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Abstract

Transcapillary exchange is the movement of fluid and molecules through the

porous capillary wall, and is important in maintaining homeostasis of bodily tissues.

The classical view of this process is that of Starling’s hypothesis, in which the forces

driving filtration or absorption are the hydrostatic and osmotic pressure differences

across the capillary wall. However, experimental evidence has emerged suggesting

the importance of the capillary wall ultrastructure, and thus rather than the global

differences between capillary and tissue, it is the local difference across a structure

lining the capillary wall known as the endothelial glycocalyx that determines filtra-

tion. Hu and Weinbaum presented a detailed cellular level microstructural model

of this phenomenon which was able to explain some experimental discrepancies.

In this Thesis, rather than describing the microstructural details, the capillary

wall is treated as a poroelastic material. The assumptions of poroelasticity theory

are such that the detailed pore structure is smeared out and replaced by an idealized

homogeneous system in which the fluid and solid phases coexist at each point. The

advantage of this approach is that the mathematical problem is greatly simplified

such that analytical solutions of the governing equations may be obtained. This

approach also allows calculation of the stress and strain distribution in the tissue.

We depart from classical poroelasticity, however, due to the fact that since there

are concentration gradients within the capillary wall, the filtration is driven by both

hydrostatic and osmotic pressure gradients. The model predictions for the filtration

flux as a function of capillary pressure compares favourably with both experimental

observations and the predictions of the microstructural models.

An important factor implicated in transcapillary exchange is the endothelial

glycocalyx, which was shown experimentally to protect against edema formation.

Using our theory in combination with the experimental measurements of glycocalyx

thickness and pericapillary space dimension (PSD), we make a quantitative com-

parison for the excess flow as a result of a deteriorated glycocalyx, which shows

reasonably good agreement with the data. Since many of the parameters in the

model are difficult to measure, a sensitivity analysis was performed on the most

important of these. Finally, since there was variation in the measurements of glyco-

calyx thickness and PSD, we used probability distributions to represent the data,

and performed further calculations to obtain ranges of likely values for the vari-

ous parameters. This work could find applications in cardiovascular disease, where
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the glycocalyx is degraded or absent, and in cancer research, where the abnormal

vasculature is an impediment to the efficient delivery of anti-cancer drugs.
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Chapter 1

Introduction

In 1896, the physiologist E.H. Starling showed that fluid could be absorbed by the

blood vessels directly from the tissue spaces and subsequently hypothesized that the

forces that determine filtration or absorption of fluid across the capillary wall are

the hydrostatic and osmotic pressure differences between the capillary and tissue

(interstitial) space. The experimental studies of Landis (1927) as well as Pappen-

heimer and Soto-Rivera (1948) confirmed Starling’s hypothesis by measuring the

filtration flux as a function of capillary pressure, finding a linear relation with fil-

tration of fluid from the capillaries at high capillary pressures and reabsorption

of fluid into the capillaries at low capillary pressures. Additionally, the capillary

pressure at which there was zero filtration was equal to the effective osmotic pres-

sure difference between plasma and tissue. Starling’s hypothesis thus became the

paradigm in describing the mechanism of transcapillary exchange.

Eventually, mathematical theories were developed in an attempt to describe the

process quantitatively, with the most successful of these envisioning the capillary

wall as a semipermeable membrane. An equation for the filtration flux in terms of

the hydrostatic and osmotic pressures in the capillary and interstitial space may be

derived from this theory, and this became known as the Starling equation. How-

ever, more sophisticated experimental techniques identified the detailed cellular

level ultrastructure of the capillary wall, and it became clear that the process was

more complicated than simply flow across a membrane. In addition, the experimen-

tal study of Michel and Phillips (1987) challenged the classical view of Starling’s

hypothesis, as the relation for filtration flux as a function of capillary pressure,

postulated to be linear in the Starling equation, was found to be nonlinear in the
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steady-state. Moreover, the nonlinearity occurred in the region of low capillary

pressures, in which reabsorption would be expected, such that for no values of cap-

illary pressure would the filtration flux be negative. The implication was that there

could be no reabsorption of fluid in the steady-state.

Investigation of the mechanism of this nonlinear behaviour gave rise to the

ultrastructural models of transcapillary exchange, which attempted to describe the

process at the cellular level. But not until the work of Michel (1997) and Weinbaum

(1998) were the reasons for the nonlinearity elucidated. The Michel-Weinbaum

hypothesis suggests that the endothelial glycocalyx, a mesh-like structure lining the

inside of the capillary wall, was the molecular sieve to plasma proteins. Therefore,

rather than applying the Starling equation between the capillary and interstitial

space, it should be applied only across the endothelial glycocalyx. The result of this

was that the local protein concentration just behind the glycocalyx could be much

less than that in the tissue, and in this case the force for filtration would be reduced

such that in the steady-state there could be no reabsorption. The mathematical

details of this hypothesis were given in Hu and Weinbaum (1999), who developed

a detailed three-dimensional ultrastructural model.

The thorough study of Adamson et al. (2004) confirmed the Michel-Weinbaum

hypothesis in mammalian microvessels, and a theory with a few modifications from

that of Hu and Weinbaum (1999) was used to supplement their experimental results.

Following this, Zhang et al. (2006a) pointed out some drawbacks of the model of

Hu and Weinbaum (1999), one being that it was too complicated for convenient

use by other investigators, and thus formulated a simplified one-dimensional model

of transcapillary exchange. This model permitted an analytical solution and was

consistent with the predictions of the three-dimensional model.

Each of the three models of Hu and Weinbaum (1999), Adamson et al. (2004),

and Zhang et al. (2006a) makes different assumptions regarding the transport of

fluid and plasma proteins. All of the models take the viewpoint proposed by the

Michel-Weinbaum hypothesis for flow across the glycocalyx, but the treatment of

the endothelial cleft region (on which we will elaborate in Chapter 2) differs quite

drastically. However, the theoretical predictions are similar in each model. Both

Hu and Weinbaum (1999) and Adamson et al. (2004) require numerical methods

to solve their respective problems, whereas Zhang et al. (2006a) obtain a large

number of algebraic equations that can be solved with the use of a computer. Our

motivating purpose for the model presented in this Thesis, published first in Speziale

et al. (2008), is not all that different from Zhang et al. (2006a) in that it seeks to
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simplify mathematically the phenomenon of transcapillary exchange while retaining

the important predictive value of the above models. In order to accomplish this,

we model the capillary wall as a poroelastic material, subject to the assumption

that the porous medium is homogeneous and isotropic, and thus that the complex

ultrastructural arrangement is replaced by an idealized fluid-solid mixture in which

both phases coexist at each point. The use of poroelasticity theory permits an

analytical solution of the governing equations, and we can express all quantities in

closed form. We deviate from classical poroelasticity, however, in that the presence

of gradients in concentration of plasma proteins induces an osmotic flow and thus

the filtration velocity depends on both hydrostatic and osmotic pressure gradients,

in contrast to the usual assumption of Darcy’s law for fluid flow through a porous

medium (which assumes proportionality of the filtration velocity and hydrostatic

gradient only).

Since the endothelial glycocalyx clearly has an important role in transcapillary

exchange, and because it was shown experimentally by van den Berg et al. (2003) to

protect against edema formation, this Thesis also considers a deeper investigation

into the glycocalyx effect on transcapillary flow, and a summary of the results

has already appeared in the literature (Speziale and Sivaloganathan, 2009). We

use expressions from our theory to calculate the magnitude of the increase in flow

resulting from enzymatic deterioration of the glycocalyx, and we show how this can

be related to the measurements of van den Berg et al. (2003). We then detail the

effects of important parameters such as the glycocalyx permeability by carrying

out a sensitivity analysis. Lastly, due to the large variation in the measurements of

van den Berg et al. (2003), we use probability distributions to represent the data,

and perform our calculations again to observe the effects. The organization of this

Thesis is as follows.

In Chapter 2, we review the literature on the subject of transcapillary exchange.

We begin with some background information on the cardiovascular system, dis-

cussing first the circulation in general, then the properties of the microcirculation.

Included here is an explanation of the role of the capillary wall, the interstitial

space, and the lymphatic system in tissue homeostasis. We then discuss Starling’s

experiments, and the origin of his hypothesis. The work of Landis (1927) and Pap-

penheimer and Soto-Rivera (1948) put Starling’s hypothesis on solid experimental

footing, and these experiments as well as their implications are described in detail.

Following this, we turn to the theoretical developments in the literature. Os-

motic pressure is discussed, followed by a review of the concept of phenomenological
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laws. We show how these ideas were used to formulate a theory of membrane trans-

port from nonequilibrium thermodynamics, and when an analogy is made with the

capillary wall acting as the semipermeable membrane, this gives rise to the Star-

ling equation. Application of this theory to steady-state ultrafiltration gives the

experimentally observed prediction that there can be no reabsorption in the steady

state. We then explain the ideas behind Pore Theory and the Fiber Matrix Model,

which attempt to describe the microscopic properties of the membrane.

The transient nature of transcapillary exchange is described in Section 2.5. The

experiments of Michel and Phillips (1987), which showed no steady-state reabsorp-

tion, are described along with their implications. Following this, we explain how

the terms in the Starling equation are actually time-dependent thus leading to the

need for a new paradigm. We then elaborate on the formulation of the hypoth-

esis of Michel (1997) and Weinbaum (1998) from which a new view of Starling’s

hypothesis emerges.

The mathematical model of Hu and Weinbaum (1999) is described in a compre-

hensive fashion, including a discussion of the assumptions underlying the governing

equations as well as the boundary conditions. We outline the theoretical predic-

tions of this model, and discuss how these relate to experimental observations. Ex-

perimental evidence confirming the Michel-Weinbaum hypothesis is then reported,

including an in-depth discussion of the important study of Adamson et al. (2004),

in which experimental confirmation of the new view was established in mammalian

microvessels. We consider the assumptions of their mathematical model and the

implications of their experiments. The one-dimensional simplified mathematical

model of Zhang et al. (2006a) is then described in relation to both the earlier the-

ories and experiments. We conclude the chapter with a detailed discussion of the

key assumptions in each of the mathematical models of Hu and Weinbaum (1999),

Adamson et al. (2004), and Zhang et al. (2006a) which motivates the need for a

simpler theory – namely our poroelastic theory of transcapillary flow.

The idea of flow through porous media, the assumptions underlying the theory

of poroelasticity, the applicability to biomechanical problems, and our deviation

from the classical theory, are discussed in the Introduction to Chapter 3. We

then develop the mathematical model, explaining how osmotic pressure enters into

our poroelastic model, and derive a differential equation for the osmotic pressure

field. In our simplified geometry, the transport and stress/strain problems are

decoupled, and full details of the solutions are given in Sections 3.2.2 and 3.2.3.

Our results are then presented, first with a discussion of the parameters, followed
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by the predictions for transport, stress and strain. In the Discussion, we re-visit the

major assumptions of our theory along with those of the microstructural models.

An expression is derived from our theory for a parameter known as the hydraulic

conductivity, which allows comparison with the microstructural models as well as

with experimental observations. We also discuss the stress and strain, and given

that these have not been measured, we postulate values based on a parametric

study.

Chapter 4 begins with a general discussion of the properties of the endothelial

glycocalyx and its many functions. The experiments of van den Berg et al. (2003)

are then described and used as motivation for our work. We first estimate the

change in fluid content in the pericapillary space due to enzymatic degradation

of the glycocalyx. The role of the glycocalyx in our model is then recalled, and

an important dimensionless parameter that characterises the relative resistance to

transcapillary flow due to the glycocalyx is emphasized. We then postulate a re-

lation between the amount of fluid in the pericapillary space and the excess flow

due to a deteriorated glycocalyx, which is used to make a quantitative compar-

ison with the experiments of van den Berg et al. (2003). An expression for the

glycocalyx thickness given the relative change in the amount of pericapillary fluid

is derived, followed by a discussion of this in relation to the resistance due to the

glycocalyx. We then allow the permeability of both the glycocalyx and capillary

wall to change upon enzymatic treatment, and discuss the predictions of our model

in this case. Finally, results are shown in which the reflection coefficient of the

glycocalyx changes with enzymatic treatment. A comparison is then made between

our theoretical predictions and those of other models, as well as experimental data.

Section 4.3 begins with a procedure designed to find an optimal probability

distribution to represent the histograms for pericapillary space dimension from

van den Berg et al. (2003). We then perform our calculations again for the change

in fluid content and predicted glycocalyx thickness given the relative change in fluid

content, and derive probability distributions for both of these. Finally, we attempt

to quantify the variability in our predictions for glycocalyx thickness.

In the last chapter, we assess the contribution of this work (by comparison to

other models) and its place in the literature concerning transcapillary exchange.

We also touch on some possible extensions to this model, before closing with a

discussion of applications.

The appendix gives the general properties of the chi-square distribution, followed
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by a discussion of our methods of calculating the optimal distributions to match

the data.
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Chapter 2

Literature Review

2.1 Circulation and microcirculation

The cardiovascular system (CVS), which includes the heart, blood, and blood ves-

sels, evolved to transport nutrients, oxygen, waste products, hormones and heat

around the body. The primary function of the CVS is the rapid transport of oxy-

gen, glucose, amino acids, fatty acids, vitamins, drugs and water to the tissues,

and the rapid clearance from the tissues of metabolic waste products such as car-

bon dioxide, urea, and creatinine. Also, the CVS is crucial for the regulation of

body temperature, as it transports heat from the deep tissues to the skin surface.

(Levick, 2003)

The circulation can be broken into two components: the pulmonary circulation,

which transports blood between the heart and lungs, and the systemic circulation,

which transports blood to the rest of the body. The right side of the heart governs

the pulmonary circulation, as blood fills the right atrium, then during relaxation

(diastole) moves into the right ventricle, before being pumped into the lung by

a contraction (systole). Upon moving through the lung, the blood returns, fully

oxygenated, into the left atrium. A similar process takes place simultaneously in

the left side of the heart, where it moves from the atrium to ventricle during diastole

and is then pumped through the aorta at a much higher pressure during systole.

(Levick, 2003)

There is a well-defined hierarchy of blood vessels, with blood from the heart first

passing through the largest artery in the body, the aorta, which has a diameter of
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about 2.5 cm. The aorta divides into a set of large arteries (1-2 cm), which branch

to form medium to small arteries of diameter 0.1-1.0 cm. These further branch into

terminal arteries (0.1-0.5 mm) and high resistance vessels called arterioles (10-100

µm). The arterioles finally branch into tiny capillaries, the smallest of the body’s

blood vessels at only 4-7 µm. On the venous side of the circulation, the capillaries

converge to form postcapillary venules (10-30 µm) and venules (50-200 µm), which

further converge to form larger veins (0.5 cm), which finally bring blood to the

superior vena cava and inferior vena cava (3 cm), the largest of the veins. Note

that the definitions of the small vessels lack precision, as the properties may be

different in different tissues (Levick, 2003; Caro et al., 1978; Fung, 1997).

Blood flow through the vessels is driven by pressure gradients, with the flow

proportional to the pressure difference along a vessel. Opposition to flow is called

resistance, so that a vessel with larger resistance requires a larger pressure difference

to drive the flow. Poiseuille’s law for laminar flow implies that the resistance is

inversely proportional to the fourth power of tube radius. In arteries, the flow is

pulsatile due to the periodic contractions of the heart, meaning that during systole

the pressure is higher than in diastole (e.g. a blood pressure of ‘one twenty over

eighty’ refers to a pressure of 120 mmHg during systole and 80 mmHg during

diastole). The large arteries have very distensible walls, which therefore enable

them to smooth, or make more continuous, the pulsatile flow from the heart to the

smaller arteries. The medium or small arteries deliver blood to the organs, and may

dilate or contract, depending on the needs of the particular organ. The terminal

arteries and arterioles are the location of the major pressure drop, and thus they

must have a large resistance. This is why they are often referred to as resistance

vessels. They in essence regulate blood flow by contraction and relaxation of smooth

muscle cells that are part of the vessel wall (called vasodilation or vasoconstriction,

respectively), and since resistance changes with the fourth power of radius, the

resistance can change quite dramatically for even small changes in radius. Finally,

in the capillaries, the pressure has dropped to about 20 mmHg with the velocity

being only about 0.5% of that in major arteries. The venules and veins are larger

than the corresponding arterioles and arteries, with pressures and thus velocities

that are smaller. They also contain about 60-70% of the circulating blood so in

this sense they act as a reservoir of blood which can be actively controlled through

nerve impulses. (Levick, 2003; Caro et al., 1978; Fung, 1997)

The capillary networks of different tissues may be vastly different in architec-

ture from one another. The capillary density (number per area) varies over a large
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range, with values of 300-1000 capillaries per square millimeter in skeletal muscle,

and up to as high as 3000 per square millimeter in the brain. The capillary density

determines the surface area available for the exchange of nutrients. The intercap-

illary spacing determines the maximum distance from blood to tissue cell, which

is important since molecules arrive at the cells primarily by diffusion. Shown in

Figure 2.1 is a representative capillary network from Smaje et al. (1970), with sev-

eral important parameters, such as the arteriolar and venular pressures, capillary

length and density, and average distance between capillaries. All of these param-

eters determine how efficient the network is in doing its job – delivering nutrients

and removing waste.

Figure 2.1: A representative capillary network with measured values of the parameters.
Reprinted from Smaje et al. (1970) with permission from Elsevier.

There are three types of capillary in the body. They are known as continuous,

fenestrated, or discontinuous. Continuous capillaries are found in muscle, skin,

lung and the nervous system. The circumference is a continuous ring of between

1-3 endothelial cells with a continuous basement membrane. The capillary wall, or

endothelium, will be discussed in more detail later. Fenestrated capillaries are about

an order of magnitude more permeable than continuous capillaries. They are found

in tissues specializing in fluid exchange, for example the kidneys. The endothelium

has 50-60 nm ‘windows’, called fenestrae, which allow for rapid transfer of water

and nutrients between the blood and tissue. Discontinuous capillaries contain large

endothelial gaps, over 100 nm wide, and contain a discontinuity in the basement

membrane, which makes them highly permeable to plasma proteins. This type of

capillary is found where red and white blood cells are required to move between
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plasma and tissue, such as in the liver and spleen (Levick, 2003).

The primary role of the endothelium is to form a semipermeable membrane

that allows for exchange of nutrients between the blood and tissue. The endothe-

lium ‘senses’ shear stress and secretes chemicals (e.g. nitric oxide) that adjust the

local flow conditions (vasodilation/vasoconstriction). It also helps defend against

pathogens by allowing the passage of white blood cells, and can initiate angiogen-

esis (the formation of new blood vessels). Endothelial dysfunction contributes to

atherosclerosis, as cholesterol may form a plaque on the endothelium.

Endothelial cells (ECs) are polygonal and flattened, about 0.2-0.3 µm thick, 10-

15 µm wide and 25-40 µm long (Simionescu and Simionescu, 1984). A schematic

of the ECs which make up the capillary wall is shown in Figure 2.2. The spaces

in between ECs are known as intercellular clefts, which are about 20 nm wide and

occupy only 0.2-0.4% of the capillary surface. Rows of protein particles called junc-

tion strands seemingly block the pathway between the cells, but in fact there are

periodic breaks of about 150 nm that allow for molecules to traverse a tortuous

path across the capillary wall (Adamson and Michel, 1993). Lining the luminal

(internal) surface of ECs is a negatively charged carbohydrate-rich layer known as

the endothelial glycocalyx, which is made up of proteoglycans, glycoproteins, gly-

cosaminoglycan (GAG) chains, and plasma proteins (Pries et al., 2000; Weinbaum

et al., 2007). An electron microscope image of the glycocalyx is shown in Figure 2.2.

The glycocalyx plays an important role in transcapillary flow, and this will be dis-

cussed in more detail in Section 2.6 as it pertains to the ultrastructural model of

Hu and Weinbaum (1999), and in Chapter 4, where we discuss in depth the effect

of the glycocalyx parameters on our model of transcapillary flow. For the moment

it suffices to say that the glycocalyx contributes to the selectivity of the capillary

wall in that it excludes molecules beyond a certain size from passing through, and

also acts as a resistance barrier to flow. On the abluminal side the basal lamina,

or basement membrane, is present. This layer of approximately 50-100 nm thick

provides most of the mechanical strength of the capillary, protecting it against rup-

ture. Also present in the capillary wall are caveolae and vesicles, which transport

macromolecules first into the cell, then across it.

Once a molecule has passed through the capillary wall, it must traverse a porous

matrix known as the interstitial space (or interstitium) before reaching the cells of

the tissue. The interstitium occupies the space between the parenchymal cells

(parenchyma refers to the functional part of a tissue) and has the primary func-

tion of being a mediator of exchange between the vasculature and cells of a given
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Figure 2.2: Left – The perimeter of an endothelial cell is traced out. This is the region
known as the intercellular cleft. Reproduced from Adamson et al. (2004) with permis-
sion. Right – The hair-like protrusions on the luminal side of the capillary wall are the
endothelial glycocalyx. Reproduced from van den Berg et al. (2003) with permission.

tissue. It is a gel-like material, composed of a complex three-dimensional network

of biopolymers which make up the solid phase, and a solution of electrolytes and

plasma proteins which make up the fluid phase. Collagen fibrils and microfib-

rils serve as tensile elements of the matrix, and GAG chains serve as the water-

attracting expansion elements. The minute spaces of the GAG matrix (as small

as 3 nm in cartilage) contain interstitial fluid, and the fact that their resistance is

large (or equivalently that their conductivity is small) is what gives the interstitium

its gel-like nature (Levick, 2003). The study of the interstitial fluid pressure (IFP)

and its impact on the tissue microenvironment has long been an area of interest,

ever since Guyton (1963) showed that IFP was subatmospheric in many tissues,

usually between -1 and -3 mmHg. For tissue volume homeostasis, there must be a

mechanism to clear the excess fluid and plasma proteins away from the interstitial

space. This is the job of the lymphatic system.

The lymphatic system has three main functions. First, it preserves fluid bal-

ance in tissues by returning the capillary blood ultrafiltrate and escaped plasma

proteins back to the bloodstream. Second, it has a nutritional function, as intesti-

nal lymph vessels absorb and transport digested fat. Finally, it acts as a defense

mechanism for the body. Fluid draining from the interstitium carries foreign mate-

rials (i.e. antigens, viruses, bacteria) to the lymph nodes, where particulate matter

can be filtered out and phagocytosed, while bacterial and viral antigens activate

lymphocytes (a type of white blood cell), thus stimulating their release into the
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bloodstream. The lymphatic system has a hierarchy similar to that of the regular

circulation. Lymphatic capillaries take up proteins, particles and fluid, then pass

these on to collecting (or afferent) lymphatics, which pump the lymph through ac-

tive contraction of smooth muscle cells. The material arrives in the lymph nodes,

which as mentioned contains lymphocytes and phagocytic cells. Lymphocyte-rich

efferent lymph then moves to the thoracic duct, which empties into the left subcla-

vian vein at its junction with the jugular vein, where it re-enters the circulation.

The rate of lymph formation is dependent on both the interstitial fluid pressure and

volume. Since pressure and volume are directly related to capillary filtration, they

provide a link necessary to match lymphatic drainage rate to capillary filtration

rate, thus maintaining homeostasis (Levick, 2003).

In the late 19th century, the general belief was that once interstitial fluid was

formed (by filtration of fluid through the capillary wall), the only mechanism by

which it could return to the circulation was via the lymphatic system. However,

there was some evidence that interstitial fluid could pass directly into the blood:

if dyes were injected into the pleural or peritoneal cavity, they could sometimes be

detected in the urine before the thoracic duct lymph. This suggested that solutes

may diffuse from the tissue directly into the blood. The physiologist E.H. Starling

wondered whether this was also the case for fluids (Michel, 1997), and in his now

famous experiments, he showed that this was indeed the case.

2.2 Starling’s work

Starling (1896) set up a series of experiments to test the hypothesis that fluids could

be absorbed directly into the blood. It had been known for some time that upon

haemorrhage (bleeding), the blood and plasma become diluted, which had earlier

been believed to be due to increased lymph flow. The reasoning was that lymph

was less concentrated than the blood, and so an increase in lymph flow would add

the necessary amount of fluid to the circulation that was lost due to haemorrhage,

resulting in dilution. Starling’s first experiment involved inducing haemorrhage in

a dog and diverting the lymph away from the circulation. If the dilution still took

place, it could not be attributed to excess lymph flow, but rather would imply

that some other mechanism was responsible. Since the interstitial fluid was also

less concentrated than the plasma, there was the possibility that it was this fluid

that was responsible for ‘topping up’ the circulation. Indeed the dilution occurred,
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leading Starling to argue that fluid must be absorbed by the blood vessels directly

from the tissue.

In the next experiment, the circulation in the hindlimb of a dog was isolated by

cannulation of the femoral arteries and veins. One leg was to serve as control, while

the other was injected with a 1% salt solution to make it oedematous (swollen due

to excess fluid). Blood was then passed through each hindlimb at pressures of 65-85

mmHg and collected; this process was repeated 12-24 times. After the experiment,

the blood composition was analysed. In the control, the blood was either unaltered

or slightly concentrated, whereas in the oedematous leg, the blood and serum had

undergone significant dilution. Since the limb was isolated, it followed that the only

way dilution could occur would be if fluid moved from the interstitial compartment

into the blood. This proved that absorption of fluid directly from tissue to vessel

could occur, and Starling stated, “...we may affirm with certainty that isotonic salt

solution can be taken up directly by the blood circulating in the blood vessels”

(Starling, 1896).

In search of a mechanism, Starling suggested that the higher concentration of

proteins in the plasma than in the interstitial fluid led to a small osmotic pres-

sure difference across the capillary wall (we explain osmotic pressure in detail in

Section 2.4.1). He conducted two osmosis experiments and found that the osmotic

pressure of the plasma was between 30-40 mmHg, interestingly in the same range

as the capillary hydrostatic pressure. The following became known as Starling’s

hypothesis:

[t]he importance of these measurements lies in the fact that, although the
osmotic pressure of the proteids [sic] of the plasma is so insignificant, it is
of an order of magnitude comparable to that of the capillary pressures; and
whereas capillary pressure determines transudation, the osmotic pressure of
the proteids [sic] of the serum determines absorption...so at any given time,
there must be a balance between the hydrostatic pressure of the blood in the
capillaries and the osmotic attraction of the blood for the surrounding fluids.
(Starling, 1896)

Starling’s hypothesis led him to the idea that since capillary pressures at the

arterial end of the capillary bed were greater than those at the venous end, there

should be filtration of fluid from the capillaries at the arterial end, and reabsorption

of fluid into the capillaries at the venous end (Michel, 1997). This became the

standard picture for the next hundred years.
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Starling’s work did not immediately catch on as some were still skeptical of the

role of osmotic pressure, or dismissed his views as too mechanical and simplistic.

Direct experimental evidence did not arise for another 30 years, until the work of

E.M. Landis.

2.3 Experimental evidence in support of Star-

ling’s hypothesis

Landis (1927) set out to determine whether the hypothesis of Starling was correct.

He performed two sets of experiments: one in which the movement of fluid through

the capillary wall could be seen qualitatively by injecting solutions of dyes, and

another in which the rate of fluid passage through the endothelium was directly

measured by the motion of red blood cells (RBCs) in the capillary.

Krogh (1922) had previously suggested that the passage of dyes was related to

capillary diameter, which was contrary to Starling’s hypothesis, where the passage

should depend on capillary pressure. Landis measured capillary diameter and pres-

sure in a number of capillaries and indeed found that “...the rate of passage...is

dependent upon the level of capillary pressure” (Landis, 1927), whereas no corre-

lation was found with vessel diameter.

The second set of experiments involved an ingenious technique, which in effect is

still used today. A capillary is perfused with blood, where one end of the capillary

is closed and the RBCs visible. If there is filtration of fluid from the capillary, the

RBCs will move toward the closed end, whereas if reabsorption is occurring, the

RBCs will move away from the closed end to make room for the added fluid. The

pressure and diameter of the vessel, and position of an RBC at various times are

measured, as shown in Figure 2.3 (left). By finding the tangent to the position vs.

time curves at time equal to zero, the velocity of the RBC is found, which when

multiplied by the capillary cross-sectional area, gives the rate at which fluid was

being filtered or absorbed. If this quantity is then divided by the surface area of

the vessel, the “unit rate of fluid movement in cubic micra per square micron of

capillary wall per second” (Landis, 1927) is obtained.

When this rate of fluid passage is plotted against capillary pressure (Figure 2.3-

right), a linear relationship is found, with filtration for pressures greater than
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Figure 2.3: Left - Position of RBC as a function of time. Note the tangent to the curve
at zero time gives the RBC velocity. Right - Rate of fluid movement as a function of
capillary pressure. Taken from Landis (1927).

14 cmH2O and reabsorption for pressures below 7 cmH2O. Between these two pres-

sures, which importantly was in the range of estimates for osmotic pressure of frog

plasma, the fluid movement was near zero. Thus, the rate of fluid movement was

directly proportional to the difference between capillary hydrostatic and osmotic

pressures – exactly Starling’s hypothesis. Landis also noticed that the slope of this

line was an important quantity, now known as the hydraulic conductivity, and esti-

mated its value as 6× 10−7 cm s−1 cmH2O
−1, which is amazingly very close to the

estimates of today. These results also appeared to conform to the idea of arterial

filtration and venous reabsorption. Landis went on to further investigate the effects

of hypoxia on filtration (Landis, 1928) and measure the capillary pressure in human

subjects (Landis, 1930).

The most definitive evidence of Starling’s hypothesis in mammalian capillaries

was the work of Pappenheimer and Soto-Rivera (1948), who made the first measure-

ments of fluid movement and the Starling forces in mammalian capillaries. They

perfused blood through the circulation of cat or dog hindlimbs such that they could

control the arterial and venous pressures, as well as the protein osmotic pressure of

the plasma. They also made use of a theoretical expression for the mean capillary

pressure based on the arterial and venous pressures as well as the pre- and post-

capillary resistances. By monitoring the weight of the limb, they could infer either

filtration of fluid from blood to tissue (weight gain) or reabsorption of fluid from

tissue to blood (weight loss). They called the state at which the perfused limb was
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Figure 2.4: Left - Mean isogravimetric capillary pressure and plasma osmotic pressure.
Right - Filtration or absorption of fluid as a function of the difference between the mean
capillary pressure and its isogravimetric value. Taken from Pappenheimer and Soto-
Rivera (1948).

constant the isogravimetric state, and the capillary pressure required to obtain this

state the isogravimetric capillary pressure, denoted pCi. In this state, clearly there

is no transfer of fluid.

By perfusing vessels at varying protein concentrations (and hence osmotic pres-

sures), they found that the isogravimetric capillary pressure varied directly with

the plasma osmotic pressure (with a small discrepancy, attributable to the osmotic

pressure of the tissue fluid), as shown in Figure 2.4 (left). Thus, pCi is a measure of

the sum of all forces opposing filtration, the dominant one being the plasma osmotic

pressure, denoted πp in the Figure. In addition, the filtration or absorption of fluid

was found to be proportional to the difference between the mean capillary pressure,

and its value in the isogravimetric state (Figure 2.4 - right). This directly showed

for the first time in mammalian capillaries that fluid movements across vessel walls

are determined by differences in hydrostatic and osmotic pressures, and thus that

Starling’s hypothesis was correct.

Both Landis (1928) and Pappenheimer and Soto-Rivera (1948) wrote down an

equation to describe their observations. It looked as follows:

F = k(P − p) (2.1)

where F was the amount of fluid filtered (F positive) or reabsorbed (F negative), P

was the capillary pressure, p was called the effective osmotic pressure of the plasma
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proteins by Landis and the isogravimetric capillary pressure by Pappenheimer and

Soto-Rivera, and k was termed the filtration coefficient.

By looking at the thermodynamics of membrane transport, it is possible to

obtain an equation similar to this, and this has become known as the Starling

equation. In the following section, a mathematical framework for transcapillary

exchange is developed using arguments from nonequilibrium thermodynamics.

2.4 Mathematical framework for transcapillary

exchange

2.4.1 Osmotic pressure

Consider the situation in Figure 2.5, in which there is a two-compartment tank.

In compartment A there is pure solvent (water), and in compartment B there is

a solution of solvent and a single solute. The two compartments are separated

by an ideal semipermeable membrane, which has the characteristic that solvent

molecules may freely pass through, but solute molecules cannot. There will be a

flux of solvent in both directions; however, due to the presence of the solute in

compartment B and its inability to pass through the membrane, there is a force

exerted on the membrane by the solute molecules such that there will be a pressure

difference between the two compartments. The system will be in thermodynamic

equilibrium only when the leftward and rightward fluxes are balanced, and so the

excess pressure required in compartment A to prevent bulk flow is referred to as

the osmotic pressure, denoted by π. It helps to think of osmotic pressure as an

attractive force, in that the bulk flow will be driven to the compartment with the

higher osmotic pressure. In this sense the solute molecules are responsible for an

osmotic attraction of the bulk fluid, which is precisely what Starling described.

The van’t Hoff Law gives us a relation between the osmotic pressure of the

solution and the concentration of solute, which is

π = RTC (2.2)

where R is the universal gas constant, T is the temperature, and C is the solute

concentration. Note the analogy to the ideal gas law since C = n
V

, where n is the
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Figure 2.5: A system with two compartments separated by an ideal semipermeable mem-
brane. Compartment A contains only solvent while compartment B contains a solution.

number of moles and V is the volume. In this case we refer to the assumption as

that of an ideal solute. We also require that the solution be dilute – that is, that

the number of solute molecules is much less than the number of solvent molecules

in the solution.

In the presence of multiple solutes (say N), each will make a contribution to

the osmotic pressure, and we can extend the van’t Hoff Law as follows

π = RT
N∑
i

Ci

where i refers to the ith solute.

For solutions of macromolecules (which is important in physiological flows), the

van’t Hoff equation is a good approximation for low concentrations only. For higher

concentrations, various polynomial functions of C have been used to fit experimental

data (Michel, 1984; McDonald and Levick, 1993). Before describing the relations

for flow across a membrane, we must first understand the idea of phenomenological

equations.

2.4.2 Phenomenological equations

Phenomenological equations, sometimes called phenomenological laws, are often

just experimental relations which are found to hold between certain variables. Fick’s
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Law, which states that the diffusional flow is proportional to the concentration gra-

dient, and Fourier’s Law, which states that the rate of heat transfer is proportional

to the temperature gradient, are examples of phenomenological laws. As equations,

these are written as:

J1 = −D∇C (2.3)

J2 = −K∇T (2.4)

where the Ji’s are the fluxes of diffusing substance and heat, respectively, C is the

concentration, T is the temperature, D is the diffusion coefficient and K is the

thermal conductivity. These equations simply express the fluxes as functions of the

thermodynamic forces acting, where the forces are ∇C and ∇T . Interestingly, if

the system containing the diffusing particles is exposed to a temperature gradient,

there will be an effect on the diffusional flow. To treat this problem, one must look

at the dissipation function.

The dissipation function Φ is proportional to the rate of production of entropy

due to heat flow across a volume element, so that TΦ is the rate of dissipation

of free energy (Onsager, 1931). Thus, for Fick’s Law, the dissipation function is

Φ = J1∇C. In the presence of multiple flows and forces (as in the case of diffusion

with temperature gradient), Onsager (1931) showed that all thermodynamic flows

can be written as functions of the various thermodynamic forces. For a system in

which n simultaneous flows take place, where each flow has an associated force, the

phenomenological equations are

J1 = L11X1 + L12X2 + ...+ L1nXn

J2 = L21X1 + L22X2 + ...+ L2nXn

...

Jn = Ln1X1 + Ln2X2 + ...+ LnnXn

where Ji refers to the flux of the ith species, Xi refers to the force due to the ith

species, and the Lij’s are coefficients. For the case of pure diffusion, the force is

Xi = ∇C, and the coefficient Lii is just the diffusion coefficient D. In the case

of multiple flows and forces, the cross-coefficients Lij, i 6= j are non-zero, which

is what produces the coupling between, in this instance, diffusion and heat flux.

Further, Onsager (1931) showed the equality of the cross-coefficients (Lij = Lji) and

discussed the conditions under which this assumption would hold. Thus, not only

will the temperature gradient affect the diffusional flux, but also the concentration

gradient affects the heat flux.
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The linearity of the phenomenological equations is only valid for systems close

to equilibrium; however, the vast range of phenomena described accurately by such

equations justifies their continued use. As long as we can write the dissipation func-

tion as a product of flows and forces, we may use the phenomenological equations.

For the general system of n equations above, we write the dissipation function as

Φ =
n∑
i

JiXi

We will now use these ideas, along with our knowledge of osmotic pressure, to

describe transport across a membrane, which turns out to be extremely useful in

the description of transcapillary flow.

2.4.3 Membrane transport

From the phenomenological equations of the previous subsection, we now attempt

to describe flows across capillary walls, idealizing the capillary wall as a membrane.

This discussion is taken for the most part from the excellent text of Katchalsky and

Curran (1965). The assumptions are as follows: 1) there are two compartments,

separated by a membrane of thickness ∆x, 2) compartments may contain substances

that may either permeate the membrane or not, 3) compartments may have a

hydrostatic pressure difference but are taken as well-stirred so there are no pressure

gradients within each compartment, 4) the flow passing through the membrane is

perpendicular to its surface and one-dimensional.

For a system of n solutes, the dissipation function is

Φ =
n∑
i

Ji∆µi

where Ji is the flow, ∆µi is the change in chemical potential across the membrane,

and i refers to the ith solute. The chemical potential is defined as the change in

Gibbs free energy for a given change in the number of moles in the system. If we

simplify to a system of a single solute and solvent, then

Φ = Js∆µs + Jw∆µw (2.5)

where s and w refer to the solute and solvent (water), respectively. We can write

down the phenomenological equations at this point, but it is of interest to trans-

form the chemical potentials into more useful quantities. From considerations of
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statistical mechanics, we may write

µw = µ0
w + V wP + µc

w

where µ0
w is a constant (reference chemical potential – plays no role as only changes

in µ are important), V w is the partial molar volume, P is pressure, and µc
w is the

concentration-dependent part. Then

∆µw = (µw)0 − (µw)∆x = V w(P0 − P∆x) + (µc
w)0 − (µc

w)∆x

which simplifies to

∆µw = V w∆P + ∆µc
w (2.6)

using the fact that ∆ simply refers to the difference across the membrane. The

concentration-dependent part can be written

∆µc
w = −V wRT (c0s − c∆x

s ) = −V w∆π

which gives

∆µw = V w(∆P −∆π) (2.7)

The chemical potential of the solute is

∆µs = V s∆P + ∆µc
s

and defining an average concentration cs =
∆π

∆µc
s

, gives

∆µs = V s∆P +
∆π

cs
(2.8)

For ideal solutions we have that ∆µc
s = RT (ln c0s− ln c∆x

s ) and ∆π = RT (c0s− c∆x
s ),

so substituting in the definition of cs we obtain

cs =
c0s − c∆x

s

ln
c0s

c∆x
s

Assuming the ratio of the concentrations on either side of the membrane to be close

to one, we can expand the logarithmic terms in a Taylor series to find that cs =
c0s+c∆x

s

2
is simply the average of the concentration on each side. If we now substitute

equations (2.7) and (2.8) into the initial form of the dissipation function (2.5), we

obtain

Φ = (JsV s + JwV w)∆P +

(
Js

cs
− JwV w

)
∆π (2.9)
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where the term multiplying ∆P is the total volume flow, Jv, and the term mul-

tiplying ∆π can be simplified in the dilute assumption (that is V w = 1
cw

) to the

velocity of solute relative to that of the solvent, denoted by JD. Thus in the final

form, we can express the dissipation function as

Φ = Jv∆P + JD∆π (2.10)

For a dissipation function of this form, we may write down the following phe-

nomenological equations

Jv = LP ∆P + LPD∆π (2.11)

JD = LDP ∆P + LD∆π (2.12)

Note the important limiting behaviours, as follows. In the absence of a concentra-

tion difference (∆π = 0) there is not only the expected volume flow Jv = Lp∆P due

to the hydrostatic pressure difference, but also a flux of solute relative to solvent,

namely JD = LDP ∆P . This phenomenon is called ultrafiltration. The sign of JD

would be opposite to Jv, since it is a relative flux, but solute molecules would still

travel in the same direction as the bulk flow. In the other limit, that is in the ab-

sence of a pressure difference (∆P = 0), there is diffusional flow (JD = LD∆π), and

as well a bulk flow Jv = LPD∆π, termed osmotic flow. The solute will obviously

diffuse from high to low concentration, whereas the osmotic flow, as mentioned

above, will move in the direction toward the high concentration compartment. The

Onsager relations regarding equality of the cross-coefficients gives(
Jv

∆π

)
∆P=0

= LPD = LDP =

(
JD

∆P

)
∆π=0

which allows determination of the constants in an experimental setting.

Rather than looking at the term JD, it is often more useful to look at the total

solute flow. In going from Eq. (2.9) to Eq. (2.10), we had

JD + Jv =

(
Js

cs
− V wJw

)
+ (V wJw + V sJs)

=
Js

cs
(1 + V scs)

=
Js

cs

which is true since V scs � 1 in the dilute case. Then the total solute flux may be

expressed as the following

Js

cs
= JD + Jv = (LP + LDP )∆P + (LDP + LD)∆π
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When there is no flux of solute (i.e. Js = 0), we have the condition that −LPD =

LP = LD, which is the requirement of an ideal semipermeable membrane. Osmotic

equilibrium is then satisfied when (∆P )Jv=0 = ∆π, which conforms to the definition

of osmotic pressure above. However, to describe membranes which are not ideal,

that is when the solute molecules may also pass through, a new coefficient must be

introduced.

The reflection coefficient, σ, is a measure of the selectivity of the membrane

to a particular solute, and thus depends on both the properties of the membrane

and solute. The ideal semipermeable membrane corresponds to σ = 1; that is, all

of the solute is ‘reflected’, and the entire osmotic pressure ∆π is exerted across

the membrane. For σ < 1, solute may penetrate the membrane, and thus the full

osmotic pressure is not felt, but only the fraction σ∆π. For σ = 0, the solute

molecules will freely traverse the membrane and so there is no osmotic pressure

effect. Staverman (1951) first realized the importance of this parameter, defined as

σ = −LPD

LP

, 0 ≤ σ ≤ 1 (2.13)

Substitution for LPD in the phenomenological equation (2.11) gives

Jv = LP (∆P − σ∆π) (2.14)

which can be expressed as a volume flux per unit area, albeit with a reinterpretation

of the dimensions of the constant LP , as

Jv

A
= LP (∆P − σ∆π) (2.15)

where A is the area available for exchange.

Let us now return to what Starling proposed, namely that the hydrostatic pres-

sure of the capillary determines filtration of fluid and that the osmotic pressure

determines absorption. If we now think of the inside of the capillary as one side of

a semipermeable membrane, and the outside of the capillary, or interstitial space, as

the other side, with the capillary wall playing the role of the semipermeable mem-

brane, then Eq. (2.15) is exactly Starling’s hypothesis. We may write ∆P = pc−pi

and ∆π = πc − πi, where subscript c refers to the capillary, and i refers to the

interstitial space, such that Eq. (2.15) now reads

Jv

A
= LP (pc − pi − σ(πc − πi)) (2.16)
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Starling may not have fully appreciated the pi, πi terms, as values for these were

not known until much later on, but his hypothesis of the forces involved proved to

be correct. This is why we may refer to his hypothesis as Starling’s principle. And

although Starling himself never wrote down Equation (2.16), it is often and will

herein be referred to as the Starling equation.

Compare the Starling equation to that written by Landis (1927) and Pappen-

heimer and Soto-Rivera (1948), namely Eq. (2.1). The role of F is now played by
Jv

A
, such that when Jv

A
is positive, this signifies filtration, and when Jv

A
is negative,

there is reabsorption. The capillary pressure still occurs, now denoted by pc rather

than P , and the coefficient k is now written as LP . The p term, called the effective

osmotic pressure of the plasma proteins by Landis (1927), and the isogravimetric

capillary pressure by Pappenheimer and Soto-Rivera (1948), contains pi, the in-

terstitial hydrostatic pressure, as well as σ(πc − πi), which is the effective osmotic

pressure – the difference between that in the capillary and that in the interstitial

space multiplied by the reflection coefficient.

We may generalize this system to one which contains n solutes, which accounts

for the fact that many different molecules flow through capillary walls. Each solute

in the plasma makes a contribution to the osmotic pressure, and we may thus write

a more correct form of the Starling equation as

Jv

A
= LP (∆P −

∑
j

σj∆πj)

where j refers to the jth solute. However, albumin has a dominant effect, since for

small molecules the reflection coefficient will be close to zero, negating the osmotic

effect, whereas for σalbumin ≈ 0.9. So the Starling equation is often written in the

first form (2.16), with the understanding that albumin is the solute responsible for

the osmotic effect.

The field of transcapillary exchange is one which has truly developed due to the

work in concert of experimentalists and theoreticians. Theoretical developments

stimulated experimental work, and experiments drove the development of more

adequate theories. By perfusing a capillary at a known protein concentration (and

hence πc) at different hydrostatic pressures (pc) and measuring the filtration Jv

A
, one

obtains an estimate of LP , the hydraulic conductivity, by measuring the slope of

the line. This is precisely what Landis (1927) did, well before any of this theoretical

background was developed. In addition, at the capillary pressure for which there is

no filtration (i.e. Jv

A
= 0), we see that ∆P = σ∆π, and thus with knowledge of pi
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and πi one can estimate the value of σ. Much of the work through the 1950s to 1980s

was performed to measure the reflection coefficients and hydraulic conductivities

in various capillary networks, in different animals, etc. (Smaje et al., 1970; Curry

et al., 1976; Mason et al., 1977; Michel, 1978, 1980).

The theoretical work also made predictions about phenomena that had yet to

be observed, but which were seen experimentally later. The rest of this section

is devoted to a theoretical development which predicted that, in the steady-state,

there could be no reabsorption of fluid. This would contradict Starling’s hypothesis,

and take many years of theory and experiment to resolve.

We had an expression for the solute flow Js in terms of Jv and JD, namely

Js

cs
= JD + Jv

Eliminating ∆P from the phenomenological equations and inserting the solute flux

Js gives

Js = cs(1− σ)Jv + cs(LD − σ2LP )∆π (2.17)

where we have used the definition of the reflection coefficient σ. As stated by Curry

(1984), this equation has useful approximations, but is actually only a linearised

version of a more general relation. Following Patlak et al. (1963) we assume that

since the phenomenological equations apply to a thin, homogenous membrane, then

“we may convert them to a differential form which will apply to any infinitesimal

lamina of a thick homogeneous membrane” (Patlak et al., 1963). This essentially

allows us to write the differences in pressure and osmotic pressure across the mem-

brane as gradients. We take the positive flux in the direction of increasing x, and

let the membrane thickness be δ. The differential forms are then

Jv = −L′P
(
dp

dx
− σRT

dc

dx

)
(2.18)

Js = (1− σ)cJv + ω′RT
dc

dx
(2.19)

where we can compare with Eq. (2.14) and Eq. (2.17). First, notice that c is now

used instead of π, and also that there is a negative in front of the coefficient in

the first equation due to the fact that the flux is in the direction of the negative

pressure gradient. In the second equation, the constant ω′ = cs(LD − σ2LP ). Also,

the average concentration cs has been replaced with the actual concentration, c.

However, although c appears in the term multiplying Jv, ω
′ is still assumed to be

a constant – thus cs is still used in its definition. We remove this assumption when

deriving the equations for our model in Chapter 3.
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By assuming that the parameters L′P , ω
′, σ are concentration independent, and

that the steady state is obtained so that Jv, Js will be constant, we may integrate

the first equation to obtain

Jv = −LP (∆p− σRT∆c)

where the only difference with the Starling equation is the sign convention, and

L′P = δLP . The second equation is a linear, first order differential equation for c(x)

which can be integrated to give

c2 = c1 exp

[
(1− σ)Jv

P

]
+

Js

(1− σ)Jv

(
1− exp

[
(1− σ)Jv

P

])
(2.20)

where P =
ω′RT

δ
is the solute permeability, c2 is the concentration corresponding

to x = δ and c1 is the concentration at x = 0. We introduce the Peclet number,

which is a measure of the ratio between convective and diffusive fluxes, defined as

Pe =
(1− σ)Jv

P
, and rearrange (2.20) to obtain

Js = Jv(1− σ)

[
c1 − c2e

−Pe

1− e−Pe

]
(2.21)

Application to steady state ultrafiltration

We let c1 → Cc, the capillary protein concentration, and c2 → Ci, the interstitial

protein concentration, in Equation (2.21). In the steady state, the concentration

of protein in the tissue must be a ratio of the solute flux to the total volume flux,

therefore Ci = Js

Jv
. Then we use the expression for Js to obtain

Ci =

(
1− σ

1− σe−Pe

)
Cc

Now, we replace the osmotic pressure term in the Starling equation by the concen-

tration, using the van’t Hoff Law, to obtain

Jv

A
= LP (∆P − σRT∆C)

where ∆C = Cc − Ci. We note that we are now switching notation and using Jv

A

instead of Jv, as in (2.21), and hence Jv

A
replaces Jv in the definition of the Peclet

number. This is fine to do so long as we remember that we now are working with a

velocity rather than a volume flow, and therefore that the dimensions of LP must
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change accordingly. Now we will substitute for Ci, but since in the expression for

Ci the Peclet number occurs in the exponential, we will not be able to isolate the

equation for Jv

A
. Thus, we instead rearrange for ∆P

∆P =
Jv/A

LP

+ σ2πc

(
1− e−Pe

1− σe−Pe

)
(2.22)

where we have also inserted πc for Cc using the van’t Hoff relation.

The result is a nonlinear Jv

A
vs. pc curve, where the nonlinearity occurs for low

pc (or ∆P ) such that negative values of Jv

A
do not occur – this implies that there

can be no reabsorption of fluid from tissue to the blood in the steady state, which

would contradict Starling’s hypothesis and previous experimental evidence. This

prediction was later confirmed experimentally by Michel and Phillips (1987), in an

experiment which will be discussed shortly. Another consequence of this theoretical

development is that in the limit of high filtration, the Peclet number is large, so the

exponential terms in Equation (2.22) vanish, and we can rearrange this to obtain

Jv

A
= LP (∆P − σ2πc) (2.23)

which suggests that the osmotic pressure opposing filtration is σ2πc in the high

filtration limit, rather than σπc. This was also confirmed experimentally by Michel

and Phillips (1987).

2.4.4 Pore Theory and the Fiber Matrix Model

The similarities between permeability characteristics of capillaries and artificial

porous membranes led to the Pore Theory of capillary exchange (Pappenheimer

et al., 1951). This theory assumes that the capillary wall has numerous microscopic

openings that allow the movement of water and small solutes, but restrict the

transport of plasma proteins. Using the assumption that Poiseuille’s law is valid in

these microscopic pores, one can find expressions for the volume flux in terms of the

pressure difference across a pore, the length, radius and number of pores, and fluid

viscosity. These quantities can be then used to calculate the hydraulic conductivity,

LP . Alternatively, since LP is experimentally measurable, then using its measured

value, one can find a relation for an equivalent pore radius characteristic of the

resistance to water flow through the channels of the porous membrane (Curry,

1984). A key idea in pore theory is that of restricted diffusion, in which the effective

diffusion coefficient depends on the ratio of solute radius to pore radius. In this
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way, solute permeability and therefore flux may be quantified in terms of the pore

dimensions. Much of the experimental work was directed at finding better estimates

for the reflection coefficients of various molecules.

An analysis of experimental data on ultrafiltration of macromolecules, restricted

diffusion, and osmotic reflection coefficients of small solutes showed that the resis-

tance to transport could not be described in terms of a uniform population of

porous channels. Rather, the data suggested at least three pathways: 1) a small

pore pathway permeable to water but that excludes hydrophilic solutes, 2) a path-

way permeable to water and solutes up to the size of albumin, and 3) a large pore

pathway permeable to larger solutes (Curry, 1984).

In addition, data on reflection coefficients showed similar values over large ranges

of hydraulic conductivity, suggesting the idea that it was changes in pore frequency,

not pore size, that accounted for variation in hydraulic conductivity. As well, in

both frog mesentery and mammalian hindlimb, the predicted pore size that would

account for the selectivity of the wall to albumin could not account for the measured

flows of water and small solutes (Curry, 1984). Thus, pore theory is found to be

inconsistent. This led to the idea that the selectivity of the capillary wall is not

determined by pores with regular geometry.

Michel (1978) put forward the hypothesis that rather than pores, the molecular

sieving properties of the capillary wall may be due to a three-dimensional network

of fibrous molecules. To quantify this, Curry and Michel (1980) developed the Fiber

Matrix Model, in which “[t]he porous regions of the capillary wall are considered as

a series of channels through or between the endothelial cells containing a random

array of cylindrical fibers” (Curry and Michel, 1980). Therefore, although it was

known that there were several pathways for transport, the fiber matrix model as-

sumes a uniform selectivity of the network, and the transport coefficients thus did

not depend on geometric configuration.

In this model only two parameters must be specified: the fiber radius and

fractional fiber volume. For this analysis, the partition coefficient, which is the

space available in the matrix to a solute of radius a relative to the space available

for water, and the effective diffusion coefficient, which arises as a result of restricted

diffusion in the network, must be found. Once these are found, the permeability,

hydraulic conductivity, reflection coefficient, and hence the solute and volume fluxes

can be calculated in terms of the fiber radius and fiber volume fraction (Curry,

1984).
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The model was tested by comparison with experimental data from single cap-

illary and whole organ studies. It was found that the fiber matrix model could

account for the hydraulic conductivity, permeability to sucrose, and osmotic reflec-

tion coefficient of albumin. Also, the dimensions of the matrix are predicted to

be similar in frog mesenteric capillaries and mammalian hindlimb capillaries. In

the former, a fit of the data predicts fiber radius of 0.6 nm with volume fraction

5%, whereas in the latter, a radius of 0.5 nm with volume fraction 4.5% fits the

data. This interestingly leads to the idea that differences in hydraulic conductivity

or permeability are not caused by differences in structure of the size-limiting barri-

ers. Differences in magnitude of these parameters instead depend on the area and

thickness of the fiber filled pathway for exchange.

2.4.5 Summary

In this section we have introduced the idea of osmotic pressure, and set out the phe-

nomenological equations for the transport of fluid and solutes across a membrane.

The forces driving the flow are the hydrostatic and osmotic differences between

the two compartments. Making an analogy, the transcapillary flux of fluid and

proteins can be described using these transport equations, with the capillary wall

acting as the semipermeable membrane. An expression was derived that coincided

with Starling’s hypothesis regarding the forces driving transcapillary exchange, and

this became known as the Starling equation.

What pore theory and the fiber matrix model attempted to do was charac-

terise the microscopic details of this membrane. Since pore theory was shown to

be inconsistent, yet the fiber matrix model agreed well with experimental data,

the ‘membrane’ from transcapillary exchange was likely to be a network of random

fibers. However, as touched on above, there are multiple pathways for transcapil-

lary exchange, as shown schematically in Figure 2.6, which we take from Renkin

(1977). Small molecules may move directly through the endothelial cells (1), while

lipid-soluble molecules move within the cell membranes by lateral diffusion (2). Wa-

ter and other hydrophilic molecules may move through the intercellular junctions

(3,4,5), and vesicular transport helps the larger macromolecules traverse the capil-

lary wall (6). In fenestrated capillaries the fenestrae provide an additional pathway.

Also, the endothelial glycocalyx on the luminal side and basement membrane on

the abluminal side both may provide a barrier to transport.
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Figure 2.6: Multiple pathways for exchange. Reprinted from Renkin (1977) with permis-
sion.

So the problem is reconciling the fact that a random fiber matrix with fairly

consistent structure is the barrier to transcapillary exchange, yet the multiple path-

ways above are observed experimentally and must be taken into account to provide

a full description of the process. This led to the development of microstructural

models of transcapillary exchange, in which the microscopic properties observed in

experiment were taken into account in the mathematical models. We discuss the

most important of these models in detail in Section 2.6.

First, however, we must re-visit the development of the theory in Section 2.4.3,

which predicted that there could be no reabsorption of fluid in the steady state.

This stimulated experimental work to test the hypothesis, and in the following

section we discuss these experiments and their implications. It turns out that

combination of the ideas from the fiber matrix model, the ultrastructural pathways,

the microstructural mathematical models, and the steady state experiments lead

to a new picture of transcapillary exchange, one with important consequences for

fluid balance in tissues.

2.5 Steady state and transient fluid exchange

In the previous section, we obtained an expression for the Starling equation, namely

Jv

A
= LP [pc − pi − σ(πc − πi)]

Experiments on transcapillary exchange, as first performed by Landis, measured Jv

A

for different values of pc, of course with knowledge of the protein concentration in

the capillary, and hence πc. Then, by plotting Jv

A
vs. pc, known as a Landis-Starling

diagram, the hydraulic conductivity LP could be estimated by taking the slope of
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the regression line on the data. In addition, the intercept on the pc axis was the

pressure at zero filtration, P0, and could be found by setting Jv

A
= 0, such that

P0 = pi + σ(πc − πi)

Another way to think of this quantity is as the pressure opposing filtration. In

fact, this is the pressure that Pappenheimer and Soto-Rivera (1948) termed the

isogravimetric capillary pressure. When pc > P0, there was filtration of fluid from

the capillaries, and when pc < P0 there would be reabsorption of fluid from the

tissue to capillary. Since pc was higher at the arterial end of the capillary bed than

the venous end, the classical view was that fluid was filtered at the arterial end,

and reabsorbed the venous end.

Starling himself did not directly mention the interstitial hydrostatic pressure

and osmotic pressure as being determinants of fluid exchange. The importance of

pi was not ascertained until much later, when Guyton (1963) found that the values

were subatmospheric, in the range -1 to -3 mmHg (see also Guyton et al., 1971). Of

course it was known to Starling that there were proteins in the interstitial space,

so that there must be a non-zero πi, but he described an “osmotic attraction of

the blood for the surrounding fluids” (Starling, 1896), which holds true as long as

πc > πi, which is indeed the case. Measurements of πi found that it was in the

range of 0.3-0.6πc in a wide variety of tissues (Levick, 1991, and references therein).

Combined with estimates for P0 from the intercept of the Landis-Starling diagram,

investigators could estimate σ.

Something Starling did appreciate, however, which was not unraveled for many

years, is that the nature of transcapillary exchange is dynamic, that is to say the

process is time-dependent. He explained that:

[w]ith increased capillary pressure there must be increased transudation, until
equilibrium is established at a somewhat higher point, when there is a more
dilute fluid in the tissue-spaces and therefore a higher absorbing force to
balance the increased capillary pressure. With diminished capillary pressure,
there will be an osmotic absorption of salt solution from the extravascular
fluid, until this becomes richer in proteids [sic]; and the difference between
its (proteid) [sic] osmotic pressure and that of the intravascular plasma is
equal to the diminished capillary pressure. (Starling, 1896)

One may comprehend this dynamic nature by close examination of each of the

terms in the Starling equation. An increase in pc causes an increase in Jv

A
, but
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the result of extra fluid moving into the tissue space is dilution of the interstitial

fluid, so that πi decreases. This will then act to lower Jv

A
until a new equilibrium

is reached. On the other hand, decreasing pc sufficiently produces negative values

of Jv

A
, hence reabsorption occurs. This causes the tissue to become concentrated,

so πi is increased and hence produces a force favouring filtration, until once again

the difference in osmotic pressure across the wall equals the new capillary pressure.

We explain this in more detail in 2.5.2.

These phenomena cannot be inferred directly from the Starling equation, but

the idea that there could be a nonlinearity in the Landis-Starling diagram was

proposed by the theory in Section 2.4.3. Let us now look at the consequences of

that.

2.5.1 Michel and Phillips’ experiments

Michel and Phillips (1987) set out to investigate whether the theory developed

in Michel (1984), which predicted a nonlinear relation between Jv

A
and pc in the

steady state, was in agreement with experimental observations. Recall that Equa-

tion (2.22) predicted that there could be no steady state reabsorption, and Equa-

tion (2.23) predicted that in the high filtration limit, the effective osmotic pressure

opposing filtration was σ2πc.

Experiments were performed to measure Jv

A
at different values of the capillary

pressure, using the Landis micro-occlusion technique as in Michel et al. (1974).

There were two experimental conditions – the transient experiments in which there

was brief perfusion of a vessel at a certain pc, and the steady state experiments

in which pc was changed, followed by the system being allowed to equilibrate for

two minutes before the measurement. The results are shown in Figure 2.7. In the

transient case, a linear relationship was found, in which there was filtration for

values of pc greater than the plasma osmotic pressure and reabsorption for values

of pc less than πc. They found that ∆π approached σπc, and was approximately

constant for all values of Jv

A
. This is what was to be expected from the Starling

equation.

The steady state case, however, showed a nonlinear relation between Jv

A
and pc.

For high values of pc, the curve was close to that in the transient case, but when pc

was less than πc (actually σπc), there was a sharp inflection of the curve, and Jv

A
was

close to zero for all lower values of pc. Observing the curve in Figure 2.7, it is clearly
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Figure 2.7: Filtration flux at various capillary pressures, in the steady state and transient
state. Reprinted with permission from Michel and Phillips (1987).

seen that at no value of pc are values of Jv

A
less than zero - this leads to the unlikely

conclusion that there can be no steady state reabsorption in most tissues. This

conflicts dramatically with the classical view of filtration at the arterial end of the

capillary bed and reabsorption at the venous end. In fact, Levick (1991) showed that

if the measured values were inserted into the expression for P0, capillaries would

filter fluid even at the venous end. In addition, the osmotic pressure opposing

filtration was found to be σ2πc, in accordance with the theoretical development

above. Reasons for these surprising results are discussed next.

2.5.2 The dynamic Starling forces

Thus, Michel and Phillips (1987) showed that reabsorption can only be a transient

phenomenon, the reason for which has been described above. Specifically, the

interstitial hydrostatic and osmotic pressures pi and πi are not only determinants

of the flow, but they are also dependent on the flow.

Imagine a situation in which there is an elevated filtration flux (say by increasing

pc). Recall that the interstitial fluid is embedded in a tight matrix, in which there

is a large resistance to flow, and the means by which this fluid is drained is via

the lymphatic system. Upon an abrupt increase in filtration, fluid moves into

the interstitial space, which swells due to the fact that lymphatic drainage does not

occur immediately. This swelling causes a corresponding increase in IFP, quantified
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by the compliance of the tissue (C = ∆V
∆P

where ∆V is the volume change and ∆P

is the pressure change). Now, upon examinination of the Starling equation, one

observes that an increase in pi leads to a decrease in filtration force, which pushes

the system toward an equilibrium. This acts in parallel to the dilution in the

tissue as explained above, which also decreases the force for filtration and pushes

the system toward equilibrium. The latter is sometimes referred to as an ‘osmotic

buffer.’

Figure 2.8: The dynamic nature of the Starling forces. Reprinted with permission from
Michel (1997).

The picture is more easily understood when we examine Figure 2.8, taken from

Michel’s review article. Starting out at pc = A, that is point T in the figure, observe

that as the capillary pressure is raised from A to B, the filtration increases to the

value at point W, which is that expected based on the LP of the vessel. As the

forces equilibrate, however, the filtration decreases to steady state value at pc = B,

point X. A similar behaviour is observed when the pressure is raised from B to C,

except that the steady state at pc = C is a state of high filtration. Alternatively,

when the pressure is lowered from C to B, reabsorption occurs transiently (point R)

but as the forces equilibrate, point X is reached where there is a small but positive

filtration; similarly for a decrease from B to A, where the steady state is reached at

point T. “Transcapillary fluid absorption is thus a self-cancelling process, except

under certain circumstances” (author’s italics) Levick (1991).
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2.5.3 Toward a new view

Over a sufficiently long period of time, in order for tissue volume to remain constant,

there must be equilibration between the filtration through the capillaries and the

lymph flow. Thus the mean pc must exceed P0 by an amount consistent with

total lymph flow. However, the measured lymph flows were lower than would be

predicted by the Starling pressures (Bates et al., 1994). This is known as the low

lymph flow paradox.

Michel, in his brilliant review article (1997), set out to resolve this question. As

mentioned above, experimental evidence pointed to two pathways across microvas-

cular walls: a ‘small-pore’ pathway for water and small solutes, and a ‘large-pore’

pathway for macromolecules. The assumption was that the differences in hydro-

static and osmotic pressure were the same across both systems, due to rapid mixing

on the tissue side of the capillary wall. However, if the mixing between the small

and large pore systems happened deeper in the tissue rather than immediately out-

side the capillary wall, there could be large osmotic pressure differences across the

small pores, as the large pores would filter a concentrated solution of proteins. In

this case, the global values of πi would overestimate the driving force (which instead

of πi would be the local osmotic pressure just outside the small pores), provided

that even low filtration is sufficient to prevent diffusion of proteins toward their

openings.

So the problem was to find the mechanism for a cut-off size that allowed passage

of water but not macromolecules – or in other words, to find the small pores. As

touched on previously, the principal pathways for fluid in continuous capillaries are

the intercellular clefts. Adamson and Michel (1993) showed that there are periodic

breaks in the junction strand, which makes up a continuous (albeit tortuous) path-

way from lumen to tissue. These breaks are about 150 nm wide by 20 nm high,

which is much larger than the size of an albumin molecule (7 nm diameter) and

thus too large to be a molecular sieve – hence these could not be the small pores.

Despite the lack of knowledge of glycocalyx ultrastructure at the time, Michel

(1997) proposed that the glycocalyx was the sieving matrix for albumin, and its

interstices were the small pores, while the large pores were pathways through the

endothelial cells, for example vesicles. Thus, the glycocalyx would play the role of

the fiber matrix from the model of Michel (1980). In this case, the difference (πc−πi)

across the small pores depends on the ease of which proteins can diffuse from tissue
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Figure 2.9: Schematic of Michel-Weinbaum hypothesis which says that the local osmotic
pressure at the cleft entrance, rather than the interstitial osmotic pressure, determines
the flux of fluid. Reprinted with permission from Michel (1997).

through the cleft and up to the glycocalyx. This is depicted in Figure 2.9. A

comparison of the relative magnitudes of convection and diffusion (Peclet number) is

thus required. If convective transport dominates, then the protein concentration at

the cleft entrance may be much lower than the equilibrium interstitial concentration.

Hence the force for filtration is reduced, which may explain the lower than expected

lymph flows. In this sense, it is the local osmotic pressure at the cleft entrance,

rather than the global osmotic pressure in the tissue, that will determine fluid

flow. To explain this quantitatively, Weinbaum (1998) proposed an ultrastructural

mathematical model; this new view of the phenomenon was therefore termed the

Michel-Weinbaum hypothesis. The full mathematical model was given in Hu and

Weinbaum (1999), and we describe the details of this model now.

2.6 New view of Starling’s hypothesis

2.6.1 The mathematical model of Hu and Weinbaum

Weinbaum (1998) proposed a detailed cellular level microstructural model in which

the osmotic barrier acting across capillary endothelium is the endothelial surface

glycocalyx. Thus, the local Starling forces that determine flux across the endothe-

lium are due to the hydrostatic and osmotic pressure differences across the endothe-

lial glycocalyx, rather than the global differences between plasma and tissue. This
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is a departure from the classical view of the Starling equation, and has important

implications for the understanding of capillary flow. Hu and Weinbaum (1999) de-

scribe this model in detail. We first give some background that will be useful for

understanding their model development.

Recall Michel and Phillips (1987) used a 1-D model that was able to explain

both the transient fluid reabsorption at low capillary pressures, as well as the lack of

reabsorption at steady-state. They also assumed Ci = Js

Jv
would be the equilibrium

value of the interstitial protein concentration, which assumes that the tissue outside

the vessel wall behaves as a well-stirred reservoir. However, from knowledge of

the junction ultrastructure (Adamson and Michel, 1993), the water flux along the

length of the cleft must be spatially heterogeneous. Levick (1994) modeled water

flow through fenestra in synovial capillaries and found that the local flow dilutes

the solution outside the fenestra and thus reduces the local Starling forces for

filtration. The model of Hu and Weinbaum seeks to explain how this occurs in

continuous capillaries, using the analogy that the water flux through breaks in the

junction strand will be similar to that through fenestrae. The essential element of

their model is the coupling of these fluxes to cellular level structure, including the

glycocalyx, interendothelial cleft with junction strand, and the mixing region at the

cleft exit.

Figure 2.10: The microstructural model of Hu and Weinbaum (1999). Reprinted with
permission.

The model follows earlier ultrastructural models of Fu et al. (1994, 1997) and

Weinbaum et al. (1992), which seek to predict the transport coefficients such as LP
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and P in terms of the structural properties. We show a schematic of the model

in Figure 2.10. There are four regions. First, a surface glycocalyx of thickness Lf

which covers the entire endothelial surface. The second is region A, the cleft, which

extends from x = 0 to x = L, where the cleft depth is taken as 400 nm. The cleft

contains a junction strand at its mid-depth, with breaks or pores on average 150

nm long with spacing between 2 and 5 µm. The cleft height 2h is not shown here,

but extends out of the page; the schematic is a cross-section only. The pericapillary

space is broken into two separate regions. Region B is a semi-circular region of 5

µm radius which surrounds the cleft exit, and this is the region where mixing of the

wakes from the junction strand breaks takes place. Region C is the far-field, where

the flows from individual breaks and adjacent clefts merge to form a uniform flux.

We first describe the pressure and velocity fields, before moving onto the con-

centration field. In the fiber matrix (glycocalyx), the new version of Starling’s hy-

pothesis is applied, i.e. the local velocity is proportional to the hydraulic pressure

and oncotic pressure across the glycocalyx (note oncotic simply refers to osmotic

pressure of proteins),

V (y) =
Kp

µLf

[Pc − P (0, y)− σf (πc − π(0, y))] (2.24)

where V (y) is the local average velocity at location y, Pc and πc are the capillary

hydrostatic and osmotic pressures, σf is the reflection coefficient of the fiber matrix,

Kp is the Darcy permeability of the glycocalyx, Lf is the glycocalyx thickness, and µ

is the fluid viscosity. Note x = 0 corresponds to the region just below the glycocalyx

at the entrance to the cleft, and hence P (0, y) and π(0, y) refer to the hydrostatic

and osmotic pressures at this x−value. The fact that these quantities vary along

the cleft entrance (in the y−direction) is precisely the spatial heterogeneity that

differentiates this from the classical Starling equation.

In the cleft, there are two regions, up and downstream of the junction strand,

which is approximated as a zero thickness barrier. Since the height of the cleft 2h

is small compared to both the distance between breaks in the junction strand 2D,

as well as the depths L1, L2 of the cleft, the authors claim that water flow in the

cleft can be approximated by a Hele-Shaw flow, and was first used in this context

by Tsay et al. (1989). The Hele-Shaw flow approximation is for narrow (in the

z−direction), viscous channel flow in which the flow behaves as an inviscid 2-D

flow in the xy−plane and nonlinear inertial terms are neglected. Starting from the

full Navier-Stokes equations, these assumptions predict that the velocity component

in the z−direction can be neglected, and also that velocity gradients in the x and y
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directions in the viscous terms will be small compared with those in the z−direction

(Batchelor, 1967). Under the above stated assumptions, the velocity vector is

~V = (u(x, y, z), v(x, y, z), 0)

so that the continuity equation can be written as:

∂u

∂x
+
∂v

∂y
= 0 (2.25)

The momentum equations reduce to

∇P = µ
∂2~V

∂z2
(2.26)

The boundary conditions enforce no slip (u = v = 0) at the cleft height z = ±h.
Then if ~V0(x, y) = (u0(x, y), v0(x, y), 0) is the velocity at z = 0, we have

~V = ~V0

(
1− z2

h2

)
(2.27)

~V0 = −h
2

2µ
∇P (2.28)

Taking the divergence of (2.28) and substituting for ∇ · ~V0 gives:

∂2P

∂x2
+
∂2P

∂y2
= 0 (2.29)

Also, from the components of Eq. (2.28) we obtain the relation

∂u0

∂y
− ∂v0

∂x
= 0 (2.30)

Now, Equation (2.30) implies that the flow is irrotational in the xy−plane, thus

the velocity components satisfy a potential flow equation. Equation (2.29) shows

that the pressure satisfies a Laplace equation in the xy−plane. Therefore, viscous

resistance in the Hele-Shaw flow arises from shear stress at the cleft boundaries

z = ±h, rather than at vertical boundaries or obstacles in the xy−plane. If one

were to include additional resistance as a result of cross-bridging molecules or fibers

in the wide portion of the cleft, the no slip conditions could not be satisfied on these

fibers unless the momentum equation is generalized to include shear stress terms

involving second derivatives of u, v with respect to x, y.

At x = 0 the pressure and u−component of the velocity behind the glycocalyx

must equal the pressure and average u value at the cleft entrance. If the velocity
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field is integrated over the cleft height, it can be substituted into the modified

Starling equation (2.24) to obtain a matching condition

Pc − P (0, y)− σf (πc − π(0, y)) = −h
2Lf

3Kp

∂P (1)

∂x

∣∣∣∣
x=0+

where P (1) refers to the pressure in the region of the cleft between the glycocalyx

and junction strand. Note that P (0, y), π(0, y), ∂P (1)

∂x
|x=0+ are all unknown, and

must be found by solving the entire boundary value problem. The other boundary

and matching conditions ensure that: (i) the junction strand is impermeable except

at its breaks; (ii) pressure and velocity are continuous across the breaks; (iii) the

pressure at the cleft exit x = L2 is equal to that in the tissue (Pi); (iv) there is

periodicity in the y−direction. A point to note regarding (iii) is that the interstitial

hydraulic resistance is assumed to be much less than that of the capillary wall, so

that the pressure drop across regions B & C is negligible, and the tissue pressure

is reached at the cleft exit.

The concentration field is described using different assumptions in each of the

four regions. In all cases the steady-state is assumed. In the glycocalyx, or fiber

matrix, 1-D convection-diffusion is assumed (in the x−direction), where the con-

vection velocity is the average solute velocity. Boundary and matching conditions

ensure: (i) concentration at the luminal side of the glycocalyx is the plasma pro-

tein concentration Cc; (ii) concentration is continuous at the cleft entrance; (iii)

solute flux is continuous at the cleft entrance. Solving the convection-diffusion

equation, one obtains another nonlinear coupling condition between u0(0, y) and

C(0, y), which is related to π(0, y) using a polynomial relation for concentration

and osmotic pressure.

In the cleft, a 2-D convection-diffusion equation averaged over the cleft height

must be used, since the gradients in the x− and y−directions are of comparable

magnitude in the vicinity of the junction strand breaks. Boundary and matching

conditions require: (i) the junction strand is impermeable except at its breaks,

where the concentration must be continuous; (ii) local solute flux entering the

tissue is a prescribed quantity; (iii) periodicity/symmetry in the y−direction.

In region B, the cleft exit near field, the following information about the ultra-

structure is used in making further assumptions. The average distance of neigh-

bouring clefts is 10 µm, which is much larger than the cleft height, 20 nm, so

the solute flux at the cleft exit is treated as a line source of variable strength in

the y−direction. The governing equation then is a convection-diffusion equation
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with radial symmetry, so that C = C(r, y). Boundary and matching conditions

require that: (i) the concentration is continuous at the cleft exit; (ii) flux at cleft

exit matches that leaving region A; (iii) concentration at the edge of region B may

either a) account for vesicular transport or b) match the concentration with region

C.

Finally, in the tissue space far field, the fluxes from the breaks in the junction

strand as well as from adjacent clefts merge to form a uniform flux. Therefore, a

1-D convection-diffusion equation averaged over the height of the tissue, is used.

The boundary conditions are: (i) a prescribed flux at the entrance to the region;

(ii) prescribed concentration at the exit (i.e. in the tissue). Regions B and C

admit analytic solutions, so only region A must be computed numerically. The

authors solve the time-dependent versions of the governing equations, and find the

steady-state solutions as the time derivatives approach zero.

To test whether the model was in agreement with the experimental results of

Michel and Phillips (1987), Hu and Weinbaum solved the model equations under

three conditions: 1) high capillary pressure, 2) low capillary pressure in the steady-

state, and 3) low capillary pressure in the transient state. We briefly summarize

the results of the three cases.

For a high capillary pressure of 43 cmH2O, there was filtration as expected. The

flow of fluid was zero everywhere except near the breaks in the junction strand.

The protein concentration was uniform outside the cleft and varied little within the

cleft. For a low capillary pressure of 15 cmH2O, in the steady-state, the hydrostatic

pressure drop from vessel to tissue occurs almost completely across the glycocalyx.

However, almost the entire concentration gradient is also experienced across the

glycocalyx, with the implication that there is virtually no flow across the glycoca-

lyx along the entire cleft length. This is because the oncotic force is everywhere

sufficient to balance the filtration force. The concentration at the cleft exit is much

higher than in the previous case, but the gradient within the cleft remains small.

At the same capillary pressure in the transient case, we see reabsorption of fluid, as

the hydrostatic pressure in the cleft drops to about -7 cmH2O, creating a negative

pressure gradient which sucks fluid from the tissue through the cleft. Recalling the

experimental results of Michel and Phillips (1987), this model is able to reproduce

the key elements, namely filtration of fluid at high capillary pressure, reabsorption

at low capillary pressure in the transient state, and a small but positive filtration

at low capillary pressure in the steady-state.
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Hu and Weinbaum also investigated the possibility of a parallel, large-pore path-

way (e.g. vesicular transport), in which the concentration of proteins in the tissue

could be elevated to 40% of that in the capillary. In this case, the pressure and

velocity profiles near the entrance to the cleft were almost identical to the case

when the entire flux is through the cleft. Also, the protein concentration behind

the glycocalyx was virtually unchanged, and in the luminal side of the cleft, the

concentration is close to that predicted by the convective limit. However, there

were concentration gradients present on the downstream side of the cleft and in

the tissue. The concentration behind the glycocalyx is far lower than in the tis-

sue space, and a comparison of the model predictions with the classical Starling

equation shows the predicted decrease in filtration as a result. This is precisely the

hypothesis of Michel (1997) and Weinbaum (1998), that the local concentration at

the ‘small-pore’ exit (behind the glycocalyx) is lower than the value in the tissue,

which reduces the force for filtration. We will come back to this point. In addition,

by requiring a fit of their model predictions to the experimental data of Michel and

Phillips, the authors are able to make an estimate of the diffusion coefficient in the

fiber matrix, Df , and estimate it to be 3-4 orders of magnitude less than the free

diffusion coefficient.

Michel and Phillips, in their 1-D model, assumed that in the steady-state, Ci =
Js

Jv
, which is appropriate if the solution is well-mixed. Hu and Weinbaum do not

require this condition to apply at the cleft exit, but rather require the concentration

to first achieve a uniform value at the edge of region B, then allow for further mixing

in region C to obtain the condition. In the absence of a large-pore parallel pathway,

the tissue space does act like a well-stirred reservoir, and the assumption of Michel

and Phillips appears to be valid. However, if the parallel pathway is present, in

the convective limit the solute flux through the large-pore pathway is six times

greater than that through the cleft, resulting in nonuniformity of region B. The

model thus predicts the somewhat surprising result that the concentration in the

tissue space may be changed without altering the concentration on the lumen side

of the junction strand. Hu and Weinbaum explain this as follows.

At high capillary pressure, the elevation of concentration in the tissue, and

on the tissue side of the junction strand, is not communicated upstream through

the junction strand breaks. This leaves the region between the glycocalyx and

junction strand effectively insulated from the conditions in the tissue. Convection

dominates over diffusion at the orifice opening, so that the orifice acts “like a throat

that prevents the back diffusion of solute into the shielded region in front of the
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junction strand” (Hu and Weinbaum, 1999). The result is that the oncotic pressure

behind the glycocalyx is uncoupled from that in the tissue. Only at low filtration

will the tissue concentration influence that behind the glycocalyx.

The new hypothesis that the glycocalyx acts as the molecular sieve and diffusive

barrier to plasma proteins and thus that the Starling forces should be applied locally

across the glycocalyx leads to fundamental changes in the classical understanding of

the Starling equation. First, the local Starling forces are spatially heterogeneous on

the length scale of the spacing between junction strand breaks. Second, the protein

concentration and hence osmotic pressure behind the glycocalyx may differ greatly

from that in the tissue. The second point emphasizes the new model prediction

that filtration is much lower than previously believed in the steady-state. There

thus may not be a need for venous reabsorption, and the low lymph flow paradox

may be resolved.

2.6.2 Experimental evidence in support of the new view

Hu et al. (2000) tested the hypothesis of Michel and Weinbaum that the effective

oncotic force that opposes fluid filtration across the microvessel wall is the local on-

cotic pressure difference across the glycocalyx. This was a combined experimental

and theoretical work, with the experiments performed in frog mesenteric capillaries.

In these experiments, filtration and effective oncotic pressure were measured when

a) there was no albumin present in the tissue, and b) with the albumin concentra-

tion in the tissue maintained at the level of that in the plasma. The latter would

ensure diffusion of albumin from tissue toward the vessel. Two sets of experiments

were performed: the transient experiments, in which there was a rapid reduction

of vessel pressure and measurements taken; and the steady-state experiments, in

which the system was allowed to equilibrate after a reduction in pressure. The fil-

tration rates could then be compared to those expected if no oncotic forces opposed

filtration (which should be the case in the classical Starling interpretation since the

concentration in the vessel and tissue were equal). The theoretical methods were

similar to Hu and Weinbaum, except to accomodate albumin in the tissue, the

boundary condition was changed to Ci = Cc.

In the transient case, filtration fluxes and effective oncotic pressures at both

low (10 cmH2O) and high (43 cmH2O) capillary pressures did not change whether

albumin was present in the tissue or not. Absorption occurred at low pc when albu-

min was in the tissue, which one would not expect if diffusion of albumin from the
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tissue to the lumen side of the cleft raised the concentration behind the glycocalyx.

This led to the conclusion that even though there was no global concentration dif-

ference between plasma and tissue, there must be an effective oncotic force being

exerted, and it must be exerted by a structure within the capillary wall (namely

the glycocalyx).

In the steady-state, with albumin in the tissue, the filtration for high capillary

pressures was the same as the transient case. At low pc there was a small filtration of

fluid, however it was only 20% of that expected if there were no oncotic force (i.e. if

the classical Starling forces were acting). Therefore, an oncotic force must be acting

due to an albumin concentration difference, suggesting a protective mechanism from

back diffusion for the downstream side of the filtration barrier. This mechanism is

the throat effect of the breaks in the junction strand, which increase fluid velocity

sufficiently to prevent (or at least reduce) albumin diffusion toward the glycocalyx.

Thus, we have the experimental evidence that fluid balance is indeed determined

by concentration differences across the glycocalyx, and maintained by a protected

region between the glycocalyx and junction strand.

The study of Adamson et al.

The most definitive evidence in support of the Michel-Weinbaum hypothesis was the

study of Adamson et al. (2004), where the hypothesis was first tested in mammalian

vessels. In this pioneering study, the effective oncotic pressure difference across

rat microvessels perfused with albumin was measured, both with and without the

presence of the same albumin concentration in the tissue. The authors carried out

detailed reconstructions of the junction strand, determining size and frequency of

junction strand breaks, as well as the depth of the strand and mean cleft dimension.

Finally, gradients of albumin in the tissue were measured at both high and low

filtration rates.

These experiments were combined with a mathematical model, a schematic of

which is shown in Figure 2.11. The authors claim that the model differs from that

of Hu and Weinbaum in three important respects. First, the work of Squire et al.

(2001) found that the glycocalyx is comprised of quasi-periodic bush-like structures

of core proteins, with 10-12 nm diameter and 20 nm spacing. These structures are

also part of an underlying ordered hexagonal array with central foci spaced at

100 nm intervals. The thickness of the glycocalyx was also measured and found
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Figure 2.11: The model of Adamson et al. (2004). In (A), the outlined portion is the inter-
cellular cleft between adjacent endothelial cells. (B) and (C) show the three-dimensional
geometry of the intercellular clefts along with their breaks and the glycocalyx. (D) is a
schematic of their model. Reprinted with permission.

to be approximately 150 nm. Thus, the model of the glycocalyx was modified to

fit these observations. A model for the Darcy permeability of the glycocalyx was

developed, based on an equal weighting of flow parallel and perpendicular to the core

protein fibers, which are modelled as circular cylinders of diameter 12 nm. Second,

the morphological observations in their study, as well as those in Schulze and Firth

(1992), indicate a periodic array of cleft-spanning structures, possibly cadherins. It

is assumed these are spaced in a hexagonal array with 2.5 nm diameter and 15 nm

spacing. Thus, flow in the cleft is described using a Brinkman equation (1947).

Since the spacing of the cleft-spanning structures is similar to that of the cleft

height, the authors suggest that “fiber interaction layers near the cell membrane

boundaries must be considered in determining the effective Darcy permeability Kp

of the cleft” (Adamson et al., 2004). Then the authors claim that the flow may be

treated as a 2-D Darcy flow in which the pressure satisfies a potential equation. We

discuss in detail these assumptions and how they relate to models of fluid flow in

the cleft in Section 2.7. Third, the location of the tight junction has been moved,
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such that it is located closer to the glycocalyx, at only about 15% of the depth of

the cleft, in accordance with experimental observations.

The experimental results were as follows. When the tissue was backloaded with

albumin, it was found that the albumin concentration near the vessel wall was not

significantly changed under conditions of either high or low filtration, meaning that

there was no dilution of tissue albumin. The measurements on the morphology of

the endothelial cleft gave estimates of many parameters used in the mathematical

model, namely the gap length, mean gap spacing, perimeter per unit area of en-

dothelial cells, mean depth of the strand breaks, and mean depth of the cleft path

from lumen to interstitium.

With no albumin in the tissue, the intercept on the Jv

A
vs. pc curve was

24 cmH2O, which was the effective oncotic pressure. With albumin present in the

tissue at the same concentration as in the vessel, such that according to the classical

Starling view there would be no oncotic force and the intercept of the curve should

be the origin, the effective oncotic pressure was found to be 17 cmH2O. Due to

the observation above that tissue gradients were not present, the authors conclude

that “the colloid osmotic force opposing filtration must have been exerted across

a structure within the microvessel wall, which we propose to be the glycocalyx”

(Adamson et al., 2004).

The mathematical model was used to quantify some observations. When LP

was plotted as a function of glycocalyx thickness with and without cleft-spanning

structures, it was found that the presence of the structures decreased the value of

LP by approximately one half. They conclude based on the predicted values that

the cleft-spanning structures are likely present, and for a glycocalyx thickness of

150 nm, they find LP = 1.24 × 10−7 cm s−1 cmH2O
−1. When tissue albumin was

present, at high capillary pressures the predicted concentration on the lumen side

of the junction strand was only 35% of that in the lumen and tissue. At medium pc,

the concentration outside the cleft is reduced by only 10% from that in the tissue,

but in the protected region behind the glycocalyx, the concentration is reduced by

about 40%. Thus in both cases, the effective oncotic pressure difference across the

glycocalyx is much greater than between lumen and tissue. The predicted Jv

A
vs.

pc curves lie between the classical Starling prediction and the case if there were

no albumin in the tissue, as in Michel and Phillips’ experiments. They provide

good agreement with experimental data where the measured LP was close to that

predicted by the mathematical model, over a significant variation of the reflection

coefficient and cleft diffusion coefficient.
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Their results conform to the hypothesis that the hydrostatic and osmotic pres-

sure differences across the glycocalyx determine fluid filtration. Therefore, tissue

protein concentration contributes less to the balance of forces, as is seen by the fact

that even when the luminal and tissue concentrations were equal, large osmotic

forces were still present across the wall. The most important observation was that

under high or low filtration conditions, there was no measurable difference in albu-

min concentration near the vessel wall, in other words filtration does not dilute the

tissue albumin concentration and hence does not affect the osmotic pressure. The

reason for this is that as fluid spreads into the tissue, the velocity falls off markedly,

and thus diffusive mechanisms dominate. The presence of the small breaks in the

junction strand causes water to be funneled through the breaks such that diffusion

of albumin from tissue to the cleft cannot overcome the convective flow in this

region. Thus, a low albumin concentration is maintained in the protected region

between the glycocalyx and junction strand.

The new view of Starling’s hypothesis is thus summarized as follows. In the

classical Starling equation, it is the term σ(πc − πi) that determines fluid flux,

whereas in the current model πi is replaced by πg. Since πg is kept lower than πi

by the mechanisms described above, the term σ(πc − πg) is always greater than

σ(πc − πi), thus the force for filtration, and hence Jv

A
, is reduced. A larger flux will

further reduce πg, due to a larger convective flow opposing diffusion from tissue into

the protected region. The authors estimate πg in the range 0.7-0.9πi under normal

physiological conditions.

An additional consequence of this new view is that if the protein concentra-

tion difference across the glycocalyx, rather than between lumen and tissue, is the

determinant of fluid exchange, then the low lymph flow paradox is resolved.

2.6.3 A simplified one-dimensional model

Zhang et al. (2006a) pointed out that the three-dimensional model of Hu and Wein-

baum (1999) has drawbacks, namely that it is too complicated for convenient use,

there is a considerable computational cost, and a lack of numerical convergence

when there are small concentration gradients in the tissue. To overcome these

difficulties, they formulated a simpler 1-D model in which each of five regions is

described by a convection-diffusion equation, which reduces the system to a set

of algebraic equations that can be solved analytically. A schematic is shown in

Figure 2.12.
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Figure 2.12: The model of Zhang et al. (2006a).

The major differences with the Hu and Weinbaum and Adamson et al. models

are as follows: first, “[t]he key simplification is the conversion of the TJ strand with

its periodic orifices to a single, continuous slit, which provides the same transport

area for solutes as the orifice-like breaks and whose resistance to both water and

solute is adjusted to provide the same LP and Pd as in the 3-D model” (Zhang

et al., 2006a). Note that Pd represents the solute permeability and TJ refers to

tight junction. Instead of a zero thickness barrier as treated in the 3-D model, the

TJ now has a finite depth, and the average velocity in the slit is taken to be the

same as in the breaks of the 3-D model. The second difference in the model is that

the tissue space is now treated as a single region, rather than allowing for a mixing

region and far-field.

To satisfy the condition that the area for albumin diffusion is preserved, it is

found that 2b, the height of the slit, is 1.58 nm, and LTJ , the tight junction depth,

is 1.49 nm. It is noted that such a small channel would not permit passage of an

albumin molecule (diameter 7 nm), but the actual break in the junction strand is

18 nm high by 315 nm wide, and the “...narrow continuous TJ slit is an artificial

construct that preserves the TJ area for albumin diffusion” (Zhang et al., 2006a).

In going from a 3-D model to a 1-D model, the hydraulic resistance of the

glycocalyx must be examined in detail. The glycocalyx resistance actually has two

components: an intrinsic resistance due to water flow through the matrix, and the

ability to change the fluid streamline patterns in the cleft. With the glycocalyx

present, water is shunted to the side and passes through the channel between the
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back of the glycocalyx and TJ strand. The streamlines will thus have a more broad,

orifice-like distribution converging on the TJ strand breaks, and this streamline shift

is responsible for most of the glycocalyx resistance to flow. The authors take this

into account by adding an additional resistance at the back of the glycocalyx. Also,

diffusional resistance must be accounted for, and thus it is required that in the pure

diffusion limit, this quantity must be equal in the 3-D and 1-D models.

As mentioned, each region was treated by a 1-D convection-diffusion equation,

with boundary and matching conditions such that the albumin concentration and

flux per unit cleft length are continuous. The authors model three experimental

conditions: 1) Michel and Phillips’ model where Ci = Js

Jv
, 2) Adamson et al. model,

where either Ci = Cc or Ci = 0.4Cc, and 3) transcellular vesicular fluxes of solute

are added in parallel to examine the tissue concentration and effect of back diffusion.

Note that in the first two conditions, all water and solute pass through the cleft.

With Ci = Js

Jv
(as in Michel and Phillips) and all fluxes passing through the

cleft, the Jv

A
vs. pc curves predicted by the 1-D model are in very good agreement

with both the Michel and Phillips model and the 3-D model prediction. When

the tissue concentration is elevated to that of the lumen, as in Adamson et al.,

the 1-D model is very close to the 3-D model and agrees reasonably well with

the experimental data of Adamson et al. (2004). When the interstitial albumin

concentration is clamped at 20 mg/ml (to represent Ci = 0.4Cc, which is the case

in many tissues) at a distance of 100 µm from the vessel, it is found that there is

steady-state reabsorption for lumen pressures of approximately 17 cmH2O or lower.

This occurs when diffusional gradients of albumin in the cleft behind the glycocalyx

are stronger than the tendency of albumin to be carried to the back of the glycocalyx

by convective flow during reabsorption. This is a surprising prediction of the model,

but has yet to be verified experimentally.

2.7 Overview

The field of transcapillary exchange began with Starling’s seminal work in which

he showed that fluid could be absorbed directly from the tissue into the blood, and

hypothesized that the forces determining fluid balance were the hydrostatic and

osmotic pressures. The experimental work of Landis, as well as Pappenheimer and

Soto-Rivera, measured the filtration flux through the capillary wall as a function of

capillary pressure, and found a linear relationship with intercept on the pc-axis close

49



to the osmotic pressure difference between the capillary and tissue, thus confirming

Starling’s hypothesis. They each wrote down a simple relation for the filtration

flux in terms of capillary pressure and effective osmotic pressure (or isogravimetric

pressure), which would come to be known as the Starling equation.

Using nonequilibrium thermodynamic arguments to describe transport of fluid

and solutes across semipermeable membranes, one may write down phenomenolog-

ical equations which, by envisioning the capillary wall as a semipermeable mem-

brane, gives exactly the Starling equation. To describe the nature of this ‘mem-

brane’, Pore Theory and the Fiber Matrix Model were developed. The former could

not explain experimental results, however the latter was completely consistent with

the hydraulic conductivity, permeability, and reflection coefficient data. Thus, the

prevailing view was that there was a matrix with a random array of cylindrical

fibers that acted as the semipermeable membrane that was the capillary wall.

However, the theoretically predicted result that there could be no steady state

reabsorption, first observed experimentally in Michel and Phillips (1987), seemed

to contradict the Starling equation, and thus investigators searched for a mecha-

nism to explain this. Michel (1997) and Weinbaum (1998) hypothesized that the

endothelial glycocalyx was the molecular sieve to plasma proteins, and thus that

the Starling equation should be applied locally across the glycocalyx rather than

globally between capillary and interstitial space. In this new view, the details of

which are given in the model of Hu and Weinbaum (1999), the glycocalyx is the

fiber matrix from the theory of Curry and Michel (1980). They found that the local

protein concentration at the cleft exit may be much less than that in the tissue, thus

reducing the forces for filtration. Not only does their theory predict that there can

be no reabsorption in the steady state, but it also resolves the low lymph paradox.

Experimental confirmation of the Michel-Weinbaum hypothesis in mammalian

vessels was made by Adamson et al. (2004). In this important study, the investiga-

tors performed experiments in which the effective osmotic pressure was determined

with and without albumin in the tissue, tissue gradients of albumin were measured

at both high and low flow rates, and the parameters describing the cleft and junc-

tion strand were measured. The experimental results were used in combination

with a modification of the theory of Hu and Weinbaum (1999). Later, Zhang et al.

(2006a) formulated a one-dimensional model, which was simpler and permitted an

analytical solution, to overcome the shortcomings of the other models. We close

this chapter with a discussion of the key assumptions made in each of the math-

ematical models of Hu and Weinbaum (1999), Adamson et al. (2004), and Zhang
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et al. (2006a).

The formulation of a mathematical model requires selection of governing equa-

tions, which usually are derived from mass and momentum balance, and the pre-

scription of appropriate boundary conditions. Unfortunately, in the complex prob-

lem of transcapillary exchange, neither the equations of motion nor the boundary

conditions are straightforward. Each of the three models assumes the new view

of Starling’s hypothesis, namely that the glycocalyx acts as a fiber matrix on the

luminal side of the capillary wall. Thus, the average velocity of the fluid just be-

hind the glycocalyx is proportional to the difference between the hydrostatic and

osmotic pressures across the glycocalyx. In the model of Zhang et al., it is pointed

out that part of the resistance of the glycocalyx is due to its ability to bend the

streamlines of the flow. This cannot be described by a 1-D model, so the authors

add a resistance to obtain agreement with Hu and Weinbaum. Adamson et al.

state that they develop a model for the Darcy permeability of the glycocalyx based

on equal weighting of flow parallel and perpendicular to the core protein fibers.

Unfortunately, the model equations are not given in their paper, making it difficult

to understand whether they are assuming a 2-D flow, or simply that the presence

of perpendicular flow changes the apparent permeability of the glycocalyx. We

will assume the latter. For the concentration field, both Hu and Weinbaum and

Zhang et al. use a 1-D convection-diffusion equation for the albumin concentration

in the glycocalyx, where the convection velocity is the average solute velocity. In

Adamson et al., this depends on the above; if they assume 1-D flow, then it is the

same, but if it is a 2-D flow, then the convection velocity would have to be a vector,

and hence the proper model would be convection-diffusion in 2-D. Although there

may be slight discrepancies, the three models generally agree on how to describe

transport in the glycocalyx.

The flow of fluid and solutes through the endothelial cleft, however, is treated

differently, and this is the distinguishing feature of each model. Hu and Weinbaum

assume a Hele-Shaw flow, which as described earlier represents flow between two

parallel plates, usually around an obstacle where the length scale of the obstacle

is much greater than that of the separation of the plates. The authors use this

assumption based on the rigorous hydrodynamic theory of Zeng and Weinbaum

(1994) which looked at the flow through a thin planar barrier with periodically

spaced orifices. An analysis is performed which identifies the dimensionless quanti-

ties relating three parameters, namely the cleft height, orifice width, and distance

between orifices. For the experimentally measured values as in Adamson and Michel
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(1993), the full 3-D Stokes flow is well approximated by Hele-Shaw flow. The re-

sult of this assumption is that the flow is essentially a 2-D potential flow in each

cross-section parallel to the plates (which are the cleft boundaries), with a no-slip

condition on the plates, such that the velocity is a maximum at the plane of half-

width, and drops off in a parabolic profile. The viscous resistance of this model

then arises as a result of the shear stress at the cleft boundaries, rather than the

obstacles in the xy-plane.

Adamson et al. point out that there is a hexagonal array of cleft-spanning struc-

tures which will add to the resistance of the cleft, and thus describe the flow using a

Brinkman equation, in accordance with Tsay and Weinbaum (1991). The Brinkman

(1947) equation was postulated to describe flow through a porous medium where

instead of the pressure gradient being proportional to the velocity, as in Darcy’s

law, the equation also contains a term with the Laplacian of velocity. The result

is that in the limit of low permeability, the Brinkman equation reduces to Darcy’s

law, and in the limit of high permeability (or negligible resistance due to the porous

medium), it is approximated by Stokes flow.

An explanation of the study of Tsay and Weinbaum (1991), in which the viscous

flow past a square array of circular cylindrical fibers confined between parallel

walls was studied using the 3-D Stokes equations, is helpful. A key dimensionless

parameter is the aspect ratio, B = B′

a
, where B′ is the half-spacing between the walls

and a is the cylinder radius. When B � 1, Hele-Shaw flow is a good approximation,

whereas the Brinkman approximation works well for B > 5. We can think of the

B � 1 limit as short, wide cylinders, and the B � 1 limit as long, slender cylinders.

Recall that for Hele-Shaw flow, we were concerned with flow around an obstacle,

whereas now we are looking at an array of cylinders. It was found in this study

that the important parameter that characterises flow is ∆
B

, where ∆ is the spacing

between fibers. Thus, it is the relative magnitudes of the spacing and the aspect

ratio that determines the flow regime. This is due to the fact that the viscous

boundary layer on a particular cylinder is of the order of B. Therefore, in the limit

of ∆
B
� 1, the flow can be approximated by a Hele-Shaw flow, noting that the

requirement that B � 1 from above is no longer required. The viscous boundary

layers from adjacent cylinders will not come close to meeting in this case, and thus

we are essentially in the potential flow regime. When ∆
B
� 1, the viscous boundary

layers overlap one another, thus increasing the drag force by a large amount for

decreasing values of ∆
B
≤ O(1). Then the equations can be approximated by the

2-D version, due to the fact that the effect of the viscous overlapping regions in
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each plane will be much greater than the effect of the parallel plates. Adamson

et al. measured the spacing of the cleft-spanning structures and found they are of

the same order as the cleft height, and so neither of the limits of ∆
B

is applicable,

but rather the boundary layers near the cell membrane must be taken into account.

In reality, the flow through the cleft is a flow between parallel plates with peri-

odic orifices, in which the flow can be treated as Hele-Shaw, in combination with

flow around thin obstacles with spacing of the same order as the spacing, which

is treated by a 3-D Brinkman equation. So, the manner in which these flows are

combined, and the simplifying assumptions that can be made, are not obvious. The

authors claim that once they have determined the effective Darcy permeability, then

“the governing equation for the flow in the cleft can be treated as a two-dimensional

Darcy flow satisfying a potential equation for the pressure field” (Adamson et al.,

2004). Again, the failure to explicitly write down the equations and boundary

conditions of their model is a cause of confusion for the reader.

Since the model of Zhang et al. is one-dimensional, the only possibility for

fluid flow through the cleft is a flow with constant velocity, in accordance with the

continuity equation. However, to mimic the effect of the orifices in the junction

strand, instead of treating the junction strand as a zero-thickness barrier as above,

they convert it to a tiny channel with finite depth. This channel is an “artificial

construct” (Zhang et al., 2006a) in which the resistance of the channel is adjusted

so that the hydraulic conductivity and permeability match the 3-D model of Hu

and Weinbaum. However, at the cost of introducing an artificial construct, the

authors were able to solve the equations of their model analytically.

We briefly mention the manner in which the tissue space is treated in the differ-

ent models, although the effects are much less than those of different assumptions

for the flow in the cleft. In Hu and Weinbaum, there is a mixing region outside the

cleft, which is treated as a line source of solute, and a far-field, where the flux of

solute is required to become uniform. Adamson et al. instead solve 3-D convection-

diffusion equations with boundary conditions of continuity of concentration and flux

at the cleft exit and tissue far-field. Zhang et al. treat the tissue space as only one

region, since there are no discrete orifices through which fluid flows, and thus no

need for a mixing region.

Therefore, the models have points of agreement and disagreement. The motivat-

ing purpose for the theoretical model developed in this Thesis, as already published

in Speziale et al. (2008), is similar to that of Zhang et al. (2006a), namely to formu-
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late a theory that is simpler from a mathematical perspective, yet which does not

lose too much of the predictive power of the more complicated ultrastructural mod-

els. Since the Michel-Weinbaum hypothesis for flow across the glycocalyx seems to

have a solid experimental basis and has become the generally accepted view, we

use this assumption in our formulation.

Where we depart from the above models, however, is in the treatment of flow

through the cleft. We generally will refer to the capillary wall as meaning the

endothelial cells and the intercellular clefts with junction strands and their periodic

orifices. Due to the lack of agreement in treating the flow mentioned above, we take

a different approach, namely homogenization of the capillary wall, such that the

theory of poroelasticity may be used. In this case, only one paramter is required to

describe the resistance to flow through the wall, and this is equivalent to the effective

Darcy permeability in Adamson et al. (2004). Although the effect of homogenization

is to ‘wipe out’ the microstructure, clearly a large simplification, the trade-off for

obtaining an analytically solvable model is reasonable under some circumstances,

and we discuss the validity of our assumptions in the next chapter. We now present

our poroelastic model of transcapillary flow.
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Chapter 3

A poroelastic model of

transcapillary flow

3.1 Introduction

For the reasons outlined at the end of the previous chapter, it is essential to develop

a more accessible model of transcapillary exchange that does not lose the predictive

capabilities of the more complicated ultrastructural models. To accomplish this,

we take advantage of the fact that flow through the capillary wall with its detailed

ultrastructure, including endothelial clefts, tight junctions, and orifices, may be

thought of as a flow through a porous medium. The study of porous media flows

arose initially in the study of soil mechanics, and Biot (1941) developed the theory of

consolidation to describe the settlement of soils under an applied load. The grains

composing the elastic soil skeleton are imagined to be held together by certain

forces, such that the behaviour of the soil is similar to that of squeezing a sponge

saturated with water. Under the assumptions of the theory, the porous medium is

an isotropic, homogeneous material, with both the fluid and solid phases coexisting

at each point. In this sense, the ultrastructure of the porous medium, for instance

the pore size, spacing and geometry, is ‘smeared’ out and the individual effects of

single pores are averaged to obtain macroscopic equations (Burridge and Keller,

1981).

The fact that biological tissues are porous and elastic led to the application of

consolidation theory, or poroelasticity, to problems in various areas of physiology,

for example flow through articular cartilage (Mow et al., 1980), flow through aortic
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tissue (Kenyon, 1979), and biomechanics of the brain (Nagashima et al., 1987; Tenti

et al., 1999, 2000). These successful applications of the theory lead us to believe that

the problem herein, namely flow through the capillary wall, may be treated using

this same approach. We therefore model the capillary wall as a poroelastic material,

consisting of a fluid and a solid phase, both of which are intrinsically incompressible.

In our application, this amounts to replacing the ultrastructure of the capillary wall

(the cleft, its tight junctions and orifices) by an idealized homogeneous system.

The result is that we will not be able to describe for instance the fluid streamlines

through the breaks in the junction strand, as done in Hu and Weinbaum (1999). The

advantage though is that there is no need to account for the extremely complicated

geometrical configuration of the capillary wall structures, and we thus obtain a

relatively simple mathematical model, as well as simple geometry. Additionally, we

are able to solve the model equations analytically and write closed form solutions

for all variables.

Our model, however, must deviate from classical poroelastic models, due to the

following. An assumption of poroelasticity is that the fluid flux through the porous

matrix is proportional to the pressure gradient, which is known as Darcy’s law. In

the presence of solutes, however, it is well-known that low-permeable clay sediments

may exhibit membrane behaviour, and over the last several decades mounting evi-

dence has shown that clay can restrict solute transport relative to the flow of water

(Bader and Kooi, 2005, and references therein). Consequently, the presence of clay

gives rise to both ultrafiltration and chemical osmosis (Section 2.4.3) with the result

that Darcy’s law is no longer valid.

Here, we make an analogy between flow through clays and the capillary wall,

since the capillary wall is also known to restrict the transport of albumin relative

to water (for example, Hu and Weinbaum (1999) assume a non-zero reflection

coefficient due to crossbridging structures in the wide part of the cleft). Thus, we

envisage the capillary wall as a homogeneous and isotropic material at each point

of which both the fluid and solid phases coexist (Biot’s assumption), but with the

addition of a variable concentration of plasma proteins responsible for the osmotic

pressure gradient. On the lumen side of the wall we assume the Michel-Weinbaum

hypothesis applies, that is that the endothelial surface glycocalyx is the primary

molecular sieve for plasma proteins (namely albumin), and hence the Starling forces

act across the glycocalyx rather than between the lumen and tissue. The varying

concentration of albumin across the wall, which we assume to vary continuously,

sets up the colloid osmotic pressure gradient. We assume that in the pericapillary
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interstitium just outside the wall, the concentration of albumin equals that in the

tissue.

The contents of this chapter have for the most part already appeared in the

literature (Speziale et al., 2008). Note, however, that some of the ideas from that

manuscript are elaborated upon, especially in the Discussion.

3.2 Mathematical model

We idealize a typical capillary in a normal tissue as a uniform circular cylinder with

a diameter of 10 µm and a porous wall of 0.5 µm thickness. As explained in the

Introduction, we assume that the wall consists of a homogenized medium such that

at each point the solid and fluid phases coexist, and within the fluid phase there is

a solute which is representative of plasma proteins (e.g. albumin). We also make

the assumption that the capillary hydrostatic pressure pc and the plasma protein

osmotic pressure πc are constant throughout the cylindrical section of the capillary

of interest here, so that the strain in the tube wall can be taken to be planar. This

allows us to examine a cross-section of capillary, and work in two dimensions. In

addition, we limit this analysis to the steady state case.

Figure 3.1: Model geometry. On the left side is the coordinate system. On the right side
is our domain – the annulus R ≤ r ≤ R+ ∆R.
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It is convenient to write Biot’s consolidation equations in the notation intro-

duced by Kenyon (1976a). Due to the extreme smallness of the Reynolds number,

we can neglect the inertia terms in the equation of motion which therefore reduces

to the equilibrium condition

∂

∂xj

Tij = 0, (i, j = 1, 2, 3) (3.1)

Here and in the rest of this work the summation convention over repeated indices

is used. The triplet (x1, x2, x3) stands for a standard Cartesian coordinate system

with origin on the axis of the capillary, which also plays the role of the z-axis. Tij

is the total stress tensor, so that the equilibrium condition implies that the total

stress is divergenceless. Now, in the classical consolidation theory the total stress

is written as

Tij = −pδij + τij (3.2)

where p is interpreted as the pore fluid pressure, which acts only on the diagonal

elements of Tij due to δij, the Kronecker delta, while τij depends on the bulk

deformation of the solid matrix only and is interpreted as a contact stress (Kenyon,

1976b). In our case, however, there is also a contribution to the normal stresses

coming from the presence of osmotic pressure, with the consequence that Eq. (3.2)

has to be modified.

3.2.1 Osmotic pressure in consolidation theory

As outlined in the Introduction, our hypothesis is that the structure of the capillary

wall can restrict solute transport relative to the bulk fluid flow, thus exhibiting

membrane behaviour. Assuming for simplicity that there is only one solute - namely

albumin - and that the solvent is water, it follows that throughout the capillary

wall there will be a smoothly varying concentration of solute cs(x1, x2, x3) and

hence a smoothly varying osmotic pressure π(x1, x2, x3). Following the discussion

in Section 2.4.3, nonequilibrium thermodynamic arguments allow us to express the

volume and diffusional fluxes in terms of the corresponding thermodynamic forces,

which in the case of a semipermeable membrane are the differences in hydrostatic

and osmotic pressures. Patlak et al. (1963) extended this formulation to differential

forms in one dimension, and we assume that this holds in higher dimensions as well,

so that we can express the fluxes in terms of ∇p and ∇π. The result is the pair of
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coupled phenomenological equations

~Jv = LP∇(−p) + LPD∇(−π) (3.3a)

~JD = LDP∇(−p) + LD∇(−π) (3.3b)

where, as mentioned above, the cross coefficients, LPD and LDP , are equal by

Onsager’s principle and provide the coupling between osmosis and ultrafiltration.

We also mention that the coefficients refer to the capillary wall region only, not

the entire flow across the glycocalyx and through the capillary wall. Later in this

chapter and in the next one, we discuss in detail the hydraulic conductivity, which

will also be denoted LP . This quantity is something entirely different, namely the

slope of the line relating the filtration flux to the capillary pressure. It is hoped that

this does not cause the reader too much confusion, but we wish to be consistent with

the notation in the literature. Now, if we recall the reflection coefficient σ = −LPD

LP

,

we may rewrite Eq. (3.3a) as

~Jv = −LP (∇p− σ∇π) (3.4)

The physical meaning of this equation is obvious, namely that the velocity ~Jv is the

result of the net balance between the hydraulic and the osmotic gradients which act

in opposite directions. Furthermore, for σ = 1 the osmotic contribution is largest

and corresponds to the effect of an ideal semipermeable membrane function, in that

all of the solute is ‘reflected’. At the other extreme – that is, when σ = 0 – both the

solvent and the solute can flow freely in response to the hydraulic pressure gradient

alone. This latter case should coincide with Darcy’s law of classical consolidation

theory, and this conclusion is reinforced by the fact that the transport coefficient

LP in Eq. (3.4) has the same physical dimensions, namely L3TM−1, as the Darcy

coefficient k
µ
, where k is the permeability of the medium and µ the dynamical

viscosity. It follows that under the assumption that LP is a constant property of

the homogenized system we can regard the phenomenological equation (3.4) as a

kind of generalized Darcy law, and rewrite it as

~W = −k
µ

(∇p− σ∇π) (3.5)

where we call ~W the filtration velocity. The latter is usually called the specific

discharge in the theory of water and solute transport in clayey soils where the same

equation is used (Bader and Kooi, 2005). Introduction of a new quantity called the

effective pressure, P , defined as

P = p− σπ (3.6)
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allows us to rewrite Eq. (3.5) as

~W = −k
µ
∇P (3.7)

It is of note here that p, π and P are functions of space, whereas the reflection

coefficient σ is regarded as a constant. If an osmotic force drives the flow, then

similar to hydrostatic forces, it also affects the total stress. Thus, the constitutive

equations (3.2) must read

Tij = −Pδij + τij (3.8)

where the contact stress tensor has a form similar to that of linear elasticity theory,

namely

τij = λekkδij + 2Geij (3.9)

except that the constants λ and G are the Lamé-like parameters for the mixture.

The strain tensor eij is defined in terms of the displacement vector ~u by the linear

approximation

eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(3.10)

and hence we have ekk =
∂uk

∂xk

. We will denote this quantity e, the cubic dilatation,

or local change in volume, and summation over repeated indices gives

e = ∇ · ~u (3.11)

Since in the steady state the velocity
∂~u

∂t
of the solid component vanishes, the

continuity equation for the mixture reduces to the incompressibility condition for

the bulk liquid, namely

∇ · ~W = 0 (3.12)

For σ = 0 these are the standard equations of linear poroelasticity. For σ > 0,

however, the system is not closed because the osmotic pressure π is a further un-

known. Hence our next task is to derive the missing equation.

Spatial evolution of osmotic pressure

The relationship between the solute concentration cs and the corresponding osmotic

pressure is linear only for ideal, dilute solutions (van’t Hoff law), while for higher
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concentrations higher-degree polynomials in cs have been derived by fitting experi-

mental data (Michel, 1984). For instance, Hu and Weinbaum (1999) have used the

formula (π in cmH2O and cs in grams per litre)

π = 0.345cs + 2.657× 10−3cs
2 + 2.26× 10−5cs

3 (3.13)

which was determined by a curve fit of experimental data given by McDonald and

Levick (1993). Then, of course, one needs to add to the theory a convection-diffusion

equation for cs, which in turn requires knowledge of the convection velocity from

hydrodynamics. Each of these steps involves approximating assumptions in order

to make the complexity of the mathematical equations manageable.

In this work, however, we take a different approach. We first note that at the

physiological concentration of 22.5 gl−1 of albumin (McDonald and Levick, 1993)

the linear term is only 17% off the full value. Secondly, we show below that if

only the linear term is kept then we can derive a single differential equation for the

osmotic pressure, thus bypassing the problem of calculating cs with its attendant

uncertainties. Consequently, we hypothesize this trade-off to be reasonable in our

case and proceed to the derivation of such an equation from nonequilibrium ther-

modynamics. Eliminating ∇p from the fundamental equations (3.3a)-(3.3b) and

using the Onsager relation LPD = LDP gives

− ~JD = σ ~Jv + (LPDσ + LD)∇π (3.14)

Following the argument in Section 2.4.3, it is convenient to rewrite this equation in

terms of the total solute flux ~Js, which is given by ~Js = cs( ~Jv + ~Jd) in the dilute case

where the solute volume fraction is much less than one. Thanks to this relation,

the relative velocity ~JD can be eliminated from (3.14) which then reads

~Js = cs(1− σ) ~Jv + cs(LPσ
2 − LD)∇π (3.15)

and use of the van’t Hoff law allows us to eliminate the solute concentration cs in

favour of π = csRT , where R is the perfect gas constant and T is the absolute

temperature (also constant). Then Eq. (3.15) becomes

RT ~Js = (1− σ)π ~Jv + (LPσ
2 − LD)π∇π (3.16)

and since ~Js is a divergenceless vector field - as it follows from the continuity

equation and the steady-state assumption - the condition ∇ · ~Js = 0 leads to the

following differential equation for π,

π∇2π +

(
1− σ

LPσ2 − LD

)
~W · ∇π + |∇π|2 = 0 (3.17)

61



where we have used the information that ~Jv is just the filtration velocity ~W of

poroelastic theory.

3.2.2 Solution of the transport problem

The assumption of a cylindrical capillary allows us to simplify considerably the

mathematical model by taking advantage of this symmetry and rephrasing all equa-

tions in cylindrical coordinates (r, θ, z), where z coincides with the capillary axis,

θ is the longitudinal angle, and r is the radial distance from the axis. The fur-

ther assumption of plane strain implies that all fields are independent of z, which

amounts to saying that the dynamics are the same in every cross-section of the

cylinder. Then, taking into account the fact that the thermodynamic forces act

perpendicularly to the capillary wall, we can conclude that all fields are functions

of the radial coordinate alone in the steady state case. Our domain then is the

annulus R ≤ r ≤ R + ∆R, where R is the radius of the capillary, and ∆R is the

thickness of the capillary wall.

In this coordinate system the transport problem consists of Eqs. (3.6),(3.7),(3.12)

and (3.17). The first three now read

W (r) = −k
µ

dP

dr
(3.18)

P (r) = p(r)− σπ(r) (3.19)

1

r

d

dr
(rW (r)) = 0 (3.20)

along with the boundary conditions

W (R) =
kg

µ`g
[pc − pg − σg(πc − πg)] (3.21)

P (R + ∆R) = p(R + ∆R)− σπ(R + ∆R) (3.22)

= pi − σπi

The subscript c refers to the lumen side (capillary) and g to the cleft side of the

endothelial surface glycocalyx, whose ‘bush’ structure has thickness `g and perme-

ability kg (Hu and Weinbaum, 1999; Adamson et al., 2004). The first boundary

condition enforces the Michel-Weinbaum hypothesis regarding the revised Starling

principle. It is noted here that pg and πg are simply the hydrostatic and osmotic
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pressures just behind the glycocalyx at the inner wall, and therefore pg = p(R)

and πg = π(R). This equation therefore provides a coupling between the filtration

velocity, hydrostatic pressure and osmotic pressure at the inner wall. The second

condition simply requires the effective pressure to match the value at the pericap-

illary part of the interstitium (denoted by the subscript i). The equation for the

osmotic pressure becomes

π

r

d

dr

(
r
dπ

dr

)
−
(

1− σ

LD − σ2Lp

)
dπ

dr
W (r) +

(
dπ

dr

)2

= 0 (3.23)

with the boundary conditions

π(R) = πg (3.24a)

π(R + ∆R) = πi (3.24b)

which simply impose continuity at the interval’s endpoints.

The solution of (3.20) is easily found to be

W (r) =
c1
r

(3.25)

where using the boundary condition (3.21) we can evaluate the constant c1 as

c1 =
kgR

µ`g
[(pc − pg)− σg(πc − πg)] (3.26)

Integrating (3.18) gives

P (r) = pi − σπi +
µ

k
c1 ln

(
R + ∆R

r

)
(3.27)

If we substitute in r = R into this expression, and also realize that by the definition

of P , P (R) = pg − σπg, we obtain a matching condition

pg − σπg = pi − σπi +
µ

k
c1 ln (1 + h) (3.28)

where h = ∆R
R

and which, noting that the expression for c1 contains pg, can be

solved for pg in terms of the other parameters

pg =
∆pig + γ

`g
∆pcg

1 + γ
`g

(3.29)

where γ =
kg

k
R ln(1 + h), ∆pcg = pc − σg(πc − πg) and ∆pig = pi − σ(πi − πg).

Substituting (3.29) into (3.26) gives the following form of c1

c1 =
kgR

µ

(
∆pcg −∆pig

`g + γ

)
(3.30)
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The differential equation obeyed by the osmotic pressure (3.23) poses a far

greater challenge due to its nonlinearity, for which no standard solution methods

exist. Of course, the problem can be solved numerically; however, we are able to

find an approximate closed-form solution of the boundary value problem (3.23)-

(3.24) which gives us an idea of the behaviour of π(r) across the capillary wall.

Using the solution for W (r) in (3.23) and introducing

α =
(1− σ)c1
LD − σ2LP

(3.31)

the differential equation becomes

π
d2π

dr2
+ (π − α)

1

r

dπ

dr
+

(
dπ

dr

)2

= 0 (3.32)

We are able to find an approximate closed-form solution of this equation by the

following method. Introducing the dimensionless pressure π̄ = π
α

and multiplying

by r2 gives

r2π̄π̄′′ + (π̄ − 1)rπ̄′ + (rπ̄′)2 = 0 (3.33)

where the dashes denote derivatives. Next, we change variables according to

π̄(r) = u(z), z = ln r (3.34)

and reduce the differential equation to the form

uu′′ + (u− 1)u′ + (u′)2 = 0 (3.35)

This, in turn, can be reduced to a homogeneous Riccati equation by setting

p(z) = u′(z) (3.36)

with the result

up′ + (u− 1)p+ p2 = 0 (3.37)

Since now the independent variable is missing we can make this equation linear by

regarding p as a function of u and making the further change of variable

p(u) =
1

v(u)
(3.38)

The resulting differential equation

v′ −
(

1− 1

u

)
v =

1

u
(3.39)
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is linear in v and can easily be solved to give

v(u) = c0

(
eu − 1

u

)
(3.40)

where c0 is an arbitrary constant of integration. Now we go backwards to recover

the initial variables. Using (3.36) and (3.38) gives

du

dz
= c0

u

eu − 1
(3.41)

which can be easily be solved by separation of variables

I(u)− lnu = c0z + c00 (3.42)

where c00 is another arbitrary constant of integration and the function I(u) is given

by

I(u) =

∫
euu−1du (3.43)

which is the well known modified exponential integral Ei1(u) (Lebedev, 1972, p.32).

The latter can be represented in the form

Ei1(u) = γ + lnu+
∞∑

n=1

un

nn!
(3.44)

where γ = 0.5772157... is the Euler-Mascheroni constant; and when this represen-

tation is introduced into (3.42) it gives

∞∑
n=1

un

nn!
= c0z + c00 (3.45)

where we have incorporated the constant γ into the still arbitrary constant c00.

Finally, we go back to the original variables by using (3.34) and recalling that

π̄ = π
α
,

∞∑
n=1

1

nn!

(
π(r)

α

)n

= c0 ln r + c00 (3.46)

Although the solution is given in terms of an infinite series, we can get an idea of

the behaviour of the osmotic pressure by noticing that the series can be written as

∞∑
n=1

1

nn!

(
π(r)

α

)n

=
π(r)

α

[
1 +

1

4

(
π(r)

α

)
+

1

18

(
π(r)

α

)2

+ ...

]
(3.47)

≈ π(r)

α
(3.48)

if
1

4

∣∣∣∣π(r)

α

∣∣∣∣� 1 (3.49)
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The assumption (3.49) must be examined in detail. From the work of Patlak et al.

(1963), we had a parameter ω′, which was defined as

ω′ = cs(LD − σ2LP )

where c̄s is the average solute concentration. Note that when deriving the equation

for the osmotic pressure field, we replaced this average concentration by the actual

concentration; but here, since we are looking for the magnitude of the terms only,

we go back to this form. Also from Patlak et al. (1963), for a membrane of thickness

δ, the solute permeability could be expressed as

P =
ω′RT

δ

where R is the gas constant and T is the temperature. Rearranging these two

relations gives

LD − σ2LP =
Pδ

csRT

Since we are only interested in the approximate values in this estimation process,

and since cs is an average concentration, then using van’t Hoff’s law we can in-

troduce a representative osmotic pressure Π = csRT . Then substituting into the

expression for α, namely Eq. (3.31) we obtain

α =
(1− σ)c1

Pδ
Π

Now, Pδ has the dimensions of a diffusion coefficient, namely L2T−1, and so we

use the estimate Pδ ∼ Dc, where we take the value for Dc to be that in the cleft

(2.0× 10−7 cm2 s−1) as given in Zhang et al. (2006a). Our final expression then is

α =
(1− σ)c1

Dc

Π

≈ 5Π

using the values for c1 from Table 3.1. For the first term approximation to be valid,

we require
1

4

∣∣∣∣πα
∣∣∣∣� 1

and for the representative values, ∣∣∣∣πα
∣∣∣∣ ≈ Π

5Π
≈ 1

5

which means that the value of

1

4

∣∣∣∣πα
∣∣∣∣ ≈ 1

20
� 1
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and hence the approximation is reasonable. In such a case we have

π(r) = c0 ln r + c00 (3.50)

having incorporated α into the arbitrary constants. Then application of the bound-

ary conditions (3.24) gives

π(r) =
πi − πg

ln(1 + h)
ln
( r
R

)
+ πg (3.51)

3.2.3 Stress and strain distribution

The motion of the fluid through the poroelastic capillary wall produces a local

deformation of the material, and the resulting stress and strain distribution can

easily be calculated from Eqs. (3.1), (3.8), (3.9) and (3.10), along with suitable

boundary conditions. Substituting (3.8)-(3.9) into the equation of motion (3.1)

gives

− ∂P
∂xj

+ λ
∂e

∂xj

+ 2G
∂

∂xi

eij = 0 (3.52)

where the first term is related to the filtration velocity Wj according to the gener-

alized Darcy law (3.5). Consistent with our assumptions, the displacement vector

~u = (u(r), 0, 0) in cylindrical coordinates and the only strain tensor components

different from zero are

err =
du

dr
(3.53)

eθθ =
u

r
(3.54)

It follows that the cubic dilatation is given by

e =
du

dr
+
u

r
(3.55)

while the divergence of the strain tensor consists only of its radial component which

is simply u′′(r) +
1

r
u′(r) − 1

r2
u(r), where the dashes denote derivatives. Conse-

quently, Eq. (3.52) takes on the following form

u′′ +
u′

r
− u

r2
= − c1

κc

1

r
(3.56)

where c1 comes from the expression for the filtration velocity ~W and is given by

Eq. (3.30), and we have introduced the consolidation coefficient κc defined by

κc =
k

µ
(λ+ 2G) (3.57)
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This differential equation is of the Euler type and its general solution is

u(r) = c2r +
c3
r
− c1

2κc

r ln r (3.58)

where c2 and c3 are two arbitrary constants of integration whose determination

requires imposition of two boundary conditions. These are obtained from the ob-

servation that the dynamics are determined completely by pressure gradients, and

that contact stress is independent of pore pressure for incompressible constituents

(Kenyon, 1976b). Thus we require that no contact forces act on the inner and outer

walls, which amounts to requiring that

τrr(R) = 0 (3.59a)

τrr(R + ∆R) = 0 (3.59b)

and since from the definition (3.9)

τrr = λ

(
du

dr
+
u

r

)
+ 2G

du

dr
(3.60)

we obtain the two boundary conditions

(λ+ 2G)
du

dr

∣∣∣
r=R

+

(
λ

R

)
u
∣∣
r=R

= 0 (3.61)

(λ+ 2G)
du

dr

∣∣∣
r=R+∆R

+

(
λ

R + ∆R

)
u
∣∣
r=R+∆R

= 0 (3.62)

which u(r), given by Eq. (3.58), must satisfy. This leads to a closed linear system

of algebraic equations for the two unknowns c2 and c3, and its solution is straight-

forward albeit tedious:

c2 =
c1
2κc

[
1− ν + lnR +

(1 + h)2 ln(1 + h)

h(h+ 2)

]
(3.63)

c3 =
c1
2κc

[
R2

1− 2ν

(1 + h)2 ln(1 + h)

h(h+ 2)

]
(3.64)

where we have assumed that the relation between λ, G, and the Poisson ratio ν is

the same as for a Hookean material, namely

G

λ+G
= 1− 2ν

We once again reiterate that these parameters refer to the solid-fluid mixture, and

so the value of the Poisson ratio for the capillary wall is not known a priori, but must
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be determined from measurement. Substitution of these expressions into Eq. (3.58),

introducing a parameter h̃ defined as

h̃ =
(1 + h)2 ln(1 + h)

h(h+ 2)

and finally rearrangement gives the final formula for the displacement as

u(r) =
c1
2κc

[(
1− ν + h̃− ln

r

R

)
r +

(
h̃

1− 2ν

)
R2

r

]
(3.65)

We note that the dimensionless factor c1
2κc

can also be written as

c1
2κc

=
∆P cg

4G

kg

k

R

`g

1− 2ν

1− ν
(3.66)

where

∆P cg = (pc − pg)− σg(πc − πg) (3.67)

is proportional to the Starling force at the glycocalyx. Using the expression for pg

(3.29), we may alternatively write

c1
2κc

=
(∆pcg −∆pig)(1− 2ν)

4G(1− ν) ln(1 + h)(1 + `g

γ
)

(3.68)

With the displacement known it is then straightforward to calculate the com-

ponents of the strain, and therefore the dilatation, as well as the radial and angular

contact stress. The components err and eθθ are given by

err =
(∆pcg −∆pig)(1− 2ν)

4G(1− ν) ln(1 + h)(1 + `g

γ
)

[
h̃− ν − ln

r

R
−

(
h̃

1− 2ν

)
1

r2

]
(3.69)

eθθ =
(∆pcg −∆pig)(1− 2ν)

4G(1− ν) ln(1 + h)(1 + `g

γ
)

[(
1− ν + h̃− ln

r

R

)
+

(
h̃

1− 2ν

)
R2

r2

]
(3.70)

and the dilatation is given by Eq. (3.55) which, thanks to Eqs. (3.65) and (3.68),

turns out to be

e =
(∆pcg −∆pig)(1− 2ν)

4G(1− ν) ln(1 + h)(1 + `g

γ
)

[
(1− 2ν) + 2h̃− 2 ln

r

R

]
(3.71)

while the radial stress is given by Eq. (3.60), which leads to the result

τrr =
∆pcg −∆pig

2(1− ν) ln(1 + h)(1 + `g

γ
)

[
h̃

(
1− R2

r2

)
− ln

r

R

]
(3.72)
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Finally, the circumferential stress, or hoop stress, is obtained from (3.9), such that

τθθ = λe+ 2Geθθ, which can be expressed as

τθθ =
∆pcg −∆pig

2(1− ν) ln(1 + h)(1 + `g

γ
)

[
1− 2ν − ln

r

R
+ h̃

(
1 +

R2

r2

)]
(3.73)

It should be noted that for a perfectly elastic incompressible material for which

ν = 1
2

Eq. (3.71) gives e = 0, as it should. Furthermore, it is easy to check that the

formula (3.72) for the radial stress obeys the boundary conditions (3.59) exactly.

3.3 Results

3.3.1 Parameters

Table 3.1: Model Parameters

Parameter Symbol Typical value Reference

capillary hydrostatic pressure pc 2.7 kPa (20 mmHg) Levick (1991)

capillary osmotic pressure πc 3.3 kPa (25 mmHg) Levick (1991)

interstitial hydrostatic pressure pi -1.3×102 Pa (-1 mmHg) Levick (1991)

interstitial osmotic pressure πi 1.6 kPa (12 mmHg) Levick (1991)

capillary wall reflection coefficient σ 0.1 Hu and Weinbaum (1999)

glycocalyx osmotic pressure πg 1.3 kPa (10 mmHg) Adamson et al. (2004)

glycocalyx reflection coefficient σg 0.9 Michel and Phillips (1987)

glycocalyx permeability kg 3.16 nm2 Weinbaum et al. (2003)

glycocalyx thickness `g 150 nm Adamson et al. (2004)

capillary wall permeability k 21.8 nm2 Adamson et al. (2004)

viscosity µ 7× 10−4 Pa s Levick and Smaje (1987)

capillary radius R 5 µm Charm and Kurland (1974)

capillary wall thickness ∆R 0.5 µm Charm and Kurland (1974)

capillary length L 1 mm Charm and Kurland (1974)

Table 3.1 lists the parameters of our mathematical model, along with their

symbols and typical values. Most of them have been either measured directly

or derived from measurements and for these we give a reference to the literature

in the last column of the table. On the other hand, it is quite clear that these

measurements pose a very challenging task, with the result that the uncertainties

on the value of some of these parameters are considerable. We now discuss those

parameters which must be estimated.
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The osmotic pressure just behind the glycocalyx, πg, is not measurable due to

the extremely small scales, and therefore must be inferred. Adamson et al. (2004),

based on their detailed microstructural model, estimate πg to be in the range 0.7-

0.9 of πi under normal hydrostatic pressures and we have thus chosen a value in

between these limits. Prescribing a constant value assumes that the dependence of

πg on the flow can be neglected, which we assume will be the case in healthy tissue

under normal physiological conditions. This assumption may be removed later, but

it adds a layer of mathematical complexity if we wish to make πg a function of the

capillary pressure (and hence flow). We discuss this assumption in more detail at

the end of Section 4.2.3.

Based on the estimate of Hu and Weinbaum (1999) for the reflection coefficient

of the cleft, we consider it reasonable to take σ = 0.1 for the all important capillary

wall reflection coefficient which enters into our modified Darcy law. Zhang et al.

(2006a) used a value of 0.197, calculated from their theory in Zhang et al. (2006b),

but even with this value, the magnitude of the filtration changes only slightly. In

fact, we show in Section 4.2.3 that large changes in the value of σ have minimal

effect on the predictions of our model. As for the capillary wall permeability, k,

we derived the approximate value from the work of Weinbaum et al. (2003) in

estimating the Darcy permeability for a hexagonal array of circular cylinders, and

Adamson et al. (2004), who discuss the dimensions of the cleft-spanning structures.

The two parameters not shown in the table - namely the Poisson ratio ν and

the shear modulus G - are needed to describe the stress and strain distribution

in the capillary wall. To the best of our knowledge, these two parameters have

never been measured in capillary walls. Therefore, we perform a parametric study

meant to reveal the sensitivity of the transport process and of the stress and strain

distributions to the values of these parameters.

3.3.2 Transport

Figure 3.2 shows the behaviour of the filtration velocity W (r) at each point of the

capillary wall predicted by our model for three values of the capillary pressure. From

Eqs. (3.25) and (3.30), we observe that, since all physical parameters are positive,

the part that determines the sign of c1 and hence W is the difference ∆pcg −∆pig.

Thus, assuming all parameters are constant except for the capillary pressure, we

can look at the effect on W of different values of pc. At low pressure W (r) is slightly
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negative, signifying reabsorption. As the capillary pressure increases, the filtration

velocity becomes positive and larger - as one would expect - with a slight continuous

decrease from the lumen side to the pericapillary side due to the 1
r

dependence. The

pressure at which W is identically zero is about 1.7 kPa, or 17 cmH2O.

Figure 3.2: Filtration velocity as a function of position across the capillary wall for
different values of the capillary pressure.

The behaviour of the effective pressure P (r) = p(r)−σπ(r) is shown in Figure 3.3

along with the individual values of the hydrostatic and osmotic pressures at low,

intermediate, and high values of the capillary pressure pc. At intermediate and

high capillary pressures the effective pressure is positive and decreasing from the

lumen to the pericapillary side of the wall, while at low values of pc we predict

a slightly negative value of P (r), increasing very slowly across the capillary wall.

Both results are consistent with the sign of the filtration velocity in the respective

regions as well as the generalized Darcy law. Interestingly, the effective pressure is

close to a pure translation of the hydrostatic pressure. This is easily understood

from the fact that the capillary wall reflection coefficient has been assumed to be

σ = 0.1, which means that only 10% of the osmotic pressure contributes to driving

the flow, and the fact that the osmotic pressure changes by only a small amount

across the wall such that the contribution of σπ to the effective pressure is close

to the same everywhere. If the transport involved molecules larger than albumin,

then σ would be larger and so would the contribution of the osmotic pressure. The

fact that the osmotic pressure has the same profile regardless of the value of pc is
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due to the assumption mentioned above that π does not depend on the flow.

Figure 3.3: Effective pressure, hydrostatic and osmotic pressures as a function of position,
for different values of the capillary pressure.

3.3.3 Stress and strain distribution

The contact (Terzaghi) stress distribution predicted by our model is given by

Eq. (3.72). It depends on the revised Starling pressure at the glycocalyx ∆pcg−∆pig

and on the Poisson ratio ν, but not on the shear modulus G of the capillary wall.

The dependence on ν is shown in Figure 3.4, where the values of the other parame-

ters are those of Table 3.1. The contact stress builds up in the lumen side from zero

- as required by the boundary condition (3.61) - to a few Pascal, reaches a max-

imum in the middle of the capillary wall, and then falls back to zero as required

again by the boundary condition (3.62).

To obtain information about the strain, we need only know the displacement,

u(r). Eqs. (3.65) and (3.68) show the dependence on the various parameters. Fig-

ure 3.5 shows u(r) for different values of the capillary pressure. As to be expected,

high values of pc, corresponding to a high flow situation, produce large displace-

ments, with the maximum values occuring at the inner wall and the values declin-

ing across the wall. As capillary pressure decreases, the displacements will become

smaller, until a pressure is reached where reabsorption occurs, and below this pres-

sure the displacement is negative.
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Figure 3.4: Radial stress distribution across the capillary wall, for different values of the
Poisson ratio ν.

Figure 3.6 shows u as a function of position across the wall for different values

of the shear modulus G and Poisson ratio ν. As expected, a capillary wall that

is more stiff, corresponding to larger values of G, will be displaced less, as can be

seen in the left figure. The variation with ν is such that as ν is increased, the

displacement becomes smaller. Looking at the ordinate axes on both figures shows

that u is much more sensitive to changes in G than changes in ν over the parameter

range explored here, as the range of values at the luminal side of the wall in the

right graph is about 0.02 µm, whereas it is close to 0.3 µm in the left graph.

Within the cylindrical geometry that we are using, it is straightforward to show

that the strain consists of a radial part err and an angular part eθθ. An example of

the former is shown in Figure 3.7 for a few values of the shear modulus G and with

the Poisson ratio fixed at ν = 0.4. Since err = du
dr

, both the values and the slope of

the curves in this figure can be understood from the behaviour of the displacement

u(r), which is positive and decreasing from the lumen to the capillary side for values

of pc ≥ 1.7 kPa. Thus, for these values of pc, err will be negative, with the largest

magnitude at the inner wall.

The angular component of the strain is given by eθθ = u(r)
r

, and its behaviour is

shown in Figure 3.7 for the same three values of G as for err. The sum of these two

is the dilatation e, that is the unit volume (actually, here area) expansion, given

by Eq. (3.71) and plotted in Figure 3.8 for a few different values of shear modulus
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Figure 3.5: Displacement as a function of position for different values of the capillary
pressure

Figure 3.6: Left - Displacement u(r) as a function of position for different values of G
with ν fixed at 0.4. Right - Displacement u(r) as a function of position for G fixed and
different values of ν
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G with ν fixed at 0.4 (left), as well as for values of the Poisson ratio varying from

moderately compressible to almost incompressible at the fixed value of G = 40 kPa

(right). The implications of all these results are discussed in the next section.

3.4 Discussion

The poroelastic model of transcapillary flow developed herein is based on two fun-

damental modifications of the classical theory of consolidation (Biot, 1941; Kenyon,

1979, 1976b). Firstly, we have extended Darcy’s law to include the effect of osmotic

pressure in the mechanism of filtration through the capillary wall. Secondly, we have

embraced the Michel-Weinbaum hypothesis of a revised Starling law in which the

balance of driving forces is applied across the endothelial glycocalyx layer rather

than between lumen and tissue.

Our theoretical development is different from extant theoretical models which

are based on the heterogeneous microstructure of the capillary wall (Hu and Wein-

baum, 1999; Adamson et al., 2004; Zhang et al., 2006a; Fu et al., 1994). Classical

poroelasticity models, in contrast, are based on homogenization of the microstruc-

ture - a mathematical procedure which replaces the actual porous medium with a

homogeneous fluid-solid mixture (Burridge and Keller, 1981). This offers a consid-

erable simplification of the problem, of course; but, more than that, it is a necessary

approximation in view of our inability to map accurately the boundary surface be-

tween the fluid in the pores and the solid matrix. As the Reynolds number of this

flow is very small, we know that the Stokes equations will give a very accurate

representation of the fluid motion; and we know from Elasticity Theory how to

accurately describe the solid matrix. What we don’t know is how to enforce the

boundary conditions (no slip, and continuity of the stresses) for the simple reason

that such boundaries are unknown.

When confronted with this problem in their ultrastructural model Hu and Wein-

baum (1999) replaced the wide part of the cleft between facing cells with two flat,

parallel, and rigid walls separated by a very small distance. The space between the

cells is assumed to be occupied partly by fluid and partly by ‘obstacles’ such as the

crossbridging structures observed by Schulze and Firth (1992) and Adamson et al.

(2004). This arrangement is very close to the well-known Hele-Shaw flow for which

it is known that the no-slip conditions are satisfied on the plates but not on the

surface of the ‘obstacles’ (Batchelor, 1967). The hydrodynamic resistance of the
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Figure 3.7: Left - Radial strain err as a function of position for different values of G and
ν fixed at 0.4. Right - Angular strain eθθ as a function of position for different values of
G and ν=0.4.

Figure 3.8: Left - Dilatation e as a function of position for different values the shear
modulus G. Right - Dilatation as a function of distance for different values of the Poisson
ratio ν.
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latter, however, is partly recovered by a modification of the Hele-Shaw flow which

ultimately results in the replacement of the viscosity by an effective viscosity, as

first shown by Tsay et al. (1989).

The considerable mathematical complications introduced by this procedure is

compounded by the calculation of the solute concentration field, which requires

the solution of the convection-diffusion equation subject to the different boundary

conditions dictated by the different regions of the cleft and the tissue space. As a

consequence, this three-dimensional microstructural model is difficult to use, and

was recognized as such by Zhang et al. (2006a), who replaced it with a simpler one-

dimensional version in which the transport coefficients are adjusted to reproduce

the fluxes predicted by the three-dimensional model.

These difficulties notwithstanding, the microstructural models have contributed

enormously to our understanding of transcapillary flow, particularly for their ability

to extract reasonably accurate values of the parameters that we have listed in

Table 3.1. Because of homogenization, our filtration velocity cannot be compared

directly with the calculation of Hu and Weinbaum. What has been measured,

however, is the volume flow through a unit area of capillary wall as a function of

capillary pressure. To compute this quantity, denoted Jv

A
, we integrate W (r) over

the annulus R ≤ r ≤ R + ∆R, 0 ≤ θ ≤ 2π and divide by the surface area of the

capillary, which in our case is 2πRL, where L is the capillary length. We find

Jv

A
=
c1h

L
(3.74)

which upon expanding c1 becomes

Jv

A
=
kghR

µ`gL

(
1

1 + γ
`g

)(
pc − pi − [σg(πc − πg)− σ(πi − πg)]

)
(3.75)

The coefficient of pc in Eq. (3.75) is the hydraulic conductivity, LP , which can be

simplified to

LP =
hR

µL

 1

`g

kg

+
R

k
ln(1 + h)

 (3.76)

Now if we recall the discussion from the classical Starling equation, the intercept

on the graph was referred to as the isogravimetric capillary pressure or effective

osmotic pressure, which is simply pressure at which there is no filtration, we can
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write p0 = pi + (σg(πc − πg)− σ(πi − πg)), and express

Jv

A
= LP (pc − p0) (3.77)

Note the difference with the classical Starling equation in that there are now two

separate components of the osmotic force - that from capillary across the glycocalyx,

and that from the region behind the glycocalyx to the interstitium.

We plot Jv

A
as a function of pc in Figure 3.9, and our result compares favorably

with both the old measurements of Michel et al. (1974) and the recent ones of Adam-

son et al. (2004). As our poroelastic theory is linear from the start, Eq. (3.75) is

not directly comparable to the steady-state nonlinear theory of Michel and Phillips

(1987), but we note that our prediction of Jv

A
is of the same order of magnitude

as their transient results, and so is the slope of the line. The value of LP in our

equation is 1.0 × 10−7 cm cmH2O
−1 s−1 which compares well with the value of

LP quoted in the literature cited above (Adamson et al. (2004) give a value of

1.24×10−7 cm cmH2O
−1 s−1). The intercept on the pc−axis, corresponding to the

pressure at which zero filtration occurs, is 17 cmH2O.

Figure 3.9: Classical Landis-Starling diagram - Filtration flux per unit area as a function
of capillary pressure. The slope of the line is the hydraulic conductivity LP , which is
1.0× 10−7 cm cmH2O−1 s−1, and the intercept on the pc axis is 17 cmH2O.

One of the essential hypotheses that comes from the analysis of Hu and Wein-

baum (1999) is that the interstitial protein concentration, and hence osmotic pres-

sure, is not a major determinant of flow. Instead, it is the osmotic pressure behind
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the glycocalyx. To test this experimentally, both Hu et al. (2000) and Adamson

et al. (2004) elevated the albumin concentration in the tissue to that of the cap-

illary, such that πi = πc. Then according to the classical Starling principle, the

effective oncotic force would be zero, and hence the Jv

A
vs. pc curve should pass

through the origin. However, in both experiments, this was shown not to be the

case, and thus it was inferred that although there was no concentration difference

between the plasma and tissue, there is an oncotic force exerted. Adamson et al.

(2004) proposed that this force must be exerted across the glycocalyx.

In our theory, πi enters the expression for Jv

A
with a factor of σ in front. This is

an important point, as the value of σ is only 0.1, meaning that even large changes

in πi have only a small effect on filtration. For instance, we take the value of πi in

Table 3.1 as our boundary condition, but if the value were doubled to πc, the actual

difference in the magnitude of σπi would be less than 2 cmH2O, and thus the effect

on the Jv

A
vs. pc curve would be only a small shift. Thus, our model is faithful to

the fact that the interstitial osmotic pressure is not an important determinant of

flow.

It should be pointed out that when πi is increased, the osmotic pressure behind

the glycocalyx, πg, which Hu and Weinbaum (1999) showed depends on the flow

conditions, may or may not be affected. We use the simplifying assumption of a

constant πg as a boundary condition, and so there is no possibility of coupling in

our model. This is discussed further in the Conclusion. However, we can perform

a sensitivity analysis on πg. Figure 3.10 shows the filtration flux as a function of

capillary pressure in the case where πi = πc, for different values of πg. For the

low value of πg, the result is shifted 2 cmH2O from Figure 3.9. The curves are

progressively shifted to the left as πg is increased, with the intercept on the pc−axis

decreasing by about 5 cmH2O for each value. For the highest value, where πg = πi,

the line passes through the origin since the osmotic force across the wall would be

identically zero. So although our poroelastic theory cannot explain the detailed

mechanism of the coupling between πi and πg, we can estimate the filtration flux

for a range of πg values as in the figure.

A unique feature of the poroelastic model is its ability to predict the stress and

strain distribution across the capillary wall. So far as we are aware, no similar

calculations have been done before and no measurements have been attempted.

However, taking advantage of our analytical results, we have carried out a sensitivity

analysis of the dependence of these quantities on the two basic parameters of the

theory, namely the shear modulus G and the Poisson ratio ν, and typical results
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Figure 3.10: Filtration flux per unit area as a function of capillary pressure for different
values of πg in the case where πi is elevated to that in the capillary.

are shown in Figures 3.4-3.8. Insofar as the contact stress is concerned, Eq. (3.72)

shows that it is independent of G and that its dependence on ν is such that τrr

increases as ν tends to the perfectly elastic solid value of 0.5, a behavior that is

clearly illustrated in Figure 3.4.

The strain components depend on both G and ν and their behavior is displayed

in Figure 3.7. The radial component takes on negative values, with small values of

G leading to the largest (negative) values of err. The angular component is positive

and increases with decreasing G. Their sum - the dilatation, that is the local change

of volume in the capillary wall - is exhibited in Figure 3.8 for the same values of G

and ν. The dilatation increases with decreasing G, as to be expected from a less stiff

material. With increasing ν, the dilatation decreases, of course approaching zero

as ν approaches its elastic solid limiting value of 1
2
. Since, in order to be consistent

with the linearity of the theory, the dilatation should not exceed a few percent,

these results lead us to hypothesize that the value of ν for a capillary wall should

lie in the interval 0.3 ≤ ν ≤ 0.4, while that of G should be approximately 20 kPa

≤ G ≤ 40 kPa for a capillary pressure of the order of 3 kPa. We are hopeful that

with the rapidly improving technological capabilities, experimentalists will soon be

able to test our hypothesis.

The analysis carried out above leads us to draw the conclusion that our poroe-

lastic model is capable of reproducing the filtration flux as a function of capillary
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pressure predicted by the ultrastructural models and observed experimentally. This

successful test of our model makes us confident that it will be able to give us valuable

insights into both physiological and pathophysiological phenomena. In particular,

a study by van den Berg et al. (2003) has shown that enzymatic degradation of

the endothelial glycocalyx is one of the contributing factors to increased permeabil-

ity of the capillary wall and pericapillary edema. Since the glycocalyx properties

enter into our theory (in the Michel-Weinbaum hypothesis), a quantitative compar-

ison seems a good test of our model. The following chapter will examine how the

alteration of glycocalyx properties affects transcapillary flow.

82



Chapter 4

The effect of a deteriorated

endothelial glycocalyx on

transcapillary flow

4.1 Glycocalyx background and motivation for

study

The existence of an endocapillary layer, later to be termed the endothelial glycoca-

lyx, was first demonstrated by Luft (1966) via an electron microscopic study using

ruthenium red staining. He observed the layer to be irregularly shaped, and esti-

mated the thickness to be about 20 nm. Subsequent work aimed at identifying the

composition of the layer and the reviews of Pries et al. (2000) and Weinbaum et al.

(2007) give excellent summaries of various aspects of glycocalyx research. Vink and

Duling (1996), by comparing the capillary anatomical diameter to its functional di-

ameter, and Smith et al. (2003), who made the first direct estimates of glycocalyx

thickness in vivo, estimate the thickness to be between 0.4-0.5 µm. Squire et al.

(2001) used electron microscopy to show that the core proteins comprising the gly-

cocalyx form a quasi-periodic bush structure in which the fiber diameter is 10-12 nm

with spacing of 20 nm. In addition, this structure links to an underlying actin cor-

tical web forming a hexagonal array with 100 nm spacing. Identification of these

structural properties led investigators to examine the function of the glycocalyx,

and in recent years a plethora of physiological functions have been identified. Al-
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ready discussed above (Section 2.6) is the glycocalyx function as a molecular sieve

in determining the Starling forces responsible for transcapillary flow.

The glycocalyx is most likely the primary factor involved in mechanotransduc-

tion of fluid shear stress into cell signaling processes triggering nitric oxide (NO)

production and cytoskeletal reorganization (Tarbell and Pahakis, 2006). Wein-

baum et al. (2003) proposed that the core proteins comprising the glycocalyx have

a sufficiently stiff bending rigidity to withstand deformation due to physiological

shear stresses, and through their connections to the underlying cortical cytoskeleton

(CC) convert the fluid shear stress into deformations of the CC. Thi et al. (2004)

showed, by measuring the levels of several key structural proteins (e.g. F-actin),

that an intact glycocalyx is necessary for shear-induced cytoskeletal reorganization.

It has also been found that after treatment with heparinase (Florian et al., 2003)

or hyaluronidase (Mochizuki et al., 2003) (to break down the heparan sulfate or

hyaluronan components of the glycocalyx, respectively), mechanotransduction was

blocked with corresponding impaired shear-induced NO production. Thus, degra-

dation of any component of the glycocalyx will reduce its capability to translate

shear stress into biochemical signals.

Interactions of both red and white blood cells (RBCs, WBCs) with the glycoca-

lyx have been studied extensively. Early models of RBC motion in capillaries lined

with glycocalyx were able to predict the experimentally observed increase in resis-

tance as compared to flow in glass tubes, as well as the reduction in capillary tube

haematocrit (Secomb et al., 1998; Damiano, 1998). Feng and Weinbaum (2000)

used lubrication theory to explain the pop-out phenomenon observed by Vink and

Duling (1996), in which a RBC at rest will lift off the capillary wall as the flow

velocity increases. They attribute this to a large repulsive force generated within

the glycocalyx due to axial flow through the layer, and interestingly draw an anal-

ogy between this phenomenon and a human skiing on snow. Secomb et al. (2001)

examined changes in shape of RBCs as a function of velocity, and were able to

quantitatively describe the exclusion of RBCs from the glycocalyx layer in flowing

capillaries. In terms of interactions with WBCs, the glycocalyx has been shown to

inhibit WBC adhesion to the endothelium (Constantinescu et al., 2003) and in ad-

dition to mediate leukocyte rolling (Henry and Duling, 2000), suggesting that it is

highly likely that there is an important role for the glycocalyx in the inflammatory

response (see e.g. Weinbaum et al., 2007 for review).

Possibly the best evidence for an important physiological function of the glyco-

calyx is its modulation in pathogenic states. For example, recent work has found the
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glycocalyx to be degraded or absent in conditions such as atherosclerosis (van den

Berg et al., 2006; Brands et al., 2007), diabetes (Nieuwdorp et al., 2006), and is-

chaemia/reperfusion (Mulivor and Lipowsky, 2004).

Figure 4.1: Electron microscopic images from van den Berg et al. (2003). In the control
(A), the hair-like protrusions of the glycocalyx can clearly be seen, whereas the pericapil-
lary space is barely visible. In the hyaluronidase-treated case (B), the glycocalyx is shown
to be absent, and the pericapillary space (white area outside the capillary) is swelled. (C)
is a close-up of the luminal surface of the endothelium. Reprinted with permission.

In a particularly interesting experiment, van den Berg et al. (2003) used hya-

luronidase to degrade the glycocalyx in rat myocardial capillaries and measured the

resulting glycocalyx dimension and that of the pericapillary space. By stabilizing

the carbohydrate structures of the glycocalyx, they were able to visualize these

structures using electron microscopy. They found that the glycocalyx dimension
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was indeed decreased upon treatment with hyaluronidase, and correspondingly that

the dimension of the surrounding pericapillary space was increased, as can be dra-

matically seen in Figure 4.1. This led to the conclusion that the glycocalyx acts as

a protective barrier against edema formation, at least in rat myocardial capillaries.

Since the glycocalyx appears in our model of transcapillary exchange, specifi-

cally in the Michel-Weinbaum boundary condition (3.21), a comparison between the

predictions of our theory with this experiment seems a natural test of our model.

Under hyaluronidase treatment, the properties of the glycocalyx change, as seen for

example in the decrease in thickness in the experiments of van den Berg et al. In

the following, we seek to explain the formation of edema as a result of glycocalyx

deterioration by using our model to examine how transcapillary flow is modified as

a result of an altered glycocalyx that may occur due to enzymatic degradation.

We begin Section 4.2 by using the measurements of van den Berg et al. (2003)

for the pericapillary space dimension around control and hyaluronidase-treated cap-

illaries to predict the increase in the amount of fluid in the pericapillary space as

a result of glycocalyx deterioration. We then recap how the glycocalyx enters into

our model, in particular discussing the parameters that characterise the glycoca-

lyx, such as its thickness and permeability. Following this, we use as input into our

model the data of van den Berg et al. (2003) for glycocalyx thickness in normal and

hyaluronidase-treated capillaries and attempt to draw a quantitative comparison.

We continue with a parametric study before comparing our predictions to experi-

mental data as well as other theoretical studies. Finally, in Section 4.2.5, we discuss

both our modeling approach and others, pointing out the various predictions made

by each, and where experimental observations will prove useful.

In Section 4.3, we continue our comparison with van den Berg et al. (2003),

now using all of the available data, rather than simply the median of the mea-

surements. We begin by finding probability distributions that best fit the data

of van den Berg et al. (2003) for pericapillary space dimension in the control and

hyaluronidase-treated cases. We then use those distributions to calculate the change

in the amount of fluid in the pericapillary space, which is now a distribution also.

Based on this, we then calculate the statistical properties for the glycocalyx thick-

ness. We conclude with a discussion of our underlying assumptions, as well as the

physiological implications of this work.
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4.2 The effect of the endothelial glycocalyx

4.2.1 Increase in fluid content in the pericapillary space

Van den Berg et al. (2003) quantify edema formation by measuring the pericapillary

space dimension (PSD) around capillaries in both the normal and deteriorated gly-

cocalyx cases. They calculate the PSD by “subtracting the outer capillary diameter

from the inner diameter of the surrounding myocardial tissue” (van den Berg et al.,

2003), and after taking measurements in 0.2 µm intervals around the perimeter,

they express the result as a median value. The median PSD is given as 0.28 µm

for control capillaries (intact glycocalyx), and 0.46 µm for hyaluronidase-treated

capillaries (deteriorated glycocalyx).

For our purposes, the PSD is important in that it allows us to calculate the

increase in fluid content due to glycocalyx degradation. One could potentially

measure the amount of fluid by counting pixels from an electron microscope image

(e.g. Figure 4.1), but we instead make a simplifying assumption that the capillary

cross-sectional geometry must be either circular or elliptic. This enables us to use

the PSD to compute the area change, and hence estimate the change in fluid content

in the pericapillary space, between control and hyaluronidase-treated capillaries for

these two geometrical configurations.

We compute the area of the pericapillary space for the separate cases of intact

and deteriorated glycocalyx, then find the relative area change using the formula

∆A =
Ah − Ac

Ac

(4.1)

where Ah and Ac are the areas of the pericapillary space in hyaluronidase-treated

and control capillaries, respectively. In the circular case, we know that the area of

an annulus with inner radius R and outer radius R+∆R is A = π(R+∆R)2−πR2.

Taking the inner radius to be that of the capillary, R, and the outer radius that of

the capillary plus PSD, and letting Rh and Rc be the median PSD in the separate

cases, the expression simplifies to

∆A =
(R +Rh)

2 − (R +Rc)
2

(R +Rc)2 −R2
(4.2)

The relative area change is shown as a function of capillary radius R in the left

graph of Figure 4.2.
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For the case of an elliptic cross-section, and making the assumption that the

pericapillary space is displaced the same amount ∆R in the directions of the semi-

major and semi-minor axes, the area of the elliptic annulus is

Ae = π(a+ ∆R)(b+ ∆R)− πab

where a, b are the semi-minor and semi-major axes. The expression for the area

change is then

∆Ae =
(a+Rh)(b+Rh)− (a+Rc)(b+Rc)

(a+Rc)(b+Rc)− ab
(4.3)

The relative area change is shown as a function of the semi-major axis b in the right

side of Figure 4.2 for different values of the semi-minor axis a.

Figure 4.2: Left - Area change as function of capillary radius (circular case). Right - Area
change as a function of semi-major axis, for various values of semi-minor axis a (elliptic
case).

It is clear from Figure 4.2 that for a wide range of radii, or semi-major/minor

axes, the relative area change lies between about 0.66-0.72 (i.e. is an increase of

66-72%). This means that for the measurements of pericapillary space dimension

in van den Berg et al. (2003), and for capillary sizes in the physiological range,

the increase in area of the annular region, and hence in the amount of fluid in

the pericapillary space, has approximately this magnitude. The only assumptions

made in this estimation are: 1) that the median values of PSD may be used for

the calculation, and 2) that the cross-section of the capillary has simple geometry.
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Regarding the former, this assumption is dropped in Section 4.3 when we attempt

to fit the PSD histograms using probability distributions. As regards the latter,

it is observed from the figures that circular and elliptic geometries produce only

slightly different results, and thus any other geometric configuration will likely be

close to the range of values calculated here.

To make a comparison, we must relate ∆A with a quantity that can be predicted

by our model. We discuss this quantity as it relates to the glycocalyx in the next

section.

4.2.2 The role of the glycocalyx in our model

In our mathematical model, the glycocalyx appears in the boundary condition

enforcing the Michel-Weinbaum hypothesis (3.21), which relates the flow velocity

behind the glycocalyx to the hydrostatic and osmotic pressure differences across it.

The three parameters describing the glycocalyx are its thickness, `g, permeability,

kg, and reflection coefficient, σg. Our current aim is to investigate the effects

of changes in the glycocalyx properties that may occur as a result of enzymatic

degradation as in the experiments of van den Berg et al. (2003). To do this, we

must solve the equations in the model and express the variables as functions of

these glycocalyx parameters.

An important parameter in microvascular exchange, and a major focus herein, is

the hydraulic conductivity, LP . As previously mentioned, this quantity is the slope

of the graph of Jv

A
versus the capillary pressure, pc, and is thus essentially the deter-

minant of how much fluid flows across the capillary wall for a given pressure drop.

This parameter is important for our comparison not only because is it measurable,

but also because our theory gives an expression for LP in terms of the parameters

that characterise the glycocalyx, namely its thickness (`g) and permeability (kg),

as seen in Eq. (3.76). We reproduce this equation now for convenience

LP =
hR

µL

 1

`g

kg

+
R

k
ln(1 + h)


Since `g and kg may be expected to change with enzymatic treatment, looking at

the behaviour of LP as these parameters vary will give a prediction of the effect of

glycocalyx degradation on transcapillary fluid flow.
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There are two important limits of LP to observe, and these limits correspond

to the cases when the resistance of the glycocalyx is much smaller than that of the

capillary wall, and when the glycocalyx is the dominant resistance to flow. The key

to looking at these limits is the dimensionless parameter
γ

`g
, where, if we recall the

definition of γ (see Eq. 3.29), we obtain

γ

`g
=
kgR ln(1 + h)

`gk

so that using the relation h = ∆R
R

, and introducing Γ =
γ

`g
the expression for the

important dimensionless parameter becomes

Γ =
kg

k

∆R

`g

ln(1 + h)

h
(4.4)

In the form (4.4), it is easy to see that Γ contains two important ratios: that of

the glycocalyx and capillary wall permeability kg/k, and that of the thickness of

the capillary wall region and glycocalyx ∆R/`g. The factor
ln(1 + h)

h
is close to

one since h = 0.1. Thus, Γ is a measure of the relative resistances to flow of the

capillary wall and glycocalyx.

Therefore, the case in which the glycocalyx provides negligible resistance com-

pared to that of the capillary wall is when Γ� 1, which corresponds to the situation

when the glycocalyx thickness decreases to zero, or equivalently when the glycoca-

lyx permeability approaches infinity. This limit is

lim
`g→0

LP = lim
kg→∞

LP =
k

µ

h

L ln(1 + h)
(4.5)

The existence of this limit allows us to calculate how much resistance the glycocalyx

contributes to the transcapillary flow for various parameter combinations, and this

will be done in the next section. In the other limit, that is when the resistance to

flow due to the glycocalyx is dominant (when Γ� 1), which can also be described

as the limit in which the capillary wall permeability approaches infinity, we get the

following

lim
k→∞

LP =
kg

µ`g

∆R

L
(4.6)

We now compare our model predictions for excess flow with the observations of

edema formation in van den Berg et al., as well as results from other studies.
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4.2.3 Consequences of glycocalyx deterioration

In order to compare the predictions from our theory to the experiments of van den

Berg et al. (2003), we need to relate a parameter that our model is capable of

calculating to the above approximation for the increase in fluid content. Recall that

changes in LP (for constant capillary pressure) represent changes in the amount of

fluid flowing, and hence in the amount of fluid in the pericapillary space. For

instance, if there is a two-fold increase in LP , we would expect approximately a

two-fold increase in fluid content in the pericapillary space. That is, we use the

approximation

∆A = ∆LP =
LP,d − LP,c

LP,c

(4.7)

where LP,c and LP,d refer to the LP values in the control and glycocalyx-degraded

cases.

Of course, this is just a rough approximation. In reality, fluid that flows through

the capillary wall moves slowly through the interstitial matrix, mixing with fluid

from other capillaries before entering the lymphatic system. An excess amount of

fluid in the interstitial space will in turn cause a corresponding increase in interstitial

fluid pressure due to the compliance of the tissue, which will in turn oppose further

flow in accordance with the Starling principle. This is a highly dynamic process,

and a more realistic model would require a mathematical description of capillary

and lymphatic networks embedded in a tissue, which is outside the scope of our

current work. This assumption will be discussed in more detail below in Section

4.3.4, where the possibility of different functional relationships will be examined.

Under enzymatic degradation, the three characteristic paramaters of the glyco-

calyx, that is `g, kg, and σg, may all be expected to change; unfortunately there

are no data of which we are aware that documents changes in permeability or re-

flection coefficient. Thus, for the moment we restrict our consideration to changes

in glycocalyx thickness, and discuss changes in kg and σg later in this section. We

take the measurements in van den Berg et al. (2003) of `g from 429 normal and

196 hyaluronidase-treated capillaries and use these as input into our model. The

mean glycocalyx thickness “was determined by the distance between the luminal

membrane and the optical background density plus 2×SD, representing ≈ 95% of

detectable stained structures” (van den Berg et al., 2003). It was found to be 182

nm in normal capillaries and 77 nm in hyaluronidase-treated capillaries. As with

the PSD measurements, we ignore the variation in data and proceed to our cal-

culations using only the two mean values. For `g = 182 nm, we predict an LP of
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0.88×10−7 cm s−1 cmH2O
−1, whereas in the case when `g = 77 nm, LP increases

up to 1.51×10−7 cm s−1 cmH2O
−1. The increase in LP is 72%. That is, we esti-

mate the change in pericapillary fluid content due to glycocalyx deterioration as an

increase of 72%, which agrees reasonably well with the change in area calculated in

Eq. (4.2) and shown in Figure 4.2.

An alternative way to examine how our model compares to the data is the

following. Recall the assumption made in Eq. (4.7) that the relative change in area

will correspond to the relative change in hydraulic permeability. Thus, given the

LP value in the control situation (denoted LP,c), we are able to calculate the value

in the hyaluronidase-treated case where the glycocalyx is degraded (denoted LP,d)

based on the values of ∆A calculated from Eq. (4.2). To obtain the value of LP,c,

we must know the glycocalyx thickness in the control case, call it `g,c, so that we

can use the expression derived from our theory, namely (3.76). The separate forms

for the control and glycocalyx-degraded cases are

LP,c =
hR

µL

(
1

`g,c

kg,c
+ R

kc
ln(1 + h)

)
(4.8)

LP,d =
hR

µL

 1
`g,d

kg,d
+ R

kd
ln(1 + h)

 (4.9)

where the parameters kg,c, kg,d, kc, kd represent the glycocalyx permeability (control

and degraded) and capillary wall permeability (control and degraded), respectively.

Then, taking the ratio
LP,c

LP,d

we may rearrange the equations to get a formula for

`g,d, the glycocalyx thickness upon degradation, in terms of `g,c, the ratio
LP,c

LP,d

,

and the other transport parameters which for now have been assumed to remain

constant (that is kg,c = kg,d = kg and kc = kd = k). This relation is given by the

following:

`g,d = `g,c

(
LP,c

LP,d

)
− γ

(
1− LP,c

LP,d

)
(4.10)

where we recall that γ = kg

k
R ln(1 + h). Therefore, if we fix all of the parameters

except for the glycocalyx thickness, we need only prescribe the value of `g,c, since

LP,c is given by (3.76) and the ratio
LP,c

LP,d

is given by the relative area change

calculated above. In the circular case with R = 5 µm, ∆A is 0.67, which upon

rearranging (4.7) gives LP,d = 1.67LP,c. Given this relation along with the control

glycocalyx thickness, our model can predict the required decrease in glycocalyx

thickness to produce the given change in area.
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We can investigate the behaviour of `g,d for the limiting cases mentioned at the

end of the previous section. First, dividing through Eq. (4.10) by `g,c, then looking

at the limit in which the glycocalyx is the dominant resistance to flow, that is when

Γ =
γ

`g,c

� 1, we obtain

`g,d

`g,c

=
LP,c

LP,d

(4.11)

where we note that Γ is defined in terms of the control glycocalyx thickness. This

equation implies that the relative increase in LP must be accompanied by a cor-

responding relative decrease of the same magnitude in `g. This makes sense intu-

itively, since if the glycocalyx is the dominant resistance, the capillary wall (hence

k) essentially has no effect, and since in addition kg is constant, the only way LP

could increase would be via changes in `g.

If we instead divide Eq. (4.10) by γ, then we can look at the limiting case

of a glycocalyx that provides little resistance, namely when Γ � 1. However, the

deteriorated glycocalyx will have a thickness less than that of the control, so `g,d will

also be small compared to γ, and we are left with only
LP,c

LP,d

= 1. The fact that the

capillary wall is the major resistance to flow means that glycocalyx degradation will

have no effect on LP , and since k is constant, there is no possibility of LP changing.

Predictions of `g,d from Eq. (4.10) in the current case where the glycocalyx

thickness is the only variable parameter are shown in Table 4.1. These entries give

us information regarding the effects of the control values of glycocalyx thickness

and permeability. When `g,c is 182 nm for instance, the lower value of kg gives a

predicted `g,d of 81 nm whereas with the higher permeability we predict a value of

28 nm. This is because a more permeable glycocalyx accounts for less of the total

resistance to flow, such that decreases in glycocalyx thickness will not have as large

of an effect on the amount of flow. Since we fix the relative increase in area and

hence the ratio
LP,c

LP,d

, this implies that in the case of higher permeability, decreases

in glycocalyx thickness of a larger magnitude would be necessary.

The last column of Table 4.1 shows the values of the dimensionless parameter

Γ. For the case when `g,c is 182 nm, Γ is 0.38 for the lower permeability and 1.11

for the higher permeability, which corresponds to the discussion in the previous

paragraph. For an `g,c of 400 nm, we obtain 0.17 and 0.51 for kg values of 3.16 nm2

and 9.24 nm2, respectively. For the smallest value of Γ, we can compare the value of

`g,d obtained from Eq. (4.10) to the approximation in Eq. (4.11) of the Γ� 1 limit.

The approximation gives an `g,d of 240 nm, whereas the value in the table is 211
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nm. Therefore, although the approximation is fair, a value of 0.17 for Γ is certainly

not sufficiently small that the effect of the capillary wall can be disregarded.

Looking at the entries with the same kg values, we can gauge the effects of the

control glycocalyx thickness. This is best seen not through the absolute magnitudes

of `g,d, but by the percentage decrease. For kg = 3.16 nm2 and `g,c = 182 nm, `g,d is

predicted to drop to about 45% of its control value. When `g,c is 400 nm, `g,d is still

above 50% of its control value. Since the glycocalyx contributes more to the overall

flow resistance for larger values of `g,c, glycocalyx degradation will have a more

pronounced effect on fluid flow when `g,c is larger. So, to produce the same relative

increase in LP , the magnitude of the decrease in glycocalyx thickness required is

lower. We expand upon these results in Section 4.3.3, where distributions have been

used to make a more accurate representation of the data, and we have calculated

statistics of `g,d.

Table 4.1: Predicted values of `g,d for different values of control glycocalyx thickness and
permeability, from Eq. (4.10). All other parameters are from Table 3.1.

`g,c (nm) kg (nm2) Predicted `g,d (nm) Γ

182 3.16 81 0.38

9.24 28 1.11

400 3.16 211 0.17

9.24 158 0.51

Changes in permeability

Although there are no data available, one would expect that upon enzymatic degra-

dation, there may be structural changes in the glycocalyx, for example alteration of

pore size or spacing. In our model this is quite simply represented as an increase in

the glycocalyx permeability kg. Shown in Table 4.2 are our predicted increases in LP

upon enzymatic degradation of the glycocalyx for different parameter values. We

take the `g values as in van den Berg et al. (2003) for the control and hyaluronidase-

treated cases. We take for the values of kg,c those suggested in Weinbaum et al.

(2003) and also the value used in Zhang et al. (2006a). Under hyaluronidase treat-

ment, we allow kg,d, the permeability in the glycocalyx-degraded case, to take either

its control value, 1.5 times its control, or twice its control value. We perform all

calculations for three different values of the capillary wall permeability, k.
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Table 4.2: Percentage increase in LP upon glycocalyx degradation. Note we are using
the data from van den Berg et al. (2003) for control and degraded glycocalyx values of
`g, respectively 182 nm and 77 nm.

k=8 k=17 k=21.8

kg,c (nm2) kg,d (nm2) % increase in LP

3.16 kg,c 40 63 72

1.5 kg,c 54 93 108

2 kg,c 63 113 133

9.24 kg,c 17 31 38

1.5 kg,c 22 42 52

2 kg,c 24 48 60

In the first row with k = 21.8 nm2, we see the 72% increase referred to in

the discussion above. Increasing k for fixed kg,c and kg,d gives a larger percentage

increase in LP due to the fact that a higher capillary wall permeability will result

in the glycocalyx providing more of the total resistance; hence its degradation will

have a larger impact. Table 4.3 shows the values of Γ for different parameter

combinations. Note that the definition of Γ is always in terms of the control values

of the parameters, namely

Γ =
kg,c

kc

∆R

`g,c

ln(1 + h)

h
(4.12)

For increasing values of k with kg,c = 3.16 nm2 and `g,c = 182 nm, Γ is 1.03, 0.49

and 0.38, respectively. For the same glycocalyx thickness with kg,c = 9.24 nm2, the

values are 3.02, 1.42 and 1.11. The parameter combination corresponding to the

lowest resistance glycocalyx gives a value of Γ = 3.02. In this case, our predicted

increase in LP is 17%, which is not too far off of the approximation in the Γ � 1

limit, where LP,c = LP,d. However, the value of Γ is not sufficiently large so that

we may neglect effects of the glycocalyx altogether.

Increasing kg,d for fixed kg,c and k will also give larger percentage increases in

LP , as expected intuitively. For fixed k and kg,c:kg,d ratio, a larger value of kg,c

implies a smaller percentage increase in LP . A larger control value of glycocalyx

permeability means that the glycocalyx will provide less resistance to flow, which

results in a smaller relative effect on LP upon degradation.

Table 4.2 may serve as a guide when further experiments are performed and

the values of kg, k, `g, or the percentage increase in fluid in the pericapillary space,
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Table 4.3: Value of Γ for different parameter combinations.

k=8 k=17 k=21.8

`g,c (nm) kg,c (nm2) Γ

182 3.16 1.03 0.49 0.38

9.24 3.02 1.42 1.11

400 3.16 0.47 0.22 0.17

9.24 1.38 0.65 0.51

are measured or better estimated. For instance, if it is found that the control kg

is approximately 9.24 nm2 and k=21.8 nm2, then if the `g values before and after

hyaluronidase treatment remain as above, Table 4.2 predicts a 60% increase in LP

for kg,d = 2kg,c. In this sense our model could be used as a predictive tool to

project that a more than two-fold increase in kg would be required upon glycocalyx

degradation to match our calculations for the relative change in area in Figure 4.2.

Under enzyme treatments not only may the glycocalyx properties change, but

there may also be changes in the endothelial monolayer. This may destabilize en-

dothelial junctions and lead to contraction of endothelial cells such that there is

increased permeability. To represent these changes in our model is not difficult, as

the structural changes are simply reflected by changes in the value of the capillary

wall permeability, k. This is a great advantage of using the poroelastic approach,

namely that by treating the capillary wall as a homogenized material, there is a

single parameter, k, which determines the resistance to flow through the capillary

wall. This lumped parameter takes into account the individual resistances of the

tight junction, crossbridging molecules in the cleft, etc. By contrast, in the ul-

trastructural models of Hu and Weinbaum (1999) and Adamson et al. (2004), the

above changes would result in new values for several parameters, for example the di-

mension of the breaks in the junction strand, the average distance between breaks,

and the cleft length per unit area of capillary wall. The measurements of these

parameters are presumably difficult, so measuring them in the setting of enzymatic

degradation will likely give rise to large uncertainties in the values. Homogeniza-

tion, while a considerable simplification, allows for investigation of these effects by

changing only one parameter.

In Table 4.4, we show the percentage increase in LP for increases in the capillary

wall permeability. This is similar to Table 4.2, in that we assume the glycocalyx

thickness decreases from 182 nm to 77 nm as a result of some enzymatic treatment.
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For now we assume that the glycocalyx permeability stays constant, so as to ex-

amine the effect of changing k only. It is seen from the data that increases in wall

permeability of 50% and 100% from the control value greatly impacts the value of

LP . As in the case of changing glycocalyx permeability, if any of the parameters

were to be measured, this table could be used to give estimates of k or kg.

Table 4.4: Percentage increase in LP upon increase in capillary wall permeability. Note
we are using the data from van den Berg et al. (2003) for control and degraded glycocalyx
values of `g, respectively 182 nm and 77 nm. We assume that kg remains constant to
isolate the effects of changes in k. Note that we show only the case when kc=21.8 nm2.

kd = kc kd = 1.5kc kd = 2kc

kg,c (nm2) % increase in LP

3.16 72 104 125

9.24 38 81 116

Earlier, we were able to predict the decrease in glycocalyx thickness given the

relative area change for the case where kg and k remained constant. We now carry

out a similar calculation in the case where kg and k may change upon enzymatic

treatment. We use the equations (4.8) and (4.9) and take their term by term ratio.

Rearranging to solve for `g,d in terms of the other parameters gives

`g,d =

(
kg,d

kg,c

)[
`g,c

(
LP,c

LP,d

)
− γ

(
kc

kd

− LP,c

LP,d

)]
(4.13)

where γ =
kg,c

kc

R ln(1 + h) is now defined in terms of the control variables. We

can examine the two limiting cases, namely where the glycocalyx is the dominant

resistance to flow, and where the glycocalyx provides little resistance as compared

to the capillary wall. Dividing Eq. (4.13) by `g,c, and looking at the case when

Γ� 1, we obtain the relation

`g,d

`g,c

=

(
kg,d

kg,c

)(
LP,c

LP,d

)
(4.14)

as we might expect intuitively. The glycocalyx is the main resistance to flow, so

changes in `g or kg will affect LP , whereas changes in k will not. An increase in

LP by a factor of two could be as a result of a reduction in glycocalyx thickness by

a half with permeability remaining constant, a doubling of the permeability with

thickness constant, or some combination where both parameters change.

In the limit when the glycocalyx produces no resistance to flow, that is when

Γ� 1, we divide Eq. (4.13) by γ, again noting that `g,d will be much smaller than
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γ, and we thus obtain
LP,c

LP,d

=
kc

kd

which implies that changes in hydraulic conductivity are due only to changes in the

capillary wall permeability.

Table 4.5 shows the predicted values of `g,d based on Eq. (4.13). For now we

show only the case when `g,c = 182 nm and kg,c = 3.16 nm2. We can ascertain the

effect of an increase in either glycocalyx or capillary wall permeability by comparing

the first row to the subsequent four rows. In each case, it is observed that if kg,d

or kd increases, the value of `g,d increases as well. In other words, the decrease

in glycocalyx thickness from the control value is of a smaller magnitude if the

glycocalyx permeability or capillary wall permeability increases with enzymatic

treatment. Precisely which of kg,d or kd has more of an effect depends on the

parameters such as the control glycocalyx thickness and permeability. For example,

looking at the third and fifth rows, we see that the glycocalyx thickness is required

to drop to 116 nm (from 182 nm) when the capillary wall permeability increases

two-fold, whereas it only drops to 162 nm if the glycocalyx permeability doubles.

Therefore, for this particular parameter combination, increasing kg,d has a more

prominent effect on flow through the capillary wall than does increasing kd by the

same relative magnitude, such that the required decrease in glycocalyx thickness is

smaller when glycocalyx permeability increases. We will expand upon these results

in Section 4.3.3.

Table 4.5: Predicted values of `g,d when values of glycocalyx and capillary wall perme-
ability change upon enzymatic treatment, from Eq. (4.13). `g,c = 182 nm, kg,c = 3.16
nm2 and kc = 21.8 nm2.

kg,d (nm2) kd (nm2) Predicted `g,d (nm)

kg,c kc 81

kg,c 1.5 kc 104

kg,c 2 kc 116

1.5 kg,c kc 121

2 kg,c kc 162

Changes in reflection coefficient

The structural changes in the glycocalyx that may lead to an altered kg may also

cause a change in the value of the glycocalyx reflection coefficient, σg. As men-
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tioned, no study of which we are aware measures changes in the reflection coef-

ficient under enzymatic degradation; however the following studies may at least

shed some light on changes in the value of the reflection coefficient under other

experimental conditions. It is noted that the authors of the works discussed here

refer to the reflection coefficient as σ; however the ‘new view’, as reflected in the

Michel-Weinbaum hypothesis, identifies the glycocalyx as the osmotic barrier, and

thus the glycocalyx reflection coefficient which we call σg corresponds to the σ from

these papers. In subsequent sections, all references to σ are to our capillary wall

reflection coefficient.

Michel and Phillips (1985) measured changes in LP and the effective osmotic

pressure σ∆π after perfusion of Ringer solutions containing Ficoll 70 with bovine

serum albumin (BSA) or cationised ferritin (CF). With either molecule present in

the perfusate, there was an increase in σ∆π and decrease in LP compared to the

control with Ficoll 70 only. Since the addition of either BSA or CF did not appre-

ciably change the in vitro osmotic pressures, it was concluded that the increase in

σ∆π took place due to an increase in the value of σ for Ficoll 70. Mason et al.

(1977) and Curry et al. (1987) similarly showed that increases in LP were accom-

panied by decreases in σ∆π upon perfusion with protein-free solutions, which were

attributed to changes in the properties of the molecular sieve. These experiments

point to a change in the value of the reflection coefficient when the hydraulic per-

meability changes. However, there is also some evidence to the contrary. Clough

et al. (1988) sought to determine changes in LP and σ∆π after tissue temperature

had been raised to create an inflammatory state. In some vessels, the rise in LP

was accompanied by a drop in σ∆π, in accordance with the observations of Ma-

son et al. (1977), Michel and Phillips (1985), and Curry et al. (1987). However,

in other vessels LP increased as much as 15-fold with no corresponding change in

σ∆π. Thus the permeability had increased in regions that retained the selectivity

of undamaged vessels. This evidence would seemingly point to the reflection coef-

ficient retaining its value even with changes in LP . It would clearly be of interest

to measure how the glycocalyx reflection coefficient changes for various glycocalyx-

degrading substances, such as hyaluronidase, heparinase and pronase.

We cannot be sure whether or not changes in σg have indeed taken place in the

study of van den Berg et al. (2003), or if they have, what the magnitude of these

changes are. However, we have carried out simulations to study the effect of varying

σg. Although σg does not directly enter the expression for LP , it does have an effect

on transcapillary filtration, namely on the magnitude of the filtration flux, as can be
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seen from Eq. (3.75). Figures 4.3 and 4.4 show Jv

A
as a function of capillary pressure

for different values of σg. The effect of decreasing σg is to translate the line to the

left, decreasing the pressure at which zero filtration occurs (that is pc at which
Jv

A
= 0). For σg = 0.9, this pressure is approximately 17 cmH2O. As σg decreases

to 0.8, 0.5, and 0.2, this quantity decreases to 15, 9, and 3 cmH2O, respectively.

These values are the same regardless of the values of `g and kg, as it is clearly

seen from Eqs. (3.75) and (3.76) that `g and kg are present in the expression for

LP , and as such determine the slope of the Jv

A
vs. pc curve, whereas σg determines

solely the intercept on the pc-axis. We note here that we have disregarded the

possibility that a change in the value of σg may cause a corresponding change in

πg, the osmotic pressure behind the glycocalyx. However, we have reason to believe

that this will not change the results by an appreciable amount, the rationale for

which is elaborated on now.

Figure 4.3: Filtration flux as a function of capillary pressure for four different values of
σg and two values of `g (kg has been set constant at 3.16 nm2). Note that decreasing σg

lowers the intercept of the curve while increasing `g decreases the slope of the line (i.e.
the value of Lp).

Under high flow conditions where the permeability was increased and there

was a corresponding decrease in σg, the value of πg would be lowered. If, for

example, we assume the reflection coefficient drops to 0.45 (half its control value),

we may compare the magnitude of the term σg(πc − πg)− σ(πi − πg) in Eq. (3.75)

(since the changes affect the intercept but not the slope of the Jv

A
vs. pc curves)

for the cases when πg is held fixed at its control value or lowered to take into
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Figure 4.4: Filtration flux as a function of capillary pressure for four different values of
σg and two values of kg. Now `g has been set constant at 150 nm. Note again the effect
of σg as in Figure 4.3. An increase in kg creates a corresponding increase in the slope of
the line.

account its dependence on the flow. The difference between the above term for

πg taking its value in Table 3.1 and half that value is only about 2 cmH2O. If the

decrease in πg is 25%, the difference is only 1 cmH2O. Since πg is not a measurable

parameter due to the extremely small scales involved, and thus must be inferred

from a particular theory, we consider our approximation of a constant πg to be

reasonable and justifiable under these circumstances.

Of course not only may σg change, but there may also be changes in σ, the

capillary wall reflection coefficient. As with our discussion of the parameter k,

it is difficult to know from an ultrastructural perspective what effect enzymatic

treatment may have on σ. We show in Figure 4.5 the filtration flux Jv

A
as a function

of capillary pressure for a range of values for σ. The important point to note is

that over the range 0 ≤ σ ≤ 0.9, the lines are only slightly shifted, such that the

pressure at which zero filtration occurs decreases by a small amount as σ increases

(only 2 cmH2O over the range of σ).
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Figure 4.5: Filtration flux as a function of capillary pressure for different values of capil-
lary wall reflection coefficient σ. Note `g = 182 nm and kg = 3.16 nm2.

4.2.4 Comparison with other studies

We can compare our predictions for the change in LP values upon glycocalyx degra-

dation with some other studies in the literature. Adamson (1990) measured changes

in LP after pronase treatment to degrade the glycocalyx. The control LP was

2.0×10−7 cm s−1 cmH2O
−1, whereas after pronase degradation of the glycocalyx

the LP value increased to 4.9×10−7 cm s−1 cmH2O
−1. Thus, there was approxi-

mately a 2.5-fold increase in hydraulic conductivity, leading to the conclusion that

the glycocalyx accounts for approximately 60% of the resistance to flow across the

capillary wall. Note that the percentage of the total resistance to flow due to the

glycocalyx is calculated as

Rglyc = 1− LP,c

LP,d

(4.15)

Therefore in the experiment of Adamson (1990), LP,d = 2.5 LP,c, so the resistance

is 0.6, or 60%. Since more recent studies (Adamson et al., 2004) indicate that the

LP value lies in the range 1.0-1.3×10−7 cm s−1 cmH2O
−1 in normal physiological

situations, rather than compare the absolute changes, we compare our prediction for

the relative increase in LP upon glycocalyx degradation. For a 150 nm glycocalyx

(as suggested by Adamson et al., 2004), we predict LP = 1.01 × 10−7 cm s−1

cmH2O
−1, whereas in the limit as the thickness goes to zero (as seen in Eq. (4.5)),

LP increases to 3.20×10−7 cm s−1 cmH2O
−1. This implies that with the parameter
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values in Table 3.1 the glycocalyx is responsible for 68% of flow resistance. If instead

we assume a control `g value of 104 nm (corresponding to LP = 1.28×10−7 cm s−1

cmH2O
−1), then elimination of the glycocalyx gives the same 2.5-fold increase in

LP as in Adamson (1990). We note that Smith et al. (2003) estimate the glycocalyx

thickness in vivo to be 400-500 nm, whereas here we use a smaller value. Below

we consider values of `g in this range when calculating the percentage resistance to

flow due to the glycocalyx (see Table 4.6).

A relevant question that arises is whether in Adamson’s experiments the gly-

cocalyx was totally eliminated or degraded but still present. If still present, then

did for instance its permeability change, and by how much? These are important

issues in understanding how much of the total resistance to flow is due to the gly-

cocalyx. In the absence of data to resolve these questions, our model can be used

to investigate parameter combinations that best fit the observations.

Further comparison of our model predictions can be made with the results of

Zhang et al. (2006a), who show a plot of LP as a function of glycocalyx thickness

(Fig. 4.6). First, examining the left side of Figure 4.7, we show our prediction of

LP as a function of `g for three different values of glycocalyx permeability (namely

the value suggested in Weinbaum et al., 2003, that used in Zhang et al., 2006a,

and another nominal value) and two values of the capillary wall permeability. In

examining the solid curves, we note that our estimate of LP is higher than that

of Zhang et al. for values of `g close to zero, for all kg. As `g increases to 50-100

nm, the curve of Zhang et al. falls between our low and medium kg solid curves,

and above `g = 100 nm, their predicted behaviour is quite similar to our model

predictions in the medium permeability case. The larger predicted LP values at

low `g arise as a result of our choice of parameter values. The permeability of

the capillary wall, k, is estimated based on measurements of the cleft-spanning

structures cited in Adamson et al. (2004). Treating k as an adjustable parameter,

we observe from Figure 4.7 that k determines the intercept of the LP vs. `g curve,

whereas kg determines the curvature. To ensure LP is the same as the value in

Zhang et al. for `g = 0, we use the value k = 17 nm2, and when kg = 9.24 nm2 our

result is very close to that of Zhang et al. for all values of `g.

Sugihara-Seki et al. (2008) modeled the three-dimensional flow through the

microvascular wall using a Brinkman equation (the Stokes equation with an added

term proportional to the velocity which represents the Darcy force) to account

for the fiber matrices in the glycocalyx and cleft regions. A model of this type

requires prescription of the permeabilities of the glycocalyx and cleft, which play
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Figure 4.6: Zhang et al. (2006a) model prediction for LP as a function of glycocalyx
thickness.

roles similar to kg and k in our model. The authors do not take any account

of plasma proteins, and instead look at the transcapillary flow from a purely fluid

mechanical point of view. They compute the fluid streamlines, pressure profiles and

shear stress distribution in the cleft and glycocalyx regions. Also, using parameter

values from Adamson et al. (2004), they were able to make predictions about the

behaviour of LP as the glycocalyx thickness is varied. In Figure 4.8 we show their

plot of LP as a function of `g for the separate cases of the presence or absence

of cleft-spanning molecules. Note that the absence of these molecules corresponds

to an infinite permeability - thus we can only compare to the case in which the

molecules are present.

With cleft-spanning molecules present, their prediction of LP for a glycocalyx

thickness of 150 nm matches our prediction; however, variations of LP with changes

in `g differ markedly between the two models. In fact, LP changes very little over

the range of 0 ≤ `g ≤ 1000 nm, leading Sugihara-Seki et al. (2008) to predict that

the glycocalyx provides much less resistance to the flow than previously assumed.

For a finite cleft permeability, the increase in LP upon removal of the glycocalyx

is only 15%, implying that the glycocalyx accounts for only about 13% of the flow

resistance. This is a major discrepancy between our study and theirs. In order for

our model to arrive at a similar prediction, we would need to set k to a value of

approximately 8 nm2, and assign a very large value to kg (note that in the limit as
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Figure 4.7: LP as a function of `g for different values of kg and k.

kg → ∞, LP ceases to depend on `g – see Eq. (4.5)). This is seen in the dash-dot

curve with kg = 31.6 nm2 on the right side of Figure 4.7.

Since in the study of Sugihara-Seki et al., there is not much variation of Lp

with `g, there is a only a weak dependence of the percentage resistance due to the

glycocalyx on the value of the control `g. In contrast, our model has a much stronger

dependence on the choice of the control value for `g. We use our expression for the

resistance due to the glycocalyx (4.15) along with our expression for the limit of

LP as `g → 0, namely (4.5). Table 4.6 shows the results for different values of

the parameters. As mentioned above, it is quite possible that kg changes with

degradation, and one could make inferences based on Tables 4.2 and 4.6. But also

note that taking the limit as `g → 0 is equivalent to taking the limit as kg → ∞,

as seen in Eq. (4.5).

Clearly as the wall becomes more permeable (k increasing) with the other pa-

rameters fixed, the wall is less of a resistance to flow, and Γ decreases toward the

high resistance limit of the glycocalyx. For kg and k fixed, increasing the glycocalyx

thickness means an increase in Γ, such that the glycocalyx provides more resistance

to flow. For `g and k fixed, increasing kg implies that the resistance due to the gly-

cocalyx is lower, as one would expect intuitively, and the value of Γ correspondingly

increases. One may compare the trends in Table 4.6 to those in Table 4.3, and note

that the smallest values of Γ correspond to the largest values of Rglyc.
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Figure 4.8: Sugihara-Seki et al. (2008) model prediction for LP as a function of glycocalyx
thickness. Reprinted with permission. c©Cambridge Journals.

Certainly with better experimental estimates of any or all of the parameters kg,

k, `g, or with better experimental estimates of the resistance to flow due to the

glycocalyx, Table 4.6 may be directly checked against the experimental results, or

used to give estimates of the unknown parameter values. For instance, if the known

values of kg and k were 9.24 nm2 and 21.8 nm2 respectively, and the estimate of

the glycocalyx accounting for 60% of the resistance from Adamson (1990) were

identically correct, our model would predict that the control glycocalyx thickness

would be below 400 nm, but closer to 400 nm than 150 nm. If the resistance was

closer to 50%, as suggested more recently by Adamson et al. (2004), the glycocalyx

dimension would again be between 150 and 400 nm, but this time closer to 150

nm. Or, if Rglyc (4.15) were known to be 60% and the glycocalyx thickness was

measured at 400 nm, this table could be used to estimate both the parameters kg

and k, as follows: if kg were thought to be 3.16 nm2, then k would have to be less

than 8 nm2. If this value of k was known to be too low, then according to our

calculations, kg would have to be larger.

4.2.5 Discussion

The objective of our model was to describe transcapillary flow in a more accessi-

ble manner than the three-dimensional ultrastructural model of Hu and Weinbaum
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Table 4.6: Percentage resistance due to the glycocalyx for different values of the three
parameters `g, kg and k.

k=8 k=17 k=21.8

`g (nm) kg (nm2) Rglyc

150 3.16 45 63 68

9.24 22 37 43

400 3.16 68 82 85

9.24 42 61 66

(1999), without losing the essential predictive capabilities. In fact, this appears

to have been also the motivating purpose for Zhang et al. (2006a), in formulating

their simplified one-dimensional model. A major advantage of Zhang et al. (2006a)

when compared to our model is their ability to generate much more intricate albu-

min concentration profiles. This is achieved by their splitting of the domain into

five regions, each governed by a convection-diffusion equation subject to matching

conditions. This enables the generation of nonlinear Jv

A
vs. pc curves that are in

good agreement with the experimental data of Adamson et al. (2004). Their model

also predicts steady-state reabsorption under certain conditions, a phenomenon not

yet observed experimentally, and is able to account for vesicular transport.

To describe albumin (or any plasma protein) in our model, we bypassed the

use of convection-diffusion equations and instead derived an equation satisfied by

the osmotic pressure field, π(r). By truncating the series solution for π, we obtain

a simple expression which does not depend on the capillary pressure, thus the

behaviour of π (and hence the albumin concentration) remains the same under

different flow conditions. In reality, the flow is coupled to the osmotic pressure

below the glycocalyx, πg, and we set πg constant, as per the discussion above.

Both our model and the others discussed have their relative advantages de-

pending on the problem at hand. If an experiment is performed in which tissue

is backloaded at a high albumin concentration, and what is required are detailed

albumin concentration profiles and/or Jv

A
vs. pc curves, then clearly the model of

Zhang et al. (2006a) will be preferable. If the velocity profiles and shear stress

distributions in the glycocalyx and cleft are of interest, then the work of Sugihara-

Seki et al. (2008) will be more pertinent. However, it is our contention that if the

question to be addressed deals with glycocalyx degradation and its effect on fluid

balance, our model is most accessible due to the relationship of LP , a measurable

quantity, with the parameters of the glycocalyx, namely kg and `g.
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In fact, we have shown above that our model can reproduce the LP vs. `g

curves predicted by both the models of Zhang et al. (2006a) and Sugihara-Seki

et al. (2008) by selecting appropriate values for the parameters kg and k. For Zhang

et al. (2006a), values of kg = 9.24 nm2 and k = 17 nm2 are required, whereas for

Sugihara-Seki et al. (2008), kg = 31.6 nm2 and k = 8 nm2 match their prediction

quite well. Therefore, our simpler model, with its closed-form expressions for all

variables including LP , can describe a wide range of behaviours. Examination of

two of our curves in Figure 4.7 show the markedly different situations which our

model can capture with appropriate parameter values. In the left graph, the curve

with kg = 3.16 nm2 and k = 21.8 nm2 corresponds to the limit of a high-resistance

glycocalyx, and it is observed that for small values of `g, there are large changes in

LP with changes in `g. In the right graph, the curve that fits Sugihara-Seki et al.

(2008) corresponds to the limit of a low-resistance glycocalyx, and the value of `g

has only a small effect on LP . This may be important when used in conjunction

with experimental data.

For example, if an experiment were performed in which LP could be measured

for several values of the glycocalyx thickness, then our model would give estimates

of the glycocalyx permeability and capillary wall permeability. If LP were measured

for a completely abolished glycocalyx (`g = 0), then the intercept of the LP vs. `g

curve would give an estimate of k and a curve fit would yield an approximation

of kg. Given the ingenuity and creativity of experimentalists in this field and the

rapidly evolving technological capabilities, we feel confident that these types of

measurements and experimental data will become available in the near future. We

know LP can be measured using the Landis technique (Michel et al., 1974). There

are currently three methods to estimate the glycocalyx thickness; however each

has associated drawbacks (Broekhuizen et al., 2009). As for kg and k, we have

estimated these using the theory in Weinbaum et al. (2003) and parameters from

Adamson et al. (2004), but neither of these parameters has been directly measured.

Given knowledge of some parameters, we may use the model to estimate other

parameter values bearing certain criteria in mind. First, according to Zhang et al.

(2006a) and Adamson et al. (2004), control LP should be between 1.0-1.3×10−7

cm s−1 cmH2O
−1. Next, there should be some agreement with van den Berg et al.

(2003) for the change in fluid content in the pericapillary space upon deterioration

of the glycocalyx. Here, measurements of the PSD as well as `g are required.

Calculation of the relative area change can be carried out using our crude method

of approximating capillary cross-sections as circular or elliptic, or by a more refined
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method of looking pixel by pixel at an electron microscope image (e.g. Figure 4.1).

Also, rather than taking only the median values of `g and the PSD from van den

Berg et al. (2003), one could utilize a larger subset of their data, and perform a

statistical analysis. This is precisely what we attempt to do in the following section.

Finally, the percentage resistance to flow due to the glycocalyx needs to be

characterised by experimental observations. However, this represents a challenge

as there is no method of direct measurement, so the results must be inferred from

particular experimental data. Adamson (1990) approximates this as 60%, but in

the discussion of Sugihara-Seki et al. (2008), they cite unpublished data in which

LP increases by 38% using heparinase treatment, or 260% using pronase treat-

ment. This implies that the respective resistances are 28% and 72% respectively.

It is likely that the glycocalyx is not totally eliminated as a result of heparinase

treatment, so this value of 28% is probably too low. Using a wide range of param-

eter combinations, our model predicts values in the range of 22% to 85%, as seen

in Table 4.6. We have also identified the parameter Γ, which is a measure of the

relative resistances of the capillary wall and glycocalyx. Therefore, given experi-

mental data of LP as a function of `g along with the control glycocalyx thickness,

Γ could be estimated and hence the relative resistance due to the glycocalyx would

be known. Further experimental results are clearly required to definitively resolve

this question.

4.3 Using probability distributions to represent

the data

4.3.1 Expressing the histograms of van den Berg et al. as

probablility distributions

Previously, we used the median values for pericapillary space dimension (PSD) in

the control and hyaluronidase-treated cases to calculate the area change relative to

the baseline that occurs as a result of hyaluronidase treatment. However, as can

be seen from the histograms in Figure 4.9, there is quite significant variation in

the data and we therefore attempt to make a more rigorous study using all of the

available data. Our goal is to convert the histograms in Figure 4.9 to probability

distributions, namely the χ2 distribution. An advantage of using the χ2 distribution
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is that it has only one parameter, namely the degrees of freedom, k. This makes our

calculations to find the distribution of best fit fairly straightforward. In the usual

application of hypothesis testing, the value of k takes an integer value based on the

problem at hand. In our case, since we are looking for the best fit to the data, we

allow k to take non-integer values. We discuss in more depth the assumption of

using the χ2 distribution at the end of this section. For some background such as

the probability density function and cumulative distribution function, the reader is

referred to the Appendix.

Figure 4.9: Histograms from van den Berg et al. for the pericapillary space dimension
(PSD). Reprinted with permission.

Table 4.7: Estimated percentage in each interval in the histograms of van den Berg et al.

PSD (µm) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2

control 36 25 15 11 4 3 3 1 0 1

hyaluronidase 14 28 25 13 10 5 2 2 1 1

Table 4.7 shows our estimated values for the height of each bar in Figure 4.9.

Note the values add up to 99% and 101% in the top and bottom row, respec-

tively, but these are our best estimates. Now, the only statistics given in van den

Berg et al. (2003) are the medians of the PSD measurements in the control and
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hyaluronidase-treated cases, and therefore these will be be integral in our calcula-

tion. Let them be called Rc,m and Rh,m, where subscripts c and h refer to control

and hyaluronidase-treated, respectively, and m refers to the median. The values

are Rc,m = 0.28 µm and Rh,m = 0.46 µm. We now explain the method of finding

the optimal distribution, and note that a more detailed explanation is given in the

Appendix.

To find the χ2 distribution that will most accurately represent the histograms

from van den Berg et al., we first generate distributions for a number of values of

k and for each one determine the median value of the distribution, call it Rk,m.

From this, we compute what we will term the scaling factor, which is a measure

of how the x-coordinate is scaled between the dimensionless values given in a χ2

distribution and the dimensional values of PSD as in the histograms of van den Berg

et al. (2003). The scaling factors for the distribution with k degrees of freedom are

Sc,k =
Rc,m

Rk,m

(4.16)

Sh,k =
Rh,m

Rk,m

(4.17)

where the subscripts c and h refer to control and hyaluronidase-treated, respectively.

By multiplying by the scaling factor, distributions are obtained with dimensional

values on the x-coordinate axis.

At this stage we can find the optimal χ2 distributions for each case. Consider

now only the control case, but the method is identical for the hyaluronidase-treated.

We first calculate the area enclosed by each distribution in each 0.2 µm segment,

so that we may compare this area to the height of the histogram. Let Ahist
i be the

area enclosed up to the ith segment of the van den Berg et al. histogram, where i

runs from 1 to 10 (with i = 1 corresponding to a PSD between 0 and 0.2 µm, which

from Table 4.7 gives Ahist
1 = 36; i = 2 gives Ahist

2 = 36 + 25 = 61, etc.). Then let

Ak
i be the area enclosed in each segment of the χ2 distribution with k degrees of

freedom. We calculate the optimal distribution by finding the value of k based on

a least-squares between the enclosed areas. Thus, for the kth degree of freedom,

the error is

Ek =
10∑
i=1

(Ahist
i − Ak

i )
2 (4.18)

The minimum value of Ek gives us the χ2 distribution of best fit to the histogram.

We found the value of k to two decimal places, as the accuracy obtained is

sufficient for our purposes. For the control case, we obtain k = 1.97, whereas in
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the hyaluronidase-treated case, k is 4.73. The scaling factors are therefore Sc =

0.2063 µm (control) and Sh = 0.1127 µm (hyaluronidase-treated). In Figure 4.10 we

show the distributions with the above degrees of freedom alongside the histograms

of van den Berg et al.. For each of these distributions, we can use the scaling factors

to calculate the mean and mode of the data in terms of the dimensional quantities.

The mean value is 0.41 µm for the control case, and the mode clearly occurs at zero.

For the hyaluronidase-treated case, the mean is 0.53 µm and the mode is 0.31 µm.

Figure 4.10: The χ2 distributions corresponding to the histograms in van den Berg
et al.. The parameter k, the degrees of freedom, is 1.97 for the control and 4.73 for
the hyaluronidase-treated case.

Table 4.8 shows our calculation for the area enclosed by the distributions to

the left of each 0.2 µm interval, and a comparison with van den Berg et al. We

observe very good agreement in both the control and hyaluronidase-treated cases.

This calculation satisfactorily displays to us that we may use the χ2 distributions

in Figure 4.10 to represent the measurements of van den Berg et al.
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Table 4.8: Comparison between our estimate and the data of van den Berg et al. for area
enclosed at 0.2 µm intervals

PSD (µm) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2

control estimate 39 63 77 86 91 95 97 98 99 99

data 36 61 76 87 91 94 97 98 98 99

hyaluronidase estimate 14 42 66 81 90 95 98 99 99 100

data 14 42 67 80 90 95 97 99 100 100

4.3.2 Increase in fluid content

Having found the optimal distributions for the control and hyaluronidase-treated

cases, we now aim to quantify the relative change of fluid content in the pericapillary

space, or equivalently the relative change in area, using the control as a baseline

value and examining the change that occurs upon hyaluronidase treatment. In

Section 4.2.1, we calculated the area change for the separate cases of a circular and

elliptic geometry, and had the expressions (4.2) and (4.3), which we re-write for

convenience:

∆A =
(R +Rh)

2 − (R +Rc)
2

(R +Rc)2 −R2

∆Ae =
(a+Rh)(b+Rh)− (a+Rc)(b+Rc)

(a+Rc)(b+Rc)− ab

where we recall Rc and Rh are the respective pericapillary space dimensions in the

control and hyaluronidase cases, R is the radius in the circular case, and a and b

are the semi-minor and semi-major axes in the elliptic geometry. Previously, we set

Rc and Rh equal to their median values and looked at the relative area change as a

function of radius R or semi-minor and semi-major axes a and b. Here, we set R,

a, and b equal to constant values, and allow Rc and Rh to be variables generated

randomly from their respective χ2 distributions. The distribution for Rc has k =

1.97 degrees of freedom, and that for Rh has k = 4.73. We use MATLAB to generate

the distributions, with ten thousand data points for each variable. A set of ∆A

values is thus obtained, and statistics of ∆A, such as the median and mean, may be

calculated. But this is only a single realization, so to obtain more useful properties

of ∆A, we perform one thousand realizations. For more details on this procedure,

the reader is once again referred to the Appendix.

We find that the mean is not really a useful statistic in this case, due to the

following example. In a single realization, one of the values given to Rc was 3.9×
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10−5µm, where the value of Rh was 0.65 µm. Here the relative change in area

will take a value greater than 104, which is clearly not realistic. Since the median

value is less than one, this will skew the mean to take values much larger than the

median. In fact, looking at the distribution for Rc, one observes that there will be

a disproportionate number of small values, and since there is no lower threshold,

many values of ∆A that are not physical will be generated. We discuss this in

detail in Section 4.3.4.

Table 4.9 shows the statistics that are useful, and they all utilize the median

value for each realization. In performing several realizations, we compute the me-

dian, mean, maximum and minimum of the medians from each realization. The

range of median ∆A values is 58-76% in the circular case, and are similar but

slightly greater in the elliptic case. Since our model assumes a circular cylinder, we

will consider only the circular geometry for the rest of this work. So based on our

approximation that the χ2 distributions calculated above adequately represent the

data of van den Berg et al. (2003) for PSD, we expect that hyaluronidase treatment

will increase the area of the pericapillary space relative to the control by 58-76%.

Table 4.9: Statistics of relative area change in the cases of a circular and elliptic cross-
sectional geometry. All relative changes are positive and given in percentages. Note that
R = 5 µm, a = 2.5 µm and b = 5 µm.

geometry/statistic median mean maximum minimum

circular 67 67 76 58

elliptic 68 68 77 59

Figure 4.11 shows the frequency of ∆A values for one realization in which the

median value is 68%. We show two different scales to point out the fact that

many of the values generated are much larger than one would expect on physical

grounds. The spike on the right hand side takes into account all values greater

than the largest x-value. We see from the left graph that approximately 3500 of

the points have a relative area change of 2 or greater (corresponding to a 200%

or larger increase), and that of these, about 1200 correspond to a 1000% or larger

increase (from the right graph). These extremely large values of ∆A, which are

due to the extremely small values of Rc, skew the mean, which is why it is not a

useful statistic. In addition, it is observed that there are several values of ∆A that

are less than zero, implying a decrease in the amount of fluid in the pericapillary

spaces upon hyaluronidase treatment. This is not likely to represent the physical

situation, and arises as a result of Rh taking on an extremely small value in a given
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realization.

Figure 4.11: Histograms showing the frequency of the relative change in area (∆A) in
the circular case for one realization (with a median of 68%, or 0.68). Note the difference
in scales on both axes. As explained in the text, the spike at the right side represents all
values greater than the respective x-values. Note that R = 5 µm.

4.3.3 Estimation of glycocalyx thickness

The next task is to estimate the change in glycocalyx thickness given the relative

area change of fluid in the pericapillary space. We use the same method as in

Section 4.2.3, still using the assumption in Eq. (4.7) that the relative change in area

will correspond to the relative change in hydraulic conductivity. The difference is

that instead of a single value for ∆A, we now have several values which have been

calculated in the previous section from the distributions for Rc and Rh. Thus we

have several values for the ratio
LP,c

LP,d
, which in turn gives a number of values for `g,d

based on Eq. (4.10), which we recall was for the case when glycocalyx permeability

and capillary wall permeability remained constant during enzymatic treatment.

This expression was

`g,d = `g,c

(
LP,c

LP,d

)
− γ

(
1− LP,c

LP,d

)
By performing a number of realizations, we can compute the statistical properties

of `g,d. Similar to the preceding section, it is found that there are anomalies due
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to the use of statistical distributions to represent physical quantities. Thus there

are cases when the glycocalyx thickness can have extremely large values, or even

negative values. So again we find it useful to take the median of each realization,

followed by taking the mean, maximum and minimum of those medians (note the

median and mean of medians are very close, so we just show the mean). We display

in Figure 4.12 a histogram that shows the frequency of these median values over

the one thousand realizations.

Figure 4.12: Histogram showing the frequency over all realizations of median glycocalyx
thickness from each realization. `g,c = 182 nm, kg,c = 3.16 nm2, and k = 21.8 nm2.

In Figure 4.13 we show a single realization of the generated values for `g,d using

the parameter values `g,c = 182 nm, kg = 3.16 nm2 and k = 21.8 nm2. In this

realization the median value of `g,d was 81 nm. We note the two spikes in the his-

togram. The left spike corresponds to the fact that sometimes the relative increase

in area (and hence LP ) is too large to be accounted for by changes in glycocalyx

thickness only, and thus the predicted values of `g,d are less than zero, which is

not physical. The right spike corresponds to the fact that some values of ∆A will

be negative (i.e. LP decreases upon hyaluronidase treatment), so large increases

in `g upon glycocalyx degradation would be required to generate these values. As

mentioned, this is not likely to represent the physical situation.

The mean, maximum, and minimum of the median of `g,d for each realization are

shown in Tables 4.10 and 4.11. The current case in which the glycocalyx thickness

is the only parameter to change is in the entries where kg,d = kg,c and kd = kc.
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Figure 4.13: Histogram showing the frequency of different values of `g,d for one realization.
Note the two spikes. The leftmost bar contains all points predicting a value of `g,d < 0,
which is not physical, and the rightmost bar contains all points where `g,d > 1000. `g,c

= 182 nm in this case, kg = 3.16 nm2 and k = 21.8 nm2. The median value of `g,d was
81 nm.

The trends of how our `g,d prediction changes with changes in the parameters

such as the control glycocalyx thickness and permeability were discussed above in

Section 4.2.3, and shown in Table 4.1. The key point to remember was that the

larger the amount of resistance due to the glycocalyx, the smaller the required

decrease in glycocalyx thickness would be to produce the same amount of change

in area in the pericapillary space, or change in LP .

We would next like to discuss the variability and how it is affected by the

parameters. We let ` max
g,d , ` min

g,d and ` mean
g,d represent the maximum, minimum and

mean values of the medians from each realization, which are simply the values shown

in Tables 4.10 and 4.11. To measure the spread of the data, it seems there are three

possibilities. So we introduce ψi, i = 1, 2, 3 such that

ψ1 =
` max
g,d − ` min

g,d

` mean
g,d

(4.19a)

ψ2 =
` max
g,d − ` min

g,d

|`g,c − ` mean
g,d |

(4.19b)

ψ3 =
` max
g,d − ` min

g,d

`g,c

(4.19c)
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It is difficult to decide which of these measures is the most appropriate, for after all

we only have the data in the form of histograms from van den Berg et al. (2003),

which gives just the frequency of PSD falling in a given range, rather than the actual

data points. Thus, we perform this analysis by calculating all three, and discuss

the implications at the end of this section. All three equations have the same

numerator, which is the difference between the minimum and maximum calculated

values of `g,d. The denominators differ in that the first equation contains the mean

value, the second contains the absolute value of the difference of the mean predicted

value of glycocalyx thickness from the control value, and the third is simply the

control value of glycocalyx thickness.

Regardless of what form is used, we can write out the expressions for ` mean
g,d ,

` max
g,d , and ` min

g,d , using Eq. (4.10). To simplify, we introduce

ζi =

(
LP,c

LP,d

)
i

where i represents the mean, maximum, or minimum. It is convenient to use

Eq. (4.7) to re-write this as

ζi =
1

1 + ∆Ai

and so for instance ζmin corresponds to where ∆A is a minimum, yet due to the

decreasing nature of the function, this will be the largest value of ζi. Also, when

the area change is at its minimum, the degradation of glycocalyx will also be a

minimum, meaning that the maximum value of `g,d occurs, and vice versa. Thus,

` mean
g,d = `g,cζmean − γ(1− ζmean) (4.20a)

` min
g,d = `g,cζmax − γ(1− ζmax) (4.20b)

` max
g,d = `g,cζmin − γ(1− ζmin) (4.20c)

Note that the three ζi terms are obtained from our approximation using the χ2

distributions in Section 4.3.2 and displayed in Table 4.9. The values are ζmean =
1

1.67
≈ 0.60, ζmax = 1

1.76
≈ 0.57, and ζmin = 1

1.58
≈ 0.63. Substituting Eqs. (4.20)

into Eq. (4.19) gives

ψ1 =
ζmin − ζmax

ζmean −
(

Γ

1 + Γ

) (4.21a)

ψ2 =
ζmin − ζmax

1− ζmean

(4.21b)

ψ3 = (1 + Γ)(ζmin − ζmax) (4.21c)
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The second equation, somewhat surprisingly, depends only on the relative change

in LP , whereas the first and third depend on the ζi’s as well as Γ. In all of the

entries of Tables 4.10 and 4.11 where kg,d = kg,c and kc = kd, ψ2 ≈ 0.16. We discuss

the general trends later in this section when studying the more general case where

the permeability can vary.

Varying the permeabilities

In Section 4.2.3, we found an expression for the glycocalyx thickness in the case

where kg and k can change upon enzymatic treatment. Recall this expression (4.13)

`g,d =

(
kg,d

kg,c

)[
`g,c

(
LP,c

LP,d

)
− γ

(
kc

kd

− LP,c

LP,d

)]
We now use the calculations above for the distribution of

LP,c

LP,d
in this equation to

make further predictions. Two cases are considered for control glycocalyx thickness,

namely when `g,c is 182 or 400 nm. For kg,c, we take the two values as above, that is

3.16 or 9.24 nm2, and we consider only one value for kc, 21.8 nm2. Simulations are

then performed where kg,d and kd take either their control values, or a 50% or 100%

increase. As previously, we use ten thousand points on the distribution for each

realization, then perform one thousand realizations, taking the mean, maximum

and minimum values of the median of `g,d for each realization. The results are

shown in Tables 4.10 (corresponding to `g,c = 182 nm) and 4.11 (corresponding to

`g,c = 400 nm).

The mean values of `g,d for the parameters in the top half of Table 4.10 were

discussed previously, and shown in Table 4.5. There were two main observations.

First, if the glycocalyx or capillary wall permeability increases with enzymatic

treatment, then the glycocalyx need not be degraded by as much to produce the

same relative change in area. Second, which of kg,d or kd has a larger effect depends

on the values of the parameters, in particular the resistance to flow due to the

glycocalyx. For this parameter combination, the resistance is large enough such

that increases in kg,d produce more flow than do increases in kd.

A similar trend is seen in Table 4.11 for both values of kg,c. We compare the

mean values in the third and fifth rows when kg,c = 3.16 nm2 to the value in the

first row. When kd = kc, `g,d is 211 nm, whereas if kd is doubled from its control

value, `g,d is 246 nm. However, if kg,d = 2kg,c, we observe that the mean value of

glycocalyx thickness is 423 nm, which is larger than its control value. Here, the
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Table 4.10: Statistics of `g,d based on the medians of the realizations for different values
of kg and k. Note the glycocalyx control thickness is `g,c = 182 nm and kc = 21.8 nm2.

Parameter values Statistics of `g,d

kg,c kg,d kd mean maximum minimum

3.16 kg,c kc 81 89 72

kg,c 1.5 kc 104 114 96

kg,c 2 kc 116 125 108

1.5 kg,c kc 121 136 110

2 kg,c kc 162 179 147

9.24 kg,c kc 28 41 17

kg,c 1.5 kc 95 108 83

kg,c 2 kc 129 145 117

1.5 kg,c kc 41 61 23

2 kg,c kc 55 85 24

glycocalyx is thick and not very permeable, and thus it provides almost all of the

resistance to flow (from Table 4.6 we find a value of 85%), such that increases in

glycocalyx permeability will have very pronounced effects in comparison to increases

in capillary wall permeability. In effect, our model predicts that for the control

values of the parameters in this case, a doubling of glycocalyx permeability upon

enzymatic degradation would be too large an increase to account for the measured

increase in fluid in the pericapillary space.

This is in stark contrast to the bottom half of Table 4.10, where `g,d is 182 nm

and kg,c is 9.24 nm2, so the glycocalyx is thinner and more permeable. For kg,d =

2kg,c, the glycocalyx must be degraded to a thickness of 55 nm. If however the

capillary wall permeability is doubled, a thickness of 129 nm will suffice to produce

the same relative change in area. So, since in this case the glycocalyx contributes

less to the total resistance, the effects of its degradation will be less.

Looking at the variability, ψ, requires we re-write Eq. (4.19) using Eq. (4.13)

for the `g,d terms. This gives the equations:

` mean
g,d =

(
kg,d

kg,c

)[
`g,cζmean − γ

(
kc

kd

− ζmean

)]
(4.22a)

` min
g,d =

(
kg,d

kg,c

)[
`g,cζmax − γ

(
kc

kd

− ζmax

)]
(4.22b)

` max
g,d =

(
kg,d

kg,c

)[
`g,cζmin − γ

(
kc

kd

− ζmin

)]
(4.22c)
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Table 4.11: Statistics of `g,d based on the medians of the realizations for different values
of kg and k. Note the glycocalyx control thickness is `g,c = 400 nm and kc = 21.8 nm2.

Parameter values Statistics of `g,d

kg,c kg,d kd mean maximum minimum

3.16 kg,c kc 211 228 196

kg,c 1.5 kc 235 255 217

kg,c 2 kc 246 262 227

1.5 kg,c kc 317 345 293

2 kg,c kc 423 450 395

9.24 kg,c kc 158 181 139

kg,c 1.5 kc 226 246 208

kg,c 2 kc 259 278 241

1.5 kg,c kc 237 263 209

2 kg,c kc 316 355 279

where we recall that the parameter γ = kg,c

kc
R ln(1 + h) contains the values in the

control situation. To simplify our expressions, we introduce two new parameters

which represent the change in glycocalyx permeability and change in capillary wall

permeability, respectively. These are

ξ =
kg,d

kg,c

(4.23)

θ =
kd

kc

(4.24)

Inserting these into Eqs. (4.22), and substituting into Eq. (4.19) gives, after con-

siderable simplification,

ψ1 =
ζmin − ζmax

ζmean −
Γ

θ

(
1 + Γ

) (4.25a)

ψ2 =
ζmin − ζmax∣∣∣∣ 1

ξ
+ Γ

θ

1 + Γ
− ζmean

∣∣∣∣
(4.25b)

ψ3 = ξ(1 + Γ)(ζmin − ζmax) (4.25c)

In the case when the permeability of the glycocalyx and capillary wall stays constant

(i.e. when ξ = θ = 1), these expressions reduce to Eq. (4.21), as they should. Also,

note that the expression for ψ1 contains θ but not ξ, the expression for ψ3 contains
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ξ but not θ, and the expression for ψ2 contains both ξ and θ. The values of

these quantities are shown in Table 4.12 for the parameter combinations shown in

Tables 4.10 and 4.11.

Table 4.12: Values of ψi for various parameter combinations.

`g,c kg,c ξ θ ψ1 ψ2 ψ3

182 3.16 1 1 0.20 0.16 0.09

1 1.5 0.16 0.21 0.09

1 2 0.14 0.25 0.09

1.5 1 0.20 0.41 0.14

2 1 0.20 1.66 0.18

9.24 1 1 0.91 0.16 0.14

1 1.5 0.26 0.29 0.14

1 2 0.19 0.47 0.14

1.5 1 0.91 0.27 0.21

2 1 0.91 0.40 0.28

400 3.16 1 1 0.14 0.16 0.08

1 1.5 0.13 0.19 0.08

1 2 0.12 0.20 0.08

1.5 1 0.14 0.56 0.11

2 1 0.14 2.65 0.15

9.24 1 1 0.25 0.16 0.10

1 1.5 0.17 0.23 0.10

1 2 0.15 0.28 0.10

1.5 1 0.25 0.36 0.15

2 1 0.25 0.94 0.20

We begin with a discussion of ψ3. It is seen that for fixed `g,c and kg,c, ψ3

increases with ξ in a linear fashion, as observed from Eq. (4.25). In the four entries

in which ξ = θ = 1, the smallest value of ψ3 (0.08) is when `g,c is 400 nm and kg,c is

3.16 nm2, which recall is the case when the resistance due to the glycocalyx is its

largest (and Γ is smallest). As the value of Γ increases, so too does the value of ψ3,

such that its largest value of 0.14 occurs in the case when the resistance due to the

glycocalyx is smallest. Thus for this particular measure, the relative variability ψ3

is smallest when Γ is small, and largest when Γ is large. For our predictions, this

means that in the limit of a high-resistance glycocalyx, our calculations for `g,d are

more precise. This is easily seen from the equation for ψ3 when Γ � 1, as there
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is no longer dependence on the value of Γ. This makes sense intuitively, because

if the glycocalyx provides little resistance as compared to the capillary wall, then

the calculations will not be as sensitive to changes in glycocalyx parameters, hence

leading to larger variability in the predicted values of `g,d.

The behaviour of ψ1, while quite different, actually allows us to draw the same

conclusion. Note that ψ1 decreases as θ increases, although this is not a linear

relationship. When ξ = θ = 1, the minimum of ψ1 occurs for the parameters

corresponding to the glycocalyx with highest resistance, the same as for ψ3. Thus,

for the same reason as above, the variability is smallest when the glycocalyx is the

dominant resistance to flow, and increases as Γ increases.

Since ψ2 depends on both ξ and θ, its behaviour is a bit more complex. First,

when ξ = θ = 1, the four entries are the same, 0.16, due to the fact that there will

be no dependence on Γ. Increases in both ξ and θ produce increases in ψ2, and

which of ξ, θ produce larger increases depends on the control values of glycocalyx

thickness and permeability, and hence Γ. When Γ > 1, which is only for the case

when `g,c is 182 nm and kg,c is 9.24 nm2, changes in θ will produce changes of larger

magnitude in ψ2. For the other three cases (when Γ < 1), changes in ξ produce

larger changes in ψ2.

As mentioned, it is not obvious which one of these measures is the most useful.

However, the behaviour of the ψi’s does allow us to draw the conclusion that when

the resistance due to the glycocalyx is larger, our calculation for the predicted

glycocalyx thickness is more precise.

4.3.4 Discussion

The validity of this work rests on three assumptions. First, we assume that the

histograms in van den Berg et al. (2003) may be represented by the χ2 distributions

generated in Figure 4.10. We are limited by the fact that these histograms give only

the percentage of values in each 0.2 µm interval of PSD, rather than the raw data.

In the presence of the measured data points, a more thorough statistical analysis

could be performed. However, in this work we are interested only in finding a

reasonable estimate that can be used to test the predictions of our model against

the experimental data, and although there may be optimization procedures or other

distributions which give slightly better fits to the data, it is clearly seen from

Table 4.8 that our estimates fit the data quite well. In addition, a similar procedure
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to that above has been performed attempting to fit the data using a non-central

χ2 distribution, which is a two-parameter distribution. The optimal distributions

have approximately the same least-squares error as above, and result in the area

enclosed in each 0.2 µm interval being identical to those shown in Table 4.8 up to

the number of significant figures displayed.

Another important issue that arises is the fact that using these distributions,

there are many values for the relative area change and glycocalyx thickness that

are not physical (represented by the left and right spikes in the histograms of Fig-

ures 4.11 and 4.13). In fact, the physical situation appears to be represented only

about 35-40% of the time. This could be improved by the use of truncated distribu-

tions. If we had set lower and upper thresholds on the values of Rc and Rh, which

could be obtained from the minimum and maximum values of the measurements

in each case, then the spikes could be made less prominent. However, they are still

present due to the fact that the values are generated randomly, and thus calculation

of any ∆A may use a large value of Rh and a small value of Rc, or vice versa. One

way this could be avoided is by ordering Rc and Rh. Then ∆A would be calculated

assuming that the minimum Rc value corresponds to the minimum of Rh, etc. In

the actual experiment of van den Berg et al. (2003), different vessels are used for

the control and hyaluronidase-treated cases, and thus it is not known whether this

has any validity. All in all, the spikes at the edges of the histogram should not be

too much of a concern – for this is a physiological problem and thus we know which

part of the distribution makes sense physically.

The second major assumption is that the relative increase in fluid content in

the pericapillary space, and hence the area change, from control to hyaluronidase-

treated capillaries is assumed to be equal to the relative change in hydraulic con-

ductivity LP , as in Eq. (4.7). We have discussed the questionable nature of this

assumption in Section 4.2.3, but we now examine the possible functional relation-

ship between these quantities. If we imagine what a graph of ∆A vs. ∆LP may

look like, we know that the curve must pass through the origin and be monotoni-

cally increasing, for reasons that are fairly obvious. One possibility is that there are

two regimes. The first is in the physiological range, where the relationship between

∆A and ∆LP may be approximated as linear, with a slope that may differ from

unity. With larger increases in LP , the area cannot continue to increase at the same

rate (due to compliance, etc.), so the curve flattens out. Additionally, there must

be some threshold for ∆LP , above which the vessel may collapse for instance. If

experiments could be performed such that a functional relationship between ∆A
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and LP were found, we could modify our Eq. (4.7) to accommodate this, and our

calculations could be carried out again. If the relationship were linear with a slope

not equal to unity for a certain range of values, this would add only a constant

multiple to all of our results. Thus, we will take Eq. (4.7) as a first approximation,

subject to change with further experimental data.

Our final assumption is that our theoretical relation between LP and the other

physical parameters, given in Eq. (3.76), holds. Of course this must be the case in

order for our calculations of `g,d to be accurate. These three assumptions, while

all containing possible drawbacks, are all easily modified should new experimental

data become available.

4.4 Physiological implications

As we have seen, deterioration of the endothelial glycocalyx causes a breakdown of

the barrier to transcapillary flow, leading to edema formation. In addition, glycoca-

lyx perturbation in capillaries results in a reduction of functional capillary density

and increase in capillary tube haematocrit (Cabrales et al., 2007; VanTeeffelen et al.,

2008). Cabrales et al. (2007) found that the changes in functional capillary density

result in a redistribution of RBCs in the capillary network such that perfusion was

not optimal. Keeping in mind that the main function of the cardiovascular system

is the efficient delivery and removal of various substances, dysregulation of optimal

conditions could lead to pathological (disease) states.

Although we have focused entirely on the glycocalyx in the microcirculation,

recent experimental evidence shows that the glycocalyx in large vessels may play

an equally important role. It was found that the glyocalyx was dramatically reduced

in regions at high atherogenic risk and by an atherogenic diet (van den Berg et al.,

2006), which reflects the fact that a perturbed glycocalyx corresponds to increased

vascular vulnerability.

As detailed in Section 4.1, the glycocalyx is involved in mechanotransduction of

fluid shear stress into cell signaling processes that trigger nitric oxide (NO) produc-

tion. Since NO is atheroprotective and an important determinant in vasodilation

(VanTeeffelen et al., 2007), regulation of NO production is required to protect

against inflammation. Therefore, damage to the glycocalyx results in impaired
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shear stress-dependent NO production, and may be associated with inflammatory

states.

Shear stress helps to increase glycocalyx dimension by incorporating hyaluronan

and other components into the glycocalyx (Gouverneur et al., 2006b), but regions at

high atherogenic risk such as near arterial bifurcations have disturbed flow profiles,

and therefore irregular shear stress distributions. The fact that the glycocalyx

dimension is reduced in the experiments of van den Berg et al. (2006) mentioned

above is thus to be expected. Also, van den Berg et al. (2009) observed preferential

accumulation of lipids in regions with a perturbed glycocalyx, and Noble et al.

(2008) hypothesize that this lipid accumulation combined with the inflammation

associated with a perturbed glycocalyx may be essential in the development of

atherothrombosis.

Caro et al. (1969, 1971) proposed that atherosclerosis develops preferentially in

regions where the arterial wall shear stress is low, and that lipid deposits in the

arterial wall were due to shear-dependent mass transfer mechanisms (reviewed in

Caro, 2009). In support of this idea, Friedman et al. (1981) showed that intimal

thickness correlated negatively with wall shear rate (intimal thickening is a hallmark

of atherosclerosis). Since the glycocalyx is reduced at sites of low shear, there should

be a correlation between glycocalyx dimension and intimal thickness, and hence

between glycocalyx dimension and atherogenic risk. Indeed in the experiments

of van den Berg et al. (2006), increased atherogenic risk corresponded to smaller

glycocalyx dimensions and increased intimal thickness. Further, the preferential

lipid accumulation shown in van den Berg et al. (2009) is precisely a result of

the shear-dependent mass transfer referenced above. This is a promising area of

research and will be explored further in the Conclusion.

In the future, the endothelial glycocalyx may prove to be a useful diagnostic

tool and even a therapeutic target. There have been attempts to measure the

systemic glycocalyx volume in humans (Nieuwdorp et al., 2006, 2008); however, the

experimental methods have recently been called into question (Michel and Curry,

2009). Thus, more work needs to be done in that area. But, there is evidence

showing that the glycocalyx may be therapeutically restored, at least partially

(Meuwese et al., 2009). By repairing a damaged glycocalyx through infusion of

glycocalyx components, the atheroprotective properties of the vascular wall may

be enhanced, thereby lowering the risk for cardiovascular disease.
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Chapter 5

Conclusions

In this Thesis a model has been developed to describe the transcapillary flow of

fluid and proteins by idealizing the capillary wall as a poroelastic material. The

result is that the endothelial cleft, its junction strand with periodic orifices, and

the cleft-spanning structures are replaced by an isotropic, homogeneous fluid-solid

mixture. This is in contrast to the models of Hu and Weinbaum (1999), who

use Hele-Shaw flow, Adamson et al. (2004), who treat the flow in the cleft using

a Brinkman equation, and Zhang et al. (2006a), who use a one-dimensional flow

through a narrow slit. The similarity between these approaches, however, is that

the magnitude of the flow will depend on the amount of resistance in the capillary

wall; this can be characterised in each by an effective permeability of the capillary

wall region. Consistent with all of these models, we enforce the Michel-Weinbaum

hypothesis at the inner wall, just behind the glycocalyx. The result is that the flow

has two resistances – that of the glycocalyx, and that of the capillary wall.

Due to the presence of protein concentration gradients in the capillary wall, clas-

sical poroelasticity theory must be modified, and the usual assumption of Darcy’s

law for flow through the porous matrix is not valid. We obtain an equation for the

filtration velocity that depends on both hydrostatic and osmotic pressure gradients.

In this case, the stress components will also be affected, and thus the constitutive

equation is modified to contain an effective pressure, a combination of the hydro-

static and osmotic pressures, which represents the diagonal components of the stress

tensor. To close the system of equations, an equation for the osmotic pressure is

required. From nonequilibrium thermodynamics, we are able to derive a nonlin-

ear differential equation satisfied by the osmotic pressure field. Through a series
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of transformations, a series solution is obtained; and by making an appropriate

assumption, this series can be truncated after the first term, giving an analytical

solution.

Our results for the transport variables, that is the velocity, hydrostatic pressure,

and osmotic pressure, are difficult to compare with other theoretical predictions

due to the differences in models, or with experimental works due to the difficulty

of obtaining measurements at the small length scales involved. To our knowledge,

our predictions for the stress and strain are the first of their kind; we hope that our

results stimulate future experimental work to validate our theoretical model.

What we can compare with both theory and experiment is the behaviour of

the filtration flux as a function of capillary pressure, and the slope of the line in

the graph, namely the hydraulic conductivity LP . The Starling equation implies

that the relation between filtration and capillary pressure should be linear, with

intercept equal to the effective osmotic pressure difference. However, the work of

Michel and Phillips (1987) showed that for low capillary pressure in the steady-

state, the relation was nonlinear and thus there could be no reabsorption. Hu and

Weinbaum (1999) predict a nonlinear relation with no steady-state reabsorption,

and both the model prediction and experimental results of Adamson et al. (2004)

also show no reabsorption in the steady-state. In contrast, one of the main results

from Zhang et al. (2006a) is that their model predicts that steady-state reabsorption

can occur if the interstitial concentration is low. Their curve is nonlinear, however,

with filtration for capillary pressures above 17 cmH2O and reabsorption below 17

cmH2O.

By construction, our model cannot account for the nonlinear behaviour observed

in Michel and Phillips (1987) and predicted theoretically by the three studies above.

This is due to the fact that we fix the osmotic pressure (hence concentration) just

behind the glycocalyx rather than solving the more complicated coupled problem

as above. Fixing πg allows an analytical solution of the governing equation for the

osmotic pressure, which in turn gives an analytical solution for filtration velocity

and hydrostatic pressure. Since our original goal in Speziale et al. (2008) was to

describe transcapillary flow in healthy tissue, this assumption is reasonable. In

the case of a deteriorated glycocalyx, the assumption may be called into question;

however, in Section 4.2.3 we discussed the reasons for its legitimacy.

The fact that we have a linear relation should not be much cause for concern.

The important question experimentally is whether there is in fact reabsorption for
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low capillary pressures. Zhang et al. (2006a) predict that reabsorption occurs for

capillary pressure below 17 cmH2O, the same value as our model prediction. So

whether or not the curve bends slightly does not change the overall picture, just the

magnitude, and only by a small amount. In addition, measurements have not been

made with capillary pressures of less than 10 cmH2O (minimum measured capillary

pressure for Adamson et al. (2004) was 15 cmH2O, for Michel and Phillips (1987)

was 12 cmH2O), since these low pressures are also unlikely to occur in capillaries,

except in pathological conditions where flow stasis is possible. Thus, where we

depart from Zhang et al. (2006a) is over a small range of capillary pressures, and the

departure is of a small magnitude and not likely to change the overall conclusions.

Although the inability to describe the nonlinearity in the curve is a drawback

of the model, our approach has some clear advantages. First, we have a theoretical

relation for the filtration flux Jv

A
, and hence also have a relation for the hydraulic

conductivity LP in terms of the parameters characterising the flow, including the

glycocalyx thickness and permeability, and capillary wall permeability. Our pre-

dicted value of LP for the best estimates of the parameters is close to the value

found experimentally by Adamson et al. (2004). Since LP is a measurable quantity,

as is the glycocalyx thickness `g, it could be of use to experimentalists to have a

relation between these quantities. Additionally, the curves in Section 4.2.4 for LP

as a function of `g for different values of the capillary wall permeability and glyco-

calyx permeability, k and kg respectively, would be of use in estimating k and kg if

LP and `g could be measured simultaneously.

Using the results from our model solutions, including those in the previous para-

graph, we investigated how a deteriorated glycocalyx could contribute to edema

formation, as observed in the experiments of van den Berg et al. (2003). We used a

geometric simplification to estimate the change in the fluid content of the pericapil-

lary space under hyaluronidase treatment in which the glycocalyx was deteriorated,

and postulated a relation between this quantity and LP , the assumptions of which

have been discussed in detail in Sections 4.2.3 and 4.3.4. The theoretical expression

for LP could then be used to estimate the glycocalyx thickness given the relative

change in fluid content, which was calculated first using the median values from

the experiments only. Due to the fact that upon hyaluronidase treatment, the

glycocalyx permeability as well as the capillary wall permeability may also change,

we performed a sensitivity analysis. An important dimensionless parameter, Γ, was

identified which describes the relative resistance to flow between the glycocalyx and

capillary wall. The limit Γ � 1 corresponds to the glycocalyx being the dominant
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resistance, whereas Γ � 1 corresponds to a glycocalyx that provides negligible re-

sistance relative to the capillary wall. The main findings were quite intuitive: if the

glycocalyx provides most of the resistance to flow, then its degradation will produce

large changes in the amount of flow; if the glycocalyx provides only a small amount

of resistance, its degradation will not produce sizable changes in the flow. Thus,

to produce a fixed relative change in fluid content, a higher resistance glycocalyx

would be required to be degraded less than a lower resistance glycocalyx. The ma-

jor contribution is in the quantification of these values under different conditions,

which are shown in the various tables and figures of Chapter 4.

Later in the chapter, we found probability distributions which optimally fit the

histograms of van den Berg et al. (2003) for pericapillary space dimension. These

were used to perform all calculations as above, such that the relative change in

fluid content ∆A and predicted glycocalyx thickness `g,d were also distributions. It

was found that using distributions produced some values of glycocalyx thickness

that were not physical (negative or extremely large), due to very small values

of the PSD in a single realization either in the case of control and hyaluronidase-

treated capillaries. For this reason, the statistics we worked with were not the usual

statistics in which for instance confidence intervals can be generated. Instead we

took the median of each of several realizations, and then looked at the distribution

of the medians.

This may be reasonable if we consider that for a single vessel, the PSD is calcu-

lated by taking measurements in short intervals around the vessel perimeter, then

taking the median of those measurements. This is repeated for a number of vessels

in both the control and hyaluronidase-treated cases, and the histograms are then

constructed. We can envision each of our realizations as a series of measurements

on a single capillary, so that the median value of PSD would correspond to the

value placed in the histogram of van den Berg et al. (2003). The difference is that

the vessels used in the control and hyaluronidase-treated cases are not the same;

in our model however we wish to calculate the relative increase in fluid, assuming

that the measurements are taken in a single vessel, first in the control case, then

when hyaluronidase has been applied. This is why we first use the distributions to

calculate the change in fluid content and glycocalyx thickness, then take the median

of each realization. Other issues regarding these assumptions have been discussed

in Section 4.3.4.

With regards to improvements or extensions of the current model, it would seem

that there are two avenues to explore, namely: 1) coupling the osmotic pressure
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behind the glycocalyx to that in the interstitial space, and 2) the transient case.

With respect to the former, the manner in which coupling is achieved in the above

models is by solving convection-diffusion equations for the concentration of plasma

proteins in both the glycocalyx and cleft regions. The boundary conditions then

require continuity of concentration and flux across the interface. Thus the con-

centration (and hence osmotic pressure) at the interface (behind the glycocalyx)

emerges as part of the solution of the overall boundary value problem, of which the

interstitial protein concentration is a part.

This is not straightforward to take into account in our theory. We obtain an

equation for the osmotic pressure directly without computation of the concentra-

tion. Seemingly, the most straightforward approach would be to use our osmotic

pressure equation in the glycocalyx. However, a rather subtle point arises: in the

boundary condition enforcing the Michel-Weinbaum hypothesis, flow across the gly-

cocalyx is treated as a 1-D flow across a membrane, rather than a radial flow as

we assume in the capillary wall. This assumption is reasonable if the glycocalyx

thickness is much less than the capillary radius, which it is in our case. So then one

might ask, should the equation for osmotic pressure in the glycocalyx be in polar

or Cartesian coordinates? If we choose polar coordinates, we could truncate the

series solution after the first term (the same assumption of π
α
� 1 holds in the gly-

cocalyx), and determine the constants by requiring continuity of osmotic pressure

and flux at the boundary. We would be required to use the van’t Hoff relation to

obtain the flux in terms of osmotic pressure, but the RT part would cancel from

each term. The problem is that the theories above have a built-in mechanism, the

junction strand, that keeps the osmotic pressure behind the glycocalyx low, whereas

our homogenized poroelastic material by construction has nothing of this nature.

Since the osmotic pressure is high in the capillary, and lower in the tissue, the

proposed approach would predict that the osmotic pressure behind the glycocalyx

takes a value between the two. As mentioned earlier, this is an advantage of the

microstructural models – they can explain why the behaviour occurs. In this work,

we do not attempt to do this; instead we use their result for the behaviour of πg

under different flow conditions to investigate our specific problem.

Regarding the transient case, recall from Section 2.5 that the Starling forces

were dynamic; that is, that the interstitial hydrostatic and osmotic pressures were

not only determinants of the flow, but they also are dependent on the flow. Michel

and Phillips (1987) found that transient reabsorption lasts less than two minutes

before a steady-state with low to zero filtration is reached. Zhang et al. (2008)
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put forward a hypothesis to explain the transient nature of the phenomenon, in

which pericytes covering the cleft exits create trapped microdomains which regulate

the time-dependent response. The model of Zhang et al. (2006a) was adapted to

include two new regions: a trapped microdomain, and the exit region of the trapped

microdomain at the pericyte edge. They predict an equilibration time on the order

of one minute.

Extending our theory to the time-dependent case is certainly possible, although

the problem becomes significantly more complicated, as the transport and stress-

strain problems are coupled. In addition, it is not likely that this phenomenon can

be explained solely by consolidation effects. From Biot (1941), one finds that the

dilatation (local volume change) of the porous material obeys a diffusion equation,

with the consolidation coefficient κc taking the place of the diffusion coefficient.

Thus, the time scale for this process is L2/κc, where L is the length scale. Taking

L to be the thickness of the capillary wall ∆R, and the value for κc from Chapter

3, this time scale is of the order of 10−4 s, much too small to explain transient

reabsorption.

Finally, we end our discussion with a couple of problems to which the theory

developed in this Thesis may be applied. The first is in relation to cardiovascular

disease, and was discussed at the end of Chapter 4. In the microcirculation, a

deteriorated glycocalyx leads to edema formation and less than optimal perfusion

conditions. How efficiently a network is perfused depends on many parameters, such

as the flow rate, vascular pressure, vessel diameter (and thus resistance), hematocrit

and viscosity, as well as the wall shear stress, wall thickness and circumferential wall

stress. These hemodynamic parameters along with the metabolic demands of the

tissue drive the continuous structural adaptation, or remodeling, of the microcircu-

lation (Pries and Secomb, 2008). For example, vessels can sense wall shear stress,

so if the flow rate of the blood is increased (which in turn would increase shear

stress), then the diameter of the vessel increases (vasodilation) such that the shear

stress returns to its normal level. This is precisely what occurs during exercise.

Another example of structural adaptation is when there are decreased oxygen lev-

els in a tissue, a signal is sent to increase perfusion thus bringing more oxygen to

the tissue.

Upon glycocalyx degradation, all of these hemodynamic parameters may be

subject to change. The response of the vasculature to hemodynamic or metabolic

stimuli can change the functional properties of the network (Pries et al., 2005), and

so a deteriorated glycocalyx disturbs the delicate balance of the various factors,
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thus affecting the adaptation of the network. If we recall from the discussion at

the end of Chapter 4 that the glycocalyx ‘senses’ shear stress and that shear stress

increases glycocalyx dimension, it is clear that the interplay of these two will be

important. An illustration of this was observed in the study of Yao et al. (2007),

who showed that with an intact glycocalyx, endothelial cells align with flow, yet

after removal of the glycocalyx the cells no longer align. Thus, the glycocalyx is

required for the endothelial cell response to fluid shear. Wang (2007) modeled how

changes in the properties of the glycocalyx affect the stress and shear rate on the

endothelial monolayer, and found that with parameter changes corresponding to

glycocalyx degradation, the pulling stress on the endothelium was decreased and

the shear rate was increased. A more detailed model involving the interactions of

the various factors driving structural adaptation would be useful.

Shear stress is as important in large vessels as it is in the microcirculation. In

atherosclerosis, there is accumulation of low-density lipoprotein (LDL) and other

lipids at sites in the arterial wall where the shear stress is low, which was proposed

to be due to a shear-dependent mass transfer mechanism (Caro et al., 1969, 1971).

Recall that regions of atherogenic risk as well as an atherogenic diet reduce glycoca-

lyx thickness, and also that regions with a thinner glycocalyx correspond to regions

where the intimal layer is thicker. These sites further correspond to the regions of

lipid deposits. A mathematical description of the transport of LDL through the

glycocalyx, intima, and other structures in the arterial wall, would be able to shed

light on this complex process.

A question naturally arises regarding the relationship between the glycocalyx

in large and small vessels. If the glycocalyx was found to be reduced in a large

artery, could it be inferred that the glycocalyx dimension was decreased in the

microcirculation, and to what extent? It seems that the answer should be yes,

but the extent of which is unknown. We are unaware of any quantitative studies

that attempt to answer this question. Perhaps the attempts to measure systemic

glycocalyx volume in humans could be performed in mice. Then, this data could

be combined with data from electron microscope images as in van den Berg et al.

(2003) measuring the glycocalyx dimension in small vessels of these same mice.

By analysing the data from the estimates in small vessels along with the systemic

volume, it is possible that a clearer picture may emerge of how the glycocalyx is

distributed throughout the circulation.

The other area of application is in the study of tumour vasculature, and more

specifically drug delivery to tumours. Blood vessels in tumours have irregular struc-
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ture, are heterogeneous, and do not fit into the regular branching patterns of arte-

rioles, capillaries and venules. Most importantly, the walls are often referred to as

‘leaky’, due to the fact that they are an order of magnitude more permeable than

vessels in normal tissue. Hashizume et al. (2000) found that there was a defective

endothelial monolayer and moreover, that there were large intercellular openings

with an average diameter of 1.7 µm that could explain the vessel leakiness. How-

ever, recently Sarin et al. (2009) reported that the upper limit of pore size in tumour

vessels was only 12 nm, which would be consistent with the glycocalyx acting as

the primary impediment to transcapillary flow. They suggest that this huge dis-

crepancy (two orders of magnitude) is due to the fact that cationic nanoparticles

were used in other studies and were most likely toxic to the negatively charged

glycocalyx, in a process analogous to enzymatic degradation. Thus, large particles

could traverse the capillary wall and the upper limit of pore size would be overesti-

mated. This was not a criticism of the methods used by Hashizume et al. (2000) in

particular, but of those used by another study (Hobbs et al., 1998) that had similar

conclusions. However, in Hashizume et al. (2000), the large holes in the endothelial

monolayer are visible from the scanning electron microscope images.

Whether the glycocalyx is indeed present in tumour vessels and to what extent

it is functional is a significant question. Another fundamental piece of information

is the pore cut-off size of tumour blood vessels. With the ever-expanding use

of nanoparticles as delivery systems for anti-cancer drugs, characterisation of the

capillary wall structure in tumours is key to understanding which agents will be

effective at penetrating deep into the tumour tissue and thus reaching the cancer

cells. For instance, if the upper limit of pore size was 12 nm, then one would not

expect nanoparticles of say 100 nm to pass through the wall and reach the cancer

cells; however, they do.

The work in this Thesis can be useful in the sense that we describe the relative

resistances to flow of the glycocalyx and capillary wall and we have relations be-

tween various important parameters such as the hydraulic conductivity, glycocalyx

thickness and permeability, and capillary wall permeability. Thus, in combination

with experimental data, our model could estimate both the effect of the glycoca-

lyx and physiological limit of pore size in tumour blood vessels. Additionally, our

model allows study of the transport of drug or nanoparticle through the capillary

wall. Ultimately, it is possible that the model could explain the permeability of a

vessel to a given nanoparticle.

However, to describe accurately the efficacy of a drug, a model of the entire
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vascular network is required. Tumour vasculature is abnormal, inefficient, and has a

large degree of spatial heterogeneity. Thus, a model of the vascular network should

be of a stochastic rather than deterministic nature. The important parameters

that characterise a given vasculature, namely the vessel diameters, vessel density,

and spacing between vessels, are heterogeneous among different tumours, and in

fact are spatially and temporally heterogeneous within the same tumour. The

combination of this dysregulated network with the lack of functional lymphatics

leads to an increased interstitial fluid pressure (IFP), which Jain (1987) pointed

out is a hindrance to drug delivery. Baxter and Jain (1989, 1990) used a flow

through porous media approach to describe the transport of fluid and anti-cancer

agents in a tumour. They found that the interstitial fluid pressure was uniformly

high throughout most of the tumour and dropped sharply in the periphery, and

that this pressure gradient prevented drug molecules at the outer regions of the

tumour from being transported by convection to the centre of the tumour, with the

effect that not all tumour cells would receive the drug.

To overcome this, Jain (2001) proposed the use of anti-angiogenic agents in

combination with conventional chemotherapy. The idea was that anti-angiogenic

agents could transiently normalize the vasculature, with the consequence that IFP

would be reduced and thus the penetration of drugs would improve. In a stochastic

model of the vasculature, anti-angiogenic treatment would be described by a change

in the properties such as vessel density and spacing. Identifying the time-course

of these changes and their effects on IFP could be helpful in optimizing treatment

strategies.
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Appendix

The χ2-distribution

If X1, X2, . . . Xn are normally distributed random variables each with a mean of

zero and variance of one, then the random variable

Y =
k∑

i=1

X2
i

is distributed according to the chi-square distribution with k degrees of freedom.

We can write

Y ∼ χ2(k)

The probability density function (pdf) is

f(x; k) =
1

2k/2Γ(k/2)
xk/2−1e−x/2

where Γ(k/2) is the Gamma function, defined as

Γ(z) =

∫ ∞

0

tz−1et dt

The cumulative distribution function (cdf) is

F (x; k) =
γ(k/2, x/2)

Γ(k/2)

where γ(k/2, x/2) is the lower incomplete Gamma function, defined by

γ(s, x) =

∫ x

0

ts−1e−t dt

The χ2 distribution is defined for x ≥ 0. Using the definition, one can show that

the mean of the distribution with k degrees of freedom is exactly k. The mode is

k − 2 for k ≥ 2, or zero for k < 2, and the variance is 2k.
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The χ2 distribution is used in inferential statistics, namely in hypothesis testing

and regression line fitting. Pearson’s chi-square test is used for two kinds of tests:

goodness of fit, in which it is checked whether an observed, or experimentally

measured, distribution matches a theoretical one, and tests of independence, in

which it is determined when observations on two variables are independent of one

another.

We, however, wish to use the χ2 distribution only as a curve fit for the histograms

of van den Berg et al. (2003). The only statistics given in van den Berg et al. (2003)

were the medians, which we defined as Rc,m and Rh,m to represent the control and

hyaluronidase-treated cases. Using the function chi2pdf in MATLAB, we generate χ2

distributions for values of k between 1 and 10. Then the median of the distribution

with k degrees of freedom, denoted Rk,m, is found using the chi2inv function.

The scaling factors Sc,k and Sh,k are then computed as explained in the main text,

and used to scale the distributions so that the x−coordinate is now a dimensional

quantity, namely the PSD. Using the chi2cdf function, the cumulative area under

each 0.2 µm section is calculated, which can then be compared with the histograms

of van den Berg et al. (2003). The value of k in each case corresponds to the best

fit in a least-squares sense. We find that

Rc ∼ χ2(1.97) (A.1)

Rh ∼ χ2(4.73) (A.2)

These distributions were then used to calculate the increase in fluid content in

the pericapillary space in Section 4.3.2. In order to do this, data points for Rc and

Rh are generated from their respective distributions, which we accomplish using

the function chi2rnd in MATLAB. This function generates a given number of points

randomly from the distribution. We use ten thousand points for each, and scale the

x−axis according to the scaling factors above. Then the expressions (4.2) and (4.3)

give the relative change in area and hence fluid content, which is now a distribution.

Finally, using the assumption in Eq. (4.7), we use the calculated distributions to

predict the glycocalyx thickness corresponding to the given area change and hence

change in LP .
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