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Abstract

In magnetic resonance imaging (MRI), sampling methods that lead to incomplete data

coverage of k-space are used to accelerate imaging and reduce overall scan time. Non-

Cartesian sampling trajectories such as radial, spiral, and random trajectories are employed

to facilitate advanced imaging techniques, such as compressed sensing, or to provide more

efficient coverage of k-space for a shorter scan period. When k-space is undersampled or

unevenly sampled, traditional methods of transforming Fourier data to obtain the desired

image, such as the FFT, may no longer be applicable. The Fourier reconstruction of optical

interferometer data (FROID) algorithm is a novel reconstruction method developed by A.

R. Hajian that has been successful in the field of optical interferometry in reconstructing

images from sparsely and unevenly sampled data. It is applicable to cases where the

collected data is a Fourier representation of the desired image or spectrum. The framework

presented allows for a priori information, such as the positions of the sampled points, to

be incorporated into the reconstruction of images. Initially, FROID assumes a guess of

the real-valued spectrum or image in the form of an interpolated function and calculates

the corresponding integral Fourier transform. Amplitudes are then sampled in the Fourier

space at locations corresponding to the acquired measurements to form a model dataset.

The guess spectrum or image is then adjusted such that the model dataset in the Fourier

space is least squares fitted to measured values. In this thesis, FROID has been adapted

and implemented for use in MRI where k-space is the Fourier transform of the desired

image. By forming a continuous mapping of the image and modelling data in the Fourier

space, a comparison and optimization with respect to data acquired in k-space that is

either undersampled or irregularly sampled can be performed as long as the sampling

positions are known. To apply FROID to the reconstruction of magnetic resonance images,

an appropriate objective function that expresses the desired least squares fit criteria was

defined and the model for interpolating Fourier data was extended to include complex

values of an image. When an image with two Gaussian functions was tested, FROID was

able to reconstruct images from data randomly sampled in k-space and was not restricted

to data sampled evenly on a Cartesian grid. An MR image of a bone with complex values

was also reconstructed using FROID and the magnitude image was compared to that

reconstructed by the FFT. It was found that FROID outperformed the FFT in certain

cases even when data were rectilinearly sampled.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) captures energy emitted by a volume of excited nuclei

with intrinsic spins that are aligned in the presence of a magnetic field. Energy is absorbed

when nuclei placed in a magnetic field are pulsed with an electromagnetic wave allowing

them to transition to a higher energy spin state. After excitation, this energy is released

and the volume of nuclei returns to equilibrium generating signal that can be captured.

The received signal consists of complex Fourier components corresponding to an image

in the spatial domain. Data is acquired by sampling amplitudes in the Fourier domain

known as k-space. A series of magnetic field gradients and radio frequency (RF) pulses

are used to generate signals that facilitate a particular sampling trajectory. The common

practice in MRI is to fill k-space with equally spaced samples corresponding to a rectilinear

grid so that images may be reconstructed using a fast Fourier transform (FFT). However,

there are many cases in MRI where it is desirable to fill k-space with non-rectilinear data

and the use of an FFT leads to aliased images. More advanced algorithms (e.g., the

gridding method) are required to reconstruct images from data sampled using spiral, radial,

and random trajectories. Techniques aimed at reducing imaging time while providing

sufficient data coverage are the basis of many studies. Undersampling techniques such as

sensitivity encoding (SENSE), generalized autocalibrating partially parallel acquisitions

(GRAPPA), and compressed sensing are used to accelerate imaging and are discussed in

Chapter 3. In order to explore accelerated imaging and other novel imaging techniques the

issue of reconstructing images from unevenly sampled and/or undersampled data needs to

be addressed.

This thesis focuses on an image reconstruction algorithm, Fourier reconstruction of opti-

cal interferometer data (FROID), that interpolates Fourier data at arbitrary locations from

a continuous model of an image. This allows the sampling locations of the observed data to

be modelled accordingly and images can be reconstructed from non-rectilinear datasets. In

Chapter 4, an overview of the development of FROID and its origins in optical interferom-
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etry is given. The framework presented is applicable to any image reconstruction problem

where the acquired data can be modelled using Fourier components. FROID shall be ap-

plied to the reconstruction of magnetic resonance (MR) images by building upon a working

model that has been used to interpolate interferometer data. Necessary modifications to

reflect characteristics of data acquired in k-space shall be made. The implementation of

FROID for MRI and the resulting performance in image reconstruction shall be discussed

in Chapters 5 and 6. The objective of this thesis is to adapt the framework of FROID to

MRI and successfully reconstruct images that demonstrate the advantages of FROID.

2



Chapter 2

MRI Background

MRI was invented using the principles of Nuclear Magnetic Resonance (NMR), which

realizes that nuclei with an odd number of protons and/or neutrons have magnetic dipole

moments that can be manipulated to absorb radio frequency (RF) energy. The following

sections discuss the mechanism of NMR and the extension to MRI through the use of

magnetic gradients to perform two dimensional (2D) imaging.

2.1 Nuclear spins and magnetic effects

Many nuclei possess a natural spin with an associated magnetic field and magnetic dipole

moment, ~µ. The spin angular momentum of a nucleus is parameterized using the spin

quantum number, Q, which has either a non-negative integer or half-integer value. If the

atomic mass number of a nucleus is odd then Q equals a half-integer and if the atomic

mass number is even then Q equals an integer for an atomic number that is odd and 0

for even.[1] Under normal conditions, the orientations of the spins are random and there is

no net magnetization among all the spins combined as illustrated in Figure 2.1. However,

when placed in an external magnetic field of strength B0 (referred to as the B0 field) each

spin lines up and assumes a particular state. Depending on the spin quantum number, Q,

of the nucleus, there exists 2Q+1 spin states and orientations. Assuming that the B0 field

is applied in the z direction of a Cartesian coordinate system, µz is the z-component of the

magnetic dipole moment used to determine the energy levels of the different spin states.

The energy levels of the spin states are calculated according to [2]:

E = −µzB0, (2.1)

and

µz = γmI~, (2.2)
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Figure 2.1: a) Magnetic dipole moment of a nucleus and b) a volume containing randomized

spins resulting in zero net magnetization where ~M is the net magnetization vector.

where mI is the magnetic quantum number belonging to a set of values that range from −Q
to +Q separated by intervals of 1 (i.e., mI = −Q,−Q + 1, . . . ,Q), γ is the gyromagnetic

ratio, and ~ is Plank’s constant divided by 2π. The difference in energy between two spin

states is

∆E = γ~B0. (2.3)

In MRI, hydrogen atoms (H1), in particular, are of interest. Hydrogen atoms have a

nuclear spin quantum number of 1/2 and therefore, two spin states. When a hydrogen

atom is placed in a magnetic field, its nucleus containing only one proton assumes one

of two spin states (parallel or anti-parallel with respect to ~B0, the direction in which the

magnetic field is applied) as shown in Figure 2.2, where spins pointing upwards are in

a lower energy level than spins pointing downwards. Once nuclei in a given voxel reach

equilibrium in the presence of ~B0, more spins will be aligned in the lower energy state

creating a net magnetization of ~M0 that points in the positive z-direction,

~M0 =
Ns∑
n=1

~µn, (2.4)

where Ns is the number of spins. The interaction between the nuclear magnetic dipole

moments and the external magnetic field also forces the spins to precess about the z-axis

as shown in Figure 2.3 (obeying the left-hand rule).[2] The angular frequency at which the

nuclei precess, ω0, is defined using the Larmor equation,

ω0 = γB0. (2.5)

4



Figure 2.2: The two energy states of a hydrogen nucleus when placed in a magnetic field.

Figure 2.3: Precession of several spins (separated in phase) viewed in the x, y and z

coordinates.

5



The precessions of the spins are at different phases resulting in the x and y components of

the magnetic dipole moments of all the nuclei to cancel out and no net magnetization along

the x-y plane. Therefore, ~M0 only has a z-component (i.e., Mz = | ~M0| and Mxy = 0).[3, 4]

2.2 RF pulses and signal generation

Energy can be supplied to nuclei, aligned in a magnetic field, using electromagnetic waves

that causes them to transition to a higher energy spin state. The energy of a photon in an

electromagnetic wave is

Ep = ~ωrf (2.6)

where ωrf is the angular frequency at which the wave travels. Equating ∆E from equation

(2.3) to Ep gives

~ωrf = γ~B0,

and the angular frequency required to provide packets of energy that would move nuclei

to a higher energy spin state is

ωrf = ω0.

Therefore, an electromagnetic wave travelling at the same frequency as the precession

(Larmor frequency) of the spins is said to be in resonance with the system and supplies

energy that can be absorbed. In MRI and NMR spectroscopy, resonance is achieved in the

MHz range, which corresponds to RF. Referring back to the Cartesian coordinate system,

the z-component of ~M0 decreases as more and more nuclei receive energy from the RF pulse

and move to the anti-parallel state. The RF pulse introduces another external magnetic

field (B1) in the x-direction. This causes the spins to experience an additional precession

about the x-axis and as the phases of the precessions line up, an Mxy component (a net

magnetization vector in the x-y plane) is formed. As a result, ~M0 travels in a spiral motion

while the RF pulse is applied as shown in Figure 2.4. When the number of nuclei in the

higher energy state equal the number in the lower state and the precessions of all the spins

are in phase, Mz will equal zero and Mxy will be at its maximum value (i.e., Mxy = | ~M0|).
This can be viewed as a 90◦ clockwise flip in ~M0 when observing in a rotating frame of

reference (x′, y′ and z′) that follows the precession about the z-axis at frequency ω0; the

pulse is referred to as a 90◦ RF pulse. Accordingly, a 180◦ RF pulse causes ~M0 to flip 180◦

(i.e., Mz = −| ~M0| and Mxy = 0). The flip angle can be determined using

θ = γB1τ, (2.7)

where τ is the duration of the pulse.[3]
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Figure 2.4: a) Motion of ~M0 while RF pulse is applied and b) as viewed in a rotating frame

of reference (x′ and y′ form a plane rotating at ω0).

Once the RF pulse is removed, the nuclei relax and lose energy, returning to the lower

energy state (i.e., the equilibrium state). Mz recovers as more nuclei re-orient to the spin-

up direction. The nuclei are also free to precess about the z-axis (i.e., there is no longer a

precession about the x-axis). Inhomogeneity in the B0 field and interactions between spins

cause the nuclei to precess at slightly different frequencies. Therefore, the spins dephase

and Mxy reduces to zero. As Mxy varies from the precession and the dephasing, a current

can be induced in a coil placed in the x-y plane and resonating at the Larmor frequency.

This generates a signal corresponding to a decaying sinusoid and is referred to as the free

induction decay (FID).[2, 3]

2.3 The Bloch equation and time constants

The motion of a net magnetization vector, ~M0, obtained by summing over all the nuclear

magnetic dipole moments in a given voxel, was empirically modelled by Felix Bloch using

time dependent functions, which are referred to as the Bloch equations. Assuming a

rectangular RF pulse of

B1(t) =

{
B1 0 ≤ t ≤ τ

0 else
(2.8)
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and a rotating frame of reference with coordinates x′, y′, and z′, the scalar forms of the

Bloch equations[2, 4] are

dMx′

dt
= ∆ωMy′ −

Mx′

T2

, (2.9)

dMy′

dt
= −∆ωMx′ + γB1(t)Mz′ −

My′

T2

, (2.10)

and
dMz′

dt
= −γB1(t)My′ −

(Mz′ − | ~M0|)
T1

, (2.11)

where ∆ω is the difference between the Larmor frequency and the frequency of the elec-

tromagnetic wave used to excite the nuclei (i.e., the RF pulse),

∆ω = ω0 − ωrf .

For an RF pulse that is in resonance, ∆ω equals 0. The behaviour of ~M0 in the rotating

frame of reference is expressed using component vectors with magnitudes Mx′ , My′ , and

Mz′ . If the duration of the pulse, τ , is much less than constants T1 and T2, then equations

(2.9) to (2.11) can be further simplified and the solutions to the differential equations

during RF excitation, as given in [2], are

Mx′(t) = 0, (2.12)

My′(t) = Mz(0) sin(ω1t), (2.13)

and

Mz′(t) = Mz(0) cos(ω1t) (2.14)

for 0 ≤ t ≤ τ . Mz(0) is the initial condition of Mz and is equal to | ~M0| as discussed in

Section 2.1. Equations (2.12) to (2.14) describe the rotation of the magnetization vector

about the x-axis in the presence of the RF pulse as previously described.

After RF excitation, B1(t) equals 0 and

Mx′(t) = Mx′(τ)e−t/T2 , (2.15)

My′(t) = Mx′(τ)e−t/T2 , (2.16)

and

Mz′(t) = Mz(0)(1− e−t/T1) +Mz′(τ)e−t/T1 , (2.17)

for t > τ . During spin-lattice relaxation (i.e., when excited nuclei emit energy to return

to the equilibrium state) and free precession (i.e., when spins no longer precess about the

x-axis and dephase from one another), Mz′ exponentially recovers to | ~M0| while simul-

taneously Mx′ and My′ exponentially decay to 0. The exponential recovery and decay

8



are characterized by time constants T1 (spin-lattice relaxation time) and T2 (spin-spin

relaxation time) respectively. T1 is subject to the interactions between nuclei and their

environment, which cause a loss in energy and return to equilibrium. T2 is influenced by

the interactions between pairs of nearby nuclei. When two spins are in close proximity, the

magnetic moment of one spin causes the other to experience a slightly different magnetic

field and lose phase coherence from the rest of the system.[3] Substituting equations (2.12)

and (2.13) into (2.15) and (2.16) respectively gives

Mx′y′ = Mz(0)sin(θ)e−t/T2 , (2.18)

where Mx′y′ is the magnetization vector in the x′-y′ plane of the rotating frame of refer-

ence. Since the path of the rotating frame of reference can be described using a complex

exponential (moving clockwise about the z-axis), e−iω0t, Mxy as observed in the laboratory

frame is derived by [2] as

Mxy = Mz(0)sin(θ)e−t/T2e−iω0t. (2.19)

The decaying envelope of the FID generated by Mxy can also be characterized using a

modified exponential function, e−t/T
∗
2 , where

1

T ∗2
=

1

T2

+ γ∆B0. (2.20)

T ∗2 is the time constant adjusted to include the effect of the inhomogeneity in the B0 field,

which causes spins to experience slightly different magnetic fields and induces a phase

difference.[2, 3, 4]

2.4 Imaging and magnetic field gradients

The human body consists of an abundance of hydrogen atoms, which facilitates the appli-

cation of NMR to generate signal for imaging. In MRI, a particular slice of tissue is selected

for imaging by applying a spatially varying magnetic field with a gradient of Gz across the

body. Ideally, the magnetic field and the Larmor frequency of the spins vary linearly along

the z-direction of the tissue volume. So, when an RF pulse is applied, only a section would

be in resonance as depicted in Figure 2.5. The thickness of the slice is dependent on the

magnitude of Gz and the bandwidth of the RF pulse. The centre frequency of the RF

pulse determines the location of the slice.[3, 4]

To discern the tissue content within a slice, magnetic field gradients along the x and

y axes are used. Assuming a 2D rectangular slice on an x-y plane divided into packets
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Figure 2.5: Slice selection with z-gradient and voxels of spins in selected slice precessing

at the same frequency and phase after excitation with 90◦ pulse

of spins, the emitted FID signal, S(t), generated by Mxy after RF excitation satisfies

(according to [2])

dS(r, t) ∝ ρ(r)dr e−iω(r)t, (2.21)

where ρ(r) is the spin density of the infinitesimal area at position r,

r =
[
x y

]
.

For simplicity, the amplitude of the signal is assumed to depend only on ρ (i.e., ignore T1

and T ∗2 effects) and

S(t) =

∫
slice

ρ(r)e−iω(r)t dr. (2.22)

If the magnetization vector of every voxel was precessing at the same Larmor frequency,

then ω(r) is equal to ω0 for all r, and equation (2.22) becomes

S(t) = e−iω0t

∫
slice

ρ(r) dr, (2.23)

where

M =

∫
slice

ρ(r) dr (2.24)

is the bulk magnetization of the slice. If a spatially varying magnetic field with a gradient

of G (often referred to as the frequency-encoding gradient) was applied across the slice
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during data collection, then each spin packet would experience a slightly different magnetic

field and the corresponding magnetization vector would precess at an angular frequency

dependent on its spatial position,

ω(r) = ω0 + γG · r. (2.25)

G contains components along the x and y axes,

G =
[
Gx Gy

]
,

and

G · r = Gxx+Gyy

determines the effective magnetic field at location r. Equation (2.22) becomes

S(t) =

∫∫
slice

ρ(x, y)e−i[ω0+γ(Gxx+Gyy)]t dxdy (2.26)

and

S(t) = e−iω0t

∫
slice

ρ(ω)ei(−ω)t dω. (2.27)

Therefore, the signal from each spin packet is encoded with an angular frequency that can

be used to locate its position within the slice. If the captured signal is considered to be in

the time domain, then the spin density profile is related to its spectrum in the frequency

domain.

K-space formation

The variables in equation (2.26) can be redefined according to [2] using

kx =
γGxt

2π
(2.28)

and

ky =
γGyt

2π
(2.29)

for t ≥ 0, which gives

S(kx, ky) = e−i2πf0t
∞∫∫

−∞

ρ(x, y)e−i2π(kxx+kyy) dxdy. (2.30)

A data space called k-space in the spatial frequency domain is formed using coordinates

kx and ky. The signal sampled in k-space is the Fourier transform of an image in the
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spatial domain. The data coverage in k-space is determined by the values Gx and Gy as

Nd samples are collected in times t1,..,tNd .

Before frequency encoding of the tissue slice is performed, the magnetic field gradients

can also be used to set the phase angles (φ) of the magnetization vectors of the spin packets.

This is known as phase encoding (pe) and

φ(r) = −γGpe · rTpe . (2.31)

This corresponds to positioning the start of data collection in k-space at (kx0 ,ky0) where

kx0 =
γGxpeTpe

2π
, (2.32)

and

ky0 =
γGypeTpe

2π
, (2.33)

and Tpe is the duration of the phase-encoding step. During frequency encoding (fe), data

are sampled at positions

kx(n) = kx0 +
γGxfe tn

2π
(2.34)

and

ky(n) = ky0 +
γGyfe tn

2π
, (2.35)

for n = 1, ..., Nd. Therefore, through the use of magnetic field gradients the emitted RF

signal can be encoded with specific phases and frequencies such that acquired samples

belong to k-space.[2, 3, 4]

Rectilinear sampling

A basic MRI sequence involves manipulating the gradients so that data in k-space are

acquired line by line, known as rectilinear sampling. During phase encoding, the magnetic

field only has a y-gradient creating a frequency difference in the precession of the spins

along the y-direction of the slice as shown in Figure 2.6a. As a result, the magnetization

vectors from row to row in the slice begin to dephase. The phase difference between rows,

∆φ(y) = −γGype∆yTpe , (2.36)

increases over time while the y-gradient is applied. Therefore, the signal generated by each

row in the slice has a different phase. Data is collected in k-space starting at (0, ky0) where

ky0 is given by equation (2.33). After phase encoding, frequency encoding with only an

x-gradient is performed. The magnetization vectors from column to column now precesses

at different frequencies as shown in Figure 2.6b. As a result, the RF emission of each spin
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Figure 2.6: a) Phase differences in the magnetization vectors induced by phase encoding

and b) frequency differences induced by frequency encoding for rectilinear sampling.

packet has a frequency and phase that is localized to its position, and equation (2.30) can

be used to describe the generated signal in k-space. While the frequency encoding gradient

is on, signal is recorded for a period of Tacq . Data is collected in the positive kx direction

for Gxfe > 0, corresponding to a row in k-space. Equations (2.34) and (2.35) can be used

to described the locations of the sampled points with inputs

kx0 = 0

and

Gyfe = 0.

Figure 2.7 shows a simplified timing diagram describing the sequence of gradients and RF

pulse. The entire sequence is repeated, but with an increase in Gype so that data collection

is progressed vertically along the ky direction with each repetition. Each phase encoding

step corresponds to one row of acquisition along the kx-direction. As Gype increases linearly

from −Gφ to +Gφ in Md phase encoding steps, Md rows of k-space are captured (centred

at ky = 0).[2]
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Figure 2.7: Timing diagram for rectilinear sampling without echo.

Echo generating pulse sequences

The pulse sequence described above only captures data with positive kx positions. To

collect the other half of k-space, the phase encoding step can be adjusted such that data

sampling starts at position (kx0 , ky0) where kx0 < 0. Therefore, a gradient along the x-axis

with a negative value, Gxpe < 0, is applied with the y-gradient during phase encoding. To

ensure that the signal is captured at the same kx positions for each row of acquisition, Gxpe

remains the same for all phase encoding steps. In addition, the x-gradient used during

frequency encoding has the same magnitude as Gxpe , but is positive. This produces an

echo in the signal where the maximum amplitude is centred at (0,0) in k-space. During

phase encoding, the magnetization vectors along the x and y axes precess out of phase

from each other. The effects of Gxpe on the phase angles of the vectors is given by looking

at only the x-component of equation (2.31). When the sign of the x-gradient switches in

frequency encoding, vectors with smaller phase angles precess at higher frequencies and

vice versa. Therefore, the phases of the vectors line up after Gxfe is applied for a period

of Tacq/2 where Tacq is equal to 2Tpe . A peak signal is reached before the vectors start to

dephase again in the x-direction and an echo is produced. This imaging sequence is known

as gradient echo and its timing diagram for rectilinear sampling is shown in Figure 2.8. TE

(echo time) is the time measured from the application of the RF pulse to when the echo

peaks and TR (repetition time) is the time between RF pulses for multiple row acquisitions.

In addition to the spin density, the T1 and T2 constants for a packet of spins are dependent

on the tissue content and affect signal generation. The maximum amplitude of the echo
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signal satisfies

dS(r, t) ∝ ρ(r)(1− e−TR/T1(r))e−TE/T
∗
2 (r)dr. (2.37)

Between repetitions of the pulse sequence, the z-component of a particular magnetization

vector may not be fully recovered (depending on T1) and the signal contribution generated

by another RF pulse would be less (refer to equation (2.19)). Also, a duration of TE elapses

after RF excitation before the signal is acquired, and the x and y components of the vector

have decayed at a rate of T ∗2 .[4, 5]

An echo can also be produced by applying a 90◦ pulse followed by a 180◦ pulse. This

is known as a spin echo sequence and its timing diagram is shown in Figure 2.9. The

slice selection gradient is turned on for both pulses. After the 90◦ pulse, phase encoding

is performed with an x- and y-gradient. The initial point in k-space is positioned at (kx0 ,

ky0) where kx0 and ky0 are non-zero. At time TE/2, a 180◦ pulse is applied, which flips

the magnetization vectors such that spins that were precessing behind (i.e., have a smaller

phase angle) are now ahead and vice versa. So, when the frequency encoding gradient is

turned on, vectors with smaller phase angles after the 180◦ pulse would precess at higher

frequencies provided that

Gxfe = Gxpe . (2.38)

At time TE, the vectors are lined up creating a peak signal before dephasing again (similar

to the gradient echo sequence). Since the x-gradient does not change from phase encoding

to frequency encoding, the effects of inhomogeniety in the B0 field is minimized.[4, 5] The

maximum amplitude of the echo is dependent on T2 and not T ∗2 , and

dS(r, t) ∝ ρ(r)(1− e−TR/T1(r))e−TE/T2(r)dr. (2.39)

T1, T2 and density weighted images

As seen in equations (2.37) and (2.39), the amplitude of an echo emitted from an infinites-

imal area of spins is proportional to the spin density, T1, and T2. Since these constants are

properties of a tissue within a voxel, influenced by spin interactions, they are discerning

characteristics that can be imaged. If TR for a particular pulse sequence was long and TE

was short, then the effects of T1 and T2 would be minimized since (1 − e−TR/T1) ≈ 1 and

(e−TE/T2) ≈ 1. As a result, the contrast throughout the image would be mainly due to the

density of spins. A long TR allows sufficient time for Mz to fully recover before the next

RF excitation and the signal generated by tissue samples of similar density, but different

T1 characteristics would be similar. A short TE is not long enough for the spins to dephase

and the difference in Mxy for samples with different T2’s would be small. An image where
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Figure 2.8: Timing diagram for gradient echo sequence, rectilinear sampling.

Figure 2.9: Timing diagram for spin echo sequence, rectilinear sampling.
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Table 2.1: TE and TR Values for Different Spin Echo Imaging

TE ≤ 20 ms TE ≥ 80 ms

TR < 700 ms T1-weighted Uncommon

TR > 2000 ms Proton density weighted T2-weighted

the contrast is T1-weighted is created using a short TR and short TE while T2-weighted uses

long TR and long TE. Table 2.1 shows the type of imaging achieved for different ranges of

TE and TR for a spin echo sequence as given by [5].

2.5 Signal processing

The signal captured during a single run of frequency encoding is given by equation (2.27).

The signal is amplitude modulated by a carrier frequency of f0 (i.e., the signal was multi-

plied with e−i2πf0t) and can be broken down into its real and imaginary components,

<{S(t)} =

∫
slice

ρ(f) cos[2π(f + f0)t] df (2.40)

and

={S(t)} = −i
∫
slice

ρ(f) sin[2π(f + f0)t] df (2.41)

respectively, where

f =
ω

2π
. (2.42)

Since the signal is generated from the Mxy magnetization vector, the receiver coil can be

placed either along the x or y axis, picking up the real or imaginary signal respectively.

Capturing only the real signal is sufficient and F [S(t)] is conjugate symmetric where F [·]
is the Fourier transform operator. F [S(t)] has a positive and negative frequency spectrum

centred in the ± MHz range that are mirrored. The receiver coil is often the same as the

RF pulse transmitter coil because both can be located along the same axis and are required

to resonate at the Larmor frequency.

Demodulation

The original signal at baseband frequency is recovered by multiplying with ei2πf0t, which

strips the carrier frequency from the signal. This is known as demodulation and creates a

spectrum at (f0 + f0) and (f0 − f0). To remove the high frequency component, the signal

is low-pass filtered. Demodulation can be performed using analog circuitry by mixing the
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Figure 2.10: Simplified receiver chain: coil, amplifier, downmixer, bandpass filter, analog-

to-digital converter, digital processor.

signal with two sinusoidal reference signals that are 90◦ phase shifted from each other (i.e.,

cos(2πf0t) and sin(2πf0t)). This produces a real and imaginary channel referred to as I

(in phase) and Q (in quadrature). Capturing both I and Q channels (known as quadrature

detection) is required to reconstruct an image at baseband without aliasing. Mixing with

only the real or imaginary reference causes the positive and negative high frequency spectra

of F [S(t)] to overlap at baseband.

Current MRI systems prefer to digitize high frequency signals and perform demodula-

tion using software or digital circuitry. Figure 2.10 shows a simplified receiver chain that

is typical of an MRI system. The signal can be downmixed to an intermediate frequency

(IF) and bandpass filtered before digitization.

Sampling requirements

According to the sampling theorem [6, 7], a continuous signal can be uniquely determined

from its samples,

sn = S(nTs), for n = 0,±1,±2, . . . ,

where the sampling frequency (fs) is 1/Ts, if the signal is bandlimited in the frequency

domain (necessary condition) and fs > 2fmax (sufficient condition); fmax is the maximum

non-zero frequency component of F [S(t)], centred at 0 Hz, referred to as the Nyquist rate.

When a signal is sampled by an impulse train of frequency, fs, its corresponding spectrum

is repeated every fs in the frequency domain. A sampling frequency of at least 2fmax

ensures that there will be no-overlaps between repetitions, which allows the signal to be
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fully recovered without aliasing. For a band-pass signal not centred at 0 Hz, namely

X(f) = F [S(t)]

and

X(f) = 0 for f /∈ [f1, f2] ∪ [−f2,−f1],

a sampling frequency of twice the bandwidth,

BWs = f2 − f1, (2.43)

is sufficient to ensure that there are no-overlaps in the spectrum as derived in [7].

Since current MRI systems digitize RF signals before demodulation, the sampling fre-

quency is only required to be twice the bandwidth of the image. The bandwidth of an

image is determined by the frequency-encoding. It is common to oversample signals and

then decimate by averaging every set number of samples or only keeping every nth sample.[4]

To reconstruct a bandlimited signal, ideally, an infinite number of samples is required

since a signal can not truly be bandlimited and time limited. For example, the Fourier

Transform of a rectangular spectrum is a sinc function defined for an infinite period of time.

Any bandlimited signal can be equated to having a rectangular bandpass of appropriate

length multiplied with its spectrum, and therefore, convolved with a sinc function for all

time. Fortunately, many signals, such as those generated in MRI, decay over time and

can be considered almost time limited. In this case, a limited set of discrete samples are

sufficient to reasonably reconstruct an accurate image.

2.6 Image reconstruction

In Section 2.4, it was shown that signal is captured in k-space, which is the Fourier space

of a density, T1, or T2 contrast weighted image. Assuming rectilinear sampling and a spin

echo sequence, multiple lines of signal are acquired during 2D imaging and arranged into

rows in k-space. The signal peaks of each row should be centred at kx = 0. Once the

data has been re-arranged in k-space, an inverse Fourier transform is required for image

reconstruction,

I(x, y) =

∞∫∫
−∞

S(kx, ky)e
i2π(kxx+kyy) dkxdky. (2.44)

If the signal was demodulated to baseband prior to reconstruction then the resulting image

would be centered at point (0,0).
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Discrete Fourier transform

Assuming a Fourier series representation and a set of discrete uniform pixels in the image,

the discrete Fourier transform (DFT),

snkx,mky =
N−1∑
nx=0

M−1∑
my=0

pnx,mye
−i2π(nkxnx/N+mkymy/M), (2.45)

can be used where

pnx,my =I(x(nx), y(my)),

x(nx) =x0 + nx∆x,

y(my) =y0 +my∆y,

and ∆x and ∆y are the pixel resolutions along the x and y axes respectively. For Nd×Md

rectilinear measurements in k-space, the following system of Nd ×Md linear equations is

formed:

snkx,mky = S(kx(nkx), ky(mky))

for nkx = 0, . . . ,Nd − 1 and mky = 0, . . . ,Md − 1.
(2.46)

The positions, kx(nkx) and ky(mky), given by

kx(nkx) = kx0 +
γGxfenkxTs

2π
(2.47)

and

ky(mky) =
γ[−Gφ + 2mkyGφ/(Md − 1)]Tpe

2π
, (2.48)

are derived from equations (2.32) to (2.35) for Md different phase encodings of a rectilinear

sampling sequence. Amplitudes at Nd×Md image pixels can then be uniquely solved from

the system of equations. A closed form solution often used in MR image reconstruction is

given by the inverse DFT,

pnx,my =
1

NdMd

Nd−1∑
nkx=0

Md−1∑
mky=0

snkx,mkye
i2π(nkxnx/Nd+mkymy/Md)

for nx = 0, . . . , Nd − 1 and ny = 0, . . . ,Md − 1.

(2.49)

The DFT and inverse DFT apply only to uniformly sampled data that fall onto a Cartesian

grid (i.e., rectilinear sampling).[6, 7]

Fast Fourier transform (FFT) algorithms are implementations of the DFT that are well

developed and have a computational complexity of Nd logNd for Nd samples. Common

FFT algorithms (e.g., Cooley-Tukey algorithm and variants) recursively divide samples

into subsets so that the DFT can be computed on these smaller sets before recombining.[7]

For a 2D image, an FFT can be applied along each dimension one at a time (i.e., perform

an FFT along kx followed by FFT along ky).
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Magnitude image

When the peak signal is centred at (0,0) in k-space the image contains only real values.

Referring to the frequency shifting property of the Fourier transform[6], a shift in the signal

along the kx or ky direction (by K or L samples) corresponds to a multiplication with a

complex exponential (ei2πKnx/Nd and ei2πLny/Md respectively) in the image. Therefore, when

k-space is not properly centred, the image contains both real and imaginary values. The

magnitude and phase of the image can be calculated as the following:

|pnx,my | =
√
<{pnx,my}2 + ={pnx,my}2 (2.50)

and

arg pnx,my = tan−1

(
={pnx,my}
<{pnx,my}

)
. (2.51)

The magnitude image is often the desired reconstruction since it is invariant to shifts in

k-space.

Discrete Fourier transform properties

The pixel size and step size in k-space are inversely proportional. Simplifying the step sizes

in k-space as ∆kx and ∆ky, [5] approximates the integral in equation (2.44) as

I(nx∆x,my∆y) = C
∞∑

nkx=−∞

∞∑
mky=−∞

S(nkx∆kx,mky∆ky)e
i2π(nkxnx∆kx∆x+mkymy∆ky∆y)

(2.52)

for a series of impulses in k-space and a constant, C. By comparing the exponential terms

to that of the inverse DFT (equation (2.49)) the following relationship exists:

ei2π(nkxnx∆kx∆x+mkymy∆ky∆y) = ei2π(nkxnx/Nd+mkymy/Md)

and

nkxnx∆kx∆x+mkymy∆ky∆y = nkxnx/Nd +mkymy/Md.

Therefore,

∆kx∆x =
1

Nd

(2.53)

and

∆ky∆y =
1

Md

. (2.54)

A wider extent in k-space corresponds to a finer resolution (smaller pixel sizes) in the

image. The sampling theorem is also reiterated since the furthest pixels of an image

reconstructed using the DFT are located at (±Nd∆x/2,±Md∆y/2) for sampling rates of

1/∆kx = Nd∆x and 1/∆ky = Md∆y in k-space. Table 2.2 lists other important Fourier

Transform properties to be considered when reconstructing MR images.
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Table 2.2: Discrete Fourier Transform Properties

Description K-space Image

1) Pixel resolution

1

∆kxNd

∆x

1

∆kyMd

∆y

2) Shift in k-space snkx−K,mky−L ei2π(Knx/Nd+Lmy/Md)pnx,my

3) Shift in image e−i2π(Knkx/Nd+Lmky/Md)snkx,mky pnk−K,my−L

4) Parseval’s theorem
1

NdMd

Nd−1∑
nkx=0

Md−1∑
mky=0

|snkx,mky |2
Nd−1∑
nx=0

Md−1∑
my=0

|pnx,my |2

5) DC offset
1

NdMd

Nd−1∑
nkx=0

Md−1∑
mky=0

snkx,mky p0,0

6) Power of image s0,0

Nd−1∑
nx=0

Md−1∑
my=0

pnx,my
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Chapter 3

Accelerated Imaging Techniques

The length of signal produced and the number of samples acquired during a single scan (one

run of the pulse sequence) is limited due to the decay in magnetizaton vectors. Therefore,

multiple acquisitions may be required to adequately sample k-space. In a spin echo imaging

sequence, the repetition time (TR) can be greater than 2000 ms for a proton density or T2

weighted image (refer to Table 2.1). This corresponds to a total imaging time of over 8

minutes for a typical 2D image with 256 rows. Time becomes a limiting factor when imaging

constantly moving organs, such as the heart, and 8 minutes may be too long to avoid motion

artifacts. So, there is a great desire to develop techniques that will accelerate imaging

without deteriorating the quality of reconstructed images. This chapter shall review the

state of art of accelerated imaging techniques and corresponding image reconstruction

methods used in MRI.

3.1 Rectilinear undersampling with parallel imaging

An obvious way to achieve faster imaging is to reduce the number of rows acquired in

rectilinear sampling resulting in fewer scan repetitions and gradient changes. To preserve

image resolution, the interval between samples in the ky direction, ∆ky, is increased for a

reduced number of samples, Md. Therefore, larger steps are taken between phase encodings

so that fewer scans are required to progress from −Gφ to +Gφ. This effectively reduces

the sampling rate along ky and the bandwidth of the image in the y-direction that can be

resolved. The resolvable bandwidth is often referred to as the field of view (FOV). The

factor by which the number of row acquisitions is reduced is referred to as the acceleration

rate. An imaging sequence with an acceleration rate of a (i.e., ∆kyacclr = a∆ky) only scans

every ath row in k-space. Also, the number of phase encoding steps and the FOV is reduced

by a factor of a. For an image where the tissue content fills the original FOV, increasing

∆ky will result in unwanted artifacts since the sampling rate no longer satisfies Nyquist

23



and copies of the image at higher frequencies are aliased in.[8] Figure 3.1 shows the result

of reconstructing an accelerated dataset using an FFT.

Parallel imaging (pMRI) uses multiple receiver coils to capture signal and provides

additional information that can be used to properly reconstruct images from undersampled

datasets. This results in multiple signals that are processed simultaneously using a separate

receiver chain for each coil. The coils have an associated sensitivity profile (c), resembling

a bandpass filter, that is tuned to a specific region in the image (recalling that the image

is frequency encoded). Therefore, images obtained from pMRI are filtered such that only

a band is visible (at full intensity) and the image fades away in regions that the coil is not

sensitive to. A final image is often produced by summing the squares of the magnitude

images from each coil. If Nc is the number of coils and Ik is the reconstructed image from

the kth coil then the combined image is given by

IpMRI =

√√√√ Nc∑
k=1

|Ik|2. (3.1)

The resulting pMRI image has an overall SNR improvement.[9]

Partially parallel imaging with localized sensitivities

Partially parallel imaging with localized sensitivities (PILS) is a technique for undersam-

pling that uses pMRI. Surface coils are strategically arranged such that the sensitivity

profiles line up to cover the full FOV of an image with minimal overlap. Each coil is re-

sponsible for imaging a specific region. The signal from each coil is undersampled in the

ky direction as previously described and reconstructed separately (often by means of an

FFT).[10] If the bandwidth of the sensitivity profile, BWc, for every coil is still smaller

than the reduced FOV of the image after undersampling then the aliasing occurs outside

the band limits. Therefore, the part of the image that the coil is localized to remains

uncorrupted. Images from each coil are cropped and stitched together to form the final

image. The acceleration rate that can be obtained depends on BWck for all Nc coils. If

maxk=1,...,Nc [BWck ] is less than half the FOV, then an acceleration factor of at least 2 is

attainable.[8]

Sensitivity encoding

Sensitivity encoding (SENSE) is a reconstruction method that does not rely on coil config-

uration. According to [11], a pixel in an image distorted by undersampling is composed of

intensities of different pixels outside the reduced FOV that has been aliased in. Given an

undistorted image with an original step size of ∆ky, if an acceleration factor of a along ky
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Figure 3.1: Effects of accelerated imaging by undersampling in ky direction; an acceleration

rate of 2 is shown.
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was performed then pixels separated by 1/(a∆ky) would overlap creating a reduced FOV.

However, in pMRI, the pixel values are scaled by c and a weighted sum is used to more

accurately describe the result of the overlapped pixels. Given a reconstructed image from

an undersampled dataset received from coil k, Ĩk, the value of each aliased pixel, p̃kn , can

be expressed as follows (as given by [8]).

p̃kn =
a∑
l=1

ck,lpl, for p̃kn ∈ Ĩk, n = 1, ..., NdMd/a , (3.2)

where the values of p belong to a unaliased pixels seperated by 1/(a∆ky) and ck a set

of corresponding sensitivity factors of coil k. Therefore, there are a unknowns associated

with each pixel in Ĩk and a equations are required to solve for all p’s. Taking advantage of

pMRI, a coils with different sensitivity profiles can be used to give the necessary system

of equations,

p̃n = Cp, (3.3)

where C is the coefficient matrix derived from the coil sensitivities, p is a vector containing

the a unknown pixel values, and p̃n is a vector containing p̃kn measured from Ik for k =

1, . . . , a. The unaliased image (consisting of NdMd pixels) is reconstructed by solving

equation (3.3) NdMd/a times. SENSE allows for greater acceleration than PILS because

it is applicable to situations where the bandwidth of c is larger than the reduced FOV.

However, SENSE is limited by the number coils that a scanner can accommodate at once.

Generalized autocalibrating partially parallel acquisitions

The method described in [12], generalized autocalibrating partially parallel acquisitions

(GRAPPA), attempts to estimate missing data in k-space before performing image re-

construction of undersampled datasets obtained from pMRI. This is different from the

strategy used by SENSE, which corrects for undersampling in the spatial domain of the

image. GRAPPA is an extension of SMASH (Simultaneous Acquisition of Spatial Har-

monics), which showed that rows of signal from multiple coils can estimate a shifted row

in the signal of the composite image using

Scomp(kx, kyref ) =
Nc∑
k=1

ηm,kSk(kx, kyref +m∆ky). (3.4)

For a set of data in k-space obtained in pMRI with accelerated imaging as discussed in

previous sections, the corresponding composite signal would also be undersampled. To

estimate the missing rows, additional ACS (auto-calibration signal) lines located at kyref
from every coil are collected. These ACS lines are used for calibration and sum together
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to produce an estimate for Scomp(kx, kyref ). Equation (3.4) is then used to fit rows that

were collected during undersampling located at kyref +m∆ky, for some m, from every coil

to the estimated composite signal by solving for the linear weights, ηm,k, in

Nc∑
k=1

SACS(kx, kyref ) =
Nc∑
k=1

ηm,kSk(kx, kyref +m∆ky).

The set of ηm,k’s relates any row in the composite signal to a row located m∆ky away in

each coil. Therefore, the rest of k-space of the composite image can then be estimated

using equation (3.4), the calibrated weights, and corresponding rows of signal from coils 1

to Nc. GRAPPA uses a similar strategy to estimate missing rows in k-space, but replaces

the composite signal in equations (3.4) with signal from a single coil. That is,

SACSl (kx, kyref ) =
Nc∑
k=1

ηm,k,lSk(kx, kyref +m∆ky), for l = 1, . . . , Nc. (3.5)

Missing data in one coil is estimated using data from all Nc coils. To increase accuracy, a

neighbourhood, NG, consisting of several rows of k-space from all coils can be defined as

shown in the example in Figure 3.2a. The entire neighbourhood of data is fitted to a single

ACS line located in coil l using

SACSl (kx, kyref ) =
∑
j∈NG

Nc∑
k=1

ηj,k,lSk(kx, j), for l = 1, . . . , Nc. (3.6)

The resulting weights form a kernel that can be used to estimate any missing row in coil l

from a neighbourhood that is located in the same relative position that was defined in the

fitting procedure. A set of weights is calibrated for each coil. If 2D datasets obtained in

k-space from all coils were stacked to form a three dimensional data matrix and the kernel

was organized accordingly, then the estimation can be viewed simply as a convolution

between the kernel and the data matrix as shown in Figure 3.2b. Once complete datasets

in k-space are estimated for each coil, images are reconstructed using an FFT and combined

(via a sum of squares) as in regular (non-accelerated) pMRI. GRAPPA can be extended

to included more than one ACS line during the fitting procedure, which allows for greater

flexibility and accuracy. Each ACS line corresponds to a set of calibrated weights that

are used to estimate data where appropriate. In addition, GRAPPA can be applied to

estimating single data points at a time rather than entire rows by fitting a concentrated

neighbourhood of data to a single point in the ACS using

SACSl (kxref , kyref ) =
∑

i,j∈NG

Nc∑
k=1

ηi,j,k,lSk(i, j), for l = 1, . . . , Nc. [8, 12] (3.7)
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Figure 3.2: Example of GRAPPA applied to undersampled k-space with an acceleration

of 2; a) Fitting procedure with neighbourhood NG and b) convolution for data estimation

using calibrated weights.
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3.2 Compressed sensing

Compressed sensing (CS) takes advantage of the fact that images often contain redundant

information and, as such, it may be possible to undersample without losing important

information. Specifically, CS accounts for sparsity in an image when collecting data. The

image may not be sparse in the spatial domain, but there may be another domain in which

it is sparse.

An image can be expressed as a linear combination of orthonormal basis vectors. Con-

sider a matrix Ψ containing the basis vectors, a vector α the coefficients, and vector p the

image pixels. The matrix form of this linear combination is given as

p = ΨTα (3.8)

where

α = Ψp. (3.9)

Ψ is the orthogonal transformation matrix that maps the image domain to the domain

of α. If α contains fewer non-zero values than p then Ψ is referred to as a sparsifying

transform. Using the `p norm, the sparsity of a vector is measured by some constant R > 0

where

‖α‖p ≤ R 0 < p < 2. (3.10)

Many signals and images are naturally compressible and there exists a transform Ψ where

the transformed vector is sparse. In the sparse domain, it is only necessary to retain

the NΨ largest coefficients to properly reconstruct an image with an error on the order

of (NΨ + 1)1/2−1/p.[13] This is the premise behind data compression. Images with NdMd

pixels are transformed to a sparse domain where only NΨ coefficients (NΨ << NdMd) are

obtained for storage or transmission.

Coded acquisition

The desired image is often unknown and therefore, α cannot be obtained directly. Coded

acquisition allows for certain sampling schemes to indirectly obtain α. This refers to

capturing data in another domain through a transformation separate from Ψ, namely

y = Φp, (3.11)

where y are measurements made in the transformed data acquisition domain. When mea-

suring y, there exist sampling sequences where the aliasing formed by undersampling ap-

pears noise-like in the sparse domain and the important features are still distinguishable.[14]
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Measurements that result in noise-like artifacts in the sparse domain are referred to as in-

coherent. Figure 3.3 shows examples of incoherent measurements acquired in the Fourier

domain of an image where the image itself is sparse and Ψ is the identity matrix. An

image of a point was Fourier transformed and only 4 % of the data were sampled in four

different ways (random, linear, spiral, and radial). The unsampled data were zeroed before

reconstructing the images by taking the inverse Fourier transform (via an inverse FFT).

The artifacts when viewed in the cross section of the image appear noise-like for random,

spiral, and radial sampling trajectories and a single peak can be found. On the other

hand, the linearly sampled image has been aliased such that a single point can not be

separated. In this case, measurements taken from random, spiral, and radial sampling are

more incoherent than the ones sampled linearly. The number of incoherent measurements,

NΦ, required to approximate p as effectively as using the NΨ coefficients is NΨ log(NdMd)

as derived in [13], and NΦ < NdMd. Therefore, the coefficients necessary to reconstruct

a compressed image are sensed by incoherent measurements made using coded acquisition

rather than directly acquiring the sparse vector. The image can be reconstructed using

interference cancellation by solving the optimization problem,

min
p
‖Ψp‖1

s.t. ‖Φp− ymeasured‖2 < ε,
(3.12)

assuming that the image is represented by the sparsest vector.

Application in MRI

In MRI, k-space acquisition can be considered as coded acquisition where Φ is the set of

complex exponentials (e−i2π(kxx+kyy)) used to transform the image from the spatial domain

to the Fourier domain. This framework and the flexibility in creating different sampling

trajectories using gradients allow for the application of CS. Most MR images are also

considered compressible (i.e., there exists a domain where the image is sparse). Depending

on the image, a different sparsifying transform may be required. Table 3.1 lists a few

common MR images and their appropriate sparsifying transform as given by [14]. The key

is to find a sampling scheme for a particular image that will give incoherent measurements.

In general, random sampling can provide incoherent data. However, truly random sampling

is difficult to achieve due to limitations in magnetic field gradients and restrictions imposed

by government agencies (e.g., Health Canada and US FDA). There are guidelines set out

to control the rate of change in a magnetic field and the amount of RF energy absorption

(SAR) that a patient can be subjected to.[4] Other non-Cartesian sampling trajectories

that are feasible can result in incoherent and noise-like artifacts (e.g., radial and spiral) as
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Figure 3.3: Different sampling schemes applied in the Fourier domain of a sparse image

and their resulting artifacts; a) random, b) linear, c) spiral, and d) radial.
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Table 3.1: Sparsifying Transforms for Common MR Images

Type of Image Sparsifying Transform Comment

Angiogram Identity Image is sparse

Brain Spatial finite-differencing Image is smooth

Dynamic MR images
Temporal finite difference

Movements are almost

periodic(e.g., video of a heart)

previously demonstrated. The point spread function (PSF) of a sampling trajectory as seen

in the sparse domain can be used to determine the amount of incoherence and suitability

to CS. Therefore in MRI, the right combination of a sparsifying transform and a sampling

trajectory in k-space is necessary for CS. The image is reconstructed by solving equation

(3.12). CS requires fewer samples and accommodates interesting acquistion schemes that

are nonlinear, which can translate to faster imaging.

3.3 Non-rectilinear sampling trajectories

Recall from Section 2.4 that during data acquisition, points along a sampling trajectory in

k-space are captured. The path traversed in k-space is determined by the magnetic field

gradients used in frequency and phase encodings as expressed in equations (2.32) to (2.35).

Therefore, interesting sampling sequences can be created by manipulating the gradients.

As discussed in Section 3.2 the flexibility in exploring different sampling schemes is required

for CS.

Radial, spiral and other nonuniform (i.e., does not produce equidistant samples) k-

space trajectories are advantageous in certain circumstances. Radial and spiral sampling

methods can be used as a way to filter out high spatial frequency components in k-space

by providing denser coverge near the origin. This results in the image being blurred from

signal averaging, but a reduction in motion artifacts is gained.[5] One shot sequences are

also possible with spiral sampling, which leads to faster imaging.

Radial sampling

In rectilinear sampling, only the x-gradient is turned on during frequency encoding to

traverse horizontally across k-space. If the y-gradient is turned on as well then the resulting

k-space trajectory would be a line with slope Gyfe/Gxfe . Radial sampling (refer to Figure

3.4) acquires data along lines that are rotated about point (0,0) in k-space. At each phase

encoding step, the x and y gradients are set to Gφ cos(mϕ) and Gφ sin(mϕ) respectively for
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Figure 3.4: Example of k-space trajectory in radial sampling.

some constant Gφ. The pulse sequence is repeated as m steps from 0 to Md−1. Therefore,

the start of each line of acquisition is placed around a circle separated by a degree of ϕ.

For a spin echo sequence, Gxfe and Gyfe are equal to Gxpe and Gype ; this ensures that data

acquisition passes through the origin of k-space.[2]

Spiral sampling

Gx and Gy can fluctuate during frequency encoding and the resulting k-space trajectory is

defined by

kx(t) =
γ

2π

t∫
0

Gxfe (τ) dτ (3.13)

and

ky(t) =
γ

2π

t∫
0

Gyfe (τ) dτ. (3.14)

In rectilinear and radial sampling the gradients are constant resulting in a line in k-space.

If the gradients have a sinusoidal waveform (i.e., Gx = cos(ξt) and Gy = sin(ξt)) then

data would be acquired along a curved path. A spiral trajectory is created using sinusoidal

gradients that are amplitude and frequency modulated as shown in Figure 3.5. Phase en-

coding is not necessary since the sampling path can start at the origin and spiral outwards.

The rate at which the amplitude of the gradients rises determines the rate at which data

acquisition spirals outward and is limited by the slew rate of the gradients. Only one appli-

cation of the RF pulse(s) is required to capture data that sufficiently covers k-space. This

is referred to as a one-shot sequence. However, the pulse sequence can be repeated with a

rotation in the gradients to form interleaved spirals for denser sampling. Spiral sampling

is compatible with spin echo and gradient echo sequences.[5]
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Figure 3.5: Example of sinusoidal gradients for spiral sampling.

Image reconstruction

An FFT can not be used to properly reconstruct images from nonuniform datasets. When

not performing CS, images from nonuniformly sampled data are often reconstructed using

interpolation or gridding methods. One of the more popular gridding methods is described

in [5]. Uniform samples are interpolated from the acquired dataset before applying the

Fourier transform. The interpolation is performed using convolution. When a discrete set

of data is convolved with a function, the function is replicated at every impulse and scaled

according to the sampled value. Therefore, a continuous mapping of k-space, Sc(kx, ky),

can be approximated by convolving with a continuous function, g(kx, ky). If the chosen

gridding function is assumed to be separable such that

g(kx, ky) = gx(kx)gy(ky), (3.15)

then the 2D convolution can be expressed as

Sc(kx, ky) =

Nsamples∑
j=1

sjgx(kx − kxj)gy(ky − kyj)∆ksj , (3.16)

where sj is a sample in k-space located at (kxj ,kyj). The ∆ksj factor in equation (3.16)

is referred to as the density compensation weight, which accounts for the non-uniform

spacing between points. ∆ksj is obtained by estimating the area between samples. Polar

coordinates can be used to calculate ∆ksj as

∆ksj = kj∆kj∆ϕ (3.17)

for radial and spiral samples, where kj is the arc length from the origin to sample j in

k-space. Data in between samples are approximated using a series of overlapping g(kx, ky)

functions. As such, it is practical to choose g(kx, ky) as a function with bounded inputs

referred to as a gridding kernel. A gridding kernel has a width that limits the neighbour-

hood of points that can be interpolated from a given sample. The Kaiser-Bessel function
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is a popular gridding kernel used in MRI and is considered optimal in that it gives re-

sults similar to sinc interpolation (i.e., using sinc functions in the convolution), but is less

computationally expensive.[5] To interpolate uniform data that follow a Cartesian grid,

equation (3.16) is only calculated for points separated by n∆kx and m∆ky in the kx and

ky directions respectively. A new set of data in k-space is formed that can be processed

using conventional means such as an FFT.

Convolution with a gridding kernel in k-space is equivalent to a multiplication with

F−1[g(kx, ky)] in the image domain. Therefore, using convolution to interpolate data re-

sults in the image being filtered by the bandpass of F−1[g(kx, ky)]. This can be beneficial

in removing artifacts created by radial or spiral sampling that often surround the object

of interest.[5] As observed in Figure 3.3, undersampling effects from radial or spiral tra-

jectories do not appear as spectral overlaps, but as aliasing around the centre of the FOV.
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Chapter 4

Fourier Reconstruction of Optical

Interferometer Data

In Chapter 3, techniques for reconstructing images from undersampled datasets in MRI

are discussed. Algorithms such as SENSE and GRAPPA work in conjunction with parallel

imaging while CS (compressed sensing) operates under the condition that a sparsifying

domain exists where the sampling sequence used corresponds to incoherent measurements.

The gridding method is slightly more flexible in that it can reconstruct images from nonuni-

formly (e.g., spiral, radial or other non-Catesian trajectories) sampled data without im-

posing additional hardware or imaging requirements. It interpolates data centred on the

grids of a Cartesian plane from samples measured in k-space so that an FFT may be used

to reconstruct images. The Fourier reconstruction of optical interferometer data (FROID)

is an algorithm developed by Hajian et al. [15] that interpolates Fourier data, which do

not have to follow a Cartesian grid, from a continuous mapping of an image by utilizing

the integral Fourier transform. FROID can be applied to reconstruct images from data

sampled in various forms and like the gridding method, it is not restriced to certain imaging

sequences. In addition, it can be expanded to include a priori information when applicable

in reconstructing images from underdetermined datasets. The flexibility that FROID offers

in reconstructing images has proven to be effective in the field of optical interferometry

where it has been applied in reconstructing spectra from unevenly sampled data.[15, 16]

It has also been used to reconstruct astronomical images from special datasets where the

amplitudes and phases of the complex Fourier data are indirectly captured through other

observables known as the squared visibilities and complex closure amplitudes.[17] This the-

sis encompasses the work in adapting and applying FROID to reconstructing MR images.
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4.1 Overview of FROID

FROID initially assumes a model spectrum or image consisting of amplitudes at discrete

points which it interpolates to form a continuous function, Im. Im is then Fourier trans-

formed to give a model Fourier signal, Sm. This allows a set of model Fourier data,

smlfor l = 1, . . . , Nsamples, to be sampled in Sm at locations where measurements were

taken during data acquisition, which can follow any sampling trajectory. The error, χ2,

between the modelled dataset and the measured samples in the Fourier domain is calcu-

lated. The amplitudes in the model spectrum are adjusted such that χ2 decreases and the

procedure repeats. The objective is to find a spectrum or image that would correspond to

Fourier data that are least squares fitted to measured values (i.e., minimizes χ2). Therefore,

the reconstruction is posed as an optimization problem that starts with an initial guess

and uses the integral Fourier transform to compute data that can be fitted to acquired

samples. Figure 4.1 shows a flow diagram of the steps in FROID.

Through interpolation, a continuous representation of an image is produced and the

integral Fourier transform can be used rather than a DFT. Intensities between image pixels

are modelled and factored into the construction of Fourier data, which more accurately

represent reality since tissue variation in MRI or light distribution in optical interferometry

is continuous.

4.2 Prior art in optical interferometry

Data obtained from optical interferometry are inherently sparse and nonuniform. The

spectrum of a light source (e.g., a star) is imaged using a spectrometer and the absorption

lines observed are used to characterize the object being studied. Data are captured in the

form of an interferogram, which is related to the spectrum through a Fourier transform.

Interferograms are traditionally sampled more finely near signal peaks to facilitate the

location of central fringes, which are placed at the 0th position for proper reconstruction

of spectra; this leads to nonuniform sampling. In radio astronomy, the spatial brightness

distribution of an astronomical object is also captured in the form of interferogram data

obtained from an array of telescopes. The sampled data is in the Fourier domain (also

referred to as the u-v plane) and an inverse Fourier transform is required to reconstruct

images. The u-v plane is the Fourier transform of the image domain as k-space is in MRI.

Image reconstruction in optical interferometry

Algorithms used to reconstruct images in optical interferometry often employ an iterative

procedure, and sometimes are based in finding an optimal image with respect to some
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Figure 4.1: Flow diagram of FROID algorithm.
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criteria. The CLEAN algorithm[18] is a popular deconvolution technique widely used in

radio astronomy. It expresses an image as a series of point sources convolved with the PSF

of the imaging system used. The acquired data can be expressed as a multiplication of

the visible signal, S(u, v), in the u-v plane with a sampling function, W . The sampling

function has a value of 1 at positions where measurements are taken and zero elsewhere.

For an irregular sampling structure, the corresponding inverse Fourier transform of W is

known as a dirty beam. The image produced from irregularly sampled data is referred to

as a dirty map, which is given by

IDM = F−1[S] ∗ F−1[W ], (4.1)

and ICM , the clean map, which is the desired outcome of the reconstruction is given by

ICM = F−1[S]. (4.2)

The clean map is obtained by deconvolving the dirty beam from the dirty image. This is

performed in an iterative manner. At each iteration, the largest absolute value in the dirty

image is located and a dirty beam convolved with the maxima is subtracted off:

I(n+1)
DM (x, y) = I(n)

DM(x, y)− %I(n)
DM(xpkn , ypkn)F−1[W ](x− xpkn , y − ypkn) (4.3)

where

I(n)
DM(xpkn , ypkn) = max{|I(n)

DM |} (4.4)

and % is a factor referred to as the loop gain.[18] This is repeated until max{I(n)
DM} is

insignificant with respect to the noise floor. The collection of peaks are input back into

the image and convolved with a clean beam, usually a Gaussian with parameters fitted to

the dirty beam.

The CLEAN algorithm is similar to interference cancellation used in CS. Peak intensities

in the image are successively collected by removing residuals associated with the previously

found peak, thereby lowering the threshold used to identify real features. However, in

CS the extraction of point sources was indirectly performed by solving an optimization

problem. The CLEAN algorithm can be used in place of equation (3.12) in reconstructing

compressed images.[19]

Another popular image reconstruction algorithm is the Maximum Entropy method

(MEM). MEM assumes that the desired image is the smoothest among several possible

solutions corresponding to a sparse set of interferometer data. The entropy of an image is

measured as

H(I) = −
NdMd∑
j=1

fj log(fj), (4.5)
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where, for pj ∈ I and pj ≥ 0, j = 1, . . . , NdMd,

fj =
pj∑

p∈I

p
. (4.6)

A large entropy corresponds to a smoother image since the range of intensity values among

all pixels is compressed. The reconstructed image is one that maximizes H(I) and corre-

sponds to Fourier data that fit with the measured values. The constraint can be expressed

as

χ2 =

Nsamples∑
l

{F [I](ul, vl)− sl}2 /σ2
l , (4.7)

where sl is the measured value at (ul, vl) and σ2
l is the associated noise variance.[20] The

image reconstructed by MEM is also restricted to having only positive values as defined in

equation (4.6).

Reconstruction of spectra using FROID

The previously described algorithms assume sparsity or smoothness in an image. However,

such assumptions may not apply to images consisting of a variety of features. The FROID

algorithm was developed in conjunction with a spectrometer device (dispersed Fourier

transform spectrometer (dFTS)) and was used to process unevenly sampled interferometer

data to produce 1D spectra.[15]

The following linear interpolation was used,

Im(x) =

Nmodel∑
j=0

[
pmj + (x− xj)∆j

]
, (4.8)

where

∆j =
pmj+1

− pmj
xj+1 − xj

, (4.9)

to form a continuous model of the spectrum, which allowed a closed form solution of the

integral Fourier transform of Im to be derived (in Appendix B of [15]). The Fourier data

is expressed as a linear combination of the modelled spectral points,

sml =

Nmodel∑
j=0

[
αj,lpmj + ∆jβj,l

]
, (4.10)

where the coefficients α and β are dependent only on the positions of samples in the spectral

and Fourier domain. This allows for the computation of χ2, defined to be the mean squared
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difference between the modelled data, sm, and measured samples, sd, using

χ2 =
1

Nsamples

Nsamples∑
l=1

[sml − sdl ]
2 . (4.11)

The reconstructed spectrum is then given by

p∗m = argmin
pmj∀ j

χ2. (4.12)

Reconstruction of spatial brighness distribution using FROID

A 2D version of FROID was developed in [17] and used to reconstruct images of spatial

brightness distributions of astronomical objects from squared visibilities,

S(2)(ui, vi) = <[S(ui, vi)]
2 + =[S(ui, vi)]

2, (4.13)

and complex closure amplitudes,

S(3)(uj, vj) = S(u1j , v1j)S(u2j , v2j)S(u3j , v3j), (4.14)

where (u1j , v1j), (u2j , v2j), and (u3j , v3j) are locations of three different points in the u-v

plane. The observations are functions of Fourier data belonging to the u-v plane.

The closed form solution of the integral Fourier transform of a bilinearly interpolated

surface in the image domain shall be re-derived in this section, which provides the model

for the 2D FROID algoirthm. Assuming that the measured signal is centred properly and

the image contains only real values, let a set of uniform points, pmj,k for j = 1, . . . , Nd and

k = 1, . . . ,Md, separated by ∆x and ∆y be the initial guess of the model image. That is,

pmj,k = Im(xj, yk) for j = 1, . . . , Nd and k = 1, . . . ,Md

where

xj+1 = xj + ∆x

and

yk+1 = yk + ∆y.

A continuous mapping of the 2D image is formed using bilinear interpolation,

Im(x, y) =

Nd−1∑
j=1

Md−1∑
k=1

[
T

(1)
j,k + T

(2)
j,k + T

(3)
j,k + T

(4)
j,k

]
, (4.15)
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where

T
(1)
j,k = pmj,k

[
1− x− xj

∆x

] [
1− y − yk

∆y

]
, (4.16)

T
(2)
j,k = pmj+1,k

[
x− xj

∆x

] [
1− y − yk

∆y

]
, (4.17)

T
(3)
j,k = pmj,k+1

[
1− x− xj

∆x

] [
y − yk

∆y

]
, (4.18)

and

T
(4)
j,k = pmj+1,k+1

[
x− xj

∆x

] [
y − yk

∆y

]
. (4.19)

Since the Fourier transform is a linear operation, the evaluation of Sm(u, v) can then be

broken into the following four terms,

Sm(u, v) =

Nd−1∑
j=1

Md−1∑
k=1

xj+1∫
xj

yk+1∫
yk

T
(1)
j,ke
−i2π(ux+vy) dxdy

+

Nd−1∑
j=1

Md−1∑
k=1

xj+1∫
xj

yk+1∫
yk

T
(2)
j,ke
−i2π(ux+vy) dxdy

+

Nd−1∑
j=1

Md−1∑
k=1

xj+1∫
xj

yk+1∫
yk

T
(3)
j,ke
−i2π(ux+vy) dxdy

+

Nd−1∑
j=1

Md−1∑
k=1

xj+1∫
xj

yk+1∫
yk

T
(4)
j,ke
−i2π(ux+vy) dxdy.

(4.20)

The x and y factors are separable in each of the Fourier transform terms, which considerably

simplifies the integration. The integrals are analytically solved in Appendix A. Just as in

1D FROID, Sm(u, v) can be expressed as a linear combination of the points in the model

image once the integration has been performed. So,

Sm(ul, vl) =

Nd−1∑
j=2

Md−1∑
k=2

Aj,k,lpmj,k + i

Nd−1∑
j=2

Md−1∑
k=2

Bj,k,lpmj,k (4.21)

and the coefficients, Aj,k,l and Bj,k,l, measure the amount of influence that a point located

at (xj,yk) has on the real and imaginary values of point (ul,vl) in the u-v plane. They

are independent of pixel values, and can be calculated once for a constant set of sampling

positions in the Fourier and image domain. Aj,k,l and Bj,k,l for all j, k, and l are calculated

using equations (A.15) to (A.26) in Appendix A. The signal at a point in the u-v plane
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is comprised of all the intensities in the image weighted by Aj,k,l and Bj,k,l. In addition,

points lying on the border of the image are equated to 0 to create a smooth transition from

the image to the surrounding space, which is assumed to have zero intensity. Hence, the

indices in the summation of equation (4.21) start at 2 (instead of 1).

Given Sm(u, v), squared visibilities and complex closure amplitudes are modelled using

equations (4.13) and (4.14), and compared to the actual observations. χ2 is calculated as

χ2 =

N
S(2)∑
i=1

[
S(2)(ui, vi)− S(2)

m (ui, vi)

σi

]2

+

N
S(3)∑
j=1

[
S(3)(uj, vj)− S(3)

m (uj, vj)

σj

]2

+
S(u0, v0)− Sm(u0, v0)

σ(0,0)

2

,

(4.22)

where NS(2) is the number of measured square visibilities, NS(3) the number of mea-

sured complex closure amplitudes, and σ a measure of uncertainty associated with each

observation.[17] The last term in equation (4.22) ensures that the total power of the re-

constructed image is consistent with the acquired signal. Recall from Table 2.2 that the

signal at the origin of the Fourier domain is equal to the total volume under the surface of

the image so that

S(0, 0) =

∞∫∫
−∞

I(x, y) dxdy, (4.23)

which is a measure of power if I(x, y) ≥ 0 ∀ x, y. Sm(0, 0) is calculated by taking the

limits of constants Aj,k,l and Bj,k,l as u, v → 0 and substituting into equation (A.15),

which simplifies to

Sm(0, 0) = ∆x∆y

Nd−1∑
j=2

Md−1∑
k=2

pmj,k . (4.24)

The spatial brightness distribution is again given by minimizing χ2.

The main objective of FROID is modelled after data fitting, specifically a least squares

fit. FROID accounts for different sampling structures that are not required to be uniform

or linear. Unlike CLEAN, which corrects for sampling irregularities after the image has

been aliased, methods such as MEM and FROID account for the sampling structure when

searching among unaliased images for an optimal reconstruction. An analytic solution for

the integral Fourier transform of a bililinearly interpolated image is presented by FROID,

which is not offered by any of the previously discussed algorithms. FROID is also applicable

to reconstructing images from any measurements that can be modelled using Fourier data.
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4.3 Application in MRI

The methodology of FROID discussed in the previous sections can be transferred to recon-

structing MR images since the same Fourier relationship exists between the image domain

and k-space (i.e., k-space is analogous to the u-v plane). For application in MRI, the

appropriate objective function is to be defined and the model in equation (4.21) shall be

extended to 2D images with complex values. For the remaining discussion, the Fourier

domain shall refer back to k-space.

The objective function and 2D model

A 2D image reconstruction can be performed by successively applying the 1D FROID algo-

rithm along each dimension independently since the 2D Fourier transform can be separated

as shown:

S(kx, ky) =

∞∫∫
−∞

I(x, y)e−i2π(kxx+kyy) dxdy

and

S(kx, ky) =

∞∫
−∞

 ∞∫
−∞

I(x, y)e−i2πkxx dx

 e−i2πkyy dy. (4.25)

Alternatively, the 2D FROID algorithm utilizing bilinear interpolation and equation (4.21)

can be applied. Constants Aj,k,l and Bj,k,l are to be calculated in the same manner as

before (using equations (A.15) to (A.26)), but with kx and ky positions in place of u and v

respectively. The assumption that the region surrounding the image contains zero intensity

is also valid for MR images since the object of interest is usually contained within the FOV.

It is common to sample points in k-space along the kx or ky axis where ky or kx equals

0. In such cases, Aj,k,l and Bj,k,l as previously derived are undefined since the equations

require divisions by kx and ky. The limits of Aj,k,l and Bj,k,l as kx, ky → 0 are given by [17],

which were derived using l’Hôpital’s rule, and equation (4.24) can be used to calculate the

amplitude of the datapoint modelled at the origin of k-space. For this thesis, the limits

as kx → 0 or ky → 0 have been derived (also using l’Hôpital’s rule) and are presented in

equations (A.29) to (A.52).

Since complex Fourier data, sdl = S(kxl , kyl) for l = 1, . . . , Nsamples, are directly acquired

in MRI, χ2 needs only to account for the real and imaginary values of the data modelled

by equation (4.21), sml = Sm(kxl , kyl). Using the Euclidean norm squared, the difference

between the modelled data and measured samples is

χ2 =

Nsamples∑
l=1

[
(<{sml} − <{sdl})

2 + (={sml} − ={sdl})
2] . (4.26)
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Just as in equation (4.22), an additional measure is included to fit the power of the recon-

structed image to the amplitude at the origin of k-space. So, the objective function to be

minimized in order to reconstruct MR images using FROID is

p∗m = argmin
pmj,k∀ j,k

{
χ2 + [Sm(0, 0)− S(0, 0)]2

}
(4.27)

Equation (4.27) can be adjusted to include constraints that reflect a priori information.

That is

p∗m = argmin
pm

{
χ2 + [Sm(0, 0)− S(0, 0)]2 : C1(pm) = 0, C2(pm) ≥ 0

}
(4.28)

where Ci(pm), i = 1, 2, are functions of the argument pm. For example, the sparsity of an

image (refer to equation (3.10)) can be imposed as an inequality constraint

‖pm‖1 =

Nd−1∑
j=2

Md−1∑
k=2

|pmj,k | ≤ R1 (4.29)

or just as in CS

‖Ψpm‖1 ≤ R1. (4.30)

The smoothness of an image can also be incorporated using the entropy metric previously

defined for MEM in equation (4.5),

−H(Im) ≤ R2. (4.31)

It is important to note that the FROID algorithm was not developed under the premise that

reconstructed images are inherently smooth (i.e., have a large entropy) or sparse. Instead,

FROID offers the flexibility to include such a priori information when appropriate. It is

not limited to one application and can be adjusted as required by incorporating proper

constraints in the optimization problem. FROID can account for radial, spiral, and other

nonuniform sampling trajectories in MRI since the locations of samples in k-space can be

determined by the pulse sequences as discussed in Section 3.3.

Extension to complex images

Inaccuracies in centering the signal in k-space cause images to have amplitudes with imag-

inary values (recall the Fourier transfrom shift property). In such cases, it may be more

appropriate to solve for an image with complex values, and study the magnitude and phase

images. FROID can be extended to include complex images while still using the previously

45



derived coefficients in taking the Fourier transform of a model image. The real and imag-

inary components of the modelled points, pmj,k , can be interpolated separately to form a

mapping of the image with complex values as given by

Im(x, y) = ImRe(x, y) + iImI (x, y), (4.32)

where

ImRe(x, y) =

Nd−1∑
j=1

Md−1∑
k=1

<
{

T
(1)
j,k + T

(2)
j,k + T

(3)
j,k + T

(4)
j,k

}
, (4.33)

ImI (x, y) =

Nd−1∑
j=1

Md−1∑
k=1

=
{

T
(1)
j,k + T

(2)
j,k + T

(3)
j,k + T

(4)
j,k

}
, (4.34)

and Sm(kx, ky) can be evaluated as

Sm(kx, ky) =

∞∫∫
−∞

ImRe(x, y)e−i2π(kxx+kyy) dxdy+ i

∞∫∫
−∞

ImI (x, y)e−i2π(kxx+kyy) dxdy. (4.35)

The two terms in the Fourier transform can be solved separately and the integration in

each term is solved in the same manner as in the previous section. Therefore, the closed

form expression for the modelled Fourier data, sml , is

sml =

Nd−1∑
j=2

Md−1∑
k=2

[ (
Aj,k,l<{pmj,k}+ iBj,k,l<{pmj,k}

)
+ i
(
Aj,k,l={pmj,k}+ iBj,k,l={pmj,k}

) ]
and after collecting real and imaginary terms

sml =

Nd−1∑
j=2

Md−1∑
k=2

[
Aj,k,l<{pmj,k} −Bj,k,l={pmj,k}

]
+ i

Nd−1∑
j=2

Md−1∑
k=2

[
Bj,k,l<{pmj,k}+ Aj,k,l={pmj,k}

]
.

(4.36)

The objective function in equation (4.27) is still applicable, but the number of arguments

is doubled since p∗m consists of a real and imaginary part.
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Chapter 5

Implementation of FROID

The FROID algorithm is implemented using version 7.0.6 of IDL (Interactive Data Lan-

guage), which is a high level array-oriented programming language.[21] The 2D version for

reconstructing images with only real values from optical interferometer data was imple-

mented in [17]. Images were reconstructed using the unconstrained optimization model,

which is outlined in the following steps:

1. Initialize guess, pm
(0)

2. Calculate constants Aj,k,l and Bj,k,l ∀ j, k, l
3. Calculate model Fourier data, sm

(n)

4. Calculate χ2

5. Determine a step in the argument, d(n), to take towards p∗m
6. Adjust pm

(n) according to d(n): pm
(n+1) = pm

(n) + d(n)

7. Go back to step 3 unless ‖pm
(n+1) − pm

(n)‖2 < ε1 or χ2 < ε2

For this thesis, the implementation is modified as according to Section 4.3 to suit the

reconstruction of MR images. The minimization of the objective function, defined for the

application of FROID to MRI, shall be discussed in this chapter. The Levenberg-Marquardt

method, which is also employed in [17], shall be used in solving the least squares problem.

Constants Aj,k,l and Bj,k,l need to be calculated for every combination of (kx,ky) and

(x,y) positions corresponding to points modelled in the image and sampled in k-space.

Therefore, there are two sets of Nsamples×NdMd coefficients to be calculated using equations

derived in Appendix A.

Equation (4.21), which models the Fourier data using a real-valued image, can also be

expressed in matrix form. Let all the model points in the image be in vector pm and the

corresponding coefficents be in matrix A and B then

sm = Apm + iBpm. (5.1)
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A and B are transformation matrices relating points in the image to k-space and each

element was derived by integrating the Fourier coefficients with interpolation factors, thus

ANsamples×NdMd
= A1,1,1 · · · A1,Md,1 A2,1,1 · · · ANd,Md,1

...
. . .

...
...

. . .
...

A1,1,Nsamples · · · A1,Md,Nsamples A2,1,Nsamples · · · ANd,Md,Nsamples

 (5.2)

and B is similarly arranged. If images with complex values were to be reconstructed,

the variables in equation (5.1) can be modified to include the corresponding imaginary

components. That is,

sm = Acpmc + iBcpmc (5.3)

where

pmc =

[
R[pm]

I[pm]

]
, (5.4)

Ac =
[
A −B

]
, (5.5)

and

Bc =
[
B A

]
. (5.6)

In programs such as IDL, it is more efficient to perform iterative operations simultaneously

using arrays than using for-loops and scalar operations.[21]

5.1 Solving the unconstrained optimization problem

The matrix form of χ2 is

χ2 = ‖Apm − sdR
‖2

2 + ‖Bpm − sdI
‖2

2, (5.7)

where sdR
and sdI

are vectors containing the real and imaginary components of sdl for

l = 1, . . . , Nsamples. The objective function of the optimization is rewritten as

f(pm) = ‖Apm − sdR
‖2

2 + ‖Bpm − sdI
‖2

2 + (∆xye
Tpm − sd00)2

= (Apm − sdR
)T(Apm − sdR

) + (Bpm − sdI
)T(Bpm − sdI

) + (∆xye
Tpm − sd00)2,

(5.8)

where e is a vector of ones,

e =
[
1 · · · 1

]T
1×NdMd

, (5.9)
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and ∆x,y = ∆x∆y. A model based approach is used to minimize f(pm). For unconstrained

optimization, it is necessary that

∂f(pm)

∂pmj,k
= 0 j = 1, . . . , Nd and k = 1, . . . ,Md (5.10)

for pm to be a minimizing point. If ∂f(pm
(n))/∂pmj,k 6= 0 then a step in the argument,

d(n), that takes f(pm
(n)) to the minimum (i.e., p∗m = pm

(n)+d(n)) is desired. The objective

function value at (pm
(n) + d(n)), f(pm

(n) + d(n)), can be modelled as a quadratic function

by taking the Taylor series expansion and ignoring higher order terms to obtain

mn(d) = f(pm
(n) + d(n)) = f(pm

(n)) + d(n)T∇f(pm
(n)) +

1

2
d(n)T∇2f(pm

(n))d(n) (5.11)

where ∇f(pm)NdMd×1 and ∇2f(pm)NdMd×NdMd
are the gradient and Hessian matrices of

f(pm). Given the expression in equation (5.8), ∇f(pm) and ∇2f(pm) can be computed

as

∇f(pm) = 2AT(Apm − sdR
) + 2BT(Bpm − sdI

) + 2∆x,ye(∆xye
Tpm − sd00) (5.12)

and

∇2f(pm) = 2ATA + 2BTB + 2∆2
x,yeeT. (5.13)

The desired step, denoted d∗, at iteration n is one that minimizes the modelled quadratic

function, mn(d). If mn(d) is convex quadratic (i.e., ∇2f(pm) is positive semidefinite) then

this minimum occurs for that value of d for which ∇mn(d) = 0. Thus, d∗ is found by

solving the following system of linear equations,

∇2f(pm
(n))d = −∇f(pm

(n)). (5.14)

This approach is called Newton’s method and d∗ is referred to as the Newton step. As-

suming that the model, mn(d), is an accurate representation of the objective function and

pm
(n) is close to the solution, Newton’s method converges at a quadratic rate.[22] However,

∇2f(pm) may not be positive semidefinite and mn(d) may only be sufficiently accurate

within a local region. In this case, modifications to the optimization approach are required.

5.2 The Levenberg-Marquardt method

If a trust region around pm
(n) can be defined in which mn(d) is considered to be a reason-

ably accurate model of f(pm) then the following constrained optimization problem can be

solved to find a step towards the minimum pm
∗ at iteration n.

min
d

mn(d) s.t. ‖d‖ ≤ ∆r (5.15)
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where ∆r is the radius of a hypersphere bordering the trust region. The Lagrange function

corresponding to this constrained subproblem is

L(d, λ) = mn(d)− λ(∆r − ‖d‖) (5.16)

For d∗ to be a solution of equation (5.15), the following Karush-Kuhn-Tucker (KKT)

conditions must be satisfied at (d∗, λ∗):

∇dL(d∗, λ∗) = ∇f(pm
(n)) +∇2f(pm

(n))d∗ + λ∗d∗ = 0

⇒ (∇2f(pm
(n)) + λ∗I)d∗ = −∇f(pm

(n)), (5.17)

λ∗(∆r − ‖d∗‖) = 0, (5.18)

∆r − ‖d∗‖ ≥ 0, (5.19)

λ∗ ≥ 0. (5.20)

Using trust regions to solve least squares problems is the basis of the Levenberg-Marquardt

method.[22] Either λ∗ > 0 and a step satisfying equation (5.17) to the boundary of the

trust region is taken (‖d∗‖ = ∆r), or λ∗ = 0 and d∗ is the Newton step to be taken within

the trust region. One strategy for choosing the appropriate trust region at each iteration

is to adjust λ∗ until a step that leads to a lower objective function value is found. This

strategy starts by setting λ0 to some positive value and defining an adjustment factor,

υ > 0. A trial step is initally solved from the system of equations in (5.17) with λ∗ = λ0.

If d∗ leads to a decrease in the objective function, that is,

f(pm
(n) + d∗) < f(pm

(n)), (5.21)

then the step is accepted and the following updates are applied:

d0 = d∗

and

pm
1 = pm

0 + d0.

Otherwise, λ0 is increased by a factor of υ until, for some κ > 0, λ∗ = λ0υ
κ corresponds to

a successful step (i.e., satisfies (5.21)). Once λ∗, which leads to a successful step, is found

λ1 = λ∗/υ is used as the initial trial for the next iteration and the process repeats. With

each consecutive success in stepping towards the minimum, λ∗ decreases and d∗ converges

towards the Newton step. However, when the value of λ∗ at iteration n leads to a failed

trial, the step size is decreased by increasing λn by factors of υ until a new λ∗ that results

in a successful step is found.

At each iteration, the step, d∗, is in the direction of −∇mn(d∗) and inversely scaled by

λ∗ since

λ∗d∗ = −[∇f(pm
(n)) +∇2f(pm

(n))d∗] = −∇mn(d∗). (5.22)

50



Thus, λ∗ can be considered a damping factor that decreases the values of ‖d∗‖ and ∆r

when its value is increased. In finding a step scaled by λ∗, a trust region is directly applied

at each iteration.

To account for poorly scaled problems where the magnitudes of the parameters can differ

greatly, the trust region can be reshaped to scale appropriately along different dimensions.

That is,

‖diag[∇2f(pm
(n))]d∗‖ ≤ ∆r (5.23)

and

(∇2f(pm
(n)) + λ∗diag[∇2f(pm

(n))])d∗ = −∇f(pm
(n)) (5.24)

where diag[∇2f(pm
(n))] is a vector containing the diagonal elements of ∇2f(pm

(n)). Equa-

tion (5.24) is now used to find the appropriate step at each iteration. The system of

equations in (5.24) is solved for d∗ by decomposing (∇2f(pm
(n))+λ∗diag[∇2f(pm

(n))]) into

Cholesky factors and using the forward followed by the backward substitution methods.[23]

Referring to equation (5.13), the elements in ∇2f(pm) are expressed as a summation of

inner products for the proposed least squares problem. Therefore, ∇2f(pm) is guaranteed

to be symmetric positive semidefinite and (∇2f(pm
(n)) + λ∗diag[∇2f(pm

(n))]) is positive

definite for λ∗ > 0. Since the Levenberg-Marquardt method only chooses λ∗ to be positive,

the step accepted at each iteration is a global minimum within the trust region. The

Levenberg-Marquardt method behaves like the steepest descent method when λ∗ is large

and Newton’s method when λ∗ is small. Therefore, it exhibits local convergence at a rate

comparable to Newton’s method, but compensates for when the Newton solution is not

within the region of trust.

The implementation of FROID is further detailed in the following procedures that

include the Levenberg-Marquardt method in determining steps in the argument for mini-

mizing f(pm).

1. Initialize pm
(0), λ0, and υ

2. Calculate A and B using equations in Appendix A

3. Calculate f(pm
(n)) from equation (5.8)

4. Calculate ∇f(pm
(n)) and ∇2f(pm

(n)) from equations (5.12) and (5.13)

5. Set λ∗ = λn and solve system of equations in (5.24) using Cholesky factorization

(a) If f(pm
(n) + d∗) < f(pm

(n)) then set d(n) = d∗ and go to step 6, else proceed

(b) Set λ∗ = λ∗υ

(c) If λ∗ < TOL then solve equation (5.24) and go back to 5(a), else FINISH

6. Update pm
(n+1) = pm

(n) + d(n) and λn+1 = λ∗/υ

7. If ‖pm
(n+1) − pm

(n)‖2 > ε1 or χ2 > ε2 then go back to step 3, else FINISH
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To reconstruct images with complex values, replace pm with pmc , A with Ac, and B with

Bc in the calculation of ∇f(pm) and ∇2f(pm). The corresponding objective function

(equation (5.3)) is minimized using the same optimization routine outlined in procedures

5 to 7.
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Chapter 6

Experimental Results and Discussion

FROID has been successful in reconstructing images from optical interferometer data and

this work is documented in [15] and [17]. This thesis’ primary goal is to apply FROID to

reconstructing MR images by adapting and expanding on previously developed methods

as discussed in Chapters 4 and 5. The appropriate objective function in the optimization

routine is defined and corresponding calculations for reconstructing MR images are imple-

mented. Efforts are made to improve the speed in calculating the constant matrices A

and B required when evaluating model Fourier data. This is done by converting scalar

operations to array operations where possible in the IDL code. The results from this thesis

and limitations shall be discussed in this chapter.

The objectives of this chapter are to test the performance of FROID, to identify

strengths of the algorithm, and to identify areas that require improvement for future de-

velopment. To accomplish these objectives, FROID is initially restricted to reconstructing

real-valued images from simulated data and reconstruction errors with respect to the true

images are measured. This restriction is then lifted and an MR image of a bone with com-

plex values is reconstructed. Images are also reconstructed using an FFT and the results

are compared to FROID.

6.1 Data simulation

Data are generated using components with analytically derived Fourier transform pairs

that are centred at pixel (0,0), which are listed in Table 6.1. The Fourier transform shift

property is applied to create off-centred components in the images by multiplying with

the appropriate complex exponential. Multiple features are also created by summing the

components and their respective signals in the image and Fourier domain. Amplitude data

belonging to k-space are created by sampling the Fourier signal. Three different real-valued

images, shown in Figure 6.1, are tested and their results shall be discussed in the following
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Table 6.1: Fourier Transform Pairs Used for Simulating Data

Description Image Fourier Signal

Point source I(x, y) = Aδ(x, y) S(kx, ky) = A

Rectangle I(x, y) =

A if |x| ≤ BWx

2
∩ |y| ≤ BWy

2

0 else
S(kx, ky) = A sin(BWxπkx) sin(BWyπky)

π2kxky

Gaussian Ae
− x2

2σ21
− y2

2σ22 2Aσ1σ2πe
−2π2(σ2

1k
2
x+σ2

2k
2
y)

sections.

The maximum number of points modelled in the image and sampled in k-space is set to

2,500 to fit within memory constraints of IDL. The reason for this is that IDL is only able

to allocate up to 1.2 GB of memory to one contiguous block (i.e., one array). This limits

the size of a matrix with double precision accuracy, which requires 8 bytes of memory per

datum, to approximately 12, 250 × 12, 250 datapoints. Recall from Chapter 5 that the A

and B matrices are each required to be Nsamples ×NdMd and ∇2f(pm) is NdMd ×NdMd.

Therefore, the image can at most have 110 × 110 pixels if the A and B matrices are to

be stored in memory. In addition, there is only a total of 2 to 8 GB of memory addressed

to the entire application depending on the operating system and its settings.[24] As a

conservative estimate and to avoid memory allocation issues, reconstructed images and

data in k-space are modelled using 50× 50 samples.

6.2 Testing of uniformly sampled data

Fourier amplitude data sampled at the centres of evenly spaced Cartesian grids are initially

tested to ensure that FROID has been implemented correctly; 50×50 samples in k-space are

used to reconstruct an image with 50×50 pixels. The three test images are also specifically

designed to expose the strengths and weaknesses of FROID, especially when compared to

the DFT. Points in the images are modelled to be uniformly spaced, ∆x = ∆y, and their

initial amplitude values are randomly set to avoid bias towards a particular solution (i.e.,

the initial guess contains no information with respect to the true image). In each test case,

FROID is executed with ten different initializations and the reconstruction performance

of each trial is measured. Table 6.2 gives the mean and standard deviation of the number

of iterations required for FROID to converge and the error measured in the image domain

and k-space. The error is defined as the root mean square (RMS) difference between
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Figure 6.1: Test images: a) 3 point sources, b) 3 rectangles, c) 2 Gaussian functions.
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Table 6.2: Reconstruction Performance of FROID with Uniform Samples Measured over

Ten Different Random Initializations

Description

Point Source Rectangle Gaussian

Image Image Image

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

No. of iterations

to convergence
11 0.816 11.2 1.81 13 2.05

f(p∗
m) 95.3 1.28× 10−13 3.73× 1015 7.92 4.27× 1014 12.1

RMS error in
0.138 1.11× 10−16 1.05× 106 3.06× 10−8 3.32× 105 6.81× 10−9

k-space (real)

RMS error in

0.138 8.19× 10−17 6.30× 105 4.98× 10−8 2.43× 105 7.25× 10−9k-space

(imaginary)

RMS error in

image
0.0131 7.54× 10−13 0.0740 1.16× 10−14 0.00210 5.41× 10−14

the modelled and true data. Images are also normalized to have a maximum amplitude

of 1 before differences between the intensities of the reconstructed and true images are

calculated. It is assumed that there are differences throughout the image and a single

RMS value of the differences can be used to convey the magnitude of error observed.

Point source image

The magnitudes of the images reconstructed from data corresponding to point sources using

FROID and an FFT are shown in Figure 6.2, which are inverted for better visualization.

The FFT reconstructed image contains a significant amount of aliasing despite the fact that

the image is relatively simple, and the Fourier signal is uniformly and adequately sampled.

The aliasing effects are due to the fact that the exact locations of the point sources happen

to fall between pixels where the image is reconstructed by an FFT. The locations of the

pixels are determined by the samples and assume that the image is composed of a series

of impulses at those locations. Pixels are modelled starting at the origin and at fixed

intervals of 1/(∆kxNd) and 1/(∆kyMd) along the x and y directions in the image domain.

Therefore, the energy lying between these pixels is not well-modelled and leaks into other

parts of the image, which produces aliasing. The intensities in the image are redistributed

so that Parseval’s theorem is satisfied. The aliasing significantly degrades the quality of

the image and the RMS difference between the intensities of the FFT reconstructed image

and the true image is 0.078.

FROID allows arbitrary sampling of the Fourier signal, which is interpolated from am-

plitudes modelled at independent locations in the image domain. Pixels are strategically
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placed in the image to coincide with the locations of the point sources and are not con-

strained by the locations of the measured samples. This flexibility can be advantageous if

locations of important features are estimated ahead of time and are accommodated during

image reconstruction using FROID. Even if such information is not available, different

images can be produced by modelling pixels at different locations, and through trial and

error a reasonable representation of the true image may be found.

The image reconstructed by FROID does contain some aliasing resulting in an RMS

difference of 0.013 when compared to the true image, which is less than that of an FFT.

FROID assumes a continuous surface of the image, which is modelled using bilinear in-

terpolation. If the resolution of the modelled points is not fine enough, then intensities

interpolated between pixels that are inaccurate would factor into the model Fourier data.

When attempting to find a least squares fit to the measured samples, intensities at other

locations of the image are introduced in order to cancel out the signal from unwanted

components that are mistakenly interpolated. In Figure 6.3, the modelled data does not

coincide with the measured samples in k-space and a fair amount of separation between

the two datasets are observed when overplotted. The RMS difference is approximately 0.14

for both the real and imaginary data as shown in the first column of Table 6.2, which is

more than 10% error when compared to the RMS amplitude of the signal in k-space (1.22

for both real and imaginary).

Rectangle image

Images with discontinuous surfaces such as rectangles experience the Gibbs phenomenon

when a limited number of samples in the Fourier domain are used in image reconstruction.

It has been discussed before that the Fourier transform of a rectangle is a sinc function

with infinite extent. When a limited set of data is sampled in k-space, the sinc function is

truncated and ringing in the image occurs with the maximum error at points located near

where the image is discontinuous.[6] Figure 6.4 shows the reconstructed magnitude images

of three rectangles. Both images reconstructed by FROID and an FFT have crosshatched

patterns aliased throughout the image, which are actually ripples caused by Gibbs phe-

nomenon. This results in RMS errors of 0.074 and 0.060 in the images reconstructed by

FROID and an FFT respectively. The ripples can be compressed, but not eliminated, by

including more Fourier samples in the reconstruction of the image. The crosshatching in

the FROID image is more pronounced due to errors induced by interpolation inaccuracies.

Just as with the “point source” image, the continuous surface assumed by FROID poorly

models sharp edges where the intensities drop to zero. When using bilinear interpolation,

a sloped descent from pixels with non-zero intensities to neighbouring pixels with zero

intensities is modelled, which is inaccurate for images with discontinous surfaces.
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(a) FROID

(b) FFT

Figure 6.2: FROID and FFT reconstructed images of 3 point sources.
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(a) Real data

(b) Imaginary data

Figure 6.3: Data fit in k-space of the “point source” image: measured data represented by

◦ and modelled data by +.
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In Figure 6.5, the data modelled by FROID appear to have converged to fit relatively

well with the measured samples. Although the RMS errors measured from the real and

imaginary amplitudes modelled in k-space (reported in the third column of Table 6.2) seem

large, they are only approximately 0.60% and 1.4% of the RMS values of the true real and

imaginary signals, which are 1.8×108 and 4.5×107 respectively. Therefore, the differences

between the modelled and measured k-space samples are less significant relative to the

magnitude of the k-space signal.

The magnitudes and phases of the modelled and measured data in k-space are also

compared in Figure 6.6. Differences between the modelled and measured amplitudes result

in the phases of many samples being offset. The error is larger at high spatial frequencies

where the magnitudes of the data in k-space are also smaller. Recall from Section 4.3

that an additional term is included in the objective function to fit the power of the recon-

structed image to the amplitude at (0,0) in k-space. When determining the step, d(n), in

the argument to take at each iteration to minimize the objective function, the difference

between Sm(0, 0) and sd00 is added to every element in ∇f(pm) (refer to equation (5.12)).

If the element is much smaller in magnitude, which corresponds to a smaller residual at

that point in k-space, the addition causes numerical inaccuracies from rounding errors. As

a result, the fit between data with small initial residuals, which are located at high spatial

frequencies in this case, is compromised.

Gaussian image

As shown in Figure 6.7, the images of Gaussian functions reconstructed by FROID and

an FFT are very similar. Gaussian functions are smooth and continuous throughout the

image domain and approximations made by FROID and an FFT seem to be sufficient in

modelling the image. In particular, the intensities between pixels modelled by FROID

using bilinear interpolation are valid since the interpolated surface does follow the general

trend (i.e., increase or decrease in intensity) of the Gaussian functions. The smoothness

of the bilinearly interpolated surface is dependent on the resolution of points modelled in

the image.

Taking the difference between the true image and the image reconstructed by FROID

reveals that errors occur in two main areas (see Figure 6.8): the edges and the peaks of

the Gaussian functions. Recall that in Section 4.3 the image space outside the FOV is

assumed to have zero intensity and a zero border is placed around the image. In this case

where the Gaussian functions have non-zero values beyond the FOV, FROID inaccurately

models the boundaries of the image. The Gaussian functions in the image reconstructed by

FROID are also scaled such that the peaks are slightly higher than those of the true image

to compensate for the difference in power observed at the edges of the image. However, the
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(a) FROID

(b) FFT

Figure 6.4: FROID and FFT reconstructed images of 3 superimposed rectangles.
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(a) Real data

(b) Imaginary data

Figure 6.5: Data fit in k-space of the “rectangle” image: measured data represented by ◦
and modelled data by +.
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(a) Magnitudes of data

(b) Phases of data

Figure 6.6: Data fit of magnitudes and phases in k-space of “rectangle” image: measured

data represented by ◦ and modelled data by +.
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(a) FROID

(b) FFT

Figure 6.7: FROID and FFT reconstructed images of 2 superimposed Gaussian functions.
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Figure 6.8: Difference between image reconstructed by FROID and true image.

Gaussian functions are sufficiently contained within the FOV that the intensities at the

edges are low and the errors incurred (RMS error of 2.1× 10−3) are not noticeable in the

magnitude image shown in Figure 6.7. The RMS error in the image reconstructed by an

FFT (6.9 × 10−4) is lower since it does not have issues dealing with modelling intensities

at the boundaries of the image.

The amplitudes modelled in k-space have converged to fit relatively well with the mea-

sured samples as shown in Figure 6.9. Just as discussed with the previous “rectangle”

image, the RMS differences observed in the real and imaginary data modelled in k-space

are large (refer to the fifth column in Table 6.2), but are only approximately 0.48% and

1.7% of the RMS amplitudes of the real and imaginary signal respectively. Among the

three test images reconstructed by FROID, the “Gaussian” image had the lowest RMS

error when compared to its respective true image. The “Gaussian” image shall be further

tested with nonuniform samples in the next section.

6.3 Testing of randomly sampled data

Amplitudes are randomly sampled from the Fourier signal of the “Gaussian” image and

reconstructed using FROID. For a dense dataset (i.e., 2,500 samples), the mean RMS error

of the reconstructed image over five different tests with five different randomly sampled

datasets is 0.0025. The performance is comparable to the previous analysis when uniform

datasets (i.e., evenly sampled data conforming to a Cartesian grid) were used. Figure
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(a) Real data

(b) Imaginary data

Figure 6.9: Date fit in k-space of the “Gaussian” image: measured data represented by ◦
and modelled data by +.
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(a) Points sampled in k-space

(b) Reconstructed image

Figure 6.10: Reconstruction of the “Gaussian” image from nonuniform samples using

FROID from one of the five tests that were performed.
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6.10 shows the reconstructed image and the corresponding locations in k-space that are

sampled. The ability to account for nonuniform samples in reconstructing images is an

advantage that FROID posseses as demonstrated here.

The standard deviation (calculated over the five different tests) of the RMS difference

between the modelled and measured amplitudes in k-space increases with random sampling

since the data coverage in k-space varies. The amount of data that is sampled at low spa-

tial frequencies where the magnitudes are larger, versus at higher spatial frequencies where

the magnitudes are smaller, can significantly change χ2 and affect the behaviour of the

optimization. In some instances, nonuniform sampling results in lower RMS errors mea-

sured in the real and imaginary Fourier data. However, accurate modelling of amplitudes

in k-space does not necessarily mean better image reconstruction as shown when k-space

is undersampled. Table 6.3 shows the results of FROID on reconstructing the “Gaussian”

image from nonuniform datasets that were undersampled by different amounts; 100% of

data refers to 2,500 samples. As the number of samples measured in k-space decreases,

and are less than the number of pixels in the reconstructed image (kept constant at 2,500

pixels), the number of possible solutions that FROID can converge to increases; many of

these solutions do not match the true image and are undesirable. When the data is un-

dersampled the system of equations in (5.1) becomes undetermined where the degrees of

freedom exceed the number of known measurements and more than one solution exists with

corresponding Fourier data that fits. The image can not be uniquely and fully determined

when the objective function to be minimized remains unconstrained. Recall from Section

3.2 on compressed sensing that if the image is sparse or a sparsifying transform is found,

and k-space can be undersampled such that it gives incoherent measurements, then the

image can be reconstructed by finding the sparsest vector. Compressed sensing solves for

a unique solution by assuming that the desired image is represented by the sparsest vector

among all possible solutions. In this example, no constraints are imposed on FROID to

account for redundant information that can be used to assist in reconstructing images from

undersampled data. Figure 6.11 shows images reconstructed by FROID from datasets of

differing density. After the data coverage in k-space has been reduced to less than 50% of

the original 2,500 points, the background and one of the Gaussian functions are no longer

distinguishable. When only 250 (10%), 500 (20%), 750 (30%) or 1000 (40%) datapoints

are sampled in k-space, χ2 and the RMS error in k-space are notably low since there are

fewer data to fit. So, FROID is successful in minimizing the objective function and finding

a least squares fit between the modelled and measured amplitudes in k-space, but the solu-

tion to which it converged is not the desired reconstruction. Figure 6.12 shows the trend of

the mean and standard deviation of the RMS errors measured in the reconstructed images

as data are successively undersampled. In this case, up to 20-30% of data missing due
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Table 6.3: Reconstruction Performance of FROID on the “Gaussian” Image with Nonuni-

form Samples Measured over Five Tests

Percentage of No. of Iterations
f(p∗

m)
RMS Error in K-space RMS Error in

Data Sampled to Converge Real Imaginary Image

100%
mean 12.8 1.33× 1014 1.99× 105 1.06× 105 0.00253

std. dev. 0.837 3.23× 1013 2.12× 104 1.35× 104 2.38× 10−4

90%
mean 11.8 1.42× 1014 2.16× 105 1.16× 105 0.00280

std. dev. 2.28 5.19× 1013 4.08× 104 1.92× 104 5.68× 10−4

80%
mean 13.8 7.24× 1013 1.62× 105 8.78× 104 0.00325

std. dev. 2.39 1.91× 1013 1.77× 104 1.20× 104 8.29× 10−4

70%
mean 14 6.23× 1013 1.59× 105 8.56× 104 0.00513

std. dev. 1.87 3.63× 1013 4.39× 104 2.42× 104 8.24× 10−4

60%
mean 16 3.76× 1013 1.34× 105 7.97× 104 0.0132

std. dev. 1.22 6.59× 1012 1.39× 104 5.98× 103 0.00395

50%
mean 21 3.81× 1012 3.74× 104 2.79× 104 0.0400

std. dev. 3.32 3.43× 1012 2.73× 104 1.78× 104 0.0364

40%
mean 29.4 2.12× 10−12 3.17× 10−8 2.20× 10−8 0.120

std. dev. 5.41 2.89× 10−12 2.61× 10−8 6.81× 10−9 0.0246

30%
mean 26.6 7.90× 10−13 2.23× 10−8 2.18× 10−8 0.167

std. dev. 3.97 3.29× 10−13 4.94× 10−9 4.43× 10−9 0.0188

20%
mean 23.6 7.25× 10−13 2.82× 10−8 2.43× 10−8 0.190

std. dev. 3.65 2.37× 10−13 5.16× 10−9 4.47× 10−9 0.0238

10%
mean 24.8 2.09× 10−13 2.01× 10−8 2.05× 10−8 0.227

std. dev. 7.19 5.39× 10−14 2.90× 10−9 3.10× 10−9 0.00998
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(a) 100% of data sampled (b) 90% of data sampled (c) 80% of data sampled

(d) 70% of data sampled (e) 60% of data sampled (f) 50% of data sampled

(g) 40% of data sampled (h) 30% of data sampled (i) 20% of data sampled

(j) 10% of data sampled

Figure 6.11: “Gaussian” images reconstructed by FROID from nonuniform data.
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Figure 6.12: Mean RMS error and standard deviation in the “Gaussian” image recon-

structed by FROID on sparse and nonuniform data.

to undersampling is tolerable and FROID still reconstructs relatively good images consis-

tently. In addition, the number of iterations required for FROID to converge significantly

increases when the number of undetermined degrees of freedom increases.

6.4 Reconstruction of a bone image

A sample of a cow’s bone is imaged using a 1.5T MRI scanner at Sunnybrook Hospital

(Toronto) and the data corresponding to an image with 256× 256 pixels, shown in Figure

6.13, are captured in k-space. The dataset is cropped such that only 2,500 uniform samples

of low spatial frequency data (at the centre of k-space) are kept, which allows the IDL

implementation of FROID to be used without issues in memory allocation. It is important

to note that shortening the length of the signal in k-space is not the same as undersampling,

which increases the interval between samples for a fixed bandwidth. Reducing the length

of the signal in k-space to 50× 50 samples results in lowering the resolution of the image

to 50 × 50 pixels where the high frequency components are thrown away (i.e., the image

has been low-pass filtered). Since the peak signal is not necessarily centred properly, an

image with complex values is reconstructed using the complex version of FROID so that a

magnitude image can be computed. Reconstructing complex images doubles the number of
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Figure 6.13: 256× 256 MR image of bone reconstructed using an FFT.

Figure 6.14: 50× 50 pixels interpolated from high resolution image of bone.
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(a) FROID

(b) FFT

Figure 6.15: 50× 50 MR image of bone reconstructed by FROID and an FFT.

73



arguments in the objective function; for every point modelled in the image there is a real

and imaginary component. As such, the reconstruction becomes more computationally

expensive and more memory for data storage is required.

The magnitude images reconstructed by FROID and an FFT are shown in Figure 6.15,

which are normalized to a maximum amplitude of 1. The image reconstructed by FROID

contains more background noise, but these may be real features as the high resolution image

also has background noise. Although the true image is not known, the high resolution image

reconstructed by an FFT using the full dataset in k-space is interpolated to 50× 50 pixels

(see Figure 6.14) for comparison and RMS error calculations. It can be seen that the image

reconstructed by FROID using the cropped dataset contained more of the features found

in the high resolution image of the bone and this results in an RMS difference of 0.074.

The image reconstructed by an FFT from the cropped dataset seems to be more blurred

and there is a larger RMS difference of 0.095.

6.5 Performance constraints and limitations

With the current implementation of FROID in IDL, further testing with complex images

and other more interesting k-space sampling trajectories (e.g., radial and spiral) can not

be efficiently performed and therefore, lies outside the scope of this thesis. The IDL code

is limited to handling data no greater than 110 × 110 points for real-valued images and

78 × 78 points for complex images due to constraints previously discussed in Section 6.1.

This restricts the testing of high resolution MRI data and the ability to reconstruct images

on the same scale as current MRI reconstruction engines.

The testing of FROID for this thesis is performed on a Sony VAIO VGN-FW275D

laptop with Intel Centrino Core 2 Duo processor (2.26 GHz processing speed and 4 GB

RAM), and Windows 7, 64-bit operating system. Table 6.4 lists the amount of time approx-

imately required to perform the major tasks in FROID for reconstructing real-valued and

complex images. The time required to reconstruct complex images significantly increases

since the size of ∇2f(pm) is increased by a factor of 4 (i.e., the matrix is doubled in both

Table 6.4: The Amount of Time required to Run FROID

Task
Time Required for Time Required for

Real-Valued Images Complex Images

Calculating constants ∼ 58 s ∼ 193 s

Solving for d∗m ∼ 4 s ∼ 31 s

Minimizing f(pm) in 11 iterations ∼ 140 s ∼ 982 s
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dimensions when accounting for real and imaginary values in the image) and the system of

equations in (5.24) is doubled. Recall from Section 5.2 that the Hessian of the quadratic

model, (∇2f(pm
(n)) + λ∗diag[∇2f(pm

(n))]), is factored using Cholesky decomposition at

each iteration to solve for the optimal step. Cholesky factorization requires less memory

than other factorization methods since the expression is decomposed into a lower trian-

gular matrix and its transpose, and only one of the factors need to be stored. However,

the factorization needs to be performed at every iteration, which can be computationally

expensive; the number of operations required to compute the Cholesky factors is O(n3).

From iteration to iteration, (∇2f(pm
(n)) + λ∗diag[∇2f(pm

(n))]) is only modified in the

diagonal elements and a more efficient factorization method that reuses some of the infor-

mation from previous factors should be adopted at each iteration. Algorithms that perform

rank 1 updates of Cholesky factors where only 1 diagonal element has changed exist and

require O(n2) operations to compute.[25] To modify the Hessian, n rank 1 updates need to

be performed for changes in n diagonal elements, which can add to O(n3) operations per

iteration. Therefore, the use of Cholesky factorization is suitable only when the number of

iterations required for the optimization routine to converge is relatively small or the size

of the problem is small.

In the example of the “Gaussian” image (discussed in Section 6.3), FROID can recon-

struct images from data that are undersampled to a certain amount without including any

constraints in the optimization. The ability to reconstruct images from radial and spiral

sampling trajectories has yet to be demonstrated. Besides the locations of the samples,

other a priori information may be required to restrict the degrees of freedom and the num-

ber of possible solutions that FROID can converge to while still achieving a least squares

fit in the Fourier data. Constraints can be incorporated into the objective function by

including an additional cost(s) that increases the function value when a constraint(s) is

violated.
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Chapter 7

Future Work and Conclusions

In this thesis, FROID has been implemented for MR image reconstruction. The results

presented in Chapter 6 demonstrates that FROID can reconstruct real-valued and complex

images from data acquired in k-space, both simulated and experimental. Under certain

circumstances, FROID outperforms an FFT. In particular, FROID possesses the flexibility

to arbitrarily model points in the image and k-space independent of one another. Pixels

in the image can be strategically positioned to correspond to locations of features to be

reconstructed. Samples do not need to be modelled uniformly in k-space and FROID can

accommodate irregular sampling trajectories. The experiment using random sampling was

successful in that images could be reconstructed with similar quality to those reconstructed

from evenly sampled data. Initial results using undersampled data shows promise, but more

work implementing constraints to restrict the degrees of freedom in the image is required.

A significant amount of testing can still be performed using constrained optimization

techniques. The reconstruction of MR images from radial, spiral, and other common

nonuniform sampling trajectories using FROID can be further explored. Comparative

analyses with images reconstructed from other algorithms described in the background of

this thesis (e.g., compressed sensing and the gridding method) should also be performed.

The limitations discussed in Section 6.5 can be resolved by modifying the implementa-

tion of FROID. It was noted that as the number of iterations required for the optimization

routine to converge increases, the use of Cholesky factorization becomes more computa-

tionally expensive. When solving for the step in the argument, dm
(n), in equation (5.24),

other factorization techniques where the computed factors can be updated more efficiently

in successive iterations can be explored. For example, QR factorization or singular value

decomposition (SVD) can be used. The SVD is more computationally expensive to com-

pute initially, but updating the factors when only the diagonal elements of the Hessian are

modified is trivial. One of the factors given by the SVD is a diagonal matrix containing

the eigenvalues of the Hessian. Modifications to the diagonal elements of the Hessian are
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reflected by modifying the diagonal matrix in the same manner. In [22], a method for

updating QR factors related to the Hessian using rotational matrices (Givens rotation) is

also proposed for implementing the Levenberg-Marquardt algorithm.

Implementing FROID using a lower level programming language such as C++ can also

improve performance speed by avoiding overheads that come with programs such as IDL.

Memory addressing and allocation can be better controlled and is not be limited to 1.2

GB per variable. Resolving speed and memory issues allows reconstruction of MR images

with complex values to be further tested using FROID.

FROID is not restricted to modelling the surface of an image using bilinear interpo-

lation. The formula discussed in Chapter 4 is merely an example of a working model of

FROID. The underlying concept is to map a continuous surface of the image so that the

integral Fourier transform can be applied and data in the Fourier domain can be sampled

accordingly. Depending on the interpolation method used, an analytical expression of the

Fourier transform may be derived. For future development, other models of FROID can

be derived by using different interpolation techniques. Although bilinear interpolation has

proven to be effective even when the image is smooth like a Gaussian function, other tech-

niques that produce smoother surfaces, such as the use of Bezier curves, may be required

and can be explored in future work.

The ability to reconstruct images from nonuniform samples through the use of FROID

leads to different applications in MRI. As discussed earlier in this thesis, many acceler-

ated imaging techniques use non-Cartesian sampling trajectories. It is expected that with

further development in FROID, images can be reconstructed from a variety of sampling

schemes commonly employed in MRI. Known sampling imperfections can also be accounted

for when reconstructing images. For example, magnetic field gradients used in MRI are

susceptible to perturbations caused by eddy currents. This may result in errors in the

sampling locations of data in k-space. So, when performing rectilinear sampling, data may

not be exactly equidistant. If these sampling irregularities can be measured, FROID can

then be used to reconstruct images where the locations of the Fourier data modelled are

adjusted accordingly. FROID can potentially be implemented using digital circuits and

integrated into a reconstruction engine for an MRI scanner.
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Appendix A

Analytic Solution to Fourier

Transform in FROID

The Fourier transform to be solved is

Sm(u, v) =F [I(x, y)]

=

Nd−1∑
j=1

Md−1∑
k=1

xj+1∫
xj

yk+1∫
yk

T
(1)
j,ke
−i2π(ux+vy) dxdy

+

Nd−1∑
j=1

Md−1∑
k=1

xj+1∫
xj

yk+1∫
yk

T
(2)
j,ke
−i2π(ux+vy) dxdy

+

Nd−1∑
j=1

Md−1∑
k=1

xj+1∫
xj

yk+1∫
yk

T
(3)
j,ke
−i2π(ux+vy) dxdy

+

Nd−1∑
j=1

Md−1∑
k=1

xj+1∫
xj

yk+1∫
yk

T
(4)
j,ke
−i2π(ux+vy) dxdy

(A.1)

where the terms are defined as

T
(1)
j,k = pmj,k

[
1− x− xj

∆x

] [
1− y − yk

∆y

]
T

(2)
j,k = pmj+1,k

[
x− xj

∆x

] [
1− y − yk

∆y

]
T

(3)
j,k = pmj,k+1

[
1− x− xj

∆x

] [
y − yk

∆y

]
T

(4)
j,k = pmj+1,k+1

[
x− xj

∆x

] [
y − yk

∆y

]
.

(A.2)
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Term 1

Nd−1∑
j=1

Md−1∑
k=1

xj+1∫
xj

yk+1∫
yk

pmj,k

[
1− x− xj

∆x

] [
1− y − yk

∆y

]
e−i2π(ux+vy) dxdy. (A.3)

By isolating the constants and separating the x and y factors the following is given

Nd−1∑
j=1

Md−1∑
k=1

pmj,k
∆x∆y

xj+1∫
xj

(∆x+ xj − x)e−i2πux dx

yk+1∫
yk

(∆y + yk − y)e−i2πvy dy. (A.4)

Noting that
xj+1∫
xj

e−i2πux dx =
i(e−iϑj+1 − e−iϑj)

2πu
(A.5)

and
xj+1∫
xj

xe−i2πux dx =
(e−iϑj+1 [iϑj+1 + 1]− e−iϑj [iϑj + 1])

4π2u2
(A.6)

for ϑj = 2πxju, the integral over x can be solved. Similarly, the integral over y can be

evaluated using εk = 2πykv. After solving the x and y integrals separately, term 1 becomes

Nd−1∑
j=1

Md−1∑
k=1

pmj,k
∆x∆y

{(∆x+ xj)(∆y + yk)z1 − (∆x+ xj)z2 − (∆y + yk)z3 + z4} (A.7)

where

z1 = −(e−iϑj+1 − e−iϑj)(e−iεk+1 − e−iεk)
4π2uv

, (A.8)

z2 =
i(e−iϑj+1 − e−iϑj)(e−iεk+1 [iεk+1 + 1]− e−iεk [iεk + 1])

8π3uv2
, (A.9)

z3 =
i(e−iεk+1 − e−iεk)(e−iϑj+1 [iϑj+1 + 1]− e−iϑj [iϑj + 1])

8π3u2v
, (A.10)

and

z4 =
(e−iϑj+1 [iϑj+1 + 1]− e−iϑj [iϑj + 1])(e−iεk+1 [iεk+1 + 1]− e−iεk [iεk + 1])

16π4u2v2
. (A.11)

Terms 2, 3, and 4

Using similar means as above, the Fourier transform of terms 2, 3 and 4 are evaluated as

F [T
(2)
j,k ] =

pmj+1,k

∆x∆y
{−xj(∆y + yk)z1 + xjz2 + (∆y + yk)z3 − z4} , (A.12)

F [T
(3)
j,k ] =

pmj,k+1

∆x∆y
{−(∆x+ xj)ykz1 + (∆x+ xj)z2 + ykz3 − z4} , (A.13)

80



and

F [T
(4)
j,k ] =

pmj+1,k+1

∆x∆y
{xjykz1 − xjz2 − ykz3 + z4} . (A.14)

Separating the real and imaginary terms

Combining terms 1, 2, 3, and 4, Sm(u, v) is equal to

Nd−1∑
j=1

Md−1∑
k=1

[
pmj,k {(∆x+ xj)(∆y + yk)z1 − (∆x+ xj)z2 − (∆y + yk)z3 + z4} /(∆x∆y)

+ pmj+1,k
{−xj(∆y + yk)z1 + xjz2 + (∆y + yk)z3 − z4} /(∆x∆y)

+ pmj,k+1
{−(∆x+ xj)ykz1 + (∆x+ xj)z2 + ykz3 − z4} /(∆x∆y)

+ pmj+1,k+1
{xjykz1 − xjz2 − ykz3 + z4} /(∆x∆y)

]
.

(A.15)

The z factors can be further broken down into real and imaginary parts.

<[z1] = [− cos(ϑj+1 + εk+1) + cos(ϑj+1 + εk)

+ cos(ϑj + εk+1)− cos(ϑj + εk)]/(4π
2uv),

(A.16)

<[z2] = [sin(ϑj+1 + εk+1)− εk+1 cos(ϑj+1 + εk+1)

− sin(ϑj+1 + εk) + εk cos(ϑj+1 + εk)

− sin(ϑj + εk+1) + εk+1 cos(ϑj + εk+1)

+ sin(ϑj + εk)− εk cos(ϑj + εk)]/(8π
3uv2),

(A.17)

<[z3] = [sin(ϑj+1 + εk+1)− ϑj+1 cos(ϑj+1 + εk+1)

− sin(ϑj+1 + εk) + ϑj+1 cos(ϑj+1 + εk)

− sin(ϑj + εk+1) + ϑj cos(ϑj + εk+1)

+ sin(ϑj + εk)− ϑj cos(ϑj + εk)]/(8π
3u2v),

(A.18)
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<[z4] = [−ϑj+1εk+1 cos(ϑj+1 + εk+1) + ϑj+1 sin(ϑj+1 + εk+1)

+ εk+1 sin(ϑj+1 + εk+1) + cos(ϑj+1 + εk+1)

+ ϑj+1εk cos(ϑj+1 + εk)− ϑj+1 sin(ϑj+1 + εk)

− εk sin(ϑj+1 + εk)− cos(ϑj+1 + εk)

+ ϑjεk+1 cos(ϑj + εk+1)− ϑj sin(ϑj + εk+1)

− εk+1 sin(ϑj + εk+1)− cos(ϑj + εk+1)

− ϑjεk cos(ϑj + εk) + ϑj sin(ϑj + εk)

+ εk sin(ϑj + εk) + cos(ϑj + εk),

(A.19)

=[z1] = [sin(ϑj+1 + εk+1)− sin(ϑj+1 + εk)

− sin(ϑj + εk+1) + sin(ϑj + εk)]/(4π
2uv),

(A.20)

=[z2] = [cos(ϑj+1 + εk+1) + εk+1 sin(ϑj+1 + εk+1)

− cos(ϑj+1 + εk)− εk sin(ϑj+1 + εk)

− cos(ϑj + εk+1)− εk+1 sin(ϑj + εk+1)

+ cos(ϑj + εk) + εk sin(ϑj + εk)]/(8π
3uv2),

(A.21)

=[z3] = [cos(ϑj+1 + εk+1) + ϑj+1 sin(ϑj+1 + εk+1)

− cos(ϑj+1 + εk)− ϑj+1 sin(ϑj+1 + εk)

− cos(ϑj + εk+1)− ϑj sin(ϑj + εk+1)

+ cos(ϑj + εk) + ϑj sin(ϑj + εk)]/(8π
3u2v),

(A.22)

and

=[z4] = [ϑj+1εk+1 sin(ϑj+1 + εk+1) + ϑj+1 cos(ϑj+1 + εk+1)

+ εk+1 cos(ϑj+1 + εk+1)− sin(ϑj+1 + εk+1)

− ϑj+1εk sin(ϑj+1 + εk)− ϑj+1 cos(ϑj+1 + εk)

− εk cos(ϑj+1 + εk) + sin(ϑj+1 + εk)

− ϑjεk+1 sin(ϑj + εk+1)− ϑj cos(ϑj + εk+1)

− εk+1 cos(ϑj + εk+1) + sin(ϑj + εk+1)

+ ϑjεk sin(ϑj + εk) + ϑj cos(ϑj + εk)

+ εk cos(ϑj + εk)− sin(ϑj + εk).

(A.23)
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All the real and imaginary constants for each term in equation (A.15) are collected to give

Sm(u, v) =

Nd−1∑
j=1

Md−1∑
k=1

[
pmj,ka

(1)
j,k + pmj+1,k

a
(2)
j,k + pmj,k+1

a
(3)
j,k + pmj+1,k+1

a
(4)
j,k

]

+ i

Nd−1∑
j=1

Md−1∑
k=1

[
pmj,kb

(1)
j,k + pmj+1,k

b
(2)
j,k + pmj,k+1

b
(3)
j,k + pmj+1,k+1

b
(4)
j,k

]
,

(A.24)

where a
(n)
j,k is the linear combination of the real components of z1, z2, z3, and z4 for term n

at iteration j and k, and b
(n)
j,k is the imaginary. Assuming that pmj,k is equal to zero when

j = 1, Nd or k = 1,Md (i.e. the image has a zero intensity border), the summation can

be shifted such that constants corresponding to the same points in the image are grouped

together.

Sm(u, v) =

Nd−1∑
j=2

Md−1∑
k=2

[
pmj,ka

(1)
j,k + pmj,ka

(2)
j−1,k + pmj,ka

(3)
j,k−1 + pmj,ka

(4)
j−1,k−1

]

+ i

Nd−1∑
j=1

Md−1∑
k=1

[
pmj,kb

(1)
j,k + pmj,kb

(2)
j−1,k + pmj,kb

(3)
j,k−1 + pmj,kb

(4)
j−1,k−1

] (A.25)

and

Sm(ul, vl) =

Nd−1∑
j=2

Md−1∑
k=2

Aj,k,lpmj,k + i

Nd−1∑
j=2

Md−1∑
k=2

Bj,k,lpmj,k , (A.26)

where

Aj,k,l = a
(1)
j,k + a

(2)
j−1,k + a

(3)
j,k−1 + a

(4)
j−1,k−1 (A.27)

and

Bj,k,l = b
(1)
j,k + b

(2)
j−1,k + b

(3)
j,k−1 + b

(4)
j−1,k−1 (A.28)

for points sampled in k-space at locations (ul,vl), l = 1, ..., Nsamples.

Calculating the limits of the coefficients

Using l’Hôpital’s rule the following limits are evaluated:

lim
u→0
<[z1] = [xj+1 sin(εk+1)− xj+1 sin(εk)− xj sin(εk+1) + xj sin(εk)]/(2πv), (A.29)

lim
u→0
<[z2] = [xj+1 cos(εk+1) + xj+1εk+1 sin(εk+1)

− xj+1 cos(εk)− xj+1εk sin(εk)

− xj cos(εk+1)− xjεk+1 sin(εk+1)

+ xjcos(εk) + xjεk sin(εk)]/(4π
2v2),

(A.30)
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lim
u→0
<[z3] = [x2

j+1 sin(εk+1)− x2
j sin(εk+1)− x2

j+1 sin(εk) + x2
j sin(εk)]/(4πv), (A.31)

lim
u→0
<[z4] = [x2

j+1εk+1 sin(εk+1) + x2
j+1 cos(εk+1)

− x2
j+1εk sin(εk)− x2

j+1 cos(εk)

− x2
jεk+1 sin(εk+1)− x2

j cos(εk+1)

+ x2
jεk sin(εk) + x2

j cos(εk)]/(8π
2v2),

(A.32)

lim
u→0
=[z1] = [xj+1 cos(εk+1)− xj+1 cos(εk)− xj cos(εk+1) + xj cos(εk)]/(2πv), (A.33)

lim
u→0
=[z2] = [−xj+1 sin(εk+1) + xj+1εk+1 cos(εk+1)

+ xj+1 sin(εk)− xj+1εk cos(εk)

+ xj sin(εk+1)− xjεk+1 cos(εk+1)

− xj sin(εk) + xjεk cos(εk)]/(4π
2v2),

(A.34)

lim
u→0
=[z3] = [x2

j+1 cos(εk+1)− x2
j cos(εk+1)− x2

j+1 cos(εk) + x2
j cos(εk)]/(4πv), (A.35)

lim
u→0
=[z4] = [x2

j+1εk+1 cos(εk+1)− x2
j+1 sin(εk+1)

− x2
j+1εk cos(εk) + x2

j+1 sin(εk)

− x2
jεk+1 cos(εk+1) + x2

j sin(εk+1)

+ x2
jεk cos(εk)− x2

j sin(εk)]/(8π
2v2),

(A.36)

lim
v→0
<[z1] = [yk+1 sin(ϑj+1)− yk+1 sin(ϑj)− yk sin(ϑj+1) + yk sin(ϑj)]/(2πu), (A.37)

lim
v→0
<[z2] = [y2

k+1 sin(ϑj+1)− y2
k sin(ϑj+1)− y2

k+1 sin(ϑj) + y2
k sin(ϑj)]/(4πu), (A.38)

lim
v→0
<[z3] = [yk+1 cos(ϑj+1) + yk+1ϑj+1 sin(ϑj+1)

− yk+1 cos(ϑj)− yk+1ϑj sin(ϑj)

− yk cos(ϑj+1)− ykϑj+1 sin(ϑj+1)

+ ykcos(ϑj) + ykϑj sin(ϑj)]/(4π
2u2),

(A.39)
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lim
v→0
<[z4] = [y2

k+1ϑj+1 sin(ϑj+1) + y2
k+1 cos(ϑj+1)

− y2
k+1ϑj sin(ϑj)− y2

k+1 cos(ϑj)

− y2
kϑj+1 sin(ϑj+1)− y2

k cos(ϑj+1)

+ y2
kϑj sin(ϑj) + y2

k cos(ϑj)]/(8π
2u2),

(A.40)

lim
v→0
=[z1] = [yk+1 cos(ϑj+1)− yk+1 cos(ϑj)− yk cos(ϑj+1) + yk cos(ϑj)]/(2πu), (A.41)

lim
v→0
=[z2] = [y2

k+1 cos(ϑj+1)− y2
k cos(ϑj+1)− y2

k+1 cos(ϑj) + y2
k cos(ϑj)]/(4πu), (A.42)

lim
v→0
=[z3] = [−yk+1 sin(ϑj+1) + yk+1ϑj+1 cos(ϑj+1)

+ yk+1 sin(ϑj)− yk+1ϑj cos(ϑj)

+ yk sin(ϑj+1)− ykϑj+1 cos(ϑj+1)

− yk sin(ϑj) + ykϑj cos(ϑj)]/(4π
2u2),

(A.43)

lim
v→0
=[z4] = [y2

k+1ϑj+1 cos(ϑj+1)− y2
k+1 sin(ϑj+1)

− y2
k+1ϑj cos(ϑj) + y2

k+1 sin(ϑj)

− y2
kϑj+1 cos(ϑj+1) + y2

k sin(ϑj+1)

+ y2
kϑj cos(ϑj)− y2

k sin(ϑj)]/(8π
2u2),

(A.44)

lim
u,v→0

<[z1] = ∆x∆y, (A.45)

lim
u,v→0

<[z2] = ∆x(y2
k+1 − y2

k)/2, (A.46)

lim
u,v→0

<[z3] = ∆y(x2
j+1 − x2

j)/2, (A.47)

lim
u,v→0

<[z4] = (x2
j+1 − x2

j)(y
2
k+1 − y2

k)/4, (A.48)

lim
u,v→0

=[z1] = 0, (A.49)

lim
u,v→0

=[z2] = 0, (A.50)

lim
u,v→0

=[z3] = 0, (A.51)

and

lim
u,v→0

=[z4] = 0. (A.52)
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