degraded case.

We show that the secret superposition of Gaussian codes, along with successive decoding,

cannot work when the channels are not degraded. We develop a Secret Dirty Paper Cod-

ing (SDPC) scheme and show that SDPC is optimal for this channel. We then present a

corollary generalizing the capacity region of the two receivers’ case to the case of multiple

receivers. Finally, we investigate a scenario which frequently occurs in the practice of wireless

networks. In this scenario, the transmitter and the eavesdropper have multiple antennae,

while both intended receivers have a single antenna (representing resource limited mobile

units). We characterize the secrecy capacity region in terms of generalized eigenvalues of

the receivers’ channels and the eavesdropper channel. We refer to this configuration as the

MISOME (Multiple-Input-Single-Output-Multiple-Eavesdropper) case. We then present a

corollary generalizing the results of the two receivers’ case to multiple receivers. In the high

SNR regime, we show that the capacity region is a convex closure of rectangular regions.
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3.1 Introduction

Recently, significant research has been conducted in both theoretical and practical aspects

of wireless communication systems with Multiple-Input Multiple-Output (MIMO) antennae.

Most works have focused on the role of MIMO in enhancing the throughput and robustness

of such systems. In this work, however, we focus on the role of such multiple antennae in

enhancing wireless security.

The capacity region of the conventional Gaussian MIMO broadcast channel is studied in

[74] by Weingarten et. al. The notion of an enhanced broadcast channel is introduced in

[74] and is used jointly with entropy power inequality to characterize the capacity region of

the degraded vector Gaussian broadcast channel. They have shown that the superposition

of Gaussian codes is optimal for the degraded vector Gaussian broadcast channel, and that

dirty-paper coding is optimal for the nondegraded case.

We have published/submitted the results of this chapter in [53] and [54]. Parallel to our

work, references [59] and [60] independently considered the secure MIMO broadcast chan-

nel and established its capacity region. Reference [59] used the relationships between the

minimum-mean-square-error and the mutual information, and equivalently, the relationships

between the Fisher information and the differential entropy to provide the converse proof.

Reference [60] considered the vector Gaussian MIMO broadcast channel with and without

an external eavesdropper. They presented a vector generalization of Costa’s Entropy Power

Inequality to provide their converse proof. In our proof, however, we enhance the channels

properly and show that the enhanced channels are proportional. We then use the propor-

tionality characteristic to provide the converse proof.

3.2 Preliminaries

Consider a Secure Gaussian Multiple-Input Multiple-Output Broadcast Channel (SGMBC),

as depicted in Figure 3.1. In this setting, the transmitter wishes to send two independent

messages (W1,W2) to the respective receivers in n uses of the channel while preventing the

eavesdropper from having any information about the messages. At a specific time, the signals

received by the destinations and the eavesdropper are given by

y1 = H1x + n1

y2 = H2x + n2 (3.1)

z = H3x + n3,

where
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Ŵ2
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1

yn

2

H
3

Figure 3.1: Secure Gaussian MIMO Broadcast Channel

• x is a real input vector of size t×1 under an input covariance constraint. We require that

E[xxT ] ¹ S for a positive semi-definite matrix S º 0. Here,≺,¹,Â, and º represent

partial ordering between symmetric matrices where B º A means that (B −A) is a

positive semi-definite matrix.

• y1, y2, and z are real output vectors which are received by the destinations and

the eavesdropper, respectively. These are vectors of size r1 × 1, r2 × 1, and r3 × 1,

respectively.

• H1, H2, and H3 are fixed, real gain matrices which model the channel gains between

the transmitter and the receivers. These are matrices of size r1 × t, r2 × t, and r3 × t,

respectively. The channel state information is assumed to be known perfectly at the

transmitter and at all the receivers.

• n1, n2 and n3 are real Gaussian random vectors with zero means and covariance

matrices N1 = E[n1n1
T ] Â 0, N2 = E[n2n2

T ] Â 0, and N3 = E[n3n3
T ] Â 0,

respectively.

Let W1 and W2 denote the the message indices of user 1 and user 2, respectively. Furthermore,

let xn, yn
1 , yn

2 , and zn denote the channel input and channel output matrices over a block

of n samples. Let nn
1 , nn

2 , and nn
3 denote the additive noise components for these channels.

Thus,

yn
1 = H1x

n + nn
1 (3.2)

yn
2 = H2x

n + nn
2

zn = H3x
n + nn

3 .
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Note that nn
i is an ri × n random matrix and Hi is an ri× t deterministic matrix where i =

1, 2, 3. The columns of nn
i are independent Gaussian random vectors with covariance matrices

Ni for i = 1, 2, 3. In addition nn
i is independent of xn, W1 and W2. A ((2nR1 , 2nR2), n) code

for the above channel consists of a stochastic encoder

f : ({1, 2, ..., 2nR1} × {1, 2, ..., 2nR2}) → X n, (3.3)

and two decoders,

g1 : Yn
1 → {1, 2, ..., 2nR1}, (3.4)

and

g2 : Yn
2 → {1, 2, ..., 2nR2}. (3.5)

The average probability of error is defined as the probability that the decoded messages are

not equal to the transmitted messages; that is,

P (n)
e = P (g1(y

n
1) 6= W1 ∪ g2(y

n
2) 6= W2). (3.6)

The secrecy levels of confidential messages W1 and W2 are measured at the eavesdropper

in terms of equivocation rates, which are defined as follows.

Definition 6. The equivocation rates Re1, Re2 and Re12 for the secure broadcast channel

are:

Re1=
1

n
H(W1|zn) (3.7)

Re2=
1

n
H(W2|zn)

Re12=
1

n
H(W1,W2|zn).

The perfect secrecy rates R1 and R2 are the amount of information that can be sent to

the legitimate receivers reliably and confidentially.

The model presented in (3.1) is a SGMBC. However, we will initially consider two sub-

classes of this channel and then generalize our results for the SGMBC.

The first subclass that we will consider is the Secure Aligned Degraded MIMO Broadcast

Channel (SADBC). The MIMO broadcast channel of (3.1) is said to be aligned if the number

of transmit antennae is equal to the number of receive antennae at each of the users and the

eavesdropper (t = r1 = r2 = r3) and the gain matrices are all identity matrices (H1 = H2 =

H3 = I). Furthermore, if the additive noise vectors’ covariance matrices are ordered such

that 0 ≺ N1 ¹ N2 ¹ N3, then the channel is SADBC.
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The second subclass we consider is a generalization of the SADBC. The MIMO broadcast

channel of (3.1) is said to be Secure Aligned MIMO Broadcast Channel (SAMBC) if it is

aligned and not necessarily degraded. In other words, the additive noise vector covariance

matrices are not necessarily ordered. A time sample of an SAMBC is given by the following

expressions,

y1 = x + n1 (3.8)

y2 = x + n2

z = x + n3,

where, y1, y2, z, x are real vectors of size t× 1 and n1, n2, and n3 are independent and real

Gaussian noise vectors such that Ni = E[nini
T] Â 0t×t for i = 1, 2, 3.

3.3 The Capacity Region of The SADBC

In this section, we characterize the capacity region of the SADBC. In Chapter 2, we con-

sidered the degraded broadcast channel with confidential messages and establish its secrecy

capacity region. The following remark recalls this result from Chapter 2.

Remark 5. The capacity region for transmitting independent secret messages over the de-

graded broadcast channel is the convex hull of the closure of all (R1, R2) satisfying

R1≤ I(X; Y1|U)− I(X; Z|U) (3.9)

R2≤ I(U ; Y2)− I(U ; Z), (3.10)

for some joint distribution P (u)P (x|u)P (y1, y2, z|x).

Note that evaluating (3.9) and (3.10) involves solving a functional, nonconvex optimiza-

tion problem. Usually nontrivial techniques and strong inequalities are used to solve opti-

mization problems of this type. Indeed, for the single antenna case, we successfully evaluated

the capacity expression of (3.9) and (3.10) in [52]. Liu et. al. in [12] evaluated the capacity

expression of the MIMO wiretap channel by using the channel enhancement method. In the

following section, we state and prove our result for the capacity region of SADBC.

First, we define the achievable rate region due to Gaussian codebook under a covariance

matrix constraint S º 0. The achievability scheme of Remark 5 is the secret superposition

of Gaussian codes and successive decoding at the first receiver. According to the above

Remark, for any covariance matrix input constraint S and two semi-definite matrices B1 º 0
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and B2 º 0 such that B1 + B2 ¹ S, it is possible to achieve the following rates:

RG
1 (B1,2,N1,2,3) =

1

2

[
log

∣∣N−1
1 (B1 + N1)

∣∣− 1

2
log

∣∣N−1
3 (B1 + N3)

∣∣
]+

(3.11)

RG
2 (B1,2,N1,2,3) =

1

2

[
log

|B1 + B2 + N2|
|B1 + N2| − 1

2
log

|B1 + B2 + N3|
|B1 + N3|

]+

.

The Gaussian rate region of SADBC is defined as follows.

Definition 7. Let S be a positive semi-definite matrix. Then, the Gaussian rate region of

SADBC under a covariance matrix constraint S is given by

RG(S,N1,2,3) =

{ (
RG

1 (B1,2,N1,2,3), R
G
2 (B1,2,N1,2,3)

) |
s.t S− (B1 + B2) º 0, Bk º 0, k = 1, 2

}
. (3.12)

We will show that RG(S,N1,2,3) is the capacity region of the SADBC; however, certain

preliminaries need to be addressed first. We begin by characterizing the boundary of the

Gaussian rate region.

Remark 6. Note that in characterizing the capacity region of the conventional Gaussian

MIMO broadcast channel Weingarten et. al. [74] have proven that on the boundary of the

above region we have B1 +B2 = S which maximizes the rate R2. In our argument, however,

the boundary is not characterized with this equality as rate R2 may decrease by increasing

B1 + B2.

Definition 8. The rate vector R∗ = (R1, R2) is said to be an optimal Gaussian rate vector

under the covariance matrix S, if R∗ ∈ RG(S,N1,2,3) and if there is no other rate vector

R
′∗ = (R

′
1, R

′
2) ∈ RG(S,N1,2,3) such that R

′
1 ≥ R1 and R

′
2 ≥ R2 where at least one of the

inequalities is strict. The set of positive semi-definite matrices (B∗
1,B

∗
2) such that B∗

1 +

B∗
2 ¹ S is said to be realizing matrices of an optimal Gaussian rate vector if the rate vector(

RG
1 (B∗

1,2,N1,2,3), R
G
2 (B∗

1,2,N1,2,3)
)

is an optimal Gaussian rate vector.

In general, there is no known closed form solution for the realizing matrices of an optimal

Gaussian rate vector. Note that finding an optimal Gaussian rate vector again involves

solving a nonconvex optimization problem. The realizing matrices of an optimal Gaussian

rate vector, B∗
1,B

∗
2 are the solution of the following optimization problem:

max
(B1,B2)

RG
1 (B1,2,N1,2,3) + µRG

2 (B1,2,N1,2,3) (3.13)

s.t B1 º 0, B2 º 0, B1 + B2 ¹ S,

where µ ≥ 1. Next, we define a class of enhanced channels. The enhanced channel has some

fundamental properties which help us to characterize the secrecy capacity region. We will

discuss its properties further on.
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Definition 9. A SADBC with noise covariance matrices (N
′
1,N

′
2,N

′
3) is an enhanced ver-

sion of another SADBC with noise covariance matrices (N1,N2,N3) if

N
′
1 ¹ N1, N

′
2 ¹ N2, N

′
3 = N3, N

′
1 ¹ N

′
2. (3.14)

It is apparent that the capacity region of the enhanced version contains the capacity region

of the original channel. Note that in characterizing the capacity region of the conventional

Gaussian MIMO broadcast channel, all channels must be enhanced by reducing the noise

covariance matrices. In our scheme, however, we only enhance the channels for the legitimate

receivers and the channel of the eavesdropper remains unchanged. This is due to the fact

that the capacity region of the enhanced channel must contain the original capacity region.

Reducing the noise covariance matrix of the eavesdropper’s channel, however, may reduce

the secrecy capacity region. The following theorem connects the definitions of the optimal

Gaussian rate vector and the enhanced channel.

Theorem 4. Consider a SADBC with positive definite noise covariance matrices (N1,N2,N3).

Let B∗
1 and B∗

2 be realizing matrices of an optimal Gaussian rate vector under a transmit

covariance matrix constraint S Â 0. There then exists an enhanced SADBC with noise

covariance matrices (N
′
1,N

′
2,N

′
3) for which the following properties hold.

1. Enhancement:

N
′
1 ¹ N1, N

′
2 ¹ N2, N

′
3 = N3, N

′
1 ¹ N

′
2,

2. Proportionality: There exists an α ≥ 0 and a matrix A such that,

(I−A)(B∗
1 + N

′
1) = αA(B∗

1 + N
′
3),

3. Rate and optimality preservation:

RG
k (B∗

1,2,N1,2,3) = RG
k (B∗

1,2,N
′
1,2,3) ∀k = 1, 2, furthermore, B∗

1 and B∗
2 are realizing

matrices of an optimal Gaussian rate vector in the enhanced channel.

Proof: The realizing matrices B∗
1 and B∗

2 are the solution of the optimization problem

of (3.13). Using the Lagrange Multiplier method, this constraint optimization problem is

equivalent to the following unconstrained optimization problem:

max
(B1,B2)

RG
1 (B1,2,N1,2,3) + µRG

2 (B1,2,N1,2,3) + Tr{B1O1} (3.15)

+Tr{B2O2}+ Tr{(S−B1 −B2)O3},

where O1, O2, and O3 are positive semi-definite t × t matrices such that Tr{B∗
1O1} = 0 ,

Tr{B∗
2O2} = 0 , and Tr{(S−B∗

1 −B∗
2)O3} = 0. As all B∗

k, k = 1, 2, Oi, i = 1, 2, 3, and

39



S−B∗
1 −B∗

2 are positive semi-definite matrices, then we must have B∗
kOk = 0, k = 1, 2

and (S−B∗
1 −B∗

2)O3 = 0. According to the necessary KKT conditions, and after some

manipulations, we have:

(B∗
1 + N1)

−1 + (µ− 1)(B∗
1 + N3)

−1 + O1 = µ(B∗
1 + N2)

−1 + O2 (3.16)

µ(B∗
1 + B∗

2 + N2)
−1 + O2 = µ(B∗

1 + B∗
2 + N3)

−1 + O3. (3.17)

We choose the noise covariance matrices of the enhanced SADBC as follows:

N
′
1=

(
N1

−1 + O1

)−1
(3.18)

N
′
2=

(
(B∗

1 + N2)
−1 +

1

µ
O2

)−1

−B∗
1

N
′
3= N3.

As O1 º 0 and O2 º 0, then the above choice has the enhancement property. Note that

(
(B∗

1 + N1)
−1 + O1

)−1
=

(
(B∗

1 + N1)
−1 (I + (B∗

1 + N1)O1)
)−1

(3.19)
(a)
= (I + N1O1)

−1 (B∗
1 + N1)−B∗

1 + B∗
1

= (I + N1O1)
−1 ((B∗

1 + N1)− (I + N1O1)B
∗
1) + B∗

1

(b)
= (I + N1O1)

−1 N1 + B∗
1

=
(
N1

(
N−1

1 + O1

))−1
N1 + B∗

1

=
(
N−1

1 + O1

)−1
+ B∗

1

= B∗
1 + N

′
1,

where (a) and (b) follows from the fact that B∗
1O1 = 0. Therefore, according to (3.16), the

following property holds for the enhanced channel,

(B∗
1 + N

′
1)
−1 + (µ− 1)(B∗

1 + N
′
3)
−1 = µ(B∗

1 + N
′
2)
−1.

Since N
′
1 ¹ N

′
2 ¹ N

′
3 then there exists a matrix A such that N

′
2 = (I−A)N

′
1 +AN

′
3 where

A = (N
′
2 −N

′
1)(N

′
3 −N

′
1)
−1. Therefore, the above equation can be written as:

(B∗
1 + N

′
1)
−1 + (µ− 1)(B∗

1 + N
′
3)
−1 = (3.20)

µ
[
(I−A)(B∗

1 + N
′
1) + A(B∗

1 + N
′
3)

]−1

.

Let (I−A)(B∗
1 + N

′
1) = αA(B∗

1 + N
′
3), then after some manipulations, the above equation

becomes

1

α
I + (µ− 1− 1

α
)A =

µ

α + 1
I. (3.21)
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The above equation is satisfied by α = 1
µ−1

which completes the proportionality property.

We can now prove the rate conservation property. The expression

∣∣∣B∗1+N
′
1

∣∣∣
|N′

1| can be written as

follows:
∣∣B∗

1 + N
′
1

∣∣
∣∣N′

1

∣∣ =
|I|∣∣∣N′

1

(
B∗

1 + N
′
1

)−1
∣∣∣

(3.22)

=
|I|∣∣∣

(
B∗

1 + N
′
1 −B∗

1

) (
B∗

1 + N
′
1

)−1
∣∣∣

=
|I|∣∣∣I−B∗

1

(
B∗

1 + N
′
1

)−1
∣∣∣

=
|I|

|I−B∗
1 ((B∗

1 + N1)−1 + O1)|
(a)
=

|I|∣∣I−B∗
1 (B∗

1 + N1)
−1

∣∣

=
|B∗

1 + N1|
|N1| ,

where (a) once again follows from the fact that B∗
1O1 = 0. To complete the proof of rate

conservation, consider the following equalities:

∣∣B∗
1 + B∗

2 + N
′
2

∣∣
∣∣B∗

1 + N
′
2

∣∣ =

∣∣∣B∗
2

(
B∗

1 + N
′
2

)−1
+ I

∣∣∣
|I| (3.23)

=

∣∣∣B∗
2

(
(B∗

1 + N2)
−1 + 1

µ
O2

)
+ I

∣∣∣
|I|

(a)
=
|B∗

1 + B∗
2 + N2|

|B∗
1 + N2| ,

where (a) follows from the fact B∗
2O2 = 0. Therefore, according to (3.22), (3.23), and the

fact that N
′
3 = N3, the rate preservation property holds for the enhanced channel. To prove

the optimality preservation, we need to show that (B∗
1,B

∗
2) are also realizing matrices of an

optimal Gaussian rate vector in the enhanced channel. To establish this point, we show that

the necessary KKT conditions for the enhanced channel coincides with the KKT conditions
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for the original channel. The expression µ(B∗
1 + B∗

2 + N
′
2)
−1 can be written as follows:

µ
(
B∗

1 + B∗
2 + N

′
2

)−1(a)
= µ

(
B∗

1 + B∗
2 +

(
N2

−1 +
1

µ
O2

)−1
)−1

(3.24)

= µ

(
B∗

1 + B∗
2

(
I + B∗

2
−1

(
N2

−1 +
1

µ
O2

)−1
))−1

= µ

(
B∗

1 + B∗
2

(
I +

((
N2

−1 +
1

µ
O2

)
B∗

2

)−1
))−1

(b)
= µ

(
B∗

1 + B∗
2

(
I +

(
N2

−1B∗
2

)−1
))−1

= µ
(
B∗

1 + B∗
2

(
I + B∗

2
−1N2

))−1

= µ (B∗
1 + B∗

2 + N2)
−1 ,

where (a) follows from the definition of N
′
2 and (b) follows from the fact that B∗

2O2 = 0.

Therefore, according to (3.19) and the above equation, the KKT conditions of (3.16) and

(3.17) for the original channel can be written as follows for the enhanced channel:

(B∗
1 + N

′
1)
−1 + (µ− 1)(B∗

1 + N
′
3)
−1 = µ(B∗

1 + N
′
2)
−1 (3.25)

µ(B∗
1 + B∗

2 + N
′
2)
−1 = µ(B∗

1 + B∗
2 + N

′
3)
−1 + O3 −O2, (3.26)

where O3 − O2 º 0. Therefore, RG
1 (B1,2,N

′
1,2,3) + µRG

2 (B1,2,N
′
1,2,3) is maximized when

Bk = B∗
k for k = 1, 2.

We can now use Theorem 4 to prove that RG(S,N1,2,3) is the capacity region of the SADBC.

We follow Bergman’s approach [75] to prove a contradiction. Note that since the original

channel is not proportional, we cannot apply Bergman’s proof to the original channel directly.

Here we apply his proof to the enhanced channel instead.

Theorem 5. Consider a SADBC with positive definite noise covariance matrices (N1,N2,N3).

Let C(S,N1,2,3) denote the capacity region of the SADBC under a covariance matrix con-

straint S Â 0 .Then, C(S,N1,2,3) = RG(S,N1,2,3).

Proof: The achievability scheme is secret superposition coding with Gaussian codebook.

For the converse proof, we use a contradiction argument and assume that there exists an

achievable rate vector R̄ = (R1, R2) which is not in the Gaussian region. We can apply the

steps of Bergman’s proof of [75] to the enhanced channel and show that this assumption is

impossible. Since R̄ /∈ RG(S,N1,2,3), there exist realizing matrices of an optimal Gaussian
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rate vector B∗
1,B

∗
2 such that

R1≥ RG
1 (B∗

1,2,N1,2,3) (3.27)

R2≥ RG
2 (B∗

1,2,N1,2,3) + b,

for some b > 0. We know by Theorem 4 that for every set of realizing matrices of an optimal

Gaussian rate vector B∗
1,B

∗
2, there exists an enhanced SADBC with noise covariance matrices

N
′
1,N

′
2, such that the proportionality and rate preservation properties hold. According to the

rate preservation property, we have RG
k (B∗

1,2,N1,2) = RG
k (B∗

1,2,N
′
1,2), k = 1, 2. Therefore,

the preceding expression can be rewritten as follows:

R1≥ RG
1 (B∗

1,2,N1,2,3) = RG
1 (B∗

1,2,N
′
1,2,3) (3.28)

R2≥ RG
2 (B∗

1,2,N1,2,3) + b = RG
2 (B∗

1,2,N
′
1,2,3) + b.

According to the Theorem 5, R1 and R2 are bounded as follows:

R1≤ h(y1|u)− h(z|u)− (h(y1|x,u)− h(z|x,u)) (3.29)

R2≤ h(y2)− h(z)− (h(y2|u)− h(z|u)) .

Let y
′
1 and y

′
2 denote the enhanced channel outputs of each of the receiving users. As

u → y
′
k → yk forms a Markov chain for k = 1, 2 and z

′
= z, then we can use the data

processing inequality to rewrite the above region as follows:

R1≤ h(y
′
1|u)− h(z

′|u)−
(
h(y

′
1|x,u)− h(z

′|x,u)
)

(3.30)

= h(y
′
1|u)− h(z

′|u)− 1

2

(
log |N′

1| − log |N′
3|)

)

R2≤ h(y
′
2)− h(z

′
)−

(
h(y

′
2|u)− h(z

′|u)
)

. (3.31)

Now, the inequalities of (3.28) and (3.30) have shifted to the enhanced channel.

Since R1 > RG
1 (B1,2,N

′
1,2,3), the inequality (3.30) means that

h(y
′
1|u)− h(z

′ |u) >
1

2

(
log |B∗

1 + N
′
1| − log |B∗

1 + N
′
3|)

)
. (3.32)

By the definition of matrix A and since y
′
1 → y

′
2 → z

′
forms a Morkov chain, the received

signals z
′
and y

′
2 can be written as z

′
= y

′
1+ñ and y

′
2 = y

′
1+A

1
2 ñ where ñ is an independent

Gaussian noise with covariance matrix Ñ = N
′
3 −N

′
1. According to Costa’s Entropy Power

Inequality and the previous inequality, we have

h(y
′
2|u)− h(z

′|u)≥ t

2
log

(
|I−A| 1t 2 2

t

(
h(y

′
1|u)−h(z|′u)

)
+ |A| 1t )

)
(3.33)

>
t

2
log

(
|I−A| 1t |B∗

1 + N
′
1|

1
t

|B∗
1 + N

′
3|

1
t

+ |A| 1t )
)

(a)
=

1

2
log(B∗

1 + N
′
2)−

1

2
log(B∗

1 + N
′
3),
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where (a) is due to the proportionality property. Using (3.31) and the fact that R2 >

RG
2 (B1,2,N

′
1,2,3), the inequality (3.31) means that

h(y
′
2)− h(z

′
) ≥ R2 + h(y

′
2|u)− h(z

′|u) > (3.34)
1

2
log(B∗

1 + B∗
2 + N

′
2)−

1

2
log(B∗

1 + B∗
2 + N

′
3).

On the other hand, Gaussian distribution maximizes h(x + n2) − h(x + n3) (See [71]) and

(B∗
1,B

∗
2) satisfying the KKT conditions of (3.26). Therefore, the above inequality is a con-

tradiction.

3.4 The Capacity Region of the SAMBC

In this section, we characterize the secrecy capacity region of the aligned (but not necessarily

degraded) MIMO broadcast channel. Note that since the SAMBC is not degraded, there is

no single optimozation formula for its capacity region. In addition, the secret superposition

of Gaussian codes along with successive decoding cannot work when the channel is not

degraded. In [50], we presented an achievable rate region for the General Secure Broadcast

Channel. Our achievable coding scheme is based on a combination of the random binning

and the Gelfand-Pinsker binning schemes. We first review this scheme and based on this

result, we develop an achievable secret coding scheme for the SAMBC. Based on Theorem

4, we then provide a full characterization of the capacity region of SAMBC.

3.4.1 Secret Dirty-Paper Coding Scheme and Achievability Proof

In [50], we established an achievable rate region for the general secure broadcast channel.

This scheme enables both joint encoding at the transmitter by using Gelfand-Pinsker binning

and preserving confidentiality by using random binning. The following theorem summarizes

the encoding strategy.

Theorem 6. : Let V1 and V2 be auxiliary random variables and Ω be the class of joint

probability densities P (v1, v2x, y1, y2, z) that factors as P (v1, v2)P (x|v1, v2)P (y1, y2, z|x). Let

RI(π) denote the union of all non-negative rate pairs (R1, R2) satisfying

R1≤ I(V1; Y1)− I(V1; Z) (3.35)

R2≤ I(V2; Y2)− I(V2; Z)

R1 + R2≤ I(V1; Y1) + I(V2; Y2)− I(V1, V2; Z)− I(V1; V2),
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Figure 3.2: The Stochastic Encoder

for a given joint probability density π ∈ Ω. For the general broadcast channel with confidential

messages, the following region is achievable

RI = conv

{⋃
π∈Ω

RI(π)

}
, (3.36)

where conv is the convex closure operator.

Remark 7. If we remove the secrecy constraints by removing the eavesdropper, then the

above rate region becomes Marton’s achievable region for the general broadcast channel.

Proof: 1) Codebook Generation: The structure of the encoder is depicted in Figure 3.2.

Fix P (v1), P (v2) and P (x|v1, v2). The stochastic encoder generates 2n(I(V1;Y1)−ε) independent

and identically distributed sequences vn
1 according to the distribution P (vn

1 ) =
∏n

i=1 P (v1,i).

Next, randomly distribute these sequences into 2nR1 bins such that each bin contains 2n(I(V1;Z)−ε)

codewords. Similarly, it generates 2n(I(V2;Y2)−ε) independent and identically distributed se-

quences vn
2 according to the distribution P (vn

2 ) =
∏n

i=1 P (v2,i). Randomly distribute these

sequences into 2nR2 bins such that each bin contains 2n(I(V2;Z)−ε) codewords. Index each of

the above bins by w1 ∈ {1, 2, ..., 2nR1} and w2 ∈ {1, 2, ..., 2nR2}, respectively.

2) Encoding : To send messages w1 and w2, the transmitter looks for vn
1 in bin w1 of

the first bin set and looks for vn
2 in bin w2 of the second bin set, such that (vn

1 , vn
2 ) ∈

A
(n)
ε (PV1,V2) where A

(n)
ε (PV1,V2) denotes the set of jointly typical sequences vn

1 and vn
2 with

respect to P (v1, v2). The rates are such that there exist more than one joint typical pair. The

transmitter randomly chooses one of them and then generates xn according to P (xn|vn
1 , vn

2 ) =
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∏n
i=1 P (xi|v1,i, v2,i). This scheme is equivalent to the scenario in which each bin is divided

into subbins and the transmitter randomly chooses one of the subbins of bin w1 and one of

the subbins of bin w2. It then looks for a joint typical sequence (vn
1 , vn

2 ) in the corresponding

subbins and generates xn.

3) Decoding : The received signals at the legitimate receivers, yn
1 and yn

2 , are the outputs

of the channels P (yn
1 |xn) =

∏n
i=1 P (y1,i|xi) and P (yn

2 |xn) =
∏n

i=1 P (y2,i|xi), respectively.

The first receiver looks for the unique sequence vn
1 such that (vn

1 , yn
1 ) is jointly typical and

declares the index of the bin containing vn
1 as the message received. The second receiver uses

the same method to extract the message w2.

4) Error Probability Analysis : Since the region of (3.35) is a subset of Marton region,

then the error probability analysis is the same as [69].

5) Equivocation Calculation: Please see the proof of Theorem 1.

The achievability scheme in Theorem 6 introduces random binning. When we want to

construct the rate region of (3.36), however, it is not clear how to choose the auxiliary

random variables V1 and V2. Here, we employ the Dirty-Paper Coding (DPC) technique to

develop the secret DPC (SDPC) achievable rate region for the SAMBC. We consider a secret

dirty-paper encoder with Gaussian codebooks as follows.

First, we separate the channel input x into two random vectors b1 and b2 such that

b1 + b2 = x. (3.37)

Here, b1 and b2 and v1 and v2 are chosen as follows:

b1 ∼ N (0,B1)

b2 ∼ N (0,B2)

v2 = b2

v1 = b1 + Cb2, (3.38)

where B1 = E[b1b
T
1 ] º 0 and B2 = E[b2b

T
2 ] º 0 are covariance matrices such that

B1 + B2 ¹ S, and the matrix C is given as follows:

C = B1 (N1 + B1)
−1 . (3.39)

By substituting (3.38) into the Theorem 6, we obtain the following SDPC rate region for the

SAMBC.
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Lemma 3. (SDPC Rate Region): Let S be a positive semi-definite matrix then the following

SDPC rate region of an SAMBC with a covariance matrix constraint S is achievable

RSDPC(S,N1,2,3) = conv





⋃

π∈∏
RSDPC(π,S,N1,2,3)



 , (3.40)

where
∏

is the collection of all possible permutations of the ordered set {1, 2}, conv is the

convex closure operator and RSDPC(π,S,N1,2,3) is given as follows:

RSDPC(π,S,N1,2,3) =

{
(R1, R2)

∣∣Rk = RSDPC
π−1(k)(π,B1,2,N1,2,3) k = 1, 2

s.t S− (B1 + B2) º 0, B1 º 0, B2 º 0

}
, (3.41)

where

RSDPC
π−1(k) (π,B1,2,N1,2,3) =

1

2


log

∣∣∣∑π−1(k)
i=1 Bπ(i) + Nk

∣∣∣
∣∣∣∑π−1(k)−1

i=1 Bπ(i) + Nk

∣∣∣
− 1

2
log

∣∣∣∑π−1(k)
i=1 Bπ(i) + N3

∣∣∣
∣∣∣∑π−1(k)−1

i=1 Bπ(i) + N3

∣∣∣




+

.

Note that for the identity permutation, πI , where πI(k) = k, we have,

RSDPC(πI ,S,N1,2,3) = RG(S,N1,2,3). (3.42)

Proof: We prove the lemma for the case of identity permutation πI = {1, 2}. This proof

can similarly be used for the case that π = {2, 1}. According to the Theorem 6, we have,

R1≤ min {I(V1; Y1)− I(V1; Z), I(V1; Y1) + I(V2; Z)− I(V1, V2; Z)− I(V1; V2)} (3.43)
(a)

≤ min {I(V1; Y1)− I(V1; Z), I(V1; Y1)− I(V1; Z|V2)− I(V1; V2)}
(b)

≤ I(V1; Y1)− I(V1; Z|V2)− I(V1; V2)

R2≤ I(V2; Y2)− I(V2; Z),

where (a) follows from the fact that I(V1, V2; Z) = I(V2; Z)+I(V1; Z|V2) and (b) follows from

the fact that I(V1; Z|V2)+ I(V1; V2) = I(Z, V2; V1) ≥ I(Z; V1). To calculate the upper-bound

of R1, we need to review the following lemma which has been noted by several authors [76].

Lemma 4. Let y1 = b1 + b2 + n1, where b1, b2 and n1 are Gaussian random vectors

with covariance matrices B1, B2 and N1, respectively. Let b1, b2 and n1 be independent,

and let v1 = b1 + Cb2, where C is an t × t matrix. Then an optimal matrix C which

maximizes I(v1;y1)− I(v1;b2) is C = B1 (N1 + B1)
−1. Further more, the maximum value

of I(v1;y1 − I(v1;b2) is I(v1;y1|b2).
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Now, using the above Lemma and substituting (3.38) into (3.43), we obtain the following

achievable rate region when π = πI .

R1≤ 1

2

[
log

∣∣N−1
1 (B1 + N1)

∣∣− 1

2
log

∣∣N−1
3 (B1 + N3)

∣∣
]+

(3.44)

R2≤ 1

2

[
log

|B1 + B2 + N2|
|B1 + N2| − 1

2
log

|B1 + B2 + N3|
|B1 + N3|

]+

.

3.4.2 SAMBC- Converse Proof

For the converse part, note that not all points on the boundary of RSDPC(S,N1,2,3) can be

directly obtained using a single SDPC scheme. Instead, we must use time-sharing between

points corresponding to different permutations. Therefore, unlike the SADBC case, we

cannot use a similar notion to the optimal Gaussian rate vectors, as not all the boundary

points can immediately be characterized as a solution of an optimization problem. Instead,

as the SDPC region is convex by definition, we use the notion of supporting hyperplanes of

[74] to define this region.

In this section, we first define the supporting hyperplane of a closed and bounded set. We

then present the relation between the ideas of a supporting hyperplane and the enhanced

channel in Theorem 7. This theorem is an extension of Theorem 4 to the SAMBC case.

Finally, we use Theorem 7 to prove that RSDPC(S,N1,2,3) is indeed the capacity region of

the SAMBC.

Definition 10. The set {R = (R1, R2)|γ1R1 + γ2R2 = b}, for fixed and given scalars γ1, γ2

and, b, is a supporting hyperplane of a closed and bounded set X ⊂ Rm, if γ1R1 + γ2R2 ≤ b

∀(R1, R2) ∈ X , with equality for at least one rate vector (R1, R2) ∈ X .

Note that as X is closed and bounded, max(R1,R2)∈X γ1R1 + γ2R2, exists for any γ1, γ2.

Thus, we always can find a supporting hyperplane for the set X . As RSDPC(S,N1,2,3) is

a closed and convex set, for each rate pair of R
o

= (Ro
1, R

o
2) /∈ RSDPC(S,N1,2,3) which

lies outside the set, there exists a separating hyperplane {(R1, R2)|γ1R1 + γ2R2 = b} where

γ1 ≥ 0, γ1 ≥ 0, b ≥ 0 and,

γ1R1 + γ2R2≤ b ∀(R1, R2) ∈ RSDPC(S,N1,2,3) (3.45)

γ1R
o
1 + γ2R

o
2> b.
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The following theorem illustrates the relation between the ideas of enhanced channel and a

supporting hyperplane.

Theorem 7. Consider a SAMBC with noise covariance matrices (N1,N2,N3) and an av-

erage transmit covariance matrix constraint S Â 0. Assume that {(R1, R2)|γ1R1 +γ2R2 = b}
is a supporting hyperplane of the rate region RSDPC(πI ,S,N1,2,3) such that 0 ≤ γ1 ≤ γ2,

γ2 > 0 and b ≥ 0. Then, there exists an enhanced SADBC with noise covariance matrices

(N
′
1,N

′
2,N

′
3) such that the following properties hold.

1. Enhancement:

N
′
1 ¹ N1, N

′
2 ¹ N2, N

′
3 = N3, N

′
1 ¹ N

′
2,

2. Supporting hyperplane preservation:

{(R1, R2)|γ1R1+γ2R2 = b} is also a supporting hyperplane of the rate regionRG(S,N
′
1,2,3)

Proof: To prove this theorem, we can follow the steps of the proof of Theorem 4. Assume

that the hyperplane {(R1, R2)|γ1R1 + γ2R2 = b} touches the region RSDPC(πI ,S,N1,2,3) at

the point (R∗
1, R

∗
2). Let B∗

1,B
∗
2 be two positive semi-definite matrices such that B∗

1 +B∗
2 ¹ S

and such that

RSDPC
k (πI ,B

∗
1,2,N1,2,3) = R∗

k, k = 1, 2. (3.46)

By definition of the supporting hyperplane, the scalar b and the matrices (B∗
1,B

∗
2) are the

solution of the following optimization problem:

max
B1,B2

γ1R
SDPC
1 (πI ,B1,2,N1,2,3) + γ2R

SDPC
2 (πI ,B1,2,N1,2,3) (3.47)

s.t B1 + B2 ¹ S Bk º 0 k = 1, 2.

We define the noise covariance matrices of the enhanced SADBC as (3.18). Since for the

permutation π = πI we have RSDPC(πI ,S,N1,2,3) = RG(S,N1,2,3), the supporting hy-

perplane {(R1, R2)|γ1R1 + γ2R2 = b} is also a supporting hyperplane of the rate region

RG(S,N
′
1,2,3).

We can now use Theorem 7 and the capacity result of the SADBC to prove thatRSDPC(S,N1,2,3)

is indeed the capacity region of the SAMBC. The following theorem formally states the main

result of this section.

Theorem 8. Consider a SAMBC with positive definite noise covariance matrices (N1,N2,N3).

Let C(S,N1,2,3) denote the capacity region of the SAMBC under a covariance matrix con-

straint S Â 0. Then, C(S,N1,2,3) = RSDPC(S,N1,2,3).
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Proof: To prove this theorem, we use Theorem 7 to show that for every rate vector R
o
,

which lies outside the region RSDPC(S,N1,2,3), we can find an enhanced SADBC, whose

capacity region does not contain R
o
. As the capacity region of the enhanced channel outer

bounds that of the original channel, R
o

cannot be an achievable rate vector.

Let R
o

= (Ro
1, R

o
2) be a rate vector which lies outside the region RSDPC(S,N1,2,3). There

exists a supporting and separating hyperplane {(R1, R2)|γ1R1 + γ2R2 = b} where γ1 ≥ 0,

γ2 ≥ 0, and at least one of the γk’s is positive. Without loss of generality, we assume that

γ2 ≥ γ1. If this is not the case, we can always reorder the indices of the users, such that this

assumption will hold. By definition of the region RSDPC(S,N1,2,3), we have,

RSDPC(πI ,S,N1,2,3) ⊆ RSDPC(S,N1,2,3). (3.48)

Note that, as {(R1, R2)|γ1R1 + γ2R2 = b} is a supporting hyperplane of RSDPC(S,N1,2,3),

we can write,

b
′
= max

(R1,R2)∈RSDPC(πI ,S,N1,2,3)
γ1R1 + γ2R2 (3.49)

≤ max
(R1,R2)∈RSDPC(S,N1,2,3)

γ1R1 + γ2R2 = b.

Furthermore, we can also write,

γ1R
o
1 + γ2R

o
2 > b ≥ b

′
. (3.50)

Therefore, the hyperplane of {(R1, R2)|γ1R1 + γ2R2 = b
′} is a supporting and separating

hyperplane for the rate region RSDPC(πI ,S,N1,2,3). By Theorem 7, we know that there

exists an enhanced SADBC whose Gaussian rate region RG(S,N
′
1,2,3) lies under the sup-

porting hyperplane and hence (Ro
1, R

o
2) /∈ RG(S,N

′
1,2,3). Therefore, (Ro

1, R
o
2) must lie out-

side the capacity region of the enhanced SADBC. To complete the proof, note that the

capacity region of the enhanced SADBC contains that of the original channel and there-

fore, (Ro
1, R

o
2) must lie outside the capacity region of the original SAMBC. As this state-

ment is true for all rate vectors which lie outside RSDPC(S,N1,2,3), we have C(S,N1,2,3) ⊆
RSDPC(S,N1,2,3). However, RSDPC(S,N1,2,3) is the set of achievable rates and therefore,

C(S,N1,2,3) = RSDPC(S,N1,2,3).

Using the same discussion as [74], the result of SAMBC can extend to the SGMBC which is

omitted here. The results of the secrecy capacity region for two receivers can be extended

for m receivers as follows.

Corollary 1. Consider a SGMBC with m receivers and one external eavesdropper. Let S be

a positive semi-definite matrix. The SDPC rate region of RSDPC(S,N1,...,m,H1,...,m), which

50



is defined by the following convex closure is indeed the secrecy capacity region of the SGMBC

under a covariance constraint S.

RSDPC(S,N1,...,m,H1,...,m) = conv





⋃

π∈∏
RSDPC(π,S,N1,...,m,H1,...,m)



 , (3.51)

where
∏

is the collection of all possible permutations of the ordered set {1, ..., m}, conv is

the convex closure operator and RSDPC(π,S,N1,...,m,H1,...,m) is given as follows:

RSDPC(π,S,N1,...,m,H1,...,m) =

{
(R1, R2)

∣∣Rk = RSDPC
π−1(k)(π,B1,...,m,N1,...,m,H1,...,m)

s.t S−∑m
i=1 Bi º 0, Bi º 0, k, i = 1, ..., m.

}
,

where

RSDPC
π−1(k) (π,B1,...,m,N1,...,m,H1,...,m)=

1

2

[
log

∣∣∣Hk

(∑π−1(k)
i=1 Bπ(i)

)
H†

k + Nk

∣∣∣
∣∣∣Hk

(∑π−1(k)−1
i=1 Bπ(i)

)
H†

k + Nk

∣∣∣
(3.52)

−1

2
log

∣∣∣H3

(∑π−1(k)
i=1 Bπ(i)

)
H†

3 + N3

∣∣∣
∣∣∣H3

(∑π−1(k)−1
i=1 Bπ(i)

)
H†

3 + N3

∣∣∣
]+

.

3.5 Multiple-Input Single-Outputs Multiple Eavesdrop-

per (MISOME) Channel

In this section we investigate a scenario in which the transmitter and the eavesdropper have

multiple antennae, while both intended receivers have a single antenna. We refer to this

configuration as the MISOME case. The significance of this model is apparent when a base

station wishes to broadcast secure information to small mobile units. In this scenario small

mobile units have single antenna while the base station and the eavesdropper can afford

multiple antennae. We characterize the secrecy capacity region in terms of generalized

eigenvalues of the receivers’ channels and the eavesdropper channel. Note that in this case

our analysis is valid for a general number of single antenna receivers. We can rewrite the

signals received by the destination and the eavesdropper for the MISOME channel as follows:

y1 = h†1x + n1 (3.53)

y2 = h†2x + n2

z = H3x + n3,

where h1 and h2 are fixed, real matrices which model the channel gains between the trans-

mitter and the legitimate receivers. These are matrices of size t × 1. The channel state
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information again is assumed to be known perfectly at the transmitter and at all the re-

ceivers. Here, the superscript † denotes the Hermitian transpose of a vector. Without loss

of generality, we assume that n1 and n2 are i.i.d real Gaussian random variables with zero

means and unit covariances, i.e., n1, n2 ∼ N (0, 1). Furthermore, we assume that n3 is a

Gaussian random vector with zero mean and covariance matrix I. In this section, we assume

that the input x satisfies a total power constraint of P , i.e.,

Tr{E(xxT )} ≤ P.

Before we state our results for the MISOME channel, we need to review some properties of

generalized eigenvalues and eigenvectors. For more details of this topic, see, e.g.,[77].

Definition 11. (Generalized eigenvalue-eigenvector) Let A be a Hermitian matrix and B

be a positive definite matrix. (λ, ψ) is a generalized eigenvalue-eigenvector pair if it satisfies

the following equation.

Aψ = λBψ. (3.54)

Note that as B is invertible, the generalized eigenvalues and eigenvectors of the pair

(A,B) are the regular eigenvalues and eigenvectors of the matrix B−1A. The following

Lemma describes the variational characterization of the generalized eigenvalue-eigenvector

pair.

Lemma 5. (Variational Characterization) Let r(ψ) be the Rayleigh quotient defined as fol-

lows:

r(ψ) =
ψ†Aψ

ψ†Bψ
. (3.55)

The generalized eigenvectors of (A,B) are the stationary point solution of the Rayleigh

quotient r(ψ). Specifically, the largest generalized eigenvalue λmax is the maximum of the

Rayleigh quotient r(ψ) and the optimum is attained by the eigenvector ψmax which corre-

sponds to λmax, i.e.,

max
ψ

r(ψ) =
ψ†

maxAψmax

ψ†
maxBψmax

= λmax. (3.56)

Now consider the MISOME channel of (3.53). Assume that 0 ≤ α ≤ 1 and P are fixed.

Let us define the following matrices for this channel

A1,1= I + αPh1h
†
1 (3.57)

B1,1= I + αPH†
3H3.
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Suppose that (λ(1,1)max,ψ1max) is the largest generalized eigenvalue and the corresponding

eigenvector pair of the pencil (A1,1,B1,1). Furthermore, we define the following matrices for

the MISOME channel.

A2,2= I +
(1− α)P

1 + αP |h†2ψ1max|2
h2h

†
2 (3.58)

B2,2= I + (1− α)PH†
3

(
I + αPH3ψ1maxψ

†
1maxH3

)−1

H3.

Assume that (λ(2,2)max,ψ2max) is the largest generalized eigenvalue and the corresponding

eigenvector pair of the pencil (A2,2,B2,2). Moreover, consider the following matrices for this

channel.

A2,1= I + (1− α)Ph2h
†
2 (3.59)

B2,1= I + (1− α)PH†
3H3

A1,2= I +
αP

1 + (1− α)P |h†1ψ3 max|2
h1h

†
1

B1,2= I + αPH†
3

(
I + (1− α)PH3ψ3maxψ

†
3maxH3

)−1

H3,

where we assume that (λ(2,1)max,ψ3max), and (λ(1,2)max, ψ4max) are the largest general-

ized eigenvalue and the corresponding eigenvector pair of the pencils (A2,1,B2,1), and

(A1,2,B1,2), respectively. The following theorem then characterizes the capacity region of

the MISOME channel under a total power constraint P based on the above parameters.

Theorem 9. Let CMISOME denote the secrecy capacity region of the the MISOME channel

under an average total power constraint P . Let
∏

be the collection of all possible permu-

tations of the ordered set {1, 2} and conv be the convex closure operator, then CMISOME is

given by

CMISOME = conv





⋃

π∈∏
RMISOME(π)



 ,

where RMISOME(π) is given by

RMISOME(π) =
⋃

0≤α≤1

RMISOME(π, α),

where RMISOME(π, α) is the set of all (R1, R2) satisfying the following condition.

Rk≤ 1

2

[
log λ(k,π−1(k))max

]+
, k = 1, 2.
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Proof: This theorem is a special case of Theorem 8 and corollary 1. First assume that

the permutation π = πI = {1, 2}. In the SDPC achievable rate region of (3.52), we choose

the covariance matrices B1 and B2 as follows.

B1= αPψ1maxψ
†
1max (3.60)

B2= (1− α)Pψ2maxψ
†
2max.

In other words, the channel input x is separated into two vectors b1 and b2 such that

x= b1 + b2 (3.61)

b1= u1ψ1max

b2= u2ψ2max,

where u1 ∼ N (0, αP ), u2 ∼ N (0, (1 − α)P ), and 0 ≤ α ≤ 1. Using these parameters, the

region of RSDPC(πI ,S,N1,2,3) becomes as follows:

R1≤ 1

2

[
log

∣∣∣1 + h†1B1h1

∣∣∣− 1

2
log

∣∣∣I + H3B1H
†
3

∣∣∣
]+

(3.62)

=
1

2

[
log

∣∣∣(1 + αPh†1ψ1maxψ
†
1maxh1)

∣∣∣− 1

2
log

∣∣∣(I + αPH3ψ1maxψ
†
1maxH

†
3)

∣∣∣
]+

=
1

2


log

ψ†
1max

(
I + αPh1h

†
1

)
ψ1max

ψ†
1 max

(
I + αPH†

3H3

)
ψ1max




+

(a)
=

1

2

[
log λ(1,1)max

]+
,

where (a) is due to the fact that |I + AB| = |I + BA| and the fact that ψ†
1maxψ1max = 1

Similarly, for the R2 we have,

R2≤ 1

2


log

∣∣∣1 + h†2 (B1 + B2)h2

∣∣∣
∣∣∣1 + h†2B1h2

∣∣∣
− 1

2
log

∣∣∣I + H3 (B1 + B2)H
†
3

∣∣∣
∣∣∣I + H3B1H

†
3

∣∣∣




+

(3.63)

=
1

2

[
log

∣∣∣∣∣1 +
h†2B2h2

1 + h†2B1h2

∣∣∣∣∣−
1

2
log

∣∣∣∣∣I +
H3B2H

†
3

I + H3B1H
†
3

∣∣∣∣∣

]+

=
1

2


log

ψ†
2max

(
I +

(1−α)Ph2h
†
2

1+αP |h†2ψ1 max|2

)
ψ2max

ψ†
2max

(
I + (1− α)PH†

3

(
I + αPH3ψ1maxψ

†
1maxH

†
3

)−1

H3

)
ψ2max




+

=
1

2

[
log λ(2,2)max

]+
.
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Similarly, when π = {2, 1}, in the SDPC region, we choose b1 = u1ψ4max and b2 = u2ψ3max.

Then the SDPC region is given by

R1≤ 1

2


log

∣∣∣1 + h†1 (B1 + B2)h1

∣∣∣
∣∣∣1 + h†1B2h1

∣∣∣
− 1

2
log

∣∣∣I + H3 (B1 + B2)H
†
3

∣∣∣
∣∣∣I + H3B2H

†
3

∣∣∣




+

(3.64)

=
1

2

[
log

∣∣∣∣∣1 +
h†1B1h1

1 + h†1B2h1

∣∣∣∣∣−
1

2
log

∣∣∣∣∣I +
H3B1H

†
3

I + H3B2H
†
3

∣∣∣∣∣

]+

=
1

2


log

ψ†
4max

(
I +

αPh1h
†
1

1+(1−α)P |h†1ψ3 max|2

)
ψ4max

ψ†
4max

(
I + αPH†

3

(
I + (1− α)PH3ψ3maxψ

†
3maxH

†
3

)−1

H3

)
ψ4max




+

=
1

2

[
log λ(1,2)max

]+
,

and R2 is bounded as follows:

R2≤ 1

2

[
log

∣∣∣1 + h†2B2h2

∣∣∣− 1

2
log

∣∣∣I + H3B2H
†
3

∣∣∣
]+

(3.65)

=
1

2

[
log

∣∣∣(1 + (1− α)Ph†2ψ3maxψ
†
3maxh2)

∣∣∣− 1

2
log

∣∣∣(I + (1− α)PH3ψ3maxψ
†
3maxH

†
3)

∣∣∣
]+

=
1

2


log

ψ†
3max

(
I + (1− α)Ph2h

†
2

)
ψ3max

ψ†
3max

(
I + (1− α)PH†

3H3

)
ψ3max




+

=
1

2

[
log λ(2,1)max

]+
.

Note that the eigenvalues λ(l,k)max = λ(l,k)max(α, P ) and the eigenvector ψk max = ψk max(α, P )

for l, k = 1, 2 are the functions of α and P . The following corollary characterizes the secrecy

capacity region of the MISOME channel in high SNR regime.

Corollary 2. In the high SNR regime, the secrecy capacity region of the MISOME channel

is given as follows:

lim
P→∞

CMISOME = conv





⋃

π∈∏
RMISOME
∞ (π)



 , (3.66)
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where

RMISOME
∞ (π = {1, 2}) = (3.67)




(R1, R2), R1 ≤ 1

2

[
log λmax

(
h1h

†
1,H

†
3H3

)]+

, R2 ≤ 1

2


log

λmax

(
h2h

†
2,H

†
3H3

)

b




+




RMISOME
∞ (π = {2, 1}) =




(R1, R2), R1 ≤ 1

2


log

λmax

(
h1h

†
1,H

†
3H3

)

a




+

, R2 ≤ 1

2

[
log λmax

(
h2h

†
2,H

†
3H3

)]+





,

where (λmax(Ai,B), ψi max) denotes the largest eigenvalue and corresponding eigenvector of

the pencil (Ai,B) and b =
|h†2ψ1 max|2
‖H3ψ1 max‖2

, a =
|h†1ψ2 max|2
‖H3ψ2 max‖2

.

Note that the above secrecy rate region is independent of α and therefore is a convex

closure of two rectangular regions.

Proof: We restrict our attention to the case that λ(l,k)max(α, P ) > 1 for l, k = 1, 2 where

the rates R1 and R2 are nonzero. First suppose that π = πI = {1, 2}. We show that

lim
P→∞

λ(1,1)max(α, P )= λmax

(
h1h

†
1,H

†
3H3

)
(3.68)

lim
P→∞

λ(2,2)max(α, P )=
λmax

(
h2h

†
2,H

†
3H3

)

b
. (3.69)

Note that since

λ(1,1)max(α, P ) =
1 + αP |h†1ψ1max(α, P )|2

1 + αP‖H3ψ1max(α, P )‖2
> 1, (3.70)

where

ψ1max(α, P ) = arg max
{ψ1:‖ψ1‖2=1}

1 + αP |h†1ψ1(α, P )|2
1 + αP‖H3ψ1(α, P )‖2

, (3.71)

for all P > 0 we have,

|h†1ψ1max(α, P )|2 > |H3ψ1max(α, P )‖2. (3.72)

Therefore, λ(1,1)max is an increasing function of P . Thus,

λ(1,1)max(α, P )≤ |h†1ψ1max(α, P )|2
‖H3ψ1max(α, P )‖2

(3.73)

≤ λmax

(
h1h

†
1,H

†
3H3

)
.
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Since λmax

(
h1h

†
1,H

†
3H3

)
is independent of P , we have

lim
P→∞

λ(1,1) max ≤ λmax

(
h1h

†
1,H

†
3H3

)
. (3.74)

Next, defining

ψ1(∞) = arg max
{ψ1:‖ψ1‖2=1}

|h†1ψ1|2
‖H3ψ1‖2

, (3.75)

we have the following lower bound

lim
P→∞

λ(1,1)max(α, P )≥ lim
P→∞

1
P

+ α|h†1ψ1max(∞)|2
1
P

+ α‖H3ψ1max(∞)‖2
(3.76)

= λmax

(
h1h

†
1,H

†
3H3

)
.

As the lower bound and upper bound coincide, we obtain (3.68). Similarly, to obtain (3.69),

we note that since

λ(2,2)max(α, P ) =
1 +

(1−α)P |h†2ψ2 max(α,P )|2
1+αP |h†2ψ1 max(α,P )|2

1 +
(1−α)P‖H3ψ2 max(α,P )‖2
1+αP‖H3ψ1 max(α,P )‖2

> 1, (3.77)

where

ψ2max(α, P ) = arg max
{ψ2:‖ψ2‖2=1}

1 +
(1−α)P |h†2ψ2 max(α,P )|2
1+αP |h†2ψ1 max(α,P )|2

1 +
(1−α)P‖H3ψ2 max(α,P )‖2
1+αP‖H3ψ1 max(α,P )‖2

, (3.78)

for all P > 0, we have,

(1− α)P |h†2ψ2max(α, P )|2
1 + αP |h†2ψ1max(α, P )|2 >

(1− α)P‖H3ψ2max(α, P )‖2

1 + αP‖H3ψ1max(α, P )‖2
. (3.79)

Therefore, we have

lim
P→∞

λ(2,2)max(α, P )≤
|h†2ψ2 max(∞)|2
|h†2ψ1 max(∞)|2
‖H3ψ2 max(∞)‖2
‖H3ψ1 max(∞)‖2

(3.80)

≤
λmax

(
h2h

†
2,H

†
3H3

)

b
,

where

b=
|h†2ψ1max(∞)|2
‖H3ψ1max(∞)‖2

(3.81)

ψ2(∞)= arg max
{ψ2:‖ψ2‖2=1}

|h†2ψ2max|2
‖H3ψ2max‖2

.

57



On the other hand, we have the following lower bound

lim
P→∞

λ(2,2)max(α, P ) ≥
1 +

(1−α)|h†2ψ2 max(∞)|2
α|h†2ψ1 max(∞)|2

1 +
(1−α)‖H3ψ2 max(∞)‖2

α‖H3ψ1 max(∞)‖2

. (3.82)

Note that 0 ≤ α ≤ 1. It is easy to show that the right side of the equation of (3.82) is a

decreasing function of α and therefore the maximum value of this function is when α = 0.

Thus we have,

lim
P→∞

λ(2,2)max(α, P ) ≥
λmax

(
h2h

†
2,H

†
3H3

)

b
. (3.83)

As the lower bound and upper bound coincide, we obtain (3.69). When π = 2, 1, the proof

is similar and may be omitted here.

Now consider the MISOME channel with m single antenna receivers and an external eaves-

dropper. Let x =
∑m

k=1 bk, where bk = ukψk max, uk ∼ N (0, αkP ), and
∑m

k=1 αk = 1.

Assume that (λk max, ψk max) is the largest generalized eigenvalue and the corresponding

eigenvector pair of the pencil
(

I +
αkPhkh

†
k

1 + h†kAhk

, I + αkPH†
3

(
I + H3AH†

3

)−1

H3

)
, (3.84)

where A = (
∑π−1(k)−1

i=1 απ(i)Pψπ(i)maxψ
†
π(i)max). The following corollary then characterizes

the capacity region of the MISOME channel with m receivers under a total power constraint

P .

Corollary 3. Let
∏

be the collection of all possible permutations of the ordered set {1, ..., m}
and conv be the convex closure operator, then CMISOME is given as follows:

CMISOME = conv





⋃

π∈∏
RMISOME(π)



 ,

where RMISOME(π) is given by

RMISOME(π) =
⋃

0≤αk≤1,
∑m

k=1 αk=1

RMISOME(π, α1, ..., αm),

where RMISOME(π, α1, ..., αm) is the set of all (R1, ..., Rm) satisfying the following condition.

Rk≤ 1

2
[log λk max]

+ , k = 1, ..., m.
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Chapter 4

Secure Gaussian

Multiple-Access-Channel

In this chapter, we consider a K-user secure Gaussian Multiple-Access-Channel (MAC) with

an external eavesdropper. We establish an achievable rate region for the secure discrete

memoryless MAC. We prove the secrecy sum capacity of the degraded Gaussian MIMO

MAC using Gaussian codebooks. For the non-degraded Gaussian MIMO MAC, we propose

an algorithm inspired by the interference alignment technique to achieve the largest possible

total Secure-Degrees-of-Freedom (S-DoF). When all the terminals are equipped with a single

antenna, we show that Gaussian codebooks are inefficient in providing a positive S-DoF.

Instead, we propose a novel secure coding scheme to achieve a positive S-DoF in the single

antenna MAC. This scheme converts the single-antenna system into a multiple-dimension

system with fractional dimensions. The achievability scheme is based on the alignment of

signals into a small sub-space at the eavesdropper, and the simultaneous separation of the

signals at the intended receiver. We use tools from the field of Diophantine Approximation

in the number theory to analyze the probability of error in the coding scheme. We prove that

the total S-DoF of K−1
K

can be achieved for almost all channel gains. For the other channel

gains, we propose a multi-layer coding scheme to achieve a positive S-DoF. As a function of

channel gains, therefore, the achievable S-DoF is discontinued.

4.1 Introduction

The secure MAC generalizes the wiretap channel. In the wiretap channel, the direct coding

scheme uses the framework of random coding, which is widely used in the analysis of multi-

terminal source and channel coding problems. One approach to finding achievable sum rates
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Figure 4.1: Secure K-user Gaussian MIMO Multiple-Access-Channel

for the secure MAC is to extend the random coding solution to the secure multi-user. As

we will show in this chapter, this extension leads to a single-letter characterization for the

secure rate region of the MAC. Our achievability, as usual, is based on the i.i.d random

binning scheme.

On the other hand, it is shown that the random coding argument may be insufficient

to prove capacity theorems for certain channels; instead, structure codes can be used to

construct efficient channel codes for Gaussian channels. In reference [78], nested lattice codes

are used to provide secrecy in two-user Gaussian channels. In [78] it is shown that structure

codes can achieve a positive S-DoF in a two-user MAC. In particular, the achievability

scheme of [78] provides an S-DoF of 1
2

for a small category of channel gains and for the other

categories, it provides a S-DoF of strictly less than 1
2
.

In reference [79], the concept of interference alignment is introduced and has illustrated

its capability in achieving the full DoF of a class of two-user X channels. In reference [80],

and [81], a novel coding scheme applicable in networks with single antenna nodes is proposed.

This scheme converts a single antenna system into an equivalent Multiple Input Multiple

Output (MIMO) system with fractional dimensions.

4.2 Preliminaries

Consider a secure K-user Gaussian MIMO Multiple-Access-Channel (MAC) as depicted in

Figure 4.1. In this confidential setting, each user k (k ∈ K 4
= {1, 2, ..., K}) wishes to send

a message Wk to the intended receiver in n uses of the channel simultaneously, and prevent

the eavesdropper from having any information about the messages. At a specific time, the

60



signals received by the intended receiver and the eavesdropper is given by

y =
K∑

k=1

Hkxk + n1 (4.1)

z=
K∑

k=1

Hk,exk + n2

where

• xk for k = 1, 2, ..., K is a real input vector of size Mk×1 under an input average power

constraint. We require that Tr(Qk) ≤ P , where Qk = E[xkx
†
k]. Here, the superscript

† denotes the Hermitian transpose of a vector and Tr(.) denotes the Trace operator on

the matrices.

• y and z are real output vectors which are received by the destination and the eaves-

dropper, respectively. These are vectors of size N × 1 and Ne × 1, respectively.

• Hk and Hk,e for k = 1, 2, ..., K are fixed, real gain matrices which model the channel

gains between the transmitters and the intended receiver, and the eavesdropper, re-

spectively. These are matrices of size N ×Mk and Ne×Mk, respectively. The channel

state information is assumed to be known perfectly at all the transmitters and at all

receivers.

• n1 and n2 are real Gaussian random vectors with zero means and covariance matrices

N1 = E[n1n1
T ] = IN and N2 = E[n2n2

T ] = INe , respectively. Here, IM represents

the identity matrix of size M ×M .

Let xn
k, yn and zn denote the random channel inputs and random channel outputs matrices

over a block of n samples. Furthermore, let nn
1 , and nn

2 denote the additive noises of the

channels. Therefore, we have

yn=
K∑

k=1

Hkx
n
k + nn

1 (4.2)

zn=
K∑

k=1

Hk,ex
n
k + nn

2 .

Note that bold vectors are random while the matrices Hk and Hk,e are deterministic matrices

for all k ∈ K. The columns of nn
1 and nn

2 are independent Gaussian random vectors with

covariance matrices IN and INe , respectively. In addition nn
1 and nn

2 are independent of
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xn
k’s and Wk’s. A ((2nR1 , 2nR2 , ..., 2nRk), n) secret code for the above channel consists of the

following components:

1 ) K secret message sets Wk = {1, 2, ..., 2nRk}.
2 ) K stochastic encoding functions fk(.) which map the secret messages to the transmit-

ted symbols, i.e., fk : wk → xn
k for each wk ∈ Wk. At encoder k, each codeword is designed

according to the transmitter’s average power constraint P .

3 ) A decoding function φ(.) which maps the received symbols to estimate the messages:

φ(yn) → (Ŵ1, ..., ŴK).

The reliability of the transmission is measured by the average probability of error, which

is defined as the probability that the decoded messages are not equal to the transmitted

messages; that is,

P (n)
e =

1∏K
k=1 2nRk

∑

(w1,...,wK)∈W1×....×WK

P (φ(yn) 6= (w1, ..., wK)|(w1, ..., wk) is sent). (4.3)

The secrecy level is measured by the normalized equivocation defined as follows: The nor-

malized equivocation for each subset of messages WS for S ⊆ K is

∆S
4
=

H(WS |zn)

H(WS)
. (4.4)

The rate-equivocation tuple (R1, ..., RK , d) is said to be achievable for the Gaussian MIMO

Multiple-Access-Channel with confidential messages, if for any ε > 0, there exists a sequence

of ((2nR1 , ..., 2nRK ), n) secret codes, such that for sufficiently large n,

P (n)
e ≤ ε, (4.5)

and

∆S ≥ d− ε, ∀S ⊆ K. (4.6)

The perfect secrecy rate tuple (R1, ..., RK) is said to be achievable when d = 1. When all

the transmitted messages are perfectly secure, we have

∆K ≥ 1− ε, (4.7)

or equivalently

H(WK|zn) ≥ H(WK)− εH(WK). (4.8)
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The normalized equivocation of each subset of messages can then be written as follows:

H(WS |zn)
(a)
= H(WS ,WSc |zn)−H(WSc |WS , zn) (4.9)

= H(WK|zn)−H(WSc |WS , zn)
(b)

≥ H(WK)− εH(WK)−H(WSc|WS , zn)
(c)
= H(WS) + H(WSc |WS)− εH(WK)−H(WSc |WS , zn)
(d)

≥ H(WS)− εH(WK),

where (a) and (c) follow from the chain rule, (b) follows from (4.7) and (d) follows from the

fact that conditioning always decreases the amount of entropy. Therefore, the normalized

equivocation of each subset of messages is

∆S ≥ 1− ε
′
, (4.10)

where ε
′
= H(WK)

H(WS)
ε. Thus, when all of the K messages are perfectly secure then it is guaran-

teed that any subset of the messages becomes perfectly secure.

The total Secure Degrees-of Freedom (S-DoF) of η is said to be achievable, if the rate-

equivocation tuple (R1, ..., RK , d = 1) is achievable, and

η = lim
P→∞

∑K
k=1 Rk

1
2
log P

(4.11)

4.3 Secure DoF of the Multiple-Antenna Multiple-Access-

Channel

In this section, we first present an achievability rate region for the secure discrete memoryless

MAC. We then characterize the sum capacity of the degraded secure discrete memoryless

and degraded Gaussian MIMO MAC. We present an achievable S-DoF of the non-degraded

Gaussian MIMO MAC under the perfect secrecy constraint using Gaussian codebooks. In

order to satisfy the perfect secrecy constraint, we use the random binning coding scheme to

generate the codebooks. To maximize the achievable degrees of freedom, we adopt the signal

alignment scheme to separate the signals at the intended receiver and simultaneously align

the signals into a small subspace at the eavesdropper.

4.3.1 Discrete Memoryless MAC

In this subsection, we study the secure discrete MAC of P (y, z|x1, ..., xK) with K users and

an external eavesdropper. The following theorems illustrate our results:
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Theorem 10. For the perfectly secure discrete memoryless MAC of P (y, z|x1, ..., xK), the

region of

{
(R1, ..., RK)|

∑
i∈S

Ri ≤ I(US ; Y |USc),
∑

k∈K
Rk ≤ [I(UK; Y )− I(UK; Z)]+ ,∀S ⊂ K

}
, (4.12)

for any distribution of P (u1)P (u2)....P (uK)P (x1|u1)P (x2|u2)...P (xK |uK)P (y, z|x1, ..., xK),

is achievable.

Please see section 4.5.1 for the proof.

In this Theorem [x]+ denotes the positivity operator, i.e., [x]+ = max(x, 0). Reference

[46] derived an achievable rate region with Gaussian codebooks and power control for the

Gaussian secure MAC when all the transmitters and receivers are equipped with a single

antenna. Theorem 10, however, gives an achievability secrecy rate region for the general

discrete memoryless MAC. Our achievability rate region is also larger than the region of [46]

in the special Gaussian channel case. Therefore, we have the following achievable sum rate

for the secure discrete memoryless MAC:

Corollary 4. For the secure discrete memoryless MAC of P (y, z|x1, ..., xK), the following

sum rate is achievable:

Rsum = max [I(UK; Y )− I(UK; Z)]+ , (4.13)

where the maximization is over all distributions of

P (u1)...P (uK)P (x1|u1)...P (xK |uK)P (y, z|x1, ..., xK)

that satisfy the markov chain WK → UK → XK → Y Z.

4.3.2 Gaussian MIMO MAC

Consider the secure Gaussian MIMO MAC of (4.1) which can be re-written as follows:

y = Hx + n1 (4.14)

z= Hex + n2

where, H = [H1,H2, ...,HK], He = [H1,e,H2,e, ...,HK,e], and x =
[
x†1,x

†
2, ...,x

†
K

]†
. Without

loss of generality, assume that all nodes are equipped with the same number of antennas,

i.e., Mk = N = Ne for all k ∈ K. Note that when the channel gain matrices Hk and Hk,e

are identity matrices we can determine that one channel output is degraded w.r.t. another
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by examining whether their noise covariances can be ordered correctly. In (4.1), however,

all noise covariances are identity matrices and the receive vectors differ only in their channel

gain matrices. Therefore, similar to [82], we use the following definition to determine a

degradedness order:

Definition 12. A receive vector z = Hex + n2 is said to be degraded w.r.t. y = Hx + n1 if

there exists a matrix D such that DH = He and such that DD† ¹ I. Alternatively, we say

that He is degraded w.r.t. H.

According to this definition, it is easy to see that y can be approximated by multiplying

Dy. The approximated channel has a different additive noise which is now given by Dn1 ∼
N (0,DD†) compared to the original channel. As this approximated channel has less noise

(DD† ¹ I), however, it is clear that any message that can be decoded by the eavesdropper,

can also be decoded by the intended receiver. In the other words WK → x → y → z forms

a Markov chain.

Theorem 11. The secrecy sum capacity of the degraded Gaussian MIMO MAC is given by

Csum = max
Qk:Qkº0,T r(Qk)≤P

1

2
log

∣∣∣∣∣I +
∑

k∈K
HkQkH

†
k

∣∣∣∣∣−
1

2
log

∣∣∣∣∣I +
∑

k∈K
Hk,eQkH

†
k,e

∣∣∣∣∣ .(4.15)

Proof: We need to show that the secrecy sum capacity is as follows:

Csum =
1

2
log

∣∣∣∣∣I +
∑

k∈K
HkQkH

†
k

∣∣∣∣∣−
1

2
log

∣∣∣∣∣I +
∑

k∈K
Hk,eQkH

†
k,e

∣∣∣∣∣ , (4.16)

if the inputs are subject to the following covariance matrices constraints:

Kxk
≤ Qk, ∀k ∈ K, (4.17)

where Kxk
denotes the covariance matrix of xk. Theorem 11 then follows by maximization

over all Q1, Q2 , ..., and QK that satisfy the power constraint, i.e., Tr(Qk) ≤ P , for all

k ∈ K.

The achievability of this theorem follows from Theorem 4 by choosing Uk = xk ∼
N(0,Qk). The converse proof is presented in section 4.5.2.

According to (4.55), it is easy to show that:

Corollary 5. The total S-DoF for the degraded Gaussian MIMO MAC is η = 0.
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Figure 4.2: Separation/Alignment of Signals at the Intended Receiver/Eavesdropper

Now consider the general Gaussian MIMO MAC where it’s not necessarily degraded.

According to Theorem 10, by choosing Uk = xk ∼ N (0,Qk), it is easy to see that the

following secrecy sum rate is achievable.

Corollary 6. For the Gaussian MIMO MAC, an achievable secrecy sum rate is given by

Rsum =
∑

k∈K
Rk = max

Q:Qº0,T r(Q)≤P

1

2
log

∣∣∣∣∣I +
∑

k∈K
HkQkH

†
k

∣∣∣∣∣−
1

2
log

∣∣∣∣∣I +
∑

k∈K
Hk,eQkH

†
k,e

∣∣∣∣∣ .

(4.18)

Note that in the above achievable scheme, we chose Kxk
= Qk which is generally not

optimal but indeed is achievable. In general, solving the maximization problem of (4.18)

is difficult. Reference [46], however, has solved this problem for a single antenna case and

derived the optimal power control policy. As shown in [46] even for a single antenna case

some users need to be silent and therefore those users can cooperatively help to jam the

eavesdropper.

We study the S-DoF defined in (4.11) to analyze the behavior of the sum rate in high

SNR. We design the following strategy scheme at the transmitters.

To achieve the largest value for S-DoF we need to separate the received signals at the

legitimate receiver, such that each received signal has a different dimension in the signal space

of the legitimate receiver. At the same time all the received signals at the eavesdropper need

to be aligned in a minimal subspace of the signal space of the eavesdropper (see Figure 4.2).

Let xk = Fkvk where, Fk is a pre-coding matrix such that FkF
†
k = Qk and vk is a vector

with i.i.d Gaussian components with zero mean and unit variance, i.e, vk = [v1
k, ..., v

N
k ]†,

such that vj
k ∼ N (0, 1) for j = 1, 2, ..., N . Let ψi = [0, 0, ..., 0, 1, 0, ..., 0]† be a N × 1 vector

that all of its elements are zero except the ith element which is 1. Let Fk = [f1
k , f2

k , ..., fN
k ],
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where f i
k’s for i = 1, 2, ..., N are N × 1 vectors that represent the columns of Fk. We use the

following algorithm to choose f i
k’s:

• Assume that for users k = 1, 2, ..., J , the matrix Hk,e has non-empty null space and

the null space of Hk,e for users k = J + 1, J + 2, ..., K is empty. The users k =

1, 2, ..., min{J,N} choose f1
k such that Hk,ef

1
k = 0. Almost surely, we can assume that

these vectors occupy separate dimensions at the legitimate receiver.

• If J ≥ N , then all the N dimensions at the legitimate receiver are full and η = N .

• If J < N , users k = J + 1, J + 2, ..., min{K, N} then create a vector f1
k such that

Hk,ef
1
k = ψ1. Theses vectors, therefore, are aligned at the eavesdropper in one dimen-

sion and almost surely occupy separate dimensions in the remaining subspace of the

legitimate receiver.

• If N ≤ K, at this step all the dimensions at the legitimate receiver are full and one

dimension at the eavesdropper has a non-zero signal. Thus, η = N − 1.

• If N > K, users k = 1, 2, ..., J then also creates a vector f2
k such that Hk,ef

2
k = ψ1.

These vectors are also aligned at the dimension ψ1 and almost surely η = N − 1

• We repeat the above steps such that all the dimensions at the legitimate receiver

become full.

The above algorithm can be followed when the users and the receivers are equipped with

different numbers of antennae. The following theorem characterizes the maximum amount

of the total S-DoF that can be achieved by Gaussian codebooks.

Theorem 12. For the Gaussian MIMO MAC, the following η for S-DoF can almost surely be

achieved for almost all channel gains by using Gaussian codebooks and under perfect secrecy

constraint:

η =

[
min

{∑

k∈K
Mk, N

}
− r

]+

, (4.19)

where 0 ≤ r ≤ min{∑k∈K Mk, Ne} depends on the channel gain matrix He.

Note that in Theorem 12, it is emphasized that total
[
min

{∑
k∈K Mk, N

}− r
]+

S-DoF

is achievable for almost all channel gains. It means the set of all possible gains that the

total amount of
[
min

{∑
k∈K Mk, N

}− r
]+

S-DoF may not be achieved has the Lebesgue

measure zero. In other words, if all the channel gains are drawn independently from a random

distribution, then almost all of them satisfy properties required to achieve the total S-DoF,

almost surely. The term “almost surely” means with a probability arbitrary close to 1.
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Remark 8. In the achievability scheme of Theorem 12, all the transmitted signals are aligned

into an r-dimensional subspace at the eavesdropper, and hence, impair the ability of the

eavesdropper to distinguish any of the secure messages efficiently.

Now assume that the transmitters can cooperate with each other: we have a MIMO

wiretap channel where the transmitter has
∑

k∈K Mk antennas and the legitimate and eaves-

dropper have N and Ne antennas, respectively. The secrecy capacity of this channel is indeed

an upper-bound for the secrecy sum capacity of the Gaussian MIMO MAC. As the capacity

of a non-secret MIMO channel is an upper-bound for the secrecy capacity of the MIMO wire-

tap channel, we have the following upper-bound for S-DoF for the secure Gaussian MIMO

MAC.

Lemma 6. For the Gaussian MIMO MAC, the maximum total achievable S-DoF under

perfect secrecy constraint is given by

ηmax = min

{∑

k∈K
Mk, N

}
. (4.20)

The maximum penalty for the achievable S-DoF in Theorem 12 is therefore r, where,

0 ≤ r ≤ min{∑k∈K Mk, Ne}. We note that an achievable S-DoF in the MIMO wiretap

channel using zero-forcing beamforming is given as follows.

Lemma 7. In the MIMO wiretap channel, the following S-DoF is achievable, almost surely.

η = min

{[∑

k∈K
Mk − r

′
]+

, N

}
, (4.21)

where 1 ≤ r
′ ≤ Ne depends on the channel gain matrix He.

Remark 9. When the transmitters and the intended receiver are equipped with a sufficiently

large number of antennae while the eavesdropper is equipped with a limited number of an-

tennae, then Gaussian codebooks provide a near optimum total of S-DoF for the Gaussian

MIMO multiple-access-channel under perfect secrecy constraint.

Note that when the transmitters and the receivers are equipped with a single antenna,

i.e., Mk = Ne = N = 1, then the total achieved S-DoF is 0. It should be noted that this

result comes from the lack of sufficient dimensions for signal management at the receivers

by using Gaussian codebooks. In our achievability scheme, nodes K−1 send sequences from

a codebook randomly generated in an i.i.d. fashion according to a Gaussian distribution.

These are the worst noises from the eavesdroppers perspective if Gaussian i.i.d. signaling is

used in X1, see [70, 71]. However, since the channel is fully connected, K − 1 are also the

worst noises for the intended receiver. This effect causes the secrecy rate to saturate, leading

to zero S-DoF.
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4.4 Secure DoF of the Single-Antenna Multiple-Access-

Channel

In this section we consider the secure multiple-access-channel of (4.1) when all the trans-

mitters and the receivers have a single antenna, i.e., Mk = N = Ne = 1 for all k ∈ K. We

have shown in the previous section that Gaussian codebooks lead to zero total S-DoF. Here,

we will provide a coding scheme based on integer codebooks and show that for almost all

channel gains a positive total S-DoF is achievable, almost surely. The following theorem

illustrates our results.

Theorem 13. For the Gaussian single antenna multiple-access-channel of (4.1) with Mk =

N = Ne = 1, a total K−1
K

secure degrees-of-freedom can be achieved for almost all channel

gains, almost surely.

Proof: When the transmitters and the receivers are equipped with a single antenna, then

the channel model of (4.1) is equivalent as follows:

Y =
K∑

k=1

hkXk + W̃1 (4.22)

Z=
K∑

k=1

hk,eXk + W̃2,

where W̃1 ∼ N (0, 1), W̃2 ∼ N (0, 1), and E[X2
k ] ≤ P for all k ∈ K. Let us define X̃k

4
=

hk,e

A
Xk

and h̃k
4
= hk

hk,e
and without loss of generality assume that h̃K = 1, then the channel model is

equivalent as follows:

Y = A

[
K−1∑

k=1

h̃kX̃k + X̃K

]
+ W̃1 (4.23)

Z= A

K∑

k=1

X̃k + W̃2,

where, A2E[X̃2
k ] ≤ P̃

4
= h2

k,eP . In this model we say that the signals are aligned at the

eavesdropper according to the following definition:

Definition 13. The signals X̃1, X̃2,...,X̃K are said to be aligned at a receiver if its received

signal is a rational combination of them.

Note that, in n-dimensional Euclidean spaces (n ≥ 2), two signals are aligned when

they are received in the same direction at the receiver. In general, m signals are aligned
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at a receiver if they span a subspace with dimension less than m. The above definition,

however, generalizes the concept of alignment for the one-dimensional real numbers. Our

coding scheme is based on integer codebooks, which means that X̃k ∈ Z for all k ∈ K. If

some integer signals are aligned at a receiver, then their effect is similar to a single signal at

high SNR regimes. This is due to the fact that rational numbers form a field and therefore

the sum of constellations from Q form a constellation in Q with an enlarged cardinality.

Before we present our achievability scheme, we need to define the rational dimension of

a set of real numbers.

Definition 14. (Rational Dimension) The rational dimension of a set of real numbers

{h̃1, h̃2, ..., h̃K−1, h̃K = 1} is M if there exists a set of real numbers {g1, g2, ..., gM} such

that each h̃k can be represented as a rational combination of gis, i.e., h̃k = ak,1g1 + ak,2g2 +

... + ak,MgM , where ak,i ∈ Q for all k ∈ K and i ∈M.

In fact, the rational dimension of a set of channel gains is the effective dimension seen at

the corresponding receiver. In particular, {h̃1, h̃2, ..., h̃K} are rationally independent if the

rational dimension is K, i.e., none of the h̃k can be represented as the rational combination

of other numbers.

Note that all of the channel gains h̃k are generated independently with a distribution.

From the number theory, it is known that the set of all possible channel gains that are ratio-

nally independent have a Lebesgue measure 1. Therefore, we can assume that {h̃1, h̃2, ..., h̃K}
are rationally independent, almost surely. Our achievability coding scheme is as follows:

Encoding

Each transmitter limits its input symbols to a finite set which is called the transmit constel-

lation. Even though it has access to the continuum of real numbers, restriction to a finite

set has the benefit of easy and feasible decoding at the intended receiver. The transmitter

k selects a constellation Vk to send message Wk. The constellation points are chosen from

integer points, i.e., Vk ⊂ Z. We assume that Vk is a bounded set. Hence, there is a constant

Qk such that Vk ⊂ [−Qk, Qk]. The cardinality of Vk which limits the rate of message Wk is

denoted by ‖Vk‖.
Having formed the constellation, the transmitter k constructs a random codebook for

message Wk with rate Rk. This can be accomplished by choosing a probability distribution

on the input alphabets. The uniform distribution is the first candidate and it is selected

for the sake of simplicity. Therefore, the stochastic encoder k generates 2n(I(X̃k;Y |X̃(K−k)c )+εk)

independent and identically distributed sequences x̃n
k according to the distribution P (x̃n

k) =∏n
i=1 P (x̃k,i), where P (x̃k,i) denotes the probability distribution function of the uniformly
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distributed random variable x̃k,i over Vk. Next, randomly distribute these sequences into

2nRk bins. Index each of the bins by wk ∈ {1, 2, ..., 2nRk}.
For each user k ∈ K, to send message wk, the transmitter looks for a x̃n

k in bin wk. The

rates are such that there exist more than one x̃n
k . The transmitter randomly chooses one of

them and sends xn
k = A

x̃n
k

hk,e
. The parameter A controls the input power.

Decoding

At a specific time, the received signal at the legitimate receiver is as follows:

Y = A
[
h̃1X̃1 + h̃2X̃2 + ... + h̃K−1X̃K−1 + X̃K

]
+ W̃1 (4.24)

The legitimate receiver passes the received signal Y through a hard decoder. The hard

decoder looks for a point Ỹ in the received constellation

Vr = A
[
h̃1V1 + h̃2V2 + ... + h̃K−1VK−1 + VK

]

which is the nearest point to the received signal Y . Therefore, the continuous channel changes

to a discrete one in which the input symbols are taken from the transmit constellations

Vk and the output symbols belongs to the received constellation Vr. h̃k’s are rationally

independent which means that the equation A
[
h̃1X1 + h̃2X2 + ... + h̃K−1XK−1 + XK

]
=

0 has no rational solution. This property implies that any real number vr belonging to

the constellation Vr is uniquely decomposable as vr = A
∑K

k=1 h̃k
̂̃
Xk. Note that if there

exists another possible decomposition ṽr = A
∑K

k=1 h̃k
̂̃
X

′

k, then h̃k’s have to be rationally-

dependent, which is a contradiction. We refer to this property as property Γ. This property

in fact implies that if there is no additive noise in the channel, then the receiver can decode

all the transmitted signals with zero error probability.

Remark 10. In a random environment it is easy to show that the set of channel gains

which are rationally-dependent have a measure of zero with respect to the Lebesque measure.

Therefore, Property Γ is almost surely satisfied.

Error Probability Analysis

Let dmin denote the minimum distance in the received constellation Vr. Having property

Γ, the receiver can decode the transmitted signals. Let Vr and V̂r be the transmitted and

decoded symbols, respectively. The probability of error, i.e., Pe = P (V̂r 6= Vr), is bounded

as follows:

Pe ≤ Q(
dmin

2
) ≤ exp(−d2

min

8
) (4.25)
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where Q(x) = 1√
2π

∫∞
x

exp(− t2

2
)dt. Note that finding dmin is not easy in general. Using

Khintchine and Groshev theorems, however, it is possible to lower bound the minimum

distance. Here we explain some background information for using the theorems of Khintchine

and Groshev.

The field of Diophantine approximation in number theory deals with the approximation

of real numbers with rational numbers. The reader is referred to [83, 84] and the references

therein. The Khintchine theorem is one of the cornerstones in this field. This theorem

provides criteria for a given function ψ : N → R+ and real number h̃, such that |p + h̃q| <

ψ(|q|) has either infinitely many solutions or at most, finitely many solutions for (p, q) ∈ Z2.

Let A(ψ) denote the set of real numbers such that |p + h̃q| < ψ(|q|) has infinitely many

solutions in integers. The theorem has two parts. The first part is the convergent part and

states that if ψ(|q|) is convergent, i.e.,

∞∑
q=1

ψ(q) < ∞ (4.26)

then A(ψ) has a measure of zero with respect to the Lebesgue measure. This part can be

rephrased in a more convenient way, as follows. For almost all real numbers, |p+ h̃q| > ψ(|q|)
holds for all (p, q) ∈ Z2 except for finitely many of them. Since the number of integers

violating the inequality is finite, one can find a constant c such that

|p + h̃q| > cψ(|q|) (4.27)

holds for all integers p and q, almost surely. The divergent part of the theorem states that

A(ψ) has the full measure, i.e. the set R − A(ψ) has measure zero, provided that ψ is

decreasing and ψ(|q|) is divergent, i.e.,

∞∑
q=1

ψ(q) = ∞. (4.28)

There is an extension to Khintchines theorem which regards the approximation of linear

forms. Let h̃ = (h̃1, h̃2, ..., h̃K−1) and q = (q1, q2, ..., qK−1) denote (K − 1)-tuples in RK−1

and ZK−1, respectively. Let AK−1(ψ) denote the set of (K − 1)-tuple real numbers h̃ such

that

|p + q1h̃1 + q2h̃2 + ... + qK−1h̃K−1| < ψ(|q|∞) (4.29)

has infinitely many solutions for p ∈ Z and q ∈ ZK−1. Here, |q|∞ is the supremum norm of

q which is defined as maxk |qk|. The following theorem illustrates the Lebesque measure of

the set AK−1(ψ).
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Theorem 14. (Khintchine-Groshev) Let ψ : N→ R+. Then, the set AK−1(ψ) has measure

zero provided that
∞∑

q=1

qK−2ψ(q) < ∞ (4.30)

and has the full measure if

∞∑
q=1

qK−2ψ(q) = ∞ and ψ is monotonic (4.31)

In this chapter, we are interested in the convergent part of the theorem. Moreover, given

an arbitrary ε > 0 the function ψ(q) = 1
qK−1+ε satisfies the condition of (4.30). In fact, the

convergent part of the above theorem can be stated as follows. For almost all K − 1-tuple

real numbers h̃ there exists a constant c such that

|p + q1h̃1 + q2h̃2 + ... + qK−1h̃K−1| > c

(maxk |qk|)K−1+ε
(4.32)

holds for all p ∈ Z and q ∈ ZK−1. The Khintchine-Groshev theorem can be used to bound

the minimum distance of points in the received constellation Vr. In fact, a point in the

received constellation has a linear form of

vr = A
[
h̃1v1 + h̃2v2 + ... + h̃K−1vK−1 + vK

]
, (4.33)

Therefore, we can conclude that

dmin >
Ac

(maxk∈{1,2,...,K−1} Qk)K−1+ε
. (4.34)

The probability of error in hard decoding, see (4.25), can be bounded as:

Pe < exp

(
− (Ac)2

8(maxk∈{1,2,...,K−1} Qk)2K−2+2ε

)
(4.35)

Let us assume that Qk for all k ∈ {1, 2, ..., K − 1} is Q = bP̃ 1−ε
2(K+ε) c. Moreover, since

E[X̃2
k ] ≤ A2Q2

k ≤ P̃ , we can choose A = P̃
K−1+2ε
2(K+ε) . Substituting in (4.35) yields

Pe < exp(−c2

8
P̃ ε). (4.36)

Thus, Pe → 0 when P̃ →∞ or equivalently P →∞.

Equivocation Calculation

Since the equivocation analysis of Theorem 10 is valid for any input distribution, therefore

integer inputs satisfy the perfect secrecy constraint.
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S-DoF Calculation

The maximum achievable sum rate is as follows:

∑

k∈K
Rk= I(X̃1, X̃2, ..., X̃K ; Y )− I(X̃1, X̃2, ..., X̃K ; Z) (4.37)

= H(X̃1, X̃2, ..., X̃K |Z)−H(X̃1, X̃2, ..., X̃K |Y )
(a)

≥ H(X̃1, X̃2, ..., X̃K |Z)− 1− Pe log ‖X̃ ‖
(b)

≥ H(X̃1, X̃2, ..., X̃K |
∑

k∈K
X̃k)− 1− Pe log ‖X̃ ‖

(c)
=

∑

k∈K
H(X̃k)−H(

∑

k∈K
X̃k)− 1− Pe log ‖X̃ ‖

(d)
= K log(2Q + 1)− log(2KQ + 1)− 1− Pe log ‖X̃ ‖,

where (a) follows from Fano’s inequality, (b) follows from the fact that conditioning always

decreases entropy, (c) follows from chain rule, and (d) follows from the fact that X̃k has

uniform distribution over Vk = [−Q,Q]. The S-DoF can therefore be computed as follows:

η= lim
P→∞

∑
k∈K Rk

1
2
log P

(4.38)

=
(K − 1)(1− ε)

K + ε

Since ε can be arbitrarily small, then η = K−1
K

is indeed achievable.

As we saw in the previous section, multiple-antennas (or equivalently, time-varying and/or

frequency-selective channels) provide enough freedom, which allows us to choose appropriate

signaling directions to separate between the messages at the intended receiver and at the

same time pack the signals into a low dimensionality subspace at the eavesdropper. In

contrast, it was commonly believed that time-invariant frequency flat single-antenna channels

cannot provide any degrees-of-freedom. In Theorem 13, however, we developed a machinery

that transforms the single-antenna systems to a pseudo multiple-antenna system with some

antennas. The number of available dimensions in the equivalent pseudo multiple-antenna

systems is K when all of K channel gains between the transmitters and the intended receiver

are rationally-independent (this condition is satisfied almost surely). The equivalent pseudo

multiple-antenna system can simulate the behaviour of a multiple-dimensional system (in

time/frequency/space) and allows us to simultaneously separate the signals at the intended

receiver and align them to the eavesdropper.
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Note that in the MISOSE wiretap channel (Multiple-Input Single-Output Single-Eavesdropper),

when the channel realization is unique, we can achieve the optimum S-DoF of 1 through co-

operation among transmitters. This theorem clarifies the fact that we lose the amount of 1
K

in S-DoF due to the lack of cooperation between the transmitters. We still gain through the

possibility of signal alignment at the eavesdropper, however.

4.4.1 Rationally-Dependent Channel Gains: Multiple-layer cod-

ing

When the channel gains are rationally dependent, then a more sophisticated multiple-layer

constellation design is required to achieve higher S-DoF. The reason is that some messages

share the same dimension at the intended receiver and as a result, splitting them requires

more structure in constellations. We propose a multiple-layer constellation that can not only

be distinguished at the intended receiver but are also packed efficiently at the eavesdropper.

This is accomplished by allowing a carry-over from different levels. In this subsection, for the

sake of simplicity, we consider a two user-secure MAC. This channel is modeled as follows:

Y = A
[
h̃1X̃1 + X̃2

]
+ W̃1 (4.39)

Z= A
[
X̃1 + X̃2

]
+ W̃2,

where A controls the output power. When the channel gain h̃1 is irrational then according

to Theorem 13 the total S-DoF of 1
2

is indeed achievable. For the rational channel gain

h̃1 = n
m

, n, m ∈ N,m 6= 0, however, the coding scheme of Theorem 13 fails and we need to

use a multiple-layer coding scheme.

In multiple-layer coding scheme, we select the constellation points in the base W ∈ N as

follows:

v(b) =
L−1∑

l=0

blW
l, (4.40)

where, bl for all l ∈ {0, 1, ..., L − 1} are independent random variables which take value

from {0, 1, 2, ..., , a − 1} with uniform probability distribution. b represents the vector

b = {b0, b1, ..., bL−1} and the parameter a controls the number of constellation points. We

assume that a < W and therefore, all constellation points are distinct and the size of the

constellations are |V1| = |V2| = aL. The maximum possible rate for each user is therefore

bounded by L log a.

At each transmitter a random codebook is generated by randomly choosing bl according

to a uniform distribution. The signal transmitted by users 1 and 2 are X̃1 = v(b) and X̃2 =
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v(b
′
), respectively. Note that the above multiple-layer constellation had a DC component

and this component needs to be removed at the transmitters. The DC component, however,

duplicated the achievable rates and has no effect on the S-DoF.

To calculate A, since bl and bj are independent for l 6= j, we have the following chain of

inequalities:

A2E[X̃2
1 ]= A2W 2(L−1)

L−1∑

l=0

E[b2
l ]W

−2l (4.41)

≤ A2W 2(L−1) (a− 1)(2a− 1)

6

∞∑

l=0

W−2l

≤ A2W 2(L−1)a
2

3

1

1−W−2

≤ A2a2W 2L

W 2 − 1
.

Therefore, by choosing A =

√
(W 2−1)P̃

aW L the power constraint A2EX̃2
1 ≤ P̃ is satisfied. The

received constellation at the intended receiver and the eavesdropper can be written as follows,

respectively:

Y =
A

m

L−1∑

l=0

(
nbl + mb

′
l

)
W l + W̃1 (4.42)

Z= A

L−1∑

l=0

(
bl + b

′
l

)
W l + W̃2.

A point in the received constellation Vr of the intended receiver can be represented as follows:

vr(b,b
′
) =

A

m

L−1∑

l=0

(
nbl + mb

′
l

)
W l. (4.43)

Note that the received constellation needs to satisfy the property Γ, as the intended receiver

needs to uniquely decode the transmitted signals. The following theorem characterizes the

total achievable S-DoF.

Theorem 15. The following S-DoF is achievable for the two-user single antenna MAC with

rational channel gain h̃1 = n
m

:

η =





log(n)
log(n(2n−1))

, if 2n ≥ m
log(s+1)

log((s+1)(2s+1))
, if 2n < m and m = 2s + 1

log(s)
log(2s2−n)

, if 2n < m and m = 2s

(4.44)
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Proof: Let us first assume that the property Γ is satisfied for given W and a. It is

easy to show that the minimum distance in the received constellation Vr is dmin = A
m

. The

probability of error is therefore bounded as follows:

Pe≤ exp(−d2
min

8
) (4.45)

= exp

(
−(W 2 − 1)P̃

8a2m2W 2L

)
.

Let us choose L as

L =

⌊
log(P̃ 0.5−ε)

log(W )

⌋
, (4.46)

where ε > 0 is an arbitrary small constant. Clearly, with this choice of L, Pe ≤ exp(−γP̃ 2ε)

where γ is a constant. Thus, when SNR →∞, then Pe → 0. The S-DoF of the system can

therefore be derived as follows:

η= lim
P̃→∞

L log(a)
1
2
log P̃

(4.47)

= lim
P̃→∞

⌊
log(P̃ 0.5−ε)

log(W )

⌋
log(a)

1
2
log P̃

= (1− 2ε)
log(a)

log(W )
.

Since ε is an arbitrary small constant, the total S-DoF of the system is

η =
log(a)

log(W )
. (4.48)

This equation implies that to achieve the maximum possible η, we need to maximize a and

minimize W with the constraint that the property Γ is satisfied. Table I shows the choices

of a and W for Theorem 15. To complete the proof we need to show that with the choices

of Table I, the property Γ is satisfied.

Lemma 8. The property Γ holds for all the choices of Table I.

Please see section 4.5.3.

Note that this result implies that the total achievable S-DoF by using integer lattice codes

is discontinuous with respect to the channel coefficients.
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Table 4.1: Chosen a and W to satisfy property Γ

h̃1 = n
m

a W

Case 1 2n ≥ m n n(2n− 1)

Case 2 2n < m and m = 2s + 1 s + 1 (s + 1)(2s + 1)

Case 3 2n < m and m = 2s s 2s2 − n

4.5 Proofs for Chapter 4

4.5.1 Proof of Theorem 10

1) Codebook Generation: The structure of the encoder for user k ∈ K is depicted in Figure

Fix P (uk) and P (xk|uk). The stochastic encoder k generates 2n(I(Uk;Y |U(K−k)c )+εk) independent

and identically distributed sequences un
k according to the distribution P (un

k) =
∏n

i=1 P (uk,i).

Next, randomly distribute these sequences into 2nRk bins. Index each of the bins by wk ∈
{1, 2, ..., 2nRk}.

2) Encoding : For each user k ∈ K, to send message wk, the transmitter looks for a un
k in

bin wk. The rates are such that there exist more than one un
k . The transmitter randomly

chooses one of them and then generates xn
k according to P (xn

k |un
k) =

∏n
i=1 P (xk,i|uk,i) and

sends it.

3) Decoding : The received signals at the legitimate receiver, yn, is the output of the

channel P (yn|xn
K) =

∏n
i=1 P (yi|xK,i). The legitimate receiver looks for the unique sequence

un
K such that (un

K, yn) is jointly typical and declares the indices of the bins containing un
k as

the messages received.

4) Error Probability Analysis : Since the region of (4.12) is a subset of the capacity region

of the multiple-access-channel without secrecy constraint, then the error probability analysis

is the same as [62] and omitted here.

5) Equivocation Calculation: To satisfy the perfect secrecy constraint, we need to prove
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the requirement of (4.7). From H(WK|Zn) we have

H(WK|Zn)= H(WK, Zn)−H(Zn) (4.49)

= H(WK, Un
K, Zn)−H(Un

K|WK, Zn)−H(Zn)

= H(WK, Un
K) + H(Zn|WK, Un

K)−H(Un
K|WK, Zn)−H(Zn)

(a)

≥ H(WK, Un
K) + H(Zn|WK, Un

K)− nεn −H(Zn)
(b)
= H(WK, Un

K) + H(Zn|Un
K)− nεn −H(Zn)

(c)

≥ H(Un
K) + H(Zn|Un

K)− nεn −H(Zn)

= H(Un
K)− I(Un

K; Zn)− nεn

(d)

≥ I(Un
K; Y n)− I(Un

K; Zn)− nεn

(e)

≥ n
∑

k∈K
Rk − nεn − nδ1n − nδ4n

= H(WK)− nεn − nδ1n − nδ4n,

where (a) follows from Fano’s inequality, which states that for sufficiently large n, H(Un
K|WK, Zn)

≤ h(P
(n)
we ) +nP n

weRw ≤ nεn. Here P n
we denotes the wiretapper’s error probability of decoding

un
K in the case that the bin numbers wK are known to the eavesdropper and Rw = I(UK; Z).

Since the sum rate is small enough, then P n
we → 0 for sufficiently large n. (b) follows from

the following Markov chain: WK → Un
K → Zn. Hence, we have H(Zn|WK, Un

K) = H(Zn|Un
K).

(c) follows from the fact that H(WK, Un
K) ≥ H(Un

K). (d) follows from that fact that H(Un
K) ≥

I(Un
K; Y n). (e) follows from the lemma 12 in the Appendix.

4.5.2 Proof of the Converse for Theorem 11

Before starting the proof, we first present some useful lemmas.

Lemma 9. The secrecy sum capacity of the Gaussian MIMO MAC is upper-bounded by

Csum ≤ max
P (x1)P (x2)...P (xK)

I(x1,x2, ...,xK;y|z), (4.50)

where maximization is over all distributions P (x1)P (x2)...P (xK) that satisfy the power con-

straint, i.e., Tr(x†x) ≤ P .
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Proof: According to Fano’s inequality and the perfect secrecy constraint, we have

n
∑

k∈K
Rk≤ I(WK;yn)− I(WK; zn) (4.51)

(a)

≤ I(WK;yn, zn)− I(WK; zn)
(b)
= I(WK;yn|zn)

= h(yn|zn)− h(yn|WK, zn)
(c)

≤ h(yn|zn)− h(yn|WK,xn
K, zn)

(d)

≤ h(yn|zn)− h(yn|xn
K, zn)

(e)

≤ h(yn|zn)−
n∑

i=1

h(y(i)|xK(i), z(i))

(f)

≤
n∑

i=1

h(y(i)|z(i))− h(y(i)|xK(i), z(i))

≤ nI(xK;y|z, q)
(g)

≤ nI(xK;y|z),

where (a) and (b) follows from chain rule, (c) follows from the fact that conditioning decreases

the differential entropy, (d) follows from the Markov chain WK → (xn
K, zn) → yn, (e) follows

from the fact that the channel is memoryless, (f) is obtained by defining a time-sharing

random variable q that takes values uniformly over the index set {1, 2, ..., n} and defining

(xK,y, z) to be the tuple of random variables that conditioned on q = i, have the same joint

distribution as (xK(i),y(i), z(i)). Finally, (g) follows from the fact that I(xK;y|z) is concave

in P (x1)...P (xK) (see, e.g., [42], Appendix I for a proof), so that Jensens Inequality can be

applied.

Lemma 10. If DHk = Hk,e for all k ∈ K and DD† ¹ I, then the function

f(X1,X2, ...,XK) =
1

2
log

∣∣∣∣∣I +
∑

k∈K
HkXkH

†
k

∣∣∣∣∣−
1

2
log

∣∣∣∣∣I +
∑

k∈K
Hk,eXkH

†
k,e

∣∣∣∣∣ (4.52)

is a concave function of (X1, ...,XK) for Xk º 0 for all k ∈ K. Moreover, for (X1, ...,XK)

such that Xk º 0 and (∆1, ...,∆K) such that ∆k º 0, we have

f(X1, ...,XK) ≤ f(X1 + ∆1, ...,XK + ∆K). (4.53)
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Proof: Using the degradedness property of DHk = Hk,e, the function f(.) can be re-

written as follows:

f(X1,X2, ...,XK)=
1

2
log

∣∣∣∣∣I +
∑

k∈K
HkXkH

†
k

∣∣∣∣∣−
1

2
log

∣∣∣∣∣I +
∑

k∈K
Hk,eXkH

†
k,e

∣∣∣∣∣ (4.54)

=
1

2
log

∣∣∣∣∣I +
∑

k∈K
HkXkH

†
k

∣∣∣∣∣−
1

2
log

∣∣∣∣∣I +
∑

k∈K
DHkXkH

†
kD

†
∣∣∣∣∣

(a)
=

1

2
log

∣∣∣I +
∑

k∈KHkXkH
†
k

∣∣∣
∣∣∣
[
(D†D)−1 − I

]
+

[
I +

∑
k∈KHkXkH

†
k

]∣∣∣ |D†D|
, (4.55)

where (a) follows from the fact that |I + AB| = |I + BA|. According to [70], Lemma II.3,

this function is concave with regard to I +
∑

k∈KHkXkH
†
k, and is therefore concave with

regard to (X1,X2, ...,XK).

To prove the property of (4.53), note that for any A º 0, ∆ º 0 and B Â 0, we have the

following property [82]:

|B|
|A + B| ≤

|B + ∆|
|A + B + ∆| . (4.56)

We choose ∆ =
∑

k∈KHk∆kH
†
k and apply the above property to (4.55). Thus, we obtain,

f(X1,X2, ...,XK)=
1

2
log

∣∣∣I +
∑

k∈KHkXkH
†
k

∣∣∣
∣∣∣
[
(D†D)−1 − I

]
+

[
I +

∑
k∈KHkXkH

†
k

]∣∣∣ |D†D|
(4.57)

≤ 1

2
log

∣∣∣I +
∑

k∈KHk (Xk + ∆k)H
†
k

∣∣∣
∣∣∣
[
(D†D)−1 − I

]
+

[
I +

∑
k∈KHk (Xk + ∆k)H

†
k

]∣∣∣ |D†D|
= f(X1 + ∆1, ...,XK + ∆K).

To prove the converse part, we first start with Lemma 9 to bound the sum rate as follows:
∑

k∈K
Rk≤ I(xK;y|z) (4.58)

= h(y|z)− h(y|xK, z)

= h(y|z)− h(n1)

(a)
=

1

2
log

∣∣∣∣∣I +
∑

k∈K
HkKxk

H†
k

∣∣∣∣∣−
1

2
log

∣∣∣∣∣I +
∑

k∈K
Hk,eKxk

H†
k,e

∣∣∣∣∣
(b)

≤ 1

2
log

∣∣∣∣∣I +
∑

k∈K
HkQkH

†
k

∣∣∣∣∣−
1

2
log

∣∣∣∣∣I +
∑

k∈K
Hk,eQkH

†
k,e

∣∣∣∣∣ ,
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where (a) follows from the fact that h(y|z) is maximized by jointly Gaussian y and z for

fixed covariance matrix Qy,z and (b) follows from the degradedness assumption and therefore

concavity and monotonicity properties given in Lemma 10 and the fact that Kxk
¹ Qk.

4.5.3 Proof of Lemma 8

We prove this lemma by induction on L. To show the lemma for L = 0, it is sufficient to

prove that the equation

n(b0 − b̃0) + m(b
′
0 − b̃

′
0) = 0, (4.59)

has no nontrivial solution when b0, b
′
0, b̃0, b̃

′
0 ∈ {0, 1, 2, ..., a−1}. The necessary and sufficient

conditions for the equation (4.59) are that b
′
0 − b̃

′
0 is dividable by n and b0 − b̃0 is dividable

by n. We show that one of these conditions does not hold for all choices of Table I.

Case 1: In this case a = n. Following the fact that −(n− 1) ≤ b
′
0− b̃

′
0 ≤ n− 1, it is easy

to deduce that n - (b′0 − b̃
′
0).,

Case 2: In this case a = s + 1 where m = 2s + 1. Following the fact that −(2s + 1) ≤
b0 − b̃0 ≤ 2s + 1, it is easy to deduce that m - b0 − b̃0.

Case 3: In this case a = s where m = 2s. Following the fact that −2s ≤ b0 − b̃0 ≤ 2s, it

is easy to show that m - b0 − b̃0.

Now assume that property Γ holds for L− 1. We need to show that the equation

A

m

L−1∑

l=0

(
n(bl − b̃l) + m(b

′
l − b̃

′
l)
)

W l = 0, (4.60)

has no nontrivial solution. Equivalently, this equation can be written as follows:

n(b0 − b̃0) + m(b
′
0 − b̃

′
0) = W

L−2∑

l=0

(
n(bl+1 − b̃l+1) + m(b

′
l+1 − b̃

′
l+1)

)
W l. (4.61)

We prove that the above equation has no nontrivial solution in two steps. First, assume that

the right hand side of (4.61) is zero. This equation therefore reduces to

n(b0 − b̃0) + m(b
′
0 − b̃

′
0) = 0, (4.62)

which we have already shown has no nontrivial solution for all three cases.

Secondly, assume that the right side of (4.61) is non-zero. The equation (4.61) can

therefore be written as follows:

n(b0 − b̃0) + m(b
′
0 − b̃

′
0) = cW, (4.63)
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where c ∈ Z and c 6= 0. We need to prove that equation (4.63) has no nontrivial solution for

all three cases.

Case 1: In this case W = n(2n− 1) and n divides n(b0 − b̃0) and cW as well. However,

as (m,n) = 1 and −(n− 1) ≤ b0 − b̃0 ≤ n− 1, the equation (4.63) has a solution iff b
′
0 = b̃

′
0

which is a contradiction with the fact that n|b0 − b̃0| < n(n− 1) < |c|n(2n− 1) = |c|W .

Case 2: In this case W = (s+1)(2s+1), n = s+1 and m = 2s+1. Thus, 2s+1 divides

both m(b
′
0− b̃

′
0) and cW . Since (2n,m = 2s+1) = 1 and −2s ≤ b0− b̃0 ≤ 2s, therefore, 2s+1

cannot divide n(b0 − b̃0). Hence, equation (4.63) has a solution iff b0 = b̃0 which contradicts

the fact that m|b′0 − b̃
′
0| < |c|W .

Case 3: In this case W = 2s2 − n, a = s, 2n < m and m = 2s. We have

|n(b0 − b̃0) + m(b
′
0 − b̃

′
0)|< m|b0 − b̃0 + b

′
0 − b̃

′
0| (4.64)

≤ 2m(a− 1)

= 4s(s− 1)

< 2W

and therefore, it suffices to assume c = 1. Substituting W = 2s2 − n in (4.63), we have the

following equation:

n(b0 − b̃0 + 1) + 2s(b
′
0 − b̃

′
0) = 2s2. (4.65)

Obviously, 2s divides 2s(b
′
0 − b̃

′
0) and = 2s2. However, since (2s, n) = 1 and −(2s − 1) ≤

b0− b̃0 ≤ 2s− 1, equation (4.65) has a solution iff b0 = b̃0− 1 which is impossible due to the

fact 2s|b′0 − b̃
′
0| < 2s2. This completes the proof.
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Chapter 5

Conclusion

In this final chapter, we summarize our contributions and point out several directions for

future research.

5.1 Contributions

The notion of physical-layer security is based on the idea that noise and losses are resources

for information-theoretic security. Physical-layer security has the potential of significantly

strengthening the security level of current systems, by introducing a level of information-

theoretic security instead of computational security. In this dissertation, we investigated the

design of secure channel coding schemes for multi-user wireless communication systems. In

particular, the core of this dissertation focuses on multi-user information-theoretic security

analysis.

In chapter 2, a generalization of the wiretap channel in the case of two receivers and

one eavesdropper was considered. We established an inner bound for the general (non-

degraded) case. This bound matches Marton’s bound on broadcast channels without security

constraint. Furthermore, we considered the scenario in which the channels are degraded. We

established the perfect secrecy capacity region for this case. The achievability coding scheme

is a secret superposition scheme where randomization in the first layer helps the secrecy of

the second layer. The converse proof combines the converse proof for the degraded broadcast

channel without security constraint, and the perfect secrecy constraint. We proved that the

secret superposition scheme with the Gaussian codebook is optimal in AWGN-BCE. The

converse proof is based on Costa’s entropy power inequality and Csiszar lemma. Based on the

rate characterization of the AWGN-BCE, the broadcast strategy for the slowly fading wiretap

channel were used. In this strategy, the transmitter only knows the eavesdropper’s channel
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and the source node sends secure layered coding. The receiver is viewed as a continuum of

ordered users. We derived the optimum power allocation for the layers, which maximizes

the total average rate.

In chapter 3, a scenario in which a source node wishes to broadcast two confidential

messages for two respective receivers via a Gaussian MIMO broadcast channel, while a

wiretapper also receives the transmitted signal via another MIMO channel is considered.

We considered the secure vector Gaussian degraded broadcast channel and established its

capacity region. Our achievability scheme was the secret superposition of Gaussian codes.

Instead of solving a nonconvex problem, we used the notion of an enhanced channel to show

that secret superposition of Gaussian codes is optimal. To characterize the secrecy capacity

region of the vector Gaussian degraded broadcast channel, we only enhanced the channels

for the legitimate receivers, and the channel of the eavesdropper remained unchanged. We

then extended the result of the degraded case to a non-degraded case. We showed that the

secret superposition of Gaussian codes, along with successive decoding, cannot work when

the channels are not degraded. We developed a Secret Dirty Paper Coding (SDPC) scheme

and showed that SDPC is optimal for this channel. We then extended the results of the two

user case for the general multiple receivers case. Finally, we investigated a scenario which

frequently occurs in the practice of wireless networks. In this scenario, the transmitter and

the eavesdropper have multiple antennae, while the intended receivers have a single antenna

(representing resource limited mobile units). We characterized the secrecy capacity region

in terms of generalized eigenvalues of the receivers’ channels and the eavesdropper channel.

We showed that our analysis is valid for a general number of single antenna receivers. In

high SNR, we showed that the capacity region is a convex closure of rectangular regions.

Finally, in chapter 4, a K-user secure Gaussian MAC with an external eavesdropper was

considered. We proved an achievable rate region for the secure discrete memoryless MAC

and thereafter we established the secrecy sum capacity of the degraded Gaussian MIMO

MAC using Gaussian codebooks. For the non-degraded Gaussian MIMO MAC, we proposed

an algorithm inspired by the interference alignment technique to achieve the largest possible

total S-DoF. When all the terminals are equipped with single antenna, the Gaussian code-

books lead to zero S-DoF. Therefore, we proposed a novel secure coding scheme to achieve

positive S-DoF in the single antenna MAC. This scheme converts the single-antenna system

into a multiple-dimension system with fractional dimensions. The achievability scheme is

based on the alignment of signals into a small sub-space at the eavesdropper, and the si-

multaneous separation of the signals at the intended receiver. We proved that total S-DoF

of K−1
K

can be achieved for almost all channel gains which are rationally independent. For

the rationally dependent channel gains, we illustrated the power of the multi-layer coding
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scheme, through an example channel, to achieve a positive S-DoF. As a function of channel

gains, therefore, we showed that the achievable S-DoF is discontinues.

5.2 Future Research

Although information-theoretic secret communication for wireless channels was first stud-

ied by Wyner in 1975, the research on this topic has been disregarded for decades since

then. Recently, this topic has attracted more attention from the information theory society.

This thesis considered the basic extensions of the original wiretap channel and character-

ized essential limitations in down-link and up-link wireless channels to design perfect secure

codes. The works presented in this dissertation can be extended in the following interesting

directions:

• Practical Code Design: The research on the physical-layer security topic has mainly

focused on the information-theoretic limit of the secrecy rate over various wireless chan-

nels. To implement the secure channel codes in a real system, however, we need to

study the practical coding schemes with finite code-lengths and analyze their perfor-

mance. LDPC codes and turbo codes are the most promising candidates as they achieve

communication rates close to the shannon capacity without any secrecy requirement.

Studying how these codes can be modified for secret communication, and evaluating

their performance and sensitivity to coding parameters is an interesting direction for

future research. References [85, 86, 87, 88, 89] are valuable resources to start this topic.

• Cross-Layer Security Protocol Design: In the physical-layer security solutions,

the computational power of the eavesdropper is assumed to be infinite which is seen

to be possible in the future quantum systems; however, these solutions rely on other

assumptions about the communication channels which may not be entirely accurate

in practice. The eavesdropper may, for instance, feedback a smaller CSI than the real

one to improve her capabilities in the next transmissions. In light of these consider-

ations, it is likely that the implementation of physical-layer security in a real system

will be part of a layered-approach, and the design of protocols that combine traditional

cryptographic techniques with physical-layer techniques is an interesting research di-

rection. A key part of this research is the definition of relevant metrics that would

make it possible to analyze the performance of these hybrid schemes.

• Availability of the Intended Receiver’s CSI: In this thesis, we have almost always

assumed that the transmitters know the channel state information associated with the
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intended receiver. The channel state information can be obtained either by a feedback

channel from the receiver, or by utilizing the reciprocity and the duplex properties of

the link, i.e. by the intended receiver transmitting a training sequence so that the

transmitter can estimate the channel. However, sometimes getting the channel state

information at the transmitters is so difficult or inconvenient that it is desirable to work

without the channel state information at the transmitters. The secrecy capacity for

this scenario alongside the feasible secret communication scheme under this scenario

would be very interesting to study.

• Secure Space-Time Codes: Multiple antennae have been shown to be beneficial for

both the conventional capacity and the secrecy capacity. Optimal space-time codings

on multiple-antenna systems for conventional capacity have been extensively studied

since the pioneering work in [90]. When it comes to secrecy capacity, the same set

of questions arise: what are the tradeoffs among the secrecy, rate and diversity? The

problem becomes even more interesting when one considers multi-user communication

systems. In [91, 92], this topic is addressed.

• Secure Gaussian Interference Channel: Another direction that is worth exploring

is the secrecy capacity in a network scenario with multiple transmitter-receiver pairs.

Recently, tight outer bounds for the capacity without the secrecy requirement of the

two-user Gaussian interference channel and X-channel were derived in [93, 94, 95].

A similar approach might be useful to study the secrecy capacity of the two-user

Gaussian interference channel and X-channel. Extending the results to multiple users

could be even more exciting, because the mixture of the interference from the multi-

ple users might provide a natural means to protect each individual message against a

non-intended receiver or the out-of-network eavesdropper. The interference alignment

approach proposed in [79, 96, 80, 81] could be an excellent option because the inter-

ference from multiple transmitters are aligned perfectly. Due to the careful alignment,

the intended receiver can extract the signal sent to her cleanly, while the non-intended

receiver would only get a mixture consisting of signals from all transmitters, and would

not have enough SNR to extract any particular message from the mixture. Some results

have been developed in [29, 97].

• Compound Secure Gaussian MAC: The compound channel models the transmis-

sions over a channel that takes a finite number of states. We studied the Gaussian

MAC with single antenna in chapter 4. The idea was to align the secret messages at

the eavesdropper and to separate them at the intended receiver. The compound se-
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cure Gaussian MAC can be considered as a secure Gaussian MAC with finite number

of intended receivers and eavesdroppers. Similarly, by aligning the secure signals at

all the eavesdroppers, one can achieve a positive S-DoF in this channel. The results

would be more interesting by providing a tight upper-bound on the S-DoF. The works

of [98, 99, 100] are useful to start this topic.
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Appendix A

Lemma 11. Assume Un, V n
1 , V n

2 , Y n
1 , Y n

2 and Zn are generated according to the achievability

scheme of Theorem 1, then we have,

nI(V1; Y1|U)− nδ1n ≤ I(V n
1 ; Y n

1 |Un) ≤ nI(V1; Y1|U) + nδ2n (A.1)

nI(V2; Y2|U)− nδ3n ≤ I(V n
2 ; Y n

2 |Un) ≤ nI(V2; Y2|U) + nδ4n (A.2)

nI(V1; Z|U)− nδ5n ≤ I(V n
1 ; Zn|Un) ≤ nI(V1; Z|U) + nδ6n (A.3)

nI(V1; V2|U)− nδ7n ≤ I(V n
1 ; V n

2 |Un) ≤ nI(V1; V2|U) + nδ8n (A.4)

nI(V1, V2; Z|U)− nδ9n ≤ nI(V n
1 , V n

2 ; Zn|Un) ≤ nI(V1, V2; Z|U) + nδ10n (A.5)

nI(U ; Y1)− nδ11n ≤ I(Un; Y n
1 ) ≤ nI(U ; Y1) + nδ12n (A.6)

nI(U ; Y2)− nδ13n ≤ I(Un; Y n
2 ) ≤ nI(U ; Y2) + nδ14n (A.7)

nI(U ; Z)− nδ15n ≤ I(Un; Zn) ≤ nI(U ; Z) + nδ16n, (A.8)

where, δin → 0 when n →∞ for all i = 1, 2, ..., 16.

Proof: Here, we only prove (A.1) and using the same method the other inequalities can

be proven. Let An
ε (PU,V1,Y1) denote the set of typical sequences (Un, V n

1 , Y n
1 ) with respect to

PU,V1,Y1 , and

ζ =

{
1, (Un, V n

1 , Y n
1 ) /∈ An

ε (PU,V1,Y1);

0, otherwise,

be the corresponding indicator function. We expand I(V n
1 ; Y n

1 , ζ|Un) and I(V n
1 , ζ; Y n

1 |Un) as

follows:

I(V n
1 ; Y n

1 , ζ|Un)= I(V n
1 ; Y n

1 |Un, ζ) + I(V n
1 ; ζ|Un) (A.9)

= I(V n
1 ; ζ|Un, Y n

1 ) + I(V n
1 ; Y n

1 |Un),

I(V n
1 , ζ; Y n

1 |Un)= I(V n
1 ; Y n

1 |Un, ζ) + I(ζ; Y n
1 |Un) (A.10)

= I(ζ; Y n
1 |Un, V n

1 ) + I(V n
1 ; Y n

1 |Un),
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Therefore, we have,

I(V n
1 ; Y n

1 |Un, ζ)−I(ζ; Y n
1 |Un, V n

1 ) ≤ I(V n
1 ; Y n

1 |Un) ≤ I(V n
1 ; Y n

1 |Un, ζ)+I(V n
1 ; ζ|Un). (A.11)

Note that I(V n
1 ; ζ|Un) ≤ H(ζ) ≤ 1 and I(ζ; Y n

1 |Un, V n
1 ) ≤ H(ζ) ≤ 1. Thus, the above

inequality implies that,

I(V n
1 ; Y n

1 |Un, ζ)− 1 ≤ I(V n
1 ; Y n

1 |Un) ≤ I(V n
1 ; Y n

1 |Un, ζ) + 1. (A.12)

Or equivalently,

1∑
j=0

P (ζ = j)I(V n
1 ; Y n

1 |Un, ζ = j)− 1 ≤ I(V n
1 ; Y n

1 |Un) ≤
1∑

j=0

P (ζ = j)I(V n
1 ; Y n

1 |Un, ζ = j) + 1.

(A.13)

According to the joint typicality property, we know that,

0 ≤ P (ζ = 1)I(V n
1 ; Y n

1 |Un, ζ = 1) ≤ nP ((un, vn
1 , yn

1 ) /∈ A(n)
ε (PU,V1,Y1)) log ‖Y1‖ ≤ nε1n log ‖Y1‖.

(A.14)

Now consider the term P (ζ = 0)I(V n
1 ; Y n

1 |Un, ζ = 0). Following the sequence joint typicality

properties, we have

(1− εn)I(V n
1 ; Y n

1 |Un, ζ = 0) ≤ P (ζ = 0)I(V n
1 ; Y n

1 |Un, ζ = 0) ≤ I(V n
1 ; Y n

1 |Un, ζ = 0), (A.15)

where

I(V n
1 ; Y n

1 |Un, ζ = 0)=
∑

(Un,V n
1 ,Y n

1 )∈An
ε

P (Un, V n
1 , Y n

1 )
(
log P (V n

1 , Y n
1 |Un) (A.16)

− log P (V n
1 |Un)− log P (Y n

1 |Un)
)
.

Since,

H(V1, Y1|U)− εn ≤ − 1

n
log P (V n

1 , Y n
1 |Un) ≤ H(V1, Y1|U) + εn (A.17)

H(V1|U)− εn ≤ − 1

n
log P (V n

1 |Un) ≤ H(V1|U) + εn

H(Y1|U)− εn ≤ − 1

n
log P (Y n

1 |Un) ≤ H(Y1|U) + εn

then, we have

n [I(V1; Y1|U)− 3εn] ≤ I(V n
1 ; Y n

1 |Un, ζ = 0) ≤ n [I(V1; Y1|U) + 3εn] . (A.18)

90



By substituting (A.18) into (A.15) and then substituting (A.15) and (A.14) into (A.13), we

get the desired result:

nI(V1; Y1|U)− nδ1n ≤ I(V n
1 ; Y n

1 |Un) ≤ nI(V1; Y1|U) + nδ2n, (A.19)

where,

δ1n = εnI(V1; Y1|U) + 3(1− εn)εn +
1

n
(A.20)

δ2n = 3εn + εn log ‖Y1‖+
1

n
.

Similarly, we have the following lemma:

Lemma 12. Assume Un
K, Y n and Zn are generated according to the achievability scheme of

Theorem 10. Then, we have

nI(UK; Y )− nδ1n ≤ I(Un
K; Y n) ≤ nI(UK; Y ) + nδ2n (A.21)

nI(UK; Z)− nδ3n ≤ I(Un
K; Zn) ≤ nI(UK; Z) + nδ4n, (A.22)

where, δ1n, δ2n, δ3n, δ4n → 0 when n →∞.

91



References

[1] C. E. Shannon, “Communication Theory of Secrecy Systems”, Bell System Technical

Journal, vol. 28, pp. 656-715, Oct. 1949.

[2] A. Wyner, “The Wire-tap Channel”, Bell System Technical Journal, vol. 54, pp. 1355-

1387, 1975.

[3] S. K. Leung-Yan-Cheong and M. E. Hellman, “Gaussian Wiretap Channel”, IEEE Trans.

Inform. Theory, vol. 24, no. 4, pp. 451-456, July 1978.

[4] I. Csiszar and J. Korner, “Broadcast Channels with Confidential Messages”, IEEE Trans.

Inform. Theory, vol. 24, no. 3, pp. 339-348, May 1978.

[5] J. Barros and M. R. D. Rodrigues, “Secrecy Capacity of Wireless Channels”, in Proc. of

ISIT 2006, pp. 356-360, July 2006.

[6] Y. Liang, H. V. Poor, and S. Shamai, “Secrecy capacity region of fading broadcast

channels,” in Proc. ISIT, (Nice, France), June 2007.

[7] Y. Liang; H.V. Poor and S. Shamai, “Secure Communication over Fading Channels”,

IEEE Trans. Inf. Theory, Volume 54 , Issue 6 pp: 2470 - 2492, 2008.

[8] Z. Li, R. Yates, and W. Trappe, “Secrecy capacity of independent parallel channels,” in

Proc. of 44th Annual Allerton Conference, (Monticello, IL, USA), September 2006.

[9] P. K. Gopala, L. Lai and H. El-Gamal, “ On the Secrecy Capacity of Fading Channels”,

in IEEE Trans. on Info. Theory, Volume 54, Issue 10, pp. 4687-4698, Oct. 2008.

[10] F. Oggier, B. Hassibi, “ The MIMO Wiretap Channel”, Communications, Control and

Signal Processing, 2008. ISCCSP 2008. 3rd International Symposium on., pp. 213-218,

Mar. 2008.

92



[11] A. Khisti, G. Wornell, A. Wiesel, and Y. Eldar, “On the Gaussian MIMO Wiretap

Channel”, in Proc. IEEE Int. Symp. Information Theory (ISIT), Nice, France, Jun.

2007.

[12] T. Liu and S. Shamai (Shitz), “A Note on the Secrecy Capacity of the Multi-antenna

Wiretap Channel”, IEEE Trans. Inf. Theory, Volume 55, Issue 6, pp.2547 - 2553,June

2009.

[13] A. Khisti and G. Wornell, “Secure Transmission with Multiple Antennas: The MISOME

Wiretap Channel”, submitted to IEEE Trans. Inf. Theory.

[14] R. Liu, T. Liu, H. V. Poor, and S. Shamai (Shitz),“Multiple Input Multiple Output

Gaussian Broadcast Channels with Confidential Messages”, Submitted to IEEE Trans.

Inform. Theory, March 2009.

[15] R. Liu, H. V. Poor,“Multi-Antenna Gaussian Broadcast Channels with Confidential

Messages”, in Proc IEEE International Symposium on Information Theory, Toronto,

pp.2202 - 2206, July 2008.

[16] R. Liu, H. V. Poor,“Secrecy Capacity Region of a Multiple-Antenna Gaussian Broadcast

Channel With Confidential Messages ”, IEEE Trans. Inform. Theory, Volume 55, Issue

3, pp.1235 - 1249, March 2009.

[17] Y. Oohama, “Coding for Relay Channels with Confidential messages”, in Proc. Of IEEE

Information Theory Workshop, pp. 87-89, Sep. 2001.

[18] Y. Oohama, “Capacity Theorems for Relay Channels with Confidential Messages ”, in

Proc. of ISIT 2007, pp. 926-930, Jun. 2007.

[19] L. Lai and H. El Gamal, “The Relay-Eavesdropper Channel: Cooperation for Secrecy”,

IEEE Trans. Inf. Theory, Volume 54, Issue 9, pp. 4005-4019, Sept. 2008.

[20] M. Bloch and A. Thangaraj, “Confidential messages to a cooperative relay,” in Proc.

IEEE Information Theory Workshop, Porto, Portugal, May 2008, pp. 154-158.

[21] V. Aggarwal, L. Sankar, A. R. Calderbank, and H. V. Poor, “Information secrecy from

multiple eavesdroppers in orthogonal relay channels,” in Proc. IEEE International Sym-

posium on Information Theory, Seoul, Korea, Jun.-Jul. 2009.

[22] M. Yuksel and E. Erkip, “Secure communication with a relay helping the wiretapper,”

in Proc. of IEEE Information Theory Workshop, Lake Tahoe, CA, September 2007, pp.

595 - 600.

93



[23] R. Liu, I. Maric, P. Spasojevic, and R. D. Yates, “Discrete memoryless interference

and broadcast channels with confidential messages,” in Proc. Allerton 124 Conference

on Communication, Control, and Computing, Urbana, IL, Sept. 2629 2006, pp. 305313.

[24] R. Liu, I. Maric, P. Spasojevic, and R. D. Yates, “Multi-terminal communications with

confidential messages,”, in Proc. Workshop on Information Theory and Applications, La

Jolla, CA, Jan. 29 Feb. 2 2007, pp. 370 377.

[25] R. Liu, I. Maric, P. Spasojevic, and R. D. Yates, “Discrete memoryless interference and

broadcast channels with confidential messages: Secrecy rate regions,” IEEE Trans. on

Information Theory, vol. 54, no. 6, pp. 2493 2507, June 2008.

[26] X. Tang, R. Liu, P. Spasojevic, and H. V. Poor, “Interference-assisted secret communi-

cation,” in Proc. of IEEE Information Theory Workshop, Porto, Portugal, May 59 2008,

pp. 405-409.

[27] X. Tang, R. Liu, P. Spasojevic, and H. V. Poor, “The Gaussian wiretap channel with a

helping interferer,” in Proc. of IEEE International Symposium on Information Theory,

Toronto, Ontario, Canada, July 611 2008,

[28] X. He and A. Yener, “Secure Degrees of Freedom for Gaussian Channels with Interfer-

ence: Structured Codes Outperform Gaussian Signalling,” In IEEE Global Telecommu-

nication Conference, November 2009.

[29] O.Ozan Koyluoglu, H.El-Gamal, “On the Secure Degrees of Freedom in the K-User

Gaussian Interference Channel”, in Proc. of ISIT 2008, pp. 384-388, Jul. 2008.

[30] S. K. Leung-Yan-Cheong, “Multi-user and wire-tap channels including feedback,” Ph.D.

dissertation, Stanford University, Stanford, CA, 1976.

[31] R. M. Kahn, “Privacy in multi-user information theory,” Ph.D. dissertation, Stanford

University, Stanford, CA, 1979.

[32] E. Tekin and A. Yener, “Achievable rates for two-way wire-tap channels,” in IEEE

International Symposium on Information Theory, Nice, France, June 24 29 2007, pp.

1150-1154.

[33] L. Lai, H. E. Gamal, and H. V. Poor, “The wiretap channel with feedback: Encryption

over the channel,” IEEE Trans. on Information Theory, 2007, submitted.

94



[34] X. Tang, R. Liu, P. Spasojevic, and H. V. Poor, “Multiple access channels with gener-

alized feedback and confidential messages,” in Proc. of IEEE Information Theory Work-

shop, Lake Tahoe, CA, September 2007, pp. 608 613.

[35] H. Yamamoto, “Rate-distortion theory for the shannon cipher system,” IEEE Trans.

Info. Theory, vol. 43, no. 3, pp. 827-835, 1997.

[36] A. B. Carleial and M. E. Hellman, “A note on Wyners wiretap channel,” IEEE Trans.

on Information Theory, vol. 23, no. 3, pp. 387390, May 1977.

[37] S. Leung-Yan-Cheong, “On a special class of wiretap channels,” IEEE Trans. on Infor-

mation Theory, vol. 23, no. 5, pp. 625627, September 1977.

[38] J. L. Massey, “A simplified treatment of Wyners wire-tap channel,” in Proc. 21st Aller-

ton Conference on Communication, Control and Computing, Monticello, IL, October 57

1983, pp. 268276.

[39] M. van Dijk, “On a special class of broadcast channels with confidential messages,”

IEEE Trans. on Information Theory, vol. 43, no. 2, pp. 712714, March 1997.

[40] J. Xu and B. Chen, “Broadcast Confidential and Public Messages”, in Proc. 42nd Conf.

Information Sciences and Systems (CISS), Princeton, NJ, pp. 630-635 Mar. 2008.

[41] J. Xu, Y. Cao, and B. Chen ,“Capacity Bounds for Broadcast Channels with Confiden-

tial Messages”, IEEE Trans. Inform. Theory,Volume 55, Issue 10, pp.4529 - 4542, Oct.

2009.

[42] A. Khisti, A. Tchamkerten and G. W. Wornell, “Secure Broadcasting”, submitted to

IEEE Trans. Inf. Theory.

[43] E. Tekin, S. Serbetli, and A. Yener, “On secure Signaling for the Gaussian Multiple

Access Wire-tap Channel”, in Proc. 2005 Asilomar Conf. On Signals, Systems, and

Computers, Asilomar, CA, pp. 1747-1751, November 2005.

[44] E. Tekin and A. Yener, “The Gaussian Multiple Access Wire-tap Channel”, IEEE Trans.

Informa. Theory, Volume 54, Issue 12, pp: 5747-5755, December 2008.

[45] Y. Liang and H.V. Poor, “Multiple-Access Channels with Confidential Messages”, IEEE

Trans.Inform. Theory., Volume 54, Issue 3, pp: 976-1002, March 2008.

95



[46] E. Tekin and A. Yener, “The General Gaussian Multiple Access and Two-Way Wire-Tap

Channels: Achievable Rates and Cooperative Jamming”, IEEE Trans. Inform. Theory.,

Volume 54, Issue 6, pp: 2735-2751, June 2008.

[47] X. He and A. Yener, “Cooperation with an Untrusted Relay: A Secrecy Perspective”,

Submitted to IEEE Trans. Inform. Theory., October 2008.

[48] X. He and A. Yener, “Two-hop Secure Communication Using an Untrusted Relay”, Ac-

cepted for publication in EURASIP Journal on Communications and Networks, Special

Issue on Wireless Physical Layer Security.

[49] O. Koyluoglu and H. El-Gamal, “Cooperative binning and channel prefixing for secrecy

in interference channels”, Submitted to IEEE Trans. Inform. Theory., May 2009.

[50] G. Bagherikaram,A. S. Motahari, A. K. Khandani “Secure broadcasting : The Secrecy

Rate Region”, in Proc. of 46th Annual Allerton Conference on Communication, Control,

and Computing , pp.834 - 841, 23-26 Sept. 2008

[51] G. Bagherikaram, A. S. Motahari and A. K. Khandani, “Secrecy Rate Region of the

Broadcast Channel with an Eavesdropper”, Revised for Publication in IEEE Trans. Inf.

Theory, September 2009.

[52] G. Bagherikaram, A. S. Motahari and A. K. Khandani, “Secrecy capacity region of

Gaussian broadcast channel,” in Proc. 43rd Annual Conference on Information Sciences

and Systems,CISS 2009, 2009 , pp. 152 - 157.

[53] G. Bagherikaram, A. S. Motahari and A. K. Khandani, “The Secrecy Capacity Re-

gion of the Degraded Vector Gaussian Broadcast Channel”, in Proc IEEE International

Symposium on Information Theory, South Korea, pp.2772 - 2776, July 2009.

[54] G. Bagherikaram, A. S. Motahari and A. K. Khandani, “The Secrecy Capacity Region of

the Gaussian MIMO Broadcast Channel,” IEEE Trans. Inf. Theory, submitted, October,

2009.

[55] G. Bagherikaram, A. S. Motahari, A. K. Khandani, “On the Secure DoF of the Single-

Antenna MAC”, Accepted for presentation in IEEE International Symposium on Infor-

mation Theory (ISIT), ISIT 2010, Austin, Texas, June 2010.

[56] G. Bagherikaram, A. S. Motahari, A. K. Khandani, “On the Secure Degrees-of-Freedom

of the Multiple-Access-Channel ”, to be submitted to IEEE Trans. Inf. Theory.

96



[57] E. Ekrem, S. Ulukus “Secrecy Capacity of a Class of Broadcast Channels with an Eaves-

dropper”, submitted to EURASIP Journal on Wireless Communications and Networking

, Dec. 2008.

[58] E. Ekrem, S. Ulukus “Secrecy Capacity Region of the Gaussian Multi-Receiver Wiretap

Channel”, in Proc. of IEEE International Symposium on Information Theory (ISIT),

pp.2612 - 2616, June 28 2009-July 3 2009

[59] E. Ekrem and S.Ulukus, “The Secrecy Capacity Region of the Gaussian MIMO Multi-

Receiver Wiretap Channel”, Submitted to IEEE Trans. Inform. Theory, March 2009.

[60] R. Liu, T. Liu, H. V. Poor, S. Shamai(Shitz), “A Vector Generalization of Costa Entropy

Power Inequality and Applications”, Submitted to IEEE Trans. on Inf. Theory, Mar.

2009.

[61] S. I. Gelfand and M. S. Pinsker, “Coding for Channel with Random Parameters”, Prob-

lemy Peredachi Informatsii, vol. 9, no. 1, pp. 19-31, 1980.

[62] T. Cover and J. Thomas, Elements of Information Theory. John Wiley Sons, Inc., 1991.

[63] C. E. Shannon, “A mathematical Theory of Communication”, Bell Syst. Tech. J., vol.

27, pp. 379423 and 623656, Jul. and Oct. 1948

[64] A. J. Stam, “ Some Inequalities Satisfied by the Quantities of Information of Fisher and

Shannon ” Information and Control, vol.2 pp. 101-112, Jun. 1959

[65] S. Shamai, A. Steiner, “A Broadcast Approach for a Single-User Slowly Fading MIMO

Channel”, in IEEE Trans. on Info. Theory, Volume 49, Issue 10, pp. 2617-2635, Oct.

2003.

[66] S. Shamai, “A Broadcast Strategy for the Gaussian Slowly Fading Channel”, in IEEE

International Symposium on Info. Theory, pp. 150, July 1997.

[67] A. Steiner, S. Shamai, “Single-User Broadcasting Protocols Over a Two-Hop Relay

Fading Channel”, in IEEE Trans. on Info. Theory, Volume 52, Issue 11, pp. 4821-4838,

Nov. 2006.

[68] A. Steiner, S. Shamai, “Multi-Layer Broadcasting Hybrid-ARQ Strategies for Block

Fading Channels”, in IEEE Trans. on Wireless Communications, Volume 7, Issue 7, pp.

2640-2650, July 2008.

97



[69] K. Marton, “A Coding Theorem for the Discrete Memoryless Broadcast Channel”, IEEE

Trans. on Inf. Theory, vol. 25, no. 1, pp. 306-311, May 1979.

[70] S. N. Digagvi, T. M. Cover, “ The Worst Additive Noise Under a Covariance Con-

straint”, IEEE Trans. on Info. Theory, Vol. 47, No. 7, pp. 3072-3081, Nov. 2001.

[71] T. Liu, P. Viswanath, “An Extremal Inequality Motivated by Multiterminal Information

Theoretic Problems”, IEEE Trans. on Inf. Theory, vol. 53, no. 5, pp. 1839-1851, May

2007.

[72] M. H. M. Costa, “ A New Entropy Power Inequality”,IEEE Trans. on Inf. Theory, vol.

31, o. 6 pp. 751-760, Nov. 1985.

[73] R. Liu, T. Liu, H. V. Poor, S. Shamai(Shitz), “A Vector Generalization of Costa Entropy

Power Inequality and Applications”, Submitted to IEEE Trans. on Inf. Theory, Mar.

2009.

[74] H. Weingarten, Y. Steinberg, S. Shamai(Shitz), “The Capacity Region of the Gaussian

Multiple-Input Multiple-Output Broadcast Channel”, IEEE Trans. Inform. Theory, vol.

52, no. 9, pp. 3936-3964, September 2006.

[75] P. P. Bergmans, “A Simple Converse for Broadcast Channels with Additive White

Gaussian Noise”, IEEE Trans. Inform. Theory, vol. IT-20, no. 2, pp. 279-280, March

1974.

[76] W. Yu, and J.M. Ciofi, “Sum Capacity of Gaussian Vector Broadcast Cahnnels”, IEEE

Trans. on Inf. Theory, vol. 50, pp. 1875-1893, September 2004.

[77] G. Strang, Linear Algebra and Its Applications. Wellesley, MA: Wellesley-Cambridge

Press, 1998.

[78] X. He and A. Yener, “Providing Secrecy With Structured Codes: Tools and Applications

to Two-User Gaussian Channels”, submitted to IEEE Trans. Inform. Theory, Jully 2009.

[79] M. A. Maddah-Ali, A. S. Motahari, and A. K. Khandani, “Communication over MIMO

X channels: Interference alignment, decomposition, and performance analysis, IEEE

Trans. Inf. Theory, vol. 54, no. 8, pp. 3457-3470, August 2008 (also see earlier technical

reports by the same authors referenced therein).

[80] A. S. Motahari,S. O. Gharan, and A. K. Khandani, “Real Interference Alignment with

Real Numbers”, Submitted to IEEE Trans. Inf. Theory.

98



[81] A. S. Motahari, S. O. Gharan, M. A. Maddah-Ali, and A. K. Khandani, “Real Inter-

ference Alignment: Exploiting the Potential of Single Antenna Systems”, Submitted to

IEEE Trans. Inf. Theory, November 2009.

[82] H. Weingarten, T. Liu, S. Shamai, Y. Steinberg, P. Viswanath, “The Capacity Region

of the Degraded MIMO Compound Broadcast Channel”, in Proc. IEEE International

Symposium on Information Theory (ISIT), pp: 766 - 770, June 2007.

[83] W. M. Schmidt, Diophantine approximation. Berlin, Springer-Verlag, 1980.

[84] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, fifth edition,

Oxford science publications, 2003.

[85] L. H. Ozarow and A. D. Wyner, “Wire-Tap Channel II,” B.S.T.J., vol. 63, no. 10, pp.

2135-2157, Dec. 1984.

[86] A. Thangaraj, S. Dihidar,A.R. Calderbank, S.W. McLaughlin, J-M. Merolla, “Applica-

tions of LDPC Codes to the Wiretap Channel,” IEEE Trans. on Inform. Theory,Volume:

53 , Issue: 8 pp. 2933 - 2945, 2007.

[87] G. Cohen, G. Zemor, “Generalized coset schemes for the wire-tap channel: application

to biometrics,” in Proc International Symposium on Information Theory, pp.45, 2004

[88] D. Klinc, Ha. Jeongseok, S.W. McLaughlin,J. Barros, Byung-Jae Kwak, “LDPC codes

for the Gaussian wiretap channel,”, in Proc Information Theory Workshop (ITW), PP.

95 - 99, 2009.

[89] M. Bloch, A. Thangaraj, S.W. McLaughlin,J.-M. Merolla,“LDPC-based secret key

agreement over the Gaussian wiretap channel,” in Proc IEEE International Symposium

Information Theory, pp. 1179- 1183, 2006.

[90] L. Zheng and D. Tse,“ Diversity and multiplexing: A fundamental tradeoff in multiple

antenna channels,” IEEE Trans. on Inform. Theory, Vol. 49, Issue 5, pp.1073-1096, 2003.

[91] Hero, A.O., III; “Secure space-time communication,” IEEE Trans. on Inform. Theory,

Volume: 49 , Issue: 12 pp. 3235 - 3249, 2003.

[92] Yuu-Seng Lau; Lin, K.H.; Hussain, Z.M.;“ Space-Time Encoded Secure Chaos Commu-

nications with Transmit Beamforming,” in IEEE Region 10 TENCON 2005, pp. 1 - 5,

2005.

99



[93] R. Etkin, D. Tse, and H. Wang. “Gaussian interference channel capacity to within one

bit,” IEEE Trans. on Info. Theory, Vol. 54, Issue 12, pp. 5534 -5562, 2008.

[94] A.S. Motahari, A.K. Khandani, “Capacity Bounds for the Gaussian Interference Chan-

nel,” IEEE Transactions on Information Theory, Volume: 55 , Issue: 2, pp. 620 - 643,

2009.

[95] M.A. Maddah-Ali, A.S. Motahari, A.K. Khandani, “Decomposition of the MIMO X

Channels,” Canadian Workshop on Information Theory, CWIT, pp. 110 - 113, 2007.

[96] Cadambe, V.R.; Jafar, S.A.; “Interference alignment via random codes and he capacity

of a class of deterministic interference channels,”, in Proc 47th Annual Allerton Confer-

ence on Communication, Control, and Computing, pp. 67 - 74, 2009.

[97] O.O. Koyluoglu, H. El Gamal, “On the secrecy rate region for the interference chan-

nel,” in proc IEEE 19th International Symposium on Personal, Indoor and Mobile Radio

Communications, pp. 1- 5,PIMRC 2008.

[98] Tie Liu, V. Prabhakaran, S. Vishwanath, “The secrecy capacity of a class of paral-

lel Gaussian compound wiretap channels,” in Proc IEEE International Symposium on

Information Theory, pp. 116-120, ISIT 2008.

[99] Yingbin Liang, G. Kramer, H.V. Poor, S. Shamai, “Recent results on compound wire-

tap channels,” in Proc IEEE 19th International Symposium on Personal, Indoor and

Mobile Radio Communications, pp.1-5 ,PIMRC 2008.

[100] M. Kobayashi, Yingbin Liang, S. Shamai, M. Debbah, “On the compound MIMO

broadcast channels with confidential messages,” in Proc IEEE International Symposium

on Information Theory, pp.1283 - 1287, ISIT 2009.

100


