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Abstract

Antimicrobial peptides (AMPs) are not only fast microbe-killing molecules deployed

in the host defense of living organisms but also offer valuable lessons for developing

new therapeutic agents. While the mode of action of AMPs is not clearly under-

stood yet, membrane perturbation has been recognized as a crucial step in the

microbial killing mechanism of many AMPs.

In this thesis, we first present a physical basis for the selective membrane-

disrupting activity of cationic AMPs. To this end, we present a coarse-grained

physical model that approximately captures essential molecular details such as pep-

tide amphiphilicity and lipid composition (e.g., anionic lipids). In particular, we

calculate the surface coverage of peptides embedded in the lipid headgroup-tail in-

terface and the resulting membrane-area change, in terms of peptide and membrane

parameters for varying salt concentrations. We show that the threshold peptide

coverage on the membrane surface required for disruption can easily be reached for

microbes, but not for the host cell – large peptide charge (& 4) is shown to be the

key ingredient for the optimal activity-selectivity of AMPs (in an ambient-salt de-

pendent way). Intriguingly, we find that in a higher-salt environment, larger charge

is required for optimal activity.

Inspired by membrane softening by AMPs, we also study electrostatic modi-

fication of lipid headgroups and its effects on membrane curvature. Despite its

relevance, a full theoretical description of membrane electrostatics is still lacking

– in the past, membrane bending has often been considered under a few assump-

tions about how bending modifies lipid arrangements and surface charges. Here,

we present a unified theoretical approach to spontaneous membrane curvature, C0,

in which lipid properties (e.g., packing shape) and electrostatic effects are self-

consistently integrated. Our results show that C0 is sensitive to the way lipid

rearrangements and divalent counterions are modeled. Interestingly, it can change

its sign in the presence of divalent counterions, thus stabilizing reverse hexagonal

(HII) phases.
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Chapter 1

Introduction

1.1 Motivation and Goals

The discovery of penicillin by Alexander Fleming in 1928 was arguably one of the

most significant achievements in medicine. This discovery transformed medicine

and saved millions of lives in less than a century. It sounded like a miracle to cure

a then-untreatable disease within a few days or possibly a few hours. However,

the great service of antibiotics to public health has been accompanied by an ever

growing side effect: the development of antibiotic-resistant bacteria [1]. Alexander

Fleming was aware of this and had cautioned about the usage of antibiotics. In

his Nobel Lecture in 1945, Fleming states that “it is not difficult to make microbes

resistant to penicillin in the laboratory by exposing them to concentrations not suf-

ficient to kill them, and the same thing has occasionally happened in the body.” [2]

He continues, “the time may come when penicillin can be bought by anyone in the

shops. Then there is the danger that the ignorant man may easily underdose him-

self and by exposing his microbes to non-lethal quantities of the drug make them

resistant.” [2]

Given the widespread use of antibiotics over several decades, the emergence of

antibiotic-resistant microbes has been inevitable, even though their development
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and spread could be slowed down by the way antibiotics have been prescribed

and used. Moreover, antibiotic-resistant bacteria could arise as a natural result of

mutations and natural selection in the microbial populations of multicellular organ-

isms [1]. For instance, consider a population of bacteria treated with antibiotics.

The more resistant ones, who survive the antibiotic attack, multiply and constitute

a higher portion of the population. They can spread around and the same process

can repeat over and over again. The eventual result is that some treatable disease

will again become untreatable. In a point of view, this is a bitter reality to see how

an achievement in medicine brings about a more challenging trouble to the society.

Regardless of its cause and origin, scientific community are trying to find meth-

ods to respond to the growing threat of antibiotic-resistant microbes. One direction

has been designing and developing novel antimicrobial compounds as an alternative

or supplement to antibiotics. Among different candidates, antimicrobial peptides

(AMPs) have gained a great deal of attention over the last couple of decades [3–6].

These “evolutionary ancient weapons” [4] have been protecting multicellular organ-

isms (e.g., plants and animals) from microbial challenges through billions of years.

Constant exposure of multicellular organisms to pathogenic microbes is, at the first

stage, counteracted by their innate immunity in which AMPs are one of the main

combatants. The long term service of AMPs backs the notion that microbes can-

not easily develop resistance against them. This is a promising feature which could

rectify the current threat of antibiotic resistance [3].

Extensive research on antimicrobial peptides, followed by some clinical trials,

has not yet been successful in designing and synthesizing modified antimicrobial

peptides to be used as therapeutic agents [3, 5]. One or two AMPs have received

approval from Food and Drug Administration as anti-infective drugs [3, 5]. The

failure of many attempts has been rooted in AMPs’ weak antimicrobial activity or

their high toxicity for the host cells [3]. During the experiments, the AMP was not

strong enough to kill the invading pathogenic microbes. When it was, it was also
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toxic toward host cells that should not have been harmed. These results have left

the scientific community with a major question: How can AMPs be made more

active (microbe-killing) and, at the same time, more selective (having the ability

to discriminate host cells). The prospects for an answer in the genetical landscape

are grim: the biological activity of peptides arises from their amino acid sequence.

Peptides are made of typically 15-40 amino acid residues. There are 20 types of

standard amino acids in nature. To get a sense of the variety of possible peptides,

let’s consider a 20-amino acid long peptide, permutation of amino acids results in

2020 = 1026 different peptides. How can the “best” peptides from such a big pool

be found? What should be the criteria to determine the activity or selectivity of

peptides based on their amino acid composition? These fundamental questions

have not been adequately addressed so far.

In this thesis, we present a physical basis for membrane-perturbing activity

of AMPs. To this end, we develop a coarse-grained model of a AMP-membrane

system, which allows us to examine how peptide-membrane parameters control

peptide activity and selectivity. The emerging physical picture is that peptide

charge is a key ingredient for determining the optimal activity and selectivity of

AMPs, such that the optimal charge depends on the ambient salt. Inspired by the

experimental observations of AMP-induced membrane softening, we also examine

how the charge properties of membranes influence their conformational properties.

1.2 Antimicrobial Peptides

1.2.1 Discovery

The earliest investigation of the antimicrobial activity of normal tissues and body

fluids dates back to the last decades of the nineteenth century when antimicro-

bial substances were observed in blood, leucocytes and lymphatic tissues [6, 7]. At
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the same time, the precise identity of these substances was, however, not clearly

understood [7]. Later, in the first decades of the twentieth century, antimicro-

bial substances were classified based on the physiological properties of their tar-

gets, such as gram-staining properties by which bacteria were classified as Gram-

negative or Gram-positive. (Table 1 in reference [7]). Based on the limited knowl-

edge about the structure of the discovered antimicrobial agents, they were named

“small basic proteins”, “basic peptides”, “basic linear peptides”, etc. [7]. Few

decades later, in the 1980s, antimicrobial peptides became the center of attention

following a few discoveries in which AMPs were isolated from multicellular organ-

isms: amphibian magainins from skin of the frog by Michael Zasloff [8], insect

cecropins by Hans Boman [9], and mammalian defensins by Robert Lehrer [10].

These discoveries, along with the increasing resistance of bacteria to conventional

antibiotics, have directed the research of novel therapeutic substances to antimi-

crobial peptides. So far, more than 890 different antimicrobial peptides have

been identified and listed in databases (for an excellent collection you may visit

http://www.bbcm.units.it/∼tossi/amsdb.html). Among them, the 3D structures

of more than 50 AMPs have been determined.

1.2.2 Biological and physiochemical properties

Antimicrobial peptides are ubiquitous in nature [4]. They are genetically encoded

and form an essential component of the innate immunity in both plants and an-

imals [11]. Three families of AMPs have been observed in humans: defensins,

cathelicidins, and histatins [12–14]. The term “evolutionarily ancient weapons” [4]

points out the long term contribution of AMPs to the innate immunity and their

role in the evolution of multicellular organisms. Besides, the long term presence of

AMPs in nature for over two billion years suggests the notion that microbes cannot

easily develop resistance against them [3].
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Generally speaking, peptides are short proteins. They are made of about 10-50

amino acid residues [15]. There are 20 different amino acids in nature with dif-

ferent physical and chemical properties. Table 1.1 (adopted from reference [16])

shows their chemical and physical properties. The properties of peptides and pro-

teins are defined by the amino acid sequence in their structure [15]. Each protein

has its own biological function owing to its unique amino acid sequence. Antimicro-

bial peptides are typically cationic: they contain several positively charged amino

acid residues [4, 6]. As it turns out, this contributes to their selective activity,

making them potent for negatively charged membranes such as microbial mem-

branes [17, 18]. AMPs have amphipathic structure, that is, their amino acid se-

quence and their spatial structures are such that the hydrophilic residues and the

hydrophobic residues are located on opposite sides of the molecule [4, 6]. This

enables AMPs to interact with both water (polar) and the lipid part (non-polar)

of the cell membranes. The cationic charge and the amphipathic structure are

the two major factors granting AMPs their cell-membrane-disrupting ability [6].

Understanding the exact mechanisms by which AMPs disrupt lipid bilayers and

cell membranes have been the subject of extensive research over the last couple of

decades. In the next section we briefly present the discoveries and the advances in

this particular area of research.

1.2.3 Mechanism of action

In the last couple of decades there has been extensive research on the mechanisms

of activity of AMPs (a comprehensive review can be found in reference [4]). There

has also been a great deal of interest in discovering the optimal parameters that

enable AMPs to selectively attack microbes while leaving the host cell intact [19].

A few specific steps are involved in microbial killing. As discussed in reference [6]

(with some modifications), the steps are: (i) cell discrimination; (ii) binding and
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Table 1.1: Amino acids and their physical properties

Amino Acid 3-Letter name Side chain polarity Net charge

Alanine Ala nonpolar 0
Arginine Arg polar +1

Asparagine Asn polar 0
Aspartic acid Asp polar -1

Cysteine Cys nonpolar 0
Glutamic acid Glu polar -1

Glutamine Gln polar 0
Glycine Gly nonpolar 0

Histidine His polar 0
Isoleucine Ile nonpolar 0
Leucine Leu nonpolar 0
Lysine Lys polar +1

Methionine Met nonpolar 0
Phenylalanine Phe nonpolar 0

Proline Pro nonpolar 0
Serine Ser polar 0

Threonine Thr polar 0
Tryptophan Trp nonpolar 0

Tyrosine Tyr polar 0
Valine Val nonpolar 0

membrane association; (iii) membrane perturbation and rupture.

Cell discrimination

Antimicrobial peptides were shown to kill bacteria in 15-90 minutes [6]. One of

the most important features of the action of AMPs is their ability to recognize

the target cell in the crowd of host cells [4]. AMPs are known to utilize one of

the structural differences between host cell and microbial cells to achieve this goal.

The outer leaflet of the outer membrane of bacterial membranes is abundant in

anionic lipids, while the host cell is overall neutral on its outer layer [4]. AMPs,

typically, bear a few cationic amino acid residues in their structure and are mainly
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Figure 1.1: The attraction between antimicrobial peptide and microbial membrane is

increased by electrostatic interaction.

cationic. Their interaction with microbial membranes is boosted by the coulomb

interaction between the cationic residues and anionic lipids on the membrane [4,18].

This is the origin of peptide selectivity (Fig. 1.1). At first glance, one may conclude

that the more highly charged peptides would be more potent against microbes.

This view is, however, not consistent with the experimental observations [19]. As

will be elaborated in this thesis, cell discrimination and association with cell mem-

branes are the combined effect of several different interactions. Even though the

electrostatic interaction plays a central role, it is influenced by other effects, such

as hydrophobocity of peptides, and is complicated with “many-body Coulomb in-

teractions” so that the AMP activity diminishes if the peptide charge exceeds an

optimal value which is around +5 (electronic charges) [19, 20].

This picture of membrane discrimination is somehow complicated by the fact

that the microbial membranes are much more than a pure lipid bilayer [15]. Gram-

negative and Gram-positive bacteria have more complex structures, as will be dis-

cussed later in this chapter. Nevertheless, the outer membranes of Gram-negative
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Figure 1.2: Antimicrobial peptide SMAP29 attached to the outer leaflet of the cell

membrane. Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews

Microbiology (K. A. Brogden, 3:238-250), copyright (2005).

organisms contain negatively charged lipopolysaccharides (LPS) [15]. Most likely,

AMPs are first attracted to this cell envelope and subsequently interact with the

lipid matrix of the cell membrane.

A fundamental method to identify the main target site of antimicrobial peptides

is microscopy. Some AMPs, like Magainin 2, are observed to bind to the cell surface

while some others, like biotinylated buforin II, enter the cytoplasm [21]. Fig. 1.2,

adapted from reference [6], shows the membrane structure of bacteria which is

damaged as treated by AMPs (SMAP29).

Binding and membrane association

Once an AMP is brought into close proximity to a lipid bilayer by the electro-

static interactions, it may interact more effectively with the cell membrane through

its hydrophobic residues [4, 6, 18, 22]. Note that hydrophobic interactions, unlike

electrostatic forces, are not long-ranged. In a series of studies by Huang et al. a

clear picture of the activity of AMPs against model lipid bilayer has been pre-
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sented [23–25]. In these studies, oriented circular dichroism (OCD) was used to

find the orientation and the secondary structure of peptides bound to the lipid

membranes. X-ray diffraction was used to measure the thickness of the membrane.

These studies suggest that association of peptides with lipid bilayers reduces the

thickness of the bilayer. Membrane thinning indicates that the peptides associ-

ated with the lipid bilayer tend to reside on the headgroup-tail interface, parallel

to the membrane, stretching the bilayer. Because the volume of the hydrocarbon

chain (the lipidic area of the membrane) remains constant, membrane thinning

must be the direct consequence of its area stretch (Fig. 1.3). Experiments have

clearly shown that there is a linear relationship between the molar ratio of peptide

to lipids (P/L) and the thickness of the lipid if (P/L) is smaller than a certain

value, (P/L)∗. Beyond (P/L)∗, the thickness remains constant, which is thought

to indicate a somewhat different type of peptide-lipid interactions [23, 25]. These

results have been remarkably important in clarifying the mechanism of action of

AMPs.

The parallel association of peptides with lipid membranes is driven mainly by

the amphipathicity of the AMPs: the spatial organization (secondary structure)

of the AMPs is such that hydrophobic residues are separated from the hydrophilic

ones [4, 6, 18, 26]. The hydrophobic residues stay in contact with lipid tails, while

hydrophilic residues are in contact with the solution. In this arrangement, AMPs

remain parallel to the surface and thus stretch the overall area of the membrane [23,

25,26]. This is analogous to the situation where the the membrane is stretched by

external pressure. In other words, peptide binding results in reduced membrane

integrity. Once (P/L) exceeds the threshold, (P/L)∗, pores start to form in the

membrane. In the next subsection, we discuss the details of pore formation.
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Figure 1.3: The expansion in the overall area of a lipid bilayer can be measured by thick-

ness change. This picture is correct for (P/L) < (P/L)∗. Above (P/L)∗, the thickness

remains constant - extra peptide take part in pore formation and not membrane thinning.

Membrane perturbation and rupture

Bilayer tension increases due to peptide crowding (high (P/L) value). As a result,

the peptide and the membrane have to be rearranged to relieve the excess pressure.

In general, the structure of the lipid bilayer is distorted in response to the tension.

There are two major mechanisms by which the bilayer is distorted. As summarized

in reference [6], in one mechanism pores are formed in the membrane, while in the

other, the membrane is ruptured and micelles are developed (the carpet-model).

Both of these mechanisms lead to the membrane’s collapse and the cell’s death.

In some cases, however, membrane collapse lags the loss of viability of the cell [6].

Two types of AMP-mediated pores are observed in lipid bilayers: barrel-stave pores

and toroidal pores (Fig. 1.4) [26, 27]. The type of the pore that forms on the lipid

bilayer depends on the structure of AMP rather than on the lipid’s composition [6].

In what follows, we discuss the different pores and the carpet-model that supports
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the micellization of the lipid bilayer (Fig. 1.5).
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peptides oriented perpendicular to the membrane 

Figure 1.4: Schematic cross-sectional view of pores induced by α-helical peptides. (a) In

barrel-stave pores, the hydrophobic side of the peptide faces hydrocarbon tails of lipids

and the hydrophilic side faces water. (b) In toroidal model, lipid head groups form a

curved edge separating lipid tails from water. The pore is stabilized by 4-7 peptides

aligned perpendicular to the membrane around the pore.

One way to assess the pore formation and membrane permeabilization is to

monitor the voltage across a lipid membrane [6]. AMPs such as Cecropins and

their synthetic peptide analogs were found to form large voltage-dependent ion

channels on lipid membranes. Comparison of different AMPs also sheds light on

some structural requirements for pore formation [28].

The barrel-stave pore is a unique type of pore formed by the peptide alame-

thicin [6, 26]. In this model, the pore is stabilized by arrangement of α-helical

peptides around the pore where the peptides are aligned perpendicular to the sur-

face of the membrane [26]. The edge of the pore is covered by peptides, such that

their hydrophobic side faces the lipid area of the membrane and their hydrophilic

side is in contact with water. In other words, peptides bridge between the lipid

11
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Figure 1.5: Excessive coverage of a lipid bilayer by peptides disrupts their structure by

creation of micelles.

area of the membrane and water to reduces the unfavorable hydrophobic energy.

The number of peptides in the barrel-stave pore ranges from 3 to 11, and the inner

radius of the pore falls within the range ≈ 1.8 − 4.0nm depending on the lipid

bilayers composition [29,30].

The toroidal pore is different from the barrel-stave pores in the arrangement of

lipids on the edge of the pore [27]. Here, lipid part is separated from water by the

polar headgroups of the phospholipids, just like that in the lipid bilayer. At the

edge of the pore, each layer bends continuously The pore is stabilized by vertical

alignment of the peptides around the pore [31]. Unlike in the barrel-stave pore, the

charged (polar) side of the peptides in a toroidal pore faces the lipid bilayer and

the headgroups of the lipids. Magainin is one of the antimicrobial peptides that

form toroidal pores [26]. Toroidal pores are larger than barrel-stave pores in size

and include 4-7 peptides per pore [26].

In the carpet model, there is no pore formed in the membrane. Instead, the ex-

tensive coverage of the membrane by peptides destroys the lipid bilayers by breaking

apart its structure in a detergent-like manner [22,32]. At some point, peptides make

the lipid molecules form micelles and disrupt the integrity of lipid bilayer [22,32].

The general mechanism of pore formation by AMPs can be explained through

the energetics of a spontaneous pore in a pure bilayer [25]. If a membrane is

subjected to some external tension, the bilayer expands in order to sustain the

12
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Figure 1.6: The energy of a simple pore , Epore, on the lipid bilayer as a function of
the radius of the pore , Rpore. The energy barrier to the growth of the pore, ∆E, is
determined by surface tension of the bilayer and the line tension on the edge of the pore.
See text for the equation governing the energy, Eq. 1.1.

tension. Once the tension is large enough, pores start forming in the bilayer. The

initiation of a single pore is not straightforward to analyze. However, once a pore

is opened, its fate is determined by the competition between the line tension on its

edge and the tension of the membrane [33,34]. Quantitatively, the energy of a pore

of radius Rpore can be expressed as

Epore = 2πRporeλ− πR2
poreγ (1.1)

where λ is the line tension and γ the surface tension. The first term accounts for

the energy cost associated with the pore edge that resists pore expansion. The

second term reflects the energy gain through the surface tension. Based on this

picture, pores are unstable: there is an energy barrier beyond which a pore expands

indefinitely and below which it closes. This energy barrier is shown by ∆E in

Fig. 1.6. In the case of peptide-induced pores, the spontaneous pores formed this

way will be then stabilized by peptides as explained above. In the third chapter we

will elaborate on pore formation, treating it as a barrier crossing process.
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1.3 Biological Cells

1.3.1 Structure of the cell

Cells are often referred to as the “building blocks of life” [15]. They are probably

the smallest entities that exhibit the basic life activities such as division and passing

on genetic information [15]. The number of cells in human body is “literally astro-

nomical” [35] , greater than the number of stars in the Milky Way. Their variety

is, however, limited to around 200 types [35], each exhibiting a specific physical

structure. Some, like nerve cells, are long with branched structure, some like red

blood cells are remarkably flexible. The basic structure of all cells is, however,

similar in the sense that all of them have a cell membrane that encapsulates the

cytoplasm and the cell compartments [35]. The structure of the cell membrane

and the cell compartments vary from species to species. In a microscopic view, cells

can be divided into two categories: eukaryotic and prokaryotic [15]. In eukaryotes,

their DNA is packed inside a space called the nucleus, a membrane bound organelle.

DNA in prokaryotes is not encapsulated in a specific compartment. Eukaryotic cells

also possess other membrane-bounded compartments, or organelles, such as mito-

chondria and the Golgi apparatus. Cells in plant, animal, and fungi are eukaryotes.

Bacteria are prokaryotes. Next, we discuss the structure of bacteria in more detail.

1.3.2 Bacteria

Unlike the simple view held by many, not all bacteria induce disease. A healthy

adult has about 1012 bacteria on the skin and about 1014 in the intestines. Some

bacteria are parasitic, while the majority of them live freely in soil and water. [36].

Bacteria vary widely in shape [37]; some are rounded or spherical cells, called cocci,

while others are elongated or rod-shaped, called bacilli [37]. There are also spiral
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Figure 1.7: Schematic cross sectional view of a bacterium. In bacteria, chromosomes are

not encapsulated in nucleus. Not all details shown here are present in every bacterium.

Modified by permission from Bacteria in Biology, Biotechnology and Medicine by P.

Singleton, 4th edition, John Wiley and Sons. 1997.

bacteria called spirilla when they are rigid or spirochaetes when they are flexible

[37].

Bacteria usually measure in the micrometer (µm) range: from 0.2µm for cells

of Chlamydia to 250µm from some of the cells of Spirochaeta [37]. In most species,

however, the maximum dimensions are within 1− 10µm [37].

Besides the physical shape, bacteria also differ in terms of both chemical compo-

sition and fine structure [37]. Fig. 1.7 depicts a ‘general’ schematic view of a bacte-

ria. Note that not all bacteria have the features shown in this figure. Even though

bacteria are sometime regarded as simple cells, owing to their lack of organelles

(such as a nucleus and Golgi apparatus), they employ several very sophisticated

mechanisms at the molecular level [37]. One example is a structural element called

flagellum (plural: flagella) found in many species. Flagella are surface appendages

that help a bacterium swim or attach to a desired surface.

15
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Figure 1.8: Amphipathic lipids can self-assemble in a variety of structures.

1.3.3 Bacterial cell membranes

A key structural element of all cell membranes is the lipid bilayer. Lipids account

for 50% of the mass of cell membranes [15]. The constituent lipid molecules are

amphipathic, that is, they have a polar (hydrophilic) head group and non-polar

(hydrophobic) tails. In water, they can self-assemble into structures such that

the polar head groups separate the non-polar tails from water. Depending on the

concentration, size, and shape of the lipid molecules, the preferred structure can

be a micelle, an inverted micelle or a lipid bilayer as depicted in Fig. 1.8 [35].

The thickness of a lipid bilayer is within the range of 4 - 5nm. One of the most

abundant types of lipids in cell membranes, which also occurs in all bacteria, is the

phospholipid. The schematic view of phospholipid molecules is shown in Fig. 1.8.

Phospholipids have fatty acid tails whose length and saturation affect the flexibility

of the lipid bilayer.

Lipid bilayers have unique elastic properties. In the first order approximation,

they can be considered as elastic sheets [35]. In a more microscopic view, however,

this model fails. One major issue is that, unlike an elastic sheet, a lipid bilayer has

no shear resistance. That is why they are often referred to as “fluid membranes”,

referring to the lateral diffusion and flip-flop of lipid molecules (the rarely occurring
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relocation from the inner layer to the outer layer or vice-versa). The fluidity of a

lipid bilayer depends on its composition and temperature. At a freezing point,

phospholipid molecules can undergo a phase transition and transform into rigid

crystalline (gel) structures [15]. The composition of lipid bilayers can also strongly

affect their rigidity. Presence of 20% cholesterol can double up the stiffness of a

lipid bilayer [35].

In cell membranes, other molecules such as membrane proteins are anchored to

the lipid bilayer in different ways [15]. Some proteins span across the membrane

and are called transmembrane proteins, while others are attached to the surface

through covalent bond or by hydrophobic regions of the protein [15]. The number

of proteins is much smaller than that of lipids in a cell membrane. However, they

account for almost half of the mass of the membranes on average [15]. Proteins

are also responsible for significant membrane functions. It is the proteins that give

membranes of different cells their characteristic functional properties [15].

The bacterial cell surface appears to be more complicated than that of eukary-

otes. While lipid bilayers form the main part of the membrane (or a cytoplasmic

membrane), a stiff envelope, the cell wall, protects the whole cell from mechanical

damage and regulates the transport of ions and molecules. The cell wall structure

varies in different species. There are two major types of cell walls: Gram-negative

and Gram-positive. The cell wall structure can be determined by monitoring the

bacterium’s response to certain dyes. The methodology, Gram stain, was discov-

ered by Danish scientist Christian Gram in the 1880s [37]. Figure 1.9, adapted from

reference [15], shows a schematic view of the cell wall structure of Gram-positive

and Gram-negative bacteria.

Gram-positive bacteria have a peptidoglycan layer that encapsulates the lipid

bilayer (inner layer) of the membrane. Gram-negative bacteria have two membranes

separated by a periplasmic space. The inner membrane is a phospholipid bilayer.
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intrepid eucaryote. Although they lack the elaborate morphological variety of
eucaryotic cells, bacteria display a surprising array of surface appendages,
which enable the cells to swim or adhere to desirable surfaces (Figure 24–4D).
Their genomes are also small, typically between 1,000,000 and 5,000,000
nucleotide pairs (compared to 12,000,000 for yeast and more than 3,000,000,000
for humans). 

As already emphasized, only a minority of bacterial species have the ability
to cause disease in humans. Some of those that do cause disease can only repli-
cate inside the body of their host and are called obligate pathogens. Others repli-
cate in an environmental reservoir such as water or soil and only cause disease
if they happen to encounter a susceptible host; these are called facultative
pathogens. Many bacteria are normally harmless but have a latent ability to
cause disease in an injured or immunocompromised host; these are called
opportunistic pathogens. As discussed previously, whether or not a particular
bacterium causes disease in a particular host depends on a wide variety of fac-
tors, including the overall health of the host; many normal flora, for example,
can cause severe infections in people with AIDS.
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Figure 24–4 Bacterial shapes and cell-surface structures. (A) Bacteria are classified by shape. (B and C) They are also
classified as Gram-positive or Gram-negative. (B) Bacteria such as Streptococcus and Staphylococcus have a single membrane
and a thick cell wall made of cross-linked peptidoglycan. They retain the violet dye used in the Gram staining procedure and
are thus called Gram-positive. (C) Gram-negative bacteria such as Escherichia coli (E. coli) and Salmonella have two
membranes, separated by a periplasmic space (see Figure 11–18). The peptidoglycan layer in the cell wall of these
organisms is located in the periplasmic space and is thinner than in Gram-positive bacteria; they therefore fail to retain the
dye in the Gram staining procedure. The inner membrane of Gram-negative bacteria is a phospholipid bilayer, and the
inner leaflet of the outer membrane is also made primarily of phospholipids; the outer leaflet of the outer membrane,
however, is composed of a unique glycosylated lipid called lipopolysaccharide (LPS) (see Figure 24–47). (D) Cell-surface
appendages are important for bacterial behavior. Many bacteria swim using the rotation of helical flagella (see Figure
15–71). The bacterium illustrated has only a single flagellum at one pole; others such as E. coli have multiple flagella.
Straight pili (also called fimbriae) are used to adhere to various surfaces in the host, as well as to facilitate genetic exchange
between bacteria. Some kinds of pili can retract to generate force and thereby help bacteria move across surfaces. Both
flagella and pili are anchored to the cell surface by large multiprotein complexes.

Figure 1.9: Bacterial membranes, categorized as Gram-positive or Gram-negative, have

seemingly different structures. In both cases, the inner membrane is a phospholipid

bilayer. c©2008 From Molecular Biology of the Cell 5E by Alberte et al. Reproduced by

permission of Gerland Science/Taylor and Francis LLC.

The outer membrane has an outer leaflet made of lipopolysaccharide (LPS) and an

inner leaflet made of phospholipids.

1.4 Organization of The Thesis

The first chapter of this thesis is an introduction detailing the motivation and

the goals of this work. The Introduction chapter includes a brief overview on

Antimicrobial Peptides (AMPs), their mechanism of action, as well as of biological

cells and cell membranes.

In the second chapter, we present the basis of electrostatic interactions in elec-

trolytes and derive the Poisson-Boltzmann equation.

The third chapter is devoted to the physical modeling of AMPs and lipid bi-

layers. Using a coarse-grained model for AMPs and lipid bilayers, we present a
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physical basis for the membrane-disruptive activity of AMPs. We find that the ac-

tivity of AMPs is maximized at a certain peptide charge (Q∼ 5). We also show that

in a high salt environment larger peptide charge is required for optimal activity.

In the forth chapter, we present a unified approach to the spontaneous bending

of lipid bilayers consisting of neutral and anionic lipids immersed in a salty solution.

We show that the spontaneous curvature of a membrane, C0, can easily be influ-

enced by electrostatic interactions in an ambient salt-dependent way. Interestingly,

its sign can be inverted by the presence of a small concentration of divalent cations.

In the last chapter, we present conclusions and propose two potential projects for

future considerations. First we propose a semi-analytical approach to membrane-

AMP association. Next, we outline the steps required for studying AMP-stabilized

pores.
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Chapter 2

Electrostatics in Biological

Environments

2.1 Poisson-Boltzmann Theory

The electrostatic interactions often play an important role in biological systems.

Examples include packing of DNA molecules in the presence of divalent cations

[38], curvature deformation of lipid bilayers in response to surrounding ions [79],

and selective-activity of antimicrobial peptides (AMPs), the main focus of this

thesis. In this chapter, we present a brief introduction to the fundamental theory

of electrostatic interactions in electrolytes, as it is mostly the case in biological

environments. To do so, we derive the Poisson-Boltzmann (PB) mean-field theory

and its linearized version, known as Debye-Hückel (DH) theory.

To begin with, consider a charged molecule in an electrolyte that interacts with

the surrounding ions in the solution. Oppositely charged ions, counterions, are

attracted and co-ions are repelled from the charged molecule. This redistribution

of counterions is a result of competition between energy and entropy. Energetically,
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counterions tend to completely neutralize the molecule. This process, however, is

opposed by entropy: ions prefer to move freely in the solution, maximizing the

entropy. As the result of this competition, the density of counterions would be

high near the charged molecule and decreases at larger distances. In the context of

equilibrium statistical mechanics, the PB equation determines the density profile of

counterions and co-ions around a charged object in an electrolyte. The PB equation

can be derived by combining the Boltzmann distribution with the Poisson equation,

which relates the charge distribution to the electrostatic potential. According to

the Boltzmann weight, the probability of finding an ion of the ith kind at position

r is exponentially related to the energy of that ion in position r. In the following,

we consider only electrostatic interaction. The energy of ion i is given by Zieψ(r),

where Zi is the valence of the ion which includes the sign of the ion, −e the electronic

charge, and φ(r) is the electrostatic potential at r. The density of the ions at r is

related to the probability of finding them at r. Thus, we can write

ni(r) ∝ exp

(
−Zieφ(r)

kBT

)
. (2.1)

where ni(r) is the density of the ions of the ith kind and kBT is the thermal energy.

On the other hand, in electrostatics, the Poisson equation relates the charge density

to the divergence of the electric field as

∇. [ε0ε(r)∇φ(r)] = −4πρ(r) = −4πe
∑
i

Zini(r), (2.2)

where ε0 and ε(r) are, respectively, the electric permittivity of vacuum and the

dielectric constant at r, ρ(r) the total charge density at r, and
∑

i is a sum over all

existing ions in the solution. Combination of Eqs. 2.1 and 2.2 yields the well-known
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Poisson-Boltzmann (PB) equation:

∇. [ε0ε(r)∇φ(r)] = −4πe
∑
i

Zin
0
i exp

(
−Zieφ(r)

kBT

)
. (2.3)

In this equation, n0
i denotes the number density of the ions of the ith kind at infinity

(assuming lim
r→∞

φ(r) = 0).

For electrolytes containing only (1:1) salt (e.g., NaCl) Eq. 2.3 can be further

simplified. By noting Zi = +1 or −1, and n0
+1 = n0

−1 = n0, for a (1:1) electrolyte

with constant electric permittivity, we can rewrite Eq. 2.3 as

∇2Ψ(r) =
−8πn0e

2

ε0εkBT

[
exp [−Ψ(r)]− exp [Ψ(r)]

2

]
= κ2 sinh [Ψ(r)] , (2.4)

where Ψ(r) = eφ(r)/kBT is the reduced electrostatic potential and κ−1 is the

Debye screening length defined by κ2 = 8πn0e
2/ε0εkBT .

2.2 Debye-Hückel Theory

Now we consider the case where particles in the solution are not highly charged, the

electric potential is low (Ψ(r)� 1). In this case, the PB equation can be expanded

to first order of Ψ(r), yielding a linear differential equation for the potential known

as the Debye-Hückel (DH) equation. The DH equation for (1:1) electrolyte reads:

∇2Ψ(r) = κ2Ψ(r). (2.5)

The DH potential at distance r from a small spherical charge, q, is given as

φ(r) =
1

ε0ε

q exp(−κr)
r

. (2.6)
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The electric potential decays exponentially (as compared to the long-ranged Coulomb

potential) due to the screening effect of the salt ions. The screening length, κ−1,

ranges from 10 Å for 100mM NaCl to 1µm for a pure water with H+ and OH− ions.

Note that PB and DH theories rely on the following important assumptions:

(i) the solvent is considered as a continuum medium, (ii) dipole interactions are

ignored, (iii) effects of finite ion sizes are ignored. It is also worthwhile to note that

PB and DH ignore the local fluctuations of the charge densities and are thus called

mean-field approaches. These density fluctuations can become important in some

specific circumstances as will be discussed in chapter 4 in detail.

Later, we introduce a modified PB approach, which enables us to incorporate

finite ion sizes and charge correlations.
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Chapter 3

Cationic Antimicrobial Peptides:

a Physical Basis for their Selective

Membrane-Disrupting Activity

3.1 Introduction1

Living organisms can flourish, even in the face of constant challenges of invading mi-

crobes such as viruses, fungi, and bacteria. A crucial step in their host defense is to

deploy antimicrobial peptides (AMPs), ı.e., fast-acting microbicidal molecules with

distinct “microbe-greedy” structure [4, 6, 40]. How they selectively kill microbes is

not clearly understood yet, but their membrane association has long been recog-

nized as an essential step in the microbial killing mechanism [18, 22, 23, 25, 41–43].

Indeed, many cationic peptides (e.g., magainin 2) kill microbes in a “collective”

or concentration-dependent manner by their pore-forming activities on the micro-

bial membrane (see Refs. [4, 6] for a comparative view on barrel-stave, carpet, or

1A brief version of this chapter including some figures is publihsed as an article in the journal
Soft Matter, 6, 1933- 1940, 2010.
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toroidal-pore mechanisms and Refs. [44, 45] for recent reviews on cationic AMPs).

Some peptides such as pyrrhocoricin target intracellular components [46]. Never-

theless, these membrane-targeting peptides are of particular interest, since they

do not easily induce microbial resistance, which would require the ‘costly’ work of

redesigning lipid membranes [4,18]. Furthermore, they act via a non-specific mech-

anism, thus killing a wide range of microbial pathogens [4, 6, 18, 40]. What makes

AMPs so potent against microbes, without posing a significant threat to their host?

Cationic peptides exploit the ‘compositional’ difference between microbial and host

cell membranes [4,6,18,22,40]: the abundance of anionic lipids in the outer layers of

the former [see Fig. 3.1]. In contrast, anionic lipids in the host cell membrane mostly

face the cytoplasm. Accordingly, peptide cationic charge enables the peptides to

recognize microbial membranes as their primary target. Indeed, this ‘membrane

discrimination’ is a crucial requirement of cationic AMPs [4,6, 18,22,40,47].

Understanding the microbial killing mechanism is not only of fundamental

interest in biology but also of therapeutic value. The emergence of antibiotic-

resistant strains has spurred great effort in searching for new anti-infective agents

[3, 44, 45]. Along this line, Nature’s chosen antibiotics, ı.e., AMPs, especially

membrane-active ones, offer promising design principles for developing peptide an-

tibiotics [3,4,6,44,45]. Even though peptide antibiotics have, so far, demonstrated

potency only as topical agents [3, 44,45], their exceptional quality (fast-killing and

broad spectrum) has motivated a great interest in maximizing their potential as

anti-infective drugs. While there is extensive experimental evidence of its signifi-

cance [4,6,18,22,40], a quantitative picture of the physical mechanism that underlies

membrane discrimination and disruption is elusive. Our theoretical understanding

of how peptide parameters may be optimized for enhanced selectivity, for instance,

has remained far behind the experimental advances, despite its potential therapeu-

tic benefit for cost-effective peptide-sequence designs.

The work in this chapter is devoted to developing a unified theoretical ap-
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proach to the selective membrane-disrupting activity of cationic AMPs [48] – one

which allows us to predict the parameters required for optimal peptide activity

under various physiological conditions. The objective is two-fold: we first present

a quantitative basis of membrane discrimination, often postulated in the litera-

ture [4,6,18,22,40,47]; we then map out a physical picture of membrane disruption

by peptide binding, as illustrated in Fig. 3.1. Here, we do not attempt to resolve

discrepancies between various models of microbial killing (e.g., different pores and

targets) but concentrate on finding general principles that may apply to a broad

range of ‘amphiphilic’ AMPs [18, 22, 23, 25, 41] (see Fig. 3.1). In particular, we

calculate the surface coverage of peptides embedded at the lipid headgroup-tail in-

terface and the resulting fractional membrane-area change, ∆A/A, for a wide range

of peptide and membrane parameters, where A is the membrane area. Note that

∆A/A is often described as a good measure of surface activity of AMPs [23,25,42].

Nevertheless its relation with peptide and membrane parameters has yet to be

established theoretically.
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Figure 3.1: Asymmetric incorporation of AMPs into the outer layer of a microbial (cy-
toplasmic) lipid bilayer membrane. AMPs initially interact with the outer layer through
their electrostatic attraction with anionic lipids (see the peptide on the left). Peptides
inserted at the headgroup-tail interface (the two in the middle and on the right) stretch
and disrupt the membrane. Notice the difference in the orientation of the peptide on the
left from two others.
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nonpolar side chains (hydrophobic) 

polar side chains (hydrophilic) 

Figure 3.2: A peptide is modeled as a disk. Physical properties of the disk are chosen
such that it reflects those of a peptide. One half of the disk (tangerine) has the same
charge as the net charge of the peptide and the area of the disk matches the cross sectional
area of the peptide.

Our results show that the membrane-perturbing activity of AMPs against mi-

crobes is optimized at a certain value of peptide charge (Q ≈ 5) – larger for a

higher salt concentration – such that the viability of the host cell membrane is well

preserved, a limit on how one can optimize peptide sequences. We believe this

to be the chief attribute of cationic AMPs. This view is consistent with experi-

ments [19, 49] but has been only partially explored theoretically [20]. Importantly,

our prediction of reduced optimal activity by ambient salt explains the observation

that peptide activity is compromised in a high-salt environment which can result

in lethal bacterial colonization [50]. One example is the airway of cystic fibrosis

patients that has abnormally high NaCl [50]. Finally, our results imply that choles-

terol in the host cell can significantly enhance the selectivity by reducing hemolytic

activity, consistent with known results [4, 18].

It is worth noticing that membrane disruption requires concentration ‘thresh-

olds’ (ı.e., minimum peptide concentrations at which peptides are effective against a

particular strain of bacteria) [18,22,23,25,41,47]: (i) the minimum inhibitory (bulk)

concentration, denoted as ‘MIC,’ and (ii) the threshold coverage on the membrane

surface. The latter is not too far from full membrane coverage, even though the
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Figure 3.3: The Wigner-Seitz cell (WSC) arrangement of disks. Disks are either adsorbed
on the surface (left) or inserted in the headgroup-tail interface (the two on the right).
Disks make an hexagonal lattice as illustrated in the top view.

MIC is typically in the low micromolar range [47], contrary to our intuition. Our

binding-affinity calculations suggest that for large peptide charge threshold mem-

brane coverage can be reached easily for microbial membranes, but not for the host

cell membrane. This is responsible for membrane discrimination.

In the literature, two different experimental approaches have been adopted to

study the activity of AMPs: (i) a brute-force approach to cellular damage using

biological cells and peptides (see Refs. [4, 6, 19] and references therein) and (ii) a

biophysical approach based on the interaction of synthesized peptides with a model

membrane, under controlled conditions [19,49]. Our approach is similar, in spirit, to

the latter. Recent experiments [19,49] indeed suggest that some peptide parameters
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(e.g., peptide charge and hydrophobicity) can be tuned almost independently.

In the next section, we present our model and free-energy analysis of membrane

discrimination and disruption, followed by conclusions.

3.2 Theoretical Methods

3.2.1 Molecular model

First, we introduce a simplified model that we believe captures the most impor-

tant aspects of our peptide-membrane system. One example is the amphiphilic

(microbe-greedy) design, ı.e., the clustering of polar and hydrophobic groups into

distinct structural domains; this enables AMPs to interact simultaneously with

lipid heads and tails (see Fig. 3.1), an important structural requirement for mem-

brane disruption [51]. In our approach, the peptide is represented by a circular

disk of finite thickness; its amphiphilic design is mimicked by partitioning the disk

into two circular halves of the same thickness, represented in two different colors in

Fig. 3.2. The polar part (orange) is characterized by its cationic charge, denoted as

Q, and dielectric constant of εP = 40. For simplicity, the peptide charge is assumed

to be uniformly distributed over the polar part. Accordingly, our model does not

take into account charge discreteness. As a result, neutral polar residues will not

contribute to Q. For moderately large or large Q, we believe that the impact of this

simplification will be minor. (With a similar spirit, we also ignore charge discrete-

ness of membrane charges, as detailed below.) On the other hand, the hydrophobic

part (blue) has a relatively low dielectric constant of εH = 4 and a high affinity for

lipid tails. The high affinity is incorporated in our model though the energy term

accounting for bound peptides. One bound AMP, if inserted, releases the energy

εI to the system due to favorable contact between hydrophobic side of the peptide

and lipid area of the membrane.
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The lipid bilayer, immersed in a salty solution, is considered as a “soft inter-

face.” It consists of a mixture of zwitterionic (dipolar) and anionic (e.g., PG) lipids,

in the plane of the surface; the mobile charges interact not only with each other

but also with the ambient salt ions and AMPs. The charge density of the mem-

brane at position r⊥ is determined by the fraction of charged lipids, α(r⊥), and

the headgroup area of lipids in the outer layer, aout, as −eα(r⊥)/aout, where −e
is the electronic charge. While each lipid tends to occupy its preferred area, it

can be compressed or swollen by thermal fluctuations and external perturbations,

dominantly by peptide binding and electrostatic interactions on the outer layer.

Lipids respond to the binding of a charged cationic peptide in two different ways:

demixing and compressing. The former refers to the mobility of lipids and the

latter refers to their headgroup area flexibility. In absence of peptides, neutral and

charged lipids are ideally mixed. That is, the local fraction of charged lipids is

constant, α(r⊥) = ᾱ. The electric field due to peptide gathers anionic lipids in the

vicinity of the peptide. Moreover, flexibility of the headgroups allow lipids to shrink

to lower the free energy. In the case of insertion, lipid headgroups compress further

to let peptides accommodate among the headgroups. In our model aout refers to

the average headgroup area in the outer layer.

Our primary concern is finding the density of peptides in the membrane-perturbing

mode (denoted as mode ‘I’), ı.e., those partially-inserted at the lipid headgroup-tail

interface with polar side chains in contact with water and hydrophobic side chains

facing the membrane. We also need to consider those “bound” electrically on the

membrane surface (mode ‘S’) illustrated in Fig. 3.3 as they influence the energetics

(through mutual repulsion) and thus the density of those in ‘I’ mode. Peptides in

both binding modes “compete” to attract anionic lipids to their vicinities, and we

will treat them on equal footing. Because of this competition and peptide-induced

membrane stretch, we will determine simultaneously peptide binding and lipid re-

arrangements, since these two feats can depend on one another. Perhaps, this is
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the most serious technical challenge, which turns out to be crucial to deal with, but

has been only partially accomplished in Ref. [20] as detailed later.

3.2.2 Free energy calculations

Wigner-Seitz Cell

Because of the aforementioned competition in attracting anionic lipids and con-

sidering that the lipid membrane is not an unlimited supply of anionic lipids, and

also because of the repulsion between bound peptides (those within the distances

shorter than Debye screening length), bound peptides reside at equidistant spots

with highest packing fraction. Following Refs. [20, 52], we capture this feature by

considering bound peptides as forming a hexagonal lattice on their binding surface,

assumed to lie in the x-y plane [54] [Fig. 3.3 and 3.4]. In fact, there is much evi-

dence that AMPs embedded in the headgroup region are dispersed [23], especially

when the tails are in the biologically active fluid phase.

On average, each peptide on the lattice experiences a radially-symmetric dis-

tribution of other peptides; it thus defines one circular Wigner-Seitz cell (WSC) of

radius RWS. This model is expected to work fine in two limiting cases: i) when

the density of bound peptides is high enough so that their lipid-mediated mutual

repulsion plays an important role; ii) when the density of bound peptides is low

enough so that the peptide arrangement on the surface is not a key factor.

The total free energy of one WSC, Fig. 3.4 , excluding the elastic energy cost

for insertion, in our approach includes various contributions:
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F =
ε0
2

∫
εr(r) [∇Φ(r)]2 dr

+kBT

∫ [
n+ ln

n+

n0

+ n− ln
n−
n0

− (n+ + n− − 2n0)

]
dr

+
kBT

aout

∫ [
α ln

α

α
+ (1− α) ln

1− α
1− α

]
dr⊥

+
λ

aout

∫
(α− α)dr⊥ + εIδIi. (3.1)

The meaning of various symbols is as follows: ε0 is the permittivity of free space, ε(r)

the dielectric constant at r, Φ the electric potential, kB the Boltzmann constant,

T the temperature, n+ = n+(r) [n− = n−(r)] the density of cationic (anionic)

salt ions, n0 the density of salt ions at z = ±∞ (Φ = 0 at z = ±∞), aout the

headgroup area of lipids in the outer layer (an average over neutral and anionic

lipids), α = α(r⊥) the local fraction of charged lipids (with α the average fraction),

and r⊥ = (x, y, z = 0). The Lagrange multiplier λ is to ensure the conservation

of lipid charges in each WSC [20,52], and εI is the (hydrophobic) free energy gain

for insertion (the delta function is to ensure that this term vanishes for electric

adsorption, ı.e., when i = S). Finally, the surface (r⊥) integrals run over the outer

layer within each WSC, while the volume (r) integrals over the entire volume of a

WSC, extending to z = ±∞.

The first term in Eq. 3.1 accounts for the electrostatic energy of a WSC, in-

cluding contributions from charges both on the surface and in bulk; the second

term describes the entropy of salt ions, as influenced by the peptide and anionic

lipids in the cell, and the third term takes into account the entropic penalty for the

redistribution of charged lipids around a bound peptide (in the absence of peptides,

the fraction of charged lipids tends to a constant α(r⊥) = α).

The free energy functional in Eq. 3.1 is to be minimized with respect to a few

32



functions: α(r⊥), Φ(r), and n±(r). For instance, minimization of Eq. 3.1 with

respect to Φ(r) and n±(r) leads to the well-known Poission-Boltzmann equation:

∇2Ψ(r) = κ2 sinh Ψ, (3.2)

where Ψ(r) = eΦ(r)/kBT is the reduced electric potential and the inverse Debye

length, κ, is defined by κ2 = 2n0e
2/εwε0kBT , with εw the dielectric constant of

water and ε0 the permittivity of free space. Eq. 3.2 has to be solved together with

appropriate boundary conditions (for similar issues, see Refs. [20,52]). On the other

hand, minimization of the Eq. 3.1 with respect to α(r⊥) results in [20,52]

α(r⊥) =
exp [Ψ(r⊥)− λ]

1− α
α

+ exp [Ψ(r⊥)− λ]
. (3.3)

All the parameters, α(r⊥), Ψ(r), and λ, except ᾱ, are to be determined self-

consistently and simultaneously.

For a given value of λ and aout, Eq. 3.2 can be solved subject to boundary

conditions. There are four types of boundary conditions:

• the normal component of the electric field should vanish on the boundaries

perpendicular to the membrane. This condition is to ensure that mutual

interactions between peptides are taken into account.

∂Φ

∂r

∣∣∣∣
r=RWS

= 0 (3.4)

where r = x2 + y2, the distance form the center of the WS cell.

• the electric potential at infinity, z = ±∞, vanishes. This also implies that

total charge density becomes zero lim
z→±∞

[n+(r) + n−(r)] = 0
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Figure 3.4: Side view of Wigner-Seitz cell containing one surface adsorbed peptide (mode
S) and inserted peptide (mode I). Each cell has cylindrical symmetry. Different colors
refer to different environments as specified. The electrostatic equation solved in each
environment is shown beside the corresponding color. These equations are linked to
each other through the boundary conditions. See text for the details of the boundary
conditions.

• the electric field is discontinuous on the charged surface of the membrane.

The discontinuity reflects the magnitude of the surface charge density:

εwε0
∂Φ

∂z

∣∣∣∣
0+
− εlε0

∂Φ

∂z

∣∣∣∣
0−

= −eα(r⊥)

aout
. (3.5)

• On other boundaries, where there is no net surface charge, the electric poten-

34



tial is continuous.

The resulting Φ(r), α(r⊥), and thus, the free energy are functions of λ and aout.

The Lagrange parameter λ is chosen iteratively based on the Secant method of root

finding [53] such that the last second term in Eq. 3.1 vanishes. The procedure is

repeated for a wide range of aout to find the aout-dependence of WS cell free energy.

The WS cell free energy of Eq. 3.1 will be used to construct the free energy of the

membrane and solvent system.

Free energy minimization

To find the equilibrium values of aout and RWS one has to calculate the total free

energy of the system including the membrane, bound peptides, solvent, and free

peptide (those in bulk). That free energy is based on Eq. 3.1 and comprises a few

other important effects, including the entropy of mixing of bound peptides and

the elastic energy of the membrane (thus free energy cost for insertion). In our

approach, we include lateral deformations of the membrane, but not out-of-plane

deformations (see below Eq. 3.6.) The elastic term is then uniquely determined by

lipid headgroup areas ain and aout. Because of the bilayer coupling, ain and aout

are not independent. This dependence comes from our assumption that for a flat

membrane the deformation of the inner/outer layers are such that their total area

always match. The total free energy per lipid molecule can be written as

F =
θFI + (1− θ)FS
θNI + (1− θ)NS

+

(
γain +

k

ain

)
+

(
γaout +

k

aout

)
+kBTa

in

[
σI ln

(
σIap
cpvp

)
+ σS ln

(
σSap
cpvp

)
+ (σM − σI − σS) ln

(
1− σS + σI

σM

)
− (σM − σI − σS)

]
.(3.6)
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The meaning of each symbol and term is as follows. The first term in Eq. 3.6 is

the WS free energy per lipid molecule, which is averaged over two binding modes.

In this term, θ is the fraction of peptides in the membrane-perturbing mode and

NI (NS) is number of lipids within a WS cell with a peptide at its center in binding

mode I (S). The second and third terms are, respectively, the elastic contribution

of the inner and outer layer with γ the “unperturbed” interfacial tension (that in

absence of electrostatic interactions) [35]; the parameter k is chosen such that the

relaxed headgroup area of the lipids is 65 Å in absence of peptide binding. (Note

that the area compression modulus of a bilayer is given by KA = 4γ.) The last

term accounts for the entropy of bound peptides; here σI (σS) is the planar density

of bound peptides in binding mode I (S), ap the area occupied by a bound peptide,

cp the density of peptides in bulk, vp is the peptide volume, and σM is the total

number of sites available to bound peptides per area, ı.e., the maximum number of

the disks per area on the surface required for full coverage.

In our approach, membrane elasticity influences peptide binding through the

second and third terms on the right hand side of Eq. 3.6, which describe the energy

cost for in-plane deformations of the membrane induced by peptide binding. In

reality, membrane bending can also influence the energetics of peptide binding.

However, this is a sub-dominant effect: Bending involves relative deformations

of the inner and outer layers, which costs less energy than overall stretching or

compression.

Note that not all the parameters θ,NI , NS, RWS, a
in, aout are independent. For

later convenience, we choose the following parameters as a complete set of inde-

pendent parameters: d = 2RWS, aout, and θ. Others are derivable from these. For

instance, NI (NS) is considered as a function of d and aout, ı.e., NS = NS(d, aout) =

πd2/4aout andNI = NI(d, a
out) = (πd2/4−ap)/aout. Similarly, ain = ain(d, θ, aout) =

aout + θap/[θNI + (1− θ)NS], σI = σI(d, θ) = 4θ/πd2, σS = σS(d, θ) = 4(1− θ)/πd2,
and thus F = F(d, aout). Minimization of the free energy per lipid F in Eq. 3.6
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with respect to our preferred parameters, d, aout, and θ, will determine their equi-

librium values and thus the equilibrium values of σS and σI (with σI being the key

parameter in our approach).

Initially, bound peptides will reside on the outer layer of their target mem-

brane, as illustrated in Fig. 3.1. Some peptides, especially pore-forming peptides,

can translocate into the inner layer, and their distribution will be eventually sym-

metrized between the inner and outer layers (see for example Ref. [17]). We mainly

concentrate on analyzing the free energy F in Eq. 3.6 for the initial symmetrical

binding. It should be noted that symmetrization is a kinetically-limited process

coupled to pore formation [17]. Indeed, experiments with the pore-forming pep-

tide magainin 2 interacting with lipid vesicles suggest how symmetrization and

membrane permeabilization are interrelated (with the latter estimated by the ef-

flux of encapsulated fluorescent dyes from the vesicles). Symmetrization lagged

somewhat behind membrane permeabilization: in 10 min, about 30% of the total

peptide molecules were shown to translocate into the inner leaflets of the vesicles,

while about 80% of dyes were released from the vesicles [17]. Since our main focus

here is on membrane perturbation prior to rupture (via pore formation, for in-

stance), assymmetric binding merits our significant consideration. After detailing

the asymmetrical binding, we comment on how peptide activity is influenced by

symmetrization.

In the next section, we analyze our free energy and map out a physical picture

of peptide binding.
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3.3 Results and Discussion

3.3.1 Wigner-Seitz cell free energy

As the first step, we calculate the free energy of WS cell per lipid molecule inside

the cell, FWS/Ni (i = S or I), depicted in Fig. 3.5 as a function of d. As shown

in the figure, curves are calculated for the two binding modes, I (left), and, S

(right). Different membranes are chosen: slightly charged membrane (ᾱ = 0.05 a

typical value for host cell, top figures) and highly charged membranes (ᾱ = 0.3 for

bacterial membrane, bottom figures). Recall ᾱ is the average fraction of anionic

lipids. We have chosen ap = 314 Å
2
, εw = 80, εl = 2, εp = 4, κ−1 = 10 Å,

T = 300 K, and aout = 65 Å
2
. Peptide charge, Q is increased from 1 to 10 to show

the effect of peptide charge variation. The trend on membrane with ᾱ = 0.05 is not

surprising. Free energy per lipid increases by decreasing d implying that smaller

WS cell radius is not favorable. This depicts a “repulsion” between peptides while

binding to the membrane is not strong. Note that this repulsion is not only from

the electrostatic interactions between peptides but also from the entropic cost of the

distribution of salt ions around peptides. Larger peptide charge results in stronger

repulsion between peptides, and thus, the free energy increases more rapidly. On

highly charged membranes with ᾱ = 0.3, the trend is, however, non monotonic.

The FWS/Ni has a minimum the location of which increases with respect to d by

increasing Q. (For some curves the location is out of the plotted range). As a

result, at a given d, variation of peptide charge can force the system to increase d

(lower the density of bound peptides) or decrease d (increase the density of bound

peptides). This can be found by following the slope of the curves in the Fig. 3.5.

This observation seems contradictory to the intuitive expectation that the larger

peptide charge would result in stronger binding to highly charged membranes, and

thus, trigger more peptides bound to the surface. As will be discussed later in
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Figure 3.5: Free energy of a Wigner-Seitz Cell per lipid, FWS/Ni (i = S or I), for the
two binding modes, I (left), and, S (right), for slightly charged membrane (ᾱ = 0.05,
top figures) and highly charged membranes (ᾱ = 0.3, bottom figures). We have chosen

ap = 314 Å
2
, aout = 65 Å

2
, εw = 80, εl = 2, εP = 40, εH = 4, κ−1 = 10 Å, and T =

300 K. Variation of peptide charge, Q, has non monotonic effect on FWS/Ni depending
on fraction of charged lipids, ᾱ and RWS .

this chapter, this phenomenon will explain an important feature of antimicrobial

peptide activity, the optimal charge at which the activity is maximized.

3.3.2 Membrane binding

As an intermediate step, we minimize the free energy per lipid molecule F (Eq. 3.6)

with respect to aout for sizable ranges of d and θ (peptide-peptide distance and the

fraction of surface-inserted peptides, respectively). Fig. 3.6 displays our result for

F calculated at the equilibrium aout for peptide charge Q = 4. We have chosen
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Figure 3.6: Free energy per lipid F (kBT ) as a function of peptide-peptide distance d
and the fraction of peptides in the membrane-perturbing mode (mode I), θ, for ᾱ = 0.3
(typical for a bacterial membrane) and peptide charge Q = 4. The free energy changes
non-monotonically and thus has a well defined minimum.

εI = −12 kBT and ap = 314 Å
2
, typical values for magainin 2 [55], as well as

ᾱ = 0.3. Additionally, we have used cp = 10µM, γ = 0.14 kBT/Å
2 ≈ 60 mJ/m2

(or KA ≈ 240 mJ/m2 [56]), εw = 80, εl = 2, εp = 40, εH = 4, κ−1 = 10 Å,

and T = 300 K. Finally, we allow a gap, chosen to be 3 Å, between the charged

face of the peptide and the membrane surface for peptides in the state “S” (those

adsorbed on the surface) as shown in Fig. 3.4. (Unless otherwise stated, we use

these parameters throughout this chapter.)

As shown in the figure, the free energy changes non-monotonically with d and

θ. As a result, there is a well-defined free energy minimum at a certain value of

(d, θ) or (σS, σI). Obviously, the negativeness of the minimum indicates favorable
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Figure 3.7: Contour-plot representation of F for various choices of peptide charge Q,
showing how the location of the free energy minimum, (dmin, θmin), evolves as Q increases.

interactions of a peptide with an oppositely-charged membrane.

The non-monotonicity deserves some discussion. It can be understood in terms

of the interplay between a few distinct effects, which we group into three subgroups:

(a) the entropic effect associated with lipid demixing, the confinement entropy

of ions “trapped” around the membrane surface, the elastic energy cost for

insertion, and the translational entropy of bound peptides,

(b) the hydrophobic attraction of an interfacially-inserted peptide as described

by εI ,
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(c) the electrostatic interactions between a peptide and anionic lipids, (as influ-

enced by surrounding salt ions, lipid demixing, and other bound peptides).

Those in (a) prefer large d – repulsive, while those in (b) favor small d –

attractive. The competition between the two is partly responsible for the non-

monotonicity. The electrostatic effect in (c) shows more complicated dependence

on d. It is not hard to understand why this effect changes non-monotonically with

d. We can explain that by analogy with a much simpler case of two uniformly-

charged parallel surfaces a distance h apart, with charge densities σ+ and σ−,

respectively (see Fig. 3.8). The physics of this system has been well studied in

the literature [57, 58]. For |σ+| = |σ−|, the two surfaces are always attractive (in-

dependently of h). There are two driving force for this attraction: (i) Coulomb

interactions, (ii) Favorable entropic free energy gain due to release of counterions.

Counterintuitively, the latter is dominant [57,58]. If |σ+| 6= |σ−|, however, residual

counterions trapped between the plates resist confinement, turning the attraction

into a repulsion at short separations, as illustrated in Fig. 3.8 [58] (the residual

counterions are to neutralize the excess backbone charges).

Comparison of the peptide-lipid bilayer system with the two plate system is

complicated by lipid mixing-demixing. Assuming that a peptide carries a surface

charge density of σ+, the surface charge density of the membrane interacting with

this peptide, σ−, is not a constant, owing to the mobility of anionic lipids. At the

expense of their entropy, anionic lipids in the outer layer tend to accumulate around

an oppositely charged object (e.g., a cationic AMP), when the peptide carries a

higher charge density than the outer layer. This enhances the attraction between

the peptide and the lipids. (The opposite would be expected for small peptide

charge Q. This means the peptide is repelled eventually; counterions from salts

preferentially reside near the outer layer.) How does it explain the d-dependence of

the free energy depicted in Fig. 3.5? For large d, a single-peptide picture is expected
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Figure 3.8: Counterions are released when two oppositely charged membrane, |σ+| = |σ−|
approach each other. The interaction is always attractive regardless of the distance
between membranes. If |σ+| 6= |σ−|, however, residual counterions trapped between the
membranes will turn attraction into repulsion at short separations.

to work (one peptide interacting with an infinitely large membrane); anionic lipids

can adjust such that charges are matched (|σ+| = |σ−|) and the total electrostatic

free energy varies roughly linearly with the peptide density. As d decreases, however,

the number of “available” anionic lipids for subsequent binding also decreases –

there is a ‘competition’ between bound peptides to recruit anionic lipids recalling

that the lipid bilayer is not an unlimited source of anionic lipids (see Ref. [52] for

relevant discussion in a somewhat different context). This situation is analogous to

the aforementioned repulsive parallel plates (|σ+| > |σ−|) at short separations. This

also explains how many-body effects arise in this system, which turn the attraction

into a repulsion at high densities of bound peptides. Accordingly, the electrostatic

free energy changes non-monotonically with d. In the next section, we investigate

the effect of peptide charge variation on binding.
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3.3.3 Variation of peptide charge

The observed non-monotonicity as a function of d in Fig. 3.6 is a combined effect

arising from both electrostatic many-body effects and the balance of two opposing

effects in (a) and (b). Fig. 3.7 depicts that the location of the free energy energy

minimum changes non-monotonically; it decreases with d for Q up to Q̂ ≈ 5 and

increases beyond Q̂. At the single-peptide level, the attraction is stronger for large

Q; for too large Q, however, the many-body effect diminishes the binding affinity.

For a reason evidenced later, Q̂ is designated as an “optimal charge.” This can

be also explained using the analogy we had in the previous subsection. Large Q

requires a large number of anionic lipids to ensure the |σ+| = |σ−| condition. While

there is a limited number of anionic lipids available on the membrane, for too large

Q the density of bound peptides should decrease (d should increase).

A key parameter in our model is σI , the surface density on interfacially-inserted

peptides. This parameter is determined by d, the peptide-peptide distance, and

θ, the fraction of peptides in the membrane-disturbing mode. More insight about

the effect of the peptide charge can be gained by considering the free energy as a

function of θ [see Fig. 3.6]. The non-monotonic dependence of F on θ can also be

understood: binding mode ’S’ is favored by the mechanical energy and the electro-

static interactions, while binding mode ’I’ is favored by the hydrophobic attraction

(insertion reduces the overall backbone charge density and is electrostatically dis-

favored). When the two sets of competing effects are comparable, one may expect

θ ≈ 1/2. Obviously, the electrostatic effect is more pronounced for larger Q, thus

increasing Q tilts this balance toward smaller θ. Indeed this expectation is con-

sistent with Fig. 3.7, which vividly shows how the equilibrium θ (d) evolves as Q

increases; it decreases monotonically from ≈ 1 to ≈ 0, as Q varies from 1 to 10.

A parameter of physical interest is the molar ratio of peptides in binding mode

I to lipids, denoted as PI/L [20, 23, 25] – membrane coverage in the membrane-
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Figure 3.9: Molar ratio of membrane-perturbing peptides to lipids PI/L, a key parameter
that determines the membrane-disrupting activity of peptides, as a function of Q. For
ᾱ & 0.3, PI/L has a well-defined peak at a certain value of Q, Q̂ ≈ 4-5. The existence
of an optimal charge Q̂ is one of the main attributes of cationic AMPs. (See the text for
our choices of parameters not specified in the figures.)

disturbing mode. Fig. 3.9 displays PI/L, as a function of Q and α. Except for Q

and α, we have chosen the same parameters used for Fig. 3.6(a)(b): εI = −12 kBT ,

ap = 314 Å
2
, cp = 10µM, γ = 0.14 kBT/Å

2
, εw = 80, εl = 2, εp = 40, εH = 4,

κ−1 = 10 Å, T = 300 K, and the peptide-membrane gap chosen to be 3 Å.

As shown in the figure, PI/L for highly charged surfaces (ᾱ & 0.2) changes

non-monotonically with increasing Q with its peak at the optimal charge Q̂ ≈ 5

for κ−1 = 10 Å. [Recall the parameter RWS can be eliminated in favor of PI/L.]

On the other hand, the curve for the host cells (ᾱ ≈ 0) is less sensitive to Q

and is almost monotonic. Importantly, PI/L increases rapidly with ᾱ, especially
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Figure 3.10: (a)PI/L as a function of peptide charge, Q. Increasing hydrophobicity, |εI |,
increases PI/L for both host cells (ᾱ = 0.05, thin lines with filled square) and microbial
membranes (ᾱ = 0.3, thick lines with unfilled square). (b) θ as a function of peptide
charge, Q. θ ≈ 1 for ᾱ = 0.05. Larger |εI | pushes θ to higher values by making insertion
mode, I, more energy favorable.

for Q ≈ Q̂. This is the physical basis of selectivity, as elaborated in the next

subsection. It is gratifying to note that the experimentally observed threshold

coverage (P/L)∗ ≈ 1/30 for magainin 2 [41] can be reached for microbial membranes

if Q & Q̂, but not for the host cell membrane, as clearly indicated in Fig. 3.6(c).

3.3.4 Effect of peptide hydrophobicity

A main driving force for the insertion of the peptides is hydrophobic energy gain

quantified as εI in our model. The hydrophobicity of peptides varies depending

on the amino acids in their sequence. Unlike electrostatic driven interactions, hy-

drophobicity has not been proven to discriminate between host cells and bacterial

cells. Fig. 3.10(a) depicts PI/L as a function of Q, for a few different choices of

εI . Parameters chosen in Fig. 3.10 are similar to those in Fig. 3.5, except for Q, ᾱ,

and εI , as specified. Not surprisingly, PI/L increases rather uniformly with increas-
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ing |εI |. The trend is almost the same for host cell and bacterial cell membranes.

This suggest that, despite of the strong antimicrobial activity, peptides with too

strong hydrophobicity may not be suitable for therapeutic development due to high

hemolytic activity. Fig. 3.10(b) depicts θ, the fraction of inserted peptides (those

in state “I”), as a function of Q. For membranes with ᾱ = 0.05, for a wide range of

Q and εI we can see θ ≈ 1, while PI/L is relatively small. This arises from the fact

that binding on weakly charged membranes is solely driven by hydrophobicity of the

peptides, and hydrophobically driven binding keeps peptides in state “I”. While

the surface binding is not favored with ᾱ = 0.05, θ becomes close to 1 regardless

of Q and εI . For highly charged membranes with ᾱ = 0.3, θ decreases from 1 to

smaller values as discussed before. Larger hydrophobicity, |εI | keeps more peptides

in the insertion mode, “I” and pushes the curve to the larger values of θ .

3.3.5 Dependence on bulk peptide concentration

Concentration of peptides in the solution, or bulk peptide concentration, affects the

density of bound peptides, and thus PI/L, through the entropic term in Eq. 3.6.

Dependence of PI/L on bulk peptide concentration is of importance in designing

peptides for therapeutic purposes. At a given bulk concentration, the viability of

host cells has to be conserved while surface coverage on bacterial membranes is

disruptive. Fig. 3.11 depicts the PI/L as a function of bulk peptide concentration,

cp, for a few values of peptide charge, Q, as specified in the legend. Not surprisingly,

PI/L is higher for higher bulk peptide concentration. For large cp, PI/L reaches a

saturation value. The higher Q, the faster PI/L gets saturated. Consistent with

previous observations, the saturation value of PI/L becomes smaller beyond peptide

charges ∼ 5.

47



35x10
-3

30

25

20

15

10

5

P
I/

L

302520151050

c
p
 µM

 Q=10 
 Q=9
 Q=8
 Q=7
 Q=5
 Q=4
 Q=3
 Q=2
 Q=1 

Figure 3.11: PI/L as a function of bulk peptide concentration, cp, for different values
of peptide charge, Q. PI/L is saturated for large cp. The saturation value is lower for
peptides with charges beyond Q ∼ 5.

3.3.6 Membrane disruption

How can peptide binding increase the permeability of a membrane, eventually caus-

ing the membrane to rupture via pore formation? To assess quantitatively the fate

of such a membrane, we have first calculated the overall fractional area stretch,

∆A/A, induced by peptide binding (see Fig. 3.12); except those described in the

legend, the same parameters were used. When the electrostatic compression of

lipids is negligible or for small Q (ı.e., al = constant), there is a simple linear

relationship between ∆A/A and PI/L (dotted lines), as indicated in Fig. 3.12.

For this reason, the optimal charge is the same for PI/L and ∆A/A. The devia-

tion between the two for large Q (Q & Q̂) can be attributed to the electrostatic

compression of lipids, which is more pronounced for larger Q. As Q increases

from 1, ∆A/A increases rapidly from a small value and reaches its peak at Q̂,
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Figure 3.12: Fractional area stretch, ∆A/A, along with PI/L (dotted lines) as a function
of peptide charge Q, for a few choices of κ−1, α and γ. See the text for our choices of
parameters not specified on the figures. Notice that ∆A/A changes non-monotonially
with Q, which is a direct consequence of the non-monotonicity observed in the PI/L-Q
relationship in Fig. 3.9. As a result, ∆A/A is maximized at a certain value of Q, ı.e., Q̂,
such that Q̂ is larger for a smaller value of κ−1, because of enhanced screening.

in a κ-dependent way. Note this is a crucial attribute of AMPs, which was only

crudely captured in Ref. [20], where the overall membrane area was assumed to

remain constant upon peptide insertion. This inevitably underestimated the ratio

[(PI/L)Q≈Q̂ − (PI/L)Q≈1]/ (PI/L)Q≈1, which can be viewed as a rough measure of

optimal membrane discrimination, resulting in somewhat unrealistic optimal dis-

crimination.

The κ-dependence of Q̂ is intriguing: Q̂ ' 5 for κ−1 = 10 Å, but Q̂ is larger for

smaller κ−1. The many-body effect is weaker for smaller κ−1, and thus a “single-

peptide picture” (ı.e., increasing binding affinity with Q) is expected to work better,

resulting in a larger Q̂. What are the biological implications of Q̂? Interestingly,

the majority of AMPs carry a net charge of Q = 4-6 [49]. Our results in Fig. 3.12
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seem to provide quantitative hints on how AMPs might have evolved to optimize

their activity. Diminished membrane perturbation at higher salt concentrations

(for Q ≈ 4-6) is consistent with known results [4,40,50], especially the observation

of peptide inactivation in a high-salt environment (e.g., the airway of cystic fibrosis

patients), leading to lethal bacterial colonization [50]. Intriguingly, peptide activity

in that case can be restored at least partly by increasing the charge. This may offer

a strategy for designing a potent peptide antibiotic that remains active in such an

unusual environment.

3.3.7 Spontaneous pore formation

Peptide binding will result in membrane disruption likely via pore formation, be-

yond a certain value of PI/L, ı.e., (PI/L)∗ [18, 22, 23, 25, 41, 47]. In reality, each

pore formed this way will be stabilized by a few peptides associated with the pore.

This implies that (PI/L)∗ depends on the type of peptide and lipid as well as on

lipid arrangements around the pore. The precise mechanism of pore formation

will likely be influenced by microscopic details such as chain length and packing

shape, which are not taken into account here. Not surprisingly, the available data

for (PI/L)∗ have not been fully integrated with binding models [23,47]. Moreover,

pore formation is a kinetic process. Our consideration is limited to transient lipid

pores as intermediates, for which molecular details play less significant roles. To

utilize this idea, we have mapped peptide binding onto an equivalent external ten-

sion τ , ı.e., the tension it would take to have the same effect on ∆A/A, following

τ = KA ×∆A/A (see the illustration in Fig. 3.14). A pore can form and grow in

a membrane, if stretched. Assuming a circular pore of radius Rpore, the pore free

energy can be expressed as Fpore = 2πRporeλ−πR2
poreτ , where λ is the line tension,

ı.e., the free energy cost for creating a pore per length. Fig. 3.13 depicts the free

energy of spontaneous pore as a function of pore radius, Epore for a few different
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Figure 3.13: Energy of a spontaneous pore as a function of the radius of the pore for
different values of α, κ−1, and γ as specified in the figure.

values of ᾱ, κ, and γ. Parameters in Fig. 3.13 are similar to those in Fig. 3.12

unless otherwise specified. Peptide charge, Q, for each curve is chosen to be the

optimal charge. Fpore as a function of Rpore is an inverted parabola with zero at

the origin. It has a maximum at Rpore = R∗ beyond which Fpore drops rapidly –

there is a barrier to pore growth. The activation energy or the barrier height is

then given by ∆F ∗pore = πλ2/τ .

Fig. 3.12 shows our results for ∆F ∗pore; we have chosen the same parameters

used for Fig. 3.13 as well as λ = 0.22kBT/Å
2, a typical value of λ (see ref. [35],

for instance), unless otherwise stated in the legend. For ᾱ = 0.05 (host), ∆F ∗pore ≈
10 kBT , meaning that the “barrier crossing” is improbable. When ᾱ = 0.3 (mi-

crobe), the activation energy can be as small as 2-3 kBT for large Q (Q ≈ Q̂); for

small Q, however, pore growth is kinetically disfavored. The results are informative

and consistent with the large-charge requirement for antimicrobial activity/selec-
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Figure 3.14: The activation free energy for lipid-pore formation, ∆F ∗pore, as a function
of peptide charge Q, for a few choices of κ−1, α and γ. The color scheme is the same as
Fig. 3.12 except for the two curves described in the legend. (See the text for our choices
of parameters not specified on the figures.) To obtain ∆F ∗pore, we have mapped ∆A onto
an equivalent tension (τ)-induced stretch (see the inset illustration). For the host cell
membrane (ᾱ = 0.05), ∆F ∗pore is too large, but for a microbial membrane (ᾱ = 0.3),

∆F ∗pore is as low as 2-3kBT for Q ≈ Q̂.

tivity long observed in experiments [4, 6, 18, 19,40].

Beside peptide parameters (e.g., Q and εI), membrane parameters are also

linked to antimicrobial selectivity. For instance, cholesterol found in the host cell

membrane is shown to enhance the selectivity by diminishing hemolytic activity [4,

18]. In fact, cholesterol changes KA (or γ) – KA increases with increasing content

of cholesterol [35, 59]. Fig. 3.12 also shows F ∗pore for a different choice of γ: γ =

0.25 kBT/Å. This roughly corresponds to a lipid bilayer enriched with 40 mol %

of cholesterol as in the host cell membrane [35, 59]. In constructing this curve, we

have used a linear relationship between γ and λ: λ ∼ γ. This is obvious for a

hydrophobic pore, since both quantities share the same physical origin, and can be

shown to hold for a hydrophilic pore as well [35]. The effect of cholesterol (through
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change of γ) is dramatic. The barrier height is doubled, meaning much reduced

hemolytic activity and thus much enhanced selectivity. But Q̂ remains unchanged,

which coincides with the Q value at which F ∗pore is minimized. For a similar reason,

Q̂ will not be influenced by the way peptides are partitioned between the inner

and outer layers. We show that ∆A/A (thus Q̂) remains roughly the same for the

asymmetric and symmetric cases (data not shown).

What are the implications of our results in Fig. 3.9 and Fig. 3.12 for microbe’s

strategies to acquire resistance to AMPs, by reducing their surface charge or mem-

brane fluidity (thus redesigning their membrane)? In fact, they illustrate the level

of difficulty in doing so. For instance, γ has to increase to ≈ 0.2 kBT/Å
2

(from

0.14 kBT/Å
2
) to reduce AMP activity against microbes to the level somewhat com-

parable to that against the host, as indicated in Fig. 3.12 (see the thick curve in

light green).

3.4 Conclusions

In conclusion, the theoretical mechanism of electrostatic discrimination and mem-

brane perturbation by cationic AMPs presented here aligns well with the general

view of the peptide as an effective and discriminative disrupter of microbial mem-

branes [4, 6, 18, 22, 23, 25, 40]. In this chapter, we have developed a theoretical

model that integrates a few distinct and pronounced interactions of AMPs with

lipid bilayers. Our results, while reproducing some known and important features

of antimicrobial activity, shed light on how peptide parameters can be adjusted (in

a membrane and solvent dependent way) to optimize AMP’s selective activity.

We have shown how AMPs discriminate microbial membranes from host cell

membranes utilizing the structural difference in the composition of anionic and

zwitterionic phospholipids on their outer layer. We have shown the optimal charge
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Q̂ (≈ 5 for κ = 10 Å) is an overall constraint in optimizing peptide sequences

for therapeutic purposes, consistent with and shedding quantitative insights into

relevant experiments [19, 49, 60]. Also, our prediction of salt dependence of Q̂

suggests how experimental settings may have to be chosen to best mimic the (target-

site dependent) physiological condition. An interesting biological implication is

that this finding will be especially useful for designing peptide antibiotics, which

will remain active in a high-salt environment (e.g., the cystic fibrosis lung) and

can thus combat pathogens causing related disease [50]. In this work, we have

elaborated on membrane disruption activity of AMPs by linking insertion (PI/L)

to relative area stretch (∆A/A). Likelihood of formation of spontaneous pores are

found by considering the energy barrier for the growth of the pore. The membrane

parameters prove to play important role where presence of cholesterol (in host cell)

doubles the energy barrier.

Despite this success, other biological details are not to be overlooked. For

instance, charge distributions on the polar face of AMPs can influence their activ-

ity [60], even though this is less significant than net charge Q, especially for large

Q [49]. Also self-association of AMPs in the aqueous phase reduces their surface ac-

tivity [60], since dimers have less favorable structure for membrane insertion. Lipid

packing shapes as well as discrete membrane charges can play some role. Addi-

tionally, a more complete picture requires explicit consideration of pore-stabilizing

AMPs (see the subsection, Membrane Disruption); our approach can then be ex-

tended to the analysis of peptide therapeutic index [60], which in turn may benefit

our endeavor in finding better peptide antibiotics. Our coarse-grained approach

presented here will be an essential step toward this effort.
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3.5 COMSOL scripts

3.5.1 Wigner-seitz cell free energy

The following code calculates a Wigner-Seitz cell free energy with one inserted
peptides.

flclear ’all ’

for epsl = [2]
for alb = [0.3 ]
for a2 = [30 40 45 50 52.5 55 57.5 60 62.5 65 67.5 70]
for Rws = [140 100 80 70 60 55 50 45 40 35 32.5 30 25 27.5 22.5 20 17.5 15]
for Q=1:10

%fprintf(’\n Q = %d, Rws = %d \n’, Q, IRws);
%Constants
smalld = 1;
Pt = 8;
Rp = 10;
Lth = 40;
kappa = 1/10;
epsilon = 0.1794422079e-2;
lB = 1/(80* epsilon);
coe1 = -2.6; coe2 = -1.0;
rough_sol = 0; fine_sol = 0;
a0 = 65;
clear fem;
clear fem_f;
clear fem_c;
rough_sol = 0; fine_sol = 0;

% FEM Constants
fem.const.Q = Q;
fem.const.Pt = Pt;
fem.const.alb = alb;
fem.const.lB = lB;
fem.const.epsl = epsl;
fem.const.kappa = kappa;
fem.const.Rp = Rp;
fem.const.coe = coe1;
fem.const.Rws = Rws;
fem.const.Lth = Lth;
fem.const.n0 = ’kappa ^2/lB/8/pi ’;
fem.const.a0 = a0;
fem.const.a2 = a2;
fem.const.Nl = pi*(Rws^2-Rp^2)/a2;

% Geometry
g1=rect2(Rws ,10/ kappa ,’base ’,’corner ’,’pos ’,[0,0]);
g2=rect2(Rws ,Lth ,’base ’,’corner ’,’pos ’,[0,-Lth]);
g3=rect2(Rws ,10/ kappa ,’base ’,’corner ’,’pos ’,[0,-Lth -10/ kappa]);
carr = { curve2 ([0,0],[Pt/2,0] ,[1,1]), curve2 ([0,Rp],[0,0],[1,1]), curve2

([Rp, Rp], [0, Pt/2],[1, 1]), curve2 ([Rp, 0], [Pt/2, Pt/2],[1, 1]) };
g4=geomcoerce(’solid ’,carr);
carr = { curve2 ([0,0],[-Pt/2,0] ,[1,1]), curve2 ([0,Rp],[0,0],[1,1]), curve2

([Rp, Rp], [0, -Pt/2],[1, 1]), curve2 ([Rp , 0], [-Pt/2, -Pt/2],[1, 1]) };
g5=geomcoerce(’solid ’,carr);

g1 = g1 - g4;
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g2 = g2 - g5;

% Geometry objects
clear s
s.objs={g1, g2, g3, g4 , g5 };
s.name={’Water_top ’, ’Lipids ’, ’Water_bottom ’, ’Peptide_top ’, ’

Peptide_bottom ’};
s.tags={’g1’, ’g2’, ’g3 ’, ’g4’, ’g5 ’};

fem.draw=struct(’s’,s);
fem.geom=geomcsg(fem);

% (Default values are not included)

% Application mode 1
clear appl
appl.mode.class = ’Electrostatics ’;
appl.mode.type = ’axi ’;
appl.border = ’on ’;
appl.assignsuffix = ’_es ’;
clear bnd
bnd.rhos = {0,0,0,’-4*pi*al/a2 ’,0};
bnd.type = {’V0’,’cont ’,’ax ’,’r’,’D’};
bnd.name = {’Ground ’,’Cont. Bound.’,’r Axis ’,’Negative Layer ’,’Cell Wall

’};
bnd.ind = [3,1,3,2,3,2,3,2,3,2,1,2,2,4,5,5,5];
appl.bnd = bnd;
clear equ
equ.epsilonr = {80,epsl ,2 ,40};
equ.rho = {’-kappa ^2/lB*sinh(V) ’,0,’4*Q/(Rp*Rp*Pt)*0’,’8*Q/(Rp*Rp*Pt) ’};
equ.name = {’Water ’,’Lipid ’,’Peptide_bottom ’,’Peptide_top ’};
equ.ind = [1,2,3,4,1];
appl.equ = equ;
appl.var = {’epsilon0 ’ , ’0.1794422079e-2’};
fem.appl {1} = appl;
fem.sdim = {’r’,’z’};
fem.frame = {’ref ’};
fem.border = 1;

% Scalar expressions
fem.expr.L = ’coe ’;
fem.expr.al_CON = ’(1-alb)/alb ’;
fem.expr.al = ’exp(V-L)/( al_CON+exp(V-L) )’;
fem.expr.np = ’n0*exp(-V)’;
fem.expr.nm = ’n0*exp(V)’;
fem.expr.Ent_V = ’(nm - np)*V - np -nm + 2*n0 ’;
fem.expr.Ent_sur = ’al*log(al/alb) + (1-al)*log( (1-al) / (1-alb) )’;

%Creat rough_mesh and fine_mesh fem structure
fem_c = fem;
fem_f = fem;

% Initialize mesh , Multiphysics , Extend Mesh for rough
fem_c.mesh=meshinit(fem_c ,’hauto ’,5);
fem_c=multiphysics(fem_c);
fem_c.xmesh=meshextend(fem_c);

% Initialize mesh , Multiphysics , Extend Mesh for rough
fem_f.mesh=meshinit(fem_f ,’hauto ’,3);
fem_f=multiphysics(fem_f);
fem_f.xmesh=meshextend(fem_f);

% Assign Coe , Solve and find ratios
fem_c.const.coe = coe1;

if rough_sol == 0
fem_c.sol=femstatic(fem_c ,’solcomp ’,{’V’},’outcomp ’,{’V

’},’nonlin ’,’on ’);
rough_sol = 1;
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else
fem_c.sol=femstatic(fem_c ,’init ’,fem_c.sol ,’solcomp ’,{’V

’},’outcomp ’,{’V’},’nonlin ’,’on ’);
end
ratio1 = postint( fem_c , ’2*pi*r*(al)/a2’, ’unit ’, ’’, ’dl ’, [14], ’edim ’,

1) / postint( fem_c , ’2*pi*r/a2’, ’unit ’, ’’, ’dl ’, [14], ’edim ’, 1);

while abs(ratio1 - alb) > 0.00005

fem_c.const.coe = coe2;
fem_c.sol=femstatic(fem_c ,’init ’,fem_c.sol ,’solcomp ’,{’V’},’outcomp ’,{’V

’},’nonlin ’,’on ’);
ratio2 = postint( fem_c , ’2*pi*r*(al)/a2’, ’unit ’, ’’, ’dl ’, [14], ’edim ’,

1) / postint( fem_c , ’2*pi*r/a2’, ’unit ’, ’’, ’dl ’, [14], ’edim ’, 1);
coe3 = ( coe2 - coe1 )/( ratio1 - ratio2 ) * ( ratio1 - alb ) + coe1;

if abs(ratio1 -alb) > abs(ratio2 -alb)
coe1 = coe2; ratio1 = ratio2; coe2 = coe3;

else
coe2 = coe3;

end
%fprintf(’ coe3 = %g\n’, coe3);

end

% solve fine mesh wih adaptive solver and coe = coe2;
fem_f.const.coe = coe2;

fem_f=adaption(fem_f , ’solcomp ’,{’V’},’nonlin ’,’on ’,’outcomp ’,{’V’},’
solver ’,’stationary ’,’l2scale ’,[1],’l2staborder ’,[2], ...

’eigselect ’,[1],’
maxt ’,10000000 ,’ngen ’,2,’resorder ’,[0],’rmethod ’,’longest ’,’tppar ’,1.7, ’geomnum
’,1);

ratio2 = postint( fem_f , ’2*pi*r*(al)/a2’, ’unit ’, ’’, ’dl ’, [14], ’edim ’,
1) / postint( fem_f , ’2*pi*r/a2’, ’unit ’, ’’, ’dl ’, [14], ’edim ’, 1);

fprintf(’\nfinal: coe = %g, ratio ratio2 = %g, Q=%d, R=%g’, coe2 ,
ratio2 , Q, Rws );

for fine_al_iter =1:15

II0 = postint( fem_f , ’2*pi*r*(alb -al)/a2’, ’unit ’, ’’, ’dl’, [14], ’
edim ’, 1);

II1 = postint( fem_f , ’2*pi*r*(al^2-al)/a2 ’, ’unit ’, ’’, ’dl’, [14], ’
edim ’, 1);

fem_f.const.coe = fem_f.const.coe + II0/II1;
fem_f.sol=femstatic(fem_f ,’init ’,fem_f.sol ,’solcomp ’,{’V’},’outcomp ’,{’V

’},’nonlin ’,’on ’);
ratio2 = postint( fem_f , ’2*pi*r*(al)/a2’, ’unit ’, ’’, ’dl ’, [14], ’edim

’, 1) / postint( fem_f , ’2*pi*r/a2 ’, ’unit ’, ’’, ’dl ’, [14], ’edim ’, 1);
if abs(II0) < 0.00006 break; end;

end;

fprintf(’\nrefine coe: coe = %g, ratio ratio2 = %g, Q=%d, R=%g’, fem_f.
const.coe , ratio2 , Q, Rws );

coe2 = fem_f.const.coe;
fname = sprintf (’../ Data_var_a_eps_40_2_kap_10/Ins_Disc_Q =%d_R=%g_a=%

g_alpha =%g_e=%d_Rp=%d.mph ’, fem_f.const.Q, Rws , a2, alb , epsl , Rp);
flsave( fname , fem_f );

end;
end;

end;
end;

end;
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3.5.2 Minimization of free energy

The following code minimizes the free free energy with respect to d, aout, and θ.

flclear ’all ’

a0 = 65;

gamma = 0.145;
H = -12;
Rp = 10;
alb_cn_range = 2;
k1 = 10;
peps = 402;
nd = ’’;
RD = 30;

% for kappa =1/10
if (k1==10)
k_0_09_0_05 = 379.1934; %381.29;
k_0_09_0_10 = 379.3;
k_0_09_0_15 = 371.6254;
k_0_09_0_3 = 368; %352.0135; %397.75;
k_0_09_0_45 = 326.8879;
k_0_09_0_60 = 298.3097;
end

if (k1==7)
% for kappa = 1/7
k_0_09_0_3 = 370.1849;
end

if (k1==15)
% for kappa = 1/15
k_0_09_0_3 = 366;
end

if (k1==5)
% for kappa = 1/5
k_0_09_0_3 = 371;
end

k(2) = a0^2 * ( gamma - 0.09 ) + k_0_09_0_3 ;

if(k1 ==10)
k(1) = a0^2 * ( gamma - 0.09 ) + k_0_09_0_05 ;
k(3) = a0^2 * ( gamma - 0.09 ) + k_0_09_0_15 ;
k(4) = a0^2 * ( gamma - 0.09 ) + k_0_09_0_45 ;
k(5) = a0^2 * ( gamma - 0.09 ) + k_0_09_0_60 ;
k(6) = a0^2 * ( gamma - 0.09 ) + k_0_09_0_10 ;
end

lambda = 0.217/.145* gamma;

S_M = 1 / ( 2*sqrt (3)*Rp*Rp ) ;
Ap = pi*Rp^2;

c = 10;

f_se = 1;
IRws_exp = [ 11.5 15 17.5 20 22.5 25 27.5 30 32.5 35 40 45 50 55 60 70 80 100 140
150];
IRws = [ 15 17.5 20 22.5 25 27.5 30 32.5 35 40 45 50 55 60 70 80 100 140 ];
IRws_fine = [ 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23
23.5 24 24.5 25 26 27.5 30 32.5 35 37.5 40 42.5 45 47.5 50 52.5 55 60 65 70 75 80
90 100 110 120 130 140 ];
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%alb = [ 0.05 0.3 ];
%alb = [ 0.15 0.6 ];
alb = [ 0.05 0.3 0.15 0.45 0.6 0.1];
epsl = [ 2 80 ];
a2 = [ 30 40 45 50 52.5 55 57.5 60 62.5 65 67.5 70 ];

% Free energy of a Single Peptide Q= 1..10
%Fsp = [0.5588 2.2199 4.9391 8.6506 13.2810 18.7617 25.0349

32.0531 39.7782 48.1788];

% Free energy of a Single Peptide Q= 1..10, Energy and Entropy parts separated
epsilon = 4, 40
%Fsp_ee = [0.479938 , 1.87663 , 4.0731 , 6.92169 , 10.2995 , 14.1316 ,
18.3805 , 23.0284 , 28.0664 , 33.4894];
%Fsp_en = [ 0.0696482 , 0.3071 , 0.787056 , 1.59415 , 2.78034 , 4.35354 ,
6.29428 , 8.57366 , 11.1626 , 14.0351 ];

% Free energy of a Single Peptide Q= 1..10, Energy and Entropy parts separated
uniform peptide
%Fsp_ee = [ 0.2785817 , 1.103019 , 2.440995 , 4.244099 , 6.45564 , 9.019499 ,
11.88717 , 15.02113 , 18.39467 , 21.98992];
%Fsp_en = [0.05299486 , 0.2191902 , 0.5188924 , 0.9814871 , 1.639174 , 2.520178 ,
3.64388 , 5.01932 , 6.646556 , 8.519311];

% Free energy of a Single Peptide Q= 1..10, Energy and Entropy parts separated
peptide epsilon =20, half charged
%Fsp_ee = [ 0.5041408 , 1.990431 , 4.386552 , 7.595048 , 11.52392 , 16.10662 ,
21.30268 , 27.08905 , 33.45218 , 40.38339];
%Fsp_en = [0.06079743 , 0.2603243 , 0.6447239 , 1.271448 , 2.185091 , 3.404509 ,
4.926912 , 6.738129 , 8.82026 , 11.15545];

% Free energy of a Single Peptide Q= 1..10, Energy and Entropy parts separated
peptide epsilon =20, half charged , Rp = 8
%Fsp_ee = [ 0.6739887 , 2.652625 , 5.815605 , 10.00843 , 15.1041 , 21.02758 ,
27.74068 , 35.223 , 43.46205 , 52.44924];
%Fsp_en = [0.06926412 , 0.3059662 , 0.7879786 , 1.605302 , 2.811753 , 4.413747 ,
6.39131 , 8.717142 , 11.36464 , 14.30982];

% Free energy of a Single Peptide Q= 1..10, Energy and Entropy parts separated
peptide epsilon =20, half charged , Rp = 12
%Fsp_ee = [ 0.3897864 , 1.542888 , 3.414185 , 5.940783 , 9.057732 , 12.71085 ,

16.86135 , 21.48389 , 26.56238 , 32.08653];
%Fsp_en = [0.05405745 , 0.2267005 , 0.5462865 , 1.049932 , 1.771144 , 2.730841 ,

3.93583 , 5.382477 , 7.061376 , 8.960729];

% Free energy of a Single Peptide Q= 1..10, Energy and Entropy parts separated
peptide epsilon =20, thin layer charged , Rp = 10
%Fsp_ee = [ 0.4252024 , 1.591427 , 3.228191 , 5.066118 , 6.948405 , 8.8105 ,
10.63083 , 12.40432 , 14.13192 , 15.81669];
%Fsp_en = [0.09180918 , 0.4401103 , 1.213514 , 2.544476 , 4.457485 , 6.909453 ,
9.839443 , 13.18959 , 16.91021 , 20.95981];

% Free energy of a Single Peptide Q= 1..10, Energy and Entropy parts separated
peptide infinitely thin layer charged , Rp = 10
%Fsp_ee = [ 0.2760555 , 1.060611 , 2.239382 , 3.671608 , 5.236744 , 6.854932 ,
8.481763 , 10.09523 , 11.68546 , 13.24873];
%Fsp_en = [0.07936247 , 0.3454726 , 0.8687388 , 1.726491 , 2.968564 , 4.607342 ,
6.628428 , 9.004801 , 11.70609 , 14.70301];

% Free energy of a Single Peptide Q= 1..10, Energy and Entropy parts separated
peptide , epsilon = 20, half charged , Rp = 10, kappa =1/7
%Fsp_ee = [ 0.4586232 , 1.813472 , 4.00913 , 6.975436 , 10.64818 , 14.97949 ,

19.93745 , 25.50136 , 31.6574 , 38.39585];
%Fsp_en = [ 0.0629702 , 0.2649697 , 0.6390898 , 1.222962 , 2.04373 , 3.112583 ,

4.428017 , 5.981465 , 7.761509 , 9.756171];

% Free energy of a Single Peptide Q= 1..10, Energy and Entropy parts separated
peptide , epsilon = 20, half charged , Rp = 10, kappa =1/15
%Fsp_ee = [ 0.55634 , 2.197731 , 4.841449 , 8.361697 , 12.62678 , 17.53862 ,

23.04196 , 29.11054 , 35.7323 , 42.9011];
%Fsp_en = [ 0.0542825 , 0.2360459 , 0.6013723 , 1.231869 , 2.202406 , 3.550759 ,

5.27651 , 7.35836 , 9.768944 , 12.48177];
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% Free energy of a Single Peptide Q= 1..10, Energy and Entropy parts separated
peptide , epsilon = 20, half charged , Rp = 10, kappa =1/4
%Fsp_ee = [ 0.395923 , 1.573177 , 3.504404 , 6.154839 , 9.490942 , 13.4848 ,

18.11484 , 23.36475 , 29.22219 , 35.67758];
%Fsp_en = [0.05817508 , 0.2385531 , 0.5555621 , 1.025397 , 1.660388 , 2.46697 ,

3.446387 , 4.596351 , 5.912536 , 7.389611];

if (peps ==402 & Rp==10 & k1==10)
% Free energy of a Single Peptide Q= 1..10, Energy and Entropy parts separated
peptide , epsilon = 40,2 , half charged , Rp = 10, kappa =1/10
Fsp_ee = [ 0.4968255 , 1.939665 , 4.200493 , 7.121571 , 10.57667 , 14.4925 ,

18.8338 , 23.58438 , 28.73619 , 34.28452];
Fsp_en = [ 0.0719695 , 0.3193627 , 0.8236652 , 1.673974 , 2.920503 , 4.566224 ,

6.587365 , 8.95229 , 11.63039 , 14.59477];
end

if (peps ==402 & Rp==12 & k1==10)
% Free energy of a Single Peptide Q= 1..10, Energy and Entropy parts separated
peptide , epsilon = 40,2 , half charged , Rp = 12, kappa =1/10
Fsp_ee = [ 0.3952319 , 1.548197 , 3.371134 , 5.752054 , 8.591615 , 11.82212 ,

15.40461 , 19.31851 , 23.55302 , 28.10222];
Fsp_en = [0.06590862 , 0.2848969 , 0.7119737 , 1.410675 , 2.424991 , 3.76886 ,

5.433637 , 7.399816 , 9.644893 , 12.14712];
end

if (peps ==402 & Rp==10 & k1==15)
% Free energy of a Single Peptide Q= 1..10, Energy and Entropy parts separated
peptide , epsilon = 40,2, half charged , Rp = 10, kappa =1/15
Fsp_ee = [ 0.5593109 , 2.188664 , 4.742958 , 8.015042 , 11.82164 , 16.05853 ,

20.68442 , 25.68723 , 31.0645 , 36.81632];
Fsp_en = [0.06182997 , 0.2809303 , 0.7561793 , 1.619032 , 2.961028 , 4.797693 ,

7.095642 , 9.807816 , 12.88977 , 16.30399];
end

if (peps ==402 & Rp==10 & k1==7)
% Free energy of a Single Peptide Q= 1..10, Energy and Entropy parts separated
peptide , epsilon = 40,2, half charged , Rp = 10, kappa =1/7
Fsp_ee = [ 0.4402194 , 1.721464 , 3.74427 , 6.394479 , 9.582091 , 13.25072 ,

17.36845 , 21.91712 , 26.88564 , 32.26656];
Fsp_en = [0.07704489 , 0.3328639 , 0.8263194 , 1.615098 , 2.729077 , 4.169454 ,

5.921112 , 7.963215 , 10.2746 , 12.83579];
end

if (peps ==402 & Rp==10 & k1==5)
% Free energy of a Single Peptide Q= 1..10, Energy and Entropy parts separated
peptide , epsilon = 40,2, half charged , Rp = 10, kappa =1/5
Fsp_ee = [ 0.3896488 , 1.530466 , 3.353071 , 5.778616 , 8.742484 , 12.20016 ,

16.12298 , 20.49236 , 25.29574 , 30.52417];
Fsp_en = [0.07702489 , 0.3246309 , 0.7808607 , 1.481873 , 2.447021 , 3.678634 ,

5.168499 , 6.903751 , 8.870304 , 11.05446];
end

% Free energy of a Single Peptide Q= 1..10, Energy and Entropy parts separated
peptide , epsilon = 20,2, half charged , Rp = 10, kappa =1/10
%Fsp_ee = [ 0.6884181 , 2.69934 , 5.891073 , 10.1011 , 15.21252 , 21.16444 ,

27.9295 , 35.49487 , 43.85326 , 52.9994];
%Fsp_en = [0.07405076 , 0.3320161 , 0.8629304 , 1.754124 , 3.043097 , 4.720516 ,

6.756627 , 9.118737 , 11.77758 , 14.70852];

% Free energy of a Single Peptide Q= 1..10, Energy and Entropy parts separated
peptide , epsilon = 20,2, half charged , Rp = 10, kappa =1/7
%Fsp_ee = [ 0.6304307 , 2.477393 , 5.432982 , 9.381678 , 14.23995 , 19.95914 ,

26.51253 , 33.88456 , 42.06503 , 51.04645];
%Fsp_en = [0.07923633 , 0.3445008 , 0.8583113 , 1.675232 , 2.81661 , 4.276111 ,

6.034737 , 8.070696 , 10.36347 , 12.89496];

fprintf(’\n loading ’);

fname_S = sprintf (’../ Free_Energies/Ads_energies_var_a_eps_40_2_kap_%d_al_%g_Rp=%d
%s’, k1, alb(alb_cn_range), Rp, nd );
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fname_I = sprintf (’../ Free_Energies/Ins_energies_var_a_eps_40_2_kap_%d_al_%g_Rp=%d
%s’, k1, alb(alb_cn_range), Rp, nd );

fp_S = fopen( fname_S ,’r’);
fp_I = fopen( fname_I ,’r’);

temp = fscanf( fp_S , ’%s’, [1, 16]);
temp = fscanf( fp_I , ’%s’, [1, 16]);

for a_cn = 1:12
for alb_cn = alb_cn_range

for eps_cn =1:1
for Q=1:10

for Rcn = 1:( size(IRws))(2)

temp = fscanf( fp_S , ’%g’, [1, 16]);
Elec_S(Rcn , Q, eps_cn , alb_cn , a_cn) = temp (9) + temp (10) + temp (11);
Ent_salt_S(Rcn , Q, eps_cn , alb_cn , a_cn) = f_se * (temp (12) + temp (13));
Ent_sur_S(Rcn , Q, eps_cn , alb_cn , a_cn) = temp (14);
Mech_S(Rcn , Q, eps_cn , alb_cn , a_cn) = 0*temp (15);

temp = fscanf( fp_I , ’%g’, [1, 16]);
%k(alb_cn) = temp (8);
Elec_I(Rcn , Q, eps_cn , alb_cn , a_cn) = temp (9) + temp (10) + temp (11);
Ent_salt_I(Rcn , Q, eps_cn , alb_cn , a_cn) = f_se * (temp (12) + temp (13));
Ent_sur_I(Rcn , Q, eps_cn , alb_cn , a_cn) = temp (14);
Mech_I(Rcn , Q, eps_cn , alb_cn , a_cn) = 0*temp (15);

end;
end;

end;
end;

end;

fclose(fp_S);
fclose(fp_I);

fprintf(’\n ... calculating ... \n ’);

for Rcn = 1:( size(IRws))(2)
fprintf(’Rcn = %g\n’, Rcn);
for Q = 1:10

for alb_cn = alb_cn_range
for eps_cn = 1:1

for f_cn = 1:20
for a_cn = 1:12

f = (f_cn -0.001) /20;

F_I = H + Elec_I(Rcn , Q, eps_cn , alb_cn , a_cn) + Ent_sur_I(Rcn , Q,
eps_cn , alb_cn , a_cn) + Ent_salt_I(Rcn , Q, eps_cn , alb_cn , a_cn) - Fsp_ee(Q) -
Fsp_en(Q) + 0;

F_S = Elec_S(Rcn , Q, eps_cn , alb_cn , a_cn) + Ent_sur_S(Rcn , Q,
eps_cn , alb_cn , a_cn) + Ent_salt_S(Rcn , Q, eps_cn , alb_cn , a_cn) - Fsp_ee(Q) -
Fsp_en(Q) + 0;

F_I_check(Rcn ,Q) = Elec_I(Rcn , Q, 1, alb_cn , 10) + Ent_sur_I(Rcn , Q,
eps_cn , alb_cn , 10) + Ent_salt_I(Rcn , Q, eps_cn , alb_cn , 10) - Fsp_ee(Q) - Fsp_en(
Q);

F_S_check(Rcn ,Q) = Elec_S(Rcn , Q, 1, alb_cn , 10) + Ent_sur_S(Rcn , Q,
eps_cn , alb_cn , 10) + Ent_salt_S(Rcn , Q, eps_cn , alb_cn , 10) - Fsp_ee(Q) - Fsp_en(
Q);

%F_I_fake = H -Fsp_ee(Q) - Fsp_en(Q);
%F_S_fake = -Fsp_ee(Q) - Fsp_en(Q);

%N_I = ( 2 * sqrt (3) * IRws(Rcn)^2 - Ap ) / a2(a_cn);
%N_S = ( 2 * sqrt (3) * IRws(Rcn)^2 ) / a2(a_cn);
N_I = ( pi * IRws(Rcn)^2 - Ap ) / a2(a_cn) ;
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N_S = ( pi * IRws(Rcn)^2 ) / a2(a_cn) ;

F_I_plot(Rcn , Q, eps_cn , alb_cn , a_cn) = ( F_I - H ) / N_I;
F_S_plot(Rcn , Q, eps_cn , alb_cn , a_cn) = F_S / N_S;

S_I = f / ( 2 * sqrt (3) * IRws(Rcn)^2 );
S_S = (1-f) / ( 2 * sqrt (3) * IRws(Rcn)^2 );

CV = ( c * (1e -6*6.02 e23/1e27*Ap*8) );

Del_Ent = (S_S) * ( log(S_S/S_M) ) + (S_I) * ( log(S_I/S_M) ) + (S_M -
S_I - S_S)*( log( (S_M - S_I - S_S)/(S_M) ) ) - (S_S + S_I) * log(CV) + ((S_S +
S_I));

temp1 = ( f * N_I + (1-f) * N_S + (2* sqrt (3) - pi) * IRws(Rcn)^2/a0 ) ;

a_in = a2(a_cn) + f * Ap / (temp1);

a_out = a2(a_cn) ;

%F_mech_in = gamma * 65 + k(alb_cn) / 65 ;
F_mech_in = gamma * a_in + k(alb_cn) / a_in ;
%F_mech_out = gamma * 65 + k(alb_cn) / 65 ;
F_mech_out = gamma * a_out + k(alb_cn) / a_out ;

Del_Ent_per_lipid(Rcn , Q, eps_cn , alb_cn , f_cn , a_cn ) = Del_Ent * a_in
;

Ftotal(a_cn) = f * F_I / temp1 + (1-f) * F_S / temp1 + F_mech_in +
F_mech_out + Del_Ent_per_lipid(Rcn , Q, eps_cn , alb_cn , f_cn , a_cn );

Ftotal_no_ent(a_cn) = f * (F_I -H) / temp1 + (1-f) * F_S / temp1 +
F_mech_in + F_mech_out + 0* Del_Ent_per_lipid(Rcn , Q, eps_cn , alb_cn , f_cn , a_cn );

%Ftotal_fake(a_cn) = 0*f * F_I_fake / temp1 + 0*(1-f) * F_S_fake /
temp1 + F_mech_in + F_mech_out + 0* Del_Ent_per_lipid(Rcn , Q, eps_cn , alb_cn , f_cn ,
a_cn );

if(a_cn == 10)
F_salt_ent_65(Rcn , Q, eps_cn , alb_cn , f_cn) = f * Ent_salt_I(Rcn , Q,

eps_cn , alb_cn , a_cn) + (1-f) * Ent_salt_S(Rcn , Q, eps_cn , alb_cn , a_cn) - Fsp_en
(Q) ;

F_salt_ent_65(Rcn , Q, eps_cn , alb_cn , f_cn) = F_salt_ent_65(Rcn , Q,
eps_cn , alb_cn , f_cn) / temp1;

F_elec_65(Rcn , Q, eps_cn , alb_cn , f_cn) = f * Elec_I(Rcn , Q,
eps_cn , alb_cn , a_cn) + (1-f) * Elec_S(Rcn , Q, eps_cn , alb_cn , a_cn) - Fsp_ee(Q) ;

F_elec_65(Rcn , Q, eps_cn , alb_cn , f_cn) = F_elec_65(Rcn , Q,
eps_cn , alb_cn , f_cn) / temp1;

PiL_65(Rcn , f_cn) = f/2/ sqrt (3)/IRws(Rcn)^2 * a_in ;
PsL_65(Rcn , f_cn) = (1-f)/2/ sqrt (3)/IRws(Rcn)^2 * a_in ;

end;

end;

%[temp , i] = min( Ftotal_fake );
[temp , i] = min( Ftotal_no_ent );
%[temp , i] = min( Ftotal );

if(i==12) i=11; end;
if(i==1) i=2; end;

a2_fine = a2(i-1) :0.01: a2(i+1);

%Ft_fine = spline( a2, Ftotal_fake , a2_fine);
Ft_fine = spline( a2, Ftotal_no_ent , a2_fine);
%Ft_fine = spline( a2, Ftotal , a2_fine);
[temp , i] = min( Ft_fine );

a_min(Rcn , Q, eps_cn , alb_cn , f_cn) = a2_fine(i);
%a_min_in(Rcn , Q, eps_cn , alb_cn , f_cn) = a_min(Rcn , Q, eps_cn , alb_cn ,

f_cn) + f*Ap / temp1;
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%TEMP1(Rcn , f_cn) = temp1;

N_I_a_min(Rcn) = ( pi * IRws(Rcn)^2 - Ap ) / a_min(Rcn , Q, eps_cn ,
alb_cn , f_cn);

N_S_a_min(Rcn) = ( pi * IRws(Rcn)^2 ) / a_min(Rcn , Q, eps_cn , alb_cn ,
f_cn);

temp_N(Rcn , f_cn) = ( f * N_I_a_min(Rcn) + (1-f) * N_S_a_min(Rcn) +
(2* sqrt (3) - pi) * IRws(Rcn)^2/a0 ) ;

temp_N_a_min(Rcn , f_cn) = temp_N(Rcn , f_cn); %spline(a2, temp_N(Rcn ,
f_cn , :), a_min(Rcn , Q, eps_cn , alb_cn , f_cn) );

Elec_I_min(Rcn , Q, eps_cn , alb_cn , f_cn) = spline(a2 , Elec_I(Rcn , Q,
eps_cn , alb_cn , : ), a_min(Rcn , Q, eps_cn , alb_cn , f_cn) );

Ent_sur_I_min(Rcn , Q, eps_cn , alb_cn , f_cn) = spline(a2, Ent_sur_I(Rcn ,
Q, eps_cn , alb_cn , : ), a_min(Rcn , Q, eps_cn , alb_cn , f_cn) );

Ent_salt_I_min(Rcn , Q, eps_cn , alb_cn , f_cn) = spline(a2 , Ent_salt_I(Rcn
, Q, eps_cn , alb_cn , : ), a_min(Rcn , Q, eps_cn , alb_cn , f_cn) );

Mech_I_min(Rcn , Q, eps_cn , alb_cn , f_cn) = spline(a2 , Mech_I(Rcn , Q,
eps_cn , alb_cn , : ), a_min(Rcn , Q, eps_cn , alb_cn , f_cn) );

Elec_S_min(Rcn , Q, eps_cn , alb_cn , f_cn) = spline(a2 , Elec_S(Rcn , Q,
eps_cn , alb_cn , : ), a_min(Rcn , Q, eps_cn , alb_cn , f_cn) );

Ent_sur_S_min(Rcn , Q, eps_cn , alb_cn , f_cn) = spline(a2, Ent_sur_S(Rcn ,
Q, eps_cn , alb_cn , : ), a_min(Rcn , Q, eps_cn , alb_cn , f_cn) );

Ent_salt_S_min(Rcn , Q, eps_cn , alb_cn , f_cn) = spline(a2 , Ent_salt_S(Rcn
, Q, eps_cn , alb_cn , : ), a_min(Rcn , Q, eps_cn , alb_cn , f_cn) );

Mech_S_min(Rcn , Q, eps_cn , alb_cn , f_cn) = spline(a2 , Mech_S(Rcn , Q,
eps_cn , alb_cn , : ), a_min(Rcn , Q, eps_cn , alb_cn , f_cn) );

Del_Ent_per_lipid(Rcn , Q, eps_cn , alb_cn , f_cn) = spline(a2,
Del_Ent_per_lipid(Rcn , Q, eps_cn , alb_cn , f_cn , : ), a_min(Rcn , Q, eps_cn , alb_cn ,
f_cn) );

Ftotal_a_min(Q, eps_cn , alb_cn , Rcn , f_cn) = spline(a2, Ftotal (:),
a_min(Rcn , Q, eps_cn , alb_cn , f_cn) );

%Ftotal(a_cn) = f * F_I / temp1 + (1-f) * F_S / temp1 + F_mech_in +
F_mech_out + Del_Ent_per_lipid(Rcn , Q, eps_cn , alb_cn , f_cn , a_cn );

a_in_a_min(Q, eps_cn , alb_cn , Rcn , f_cn) = a_min(Rcn , Q, eps_cn , alb_cn ,
f_cn) + f * Ap / ( temp_N_a_min(Rcn , f_cn) );

a_out_a_min(Q, eps_cn , alb_cn , Rcn , f_cn) = a_min(Rcn , Q, eps_cn , alb_cn
, f_cn);

Felec_a_min(Q, eps_cn , alb_cn , Rcn , f_cn) = f*Elec_I_min(Rcn , Q, eps_cn ,
alb_cn , f_cn) + (1-f)*Elec_S_min(Rcn , Q, eps_cn , alb_cn , f_cn) - Fsp_ee(Q) ;

Felec_a_min(Q, eps_cn , alb_cn , Rcn , f_cn) = Felec_a_min(Q, eps_cn ,
alb_cn , Rcn , f_cn)/temp_N_a_min(Rcn , f_cn);

Fent_sal_a_min(Q, eps_cn , alb_cn , Rcn , f_cn) = f*Ent_salt_I_min(Rcn , Q,
eps_cn , alb_cn , f_cn) + (1-f)*Ent_salt_S_min(Rcn , Q, eps_cn , alb_cn , f_cn) -

Fsp_en(Q) ;
Fent_sal_a_min(Q, eps_cn , alb_cn , Rcn , f_cn) = Fent_sal_a_min(Q, eps_cn

, alb_cn , Rcn , f_cn)/temp_N_a_min(Rcn , f_cn);
Fent_sur_a_min(Q, eps_cn , alb_cn , Rcn , f_cn) = f*Ent_sur_I_min(Rcn , Q,

eps_cn , alb_cn , f_cn) + (1-f)*Ent_sur_S_min(Rcn , Q, eps_cn , alb_cn , f_cn);
Fent_sur_a_min(Q, eps_cn , alb_cn , Rcn , f_cn) = Fent_sur_a_min(Q, eps_cn

, alb_cn , Rcn , f_cn)/temp_N_a_min(Rcn , f_cn);
Fmech_a_min(Q, eps_cn , alb_cn , Rcn , f_cn) = gamma * a_in_a_min(Q,

eps_cn , alb_cn , Rcn , f_cn) + k(alb_cn) / a_in_a_min(Q, eps_cn , alb_cn , Rcn , f_cn)
+ gamma * a_min(Rcn , Q, eps_cn , alb_cn , f_cn) + k(alb_cn) / a_min(Rcn , Q, eps_cn ,
alb_cn , f_cn);

end;
end;

end;
end;

end;

fprintf(’\n ... saving ... \n’);

f= 1:20;
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f = f - 0.001;
f = f/20;

[RR , ff] = meshgrid(f, IRws);

%---------------------------------------------------------------------------------%

for eps_cn = 1:1
for alb_cn = alb_cn_range

for Q = 1:10

FF2(:,:) = Ftotal_a_min(Q, eps_cn , alb_cn , :, :); % (R,f)
AA_in2 (:,:) = a_in_a_min(Q, eps_cn , alb_cn , :, :); % (R,f)
AA_out2 (:,:) = a_min (: , Q, eps_cn , alb_cn , : ); % (R,f)

FF(:,:) = transpose( spline(IRws , transpose( FF2(:,:) ), IRws_exp) );
AA_in (:,:) = transpose( spline(IRws , transpose( AA_in2 (:,:) ), IRws_exp) );
AA_out (:,:) = transpose( spline(IRws , transpose( AA_out2 (:,:) ), IRws_exp) )

;

[ FFf , iif ] = min(FF);
[ FFfR , iifR ] = min(FFf); %var f

Rcn_min = iif(iifR); %var f
fcn_min = iifR; %var f

%Rcn_min = iif (20); %fixed f
%fcn_min = 20; %fixed f

Rcn_min_start = Rcn_min - 1;
Rcn_min_end = Rcn_min + 1;

fcn_min_start = fcn_min - 1;
fcn_min_end = fcn_min + 1;

if(Rcn_min_start < 1) Rcn_min_start = 1; end;
if(Rcn_min_end > (size(IRws_exp))(2) ) Rcn_min_end = (size(IRws_exp))(2);

end;

if(fcn_min_start <= 0) fcn_min_start = .0000001; end;
if(fcn_min_end > 20 ) fcn_min_end = 19.9999999; end;

f_fine = ( (fcn_min_start -0.001) / 20 ):0.001:( (fcn_min_end -0.001) / 20 );
R_fine = IRws_exp(Rcn_min_start):0.005: IRws_exp(Rcn_min_end);

clear FF_fine1
clear FF_fine2
clear FF_fine3

clear AA_in_fine1
clear AA_in_fine2
clear AA_in_fine3

clear AA_out_fine1
clear AA_out_fine2
clear AA_out_fine3

FF_fine1 (:,:) = spline( f , FF(:,:), f_fine );
FF_fine2 (:,:) = spline( IRws_exp , transpose(FF_fine1 (:,:)), R_fine );
FF_fine3 (:,:) = transpose( FF_fine2 (:,:) );

AA_in_fine1 (:,:) = spline( f , AA_in (:,:), f_fine );
AA_in_fine2 (:,:) = spline( IRws_exp , transpose(AA_in_fine1 (:,:)), R_fine );
AA_in_fine3 (:,:) = transpose( AA_in_fine2 (:,:) );

AA_out_fine1 (:,:) = spline( f , AA_out (:,:), f_fine );
AA_out_fine2 (:,:) = spline( IRws_exp , transpose(AA_out_fine1 (:,:)), R_fine

);
AA_out_fine3 (:,:) = transpose( AA_out_fine2 (:,:) );
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[ FFf_fine , iif_fine ] = min(FF_fine3);
[ FFfR_fine , iifR_fine ] = min(FFf_fine); %var f

Req_cn = iif_fine(iifR_fine); %var f
feq_cn = (iifR_fine); %var f

%Req_cn = iif_fine( (size(f_fine))(2) ); %fix f
%feq_cn = (size(f_fine))(2); %fix f

Req(Q, -H, eps_cn , alb_cn) = R_fine(Req_cn);
feq(Q, -H, eps_cn , alb_cn) = f_fine(feq_cn);
a_in(Q, -H, eps_cn , alb_cn) = AA_in_fine3( Req_cn , feq_cn);
a_out(Q, -H, eps_cn , alb_cn) = AA_out_fine3( Req_cn , feq_cn);
PL(Q, -H, eps_cn , alb_cn) = ( f_fine(feq_cn)/2/ sqrt (3)/( R_fine(Req_cn))^2 )

* AA_in_fine3( Req_cn , feq_cn) ;
%PL(Q, -H, eps_cn , alb_cn) = ( f_fine(feq_cn)/pi/( R_fine(Req_cn))^2 ) *

AA_in_fine3( Req_cn , feq_cn) ;

end;
end;

end;

%----------------------------------------------------------------------------------------------%

for eps_cn = 1:1
for alb_cn = alb_cn_range

fname = sprintf (’../ PL_C/XX_v_Q_H =%d_al=% g_epsl =%d_d=3_gam=% g_f_se =%
g_eps_40_2_kap_%d_Rp=%d%s_no_mech2 ’, H, alb(alb_cn), epsl(eps_cn), gamma , f_se , k1
, Rp, nd);

fp = fopen(fname , ’wt ’ );
fprintf(fp,’Q Del_A PIL a_in

a_out DA/A Req
feq Sig PiR\n’);

for Q = 1:10
fprintf(fp ,’%2g%20.10g %20.10g %20.10g %20.10g %20.10g %20.10g %20.10g

%20.10g %20.10g\n’, Q, ...
( a_in(Q, -H, eps_cn , alb_cn) - a_out(Q, -H, eps_cn , alb_cn) ), ...
PL(Q, -H, eps_cn , alb_cn), ...
a_in(Q, -H, eps_cn , alb_cn), ...
a_out(Q, -H, eps_cn , alb_cn), ...
(a_in(Q, -H, eps_cn , alb_cn) -65)/65, ...
Req(Q, -H, eps_cn , alb_cn), ...
feq(Q, -H, eps_cn , alb_cn), ...
Q*PL(Q, -H, eps_cn , alb_cn)/a_in(Q, -H, eps_cn , alb_cn)/feq(Q, -H, eps_cn ,

alb_cn) - alb(alb_cn)/a_in(Q, -H, eps_cn , alb_cn), ...
pi * lambda ^2/ ( 4*gamma*( a_in(Q, -H, eps_cn , alb_cn)/65 - 1) ) );

end;
end;

end;

fclose(fp);
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Chapter 4

Spontaneous Bending of Lipid
Bilayers: How are Lipid and
Electrostatic Properties
Interrelated?

4.1 Introduction

A lipid bilayer membrane is a self-assembled structure studded with membrane

proteins [15, 35, 61, 62]. Its ability to deform its shape and topology complements

its integrity as a “self-sealing” object. This is correctly a particular realization

of lipid aggregates. The rich phase behavior of lipid aggregates is not only a di-

rect manifestation of single-lipid properties, ı.e., lipid packing, but also a result

of external parameters such as salts and temperatures [61–63]. Along this line,

the electrostatic bending of a possibly asymmetrically-charged lipid membrane has

been considered for some time [64–66]. It not only complements protein-induced

bending [67] but also has relevance in a variety of different contexts: cell shape

transformation [61, 68], vesicle budding, and lipid tubulation [64–66], as well as

Ca2+-induced membrane fusion [69–71]. An intimately-related point is that lipid

charges can alter lipid packing stress, which in turn influences membrane functions

by modifying the “working” condition for membrane-protein activity (Ref. [72]
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and references therein). For instance, the gating (open vs. closed) properties of

‘mechanosensitive’ (MS) channels (as in E. coli) are sensitive to lipid packing or

membrane curvature [73]. The opening or closure of such channels can be con-

trolled by counterion valence and membrane charges [74]. It is worth noting that

the electrostatic mechanisms of spontaneous membrane curvature and lipid packing

stress share the same physical origin in common, i.e., electrostatic modification of

lipid headgroups. Indeed, headgroup properties are shown to play a fundamental

role in self-assembly of lipid aggregates [75].

On the other hand, what remains unclear is the relative roles of electrostatic [64–

66] and protein-based [67, 73] mechanisms in “shaping” lipid membranes. In the

case of MS channels, for instance, channel shapes are also implicated in their gating

properties. Also, cells use a variety of proteins specialized in membrane bending as

for membrane vesicle formation [76]. Nevertheless, a better understanding of elec-

trostatic bending will be useful for identifying relevant parameters for determining

lipid packing and membrane curvature. In fact, the lipid contribution to membrane

curvature is influenced by lipid charges, whether proteins are involved or not (see

for instance Ref. [75]), and is shown to have nontrivial impact on MS channels [74].

Despite much effort, however, the electrostatic bending of a lipid membrane has

not been well understood theoretically, owing to the presence of large degrees of

freedom such a system presents (e.g., lipid flexibility and the “ionic cloud” form-

ing near a charged surface [57]). Accordingly, spontaneous membrane curvature has

been considered under a few assumptions about how bending modifies lipid arrange-

ments and surface charges [64–66]. In this sense, lipid and electrostatic properties

are not fully integrated. In fact, the electrostatic interaction between constituent

lipids can modify lipid parameters, while the latter can influence the way charged

lipids interact with each other. As evidenced later, this interdependence, which

has been under-appreciated in the past, is a key feature of lipid assemblies. Fur-

thermore, it has been shown that charge discreteness can play an important role,
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especially when counterions are multivalent [77, 78]. Owing to all these complex-

ities, it still remains challenging to describe the electrostatic bending of a lipid

membrane consistently, without suppressing its important degrees of freedom.

This work is aimed at presenting a unified theoretical approach to the sponta-

neous bending of lipid membranes (or lipid aggregates) consisting of neutral and

anionic lipids immersed in a salty solution, possibly containing multivalent counte-

rions. Our approach is distinct from previous attempts [64–66] in several respects.

First, in our approach, the elastic and charge properties of lipids are integrated

at the single-lipid level. Accordingly, bending, stretching, and surface charges are

taken into account simultaneously and coherently. To this end, we allow lipid

parameters to relax at their equilibrium values, which turn out to depend on ex-

ternal parameters within our model – without invoking any further simplification.

While our electrostatic analysis is based on the nonlinear Poisson-Boltzmann (PB)

equation, it is implemented by incorporation of charge discreteness (thus nonuni-

form charge distributions), so as to capture ‘lateral’ and ‘transverse’ charge correla-

tions [77,78]. This is particularly important when the solution contains multivalent

counterions, which give rise to non-uniform charge distributions on the membrane

surface. In fact, it has been shown that Ca2+ can trigger lipid-tail ordering [70],

primarily by shrinking lipid headgroups [79]. This illustrates limitations of any

approach that leaves out charge discreteness or heterogeneity in surface charge dis-

tributions. Furthermore, charge discreteness has nontrivial impact on how charged

(anionic) lipids interact with their counterions, as is particularly the case for mul-

tivalent counterions. It tends to enhance lipid-counterion association. Better un-

derstanding of the spontaneous bending of a lipid membrane would necessitate a

more consistent treatment of the various effects described above.

Our results show how the spontaneous curvature of a membrane, denoted as

C0, can be controlled by the elastic and charge properties of lipids and counte-

rion valence [80]. While the general picture for C0 emerged from our study in the
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absence of multivalent counterions is similar to those presented earlier [64–66], it

also points to the significance of treating the elastic and charge properties of lipids

consistently. Interestingly, its sign can be inverted by the presence of a small con-

centration of divalent salts. As a result, the membrane tends to bend toward a

more highly charged layer, in contrast to what one may expect from meanfield-type

approaches [64–66]. This finding is paralleled by the earlier observation that di-

valent counterions can induce lipid tail ordering [70] or a negative lateral pressure

on the charged layer [71, 79]. Also, this is closely related to and thus may offer

a quantitative basis for the observed sensitivity of MS channels to counterion va-

lence [74]. This electrostatic modulation of membrane curvature can be considered

as a particular realization of preferred structures (amphiphilic) lipids form in aque-

ous solution [62], thus offering a molecular basis for the aforementioned various

membrane phenomena, which implicate spontaneous membrane curvature or more

generally lipid packing properties. Our results show that electrostatic modification

of headgroups is a key determinant of the preferred structure (and phase) of lipid

aggregates: inverted micelles vs. bilayers (reverse hexagonal vs. lamellar phases).

4.2 Model

In this section, we present our molecular model. After introducing a free-energy

description of individual lipids forming a monolayer or a bilayer, we develop our

electrostatic model for lipid-counterion interactions: their association and its im-

pact on lipid parameters and membrane bending.

4.2.1 Single-lipid free energy

The free energy of a lipid aggregate (e.g., a monolayer or bilayer) can be expressed

in terms of single lipid parameters. Each lipid (ı.e., its packing shape) is fully

characterized by its geometrical parameters: the headgroup area (ah), the area
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Figure 4.1: The packing shape of a lipid in a lipid membrane is characterized by a few
geometrical parameters such as ah (the headgroup area), ai (the lipid interfacial area), lhc
(the hydrocarbon-chain length), and vhc (the hydrocarbon-chain volume assumed to be
constant). There is a simple geometrical relationship between different radii of curvature
(see Eq. 4.8).

per each lipid at the headgroup-tail interface (ai), and the length of its tail or

hydrocarbon chain (lhc), as illustrated in Fig. 4.1. The parameter conjugate to ai

is the interfacial tension, γ, arising from the hydrophobicity of hydrocarbon chains,

ı.e., their tendency to avoid contact with water. The resulting free energy per lipid

is γai. Similarly, the free energy cost for overlapping two headgroups is described

as K/ah, where K is a constant characterizing the strength of their repulsion. On

the other hand, the free energy of a lipid tail assumes the Hookean form of τ l2hc,

where τ measures the energy cost for deforming lhc. The total free energy per lipid
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in an aggregate can be written as [81]

f = K/ah + γai + τ l2hc. (4.1)

While the first and last term tend to swell the area per lipid, the second term

opposes this. Note that different models have been used [82–84] (see Ref. [84] for

comparative studies on a few models).

These phenomenological energy terms deserve some discussion. First, the pa-

rameters K, γ, and τ reflect the elastic nature of individual lipid molecules, which

behave as “molecular springs.” On the other hand, the shape parameters, ah, ai,

and lhc are interrelated, since their changes are subject to the constraint that the

volume of each tail, vhc, remains invariant [81,82], which is a reasonable assumption

for the lipids in the fluid phase, as is the case for a biologically active membrane.

4.2.2 Electrostatic free energy of a lipid membrane

In addition to the free energy in Eq. 4.1, one has to include the electrostatic con-

tribution. The lipid membrane we consider here consists of zwitterionic (neutral

polar) and anionic lipids such as phosphatidylserine (PS) or phosphatidylglycerol

(PG). The charged lipids interact not only with each other but also with surround-

ing counterions, especially multivalent counterions. The crudest simplification may

amount to smearing out the lipid charges, but this meanfield-type approximation

underestimates their attraction with counterions. While their mutual repulsion

tends to keep them equidistant from each other, their association with multivalent

counterions can modulate their spatial distribution – one counterion may neutralize

more than one lipid charge. In general, lipid demixing can alter how the membrane

interacts with opposite charges, especially for multivalent cases. Here we restrict

ourselves to the case of monovalent or divalent counterions. In this case, lipid

demixing is not expected to be pronounced, since the resulting entropic loss can

easily counterbalance the energy gain.
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In our approach, anionic lipids are considered as forming a hexagonal lattice

as depicted in Fig. 4.2. The solution of the PB equation with this arrangement

can be used to calculate the electrostatic free energy without suppressing lipid-

charge discreteness. Electrostatic effects on lipid parameters can be analyzed by

allowing them to relax at new preferred values – by free-energy minimization. For

simplicity, we assume that the geometrical parameters (ah, ai, and lhc) take on the

same value for both neutral and anionic lipids in the same layer. The regularity in

the hexagonal geometry allows us to construct and focus on a unit cell, often referred

to as a Wigner-Seitz (WS) cell. Below we present our strategy for constructing the

WS cell and calculating the electrostatic free energy.

The monovalent case

In the absence of divalent counterions, each anionic lipid on a hexagonal lattice

naturally defines its WS cell; it is placed at the center of the cell (see Fig. 4.3(a)).

Depending on the curvature of the membrane, the WS cell resembles a cylinder, a

cone, or an inverted cone [62]. The boundary of each WS cell can be approximated

as circular one – on average, each anionic lipid will experience radially symmetrical

interactions [52]. The average electrostatic energy per charged lipid can be obtained

by solving the Poisson-Boltzman (PB) equation in the aqueous phase within a WS

cell. The PB equation in the presence of a (1 : 1) salt can be written as [66]

∇2Ψ = κ2 sinh(Ψ), (4.2)

where Ψ = eΦ/kBT is the reduced electrostatic potential with e the electronic

charge, Φ the electrostatic potential, kB the Boltzmann constant, and T the temper-

ature. The Debye screening length, κ−1, is given by the relation, κ2 = 8πn0ε0εw/kBT ,

where ε0 is the permittivity of free space and εw is the dielectric constant of wa-

ter. The PB equation has to be solved with the following appropriate boundary

conditions.
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Figure 4.2: Charge discreteness and the spatial distribution of anionic lipids on a spher-
ically curved membrane; for simplicity, neutral lipids are not shown. A hexagonal lipid
arrangement as well as a Wigner-Seitz cell (the dashed circle) are highlighted. The cen-
tral lipid, ı.e., the one at the center of the dashed circle, experiences radially symmetrical
interactions on average. It thus suffices to consider the central one explicitly and absorb
others into a boundary condition (cf. Eq. 4.3).

• The vanishing normal component of electrostatic fields on the cell boundary

to reflect the symmetry of WS cells:

n · ∇Φ(r)|r=RWS
= 0, (4.3)

with n the unit vector normal to the WS cell boundary.

• The vanishing electric potential at infinity:

lim
r→∞

Φ(r) = 0. (4.4)
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• Discontinuity of the electric field across a charged surface with a planar charge

density, σ:

εwε0
∂Φ(r)

∂r

∣∣∣∣
above

− εlε0
∂Φ(r)

∂r

∣∣∣∣
below

= σ(r). (4.5)

where εl is the dielectric constant of lipids and σS(r) the surface charge density

at r.

The electrostatic free energy of a WS cell can be written as [52]

Felec =
ε0
2

∫
εr(r) [∇Φ(r)]2 dr+kBT

∫ [
n+ ln

n+

n1

+ n− ln
n−
n1

− (n+ + n− − 2n1)

]
dr

(4.6)

The first term accounts for the electrostatic energy of the cell, where the integral

runs over the entire volume of the WS cell; εr(r) is the dielectric constant at r (e.g.,

εr = εl in the lipid phase). The second term describes the entropic penalty for

redistributing monovalent salt ions, where n+ = n+(r) (n− = n−(r)) is the concen-

tration of positive (negative) salt ions at the position r and n1 is the concentration

at infinity. The second integral is over the aqueous phase of the WS cell.

The divalent case

The previous WS approach suppresses finite ionic sizes of counterions. It is thus

expected to work well for the monovalent case. Monovalent counterions can only

form a loose diffusive layer near a charged surface, and their size is not a crucial

parameter. However, multivalent counterions interact more strongly with anionic

charges [62, 77], and thus charge discreteness plays a more significant role [77].

Accordingly, we implement our WS approach by incorporation of finite ionic sizes

of bound divalent counterions. An important consequence is that the counterion

charge overcompensates that of an anionic lipid, thus producing nonuniform charge

distributions on the membrane surface. To capture this, we treat bound divalent

counterion as charged spheres of some diameter D (D = 3 Å). On the other hand,
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Figure 4.3: Side view of a Wigner-Seitz cell for the monovalent (a) and divalent case (b).
For simplicity, neutral lipids are not shown. The radius of curvature Rt (Rh) is measured
with reference to the surface of tail ends (headgroups). For the monovalent case (on the
left), one anionic lipid defines one WS cell. In the divalent case, however, each WS cell is
constructed so as to contain one divalent counterion. Finite ionic sizes of both the lipid
and counterion charges are thus taken into account. Our electrostatic analysis in this case
consists of three steps (see the box on the right). (i) First, we consider a membrane with
discrete backbone charges in a (1:1) salt. The electrostatic free energy of this setting is
FWS
1 . (ii) Compared to (ii), the membrane charges are smeared out except the central

one. The corresponding electrostatic free energy is FWS
2 . (iii) Finally, we introduce a

divalent counterion in (b). The electrostatic free energy of this distribution is denoted as
FWS
3 .

monovalent ions will remain as featureless particles as often assumed in the PB

approach. Eq. 4.6 can still be used to calculate the electrostatic free energy. The

difference is that the WS cell now contains a divalent counterion at its center. This

can be implemented through the electrostatic boundary conditions as discussed

earlier (see Eq. 4.3).

To further proceed with the free energy calculation in the presence of divalent

counterions, we “reconstruct” our WS cells so that each cell now contains one

divalent counterion paired with a central anionic charge right below, as illustrated

in Fig. 4.3(c). While the central lipid is treated as discrete as before, other lipid

charges are assumed to be smeared out on the surface of the membrane. The

motivation is that the ion (counterion-central lipid) pair as a whole will not interact
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strongly with other lipids, since the pair is monovalent and distant from other

backbone charges. As a result of this simplification, the WS cell restores cylindrical

symmetry, which significantly reduces the computational load. There is, however,

energy shift because of this alternation of the backbone charges, which is equivalent

to shifting the energy reference and has to be corrected.

To compensate for the energy shift, compare the two different backbone charge

distribution within each WS cell: (a) a discrete lipid charge distribution (Fig. 4.3a)

and (b) a discrete central lipid charge in the uniform background of other lipid

charges (Fig. 4.3a). The free energy difference between the two is the free energy

change caused by the reference shift. In the former case, the free energy of each

lipid is calculated based on the approach presented in the previous subsection (the

monovalent case), where a WS cell was defined by one charged phospholipid. The

electrostatic free energy of the WS cell defined here is the single-lipid WS free

energy times the number of anionic lipids in the WS cell, and can thus be obtained.

In summary, our free energy calculation consists of three intermediate steps, as

depicted in Fig. 4.3. First, the free energy, FWS
1 , is calculated for the WS cell in

the absence of any bound divalent counterion (Fig. 4.3a). Second, the free energy

of the WS cell in (b), FWS
2 , is the same as in (a) except for the backbone charge

distribution. The correction term to compensate for the energy shift would be

∆FWS = FWS
2 − FWS

1 . Third, the free energy, FWS
3 , is calculated for the WS cell

with a bound counterion on the top of the central lipid charge and all other lipid

charges smeared (Fig. 4.3c). The correct free energy of the WS cell with a bound

divalent counterion is, thus, FWS = FWS
3 −∆FWS = FWS

3 −FWS
2 + FWS

1 .
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4.3 Membrane Free Energy

4.3.1 Monolayers

In this section, we construct the total free energy of a lipid bilayer membrane (per

lipid), as a function of a few independent parameters. Our preferred membrane pa-

rameters are the membrane curvature (C) and the headgroup area (ah), from which

other parameters are derivable. In the divalent case, an important electrostatic pa-

rameter is the planar density of divalent counterions, which sets the area of each

WS cell, AWS. Notice that C0 is specified only with respect to a reference surface.

A convenient choice is the so called ‘neutral surface,’ where bending and stretch-

ing are decoupled [81, 83, 84]. For a monolayer, the location of the neutral surface

can vary appreciably as the elastic properties of constituent lipids are altered, as

evidenced later (see Fig. 4.5).

The monolayer free energy (in the presence of divalent counterions) can be

written as

F (C, ah, AWS) =
K

ah
+ γai + τ l2hc + FWS

ah
AWS

+
1

AWS

ln

(
aion

n2AWSvion

)
, (4.7)

where aion and vion are the cross sectional area and volume of divalent ions, re-

spectively, and n2 the bulk density of divalent ions. (Recall ai is the average area

per lipid water interface, lhc is the hydrocarbon length; K, γ, and τ are corre-

sponding conjugate parameters characterizing the elastic properties of phospholipid

molecules.) The second last term accounts for the electrostatic free energy per lipid

molecule. The last term in Eq. 4.7 represents the entropic penalty for confining di-

valent ions to the membrane surface. For n2 = 0, the last term should be dropped;

also the meaning of AWS is different, as discussed earlier.

Other parameters such as ai and lhc are not independently changeable but are

derivable from C, ah, and vhc, the volume of each lipid tail (assumed to be a

constant). To see this, note that ah and ai subtend the same solid angle with
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respect to the common origin but represent different radii of curvature (they are

‘parallel surfaces’ of each other [82,84]), ı.e., Rh = 1/C+lhc+rh and Ri = 1/C+lhc,

respectively. With the convention that the curvature C of the monolayer in Fig. 4.1

is negative, the area ai can be written as

ai = ah

(
1/C + lhc

1/C + lhc + rh

)2

. (4.8)

To relate lhc to other geometrical parameters, consider the volume of a spherical

shell specified by its outer and inner radii, Rh and Ri, respectively. The volume vh

is then the shell volume divided by 4πRh/ah. This consideration leads to

vhc =
ai

3
(
1
C

+ lhc
)2
[(

1

C
+ lhc

)3

−
(

1

C

)3
]
. (4.9)

This equation can be solved for lhc in terms of vhc, C, and ah. The relations in

Eqs. 4.8 and 4.9 enable us to express the free energy of a lipid monolayer in terms

of C, ah, and AWS, as assumed in Eq. 4.7.

4.3.2 Bilayers

In principle, our free energy analysis can be extended to the case of a bilayer

membrane. Imagine coupling two monolayers into a bilayer and bending it. Some

subtlety arises from the fact that the bilayer coupling represents a global constraint.

How this constraint is felt by individual lipids is model dependent [35,66,84,85]. A

few molecular models for lipid arrangements in a bilayer have been known. Good

examples are ‘connected’ and ‘unconnected’ bilayers [84]. The connected bilayer

model assumes that the two layers are not allowed to slide against each other; they

are “glued” together. In the unconnected bilayer model, each layer is permitted

to slide past the other. Not surprisingly, there is no unique way of analyzing lipid

arrangements caused by bending, and thus the computation of bending moduli

replies on a specific model [35, 84]. On the other hand, the (local) spontaneous
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curvature of a lipid bilayer membrane reflects any asymmetry in molecular “shapes”

of lipids between the two layers and is considered as a local quantity (unless the

two layers are physically coupled by any mechanism) [67]. It suffices to use the

unconnected model in the computation of C0 [80].

In contrast to the case of monolayers, the neutral surface of a symmetric bilayer

membrane always coincides with its midplane. A charge imbalance between the

two layers, for instance, can alter this picture. Nevertheless, one can argue that

this effect is minor: The electrostatic effect can be considered as renormalizing γ,

which has a minor effect on the neutral surface, as evidenced later (see Fig. 4.5).

With this simplification, we measure C of a bilayer membrane with respect to

the midplane, whether the membrane is symmetrically charged or not, while we

explicitly construct the neutral surface of each layer.

In our approach, the radius of curvature is always measured from the end of the

hydrocarbon tails of lipid molecules (See Fig. 4.1). For a monolayer, a more conve-

nient choice is its neutral surface, which is significantly different from the surface

formed by the tail ends. However, our monolayer analysis is only an intermediate

step in our approach. For a bilayer, however, it proves useful to use the tail-end

surface as a reference, which approximately represents the neutral surface as dis-

cussed earlier. (Note that since the thickness is not necessarily the same for the

two layers if bent, the interface between the layers is not always identical to the

midplane) Even in the unconnected case, the two layers should remain attached to

each other, and their curvatures with reference to their interface are the same in

magnitude but are opposite in sign. This is the only constraint imposed on each

layer. This implies that the total free energy of the bilayer per lipid can be written

as

Fbl = F out(C, aouth , AoutWS) + F in(−C, ainh , AinWS), (4.10)

where the superscripts ‘out’ and ‘in’ refer to the inner and outer layer, respectively.
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Figure 4.4: Relaxed headgroup area lipids in a monolayer as a function of monovalent
salt concentration, n1, in presence (filled squares) or absence (unfilled squares) of divalent
counterions. Here α = 0.3, lipid parameters γ and τ are adjusted together with K
such that a0 = 64.9 Å for α = 0 (uncharged case). In the presence of 5 mM divalent
counterions, the headgroup area shrinks compared to the corresponding uncharged case.

This free energy is to be minimized with respect to five parameters: C, ainh , aouth ,

AinWS, and AoutWS, as detailed in the next section.

4.4 Results

4.4.1 Monolayers

Optimal headgroup area

We have first calculated the equilibrium or optimal headgroup area a0 of a mono-

layer by free energy minimization for a planar surface (a0 = ah = ai), in the presence

or absence of divalent counterions, and plotted our results in Fig. 4.4. This effort

illustrates how lipid and electrostatic parameters influence each other. We have
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chosen α = 0.3 and used various choices of lipid parameters as depicted in different

colors (see the legend). In all cases, we have chosen K such that a0 = 64.9 Å
2

for the corresponding electrically neutral surface (ᾱ = 0, not to be confused with

the ‘neutral surface’), as marked by the dotted line. This explains why a0 values

tend to the dotted line as n1 increases, ı.e., as the electrostatic interaction becomes

more screened. In the absence of divalent counterions (the top four curves with

unfilled symbols), lipid charges enlarge the headgroup more effectively at lower salt

concentrations, as expected.

In the presence of as small a concentration as 5 mM of divalent counterions (the

bottom four curves with filled symbols), however, the headgroup shrinks compared

to the corresponding uncharged case (the dotted line). Intriguingly, the general

trend observed for the monovalent case is reversed. This is not unexpected, since

in this case nonuniform charge distributions on the membrane surface can induce

a negative lateral pressure, which tends to shrink the area occupied by each lipid.

An important consequence of this is that the presence of a small concentration of

multivalent counterions can reverse the sign of C0 of a lipid membrane, as evidenced

later. Importantly, the headgroup shrinkage in this case is well correlated with the

observed MS channel closing induced by trivalent counterions (Gd3+) [74] – the

main difference is that Gd3+ is expected to shrink lipid headgroups more effectively

than Mg2+ or Ca2+.

In both cases (filled and unfilled symbols), the electrostatic effect is less signif-

icant if γ is larger (thus the monolayer is stiffer). This is already hinted in our

finding that the tail elasticity is less important for larger γ. Our results in Fig. 4.4

illustrate how the elastic and charge properties of lipids are interrelated.
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Figure 4.5: Location of neutral surface, δN , and thickness, lhc, of a lipid monolayer, as
a function of the curvature C. We have chosen n1 = 50 mM and α = 0.3. Our results
here show how δN implicates lipid elastic parameters γ and τ . Intriguingly, δN is almost
independent of salt ions. Despite the seeming gradual change in δN with C, the location of
the neutral surface remains invariant if “corrected” for thickness change (see lhc curves).

Neutral surface

Our analysis in this section so far is limited to a flat surface. The free energy of a

monolayer (or a bilayer), if bent, is most conveniently expressed with respect to its

neutral surface, which will not suffer from stretching upon bending. Imagine bend-

ing a uniform elastic sheet, which has constant material properties and thickness.

By symmetry, the geometric midplane coincides with its neutral surface. However,

this picture does not necessarily apply to a lipid aggregate, except when it is a

symmetrical bilayer.

In our approach, it is straightforward to find the neutral surface. For a flat

layer, ah = ai = a0. Upon bending, ah will no longer remain the same as a0

but its equilibrium value can be obtained by free energy minimization; similarly,

the equilibrium lhc can be estimated. For spherical bending we consider here, the
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Figure 4.6: Spontaneous curvature of a charged lipid monolayer as a function of monova-
lent salt concentration n1 for a few choices of ᾱ: α = 0, 0.1, 0.3. The lipid parameters have

been chosen to mimic PS (phosphatidylserine): γ = 0.12 kBT/Å
2

and τ = 0.004 kBT/Å
2
.

When the charge on the lipid is turned off by lowering pH, the spontaneous curvature C0

is negative. When the fraction of charged lipids increases, the sign of C0 can be inverted,
as is particularly the case for ᾱ > 0.2. In the presence of 5 mM divalent counterions in
solution, however, C0 < 0 for the entire range of n1. Divalent counterions invert the sign
of C0 more effectively for larger ᾱ.

neutral surface can be located from a purely geometrical consideration: Imagine

translating the equilibrium headgroup area ah in the normal direction – the neutral

surface is where the cross-sectional area of lipid is the same as a0.

Let δN be the location of the neutral surface for a monolayer, defined as the

distance from the end of lipid tails (see Fig. 4.1). To examine the dependence

of δN on the elastic and charge properties of lipids, we have plotted δN (as well

as lhc) in Fig. 4.5, in the presence or absence of divalent counterions. We have

chosen a few combinations of γ and τ (see the legend). Let’s compare the two

cases: γ = 0.06 kBT/Å
2

and γ = 0.12 kBT/Å
2

(with the same τ = 0.004 kBT/Å
2
).

The neutral surface for the “stiffer” case (larger γ) is closer to the headgroup-tail

interface, as expected from the following picture; as γ → ∞, the neutral surface

is expected to coincide with the interface at which the interfacial tension operates.

As τ → 0, the neutral surfaces for the stiffer and softer cases tend to collapse onto
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each other. This is not surprising, since the location of the neutral surface is solely

determined by the competition between the headgroup repulsion and the surface

tension; for our particular choice of the monolayer free energy in Eq. 4.7, one can

show that for τ = 0 the neutral surface coincides with the headgroup region [84],

independently of γ, as also shown in our results for τ = 0. The gradual change of δN

is to reflect the thickness change. If the hydrocarbon chain deforms uniformly, the

“relative” position (or the position along the contour of the chain) of the neutral

surface is invariant.

Importantly, the position of the neutral surface is almost insensitive to salts.

This implies that it is mainly determined by non-electrostatic contributions. In

light of our results in Fig. 4.4, this finding is puzzling but can be understood

as follows. The electrostatic contribution to the free energy in Eq. 4.7 can be

considered as renormalizing γ. As indicated above, for τ = 0, δN is independent of

γ [84] (electrostatic effects as well), in good agreement with our results in Fig. 4.5.

For τ > 0, δN changes as γ changes, but the change is only moderate (≈ 10 %),

even when γ doubles. We expect the change to be more pronounced for larger τ . It

is also conceivable that the dependence of δN on electrostatic effects may be model

dependent. (Another commonly used model is the “harmonic-spring” model for a

lipid aggregate [83,84].) We believe that experimentally more accessible quantities

such as C0 are not quite model dependent, as is particularly the case for a bilayer,

where the non-electrostatic contributions to C0 of the two layers balance out. This

together with our results in Fig. 4.5 allow us to choose the midplane of a bilayer

as its neutral surface, even if the bilayer is asymmetrically charged, as long as the

non-electrostatic properties of the two layers are the same. This does not mean

that the C0 of a bilayer is not sensitive to charge asymmetry as shown below.
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Spontaneous curvature of a monolayer and the formation of HII phases

The preferred structure of lipid membranes is controlled by packing shapes of the

constituent lipids [62] and thus by the ionization status of headgroups [75]. Indeed,

a recent experiment on PS-containing membranes shows that at low pH (ᾱ ' 0) the

membrane prefers to form reverse hexagonal (HII) phases (thus C0 < 0), while the

sign of C0 is inverted at neutral or high pH. Recall that we only consider spherical

bending so as to utilize the symmetry assumed in Fig. 4.2. However, this will not

limit the applicability of our results. What our approach predicts is the preferred

structure or morphology of lipid aggregates, which will eventually dictate phases

they form. The only structural requirement for the formation of HII phases is the

inverted cone shape [63], which translates into C0 < 0. To offer a theoretical basis

of the observation with PS-containing membranes, we have calculated the sponta-

neous curvature of a monolayer for a few choices of ᾱ and plotted our results in

Fig. 4.6, as a function of n1. The lipid parameters have been chosen so as to mimic

PS – negative C0 when ᾱ = 0: γ = 0.12 kBT/Å
2

and τ = 0.004 kBT/Å
2
. Our

results (open symbols) are illuminating, since they imply that at low pH (ᾱ ' 0)

PS-containing membranes tend to form HII phases (see the illustration), while at

higher pH lamellar phases (or positively-curved structure) are stabilized by head-

group repulsions. Our results also offer an alternative mechanism of HII-phase

formation at neutral pH, ı.e., HII phases stabilized by charge correlations due to

divalent counterions. Charge correlations reduce the optimal area of charged head-

groups, as already hinted in Fig. 4.4. This theoretical prediction is paralleled with

the longstanding observation that divalent counterions induce HII phases of lipids,

which would otherwise form lamellar phases [63].
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Figure 4.7: Spontaneous curvature of an asymmetrically charged lipid bilayer (α = 0
for the inner layer, and, α = 0.3 for the outer layer) as a function of monovalent salt
concentration n1. The presence of 5 mM divalent counterions in solution inverts the sign
of C0. In other words, the bilayer tends to bend toward the charged layer.

4.4.2 Bilayers: spontaneous curvature of asymmetrically
charged bilayers

In contrast to the case of a lipid monolayer, the preferred curvature of a lipid

bilayer, ı.e., the value of C at which the membrane free energy is minimized,

is determined by asymmetries between the two layers. As a result, a perfectly

symmetrical bilayer has a vanishing preferred curvature. There are two kinds of

asymmetry (see Refs. [67, 68, 85] and references therein). First, any asymmetry

in packing shapes between the constituent layers results in a nonzero spontaneous

curvature. This reflects local properties of the bilayer. Second, any mismatch in

relaxed areas of the two layers can induce membrane bending. Here the relaxed

areas refer to the neutral surfaces, and are invariant upon bending if the two layers

are ‘unconnected’ [86]. The resulting preferred curvature has a global or non-local

character. For a bilayer we consider here (one consisting of two identical layers
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except for charge properties), the non-local preferred curvature can be expressed

as Cnl
0 = (aout0 − ain0 ) / [(aout0 + ain0 ) δN ] [67]. Note here that δN is the location of

the neutral surface of each layer for C = 0 and is essentially the same for both

layers. In our approach, we mainly focus on the computation of C0, the (local)

spontaneous curvature; Cnl
0 can be readily read off from our results in Fig. 4.4.

Furthermore, in a more general case, Cnl
0 is also influenced by the number of lipids

in each layer [67,68,85]. In this sense, Cnl
0 is a less intrinsic quantity than C0. Also,

as it turns out, the interrelationship between lipid properties and bending is much

less obvious for C0 (cf. Fig. 4.8), and we focus on calculating C0.

The simultaneous presence of both local and global effects makes it challenging

to determine C0 and Cnl
0 separately. To focus on C0, we allow the bilayer to relax

at its preferred area difference per lipid, ı.e., ∆a0 = aout0 − ain0 . This is equivalent

to minimizing the free energy of each layer independently of the other layer with

respect to the curvature of the bilayer. To be specific, we have considered a bilayer,

in which the inner layer is neutral, while the outer layer contains 30% (α = 0.3)

charged lipids. Our results can then be extended to the case in which the inner

layer is charged – simply by changing the sign of C0. Except for the charge proper-

ties, the two layers are assumed to be identical. Fig. 4.7 displays C0 as a function

of monovalent salt concentration, n1, in the presence or absence of divalent coun-

terions. In the absence of divalent counterions (unfilled symbols), the electrostatic

repulsion between charged lipids induces a positive curvature. In other words, the

membrane tends to bend toward the electrically-neural, inner layer. This is paral-

leled by our finding that the repulsion enlarges the headgroup area (see Fig. 4.4).

However, it is worth noting that our C0 results reflect both in-plane and out-of

plane deformations of the membrane, while only in-plane deformations are taken

into account in our a0 calculations. Curvature can be induced not only through

in-plane lipid deformations (ı.e., a0 changes in the outer layer) but also through the

modification of the ionic cloud of the outer layer. Upon bending toward the inner
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Figure 4.8: Spontaneous curvature of an asymmetrically charged lipid bilayer (α = 0
for the inner layer and α = 0.3 for the outer layer) as a function of θ, the relative
position of the neutral surface pre-chosen for each monolayer. These results show that
C0 is sensitive to θ, demonstrating the significance of determining the location of the
neutral surface consistently – by free energy minimization. (a)-(c). Illustrations of a few
hypothetical models of bilayer bending, corresponding to a few choices of θ. While (a)
represents the connected model, (c) can be realized if tails are flexible (or headgroups are
“bulky”); these two limiting features are combined in (b).

layer, the ionic cloud expands [66]. It is this entropic gain that induces a positive

C0.

On the other hand, the presence of 5 mM of divalent ions inverts the sign of

spontaneous curvature for the entire range of n1 shown in the figure, as already

hinted in Fig. 4.4: the non-uniform charge distribution on the outer layer in this

case means that the layer can lower the electrostatic free energy by curving inward

(via both in-plane and out-of plane deformations), inducing a negative spontaneous
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curvature. As n1 increases, however, the electrostatic effect diminishes as indicated

in the figure.

In both monovalent and divalent cases, the electrostatic effect is more pro-

nounced for smaller γ or τ , since the membrane is more easily deformable in that

case; it is worth noting that τ is also implicated in C0.

So far we have determined C0 and δN simultaneously and systematically with-

out using any ad hoc assumption about surface charges, which may obscure the

physical picture of electrostatic bending. Our approach has enabled us to deter-

mine such parameters as δN and a0 consistently with electrostatic interactions. In

the past, however, simplification has often been invoked, which amounts to using

pre-chosen δN for a membrane without the benefit of derivation [66]. To test this,

we have used pre-chosen values of the position of the neutral surface and plotted

the resulting C0 in Fig. 4.8. Here θ describes the relative position of the neutral

surface, For instance, θ = 1 means that the neutral surface coincides with the

headgroup region, while θ = 0 corresponds to the connected case; for θ = 0.5, the

neutral surface lies halfway between the head-tail interface and the midplane of the

bilayer. As θ changes between 0 and 1, C0 changes appreciably and nontrivially.

(In our calculations, θ ≈ 0.7-0.8 for τ = 0.004 kBT/Å
2 and θ ≈ 0.8-0.9 for τ = 0.)

Our results in Fig. 4.8 clearly suggest that θ has to be determined according to

the energetics of each layer. Interestingly, the peak of C0 appears to occur around

our estimated θ value. This is not unexpected, since each layer tends to bend with

respect to its neutral surface.

4.5 Conclusions

In conclusion, we have presented a unified approach to the electrostatic modifica-

tion of lipid headgroups and its impact on the spontaneous curvature of a lipid
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membrane, interacting with monovalent or divalent salt ions. Our effort is dis-

tinct from the existing approaches in two major respects. First, in our approach,

the elastic and charge parameters are combined in a more coherent manner. This

is accomplished by free-energy minimization with respect to lipid parameters for

given C (in a salt-dependent manner). Accordingly, the lipid parameters are al-

lowed to relax at their equilibrium values for given C. Our approach thus does

not rely on any assumption about how bending influences surface charges. Sec-

ond, our approach captures lateral and transverse charge correlations; to this end,

we have implemented the Poisson-Boltzmann approach by incorporation of finite

ionic sizes, especially for describing the association of a divalent counterion with an

anionic lipid.

A general picture that has emerged from our approach is paralleled by the

experimental observation that the electrostatic modification of lipid headgroups is

one of the key determinants of lipid packing, which in turn influences membrane

functions [74] or the structure and phase of lipid aggregates [75]. On the other hand,

the relative role of electrostatic [64–66] and protein-based bending [67] is unclear.

Nevertheless, our results reported here can offer a quantitative basis for various

experiments with pure lipid membranes (e.g., Ca2+-induced membrane fusion [69–

71]) or those with biological membranes where ion valence is a key parameter (e.g.,

Ref. [74]).

In principle, our approach can be extended to the analysis of other membrane pa-

rameters such as (both mean and Gaussian) bending moduli as well as to the study

of Ca2+-induced lipid ordering and lipid phase transitions. A related (but more

involved) problem is membrane perturbations by cationic antimicrobial peptides

(CAPs) [4,6,20,87]. CAPs are known to selectively disrupt bacterial (cytoplasmic)

membranes – initially by asymmetrical incorporation into the outer layer, carrying

a large fraction of anionic lipids (PG). Interestingly, they can significantly soften

their binding membranes [88], likely through the combined effects: membrane thin-
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ning and charge-correlations. Both effects can soften the membrane. We leave this

membrane-softening mechanism for future consideration.
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Chapter 5

Conclusions and Proposal for
Future Considerations

5.1 Conclusions

In this thesis, we have developed coarse-grained models to account for the inter-

actions of charged lipid membranes with antimicrobial peptides (AMPs) and sur-

rounding salt ions. Our approach integrates the electric and elastic properties of

lipids and AMPs in an unified manner as they are intrinsically interrelated. The

charge properties of a lipid membrane is determined by the collective organization of

constituent lipids which is itself adjusted by electrostatic interactions. Lipid mem-

branes can undergo conformational changes in response to external perturbations.

Cationic AMPs utilize the difference in the composition of anionic and zwitterionic

phospholipids to discriminate and attack their target cells from a crowd of host

cells. Salt ions can induce spontaneous curvature or modify the bending rigidity of

a lipid bilayer through electrostatic interactions.

Our model for the membrane-disrupting activity of AMPs integrates a few dis-

tinct and pronounced interactions of AMPs with lipid bilayers. Poisson-Boltzmann

approach has been implemented for description of electrostatic interactions while

hydrophobic energy has been added to account the amphipathicity of AMPs. We
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have calculated the surface coverage of AMPs embedded in the lipid headgroup-tail

interface and resulting fractional area change, ∆A/A, for a wide range of peptide

parameters. Our results, while reproducing some known and important features of

antimicrobial activity, shed light on how peptide parameters can be adjusted (in

a membrane and solvent dependent way) to optimize AMPs selective activity. We

have shown that antimicrobial activity of AMPs, can be optimized at peptide charge

Q & 4. The optimal charge is larger for larger salt concentration. The underlying

physics of this phenomenon has been traced back to the interplay between electro-

static energy and entropic penalty of the redistribution of salt ions (around AMPs

and membrane) in minimizing the free energy of the system. We have also studied

the formation of spontaneous AMP-induced pores on a lipid bilayer, considering

the growth of a pore as a barrier crossing process. Our results show that, for host

cells, a large energy barrier makes the growth of a spontaneous pore improbable

while this barrier is significantly smaller for microbial membranes.

In this thesis, we have also presented an approach to the electrostatic modifi-

cation of lipid headgroups and its impact on the spontaneous curvature of a lipid

membrane. We have combined the elastic and electrostatic properties in a coherent

manner by minimizing the free energy over a wide range of parameter space. Lat-

eral and transverse charge correlations are incorporated by considering the finite

size and discrete distribution of ions. Our results can offer a quantitative basis for

various experiments with pure lipid membranes.spontaneous bending of an asym-

metrically charged lipid membrane. We have shown the significant effect of salt ions

on the spontaneous curvature, C0, of a lipid membrane. Presence of a small con-

centration (5 mM) of divalent ions in solution inverts the sign of C0, compelling the

membrane to bend toward the charged surface, thus stabilizing reverse hexagonal

(HII) phases. .
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5.2 Proposals for Future Works

5.2.1 An analytical approach for peptide-lipid bilayer bind-
ing

In chapter three of this thesis, we presented a detailed computational approach

to calculate the energetics of peptide binding. The calculation scheme was based

on solving the nonlinear Poisson-Boltzmann (PB) equation. The results of PB

equation were utilized in a statistical physics formalism to compute the free energy

of membrane-peptide-solution system. The equilibrium state of the system was

found by minimization of the free energy. Regarding the computing time, solving

the nonlinear PB equation was the major part of the calculations. Nevertheless,

the PB equation was not a dominant part of the computational flowchart of the

whole project. In this section, we propose an approach to lower the computational

load of PB equation. In systems with low charge densities, the PB equation can be

replaced by its linear version, the Debye-Hückel (DH) equation. However, for the

peptide-lipid bilayers system, the DH equation cannot be applied due to the high

electric charge of the peptides.

In this section, we develop a coarse-grained semi-analytical approach to calculate

the binding energy of a thin peptide on a lipid membrane. More specifically, we

find an analytical approach to compute the free energy of a Wigner-Seitz (WS) cell

as a function of its radius RWS and peptide-membrane parameters. As introduced

in chapter 3 of this thesis, a WS cell defines the area per each bound peptide.

The method we present in this section applies to peptides that are adsorbed on

the membrane- water interface and are not inserted among headgroup area of the

lipids.

A peptide is modeled as a thin disk with area ap and electric charge of Q. How-

ever, the following approach can be extended to account for other geometries with

the thickness suppressed. The membrane is a thin layer, assumed to be made of
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neutral and charged lipids with α the average fraction of charged lipids and a0 the

average headgroup area of the lipid molecules. Also, the membrane is immersed in

a (1:1) salt solution with the Bjerrum length, `B , and inverse Debye length, κ ,

defined by κ2 = 8πn0e
2/εwε0kBT where n0 is the salt concentration, −e the elec-

tronic charge, εw and ε0 the dielectric permittivity of water and vacuum, and kBT

is the thermal energy. The geometrical consideration for peptide and membrane

in this section is similar to that in Reference [20]. Suppressing the thickness of

membrane is justified by the low dielectric constant of lipids (εl = 2) and the typ-

ical thickness of lipid bilayers ∼ 40 Å. Low dielectric constant and large thickness

prevents the electric field to penetrate to the other side of the membrane. Thus,

the membrane acts like a semi-infinite plate or, alternatively, a thin layer through

which the electric field cannot cross.

The approach we propose here is based on the solution of the one-dimensional

Poisson-Boltzmann equation. The electrostatic energy and the free energy of a

charged surface immersed in an (1:1) salt can be derived analytically following

reference [89]. A mean-field approach to calculate the free energy of a peptide bound

to the membrane is to consider the average charge density: all peptide charges are

smeared out on the surface. The net charge density reads σnet = −eα/a0 + QσS

where σS is the surface density of bound peptides. One can use σnet to calculate

the free energy of binding. However, the main drawback is that this approach

underestimates the effect of the charge correlations which is mainly through the

demixing of charged lipids. Charge correlations increase the binding energy and

trigger more peptide binding.

Here, we suggest a method to take into account the demixing of lipids in a

non-trivial way and calculate the free energy of a WS cell. That is, the membrane

is divided into two main zones: (i) the zone that includes a peptide and membrane

within a specified area from the peptide, AS, surrounded by solvent; (ii) bare

membrane in solvent. Zones 1 and 2 are illustrated in Fig. 5.1. In this approach,
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phospholipid molecules are able to relocate between zones 1 and 2. Intuitively, the

fraction of charged lipids should depend on the distance to bound peptide due to

electrostatic interaction. On average, zone 1 should be more populated with anionic

lipids than zone 2. For simplicity, we assume the fraction of charged lipids is uniform

in each zone and is denoted by α1 and α2 in zones 1 and 2, respectively. α1 and α2

are to be determined by minimization of the free energy subject to the constraint

that the total number of lipids is conserved over the WS cell area. To find the free

energy of the WS cell, zones 1 and 2 are treated separately, each zone is considered

as a charged layer in an electrolyte. This is a nontrivial approximation, its accuracy

can be, however, checked a posteriori. The average surface charge density in each

zone is σ1 = Q/AS − eα1/a0 and σ2 = −eα2/a0. Following reference [89] the free

energy per unit area for each zone is written as

Fel(σi, κ, `B) = σiΨ
0
i −

κ

π`B

[
cosh

(
Ψ0
i

2

)]
(5.1)

with Ψ0
i the electrostatic potential on the surface of charge density σi given by

Ψ0
i = 2 sinh−1(2πσi`B/κ). (5.2)

The WS free energy is approximately given as

FWS = ASFel(σ1, κ, `B) + (AWS − AS)Fel(σ2, κ, `B) (5.3)

There is ambiguity in choosing the area of the zone 1, AS. In principle, AS

includes the peptide area as well as the surrounding in which lipids effectively in-

teract with the peptide. What is the area of surrounding membrane? To answer

this question, one can use the two-dimensional Debye screening length, κ−12 , intro-

duced by E. S. Velazquez and L. Blum in reference [90], assuming the lipids within

this screening length interact with the peptide and are in zone one. For instance, in
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Figure 5.1: A side view of a cylindrical Wigner-Seitz cell with a peptide adsorbed on the
surface of a thin membrane. Zone 1 is a cylinder and zone 2 is a cylindrical shell around
zone 1. In the approximation scheme developed in this section, the membrane in each
zone is assumed to have a uniform surface charge density.

case of a disk peptide with area ap = πR2
P adsorbed on the membrane, we can define

the interaction zone area by AS = π(RP + κ−12 )2 , where κ2 = 2πe2α/a0εwε0kBT

for a membrane with α the average fraction of charged lipids and a0 the headgroup

area of lipid molecules.

The approximation scheme introduced here is rather non-trivial in the sense that

the electrostatic potential is not fully and consistently solved for the solvent. A valid

concern one can raise is the discontinuity of the electric potential on the boundary

between zone 1 and zone 2. Since we treated the two zones separately, there was

no mechanism to match the potentials at this boundary. One explanation is that,

if the electrostatic free energy is overestimated in one zone due to the mismatch
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of electric potential, it is, on the other hand, underestimated in the other zone.

Thus, the uncertainty of the free energy in each zone tends to counterbalance that

of the other zone. To further discuss the accuracy of the approach presented here,

we show some results compared with the results of the exact PB solution.
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Figure 5.2: Free energy of a cylindrical Wigner-Seitz cell as a function of the radius of
the cell. The red line shows the result of numerical Poisson-Boltzmann solution. The
results from the approximation scheme developed in this section is shown using AS =
π(RP + κ−12 )2 (green line) and AS manually adjusted to get the best fit with the PB
result (blue line). We have used α = 0.3, Q = 4, ap = 314, a0 = 65 Å2, κ = 0.1 Å−1,
`B = 6.9 Å, T = 300 K.

The results in Fig. 5.2 depict the WS cell free energy, FWS, as a function of

the WS cell radius, RWS. Parameters are chosen as follows: α = 0.3, Q = 4,

ap = 314, a0 = 65 Å2, κ = 0.1 Å−1, `B = 6.9 Å, T = 300 K. The solid red line

in Fig. 5.2 show the result obtained by numerical solution of PB equation for a

WS cell subject to boundary conditions. The green line shows the result obtained

by the semi-analytical approach proposed here, where AS is calculated using the

two-dimentional Debye screening length, κ2, as explained above. For the blue line,
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the same semi-analytical approach is used, however, AS is manually adjusted to

get the best fit. The accuracy of the approach is impressive – it’s within 5% of the

numerical result.

A future direction along this line is designing a similar method to calculate

energetics of surface-inserted peptides (See Chapter 3 for details about surface-

inserted mode). In this case, the results reported in chapter 3 can be reproduced

with a fast-paced approach that enables us to research and discover other possibly

important parameters and degrees of freedom. This has been cumbersome due to

the slow and time consuming nature of solving the nonlinear PB equation. With

this alternative approach one can explore to a larger range of values for parameters

such as fraction of charged lipids, α, Debye length, κ, and peptide area, ap, which

can provides us with a more comprehensive picture of the antimicrobial peptide

and membrane interactions.

5.2.2 Threshold of pore formation by antimicrobial pep-
tides

In this thesis, we presented a theoretical model to capture the essence of the in-

teraction of antimicrobial peptides with lipids bilayers. We studied the binding of

peptides onto lipid bilayers as influenced by a variety of parameters. We elaborated

on the modes of peptide binding, ı.e., surface-adsorption and surface-insertion, and

discovered how insertion of peptides disrupts the bilayer structure through stretch-

ing the overall area that can lead to formation of transient pores. Our analysis of

pore formation, however, has been limited to spontaneous pores. While this pro-

vides us with the valuable information on the likelihood of formation and expansion

of a transient pore, a comprehensive understanding of peptide induced pores may

require a detailed modeling of pores stabilized by peptides (See Chapter 1 for a

review on the process of pore formation). One important aspect is the threshold

of pore formation. If the molar ratio of bound peptides to lipids, P/L, exceeds a
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Figure 5.3: As the density of bound peptides reaches a threshold value, (P/L)∗, the
stress on the bilayer becomes great such that peptides can self-assemble into a pore to
relief the stress.

threshold value, (P/L)∗, pores start to form on the surface (Fig. 5.3). This thresh-

old is not a universal value and is dependent on the characteristics of peptides

and lipid membrane. There has been experimental observation of (P/L)∗ for a few

different choices of peptides and lipid bilayers [23,24]. On the theoretical side, how-

ever, there has not been a concrete model to provide predictions of (P/L)∗ based

on the peptide and lipid bilayers parameters.

In this section, we propose a theoretical modeling scheme to calculate the en-

ergetics of peptide-stabilized pores. Comparison of the energies of peptides par-

ticipating in pore formation with those bound on the surface of the lipid bilayer

determines if the formation of the pore is favorable (Fig. 5.4). In chapter 3 of this

thesis, we have calculated energy of bound peptides where we used a disk model

for the peptides. To compare the energy of bound peptides with those in pore, one

should, however, change the geometry of the model peptide to cylinder, the most

simple geometry for alpha-helical peptides forming a pore. Since the comparison

between the energies leads to determining the threshold (P/L) for pore formation

and since the energy is influenced by geometry, for those peptides bound on the

surface, we should also use the cylindrical model.

The Wigner-Seitz cell (WSC) approximation is applicable as long as we have

cylindrical symmetry. In chapter 3, it was due to the disk model for peptide which

was surrounded by the symmetrical radial distribution of other bound peptides.
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Figure 5.4: Schematic representation of the comparison between the free energy per
peptide in a pore and bound on the surface can determine if the formation of a pore on
the lipid bilayer is favorable.

For cylindrical peptides bound parallel to the membrane, we have to use different

methods, as there is no cylindrical symmetry for unit cells on the surface.

An approximation method one can invoke to calculate the energetics of cylindri-

cal peptide bound to the surface of the lipid membrane is to ignore the direct inter-

action between the bound peptides. While it may sound näıve at first glance, this

approximation can be justified considering that the direct distance between bound

peptides is ∼ 20 Å, almost two times longer than the Debye screening length. The

direct interaction between peptides is screened by salt ions to a large extent. Can

we assume there is absolutely no interaction between peptide? Can we write the

electrostatic energy of peptide-membrane as NP × Fsingle, where NP is the number

of peptides bound to the surface and Fsingle is the energy one single peptide bound

to the surface? (By single peptide, we indicate the energy of only one peptide

bound to an infinitely large membrane).

Our observations in chapter 3 shows that energy of WSCs strongly depends on

the radius of the WSC (Fig. 5.5). This implies that the electrostatic free energy
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Figure 5.5: Typically, the planar density of peptides is such that there is no direct
electrostatic interaction between peptides. Yet the electrostatic free energy per peptide
is a function of the distance between peptides. This dependence is through the number
of anionic lipids that each peptide can potentially attract to increase its binding affinity.
This observation from the disk peptides (right figure) lead us to define unit cells of
constant area with variable number of anionic lipids. This can be applied to cylindrical
peptides bound parallel to the surface of the membrane.

of peptide-membrane system is not linearly proportional to the number of bound

peptides. Our results indicate that, while peptide-peptide distance is larger than

the Debye length, the interactions between peptides is rather through anionic lipids

that tend to accumulate around bound peptides. To understand this, imagine there

is one single peptide bound to the surface, anionic lipids migrate to the vicinity of

the peptide to neutralize peptide charge. If the density of peptides bound to surface

is large, anionic lipids are shared by all peptides. Thus, there is a smaller number

of anionic lipids accumulated around each peptide. As a result, the binding energy

of peptides is dependent on the number of available anionic lipids for each peptide

which is proportional to the membrane area per bound peptide. This observation,

suggests that we can use a modified the WS cell approach for cylindrical peptides

bound to the surface. That is, each WS cell includes one cylindrical bound peptide

and membrane within the Debye length from the peptide. Assuming the number
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of the number of anionic lipids is variable, we can calculate the WSC free energy

as a function of the number of anionic lipids present in the WSC. Using this free

energy, we can construct the free energy of the membrane as a function of the planar

density of bound peptides which is inversely proportional to number of available

anionic lipids per peptide.

As for peptides participating in pore formation, one can solve the Poisson-

Boltzmann equation subject to boundary conditions to find the electrostatic free

energy of a pore. Since peptides are symmetrically distributed around each pore,

one can divide a pore to 2×Npeptide slices, where Npeptide is the number of peptides

in a pore. Energy of a pore can be calculated as a function of Npeptide and radius of

the pore, Rpore. Minimization of free energy with respect to these quantities gives

us the preferred state of the pore. Comparison of the free energy per peptide in

the pore with the free energy of peptides bound to the surface demonstrates if the

formation of peptides-stabled pore is favored.

Besides the electrostatic energy, the elastic energy of phospholipid molecules

plays an important role. Their effect can be included by integrating their energetics,

similar to our approach in chapter 4 of this thesis. Due to the time consuming

nature of the calculations of this project and technical difficulties in computation

of pore energy (e.g., arising from the narrow edges of the slices of a pore) we have

not been able to include it in this thesis. However, the framework we proposed

in this section can open a route for the better understanding of AMP interactions

with cell membranes.
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[13] Harder, J. and J.-M. Schröder. 2005. Psoriatic scales: a promising source for

the isolation of human skin-derived antimicrobial proteins. J. Leukoc. Biol. 77:

476-486.

[14] Ganz, T. and R. I. Lehrer. 1997. Antimicrobial peptides of leukocytes. Curr.

Opin. Hematol. 4: 53-58.

[15] Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. 2002

Molecular Biology of the Cell. Garland Science.

[16] Cooper, G. M. and R. E. Hausman. 2004. “The cell: a molecular approach”.

(3rd ed.). Sinauer.

105



[17] Matsuzaki, K., O. Murase, N. Fujii, and K. Miyajima. 1995. Translocation of

a Channel-Forming Antimicrobial Peptide, Magainin 2, across Lipid Bilayers

by Forming a Pore. Biochemistry. 34: 6521-6526.

[18] Matsuzaki, K. 1999. Why and how are peptide-lipid interactions utilized for

self-defense? Magainins and tachyplesins as archetypes. Biochim. et Biophys.

Acta. 1462: 1-10.

[19] Dathe, M., H. Nikolenko, J. Meyer, M. Beyermann, and M. Bienert. 2001. Op-

timization of the antimicrobial activity of magainin peptides by modification

of charge. FEBS Letters. 501: 146-150; also see a commentary by M. Kardar

at http: //www.condmatjournalclub.org/?p=557.

[20] Taheri-Araghi, S. and B.-Y. Ha. 2007. Physical Basis for Membrane-Charge

Selectivity of Cationic Antimicrobial Peptides. Phys. Rev. Lett. 98: 168101.

[21] Chan, B.-P., K.-S. Yi, K. Matsuzaki, M.-S. Kim and S.-C. Kim. 2000.

Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial

peptide: The proline hinge is responsible for the cell-penetrating ability of

buforin II. Proc. Natl. Acad. Sci. USA. 97: 8245-8250.

[22] Shai, Y. 1999. Mechanism of the binding, insertion and destabilization of phos-

pholipid bilayer membranes by α-helical antimicrobial and cell non-selective

membrane-lytic peptides. Biochim. et Biophys. Acta. 1462: 55-70.

[23] Lee, M.-T., F.-Y. Chen, and H. W. Huang. 2004. Energetics of Pore Formation

Induced by Membrane Active Peptides. Biochemistry. 43: 3590-3599.

[24] Wu, Y., H. W. Huang, and G. A. Olah. 1990. Method of Oriented Circular

Dichroism. Biophys. J. 57: 797-806.

106



[25] Huang, H. W., F.-Y Chen, and M.-T. Lee. 2004. Molecular Mechanism of

Peptide-Induced Pores in Membranes. Phys. Rev. Lett. 92: 198304-1–198304-

4.

[26] Yang, L., T. A. Harroun, T. M. Weiss, L. Ding and H. W. Huang. 2001. Barrel-

stave model or toroidal model? A case study on melittin pores. Biophys. J.

81: 1475-1485.

[27] Matsuzaki, K., O. Murase, N. Fujii and K. Miyajima. 1996. An antimicrobial

peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore

formation and peptide translocation. Biochemistry. 35: 11361-11368.

[28] Christensen, B., J. Fink, R. B. Merrifield and D. Mauzerall. 1988 Channel-

forming properties of cecropins and related model compounds incorporated

into planar lipid membranes. Proc. Natl. Acad. Sci. USA. 85: 5072-5076

[29] Spaar, A., C. Munster and T. Salditt. 2004. Conformation of peptides in lipid

membranes studied by X-ray grazing incidence scattering. Biophys. J. 87: 396-

407.

[30] He, K., S. J. Ludtke, H. W. Huang and D. L. Worcester. 1995. Antimicrobial

peptide pores in membranes detected by neutron in-plane scattering. Biochem-

istry. 34: 15614-15618.

[31] Yamaguchi, S., T. Hong, A. Waring, R. I. Lehrer and M. Hong. 2002. Solid-

state NMR investigations of peptide-lipid interaction and orientation of β-sheet

antimicrobial peptide, protegrin. Biochemistry. 41: 9852-9862.

[32] Pouny, Y., D. Rapaport, A. Mor, P. Nicolas and Y. Shai. 1992. Interaction of

antimicrobial dermaseptin and its fluorescently labeled analogues with phos-

pholipid membranes. Biochemistry. 31: 12416-12423.

107



[33] Deryagin, B. V. and Y. V. Gutop. 1962. Theory of the breakdown (rupture)

of free films. Kolloidnyi Zh. 24: 431-437.

[34] Lister, J. D. 1975. Stability of lipid bilayers and red blood cell membranes.

Phys. Lett. 53A: 193-194.

[35] Boal, D. 2002. Mechanics of the Cell, Cambridge University Press.

[36] Playfair, J., and G. Bancroft. 1994. Infection and Immunity, Oxford University

Press.

[37] Singleton, P. 1997. Bacteria in Biology, Biotechnology and Medicine. 4th edi-

tion, John Wiley and Sons.

[38] Ha, B.-Y., and A. J. Liu. 1997. Counterion-mediated attraction between two

like-charged rods. Phys. Rev. Lett. 79: 1289-1292.

[39] Li, Y., and B.-Y. Ha. 2005. Molecular theory of asymmetrically charged bilay-

ers: Preferred curvatures. Europhys. Lett. 70: 411-417.

[40] Ganz, T. 2003. Defensins: antimicrobial peptides of innate immunity. Nature

Reviews Immunol. 3: 710-720.

[41] Ludtke, S. J., K. He, Y. Wu, and H. W. Huang. 1994. Cooperative membrane

insertion of magainin correlated with its cytolytic activity. Biochim. et Biophys.

Acta. 1190: 181-184.

[42] Lee, M.-T., W.-C. Hung, F.-Y. Chen, and H. W. Huang. 2008. Mechanism

and kinetics of pore formation in membranes by water-soluble amphipathic

peptides. Proc. Nat. Acad. Sci. 105: 5087-5092.

[43] Jelokhani-Niaraki, M., R. S. Hodges, J. E. Meissner, U. E. Hassenstein, and

L. Wheaton. 2008. Interaction of gramicidin S and its aromatic amino-acid

analog with phospholipid membranes. Biophys. J. 95: 3306-3321.

108



[44] Hancock, R. E. W. and H.-G. Sahl. 2006. Antimicrobial and host-defense pep-

tides as new anti-infective therapeutic strategies. Nature Biotechnology. 24:

1551-1557.

[45] Hancock, R. E. W. 2001. Cationic peptides: effectors in innate immunity and

novel antimicrobials. Infectious Diseases. 1: 156-164.

[46] The main targets of some peptides are internal components, leading to intra-

cellular killing [6, 44]. Interestingly, membrane-active AMPs can catalyze the

entry of these cell-penetrating peptides into the cytoplasm. See, for instance,

G. Kragol et al. 2001. The Antibacterial Peptide Pyrrhocoricin Inhibits the

ATPase Actions of DnaK and Prevents Chaperone-Assisted Protein Folding.

Biochemistry. 40: 3016-3026.

[47] Melo, M. N., R. Ferre and M. A. R. B. Castanho. 2009. Antimicrobial peptides-

linking partition, activity and high membrane-bound concentrations. Nature

Reviews Microbiology. 7: 245-250.

[48] See Refs. [4,44] for the interaction of AMPs and the outer membrane of gram

negative bacteria.

[49] Zelezetsky, I. and A. Tossi. 2006. Alpha-helical antimicrobial peptides – Using

a sequence template to guide structureactivity relationship studies. Biochim.

et Biophys. Acta. 1758: 1436-1449.

[50] Goldman, M. J., G. M. Anderson, E. D. Stolzenberg, U. P. Kari, M. Zasloff,

and J. M. Wilson. 1997. Human β-defensin-1 is a salt-sensitive antibiotic in

lung that is inactivated in cystic fibrosis. Cell. 88: 553-560.

[51] “Good” AMPs are those that are coil-like in bulk but undergo compaction on

a membrane [18,60]. The particular one in Fig. 3.1 assumes α-helical structure;

see Refs. [4, 6, 40] for other structures.

109



[52] May, S., D. Harries, and A. Ben-Shaul. 2000. Lipid demixing and protein-

protein interactions in the adsorption of charged proteins on mixed membranes.

Biophys. J. 79: 1747-1760.

[53] Brent, R.P. 1973. “Algorithms for minimization without derivatives” Prentice-

Hall.
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[89] Jähnig, F. Electrostatic Free Energy and Shift of the Phase Transition for

Charged Lipid Membranes. 1976. Biophys. Chem. 4: 309-318
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