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 Abstract 

This research focuses on the development of intelligent fastening tool tracking systems for the 

automotive industry to identify the fastened bolts.  In order to accomplish such a task, the position of 

the tool tip must be identified because the tool tip position coincides with the head of the fastened bolt 

while the tool fastens the bolt.  The proposed systems utilize an inertial measurement unit (IMU) and 

another sensor to track the position and orientation of the tool tip.  

To minimize the position and orientation calculation error, an IMU needs to be calibrated as 

accurately as possible. This research presents a novel triaxial accelerometer calibration technique that 

offers a high accuracy. The simulation and experimental results of the accelerometer calibration are 

presented.  

To identify the fastening action, an expert system is developed based on the sensor measurements. 

When a fastening action is identified, the system identifies the fastened bolt by using an expert 

system based on the position and orientation of the tool tip and the position and orientation of the bolt. 

Since each fastening procedure needs different accuracies and requirements, three different systems 

are proposed.  

The first system utilizes a triaxial magnetometer and an IMU to identify the fastened bolt. This 

system calculates the position and orientation by using an IMU.  An expert system is used to identify 

the initial position, stationary state, and the fastened bolt.  When the tool fastens a bolt, the proposed 

expert system detects the fastening action by triaxial accelerometer and triaxial magnetometer 

measurements.  When the fastening action is detected, the system corrects the velocity and position 

error using zero velocity update (ZUPT).  By using the corrected tool tip position and orientation, the 

system can identify the fastened bolts. Then, with the fastened bolt position, the position of the IMU 

is corrected. When the tool is stationary, the system corrects linear velocity error and reduces the 

position error. The experimental results demonstrate that the proposed system can identify fastened 

bolts if the angles of the bolts are different or the bolts are not closely placed. This low cost system 

does not require a line of sight, but has limited position accuracy. 

The second system utilizes an intelligent system that incorporates Kalman filters (KFs) and a 

fuzzy expert system to track the tip of a fastening tool and to identify the fastened bolt. This system 

employs one IMU and one encoder-based position sensor to determine the orientation and the centre 

of mass location of the tool. When the KF is used, the orientation error increases over time due to the 
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integration step.  Therefore, a fuzzy expert system is developed to correct the tilt angle error and 

orientation error. When the tool fastens a bolt, the system identifies the fastened bolt by applying the 

fuzzy expert system.  When the fastened bolt is identified, the 3D orientation error of the tool is 

corrected by using the location and the orientation of the fastened bolt and the position sensor 

outputs.  This orientation correction method results in improved reliability in determining the tool tip 

location.  The fastening tool tracking system was experimentally tested in a lab environment, and the 

results indicate that such a system can successfully identify the fastened bolts.  This system not only 

has a low computational cost but also provides good position and orientation accuracy. The system 

can be used for most applications because it provides a high accuracy. 

The third system presents a novel position/orientation tracking methodology by hybridizing one 

position sensor and one factory calibrated IMU with the combination of a particle filter (PF) and a KF.  

In addition, an expert system is used to correct the angular velocity measurement errors. The 

experimental results indicate that the orientation errors of this method are significantly reduced 

compared to the orientation errors obtained from an EKF approach. The improved orientation 

estimation using the proposed method leads to a better position estimation accuracy. The 

experimental results of this system show that the orientation of the proposed method converges to the 

correct orientation even when the initial orientation is completely unknown. This new method was 

applied to the fastening tool tracking system.  This system provides good orientation accuracy even 

when the gyroscopes (gyros hereafter) include a small error.  In addition, since the orientation error of 

this system does not grow over time, the tool tip position drift is limited.  This system can be applied 

to the applications where the bolts are closely placed.  The position error comparison results of the 

second system and the third system are presented in this thesis.  The comparison results indicate that 

the position accuracy of the third system is better than that of the second system because the 

orientation error does not increase over time.  

The advantages and limitations of all three systems are compared in this thesis.  In addition, 

possible future work on fastening tool tracking system is described as well as applications that can be 

expanded by using the KF/PF combination method.  
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Chapter 1 

Introduction 

1.1 Motivation 

Traditionally, motion tracking systems have been used for outdoor applications such as vehicle 

and missile tracking [1]-[3] because traditional inertial sensors were bulky and heavy.  Recently, 

various motion tracking systems have been developed and used for indoor applications such as 

manufacturing [4], human supporting systems [5], [6], and rehabilitation [7].  This thesis describes 

developments of tool tracking systems that identify fastened bolts as a quality control system.     

Quality control has been a primary focus in the automotive industry.  However, many automotive 

parts are still produced without any quality control process.  For instance, the fastening process is 

necessary in various assembly lines such as engine mount, air bags, and seat assembly.  This process 

requires fastening bolts in the right place with the right amount of torque.  Currently, human operators 

can set the output torque of the tool and monitor the fastening process to ensure that each bolt is 

fastened through the application of a torque value within the desired range.  However, monitoring the 

torque values alone does not guarantee that each bolt is fastened in the right places because operators 

can make mistakes by not fastening all the bolts or fastening a bolt in the wrong sequence.  Therefore, 

these assembly flaws in the fastening process should be significantly reduced to produce safer and 

higher quality automotive parts.  To eliminate any potential mistakes and correctly fasten bolts, a 

quality control system that tracks the location of the tool tip where bolts are placed during fastening is 

required.   

Currently, only two fastening tool position tracking devices are available in the market; namely, 

SmartArm and UOS-100.  SmartArm from PINpoint Information Systems Inc. relies on a passive 

robotic arm without an actuator [8].  SmartArm consists of various links, and each link has an encoder 

that tracks the angle of the link.  When an operator moves a tool in the workspace, the encoders of the 

passive robot arm track the motion of each link, and the position and the orientation of the tool are 

calculated by using kinematics and the geometry of the robot.  This passive robot arm can accurately 

track the position of the tool tip, but it can also easily limit the movement of the operators working on 

the assembly process.  

The other product, UOS-100 from Pepperl+Fuchs, uses ultrasonic transducers to track the position 

of the tool tip [9].  This system consists of one ultrasonic emitter, at least three receivers, and one 
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control interface unit.  The ultrasonic emitter is attached to the tip of a fastening tool, and the 

ultrasonic receivers are placed on three different fixed locations such as ceilings.  Since this system 

locates the ultrasonic emitter by triangulation method, ultrasonic receivers should be placed some 

distance apart from each other.  By measuring the distance between one emitter and three receivers, 

the location of the tool tip in 3D space (x, y, and z) is determined.  The advantage of this system is 

that it does not interfere with the movements of the operator because only a small light-weighted 

ultrasonic emitter is attached to the tool tip.  However, an ultrasonic sensor has limited applications 

due to maximum emitting angle, reflection, occlusions [10], and sound sensitivity [11].  Since the 

ultrasonic position sensor uses triangulation method to locate the 3D position of the ultrasonic 

emitter, the lines of sight between the emitter and the receivers are critical.  For example, when the 

receivers are installed on flat ceilings, UOS-100 can only detect the fasteners that have close to zero 

tilt angles in order to obtain the lines of sight.  When at least three lines of sight are not secure, the 

system fails to locate the position of the tool tip.  In addition, UOS-100 is not practical for a noisy 

factory environment because of its sensitivity to high frequency acoustics such as metal beating.   

In summary, the tracking systems that make use of those two products are limited.  Therefore, a 

compact tool tracking system that has high dexterity and robustness is needed for automated tracking 

and the quality inspection of parts assembled by bolt fastening actions.   

1.2 Literature Review 

1.2.1 IMU Calibration 

Accelerometers and gyros include several errors such as nonlinearity, gain error, and bias, as a 

result of temperature change, input voltage and aging [12]-[14].  Nonlinearity is not usually 

compensated for, especially for a low cost IMU, because the process of modeling nonlinearity is 

complex and the resultant error is often very small.  Thus, IMU calibration typically deals with 

estimating gains and biases.  The gain and bias values depend significantly on temperature as shown 

in [12] and [15].  Even with the temperature error compensation, the IMU error depends on the input 

voltage. Therefore, the input voltage is usually controlled by a voltage regulator.  However, the 

supplied voltage varies even if a voltage regulator is used [12].  Therefore, when an IMU is powered, 

it is commonly observed that the current gains and biases differ slightly from the previous values 
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even if the IMU is powered off and immediately powered on.  To reduce the gain and bias errors, an 

IMU should be calibrated whenever it is powered on.   

Due to the need for frequent recalibration of an IMU, the calibration method should follow a 

simple procedure and must provide a high accuracy.  Section 1.2.1.1 reviews the calibration 

techniques of a triaxial accelerometer, and Section 1.2.1.2 provides the background of triaxial gyro 

calibration techniques. 

1.2.1.1 Triaxial Accelerometer Calibration Techniques 

The conventional method of triaxial accelerometer calibration involves rotating an accelerometer 

at known tilt angles [16]-[18] to use the gravitational vector as a reference.  To achieve accurate 

results with this method, the tilt angles must be precisely measured.  Calibration methods with an 

external device such as an actuator [19], [20] or a position sensor [21], [22] can accurately compute 

the gains and biases, but such a device is not usually available outside of a laboratory.  Accelerometer 

calibration methods that do not require known tilt angles or an external device have been presented in 

[23]-[28].  The calibration method in [23] continuously estimates gains and biases of a triaxial 

accelerometer to calculate the tilt angle of human body parts.  This method requires prior knowledge 

of the frequencies of human body movements, and assumes that the acceleration of a body segment 

has a zero mean to calibrate a triaxial accelerometer.  However, the accuracy of this method depends 

on how true the assumptions are.  For example, this method has a higher accuracy when the 

accelerometer is attached to the pelvis rather than the trunk.  Other methods use a least squares 

estimation to calculate the gains, biases, and misalignment errors [24], [25].  The aforementioned 

method allows redundant tilt angle measurements to achieve more accurate calibration results.  

However, Syed et al. [25] have stated that the initial estimation of the gains and biases need to be 

close to the true values to converge to reasonable gains and biases to use the method in [24].  To find 

the rough estimates of gains and biases, a calibration procedure in [25] roughly aligns the three axes 

of the sensor with the gravity vector once positively and once negatively.  Calibration methods rely 

on the Taylor series expansion up to the first order term to linearize the nonlinear mathematical model 

of the gains and biases are presented in [26]-[28].  Lai et al. [26] have reported a method to find three 

gains and three biases of a triaxial accelerometer by placing it in six randomly chosen tilt angles in a 

stationary state.  The experimental results show that this method usually requires five iterative steps 

to estimate the gains and biases.  Lai et al. [26] have also stated that this method also requires the 
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initial estimations of the gains and biases so that the true values do not diverge from the correct 

solution.   

1.2.1.2 Gyro Calibration Techniques  

The conventional calibration method rotates each gyro about its axis at various constant angular 

velocities, and then, the relationship between the gyro outputs and the angular velocity measurement 

are established [18].  To achieve accurate calibration results with this method, the rotated axis must 

be perfectly parallel to the calibrating gyro axis.  Since this method requires correct angular velocity 

measurements, a turntable which can measure angular velocity is used for calibration in [24], [29].  

However, the procedures of these methods are inconvenient and time consuming.  The calibration 

method that utilizes an optical position sensor with three light-emitting-diodes (LEDs) has presented a 

faster and simpler procedure [21].  This method can calibrate an IMU by randomly moving the sensor 

for half a minute.  Then, by using the orientation measurements calculated from three LED positions, 

the IMU is calibrated.  Although this method is easy to use, the optical sensor is relatively large and 

expensive.  Consequently, this method is not feasible outside the laboratory.  Another calibration 

method [16] places the gyro stationary to estimate the bias and rotates the gyro about its rotation axis 

360° to calibrate the gain.   

1.2.2 Position and Orientation Computation Using an IMU 

An IMU can be used to estimate orientation [30]–[32] and position [33].  Assuming that the local 

gravity vector is perfectly known at all times, the position and the orientation of an object can be 

accurately calculated by numerically integrating the linear acceleration and angular velocity measured 

by an ideal IMU.  However, an ideal IMU that has continuous and perfectly accurate measurements 

does not exist in the real world.  Therefore, the position error increases over time due to the numerical 

integration of corrupted inertial sensor data.  Figure 1-1 depicts the position error simulations of 

different grades of stationary IMUs with small biases [11].  The simulations indicate that the position 

error reaches 450 mm after 7 seconds with a commercial grade IMU, 10 seconds with a tactical grade 

IMU, and 90 seconds with a navigation grade IMU.  Figure 1-1 shows that position tracking systems 

using an IMU only are not reliable for an extended period of time.  In order to estimate the position, 

the acceleration needs to be integrated twice and the angular velocity needs to be integrated once.  

However, to estimate orientation, the angular velocity needs to be integrated once.  This means the 
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orientation error grows at a much slower rate than the position error.  Therefore, an IMU is often used 

as an orientation sensor, otherwise is usually hybridized with another sensor to estimate the position 

[34], [35].   

 

Figure 1-1: Position error simulations of different grades of IMUs [11] 

Using an IMU as an orientation sensor is still a challenge because the orientation calculation drifts 

over time due to the integration of gyro errors [36].  In order to overcome this problem, three 

accelerometers of an IMU are used as a tilt angle sensor because the accelerometer can find the tilt 

angle without any integration step.  An orientation correction method using a triaxial accelerometer is 

described in [37], but the experimental results of this method show a high orientation error.  Many 

researchers have employed the KF to combine the tilt angles from accelerometer measurements with 

the orientation calculation from gyro measurements [38]-[40].  Rehbinder and Hu [40] have utilized 

gyros to find the angular position of a robot and correct the tilt angle with accelerometers when the 

robot does not accelerate.  Fuzzy expert systems are chosen to detect the static state of an object to 

correct the tilt angles [41]-[43]. 

Although these techniques can limit the drift in the roll and pitch angles, they cannot correct the 

yaw angle which does not depend on the tilt angles.  In order to correct the yaw angle, three 
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magnetometers are used to measure the magnetic field of the earth [44], [45].  However, the magnetic 

field of the earth can be corrupted by ferrous materials [46] and the magnetic field can be generated 

by electronic devices.  Bachmann at el.  [47] have reported that when the ferrous material is less than 

two feet from a magnetometer, the error due to the distortion of the magnetic field can be significant.  

To reduce the distortion of the magnetic field of the earth, methods that combine IMU outputs with 

magnetometers using a KF have been proposed [48]-[50].  The accuracy of such methods decreases if 

the disturbance has a similar low bandwidth to that of the angular drift encountered by the gyro error 

or if the magnetic field is constantly disturbed. 

1.2.3 Position Sensors  

Various position sensing technologies are available and can be categorized as follows: (i) visual-

based, (ii) non-visual-based, and (iii) encoder-based.  Each group has its own advantages and 

limitations. 

Visual-based position sensors require a detecting system to be in the line of sight of the object or 

the marker to obtain measurements (e.g. infrared, camera, and ultrasonic position sensor).  An 

infrared position tracking system can achieve less than 1 mm root mean square (RMS) error when the 

marker is less than 2 m from the sensor [51]-[54].  However, an accurate infrared position sensor such 

as Optotrak is very expensive (over $150,000).  The accuracy of a camera-based position sensor 

depends on various factors such as the distance between the object and the camera(s).  Thus, the 

position error range varies but [55] shows that stereo vision system can achieve a 5 mm error.  

However, the camera-based position estimation techniques still require further improvement [56] and 

a complex calibration procedure [57].  In addition, the accuracy of an ultrasonic position sensor varies 

depending on the distance between the marker and the receiver.  The ultrasonic-based fastening tool 

tracking system, UOS-100, has a position error less than 10 mm.  However, the ultrasonic position 

sensors have performance issues related to reflections, occlusions, and sound sensitivity as discussed 

in Section 1.1.   

Non-visual-based position sensors do not require lines of sight, but usually have lower accuracy.  

Non-visual-based position sensors include IMU, magnetic position sensor [58], radio frequency (RF) 

[59]-[61], and ultra-wideband (UWB) [62].  Magnetic position sensors can achieve accuracy better 

than a 10 mm error [63], [64] when no ferrous material is in the measuring range.  However, when 

ferrous material is in the measuring range, the magnetic field is distorted [47], and the position error 
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can be significantly increased depending on the ferrous material and the distance between the material 

and the sensor [64], [65].  The position estimation using the RF technology does not require lines of 

sight, but introduces undesirable errors when occlusions and reflections occur [66], [67].  UWB is 

suitable for in-door tracking applications such as body tracking or shipping container tracking 

because UWB can penetrate various wall materials [68].  However, when a human body obstructs the 

line of sight between the tag and the sensor, a UWB position sensor cannot locate the tag due to the 

signal strength attenuation by human tissue [69].  In addition, the UWB signal can be reflected by 

metal.   

A string-encoder position sensor that can track 3D position has been introduced [70].  This method 

uses one encoder and three force sensors to estimate the position of the end-point of the wire that is 

connected to the sensor.  However, the friction between the wire and the guidance hole creates a 

measurement error in the force sensor, and significant noise is observed when the position is 

calculated from the force sensor measurements.  Also, an product that utilizes three encoders to find 

the 3D position is available [71].  This position sensor has a single wire which is connected to three 

encoders to find the position of the other end of the wire.  This product has a high accuracy and 

provides noise-free outputs.  However, it still needs a line of sight due to the existence of the string.   

The summary of the position sensors and their advantages and limitations are described in Table 

1-1.  Since each position sensor has its own characteristics, selecting a position sensor depends on the 

required accuracy and the environment of the application. 

Table 1-1: Position sensors and their advantages and limitations. 

Sensor Accuracy Advantages Limitations 

RF 3000 mm No LOS (line of sight) Poor accuracy, strength attenuation, 

reflection 

UWB 500 mm Ability to measure 

behind  walls 

Poor accuracy, strength attenuation, 

reflection 

Magnetic 10 mm  No LOS, high accuracy  Ferrous materials limit accuracy 

Ultrasonic 10 mm High accuracy 3 LOS, Noise 

Infrared 1 mm High accuracy 3 LOS, High cost  

Camera 5 mm High accuracy Complexity, 2 LOS 

Encoder 7 mm High accuracy LOS, longer length results in poor accuracy 
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1.2.4 Orientation Detection Using Position Sensors  

By attaching multiple position markers on the tracking object, drift-free orientation estimation can 

be achieved.  A multi-antenna GPS receiver has been utilized to find the orientation of a vehicle [72], 

[73], and multiple ultrasonic markers have been used to find the orientation [74], [75].  Multiple 

position markers are integrated with one IMU to obtain a drift-free position and orientation estimation 

[76], [77].  The position and orientation can be estimated more accurately by hybridizing an IMU 

with a position sensor.  In addition, an IMU is used to estimate position and orientation when the 

position sensor data are not available.  When position sensors are utilized to estimate the orientation, 

the position markers should be attached to a rigid body, and the markers should be located some 

distance apart from each other to obtain meaningful orientation measurements.  However, this 

requirement is not feasible in many applications due to small object size or the restrictions of 

applications.   

1.3 Thesis Overview 

The primary objective of this thesis is to develop framework for intelligent remote 

position/orientation systems.  Since each application has its own needs and limitations, the newly 

developed framework requires specific design considerations in relation to the application.  The 

immediate goal of this research is to develop tool tracking systems that can identify the fastened bolt 

for an automotive manufacturing environment.  The proposed methods integrate an IMU with an 

additional sensor to identify the fastened bolt.  A MEMS IMU is chosen for this research because it is 

small and lightweight.  Therefore, it can be attached to a tool without limiting the movement of the 

operator.  This thesis consists of seven chapters.   

In Chapter 2, various hybridization techniques using variants of the Bayesian filter are described 

as well as the fundamental concepts of fuzzy expert system.    

Chapter 3 describes a novel triaxial accelerometer calibration technique that does not require any 

external sensor.  The calibration parameters of an accelerometer change slightly whenever the sensor 

is powered on or when the temperature of the sensor is changed.  Since the presented calibration 

method has a very simple calibration procedure and a high accuracy, it can easily be applied by 

operators in the automotive industry.   

Chapter 4 presents a fastened bolt tracking system using an IMU and a triaxial magnetometer.  

This chapter describes how to calculate the position and orientation by using an IMU.  Also, an expert 
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system that identifies stationary state, fastening action, and initial position is presented.  The expert 

system also corrects or reduces position and orientation errors.  

Chapter 5 presents a fastening tool tracking system by using an IMU and an encoder-based 

position sensor.  This tracking system hybridizes one position sensor and one IMU to estimate 

position and orientation.  In addition, a fuzzy expert system is developed to identify the stationary 

state and the fastened bolts. 

Chapter 6 presents a hybridization technique which combines a PF and a KF.  This novel 

technique estimates orientation using a PF and estimates the position using a KF.  An extensive 

analysis of the experiments is conducted.  This novel method is tested and the results are compared 

with those using the KF-based method in Chapter 5.   

1.4 Contributions 

The contribution of this research is as follows. 

• Development of a novel triaxial accelerometer calibration. 

• Development of a tool tracking system by using an IMU and a triaxial magnetometer. 

• Design of an expert system that identifies the fastening action, steady state, and orientation 

correction. 

• Design a fuzzy expert system that identifies the stationary state and fastened bolt 

identification. 

• Development of a tool tracking system using an IMU and encoder-based position sensor. 

• Development of the framework of a position/orientation tracking system that combines the 

PF and the KF. 

• Development of a tool tracking system that utilizes the KF-PF combination and an expert 

system. 
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Chapter 2 

Theoretical Preliminaries 

2.1 Hybridization Techniques 

Even for applications that require only position estimation, many recent tracking systems depend 

on a hybrid hardware consisting of one IMU and one position sensor to improve the position 

estimation accuracy rather than using a standalone position sensor.  When an IMU is integrated with a 

position sensor, the drawbacks of each sensor are accounted for, and more accurate state estimations 

can be achieved.  To integrate one position sensor with one IMU, the variants of the Bayes filter [78], 

[79] such as the KF [80], [81] or the PF [82], [83] are widely used.  A KF is an optimum observer that 

estimates the states of linear Gaussian state space models.  KF and its variants such as the extended 

Kalman filter (EKF) [84], unscented KF [85], and complementary KF [86], [87] are the most 

commonly used filtering techniques to integrate an IMU with a position sensor.  When the model is 

highly nonlinear or the noise distribution is non-Gaussian, a PF is more suitable because a PF does 

not require the state space model to be linear nor assume the noise is zero mean Gaussian.  In 

addition, even when the initial states are unknown, the states typically converge to the correct values 

if enough number of particles is used.  A PF approximates the posterior with a set of state samples, 

called particles, instead of assuming that the posteriors are Gaussian at every time step.  As the 

number of particles increases, the approximated posteriors get closer to the true posterior, which 

offers more accurate estimation at the cost of higher computational complexity [88], [89].  To reduce 

the computational complexity, the linear Gaussian part of the system can be solved by using a KF 

while the remaining part is solved by using a PF [90].  This combination provides improved results 

even with a smaller number of particles.   

2.1.1 Bayes Filter 

For a system identification purpose, the following dynamic state space model is considered: 

 ),,( 111 −−−= kkkkk buxfx   (2-1) 

 ),( kkkk dxhz = , (2-2) 
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where subscript k represents the iteration number or time kt , kx  is the state, kf  is a state transition 

function from time 1−kt  to time kt , 1−ku  is the deterministic input, 1−kb  is the process noise, kz  is the 

measurement, kd  is the measurement noise, and kh  is a measurement function. The complete 

solution of the current state ( kx ) is presented through the posterior probability density function (PDF) 

when all the measurements up to the current time instant ( kz :1 ) and all the inputs up to the previous 

time instant ( 1:0 −ku ) are given. Bayes filter calculates the posterior PDF, ),|( 1:0:1 −kkk uzxp , in two 

steps: (i) prediction and (ii) update. Using the Bayes rule and the Markov property, that is if the 

current state is known, the future state is independent of the past states, the prediction and update step 

can be formulated as 

 

Prediction: 

 
∫ −−−−−−

−−

⋅⋅= 12:01:1111

1:01:1

),|(),|(

),|(

kkkkkkk

kkk

dxuzxpuxxp

uzxp
 (2-3) 

Update:     

   
),|(

),|()|(
),|(

1:01:1

1:01:1
1:0:1

−−

−−
−

⋅
=

kkk

kkkkk
kkk

uzzp

uzxpxzp
uzxp . (2-4) 

)|( kk xzp  is the likelihood, ),|( 1:01:1 −− kkk uzxp  is the prior, and ),|( 1:01:1 −− kkk uzzp  is a normalizing 

factor.  In order to construct the posterior PDF, the prior must be available including the initial PDF, 

)( 0xp .   

A Bayes filter requires integration over the state space, which is often impossible to calculate 

analytically.  In some cases, the posterior distribution can be analytically calculated such as the linear 

Gaussian state space model (i.e., KF).  When the analytical computation is not feasible, the posterior 

density is approximated by using estimators such as a PF. 

2.1.2 Kalman Filter [91] 

The KF presents an optimal solution of a Bayes filter by assuming that the posterior density is 

Gaussian.  In order for the posteriors to be Gaussian at every time step, the following conditions must 

be satisfied [92], [93]: 
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• The initial PDF is Gaussian. 

• ),,( 111 −−− kkkk buxf  is a linear function of 1−kx  and 1−ku  with added Gaussian noise. 

• ),( kkk dxh  is a linear function of kx  with added Gaussian noise. 

By using these assumptions, (2-1) and (2-2) become: 

 111 −−− +⋅Γ+⋅Φ= kkkkkk buxx , (2-5) 

 kkkk dxHz +⋅= , (2-6) 

where kΦ  is the system transition matrix from time 1−kt  to time kt , kΓ  is the input matrix, kH  is the 

measurement matrix.  It is assumed that the process noise and the measurement noise have zero-mean 

Gaussian distributions and they are uncorrelated.  In addition, the covariance of process noise ( kQ ) 

and the covariance of measurement noise ( kR ) at each time step are known as well as the initial state 

( 0x ) and initial covariance ( 0P̂ ).   

The probability density distributions of both the predicted state and the measurement are Gaussian. 

Since the estimated state ( kx̂ ) is the combination of the two probability density distributions, the 

estimated state is also Gaussian and has a linear relation of predicted state kx~  and measurement kz  as 

follows: 

 kkkkk zKxLx += ~ˆ . (2-7) 

The objective of the KF is to find the weights, kL  and kK , that minimize the error covariance.  Since 

the KF is a special case of the Bayesian filter, the KF also estimates states by using the prediction step 

and the update step.  When the previous estimated state and input are known, the current state can be 

predicted as 

 11
ˆ~

−− ⋅Γ+⋅Φ= kkkkk uxx . (2-8) 

In order to predict the error covariance, the error must be predicted.  The predicted error is expressed 

as 
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where 1
ˆ −ke  is the estimated error at time 1−kt .  Then, the prediction covariance is calculated as 
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Since the estimated error and process noise are uncorrelated, 0]ˆ[]ˆ[ 1111 == −−−−
T

kk

T

kk ebEbeE .  

Therefore, the prediction error covariance becomes 

 11
ˆ~

−− +ΦΦ= k

T

kkkk QPP , (2-11) 

where 1
ˆ

−kP  is the estimated error covariance at time 1−kt , which is defined as 

 )ˆˆ(ˆ
111

T

kkk eeEP −−− = . (2-12) 

When the current measurement is available, the predicted state and error covariance is updated.  

From (2-7), the estimated error ( kê ) is calculated as: 
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. (2-13) 

In order to minimize the estimated error covariance, kL  should be defined as 

 kkk HKIL −= .   (2-14) 

Then, the estimated state becomes 
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+=

. (2-15) 
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In order to estimate the estimated error covariance, the estimated error should be calculated.  From 

(2-13) and (2-14), the estimated error becomes  

 
kkkkk

kkkkkkkkk

dKeHKI

dKxIHKLeLe

+−=

+−+= +

~)(

)(~ˆ
. (2-16) 

Therefore, the estimated error covariance at time kt  becomes 

    
{ }{ }[ ]
[ ]
[ ]T

kk

T

kkk

T

k

T

kkkk

T

k

T

kkk
T

kk

T

kkkk

T

kkkkkkkkkk

T

kkk

HKedKKdeHKE

KddKHKeeHKE

dKeHKdKeHKE

eeEP

)1(~~)1(

)1(~~)1(

~)1(~)1(

)ˆˆ(ˆ

−+−+

+−−=

+−+−=

=

. (2-17) 

Since the estimated error and measurement noise are uncorrelated, both ]~[
T

kk deE  and ]~[
T

kk edE  are 

zero.  Then, (2-17) can be simplified as 

 
T

kkk
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kkkkkk KRKHKIPHKIP +−−= )(
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)(ˆ . (2-18) 

Now, the weight factor, kK , should be calculated.  This weight factor should be chosen so that it 

minimizes the estimated error covariance.  Eq. (2-18) can be expanded as:   
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Since kP̂  is a covariance matrix, it should be symmetric and non-negative.  Thus, kK  should be 

chosen so that the trace of the estimated error covariance is minimized.  The trace of kP̂   is calculated 

as 

]
~

[2][])
~

([]
~

[]ˆ[ kkk
T
kkk

T
k

T
kkkkkk PHKTraceKRKTraceKHPHKTracePTracePTrace −++= . (2-20) 

To find the weight factor kK  that minimizes ]ˆ[PTrace , the derivative of ]ˆ[PTrace  with respect to 

kK  should be zero as 
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The first term in (2-21) is 

 0
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Since the error covariance matrix and the measurement noise covariance matrix are symmetric, the 

second term and third term in (2-21) is  
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The last term in (2-21) is 
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Then, (2-21) can be simplified as follows: 
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Then, the weight factor becomes: 
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Since the predicted error covariance matrix is symmetric, the weight factor can be written as 
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Then, (2-18) can be further simplified as follows: 
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In summary, the prediction and update equations of the KF are as follows. 

 

Prediction: 

Predicted state:  11
ˆ~

−− ⋅Γ+⋅Φ= kkkkk uxx  (2-8) 

Predicted covariance:  11
ˆ~

−− +Φ⋅⋅Φ= k

T

kkkk QPP  (2-11) 

Update: 

Kalman gain:  [ ] 1~~ −
+⋅⋅⋅⋅= k

T

kkk

T

kkk RHPHHPK  (2-24) 

Estimated covariance:  [ ] kkkk PHKIP
~ˆ ⋅⋅−=  (2-25) 

Estimated state:   )~(~ˆ
kkkkkk xHzKxx ⋅−⋅+=  (2-15) 

2.1.3 Sampling Importance Resampling Particle Filter [93] 

The PF is a suboptimal solution that approximates the true posterior with a finite number of 

random state samples with the corresponding normalized weights.  Then, the posterior density 

approximation at time kt  is   

 ∑
=

− −≈
N

t

i
kk

i
kkkk xxwuzxp

1

1:0:1 )(),|( δ , (2-26) 

where )(⋅δ is the Dirac delta function, N is the number of samples, i

kw  is the normalized weight of the 

i
th particle at time kt , and i

kx  is the ith state particle at time kt . 
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In order to derive the PF state estimation algorithm, consider the posterior density up to time kt  

such that 
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Since it is usually difficult to sample from the posterior density, the importance sampling technique 

[94] is used to sample in the PF.  When the target density (posterior density in this case) can be 

evaluated at any point but is difficult to sample from, samples can be drawn from a known 

normalized probability density [ )(xr ], the so-called importance density.  To compensate for the 

difference between the target density and the importance density, normalized weights, which are the 

ratios of the two densities, are assigned to all the particles [92].  The discrete posterior density 

approximation up to time kt  is expressed as 

 ∑
=

− −≈
N

t

i
kk

i
kkkk xxwuzxp
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The normalized weight has the following relationship with the target density, )(xp , and the 

importance density, )(xr : 
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 (2-29) 

The importance density should be chosen so that it can be determined recursively as  

 ),|(),,|(),|( 2:01:11:01:0:11:01:0:1:0 −−−−−− ⋅= kkkkkkkkkk uzxruzxxruzxr . (2-30) 

When the importance density also satisfies the Markov property same as the target density, (2-29) is 

rewritten as 
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To simplify (2-31), the importance density can be chosen from prior as 

 ),|(),,|( 1111 −−−− = kkkkkkk uxxpuzxxr . (2-32)  

Then, (2-31) can be rewritten as 

 )|(1
i
kk

i
k

i
k xzpww ⋅∝ − . (2-33) 

The problem with this type of PF is that only one particle will have high weight (close to unity) 

and the remaining particles will have negligible weights (almost zero) when k is high.  This 

phenomenon, called a degeneracy problem, is undesirable because the weighted particles do not 

represent the true posterior density.  In order to avoid this problem, particles can be resampled based 

on their weights.  Resampling draws more samples from the higher weights and reduces the number 

of samples from the lower weights.  After resampling, all the particles are assigned the same weight; 

thus, the weights at time 1−kt  are the same ( Nw
i
k /11 =− ).  Then, (2-33) becomes 

 )|( i
kk

i
k xzpw ∝ . (2-34) 

After resampling at time kt , (2-26) can be written as 

 ∑
=

− −≈
N

t

i
kkkkk xx

N
uzxp

1

1:0:1 )(
1

),|( δ . (2-35) 

Some approaches in the literature propose to calculate the weights based on the “fitness” value 

[95], [96] or the “evidence” value [97], [98] of each particle to represent the likelihood in (2-4).   

2.2 Fuzzy Expert Systems 

Fuzzy expert systems, a branch of artificial intelligence, are very powerful decision-making tools 

and are used for quality control algorithms in various industries including textile companies [99], 

steel companies [100], and PCB manufacturing [101].  The main components of an expert system are 

a knowledge base, reasoning mechanism, and user interface [102].  The knowledge base in a classical 

expert system is constructed with facts and rules that are expressed in Boolean logic.  Rules are often 

expressed in a form of ‘IF A, THEN C’ where A is a set of antecedent conditions, and C is a set of 

consequences.  In classical crisp logic, the consequence, C, is true when the antecedent, A, is 

perfectly satisfied.  As discussed in section 1.2, position sensors do not always output reliable 

measurement.  As a result, fuzzy expert systems are proposed in various position tracking 
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applications including a GPS/IMU hybrid system [106]-[108] and an Ultrasonic/IMU hybrid sensor 

[109] due to the ability to estimate outputs when sensor measurements have uncertainties. 

2.2.1 Fuzzy Set 

A fuzzy expert system utilizes fuzzy sets [103] and fuzzy logic [104]-[105] and allows for the 

computation of a partially true consequence based on how much the antecedent is satisfied.  A fuzzy 

set, F, is defined on a universe discourse and can be described in terms of the membership function.  

The fuzzy membership function can take any value between 0 and 1, where 0 indicates false 

(complete non-membership) and 1 indicates true (complete membership).  The value between 0 and 1 

represents a partial membership to the fuzzy set.  The fuzzy set is a generalization of crisp sets where 

the governing axioms are relaxed to allow for partial membership.  A fuzzy set of generic elements, x , 

and its membership function, µF(x), can be represented as follows: 

( )

( )







=
∑

∫

U

F

U

F

x

x

F
µ

µ
 

x if U is continuous 

x if U is discrete 

DeMorgan’s law, laws of contradiction and the excluded middle are also investigated for these 

operations.  Motivated by their crisp counterparts, for any two fuzzy sets, A and B, the fuzzy union, 

intersection and complement is defined as: 

 

( ) ( ) ( )[ ]
( ) ( ) ( )[ ]

( ) ( )xx

xxx

xxx

AA

BABA

BABA

µ−=µ

µµ=µ

µµ=µ

1

,min

,max

I

U

 (2-36) 

The fuzzy set theory can be viewed as an extension of the classic crisp set theory where 

DeMorgan’s Law holds.  However, the laws of contradiction and excluded middle in a crisp set may 

not be true for fuzzy operations due to a partial membership.  For example, the following can be true 

in a fuzzy set: 

 
∅≠

≠

AA

UAA

I

U
 (2-37) 
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2.2.2 Fuzzy Logic 

By applying the fuzzy set to the classical crisp logic, fuzzy logic is derived.  The fundamental 

axioms of the fuzzy logic are: (i) each fuzzy proposition has a membership degree between 0 and 1, 

(ii) each fuzzy proposition is a collection of linguistic terms and fuzzy operations, (iii) the terms of 

fuzzy proposition are defined within the fuzzy set domain, and (iv) the fuzzy logic operators 

combining fuzzy propositions are conjunction, disjunction, negation and implication.  In fuzzy logic, 

a proposition is a combination of terms that are defined within the boundaries of the fuzzy set theory.  

A fuzzy rule is also expressed in the form of ‘IF A THEN C’ like the classical crisp logic, but both A 

and C have their own membership function.  The membership function measures the degree of truth 

of the implication.  

The fuzzy logic system provides a method of mapping an input space to an output space. The 

mapping is achieved by transforming the crisp inputs to the membership values of a fuzzy set.  This 

process is called fuzzification, and an example is shown in Figure 2-1.  When the input value is X1 or 

X3, the membership degree becomes 0.5, and when the input value is X2, the membership value is 1.  

The membership degrees of the fuzzy set are processed by using the fuzzy inference mechanism and 

fuzzy rules incorporated in the rule-base and yield a fuzzy output.  This fuzzy output is transformed 

back into crisp outputs.  This inverse process of fuzzification is called defuzzification.  Many 

defuzzifiers have been proposed and the following five difuzzifiers are widely used: maximum 

defuzzifier, mean of maxima defuzzifier, centroid defuzzifier, height defuzzifier, and modified height 

defuzzifier.  
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Figure 2-1: Fuzzification example. 
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In a fuzzy expert system, fuzzy rule-base is a collection of rules based on expert knowledge to 

identify the state (or output) of the given system by using the inputs.  A fuzzy rule with multiple 

antecedents and a single conclusion in Mamdani’s style is described as follows:   

 

IF x1 is Al,1  � … x2 is A2,j …�  xd is Aj,d  THEN  y is Cl 

 

where x1,…, xd are the input space, and y the output, subscript j is the rule number, j=1,…,d is the 

index for the inputs, and  Aj,d and C1, are fuzzy sets, and � denotes a fuzzy operation such as ‘AND’, 

‘OR’. In Mamdani’s rule, the consequence of the rule itself is a fuzzy set.  Although each set of 

antecedent can have multiple inputs, each set has a single membership degree value.  The 

membership degree derived from each antecedent is used to reshape the rule’s output.  An example of 

an inference mechanism is given in Figure 2-2.  For example, The rules are given as follows: 

 

Rule 1: IF x1 is Al,1 AND x2 is Al,2 THEN  y1 is max[u1(X1), u2(X2)] and 

Rule 2: IF x1 is A2,1 AND x2 is A2,2 THEN y2 is min[u1(X1), u2(X2)]. 

 

The membership degree based on Input 1 in Rule 1 is 0.3 and the membership degree based on Input 

2 in Rule 1 is 0.5.  Since Rule 1 states to find the maximum of the two inputs, the membership degree 

of the output of Rule 1 (y1) is 0.5, and the membership function of y1 becomes the shaded shape of 

the output of Rule 1.  For Rule 2, the membership based on the output (y2) is 0.4, and the 

membership function is shown as the shaded shape of the output in Rule 2.  The results of each rule 

are added to get the crisp output value through defuzzification.  When the centroid defuzzifier is used, 

output y1 and output y2 are added and the centre of gravity value is chosen as the output.   
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Figure 2-2: Inference mechanism. 
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Chapter 3 

Accelerometer Calibration Technique 

This chapter presents a novel triaxial accelerometer calibration method that does not require any 

additional sensor but guarantees a high accuracy.  The proposed triaxial accelerometer calibration 

method utilizes the gravity vector and the mathematical model of the triaxial accelerometer 

calibration parameters; three gains and three biases.  This method only requires the triaxial 

accelerometer to be stationary in six different tilt angles to estimate six calibration parameters and 

does not require any knowledge of the tilt angles.  Since this calibration method does not require any 

additional sensor but offers a high accuracy, it is suitable for a variety of applications including 

industrial applications.   

3.1 Overview 

Figure 3-1 summarizes the calibration parameter estimation steps and the process of conversion 

from the triaxial accelerometer outputs to accelerations.  If the calibration parameters are available, 

the accelerometer data are converted from voltage to acceleration, but if the calibration parameters are 

not available, the proposed method outputs the accelerometer measurements.  The fundamental basis 

of the proposed triaxial accelerometer calibration method is that the vector sum of the acceleration 

measurement by using a triaxial accelerometer is equal to the gravity vector when the sensor is 

stationary.  Since a triaxial accelerometer has six unknown calibration parameters, three gains and 

three biases, it has to be placed in six different tilt angles to obtain six equations as shown in Figure 3-

2.  The stationary state is identified by using an expert system.  When the six tilt angles are measured 

for calibration, the sensor should be rotated in at least two different axes.  If the sensor is rotated in 

only one axis, one of the three accelerometers will not be calibrated.  When the accelerometer output 

readings in six different tilt angles are collected, the six calibration parameters can be estimated from 

the derived equations.   

When the sensor is stationary, the relationship between the local gravity vector ( lg ) and the 

accelerations in X, Y, and Z axis (AX, AY, and AZ, respectively) is  

 2222
)( lZYX gAAA =++ .  (3-1) 
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Figure 3-1: Flow chart diagram of the proposed triaxial accelerometer calibration method. 

 

Figure 3-2: Calibration procedure: the proposed calibration method requires six different tilt 

angle measurements to determine six calibration parameters. 

The relationship between the accelerometer outputs in each axis ( axisS ) and the true acceleration in 

each axis ( axisA ) can be written as 

 axisaxisaxisaxis BAGS +⋅= ,  (3-2) 

where axisG  is the true gain of each axis and axisB is the true bias of each axis.  Therefore, the squares 

of the triaxial accelerometer system outputs are described as 

 .)()()( 222222

zzzyyyxxxzyx BAGBAGBAGSSS +⋅++⋅++⋅=++   (3-3) 

When the accelerometer is stationary, (3-1) holds, and (3-3) can be expanded as  
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.)(2)1(

2)1(

2)1(

2222

222

222222

lzzzzzz

yyyyyy

xxxxxxzyx

gBBAGAG

BBAGAG

BBAGAGSSS

++⋅⋅⋅+⋅−+

+⋅⋅⋅+⋅−+

+⋅⋅⋅+⋅−=++

 (3-4) 

When all three true gains are unity and all three true biases are zero, the accelerometer system output 

of each axis is equal to the acceleration.  Otherwise, there should be an error term (Error) due to the 

gain error and the bias error where the gain error is defined as the gain minus unity, and the bias error 

is the bias minus zero.  Thus, (3-4) is represented as 

 
.

2222

2222

lzyx

lzyx

gSSSError

ErrorgSSS

−++=

+=++
  (3-5) 

By substituting (3-5) into (3-4), the error term can be described as 

 

.2)1(

2)1(

2)1(

222

222

222

zzzzzz

yyyyyy

xxxxxx

BBAGAG

BBAGAG

BBAGAGError

+⋅⋅⋅+⋅−+

+⋅⋅⋅+⋅−+

+⋅⋅⋅+⋅−=

  (3-6) 

The error term of (3-6) can be determined from (3-5).  However, since the acceleration terms are 

unknown, the acceleration terms of (3-6) should be replaced with the known accelerometer system 

output terms.  Then, (3-6) is rewritten as 

 
).///(/2)/11(

/2)/11(/2)/11(

222222222

222222

zzyyxxzzzzz

yyyyyxxxxx

GBGBGBGBSSG

GBSSGGBSSGError

++−⋅⋅+⋅−+

⋅⋅+⋅−+⋅⋅+⋅−=
 (3-7) 

Eq.  (3-7) has six unknowns, and the last term, )///(
222222

zzyyxx GBGBGB ++ , is non-linear and 

has six unknowns.  Thus, to determine all six unknowns, this problem should be solved by using an 

iterative method.   

3.2 Iteration Method to Calculate Axes Gains and Biases 

The proposed calibration method uses an iterative method to calculate the gains and biases of each 

axis of a triaxial accelerometer.  To implement an iterative method, (3-2) should be rewritten so that it 

fits the method.  Thus, (3-2) is rewritten as  
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where iaxisG ,

~
represents the calculated gain of each axis at the i

th iteration, iaxisB ,

~
 represents the 

calculated bias of each axis at the ith iteration, kaxisA ,
ˆ  is the estimated acceleration of each axis at the 

k
th iteration, kaxisG ,

ˆ  is the estimated gain of each axis at the kth iteration, and kaxisB ,
ˆ  is the estimated 

bias of each axis at the kth iteration.  Given that the true gains are real positive numbers and the true 

biases are real numbers, the initial estimated gain of each axis ( 0,
ˆ

axisG ) can be chosen from any 

positive real number, and the initial estimated bias of each axis ( 0,
ˆ

axisB ) can be chosen from any real 

number.   

When the iterative method converges, the estimated gains and biases at the k
th iteration should 

match their true counterparts.  Thus, the objective of the iterative method is to determine the 

calculated gains of each axis ( kaxisG ,

~
) and the calculated biases of each axis ( kaxisB ,

~
) that satisfy 
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−
. (3-9) 

From (3-8), the estimated acceleration at the (k-1)th iteration is 

 1,1,1,
ˆ/)ˆ(ˆ

−−− −= kaxiskaxisaxiskaxis GBSA .      (3-10) 

Since the accelerometer outputs are known as well as the previous estimated gains and biases, the 

acceleration of each axis at the (k-1)th iteration can be calculated by using (3-10).  When the 

accelerometer is stationary, (3-1) holds.  If 1,
ˆ

−kaxisA  does not match the true acceleration of each axis 

( axisA ), an error is encountered.  The error term at the (k-1)th iteration is 

.)ˆ/)ˆ(()ˆ/)ˆ(()ˆ/)ˆ((
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22
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 (3-11) 

Since all the terms in (3-11) are known, 1−kE  can be calculated.  By using (3-1), (3-11) is written as 
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The true acceleration terms in (3-12) are replaced with the known accelerometer terms from (3-8) and 

(3-9).  Then, (3-12) can be expanded as  
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−ε .  Eq.  (3-13) has six unknowns and 

the last term, 1−kε , is nonlinear with all six unknowns.  However, when the iterations converge, 1−kε  

becomes almost zero because the calculated bias terms ( kXB ,

~
, kYB ,

~
, and kZB ,

~
) are expected to 

converge to zero.  By setting 1−kε  zero, (3-13) can be rewritten as 
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To solve for the six calibration parameters, a triaxial accelerometer should be placed in six 

different tilt angles.  Then, (3-14) becomes a 6 by 1 matrix such that 
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Matrix ][ 1−kError  can be calculated from (3-11), and Matrix ][ 1−kAccel  can be calculated from (3-10).  

Since Matrix ][ 1−kError  and Matrix ][ 1−kAccel  are known, Matrix ][ kCal  is calculated as 

 ][][][ 1
1

1 −
−

− ⋅= kkk ErrorAccelCal .  (3-16) 

From Matrix ][ kCal , three calculated gains at the kth iteration should be determined first from the 

first three rows.  Then, with the square of the calculated gains at the kth iteration and the estimated 

gains at the (k-1)th iteration, three calculated biases at the kth iteration can be determined from the last 

three rows.  The gains, however, must be real positive numbers.  To ensure that the calculated gains 

are positive real numbers, the calculated gains are calculated as 
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where subscript 1, 2, and 3 represent the row number of ][][ 1
1

1 −
−

− ⋅ kk ErrorAccel matrix. 

After the six unknowns are determined, the estimated gains and biases at the k
th iteration are 

obtained from (3-9).  This iterative method terminates when the three calculated gains converge to 

unity and the three calculated biases converge to zero.   

3.3 Numerical Analysis 

In experiments, it is difficult to validate the calibration results because the true gains and biases are 

unknown.  In addition, accelerometers have many sources of error such as non-linearity, 

misalignments, and cross-axis sensitivity.  In simulations, however, the true gains and biases can be 

defined to allow for validating the iterative calibration technique proposed in subsection 3.1.2 without 

the sensor errors.  The simulation procedure is depicted in Figure 3-3.   
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Figure 3-3: Procedure for the simulation calibration and parameter validation. 

The true gains and biases are defined for the simulation, and the accelerometer data are generated 

with MATLAB based on the true gains, true biases, gravity, and the movement of the accelerometer.  

Then, by using the proposed calibration method, the gains and biases are estimated.  Unity gains and 

zero biases are chosen to initialize the iterative algorithm.  When the final estimated gains and biases 

are calculated with the proposed calibration method, they are compared with the true gains and biases.   

One hundred simulations were performed with gains between 0.001 and 1000 [V/(m/s2)] and 

biases between ±100V.  The six stationary tilt angles had at least 2º difference for the simulations 

because when the tilt angle differences are less than 1.5º, the gain and bias errors start to increase due 

to the computer software precision limitations.  Five distinct results of the hundred simulations are 

presented in Table 3-1 and the tilt angle data for the five simulations are shown in Figure 3-4.  For the 

first simulation (Simulation 1 of Table 3-1), all the biases are set to zero.  The second simulation 

consists of high gains and high biases, and the third simulation contains low gains and low biases.  

Simulation 4 consists of a mixture of high and low gains and biases, and Simulation 5 has low gains 

and high biases.  Simulation 1 converges on the first iteration because the initial estimated biases 

match the true biases.  In this case, 0ε  in (3-13) becomes zero, and the gains and biases can be 

accurately calculated by using (3-14).  Simulation 2 to 4 indicate that the biases converge on the first 

iteration, and the gains converge on the second iteration.  Simulation 5 has high biases and low gains 

that create a high 0ε  in (3-13).  Due to high 0ε , Simulation 5 requires more iteration steps than the 

other four simulations.  For all one hundred simulations, the gains and biases converge to the correct 

values within three iteration steps. 
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Figure 3-4: Tilt angle contents of the simulations: tilt angles for (a) Simulation 1, (b) Simulation 

2, (c) Simulation 3, (d) Simulation 4, and (e) Simulation 5. 

 

Table 3-1: Simulation results with different gains and biases. 

Number of 

iterations 

GX 

[V/(m/s2)] 

GY 

[V/(m/s2)] 

GZ 

[V/(m/s2)] 

BX 

(V) 

BY 

(V) 

BZ 

(V) 

Simulation 1 Result 

True value 0.24 712 32 0 0 0 

1 - converged 0.24000 712.00 32.000 0.00000 0.00000 0.00000 

Simulation 2 Result 

True value 1000 500.0 400 100.0 -100 -25 

1  999.72 499.86 399.89 100.00 -100.00 -25.000 

2 - converged 1000.0 500.00 400.00 100.00 -100.00 -25.000 

Simulation 3 Result 

True value 0.001 0.5 0.4 -0.1 0.5 -1 

1 0.010148 5.0741 4.0593 -0.10000 0.50000 -1.0000 

2 - converged 0.0010000 0.50000 0.40000 -0.10000 0.50000 -1.0000 

Simulation 4 Result 

True value 0.06 300 1.4 -11 -1.5 80 

1 1.1730 5864.9 27.369 -11.000 -1.5000 80.000 

2 - converged 0.060000 300.00 1.4000 -11.000 -1.5000 80.000 

Simulation 5 Result 

True value 0.001 0.002 0.001 -100 100 100 

1 15.191 30.489 15.409 -99.155 100.77 100.17 

2 0.096219 0.19244 0.096219 -100.00 100.00 100.00 

3 - converged 0.0010000 0.0020000 0.0010000 -100.00 100.00 100.00 
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3.4 Experiments 

The proposed calibration method was tested with two different triaxial accelerometers.  The first 

triaxial accelerometer consists of three identical single-axis accelerometers, and the second triaxial 

accelerometer is assembled with two different biaxial accelerometers that have different gains.  The 

experimental system setup is shown in Figure 3-5.  One triaxial accelerometer is connected to a data 

acquisition card (DAQ) which is connected to a computer.  Since both the triaxial accelerometer and 

the data acquisition card have their own gains and biases, the proposed calibration method determines 

the gains and biases of the combined system (hereafter accelerometer system).   

 
Figure 3-5: Experimental system setup. 

The six sides of the accelerometer were placed on a table for calibration because such a procedure 

is the easiest way to make a sensor stationary in six different tilt angles and also minimizes the effects 

of the sensor errors such as nonlinearity on the calibration parameter calculation.  In order to identify 

the stationary state and collect the six stationary state sensor data, an expert system is used.  When the 

accelerometer is stationary, the acceleration in each axis should be constant.  Thus, when the 

accelerometer measurements of each axis do not fluctuate with a magnitude that exceeds the 

maximum noise level of the accelerometer system for a certain period of time, it is assumed that the 

accelerometer is stationary.  When the sensor is calibrated by a person, two seconds is a sufficient 

time period to identify the stationary state because it is unlikely for a person to maintain the same 

acceleration for two seconds unless the sensor is stationary.  Instead of using instantaneous 

accelerometer outputs in each axis ( axisS ), the average accelerometer outputs in each axis are used to 

minimize the effect of noise in the experiment. 

The accurate magnitude of the local gravity vector must be known to solve (3-11).  In this 

experiment, 9.8036 m/s2 is used for the magnitude of the local gravity vector (Kitchener-Waterloo, 

Ontario, Canada) [110].  Unity gains are used for the initial estimated gains because a unit gain is far 
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from the specs of both triaxial accelerometers.  For the initial estimated biases, two values are 

selected: the bias voltages from the accelerometer specs, which are close to the true biases and 10V 

which is far from the biases of both triaxial accelerometers.  Since the true gains and biases are not 

available in the experiments, the estimated gains and biases cannot be compared with their true 

counterparts.  However, if the estimated gains and biases match their true counterparts, the 

accelerations measured with an accelerometer at stationary state should match the true accelerations 

that are calculated from the tilt angle measurements.  Thus, to verify if the final estimated gains and 

biases match their true values, the acceleration measurements after calibration are compared with the 

accelerations calculated from the gravity vector.  The simulations were generated based on the final 

estimated gains and biases that are obtained from the experiments with 10V initial estimated biases 

for comparison.  The experimental test procedure is summarized in Figure 3-6. 

3.4.1 Experiments Using a Triaxial Accelerometer with Three Identical Single-Axis 

Accelerometers 

A commercially available triaxial accelerometer (Colibrys, SF3000L) is selected for the first set of 

experiments.  This accelerometer consists of three almost perfectly perpendicular single-axis 

accelerometers that have almost the same gains and biases.  After the accelerometer was calibrated by 

rotating the sensor in six different tilt angles, the sensor was placed on a milling vise as shown in 

Figure 3-7.  Then, the sensor was held stationary for a while at 0°, 30°, 45°, 60°, and 90° with respect 

to the gravity vector as presented in Figure 3-8 to validate the estimated gains and biases.  These 

reference tilt angles were measured with a mechanical inclinometer (Hilger & Watts, TB121-1). 

Figure 3-6: Procedure for the calibration experiment and parameter validation. 
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Figure 3-7: Colibrys triaxial accelerometer on a 3-way milling vise: the sensor axes (XY) and 

the fixed frame axes (xy).   

   

(1) Initial orientation         (2) rotate -30° about x-axis 

from (1) 

(3) rotate -45° about x-axis 

from (1) 

   

(4) rotate 30° about x-axis 

from (1) 

(5) rotate 45° about x-axis 

from (1) 

(6) rotate 30° about y-axis 

from (1) 
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(7) rotate 60° about y-axis 

from (1) 

(8) rotate 90° about y-axis 

from (1) 

(9) rotate 30° about x-axis 

from  (8)     

   

(10) rotate 45° about x-axis 

from (8)            

(11) rotate -30° about x-axis 

from (8)             

(12) rotate -45° about x-axis 

from (8)             

Figure 3-8: Rotation sequence of a triaxial accelerometer on a 3-way milling vise after 

calibration and the fixed frame (xyz). 

Since the calibration parameters change whenever an accelerometer is powered on, three 

calibration tests are conducted to check if the proposed method can accurately estimate the calibration 

parameters in all three cases.  Each test used unity initial estimated gains and two different sets of 

initial estimated biases: 0V and 10V.  Figure 3-9 illustrates the simulation and experiment 

convergence steps of the calibration when the initial estimated biases are close to the true biases of 

y 

z 
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the accelerometer system ( 0,
ˆ

axisB = 0V).  This figure indicates that the experiment convergence steps 

almost agree with the simulation steps.  Figure 3-10 displays the simulation and experiment 

convergence steps of calibration when the initial estimated biases are far from the true biases ( 0,
ˆ

axisB = 

10V).  Figure 3-10 shows noticeable mismatches between the simulation steps and the experiment 

steps on the first iteration while Figure 3-9 exhibits small mismatches.  These mismatches could be 

caused by the triaxial accelerometer system error such as nonlinearity and misalignment.  The sensor 

errors create error in Matrix ][ 1−kAccel .  When 1−kε  in (3-13) is small, the experiment steps almost 

match the simulation steps (Figure 3-9) because the multiplication of the inverse of Matrix 

][ 1−kAccel and 1−kε  is small.  However, when 1−kε  is large, the multiplication of the inverse of 

Matrix ][ 1−kAccel and 1−kε  is large.  Thus, the mismatch between the simulations and experiments 

becomes significant as shown in Figure 3-10.  Due to these sensor errors, the experiments of both 

Figure 3-9 and Figure 3-10 converge on the third iteration while the simulations converge on the 

second iteration. 

The gains and biases of the simulations were generated based on the estimated gains and biases of 

the experiments with 10V initial estimated biases.  Therefore, Figure 3-10 shows that the gains and 

biases of simulations (dotted lines) perfectly match the experimental results (solid lines) after 

convergence.  Also, Figure 3-9 shows that the experimental results perfectly match the simulation 

results when the initial estimated biases are zeros.  These results demonstrate that regardless of the 

initial estimated bias values, the converged calibration parameters are the same.   
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Figure 3-9: Calibration of SF3000L accelerometer system when the initial estimations of biases 

are 0V: experiment and simulation results. 
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Figure 3-10: Calibration of SF3000L accelerometer system when the initial estimations of biases 

are 10V: experiment and simulation results. 

The result of Experiment 3 in Figure 3-9 is analyzed in Figure 3-11.  Figure 3-11 (a) illustrates the 

acceleration measurements before and after calibration, and Figure 3-11 (b) displays the tilt angle 

measurements by the following calculation.  
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where θaxis represents the tilt angle of each axis in degree.  The horizontal grid lines represent the 

accelerations and tilt angles induced by the rotations illustrated in Figure 3-8. 

For the first 35 seconds, the accelerometer is calibrated by placing it in six different tilt angles.  

During this period, Figure 3-11 (a) demonstrates that the magnitudes of the accelerations are not close 

to the magnitude of the gravity vector because the initial estimated gains and biases do not match the 

true values.  However, after 35 seconds, the accelerometer is calibrated, and the magnitude of the 

acceleration almost matches the magnitude of the gravity vector.  Figure 3-11 (b) shows that the tilt 

angle measurements with the accelerometer after calibration are stationary at 0°, 30°, 45°, 60°, and 

90° with the same sequence of rotation displayed in Figure 3-8. 
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Figure 3-11: Measurements with the SF3000L triaxial accelerometer system: (a) acceleration 

measurements and (b) tilt angle measurements using (3-18). 

A small acceleration error exists due to the errors of the accelerometer and the data acquisition 

card.  The sources of errors are investigated and compared with the acceleration error after calibration.  

SF3000L has a 0.1% nonlinearity error, 0.5° misalignment error, and 0.5% cross-axis sensitivity.  

Also, the accelerometer is connected to a computer through a DAQ (Measurement Computing, PCI-

DAS-1602/16) that contains a nonlinearity error and cross-talk.  The specifications of the data 

acquisition card indicate that the nonlinearity error is ±5 least significant bits (LSB), and the 

maximum cross-talk error is ±2 LSB.   
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The acceleration errors of all three experiments and the error margin of the accelerometer system 

are analyzed in Figure 3-12.  The figure denotes that the acceleration RMS error is 0.09 m/s2 at 0° and 

decreases as the tilt angle increases.  This occurs because the effects of the misalignment error and the 

cross-axis sensitivity error are the maximum at 0°.  The maximum acceleration error is 0.14 m/s2 at 0° 

and tends to decrease as the tilt angle increases.  Figure 3-12 shows that the maximum acceleration 

error of each axis is below the error margin of the accelerometer system.   
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Figure 3-12: Error comparison among the acceleration RMS error, the maximum acceleration 

error, and the margin of error of the SF3000L triaxial accelerometer system. 

The experimental results demonstrate that the proposed calibration method accurately estimates 

the calibration parameters when three single-axis accelerometers have almost the same gains and 

biases.  In addition, the experimental results demonstrate that even when the initial estimated biases 

are different, the proposed calibration method generates accurate results. 

3.4.2 Experiments Using a Triaxial Accelerometer with Different Gains  

For the second set of experiments, a triaxial accelerometer is assembled with two biaxial 

accelerometers (MA-A202 and MA-A210, Mechworks Systems Inc.) that have different gains.  MA-

A202 has a gain three times higher than MA-A210.  This triaxial accelerometer (hereafter referred to 

as a Mechworks triaxial accelerometer) is assembled with two axes (X, Y-axis) of MA-A202 and one 

axis (Z-axis) of MA-A210 (Figure 3-13).   
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Figure 3-13: Triaxial accelerometer which consists of two biaxial accelerometers, the sensor 

axes (XY), and the fixed frame axes (xy). 

After the sensor is calibrated, it was held stationary on a milling vise at 0°, 30°, 45°, 60°, and 90° 

with respect to the gravity vector as shown in Figure 3-8 for validation.  Three calibration tests were 

conducted.  Each test comprised two different sets of initial estimated biases: 2.5V and 10V.  Figure 

3-14 shows the simulation and experiment results when the initial estimated biases are close to the 

true biases of the accelerometer system ( 0,
ˆ

axisB = 2.5V), and Figure 3-15 shows the simulation and 

experiment results of the calibration when the initial estimated biases are far from the true biases 

( 0,
ˆ

axisB = 10V).  The experimental results of the Mechworks triaxial accelerometer have the same 

trend as the experimental results of SF3000L.  Figure 3-14 demonstrates that the experiment steps 

agree with the simulation steps while Figure 3-15 does not.  In both cases, the experimental results 

reveal that the calibration parameters converge to the same values within three iterations.  

The experimental results of Experiment 3 in Figure 3-14 are expanded in Figure 3-16.  Figure 3-16 

(a) shows the acceleration measurements, and Figure 3-16 (b) shows the tilt angle measurements 

converted from the acceleration measurements by using (3-18).  The first 36 seconds of Figure 3-16 

reflect the calibration period where the initial estimated gains of each axis are unity and the initial 

estimated biases of each axis are 2.5 V.  Since the Mechworks accelerometers have true gains less 

than 0.04 V/(m/s2)  and the initial estimated biases almost match the true biases, the first 36 seconds 

of Figure 3-16 (a) shows the acceleration signal around 0 V with very small fluctuations.  However, 

after calibration, the two figures in Figure 3-16 illustrate that the acceleration measurements match 

the accelerations induced by the rotation sequence illustrated in Figure 3-8.   
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Figure 3-14: Calibration of the Mechworks triaxial accelerometer system when the initial 

estimations of biases are 2.5V: experiment and simulation results.   
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Figure 3-15: Calibration of the Mechworks triaxial accelerometer system when the initial 

estimations of biases are 10V: experiment and simulation results. 
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Figure 3-16: Measurements with the Mechworks triaxial accelerometer: (a) acceleration 

measurements and (b) tilt angle measurements using (3-18). 

The specifications of the Mechworks accelerometers denote that they have a 0.2% nonlinearity 

error, 1° misalignment error, and 2% cross-axis sensitivity.  The accelerometers were connected to a 

computer through the same data acquisition card that is used to connect the Colibrys triaxial 

accelerometer.  Figure 3-17 relates the acceleration RMS error, the maximum error, and the margin of 

error of MA-A202 and MA-A210 with the data acquisition card.  Figure 3-17 shows that the 

acceleration RMS error is 0.10 m/s2 at 0° and tends to decrease as the tilt angle increases.  The 

maximum acceleration error is 0.16 m/s2 at 0° and tends to decrease as the tilt angle increases.  The 

maximum error of the system is within the margin of error of both accelerometer systems.  The 

experimental results of the Mechworks triaxial accelerometer demonstrate that the proposed 

calibration method can accurately estimate the gains and biases of a triaxial accelerometer with 

different gains.   
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Figure 3-17: Error comparison among the acceleration RMS error, the maximum acceleration 

error, and the margins of error of the MA-A202 and MA-A210 accelerometer system.   

3.5 Conclusion 

This chapter presented a novel calibration method that determines the gains and biases of a triaxial 

accelerometer by placing the sensor in six different tilt angles.  The presented method was developed 

by using the mathematical model of gains and biases.  To validate the proposed calibration method, 

simulations and experiments were performed.    

The simulation results demonstrated that the proposed calibration method accurately estimated the 

gains and biases within three iterations.  Since the true gains and biases were not available in the 

experiments, the accelerations measured with an accelerometer after calibration were compared with 

the true accelerations calculated from the gravity vector to validate the estimated gains and biases.  

The first set of experiments was performed by using a triaxial accelerometer consisting of three 

single-axis accelerometers that have almost the same gains and biases.  The acceleration RMS error 

of the accelerometer after calibration was 0.09 m/s2, and the maximum error was within the margin of 

error of the accelerometer system.  The second set of experiments was conducted by employing a 

triaxial accelerometer that has two different gains and almost the same biases.  The acceleration RMS 

error of the Mechworks triaxial accelerometer after calibration was 0.10 m/s2, and the maximum error 

was within the margin of error of the accelerometer system.   

From the simulations and experiments, it is concluded that the proposed calibration method can be 

adapted to estimate the calibration parameters accurately.  The proposed calibration method follows a 
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very simple procedure and has a low computational cost.  In addition, this method does not require 

any prior knowledge of the accelerometer calibration parameters nor the six tilt angles that are needed 

to implement the iterative approach for the proposed calibration method. 

The proposed method is especially useful for a low cost triaxial accelerometer whose initial 

estimated gains and biases highly vary from power-on to power-on because the simulation and 

experiment results indicate that the gains and biases can be accurately estimated even when the initial 

estimated gains and biases are not close to the true value.   
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Chapter 4  

Fastened Bolt Tracking System Using an IMU and a Triaxial 

Magnetometer with an Expert System 

4.1 Proposed Tracking System 

In some automotive parts, the bolts are not closely placed or the bolt orientations are different.  In 

such cases, a cost-effective position/orientation tracking solution with a sufficient accuracy is 

desirable.  This chapter proposes a cost-effective fastened bolt tracking system by using an IMU and a 

triaxial magnetometer.     

In order to calculate position from IMU measurements, the accelerations need to be integrated 

twice and the angular velocities need to be integrated once.  However, since the sensor errors are also 

factored in the integration steps, the position errors increase over time as shown in Figure 1-1.  In 

order to reduce the position error of a down-hole drill, ZUPT was utilized in [111].  ZUPT zeros 

velocity whenever the object is stationary, and the position error is reduced by subtracting the 

position accumulation error caused by the average velocity error.  To achieve high accuracy with 

ZUPT, a short time span between the stationary states is desirable.  Thus, ZUPT is widely used to 

track the location of a person by attaching a low cost IMU on a shoe [112]-[114] because the time 

span between each foot step (stationary state) is very short.   

For a fastening procedure of the manufacturing environment, an operator picks up a tool from the 

tool holder and fastens all the bolts, and then places the tool back to the tool holder.  This entire 

procedure usually takes less than one minute.  The tracking system should be able to detect when the 

tool is placed on the tool holder to correct the position and orientation error.  In addition, the system 

should be able to detect the stationary state and the fastening action to use ZUPT.    

The method to accomplish the aforementioned is described in Figure 4-1.  First, the IMU must be 

calibrated to estimate the position and orientation as accurately as possible.  By using the calibrated 

IMU measurements, the position and orientation of the tool are calculated.  Even if an IMU is well-

calibrated, the position error grows over time due to the integration steps.  Therefore, an expert 

system is proposed to correct the position, velocity, and orientation errors.  By using the corrected 

position and orientation of the IMU, the tool tip position and orientation are calculated. 
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Figure 4-1: Overview of the position/orientation sensing system. 

4.2 Orientation Representations  

An IMU is rigidly strapped down to an object being tracked to measure the linear accelerations 

and angular velocities in terms of the object body frame.  To define the orientation of the object with 

respect to a reference frame, a rotation matrix that describes the transformation from the body frame 

to the reference frame is required.  In this section, two rotation matrix representations are described: 

the direction cosine matrix and the quaternion [115]. 

4.2.1 Direction Cosine Matrix 

A direction cosine matrix consists of three unit vectors that represent three body axes projected on 

three reference axes.  These three unit vectors form three columns of a direction cosine matrix.  The 

direction cosine matrix from the tool frame to the local fixed frame is described as follows:  
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where subscript x, y, z are the orthogonal unit vectors of the tool frame and X, Y, Z are the 

corresponding vectors of the reference frame.  mMc  is the cosine of the angle between vector m in the 

body frame and vector M in the body frame. 

4.2.2 Quaternion 

The quaternion orientation representation is widely used to calculate the orientation of the body 

frame with respect to a reference frame.  The quaternion representation obtains a rotation matrix with 

a single rotation about one axis in space.  This method uses a concept of the hyper-complex number 

of rank 4: one real number and three imaginary numbers.  A quaternion q is written as 

 )( 32100 kqjqiqqqqq v +++=+= . (4-2) 

The imaginary numbers follow the right hand rule such that 

kij = , kji −= , ijk = , ikj −= , jki = , jik −= , and 1222 −=== kji . 

In order to use quaternion to determine the orientation in a 3D vector space, the real part of a 

quaternion v needs to be zero ( kvjvivv zyx +++= 0 ).  This also means that the real part of a 3D 

vector v should be zero once rotated by quaternion q.  To satisfy this condition, the 3D vector is 

multiplied by quaternion q and the conjugate of quaternion q, denoted as q*, as follows: 

 *qvqv ⋅⋅=′ , (4-3) 

where vector v’ is the rotated 3D vector.  The conjugate of the quaternion q is defined as 

 kqjqiqqqqq v 32100* −−−=−= .  (4-4) 

The resultant multiplication of (4-3) should form a cosine matrix multiplication by the 3D vector v 

expressed as 

 *qvqvC
f
t ⋅⋅=⋅ . (4-5) 

From (4-5), the rotation matrix becomes 
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When a unit quaternion is used, (4-2) should satisfy 
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 1)(
2

3

2

2

2

1

2

0 =+++ qqqq .  (4-7) 

Then, (4-2) can be written as  

 θθ sincos0 uqqq v +=+= .  (4-8) 

where u  is a unit vector ( kujuiuu zyx ++= ).  Then, when the vector v is rotated by angle θ by 

applying (4-3), the quaternion components of q become 

 
2

cos0

θ
=q , 

2
sin1

θ
⋅= xuq , 

2
sin2

θ
⋅= yuq , and 

2
sin3

θ
⋅= zuq .    (4-9)  

The rotation angle is divided by a factor of 2 in (4-9) because the vector v was rotated by θ twice: 

about both q and q*.  The detailed derivation of quaternion orientation representation is given in 

Appendix A. 

Since the quaternion orientation representation and the direction cosine matrix should match, the 

following equality is true: 
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4.3 Position Estimation 

Since accelerometers measure accelerations with respect to the inertial frame, the motion 

equations using accelerometers are derived from the inertial frame.  However, the local fixed frame is 

attached to a stationary building which, in fact, moves with respect to the inertial frame in this 

application.  Therefore, the equations of motion should be expressed with respect to the local fixed 

frame.  The acceleration of an object with respect to the local fixed frame can be expressed as [116] 

 gRVAV
f

ee
ff

e
ff +××−×⋅−= ][2 ωωω& , (4-11) 

where  eω is the angular velocity of the earth with respect to the inertial frame and R is the location of 

the tool from the centre of the earth.  In this application, the centripetal force term, ][ Ree ×× ωω , is 

caused by the angular velocity of the earth and changes as the location of the tool with respect to the 

centre of the earth, R, changes.  However, the change of R is small for the tool tracking applications 
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(maximum 4 m), and the multiplication of the square of angular velocity of the earth makes the 

change in value insignificant.  Therefore, the centripetal force due to the rotation of the earth can be 

considered constant.  Combining the centripetal force with the gravitational force results in different 

local gravity values which can be written as: 

 ][ Rgg e
f

e
f

l
f ××−= ωω . (4-12) 

The Coriolis force, V
f

e ×⋅ω2 , can be omitted when the velocity of the object is small because the 

angular velocity of the earth is very small (7.3×10-5 rad/sec).  Since the velocity of the tool is small 

(usually less than 1 m/s) in the tool tracking application, the Coriolis term is much lower than the 

noise level of the accelerometers; hence this term is ignored.  Then, (4-11) can be simplified as 

 l
fff
gAV +=& . (4-13) 

The specific force measurements are represented with respect to the tool frame because they are 

measured with accelerometers.  To change the specific force measurement terms from the tool frame 

to the local fixed frame, a rotation matrix is required.  Thus, (4-13) is rewritten as  

 l
ftf

t
f

gACV +⋅=& . (4-14) 

The rotation matrix from the tool frame to the local fixed frame can be determined from (4-10).  

Since the Z-axis of the local fixed frame is chosen in the opposite direction of the local downwards, 

the local gravity vector is expressed as 

 [ ]ll
f

gg 00=  (4-15) 

The velocity and the position of the object can be calculated by integrating over time as follows: 

 ∫ ⋅= dtVV
ff & , (4-16) 

 ∫ ⋅= dtVP
ff , (4-17) 

where P is the position of the object. 
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4.4 Expert System 

4.4.1 Stationary State Identification 

When the tool is stationary, its velocity is zero, but the calculated velocity using an IMU is usually 

not zero.  Thus, the calculated velocity should be corrected to zero when the tool is stationary.  To 

identify the stationary state, the IMU measurements are utilized.  When an object is stationary, the 

angular velocity is zero, the acceleration in each axis is constant, and the magnitude of the 

acceleration is equal to the magnitude of the gravity vector.  However, the angular velocity 

measurements are typically not zero because a gyro has several sources of error such as noise.  The 

acceleration measurements also contain noise, and the magnitudes of the acceleration measurements 

due to gravity vary depending on the tilt angles because of the non-linearity.  To identify the 

stationary state from these inaccurate measurements, an expert system is incorporated by using 

acceleration measurements and angular velocity measurements.  Let the magnitude of gravity-free 

acceleration (Acc) and the magnitude of angular velocity (Ang_vel) be expressed as 

 lzyx gAAAAcc −++= 5.0222
)( , (4-14) 

 5.0222
)(_ zyxvelAng ωωω ++= . (4-15) 

When the IMU is stationary, the accelerations of each axis should be constants.  Thus, the 

fluctuation of the acceleration measurements in each axis should be less than the maximum 

acceleration noise.  The acceleration fluctuation (Acc_fluc) is defined as  

 5.0222 ))_()_()_((_ zzyyxx AAvgAAAvgAAAvgAflucAcc −+−+−= , (4-16) 

where the average accelerations are expressed as 
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where n is the number of acceleration samples.  While the IMU is stationary, n increases to obtain 

more steady average accelerations.   

When the IMU is stationary, the gravity-free acceleration (Acc) should be lower than the maximum 

error of the accelerometers which includes non-linearity error and the maximum noise.  In addition, 

the magnitude of the angular velocity (Ang_vel) should be lower than the maximum error of the gyro 

which includes random walk and the maximum noise.  Since the tool is manually moved, the IMU 

measurements cannot maintain almost a constant acceleration in each axis and almost a zero angular 

velocity for 1 second.  Therefore, the IMU is considered stationary when the following conditions are 

met: 

 

Rule 4-1:   

IF  2
max__

2
max__

2
max__ )()()( errorzerroryerrorx AAAAcc ++<  for the last 1 second data AND 

2
max__

2
max__

2
max__ )()()(_ errorzerroryerrorxvelAng ωωω ++<  for the last 1 second data AND 

2
max__

2
max__

2
max__ )()()(_ noiseznoiseynoisex AAAflucAcc ++<  for the last 1 second data,  

THEN  stationary = 1 (IMU is stationary) 

ELSE  stationary = 0 (IMU is moving) 

where erroraxisA max__  is the maximum acceleration error in each axis, erroraxis max__ω  is the maximum 

angular velocity error in each axis, and noiseaxisA max__  is the maximum acceleration error in each axis. 

When the IMU is stationary, the three accelerometers measure the tilt angles which are the angles 

between the gravity vector and the IMU body frame axes.  To correct the tilt angles, the relationship 

between the tilt angles and the direction cosine matrix needs to be established.  When the Z-axis of 

the reference frame is chosen to be in the opposite direction of the gravity vector, the tilt angle 

components of the direction cosine matrix from (4-1) are xZc , yZc , and zZc .  The tilt angle 

components can be derived by normalizing the three acceleration components.  To reduce the effects 

of the acceleration measurement noise, the average values are used to calculate the tilt angles instead 

of the instantaneous accelerations.  The tilt angle components in terms of the average acceleration in 

each axis are 
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From (4-10), the quaternion terms in the tilt angles are       

 ,)(2 2031 xZcqqqq =−  (4-19) 

 ,)(2 1032 yZcqqqq =+  (4-20) 

 .
2

3

2

2

2

1

2

0 zZcqqqq =+−−  (4-21) 

There are four unknowns and four equations (4-7) and (4-19) to (4-21).  However, the equations 

cannot be solved analytically because all four equations are in non-linear forms.  To find the four 

quaternion terms, one of them is fixed, and the other three terms are corrected.  From (4-7) and (4-

21), 

 .122221
2

3

2

0

2

2

2

1 zZcqqqq =−+=−−  (4-22) 

When 0q  is fixed, the corrected quaternion terms become 

 00__0 qq cor = , (4-23) 

 5.02
0__030__3 )2/21()( corzZcor qcqsignq ×−+×= , (4-24) 

 
)(2 2
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cor
qq

qcqc
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= , (4-25) 

 
)(2 2
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2
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0__2

corcor

coryZcorxZ
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qq

qcqc
q

+×

×+×−
= , (4-26) 

where 0__0 corq , 0__1 corq , 0__2 corq , and 0__3 corq  are the corrected quaternion terms.  Eq.  (4-25) and 

(4-26) should be calculated after (4-23) and (4-24) are calculated because (4-25) and (4-26) use the 
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corrected quaternion terms.  Since a quaternion has four components, four correction possibilities are 

evaluated.  The corrected terms are fed to (4-22) and the corrected terms that do not satisfy (4-22) are 

discarded.  From all the possible quaternion corrections, the correction with the minimum RMS error 

is chosen as the best correction possibility.  To prevent from further orientation drift, the angular 

velocity is set to zero when the IMU is stationary.   

The calculated non-zero velocity at the stationary state represents the velocity error.  The position 

of the IMU can be corrected by utilizing the velocity error at the stationary state [111], [117].  The 

velocity error is partially caused by the integral of accelerometer error such as bias, gain error, non-

linearity, and noise.  In addition, when the calculated orientation of the tool is not correct, the 

acceleration calculation in (4-14) produces an error, which results in the accumulation of the velocity 

error.  When an IMU is accurately calibrated, it can be assumed that a large portion of the velocity 

error is caused by orientation errors.  Since the tool traveling time spans between fastening bolts are 

short, it can be assumed that the velocity error is caused by a constant acceleration error which is 

caused by constant orientation errors.  Then, position estimation can be corrected by using the 

following equation: 

 2/tVPP axisaxisaxis ∆⋅−=  (4-27) 

where axisP  is the current IMU position component in each axis, axisV  is the calculated velocity error 

in each axis at stationary state, and t∆  is the time span between the current time and the previous 

velocity correction.  Then, an expert rule is derived to correct the position and tilt angles as follows. 

 

Rule 4-2: Position and orientation correction at stationary state. 

IF  stationary = 1  

THEN 2/tVPP axisaxisaxis ∆⋅−=  AND 0=axisω , AND 0=axisV  AND 0=xω , 0=yω , 0=zω  AND  

correct the quaternion terms using (4-23) to (4-26) AND n = n+1 

ELSE  n = 1 

4.4.2 Initial Position Detection 

The position and orientation of the tool can be corrected when the tool is placed in the tool holder.  

Such error correction is possible because the position and orientation of the tool in the tool holder is 

known.  Therefore, the system should be able to identify if the tool is in the tool holder to correct the 
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position and orientation constantly.  In order to detect the initial position, the tool holder was 

designed so that the tool is placed at a specific tilt angle (θ) as shown in Figure 4-2.  The top of the 

tool holder is shaped so that the bottom of the tool almost perfectly fits on it.  However, there is a 

small gap between the top of the holder and the tool bottom to ensure that the tool can easily be 

placed on the holder.  Therefore, it is possible for the tool to be rotated in the z-axis of the tool frame.  

In order to calculate the rotation matrix from the tool frame to the local fixed frame ( C
f
t ), this 

misalignment angle in the z-axis, φ, should be calculated as well.  The tilt angle, θ, and the 

misalignment in z-axis, φ, have the following relationship with the measured acceleration components 

and the gravity vector: 
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Figure 4-2: Fastening tool, the tool holder, and a sensor that consists of a triaxial magnetometer 

and an IMU.  The tool frame is labeled xyz and the fixed frame is labeled XYZ. 

 

From (4-28), φ and θ are calculated with the accelerometer measurements as follows:  
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AAvgAAvg

z

xy

−=

−=

θ

ϕ
 (4-29) 

The fixed frame (XYZ) is chosen so that the Z-axis is the opposite direction of the gravity vector, 

and the x-axis of the tool is chosen so that it is parallel to the tool bit.  Since (4-29) shows that zA  

depends only on θ, zA  can be used to identify the tool holder angle, θ.  When θcos⋅− gAz  is less 

than the threshold (the maximum error of the accelerometer) and the tool is stationary, the system 

concludes that the tool is placed on the tool holder.  Then, the quaternion terms of the rotation matrix 

from the tool frame to the fixed frame can be corrected by using φ and θ as: 
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  . (4-30) 

There are ten equations {nine from (4-30) and one from (4-7)} and four unknowns. From (4-7) and 

three equations that only have square terms, the square of each quaternion terms are identified. Then, 

one of the four quaternion terms can be assumed either positive or negative, and the signs of the rest 

three quaternion terms can be identified using the rest of the equations.    

The expert rule to identify the initial position and to estimate the orientation is derived as follows. 

 
Rule 4-3: Position and angle correction using the tool holder.   

IF  stationary = 1 AND θcos⋅− gAz  < Threshold 

THEN 0=axisP  AND )_/_arctan( xy AAvgAAvg−=ϕ  AND correct the quaternion terms by using 

(4-7) and (4-30) 

where Threshold is the maximum tilt angle measurement error.   

4.4.3 Fastening Action Detection 

The fastening action needs to be detected to identify the fastened bolt.  However, the high 

magnitude of vibration can cause high acceleration fluctuations.  This may result in high velocity 



 

 

 55 

error in discrete time domain.  In order to reduce the magnitude of acceleration measurements due to 

vibration, an IMU (3DM-GX2, Microstrain) is attached to the bottom of the tool as shown in Figure 

4-2.  This point has lower vibration than the top part of the tool because the gripping hand of an 

operator acts as a damper.  Due to the reduced magnitudes of vibration measurements, acceleration 

measurements alone do not provide sufficient vibration to identify the fastening action.  Thus, the 

proposed system uses both acceleration and magnetic field measurements to detect the fastening 

action. 
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Figure 4-3: Comparison study between the fastening action and running the tool in the air: (a) 

magnitude of magnetic field and (b) magnitude of acceleration. 

Figure 4-3 shows the magnetic field and the acceleration plots with 200 Hz sampling frequency 

when the tool is running in the air (from 3 second to 5 second) and is fastening a bolt (from 7 second 

to 9 second).  The magnetic fields fluctuate in both scenarios, but the accelerations have high 

 Running 
in the air 

Fastening 
action 
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frequency vibration only when the tool fastens a bolt.  By using these two distinct measurement 

signatures, the expert system can accurately detect a fastening action.  From several test results, it has 

become expert knowledge that the tool is fastening a bolt if (i) there are at least 3 peaks with at least 

0.02 Gauss difference between the magnitude of the current magnetic field measurement (mag) and 

the previous magnetic field measurement (pre_mag) in the last 0.1 second and (ii) there are at least 

two magnitude of gravity-free acceleration (Acc) peaks that are greater than 1 m/s2 in the past 0.1 

second.  To identify this 0.1 second of time span, time count (fasten_time), which increases by one 

every time step, is used.  When the system detects the fastening action, the time count is changed to 

0.05 second so that continuous fastening action detection is possible without reaching the 0.1 second 

time limitation.  The rules to identify the fastening action are described in Rule 4-3 to Rule 4-10. 

 

Rule 4-3 to Rule 4-10: Fastening action detection 

 

Rule 4-3:  

IF  Acc > 1 m/s2 AND fasten_time ≥ (0.1 second × 200 Hz)  

THEN  fasten_time = 0 AND Acc_peak = 0 AND Mag_peak = 0 AND Acc_peak_high = 1 AND     

Mag_peak_high = 0 AND Fasten_ Accel =0 AND Fasten_Mag = 0 

Rule 4-4:  

IF  Acc < 1 m/s2 AND Acc_peak_high = 1  

THEN  Acc_peak = Acc_peak + 1 AND Acc_peak_high = 0 

Rule 4-5:  

IF  Acc > 1 m/s2 AND Acc_peak_high = 0  

THEN  Acc_peak_high = 1 

Rule 4-6:  

IF  Acc_peak > 1 AND fasten _time < (0.1 second × 200 Hz)  

THEN  Fasten_Accel = 1  

Rule 4-7:  

IF  mag - pre_mag > 0.02 AND fasten_time < (0.1 second × 200 Hz)  

THEN  Mag_peak_high = 1 

Rule 4-8:  

IF  mag - pre_mag < -0.02 AND Mag_peak_high = 1  
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THEN  Mag_peak = Mag_peak + 1 AND Mag_peak_high = 0 

Rule 4-9:  

IF  Mag_peak > 3 AND fasten _time < (0.1 second × 200 Hz)  

THEN Fasten_Mag = 1  

Rule 4-10:  

IF  Fasten_Accel = 1 AND Fasten_Mag = 1 AND fasten_time < (0.1 second × 200 Hz)   

THEN  Fasten = 1 AND fasten_time = (0.05 second × 200 Hz) AND Acc_peak = 1 AND  

Mag_peak = 3 AND Fasten_Accel = 0 AND Fasten_Mag = 0 

  

where Acc_peak_high is an indicator that shows the acceleration is  higher than 1 m/s2, Acc_peak is 

the number of the gravity-free acceleration (Acc) peaks higher than 1 m/s2, Mag_peak_high is an 

indicator that shows mag - pre_mag is  greater than 0.02 Gauss, Mag_peak is the number of magnetic 

field peaks more than 0.02 Gauss difference, Fasten_Accel is an indicator that the tool is fastening a 

bolt based on acceleration measurements, Fasten_Mag is an indicator that the tool is fastening based 

on magnetic field measurements, and Fasten is the fastening action indicator.  The specific numbers 

vary depending on the tool type and the location of the IMU.   

The fastened bolt should be identified when the fastening action is detected.  When a bolt is being 

fastened, the position of the tool tip and the position of the fastened bolt head coincide, and the 

fastened bolt angle is almost parallel to the tool bit angle.  To identify the fastened bolt, the position 

and orientation of the tool tip was compared with the position and orientation of each bolt.  When the 

gyros of 3DM-GX2 are calibrated, the orientation does not usually drift more than 3º/min.  Since one 

cycle of fastening process (fastening all the bolts in one workpiece) usually takes less than one 

minute, the maximum orientation error of the system is 3º.  On the other hand, position error can drift 

over 500 mm in 10 second when a commercial grade IMU is used as shown in Figure 1-1.  Thus, it is 

the best to identify the fastened bolt using the orientation of the tool rather than the position of the 

tool tip.   

While a tool fastens a bolt, the orientation of the fastened bolt is parallel to the tool bit.  Since the 

x-axis of the body frame is parallel to the tool bit, the angle of the x-axis of the body frame is 

compared with the angles of all the bolts in the workpiece to identify the fastened bolt.  However, a 

small gap between the tool bit and the bolt head can introduce a small orientation error.  Therefore, 

the fastened bolt may not be parallel to the threaded hole at the beginning of the fastening.  In 
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addition, the orientation calculation drift due to the integration of angular velocity measurements 

should be accounted for.  By considering all the error margins, the expert system concludes that the 

tool fastens one of the bolts which has less than a 15º error between the x-axis of the tool and the bolt 

angles as follows. 
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, (4-31) 

where nxO , nyO , and nzO  are the orientation of the nth bolt with respect to the fixed frame. 

If more than one bolt satisfies (4-31), the position information must be utilized to identify the 

fastened bolt.  While the tool fastens a bolt, the tool tip can be assumed stationary.  In addition, the 

angular velocity of the tool is almost zero because the tool bit fits in the bolt head and does not allow 

the tool to rotate very much.  Therefore, the linear velocity of the IMU is set to zero while the tool 

fastens a bolt.  Then, the position of the IMU can be corrected by using (4-27).  After the position is 

corrected, the position error between the corrected tool tip position and the nth bolt position ( nErr ) is 

calculated as 
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where nxP , nyP , and nzP  are the position of the nth bolt.  The bolt with the minimum position error is 

chosen as the fastened bolt.  Since the fastened bolt is identified, the position of the IMU ( axisP ) can 

be corrected by using the position of the fastened bolt ( axisfP −  ) and the rotation matrix as:  
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Then, the fastened bolt identification expert rule is as follows. 

 

Rule 4-11: fastened bolt identification 

IF  Fasten = 1  
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THEN  2/saxisaxisaxis tVPP ⋅−= , AND Fastened_bolt = bolt with minimum 5.0)( n

T

n ErrErr ⋅  AND  

0=axisV  AND correct the IMU position using (4-33) AND Fasten = 0 

ELSE   fasten _time = fasten _time+1  

where Fastened_bolt represents the fastened bolt number. 

4.5 Experiments 

The proposed fastened bolt tracking system was tested with a system consisting of a MEMS IMU 

and a triaxial magnetometer shown in Figure 4-2.  In order to obtain the true position and velocity, an 

ultrasonic position sensor (CMS10, Zebris) is attached to the IMU.  The tool fastens four bolts on an 

aluminum tube shown in Figure 4-4.  There are two sets of bolts with the same orientation, and these 

bolts are 410 mm apart from each other.  The tool fastened from Bolt 1 to Bolt 4  in sequence and 

then placed back on the tool holder.  The IMU sensors were sampled at 200 Hz. 

 

   

 

Figure 4-4: Workpiece with four bolts.  Bolt 1 and Bolt 3 have the same orientation and Bolt 2 

and Bolt 4 have the same orientation. 

Figure 4-5 depicts the magnitude of magnetic field, the magnitude of acceleration, and the 

identified fastened bolt number during the experiment.  The figures indicate that the proposed system 

identified the fastened bolt in the correct sequence. 

 

410 mm 

Bolt 1 

Bolt 2 

Bolt 3 

Bolt 4 
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Figure 4-5: (a) Magnitude of magnetic field, (b) magnitude of acceleration, and (c) identified 

fastened bolt number by the proposed method. 

Figure 4-6 shows the velocity comparison among the true values, using the traditional navigation 

system, and using the proposed method.  Figure 4-6 illustrates that the true velocity almost matches 

the velocity using the proposed method because the velocity error is corrected whenever the fastened 

bolts are detected.  In addition, the velocity is zeroed at 26 seconds when the tool was placed on the 

tool holder.  However, the velocity calculation by using the conventional navigation equations drifts 

over time.   

   

 

(a) 

(b) 

 

(c) 
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Figure 4-6: Velocity comparison in each axis among the true values measured with an 

ultrasonic sensor, the calculated values using the conventional navigation equations, and the 

calculated values using the proposed method. 

Figure 4-7 displays the position comparison results between the true values measured with the 

ultrasonic position sensor and the calculated values by using the proposed system.  Figure 4-7 shows 

the position comparison between the calculated values by using the proposed method and the true 

values.  When the fastening action is detected, the expert system corrects the position by using (4-27), 

which is labeled “After position correction using ZUPT” (at 8.155 s) in Figure 4-7 (b).  Then, by 

comparing the orientation and the corrected position of the tool tip with the possible bolt positions 

and orientations, the fastened bolt is identified.  After the fastened bolt is identified, the expert system 

calculates the position of the IMU using (4-33), which is labeled “After position correction using bolt 

position” in Figure 4-7 (b).   As a result, the position error is almost zero at 8.16 seconds as shown in 

Figure 4-7 (b).  The position error comparison before and after the position corrections using ZUPT 

are shown in Table 4-1.  This table shows that the fastened bolt can be identified more accurately by 

using ZUPT. 
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Figure 4-7: Position comparison in each axis between the true values measured with an 

ultrasonic position sensor and the calculated values using the proposed method (a) entire time 

span and (b) magnified when Bolt 1 is fastened – before and after ZUPT, and after the position 

correction using (4-33). 
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Table 4-1: Position Error using the proposed method before and after position correction. 

 Position error before position correction 

(mm) 

Position error after position correction 

using ZUPT (mm) 

Bolt X Y Z Total X Y Z Total 

1 -261 -198 -46 331 -52 14 6 54 

2 370 -249 -125 463 100 72 -31 127 

3 -138 -77 -153 220 -30 -6 69 75 

4 34 128 -12 132 -66 -6 -22 70 

4.6 Conclusion 

This chapter presented a novel cost-effective fastened bolt tracking system that does not require a 

line of sight.  Such a system is intended for a workpiece that has different bolt orientations or long 

distances between the bolts.  The position and orientation of the tool are estimated by the use of an 

IMU, and the fastening action is detected utilizing a triaxial accelerometer and a triaxial 

magnetometer.  The inaccuracies in position, velocity, and orientation are corrected by using an 

expert system.   

The expert system identifies the stationary state, initial position, and fastening action.  When the 

tool is stationary, the system corrects the velocity errors, tilt angle errors, and reduces the position 

error.  When the tool is on the tool holder, both the calculated position and orientation of the tool are 

corrected.  When the tool fastens a bolt, the system identifies the fastened bolt and corrects the 

velocity and position error.   

The experimental results indicate that the proposed system can identify the fastened bolt when the 

time span between the fastening actions is short.  When the bolts with the same orientation are closely 

placed or the time span between the fastening actions is longer, a more accurate IMU must be used.  

Therefore, the tradeoff between the required accuracy and the sensor cost should be decided 

depending on the application. 
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Chapter 5 

Fastening Tool Tracking System Using an IMU and a Position 

Sensor with Kalman Filters and a Fuzzy Expert System 

In the previous chapter, a fastened bolt tracking system using an IMU and a triaxial magnetometer 

was presented.  This system is low-cost and does not require a line of sight, but the time span between 

the fastening bolts must be short or the bolt orientation must be different to correctly identify the 

fastened bolts.  In this chapter, a fastening tool tracking system consisting of an IMU and a position 

sensor is presented.  The presented system uses KFs and a fuzzy expert system to track the position of 

the tool tip and to identify the fastened bolt.   

5.1 Position Sensor Selection for Tool Tracking System 

Selecting a position sensor depends on the required accuracy and the environment of the 

application.  Table 1-1 describes the accuracy, advantages and limitations of various position sensors.  

The error of RF position sensors is too high for precision applications such as fastening tool tracking.  

When the UWB position sensor is hybridized with an IMU, the accuracy might be improved enough 

to be used for the fastening tool tracking system.  However, the signal strength can be attenuated by 

human tissue, and signals can be reflected by metal as discussed in subsection 2.1.3.  These 

drawbacks make UWB position sensors unsuitable for a tool tracking system because a fastening tool 

is always used in the proximity of an automotive metal part and an operator can easily block the lines 

of sight between the emitter and the receivers.  An electromagnetic position sensor is inappropriate 

for an automotive manufacturing environment because magnetic fields are distorted by ferrous parts 

as discussed in Chapter 1. 

The ultrasonic position sensor requires three lines of sight and has performance issues related to 

sound reflections and sound noise sensitivity.  Since most automotive factories are subjected to sound 

noise, an ultrasonic position sensor is not a reliable solution for a fastening tool tracking system.  The 

camera-based position estimation techniques require a complex calibration procedure and the 

procedure can be time consuming.  Since the whole assembly line can be stopped during calibration, a 

time consuming calibration procedure is not desirable.  Infrared position sensors are too expensive to 

be installed for all fastening operations.   
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A string-encoder position sensor can track 3D position with a high accuracy and provides noise-

free outputs.  The string-encoder position sensor is a feasible option for a fastening tool tracking 

system because fastening tools are often hung on a balancer in automotive factories as shown in 

Figure 5-1.  Since the position sensor acts as a balancer and support a tool, the end of the wire must 

be connected to the centre of mass of the tool.  This enables the position sensor to locate the centre of 

mass of the tool instead of the tool tip.  To determine the position of the tool tip with a string-encoder 

position sensor, an IMU is used as an orientation sensor. 

 

 

Figure 5-1: Two fastening tools are attached to a string balancer on the centre of mass of the 

tools 

5.2 Tool Tracking System Design with an IMU and an Encoder-Position Sensor 

A string-encoder position sensor provides the location of the centre of mass of a tool, and an IMU 

provides the orientation of the tool.  With this sensor configuration, the position of the tool tip can be 

calculated as 

 [ ] [ ] [ ]Tzyx

f

tzyxzyx LLLCPPPTTT += . (5-1) 

The location from the tool tip to the centre of mass of the tool with respect to the tool frame, [Lx Ly Lz], 

is fixed and can be predetermined.  The location of the centre of mass of the tool is obtained by the 

Fastening tools 

String balancer 
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position sensor.  The rotation matrix from the tool frame to the local fixed frame, C
f
t , is obtained by 

integrating angular velocity measurements from the gyros of the IMU.   

In order to compensate for the orientation drift, an intelligent system which utilizes KFs and a 

fuzzy expert system is proposed.  Figure 5-2 depicts the structure of the proposed system.  An IMU 

consists of accelerometers and gyros that have biases and gains.  Thus, accelerometers and gyros 

should be calibrated before use.  The position sensor consists of encoders which always start from 

zero whenever the sensor is turned on.  Therefore, the position sensor should be initialized by locating 

the sensor to a known position.  A KF is used to estimate the orientation and the angular velocities of 

the tool with gyros, and another KF is employed to estimate the positions and accelerations of the 

centre of mass of the tool with an IMU and an encoder-based position sensor.  Although two KFs can 

be combined, they are separated because the position KF requires orientation information, and using 

two KFs is computationally cheaper.  The workpiece information provides the locations and the 

orientations of all bolts.  All the information is processed with an expert system to identify the 

fastened bolt and to correct the orientation error.  When the expert system detects a fastening action, 

the fastened bolt is identified.  Then, the complete 3D orientation of the tool can be determined by 

using the location and the orientation of the fastened bolt and the location of the position sensor; thus, 

the orientation error can be corrected.  When the tool is stationary, the tilt angles of the tool are 

corrected.  The fuzzy expert system outputs the orientation and position of the centre of mass of the 

tool.  Then, the location of the tool tip is estimated by using (5-1).   

 

Figure 5-2: Overview of the fastening tool tracking system 
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5.2.1 Orientation Calculation Using Kalman Filtering 

Gyros measure angular velocities with respect to the inertial frame whose origin is at the centre of 

the earth and its axes are stationary with respect to the fixed stars [116].  However, the tool tracking 

system is used in a small area, and the local fixed frame is attached to a stationary building which 

rotates 360°/day with the earth.  Thus, the position and orientation changes due to the rotation of the 

earth must be discarded.  In order to discard the angular velocity of the earth, gyros should be 

calibrated so that the angular velocity is zero when the IMU is stationary with respect to the local 

fixed frame.  Even when the rotation rate of the earth is not accounted for the calibration, the earth 

rotation rate does not make any difference because the rotation matrix is corrected often and the 

rotation rate of the earth is only 7.27×10
-5

 rad/sec, which is often smaller than the noise level of a 

MEMS gyro.  Therefore, the rotation rate of the earth can be discarded.  Figure 5-3 shows the tool 

frame and the local fixed frame which is attached to the lab building.  The Z-axis of the local fixed 

frame is chosen in the opposite direction of the local gravity vector, and the z-axis of the tool frame is 

chosen so that it is parallel to the bolt socket axis, which is parallel to the fastened bolt. 

 

Figure 5-3: Local fixed frame and tool frame: the Z-axis of the local fixed frame is the opposite 

direction of the gravity vector and the z-axis of the tool frame is along the bolt socket axis. 

To define the orientation of the tool with respect to the reference frame, the quaternion 

representation is used.  To utilize the KF, the quaternion equation needs to be written in the form of 

(2-5).  The differential equation of quaternion q with respect to time has the following matrix form: 

x 
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Since there are four quaternion states and three angular velocity measurements, the state of 

orientation, orix , becomes 

  [ ]Tzyxori qqqqx ωωω3210= . (5-3) 

From (5-2) and (5-3), the system matrix of orientation in the form of (2-5) becomes 
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The system input matrix of orientation, oriΓ , is a zero matrix because the tool is rotated by a human 

operator.  Also, since the quaternion states are estimated from the angular velocities, the process noise 

of the system is 

 [ ]Tangangangori bbbb 0000= , (5-5) 

where bang is the process noise of the angular velocity of the tool. 

The angular velocities are measured by gyros, but there is no sensor that measures quaternion 

components.  Since the gyros are calibrated, the measurement matrix for the orientation in the form of 

(2-6) becomes 

 [ ]33430 xxori IH = . (5-6) 

To satisfy (4-7), all the quaternion components should be normalized after they are calculated.   

The states of a KF converge on meaningful estimations when the states are observable.  The 

observability matrix (OM) is calculated as 
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where m is the dimension of the state vector x.  If the observability matrix has a rank of m, then the 

states are completely observable. 

For the orientation KF, the rank of the observability matrix is three.  In other words, only three 

angular velocities are observable, and the four quaternion terms may not converge to the correct 

values.  Therefore, a quaternion term correction method needs to be implemented.  The details of this 

correction method will be discussed in Section 5.3. 

5.2.2 Position Kalman Filter Using an IMU and a Position Sensor 

For the position estimating system, six measurements are available: three position components in 

the local fixed frame from the position sensor and three acceleration components in the tool frame 

from the IMU.  From (4-14) and (4-15), the three acceleration measurements in the tool frame can be 

expressed in the local fixed frame in the form of (2-5) as 
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By applying a constant acceleration motion model, the equations of velocity in the local fixed frame 

are 
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According to (5-8) and (5-9), the states of the position KF, posx , are defined as follows: 

 [ ]Tzzzyyyxxxpos AVPAVPAVPx = . (5-10) 
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The position and velocity components are represented in the local fixed frame, and the 

acceleration components are represented in the tool frame.  From (5-8) and (5-9), the system dynamic 

matrix of object position in discrete time, posΦ , becomes 
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The gravitational force is treated as a deterministic input.  Since the Z-axis is parallel to the gravity 

vector, the velocity and the position changes due to the gravity vector should be compensated for in 

the Z-axis.  Thus, the system input matrix of position is 

 [ ]Tllpospos tgtgu 02/000000 2 ⋅⋅=⋅Γ . (5-12) 

Since the position and the velocity states are estimated with three accelerations, the process noise is 

 [ ]Taccelposk qw 100100100,1 ⋅=− ,  (5-13) 

where accelq  is the process noise of the tool acceleration. 

The acceleration of each axis is measured by three accelerometers, and the position components 

are measured by a position sensor.  Since both accelerometers and the position sensor are calibrated 

and initialized, the measurement matrix for the position estimation becomes 
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The rank of the observability matrix of the position KF is nine.  Therefore, all nine states are 

observable.  This position KF utilizes the orientation of the tool which is estimated from the 

orientation KF.  These filters reduce the measurement noise of accelerations and angular velocities.  

In the next section, the dynamic status of the tool such as stationary state is identified using the 

filtered measurements.   

5.3 Fuzzy Expert System for Tool Tracking System 

5.3.1 Tilt Angle Correction  

The system in the previous chapter identifies the stationary state by using the IMU measurements.  

The presented system in this chapter identifies the stationary state of the tool by using three sets of 

states: (i) angular velocity, (ii) acceleration fluctuation, and (iii) linear velocity.  The estimations of 

accelerations and angular velocities from the KFs are used instead of the direct measurements from 

the IMU because the estimated values from the KFs have less noise.  However, the derivatives of the 

encoder-based position sensor outputs are chosen for the linear velocity calculation because they are 

zero when the tool is stationary. 

Although the KFs are used to estimate acceleration and angular velocity states, only a portion of 

the noise is removed, and the linear acceleration and the angular velocity estimations still suffer from 

nonlinearity and random walk.  To identify the stationary state from these measurements, a fuzzy 

expert system is proposed.  The rules are developed based on the properties of the sensors in using 

linguistic terms.  If the fluctuation of the acceleration estimation is high or the angular velocity 

estimation is high, the tool is not stationary even though the linear velocity from the position sensor is 

zero.  This case occurs when the tool is hung on the wire of the position sensor, and the tool rotates 

about an axis: i.e., the wire of the position sensor.  The fuzzy sets of the expert system inputs are 

shown in Figure 5-4 a) and b).  The magnitude of angular velocity (Ang_vel) is calculated with 

angular velocity estimations after the KF by using (4-15) instead of using angular velocity 

measurements.  Also, the acceleration fluctuation (Acc_fluc) is calculated with the acceleration 

estimations after the KF using (4-16).  Figure 5-4 c) exhibits the dynamic states of the tool.  Table 5-1 

lists the fuzzy rules to identify the stationary state of the tool.   
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Figure 5-4: Membership functions of the fuzzy expert system for the tilt angle correction 

algorithm. 

Table 5-1: Fuzzy rules to identify the stationary state of the tool. 

Fuzzy rules Ang_vel Acc_fluc Dynamic state 

1 Low Low Static 

2 Low Med Quasi-static 

3 Med Low Quasi-static 

4 Others Moving 

 

When the derivative of the position sensor is zero for 0.1 second and the dynamic state is less than 

0.5 for 0.1 second, the tool is considered stationary.  The 0.1 second period is chosen because it is not 

realistic for an operator to move a tool so that the dynamic state is less than 0.5 and the derivative of 

the encoder-based position sensor output is zero for 0.1 second unless the tool is stationary.  Also, the 

0.1 second period is used to calculate the average accelerations in each axis.  According to the above 

assumption, the fuzzy expert rules for the stationary state identification of a tool are shown in Table 

5-2 (Rule 5-1 and Rule 5-2).  When the system concludes that the tool is stationary, the tilt angles are 

corrected by using the method in Subsection 4.4.2.  To prevent a further orientation drift, the angular 

velocity is set to zero when the IMU is stationary (Rule 5-3 in Table 5-2). 

5.3.2 Fastening Action Detection  

To identify the fastening action, the acceleration signature is studied and distinguished from other 

possible movements that the fastening tool can experience (Figure 5-5).  The identification of the 

fastening action by using the frequency domain is difficult because the frequency contents of the 
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fastening action depend on many variables such as materials and the shape of the workpiece.  Instead, 

the time domain is used for the analysis of the fastening action. 

The acceleration signature of the fastening action (Figure 5-5 a)) denotes a very high vibration and 

high magnitude of acceleration.  Figure 5-5 b) shows the base excitation when the tool is free-running 

in the air without fastening a bolt.  The acceleration of the base excitation has a high frequency of 

vibration, but it does not have a high magnitude of acceleration.  Figure 5-5 c) depicts the situation 

when the tool is manually shaken by a person.  It displays high magnitudes of acceleration but does 

not exhibit a high frequency of vibration.  Figure 5-5 d) shows normal movements when the tool is 

moved around.  This movement does not have a high frequency of vibration or high peaks of 

acceleration.  This study demonstrates that fastening action can be identified with acceleration 

frequency contents and the magnitudes of acceleration.  Let the magnitude of acceleration 

measurement (Acc_mea) be 

 5.0222
)(_ zyx AAAmeaAcc ++= . (5-15) 

If at least three peaks satisfy Acc_mea >20 m/sec2 within a 0.1 second interval, the expert system 

concludes that the tool is fastening a bolt.  In order to measure the 0.1 second interval, a time variable, 

fastening_period, is initialized when the accelerometers first detect Acc_mea >20 m/sec2, and 

increases as the time elapses.  If the system does not detect three peaks that satisfy Acc_mea >20 

m/sec2 within 0.1 second interval, it is initialized again when the next peak is detected.  The rules for 

the fastening action detection are shown in Table 5-2 (Rule 5-4 to Rule 5-7).  The specific values of 

the expert system conditions such as the peak values of Acc_mea may vary depending on the shapes 

and the materials of the bolt and the workpiece.   
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Figure 5-5: Possible acceleration measurement signatures of the fastening tool used in different 

scenarios: a) fastening action, b) base excitation, c) hand vibration, and d) normal movements.   
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5.3.3 Fastened Bolt Identification  

When the fastening action is detected, the tool tracking system must identify the fastened bolt.  

The fastened bolt identification process is summarized in Figure 5-6.  There are three scenarios for 

the bolt identification: 

1. The position sensor alone identifies the fastened bolt.   

2. When Scenario 1 fails, the IMU information is added to verify the fastened bolt. 

3. When Scenario 2 fails, the system assumes that the bolt with the highest possibility of being 

fastened is fastened and waits for the next fastening action.  When the system identifies the 

next fastened bolt, it identifies the previously fastened bolt. 

When the system successfully identified the fastened bolt, it corrects the orientation error and outputs 

the fastened bolt number.  

 

Figure 5-6: Fastened bolt identification process. 

When the tool fastens a bolt, the location of the tool tip coincides with one of the bolts (Figure 5-

7).  Then, the distance between the position sensor and one of the bolt position should be 

5.0222
)( zyx LLL ++ .  However, the position sensor has error, and the location of the bolt also has 
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 5.02225.0222 )())()()(( zyxzzyyxxn LLLPnPnPnPSE ++−−+−+−= . (5-16) 

nPSE  includes the error of the position sensor as well as the manufacturing error of the workpiece.  

Thus, when the tool fastens a bolt, the following inequality holds for at least one bolt: 

 MMUMPSEPSEn +≤ . (5-17) 

If there is only one bolt that satisfies (5-17), the system concludes that the tool fastens that bolt.  In 

this application, the maximum position sensor error is ±7mm.   

 

Figure 5-7: Position sensor error envelope while a tool fastens a bolt.  The position of the tool tip 

coincides with one of the bolts. 

It is possible that more than one bolt satisfies (5-17).  In this case, the tool tip position calculation 

by using (5-1) is utilized to identify the fastened bolt.  However, identifying the fastened bolt does not 

simply correspond to finding the closest bolt from the calculated tool tip position because the 

orientation error is unknown.  To identify the fastened bolt in the presence of orientation uncertainties, 

a fuzzy expert system is utilized. 

Two inputs are employed to identify the fastened bolt: the calculated tool tip position error and the 

run-time which is the duration from the previous complete orientation correction to the current time 

excluding the stationary state period.  As the calculated tool tip position error with respect to the bolt 
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decrease, the probability of fastening the bolt gets higher.  The calculated tool tip position error is 

represented as 

 5.0222 ))()()(( zzyyxxn nTnTnTPE −+−+−= . (5-18) 

As the run-time increases, the reliability of the calculated tool tip position decreases.  Both 

position error and run-time are modeled, and the membership degrees with respect to the nth bolt are 

shown in Figure 5-8.  The two antecedent conditions are aggregated with the min operation [118], 

[119] to obtain the implication on the consequence membership function.  Figure 5-8 c) shows the 

membership degree output for the n
th bolt.  The bolt with the highest membership degree of 

Bolt_Output_1 is chosen as the fastened bolt because it has the highest probability of being fastened.  

When the membership degree of the calculated tool tip position error is lower than that of run-time, 

the closest bolt from the calculated tool tip position is the fastened bolt as shown in Figure 5-9. 
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Figure 5-8: Membership degree functions of a) calculated tool tip position error, b) run-time, 

and c) the output for Bolt n. 

 

Figure 5-9: Fastened bolt identification when position error is the determining factor. 
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However, if run-time becomes the determining factor, multiple bolts will have the highest 

membership degree in Bolt_Output_1 fuzzy set in Figure 5-8 (c).  If all the bolts are fastened except 

for one, the system concludes that the unfastened bolt is now being fastened.  If more than one bolt is 

not fastened, the system cannot identify the fastened bolt.  Then, the system uses another fuzzy expert 

system to identify the bolt with the highest probability of being fastened using the position error and 

position sensor error as shown in Figure 5-10.  The two antecedent conditions are multiplied to obtain 

the membership degree of Bolt_Output_2 for the n
th bolt and the bolt with a higher membership 

degree is assumed fastened.  In this scenario, the fastening system also examines the next fastened 

bolt to ensure that the output of the fuzzy expert system is the correct fastened bolt.  When the next 

fastening action is detected, the system identifies the fastened bolt and finds the path from the 

fastened bolt to the previous fastened bolt with respect to the previous possible bolt position and 

orientation.  By comparing the distances and the orientations between the possible previously 

fastened bolts and the currently fastened bolt, the system can identify the previously fastened bolt.  

The expert rules for the fastened bolt identification phase are shown in Table 5-2 (Rule 5-8 to Rule 5-

11). 
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Figure 5-10: Membership degree functions of a) calculated tool tip position error, b) position 

sensor error, and c) output for Bolt n. 

5.3.4 Orientation Correction 

When a tool fastens a bolt, the orientation of the bolt and the vector that connects the position 

sensor and the tool tip position, which coincide with the bolt position, are known.  Since two vectors 

are known, the complete orientation of the tool can be determined.  The tool frame is chosen so that 

the z-axis is parallel to the socket, which is almost parallel to the fastened bolt when the tool fastens a 

bolt.  This axis gives the z-axis vector of the direction cosine matrix: zXc , zYc , and zZc .  If the tool 
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frame is selected so that Ly is zero, the location of the tool tip with respect to the centre of mass in the 

tool frame becomes [Lx 0 Lz].  From (5-1), the x-axis vector of the direction cosine matrix becomes 
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,  (5-19)  

where 222 )()()(' zzzZzyzzYyxzzXxx PLcnPLcnPLcnL −−+−−+−−= .  'xL  is used to normalize 

the x-axis vector of the direction cosine matrix instead of xL .  This is attributed to the fact that xL  

may not match 'xL  due to position sensor error ( nPSE ).  The y-axis vector of the rotation matrix can 

be calculated from the cross-product of the two vectors of the rotation matrix.  When all three vectors 

of the direction cosine matrix are determined, three tool frame vectors of the rotation matrix must be 

normalized.  Then, four quaternion terms can be determined from the rotation matrix.  The four 

quaternion terms should be normalized to satisfy (4-7).   

Table 5-2: Rules for the fastening tool tracking system in linguistic terms. 

Stationary State Identification 

Rule 5-1 IF the derivative of the position sensor output is zero for the last 0.1 second AND dynamic 

state < 0.5 for the last 0.1 second, THEN update the average accelerations AND the tool is 

stationary. 

Rule 5-2 IF the tool was stationary in the previous time step AND the derivative of the position sensor 

output is zero AND dynamic state < 0.5, THEN update the average accelerations AND the 

tool is stationary. 

Rule 5-3 IF the tool is stationary, THEN 0=== zyx ωωω AND correct the quaternion terms using (4-

23) to (4-26) 

Fastening Action Detection 

Rule 5-4 IF Acc_mea > 20 m/s2 AND fastening_period > 0.1 second THEN fastening_period = 0 AND 

peak = 0 AND peak_high = 1.   

Rule 5-5 IF Acc_mea > 20 m/s2, THEN peak_high = 1 



 

 

 79 

Rule 5-6 IF Acc_mea < 20 m/s2 AND peak_high = 1 THEN peak = peak +1 AND peak_high = 0 

Rule 5-7 IF peak = 3 AND fastening_period < 0.1 second, THEN the tool is fastening a bolt.   

Fastened Bolt Identification 

Rule 5-8 IF the tool is fastening a bolt AND only one bolt that satisfies MMEMPSPSEn +≤ , THEN 

the tool is fastening the nth bolt. 

Rule 5-9 IF the tool is fastening a bolt AND there are more than one bolt that satisfy 

MMEMPSEPSEn +≤ , THEN the bolt with the maximum Bolt_Output_1 membership value 

is being fastened. 

Rule 5-10 IF the tool is fastening a bolt AND there is more than one bolt that has the highest 

Bolt_Output_1 membership value AND all the bolts were fastened except one bolt, THEN 

the tool is fastening the unfastened bolt. 

Rule 5-11 IF the tool is fastening a bolt AND more than one bolt have the highest Bolt_Output_1 

membership value AND more than one bolt is not fastened before, THEN assume that the 

bolt with the maximum Bolt_Output_2 membership value is being fastened. 

IF the next fastening action is detected, THEN identify the fastened bolt AND identify the 

previously fastened bolt. 

Rule 5-12 IF the fastened bolt is identified THEN correct the quaternion terms. 

5.4 Experiments 

The fastening tool tracking system is attached to a right angle tool and examined on the testbed 

shown in Figure 5-11.  Eight bolts are placed on the testbed, and their positions are shown in Table 5-

3.  When the tool was positioned on Bolt 1, 4, 5, 6, and 7, the bolts were fastened, but when the tool 

was on Bolt 2, 3, and 8, the tool ran in the air right above the bolts to test if the system can 

differentiate the two different scenarios.  The tool started from the initial position and moved for 204 

seconds before it was returned to the initial position.  The tool moved from Bolt 1 to Bolt 8 in 

sequence, and after Bolt 6 was fastened, the tool was left stationary for 80 seconds to test the 

stationary state identification fuzzy expert system.  The test results of tracking the tool tip are 

illustrated in Figure 5-12. 
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Figure 5-11: Testbed for the lab experiment. 

Table 5-3: Bolt positions shown in Figure 5-11. 

Bolt number Bolt position Bolt number Bolt position 

Bolt 1 (-0.4.  -0.34, 0) Bolt 5 (-0.05, -0.24, 0) 

Bolt 2 (-0.4.  -0.44, 0) Bolt 6 (-0.05, -0.34, 0) 

Bolt 3 (-0.3.  -0.34, 0) Bolt 7 (0.05, -0.24, 0) 

Bolt 4 (-0.3.  -0.44, 0) Bolt 8  (0.05, -0.34, 0) 
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Figure 5-12: Tool tracking results a) with the intelligent system and b) without the intelligent 

system. 
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Figure 5-12 a) shows the trajectory of the calculated tool tip position with the intelligent system 

which includes the KFs and the fuzzy expert system.  Figure 5-12 b) depicts the trajectory of the 

calculated position of the tool tip without the intelligent system.  When the system detects the 

fastening action, a square mark with * symbol is added to the fastened bolt position.  Figure 5-12 a) 

shows that Bolt 1, 4, 5, 6, and 7 are marked; indicating that the system successfully identified the 

fastened bolt.  The start and finish points are almost identical when the intelligent system is used.  

However, Figure 5-12 b) reveals that the finish point is different from the start point when the tool tip 

position is calculated without the expert system.  The calculated tool tip position errors with and 

without the intelligent system are summarized in Table 5-4 (with respect to the fastened bolt positions 

and the finish position).  The total position errors of Table 5-4 are calculated by using (5-18).  The 

position error without the intelligent system increases over time because the orientation error drifts 

over time.  However, the proposed intelligent system reduces the position error because the 

orientation error is corrected when the tool fastens a bolt and when the tool is held stationary.   

Table 5-4: Position error comparison between with and without the intelligent system.  

Tool 

position 

Time 

(s) 

Position error with the intelligent 

system (mm) 

Position error without the intelligent 

system (mm) 

X-axis  Y-axis Z-axis Total X-axis Y-axis Z-axis Total 

Bolt 1 19 -2 0 6 6 -2 1 6 6 

Bolt 4 43 -12 -6 -6 15 -10 -4 9 14 

Bolt 5 85 -2 -8 2 8 -9 -5 37 38 

Bolt 6 89 -4 -2 2 5 -8 -7 38 39 

Bolt 7 184 3 -6 7 10 8 -58 28 65 

Finish 204 -1 -6 0 6 -27 -33 83 93 

5.5 Conclusion 

This chapter presented an intelligent tool tracking system that utilizes a hybrid sensor 

configuration consisting of an IMU and a position sensor.  KFs were developed to estimate the 

orientation and the position of the tool more accurately.  The outputs of the sensors are related to 

identify if the tool is stationary or fastening a bolt.  When the tool is stationary, the system corrects 
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the tilt angles.  When the tool fastens a bolt, the system identifies the fastened bolt and corrects the 

orientation error.  The intelligent system was validated through experiments.   

The fastening tool tracking system was tested with a manufacturing assembly example in a 

laboratory setting.  The position error of the tool tip increases as the time of operation elapses when 

the intelligent system is not used because the orientation error increases over time.  However, by 

utilizing the intelligent system, the fastened bolts are correctly identified, and the position error is 

reduced. 
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Chapter 6 
 Fastening Tool Tracking System Using a Combined 

Kalman/Particle Filter 

This chapter proposes a novel position/orientation estimation technique.  The proposed method 

combines a KF and a PF to hybridize one IMU and one position sensor.  The KF is used to estimate 

the position, and the PF is used to estimate the orientation.  Then, this method is revised to apply to 

the fastening tool tracking system to identify the fastened bolts.  The test results of the proposed 

system in this chapter are compared with those of the KF-based intelligent system that was introduced 

in Chapter 5.   

6.1 Overview of the Position/Orientation Tracking System Combining the KF 

and the PF 

The proposed position/orientation estimation method is presented in Figure 6-1.  The proposed 

method calculates the position and orientation states from IMU measurements and measures the 

position using a position sensor.  An expert system is developed to correct the angular velocities 

according to the measurements from the IMU and the position sensor.  By using the corrected angular 

velocities ( xω , yω , and zω ), the rotation matrix from the body frame to the fixed frame is estimated.  

The rotation matrix of the i
th particle from the body frame to the fixed frame at time kt  ( i

k
f
b C ) is 

represented by using quaternions as: 
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where i
kc#  is the component of the direction cosine matrix of the ith particle at time kt , and i

kq0 , i
kq1 , 

i
kq2 , and i

kq3  are the four components of a unit quaternion.  Since the orientation is calculated using 
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a unit quaternion, each orientation particle consists of four states ( =i
kPFx ,  ]3210[ i

k
i
k

i
k

i
k qqqq ) 

that satisfy 

 13210
2222

=+++ i
k

i
k

i
k

i
k qqqq . (6-2) 

 
Figure 6-1: Outline of the proposed method.  

The quaternion components of each particle can be computed from the angular velocity 

measurements using: 
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The corresponding velocity and position of each orientation particle are estimated using a KF.  From 

(4-14) and (4-17), the motion tracking equations of particle i for short distance navigation can be 

written as: 

 l
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b
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gACV +⋅=& , (6-4) 

 dtVP
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∫=& , (6-5) 

where if
V  represents the velocity of the ith particle in the fixed frame.  Eq.  (6-4) reveals that the 

acceleration measurements in the body frame ( T

zyx

b
AAAA ][= ), which includes the gravity 

vector, are multiplied by the rotation matrix to calculate the acceleration in the fixed frame.  Thus, 

when the rotation matrix is inaccurate, the misalignment between the true body frame and the 
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calculated body frame leads to an acceleration error in (6-4), which consequently results in velocity 

and position errors.  In other words, a high orientation error can result in a high position error.  The 

proposed filter evaluates orientation particles by comparing the position calculation of each particle 

with the position estimate of each particle from the KF.  The particles with lower position difference 

between the two are assigned higher weights. 

6.2 Position Kalman Filter 

A KF is used to estimate the position of each particle in the proposed method because the state 

space model of an IMU is linear and the noise distribution of many position sensors can be considered 

zero-mean Gaussian.  To utilize the KF, the motion equations in (6-4) and (6-5) must be rewritten in 

the form of (2-5).  The state vector of the KF of the ith particle at time kt  is defined as 
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where i
kaxiskP ,− , i

kaxiskV ,− , i
kaxiskA ,− are the position, velocity, and acceleration of the i

th particle in each 

axis using the KF respectively.  Then, the system transition matrix of the i
th particle, i

kΦ , is  
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Gravity is treated as a deterministic input.  When the direction of the Z-axis of the fixed frame is 

chosen opposite to the local downwards, the velocity and the position changes due to gravity 

measurements must be compensated for along this direction.  Since the system input matrix is not 

related to the orientation particle, it is written as: 

 [ ]Tllkk tgtgu 02/000000 2
1 ⋅⋅=⋅Γ − . (6-8) 
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Since the magnitude of the local gravity vector can be assumed constant for short distance navigation, 

the system input matrix is assumed to be constant. 

The acceleration and the position components are directly measured using calibrated 

accelerometers and a position sensor.  Then, the measurement matrix is: 
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6.3 Orientation Filtering Technique 

The proposed method uses the PF to estimate the orientation of an object.  The weight of each 

particle is determined by using the position calculation of each orientation particle and the position 

measurements as the most probable value.  In such an approach, however, the differences between the 

position measurements and the position calculation of each orientation state can be a result of not 

only the orientation state but also sensor errors such as noise.  Then, the particles with higher 

orientation errors can have higher likelihoods of being in the correct orientation.  In other words, the 

position measurements at time kt  are not accurate enough to approximate the true posterior of 

orientation.   

To overcome this problem, the summation of the position differences for a period of time ( sT∆ , 

where subscript s is the sth orientation iteration, s = 1, 2, …) is selected to determine the weights of 

the particles instead of the instantaneous position differences at time kt .  In addition, instead of using 

the direct position measurements, the KF position estimations of each particle, which incorporates the 

position measurements, are used to reduce the effect of the measurement noise.  Then, the likelihood 

is calculated based on the accumulated position difference between the estimations and the calculated 

values of the i
th particle ( i

sAPE ) as 
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where tTM ss /∆= , and i

kaxispP ,−  are the position states of the i
th orientation particle at time kt .  The 

lower i
sAPE  of the given particle signifies the higher likelihood of being the correct orientation.  For 

every sT∆  period elapses, the weight of each particle is recalculated according to i
sAPE  values.  

Then, the PF must be modified to use i
sAPE  instead of the direct position measurements.  The 

posterior approximation up to time st  is 

 ∑
=

−≈
N

t

i
ss

i
k

i
ss xxwAPExp

1

:0:0:1:0 )()|( δ . (6-11) 

Then, the posterior up to time st  is expressed as 

 )|()|()|()|( 1:11:01:1:0
i
sssss

i
s

i
ss APExpxxpxAPEpAPExp −−− ⋅⋅∝ , (6-12) 

and the normalized weight of the ith
 particle at the sth

 orientation iteration becomes  
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s w
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∝ . (6-13) 

By resampling and choosing the importance density from prior, )|( 1−ss xxp  and the fact that 

Nw
i
s /11 =− , the normalized weight has the following relationship:  

 )|( ,
i

sPF
i
s

i
s xAPEpw ∝ . (6-14) 

The weight of the orientation particle is calculated based on i
sAPE  and the most probable value of 

i
sAPE .  argmin( i

sAPE ) is chosen as the most probable value because the orientation with the 

minimum accumulated position error has the highest likelihood of being the correct orientation.  Then, 

the normalized weight is calculated as: 

 
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w

σ
, (6-15) 

where )( i
sAPEσ  is the standard deviation of i

sAPE .  Since )(3 i
sAPEσ  contains 99.7% of the values 

of i
sAPE , it is valid to assume that the mean of i

sAPE  less argmin( i
sAPE ) is )(3 i

sAPEσ .  After 
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resampling, the quaternion terms must be normalized to satisfy (6-2).  The summary of the proposed 

particle filtering technique is described in Table 6-1. 

Table 6-1: Summary of the proposed particle filtering technique. 

If k = 1, Draw i
x0  from )( 0xp  and Nw

i /10 =                // Initialization 

Calculate i
kPFx ,                                                                // Prediction 

Calculate i
sAPE  according to (6-10)                              // Likelihood 

IF remain 0)/( =sMk                                                     // Update                                         

   i
kPF

i
s xx ,=                                                                  // Predicted states                                         

   Calculate 










×

−−
=

2

2

))((2

))min(arg(
exp*

i
s

i
s

i
si

s
APE

APEPE
w

σ
 // Weight calculation 

   ∑
=

=
N

i

i
s

i
s

i
s www

1

*/*                                                    // Normalize weights 

   Draw i
sx  based on i

sw                                               // Draw the next particles (Resampling) 

        Nw
i
s /1=                                                                  // Reset weights 

i
s

i
kPF xx =,  

End IF 

 

Note that sT∆  should be chosen based on the sensor accuracy.  If sT∆  is too short, the 

accumulated position difference may not be large enough to help identify the best orientation particle.  

When sT∆  is too long, the orientation error may become large prior to the application of the 

orientation evaluation.  This, in turn, impacts the orientation estimation accuracy.  In addition, this 

algorithm requires more particles to represent the PDF to cover a wider range of possible orientation 

angles leading a higher computational cost.   

6.3.1 Angular Velocity Correction Using an Expert System 

The expert system is used in two cases: (i) estimating the initial gyro biases and (ii) detecting the 

stationary state.  In Chapter 4, an accelerometer calibration method with a simple procedure was 

introduced.  Although it provides a high accuracy, the procedure takes about thirty seconds and the 
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gyro calibration technique in Appendix B takes about 30 seconds.  When the proposed KF-PF 

combined method in this chapter is used, simpler calibration procedure can be employed.   

Both gyros and accelerometers suffer from biases and gain errors primarily caused by temperature 

drift.  Thus, many commercial IMUs are factory calibrated and have a temperature drift compensation 

feature to reduce the effects of biases and gain errors, as well as misalignment and non-linearity.  

Also, acceleration sensitivities of the gyros are compensated for.  Even when an IMU has a 

temperature compensation feature, the gains and biases slightly differ whenever the sensor is 

switched on as discussed in Chapter 2.  However, the effects of the accelerometer gain and bias errors 

due to power-on can be insignificant in this application because the gain and bias differences due to 

power-on are usually very small and a position sensor is used to correct the velocity and position 

estimation errors.   

The gain difference of a gyro due to power-on is small, and the orientation error caused by the 

gain error due to power-on is not significantly high.  However, the gyro bias error can cause a 

significant orientation error because gyro bias leads to continuous orientation drift over time and there 

are no orientation measurements to correct the orientation.  As the angular velocity bias increases, the 

proposed filter will require a higher process noise and more particles to compensate for the 

orientation uncertainty in order to maintain the orientation accuracy.  Since the bias variation due to 

power-on is also very small, a slight increment in the numbers of particles and process noise can 

remove the effect of the small bias error.  However, this can still result in higher computational 

complexity.  Since factory calibrated IMUs have the acceleration sensitivity compensation for gyros, 

the gyro biases can be calculated by simply leaving the object stationary.  Then, the mean value for 

the stationary state of each gyro becomes the bias.  Since this procedure is very simple and fast, the 

gyro bias is calibrated in the proposed system.  The IMU is left stationary for 1 s, and the mean values 

are subtracted from gyro measurements to compensate for the biases.  The rules for the gyro initial 

bias compensation are defined as follows: 

 
Rule 6-1: IF time ≤ 1 second THEN  

axisaxisaxis meassumsum ___ ωωω += AND 0=axisω  

Rule 6-2: IF time = 1 second THEN 

tsumbias axisaxis ×= __ ωω  

Rule 6-3: IF time > 1 second THEN 
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axisaxisaxis biasmeas __ ωωω −=  

where axissum_ω  is the angular velocity summation of each axis, axisbias_ω  is the calculated 

angular velocity bias of each axis, and  axismeas_ω is the angular velocity measurement of each axis. 

It is expected to achieve higher position and orientation accuracy when the accelerometers and 

gyros are calibrated more accurately.  However, when the proposed KF-PF approach is used with a 

factory calibrated IMU, the effect of calibration is not significant.  Although the gyro biases are not 

significantly high, they are calculated and removed because the procedure is simple and takes only 1 

second, and bias removal reduces the orientation error.    

Another role of the expert system is to identify the stationary state.  Bayesian estimation 

techniques are suitable for estimating dynamic states, but an alternative approach is required for 

estimating the states that do not change.  Thus, when the object is stationary, the system should output 

the previous states instead of estimating the current state.  When the object is identified as being 

stationary, the angular velocity is changed to zero.  Even when the angular velocity is zero, the yaw 

angle can still drift during the resampling step.  This is due to the fact that the yaw angle drift does 

not affect the position calculation when the object is stationary.  Therefore, while the object is 

stationary, the resampling step is suspended to ensure the current orientation state is the same as the 

previous orientation state ( i
kPF

i
kPF xx 1,, −= ).  To suspend the resampling step, sT∆  is increased by one 

sample time whenever the object is identified as being stationary ( tTT ss +∆=∆ ). 

The stationary state is identified by using the similar approach to that in Chapter 4.  Since a 

position sensor is available, the position measurement fluctuation ( axisflucPos _ ) of each axis is 

defined as 

 axisaxixaxis PAvgPflucPos __ −= , (6-16) 

where the average position of each axis ( axisPAvg _ )  are expressed as 

 ,/)(_
1

wjPPAvg
n

j

axisaxis ∑
=

= . (6-17) 

When the object is stationary, the magnitude of the angular velocity of each axis should be lower than 

the maximum angular velocity error of the gyro, the acceleration fluctuation ( axisflucAcc _ ) is 

smaller than the maximum acceleration noise from the accelerometer, and the fluctuation of the 
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position measurement is less than the maximum error of the position sensor.  Then, the expert rule for 

the stationary state is 

 

Rule 6-4:   

IF erroraxisaxis max__ωω ≤  for the last stationaryt  seconds  

AND noiseaxisaxis AflucAcc max___ <  for the last stationaryt  seconds AND erroraxisaxis PflucPos max___ <  

for the last stationaryt  seconds, 

THEN 0=axisω , and tTT ss +∆=∆  

 

where erroraxisP max__  is the maximum position error in each axis.  The stationaryt  period should be 

chosen depending on the application.  

6.3.2 Initial Orientation Estimation  

In order to use the PF, the initial PDF of the orientation states need to be identified.  Two extreme 

cases can be considered: (i) when the orientation state is almost completely known and (ii) when the 

orientation of the object is completely unknown.  When the initial orientation of the object is known 

with a high level of certainty, the initial PDF can be represented as a normal distribution with a very 

small covariance.   

However, in many circumstances, the initial orientation is completely unknown.  Then, two 

different approaches are possible.  First, quaternion states are drawn from a uniform distribution.  In 

this case, a high initial process noise covariance is selected because the uncertainty of the orientation 

state is initially high.  It is assumed that the orientation converges to the correct value as time elapses.  

Then, the uncertainty also reduces over time.  In order to incorporate this knowledge, the process 

noise covariance monotonically reduces to the final value where the orientation is known with a high 

degree of certainty. 

The second approach is to utilize the knowledge that the object is stationary for the first 1 second.  

Then, the average acceleration measurements for the first 1 second can be used to calculate the tilt 

angles so that the uncertainties in roll and pitch angles ( xθ  and yθ  respectively) are reduced.  The 

relationship between roll and pitch angles and the acceleration measurements due to gravity can be 

expressed as [116]: 
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where iaxisAAvg __  is the initial average acceleration of each axis for the first one second using (4-

17). 

Although the roll and pitch angles can be determined from (6-16), the uncertainty in the yaw angle 

remains an issue.  If any information about the yaw angle is available, it can be used to construct the 

initial PDF.  However, if no information is available about the initial state of the yaw angle, a uniform 

distribution can be used to represent the PDF of the yaw angle.  If 20 particles are used, the particles 

are placed 18° (360°/20 particles) apart in the yaw angle domain.  Then, the initial quaternion states 

by using these angles are defined as follows [116]: 
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, (6-19) 

where i
zθ  is the ith yaw angle at 1 second.   

Similar to the first approach, a high initial process noise covariance is selected and monotonically 

reduced until it reaches the final value.  However, since this algorithm already has the roll and pitch 

angle information, the initial process noise covariance should be selected lower than the level chosen 

for the first approach of case (ii). 

6.4 Experiments 

6.4.1 Preliminary Experiment 

In order to test the novel PF-KF method described in this chapter, the presented theory is first 

tested in a lab environment with a factory calibrated IMU, and then applied to the tool tracking 

experiment.   
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The proposed method was experimentally tested by using a hybrid system that consists of one 

factory calibrated IMU (3DM-GX2, Microstrain) and one position sensor (Optotrak, NDI).  Optotrak 

can locate infrared light emitting diode (IRED) position markers with submillimeter error [52], [53].  

One IRED position marker was attached to the centre of the IMU.  To check the orientation accuracy 

of the proposed method, the true orientation was calculated from four IRED position markers placed 

280 mm apart from each other.  The configuration of the sensors is depicted in Figure 6-2.  Optotrak 

requires lines of sight between the IRED position markers and the cameras.  Since an IRED position 

marker has a limited signal emitting angle, three sets of Optotrak cameras were used to track the 

position of the markers.   

 

 

                                  

Figure 6-2: The proposed hybrid system and the true orientation measurement system. 

In this experiment, the sensors shown in Figure 6-2 were moved manually in random 3D motions 

for 8 minutes and returned to the original position and orientation.  The sensor was kept stationary for 

the first 1 second to remove the gyro bias and for the last 10 second to check if the expert system 

could detect the stationary state.  The true position and orientation measurements using Optotrak are 

illustrated in Figure 6-3.   

Both the position sensor and the IMU were sampled at 100 Hz (t = 0.01 s).  Since it is unlikely to 

move an object and satisfy Rule 6-4 for 1 second when the object is manually moved, stationaryt  is set to 

1 second.  The proposed method evaluates the weights of the particles every 1 second interval while 

the tool is moving ( sT :1∆ = 1 s).  When the system detects stationary state, T∆  can be extended as 

Four position markers 
for the true orientation 

measurements 

Hybrid system consists 
of one IMU and one 

position marker 

280 mm 

280 mm 
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described in Rule 6-4.  Four different analyses were conducted for the same test: (i) orientation error 

comparison between the EKF and the proposed filter, (ii) orientation error comparison of the 

proposed filters with different numbers of particles, (iii) orientation error comparison of the proposed 

filters with different numbers of particles when the initial condition is completely unknown, and (iv) 

position and orientation error comparisons when noise is added to the position measurements.   
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Figure 6-3: True (a) position and (b) orientation measurements using Optotrak. 

First, the orientation errors obtained with both an EKF and the proposed filter with 20 particles are 

compared in Figure 6-4.  The expert system described in Section 6.3 was applied to both the EKF and 

the proposed filter to correct the angular velocity.  Figure 6-4 indicates that the orientation errors 

using the EKF increase over time, but the errors using the proposed filter are significantly reduced 

and do not grow over time.  The roll and pitch angle errors of the proposed method have lower 

magnitudes than the yaw angle error because the roll and pitch angles are associated with the gravity 

vector when the acceleration of the object is calculated.  As a result, the orientation particles with 

higher roll and pitch angle errors have lower weights and die out faster.  To analyze the orientation 

estimation accuracy better, the RMS errors of the rotation matrices are compared in Figure 6-5.  The 

results show that the rotation matrix error using an EKF increases over time.  When the proposed 

method is applied, the rotation matrix error is significantly reduced and the error does not increase 
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over time.  The errors of the last 10 seconds in Figure 6-4 and Figure 6-5 did not change because the 

angular velocity was reduced to zero and the resampling was suspended when the object was 

stationary. 
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Figure 6-4: Orientation errors using (a) EKF and (b) the proposed method with 20 particles. 
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Figure 6-5: RMS rotation matrix error using (a) EKF and (b) the proposed method with 20 

particles. 

For the second analysis, the orientation errors were calculated using the proposed method with 5, 

20, and 80 particles.  Figure 6-6 and Figure 6-7 show the corresponding orientation errors in each 

case.  When the number of particles is increased from 5 to 20, the orientation error is significantly 
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reduced.  However, when the number of particle is increased from 20 to 80, the graphs show no 

significant improvement.  This experiment shows that increasing the number of particles does not 

proportionally improve the orientation estimation accuracy. 
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Figure 6-6: Euler angle errors using the proposed method when the initial orientation is known 

(a) 5 particles, (b) 20 particles, and (c) 80 particles. 
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Figure 6-7: RMS rotation matrix errors using the proposed method when the initial orientation 

is known (a) 5 particles, (b) 20 particles, and (c) 80 particles.   

For the third analysis, the initial orientation was assumed completely unknown, and the orientation 

of the object was estimated using the proposed filters with 5, 20, and 80 particles.  The initial 

orientation is distributed using (6-19) at 1 second.  In addition, 1T∆ is chosen 3 seconds instead of 1 
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second so that the majority of particles with small weights die out in the first orientation iteration.  

When the initial orientation is unknown, high initial process noise is selected and then decreased 

gradually over time to its final value used in the previous two analyses.   

The initial process noise and the settling time are reduced as the number of particles increase.  

When 5 particles are used, the initial process noise is 40 times higher than the final value.  Then, the 

process noise converges monotonically to the final value in 390 second.  When 20 particles are used, 

the initial process noise is 16 times higher than its final value and converges to this value in 150 

second.  When 80 particles are used, the initial process noise is four times higher than its final value.  

This process noise converges to the final value in 30 second.   
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Figure 6-8: Euler angle errors when the initial orientation is unknown: (a) 5 particles, (b) 20 

particles, and (c) 80 particles. 

Figure 6-8 shows the absolute values of Euler angle errors (the actual roll and pitch angle errors 

vary from -90° to 90°, and the yaw angle error varies from -180° to 180°) for the previous three 

scenarios when the initial orientation is completely unknown.  Figure 6-8 (a) depicts the orientation 

error using the proposed filter with 5 particles.  Since only 5 particles are used to span the entire yaw 
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angle range, this approximation cannot represent the true PDF very well.  As a result, the particle with 

a high yaw angle error (120°) has the highest weight at the beginning and slowly converges to the 

correct orientation.  Figure 6-8 (a) shows that the orientation converges to the correct values as time 

elapses even though the initial values were far from the correct orientation.  When the yaw angle is 

around 90°, the roll and pitch angle errors become unstable in Figure 6-8 (a), which is a well-known 

Euler angle problem.  The last row of Figure 6-8 shows the magnified yaw angle errors.  The plots in 

the last rows of Figure 6-8 depict that as time elapses, the yaw angle errors almost match their 

counterparts in Figure 6-6.  The last row of Figure 6-8 (b), the proposed method with 20 particles, 

illustrates that the correct orientation was found at 70 second.  However, the yaw angle error started 

increasing significantly because the number of particles is small and the process noise is high.  Since 

the process noise is designed to reduce monotonically to the final value in 150 s, the yaw angle error 

does not significantly increase after 120 second.  Figure 6-8 demonstrates that the proposed filter 

finds the correct orientation faster as the number of particles increase. 

For a close up view of Figure 6-8 (c), the first 15 seconds of the proposed method with 80 particles 

are shown in Figure 6-9.  Initially, the orientation particles were randomly drawn from a uniform 

distribution.  At 1 second, the roll and pitch angels were estimated by using (6-18).  At this instant, 

the roll and pitch angle errors are close to zero, and the yaw angle is represented by 80 particles that 

are uniformly distributed using (6-19).  Around 6 seconds, after 3 seconds of movement period 

excluding the stationary state, the orientation particle with about 130° difference from the correct yaw 

angle is chosen as the output because it has the highest weight.  At 7 seconds, however, the yaw angle 

error is considerably reduced indicating that the filter contains a set of particles with low orientation 

errors.  In other words, since 80 particles are used, many particles with low yaw angle error survived 

during the resampling at 6 seconds and were chosen as output at 7 seconds.   

The same experiment was repeated with 20 particles without using (6-18) to estimate the initial 

roll and pitch angles.  The initial process noise is 26 times higher than the final value and is allowed 

to converge to the final value in 250 seconds.  Figure 6-10 displays the experimental results.  As 

expected, this method requires a longer time to converge to the correct orientation due to the 

uncertainties in the roll and pitch angles. 
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Figure 6-9: First 15 seconds of Figure 6-8 (c), the orientation error with 80 particles when the 

initial orientation is unknown. 
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Figure 6-10: Euler angle errors using the proposed method with 20 particles when the initial 

orientation is unknown and accelerometer measurements are not used to estimate the roll and 

pitch angles, (a) full range and (b) range from 0° to 6°. 
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Figure 6-11: Euler angle errors of the proposed method with (a) 5 particles, (b) 20 particles, and 

(c) 80 particles when Gaussian noise is added to the position measurements. 

Lastly, the effect of the position measurement noise on the orientation error is studied.  To 

investigate the effects of the position measurement noise on the orientation and position accuracies, 

the same experiment was repeated with Gaussian noise added to the Optotrak position measurements.  

In this analysis, the position measurements are treated as the true position because Optotrak has only 

submillimeter error.  Figure 6-11 shows the orientation error using the proposed method with 

additional position noise, and Fig 6-12 shows the corresponding position error.  The plots in Figure 6-

11 display lower orientation errors than those obtained using the EKF in Figure 6-4 (a).  This is 

particularly evident for the roll and pitch angles.  This result reveals that the proposed method has a 

good performance even in the presence of additional Gaussian position noise.  As expected, Figure 6-

6 and Figure 6-11 illustrate that the position measurement noise tends to reduce the orientation 

accuracy.  Figure 6-11 also shows that the orientation accuracy increases as the number of particle 

increases.  However, increasing the number of particles increases the computational cost as shown in 

Table 6-2.  The proposed method was calculated by using Intel Core™2 Duo Processor E8400 with 3 

Gb memory.  Matlab was chosen to analyze the data off-line.  Based on the results in Table 6-2, the 
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proposed method with 80 particles is not feasible for on-line application with the current system 

because the processing time exceeds the experiment duration, 480 seconds.  However, the processing 

time can be reduced by using faster processor or more dedicated solvers such as those that utilize C or 

Java development platform.  It can also be concluded that the number of particles should be chosen to 

achieve a tradeoff between computational power and estimation accuracy.   

Table 6-2: Number of particles and their processing time. 

Number of particles 5 particles 20 particles 80 particles 

Processing time 43 s 142 s 521 s 

 

Figure 6-12 shows the position RMS error using three different approaches for position 

estimation: (i) no filter (added position noise), (ii) an EKF, and (iii) the proposed methods with three 

different particle sizes.  The position estimations of both the EKF and the proposed methods show 

improved results over the case when no filter was used.  The proposed methods in all three cases yield 

lower position errors than the EKF estimation method.  Figure 6-12 also suggests that the proposed 

method provides higher position accuracy when the number of particles is increased.   

Figure 6-11 relates that the position measurement noise affects the orientation accuracy, and the 

orientation error decreases as the number of particles increases.  In the next experiment, a random 

position noise is added to the position measurements instead of a zero-mean Gaussian noise.  The 

orientation errors of this test with different numbers of particles were compared in Figure 6-13, and 

the position error is compared in Figure 6-14.   
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Figure 6-12: RMS position error when Gaussian noise is added to the position measurements: 

(a) added Gaussian noise using no filter (b) using an EKF (c) using the proposed filter with 5 

particles, (d) using the proposed filter with 20 particles, and (e) using the proposed filter with 80 

particles. 
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The position error in Figure 6-14 is a little bit worse than the position error in Figure 6-12.  This is 

most likely because the position measurement error is not Gaussian.  The orientation error 

comparison between Figure 6-13 and Figure 6-11 also shows that the orientation error is slightly less 

accurate when the position measurement has a uniform noise distribution. Since the proposed method 

utilizes the KF to estimate position, the accuracy can decrease when the position measurement noise 

is non-Gaussian.  However, both the position and orientation estimations are improved when the 

proposed PF-KF combination is used.   

 

Figure 6-13: Euler angle error of the proposed method with (a) 5 particles, (b) 20 particles, and 

(c) 80 particles when random noise is added to position measurements. 
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Figure 6-14: RMS position error when random noise is added to the position measurements: (a) 

added random noise using no filter (b) using the proposed filter with 5 particles, (c) using the 

proposed filter with 20 particles, and (d) using the proposed filter with 80 particles. 

In the next experiment, the position sensor mimics the encoder-based position sensor that was 

used for the fastened bolt tracking system.  The encoder-based position sensor does not have noise 

and have maximum 0.007 m of error.  Also, the position error of the encoder-based position sensor 

gradually increases or decreases.  This error characteristic of the encoder-based position sensor is 

represented with added sinusoidal position signal with the attitude of 0.007 m.  The sinusoidal 

position error of each position axis has different frequencies (0.1, 0.15, and 0.3 rad/sec).  Although 

the sinusoidal position error is a source of error, it is not measurement noise.  Thus, the measurement 

noise covariance is the same as the noise covariance of Optotrak.  Figure 6-15 reflects the orientation 

error comparison with different numbers of particles.  The graphs show that they are almost the same 

as Figure 6-6, where the additional measurement error was not added.  The orientation error is 

improved when the particle size is increased from 5 to 20, but there is no significant difference 

between the orientation errors with 20 particles and with 80 particles.         
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Figure 6-15: Euler angle error with the proposed method with (a) 5 particles, (b) 20 particles, 

and (c) 80 particles when sinusoidal position errors with an attitude of 0.007 m is added to the 

position measurements. 

6.5 PF-KF-Based Tool Tracking System 

6.5.1 Application to Tool Tracking System - Theory 

The experiment used the same sensors and trajectory that were used in Section 5.4, and the 

position errors of the tool tip were compared when the position of the tool tip is known (e.g., when 

the tool fastens a bolt).  Although the IMU was not factory calibrated, it was calibrated before use.  

The last experiment, Figure 6-15, mimics the encoder-based position sensor used in Section 5.4.  

Based on this experiment, the variables for the fastened bolt tracking system experiment are chosen.  

The filter with 20 particles is used for this application because Figure 6-15 shows no significant 

difference in the orientation error between the filter with 20 particles and the filter with 80 particles.   

In order to apply the PF-KF tracking system to the fastening tool tracking application, the system 

should be able to identify the fastened bolt.  First, the fastening action was identified by using Rule 5-
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4 to Rule 5-7 in Table 5-2.  When the fastening action was detected, the tool tracking system should 

identify the fastened bolt.  To narrow down the possible fastened bolt, the system identifies which 

bolts are within the position sensor error range ( nPSE ) by using (5-17).  If only one bolt satisfies (5-

17), the system concludes that the tool fastens that bolt.  When more than one bolt satisfies (5-17), the 

orientation and position of each particle and the possible bolt positions are used to identify the 

fastened bolt.  Let the calculated tool tip position components of particle i at time kt  be i
kTx , i

kTy , 

and i
kTz .  Then, the position error of particle i with respect to Bolt n at time kt  is 

 
5.0222 ))()()(( z

i

ky

i

kx

i

k

i

n nTznTynTxPEP −+−+−= . (6-18) 

The bolt with the minimum i
nPEP  value is chosen as the fastened bolt for particle i.  When all the 

particles indicate that Bolt n is being fastened, the system concludes that the tool is fastening Bolt n.  

Then, each particle is corrected by using the orientation correction method in subsection 5.3.4, which 

uses the position measurements from the position sensor and the position and orientation of the 

fastened bolt.  When the orientation is corrected, all particles have the same orientation because the 

position measurements and the position and orientation of the fastened bolt are the same for all 

particles.  In order to keep the variety of orientation particles, the particles are resampled immediately 

after the orientation correction with 1/10th of the original process noise value. 

The advantage of the PF is that the initial states are not required to be known.  When the initial 

orientation is unknown, the possible initial orientations can be calculated using the method in 6.3.2, 

which utilizes accelerometer measurements to estimate the tilt angles.  In order to find the correct 

position of the tool tip, the tool tracking system waits until the first bolt is fastened if the initial 

orientation is unknown.  When the first fastening action is detected and only one bolt satisfies (5-17), 

the system concludes that the tool fastens that bolt and all the particles converge to one orientation.  

However, when there are multiple possibilities for the fastened bolt, each possibility has the same 

number of particles and each particle tracks the position of the tool tip.  Each possibility of the 

fastened bolt sequence resamples within its own sampling pool to avoid a possibility of the fastened 

bolt sequence disappear due to low weight.  In order to evaluate the fastened bolt sequence, total 

accumulated position error ( i
kTAPE ) is used, which is defined as 

 5.02
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i
kTAPE  is zeroed when there are multiple possible fastened bolts for the first time or when there is 

one possibility of previous fastened bolt and multiple possible fastened bolt exist currently.  When the 

next fastening action is detected, each particle identifies the fastened bolt by identifying the bolt with 

the minimum i
nPEP .  Since i

nPEP  is calculated with respect to the almost absolutely correct value 

(bolt position), it was weighted twenty times more than the accumulated position error.  When the 

fastening action is detected, i
kTAPE  is updated as follows: 

 i
n

i
k

i
k PEPTAPETAPE ×+=+ 201 .  (6-20) 

When all the particles indicate that they are fastening the same bolt, the system chooses the particle 

with the minimum i
kTAPE  value as the most probable possibility.  Then, the system outputs the bolt 

fastened sequence of the chosen particle, and all i
kTAPE  values are set to zero.  However, if there are 

still multiple possibilities, i
kTAPE  keeps accumulating until there is only one possible fastened bolt.   

When the calculated position error of a particle is higher than the position error limitation of the 

PF-KF method, the particle should be removed because this particle has an incorrect path.  Therefore, 

the maximum position error of the tool tip should be identified.  From Figure 6-15, the maximum 

error of the PK-PF system with 20 particles is 2°.  However, since this 2° error is calculated from the 

particle with the highest weight, an extra 2° of orientation error margin is added to ensure that all the 

possible particles that fasten the bolt are included.  Thus, 4° is chosen as the maximum orientation 

error of the PK-PF system with 20 particles.  Since the maximum position measurement error is 

0.007m, the maximum position error of the tool tip position is 

 mmmmmmmMPE 0185.05.187)22sin(165 ==+°+×= . (6-21) 

From (6-21), it is concluded that all the bolts should be at least 0.037 (0.0185 × 2) m apart for the 

system with 20 particles to identify the fastened bolt correctly.  In case there are four possible 

fastened bolt positions, each possibility has five particles.  In this case, the maximum orientation error 

is 4° as shown in Figure 6-15.  Then, the MPE with a 2° error margin can be written as 

 mmmmmmmMPE 0242.02.247)24sin(165 ==+°+×= . (6-22) 

Therefore, when MPE is greater than 0.025 m, the i
th particle is most likely not fastening Bolt n.  

However, to keep more variety, 0.035 m is used as the position error limitation.  Therefore, if the 
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distance between Bolt n and the particle i is greater than 0.035 m, the system removes this particle 

and replaces it with a particle whose i
nPEP  value is less than 0.035 m.  To reduce this position error 

limitation, more particles can be used.  For example, if 80 particles are used, MPE becomes 0.0185 m 

instead of 0.0242 m when there are four possibilities; thus, the position error limitation is lowered and 

better accuracy can be achieved.  Therefore, it is beneficial to use more particles when the bolts are 

closely placed. 

6.5.2 Experiment Results 

Four different scenarios with two different tool trajectories are examined for the tool tracking 

experiments.  In the first scenario, the results using the KF-based system described in Section 5.4 and 

the results using the PF-KF-based system with 20 particles are compared.  For the second scenario, 

the tool was moved beyond the angular velocity measurement limitation and the experimental results 

of the two methods were compared.  The third experiment shows how the PF-KF-based system finds 

the correct orientation when the initial orientation is completely unknown.  The last experiment shows 

the scenario when the initial orientation is unknown and there are multiple possible fastened bolts.   

For the first scenario, the PF-KF-based system with 20 particles was used in the tool tracking 

application, and the results are compared with those using the KF-based system in Chapter 5.  Table 

6-3 summaries the position error using the KF-based system and using the PF-KF-based system with 

20 particles.  The results show that the PF-KF-based system has generally a higher accuracy than the 

KF-based intelligent system.  

In order to see how accurately the PF-KF-based system can estimate the orientation when the 

angular velocity is slightly unreliable, the tool was rotated beyond the angular velocity measurement 

range of the gyros.  Figure 6-16 shows the angular velocity of each axis for the second experiment.  

Figure 6-16 (a) depicts the entire time range of the experiment and Figure 6-16 (b) displays the 

duration that the angular velocity of the tool is beyond the linear range of the gyros.  The dashed lines 

in the figures represent the measurement limit of gyros, which is ±75º/sec.  When the angular velocity 

is beyond this rate, the nonlinearity can be higher than the specification.  The figures indicate that the 

angular velocities in the x-axis and the y-axis are far beyond the linear range.  For the y-axis, the 

angular velocity measurements between 67.7 second to 69 second are cut off because the angular 

velocity output is beyond the measurement limit.  The comparison results of the second test are 

summarized in Table 6-4.   
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Table 6-3: Position error comparison between the KF-based system and the PF-KF-based 

system. 

Tool 

position 

Time 

(s) 

Position error with the KF-based 

system (mm) 

Position error with the PF-KF-based 

system with 20 particles (mm) 

X-axis Y-axis Z-axis Total X-axis Y-axis Z-axis Total 

Bolt 1 19 -2 0 6 6 -3 6 -2 7 

Bolt 4 43 -12 -6 -6 15 -6 4 -2 7 

Bolt 5 85 -2 -8 2 8 -5 5 4 8 

Bolt 6 89 -4 -2 2 5 -4 2 5 7 

Bolt 7 184 3 -6 7 10  1  1 6 6 

Finish 204 -1 -6 0 6 -1 -2 -5 5 

 

In Table 6-4, both systems correctly identified the fastened bolt.  Most of the bolts exhibit a low 

position error, but the error of Bolt 5 is much higher than that of the others due to the angular velocity 

measurement error between 65 second and 69 second.  This error resulted in 34 mm when the KF-

based system is used.  However, when the PF-KF-based system was used, the error is 25 mm.  This is 

due to the fact that the KF is suitable for zero-mean Gaussian noise while PF can adapt to any noise 

distribution.  

The orientation error due to angular velocity measurement error can be considered as an 

uncertainty.  Thus, the error can be reduced when a higher process noise is chosen and more particles 

are placed to compensate for the high uncertainty.  Table 6-5 shows the position error of the PF-KF-

based system with different numbers of particles and covariance.  In general, there is no significant 

difference among the nine scenarios that are presented in Table 6-5 except for Bolt 5.  When 20 

particles are used, or the covariance is 0.006, there is no significant difference.  When the number of 

particle and covariance are increased, the position of Bolt 5 is estimated more accurately.  However, 

when the number of particles is changed from 40 to 60, there is no significant difference in the 

position accuracy.  This experiment shows that when the uncertainty increases, both the measurement 

covariance and the number of particles should be increased to achieve a better result.   
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Figure 6-16: The angular velocity (°/sec) of each axis: (a) the entire time span and (b) between 

65 second and 70 second. 

Table 6-4: Position error comparison between the KF-based system and the PF-KF-based 

system when the angular velocity components have high errors.   

Tool 

position 

Time 

(sec) 

Position error with the KF-based 

system (mm) 

Position error with the PF-KF-based 

system with 20 particles (mm) 

X-axis  Y-axis Z-axis Total X-axis Y-axis Z-axis Total 

Bolt 1 11 -6 2 4 7 -6 2 -3 7 

Bolt 2 21 -5 0 -2 5 -4 0 0 4 

Bolt 3 27 -2  6 0 6 0 1 3 3 

Bolt 4 34 -5  3 5 8 -5 3 2 6 

Bolt 5 73 -7  -10 -32 34 -6 -6 -23 25 

Bolt 6 79 -5  3 -8 10 -5 3 -2 6 

Bolt 7 89 -1 0 10 10 -1 0 -1 1 

Bolt 8 102 0 12 1 12 -3 4 4 6 

Finish 135 -2 4 -2 5 2 1 4 4 
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Table 6-5: Total position error comparison among the PF-KF-based system with different 

numbers of particles and different covariance when the angular velocity components have high 

errors. 

 20 particles 40 particles 60 particles 

Covariance 0.006 0.009 0.012 0.006 0.009 0.012 0.006 0.009 0.012 

Bolt 1 7 7 7 7 7 7 7 7 7 

Bolt 2 4 5 6 4 4 5 4 4 4 

Bolt 3 3 1 3 1 5 2 1 1 0 

Bolt 4 6 6 6 6 6 7 6 6 6 

Bolt 5 25 29 22 24 19 8 23 19 9 

Bolt 6 6 6 8 8 7 6 6 6 6 

Bolt 7 1 1 1 1 2 1 0 2 1 

Bolt 8 6 6 7 5 8 8 5 5 5 

Finish 4 10 5 5 6 7 5 8 2 

 

The third experiment shows the case where the trajectory is the same as the first experiment but 

the initial orientation is unknown.  The experimental results are shown in Figure 6-17.  The two 

rectangles symbolize the tool (clearly shown at 19 second) and the small black dot signifies the 

position sensor measurement.  The “x” marks represent the calculated positions of the tool tip.  When 

the tool identifies the fastened bolt, two hexagrams are marked on the bolt position.  First, the 

orientation of the tool was randomly selected.  At 1 second, the orientation of the tool was estimated 

using (6-19), utilizing the average accelerometer measurement of each axis.  Since the yaw angle is 

unknown, the particles were equally spread.  Even if the tilt angle is not corrected this way, the full 

orientation can be identified when the first fastened bolt is identified.  At 18.8 second, there are still 

20 different possibilities of orientations, but when the system identified the fastening bolt at 19 

second, the orientation converges to one solution because only one bolt satisfy (5-17).  The remaining 

figures in Figure 6-17 indicates that the particles spread over time, but the particles are very closely 

placed immediately after the fastened bolt is identified.   
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Figure 6-17: Tracking the fastened bolts when the initial orientation is unknown. 
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For the fourth experiment, four additional bolt positions (Bolt 9 to Bolt 12) are added so that 

multiple possibilities for the fastened bolt can be presented.  All bolt positions are follows.   

Table 6-6: Bolt locations. 

Bolt number Bolt position Bolt number Bolt position 

Bolt 1 (-0.4.  -0.34, 0) Bolt 7 (0.05, -0.24, 0) 

Bolt 2 (-0.4.  -0.44, 0) Bolt 8  (0.05, -0.34, 0) 

Bolt 3 (-0.3.  -0.34, 0) Bolt 9 (added) (-0.46.  -0.24, 0) 

Bolt 4 (-0.3.  -0.44, 0) Bolt 10 (added) (-0.41.  -0.3, 0) 

Bolt 5 (-0.05, -0.24, 0) Bolt 11 (added) (-0.4.  -0.39, 0) 

Bolt 6 (-0.05, -0.34, 0) Bolt 12 (added) (-0.3 -0.4, 0) 

 

Three bolt positions are added so that four possible fastened bolt positions exist when the first 

fastening action is detected, and one bolt position is added so that two possible fastened bolt positions 

exist when the second fastening action is detected.  Figure 6-18 shows the experimental results.  At 0 

second, the orientation is unknown, so randomly chosen orientations were selected as the initial 

orientation.  At 19 second, the first fastening action was detected, and there are four possible fastened 

bolt positions (Bolt 1, Bolt 9, Bolt 10, and Bolt 11) that satisfy (5-17).  For each possible fastened bolt 

position, a square mark is placed.  Since there are four possible fastened bolts, five particles are 

allocated to each possibility.   

At 42.6 second, there are four sets of possible positions of the tool tip, and it appears three 

possible fastened bolts exist (Bolt 3, Bolt 4, and Bolt 12, whose previous fastened bolts are Bolt 9, 

Bolt 1, and Bolt 10 respectively).  However, only two bolts (Bolt 4 and Bolt 12) satisfy (5-17).  The 

particles whose previous fastened bolts are Bolt 10 and Bolt 1 are fastening Bolt 12 and Bolt 4 

respectively (the particles that fastened Bolt 10 and then fastened Bolt 12 in sequence will be denoted 

as Bolt 10-12 hereafter).  Since Bolt 3 did not satisfy (5-17), the particles that previously fastened 

Bolt 9 were either resampled or assumed fastening Bolt 12 based on the distance between the particle 

and the position of Bolt 12.  If the particle is placed more than 0.035 m from Bolt 12, this particle has 

likely chosen incorrect previous fastened bolt.  Therefore, the particle is removed and replaced with a 

random particle that has less than a 0.035 m error from the possible fastened bolt.  When the particle 

is less than 0.035 m from Bolt 12, it was assumed that the particle is fastening Bolt 12 (Bolt 9-12).  
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The particles previously fastened Bolt 11 were also either resampled or assumed fastening Bolt 4 

(Bolt 11-4).   
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Figure 6-18: Fastened bolt detecting sequence.  Square blocks indicate possible fastened bolts 

and two hexagrams on the bolt signify the fastened bolts. 
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At 84.8 second, there is only one possible fastened bolt, and the two possibilities are very close to 

Bolt 5.  When the fastening action was detected at 85 second, the total accumulated position errors 

( i
kTAPE ) are compared to identify the fastened bolt sequence.  At this point, the possible fastened bolt 

sequences could be a) Bolt 9-12-5, b) Bolt 10-12-5, c) Bolt 1-4-5, d) Bolt 11-4-5, e) Bolt 1-12-5, f) 

Bolt 10-4-5.  The system concludes that the particle with the Bolt 1-4-5 sequence is the correct 

fastened bolt sequence because this particle has the minimum total accumulated position error.  Thus, 

Bolt 1, Bolt 4, and Bolt 5 are marked with two hexagrams on the bolt position at 85 second, and the 

other possibilities (square marks) are removed.  This is the correct sequence as shown in Table 6-3.  

After identifying the true fastened bolt sequence, the system can identify the rest of the fastened bolts 

without any multiple possibilities.  This experiment was repeated twenty times, and the system 

identified the correct fastened bolt sequence in each trial.    

The previous experiment was repeated with the trajectory illustrated in Table 6-5.  At 10.8 second, 

four possible fastened bolt positions exist (Bolt 1, Bolt 9, Bolt 10, and Bolt 11).  When the next 

fastening action was detected at 20.8 second, five bolts satisfied (5-17) (Bolt 1, Bolt 2, Bolt 9, Bolt 10, 

and Bolt 11), but the possible fastened bolts are reduced to three positions based on the particle 

positions (Bolt 1, Bolt 11, and Bolt 2).  Then, the possible bolt sequence was reduced to three (Bolt 9-

1, Bolt 10-11, and Bolt 1-2) because the sequence possibility of Bolt 11-2 is eliminated due to a high 

position error (more than 0.035 m).  When the next fastening action was detected, the system 

concludes that the tool is fastening Bolt 3, and the system identifies the previous fastened bolts 

according to the total accumulated position error.  Since the sequence with Bolt 1-2-3 has the 

minimum total accumulated position error, the system concludes that the fastening sequence is Bolt 1-

2-3.  This is the correct fastened sequence as shown in Table 6-5.  After the correct path is found, the 

system also estimate the rest of the fastened bolts in the correct sequence.   
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Figure 6-19: Fastened bolt detecting sequence.  Square blocks indicate possible fastened bolts 

and two hexagrams on the bolt signify the fastened bolts. 

6.6 Conclusion 

This chapter presented a position/orientation estimation method using a KF-PF combination and 

how this method was applied to the fastening tool tracking system.  The proposed KF-PF combination 

method uses the PF to estimate the object orientation while the KF is used to estimate the position.  In 

addition, an expert system was developed to correct the angular velocity bias as well as to identify the 

stationary state of the object. 

The experimental results indicate that the orientation errors using the proposed method are 

significantly reduced compared to the errors using the EKF estimation method.  Two factors that 

affect the orientation error were studied: (i) the number of particles and (ii) position sensor noise.  As 

the number of particles increases, the orientation error by using the proposed method tends to 

decrease.  However, increasing the number of particles requires higher computational costs.  
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Therefore, the number of particles should be chosen to achieve a tradeoff between accuracy and 

computational efficiency.  The experimental results demonstrate that the proposed method can 

estimate orientation even in the presence of Gaussian or random position sensor noise.  However, the 

experimental results also reveal that the position noise decreases the orientation estimation accuracy.  

The experiments demonstrated that the proposed filter can find the correct orientation of the object 

even when the initial orientation is completely unknown.   

The KF-PF-based system yields a higher accuracy, and the orientation does not increase over time.  

The test results of KF-PF-based system indicate that the proposed system can estimate the fastened 

bolt even when the bolts are closely placed (0.04 m apart).  When the bolts are more than 0.04 m 

apart and the initial orientation is known, the fastened bolt can be correctly identified.  For a 

workpiece that requires a specific fastening order such as an engine mount, the KF-PF-based system 

can be used as a fastening tool control system.  When the operator tries to fasten a bolt out of 

sequence, the tool control system can be programmed so that the power of the tool is off.   In addition, 

the tool control system can have multiple torque settings based on the bolt position.  For example, 

when two bolts have the same bolt size but each requires different torque, one tool can be used to 

fasten both bolts by using the control system that controls torque based on the tool tip location.  

The KF-PF-based system can yield accurate orientation estimation even when the gyros have a 

small error and when the initial orientation is unknown.  When high computational power is available, 

the KF-PF combination system is the better choice to estimate the position and orientation of the tool 

than the KF system described in Chapter 5. 
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Chapter 7 

Thesis Contributions and Future Work 

7.1 Thesis Contributions 

In this thesis, four contributions related to fastening tool tracking systems are proposed.  These 

objectives are summarized as follows. 

• An accurate triaxial calibration method that has a simple procedure. 

• A tool tracking system that does not require a line of sight by using an IMU and a triaxial 

magnetometer. 

• A tool tracking system by using KFs and a fuzzy expert system with an IMU and an 

encoder position sensor. 

• A tool tracking system by using the KF-PF combination with an IMU and an encoder 

position sensor. 

An accurate calibration method for an IMU is important especially when the system does not have 

a position sensor to correct the position estimation.  The newly developed triaxial calibration method 

only requires placing the sensor in six different tilt angles for calibration and offers a high accuracy.   

 Three different fastening tool tracking systems using an IMU and one additional sensor are 

developed.  The first system relies on an IMU and a triaxial magnetometer.  In order to reduce the 

position error, an expert system is used to correct the velocity, position, and orientation error.  The 

advantage of this low-cost system is that it does not require lines of sight and has a low computational 

cost.  However, even with the position error correction algorithm, the position error grows rapidly 

over time.  Therefore, this tracking system can only be used for a workpiece that has different bolt 

orientations or the distances between the bolts are far from each other.   

To overcome the disadvantages of such a system, an encoder-based position sensor is employed 

instead of a triaxial magnetometer.  The KF is developed to hybridize the IMU and the position 

sensor.  A fuzzy expert system is utilized to identify the fastening action and correct the position and 

orientation.  Although this system is computationally inexpensive, the orientation error grows over 

time, which affects the position estimation of the tool tip.  This system is useful for applications 

where the bolts are not too closely apart or the fastening sequence is not important.    



 

 

 119 

The third system uses the KF-PF combination to hybridize a position sensor and an IMU.  The 

experimental results demonstrate that the maximum orientation error of the presented system with 20 

particles is about 2º, and the orientation error of the system does not grow over time.  Therefore, the 

KF-PF combination system can be applied to build a tool control system so that the tool is powered 

on only when the tool is in designated positions.  Then, an operator cannot fasten bolts out of 

fastening sequence.  The KF-PF-based system can find the fastened bolt accurately even when the 

initial orientation is unknown.  In addition, the proposed method can accurately estimate orientation 

by utilizing enough number of particles and high process noise even when the gyros have a small 

error.  The advantages and disadvantages of each system are summarized in Table 7-1. 

Table 7-1: Advantages and disadvantages of the system presented in this thesis. 

System Advantages Disadvantages 

Option 1: 

IMU and magnetometer 

using an expert system 

1. No line of sight requirement.  

2. Low computational cost. 

3. Low cost. 

 

1. Low accuracy. 

2. The bolts must be a long 

distance apart or the 

orientations of the bolts 

should be different. 

Option 2: 

IMU and encoder 

position sensor using 

KF and fuzzy expert 

system 

1. Computationally inexpensive. 

2. The fastened bolt can be accurately 

found when the bolts are some 

distance apart. 

1. A line of sight is required. 

2. The position and orientation 

errors of the tool tip slowly 

grow over time.  

Option 3: 

IMU and encoder 

position sensor using 

KF-PF and expert 

system 

1. The tool tip position can be 

accurately estimated. 

2. The tool tip position can be 

estimated even when the initial 

orientation is unknown. 

3. A fastening tool control system can 

be built. 

1. A line of sight is required. 

2. High computational cost. 

7.2 Future Work 

This thesis describes the developments of tool tracking systems that utilize one IMU and one 

additional sensor.  The most attractive option for a fastening tool tracking system is to use a high 

accuracy position sensor without a line of sight requirement.  Since an IMU must be attached to a 
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fastening tool, the sensor has to be small and lightweight.  This limitation led to the use of a MEMS 

IMU whose accuracy is limited.  However, since the MEMS IMU technology is advancing rapidly, 

more accurate MEM IMUs can be used to measure the acceleration and angular velocity.  This, in 

turn, will lead to a more accurate position and orientation estimations especially when Option 1 in 

Table 7-1 is selected. 

In this thesis, an encoder-based position sensor was chosen as the hybridization for Option 2 and 

Option 3.  In the future, other position sensor options can be studied.  Although it is challenging to 

use a magnetic position sensor in the automotive industry, this sensor is a good option.  This is due to 

the fact that a magnetic position sensor has a high accuracy and does not require a line of sight.  Also, 

an UWB position sensor can be a good option when lower position accuracy is required.  When an 

UWB position sensor is hybridized with an IMU, the position accuracy will be greatly improved.   

Option 3 in Table 7-1 offers a possible tool torque control system that can be used to control the 

power of the tool based on the position of the tool tip.  Therefore, this work can be extended to the 

development of a tool torque control system which outputs the torque based on the position and 

orientation information obtained from the system presented in Option 3.  

In this thesis, fastening tool tracking systems are investigated as an application of a remote 

sensing.  However, the application of remote sensing is not limited to tool tracking systems.  

Therefore, a general hybrid method of the KF that combines an IMU and a position sensor is 

investigated in Chapter 5, and a general hybrid method of a KF-PF combination was developed to 

estimate the position and orientation in Chapter 6.   

In the future, the remote sensing system using the KF-PF combination can be applied to estimating 

the position and orientation of a rehabilitation patient’s body part by using an ultrasonic position 

sensor, and electromagnets, and an IMU.  In such an application, a MEMS IMU is attached to the 

position of interest and an ultrasonic emitter is attached to the IMU.  When the lines of sight are 

available, the position and orientation can be estimated with the position sensor and the IMU using 

the KF-PF combination method.  Meanwhile, a neural network system is used to create a magnetic 

field map related to the position.  Since the magnetic field can be changed when an electrical device is 

switched on or off, the map might be updated if necessary.  When occlusion occurs, the position 

information can be retrieved from the magnetic field map, and the KF-PF combination system can be 

used to estimate the position and orientation of the body part.  By using the position and orientation 

estimations, the rehabilitation system will direct the movement of the patient on a monitor.     
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Appendix A: Quaternions 

The quaternion was developed by William Rowan Hamilton to extend 3D vector algebra.  He 

introduced a concept of a hyper-complex number of rank 4: one real number and three imaginary 

numbers (i, j, and k).  A quaternion q can be written as: 

 kqjqiqqq 3210 +++= , (A-1) 

or it can also be written as: 

 vqqq += 0 , (A-2) 

where q0 is the scalar part of the quaternion, and qv is the vector part (imaginary part) of the 

quaternion.  When q0 is zero, the quaternion is entirely imaginary and is called a pure quaternion.  

The imaginary numbers follow the right hand rule such that 

 kij = ,  kji −= ,  ijk = ,  ikj −= ,  jki = ,  jik −= . 

Also, they follow imaginary number rules such that 

 12 −=i ,  12 −=j ,  12 −=k . 

In addition, quaternions follow the basic rules of vector addition and multiplication.  Let two 

quaternions p and q be 

 kpjpippp 3210 +++= , (A-3) 

 kqjqiqqq 3210 +++= . (A-4) 

Then, the sum of the two quaternions becomes 

 kqpjqpiqpqpqp )()()()( 33221100 +++++++=+ , (A-5) 

and the multiplication becomes 

     

kqpqpqpqpjqpqpqpqp

iqpqpqpqpqpqpqpqp

kqpkjqpkiqpkqpjkqpjqpjiqpjqp

ikqpijqpiqpiqpkqpjqpiqpqp

kqjqiqqkpjpipppq

)()(

)()(

)()(

)()(

))((

3333033031130220

2332011033221100

2
3332313023

2
222120

1312
2

111003020100

32103210

−+++−+++

−+++−−−=

++++++++

+++++++=

++++++=

. (A-6) 

As it can be seen by inspection, commutivity is preserved for addition but is not preserved for 

multiplication.  The conjugate of quaternions q, denoted as q*, is given by 
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 kqjqiqqqqq v 32100* −−−=−= . (A-7) 

In order to use quaternions to determine the orientation in 3D vector space, the real part of the 

quaternion must be zero (i.e.,  kvjvivv 3210 +++= ).  This also means that the 3D vector v is a pure 

quaternion once rotated by quaternion q.  Let a quaternion q represent a four dimensional rotation 

vector, and a vector v represent a vector in a three dimensional space.  Then, the quaternion after 

rotation becomes 

)0)(( 0 vv vqqvq ++=⋅  

   vvvvv vqvqvq ×+⋅+⋅= 0 . (A-8) 

Eq. (A-8) cannot be a pure quaternion unless 0=⋅ vv vq .  Hence a single multiplication of a 

quaternion does not yield a three dimensional vector.  If a 3D vector v is multiplied by two 

quaternions, p and q, the vector v after multiplication is written as 

 ))(0)(( 00 vvv ppvqqpvq +++=⋅⋅ . (A-9) 

The real part of (A-9) has to be zero in order to make the multiplication a pure quaternion.  The real 

part calculation is expressed as 

 0)()()( 00 =⋅×+⋅−⋅− vvvvvvv vpqpvqvqp . (A-10) 

If 00 qp = , (A-10) can be simplified as  

 0)()(0 =⋅×+⋅+− vvvvvv vpqvpqp . (A-11) 

Eq. (A-11) is always true if vv qp −= . Therefore, the quaternion p becomes 

 *00 qqqppp vv =−=+= . (A-12) 

Then, the vector v after rotation becomes 

))(0)(( 32103210 kqjqiqqzkyjxikqjqiqq −−−++++++  
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. (A-13) 

This can be written in the matrix form as follows: 
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 Qvqvq =* ,  (A-14) 

where 
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When a quaternion q is a unity vector, it satisfies 

 1
22

0 =+ vqq . (A-15) 

Then, (A-15) can be rewritten as 

 1sincos 22 =+ θθ , (A-16) 

where 
2

0
2cos q=θ  and 

22sin vq=θ  

A vector u is defined as a unit vector parallel to the vector part of quaternion q as 

 
θsin

v

v

v q

q

q
u == . (A-17) 

Then, the unit quaternion q is 

 θθ sincos0 uqqq v +=+= . (A-18) 

Then, *qvq  can be written as 

))(0)((* 00 vvv qqvqqqvq −++=  

 )(2)(2)( 0

22

0 vvvvvvv vqqqvqvqq ×+⋅+−= . (A-19) 

Expressing v in terms of vp (parallel to qv) and vn (normal to qv) yields the following: 
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Therefore, vector v after rotation is calculated by  

 ))(2sin()2cos(* nnp vuvvqvq ×++= θθ , (A-21) 

where u is a unit vector of qv.  Consequently, nvu ×  is perpendicular to both qv and vn. 

The relationship between arbitrary vector v and qvq* is illustrated by the geometry in Figure A-1 

and Figure A-2.  Eq. (A-21) illustrates that vector v is rotated by angle 2θ because the 3D vector v is 

rotated by θ once about q and once about q*.  In order to rotate v by θ, the rotation of quaternion q 

needs to be halved.  In other words,  

 
2

sin)(
2

cos
2

sin
2
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θθθθ
kujuiuuqqq zyxv +++=+=+=  (A-22) 

Therefore, each component of the quaternion q should be written as follows: 
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Figure A-1: Rotation of vector v by the angle of 2θθθθ about vector q. 
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Figure A-2: Rotated vector component vn before and after rotation. 
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Appendix B: Gyro Calibration 

 

For gyro calibration, the method presented in [16] is adapted because this method does not require 

any additional sensor and the procedure is simple enough to be used in automotive industries.  In this 

method, a gyro is modeled as follows:  

 axisaxisaxisaxisaxisaxis AGASGBGGmeas ⋅++⋅= ωω _ , (B-1) 

where axismeas_ω  is the gyro measurement of each axis, axisGG  is the gyro gain of each axis, axisω  

is the true angular velocity, and axisGB  is the gyro bias of each axis, and axisGAS  is the linear 

acceleration sensitivity of each axis.   

The linear acceleration sensitivity can be modeled as linear.  When the sensor is stationary, the 

angular velocity is zero, and the gyro output is equal to the gyro biases plus acceleration sensitivity 

multiplied by the acceleration.  When the accelerometer is calibrated, the IMU is placed stationary in 

six tilt angles for at least two seconds.  After accelerometer calibration, the six tilt angles can be 

calculated.  Then, the average acceleration that the gyro axis is subjected to during the stationary state 

can be calculated.  By using the two average accelerations from the six tilt angles, the linear 

acceleration sensitivity is calculated as 

   
2_1_

2_1_

AAvgAAvg

AA
GAS axisaxis

axis
−

−
=

ωω
, (B-2) 

where 1_ AAvg  is the first average acceleration, axisA1_ω  is the corresponding gyro output of the 

first acceleration, and 2_ AAvg  is the minimum calculated acceleration and axisAmin_ω  is the 

corresponding gyro output.  When the acceleration sensitivity is calculated, the gyro biases can be 

calculated by substituting the gyro acceleration sensitivity and the subjected acceleration in (3-19).   

In order to calculate the gyro gain, the angular velocity should be measured.  In this method, 

instead of utilizing an additional sensor to obtain the angular velocity, the integration of the angular 

velocity is used.  By integrating both sides of (B-1),  

 ∫∫∫ ⋅=⋅=⋅−− axisaxisaxisaxisaxisaxisaxisaxis GGGGAGASGBmeas ωωω )_( . (B-3) 

Since the gyro measurement, gyro bias, acceleration and gyro acceleration sensitivity are known, 

the left side of (B-3) is known.  When the final orientation is Θ , (B-3) is written as 
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 Θ⋅=⋅=⋅−− ∫∫ axisaxisaxisaxisaxisaxisaxis GGGGAGASGBmeas ωω )_( . (B-4) 

Then, the gain of the gyro can be calculated as 

 
Θ

⋅−−
=
∫ )_( axisaxisaxisaxis

axis

AGASGBmeas
GG

ω
. (B-5) 

Equation (3-4) is true only when the sensor is rotated in one axis.  Therefore, when a gyro is 

calibrated, the sensor should be placed on a smooth surface, and one side of the sensor should be 

placed on a reference block as shown in Figure B-1.  Then, the sensor is rotated 360º so that the same 

sensor side faces the reference block after its rotation.  Then, the final orientation ( Θ ) becomes 360º.  

Detailed theory and test results of gyro calibration are reported in [16]. 
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Figure B-3: The calibration of z-axis gyro using a reference block. 
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