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Abstract

The Zero-Coupon Inflation Indexed Swap (ZCIIS) is a derivative contract through

which inflation expectations on the Consumer Price Index (CPI) are actively traded in

the US. In this thesis we consider different ways to use the information from the ZCIIS

market for modeling forward inflation in a risk-neutral framework. We choose to implement

a model using a Monte Carlo methodology that simulates the evolution of the forward

CPI ratio. We prefer this approach for its flexibility, ease of implementation, instant

calibration to the ZCIIS market and intrinsic convexity adjustment on the inflation-linked

payoff. Subsequently, we present a series of results we obtain when modeling a chain of

consecutive CPI ratios for simulating the evolution of spot inflation. Furthermore, we use

this for pricing inflation caplets and floorlets. Finally, we use the intuition gained from

this exercise to analyse our results for pricing inflation caps.
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Chapter 1

Introduction

Inflation is an old concept used as a broad measure for the increase of prices and wages

over time. The idea is of tremendous importance to long term investors who care about the

“real” value of money: its purchasing power. It can be measured in various ways depending

on the methodology, seasonal adjustments and locations covered by the underlying price

index. In the US, the most familiar measure is the Consumer Price Index which covers all

urban cities (CPI-U) and is non seasonally adjusted (nsa). In Canada, the main index is

the all items CPI (as opposed to the Core CPI which excludes the most volatile components

like food and energy). A price index is made up of the prices of hundreds of goods and

services ranging from basic items like bread to more recent products such as computers.

Prices are usually sampled on a monthly basis over the covered region and are combined

to produce the overall index of prices. The inflation rate is then simply the variation in

the overall price of an average basket of goods denoted by the price index.

The main purpose of a price index is to allow central banks to track inflation in order to

formulate sound economic policies. The same concept can be applied in other areas as well

but requires some methodological adjustments. For example, many pension funds in the US

have their benefits tied to the Urban Wage Earners and Clerical Workers index (CPI-W).

This index covers only a certain demographic with at least 50% of the household income

is coming from clerical or wage paying jobs and at least one of the household’s earners
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having been employed for at least 70% of the year. In a similar fashion, the Association of

American Railroad (AAR) compiles a price index that covers all of the costs of operating a

railroad network which include for example wages, fuel costs and interest rates. The AAR

also publishes the All-Inclusive Less Fuel index (AAR AII-LF) which tends to follow quite

closely the CPI. Many railroad shipping contracts in the US include agreements where the

client’s bill is bound to a certain percentage of this index appreciation which often includes

a cap and a floor.

To standardize the market and enhance liquidity, inflation-indexed bonds issued by

governments only track one version of the country’s CPI. However we can see from Figure

1.1 that the CPI-U, CPI-W and AII-LF have a lot in common.1
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Figure 1.1: US CPI All Urban Average, US CPI Urban Wage Earners, AAR All-inclusive
Less Fuel and the Canadian CPI.

Note that the different price indices have different degrees of similarity but only the CPI-

U nsa is actively traded in the derivative market. This creates a basis risk for institutions

that would like to hedge their liabilities if they are tied to a different index.

1The dataset AAR AII-LF is obtained from http://www.aar.org/ and the others are obtained from
Datastream.
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The behavior of consumers possesses some seasonal features such as a rise in consump-

tion around Christmas time followed by a period of reduced spending in January. Climatic

conditions can play a major role as well. For example, oranges can be purchased year-round

but prices tend to be significantly higher in the summer months when the major sources of

supply are between harvests. There exist seasonally adjusted publications of price indices

and these are usually preferred in the formulation of economic policies. However, many

collective bargaining contract agreements and pension plans tie compensation changes to

a price index that is unadjusted for seasonal inflation. The seasonally unadjusted index is

preferred for simplicity and to avoid the methodological bias of seasonal adjustments which

can be subjective. Subsequently, it is no surprise that the underlying index of inflation

derivatives is unadjusted as they are typically used to hedge contracts of the same nature.

The following figure shows the auto-correlation of the US CPI All Urban Average over an

increasing montly lag to outline the seasonality of the index.2
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Figure 1.2: Inflation auto-correlation for different monthly lags in the time series.

2Data obtained from Datastream. Results were obtained using the Matlab cross-correlation function
(see the xcorr function in the Signal Processing Toolbox) which was applied to a vector of monthly inflation
minus the average monthly inflation.
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Inflation has been well under control since the 1970’s in North America and until

recently there was a feeling that depression prevention was a problem that had been solved

for all practical purposes.3 The belief was that the business cycle had been tamed and

economists should switch focus to things like long-term economic growth. This belief has

now vanished as central banks scramble to stimulate their economies in an environment of

low inflation and high unemployment. Target interest rates in the US and in Canada are

as low as they can be, which forces central banks to resort to unconventional measures for

stimulating their economies.

1987 1990 1992 1995 1997 2000 2002 2005 2007 2010
−6

−4

−2

0

2

4

6

8

Time (years)

R
at

e 
(%

)

 

 

Fed Rate
Taylor Rule

Figure 1.3: US Federal funds rate and a Taylor rule recommendation

Figure 1.3 shows a simple Taylor rule which is a rough rule of thumb for predicting target

interest rates as a function of unemployment and inflation. It clearly shows the extent of

the problem as it suggests that nominal interest rates should currently be deeply negative

to fully account for the current economic environment.4 However, the nominal rates are

3See Krugman [2009] for a concise review of past economic crises and similarities with the financial
crisis of 2008.

4See Rudebusch [2009] for a detailed account of the Fed’s response to the crisis. The data
and an excel file that presents how the results from Figure 1.3 can be reproduced is located at
http://www.frbsf.org/publications/economics/letter/2009/el2009-17.html. The Taylor rule is also avail-
able in Bloomberg under the ticker <TAYLOR>.
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stuck against the zero barrier as people would much prefer to stick their money under a

mattress rather then “collect” a negative interest rate. This means that the Federal Reserve

has to resort to other more unconventional measures of quantitative easing to stimulate the

economy. While it is clear that the current policies are inflationary in nature, the question

is: are they effective and what impact will they have?

We can also ask ourselves if central banks might not be tempted to increase their

inflation targets in the future given how limited the current monetary policy is. In a

recent report from the IMF (Blanchard et al. [2010]), the authors point out that a higher

average inflation and thus higher nominal interest rates to begin with would have given

more room to central banks to cut interest rates more drastically during the crisis. The

fact that nominal interest rates were quite low to begin with was a major limiting factor

which could be prevented in the future by aiming for higher inflation. Another argument

by which central banks may be tempted to increase target inflation is presented in Akerlof

et al. [2000]. The authors argue that in an environment with very low inflation a significant

number of workers should be taking wage cuts to get relative wages where they ought to be.

They invoke the psychological literature on decision making and perception to propose that

when inflation is low, wages and prices tend to respond less than proportionally to expected

inflation. However, at a sufficiently high rate, anticipating inflation becomes a significant

part of the industry’s decision process which means that wages and prices respond fully to

expected inflation. Their model even provides evidence that higher inflation could produce

lower unemployment on a sustained basis.

The standard approach for modeling inflation is based on econometric models which

attempt to forecast inflation given historical data. These can be used to gain intuition on

how to relate the inflation rate to other macro economic variables such as the target rate

and unemployment. However, in the context of option pricing we typically prefer using a

risk neutral measure to ensure that the market is arbitrage free.

This thesis is divided three main chapters. In Chapter 2, we look at the different mar-

kets for trading inflation starting with the bond market and then we move on to common

inflation derivatives. We highlight the connection between the two markets because any in-
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flation derivative is ultimately hedged through the bond market. Then we discuss the main

inflation derivatives that currently exist in the market. In Chapter 3, we provide a review

the literature for what we believe to be the important milestones in inflation derivative

pricing. Chapter 4 focuses on the implementation of a Monte Carlo simulation of the for-

ward CPI ratio. Our contribution is mainly about how to succesfuly implement the model.

We also present some empirical results from our parameter estimation. Furthermore, we

provide some insights about the behavior of a portfolio of inflation options.
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Chapter 2

Markets for trading inflation

Given the extent to which capital markets around the world have become integrated, one

might expect a certain uniformity across inflation-indexed securities markets. However

this is not quite the case for many reasons that are specific to each market. For example,

measures of inflation vary quite a lot depending on the basket of goods and services we wish

to track and the geographical region that is being covered. Some countries like the UK offer

tax incentives on their inflation indexed-bonds which can induce a bias on the measures

of inflation expectations. Issues such as liquidity, hedging costs and others are also major

differentiating factors. For this reason we will also comment on how mature some markets

have become depending on their geographical location1. We focus our attention mainly on

the US, UK and finally Canada.

2.1 Inflation-indexed securities

Expected inflation varies over time which means that sovereign bonds that pay nominal

yields are not safe under real terms for long term investors. There was a need for truly

risk-less long-term investments and this is why different governments have started to issue

inflation-indexed bonds. Another reason for issuing these bonds was to instil market trust

1See Deacon et al. [2004] for a detailed account of inflation-indexed securities markets by region.
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in a country’s macro economic policies. By issuing inflation-indexed debt governments

were able to reduce their borrowing costs by sending out the message that they would be

liable if inflation was allowed to slip out of control in the future.

It was in 1997 that the US Treasury started issuing Treasury Inflation Protected Se-

curities (TIPS). The inflation index used for TIPS is the non seasonally adjusted US City

Average All Items Consumer Price Index for all Urban Consumers (CPI-U). The principal

on these securities is floored to par which means that the principal at maturity is protected

against deflation but not the coupon payments. In other words, the floor is a European

style option that only applies to the principal at maturity. Before maturity, coupons can

be paid off a principal amount that is potentially less than the par amount. Since inflation

is generally positive most TIPS that trade in the market have a floor that is quite deep

out of the money and can be ignored for most practical purposes. However, for new issues

the floor is at the money and should carefully be considered especially in a deflationary

environment. The inflation escalation of the principal is taxable as an annual income in

the US. For this reason, holding TIPS is rather unattractive for non-tax exempt investors

since it creates a tax on unrealized gains resulting from the inflation-adjusted principal.

The UK Treasury has been issuing index-linked gilts (ILG) tied to the Retail Price

Index (RPI) since 1981 and now these ILG make up roughly 30% of the UK bond market.

These linkers tend to trade at a relatively rich level for two reasons. The first is a tight

regulation in the pension fund arena in the UK that forces these institutions to match

their inflation-linked liabilities through the linker market, thus creating a strong demand

for ILG with long maturities. The second reason is that investors are taxed on their real

return based on the yearly change in the RPI. Since most holders of ILG are long term

investors (pension funds, insurance companies) that do not pay tax, the tax effect only

has an impact on the short end of the real yield curve where private individuals are more

involved in the market.

New issues of UK linkers use the Canadian model (discussed below) for the inflation

index ratio but they co-exist in the market with an old style of linkers based on an 8-month

RPI lag method. Infrastructure intensive businesses like railroad companies have also been
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big issuers of inflation-linked debt in the UK. These companies tend to have inflation-linked

revenues and find that they can reduce their borrowing costs through inflation-linked debt

issues.

In Canada, the Real Return Bond market (RRB) is based on the Non Seasonally

Adjusted All Items Consumer Price Index (CPI All Items nsa). Domestic pension funds

have been the main focus of RRBs and there have been only five issues so far. The year

2021 is the shortest maturity on the curve. Also, due to the buy and hold nature of

pension funds, liquidity in the secondary market is limited. However, the demand from

domestic pension funds has been growing quite fast and some are seeking an exposure

through inflation swaps. Canadian residents will be taxed on the income from RRBs in

a given year, while the inflation adjustment on the principal is also taxable but only as a

capital gain when it is realized.

Most countries have adopted what is referred to as the Canadian model for the inflation

index ratio needed to calculate de coupon payments. Initially implemented in Canada,

this method was subsequently adopted by the US, UK and others as a way of reducing

the indexation lag to three months and to better align with the methods already used in

the bond market. Although the price index is usually compiled on a monthly basis, in

practice there is a lag in the inflation index ratio used to calculate the coupon payments.

The purpose of this lag is so that market participants know in advance the amount of

the upcoming coupon which is needed for an appropriate level of accrual of the cash flow.

An index ratio using the Canadian model is based on the daily linear interpolation of the

3-month lagging price index. We write the reference index R(m, d) where m is an index

on the monthly price index I and d is the day of the month where payment occurs:

R(m, d) = I(m− 3) +
d− 1

Dm

[I(m− 2)− I(m− 3)] (2.1)

where Dm denotes the number of days in month m. The resulting index ratio used to
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compute the inflation-adjusted principal is then:

Index Ratio =
R(m, d)

R(m0, d0)
(2.2)

where R(m, d) denotes the reference index on the day of a coupon payment or maturity

while R(m0, d0) is the reference index at the issue date.

Inflation-indexed bonds come in various cash flow structures but the most common one

is by far the capital indexed bond. For instance, these have been issued in the UK, US,

France and Canada as well. In this structure, the coupon and the principal both increase

in relation to the price index. As a general example, an annual interest payments would

be denoted by Nr
R(m, d)

R(m0, d0)
where N is the notional and r is the coupon rate. At maturity

T, the bond would pay back the inflation-indexed notional N
R(m, d)

R(m0, d0)
.

General characteristics of the US, UK and Canadian market are summarized in the

following table.2

United States United Kingdom Canada

Generic name Treasury Inflation Index-Linked Real Return
Protected Securities Gilts Bonds

(TIPS) (ILG) (RRB)

Linking Index CPI All urban nsa UK RPI CPI All Items nsa

Indexation Lag 2-3 months 8 months or 2-3 months
2-3 months

Floor Par Floor No Floor No Floor

Coupon Frequency Semi-Annual Semi-Annual Semi-Annual

Tax on income yes yes yes

Tax on capital yes, on unrealized no yes, on realized
gain gain gain only

Table 2.1: Details on US, UK and Canadian inflation-linked securities

2See Barclays [2008] for a complete version of this table.
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2.2 Inflation derivatives

Inflation markets across the globe can be divided under four broad categories. In Deacon

et al. [2004], what is referred to as a level one market is where there is no tradable in-

strument linked to inflation. Inflation swaps in this context are made only on the basis of

matched trades. An example of this would be a case where an entity with inflation-linked

revenues (such as a utility corporation) agrees to pay the rate of inflation in return for a

fixed rate to a pension fund seeking to match its liabilities (in real terms). Spain is an

example of a level one market.

A level two market is one where a few inflation-indexed instruments are tradable. Typ-

ically these are government bonds and can be used to gather a few data points on the

real yield curve. However the number of instruments is limited and matched trades are

still required for maturities that are not covered by this basic yield curve. Canada is an

example of a level two market.

Level three encompasses markets where enough inflation-linked instruments exist to say

that the market is somewhat close to being complete. Market participants can reasonably

hedge inflation swaps through traded securities while others can enter cheap/rich trades

and attempt to exploit anomalies in the term structure of inflation. Supply and demand

for a given instrument takes the back seat as market participants become more concerned

about swap reset risks, asset-swap rates and the convexity of the real yield curve. The UK

and US are level three markets.

Finally, a level four market would be where the inflation-indexed swap market is so

liquid that it drives the bond market. Such behaviors have already been reported in

the Euro-zone market. Although a level four market might never fully be reached, the

UK, US and Eurozone are certainly approaching it as their governments re-iterate their

commitment to issuing inflation-indexed debt and as corporations become more accustomed

to the benefits of managing inflation risk.

Market participants that supply inflation protection through the swap market in the US

are levered investors such as hedge funds and banks proprietary trading desks. Recalling
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the broad classification of the US inflation swap market as a level three market, these

investors typically hedge their inflation swap positions through long positions in TIPS and

short positions in nominal Treasuries in the asset swap market.

2.2.1 Connecting the bond and swap markets

It should be clear by now that an inflation derivative market can only really take off in

a level three or level four type of market according to the categories we have laid down

in the previous section. The main building block for more complex inflation derivatives

is the zero-coupon inflation swap (ZCIIS). Although this thesis will not focus on pricing

the ZCIIS it is worth spending a little time to look at the mechanisms that connect this

instrument to the bond market.

It is helpful to think of the inflation-indexed bond market in parallel to the usual

nominal bond market. Taking this a step further, the asset swap market on these inflation-

indexed securities is analogous to the standard asset swap market. Furthermore, one can

conceptualize a real rate swap similar to a standard swap except that the fixed leg pays a

fixed rate in real terms.

Inflation-linked asset swap

An asset swap on an inflation-linked security is the same thing as a nominal bond asset

swap. It consists of the exchange of cash flows from a bond (inflation-linked or not) against

a LIBOR flow (or a similar measure for floating interest rates) plus a spread. Asset swaps

tie together the bond market and the swap market in both nominal and real terms.

The inflation-linked asset swap market is particularly developed in the UK and Eu-

rozone. However, in the US the activity is concentrated in the bond market. This has

consequences in modeling calibration which is best carried out using market data from

liquid markets.
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Real rate swaps

Real rate swaps are seldom used in developed markets because most investors choose to

manage nominal interest rates and inflation exposure separately. However it is useful

conceptually to make the bridge between inflation-linked asset swaps and zero-coupon

inflation swaps (see figure 2.1 below). The real rate swap consists of exchanging a floating

rate against a fixed nominal rate plus an inflation rate or; in other words, a fixed rate under

real terms. This structure is most commonly found in emerging markets where inflation

risk is substantial.

Connecting the different markets

The following figure illustrates how nominal and real interest rates are traded in parallel.3

Real rate swaps is not very active but it is useful conceptually to make meaningful compar-

isons with the nominal swap market. As a first approximation to inflation expectations,

one can compare the yield on an inflation-indexed bond to the yield on a standard bond

paying a nominal interest from the same issuer and with a similar cashflow structure and

maturity. Depending on the geographic region, the bond market or the asset swap market

might be more appropriate for this comparision because of differences in liquidity. Hedging

an inflation swap is more easily conceptualized as being long the floating leg of a real swap

while also being short the floating leg of a nominal swap. In practice however, this kind of

trade would probably be done through the bond market or the asset swap market because

these are more liquid.

3See Deacon et al. [2004] for more insights on inflation trading practices. Also see Mirfendereski [2007]
for a more up to date perspective.
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Figure 2.1: Inflation markets conceptual diagram.

2.2.2 Zero coupon inflation swaps

Most of the liquidity in the inflation derivatives market is concentrated in the zero-coupon

inflation-indexed swap (ZCIIS). As the name suggests, this contract triggers only one cash

flow which happens at maturity. The value of the floating leg will vary according to the

inflation rate when the swap reaches the end of its period. The swap is quoted in terms of

the fixed rate K for which the fixed leg yields a rate of return that is exactly the average

(lagging) inflation rate that is needed for the swap to have a value of zero when the contract

is initiated. For this reason, the fixed rate of the zero-coupon swap is analogous to the

break even inflation rate from the inflation-indexed bond market but captures the idea in

a more natural way. The fixed leg consists of receiving (paying) a fixed amount in T years

of:

N
[
(1 +K)T − 1

]
(2.3)
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where K is the quoted fixed rate and N is the notional value of the swap. The floating leg

of the contract pays (receives) the real value of the notional which depends on the rate of

inflation during the life of the swap:

N

[
I(m− L)

I(m0 − L)
− 1

]
(2.4)

where m is the time index in months and L is the lag in the index (usually L = 2 or L = 3

months). So we have I(m − L) as the lagged price index at maturity and I(m0 − L) is

the lagged price index at the start date. Zero-coupon swaps typically trade on the same

underlying price index as the government bonds in the same market. This means that

zero-coupon swaps always trade on non-seasonally adjusted price indices.

The following figure shows ZCIIS quotes in terms of the fixed rate K for various ma-

turities. Note that before the 2008 crisis the term structure for the inflation rate was

practically flat but became very steep during the crisis. The curve on November 26th is

roughly one of the steepest we have observed. However one should be careful when inter-

preting the economic meaning of these numbers. It is very unlikely that the market has

ever really predicted 3% deflation. A more plausible explanation is that the TIPS market

was suddenly overflowed during the crisis by some participants who were scrambling to

liquidate their position in a market that is fairly illiquid. Since TIPS and their asset swap

equivalent are the only vehicle for hedging the ZCIIS the liquidity shock would naturally

be reflected in the derivatives market as well. In Chapter 4, we implement a model that

uses the ZCIIS curve as one of its inputs. We choose to focus on the curve observed on

April 23rd because it exhibits some deflationary expectations and is presumably not so

affected by the liquidity issues we have discussed. In Section 4.3.4 we also compare the

delta of a cap observed on November 26th and the same delta observed on April 23rd. We

conclude that the steepness of the inflation term structure can have a great impact on our

ability to delta-hedge an inflation cap due to the difference in moneyness of each caplet

that form the cap.

We will also see in Section 3.2 that there exists a one to one relationship between the
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Figure 2.2: Term structure of expected inflation from zero-coupon inflation swaps

ZCIIS and a forward CPI contract denoted by Ii:

Ii(t) = I(t)(1 +Ki(t))
Ti (2.5)

where I(t) is the actual value of the CPI while Ki is a quote for the ZCIIS maturing at

time Ti. In Section 3.5 we discuss how the forward CPI contract is a very useful notion as

it allows us to define forward inflation as a forward CPI ratio in way that is analogous to

how forward interest rates are defined through a ratio of discount factors.

Zero-coupon inflation indexed swap quotes can be obtained from Bloomberg under the

ticker <USSWIT1 Curncy> for 1 year maturity, <USSWIT2 Curncy> for 2 year maturity

and so on. Data is available for maturities of 1,2,3,4,5,7,10,15,20 and 30 years.

2.2.3 Year-on-year inflation swaps

The year-on-year inflation-indexed swap is the most common alternative to ZCIIS for

trading inflation within the derivative arena. It involves one counterparty agreeing to

receive an annual coupon determined by the year-on-year inflation rate against paying a
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fixed rate. In some cases the non-inflation leg of the contract could also be defined as a

floating rate (LIBOR) plus a spread instead of a fixed rate.

At the end of each time interval [Ti−1, Ti] cash flows from the fixed leg and floating leg

are again exchanged in proportion to the nominal value N . At time Ti, the end of the

period, the fixed leg pays

NψiK (2.6)

where ψi is the day count fraction for interval [Ti−1, Ti]. The floating leg pays

Nψi

[
I(Ti − L)

I(Ti−1 − L)
− 1

]
(2.7)

where L is the lag in the index. The contract’s start date is T0 = 0. Also note that the

lag in the index means that we always know in advance the amount of the next payment.

Later, when we strip the YYIIS into other instruments we will drop L to simplify the

notation. Also note that it is not straightforward to reconciliate YYIIS and ZCIIS quotes

because of the convexity adjustment that is built into the YYIIS payoffs. We will discuss

this in further detail in the next chapter.

2.2.4 Inflation caps and floors

It is common in the US to issue TIPS where the principal is floored at par to protect the

holder against deflation. However, the coupons are not protected and are still subject to

a deflated principal. This structure effectively provides the holder of these TIPS with a

“pure” inflation-linked strips with a floor on their inflation adjusted principal.

In the derivative world, banks sometimes trade inflation caps and floors over the counter

with their institutional clients. These could also be referred to as inflation-indexed year-on-

year coupon floors and inflation-indexed year-on-year coupon caps. Typical clients conduct

a business that leads them to naturally have large cash flows that somehow fluctuate with

inflation which they want to hedge. Thus, inflation caps and floors are usually valued once

when they are initiated by both parties who will then hold their end of the contract until
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maturity. Floors with low strikes are the most active market for inflation options.

Inflation caps and floors quotes are given in terms of their strike K. At reset date T ,

these would pay:

N

[
ω

(
I(T )

I(0)
− 1−K

)]+

(2.8)

where we let ω = 1 for the cap, ω = −1 for the floor and N is the notional. Thus, the

present value of cap or floor is written as

IICapFloor(t = 0, T,K,N,w) = N
M∑
i=1

P (t, Ti)E
Ti

[[
ω

(
I(Ti)

I(t)
−K

)]+
∣∣∣∣∣ Ft

]
(2.9)

where each expectation is taken under its own forward measure QTi
.

Like the YYIIS, inflation options have a built in convexity adjustment in their payoff.

For this reason, inflation options can easily be calibrated on the forward inflation curve

through the YYIIS market. Unfortunately, most of the liquidity is located in the ZCIIS

market where we will require a change of measure to mimic this convexity adjustment if we

wish to calibrate on the ZCIIS forward inflation curve. We discuss this approach further

in Section 3.4.

2.2.5 Inflation futures

In the U.S. there is currently no such thing as exchange traded futures on the CPI. In 2004,

the Chicago Mercantile Exchange launched an electronically traded futures contract on the

U.S. Consumer Price Index. This contract was later discontinued presumably because it

failed to attract enough participants. However, futures contracts on the Eurozone price

index, the Harmonized Index of Consumer Prices excluding tobacco (HICP), do trade on

the CME. This instrument trades with an underlying of 10,000 euros times the HICP

Futures index defined as 100 less the annual inflation rate. More specifically, the final

settlement price is calculated as

100−
[
100

(
HICP (t)

HICP (t− 12)
− 1

)]
(2.10)
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where t is the monthly time index on the HICP publications. At any given time, the

available maturities run monthly up to one year ahead. Euro denominated futures on the

HICP are also traded in a similar fashion on the Eurex exchange. However it is important

to note that the volumes traded in this market are extremely low. Moreover, trading

inflation over the next twelve months is not very interesting for long term investors or an

institution with long term inflation-linked liabilities.

2.3 Canadian perspective

It has been reported that demand from Canadian institutional investors for inflation-linked

instruments has grown proportionately to the levels of demand in the UK and US. Oddly,

the market for inflation derivatives in Canada has not taken off while others are growing

steadily as both countries reiterate their commitment to issue inflation-linked debt. The

amount of inflation-linked bond issues for all G-7 countries more than tripled between

2000 and 2006 to reach US$1 trillion outstanding. The UK, US and Eurozone respectively

had outstanding amounts of US$403, $260 and $257 billions at the end of this period. In

comparison, Canada had only $36 billion outstanding which represented less than 10% of

its total debt while the UK for example had more than a quarter of its debt as inflation-

indexed issues. Note that it is not only the small size of the Canadian market that restrains

the development of inflation derivatives in Canada but also the maturity profile of our

government’s inflation-linked debt. Canada has issued only four 30-year bonds which will

mature in 2021, 2026, 2031 and 2036 meaning that there are very few possibilities for

hedging inflation derivatives.

The lack of real return bonds with short maturities has been reported by economists as

one of the missing links required for appropriately measuring inflation expectations through

the calculation of break-even inflation rates. For this reason, it has been proposed that the

Government of Canada start issuing one, two and five years real return bonds (see Smith

[2009]). This could happen as soon as 2011 when the Bank of Canada and the federal

government review the framework under which they manage inflation. Undoubtedly, a
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strong commitment from these two institutions to enhance the size and maturity profile of

the real return bond market would allow dealers to better hedge inflation swaps and mark

a big step in the evolution of this market in Canada.
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Chapter 3

Inflation models

There are two main approaches in the inflation model literature for pricing inflation deriva-

tives. The first that we will present is the foreign-currency analogy which models the price

index as a currency between a nominal and real economy having their own respective term

structure. This analogy is a natural one in the sense that a large body of literature already

exists in the area of cross-currency term structure models. However, one downside of the

foreign-currency analogy is the difficulty of estimating historically the real rate parame-

ters. Most of the recent publications have moved away from the foreign-currency analogy

in favor of market models which attempt to model directly the market observables. Thus,

we will also present a series of market models which allow for a more realistic behavior of

interest rates and inflation rates. An important point to note about these market models

is that they rely on forward CPI or forward inflation contracts as their model primitive.

It will be shown that these contracts are traded implicitly through zero-coupon inflation

swaps and year-on-year inflation swaps.

In the next chapter where we implement a simulation based on Monte Carlo we choose

to focus on modeling the forward CPI ratio presented in Section 3.5. Thus, a particular

attention should be devoted to this section before proceeding to the next chapter.
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3.1 The Foreign-Currency Analogy Framework

3.1.1 Pricing on multiple term structures

The first publication to ever tackle pricing of inflation-linked derivatives is based on a

foreign currency analogy first developed in Jarrow and Turnbull [1998] which was subse-

quently applied to pricing inflation-indexed securities in Jarrow and Yildirim [2003]. The

main argument developed in Jarrow and Turnbull [1998] consists of a unified approach for

pricing contingent claims on multiple term structures. The authors show that for every

traded contract delivering an asset i at some maturity T in the future, the term structure

vi(t, T ) representing the price at time t of such contracts can be written in terms of a

similar normalized term structure pi(t, T ) ≡ vi(t, T )

ei(t)
where ei(t) is the spot price of the

deliverable asset i:

vi(t, T ) ≡ pi(t, T )ei(t) (3.1)

This decomposition assumes that the securities vi(t, T ) are traded for all assets i and all

intervals [t, T ]. It also assumes that zero-coupon bonds are part of these traded securities

and deliver a sure dollar at maturity T . However note that the assumption that the asset

i can be stored is not required because no short selling is required.

The equation 3.1 implies that one can specify a stochastic process for modeling both

the normalized term structure pi(t, T ) and the spot price ei(t) to characterize the evolution

of the term structure vi(t, T ). This is an important result for which the foreign-currency

analogy provides an interesting interpretation. We have

� pi(t, T ) as a zero-coupon bond denominated in units of a foreign currency i

� ei(t) as the spot exchange rate of domestic currency per unit of currency i

� vi(t, T ) as the value of the ith foreign currency zero-coupon bond quoted in the

domestic currency

We define implicitly the instantaneous forward rate fi(t, T ) quoted in the foreign currency
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i for the zero-coupon bonds pi(t, T ):

pi(t, T ) = exp

{
−
∫ T

t

fi(t, u)du

}
(3.2)

assuming
∂ log pi(t, T )

∂T
exists. Now, substituting 3.2 in 3.1 we obtain the desired result:

vi(t, T ) = exp

{
−
∫ T

t

fi(t, u)du

}
ei(t) (3.3)

In words, equation 3.3 allows us to model the stochastic structure of the instantaneous

forward rates fi(t, T ) and spot exchange rates ei(t) to characterize a foreign term structure

in the domestic currency. The following section shows how this concept can be extended

for modeling inflation-indexed securities.

3.1.2 JY model for Inflation-Indexed Securities

We now take the foreign-currency analogy a bit further to apply the same concept to

inflation and real interest rates. The argument developed in the previous section underpins

the idea that nominal rates, real rates and the price index can be modeled as three different

processes without being worried about any redundancy. This is presented in Jarrow and

Yildirim [2003] where the authors apply the idea to inflation-indexed securities pricing.

Imagine two currencies which we will call the nominal currency and the real currency.

Like real currencies, these two are associated with an interest rate that prevails in their

respective economies: nominal interest rates and real interest rates. Now imagine it would

be possible to trade the nominal currency for the real currency. What would be a fair

exchange rate between the two? Denote I(0) as the price index on a reference basket of

goods in the nominal economy and I(T ) as another price index on the same basket of goods

taken within the real economy. Under the no-arbitrage assumption the logical conclusion is

that the fair exchange rate to trade the nominal currency for the real currency is I(T )/I(0).

Note that the exchange rate will depend on the interval [0, T ] and that we do not
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actually know the real interest rate or the value of the price index at time T. However,

expectations regarding real interest rates are traded through inflation-linked securities.

These form the basis of an expected term structure for real rates and one could effectively

lock in the real rate for some interval [0, T ] through the inflation market.

The model proposed by Jarrow and Yildirim [2003] defines two instantaneous forward

interest rate processes for the nominal and real economy as fn and fr respectively. Recalling

the notation from equation 3.2, they can be expressed as follows

Pk(t, T ) = exp

{
−
∫ T

t

fk(t, u)du

}
, k ∈ {n, r} (3.4)

where Pn(t, T ) is the time t price of a T maturing nominal zero-coupon bond denominated

in dollars (the “nominal currency”) and Pr(t, T ) is the price of a real zero-coupon bond

denominated in units of the underlying price index (the “foreign currency”).

A three factor model is defined on the probability space (Ω, F, P ) where we let the stan-

dard filtration {Ft : t ∈ [0, T ]} be generated by three Brownian motions (Wn(t),Wr(t),WI(t) :

t ∈ [0, T ]). The two forward interest rate processes are defined as solutions to the following

diffusion processes:

dfn(t, T ) = αn(t, T )dt+ σn(t, T )dWn(t)

dfr(t, T ) = αr(t, T )dt+ σr(t, T )dWr(t) (3.5)

where we have ρn,r as the correlation between the Brownian motions Wn and Wr. The

price index I(t) is modeled as a log-normal process:

dI(t)

I(t)
= µI(t)dt+ σIWI(t) (3.6)

where by ρn,I and ρr,I we denote the correlation coefficients between the Brownian motions

WI and Wn and Wr, respectively. The functions for the drifts αn, αrandµI are random and

Ft-adapted. The volatilities must satisfy the boundedness condition
∫ T

0
σ2
x(v, T )dv < ∞ ,
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k ∈ {n, r, I} almost surely. The deterministic hypothesis on all the volatility coefficients

allows the authors to obtain closed formulas on the value of the floating leg of the inflation

swap. Additionally, Black-Scholes formulas are obtained for inflation options valuation

which essentially depend on the volatility coefficients and the factors correlations.

In Amin and Jarrow [1991] it is shown that these three processes in 3.5,3.5 and 3.6 are

arbitrage-free if there exists a unique equivalent probability measure Q such that

Pn(t, T )

Bn(t)
,
I(t)Pr(t, T )

Bn(t)
and

I(t)Br(t)

Bn(t)
are Q−martingales (3.7)

where Bk(t) = exp
{∫ t

0
rk(v)dv

}
, k ∈ {n, r} is the time t money market account value in

the nominal and real currency and rk(t) ≡ fk(t, t) , k ∈ {n, r}. The authors state three

conditions for this to hold among which we have the Fisher equation often used in macro-

economics. It relates the nominal interest rate to the real interest rate and the expected

inflation rate:

µI(t) = rn(t)− rr(t)− σI(t)λI(t) (3.8)

where λI(t) is the inflationary risk premium.

Recalling the equation 3.1, the authors define the price in dollars of a real zero-coupon

bond PTIPS(t, T ) (in reference to the US market) in terms of the inflation index and a real

zero-coupon bond in units of the same inflation index:

PTIPS(t, T ) = I(t)Pr(t, T ) (3.9)

For such a zero-coupon bond PTIPS(t, T ), they find that under the above martingale mea-

sure the evolution of the price can be expressed as

dPTIPS(t, T )

PTIPS(t, T )
= rn(t)dt+ σI(t)dWI(t)−

∫ T

t

σr(t, s)dsWr(t) (3.10)

One drawback of the Jarrow-Yildirim model is that it was initially intended for pricing

inflation indexed-securities and it was not clear at the time how it could be extended to
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price derivative pricing beyond a simple European call on the price index. Such a contract

is not very useful in practice since the price index itself is not traded and one probably

wishes to hedge an inflation rate over a given notional rather than the price index itself.

We describe in the following section how the foreign-currency analogy can be extended for

pricing more useful contracts such as the zero-coupon inflation swap and the year-on-year

inflation swap.

Note that the assumption in 3.7 that I(t)Br(t)
Bn(t)

is a Q-martingale is rejected in Hinner-

ich [2008]. She argues that the real money market account is fictive and it cannot be

considered as a traded asset and consequently, no economic argument justifies this as-

sumption. Nonetheless, she offers a different proof that leads to the same result as Jarrow

and Yildirim [2003] from which it can be obtained that I(t)Br(t)
Bn(t)

is indeed a Q-martingale;

so the JY model still holds.

3.1.3 Stripping Inflation Derivatives

Pricing inflation derivatives through the foreign currency analogy implies that we have the

appropriate apparatus for obtaining quotes for real zero coupon bonds which is not ideal.

However, the concepts developed in the following two sections may be useful in the sense

that they allow us to strip real zero coupon bond prices from the quotes of zero-coupon and

year-on-year inflation-indexed swaps. We first present those results and finally conclude

on a note that prepares us to move away from the foreign-currency analogy in a consistent

fashion in order to pave the way for the market models.
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In the following discussion, we write the nominal and real instantaneous short rates,

respectively, as

n(t) = fn(t, t)

r(t) = fr(t, t) (3.11)

More importantly, we denote by Qn and Qr the nominal and real risk-neutral measures

and En and Er the expectation to which they are associated.

Stripping the Zero-Coupon Inflation Swap

The foreign-currency analogy enables us to strip real zero-coupon bond prices from quoted

prices of zero-coupon inflation-indexed swaps. This derivation is expressed nicely in Mer-

curio [2005] using a standard no-arbitrage pricing theory. Recall the value of the inflation

indexed leg of the zero-coupon inflation-indexed swap (ZCIIS) from equation 2.4. At time

t, the discounted payoff of the floating leg for a notional of one dollar is

ZCIIS(t, T0, TM) = En

[
e−

R TM
t r(u)du

(
I(TM)

I(T0)
− 1

) ∣∣∣∣ Ft] (3.12)

where we have T0 < t < TM and Ft is the σ-algebra generated by the relevant underlying

processes up to time t. By the foreign-currency analogy and recalling the third measure Q

in 3.7, we have

I(t)Pr(t, T ) = I(t)Er

[
e−

R T
t r(u)du

∣∣∣ Ft] = En

[
e−

R T
t n(u)duI(T )

∣∣∣ Ft] (3.13)

In words, the nominal price of a real zero-coupon bond equals the nominal price of the

contract paying off one unit of the price index at the bond maturity. Substituting the

result from 3.13 in 3.12 we obtain

ZCIIS(t, T0, T ) =

(
I(t)

I(T0)
Pr(t, T )− Pn(t, T )

)
(3.14)
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which simplifies to the following if we value the contract at the issue date t = T0:

ZCIIS(t, T ) = Pr(t, T )− Pn(t, T ) (3.15)

Note that this last expression for the inflation-indexed leg of the ZCIIS is model-independent

and is not based on specific assumptions on the evolution of the interest rate market. It

simply follows from the absence of arbitrage. This result can be used for obtaining real

zero-coupon bond prices from the quoted prices of zero-coupon inflation-indexed swaps.

Recall that the ZCIIS quotes are given such that the floating leg and the fixed leg have

the same present value. Thus, at t = T0, we have:

Pr(t, T )− Pn(t, T ) = Pn(t, T )
([

(1 +K)T − 1
])

Pr(t, T ) = Pn(t, T )(1 +K)T (3.16)

This result is important because we will see later that it is possible to obtain an expression

for the forward CPI which is analogous to this one. Thus, it shows the consistency between

the foreign currency analogy and the more recent market models.

Stripping the Year on Year Inflation Swap

We now outline various ways of stripping the year on year inflation swap (YYIIS) which

are presented in Mercurio [2005]. We first look at how to express the YYIIS in terms of the

zero coupon inflation indexed swap (ZCIIS). We follow with an expression in terms of the

nominal and real zero coupon bonds and conclude with an expression that uses nominal

and real forward rates which can be conveniently modeled as a lognormal process.

Recall expression 2.4 for the payoff of the YYIIS floating leg. To simplify the notation

we use a notional of one dollar, we ignore the day count fraction and we ignore the lag in

the index. Now, each payoff from the floating leg of the YYIIS can be discounted back as
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ZCIIS in the following manner:

YYIIS(t, Ti−1, Ti) = En

[
e−

R Ti
t n(u)du

(
I(Ti)

I(Ti−1)
− 1

) ∣∣∣∣ Ft]
= En

[
e−

R Ti−1
t n(u)duEn

[
e
−

R Ti
Ti−1

n(u)du

(
I(Ti)

I(Ti−1)
− 1

) ∣∣∣∣ FTi−1

] ∣∣∣∣ Ft]
= En

[
e−

R Ti−1
t n(u)du ZCIIS(t = Ti−1, Ti−1, Ti)

∣∣∣ Ft]
(3.17)

Since ZCIIS(t = Ti−1, Ti−1, Ti) is the contract’s value at issue date t = Ti−1, we can replace

with expression 3.15 which allows us to value in terms of the discounted real zero coupon

bond:

YYIIS(t, Ti−1, Ti) = En

[
e−

R Ti−1
t n(u)du(Pr(Ti−1, Ti)− Pn(Ti−1, Ti))

∣∣∣ Ft]
= Pn(t, Ti−1)En [(Pr(Ti−1, Ti)− Pn(Ti−1, Ti)) | Ft]

= Pn(t, Ti−1)En [Pr(Ti−1, Ti)) | Ft]− Pn(t, Ti−1)Pn(Ti−1, Ti)

= Pn(t, Ti−1)E
Ti−1
n [Pr(Ti−1, Ti) | Ft]− Pn(t, Ti)

(3.18)

Finally, we can change the measure of the expectation in the last line above from Q
Ti−1
n to

QTi
n :

ETi−1
n [Pr(Ti−1, Ti) | Ft] =

Pn(t, Ti)

Pn(t, Ti−1)
ETi
n

[
Pr(Ti−1, Ti)

Pn(Ti−1, Ti)

∣∣∣∣ Ft]
(3.19)

This allows us to rewrite the expectation as follows

YYIIS(t, Ti−1, Ti) = Pn(t, Ti−1)E
Ti
n

[
Pr(Ti−1, Ti)

Pn(Ti−1, Ti)

∣∣∣∣ Ft]− Pn(t, Ti) (3.20)
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3.1.4 A market model for YYIIS

Recall from the foreign currency analogy that Pr(t, Ti) is the price of an asset in the real

economy while I(t)Pr(t, Ti) is the price of the same asset quoted in the nominal currency.

We formally introduce for the first time the definition for the forward CPI through the

foreign currency analogy as follows:

IFCAi (t) := I(t)
Pr(t, Ti)

Pn(t, Ti)
(3.21)

where I(t)Pr(t, Ti) is a tradable asset in the economy (inflation indexed securities). This

definition will be used later to bridge the gap between the foreign currency analogy and the

more recent market models. In the mean time, we quickly look at how inflation derivative

pricing can be tackled using the above definition.

Assuming a lognormal dynamic for IFCAi (t) under the QTi
n measure we have

dIFCAi (t)

IFCAi (t)
= σI,idW

I
i (t) (3.22)

We also assume a lognormal LIBOR market model for both nominal and real interest rates.

Recall the foreign currency analogy and use the result from Schlogl [2002] to obtain the

dynamics of the nominal and real forward rates, Fn(t;Ti−1, Ti) and Fr(t;Ti−1, Ti) where

Ii(t) is the exchange rate between the nominal and real economies, under the QTi
n measure

as follows:

dFn(t;Ti−1, Ti)

Fn(t;Ti−1, Ti)
= σn,idW

n
i (t) (3.23)

dFr(t;Ti−1, Ti)

Fr(t;Ti−1, Ti)
= −ρI,r,iσI,iσr,Idt+ σr,idW

r
i (t) (3.24)

where σn,i and σr,i are positive constants while W n
i and W r

i are two Brownian motions with

the usual corresponding correlations (dW n
i dW

r
i = ρn,r,idt , dW n

i dW
I
i = ρn,I,idt, dW

n
i dW

r
i =

ρr,I,idt).
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Note that from 3.21 that we have

IFCAi (t)

IFCAi−1 (t)
=

Pr(t, Ti)Pn(t, Ti−1)

Pn(t, Ti)Pr(t, Ti−1)

=
Pn(Ti−1, Ti)

Pr(Ti−1, Ti)
(3.25)

Furthermore, it was noted in Schlogl [2002] that there exists a precise relation between two

consecutive forward CPIs and their respective nominal and real forward rates:

IFCAi (t)

IFCAi−1 (t)
=

1 + τiFn(Ti−1;Ti−1, Ti)

1 + τiFr(Ti−1;Ti−1, Ti)
(3.26)

where τi = Ti − Ti−1 is the tenor of the forward rate. This expression allows us to rewrite

the expectation in 3.20 terms of the nominal and real forward rates as:

YYIIS(t, Ti−1, Ti) = Pn(t, Ti−1)E
Ti
n

[
1 + τiFn(Ti−1;Ti−1, Ti)

1 + τiFr(Ti−1;Ti−1, Ti)

∣∣∣∣ Ft]− Pn(t, Ti) (3.27)

Under the above dynamics all the nominal and real forward rates can easily be modeled

and used to calculate the expectation in 3.27. In Mercurio [2005], the author points out that

the expectation in 3.27 can be rewritten as a numerical integration instead of subjecting

it to evaluation by a Monte Carlo approach. This leads to an analytical formula for

pricing YYIIS that depends on the volatilities of nominal and real forward rates as well as

their correlations for each payment time. The main drawback of this approach stems from

relying on the foreign currency analogy. It requires us to estimate historically the volatility

of real rates which are not observed directly in the market. This is the main reason why

a second type of market model, which does not rely on the foreign currency analogy, has

been proposed in the literature.
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3.2 Moving away from the Foreign-Currency Analogy

The following presents what are known as market models because they aim at modeling

suitable market quantities that are directly observable in the market. The goal is to obtain

more realistic models for which historical parameters are easier to observe and derive

formulas for the most common inflation derivatives.

We will first present different model primitives that have been proposed as foundations

for market models as a way to give an overview of the subject. Then we will present each

model separately.

3.2.1 Overview of model primitives

The first model primitive for a market model that we will be discussing is the forward CPI.

This is an approach taken by Kazziha [1999], Belgrade et al. [2004] and Mercurio [2005].

Denote the forward CPI for period [t, Ti] by Ii(t, Ti, Ti + δi). We have δi as the tenor of

the price index typically equal to one month. To simplify notation we drop the tenor and

assume that it is one month. Thus, we write Ii(t) to represent the forward price index

that prevails for period [Ti, Ti + σi].

As an alternative definition from equation 3.21 we can have the same quantity Ii(t)
defined as the fixed amount to be exchanged for the price index at time Ti. This allows

us to leave the foreign currency analogy behind which can help simplifying the model.

No-arbitrage theory tells us that

Ii(t) = ETi
[I(Ti) | Ft] (3.28)

Using the fact that Pn(T, Ti) = Pr(T, Ti) = 1, we show that this is an equivalent definition
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to the forward CPI from equation 3.21:

Ii(t) = ETi
[I(Ti) | Ft]

= ETi

[
I(Ti)

Pr(T, Ti)

Pn(T, Ti)

∣∣∣∣ Ft]
= ETi

[
IFCAi (T )

∣∣ Ft]
= IFCAi (t) (3.29)

Also, substituting 3.21 in 3.16 we obtain

Ii(t) = I(t)(1 +Ki(t))
Ti (3.30)

This last expression allows us to obtain the forward CPI quotes directly from ZCIIS quotes

in a way that does not require the foreign-currency analogy. It also shows once again that

this approach is perfectly consistent with the foreign currency analogy since equations 3.30

and 3.16 are equivalent. We will discuss this in further detail in Section 3.3.

An inflation market model is not necessarily based on the previous definition. One

could also model the joint evolution of consecutive forward inflation rates as presented in

Mercurio [2008]. This is similar to the LIBOR market model where consecutive forward

LIBOR rates are simulated. Thus, we define Yi(t) as the forward inflation rate for the

period [Ti−1, Ti] in the following way:

Yi(t) = ETi

[
I(Ti)

I(Ti−1)
− 1

∣∣∣∣ Ft] (3.31)

Essentially, Yi(t) is the fixed rate for which the fixed leg of a swaplet is equal to the

expected payoff of its floating leg paying the inflation rate. In this case the inputs for the

model can be obtained by a bootstrapping method for extracting forward inflation rates

from year-on-year inflation swap quotes. It is also worth mentioning at this point that

YYIIS quotes are still hard to obtain while the market for ZCIIS is much more liquid.

Another approach for modeling forward inflation rates which is more friendly in terms
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of obtaining the model inputs is to define the quantity to be simulated as the ratio of the

corresponding forward CPI minus one:

Yi(t) :=
Ii(t)
Ii−1(t)

− 1 , t ≤ Ti−1 (3.32)

This definition allows us to obtain the forward inflation rates through equation 3.30. The

downside here is that Yi(t) is not a martingale under the Ti forward measure while Yi(t)
from equation 3.31 was a martingale under the Ti forward measure. Both approaches will

be discussed in Section 3.4

Finally, we present another method for modeling inflation rates from Leung and Wu

[2008] which attempts to build a framework that is more general than the previous ones.

The authors also choose to leave the foreign currency analogy behind although they keep

real zero coupon bond as a model primitive. Starting with an expression equivalent to the

one obtained in 3.16 and without resorting to the foreign currency analogy they note that

real zero coupon bond quotes can be obtained directly from ZCIIS quotes:

Pr(t, T ) = En

[
e−

R T
t r(u)du I(T )

I(t)

∣∣∣∣ Ft] = Pn(t, T )(1 +K)T−t (3.33)

Note however that Pr(t, T ) does not refer to the foreign currency analogy and it is not a

tradable asset. The previous expression is only true when doing the valuation of Pr(t, T )

at its issue date. This can easily be fixed but we refrain from doing so now for simplicity.

The authors define a discount factor for inflation:

Pi(t, T ) :=
Pn(t, T )

Pr(t, T )
(3.34)

which is quite similar to 3.25 with the exception that they use the price index ratio as an

inflation discount factor. This allows us to factorize nominal discount factors into real and

inflation discount factors:

Pn(t, T ) = Pr(t, T )Pi(t, T ) (3.35)
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which is convenient for the introduction of an instantaneous inflation forward rate. This

quantity can be modeled in an extended HJM framework or in a market model if involving

simple inflation forward rates. The main advantage of this approach compared to the

foreign currency analogy is that it does not require any knowledge about real rates. It also

allows nominal rates and inflation rates to be modeled in a consistent way which can be

more convenient then modeling a forward CPI ratio as previously discussed. This third

and last approach will be discussed in Section 3.6.

3.3 Modeling the forward CPI

As an alternative to the foreign currency analogy, a market model based on forward CPI

modeling was first presented by Belgrade et al. [2004] and subsequently studied in Mercurio

[2005]. In the previous section, we have seen how the forward CPI can be defined simply

through a no-arbitrage argument and still be consistent with the foreign currency analogy.

Now we will be looking at what kind of dynamic we might be giving to the forward CPI

and give an example of how this might be used to price YYIIS.

We know that both Ii(t) and Ii−1(t) must be martingales under their own respective

measures QTi
n and Q

Ti−1
n . The main issue is to obtain a dynamic for both quantities under

the same measure in order to compute the expectation of the CPI ratio that is bound to

occur in most inflation derivative payoff. Thus, for modeling Ii(t) we use the same dynamic

as in 3.22 and we do a change of numeraire to express the dynamic of Ii−1(t) under the

same measure QTi
n :

dIi(t)
Ii(t)

= σI,idWi(t)

dIi−1(t)

Ii−1(t)
= −σI,i−1

τiσn,iFn(t;Ti−1, Ti)

1 + τiFn(t;Ti−1, Ti)
ρI,n,idt+ σI,i−1dW

I
i−1(t) (3.36)

where σI,i and σI,i−1 are positive constants while Wi and Wi−1 are two Brownian motions

with the usual corresponding correlation dWidWi−1 = ρI,i,i−1. The authors show that the
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above dynamic simplifies to the following when we freeze the drift of Ii−1(t) to its initial

t = 0 value:

ETi
n

[
Ii(Ti−1)

Ii−1(Ti−1)

∣∣∣∣ Ft] =
Ii(t)
Ii−1(t)

eDi(t) (3.37)

where

Di(t) = σI,i−1

[
τiσn,iFn(t;Ti−1, Ti)

1 + τiFn(t;Ti−1, Ti)
ρI,n,i − ρI,n,iσI,i + σI,i−1

]
(Ti−1 − t) (3.38)

Next we give an example of how this result might be applied to price YYIIS. We

start with the usual reset payoff of the YYIIS floating leg from 2.7 and use the fact

that the forward CPI is a martingale under the measure QTi
n ; so that ETi

n [Ii(Ti) | Ft] =

ETi
n [Ii(Ti−1) | Ft] and we obtain:

YYIIS(t, Ti−1, Ti) = P (t, Ti)E
Ti
n

[
I(Ti)

I(Ti−1)
− 1

∣∣∣∣ Ft]
= P (t, Ti)E

Ti
n

[
Ii(Ti)
Ii−1(Ti−1)

− 1

∣∣∣∣ Ft]
= P (t, Ti)E

Ti
n

[
Ii(Ti−1)

Ii−1(Ti−1)
− 1

∣∣∣∣ Ft]
(3.39)

which allows us to write the following by substituting in 3.39 equation 3.37 and 3.25:

YYIIS(t, Ti−1, Ti) = P (t, Ti)

(
Ii(t)
Ii−1(t)

eDi(t) − 1

)
(3.40)

The simplicity of this equation illustrates how abandoning the foreign currency analogy,

while facilitating parameter estimation, can also make the model more intuitive. In fact,

it is easier to see now that eDi(t) is more or less equivalent to the convexity adjustment

often encountered in fixed income pricing. However when it comes to the Monte Carlo

simulation, this approach has an inconvenient feature. We wish to price YYIIS, caps or

floors with more than one cash flow which means that we will have to model every forward

CPI under the same measure. This can be accomplished in a way that is similar to the
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Lognormal Forward Model where forward interest rates are modeled under the terminal

measure or the T1-forward measure. The LFM approach is very common for modeling

forward interest rates, but one can legitimately wonder if it would not be simpler to model

the inflation rate rather than the CPI. We look at this alternative in the next section.

3.4 Modeling forward inflation

Many common inflation derivatives like inflation caps and floors revolve around the in-

flation rate which makes it a good candidate for modeling purposes. However note that

zero-coupon and year-on-year rates do not provide the same information about forward

inflation. This is because the YY rates contain an intrinsic convexity adjustment coming

from the CPI ratio. Since most inflation derivatives are defined through the same CPI ratio

it would be more convenient to model forward inflation rates obtained by bootstrapping

the YY curve. We will first look at this possibility. However, liquidity is concentrated in

ZC market rather than in the YY market and we are forced to look at an alternative model

based on the CPI dynamic. Furthermore, we show in the second part of this section that a

lognormal dynamic for the forward CPI implies a shifted lognormal dynamic for inflation

rates. This is a convenient result because it allows us to diffuse forward inflation rates

while using the ZC market to obtain the initial curve.

3.4.1 Modeling forward inflation rates

Modeling inflation has a certain similarity to interest rate market models in which we

typically model the joint evolution of consecutive forward LIBOR rates. A similar approach

is explored briefly in Mercurio [2008] where consecutive inflation rates are modeled jointly.

We present this concept for completeness and to illustrate the difference between this and

the second approach that we present in the next section.

Define the time t forward inflation rate Yi(t) for the future interval [Ti−t, Ti]. Define

also a swaplet for which, at time Ti, the fixed rate K is exchanged for the inflation rate
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over [Ti−t, Ti]. We obtain:

Yi(t) = K = ETi

[
I(Ti)

I(Ti−1)
− 1

∣∣∣∣ Ft] = ETi

[
Ii(Ti)
Ii(Ti−1)

− 1

∣∣∣∣ Ft] (3.41)

The dynamic of the consecutive forward inflation rates Yi(t) under their own respective

measure QTi
is assumed to have a normal volatility:

dYi(t) = σi(t)dZi(t) i = 1, 2...M − 1 (3.42)

where M −1 denotes the last TM maturing inflation forward in the joint series. We specify

a covariance structure for the Brownian motions Zi

ρi,jdt = dZi(t)dZj(t) i, j = 1, 2...M − 1 (3.43)

Since each Yi(t) is a martingale under its own corresponding measure QTi , Girsanov’s

Theorem can be applied repeatedly to derive the joint dynamics of each inflation forward

under a common measure. Adopting a Gaussian SABR model, one can also obtain a closed-

form formula for pricing caplets with an easy calibration to market data. The Gaussian

SABR model is fairly common in interest rate derivatives. It is a stochastic volatility model

which simulates volatility as a driftless geometric Brownian motion. The main undesirable

feature of this model is that we have defined the forward inflation rate as the fixed rate

K of a swaplet. Quotes for swaplets are obtained by stripping the year-on-year inflation

swaps. This problematic because liquidity is located in the zero-coupon inflation swap

market rather than in the year-on-year market.

3.5 Modeling the forward CPI ratio

In an attempt to focus modeling efforts on quantities that can easily be found in the

market, one can define inflation forwards through their corresponding forward CPI ratio
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minus one as follows:

Yi(t) :=
Ii(t)
Ii−1(t)

− 1 , t ≤ Ti−1 (3.44)

The main desirable feature of Yi(t) over Yi(t) is that the forward CPIs can be stripped

from zero-coupon inflation swaps instead of relying on the year-on-year inflation swap.

However, note that unlike the previous expression Yi(t) for forward inflation, this ex-

pression is not a martingale under the Ti forward measure because the forward CPIs within

the ratio have different maturities. This is a problem because it makes it hard to find no-

arbitrage dynamics to impose on the inflation rate. In Mercurio [2008] the author seeks to

model the forward CPIs in a way that would imply a simple dynamic for Yi(t). He does so

by first noticing the following relationship between the forward CPI and forward inflation:

Ii(t) = I(0)
i∏

j=1

[1 + Yj(t)] (3.45)

which can guide us when it comes to choosing a convenient dynamic for the forward CPI

ratios. Thus, we choose to assume a shifted-lognormal volatility for Yi(t) and we have:

dYj(t) := . . . dt+ σj [1 + Yj(t)] 1{t<Tj}dWj(t) (3.46)

where we ignore the drift component for now. Note that this assumption is consistent with

the findings of Leung and Wu [2008], who show that simply-compounded forward inflation

rates follow a shifted-lognormal dynamic. Proceeding onto finding the appropriate forward
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CPI dynamic we differentiate 3.45 using the dynamic 3.46 to obtain:

dIi(t) = I(0)
i∑

j=1

i∏
h=1,h6=j

[1 + Yh(t)]dYj(t)

= . . . dt+ I(0)
i∑

j=1

i∏
h=1,h6=j

[1 + Yh(t)]σj[1 + Yj(t)]1{t<Tj}dW
i
j (t)

= . . . dt+
i∑

j=1

(
I(0)

i∏
h=1,h6=j

[1 + Yh(t)][1 + Yj(t)]

)
σj1{t<Tj}dW

i
j (t)

= . . . dt+
i∑

j=1

Ii(t)σj1{t<Tj}dW
i
j (t)

= . . . dt+ Ii(t)
i∑

j=β(t)

σjdW
i
j (t) (3.47)

where β(t) is the index of the first tenor date Tj strictly larger than t. We avoided the drift

term thus far for simplicity because by definition Ii(t) is a martingale under measure QTi .

Thus, we define the forward CPI as having a zero drift under its corresponding forward

measure QTi :

dIi(t) = Ii(t)
i∑

j=β(t)

σjdW
i
j (t) (3.48)

where dW i
h(t)dW

i
k(t) = ρh,kdt and σj is the volatility of of the factors Wj(t).

We can do a change of measure to obtain the dynamic of Ii−1(t) under the forward

measure QTi . This allows us to apply Ito’s lemma to 3.44 which leads to the following

dynamic (see Mercurio and Moreni [2009] for the derivation):

dYi(t) = (1 + Yi(t))
[
Ci(t)dt+ σidW

i
i (t)
]

(3.49)
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where

Ci(t) =
i−1∑

j=β(t)

σj

(
ρF,Yi,j

σF,iτiFi(t)

1 + τiFi(t)
− σiρi,j

)
(3.50)

and σF,i is the volatility (assumed to be constant) of Fi(t) and ρF,Yi,j is the correlation

between Fi(t) and Yj(t). In Mercurio and Moreni [2009], the authors introduce stochastic

volatility of the SABR type in the dynamic of Ii(t) (equation 3.48). This allows them

to calibrate on cap/floor smiles to reproduce market values for caps/floors prices and

imply forward CPIs volatility from quoted ZC options prices. We use this approach in

our simulations in the next chapter but we choose not to use stochastic volatility because

quotes for caps and floors are still quite hard to find in the market which means that

smile modeling can seldom be implemented through calibrating the market smile. In our

simulation we will be assuming volatility that is constant with respect to time to maturity.

3.6 Modeling through inflation discount factors

In Leung and Wu [2008], the authors derive a simple expression for inflation discount

factors which they define in the following way:

PI(t, T0, T ) :=
P (t, T )

PR(t, T0, T )
(3.51)

where P (t, T ) is the usual discount factor or zero-coupon bond and PR(t, T0, T ) is a syn-

thetic (but tradable) real discount factor or, in other words, a real zero-coupon bond. We

have changed the notation slightly for the discount factors to emphasize that we are not

using the foreign -currency analogy anymore.

Before we go any further, it is worth looking at how real discount factors can be

obtained. To be consistent with previous discussions we present how these can be obtained

from ZCIIS quotes although it would certainly be possible to obtain these from the inflation-

indexed bond market or its asset swap equivalent. First recall that the ZCIIS is quoted in

terms of the fixed rate Ki such that the contract initially has a value of zero. At issue, we
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have the following relation for the ZCIIS maturing at Ti

I(Ti)

I(t)
= (1 +Ki)

T−t (3.52)

Denote the value of a tradable real zero-coupon bond with issue date T0 < t and which

pays an inflation adjusted principal at maturity Ti by PR(t;T0, Ti). Invoking a standard

no-arbitrage argument and dropping the index i for clarity (Ti = T ) we obtain:

PR(t;T0, T ) = EQ

[
e−

R T
t r(u)du I(T )

I(T0)

∣∣∣∣ Ft]
=

I(t)

I(T0)
EQ

[
e−

R T
t r(u)du I(T )

I(t)

∣∣∣∣ Ft]
=

I(t)

I(T0)
EQ

[
e−

R T
t r(u)du(1 +K)T−t

∣∣∣ Ft]
=

I(t)

I(T0)
P (t, T )(1 +K)T−t (3.53)

which shows that PR(t;T0, T ) can be modeled as a tradable asset since quotes for this

contract can be obtained at any point during its life. Going back to definition 3.51, we

have shown that PI(t, T0, T ) is tradable asset through P (t, T ) and PR(t, T0, T ) which now

opens the door for modeling inflation rates within the same framework as nominal interest

rates. Two approaches for this will be discussed. The first one is an extended HJM type

of model where instantaneous inflation rates are diffused while the second one is a market

model where simple inflation rates are diffused.

3.6.1 Extended HJM model

Analogously to what is accomplished in the HJM model, the authors in Leung and Wu

[2008] introduce the instantaneous inflation forward rate f I(t;T ) through the inflation

discount factor discussed in equation 3.51:

f (I)(t;T ) := −∂ lnPI(t;T0, T )

∂T
,∀T ≥ t (3.54)
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which means that the inflation discount factor PI(t, T ) can also be expressed as

PI(t, T ) = exp

(
−
∫ T

t

f (I)(t, s)ds

)
(3.55)

Subsequently, the authors assume a standard HJM dynamic for P (t, T ) and similarly for

the real zero-coupon bond PR(t, T0, T ):

dP (t, T ) = P (t, T )(rtdt+ Σ(t, T )dZt)

dPR(t, T0, T ) = PR(t; , T0, T )(rtdt+ ΣR(t, T ) · dZt) (3.56)

where rt is the instantaneous spot rate, dZt is a d-dimensional P -Wiener process and

Σ(t, T ) and ΣR(t, T ) are the volatilities of P (t, T ) and PR(t, T0, T ). Applying Ito’s Lemma

to definition 3.54 and using definition 3.51, we obtain the dynamic for f (I)(t, T ) under the

risk neutral measure Q:

df (I)(t, T ) =

[
(σ(t, T )− σI(t, T ))

(∫ T

t

σI(t, s)ds− ΣI(t, t)

)
+ σI

∫ T

t

σ(t, s)ds

]
dt

+σI(t, T )dZt (3.57)

This model represents a powerful approach because it builds a sound HJM framework

around the inflation rate. It allows for the pricing of inflation derivatives in a way that

is similar to the nominal interest-rate derivatives under the classic HJM model. It can be

used as a platform for further developments like volatility smiles or jumps in the driving

dynamic.

3.6.2 Market model

From a practical perspective, it is quite desirable to have an analytically tractable model

for simple inflation forward rates since most inflation derivative cash flows are of the same

nature. Using the inflation discount factor defined in 3.51, a simple forward inflation rate
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f I(t;T1, T2) over period [T1, T2] is defined as:

df I(t;T1, T2) :=
1

T2 − T1

(
PI(t, T0, T1)

PI(t, T0, T2)
− 1

)
(3.58)

If we let T = T2 and ∆T = T2 − T1, this can be expressed more generally as:

df I(t;T −∆T, T ) +
1

∆T
=

1

∆T

PI(t, T0, T −∆T )

PI(t, T0, T )
(3.59)

Note that this forward inflation rate can be replicated by trading the real zero coupon

bonds. Thus it is the unique fair rate observed at time t for a T maturing contract. The

dynamic of the inflation discount factors is derived from 3.56 and expressed as:

dPI(t;T0, T ) = PI(t;T0, T )ΣI(t, T )(dZt − ΣR(t, T )dt) (3.60)

which allows us to obtain the following dynamic for the forward simple inflation rates

f
(I)
j (t) in conjunction with a term structure model with simple compounding nominal

forward rates fj(t). Here, we use the LIBOR Market Model for the dynamic of fj(t) and

find f
(I)
j (t) accordingly:

dfj(t) = fj(t)γj(t) (dZt − Σj+1(t)dt)

d

(
f

(I)
j (t) +

1

∆Tj

)
=

(
f Ij (t) +

1

∆Tj

)(
γ

(I)
j (t)(dZt − Σj(t)dt)

+ΣI(t, Tj−1)(γ
(I)
j (t)− Σj−1(t) + Σj(t))dt

)
(3.61)

where

γ(I)(t, T ) = ΣI(t, T −∆T )− ΣI(t, T ) (3.62)

The dynamics from 3.61 has two main desirable features. First, it allows inflation

rates to take both positive and negative values to reflect an inflationary or deflationary

environment. Second, it is analytically tractable for derivatives pricing. In addition, this

market model lends itself for further extensions. We may include additional risk factors
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like jumps and stochastic volatilities in order to account for implied volatility smiles or

skews. The resulting inflation rate model is superimposed on the popular LIBOR Market

model. Both nominal forward rates and inflation forward rates are diffused according to a

lognormal process which makes pricing YYIIS or caplets convenient.
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Chapter 4

Simulation

Inflation derivatives are relatively new in the market place and most publications on the

subject to this date have focused on building an analytical framework for pricing such

derivatives. The usual objective is pricing through an analytical formula which is rela-

tively easy to implement and fast to compute. However this approach makes it hard to

modify the underlying assumptions of the model. In contrast, Monte Carlo simulations are

computationally more intensive but allow us to blow a model wide open to study its intri-

cacies. It also allows us to understand the potential costs of the simplifying assumptions

needed to derive analytical solutions.

In this chapter we will apply a Monte Carlo method to the framework discussed in

Section 3.5 for modeling the forward CPI ratio. There are three main reasons why we

prefer this approach relative to the others that we have discussed.

1. It provides an instant calibration to the zero coupon inflation swap market which is

the most commonly traded inflation derivative instrument.

2. Simulating a CPI ratio easily captures the convexity adjustment needed for pricing

more interesting inflation contracts like caps and floors.

3. We find that modeling the CPI ratio allows us to define explicitly a more intuitive

correlation structure for the factors that drive our model compared to the approach
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offered by discount factors or the simple forward CPIs.

This chapter is divided in three sections. We will first present how the simulation was

implemented along with a few additional assumptions and an example. We follow this with

a section on parameters estimation for our model using historical data for forward interest

rates and forward CPI. The third section presents our results when this method is applied

to pricing caplets and floorlets which we then extend to the pricing of caps.

4.1 Simulating the forward CPI ratio with Monte Carlo

Recall equation 3.30 from which we can obtain quotes for the forward CPI Ii(t) where

Ki(t) are the quotes from the Zero Coupon Inflation Indexed Swaps (ZCIIS) traded in the

market:

Ii(t) = I(t)(1 +Ki(t))
Ti (4.1)

If we assume that we can observe the price index I(t) at time t then we immediately know

the value of the CPIs in the future as implied by the ZCIIS market. Let i denote the time

to maturity in years of the forward CPI contract. Then a series of forward CPI contracts

as quoted in the market would have cash flows as shown in the following figure:

Figure 4.1: A series of forward CPI contracts.

Note that I0(t) is not actually traded: instead it is simply the level of the price index

at the time when these contracts are being quoted. One can immediately see how annual

seasonality in the price index can play a strong role if we try to value these contracts for

Ti−1 < t < Ti. We ignore this problem for now by focusing on the case where t = T0.
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Now, recall definition 3.44 for the forward CPI ratio Yi(t):

Yi(t) :=
Ii(t)
Ii−1(t)

− 1 , i = 1, 2, 3... (4.2)

Analogous to the main market model for interest rates, we will be modeling the joint

evolution of consecutive forward inflation rates in the manner presented below:

Figure 4.2: A chain of forward inflation contracts.

We defined the dynamic of Yi(t) in equation 3.49 presented in Mercurio and Moreni

[2009] as

dYi(t) = (1 + Yi(t))
[
Ci(t)dt+ σidW

i
i (t)
]

(4.3)

where

Ci(t) =
i−1∑

j=β(t)

σj

(
ρF,Yi,j

σF,iτiFi(t)

1 + τiFi(t)
− σiρi,j

)
(4.4)

and

ρi,jdt := dW i
h(t)dW

i
k(t) (4.5)

ρF,Yi,j dt := dFi(t)dYj(t) (4.6)

while σF,i denotes the volatility of the forward interest rates, τi denotes the tenor of the

forward rates (always equal to one year in our case) and σi denotes the volatility of the

factors Wi. Furthermore, β(t) is the index of the first time Ti strictly larger than t with i

denoting the time to maturity in years. Thus, for t = T0 = 0 we have β(t) = 1.

We apply a simple Euler scheme to discretize this process using a time step equal to
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one trading day:

Yi(t+ ∆t) = Yi(t) + [1 + Yi(t)] [Ci(t)∆t+ σi∆Wi] (4.7)

where ∆t = 1
252

since there is roughly 252 trading days in a year. Furthermore, the paths

for the Brownian Motions Wi are generated by drawing samples εi,n from a standard normal

distribution:

Wi(Tn)−Wi(Tn−1) = εi,n
√
Tn − Tn−1 for n = 0, 1, 2, ..., i (4.8)

Freezing the drift term is a technique often employed in interest rate models as a sim-

plification to derive analytical formulas for pricing derivative. For simplicity, we also keep

the drift fixed to focus on the problem at hand (modeling inflation), but this assumption

can be relaxed if we use a standard Libor Market Model for simulating interest rate for-

wards along with the forward CPI ratios. This is a rather strong assumption because it

implies that the forward rate curve stays the same throughout the life of the contract. We

investigate this later. For now, we limit ourselves to pointing out that smaller values for

ρF,Yi,j σF,i and larger values for σiρi,j have the effect of decreasing the sensitivity of Ci(t) to

the shape of the forward rate curve. From now on we will have

Ci(t) = Ci(0) =
i−1∑

j=β(t)

σj

(
ρF,Yi,j

σF,iτiFi(0)

1 + τiFi(0)
− σiρi,j

)
(4.9)

where we use the input curves from Table 4.11, the volatilities from Table 4.2 and Table 4.5

and the correlation matrix from Table 4.6. These will be discussed shortly. Furthermore,

we use the correlation matrix for dWi from Table 4.6 to do a Cholesky decomposition of

equation 4.7.

In our implementation of this model we choose to keep the evolution of volatility with

respect to time as constant. One could consider using interpolation between σi and σj

for i = j + 1 to come up with values of σi(t) for Ti > t > Tj. This seems like a sensible
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thing to do although there is no way of validating this approach empirically since, unlike

exchange traded futures contracts with predefined calendar maturities, the quotes available

for forward CPI contracts are always given with a constant time to maturity. However,

note that similarly to an HJM model, the drift and the volatility are indexed by time to

maturity. This means that they will both change through the simulation as the shortest

contract matures while the others get re-indexed with their new time to maturity.

To give the reader a better perspective on how this model is implemented we write here

explicitly the dynamics we will be using:

∆Y1(t) = (1 + Y1(t))
[
C1(0)∆t+ σ1∆W

1
1 (t)

]
∆Y2(t) = (1 + Y2(t))

[
C2(0)∆t+ σ2∆W

2
2 (t)

]
∆Y3(t) = (1 + Y3(t))

[
C3(0)∆t+ σ3∆W

3
3 (t)

]
...

where

C1(0) =
0∑
j=1

σj

(
ρF,Y1,j

σF,1τ1F1(0)

1 + τ1F1(0)
− σ1ρ1,j

)
= 0

C2(0) =
1∑
j=1

σj

(
ρF,Y2,j

σF,2τ2F2(0)

1 + τ2F2(0)
− σ2ρ2,j

)
= σ1

(
ρF,Y2,1

σF,2τ2F2(0)

1 + τ2F2(0)
− σ2ρ2,1

)
C3(0) =

2∑
j=1

σj

(
ρF,Y3,j

σF,3τ3F3(0)

1 + τ3F3(0)
− σ3ρ3,j

)
= σ1

(
ρF,Y3,1

σF,3τ3F3(0)

1 + τ3F3(0)
− σ3ρ3,1

)
+ σ2

(
ρF,Y3,2

σF,3τ3F3(0)

1 + τ3F3(0)
− σ3ρ3,2

)
...

Note that we are pricing the contract at t = 0, so we used β(t) = 1. The details about
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how each parameter is estimated will be discussed shortly.

4.1.1 A closer look at the drift term

The next figure shows the evolution of the drift term in basis points to help us justify our

approximation done by keeping the drift fixed. We are show the evolution of a drift term

with a constant time to maturity. The latter arises from the fact that we have assumed

constant historical volatility and constant historical correlation over time. The fact that

Ci(t) is practically constant over time shows that the evolution of the forward interest rates

Fi(t) have a very negligible impact on the drift. This means that keeping the drift fixed is

a sensible approximation to avoid having to use an LFM model in parallel to our inflation

model. This is especially true if our estimates for the factor volatilities are high.
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Figure 4.3: Evolution of the drift term Ci(t) using historical forward rates.

The discrepancy between the drift terms for different time to maturities means that our

method might benefit from indexing the volatility σi with a time to maturity that has a

smaller time step. This would be of special importance if we are pricing a one year contract

since the difference in drift between a one year and two year contract is the greatest.
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4.1.2 A simplified example

The following table illustrates how the forward CPI ratios are modeled in way that is

analogous to an HJM model. Here, each row represents the evolution through time of the

forward CPI ratio Yi with maturity Ti for i = 1, 2, 3, 4, 5. We show a time-step of half a

year. The first column denotes the inflation curve we use as input into our model.

0y 0.5y 1y 1.5y 2.0y 2.5y 3.0y 3.5y 4.0y 4.5y 5.0y
1y -0.0069 -0.0093 -0.0106
2y 0.0126 0.0101 0.0088 0.0064 0.0046
3y 0.0185 0.0160 0.0147 0.0123 0.0105 0.0148 0.0167
4y 0.0265 0.0240 0.0227 0.0203 0.0185 0.0228 0.0248 0.0242 0.0266
5y 0.0258 0.0233 0.0221 0.0196 0.0178 0.0222 0.0242 0.0236 0.0260 0.0208 0.0213

Table 4.1: Example for a single diffusion of the forward CPI ratios Yi.

The following figure illustrates the result of a Monte Carlo simulation for forward

inflation rates. We have Yi(0) to denote the input curve while Yi(Ti) captures the evolution

of spot inflation (1 year tenor) over many trials.
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Figure 4.4: Example of a Monte Carlo simulation for the forward CPI ratios Yi.

53



4.2 Parameters Estimation

The data we use for estimating the model parameters are two-fold. Zero-coupon bond

quotes are obtained from Datastream to calculate the forward interest rates. The zero-

coupon inflation indexed swap quotes are obtained from Bloomberg under the ticker

<USSWIT1 Curncy> for 1 year maturity, <USSWIT2 Curncy> for 2 year maturity and

so on. Data is available for maturities of 1,2,3,4,5,7,10,15,20 and 30 years. The ultimate

goal of this project is to price caps with a one year tenor. This means that the market is

clearly incomplete if we wish to hedge such a contract for maturities beyond 5 years. We

choose to focus on the contracts with 1,2,3,4 and 5 years to keep things readable and avoid

having to commit to one specific interpolation method.

On the next page, Figure 4.5 shows the evolution of the zero coupon curve which was

used to obtain values for forward interest rates. Figure 4.6 shows the evolution of the zero

coupon inflation curve as obtained from ZCIIS quotes (K). Both curves are essentially

analogous in the sense that Figure 4.5 presents the rate at which money can be lended

while 4.6 shows the rate one has to pay in order to protect the value of their money against

inflation. The data has interesting features since it ranges from November 1st 2005 to

October 30th 2009. In particular, it encompasses the pre 2008 crisis levels which were

deceptively stable and the clear market dislocation due to lack of liquidity in the TIPS

market (used for hedging ZCIIS) that happened in October 2008 followed by a partial

recovery through 2009.
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Figure 4.5: Historical zero coupon curve used to obtain forward interest rates Fi.

Figure 4.6: Historical zero coupon inflation (K) from ZCIIS quotes used to obtain forward
CPI ratios Yi
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4.2.1 Forward inflation and forward interest correlations and

volatilities

The rates ri(t) from zero coupon curves of Figure 4.5 are used to obtain the discount factors

using the following equation:

Pi(t) =

(
1

1 + ri(t)

)Ti

(4.10)

from which we compute the forward rates we need for our simulation. We use the relation

Fi(t) =
1

Ti − Ti−1

(
Pi−1(t)

Pi(t)
− 1

)
(4.11)

where Ti−1 denotes the time to expiration of the forward contract and Ti denotes its time

to maturity. It should be understood that by Y1 we actually mean the spot annual rate

while Yi for i = 2, 3, 4... are true forward rates.

The normalized forward CPI is obtained directly from the zero-coupon inflation quotes

through an expression we have derived in Section 3.2.1 :

Ii(t)
I(t)

= (1 +Ki(t))
Ti (4.12)

for t = 0. Equation 4.12 will be used later to estimate the parameters for our model’s

factors. We conclude by obtaining the forward CPI ratio which we have defined previously

as:

Yi(t) :=
Ii(t)
Ii−1(t)

− 1 =
(1 +Ki(t))

Ti

(1 +Ki−1(t))Ti−1
, t ≤ Ti−1 (4.13)

where it should be understood that for Y1(t) we have the denominator of the ratio equal

to the current level of the price index, i.e. Ii−1(t) = I0(t) = I(t). Thus, we have Y1(t) =

(1 + Ki(t))
Ti . Figure 4.7 shows the historical evolution of the forward interest rates and

forward CPI ratio.
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Figure 4.7: Historical forward interest rates Fi and forward CPI ratios Yi.
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The following table presents the forward interest rate volatilities we have estimated

from historical forward interest rates. Notice that volatility tends to increase with time to

maturity. This can be explained by the longer term inflation outlook.

1y 2y 3y 4y 5y
σF,i - Stdev(∆Fi/

√
∆t) 0.0085 0.0140 0.0140 0.0144 0.0154

Table 4.2: Forward interest volatilities estimated from daily historical zero curve.

Table 4.3 contains the correlations between forward interest rates and the forward CPI

ratio. It is hard to gain any firm intuition from these results. At most, we could claim that

forward interest rates in general are slightly more sensitive to 1 year and 5 year forward

inflation. Note that only the lower triangular part of the matrix will actually be used to

calculate the drift. Table 4.4 shows a 95% confidence interval for the values presented in

Table 4.3.

∆Y1 ∆Y2 ∆Y3 ∆Y4 ∆Y5

∆F1 0.11 0.05 0.04 -0.11 0.09
∆F2 0.14 0.07 0.08 -0.09 0.16
∆F3 0.12 0.10 0.07 -0.07 0.15
∆F4 0.16 0.05 0.04 -0.05 0.18
∆F5 0.08 0.07 0.09 -0.09 0.17

Table 4.3: Correlation matrix ρF,Y between forward inflation rates with maturity Ti and
forward interest rates with maturity Tj obtained from daily historical data.

∆Y1 ∆Y2 ∆Y3 ∆Y4 ∆Y5

∆F1 0.05, 0.17 -0.01, 0.11 -0.02, 0.10 -0.17,-0.05 0.03, 0.15
∆F2 0.08, 0.20 0.01, 0.13 0.02, 0.14 -0.15,-0.03 0.10, 0.22
∆F3 0.06, 0.18 0.04, 0.16 0.01, 0.13 -0.13,-0.01 0.09, 0.21
∆F4 0.10, 0.22 -0.01, 0.11 -0.02, 0.10 -0.12, 0.01 0.12, 0.24
∆F5 0.02, 0.14 0.00, 0.13 0.03, 0.15 -0.15,-0.03 0.12, 0.23

Table 4.4: Confidence interval of 95% for values of ρF,Y .
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4.2.2 Factors volatility and correlations

Our model assumes the following CPI dynamic:

dIi(t) = Ii(t)
i∑

j=β(t)

σjdZ
i
j(t) (4.14)

where ρh,kdt = dZi
h(t)dZ

i
k(t). To illustrate how parameters can be estimated we explicitly

write an example for i = 1, 2, 3...:

∆I1(t) = I1(t)
1∑
j=1

σj∆W
1
j (t)

= I1(t)σ1∆W
1
1 (t)

∆I2(t) = I2(t)
2∑
j=1

σj∆W
2
j (t)

= I2(t)
[
σ1∆W

2
1 (t) + σ2∆W

2
2 (t)

]
∆I3(t) = I3(t)

3∑
j=1

σj∆W
3
j (t)

= I3(t)
[
σ1∆W

3
1 (t) + σ2∆W

3
2 (t) + σ3∆W

3
3 (t)

]
... (4.15)

We expand the sum in the above equation to highlight the fact that we will have to estimate

σi in a somewhat recursive manner. We start with ∆I1(t) to obtain the time series of the

first factor. This will be needed to obtain a time series for the second factor. Then, ∆I2(t)
which contains the information from the first two factors can be used to obtain a time

series for the third factor and so on.
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The next figure shows historical stability of the model factors. Observe that this is

stable over time which is an important criterion for the empirical validity of our model.

−0.02

0

0.02

σ
1
dZ

1
(t)

−0.02

0

0.02

σ
2
dZ

2
(t)

−0.02

0

0.02

σ
3
dZ

3
(t)

−0.02

0

0.02

σ
4
dZ

4
(t)

2006 2007 2008 2009
−0.02

0

0.02

σ
5
dZ

5
(t)

Figure 4.8: Dataset from which the factors volatility and correlation are obtained.
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Next, we can estimate standard deviation as follows:

σ1 ≈
stdev (σ1∆W1(t))√

∆t
= stdev

(
∆I1(t)
I1(t)

)
1√
∆t

σ2 ≈
stdev (σ2∆W2(t))√

∆t
= stdev

(
∆I2(t)
I2(t)

− ∆I1(t)
I1(t)

)
1√
∆t

σ3 ≈
stdev (σ3∆W3(t))√

∆t
= stdev

(
∆I3(t)
I3(t)

− ∆I2(t)
I2(t)

)
1√
∆t

...

σi ≈
stdev (σi∆Wi(t))√

∆t
= stdev

(
∆Ii(t)
Ii(t)

− dIi−1(t)

Ii−1(t)

)
1√
∆t

Table 4.5 shows the volatilities we obtained. Similar to what we observed with forward

interest rates, the volatility of forward inflation tends to increase with time to maturity. In

these results we feel that we have probably overestimated volatility. When we removed the

the financial crisis from our dataset the volatility we estimated was about half of what we

obtain with the full dataset. Perhaps the greatest limitation of our parameter estimation

is that we are using a dataset that is too short. We use a dataset that is roughly 4 years

of data for modeling spot inflation 5 years ahead in our simulations. In hindsight, this

seems grossly insufficient. Furthermore, one can argue that the lack of liquidity during the

financial crisis led the market to violate the following simple no arbitrage assumption:

Ii(t) = ETi
[I(Ti) | Ft] (4.16)

Consequently, we might want to adjust our dataset to remove the liquidity effect for future

parameter estimation.

1y 2y 3y 4y 5y
σi - Volatility of Wi 0.0357 0.0435 0.0456 0.0531 0.0528

Table 4.5: Factor volatilities estimated from the daily historical forward CPI curve.

Next we look at correlations between the factors. The approach to obtain the time
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series for the factors is the same that we used for the volatilities:

ρ2,1 = corr (dW2, dW1) = corr

(
dI2(t)
I2(t)

− dI1(t)
I1(t)

,
dI1(t)
I1(t)

)
ρ3,2 = corr (dW3, dW2) = corr

(
dI3(t)
I3(t)

− dI2(t)
I2(t)

,
dI2(t)
I2(t)

− dI1(t)
I1(t)

)
...

ρi,j = corr (dWi, dWj) = corr

(
dIi(t)
Ii(t)

− dIi−1(t)

Ii−1(t)
,
dIj(t)
Ij(t)

− dIj−1(t)

Ij−1(t)

)
(4.17)

Table 4.6 shows the results we obtained. Each factor Wi accounts for a variation at

different time to maturities on the forward CPI curve. Note that the correlations ρ2,1 , ρ3,2,

ρ3,4 and ρ4,5 are all strongly negative which means that the variations at the short end of

the forward CPI curve tend to be dampened in the longer end of the curve. Consider for

example

ρ2,1 = corr

(
dI2(t)
I2(t)

− dI1(t)
I1(t)

,
dI1(t)
I1(t)

)
(4.18)

where a strong negative correlation tells us that changes in I1(t) are only partially propa-

gated to I2(t). Table 4.7 shows a 95% confidence interval for the values presented in Table

4.6.

∆W1 ∆W2 ∆W3 ∆W4 ∆W5

∆W1 1.00 -0.48 -0.11 0.03 0.08
∆W2 -0.48 1.00 -0.22 0.01 -0.13
∆W3 -0.11 -0.22 1.00 -0.44 0.11
∆W4 0.03 0.01 -0.44 1.00 -0.51
∆W5 0.08 -0.13 0.11 -0.51 1.00

Table 4.6: Factor correlation matrix ρi,j.

We use these results in two ways. First we use it for the calculation of the drift term.

Second, we use the correlation matrix to do a Cholesky decomposition in order to simulate

inflation rates from the dynamic in expression 4.7.

We have also performed a principal component analysis on the factors Wi to see if the

number of factors used in our model could be reduced. The first table shows the factor
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∆W1 ∆W2 ∆W3 ∆W4 ∆W5

∆W1 1.00, 1.00 -0.52,-0.43 -0.17,-0.05 -0.03, 0.09 0.02, 0.14
∆W2 -0.52,-0.43 1.00, 1.00 -0.27,-0.16 -0.05, 0.08 -0.19,-0.07
∆W3 -0.17,-0.05 -0.27,-0.16 1.00, 1.00 -0.49,-0.39 0.05, 0.17
∆W4 -0.03, 0.09 -0.05, 0.08 -0.49,-0.39 1.00, 1.00 -0.55,-0.46
∆W5 0.02, 0.14 -0.19,-0.07 0.05, 0.17 -0.55,-0.46 1.00, 1.00

Table 4.7: Confidence interval of 95% for values of ρi,j.

coefficients (rows) for each principal component (columns). The columns are in order

of decreasing component variance. The second table shows how much variance can be

accounted for as we add more components. From the results, it is clear that anything less

than three factors is not enough. Beyond three factors is probably a matter of preference.

∆Z1 ∆Z2 ∆Z3 ∆Z4 ∆Z5

∆W1 0.03 -0.54 0.14 0.50 0.66
∆W2 -0.14 0.80 0.16 0.11 0.55
∆W3 0.37 -0.02 -0.75 -0.37 0.41
∆W4 -0.69 -0.24 0.12 -0.62 0.27
∆W5 0.61 -0.06 0.62 -0.47 0.15

Table 4.8: Construction of the principal components.

∆Z1 ∆Z2 ∆Z3 ∆Z4 ∆Z5

% of Variance 42.85 65.05 84.78 94.35 100.00

Table 4.9: Cumulative variance we can account for as we increase the number of factors.
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4.3 Results

4.3.1 Evolution of spot inflation

The next two tables outline further inputs that are required for our model. We choose

t = 0 to be April 23rd 2009 because the Yi curve (see Table 4.11) exhibits some deflationary

expectations in the short end which emphasizes that this is not a limitation of the model.

Since we choose to keep the drift fixed and we use constant volatility, there is no point

in taking a smaller time step than one year as this would provide no additional precision.

Thus, keeping the drift fixed greatly diminishes the amount of computational effort that

we need do.

Date 23-Apr-2009
Number of Trials 500000
Timestep (years) 1

Table 4.10: Monte Carlo simulation parameters

1y 2y 3y 4y 5y
Pi(0) - Discount Factors 0.9882 0.9697 0.9436 0.9147 0.8842
Fi(0) - Forward Interest Rates (%) 1.1986 1.9078 2.7582 3.1610 3.4476
Yi(0) - Forward Inflation Rates (%) -0.6865 1.2630 1.8516 2.6501 2.5813

Table 4.11: Input curves observed at t = 0 used for initiating the simulation.

Table 4.12 summarizes the results of the simulation. Comparing the means of Yi(Ti) to

the input curve Yi(0) from Table 4.11 one can get a good idea of the impact that the drift

Ci(0) has on our results. Notice that the standard errors of our estimates get higher as we

increase the time horizon which is something that we would have expected. A simulation

with 500 000 trials gives us a standard error below two basis points which is smaller than

any typical bid/ask spread in interest rate derivatives.
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Y1(T1) Y2(T2) Y3(T3) Y4(T4) Y5(T5)
Ci(0) - Drift (%) 0.0000 0.0741 0.0611 0.0977 0.1296
Yi(Ti) - Mean (%) -0.6858 1.3288 1.9805 2.8826 2.9391
Yi(Ti) - Standard Error (%) 0.0050 0.0081 0.0105 0.0131 0.0152

Table 4.12: Results from Monte Carlo simulation of forward inflation.

4.3.2 Pricing Caplets and Floorlets

Once we have simulated the evolution of the spot CPI ratio, it is straightforward to price

caplets and floorlets according to the following payoff:

IICplt(t, Ti−1, Ti, K,N,w) = NP (t, Ti)E
Ti
[
[ω(Yi(Ti)−K)]+

∣∣ Ft] (4.19)

where we let ω = 1 for the caplet, ω = −1 for the floorlet and N is the notional. We only

consider maturities up to five years to keep things simple and readable.

In Figure 4.9 and Figure 4.10 on the next page we show the price of the caplets and

floorlets with respect to their moneyness. We simply express moneyness as the difference

between Yi(Ti) and the strike K. The prices are expressed in basis points for a 1 dollar

notional. Relative to their moneyness, the one year caplet and floorlet seem slightly dif-

ferent from the other curves. This is because the one year contracts experience no drift in

our model which means that their moneyness stays unchanged on average. The contracts

with higher maturities have a positive drift Ci(t) which causes their expected payoff to be

slightly in the money.
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Figure 4.9: Price in basis points of caplets for different strikes K and maturities Ti.

−200 −150 −100 −50 0 50 100 150 200
0

50

100

150

200

250

300

350

400

Moneyness (bps)    (I
i
(0)/I(0)−1)−K

P
ric

e 
(b

ps
)

 

 

1Y
2Y
3Y
4Y
5Y

Figure 4.10: Price in basis points of floorlets for different strikes K and maturities Ti.
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4.3.3 Greeks for Caplets and Floorlets

The next pages show the delta and gamma of the caplet in Figure 4.11 and 4.12 and the

floorlet on the subsequent page with Figure 4.13 and 4.14. Note that we choose to present

deltas and gammas with respect to the forward CPI rather than the forward CPI ratio.

This is because the ratio does not actually trade in the market while the forward CPI

implicitly trades through the Zero Coupon Inflation Swap.

The deltas and gammas are obtained using a central-difference estimator

∆(n, h) =
Yn(θ + h)− Yn(θ − h)

2h
(4.20)

where n = 1, 2... is an index for the independent prices obtained during the Monte Carlo

simulation, θ is the model input for which we wish to calculate the derivative (in this case θ

is the forward CPI, i.e. θ = Ii(0) ). Finally, h is the spacing used for the central-difference

approximation. We found h = 0.005 to give good results.1

On the next page, we have grouped the deltas and gammas with respect to the forward

CPI in two ways. First they are grouped by the maturity of the caplet (see legend). Second,

for each caplet we have seperated the greeks that were from the numerator forward CPI or

the denominator forward CPI (upper and lower graph). These graphs lead to the following

observations. The first one is that for an equivalent level of moneyness, the deltas of the

caplet and floorlet are quite similar with the exception that the numerator has a positive

delta while the denominator has a negative delta. This means that holding a portfolio of

a joint series of caplets or floorlets generally has a fairly low delta. We consider this more

closely in the next section when we start pricing the caps. Second, because our payoff is

expressed in terms of a ratio of two securities, we should expect to have a high gamma.

This is what we observe in the gamma plots for the floorlet and caplet. Note that gamma

is positive for the numerator and denominator which means that the gamma exposure will

stack up by holding a series a joint caplet.

1See Glasserman [2004] for more details about estimating sensitivies and optimal values of h with the
central-difference estimator.
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Figure 4.11: Delta of the caplet with respect to the forward CPIs.
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Figure 4.12: Gamma of the caplet with respect to the forward CPIs.
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Figure 4.13: Delta of the floorlet with respect to the forward CPIs.

−200 −150 −100 −50 0 50 100 150 200
0

5

10

15

N
um

er
at

or

 

 

−200 −150 −100 −50 0 50 100 150 200
0

5

10

15

Moneyness (bps)    (I
i
(0)/I(0)−1)−K

D
en

om
in

at
or

 

 

1Y
2Y
3Y
4Y
5Y

Figure 4.14: Gamma of the floorlet with respect to the forward CPIs.
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4.3.4 Pricing Caps

Pricing caps is straightforward once we are able to price caplets since a cap is the sum of

a series of joint caplets. We write the cap present value as

IICapFloor(t, T,K,N,w) = N
M∑
i=1

Pn(0, Ti)E
Ti
[
[ω(Yi(Ti)−K)]+

∣∣ Ft] (4.21)

where we let ω = 1 for the caplet, ω = −1 for the floorlet and N is the notional.

Although each caplet within a cap does not necessarily have the same moneyness, they

still all have the same strike. For this reason we replace the moneyness on the X axis from

the previous plots by the strike of the cap which is a more convenient representation. We

only include the figures for the caps for conciseness but the floors can easily be obtained

as well by the same method. In the next set of figures, the deltas appear scrambled due to

the different levels of moneyness for each caplet.
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Figure 4.15: Price in basis points of caps for different strikes K and maturities Ti.
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Figure 4.16: Delta of the cap with respect to the forward CPIs.
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On the next pages, Figure 4.17 shows the deltas of the 5Y cap while Figure 4.18 shows

the gammas. So far we have been showing deltas with respect to the numerator and the

denominator of the CPI ratio within the payoff function to outline the consistent patterns

in the model. However, from a practical perspective it is obviously more appropriate to

consider the aggregate delta of a position with respect to each forward CPI which is what

we are presenting in the next figures. We see that, since a cap is essentially a portfolio of

joint caplets, there is already a fair amount of delta hedging that is naturally built into

the portfolio. For example, the 2 year forward CPI delta in a 2 year caplet contract is very

well hedged by a an equivalent position in a 3 year caplet with the same strike. Of course,

the denominator within the very last caplet ratio that forms the joint caplet series cannot

be hedged in that manner. This is why we observe a high delta with respect to the 5Y

forward CPI contract. On the other hand, the gamma of the denominator and numerator

will add up which means that the delta is quite sensible to changes in the underlying CPI

ratio.
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Figure 4.17: Delta of a 5Y cap as of April 23rd 2009
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Figure 4.18: Gamma of a 5Y cap as of April 23rd 2009
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One might have noted in the previous figure that the delta with respect to the 1Y

forward CPI is fairly high but negative. This is mainly due to the steepness in the short

end of the forward inflation curve we have used as an input in our model. A steep forward

inflation curve means that caplets that form a cap have a larger difference in moneyness

which reduces the effectiveness of their mutual hedging within the portfolio. In the next

figure we have used a practically flat forward inflation curve observed on August 8th 2006.

Notice that the delta for 1Y to 4Y forward CPI is very small for any strike K. This shows

how the high gamma can have a big impact on the fluctuations of the delta, especially

with respect to the shorter maturities.
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Figure 4.19: Delta of a 5Y cap observed on August 8th 2006 when forward inflation expec-
tations were flat (See Figure 2.2)
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4.3.5 A close look at the evolution of the delta

We have seen in the previous section that in a portfolio of joint caplets with the same

strike most of the hedging stems from two sources. The first and main source of delta with

respect to the forward CPI is through the numerator within the payoff of the last caplet.

The second source of forward CPI delta is due to the steepness of the forward inflation

curve which causes caplets within the cap to have different levels of moneyness.

In the following figure, we go back to pricing a cap as of April 23rd 2009 and we show

the likely evolution of its delta throughout the life of the contract. Deltas were obtained at

the end of each year when a caplet matures by applying the forward difference method over

30 000 nodes in our tree. We also show the standard deviations of our estimates denoted

by the error bars. Notice that the error bars tend to increase quite a bit with maturity

for the last delta. In some of our simulation paths the inflation can get very high causing

the last caplet in the 5Y cap to be deep in the money. This is why the error bar indicates

that in some instances the 5Y delta could be very high. On the other hand, we can see by

looking at the small error bars from the 1Y to 4Y delta that delta hedging these caplets

is very manageable. A delta hedging strategy where one wishes to hedge the forward CPI

delta in a portfolio of caplets implies that we are trading the underlying forward CPI. This

can accomplished through the Zero Coupon Inflation Swap since we have shown that there

exist a one to one relationship between a ZCIIS quote and a forward CPI quote.
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Figure 4.20: Evolution of the delta over the life of a 5Y inflation cap.
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Chapter 5

Conclusion

Inflation can highly important to corporations and long term investors who care about the

long term purchasing power of their investment. Hedging inflation risk is a sensible thing

to do in cases where, due to the nature of its business, an institution has to deal with

inflation-linked cash flows. Inflation derivatives provide them with a way to do this. The

financial crisis of 2008 has renewed uncertainty regarding inflation. Following the massive

quantitative easing programs from many central banks around the world, some are worried

about hyperinflation while others argue that we are still in a liquidity trap and urge us to

consider deflation as a potential threat. Meanwhile, core inflation still hovers around the

normal levels in Canada and the U.S. leading some people to think that we might be doing

just fine.

Diverging views on future inflation is a great opportunity for revisiting inflation deriva-

tives. In a setting where the inflation-indexed securities market is fairly liquid, levered

investors can enter cheap/rich trades to exploit anomalies in the term structure of inflation

or hedge the inflation swaps that they sell to clients. We have seen that the most com-

mon inflation derivative, the Zero-Coupon Inflation Indexed Swap (ZCIIS), is in essence

a contract through which one can trade the discount factors of a real economy versus a

nominal economy within the foreign currency analogy framework. Adopting a different

methodology, one can also view the ZCIIS as a way to trade the forward CPI. This leads
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us to the more recent developments of inflation derivative pricing through market models.

Finally, we have discussed an extended HJM model where instantaneous inflation rates

can be simulated in parallel to the instantaneous interest rates. This is a great unifying

framework that potentially allows for pricing inflation derivatives while calibrating directly

to the inflation term structure from the bond market.

In this thesis, we have mainly focused on pricing inflation derivatives that trade on the

U.S. price index, the Consumer Price Index (CPI), because the market for trading inflation

in Canada is inadequate for two reasons. First, the market for inflation-indexed securities

in Canada is not very liquid. Second, its maturity profile is inadequate because no Real

Return Bond is scheduled to mature before the year 2021. Nonetheless, we were able to

obtain daily historical quotes from ZCIIS based on the U.S. CPI which is our main building

block for pricing more complex derivatives.

In our simulations, we have implemented using a Monte Carlo methodology a market

model for inflation that simulates the evolution of the forward CPI ratio. We chose the

forward CPI ratio because it offers an instant calibration to the ZCIIS market and easily

captures the convexity adjustment needed for pricing inflation derivatives that have their

payoff tied to forward inflation rather than spot inflation. To obtain a pricing of instru-

ments with multiple reset dates we have modeled the joint evolution of consecutive forward

inflation rates in a way that is similar to the usual market model methodology in interest

rate derivative pricing.

Using the historical data from the zero-coupon bond and the ZCIIS, we estimate the

input parameters of our model. We estimate the volatility of forward interest rates and

their correlation with forward inflation using the time series for forward interest rate and

forward CPI ratio. Furthermore, we isolate the evolution of the factors that drive the

forward CPI which allows us to obtain the volatility and the correlation structure needed

for modeling the CPI ratio. Aside from the simple methodology we have used for parameter

estimation, the most serious limitation of our estimation is probably that we have used

a dataset that is too short. We had access to roughly four years of daily historical data

but since we are trying to price derivatives with maturities up to five years this seems
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insufficient. Furthermore, the dataset encompasses the financial crisis of 2008 during which

many liquidity issues were reported in the fixed income market. We believe that the no-

arbitrage assumption of our model was violated during this period and that historical data

should be adjusted for this period to remove the liquidity shock.

Using our market model, we simulated the evolution of spot inflation with a one year

tenor. The main inputs are the forward interest rate curve and the forward inflation curve

(forward CPI ratio) observed in the market. Finally, we have carried out the pricing of

caplet and floorlets over a wide range of moneyness. The results were used to price caps

and we emphasized that a portfolio of joint caplets has two main sources of delta. The

first is the steepness of the forward inflation curve causing each caplet to have different

levels of moneyness and thus different deltas. The second source of delta is with respect to

the CPI in the numerator of the last caplet in the joint series which will never be hedged

naturally within the portfolio.

Variance reduction techniques are very common to improve the convergence rate of

Monte Carlo simulations and increase computation efficiency. Future work might involve

the use of such techniques to allow for computationally more efficient simulations. The

improved efficiency could, for example, allow us to fix the drift or reduce the simulation

time step. In doing so, we could use interpolation to reduce the indexing of volatility from

a yearly time to maturity to monthly time to maturity. Another area for future research

which is critical for practical applications of inflation derivative pricing is to include season-

ality in our simulations. Without modeling seasonality, the year to year contracts cannot

be valued appropriately in-between reset dates. This could be an issue if an institution

wants to unwind a position at a time that does not coincide with a reset date. Finally, it

would also be interesting to look at the amount of basis risk one might be facing by using

inflation derivatives on the CPI-u to hedge liabilities tied to a different price index.
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