| hereby declare that | am the sole author of thisthesis. Thisisatrue copy of thethesis, including

any required final revisions, as accepted by my examiners.

| understand that my thesis may be made electronically available to the public.

Abstract

Over thelast several years, there has been tremendous growth in onlinegaming (i.e. playing games
over theinternet). TheMassively Multiplayer Online Role Playing Game (MM ORPG) isonetype
of online game. An MMORPG is played within a virtual world. Users have an in-game
representation, called an avatar, that they control. Typically there are over athousand avatarsin
the virtual world at onetime. Users use client software to connect to an MM ORPG server over
the internet. If just one server is used then the number of avatars that can be supported in the
virtual world at one time is severely limited. In order to overcome this, a multi-server approach
isneeded. Unlike traditional load balancing and partitioning schemes, which generally use task
partitioning, data partitioning is required in this case. This thesis investigates schemes for
partitioning and |oad balancing MM ORPG applications on anetwork of processors. In particular,
three different schemes were developed and examined. These are: Static Av, Static MS and
Dynamic MS. Static Av assignsavatarsto each server, one at atime, asthey enter the simulation.
Static M S assigns equal sized portions of the map of the virtual world to each server. An avatar
is assigned to the server that owns the part of the map that the avatar is “standing” on. Dynamic
MS divides the map into many more segments than there are servers. The map segments are
dynamically distributed among the servers based on the results of aload balancing algorithm. The
thesis details the algorithms and the performance associated with each of the schemes. In
summary, Static Av does not perform well, whereas Static MS and Dynamic M S can be used to
paralelize MMORPG applications. To the best of our knowledge, thisisthefirst published work

that looks at the issue of paralelizing and load balancing such applications.

Acknowledgments

This research was conducted using grants from the Natural Sciences and Engineering Research

Council of Canada and Bell Canada University Labs.

| would like to thank my advisor Dr. Ajit Singh for his advice and support. | would also
like to thank the members of the Parallel and Distributed Systems group at the University of

Waterloo for their input.

Trademarks

SPARCstation and UltraSPARC are trademarks of SPARC International, Inc. and arelicensed to

Sun Microsystems, Inc. and Sun is aregistered trademark of Sun Microsystems, Inc..

Contents

1 Introduction
11 Areaof Research
12 ResearchProblem
13 Scopeof Research
14 Research ODJECHIVESo
15 Research Contribution
16 Outlineof thiSTheSIS e

2 Background

2.1 Distributed Interactive Simulation

Vi

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

211

211 Terminologyot 10

DIS CharaCtefistiCsS . ..ot 11
221 DeadReckoningo 11
222 ReevanceFiltering 12
223 TETAN . 14
224 Environmental Effects 15
225 Peformance Monitoringo 16
226 CostEffectiveTestingovuiiii i 17
Problemswith DIS 17
231 ScaingProblems 17
232 Cheatingot 18
Separation of Clientand Server 18
Single Server Approacho 19
Multi-Server Approach 19
Traditional Scheduling & Load BalancingProblem 20
271 DynamicLoadBalanCingc.uiuiiiiiininan. 21
272 DaaPartitioningo 21
Scheduling and Load Balancing for MMORPGS 22
Multi-Server Approach in Current MMORPGS 23
Relationship of Current Researchto PreviousResearch 24
SUMMIAIY . .t e 24

vii

Schemes Studied 25

31 Static Assignment of AvatarstoServers 26
3.2 Static Assignment of Map SegmentstoServers 26
3.3 Dynamic Assignment of Map SegmentstoServers. 27
3.4 Proposed Dynamic Algorithm 27
35 Ovedl Load Balancing Algorithm 28
351 Legendand NOtES.ttt 28

352 MainLoad Baancing Algorithm, 29

3.5.3 CorelLoad Balancing Algorithm, 30

3.5.4 Determination of Breaking of Connectedness 31

3.6 Explanationof Algorithm 33
3.6.1 Convergenceof Algorithm i, 36

3.6.2 Terminationof Algorithm 37

3.6.3 Run-TimeComplexityouuiiiiii i 37

37 SUMMEAIY .t 37
Experimental Setup 38
4.1 Hardware Configurationt 38
4.2 Software ArchiteCtureot 39
4.3 Designand Implementation 40
431 Generation of AValarSo 41
431 1EvenDistribution 41

viii

4.3.1.2UnevenDistribution 42

4.3.2 ParametersUsed During Simulation 42

4.3.3 ASSUMPLIONS . . .ottt e 43

4.4 Description of COMPONENtS oottt e 43
441 Land Manager 44
4.4.1.1 Messages Sent by the Land ManagertoaServer 44

AA.2 SEIVEN 47
4.4.2.1 Messages Sent by a Server totheLand Manager 47

4.4.2.2 Messages Sent by aServertoaSuper Client 49

4.4.2.3 Messages Sent by a Server to Another Server 52

443 Super Client 55
4.4.3.1 Messages Sent by a Super Client to the Land Manager 57

4.4.3.2 Messages Sent by aSuper ClienttoaServer 58

A5 SUMMEAY ..ttt e e 59
Experimental Results and Analysis 60
51 Nonrandomand RandomMovementt .. 60
52 EvenandUneven Distributions 61
53 TheFourSchemes 61
54 NonrandomMovement Caseoiuiiiiiiian i 62
541 EvenDistribution 62
541 1ANAIYSIS ... 63

5.4.2 UnevenDistribution........... 68

542 1ANAlYSIS ... 73

55 RandomMovement Caseot 84

551 EvenDistribution 84

551 1ANAIYSIS ... 86

552 UnevenDistribution 90

5521 ANAlYSIS ... 95

5.6 SUMMAIY ... 106

6 Conclusions and Future Directions 108
6.1 CONCIUSIONS 108

6.1.1 Contributionof theThesis 109

6.2 Applicationsof ThisWork 110

6.3 FUtUreDITECtiONSt 110
Bibliography 113

List of Tables

5.1

5.2

5.3

5.4

5.5

5.6

S.7

5.8

5.9

5.10

System Configurations for Nonrandom Even Distribution 62
Response Times for Nonrandom Even Distribution (inseconds) 63
Total Bytes of Data Received for Nonrandom Even Distribution 63
Time to Perform LBA for Nonrandom Even Distribution (inseconds) 63
System Configurations for Nonrandom Uneven Distribution 70
Response Times for Nonrandom Uneven Distribution (inseconds) 71
Total Bytes of Data Received for Nonrandom Uneven Distribution 72
Time to Perform LBA for Nonrandom Uneven Distribution (inseconds) 73
System Configurations for Random Even Distribution 85
Response Times for Random Even Distribution (inseconds) 85

Xi

5.11

5.12

5.13

5.14

5.15

5.16

Total Bytes of Data Received for Random Even Distribution 85

Time to Perform LBA for Random Even Distribution (inseconds) 86
System Configurations for Random Uneven Distribution 92
Response Times for Random Uneven Distribution (inseconds) 93
Total Bytes of Data Received for Random Uneven Distribution 94
Time to Perform LBA for Random Uneven Distribution (inseconds) 95

Xii

List of Figures

21

3.1

3.2

3.3

34

3.5

4.1

4.2

4.3

4.4

Relevancefiltering in DIS configuration withfour sites 14
Four map segmentsassignedtofour servers 27
The middle MSis owned by j, and there are zero others next toit owned by j 32
The middle MSisowned by j, and so isone other MSnexttoit 33
The middle MSis owned by j, and so aretwo other MSesnexttoit. 33
Map segment to Server asSigNMentSo vt i i e 36
A configuration using four serversand threesuper clients 39
Process diagram for two serversand two superclients 40
An even distribution of 16 avatars arranged into 4 rowsand 4 columns 42
Arrangement of groups for uneven distribution oL 43

Xiii

4.5

5.1

5.2

5.3

5.4

5.5

5.6

o.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

521

Anexamplescriptfile
Maximum Number of Avatars for Nonrandom Movement, Even Distribution
Response Times for Nonrandom movement, Even Distribution
Bytes Transferred for Nonrandom Movement, Even Distribution
Maximum Number of Avatars for Nonrandom Movement, Uneven Configuration . .
Response Times for Nonrandom Movement, Uneven Distribution, 1 and 2 Servers .
Response Times for Nonrandom Movement, Uneven Distribution, 2 and 4 Servers .
Response Times for Nonrandom Movement, Uneven Distribution, 4 and 6 Servers .
Response Times for Nonrandom Movement, Uneven Distribution, 6 and 8 Servers .
Bytes Transferred for Nonrandom Movement, Uneven Distribution, 1 and 2 Servers
Bytes Transferred for Nonrandom Movement, Uneven Distribution, 2 and 4 Servers
Bytes Transferred for Nonrandom Movement, Uneven Distribution, 4 and 6 Servers
Bytes Transferred for Nonrandom Movement, Uneven Distribution, 6 and 8 Servers
Maximum Number of Avatars for Random Movement, Even Configuration
Response Times for Random movement, Even Distribution
Bytes Transferred for Random Movement, Even Distribution
Maximum Number of Avatars for Random Movement, Uneven Configuration
Response Times for Random Movement, Uneven Distribution, 1 and 2 Servers
Response Times for Random Movement, Uneven Distribution, 2 and 4 Servers
Response Times for Random Movement, Uneven Distribution, 4 and 6 Servers . . .

Response Times for Random Movement, Uneven Distribution, 6 and 8 Servers . . .

Bytes Transferred for Random Movement, Uneven Distribution, 1 and 2 Servers . .

Xiv

74

75

76

77

78

79

80

81

82

98

99

100

101

102

522 Bytes Transferred for Random Movement, Uneven Distribution, 2 and 4 Servers .. 103
523 Bytes Transferred for Random Movement, Uneven Distribution, 4 and 6 Servers .. 104

524 Bytes Transferred for Random Movement, Uneven Distribution, 6 and 8 Servers . . 105

XV

List of Algorithms

3.1

3.2

3.3

Main Load Balancing Algorithm

Core Load Balancing Algorithm

Determining of Breaking of Connectedness

XVi

Chapter 1

| ntroduction

1.1 Areaof Research

Thefirst significant computer game was Spacewar. It was written for the PDP-1 by MIT student
Steve Russell in 1962. In 1972, Nolan Bushnell formed Atari and released Pong, which was the
first commercially successful arcadegame[9], [19], [20]. Asthe priceof personal computersfell,
the popularity of computer games grew. Originally, most computer games were single player
based games. Thosegamesthat weremultiplayer based usually had all playersplaying onthesame
machine. As modems increased in popularity, some games started to include the option for two
peopleto play over amodem. Ordinary phone lineswere used, and hence ordinary phone charges,
particularly long distance charges, applied. Astheinternet became more popular, some computer

games started to include the ability to play over the internet. This eliminated long distance

1

charges, and allowed more than just two players on separate computers.

Currently thereexistsanumber of computer gamesknown asmassively multiplayer online
role playing games (MMORPGs). There are also a number of MM ORPGs under development.
In a“role playing game’, one takes on the role of someone (or something) within an imaginary
world. Typicaly, theimaginary world isafantasy world. Being “online” means that in order to
play, you must be connected to a server run by the MMORPG company, usually through the
internet. Theterm“multiplayer” meansthat therearetwo or morereal humanscontrolling avatars
in the virtual world at the same time. The “massively multiplayer” part, athough a qualitative
term, isgenerally taken to mean that it is possiblefor at least afew hundred other playersto bein
thevirtua world at the sametime. Theterm MM ORPG hascometo refer exclusively to graphical
MMORPGs (i.e. you can see the virtual world around you on your computer screen, as opposed
to just seeing text descriptions). A virtual world is aworld that exists only inside a computer.
Most virtual worlds are very similar to the world around us. Examples of MMORPGs that are
currently in operation are Meridian 59 [17], Ultima Online [30], EverQuest [4], and Asherons's
Cdl [1]. Examplesof MM ORPGsthat are currently under development are UltimaOnline 2 [31],
Hero's Journey [11], and Middle Earth [18]. Many other games are at various stages of their

devel opment.

Within the virtual world the player is represented by an “avatar”, a Sanskrit word that
literally meansincarnation. The avatar could take the form of avirtual human, animal, monster,

tree, or someother self contained entity. A player’ savatar isall that other players see of the player,

3

and usually they don’t know anything about the player inreal life. Thiscan be donein ordinary
games, but usually the others know who the person behind the avatar is. In MM ORPGs, the other

players usually don’'t know who the person behind the avatar is.

Although a player interacts in real-time within a MMORPG, there are no hard real-time
constraints. The only constraint is that a player is unlikely to pay to play if the response time
exceeds his own personal tolerance. This tolerance will obviously be different from person to
person. Also, sincetheinternet isinvolved, the responsetimewill vary greatly from user to user,

and over time.

Although MM ORPGs are for entertainment, they are different from general board games
and traditional computer games, in a number of ways. Generally one purchases a game and then
plays it, with no further costs incurred. With MMORPGSs the game is purchased and then a
monthly fee is paid in order to play. MMOPRGs require one to have a constant network
connection to a server run by the MMORPG company, whenever one is playing the MMORPG.
Most gamesinvolve less than a dozen players at one time, but some MM ORPGs can have over a
thousand players at one time. Most games are generally static, and even small changes are
infrequent. MMORPGs, however, frequently receive small updates. In fact, the players expect
these updates to happen regularly. Most games have an overall goal, and once this goal has been
reached, thegameisover. MMORPGshaveno overal goals, and no clear end. Thevirtual worlds
in MMORPGs are persistent. If any one player leaves, the virtual world goes on without him. If

the player returns then the world will be different than when heleft (i.e. there is no “save game”

feature).

Cheating is rampant in MMORPGs. In previous non-MMORPG multiplayer games, the
character dataassociated with auser’ savatar wasstored on the playersown computer. Technically
savvy playerswrote programsto modify thisdatato artificially improvetheir avatar. For example,
acheater may give himself alarge amount of virtual money. They also distributed these programs
to others, resulting in rampant cheating. It wasoriginally thought that by storing al character data
on the servers run by the MMORPG company, and using simple encryption to encrypt the
connection between the client used by playersand the servers, that cheating would be eliminated.
However, technically savvy players were able to write programs that got around the simple
encryption used by the client by calling the encryption and decryption functionsfound in the client
code. Itthen became possibleto send arbitrary commandsto the servers. The serversassumed that
the command was valid, even if it would actually have been impossible for the client to send the
command. For example, commands could be sent to slowdown, or crash, the MM ORPG servers.
Asaresult, all other users are negatively affected. Alternatively, acheater could perform actions
that give his avatar an advantage over other avatars. For example, he could duplicate all of his
virtual money severa times over, becoming much more wealthy than most other avatars, and in
a short period of time. An avatar that has a significant advantage over other avatars becomes a
commodity, which can be sold for real money. This showed that it is necessary to check the
validity of all incoming datato the server, evenif itisvalidly encrypted. However, small changes
areconstantly being madeto the MM ORPG, whichinevitably introduces new bugs, and asaresult,

players are constantly finding new ways to cheat.

1.2 Research Problem

If one server isunableto host al of the avatars then multiple servers must be used. The best way
to make use of multiple serversis currently unclear. This thesis attempts to determine how to
make the best use of multiple servers. Multiple schemes are examined. The best scheme could

depend on the distribution of avatars within the virtual world.

1.3 Scope of Research

The research presented in this thesis primarily addresses the issue of maximizing the number of
avatarsinaMMORPG. Considerationisalso givento responsetimesto commandsreceived from
aclient, aswell astheamount of dataexchanged between all the processesinvolvedin running the
MMORPG. Theinternet is purposefully not used since response times could be affected in ways
that are beyond the control of the software and hardware used. As such, the response times
measured represent the low end of the range of response times that a player using the internet
would experience. Relative comparisons are made between various schemes. For consistency
between simulation runs, the avatarsare simulated (i.e. thereis not areal person behind any of the

avatars, unlike areal MMORPG).

MMORPGs typically offer awide range of in game actions and activities. The research
softwarewrittenfor thisthesis supports only movement and collision detection sincethisisall that
is required. The issue of cheating is only considered insofar as how easily a given scheme

supports anti-cheating measures.

1.4 Research Objectives

The objective of this research is to examine different schemes that are suitable for a practical
implementation of an MM ORPG, and to do relative comparisons of the selected schemes. During
the course of theresearch anew scheme, involving dynamic load balancing, was devel oped which
was compared to three other preexisting schemes. The primary criteriafor comparisonisthetotal
number of avatars that can be simultaneously supported in the MMORPG. The response time of
the software to users' commands, and the amount of data sent between software processesis also

examined.

1.5 Research Contribution

MMORPGs have existed for awhile. One server can only handle so much load. A multi-server

approach isneeded. Thereisno previouswork that compares and contrasts different multi-server

approaches. There are three major contributions of thisthesis:

1 Three different multi-server approaches are compared and contrasted.

2. One of the multi-server approachesis presented for thefirst timein thisthesis. Itinvolves
the use of aload balancing algorithm.

3. In order to compare and contrast the three multi-server approaches, atest bed was created.

1.6 Outlineof thisThesis

Chapter 2 contains background information on previous schemes used, as well as relevant work

7

in load balancing. As well, the relationship of the current research to previous research is
described. Chapter 3 describes the schemes studied and compared in this research. Chapter 4
describestheexperimental setup used. Chapter 5 containsthe experimental resultsandtheanalysis

of those results. Chapter 6 contains the conclusions, and describes possible future research.

Chapter 2

Background

Thischapter presentsbackground information related to massively multiplayer onlinerole playing
games (MMORPGS). Distributed Interactive Simulation (DI1S) protocol isexamined. Separation
of the client and server isdiscussed. The single and multi-server approaches are described. The
traditional scheduling and load balancing problem is presented. Scheduling and load balancing
for MMORPGs is discussed. The multi-server approach currently used in MMORPGs is

described. The proposed load balancing issue is presented.

2.1 Distributed I nteractive Simulation

Until about 1983, training simulatorsin the United States Department of Defensewere stand-alone

high fidelity devices, designed for asingle individual, or single crew. The simulators were used

8

9

to train an individua or acrew in the operation of military vehicles ranging from tanks to fighter
aircrafts. The engineers who designed and built these devices strived for the highest degree of
realism. The cost of the simulators was between $1 million and $50 million each. These
simulatorswere of no usefor training teamsto work at collectiveor collaborativetasks. Todothis
training, it was necessary to transport all participating soldiers and equipment to an exercise site
to rehearse battle scenarios. During these training exercises, there were usually a small number

of casualties, and sometimes some fatalities.

In 1983 the Defense Advanced Research Projects Agency (DARPA) decided to correct this
situation. Part of DARPA’s mission was to fund high risk/high payoff advanced simulation
technologies. DARPA has been responsible for pioneering the invention of such things as stealth

radar avoidance, cruise missiles, laser guided weapons, virtual reality, and the internet.

Asaconsequence, DARPA funded and developed SIMNET (simulator network) to allow
collaborative smulation. SIMNET simulators were low cost, low fidelity, simulators that were
networked together. Rather than trying to completely and accurately simulate the environment,
SIMNET simulators only simulated the environment well enough to allow the required training
to be accomplished. These simulators cost $250,000 each. SIMNET spawned the DIS
(Distributed Interactive Simulation) protocol, a standard network protocol that enabled
heterogeneous simulators to interact in a shared synthetic environment. The DIS protocol is
defined in [12]. Over its ten year life span, SIMNET was highly successful at achieving

collaborative training [6], [29].

10

TheDISenvironment consistsof networked heterogeneoussimulators. Each simulator acts
asaclient to anindividual user or agroup of usersthat control aprocessin ashared virtual world.
Each ssimulator also acts as server for the overall ssimulation. In its simplest form, every time a
process, controlled by a simulator, performs atask, all other smulators must be informed. The
required network bandwidth is O(n"), where n isthe number of ssimulators. Thisisthe case since
each simulator hosts one vehicle, and each time a vehicle's state visibly changes within the

simulation, a message must be sent to every other simulator.

2.1.1 Terminology

In the United States Department of Defense, simulation is generally referred to in the context of
the acronym “M&S’ which stands for modeling and simulation or models and simulations
depending on the context initsuse. In this context the following definitions apply [21]:

. Model: A physical, mathematical, or otherwiselogical representation of a system, entity,
phenomenon, or process.

. Simulation: A method for implementing a model over time.

. Modeling and Simulation: refersto the use of models, including emulators, prototypes,
simulators, either statically or over time, to devel op data as a basis for making managerial
or technical decisons. The terms “modeling” and “simulation” are often used
interchangeably.

. Simulator: (a) adevice, computer program, or system that performsthe simulation; (b) for
training, a device which duplicates the essential features of a task situation and provides

for direct human operation.

2.2

11

Game: A simulation session in which participants seek to achieve a specified objective
given pre-established resources and constraints; for example, a ssimulation in which
participants make strategi c game decisions and acomputer determinesthe results of those
decisions. Thisterm issynonymouswith constructive simulation and higher order model.
MonteCarlo Simulation: A simulationinwhich random statistical sampling schemesare
employed such that the result determines estimates for unknown values.

Virtual Simulation: A simulation involving real people operating simulated systems.
Virtual simulationsinject human-in-the-loop in acentral role by exercising motor control
skills (e.g. flying an airplane, performing surgery), decision skills (e.g. committing
resources to action), or communication skills.

Live Simulation: A simulation involving real people operating real systems.
Constructive Simulation: A simulation that involves simulated people operating in
simulated systems. Real people stimulate (make inputs) to such simulations, but are not

involved in determining the outcomes.

DIS Characteristics

Every DIS simulation has certain characteristics which are discussed in the following sections.

221

Dead Reckoning

Communication between simulators occurs over a network. Every time even adlight changein

position of asimulated entity (e.g. an avatar, or a vehicle) occurs, this information must be sent

12

to al other smulators participating in the simulation. This limits the number of simulators that
can be in the simulation, since network bandwidth becomes saturated. In order to reduce the
number of position update messages sent across the network, a dead reckoning algorithm is used.
When dead reckoning is used, position update messages are sent less frequently. Since the exact
position of an entity is only known when a position update message is received, an “educated

guess’ as to where the entity is between update messages is made.

Dead reckoningisused asfollows. Each simulator keepstrack of itsown vehicle' sprecise
position and orientation over time. In addition, each simulator maintains adead reckoning model
of the positions and orientations of all other vehicles in the simulation. The dead reckoning
models are updated when ever an update message is received. Each simulator also maintains a
dead reckoning model of its own vehicle. When the error between the actual and dead reckoned
position or orientation exceeds some threshold an update message is sent to all other simulators.

The dead reckoning equation is an extrapolation formula[16].

2.2.2 Relevance Filtering

Dead reckoning substantially reduces network traffic. However, thereisstill asubstantial amount
of network traffic. Thesimulatorsparticipating inatraining exercise must communi cate with each
other while carrying out the simulation. It is the responsibility of the underlying network to
provide each ssimulator with areliable and fast mechanism to send and receive the information to
the simulated activities. Theideabehind relevancefiltering isto analyze the semantic content of

the state update messages of asimulated entity (e.g. an avatar, or avehicle) and transmit only the

13

ones found to be relevant to other entities. The primary use of relevance filtering is to overcome
the bandwidth limitations of wide area networks (WANs). A WAN is used to connect together
local area networks (LANS). A gateway (computer) links the LANs to the WAN. Each LAN
connects together a number of simulators. Relevance filtering is done at the gateways, either at
the point of transmission (onto the WAN) or the point of reception (from the WAN). Filtering at
transmission is preferred, since irrelevant messages are not sent across the WAN. Each gateway
knows the exact location of the entities on the simulators attached to itsLAN. Each gateway also
knows the approximate location of all the other entities in the smulation. If no local entities are
close to an entity on another LAN then all the state update information is filtered out at
transmission. If alocal entity gets close to an entity on another LAN, then state update messages
for that entity are sent through the WAN to that LAN. If astate update message is received, but
the entity for which the state update applies is not near a local entity then it is filtered out at
reception. Each gateway keepstrack of the approximation of position used by the other gateways,
and transmits state change information if an error threshold is exceeded. Figure 2.1 shows an
exampleof relevancefiltering. A state update messageisgenerated by S at thefirst site. Gateway
Gl receives this message and preforms filtering at transmission. In this case the state update
messageis sent to gateways G2 and (4, but not G3. Each of gateways G2 and (A performfiltering

at reception and send the message only to those local nodes that need to receive it (denoted by R)

[2].

14

WAN

(}447G1 m><}

O

Figure 2.1: Relevance filtering in DIS configuration with four sites

2.2.3 Terrain

InDIS, theterrain isusually modeled after actual terrain found on earth. Thisisdoneto increase
realism. Getting the terrain information into the simulator is generally atwo step process. First
the terrain datais acquired and placed in a database. Thisis a general purpose database of the
terrain and is not specific to DIS. Second, the terrain data in the database is converted into a
format suitablefor aparticular DIS simulator. In the process of doing this, the underlying datais
altered (i.e. if the data conversion process were reversed, the result would be different than what
was started with). Comparisons must be made between the two terrain data setsin order to insure
that thereareno significant errors. For example, if theoriginal terrain elevation datawere accurate
to 0.25 meters, and the particular simulator’ s database had a maximum accuracy of 0.5 meters,

then accuracy will be lost when the datais converted into aformat suitable for the simulator.

15

Different DIS ssimulators are programmed by different teams, and hence have different
nativeformatsfor terrain data. Asaresult, itisinevitablethat theterrain datain onesimulator will
be different than theterrain datain another ssmulator. Comparisons must be made between al the

different ssimulatorsto insure that differencesin terrain data are not significant [22], [25].

2.2.4 Environmental Effects

The course of asimulation can be profoundly affected by the supporting environment data (e.g.
the weather model). In 1992, the incorporation of realistic environmenta effects into DIS
simulators was essentially unknown. In response to this void, the Defense Modeling and
Simulation Initiative identified the creation of synthetic environmentsasamajor goal. Synthetic
environments provide time- and space-varying information about theterrain, oceans, atmosphere,
and near-space to simulations. Six tasks were identified and undertaken: 1) surveys of
environmental capabilities and environmental requirements for simulators, 2) an architecture to
accommodate environmental effectsfor distributed simulations, 3) standardsfor datatransfer and
related database repository functions, 4) environmental representationsfor a“level environmental
playing field”, 5) environmental effect and processes, and 6) demonstrations incorporating the
products of the other tasks. When discussing environmental models and representations the
following definitions are used [10], [27]:

. Embedded Process: A dynamic processthat takes place within the physical environment,

but is not a consequence of normal environmental evolution (e.g. smoke, chaff, etc.).

. Environmental Effect: The impact that the environment or embedded process has on

some component or process in the simulation exercise (e.g. the effect on the performance

16

of aweapon system, platform or sensor, or other non-visualized combat process).
. Environmental Feature: Anindividual element of the natural physical environment (e.g.,

rain system, fog, cloud, etc.).

2.2.5 Performance Monitoring

With DIS, there is an opportunity for large scale computer based training. As more simulators
interact through DIS, the complexity of thetraining systemsincreases. This, in turnincreasesthe
work load on the instructor. Students are performing more complex tasks that cannot be viewed
at aglanceto determine their state. If an instructor has several studentsto monitor, it is difficult
to track what each student is doing at any give time. One solution is to offload work from the
instructor by interpreting and evaluating the students' actions via computer programs. This can
be accomplished through the use of advanced computer interpretation schemes. Thisinterpretation
will present to the instructor information concerning what and how the student is doing, without

the need for the instructor to directly monitor the student.

The process of monitoring a student consists of four steps[3]:

1 Determining the goals of the lesson or scenario that are being monitored - i.e. what the
student should be doing.

2. Based on the students actions, interpreting what the student is actually doing.

3. Comparing what the student is doing against the goals that were set out in step 1.

4. Providing feedback to the student. In other words, if the student has deviated from the

goals, how can the training goals still be met.

17

2.2.6 Cost Effective Testing

DIS is under consideration as a test tool to support developmental and operational test and
evauation (T&E). DISisbeing called upon to enable cheaper, better and faster T& E. DIShasthe
potential to overcome numerous developmental and operational test and evaluation (DT&E and
OT&E) limitations and therefore do DT&E and OT&E better. Test planning using DIS is more
expensivethan traditional schemes. Thisis because after the traditional test planning isdone, the
DISsimulator(s) must be programed with the scenario. Test rehearsal using DISisexpected to cut
costs, since expensive resources are simulated by a DIS representation. For test conduct, DISis
expected to be cheaper and it should alow more tests to be run in the same amount of time as
traditional methods. It isexpected that test evaluation would be more expensive when using DIS.
Overall, using DIS is cheaper, but not significantly so, and also allows more testing to be done

[13].

2.3 Problemswith DIS

There are problems with DIS that prevent it from being used to implement an MMORPG.

2.3.1 Scaling Problems

There are two major scaling problems: bandwidth and cost of equipment. As more simulators
participate in a smulation, more bandwidth is required. Because of the DIS architecture, the
increase in bandwidth is exponential. The use of bandwidth reduction schemes reduces the total

bandwidth used, but it is still O(n"). Having more users in the simulation requires that there be

18

more DIS ssimulators, and hence more cost for equipment. The cost of equipment scales linearly

with the number of users.

2.3.2 Cheating

DIS is unsuitable in an entertainment product that is brought into the homes of users and
networked with others that have brought a ssmulator into their own homes. The primary reason
for thisis cheating. There are three basic ways to cheat using DIS. Selectively ignore incoming
messages, illegally modify the environment, and generating impossi ble out going messages. For
example, selectively ignoring incoming messages would allow auser process to become disabled

in respect to an opponent’ s processes and reactions [14].

2.4 Separation of Client and Server

In DIS, thereis no distinction between aclient and a server. Each simulator fills both rolls. The
required bandwidth is O(n"), where n is the number of ssimulators. This bandwidth is required
since every simulator potentially communicates with every other smulator. Aswell, cheating is
possible, asexplained in the previous section. It isnot necessary to use this approach to simulate
avirtual world. A separate client/server architecture can be used instead. This requires O(n)
bandwidth, since each client communicates only with the server, and is oblivious to how many
other clientsthere are. This reduction in bandwidth means that connecting to the server through
theinternet isnow feasible. Aswell, by having all interactions go through the server, cheating is

not possible (assuming that the server software isbug free). A number of corporations have sold

19

client softwareto usersto run on their own computers, which then connectsto servers, maintained
by the corporation, through the internet. The corporations charge usage fees to users for the use

of the servers.

2.5 Single Server Approach

A non-DIS approach isto have al the clients connect to asingle server. This approach reduces
the network traffic to O(n), asdescribed in the previous section. The server isconsidered to bethe
final authority inall disputes(i.e. if the server saysthat your avatar process ended, then your avatar
didend). Ineffect, thisapproach tradesprocessor cyclesfor network bandwidth (i.e. you now need
a dedicated server). One server can only handle so much load. Once that limit is reached one
either needs anew approach for handling further clients, or one should get anew server and have
subsequent clients use the new server instead. Clients on one server would be unable to interact

with clients on another server. This approach isused in Meridian 59 [17].

2.6 Multi-Server Approach

Instead of having multiple serversrunning separate smulations, it should be possible to partition
the simulation across multiple servers. If thisisdone, then somekind of |oad balancing acrossthe
serversis desirable in order to make the most efficient use of the servers’ processor cycles and
memory. Theideal load distribution resultsin equal, and minimal, usage of processor cycles and
memory for all the servers (assuming the servers are homogeneous). Theideal distribution results

in no communication between theindividual servers. Thiswould be possibleif no server needed

20

to know about an avatar that it was not hosting. The serverswould of course haveto communicate
with the client software. It is not expected that this ideal can be met at all times. This thesis

examines the multi-server approach.

2.7 Traditional Scheduling & Load Balancing Problem

A parallel program is a collection of tasks that may run serially or in parallel. These tasks must
be optimally placed on the processors of aparticul ar parallel machineif the shortest executiontime
isto berealized. Thisproblemisknow asthe scheduling problem of parallel computing. Consider
acomputer workload consisting of m interacting task modules, {M,} ={M,,..., M, }, toberunon
aparallel processing system comprising p processing elements, { P} = {P,,..., P}, by alocating
to each P, a module assignment A,; subset of {M,}. Let A= (A,,..., A, denote the vector of
assignmentsover thep processors. Aisanoptimal assignment if thetimeto completeall thetasks
is minimized. In the most genera case where the workload modules are nonuniform and the
systemisheterogeneous, the problemisanalytically intractabl e except in the most restrictive cases
[8]. For thisreason, in order to come up with A in areasonable time, average values are often

used. Thisresultsin A being at best optimal in the mean.

Scheduling can be broadly divided into static and dynamic scheduling. With static
scheduling, information regarding the precedence-constrained task graph must be known
beforehand. Hence, each task in the graph has a static assignment to a particular processor, and
each time that task is submitted for execution, it is assigned to that processor. The main

disadvantage of static scheduling is its inadequacy in handling non-determinism in program

21

execution. If the task graph topology is not known before program execution, the parallel
processor system must attempt to schedul etasks on thefly. Thisisknown asdynamic scheduling.
The disadvantage of dynamic scheduling is its inadequacy in finding global optimums and the
corresponding overhead which occurs because the schedul e must be determined whilethe program

isrunning [15], [24], [26].

2.7.1 Dynamic L oad Balancing

As processes enter and leave the system it is desirable to rebalance the load of the processes that
arethere. Itishighly desirableto minimizethe cost of processor reallocation. In order to do this,
the job and the operating system work together in processor realocations. Two methods of
processor control are equipartition and demand-driven scheduling. In equipartitioning, each job
isalocated an equal fraction of the processors, up to their maximum parallelism. This assumes
that all jobshaveadegree of parallelismthat isconstant throughout their lifetime. Demand-driven
scheduling uses process control both to allow the system to take into account changesin ajob’s

paralelism and to alow the job to adapt to changes in processor allocation [23].

2.7.2 Data Partitioning

Rather than dividing a program into tasks that are then assigned to processors (task partitioning),
data can be assigned to processors that run identical tasks (data partitioning). If a processor
requires data that has not been assigned to it, then there is a data dependency, and the data must

be sent across the network. There are two basic ways of doing this: single instruction, multiple

22

data (SIMD), and single program, multiple data (SPMD). In the SIMD case, every processor
works in lock step, executing exactly the same instruction at exactly the same time (i.e. they are
synchronous). Each processor operates on different data. 1n SPMD, each processor runs exactly
the same code, but each processor can be anywherein the code rel ative to another processor (i.e.

it isasynchronous). Aswith SIMD, each processor operates on different data [15].

2.8 Scheduling and Load Balancing for MM ORPGs

A logical division of an MMORPG into tasksisto assign onetask to each avatar, since each avatar
isindependent of all other avatars. Since each avatar is more or less equivalent, equal numbers
of avatars could be assigned to each processor (assuming homogeneous processors) in order to
achieve load balancing. However, whenever an avatar that is hosted by one processor is closeto
an avatar hosted by another processor, each of those processors must exchange state information
about their respective avatars, eachtimeastate update occurs (e.g. one of theavatarsmoves). This
is a data dependency, and network bandwidth is consumed because of it. It is noted that this
consumption of network bandwidth only occursif two avatarson different serversare near to each
other. If the avatarswere on the same server, then this consumption of network bandwidth would
not occur. For thisreason, data partitioning isused. To increase the likelihood that two avatars
that are near to each other are on the same server, the underlying map of the virtual world is
divided between the servers. A server hosts those avatars that are on the part of the map that the
server owns (its map segment). Only when avatars are close to the edge of amap segment isthere

the possibility that two avatars will be on different servers.

23

2.9 Multi-Server Approach in Current MM ORPGs

In the multi-server approach currently known to be used in MM ORPGs, the system attempts to
indirectly balance the load on the servers and minimize network traffic. The map of the virtual
world isstatically partitioned into segments, and each segment is assigned to aserver (the number
of map segments being equal to the number of servers). Whichever server's map segment (MS)
an avatar iscurrently on isthe server that is currently hosting that avatar, and hence also the client
associated with that avatar. One server will only inform another server of the actions of an avatar
it is hosting if the avatar is close to the boundary between two M Ses. Thus in the best case the
network traffic between serversis O(0) (i.e. thereis none) and in the worst case is O(m"), where
n isthe number of avatars and m is the number of servers. Thisis the case since every time an
avatar performsan action all the other servers may need to beinformed of it. Proper arrangement
of the MSes would allow the worst case network overhead to be even lower by making it
“physically” impossible for an avatar to be close to all MSes, and hence all servers. The least
possible load on a server in terms of number of avatarsis O(0) (i.e. there are no avatars on the
M Ses owned by that server, and hence the server is not hosting any avatars. The worst cast load
iISO(n) (i.e. the server has all the avatars in the simulation). The preferred caseisfor all servers
to have aload of O(n/m) (i.e. equal numbers of avatars on al servers. This approach isused in

Ultima Online [30].

24

2.10 Relationship of Current Research to Previous

Resear ch

The previous research did not consider the specific case of avirtual world. Previousresearch has
not compared and contrasted different multi-server schemes. Thisresearch considersdynamicload
bal ancing specifically applied to avirtual world. Just asin most other |oad balancing algorithms,
the overall goal is to keep the load on al processors equal. Unlike many load balancing
algorithms, some attempt is made to minimize network traffic. Since DIS doesnot scalewell, and
has problems of cheating, the approach currently used by UltimaOnline (described inthe previous
section) is used as a starting point. Dynamic load balancing is done in Asheron’s Call [1].

However, they have not elaborated on their dynamic load balancing scheme.

2.11 Summary

This chapter has presented background information on MMORPGs. Distributed interactive
simulation (DIS) wasexamined. Separation of the client and the server wasdiscussed. Thesingle
and multi-server approaches were described. The traditional scheduling and load balancing
problemwasexamined. Schedulingandload balancingfor MM ORPGswasdiscussed. Themulti-
server approach currently used for MM ORPGs was described. The current research attempts to
take advantage of specific knowledge of the problem domainin order to do load balancing. Inthe

next section the schemes studied in this thesis are presented.

Chapter 3

Schemes Studied

Thereareanumber of different schemesthat can be used to support amassively multiplayer online
roleplaying game (MMORPG). There are also schemes that appear to be capable of supporting
an MMORPG, but that have one or more flaws. Some of these schemes are described in this
chapter. A new dynamic load balancing algorithm for MMORPGs is aso presented. In this
chapter it isassumed that each avatar occupies apositionin avirtual world. Server machinesare
responsiblefor tracking avatar processes, and will transfer an avatar’ s operating environment and

parameters to another server as needed.

25

26

3.1 Static Assignment of Avatarsto Servers

One possible approach to supporting an MMORPG is to evenly divide the avatars between the
servers. Thus each server has equal numbers of avatars (assuming that the number of servers
evenly dividesthe number of avatars) and theload appearsto bebalanced. Thisworksby statically
assigning an avatar to the server with the least number of avatars asit entersthe ssimulation. This
will result, in the worst case, in O(m") network traffic between the servers, where n isthe number
of avatarsand misthe number of servers. Thisisbecause every time an avatar performsan action
all the other servers must be informed of thisin case one of their avatars seesthisaction (e.g. if an
avatar moves then all near by avatars will see this). No MMORPG uses this scheme, but it is
studied here dueto it being an approach that tends to be intuitively thought of by aperson new to

thefield.

3.2 Static Assignment of Map Segmentsto Servers

Static assignment of map segments (M Ses) to servers works by dividing the map of the (virtual)
world into segments. The number of segments being equal to the number of servers. Each
segment is statically assigned to a server, such that each server has exactly one MS assigned to it.
Thisisillustrated in Figure 3.1. An avatar is assigned to which ever server owns the MS it is

currently on. Thisisthe multi-server scheme described in section 2.7.

Server 1

Server 2

Server 3

Server 4

Figure 3.1: Four map segments assigned to four servers

3.3 Dynamic Assignment of Map Segmentsto Servers

27

Static assignment of M Ses to servers has the potential to minimize both network traffic between

servers, and server load (and hence maximize the total number of avatarsin the simulation), but

only if the avatars are properly distributed about the map. However, the distribution of avatarsis

controlled by the users, and hence is unpredictable at any given time. In order to overcome this,

dynamic assignment of map segments to serversis needed.

3.4 Proposed Dynamic Algorithm

The proposed approach attemptsto, partially, overcome the problem mentioned above by dividing

up the map into (many) more M Ses than there are servers and then assigning multiple M Ses to

each server, such that the resulting load on each server is as close to equal as possible. The

28

assignment of M Sesto serversisdone by a“land manager”. When needed, the land manager runs
a load balancing algorithm (LBA) to redistribute the MSes, and hence the load, between the
servers. If the distribution of avatars is unchanged from the last time the LBA was run then no
changeismadeto the M Sto server assignments. The agorithm attemptsto keep the M Sesowned
by aparticular server together. This makesit lesslikely that agiven avatar will be near toan MS
owned by another server, and hence no network traffic would be required to communicate the

activities of that avatar.

3.5 Overall Load Balancing Algorithm

3.5.1 L egend and Notes

Notes: 1. "Next to" means the M S located next in the north, south, east, or west direction
2. "Connected component” refers to a group of MSes that are next to each other
3. TheLoad Balancing Algorithm (LBA) consistsof themain LBA andthecoreLBA.
Themain LBA does setup between callsto the coreLBA. Thecore LBA doesthe

reassignment of M Ses to balance the load.

S = total number of servers

N = total number of avatars on all servers

n = N/S = number of avatarsideally on each server
Nn(i) = number of avatars on server i

m(i) = |n - n(i)| = distance of server i from the average number of avatars

29

LM = Land Manager

MS = Map Segment

3.5.2

Main Load Balancing Algorithm

The load balancing agorithm to be studied in this thesis consists of the following steps:

Algorithm 3.1

1 The LM asks all servers how many avatars they have on each MS.

2 If an MS owned by a server has no avatars on it then the M Sis taken away from that
server and goes to the pool of M Ses that are not owned by any server.

3 If one or more servers does not own any MSes then find the MS with the most
avatars for which taking that MS away from its current server does not break a
connected component, and that is not the only MS owned by that server. Give that
MSto one of the serversthat hasno MSes. Repeat until all servershave at |east one
MS or al servers own either one or zero MSes.

4 If all servers own either one or zero M Ses then goto step 12.

5 Mark all servers as not done.

6 Perform core LBA.

7 Givetheleast loaded server empty M Ses next to its M Ses (and empty M Ses next to
newly acquired M Ses). Repesat for second least |oaded server, etc.

8 Mark all servers as not done.

Perform core LBA.

10
11

12

3.5.3

30
Repest step 2.
If a change to the map was made during step 9 then goto step 7.
Assign empty M Ses based on adistance priority scheme (which ever server ownsan
MS, with avatars on it, that is closest to an empty MS gets the MS). Transmit the

new distribution of M Ses to the servers.

Core Load Balancing Algorithm

The core load balancing algorithm (called by the main load balancing algorithm) consists of the

following steps:
Algorithm 3.2
1 If all servers marked as done then done.
2. Let i be the server with the largest m(x) and that is not marked as done.
3. If server i needs less avatars to reduce m(i) goto 7.
4, For thefour M Ses next to each of the M Sesowned by server i, find theoneM S (with

at least one avatar on it) that if transferred to server i will decrease m(i) the most and
not make the new value of m(j) larger than the new value of m(i), where server j is
the server that the MSis coming from. Also, removing the MS from server j must
not increase the number of connected components. If there is a tie in terms of
reduction achieved in m(i), then out of those that tied, the one that is closest to a
different connected component belonging to server i ischosen. If thereistill atie,

it is broken based on which ever MS minimizes m(j) the most from those that still

31

tied. If thereisstill atiethen any onethat isleft will do.

5. If no MS was found in step 4 then mark server i as done, else transfer the MS to
server i and mark server j as not done.

6. Goto 1.

7. For each MS owned by i, find the one MS (with at least one avatar on it) that if
transferred to aserver, j, that ownsan M S, next tothe M S, that will decrease m(i) the
most and not make the new value of m(j) larger than the new value of m(i). Also,
removing the MS from server i must not increase the number of connected
components. If thereisatiethen out of those that tied the one that is farthest from
adifferent connected component belonging to server i ischosen. If thereisstill atie
then out of those that tied the one that minimizes m(j) the most is chosen from those
that still tied. If thereis till atie then any one that is left will do.

8. If no MS was found in step 7 then mark server i as done, else transfer the MS to
server | and mark server j as not done.

9. Goto 1.

354 Deter mination of Breaking of Connectedness

Calculating new values for m(i) (where m(i) = |n - n(i)| as defined in section 3.3.2.1) is straight
forward. Determining if changing ownership of an MS breaks connectedness is not as straight

forward. Hereisan agorithmto do this.

32

Algorithm 3.3

1 The MSin question belongsto server j.

2. If server j owns exactly one or zero M Ses that are next to the MS in question then
done (can transfer ownership).

3. Pretend that the MS in question no longer belongs to server j.

4. Mark one of the MSes that is next to the MS in question and belongs to server j as
visited.

5. Gotoal the M Sesmarked asvisited and mark the M Sesthat belong toj that are next
to these MSes as visited.

6. If al the MSes that belong to j and are next to the MS in question are marked as
visited then done (can transfer ownership of MS) elseif no new MSwas marked as

visited then done (can not transfer ownership of MS) else goto 5.

Possible configurations encountered at step 2 of the algorithm areillustrated in Figures 3.2, 3.3, and

3.4.

Figure 3.2: The middle MSis owned by j, and there are zero others next to it owned by |

33

Figure 3.3: Themiddle MSis owned by j, and so is one other MS next to it

Figure 3.4: The middle MSis owned by j, and so are two other M Ses next to it.

3.6 Explanation of Algorithm

When it istimeto do load balancing, Algorithm 3.1 (the algorithm) is called. Algorithm 3.1 calls
Algorithm 3.2 as needed. Algorithm 3.2. calls Algorithm 3.3 as needed. The algorithm does not
haveto operatein rea-time. The servers send the number of avatars on each M Sthey own and then
continue on. Once the land manager isfinished running the LBA it sends the resultsto the servers.
The M S to server assignments are the best assignment based on the data originally sent to the land
manager. The new assignment may be communicated to the serversat atimewhen the datathat was
originally sentisno longer accurate. The sooner the new assignments are sent to the serverstheless

inaccurate the data used in the LBA will be with respect to the current situation. As such the time

to run the LBA must not be excessive.

Thebasicideabehind theagorithmisthat if aserver haslessavatarsthan the average across
the servers, then it takesan MS, that is beside an MS it owns, that moves it as close as possible to
the average load in terms of the number of avatars. Alternatively, if aserver has more avatars than
the average then it will give away an MS. The MSwill be given to a server that owns an M S next
to the MS being given away, and that will move the number of avatars on the server closer to the
average. Of course, taking and giving meansthat another server losesor gainsan MS. Thisisonly
allowed to happen if the other server is not moved further away from the average than the new
distance from the average for the server in question. Also, the LBA doesnot allow agroup of M Ses
that are next to each other and belong to the same server to be broken into two groups. This makes
it less likely that a given avatar will be near to an MS owned by another server, and hence no

network traffic would be required to communicate the activities of that avatar.

When atie occurs asto which M Sisthe best choiceto be moved from one server to another,
then the M S that is most effective for moving two connected components, belonging to the same
server, together (or at least not apart) is chosen. That isto say, if server i isthe server in question
and serversj and k are two servers for which atie has occurred, then which of j or k would allow i
to move two of its connected components closer together. For example, supposethat if j ischosen
then two different connected components of i go from being separated by three M Ses to being
separated by two M Ses. Also, supposethat if k is chosen then two different connected components

of i go from being separated by five M Sesto being separated by four MSes. Inthiscase] should be

35

chosen, since the final separation of connected components would be least. Figure 3.5 is used to
illustrate another example. An MSisto betransferred to server m. Either the MS owned by server
| or the MS owned by server nisto be chosen (i.e. thereisatie). The MS owned by server n should
be chosen, since doing so moves the two disconnected components of m closer together (and inthis
example merges them into one connected component). If atie still occursthen out of those servers
that tied, the MS that best minimizes the distance from the average of the server not in question is
chosen. That isto say, if i isthe server in question and j and k are two servers for which atie has
occurred, then which of | or k would be moved closest to the average number of avatars across all
servers. For example, if the mean number of avatarsisten, and j would be moved to eleven avatars,
and k would be moved to seven avatars, then the M S belonging to j should be chosen, sinceit would

end up closest to the mean. Any remaining ties are arbitrarily broken.

Surprisingly, dealing with empty MSesisnot trivial. Thefirst timethemain LBA isrun no
empty MSes are assigned to aserver. Asaresult, the empty MSesareignored. During the middle
part of the algorithm, an empty M Sisassigned to whichever server ownsaneighboring M S, and has
theleast number of avatarsout of all the neighbors. After thisassignment thecore LBA isrun. The
least |oaded server may now bedifferent, so theempty M Sesare reassigned accordingly and the core
LBA isrunagain, etc. Attheend of themain LBA the empty M Ses are again re-assigned, thistime
based on adistance priority scheme (whichever server ownsan MS, with avatarsonit, that isclosest
toanempty MS, getstheMS). Thereason for thisisto makeit lesslikely that an avatar will be near
an MS that is owned by another server. The algorithm aways completes since MSes are only

transferred if doing so moves at least one server closer to having the average number of avatars

36

acrossthe servers, without causing any other server to be moved further away from the average than

the server in question after it has been moved closer to the average.

Figure 3.5: Map segment to server assignments

3.6.1 Convergence of Algorithm

The agorithm monotonically converges towards a solution. Thisis because a map segment with
avatarson it isonly transferred between serversif it results in one of the servers moving closer to
having the average number of avatars across the servers, without moving the other server further

away from the average than the new distance from the average for the first server.

37

3.6.2 Termination of Algorithm

The algorithm always terminates. Thisis because it will eventually reach a point where it is no
longer possible to continue monotonically converging, and hence no exchanges of map segments
between serverswill occur withinthe coreLBA. Themain LBA will exit if thereisno exchange of

map segments between servers within the core LBA.

3.6.3 Run-Time Complexity

The best case run-time of the LBA isO(1). Thisoccursif al the servers are assigned exactly one
or zero map segments. The core LBA isnot runinthiscase. The best case run-time when the core
LBA isrunis O(mn), where m is the number of serversand n isthe number of map segments. In
this case, no map segments are exchanged between servers. The worst case run-timeis O(n). In
thiscase, every map segment isexchanged between two servers. Theaverage caseisunknown since

the probability distribution of avatars among the serversis unknown.

3.7 Summary

Three schemes for supporting an MMORPG are studied in thisthesis: static assignment of avatars
to servers, static assignment of map segmentsto servers, and dynamic assignment of map segments
to servers. Thedynamic assignment of map segmentsto serversusesanew dynamic load balancing
algorithm that was presented inthischapter. Inthenext chapter, the experimental setup isdescribed.
In Chapter 5, the experimental results and analyses for the three schemes described here are

presented.

Chapter 4

Experimental Setup

The previous chapter described the schemes that are considered in thisthesis. In this chapter, the
experimental setup isdescribed. Many simulation runs are done using the experimental setup. The
hardware configuration, software architecture, and design and implementation aredescribed. Atthe

end, a description of the software componentsis given.

4.1 Hardware Configuration

Figure 4.1 shows atypical hardware configuration for the experiments. The land manager and the
servers were each run on their own Sun SPARCstation 2 with 64 MB of RAM. For eight servers,
six of the servers were SPARCstation 2's and two of the servers were Sun SPARCstation 5's with

64 MB of RAM. Varying numbers of clients were simulated on multiple Sun UltraSPARC 170's

38

39

with 128 MB of RAM. Each machine hasitsown port on an Baystack 350-24T auto-sensing 10/100
Mbps ethernet switch. For 10 Mbps operation the port forwarding rate using 64 byte packets is

14,880 packets per second. Each machine uses 10 Mbps ethernet.

SPARCstation 2 (land manager)

SPARCstation 2 (server)

SPARCstation 2 (server)

SPARCstation 2 (server) Baystack 350-24T

SPARCstation 2 (server)

UltraSPARC 170 (super client)

UltraSPARC 170 (super client)

UltraSPARC 170 (super client)

Figure 4.1: A configuration using four servers and three super clients

4.2 Software Architecture

The software architecture revolves around the “life” of an avatar. Initially, there are no avatarsin
thesimulation. A super client generates an avatar and informs the land manager of the new avatar,
and the location of the new avatar in the virtual world. The land manager determines which map
segment the avatar ison, and then informs the server that owns that map segment of the new avatar.
The server now ownsthe avatar. However, if there is more than one server, then the avatar may at

some subsequent time be transferred to anew server. The avatar is aways controlled by the super

40

client that generated it. A super client can control multiple avatars. Each avatar can be on the same
or a different server than other avatars controlled by a super client. There can be one or more
servers, and one or more super clients, but thereisalwaysexactly oneland manager. If dynamicload
balancing is used then the land manager performs the load balancing agorithm. The process

diagram in Figure 4.2 illustrates the possible communication paths.

Land Manager

Server Super Client

Server Super Client

Figure 4.2: Process diagram for two servers and two super clients

4.3 Design and Implementation

Thesoftwarewaswrittenin C++[28]. Communi cation between processeswas done usingthe PVM
library [7]. The software is not fault tolerant. If afailure occurs then the system must be reset,
losing all data. Internally, each avatar consists of adatastructure, on one of the servers, that contains
the avatars position and other attributes. Map segments are implemented on the servers as linked
listsof avatars. Theavatarsinthelinked list for agiven map segment arethe avatarsthat are on that
map segment. An avatar can only have one of six things happen to it once it has entered the

simulation:

41

. Move north

. Move south

. Move east

. Move west

. Be transferred to another server
. Leave the ssmulation

4.3.1 Generation of Avatars

Two basic distributions of avatars were used - an even distribution and an uneven distribution.
Varying numbers of avatars were placed in each distribution. Movement of avatars was either
random or non-random. If avatarswerein agroup then the whole group was moved together. Inthe
case of random movement, each avatar moved one unit in a random direction every five seconds,
wrapping around at the edges of themap. In the case of non-random movement, each avatar moved

one space to the east every five seconds, wrapping around at the edge of the map.

4.3.1.1 Even Distribution

For the even distribution the avatars were evenly distributed across the map. For example, if there

were 400 avatars, then the avatars were distributed into 20 rows and 20 columns. See Figure 4.3.

42
AAAA
AAAA
AAAA
AAAA

Figure 4.3: An even distribution of 16 avatars arranged into 4 rows and 4 columns

4.3.1.2 Uneven Distribution

For the uneven distribution 30 groups of avatars were unevenly distributed across the map. This
distribution is shown in Figure 4.4. All of the groupsin a quadrant contained the same number of
avatars. Ten of the groups, comprising three fifths of the avatars, were placed in the upper |eft
guadrant of themap. Ten of thegroups, comprising onefifth of the avatars, were placed in the lower
left quadrant of the map. The remaining ten groups of avatars, comprising one fifth of the avatars,
were placed in the upper right quadrant of the map. For example, if there were 250 avatars, then
there would be 10 groups of 15 avatars each evenly placed in the upper left quadrant, 10 groups of
5 avatars each evenly placed in the lower left quadrant, and 10 groups of 5 avatars each evenly

placed in the upper right quadrant.

4.3.2 Parameters Used During Simulation

In the case of dynamic partitioning, ten by ten map segments were used (a total of 100 map
segments) and theload bal ancing algorithm wasrun every minute. All simulationswererunfor one
hour. Duringall simulations, oneadditional avatar was added that moved one spacetothe east every

0.5 seconds. Thisisthe avatar for which specific datais collected. The responsetimesgiveninthe

43

results section refer to the delay from the time movement of this avatar is requested by the client

until the time the server indicates that the movement has occurred.

GGG ggg
GGGGgggoag
GGG ggg

g9¢g
9999
g9¢g

Figure 4.4: Arrangement of groups for uneven distribution (each group “G” containsthreetimes as

many avatars as each group “g”)

4.3.3 Assumptions

The following assumptions were made in order to limit the number of variables in the simulation:

. The servers are centralized (i.e. they are al in the same room)

. Each user action causes equal load (i.e. all actions are equivalent)

. The clients are all equidistant from the servers (i.e. there is equal network delay for all
clients)

4.4 Description of Components

The three software components are: the land manager, the server, and the super client. Thereis

always exactly one land manager running, and it must be started first. There can be one or more

44

servers. Theserversare started after theland manager. There can be one or more super clients. The
super clients are started last. Inthefollowing sections, “t i d” refersto theid assigned to aprocess
by PVM. Intheimplementation, there are objects and avatars. An avatar isatype of object, but an

object is not necessarily an avatar.

4.4.1 Land M anager

Theland manager assigns avatarsto servers based on the location of the avatar and the current map
segment to server assignments. Oncean avatar isinitialy assigned to aserver, itisupto theservers
to determine every thing that happens to it, including determining which server should host the
avatar for the cases where more than one server is used. For simplicity and uniformity, the land
manager is used even when thereisonly one server. The land manger performs the load balancing
algorithm when map segmentsare being dynamically assigned to servers. Eachtimedataisreceived
the land manager outputs, to alog file, the time at which the data was received (relative to the time
at which the land manager was started) and the number of data bytesin the message. If dynamic
assignment of map segments to servers is performed then the time to run the load balancing
algorithm, and the time at which it isrun, isrecorded in a separate log file. The messages sent by

the land manager are shown in the following section.

4.4.1.1 Messages Sent by the Land Manager to a Server

The following messages are sent by the land manager to a server:

45

LS TID
Empty message that server usesto learn land managerssti d.
Contains:

-nothing

LS AV
An avatar is being added to the simulation.
Contains:
-map number (number of times |oad balancing algorithm has been run)
-the avatar's object number
-the avatar’ s current position
-the avatar's appearance (avatar appears as asingle color ASCII character)

-thet i d of the super client

LS NUM_OBJS MS REQ
The land manager asks the server to send back the number of objects that the server hason
each MSthat it owns.
Contains:

-nothing

LS NEW_MAP

Contains a map indicating the ownership of each MS.

46

Contains:
-The map number (initially zero, and increments each time LBA isrun)

-Thet i d of the owner of each MS, in row mgjor order

LS USE_NEW_MAP:
All the servers now have the new map. Begin transferring objects between servers (as
needed).
Contains:

-nothing

LS SHUTDOWN
Any server that receives this message will shut down, after it no longer has any avatars.
NOTE: All map segments must be taken away from this server prior to sending this message
in order for the simulation to go on without this server.
Contains:

-nothing

LS SHUTDOWN_NOW
Any server that receives this message will shut down immediately. Continuing to run the
simulation is not recommended, since thisisnot a*“clean” shutdown. Extraneous error
messages may be produced by PV M, again, thisis because thisisnot a*“clean” shutdown.

Contains:

47

-nothing

4.4.2 Server

The server isthe most complicated piece of software. If thereisone server, it keepstrack of al the
avatars. If therearemultiple serversthen each one must keep track of itsown avatarsand coordinate
with the other serversin order to insurethat all avatarsthat are hosted by another server and should
bevisibleto at |east oneavatar that it ishosting, aremadevisible. A server isableto transfer avatars
to another server, and receivethem from another server. Thiswould happenif anavatar moved from
amap segment owned by one server to a map segment owned by another server, or after the load
bal ancing al gorithm was run the map segment that the avatar is currently onistransferred to another
server. If aserver sendsamessagefor whichit requiresaresponse then it does not stop and wait for
the response. It accepts new, unrelated, messages until it gets the response (e.g. arequest from a
super client to moveitsavatar would not beignored while the server isin the process of handing of f
adifferent avatar to another server). Therecan be many such outstanding requestsat any giventime.
Each time datais received, the server outputs, to alog file, the time at which the data was received
(relative to the time at which the server was started) and the number of data bytes in the message.

The messages sent by the server are shown in the following sections.

4.4.2.1 Messages Sent by a Server tothe Land Manager

The following messages are sent by a server to the land manager:

SL_REQ TID
Ask the land manager to send back an empty message so the server will know itst i d.
Contains:

-nothing

SL_SAVE AV
An avatar is leaving the simulation.
Contains:

-the avatar's object number

-the avatar's current position

SL_NUM_OBJS MS
Sentinresponsetoan LS NUM_OBJS MS _REQ message from the land manager. The
server sends back the number of objects that it has on each map segment that it owns.
Contains:

-the number of objects on each map segment owned by the server, in row major order

SL_MAP_ACK
Sent back to the land manager in response to a SL_ MAP message.
Contains:

-nothing

49

4.4.2.2 Messages Sent by a Server to a Super Client

The following messages are sent by a server to a super client:

SC_AV
When an avatar first enters the simulation the server sends this msg to tell the super client
the characteristics of the avatar and itsinitial location.
Contains:
-avatar's object id
-The (global) position of the avatar.
-avatar's appearance
-alist of all objects visible to the super client
Contains (for each objects):
-object'sid
-The (global) position of the object.

-object's appearance

SC_AV_MV
The avatar has moved one unit.
Contains:
-avatar's object id
-direction moved in (one of: NORTH, SOUTH, EAST, or WEST)

-alist of objectsthat have, as aresult of this movement, become visible to the super client

50

Contains (for each objects):
-object'sid
-The (global) position of the object.

-object's appearance

SC_OBJ
Whenever the server wants the super client to know about the existence of an object (which
could be another user's avatar) it sends this message.

Contains:
-object'sid
-The (global) position of the object.

-object's appearance

SC_OBJ MV
An object has moved one unit.
Contains:
-the object'sid

-direction moved in (one of: NORTH, SOUTH, EAST, or WEST)

SC OBJ RM
One or more objectsis no longer visible.

Contains (for each object):

51

-the object'sid

SC_SS
When the avatar switches servers, the old server sends this messages to the super client.
Contains:

-avatar's object id

SC_SS NOW
First theserver sendsaSC_SSand waitsfor aCS_SS ACK from the super client. Thenthe
server sendsaSC_SS NOW when it transfers the avatar to the new server.
Contains:

-nothing

SC_SS DONE
When the avatar switches servers, once the server switch is complete the new server sends
this message to the super client.
Contains:
-avatar's object id
-alist of all objectsvisible to the super client
Contains (for each object):
-object'sid

-The (global) position of the object.

52

-object's appearance

SC_AV_RM_ACK
After receivingaCS_AV_RM message from the super client this message is sent back.
Contains:

-avatar's object id

4.4.2.3 Messages Sent by a Server to Another Server

The following messages are sent by a server to another server:

SS OBJS
Tell another server about the existence of one or more objectsvisibletoit fromaneighboring
map segment.
Contains:
-map number
-for each object:
-the object'sid
-the object's global position

-0object's appearance

SS_OBJS_ACK

ACK anSS OBJS, or SS_ OBJ MV message.
Contains:

-map number

-for each object:

-the object'sid

SS OBJ MV
Tell aserver that an object has moved.
Contains:
-map number
-the object'sid

-direction moved in (one of: NORTH, SOUTH, EAST, or WEST)

SS OBJ RM
Tell aserver that an object isno longer visibleto it.
Contains:
-map number

-the object'sid

SS OBJ RM_ACK
Acknowledgea SS OBJ RM message

Contains:

53

-map number

-the object'sid

SS XFER_OBJS
Transfer some non-avatar objects to another server.
Contains (for each object):
-map number
-object'sid
-0obj ects position

-object's appearance

SS XFER_AVS
Transfer some avatars to another server.

Contains (for each avatar):

-map number

-object'sid

-avatar’ s position

-avatar's super client

-avatar's appearance

-TRUE if al ACKsreceived before transfer, FALSE otherwise
-number of queued up commands

-the queued up commands

55

One or more serversisinformed that this server (that is sending the message) is about to
move objects from its control to the control of another server (thismsg is sent to al the
severs that can see this object, including the server that will receive the control).
Contains:

-map number

-object id number for each object

SS SS ACK
Sent in responseto SS_SS message.
Contains:

-map number

-object id number for each object

4.4.3 Super Client

Rather than having hundreds of volunteers use client software that supports one avatar for each
instance of the softwarerunning, a“ super client” waswritten. Asfar astheland manager and server
are concerned, there is no difference between a super client and anormal client. Each super client
simulates multiple clients connected to the ssmulation. The number of simulated clients and the
behavior of the avatars controlled by those clientsis controlled using a script file. The super client
can be configured to output, to alog file, the amount of time between the sending of amessages and

the receiving of aresponse, and the time (relative to the time at which the super client was started)

56

at which the responses were received. In addition, the number of data bytes received and the time
at which they were received, isoutput to aseparate log file. Multiple super clients can berun at the

sametime. An example script isshown in Figure 4.2.

A 1,02
e0.5
end A

B: 2, 20, 22
nl.5
s2.3
W2, 2
e7.3

end B

C 7, 23,42
end C

LB:0,0,0
| 60
end LB

SD:0,0,0
d3600
end SD

Figure 4.5: An example script file

The script fileshowninFigure 4.2 worksasfollows. Thefirst part (A) places one avatar at location
(0, 2) which movesto the east every 0.5 seconds. The second part (B) placestwo avatars, centered
on (20, 22), and movesthem north after 1.5 seconds, south 2.3 seconds after the previous movement,
west after 2.2 seconds, east after 7.3 seconds, and then the pattern of movement in this part is
repeated. The avatars are not both placed in the same location, but rather spread out in a group

centered on (20, 22). Thethird part (C) centers seven avatars at location (23, 42) and leaves them

57
there. Thefourth part (LB) specifiesthat theload balancing algorithmisto be run every 60 seconds.
The fifth part (SD) specifies that the script is to be terminated after three thousand six hundred

seconds (one hour). The messages sent by the super client are shown in the next two sections.

4431 Messages Sent by a Super Client to the Land

M anager

The following messages are sent by a super client to the land manager:

CL_AV
Inform the land manager of anew avatar.
Contains:
-column and row number where avatar is to appear in the virtual world

-avatar's appearance

CL_SHUTDOWN
After receiving thismessage, the LM sendsLS _SHUTDOWN messagesto all servers, and
thenthe LM shutsdown. For thistowork properly there must be no avatarsin the simulation.
Contains:

-nothing

CL_SHUTDOWN_NOW

58

After receivingthismessage, theLM sendsLS SHUTDOWN_NOW messagestoall servers
and then the LM shutsdown. Some extraneous error messages may be produced by PVM,
sincethisisnot a*“clean” shutdown.

Contains:

-nothing

XL_LB
Tell the LM to runthe LBA. Thisalows the determination of when to run the LBA to be
under the control of the scripting used in the super client.
Contains:

-nothing

4.4.3.2 Messages Sent by a Super Client to a Server

The following messages are sent by a super client to a server:

CS REQ MV
Super client requests that its avatar move.
Contains:
-avatar's object id

-direction to move in (one of: NORTH, SOUTH, EAST, or WEST)

59
CS _SS ACK
Sent in response to a SC_SS message. Super client acknowledges that its avatar is being
moved to another server. Client will queue up any server requestsfrom user until it receives
aSC_SS DONE message from the new server, then all queued up requests will be sent to
the new server.
Contains:

-avatar's object id

CS AV_RM
The avatar is leaving the simulation.
Contains:

-avatar's object id

4.5 Summary

This chapter has described the experimental setup. Many simulation runs were done using the
experimental setup. The hardware configuration, software architecture, and design and
implementation were described. The simulation wasrun on anetwork of Sun computers. Thethree
software components used were the land manager, server, and super client. Avatars were arranged
in either an even or an uneven distribution. A description of the software components was given.

In the next chapter, the experimental results are presented and analyzed.

Chapter 5

Experimental Results and Analysis

The previous chapter examined the experimental setup. This chapter presents the experimental
resultsand the analysisof thoseresults. The dataiscollected for nonrandom and random movement
of avatars. For both the nonrandom and random cases, an even distribution isexamined, aswell as

an uneven distribution.

5.1 Nonrandom and Random M ovement

In areal MMORPG, each avatar is controlled by an individual. Each individual directs his avatar
towards an objective of his choosing. As such, in general, an individual avatar does not move
randomly. Itiscurrently unknown how to model the collective behavior of the avatars. In light of

this, two extremes were chosen, asimple (arbitrarily chosen) nonrandom pattern of movement, and

60

61

a completely random pattern of movement.

5.2 Even and Uneven Distributions

In areal MMORPG, each avatar is controlled by anindividual. Each individual directs his avatar
towards agoal of his choosing. Assuch, itisnot clear how to model the over al distribution of
avatarswithin the virtual world. Inlight of this, two extremes were chosen, an even distribution of

avatars, and an (arbitrarily chosen) uneven distribution of avatars.

5.3 TheFour Schemes

Four schemeswere evaluated: single server, static assignment of avatarsto servers(Static Av), static
assignment of map segments to servers (Static MS), and dynamic assignment of avatarsto servers
(Dynamic MS). The Static Av scheme was only examined for the nonrandom case. All other
schemeswere examined for the random and nonrandom cases. Thereason the Static Av schemewas
only examined for the nonrandom casewasthat it faired very poorly in all experiments, and therefore

it was eliminated from deeper eval uation.

In the data collected bellow, if a“yes’ occursin the “IBO” column then one of the servers
crashed dueto an input buffer overflow. Specifically, the server was processing dataslowly, which
resulted in the input buffer growing in size, until it became so large that the server crashed. This

means that the configuration was unable to handle the number of avatars that it was given.

62

5.4 Nonrandom Movement Case

This section contains the experimental results and analysisfor the case of nonrandom movement of

avatars.

54.1 Even Distribution

Thissection containstheexperimental resultsand analysisfor an even distribution of avatarsmoving
nonrandomly. The system configurationsareshownintable5.1. Responsetimesare shownintable
5.2. The bytes of datareceived by each software component are shown in table 5.3. The time to

perform the load balancing algorithm is shown in table 5.4.

Case | # of servers Total # of av Distribution IBO
A) |1 784 N/A no
B) |1 900 N/A yes
< |2 324 Static Av no
D) |2 361 Static Av yes
E) |2 784 Static MS no
(F 2 900 Static MS no
G |2 784 Dynamic MS no
H |2 900 Dynamic MS no

Table 5.1: System Configurations for Nonrandom Even Distribution

63

Case | Average Min Max
(A) |011 <0.01 1.24
(© |0.03 <0.01 0.64
(E) |0.06 <0.01 0.54
(F) |0.06 0.02 11.47
(G) |017 <0.01 20.33
(H) |054 <0.01 25.23
Table 5.2: Response Times for Nonrandom Even Distribution (in seconds)
Case | Land manager Super Client Server(s)
(A) |15,712 85,696 6,123,352
(C) |6512 85,424 6,101,056
(E) |15,740 85,732 6,590,164
(F) |18,040 85,732 7,605,784
(G) |40,492 85,880 7,909,752
(H) |42812 85,648 9,283,796
Table 5.3: Total Bytes of Data Received for Nonrandom Even Distribution
Case | Average Min Max Second from max
(G) |0.02 <0.01 0.47 0.12
(H) |o0.01 <0.01 0.49 0.04

Table 5.4: Timeto Perform LBA for Nonrandom Even Distribution (in seconds)

5411 Analysis

Figure 5.1 shows the maximum number of avatars supported. When the Static Av schemeis used

64

with two servers, the maximum number of avatarsislessthan half the maximum number of avatars
for one server. Thisis because every time an avatar on one server moves the other server must be
informed. More avatars can be supported by two servers than by one server for the Static MS and
Dynamic MS schemes. Figure 5.2 showsthe responsetimes. The Static MS scheme gives a better
response time than one server for the same number of avatars. The Dynamic MS scheme gives a
worse response time than one server for the same number of avatars. Thisis likely becauseit is
unnecessary to periodically redistribute map segments between the servers, since the avatars are
evenly distributed across the map for the duration of the simulation. Figure 5.3 shows the number
of bytes transferred. More bytes are transferred when two servers are used, since data must be
transferred between the servers. More bytesare transferred when the Dynamic M S schemeis used,

due to the overhead of the load balancing algorithm.

The LBA times are not placed in afigure since there is no discernable trend. It may seem
counter intuitive that the average time to perform the LBA and second from maximum times are
lower for (H) than for (G). However, the LBA is processing the same amount of datain each case,
in spite of thefact that thereare more avatarsfor (G). Also, theavatarsare evenly distributed across
the map, but this does not mean that there are equal numbers of avatars on each map segment and
it isthe distribution of avatars across the map segments that determines how the LBA runs. The
reason the maximum and second from maximum times are so different isthat beforethe LBA isrun
for thefirst timeall the M Ses are assigned to one server and hence alarge changein the assignments
of MSesto serversisrequired. Subsequently much smaller changes are required, and hence much

lesstimeisrequired for the LBA.

65

1000
800
¢ 600
(C
o
< 400
200
0
1 2
Servers
[] 1server
B staticAv
[] StaticMs
. Dynamic MS

Figure 5.1: Maximum Number of Avatars for Nonrandom Movement, Even Distribution

Reponse Time
© o o o o ©
- N w LN (&) (o)}

o

66

784
Avatars

[] 1server

B 2 Servers, Static MS
|:| 2 Servers, Dynamic MS

900

Figure 5.2: Response Times for Nonrandom movement, Even Distribution

Bytes Transferred

67

8000000

6000000

4000000

2000000

0

784 900
Avatars

|:| 1 Server, Nonrandom
I 2 servers, Nonrandom, Static MS
D 2 Servers, Nonrandom, Dynamic MS

Figure 5.3: Bytes Transferred for Nonrandom Movement, Even Distribution

68

The network became the bottleneck before either the Static MS or Dynamic MS schemes
stopped working (i.e. data generated by the super clients to be placed on the network was being

generated faster than the data was actually going onto the network).

54.2 Uneven Distribution

This section contains the experimental results and analysis for an uneven distribution of avatars
moving nonrandomly. The system configurationsareshownintable5.5. Responsetimesare shown
in table 5.6. The bytes of data received by each software component are shown in table 5.7. The

time to perform the load balancing algorithm is shown in table 5.8.

Case | #of servers Total # of av Distribution IBO
0] 1 250 N/A no
@) 1 300 N/A yes
(K) 2 150 Static Av no
(L) 2 200 Static Av no
(M) 2 250 Static Av yes
(N) 2 250 Static MS no
(0)) 2 300 Static MS no
(P 2 350 Static MS no
(Q 2 400 Static MS yes
() 2 250 Dynamic MS no
©) 2 300 Dynamic MS no
(M) 2 350 Dynamic MS no
V) 2 400 Dynamic MS no

69

V) 2 450 Dynamic MS yes
w) |4 350 Static MS no
X) 4 400 Static MS no
(Y) 4 450 Static MS yes
(2) 4 350 Dynamic MS no
(AA) | 4 450 Dynamic MS no
(AB) |4 500 Dynamic MS no
(AC) | 4 550 Dynamic MS yes
(AD) |6 400 Static MS no
(AE) |6 450 Static MS no
(AF) |6 500 Static MS no
(AG) |6 550 Static MS no
(AH) |6 600 Static MS yes
(Al) |6 450 Dynamic MS no
(A |6 500 Dynamic MS no
(AK) | 6 600 Dynamic MS no
(AL) |6 650 Dynamic MS yes
(AM) | 8 500 Static MS no
(AN) | 8 550 Static MS no
(AO) |8 600 Static MS no
(AP) |8 650 Static MS yes
(AQ) |8 500 Dynamic MS no
(AR) |8 600 Dynamic MS no
(AS) |8 700 Dynamic MS no
(AT) |8 800 Dynamic MS no
(AU) |8 850 Dynamic MS no

70

(AV) |8 900 Dynamic MS yes
Table 5.5: System Configurations for Nonrandom Uneven Distribution

Case | Average Min Max
0 0.11 <0.01 5.94
(K) |0.08 0.01 1.40
(L) |o0.08 0.01 1.04
(N) |0.07 <0.01 2.09
(O) 0.09 <0.01 1.93
P |o011 <0.01 4.47
(R) |002 <0.01 0.58
(S |003 <001 0.94
() |o0.07 <001 1.32
V) 0.08 <0.01 2.39
(W) |0.09 <0.01 1.61
(X) 017 <0.01 2.27
(2) |005 <0.01 2.27
(AA) |0.12 <0.01 12.62
(AB) |0.23 <0.01 19.68
(AD) |0.03 <0.01 0.80
(AE) |0.10 <0.01 3.901
(AF) |0.12 <0.01 1.52
(AG) |0.17 <0.01 2.52
(Al) |0.02 <0.01 4.02
(AJ |0.03 <0.01 4.44
(AK) |0.07 <0.01 7.35

71

(AM) | 0.09 <0.01 1.65
(AN) |0.16 <0.01 3.54
(AO) |0.21 <0.01 2.73
(AQ) |0.01 <0.01 4.02
(AR) |0.03 <0.01 10.92
(AS) |0.03 <0.01 4.47
(AT) |0.05 <0.01 2.73
(AU) |011 <0.01 7.20
Table 5.6: Response Times for Nonrandom Uneven Distribution (in seconds)
Case | Land manager Super Client Server(s)
0] 5,032 84,944 2,260,084
(K) 3,032 84,905 3,790,300
(L) 4,032 84,920 5,456,476
(N) 5,040 84,880 2,276,980
(O) 6,040 84,856 2,713,480
(P 7,040 84,904 3,151,692
(R) 29,812 84,832 2,760,348
©) 30,812 84,832 2,760,348
@) 31,812 84,892 3,204,184
V) 32,812 84,892 3,637,784
(W) | 7,056 84,976 3,352,772
(X) 8,056 85,012 3,801,604
2) 33,556 84,848 3,630,876
(AA) | 34,756 84,924 4,166,088
(AB) | 35,756 84,908 4,633,776

72

(AD) | 8,072 84,888 3,789,232
(AE) |9,072 84,972 4,227,684
(AF) [10,072 84,996 4,665,558
(AG) | 11,072 85,044 5,105,164
(Al) | 35,700 84,868 4,222,988
(AJ) | 36,700 84,848 4,662,540
(AK) | 38,700 84,896 5,521,620
(AM) | 10,088 84,948 4,726,412
(AN) | 11,088 84,996 5,167,276
(AO) | 12,888 85,056 5,964,678
(AQ) | 37,644 84,836 4,690,172
(AR) | 39,644 84,880 5,591,864
(AS) |41,644 84,844 6,378,682
(AT) | 43,644 84,940 7,313,288
(AU) | 44,644 84,848 7,628,740
Table 5.7: Total Bytes of Data Received for Nonrandom Uneven Distribution

Case | Average Min Max Second from max
(R) 0.02 0.01 0.30 0.02
(S |0.02 <0.01 0.29 0.02
(T) |0.02 <0.01 0.31 0.02
V) 0.02 0.01 0.29 0.03
2 0.02 0.01 0.63 0.03
(AA) |0.03 0.01 0.56 0.25
(AB) |0.08 0.02 0.75 0.26
(Al) |0.02 0.01 0.33 0.04

73

(A) |o0.02 0.01 0.33 0.09
(AK) |0.02 0.01 0.32 0.10
(AQ) |0.02 0.01 0.26 0.14
(AR) |0.02 0.01 0.26 0.06
(AS) |0.02 0.01 0.28 0.03
(AT) |0.03 0.01 0.45 0.09
(AU) | 0.02 0.01 0.61 0.08

Table 5.8: Timeto Perform LBA for Nonrandom Uneven Distribution (in seconds)

54.2.1 Analysis

Because the avatars are now in groups, every time one avatar moves all other members of its group
must be informed of this movement, since they can al seethat avatar. Thisresultsin alarge drop
in the number of avatars that a given configuration can hold compared to the case of an even

distribution of avatars.

Figure5.4 showsthe maximum number of avatarssupported. The Static Av scheme supports
less avatars than one servers. Thisis because every time an avatar on one server moves the other
server must be informed. More avatars can be supported by more servers for the Static MS and
Dynamic MSschemes. The Dynamic M S scheme supports more avatars than the Static M S scheme
for the same number of servers. Thisisbecause the load is becoming unbaanced when the Static

MS scheme is used.

74

1000
800
¢ 600
]
<
< 400
200 — |
0 |
1 2 4 6 8
Servers
D 1 Server
B staticAv
[] staticms
. Dynamic MS

Figure 5.4: Maximum Number of Avatars for Nonrandom Movement, Uneven Configuration

0.12

o
—

o
o
oo

Reponse Time
o o
o o
2 o

o
o
N

o

75

250 300 350
Avatars

D 1 Server

B 2 Servers, Static MS
D 2 Servers, Dynamic MS

400

Figure 5.5: Response Times for Nonrandom Movement, Uneven Distribution, 1 and 2 Servers

76

0.25
0.2
(O]
£
—0.15
o
e
S 0.1 |
g |
0.05 |
0 |
250 300 350 400 450
Avatars
[] 2sServers, Static MS
B 2 servers, Dynamic MS
D 4 Servers, Static MS
. 4 Servers, Dynamic MS

Figure 5.6: Response Times for Nonrandom Movement, Uneven Distribution, 2 and 4 Servers

0.25

o
N o
& N

Reponse Time
o
-

0.05

77

350

400

|l [N

450 500 550 600
Avatars

4 Servers, Static MS
4 Servers, Dynamic MS
6 Servers, Static MS
6 Servers, Dynamic MS

Figure 5.7: Response Times for Nonrandom Movement, Uneven Distribution, 4 and 6 Servers

78

0.25

o
)

o

-

(&)
\

o

-
]
\

Reponse Time

0.05 B I
0 H | ! | I | |
400 450 500 550 600 700 800 850

Avatars

6 Servers, Static MS
6 Servers, Dynamic MS
8 Servers, Static MS
8 Servers, Dynamic MS

|l [N

Figure 5.8: Response Times for Nonrandom Movement, Uneven Distribution, 6 and 8 Servers

79

3500000

3000000

o 2500000 Fﬁ

£ 2000000
m

1500000

1000000

500000

0 |
250 300 350 400
Avatars

[] 1server
B 2 Servers, Static MS
[] 2 Servers, Dynamic MS

Figure 5.9: Bytes Transferred for Nonrandom Movement, Uneven Distribution, 1 and 2 Servers

80

4000000

3000000

Bytes

2000000

1000000

0 |
250 300 350 400 450
Avatars

2 Servers, Static MS
2 Servers, Dynamic MS
4 Servers, Static MS
4 Servers, Dynamic MS

[l

Figure 5.10: Bytes Transferred for Nonrandom Movement, Uneven Distribution, 2 and 4 Servers

81

5000000
4000000

/)]
£ 3000000
m

2000000

1000000

0 |
350 400 450 500 550 600
Avatars

4 Servers, Static MS
4 Servers, Dynamic MS
6 Servers, Static MS
6 Servers, Dynamic MS

[l

Figure 5.11: Bytes Transferred for Nonrandom Movement, Uneven Distribution, 4 and 6 Servers

82

“ 3000000 1
2000000 1
1000000 1

0 |

400 450 500 550 600 700 800 850
Avatars

7000000
6000000 N
, 5000000 H
£ 4000000 -
| | |

6 Servers, Static MS
6 Servers, Dynamic MS
8 Servers, Static MS
8 Servers, Dynamic MS

[l |5

Figure 5.12: Bytes Transferred for Nonrandom Movement, Uneven Distribution, 6 and 8 Servers

83

Figure 5.5 showsthe responsetimesfor one and two servers. Using two servers gives better
response times than using one server for the same number of avatars. The Dynamic M S scheme
gives lower response times than the Static MS scheme for the same number of avatars. Only the
Dynamic M'S scheme supports 400 avatars. Figure 5.6 show the response times for two and four
servers. The Dynamic M S scheme gives lower response times than the Static M S scheme for the
same number of servers and avatars. For 400 avatars using two servers the Dynamic M S scheme
givethebest responsetime. Using four serverswith the Dynamic M S schemeisrequired to support
450 avatars. Figure5.7 showstheresponsetimesfor four and six servers. The Dynamic MSscheme
gives the same or lower response times than the Static MS scheme for the same number of servers
and avatars. Using six servers with the Dynamic MS scheme is required to support 600 avatars.
Figure 5.8 showstheresponsetimesfor six and eight servers. The Dynamic M Sschemegiveslower
response times than the Static M S scheme for the same number of serversand avatars. Using eight
servers with the Dynamic M S scheme is required to support 850 avatars. In general, the Dynamic
MS scheme gives lower response times and can support more avatars because it keeps the load

balanced.

Figure 5.9 shows the number of bytes transferred for one and two servers. More bytes are
transferred when two servers are used. More bytes are transferred when the Dynamic MS scheme
isused. Usingtwo serverswith the Dynamic M S schemeisrequired to support 400 avatars. Figure
5.10 shows the number of bytes transferred for two and four servers. More bytes are transferred
when four servers are used, for the same number of avatars. More bytes are transferred when the

Dynamic M S schemeis used, for the same number of servers and avatars. Using four serverswith

84

the Dynamic M S schemeisrequired to support 450 avatars. Figure 5.11 showsthe number of bytes
transferred for four and six servers. More bytes are transferred when four servers are used for the
same number of avatars. More bytes are transferred when the Dynamic M S schemeis used, for the
same number of serversand avatars. Using six serverswith the Dynamic M S schemeisrequired to
support 600 avatars. Figure 5.12 shows the number of bytes transferred for six and eight servers.
About the same number of bytes are transferred for the same number of serversand avatars. Using
eight serverswith the Dynamic M S schemeisrequired to support 850 avatars. In general more bytes
aretransferred across the network when the Dynamic M Stechniqueis used because of the overhead

of the load balancing agorithm.

5,5 Random Movement Case

This section contains the experimental results and analysis for the case of random movement of

avatars.

55.1 Even Distribution

Thissection containsthe experimental resultsand analysisfor aninitially evendistribution of avatars
moving randomly. The system configurations are shown in table 5.9. Response times are shown
intable5.10. The bytes of datareceived by each software component are shownintable 5.11. The

time to perform the load balancing algorithm is shown in table 5.12.

Case | # of servers Total # of av Distribution IBO
A) |1 784 N/A no
B) |1 900 N/A yes
< |2 784 Static MS no
D) |2 900 Static MS no
E) |2 784 Dynamic MS no
(F 2 900 Dynamic MS no
Table 5.9: System Configurations for Random Even Distribution

Case | Average Min Max
(A) |0.11 <0.01 4.24
(C) |0.05 <0.01 3.31
(D) |0.09 <0.01 8.94
(E) |0.01 <0.01 0.81
(F) |o0.08 <0.01 4.55

Table 5.10: Response Times for Random Even Distribution (in seconds)
Case | Land manager Super Client Server(s)
(A) |15712 85,120 6,299,824
(C) [15,720 85,796 7,526,860
(D) | 18,040 86,116 8,604,408
(E) 32,672 84,904 7,526,860
(F) 42,812 85,916 9,993,836

Table 5.11: Total Bytes of Data Received for Random Even Distribution

86

Case | Average Min Max Second from max
(E) |0.02 <0.01 0.09 0.03
(P 10.03 <0.01 0.81 0.11

Table 5.12: Time to Perform LBA for Random Even Distribution (in seconds)

5511 Analysis

Figure 5.13 shows the maximum number of avatars supported. More avatars can be supported my
two servers than by one. Figure 5.14 shows the response times. Using two servers gives better
response times than using one servers for the same number of avatars. Figure 5.15 shows the
number of bytestransferred. More bytesare transferred when two serversareused. Morebytesare
transferred when the Dynamic MS scheme is used, due to the overhead of the load balancing

algorithm.

The network became the bottleneck before either the Static MS or Dynamic M S schemes
stopped working (i.e. data generated by the super clients to be placed on the network was being

generated faster than the data was actually going onto the network).

87

1000
800
» 600
(©
o
<< 400
200
0
1 2
Servers
D 1 Server
B staticMs

D Dynamic MS

Figure 5.13: Maximum Number of Avatars for Random Movement, Even Configuration

88

0.12

o
—

m
o
o
o

o
o
»

Reponse Ti
o
o
N

o
o
N

o

784 900
Avatars

[] 1 Server, Random
I 2 Servers, Random, Static MS
[] 2Servers, Random, Dynamic MS

Figure 5.14: Response Times for Random movement, Even Distribution

Bytes Transferred

89

10000000

8000000

6000000

4000000 |

2000000

0

784 900
Avatars

[] 1 server, Random
[2 Sservers, Random, Static MS
D 2 Servers, Random, Dynamic MS

Figure 5.15: Bytes Transferred for Random Movement, Even Distribution

0

55.2 Uneven Distribution

This section contains the experimental results and analysis for an uneven distribution of avatars
moving randomly. The system configurations are shown in table 5.13. Response times are shown
intable5.14. The bytes of datareceived by each software component are shownintable 5.15. The

time to perform the load balancing algorithm is shown in table 5.16.

Case | #of servers Total # of av Distribution IBO
(G) 1 250 N/A no
(H) 1 300 N/A yes
0] 2 250 Static MS no
J 2 300 Static MS no
(K) 2 350 Static MS yes
(L) 2 250 Dynamic MS no
(M) 2 300 Dynamic MS no
(N) 2 350 Dynamic MS no
(0)) 2 400 Dynamic MS yes
P 4 300 Static MS no
(Q 4 350 Static MS no
(R) 4 400 Static MS no
©) 4 450 Static MS yes
(M) 4 300 Dynamic MS no
V) 4 350 Dynamic MS no
V) 4 400 Dynamic MS no
w) |4 450 Dynamic MS no

91

X) 4 500 Dynamic MS no
(Y) 4 550 Dynamic MS yes
(2) 6 400 Static MS no
(AA) |6 450 Static MS no
(AB) |6 500 Static MS no
(AC) |6 550 Static MS no
(AD) |6 600 Static MS yes
(AE) |6 400 Dynamic MS no
(AF) |6 450 Dynamic MS no
(AG) |6 500 Dynamic MS no
(AH) |6 550 Dynamic MS no
(Al) |6 600 Dynamic MS no
(AJ) |6 650 Dynamic MS yes
(AK) |8 550 Static MS no
(AL) |8 600 Static MS no
(AM) | 8 650 Static MS no
(AN) |8 700 Static MS no
(AO) |8 750 Static MS yes
(AP) |8 550 Dynamic MS no
(AQ) |8 600 Dynamic MS no
(AR) |8 650 Dynamic MS no
(AS) |8 700 Dynamic MS no
(AT) |8 750 Dynamic MS no
(AU) |8 800 Dynamic MS no
(AV) |8 850 Dynamic MS no
(AW) | 8 900 Dynamic MS no

92

(AX) |8 950 Dynamic MS yes
Table 5.13: System Configurations for Random Uneven Distribution

Case | Average Min Max
(G) 0.10 <0.01 7.59
(1 0.11 <0.01 19.07
Q) 0.02 <0.01 3.49
(L) |o0.04 <0.01 1.31
(M) [0.04 <0.01 6.63
(N) 3.78 <0.01 86.38
P |o011 <0.01 21.57
Q) 0.36 <0.01 39.16
(R) |[1.32 <0.01 70.29
(T)y (o001 <0.01 3.05
V) 0.04 <0.01 9.98
(V) |017 <0.01 26.15
(W) |024 <0.01 32.92
X) 0.66 <0.01 86.13
(z) |o0.08 <0.01 14.26
(AA) | 0.10 <0.01 13.01
(AB) | 055 <0.01 47.30
AC) |1.00 <0.01 67.61
(AE) |0.06 <0.01 8.68
(AF) |0.09 <0.01 7.65
(AG) | 0.08 <0.01 19.98
(AH) | 1.16 <0.01 84.77

93

(Al) |0.04 <0.01 8.65
(AK) |0.03 <0.01 1.39
(AL) |0.18 <0.01 28.03
(AM) |0.18 <0.01 23.87
(AN) |0.86 <0.01 62.45
(AP) |0.02 <0.01 4.88
(AQ) |0.03 <0.01 10.62
(AR) |0.01 <0.01 2.01
(AS) |0.01 <0.01 2.47
(AT) |0.08 <0.01 11.68
(AU) | 0.03 <0.01 3.46
(AV) |1.48 <0.01 87.92
(AW) | 0.33 <0.01 33.49
Table 5.14: Response Times for Random Uneven Distribution (in seconds)
Case | Land manager Super Client Server(s)
(G) 5,032 84,896 2,258,752
0] 5,040 86,032 2,310,904
@) 6,040 86,444 2,745,356
(L) |30132 84,824 2,313,492
(M) [31,132 84,832 2,751,896
(N) 30,884 84,972 3,208,820
(P 6,056 86,700 2,780,364
Q) 7,056 86,292 3,222,088
(R) 8,056 86,188 3,627,144
(M 32,076 84,820 2,807,492

94

(U) |33076 85,348 3,256,756
v) | 34,076 84,992 3,700,488
(W) | 35076 85,372 4,146,164
(X) | 36,076 84,960 4,577,524
@ |so072 86,540 3,650,208
(AA) | 9,072 86,272 4,071,232
(AB) | 10,072 85,880 4,504,596
(AC) | 11,072 86,012 4,940,692
(AE) | 34,700 85,636 3,858,704
(AF) | 35860 84,808 4,185,176
(AG) | 37,020 86,140 4,673,548
(AH) | 38,020 86,016 5,108,084
(Al) | 39,020 85,104 5,512,268
(AK) | 11,088 85,964 6,300,428
(AL) | 12,088 86,044 6,800,120
(AM) | 13,088 86,068 7,315,564
(AN) | 14,088 86,672 7,688,668
(AP) | 38964 85,116 5,104,220
(AQ) | 40,012 86,128 5,603,584
(AR) | 40,964 85,104 5,920,528
(AS) | 41,964 85,116 6,360,028
(AT) | 42,964 85,268 6,754,168
(AU) | 44,124 85,016 7,223,844
(AV) | 44,676 84,876 7,613,128
(AW) | 46,124 86,256 8,030,900

Table 5.15: Total Bytes of Data Received for Random Uneven Distribution

95

Case | Average Min Max Second from max
(L) |0.02 0.01 0.29 0.02
(M) | 0.02 0.01 0.22 0.02
(M 0.06 0.01 0.63 0.09
V) 0.03 0.01 0.56 0.03
(V) 0.07 0.01 0.75 0.26
(W) |0.03 0.01 0.57 0.06
(X) |0.06 0.01 0.75 0.26
(AE) |0.02 0.01 0.30 0.02
(AF)]0.02 0.01 0.32 0.09
(AG) |0.02 0.01 0.30 0.03
(AH) |0.02 0.01 0.30 0.09
(Al)]0.03 0.01 0.31 0.09
(AP) |0.02 0.01 0.30 0.04
(AQ) |0.02 0.01 0.27 0.13
(AR) | 0.03 0.01 0.31 0.13
(AS) |0.03 0.01 0.30 0.07
(AT) |0.03 0.01 0.45 0.04
(AU) | 0.02 <0.01 0.44 0.04
(AV) | 0.04 0.01 0.59 0.16
(AW) | 0.03 0.01 0.41 0.12

Table 5.16: Time to Perform LBA for Random Uneven Distribution (in seconds)

5521 Analysis

Because the avatars are now in groups, every time one avatar moves all other members of its group

must be informed of this movement, since they can all see that avatar. Thisresultsin alarge drop

96

in the number of avatars that a given configuration can hold compared to the case of an even
distribution of avatars. Figure5.16 showsthe maximum number of avatars supported. Moreavatars
can be supported my more servers. The Dynamic M S scheme supports more avatars than the Static
MS scheme for the same number of servers, because the Dynamic MS scheme keeps the load

balanced.

Figure 5.17 shows the response times for one and two servers. Using two servers, Dynamic
MS gives a better response time than using one server, but using two servers, Static MS gives a
worse response time. The Dynamic M S scheme gives a lower response time than the Static MS
scheme for 250 avatars, but a higher response time for 300 avatars. Only the Dynamic MS scheme
supports 350 avatars. Figure 5.18 showsthe response timesfor two and four servers. The Dynamic
MS scheme gives lower response times than the Static M'S scheme for the same number of servers
and avatars, except for 300 avatars and two servers. Using four servers with the Dynamic MS
scheme is required to support 500 avatars. Figure 5.19 shows the response times for four and six
servers. The Dynamic M S scheme gives lower response times than the Static MS scheme for the
same number of serversand avatars, except for 550 avatarswith six servers. Using six serverswith
the Dynamic MS schemeis required to support 600 avatars. Figure 5.20 shows the response times
for six and eight servers. The Dynamic M S scheme gives lower response times than the Static MS
scheme for the same number of servers and avatars, except for 550 avatars with six servers. Using
eight servers with the Dynamic MS scheme is required to support 900 avatars. In general, the
Dynamic M S scheme gives|ower response times and can support more avatars because it keepsthe

|oad balanced.

97

1000
800 r
» 600
@©
[
< 400
200 | |
0 |
1 2 4 6 8
Servers
[] 1Server
B StaticMS

D Dynamic MS

Figure 5.16: Maximum Number of Avatars for Random Movement, Uneven Configuration

98

Reponse Time

0 1 | 3 ‘
250 300 350
Avatars

D 1 Server

B 2 Servers, Static MS
D 2 Servers, Dynamic MS

Figure 5.17: Response Times for Random Movement, Uneven Distribution, 1 and 2 Servers

99

w

Reponse Time

o . N (
S IS I VIS TN SURINS B N

~ . |

250 300 350 400 450 500 550
Avatars

o

2 Servers, Static MS
2 Servers, Dynamic MS
4 Servers, Static MS
4 Servers, Dynamic MS

|l [N

Figure 5.18: Response Times for Random Movement, Uneven Distribution, 2 and 4 Servers

100

1.4 -
1.2
g]
g
"
0.2
0

] ‘ «m -
300 350 400 450 500 550 600
Avatars

4 Servers, Static MS
4 Servers, Dynamic MS
6 Servers, Static MS
6 Servers, Dynamic MS

|l [N

Figure 5.19: Response Times for Random Movement, Uneven Distribution, 4 and 6 Servers

101

0.2 H

R | A t

400 450 500 550 600 650 700 750 800 850 900
Avatars

6 Servers, Static MS
6 Servers, Dynamic MS
8 Servers, Static MS
8 Servers, Dynamic MS

|l [N

Figure 5.20: Response Times for Random Movement, Uneven Distribution, 6 and 8 Servers

102

3000000
2500000
£ 2000000
@ 1500000
1000000
500000

0 |
250 300 350
Avatars

[] 1server
B 2 Servers, Static MS
[] 2 Servers, Dynamic MS

Figure 5.21: Bytes Transferred for Random Movement, Uneven Distribution, 1 and 2 Servers

103

4000000
«» 3000000
9
>
@ 2000000
1000000
0 | | |
250 300 350 400 450 500 550
Avatars
[] 2 servers, Static MS
B 2 servers, Dynamic MS
[| 4 servers, Static MS
[l 4 Servers, Dynamic MS

Figure 5.22: Bytes Transferred for Random Movement, Uneven Distribution, 2 and 4 Servers

5000000
4000000

N

£ 3000000

m
2000000
1000000

0

104

300

350

HlE

400 450 500 550 600
Avatars

4 Servers, Static MS
4 Servers, Dynamic MS
6 Servers, Static MS
6 Servers, Dynamic MS

Figure 5.23: Bytes Transferred for Random Movement, Uneven Distribution, 4 and 6 Servers

105

8000000
@ 6000000 |
S
@ 4000000
2000000 —
. 0 s
450 550 650 750 850

400 500 600 700 800 900
Avatars

6 Servers, Static MS
6 Servers, Dynamic MS
8 Servers, Static MS
8 Servers, Dynamic MS

HlE

Figure 5.24: Bytes Transferred for Random Movement, Uneven Distribution, 6 and 8 Servers

106

Figure 5.21 shows the number of bytestransferred for one and two servers. More bytes are
transferred when two servers are used. More bytes are transferred when the Dynamic MS scheme
isused. Using two serverswith the Dynamic M S schemeisrequired to support 350 avatars. Figure
5.22 shows the number of bytes transferred for two and four servers. About the same number of
bytes are transferred for two servers with the same number of avatars. More bytes are transferred
when the Static MS scheme is used, for four servers and the same number of avatars. Using four
servers with the Dynamic M S scheme is required to support 550 avatars. Figure 5.23 shows the
number of bytestransferred for four and six servers. Morebytesaretransferred when six serversare
used for the same scheme and number of avatars. For two servers more bytes are transferred for the
Static MS scheme for the same number of avatars. For four servers more bytes are transferred for
the Dynamic M'S scheme for the same number of avatars. Using six servers with the Dynamic MS
scheme is required to support 600 avatars. Figure 5.24 shows the number of bytes transferred for
six and eight servers. More bytes are transferred when eight servers are used for the same scheme
and number of avatars. For six servers more bytes are transferred for the Dynamic M S scheme for
the same number of avatars. For eight servers more bytes are transferred for the Static M S scheme
for the same number of avatars. Using eight servers with the Dynamic M S scheme is required to
support 900 avatars. In general, more bytes are transferred across the network when the Dynamic

MS technique is used because of the overhead of the load balancing algorithm.

5.6 Summary

The Static Av scheme supports less avatars on two servers than one server supports, for both the

nonrandom even and nonrandom uneven distributions. Thisisbecausewhenever anavatar performs

107

an action, the server that is not hosting it most be informed. One server supports less avatars than
either the Static MS or Dynamic M S schemes, but it requires the least amount of data to be sent
acrossthe network, when it can support all theavatars. Asexpected, more servers can support more
avatarsthan one server, but thereismorenetwork traffic, sincethe servershave to communicatewith
each other. For the even distribution, the Static MS scheme produces better response times and
requires less data to be sent across the network than the Dynamic MS scheme. The lower response
times are because the avatars are evenly distributed across the map, and hence statically assigning
equal sized portions of the map to the servers gives the best |oad distribution. The lower network
traffic than the Dynamic M S scheme is because the Dynamic M S scheme has the overhead of the
load balancing algorithm. For the uneven distribution, the Dynamic MS scheme gives better
response times, but requires more data, relative to the Static MS scheme, to be sent across the
network. The lower response times occur because the load is periodically rebalanced by the load
balancing agorithm. Asbefore, the Dynamic M'S scheme requires more data to be sent across the
network due to the overhead of the load balancing algorithm. For an uneven distribution, the
Dynamic M S scheme always supported the most avatars for a given number of servers. Thisis

because the load is kept balanced by the |oad balancing agorithm.

Chapter 6

Conclusions and Future Directions

6.1 Conclusions

A variety of schemes can be used to support a massively multiplayer online role playing game
(MMORPG). Three schemes were examined: static assignment of avatars to servers, static
assignment of map segmentsto servers, and dynamic assignment of map segmentsto servers. Inthe
case of dynamic assignment of map segmentsto serversanew |load balancing algorithm (LBA) was
presented. Four different scenarioswere covered - an even distribution of avatars with nonrandom
movements, an even distribution with random movements, an uneven distribution with nonrandom
movements, and an uneven distribution with random movements of avatars. The conclusionsbased

on the analysis of the data collected from the simulations are given below.

108

109

Never use static assignment of avatarsto servers, sinceit supportslessavatarson two servers
than are supported by one server. If possible, only one server should be used, sinceit requires the

least amount of datatransfer, and has the least hardware cost.

In the case of an even distribution of avatars, static assignment of map segments to servers
should be used, with the least number of servers that can handle the expected number of avatars.
Thisgives a better average response time than dynamic assignment of avatarsto servers and results

in less data being transferred.

Inthe case of an uneven distribution, dynamic assignment of map segmentsto serversshould
be used, with the least number of serversthat can handle the expected number of avatars, sincethis
gives the lowest average response time, and more avatars can be handled than in the case of static
assignment of map segments to servers for the same number of servers. There will be more data
transferred over the network than for the case of static assignment of map segments to servers due

to the overhead of the LBA.

6.1.1 Contribution of the Thesis

In this thesis three different multi-server approaches were compared and contrasted. Moreover, a
new multi-server approach was presented in this thesis. It involves the use of aload balancing
algorithm. In order to compare and contrast the three multi-server approaches anovel test bed was
created that can be readily applied in other similar experiments. Results were found for various

distributions of avatars and partitioning strategies.

110

6.2 Applicationsof ThisWork

Thiswork isapplicableto any application that requiresavirtual world with alargenumber of avatars
init. Entertainment products that are currently in development could benefit. A simulation of
emergency response to a natural disaster could be smulated. This would allow for much more
diverse conditions than could be simulated in alive exercise. A virtual conference could be held.
Conference participants would not have to travel to the conference. A virtua shopping mall could
be created. A person could go to a shopping mall without leaving home. A historical simulation
could be created. A user’s avatar would take on the role of person living in a particular time and
place in the past. For example, a Roman citizen in ancient Rome. It is anticipated that other

applications will be found.

6.3 FutureDirections

There are several areas of possible future research:

. A model based approach could be taken. The model would have to take into account the
operating system and networking hardware and software in addition to the actual control of

the avatars. It is anticipated that in the most general case the problem is NP-complete.

. Different actionsof an avatar could be allowed to havedifferent processing requirements(i.e.
not al actions would be equivalent). One of the tasks in this case would be to determine

what the variation in processing requirements are for different actions by an avatar.

111

The simulator could simulate different network delays for clients. One of the tasksin this

case would be to determine what the variation in network delay isfor clients.

More variety of distributions of avatars could be examined. Due to limited time only two
distributions were examined in thisthesis. If many more distributions were examined then

trends relating distributions may be found.

A study of actual MMORPGs to attempt to determine what distributions of avatars are
common, could bedone. Sinceno study has been doneto determinewhat distributions occur
in MMORPGsSs this thesis simply examined two extremes. It isunknown if either of these

extremes is representative of what happensin an actual MMORPG.

Theeffect of various map segment sizes could beexamined. Larger map segmentsallow the
LBA to run faster, but the load will generally be less evenly distributed across the servers.
Smaller map segments will result in a longer running LBA, but generally more even
distribution of load acrossthe servers. Thelonger the running time of the LBA the more out
of date the resulting new distribution of MSesis, sinceit isbased on old data. By varying

the sizes of the map segments the above effects could be studied.

TheLBA could bemodifiedto deal with heterogeneousservers. TheLBA initscurrent form

assumesthat all serversare homogeneous. By extending the LBA to support heterogeneous

112

servers the LBA becomes more flexible and useful under more circumstances.

A different networking architecture could be used, such asthat found in a cluster computer.
The network became the bottle neck for the even distribution. Using a different network
architecture may have eliminated this bottle neck. Aswell, response timeswill potentially

be lowered.

The effect of using shared memory multiprocessing could be examined. This research
assumed the use of message passing due to the use of a network of computers. If ashared
memory multiprocessor is used than message passing may not be the best way for processes

to communicate.

The impact of small changes to the LBA could be examined. The LBA sometimes has to
break ties. Theimpact of arbitrarily breaking all ties, or using some criteriaother than what

is currently used could be examined. Other minor modifications are possible.

Anentirely different LBA, still using map segments, could be proposed. Once the decision
to use map segments is made, it is possible to come up with many different ways to do
dynamic load balancing. Most of thesewill beineffective, but one or more may actually be

more effective than the LBA used in this thesis.

Bibliography

[1] Asheron’s Call (http://www.asheronscall.com). Note: Asheron’s Call is an example of a

massively multiplayer online roleplaying game.

[2] M. A. Bassiouni, M. H. Chiu, M. Loper, M. Garnsey, J. Williams, “Performance and
Reliability Analysisof Relevance Filtering for Scal able Distributed Interactive Simulation”,
ACM Transactionson Modeling and Computer Simulation, Vol. 7, No. 3, July 1997, pp. 293

- 331

[3] P. Drewes, A. Gonzalez, “ Automatic Performance M onitoring and Evaluation”, Proceedings
of theFifth Annual Conferenceon Al, Simulation and Planningin High Autonomy Systems:
Distributed Interactive Simul ation Environments, Gainesville, Florida, December 7- 9, 1994,

pp. 274 - 280.

113

114

[4] EverQuest (http://www.everquest.com). Note: EverQuest is an example of a massively

multiplayer online roleplaying game.

[5] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, P. Wong, “Theory and
Practicein Parallel Job Scheduling”, Proceedingsof thel PPS* 97 Workshop: Job Scheduling

Strategies for Parallel Processing, Geneva, Switzerland, April 1997, pp. 1 - 34.

[6] D. Fullford, “Distributed Interactive Simulation: 1t’ s Past, Present and Future”, Proceeding

of the 1996 Winter Simulation Conference, pp. 179 - 185.

[7] A.Geist, A.Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, "PVM: Parallel

Virtual Machine: A Users Guide and Tutorial for Networked Parallel Computing”, MIT

Press, 1994, ISBN 0-262-57108-0.

[8] E. Haddad, “ Load Distribution Optimizationin Heterogeneous M ultiple Processor Systems”,

Proceedings of the Workshop on Heterogeneous Processing, April 13, 1993, pp. 42 - 47.

[9] K. Hafner, M. Lyon, “Where Wizards Stay Up Late: The Origins of the Internet”, Simon &

Shuster, 1996.

[10] L. A.Hembree Jr., R. Siquig, “Distributed Interactive Simulation Atmosphere Subgroup

[11]

[12]

[13]

[14]

[15]

[16]

[17]

115

Rationale for Synthetic Atmosphere and Near-Space Environments’, Proceedings of the

1994 Summer Computer Simulation conference, pp. 789 - 794.

Hero's Journey (http://www.herosourney.net). Note: Hero's Journey is an example of a

massively multiplayer online roleplaying game that is currently under devel opment.

|EEE Standard for Information Technology - Protocol sfor Distributed Interactive Simulation

Application |IEEE Std. 1278-1993.

E. Keck, “Cost Effective Testing Using DIS’, Proceedings of the 1996 Summer Computer

Simulation Conference, Portland, Oregon, July 21 - 25, 1996, pp. 360 - 365.

The Laws of Online World Design (http://www.legendmud.org/raph/gaming/laws.html).

Note: These*laws’ werecompiled by Raph K oster, who was |ead designer of UltimaOnline

fromitsinitial conception until two yearsinto its public release.

T. G. Lewis, H. El-Rewini, “Introduction to Parallel Computing”, Prentice Hall, 1992.

K. C. Lin, D. E. Schab, “ The Performance Assessment of the Dead Reckoning Algorithmin

DIS’, Proceedings of the 1994 Summer Computer Simulation Conference, pp. 848 - 853.

Meridian 59 (http://www.meridian59.com). Note: Meridian 59isan exampleof a massively

[18]

[19]

[20]

[21]

[22]

[23]

116

multiplayer online roleplaying game.

Middle Earth (http://www.middle-earth.com). Note: Middle Earth is an example of a

massively multiplayer online roleplaying game that is currently under devel opment.

M. Morrision, “The Magic of Interactive Entertainment”, Sams Publishing, 1994.

The Museum of Classic Games and Classic Gaming
(http://www.classicgaming.com/museum). Note: This site contains historical information

on computer gaming in general.

E. H. Page, R. Smith, “Introduction to Military Training Simulation: A Guide for Discrete

Event Simulationists’, Proceedings of the 1998 Winter Simulation Conference, pp. 53 - 60.

Y . E. Papelis, “Terrain Modeling on High-Fidelity Ground V ehicle Simul ators’, Proceedings
of theFifth Annual Conferenceon Al, Simulation and Planningin High Autonomy Systems:
Distributed Interactive Simul ation Environments, Gainesville, Florida, December 7-9, 1994,

pp. 48 - 54.

E. W. Parsons, K. C. Sevcik, “Multiprocessor Scheduling for High Variability Service Time
Distributions’, Proceedingsof the |PPS* 95 Workshop: Job Scheduling Strategiesfor Parallel

Processing, Santa Barbara, CA, USA, April 1995, pp. 125 - 145.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

117

M. J. Quinn, “Parallel Computing: Theory and Practice”, McGraw-Hill, 1994, ISBN 0-07-

051294-9.

G. A. Schiavone, S. Sureshchandran, K. C. Hardis, “ Terrain Database Interoperability Issues
in Training with Distributed Interactive Simulation”, ACM Transactions on Modeling and

Computer Simulation, Vol. 7, No. 3, July 1997, pp. 332 - 367.

S. M Shatz, J. P. Wang, “Introduction to Distributed-Software Engineering”, IEEE

Computer, October 1987, pp. 23 - 31.

R. A. Siquig, L. A. Hembree Jr., “Environmental Effects for Distributed Interactive
Simulation: Standards and Environmental Representations Tasks”, Proceedings of the 1994

Summer Computer Simulation Conference, pp. 795 - 800.

B. Stroustrup, "The C++ Programming Language: Second Edition", Addison-Wesley, 1991,

ISBN 0-201-53992-6.

R.W. Tarr and J. W. Jacobs, "Distributed Interactive Simulation”, 1994 Summer Computer

Simulation Conference, Orlando FL, July 18 - 20, 1994.

Ultima Online (http://www.uo.com). Note: Ultima Online is an example of a massively

multiplayer online roleplaying game.

118

[31] UltimaOnline2 (http://www.uo2.com). Note: UltimaOnline2isan exampleof a massively

multiplayer online roleplaying game that is currently under development.

	CanadaMQ56681.pdf
	

