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Abstract

This thesis studies in detail the expected discounted function of a penalty at
ruin which involves the time of ruin, the surplus immediately prior to the time of
ruin, and the deficit at the time of ruin, based on the surplus process of ruin theory
containing an independent Wiener (diffusion) process.

First, main background for this thesis is reviewed in chapter 1, which contains
the surplus process of ruin theory with and without a Wiener process, the defec-
tive renewal equations for some expected (discounted) functions, reliability-based
classification and equilibrium distribution.

In chapter 2, we will derive the defective renewal equation and the asymptotic
formula for the expected discounted function of a penalty at time of ruin, and
propose the Tijms-type approximation for and an upper and a lower bounds on a
compound geometric distribution function. Moreover, the reliability-based class im-
plications for the associated claim size distribution are also given. When the claim
size distribution is a combination of exponentials or a mixture of Erlangs, explicit
analytical solutions to the compound geometric distribution function and to the
expected discounted probability of ruin due to oscillation and a claim, respectively,
can be obtained.

Moments are studied in chapter 3 include the (discounted) moment of the deficit
at the time of ruin, the joint moment of the deficit at ruin and the time of ruin,
and the moments of the time of ruin due to oscillation and caused by a claim,

respectively.

iv



In chapter 4, we give the explicit expressions for the (discounted) joint and
marginal distribution functions of the surplus immediately before the time of ruin
and the deficit at the time of ruin, and for the (discounted) distribution function
of the amount of the claim causing ruin, Then the (discounted) probability density
functions are obtained by differentiating the corresponding (discounted) distribu-
tion functions. In addition, the defective renewal equations for these (discounted)
distribution functions and probability density functions, respectively, are also de-
rived.

Finally, summary and future research are presented in chapter 5.
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Chapter 1

Background

1.1 Classical risk model

In the classical continuous time risk model, the number of claims is assumed to
follow a Poisson process {N(t) : ¢ > 0} with mean A. The individual claim sizes
X1,X>, ..., independent of N(t), are positive, independent and identical random
variables with common distribution function (df) P(z) = Pr(X < z), moments
Dj =/0°° z’dP(z) for j = 0,1,2,.... The aggregate process {S(t) : ¢ > 0}, where
S(t) =X1+ X2+ -+ + Xy (with S(t) = 0 if N(t) = 0) is the aggregate claims
up to time ¢, is a compound Poisson process with parameter A. The surplus of an

insurer at time t is

Ut)=u+ct—S(), t>0, (1.1)

where u = U(0) is the initial surplus, ¢ = Ap;(1 + 6) is the constant rate per unit

time at which the premiums are received, and 8 > 0 is the relative security loading.
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Let T = inf{t : U(t) < 0} be the time of ruin (the first time that the surplus
becomes negative). Two important nonnegative random variables in connection
with the time of ruin T are [U(T)|, the deficit at the time of ruin, and U(T—),
the surplus immediately before the time of ruin, where T'— is the left limit of T'.
Another associated random variable is {U(T—) + |U(T)|}, the amount of the claim
causing ruin.

There have been many papers discussing various issues, such as marginal and
Joint distributions of T, U(T—) and |U(T)|, based on the model (1.1). See Ger-
ber, Goovaerts and Kaas (1987) (23], Dufresne and Gerber (1988b) [15], Dickson
(1992) (5] and (1993) [6], Dickson and Waters (1992) [13], Dickson, Egidio dos
Reis and Waters (1995) [11], Dickson and Egidio dos Reis (1996) [9], Gerber and
Shiu (1997) (28] and (1998a) [29], Willmot and Lin (1998) [47], Lin and Willmot
(1999) [36], Picard and Lefevre (1998) [38] and (1999) [39], and references therein.

In particular, Gerber and Shiu (1998a) [29] considered a function associated with
a given penalty function w and the joint distributions of T", U(T'—) and |U(T)| as
follows: For 6 > 0, define

¢o(u) = E[e™Tw(U(T-), [U(T))I(T < )U(0) =u], u>0, (12)

where w(z,y),0 < z,y < oo, is a nonnegative function; I(T < o0) = 1,T < oo and
I(T < 00) = 0 otherwise.
Equation (1.2) may be viewed as the Laplace transform of w with the argument

4, or as the expectation of the discounted penalty function with the force of interest
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d. Of course, the ruin probability is
Yo(u) = E[I(T < )|U(0) = u] = Pr(T < oo|U(0) =), u>0, (1.3)

a special case for w(z,y) =1 and é§ = 0.

1.2 Diffusion process

Dufresne and Gerber (1991) [16] extended the classical risk model (1.1) by adding

an independent diffusion process (or Wiener process) to (1.1) to form
Ut)=u+ct—S(t)+oW(t), t>0, (1.4)

where o > 0 and {W(t) : t > 0} is a standard Wiener process (that is, Wi(t) ~
N(0,t) and then oW (t) ~ N(0,0%t) = N(0,2Dt), where D = 02/2) that is inde-
pendent of the compound Poisson process {S(t) : ¢ > 0}.

They studied ¥4(u), the probability of ruin caused by oscillation, ¥.(u), the
probability of ruin caused by a claim, and .(u), the probability of ruin caused

either by oscillation or by a claim, where

Ya(r) = Pr(T < oo,U(T)=0|U(0) =u), u>0, (1.5)

Yo(u) = Pr(T < oo,U(T) < 0|U(0) =u), x>0, (1.6)

and

Ye(u) = ba(u) + ¥.(v) = Pr(T < oo|U(0) = u), u > 0. (1.7)
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Later, Gerber and Landry (1998) [24] generalized the discussion of Dufresne and
Gerber(1991) [16] based on the same model (1.4) by considering a penalty scheme
which is defined by a constant wo and a nonnegative function w(—yj,y > 0. Then
the penalty due at ruin is wo if ruin occurs by oscillation and w(U(T)) if ruin is
caused by a jump. They declared that the expected discounted penalty ¢(u), as a

function of the initial surplus, is

$(v) = wo E[e™*TI(T < 00, U(T) = 0)|U(0) = u]
+  E[™Tw(U(T)(T < 00,U(T) <0)|U(0) =], u>0. (18)

In the special case that w(—y) = 0 and wo = 1, #(u) becomes
¢d(uv) = E[e™*TI(T < 00,U(T) = 0)|U(0) =u], u>0, (1.9)

the defective Laplace transform or the expectation of the present value of the time
of ruin T due to oscillation. Note that when § = 0, ¢g(u) = Ya(u).

For another special case with w(—y) = 1 and wo = 0, ¢(u) turns out to be
$s(u) = E[e*TI(T < 00, U(T) < 0)|U(0) = u], u>0, (1.10)

the defective Laplace transform or the expectation of the present value of the time
of ruin T due to a claim. Similarly, when & = 0, ¢,(u) = Y. (u).
If we define

$e(u) = du(u)+ ¢.(u)
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= E[e™*TI(T < 0o0,U(T) = 0)|U(0) = u]

+ E[eTI(T < 00,U(T) <0)|JU(0) =u], u>0, (1.11)

then obviously, when & = 0, ¢,(u) = ¥,(u).

1.3 Defective renewal equation

Function Z(u) is said to satisfy a renewal equation if Z (u) can be expressed as
Z(u) = '[0 * Z(u — z)dF(z) + v(u), u >0, (1.12)

where F' is a distribution function concentrated on [0, 00) with F(0)=0. fFis
a defective distribution function (that is, F(co) < 1), then the renewal equation
above is defective.

Gerber and Shiu (1998a) [29] derived a defective renewal equation based on
(1.1) for ¢o(u) in (1.2) as follows:

$o(u) = %/ou ¢o(u—$)/:° 6"’(”")dP(y)dz+%e"" /:o e~"* /:0 w(z,y—z)dP(y)dz.
(1.13)

In (1.13), p = p(d) is the unique nonnegative root of Lundberg’s equation
AB(E) = A + 6 — &, (1.14)

where p(s) = fg* e7**dP(z) and p(0) = 0.
For the surplus process with a diffusion process, Dufresne and Gerber (1991) [16]
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derived defective renewal equations based on (1.4) for ¥4(u), Y.(u) and ¥¢(u), in
(1.5), (1.6) and (1.7) respectively, as follows:

Vaw) = g [ Ve — Db s ha(edz + - B, (115)

$a(0) = g [ ¥elo = )b ha(z)de + [ Hi(w) — Hy x o], (116)

and

51— Hy(u)] + ﬁn — Hy * Hy(u)]

be(u) = 1+ - /" Yl — 2)hs % ha(z)dz + -

(1.17)
where
Hi(u) = 1—e 5% u>0, (1.18)
/u[l—P(:c)]dz
Hy(u) = =2 , u>0, (1.19)
DN
and
hy(v) = Hi(u)= -—e Y, 4 >0, (1.20)
hy(u) = H;(u)=—;’(u—), u>0. (1.21)

Note that 1,(0) = 0 and #,(0) = ¥4(0) = 1 by the oscillating nature of the

sample paths.
With regard to the expected discounted penalty function, Gerber and Landry

(1998) [24] first showed based on (1.4) that ¢a(u) in (1.9) satisfies the defective
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renewal equation

#a(w) = [ gulu - Y)gw)dy + Aw), w20, (1.22)
where
h(s) = %e'b', (1.23)
v(s) = % / ~ emoe=94p(z), (1.24)
b = a—p:%-{-p, (1.25)
a = % +2p, (1.26)
Au) = e™, u>0, (1.27)

is the expected discounted value of a contingent payment of 1 that is due at ruin,
provided that ruin occurs before the first record low (the first time where the surplus

falls below the initial level) that is caused by a jump, and

9(y) = hx1(y)= [ h(y - s)r(s)ds (1.28)
= % /0 Y gblu-e) / ¥ e~Pla=0qp(z)ds (1.29)
_ %e"" [ emewn [ edp(z)ds, (1.30)

is the discounted probability that the first record low is caused by a jump with

sy = (7 sway) ([T v(w)ay)
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- (F50) (255
~ \c+pD cp

Dp® +cp—-6
Dp? + ¢cp

(1.31)

In (1.24), (1.25), (1.29), (1.30) and (1.31), the quantity p = p(4) is the unique

nonnegative root of generalized Lundberg’s equation
Ap(€) = A+ 68 —c£ — D€ (1.32)

with p(0) = 0.
Then they demonstrated by a probabilistic interpretation that é(u) in (1.8)

satisfies the defective renewal equation

w) = [ d(u—y)a(y)dy +wo Alu)
+ [T w - ey - Aw) [ w(-vle)dy, w20, (1.33)

Clearly, from (1.22) and (1.33), ¢,(u) satisfies the defective renewal equation

#uw) = [ dulu - nowdy + [~ ow)dy — Aw) [~ ow)ay, w0, (1.34)

and ¢,(u) satisfies the defective renewal equation

#u(w) = [“dlw—vawdy + [~ otwlay+ A1~ [~ otwdy], w20 (135)
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Next, consider the defective renewal equation as follows:

8o) = g [ # = 2)dG() +

1+8Jo B(u), u>0. (1.36)

where 8 > 0, G(z) = 1 — G(z) is a distribution function, and B(u) is of bounded
variation. Define the associated compound geometric distribution function K (u) =

1 — K(u) by

—_— x ﬂ 1 —n
= —_— ()" > .

K =3 ri5(35"0 W, w20, (1.37)
with K(0) = ﬁ, and where G~ (u) is the tail of the n-fold convolution of G(u),
ie.

oo J—— 1 -
[ e wydu = ~{1 - [G(s)]"}

with

G(s) = /0 ” e~mdG(u). (1.38)

Then Lin and Willmot (1999) [36] showed that K(u) satisfies the defective renewal

equation
—_ 1 u ___ 1
K@ =135 /0 K(u = 2)dG(z) + 13560), u20, (1.39)
with :
g ___ 1-G(s)
/0 e~ K (u)du = Py T (1.40)
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or

® e _ B8
/("_ K = 5 gy (1.41)

and the solution ¢(u) to (1.36) may be expressed as

$w) = —= [ R(u-2)dB(z) + 1B) (1.42)
B Jo- B
= %/(: B(u - z)dK(z), u >0, (1.43)

which, if B(u) and K(u) are differentiable with derivatives B'(v) and K'(u) for

u > 0, respectively, may be expressed as

LA ¢ ! l u —l K(u
b(u) = 'E/o K(u-2)B'(z)dz + 5B(u) ~ ZBOK@)  (144)

1 fu ) 1
=3 /0 B(u = 2)K'(z)dz + 5K (0)B(x), u20. (1.45)

They also showed the following theorem regarding the order between é(u) and
K (u):

Theorem 1.1 If B(u) > (<) ¢"G(u) where c™ € (0,00), then $(u) > (<) c*K(u).
Sometimes, we want to investigate the asymptotic behavior as u — oo of the

function Z(u) satisfying the renewal equation (1.12). Feller (1971) [21] proposed a

renewal theorem for this asymptotic behavior as follows:

Theorem 1.2 Suppose that the distribution function F(z) is non-arithmetic (that
18, not concentrated on a set of points of the form 0, +h, £2h, ... ), x > 0 satisfies

/ = e*dF(z) = 1, and Z(u) satisfies the defective renewal equation (1.12). If
0
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e™*v(z) is directly Riemann integrable on (0, o), then

/oo e~“v(z)dz
0 e "™, as u — oo, (1.46)
/ ze™*dF (z)
()

Z(u) ~
where the notation a(z) ~ b(z), as £ — oo, means lim._,a(z)/b(z) = 1.

1.4 Reliability classification

Before introducing reliability-based classifications of distributions, we would like to
define the failure rate and the mean residual lifetime of a distribution as follows:
If the distribution function P(z) is absolutely continuous, the failure rate (haz-
ard rate) of P(z) is defined as
P'(z)

hp(z) = —%log-ﬁ(z) = Pz)’ (1.47)

and the mean residual lifetime of the distribution function P(z) (this does not

require absolute continuity for its existence) is defined by

/“?(t)dt /0°°F(z+t)dt
Sy S &

(1.48)

Now we briefly review various reliability-based classifications of distributions
(see Fagiouli and Pellerey (1993) [18] and (1994) [19] for further details) as follows:

The distribution function P(z) is:

DFR (IFR) or decreasing (increasing) failure rate
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if hp(z) is nonincreasing (nondecreasing) in x, or equivalently P(z +y)/P(z)

is nondecreasing (nonincreasing) in x for fixed y > 0;

IMRL (DMRL) or increasing (decreasing) mean residual lifetime

if 7p(z) is nondecreasing (nonincreasing) in x, or equivalently Py(z+y)/Pi(z)
is nondecreasing (nonincreasing) in x for fixed y > 0

(that is, Pi(z) is DFR(IFR));

UWA (UBA) or used worse (better) than aged

if rp(z) satisfies 7p(00) = lim.o rp(z) € (0, 00) and P(z + y) <(>)
P(y)e~=/"7() for all z > 0 and y 2 0, or equivalently hp(z) > (<) hp(o0)

where hp(o0) € (0, 00);

UWAE (UBAE) or used worse (better) than aged in expectation

if rp(z) satisfies rp(z) < (>) rp(co) where rp(o0) € (0, o0);

NWU (NBU) or new worse (better) than used

if P(z +y) 2 (<) P(z)P(y) for all z > 0 and y > 0;

2-NWU (2-NBU) or 2-new worse (better) than used

if Pi(z+y) > (<) Pi(z)Pi(y) forall z >0 and y > 0
(that is, Py(z) is NWU (NBU));

NWUC (NBUC) or new worse (better) than used in convex ordering

if Pi(z +y) > (<) Pi(2)P(y) for all z > 0 and y > 0;
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NWUE (NBUE) or new worse (better) than used in expectation

if rp(z) > (<) rp(0), or equivalently P,(z) > (<) P(z) for z > 0.

The following diagram lists the implications of the classes of the distributions.

DFR (IFR) = NWU (NBU)
4 4
IMRL (DMRL) = 2.NWU (2NBU) = NWUC (NBUC)
4 J
UWA (UBA) = UWAE (UBAE) NWUE (NBUE)

Note that the implications IMRL(DMRL) = UW A(U BA) =
UW AE(UBAE) hold provided the mean residual lifetime r(o0) € (0,00). And the
former implication was shown recently by Willmot and Cai (1999) [46].

Reliability-based classifications of distribution functions can be applied to de-
riving a lower or/and an upper bound on a function, and to proving preservation of
classes for a function under some operations. Some results for risk theory have been
found, such as Alzaid (1994) [1], Willmot (1997) [45], Willmot and Lin (1998) [47]
and (1999) [48], Lin and Willmot (1999) [36], and Willmot and Cai ( 1999) [46].

In particular, Lin and Willmot (1999) [36] showed the following theorem con-

cerning class implications:

Theorem 1.3 The following class implications hold.
(a) If P(z) is IFR (DFR) then I'(z) is IFR (DFR).
(b) If P(z) is DMRL (IMRL) then I'(z) is DMRL (IMRL).
(¢) If P(z) is 2-NBU (2-NWU) then I'(z) is NBUE (NWUE).
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And Willmot and Cai (1999) [46] proved that

Theorem 1.4 The following class implications hold.
(a) If P(z) is UBA (UWA) then I'(z) is UBA (UWA).
(b) If P(z) is UBAE (UWAE) then I'(z) is UBAE (UWAE).

where P(z) is the claim size distribution and

/ v(s)ds /oo e’ /:m e "YdP(y)ds

/ 1(s)ds / / e~"dP(y)ds

Reverse the order of integration and integrate by parts, we obtain

(1.49)

I(z) =1-I(z) =

/:0 eP* /:oo e p(y)dyds = ’l) [P(z) — epc/ e ""dP(y)] = P /:° e~VP(y)dy.

(1.50)
Put z = 0 to get
= ® 1 - p(p) g
pa Py =___£r; _ (2] dy. 1.51
Lo [ e ptuyayds = —=EEL = [T gy (1.51)
Therefore, ['(z) in (1.49) becomes
_ e [T e Ply)ay _ P+ gy
I'(z) = 0 (1.52)

/0 e~ P(y)dy /0 ~ e~ P(y)dy

and I'(z) is a probability density function where
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e’ /:O e~ VdP(y)
/0 eV P(y)dy
Clearly, when p = 0 which is the case when & = 0, from (1.53) we obtain I''(z) =

P(z)/py = P{(z), i.e. [(z) = P,(z).

I(z) = (1.53)

1.5 Higher order equilibrium distributions

The equilibrium of the distribution P,_,(z) is defined by

[ Paiwdy

) , n=123 ... (1.54)
/ P, (y)dy

P.(z)=1- ,,(z)

where Po(z) = 1-Po(z) = P(z), and P,(z)is called the n** equilibrium distribution

function of P(z). Then it can be shown that for n = 0, 1,2,.

L Py [ Pucsiz+u)dy

O s [ Peaws
_ [w-ararw) [T - =rdP) (155
[Ty Pr |
and .
n+1
/O“Fn(z)d;c: /;y PW___pen (1.56)

(+1) [ vdPly) B+ D

See Hesselager, Wang, and Willmot (1998) [34] for more details.
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Lin and Willmot (1999) [36] defined the distribution function Fa(z) = 1-T,(z)

to be .
e [ e Pa(y)dy

= — , z20and n=0,1,2,..., (1.57)
/; e"P,(y)dy

Ta(z) =

and showed that

L[ Tawdy  ["Tu(e+u)ay
‘/:‘> Taly)dy /0 " Ta(y)dy

Toii(z) = y £20and n=0,1,2,..., (1.58)
that is, the equilibrium distribution function of I',(z) is Cot1(z)-

Since I'(z) = To(z) = 1 — To(z) and P(z) = Py(z), (1.52) is (1.57) with n = 0.
This means that [,(z) satisfying (1.57) is the n** equilibrium distribution function
of I'(z). Note that if § = 0, which implies p = 0, then T,(z) = P, ;1(z) by (1.54)
and (1.57).



Chapter 2

Surplus process with a diffusion

factor

In this chapter, the defective renewal equation for the expected discounted function
of a penalty at the time of ruin based on the surplus process of the classical continu-
ous time risk model containing an independent Wiener process is generalized. Then
we propose the asymptotic formulas for the expected discounted penalty function.
The Tijms-type approximation for and the upper and lower bounds on a compound
geometric distribution function are also given if the claim size distribution function
satisfies a certain condition. Besides, the reliability-based class implications for
the associated claim size distribution are also given. Explicit analytical solutions
to the compound geometric distribution function and to the expected discounted
probability of ruin due to oscillation and a claim, respectively, can be obtained if

the claim size distribution is a combination of exponentials or a mixture of Erlangs.

17
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2.1 A generalized defective renewal equation

In this section, we are going to further generalize equation (1.8) based on the
model (1.4) by involving both the random variables, |U (T')|, the deficit at the time
of ruin, and U(T-), the surplus immediately before the time of ruin, and derive

the corresponding defective renewal equation.

#(u) = wodu(u)+ du(u)
= wo E[e™*TI(T < o0, U(T) = 0)|U(0) = u

+ Ele*Tw(U(T-), [U(T))I(T < 0, U(T) < 0)|U(0) = u]. (2.1)
where
¢uw(u) = Ele™*Tw(U(T-), |U(T))I(T < o0, U(T) < 0)|U(0) = u]. (2.2)

Note that ¢,,(0) = 0 since Pr(T < 0o, U(T) < 0)|U(0) =0) = ¥.,(0) = 0.

We first deal with a simpler case ¢,(u) where the penalty due at ruin is
w(U(T—),|U(T)|) if ruin is caused by a jump. To derive the defective renewal
equation for (2.2), consider the infinitesimal time interval between 0 and dt. The
discount factor for the interval [0 dt] is €% = 1 — §dt. The p-ocess {S(¢) : t > 0}
will either have exactly one claim with probability Adt or have no claim with prob-
ability 1 — Adt. By conditioning on this, the amount of the claim (if it occurs) and
the value of W(dt), we have that

$u(u) = (1—Adt)(1 — 8dt)E[py(u + cdt + oW (dt))]
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uedt+oW(dt)
/ $u(u + cdt + oW (dt) — z)p(z)dz

+ Adt(1 —-Jdt){ [

cdt dt),z — u - cdt — oW (dt))p(z)dz .
+ u+cd‘+aw(a)w(u+ +oW(dt),z —u—c oW (dt))p(z)dz

(2.3)

First we expand ¢, (u + cdt + oW (dt)) to a Taylor’s series about u to the term of

$.,(¢), and ignore the term containing (dt)? to get

bl + cdt + oW (dt))
= du(u) + 4 (u) [cdt + aW(dt)]+%¢:,(u) [cdt + aW(dt)]z

= du(u) + co,,(u)dt + odl, (v)W(dt) + o;#",(u)wz(dt) + codl, (u)W(dt)dt.

Then from the facts that E[W(dt)] = 0, E(W?(dt)] = Var[W(dt)] = dt, and

D = 0%/2, we have
E[¢u(u + cdt + oW (dt))] = du(u) + céi,(u)dt + Dl (u)dt. (2.4)
Now substitute (2.4) in (2.3) and let dt — 0, we obtain

Dy () tediy (WA [ [ dolu — 2p(e)dz + [ w(u,z — w)p(z)dz] = (A+d)du(u).
(2.5)

Then we perform the Laplace transform on the both sides of (2.5) and get

D [ gl (wdute [~ e g, (u)du+ Mu(EF(E)+ID(E) = A+)du(6). (26)
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where @ (£) = /0 et g (u)du, G(E) = /O * e~w(u)du and
w(z) = [T ulz,y - 2)pw)dy = [ wiz)p(z +y)dy. (2.7)

Note that if w(z,y) = 1, then w(z) = P(z).
By intergration by parts, / e gl (u)du = e’“eﬁ.,,(u), +€u(€) = Edu(£)
since ¢,(0) = 0, and hence/0 e~ P (u)du = e~4¢., (u)l +£/ e~ ¢! (u)du =

Then (2.6) can be simplified to

(D€ + et +45(6) — (4 + 6)] () = D4, 0) - 2. (28)

Since p satisfies generalized Lundberg’s equation (1.32), letting € = p in (2.8) leads
to D¢, (0) = A&x(p). Substitute A + & for Dp? + cp + Ap(p), (2.8) can be written as

[D€ + £+ 35(6) = D = cp — (P Bul®) = A[te) ~5(0)].  (29)

Since DE? +c£ — Dp* —cp = D(§+p)(§ — p) + c(€ — p) = (DE + Dp +c)(& — p) =
(D€ + Db)(§ — p) = D(€ + b)(€ — p), Dividing (2.9) by DE? + c£ — Dp? — cp gives

Ale(§) —a(p)]
D(b+¢&)(p—€)’

[1 Alp(€) — B(p)]

Db+ 6(p—6) (2.10)

E2GE
which is exactly the the Laplace transform of ¢,,(u) = /0 * duw(u — y)g(y)dy + go(u)
(the Laplace transforms of both g(y) and g, (u) are stated in (2.19) and (2.22), and

the detailed proof can be referred to Lemma 2.1 and Corollary 2.1, respectively),
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where
w = h w = h - w d ’
9o (u) *Yo(u) /0., (2 — s)vu(s)ds
_ A —b(u—2s) [T —p(z—s)
= 5 /0” e _/; e w(z)dzds,
A o)
- U —a(u—s) —pz
DE /0‘. e /: e w(z)dzds
and

1u(8) = %‘/.m e *==")y(z)dz.

The uniqueness of the Laplace transform gives

21

(2.11)
(2.12)

(2.13)

(2.14)

Theorem 2.1 The function ¢,(u) in (2.2) satisfies the defective renewal equation

Pu() = [ buln )90y + 9u(w) = $u x hry(u) + heruw), w3 0. (215)

We remark that with the definitions of v(s) in (1.24) and 7,(s) in (2.14), equa-

tion (1.13) can be rewritten as

#o(w) = [ do(u — 1)7(w)dy + 2 (w) = do* (W) + 7). u20.

(2.16)

Similarly, combining (2.15) with (1.22), we have the following defective renewal

equation (2.17) for (2.1), which is more general than (1.33) (that is, equation (26)

in Theorem 3 of Gerber and Landry (1998) [24]), the defective renewal equation for

(1.8).
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Theorem 2.2 The function ¢(u) in (2.1) satisfies the defective renewal equation
#(w) = [" $(u - y)g(u)dy + wo A(u) + gu(w), u 20, (2.17)

with A(u) given by (1.27).

Moreover, g(y) and g, (u) can be reexpressed as follows for more and later ap-

plications, especially the limiting behavior of ¢(u) in (2.17) as D — 0.
Lemma 2.1 The function g(y) in (1.29) can be simplified as

A

9(y) = c72,D

[/: e tv==)p(z)dz + _/:o e~ ?EVp(z)dz — e~ /Om e""p(z)dz] ,
(2.18)

and the Laplace transform of g(y) is

A(E) = #)] _ AR(E) U +Dp tep—6
6+ - 6D G+ -D

e Vg(y)dy =

oo
0

3.9 =
Therefore, for y > 0, when D — 0,
A ~p(z-y)
9) = hx1lw) > 1) = S [ e Vp(z)d. (2:20)

Proof: By changing the order of integration, b= c¢/D+pand a=c¢/D+2p = b+p,

9(y)
= %/y e~bv-2) /oo e ?==p(z)dzds
o s

= %e‘b" [‘/Oy e p(z) /: e**dsdz + /voo e " p(z) /oy e‘"dsdz]
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= Aew [ [ e pa)e= ~ 1)dz + /,, ~ e p(z)(e™ — l)dz]

= 2w [ [ =pe)dz + /,, % e~ p(z)dz ~ I e""p(:c)dz]
- +’;p 5 [ /0 ¥ e v-2)p(z)dz + /,, * e=Ple=¥)p(z)dz — e~ /O = e""p(z)d:c]

+ 2 [ e p(a)dz = 4(y),

since D — 0 implies that ¢+ 2pD — ¢, b= ¢/D + p — oo, and the first and third
terms in the bracket vanish.

Changing the order of integration gives

3(¢.9)
= [ egdy

= A T et ~by-=) ® v [T -slz-v) -
= c+2pD[L e /Oye p(z)dzdy+/o e /y e p(z)dzdy

([ etrenay ) ([ e“"p(z)dz)]

= A= ~(+ey —pe - Blp)
= a—D-[/(; e p(z)/ dyd::+/ e (z)/ dydz — bt €
A

1 [ -]
= 2. —(b+8§)= - —pz (== _ 11dz — 2AF)
aD[b+£/o e*p(z)e dz+p_£/; e p(z)[e |dz

= Sl =[O - #0)
Al6(€) — #(p)]
(b+&)(p— €D
Alp(€) — 1]+ Dp* +cp— 46
G+Op-0D

since p satisfies (1.32). =]

Since g.(u) (equation (2.12) or (2.13)) has the same form as g(y) (equation
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(1.29) or (1.30)) except that g, (u) and g(y) have the different innermost integrands

w(z) and p(z), respectively, we have

Corollary 2.1 The function g,(u) in (2.12) can be simplified as

gu(u) = ;:+AT/)D [/ou e =2 y(z)dz + /:o e P y(z)dz — e~ /Ow e"”w(z)dz]
(2.21)
and the Laplace transform of g, (u) is
. _ [® —eu _ A@(§) —@(p)]
4u(6,8) = [ e a(udu = FESZEEL, (2:22)
where @(s) = /Om e w(z)dz with w(z) given in (2.7).
Therefore, for u > 0, when D — 0,
gu(u) =hxy,(u) = v,(u) = %/:o e "= y(z)dz (2.23)
A

= Aeru /., T e /z ~ w(z,y — z)p(y)dydz.(2.24)

c

Intuitively, one can conceive that when D — 0, the Wiener process {oW(t):t >
0} — a random variable degenerating at 0 since oW (t) ~ N(0,0%t) = N(0,2Dt).
Therefore, as the surplus process (1.4) containing an independent diffusion (or
Wiener) process approaches the classical surplus process ( 1.1), so does the corre-
sponding defective renewal equation. That is, for the function ¢, (v) defined in
(2.2), the defective renewal equation (2.15) based on the model (1.4) reduces to the
one (2.16) for ¢o(u) defined in (1.2) based on the model (1.1) as D — 0, which can
be proved by (2.20) and (2.24).
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Moreover, from (1.22) when D — 0, ¢4(u) = ¢g* (h*)(u) + A(u) = ¢qxv(u).
If we perform the Laplace transform on the both sides, then when D — 0, da(s) =
Pa(3)7(s), i.e. $a(s)[1 — 7(s)] = 0 for all s > 0. Since 4(s) # 1 for some s, we have
when D — 0, J’d(s) — 0 for all s > 0, which implies ¢4(u) — 0. Therefore, we

obtain the following theorem.

Theorem 2.3 Foru >0, if D — 0, then

oW(t) = N(0,2Dt) a r.v. degenerating at 0;
Ut)=u+ct—S(t)+oWi(t)
Ap(§) = A+ 68— cf — DE?

Pu(u) = Gu * (b = 7)(u) + b * v, (u)
Pa(u) = ¢a * (h*7)(uv) + A(u)

$(u) = wo da(u) + du(u)

Ut)=u+ct— S(t);

AP(€) = A + & — £, Lundberg’sequation;
$o(u) = do * 7(u) + 7o (u);

0; and

N A

do(u), independent of wy.

To connect (2.17) with (1.33), we first reexpress g, () in another form as follows:

Lemma 2.2
= [~ — - = : 2.
9o (u) /ug(z u, z)dz A(u)/o‘ g9(z, z)dz, (2.25)
where

9z.y) = [ by -sn(z,5)ds, (2:26)

1ws) = 3 [T e (e -y, )p(e)ds, (2:27)
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with h(s) and A(u) given in (1.28) and (1.27), respectively.

Proof: By (2.7) and (2.12), changing the order of integration and replacing the

variable z by s = z + ¢ yield,

— A “ ~b(u-z) had -p(z-z2) o
gu(u) = D/o e ‘/z e /(; w(z, t)p(z + t)dtdzdz

= %/w /u e~blu=2) /m e =D w(z, t)p(z + t)dzdzdt
0 4] z

= %/w /u N e "= t-2y(z — ¢, t)p(z)dzdzdt
o Jo t+z

= %/ / e'b("""")/ e "= Ny(z — ¢, t)p(z)dzdsdt
0 t ']

A 1o pt+u o
= '.b(‘+u-l) —p(z_') _ _
L[ et [T et tute — t, )p(a)dedsat

oo pt had
/ e—b(t+u—s) / e‘P(z“)w(z —t,t)p(z)dzdsdt
1] ]

e =]

S~

t 0O
/ e'b("')/ e"’("')w(z—t+u,t—u)p(z)d1:dsdt—
1] s

—bu [T [ b—a) [ —p(z—s) _
e /0 /; e /. e w(z — ¢, t)p(z)dzdsdt

0 t o0 t

— — — — p—bu -
= /.. /0 h(t — s)y(t — u, s)dsdt — e /o /0 h(t — s)v(t, s)dsdt

=/ ~ g(t —u, t)dt — A(u) [ a0y,

[

O[>l U|>u

which is (2.25). a
When w(z,y) = w(y), w(z,y) can be extracted from the integrand of (2.27),

and hence (2.25), (2.26) and (2.27) can be simplied as follows:

Corollary 2.2 If w(z,y) = w(y), then

1(y,8) = w(y)r(s), (2.28)

9(z,y) = w(z)g(y), (2.29)
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) = [ wiz—u)g(z)ds - Alx) [ v@sg(z)dz, (2.30)

with v(s) given in (1.24).

Proof: If w(z,y) = w(y), (1.24) and (2.27) give 7(y, s) = w(y)% / ~ e=Ple=o)p(z)dz
= w(y)v(s); by (1.28) and (2.26), g(z,y) = w(z) /0 “hiy - 8)y(s)ds = w(z)g(y);
therefore from (2.25), g. () = /., ” w(z — u)g(z)dz — A(y) fo " w(z)g(z)dz. O

When w(z,y) = w(~y), (2.30) turas out to be gu(u) = [~ w(u - y)g(y)dy -
A(u) /o ~ w(~y)g(y)dy, which are exactly the third and fourth terms of the right
side of (1.33). Therefore, the defective renewal equation (1.33) is a special case of

(2.17).

2.2 The associated claim size distribution

In this section, we will demonstrate where each of (1.22), (2.15) and (2.17) is of the
form (1.36), and we shall determine 8, G(z), and B(u) for each of them.

Consider the general case

#(w) = [ [~ stw)dy] [ ot - z)r?(—:”)ddz V@ (231)
g\y)ay
Equating (1.36) and (2.31) leads to /om> g(y)dy = ﬁ, G'(z) = ‘/o.?(ﬁ's and
g\y)ay

Vi(u)

—=———. From (1.31), (1.32) and that
/0 g(y)dy

B(u) =
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[~ e Py = % 1= [T emptu)ay] = l‘pﬂ

we get

1 a0
m = /0 9(y)dy
Dp* +cp—8 _ AL — p(p)]
Dp? +cp (c+ Dp)p

A oo —_ A 00 _
—oy - = —py
iy [ e Py)dy 5 | <Py,

or equivalently,

_ é _ c+pD 1< bD
" Dpr+cp—8 o\ [Z -ap I adgep
z\/o e Y P(y)dy A/o e P(y)dy

B

1
1+2

B = _xc_ — 1 = 4. Moreover, we denote 3, for the case D = 0, that is,
1

Clearly, 8 > 0 since

é c

= 30 — _17
@0 [ e Ply)dy
0

Po =

or equivalently,

= = = — P dy.
14+ 6o cp cp c [) € (v)dy

-1

28

(2.32)

(2.33)

(2.34)

(2.35)

> 0 from (2.34). Also, when p = 0, from (2.35) we have

(2.36)

(2.37)
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From (2.34) and (2.37), we get

c+ pD
c

(1 + Bo). (2.38)

14+8="2(1+4) =

Since G'(z) = wg(z) = ’},: (=) , from (1.29) and (2.34) we see that
[ oway [ gtw)ay

/: e~b(=-9 /:m e "=V dP(y)ds

G'(z) = e (2.39)
s Py
Therefore, from (1.28) and (1.49) we have
[ owdy 7 [ iy~ s)r(o)dady
G(z) = 000— = Ooo Oy

L ewdy [T [Thty - s)yr(s)dady

B /0 “y(y) [) " h(s)dsdy B /(: “y(y)H(= —y)dy
/0 " y(y)dy /0 ~ h(y)dy /0 ~ 1(y)dy

- /0 " H(z — y)dl(y) = H * (), (2.40)

where G(z) is called the associated "claim size” distribution, and H (z) =1-H(zx)

i1s a distribution function with

Cmh s)ds ’
F(I) = [z?—(—)-— = ~bx = Hb(z) (2.41)
/(') h(s)ds

(H'(z) = be~® is a probability density function). Hence,
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G'(z) = f.;"(i = H' «T(z) = bH = I'(z). (2.42)
/O 9(y)dy

Note that when D — 0, g(y) — 7(y) by (2.20), and hence

f - 9(y)dy / i 7(y)dy
G(z) = =L — =L =I(z), z>0. (2.43)

L swdy [Ty

From (1.52), (2.37) and (2.38), we also have

T(2) +T(z) = - T(@) = )
| e Py
= 20+ )P() = 251+ B)P(2). (2.44)

The Laplace transform of I'(z) is easily obtained. From (1.51), (1.53) and

integration by parts, we have

/0 ¥ e~dr(z) = ] . (245)

- 1 —p(p)

[t [Cemap@y [ﬁ(s) — #(p)
[)m e P(y)dy p—s

The Laplace transform of G'(z) can be got from (2.19), (2.33) and (2.45) as follows:

‘/:o e **g(z)dz
| 9(z)de

p(s) — p(p) bp
B+ a)p—9) [1 - ﬁ(p)] (2.46)

/o Y e = dG(z) =
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b
b+ s

/0 ¥ e~=dr(z). (2.47)
Since G(z) = H *I'(z) = (1 - H) «I['(z) = ['(z) — H * [(z), from (2.41), we get

G(z) = 1-[[(z) - H+I(z)] =T(z) + H+ (=)

- T+ B2TE) g,y , O@) 248

Similarly, by (2.40) and the commutative property of convolution, G(z) = T =
H(z) = (1-T) = H(z) = H(z) — T * H(z) and we get the alternative form

G(z) = 1—(H(z) -T+H(z)) = H(z) + T = H(z)
= e+ [" T (y)dy
/o * e~ bz—v) / i e—p(a-v)ﬁ( s)dsdy

s (2.49)
2 [ e Py

e 4+

Example 2.1 Combination of exponentials

Suppose P'(z) = i qepre 2 > 0, where ¢y + g2+ ...+ ¢ = 1. If g > 0 for all
k then P'(z)is a ;:i;cture of exponentials whereas if g; < 0 for some k then P'(z) is
called a combination of exponentials (see page 79 of Everitt and Hand (1981) [17]
for the respective sufficient and necessary conditions for P’(z) to be a probability

density function). Then we have P(z) = )_ qre™**,z > 0, and
k=1

% — r ) r
/ C-WP(y)dy = Z qk/ e'(”#l)ydy — E q_ke—(ﬁu.)z.
z k=1 z k=1 P + B
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From (1.52),
F(z) = S gie=, z >0,
k=1
where
9k
q-=_r£iek_-. L—172’ ' Ty
E ;i
with
9
Qi s5=0 = —,&, k=1,2,...,r.
) %
j:l I‘j

32

(2.50)

(2.51)

(2.52)

Hence, ['(z) is also the tail of a mixture or combination of exponentials with new

weights g;s. Moreover, G(z) = H(z) + T * H(z), as shown below (assume b #

l‘k’k = 192’-“’7')1

G(z) = et 4+ bz QI:_/(; e—m;(z—v)e—dey
k=1

r (#s=b)= _ 1
bz o —upz €
— e + b e BT
é o Hi —b

N e b ~ 9 bz -z
= qre +bz—[e —e“‘]
kgl k=1 B — b
N Qebk e S
= 3 I b b T o
fi':l He —b :‘;‘1 b— e
T q;l‘k ~bz - . = _—lis 2
= 3 B e e S e
kz::l HBe — b k=1
= (1-bg")e™ +bg" ) gire™=
k=1

(2.53)

(2.54)
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is again the tail of a mixture or combination of exponentials, where

(2.55)

with
G5=0 = ) q"—“" (2.56)

and

q;a=b_,"k i b_”k k=1’2’...’r’ (2.57)

with . .
9 5=0 i 5=0
qi'.s=o=c/D.—""= ,C/Df”* . k=1,2,...,r (2.58)
Jj=1 C/D - l‘j

Note that when r = 1, the distribution function is exponential with parameter pu,
= —_ — ~bz _ peo—uz
and we obtain I'(z) = P(z), and if b # p, G(z) = ££ €

, a combination of

p—0>
two exponentials. m]
Example 2.2 Mixture of Erlangs
r k-1_—~uzx
Suppose P'(z) = ) qk”(lzz) l)e' & 2 0, where {q1,¢2,...,¢,} is a proba-
k=1 )

bility distribution. Then

© _ ~ o [ e Blpyy e
e~"dP(y) = e RS e

r I o (u+ p)lyi~le—(uteoly
_ ij( p ) / (1 Py : dy
i=1 u+p/ Jz (G- 1)
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_ [(u + p)z]*~te-lutel=
- ?;;q’(y+p) ,‘2.:1 (k-1)!

_ e Pz T -k I‘(”z)k-le—uz
N #+P;§1[§q’(#+ﬂ) J RSV

When z = 0, we get (if p > 0) that

[~ emapy)]

Zq’(p-i-p) ]

1=1

[Py = ,1—,[
1
Al

J
- _l_z':qj_L'_‘”_L
#+p

'

-1
I‘+P,_1 s_o(l‘ +p

From (1.53), we obtain

k-1 e~ kb=

b}

k=1 (k=1 °
where Z i
‘IJ( )
= +
=2k L7P k=1,2,....m
Eq’g(ﬂﬂ))
with
Z«b
9k6=o- k=12,...,r
ZJqJ

=1

34

(2.59)

(2.60)

(2.61)
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Consequently, I'(z) is also the probability density function of a mixture of Erlangs

with new weights ¢;s. However, G'(z) = / ) h(z — y)I''(y)dy, as shown below with

the help of the identity / y"e Vdy =

G'(=)

is the probability density function (the function form is 2 Z Qik

be=b= Z %

k=1

/ be-b=-) Z .#(#y)"’
k=1

k=1 _—(u—b)
(k—l)!/oy emH Ny

k

-bzz:qk(k

s (k-l)[
= 1) (p - b)*

b—

_b,,_bz:

=1

be=> + b

1 n+l J-
B ] e
t HG-1)
1oy
TR

e~ (u=b)z Z [(s = b)z]? ]

=1

(-1

[(I‘ - b)z]j_l e~ H=

LX_; %
Z qu

St B
.

. p(pz)!
B

(k —1)!

't"(l‘z)k—l -z

k=1 ¢

n

=)
)™

e

(G-

=

—uz

r

=1 k=1

with g > 0 and ) d" g = 1) of a general Erlangs mixture if

bg™
b—

q

i=1 k=1
>0, k=1,2,...,
7!

—ZE%(

t=1 j=i

r, where

)

=1

Z%E(

=

i=1

2%2(

u(pz)
(7 —1)

pluz) !
k= 1)

e HF

—uz

(2.62)

(2.63)

pipz) "t .
k- 1)!

bq < 1 and
b—p

(2.64)
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with
j=i r . i=1 py i
@5=0 = g; 41,5_0( c/D) = E‘Iﬁ:og; m) ; (2.65)
and
r . py ik
»a(5) Is ( )
9 = = T = J' k= 1727--"7'7 (2'66)
s (5)
with
j—k -k
[ad
gquJ-O( C/D) gquJ—O( C/D)
- 2 =
qk,6'=0 = q& = -1 v = 1727 ' T3
=0
Z %s=0 ,;( c/D)
(2.67)
whereas when b= u
k— 1
U _ —u(z-y) -I‘(I‘y)
k—1
= ue sz Z qk Mdy
=1 o 1)!
k
- z) _
= qk“(:" ) e H* (2.68)
k=1 *

is the probability density function of a mixture of Erlangs.
Note that when r = 1, the distribution function is exponential with parameter u,

and we obtain I(z) = P'(z) and G'(z) = - bb - p ib

pe "% a combination
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of two exponentials when b # u, whereas G'(z) = #(pz)e™* when b= u. a

Tijms (1994) [44] (pp. 163-64) has shown that the probability distribution
function of any positive random variable can be arbitrarily closely approximated by
a mixture of Erlangian distributions with the same scale parameters, thus Jjustifying

its importance.

Lemma 2.3 Forn=0, 1, 2, ..., if p > 0 then the moments of G(z) are given by

uan(p) = [ 2"dG(z)
"y

Z(-P)J ) Z:?!p"
- bip{(—;)“[1+1—1l—p(p) }+b£p b—':'[l %}'

(2.69)

Proof: Lin and Willmot (1999) [36] showed that if p > 0 then the moments of [(z)

are given by

2": (—p)J
n(p) = [ zrdD(z { 1+ = } n=0,1,2,.... (270
pralp) = [l (e) = T {1+ T (2.70)
And note the identity
[T arede = g () (2.711)
v 3n+1 1=0 J' ’
or equivalently,
! J
/Ov e~ dr = :"+1 [ — e~ Z (Sy) ]. (2.72)

=0
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Now from (2.18), (2.42), (1.51) and (1.53), and reverse the order of integration, we

have

fo ¥ 2"dG(z)
/0 * zng(z)dz
[ 9(@)dz
% Ji = z"{e"" [ e piy)dy + e / ~ evp(y)dy — e i = e-wp(y)dy}dz
5 [ e Py
Yp(y)dy — e~ / ~ e~p(y)dy

NI
= 2 /0 z" { () + : /O“e"’"?(y);y N

/oco ™p(y) /:o z e dzdy — [/om a:"e'b'dz]ﬁ(p)}

= g’{l‘l‘.n(/’) +

~[1- 5(p)]
, [b,,+, Z% / e¥p(y)e” ""(by) ——dy — b,,HP( )]
= ;{”F.n(p) + = 1 —P(P)

3 J, / y'p(y)dy — p(p)

b pn!
= —Hra(p) + ,,—..{ 1 - 5(p)
n Yy
b . ; ﬁpj
n —n)d - b’
Z: ( .p) Pj Zﬁpj

— ! n! j=1
= ﬁ{(—i)n[”’]—;(p) ]}+b-ip{b_':[l+1_ﬁ(p) J
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Note that when D — 0, then b/a — 1 and the second term of the right side of

(2.73) vanishes; hence,

HGn(p) = pra(p), n=0,1,2,.... (2.74)

Corollary 2.3 If p > 0 then the mean of G(z) is

b— 1 1+46 A
o £ =i |= 52— ls-0l

I‘G,I(P)=1_ﬁ(p)— bp Dpz.*.cp—J_Dpz-{»Cp =DP2+Cp

(2.75)

Proof: For n = 1, from (1.32), (2.33), (2.69) and ¢ = Ap;(1 + 8) we have

b [ pP1 ] P [ bpy ]
= ——1- — |+ 1+ =
sc.1(p) p(b+ p) 1—p5(p)] b+ p) 1 - p(p)
= pl - b—p
1-p(p) bp
_ Ap1 __c
NI-7()] 5D
_ Ap: _Api(1+96)
"~ Dp*+cp—8 Dp*+ep
- o[ )
- P1 Dp2+cp—5 Dp2+cP
Ap1 [ Dp® + cp ]
_ — 6
D7 +cplDpt v cp—35 1 FF)
/\pl
- Dp2+cp[ﬂ—0].
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Corollary 2.4 If p =0 then the moments of G(z) are given by

= (¢/DY pin _
pGn(0) = (/D)n[ DN iy ] n=0,1,2,.... (2.76)

Proof: Lin and Willmot (1999) [36] showed that if p = 0 then the moments of [(z)
are given by

pra(0) = i‘i‘—p-, n=012,.... (2.77)

Now if p = 0, then a = b = ¢/D, and (1.51) becomes
1 o —
l_’[l — 5(p)]lp=0 = /o e " P(y)dy|,=0 = p1. Therefore, from (2.73) we have

Han(0) = kral0)+7 /D)"“ Z ore
e oy
" worlo
= @l Z}gﬁi&ﬁﬁﬂ

a

We remark that the relationship, associated with the equilibrium distribution

functions of P(z), between ur.(p) and ur.(0) was found by Lin and Willmot
(1999) [36] as follows:

[~ emdPu(z)

, n=0,1,2,.... (2.78)
A e=dP,(z)

PP.»(P) Hr n(O)
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Example 2.3 Combination of exponentials

As shown in example 2.1, if P(z) = D qe™™=, then T(z) = z ge .z >0,
k=1 k=1

and G(z) = (1 — bg")e ™™ + bq" Z g e "%,z > 0. Hence,

pralp) = [~ 2" d0(@) = o gim [ amemrde = mt 3 K (2.79)
o k=1

k=1 k

and

Ben(p) = b(1—bq") c’Qz"e""d:z:+bq' ac" P = Zre—me gy
) > aim |

n! -
— — - —_ - ' ix_
= (1-bq )i +ba n.:‘; e (2.80)

Example 2.4 Mixture of Erlangs

k-1, k-1 g-pz
In example 2.2, if P'(z) = E Qe #(# ) then IM(z) = ,:”(”z) |
fam - & (k—1)!
and G'(z) = [1 _ ”L] bebe 4 bq Z ..u(#z) e, 2> 0. Thus,
b—n = )

oo ! n+k-1
I‘I‘,n(P) Z qk 1)| / zn+k—le—uzdz = ’% E q':( ) (281)

and

_ bq. o n_=bz bq. a =% "k had ntk—1 —ux
Henl(p) = b[l—-b—_;]_/(; z"e dz+b-”_qk (k-——l)!./(; z e "*dz
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R e

a

The computations of ugn(p) and pr.(p) seem complicated. However, much

computational effort can be saved by the following recursive formulas.

Lemma 2.4 Forn=1, 2, 3,...,

Hn(p) = Ghan-1(p) = pralp) = ~ T as(p) + Eos. (2.83)

Proof: From (2.70),

n! (—p)" Pn - Pn
(=p)» n! 1-5(p) 1-p(p)

n
Bra(p) + ;llr.n-x(l’) =

Similarly, from (2.73)

n _ b pn
ﬂc,n(p)—gﬂc,n-x(p) = #rn(P) yr,._x(p)+ 1=
b[ ] Pn
= —=|— n— + ~ - n-— + __
al oHr 1(p) ( T -1(p) = 5(7)
= ——Hrn- + ~
pi‘r l(p) ( )
= I‘I‘.n(P)'
a
With n = 1 in (2.83), we get the mean of ['(z), ur.1(p) = ”‘,( ) ,1’,and the

mean of G(z), puea(p) = pri(p) + 3 which can be verified from (2.48) too.
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For the case p = 0, (2.76) and (2.77) easily lead to the following result.

Corollary 2.5 For n=1, 2, 3,...,

nD Pr+1
n(0) = —pen-1(0) = pur,(0) = —2—, 2.84
#G.(0) —HGn-1(0) = pr.a(0) n + ps (2.84)

2.3 Compound geometric distribution and dis-
counted probabilities of ruin

In this section, we are going to discuss four cases based on different choices of
V() in (2.31). One of them can lead ¢(x) to a compound geometric distribution
function.

To see this, since B(u) = # = (14 B8)V(u),
/0 9(y)dy

Case 1 : when V(u) = woA(u) + g.(u) which is the case of (2.17),

wo = T%E and w(z,y) = 1 then from (2.12), (2.34) and (2.49)

/0 e—b(u—c)/: e-P(z-—l)‘/z w(z’y—z)p(y)dydzds
1 foo -
: -oy
= [ e Ply)dy
/ e—blu—e) / e == P(z)dzds
1] 1 o;
— -W_
= [ e Py
= Gl), (2.85)

B(u) = H(u)+

= H(u)+

and (2.17) becomes
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¢(u) = 1_+L_ﬂ_/ou ¢(u — .’B)G’(z)dz + 1 iﬂﬁ(u), u Z 0. (2-86)

Thus, in this case, (1.36) and (1.39) imply that ¢(u) = K(u). Therefore, from

(1.37) we obtain

#0) =K(w) = ¥ 4535w, w20, (287)

a compound geometric distribution function, and (2.1) turns out to be

K(u) = E[e™*TI(T < 00,U(T) = 0)] + E[e~*TI(T < 00, U(T) < 0)]

1+
ﬂ¢a(u) + @s(u), u>0. (2.88)

We remark that when D — 0, 3 — (B, and G(u) — I'(x) by (2.43), then we

have
[ <]

K(u) - Ko(u) = ZHﬂ 1H,)"r "(w), u 0. (2.89)

Lin and Willmot (1999) [26] showed that
Ko(u) = E[e”*TI(T < )], u >0, (2.90)

with Ko(0) = %ﬂ Then (1.39) becomes

Ro(u) = 1 Tw, uz0 (2.91)

—2)dl(z) + 7

In fact, since when D — 0, K(u) — Ko(u) for u > 0, and ¢q(u) — 0 for u > 0
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by theorem 2.3, we have that both ¢,(u) and ¢.(u) = Ko(u) for v > 0 when D — 0.
In the case § =0, when D — 0,

Ks=o0(u) = Kos=0(u) = E[I(T < o0)] = Pr(T < ) = vo(u), u >0. (2.92)

Moreover, if § = 0, then 8 = 4, (2.88) reduces to

1

-1?-6=0(u) = 1+ 9

Ya(u) + ¥a(uv), u>0. (2.93)

Also from (1.15) and (1.16), Ks_o(u) satisfies the following defective renewal

which agrees with that Ks-o(u) is a compound geometric distribution function.
The defective moments of the compound geometric distribution function K (u)
can be expressed in terms of the moments of G(z) by

b ng”, — “dn *° —sup”, —
/0 w"K(u)du = (—1) F/O e K(u)du| ,n=01,2,....

=0
For example, from (1.38) and (1.40),

G(0) _ J°udG(w) _ poalp) _ prale) , 1

B 3 4 s T (299

/O " R(u)du = —



CHAPTER 2. SURPLUS PROCESS WITH A DIFFUSION FACTOR 46

and the defective mean of K(u) is

/;oo uK(u)du
S
= %k e (u)du oo
_ _[1 - G(s) G'(s) _ 3G'(s) +1—G(s) 1 ]
s [14+8-G(s)? s? 1+ 8- G(s)ll=o
) A A — Y
- Ly 1O G-t
= F#Ea(0) + spcale), (2.96)
with the help of L’Hopital’s rule. Therefore, the proper mean of K(u) is
f,_Keds 1 poa(p)
- == s aiLd Lty 297
./ K(z)dz P Hoalp) + 2pca(p) (2:97)
0
Case 2 : when V(u) = wo A(u) which is the case of (1.22) then
B(u) = wo(1 + B)e™™ = wo(1 + B)H(u). (2.98)
If wg =1 then
B(u) = (1+ B)H(u), (2.99)

and B'(z) = —(1+B)h(u). Equation (1.22) becomes the defective renewal equation

for the discounted (with discount factor §) probability of ruin caused by oscillation,

da(u) = ﬁ / “ $a(u — 2)dT « H(z) + H(u), u>0. (2.100)
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In addition, by (1.44), ¢4(u) can be expressed as

p—
)

() [ R~ 2)h(z)dz + Hw) - ?(u)]

I

B « H(u) + H(u) — ?(u)]

p— —
+u|+ m‘+
>

=@

T——K +H(u) - ?(u)] (2.101)

“I

where
K+*Hu)=1-K=+«H(u)=1-(1-K)*«H(u) = H(u) + K » H(u). (2.102)

With (2.88) and (2.101), we get

B ga(u) + K(u) = dua(u) + 64(u) = do(x), (2.103)

K*H(u)=1+ﬂ

and

H+K(u) = /0" H(u— z)dK(z) = K(u) — K + H(u)

B
e ﬂdfa(u)- (2.104)

= K*H(u)-K(u) =
When § = 0, then 8 = 6 and (2.103) becomes

0
1+40

Kszo * H\(u) = Ya(u) + Ks=o(u) = a(u) + ¥s(u) = he(u). (2.105)

Since K * H(u) = /0 “K(z)H'(u —z)dz = b /0 * e=84=) K (z)dz and by (2.101),
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we have

d¢,(u) dK = H(u)
T du du

[K(u) K*H(u)] [K*H(u) K(u)] 2 ﬂ¢,,,(u).

(2.106)

Therefore,

[T [ [ a0 = [ T

(2.107)
or by (2.103),
[ #i@)dz = [T R(e)dz + 3u(w) (2.108)
with
= - [%7F _ 1 _pea(p) |1 _ pralp) [ 1+P
/0 ¢e(z)dz = /0 K « H(z)dz = /0 K(z)dz++ 5= 5 pealp) 1 5= "5t
(2.109)

by (2.95). Also from (2.103) and (2.106), the defective tail discounted (with discount

factor d) probability of the time of ruin caused by oscillation is

/u°°¢d(z)dz_ B 4(u) = 1+ﬂK + H(u) (2.110)
with
o0 148 1
/; balz)ds = <o = s, (2.111)

The defective moments of the function ¢4(u) can be also expressed in terms of

the moments of G(z) by
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[ wsatuide = (<13 [T e guu)du = (-1"E(0,4),

n=0, 1, 2, ..., like the defective moments of the compound geometric distribution

function K(u) above. However, with (2.109) and (2.110), the defective mean of
0

da(u), / uda(u)du can be easily derived as follows:

/0 ~ uda(u)du = '[, = fo" ba(u)dzdu = /o = /z ” $a(u)dudz

148 [~ _1+B1pca(p) | 1
—bﬁ—_/o bu(z)dz = bﬂ[ 2 +b], (2.112)

and hence the proper mean of the function ¢g(u) is

/ow uda(u)du _ #calp) 1
[ tu(z)dz B b

= /0 ” $e(z)dz. (2.113)

Case 3 : when V(u) = g,(u) which is the case of (2.15),
if w(z,y) = 1 then from (2.12), (2.34), (2.40) and (2.49)

/O" e—blu—s) /.°° e—P(z—9) /:o w(z,y — z)p(y)dydzds
% /o ~ e P(y)dy
/0 =blu=s) / e ?==)P(z)dzds
_11; fo " e P(y)dy

= Gu)—e™

B(u) = (2.114)

= [ H(u). (2.115)
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We remark that the function B(u) based on (1.13) is

[ et [ wia,y - 2)p(y)dydz

= (2.116)
[ e Py

Bo(u) =

Equation (1.34) becomes the defective renewal equation for the discounted (with

discount factor §) probability of ruin caused by a claim,

$a(w) = 7 +ﬂ/ #u(u - 2)dT » H(z) + - ﬂr* H(u), u>0.  (2.117)
Also by (1.44), ¢,(u) can be expressed as

1 e _ 1
bo(u) = _ﬁ/o K(u~2)dT « H(z) + 5T » H(u). (2.118)

Since K(u) = ¢,(u) + éd4(u), from (2.95) and (2.111),

1+ﬂ

oo o _ 1 [ _#calp) 1 _ pri(p)
/0 d),(z)dz::/o K(z)dz-Hﬂ/o tale)ds = BELE o = BRI (2.119)

2 2
Also by (2.96), (2.112) and pga(p) = "G‘T‘(p) pra(p) = 55 + ’“’T‘(m + pr.2(p)

from (2.83), the defective mean of ¢,(u) is

% 1
/0 uds(u)du = /0 uK(u)du—m ” uda(u)du

= ;,ﬂcl(pH sghe2 2(p) — %] "G;,(p) + b]

= ﬂzl‘GI(P)l‘l‘l(P)+ ﬂ[ﬂcg(p) b—;]
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sr.a(p) [He.a(p) pr2(p)
3 [ 3 b]+ , (2.120)

and hence the proper mean of the function ¢,(u) is

oou¢n(u)d‘u

/0 = Healp) 1 pralp)

/m ¢.(z)dz B B t b + 2’11-'1(,)). (2-121)
0

Case 4 : when V(u) = woA(u) + g, (u) which is the case of (2.17),

if wo = 1 and w(z,y) =1 then from (2.99) and (2.115)

B(u) = (1+B)H(u)+ H(u)-T*H(u) = fH(u)+1- H+[(u) = H(u) +T* H(u).
(2.122)
Equation (1.35) becomes the defective renewal equation for the discounted (with

discount factor §) probability of ruin caused by both oscillation and a claim,

B

1+ 3 I'«H(u), u>0.

(2.123)
Since ¢e(u) = da(u) + ¢.(u), from (2.100), (2.101), (2.117) and (2.118), ¢¢(u) can

H(u) +

u 1
bu(u) = ﬁfo e(u — z)dT x H(z) + 3

be written as

@e(u)
1 u
- =2 [¢d(u-z)+¢.(u—z>]dr*ﬁ(z)+Hﬂﬂ( )+ 35T A
_ 213-/ _(u—z)dP*H($)+[ 1+ﬂ]r*H(u)+¢a(u) H(u) +
8 1
L+ gl rem
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_ Y4B Tl L e pp
- =2F [K s H(u) K(u)] 3 /0" K(u~ =)+ H(z) + 5T+ H(u), (2124)
and can be simplified to
de(u) = (1 + B)K(u) + /0" R(u—z)dT + H(z) — T » H(u) (2.125)

by (2.103).

Note that when p = 0 which is the case when § = 0, then 8 =  and H(u) and
['(u) simplfy to H;(u) and H;(u) of Dufresne and Gerber (1991) [16], respectively;
hence (2.100), (2.117) and (2.123) reduce to their (5.10), (5.16) and (5.17) which
are stated in (1.15), (1.16) and (1.17) respectively.

Since ¢¢(u) = ¢,(u) + Ya(x), from (2.112) and (2.120), the defective mean of

de(u) is

/Ooo ugy(u)du = /:o upq(u)du + /oo ud,(u)du

1+ 8uc.a(p) pri(p) [Bc.1(p) pr2(p)
53 [ g T b]+ 3 [ 3 T b]+ 28
[#a;(p) b] +ﬂrz(p)_ (2.126)

Combining this with (2.109), the proper mean of the function ¢,(u) is

pr.2(p) [pm(p) + b] - (2.127)

26 B

/:o udbe(u)du [uc 1(p)

[ tla)dz A "] *

Recall that Gerber and Landry (1998) [24] mentioned that g(y) is the discounted
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probability that the first record low is caused by a jump. That is, g(y)dy is the
discounted probability that the surplus will ever fall below its initial level u, and
will be between u — y and u — y — dy when it happens for the first time caused by a
jump (%[1 — P(y)]dy for the case of the classical continuous risk model (1.1) that
D =0 and é = 0). In fact, based on the fact that a compound Poisson process has
independent and stationary increments, g(y) is the discounted probability that the
surplus process {U(t) : t > 0} attains a record low caused by a jump. Let T? (with
T3 = 0) be the n** time when the surplus process {U(t) : ¢ > 0} attains a record low
caused by a jump, and L, = U(T?_,)-U (T?) be the amount by which the resulting
n** record low caused by a Jump is below the surplus at time Tj_l, n=12.... One
can define L(t) = Ly + Lz +-- -+ Ly, (with L(t) = 0 if N(¢) = 0), the total amount
up to time t by which the resulting N(t)** record low caused by a jump is below the
initial level u, where N(t) is the total number of record lows up to time t caused
by a jump, which is independent of L;, L,,.... and Pr(N(t) = n) = (1 +B8) "1,
n =20,1,2,.... Then G'(y) = g(y)/ /:o 9(y)dy is the common probability density
function of the identical and independent random variables Li,Ly,.... And the
function K(u) in (2.88), which satisfies the defective renewal equation (2.86) as

well as (2.87), can be treated as K(u) = Pr(L(t) > u),u > 0.

2.4 Explicit analytical solution : examples

Since ¢e(u) = K « H(u) = H(u) + K * H(u), ¢4(u) = ﬂ 1+8 [K * H(u)— K(u)] and

ds(u) = de(u) — Pa(u) = 1 ;'BK( )— —K * H(u), if the explicit analytical solution

to K(u) given in (1.37) is available in some cases, then all de(u), da(u) and ¢,(u)
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will also have explicit analytical solutions in these cases. We will demonstrate these

cases by examples.
Example 2.5 Combination of exponentials

As shown in example 2.1, if P(z) = > qee™=, then G(z) = (1 — bg")e™> +

k=1
bg™ E gc e and G'(z) = (1 — bg")be™> + bg" Y gi*pe ™=,z > 0. The Laplace
k=1
transform of G(z) is G(—s) = /Ooo e*dG(z) = (1 - bq* )— + bg" Z:l "”:i 5
Then by (1.40),
. 1-(1-bg") o~ —bg" 3 q A
/ ™K (u)du = — k=1 - (2128)
0 k
TP - ]
s[ +8—-(1-bg); q g g
The roots of the denominator are s; = 0 and 81,82,.-.,8.41. Thatis, 81,32,...,8,4;
satisfy
b r
(1-b¢");— +b¢" S g (2.129)
—$ k=1
Note that by (2.55) and (2.57), 1+ 8 — (1 — bq')—— — bq" Z =1+

— 8

b s(b— pe)
- b - .l[ _ I“k ]= _ . qk —
2 e e e R ) N (B e
[1 + E 9ib ] thus (2.129) is equivalent to
k=1 Pk —
[+ 3 %&b |=o. (2.130)
b— k=1 Pk — S
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If all the ¢;’s are positive, so are all s, s,, . . ., s, 41 by (2.130). Dufresne and Gerber
(1988a) [14] showed that complex roots are only possible if at least one of qi’s is
negative; in this case, these complex roots must be paired (conjugate each other)
and have positive real part.

We assume these roots are distinct for simplicity. One of sy, 3,. .., 8,41, say $;,
satisfies generalized Lundberg’s equation (1.32), and x = s; > 0 is called the ad-
Justment coefficient. By the principle of partial fractions as mentioned in Dufresne

and Gerber (1988b) [15], there exist coefficients Do, D, ... s Dy 41 such that

D, X -1

— Z —{s[1+ﬂ—(1—bq - ]} . (2.131)
s = -3

To find these coefficients Do, D, ..., D,;, multiply (2.131) by s and then set

s =0 to get

Do=~[1+8~(1-bg") —bg" g__: ar] = -5 (2.132)

If we multiply (2.131) by s(s — s;) and then let s — s;, then we obtain

-1
Dj = {.Sj (l—bq )( +qu: m]}
_ [ [1+8 a i -t
= {"’ b — s, ~ —s,-)(b-s_.,-))]}
_ (. [1+8 qi pie(b — pic) !
B {8’ b —s; * bk=1 b — i (B — 55)%(b — s;) }
= b—s; j=1,2,...,r+1, (2.133)

[l+ﬂ+bZqu—’:_"—:—)—z],
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with the help of L’Hopital’s rule, (2.55), (2.57) and (2.129). In addition, if we let
s—band s > u;,7=1,2,...,r+1,in (2.131), respectively, we have that

D H Do & D,
= Do =0, j=1,2,.. .r+1 2.134
Zb--’k Hj gﬂj—-‘lk d ( )

Thus, (2.128) becomes

/()“emf(‘(u)du
D r+1 D
= [1—(1—6(1)——6‘1,;1 "#j_s”To'f',;ls—’;k]
r+1
= %—kz::ls:)—ks_(l_bq‘) (bDib)—qung "(" —3)
r+1 r4+1 r .
(1 —bq7) fské:lskD_k +bq gJ_EID % 3k—3l‘1"_i_‘9
_ D ba) D2+ L] bq-DoJ; o=l
(1_bq->'§,,’i'=§k[;_,— Sl S R - ]
r+1

[(1 - bq')m + bq‘fi_;q}'“j — 3]+

. r+1 Dkb 1 1 r+l r Dkq;.l‘j 1 1
(l_bq)g_z:lb [ _b—s]+bq 22 [sk—s—p,-—s]'

— Sk LSk — s k=1;=1 Ki — Sk

By the uniqueness of the Laplace transform,

r+1 .
Ku) = - kz:l Dre™*"“ — Dg [(1 —bg*)e ™™ + bq" z; q;'e"""‘] +
—4 J:
r4l r+l r D
(1=b0) 3 2 [ — ] g 32 30 DB [ o]
k=1j=1 Hi —
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r+l1
= sz[(l—bq*) +bq Z - l]e"""—
i=1 3"
= sy Dkb -bu - k”J —Hju
(1—bg [Do+ _Sk]e —bqj;q,-[ +kz_:m L
= ﬂ'f Dpe™*", (2.135)

a combination of exponential functions, by (2.129), (2.132) and (2.134). Moreover,
r41

letting u=201in (2.135) leads to K(O) = ﬂ E Dk. Therefore,
k=1
> = 1 2.136
D K 0 y .1
z k K0 = ﬂ(l + B) ( )
and
= - _—1_ = K 2 3

When é =0, 8 = 6 and (2.130), (2.133), (2.135), (2.136) and (2.137) become

Kj_o(u) =6 'f:l Dy =o€ **:0=0" (2.138)
k=1
where s 5-0, 325=0, - - - , Sr41,5=0 satisfy
_ C/D’_ - [1 1 %i. ‘k-"_c /3 D] 0, (2.139)
and
Djse0 = c/D - 244=0 i=12,...,r+1,  (2.140)

dk.s=olk ] ’
k — $j, 15'.-.0)2

s,s-o[1+0+ 5 Z
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with
r+1 1 91
== —_— 14
3 Drseo = OKJ..O( )= ST (2.141)
and
r+1 1 _
= - —K;-0(0). 2.142
Em 5=0 T5s = Ko=0(0) (2.142)
In the case D = 0, similar arguments show
Ko(u) = fo 3 Dye™", (2.143)
k=1
a combination of exponential functions, where s, s,, ... , 8y satisfy
S =14 (2.144)
k=1 Mk — S
and
-1
, j=12....r 2.145
{31 Z qk (I‘k _ 3:)2} J ( )
with
i D, = . Ko(0) = 1 (2.146)
k=1 1+ fBo Bo(1 + Bo)
and
r 1 _
¥ Di =~y = —Kal0) (2.147)

For the special case r = 1, that is, P(z) = e™#*, then ¢ = ¢ = 1 and

- = (b—p)~1. By (2.130), i bjs[
(1 4+ B)(s — b)(s — p) = by, or equivalently,
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2 _ B8 _
s (b+p)s+l+ﬂbp 0.
Since 814383 = b+p, 818, = %ébﬂ and (b+#)2—4—1 fﬂbﬂ = (b—y)z+———14i“ﬁ > 0,

81 and sz both are positive real numbers. In this case, K(u) in (2.135) becomes

K(u) = ﬂ[Dle""‘ + Dze‘""], (2.148)
where
D, = b—s o = b—SIsl—b
1+ ——] 1+ [1 + ]
81[ b+ (B —81)? = A) S —p
_=Bo-w) _ s
(1+ B)s1(s1 — s2) B(1+B)(s1 — s2)
and
Dy = b— s _ _(s2—b)(sa—p) _ s1
a[t+8+ b_ﬂz] (L+B)sx(s2— 51)  B(L+B)(31 — s2)
(4 — s2)
with the help of 81+82 = b+p, 8189 = -Lb,‘ and (3'-—6)(3‘-_#) = b" — 3132’
1+8 1+8 B
1=1,2.
With the explicit analytical solution (2.135) to K(u), then K « H (u) =

r+1 r+1

‘= — = —o4(u—-zx)p _—bz = S —(b—as)z
/OK(u z)h(z)dz ﬂguk/o"e su==)pebe gy bﬂéDke ' /0 e~G-a)z gy
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r+1

=53 Z b— st [e"*" - e'b"], and from (2.102) and (2.103)

r+1 r+1

r+1

= b3 Z b e (2.149)

by (2.132) and (2.134), with

cl + Dk §=0

W) = Ko v () = 5 3 Dt (2150)
In addition, from (2.101) and (2.103) we have
ba(u) = 1”’[1{ +H(u) — K(u)]— 1+8)3D [ b —l]e""‘
‘ B ﬂ B k=1 y b
= (1+ﬂ)'2:+1 D"s" e (2.151)
with
r+1
halw) = 52 [Rig e Huw) = Roo(u)]= (14+8) 3 DS00I0 v,
(2.152)
and
_ r+1
#u() = K(w) = 75 u) = zok[ﬂ— s (2.153)

with
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$o(w) = Rimolu) — ——u(u) = 3 D [o— ke, 2158
s - §=0 1 + 0 d = = k,6=0 C/D — Sks—0 . .

We remark that ¢.(u), ¢s(u) and ¢,(u) as well as 1), (u), Ya(u) and ¥,(u) are all
a combination of exponential functions if the claim size distribution is a combina-

tion/mixture of Exponentials. O

Example 2.6 Mixture of Erlangs

r k
As shown in example 2.2, when b = y then G'(z) = E 9 “(’;:) e “* whereas
k=1 *

"

"(z) = ”‘1'] b Y N plp)
whenb#p,G(z)—[l mbe +b—p,‘§lqk (k—l)!e . The former

oo r k+l a0 r k+1
i — —sz — C ,‘ ‘(I‘+l)3 k — = ( ,‘ ) e
MGM—AC<Mﬂ—§%MAC z*dz = 3 g

k=1 [‘+8
F Q'( E )where
K+s K+s

Q*(2) = Z grz". (2.155)
k=1

Then follow the method of Willmot and Lin (1998) [47] and by (1.41) we have

B
® _ B _ 1+8 _ Iz
/_e dK(u)—1+,3—G(s)—1_ 1 M .( Iz )—C(y+3)
1+Bu+s n+s
(2.156)
where 3
Clz) =3 caz™ = L+p (2.157)
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is the probability generating function of a compound geometric distribution for
some coeflicients co,c;.... Letting z = 0 in (2.157), and differentiating (2.157)

with respect to z and then setting z = 0, respectively, lead to ¢ = % and
) = 0.

Since / “edK(u) = K(0) + / ™K' (u)du and K(0) = —P— (2.156)
- 0 1+4

becomes

oo e n oo o0 n-1
/ e "™ K'(u)du = E ) =/ e™™) c,.”(ﬂ—u)—e"‘"du. (2.158)
0 =1 +s 0 n=1

(n—1)!

Thus K'(u) = zc,."(" B s and by (2.71)

—1)!

_ o0 n n-1 J
K(u) =3 et — / e dr = e Y o, 3 BB ("") e 3°T; (““)

n=1 (n - 1)' n=1 j=0 ! J=0

(2.159)

where C; = tn,j = —1,0,1,... with C_; = 1, by interchanging the order of

j

n=j+1

summation in the last equation.

Note that the coefficients {Cy, C,,C,,.. .} may be calculated recursively as fol-
lows for computational purpose. By Feller (1968) [20] (p. 265), the associated
probability generating function is

g 1 1-2Q%(2)
{zﬁzn_l—c(z)_l_1+ﬂ[l 1+ﬂzQ()] _1+8 1—2

T o 1—-2z2 T 1-z 1 oy

n=0 1- 1+ﬁzQ (2)

Rearrangement gives
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- — =5 n 1 I—ZQ (Z)
ﬂzQ (z)ngoan 1+ 1-3

f:a,,z" = 1

n=0
Equating coefficients of z" leads to

n—1 o0

Ch= —— Co-i- , =123,..., 2.160
ZQk k1+1+ﬂk_nQI¢ n ( )

with gt = 0 if £ > r. Thus the coefficients C,, for n = 1,2,3,... may be calculated
recursively by (2.160) with starting value Co =1 — ¢, = (1 + )71, and (2.159) can

be used to compute K(u).

Whenb;é;;, é(s) =/°° e-lsz(z) [1___] / —(Hl)zdz_*_
0
b e By (ute)z _[ bg* ] b bg" ..( 1 )
b_,‘éqk (k—l)!/o £oe de = 1-3— 5+s T b-n° \nis
where
Q™ (z) = Zq" * (2.161)
Similarly, by (1.41) we have
_ﬂ_
® e _ +8
/O_e dK(u) = 1 [(1_ bq‘) b b7 Q__( m )]
1+p b—pu/b+s b—pu p+s
b B

where
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B
1
bq'
—p

C(z,w) = i i Cmaz"wW" = (2.163)

1
m=0n=0 —_— — —
1-1 +ﬂ[(1 B

for some coefficients ¢, m,n = 0,1,2,. ... Letting z = w = 0 in (2.163) leads to

ﬂ -
)z + bbj ”Q"(w)]

Co,0 = 1+38
Since /0 T e mdK(u) = K(0) + /; ¥ e~ K'(u)du and K(0) = % (2.162)

becomes

b
b+ s

b —su 4 —_ m ,‘ "
[ ek w)du = e +co,1”+s+zzcm..(b+3) (”H) . (2.164)

m=1 n=1

By the uniqueness of the La.place transform, we have K'(z) =

c1obe™ + co,pe " + Z 2 / b[bE::n—_yl)]):" e b= 2 I;E:‘y)") e "dy (note

m=1n=1
—_ n—-1
that / b((::n _yl)])! o‘b("”)lg:‘z-—)l)!e"‘"dy is the convolution of two Erlangian

probability density functions) and

K(u) = e10e™™ + cope™"
§ : E: bmﬂ" oo/z -1, n—1_-b(z—y)  —py
" —y)" Tyl dyd
* m=1n=1 - 1){(n - 1)! ,[‘ 0 (z—y)" 'y e e ydz

(2.165)

o ) r -4
Further calculations show that / / (z—y)™ ty"te = Ve~ gyds and hence
u Q
K (u) can be expressed in terms of e"™u™ and e~#“u", m,n = 0,1,2,.... However,

the associated coefficients of e~*u™ and e~#“u" are very cumbersome and have no
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recursive relation like (2.160). An alternative method based on the principle of par-
tial fractions can be used to express K (u) in terms of finite number of exponential

functions as in example 2.5. To see this, by (1.40),

bqt b bq- r - I‘ k
1_(1_b—p)b-—s—b—pzqk (p-—s)

~ e™K(u)du = — - k=1 _ .
: T i)t E (2]
(2-166)
The roots of the denominator are so = 0 and s, s, . .. 1 Sr41, that is, 81, 82,..., 8,41
satisfy
(1_ bbf.p)bf" +bbf-,,,§‘li'(“':3)k=l+ﬁ' (2.167)
We assume these roots are distinct for simplicity. One of 31,82,...,8.41, Sy 3,

satisfies generalized Lundberg’s equation (1.32), and & = s; > 0 is called the adjust-
ment coefficient. Argument similar to the one in Dufresne and Gerber (1988a) [14]
shows that either s,,3,,..., 3,4 are all positive or some of them are paired (conju-
gate each other) complex roots with positive real part. By the principle of partial
fractions as mentioned in Dufresne and Gerber (1988b) [15], there exist coefficients
Do, Dy, ...,D,4; such that

PrE e )i S s ) )

s k=15 — Sk T H = B—3s

(2.168)

To find these coefficients Do, Dy, ..., D,4;, multiply (2.168) by s and then let

s = 0 to obtain
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Do [1 +8— (1 “) bbf'” g q,;'] T —%. (2.169)

If we multiply (2.168) by s(s — s;) and then let s — s;, then we obtain

D = {as[ (1-2 < )(b-bs,)2 bbq.,‘g "(,‘_-W]}—l 7=02ortl,
(2.170)

with the help of L’Hopital’s rule. In addition, if we let s — b and s — 4, in (2.168),

respectively, we get that

> Do | 3~ 2.17
=24 171
+Z:,,_,k p g = = (2.171)
Thus, (2.166) becomes
/ooe“"}_'{—(u)du
0
- bg" \_ b bg" §~ .(_B )’] [Do gy Dk]
- [1_(1_b—-[1)b—3 b_”gqj p—S s +E Sk
_ DO r+1 Dk [1_ bq- ][ Dob r+1 ]_
s =ise—s b—pulls(b—s) b sk_lsk
L) L ()]
— |p .= Diq
b—u og’s kz_:“_z; sS\u—s
D, * D,
- T—Zsk—s_
k=1

-5 )”E’b’i*fk(,k_s =k

bq- r .-l )' r+l r ( m )J]
-—-b_“[Dojgqu' p ;JZD& s
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_ —r+l Dk bq' Do _ bq' r+l Dk
- Zsk—s b—p(—s)+[l b—p]bg__:l(b—sk)(sk—s)-*.

B[S () s 25 v (4]

k=1 j=1

with the help of (2.171). By the uniqueness of the Laplace transform,

K(u)
1 bg" bg~ 17! D.b bq" r
- _ —au _ Y9 [ q ] kD —eiu q [ -
E_:Dke - D + rpmyrl P +—— #Doj;q,
vp(pzy ™t L B . Y 5 g ]
o G-I e dz+’§1§ngj /0 G =D dz
r+1 —ou bq' bq r+l1 Dkb -
= —ZDke e Do+[ Zb-ske Rh
- (/m)"‘
Do (1 b )
2 e
K j § = o
Dugy (25 ) (e - e I B2
2R R e b3
r+1 r41 bq‘
= =Y Die ™"+ (1+p0) z Dype~*" — e HY
k=1 b — B
d (u )"‘ o Pl ..( )”"1 (s —sk)u]"‘]

r+1 i-1 r+1 Ds ]

= BY Dre ™ — e Z P> 4 [ FE >
k=1 S

j=1  m=0 m! =t (p— )™

by (2.72) and (2.167). We declare that

r+1

+ 2 i sk)-""‘ =0 (2.172)

#""'
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for each j —m = 1,2,...,7, since m = 0,1,...,7—1and 5 = 1,2,...,r, which
implies
_ r+1
K(u) =8)_ Die ", (2.173)
k=
a combination of exponential functions, which has the same expression as (2.135)
for the combination of exponentials case. Thus, (2.136) and (2.137) apply. When

4 =0, (2.173) becomes

r+1

Ks=o(u) = 03" Dy s_ge™*s4=0" (2.174)
k=1
where 81,6=0:826=04---, Sr4+1,6=0 satisfy
. k
_ _%5-0 ¢ Cd5—0 ) —140 2.175
(1 c—Dp)c—Ds c—-DyZ""‘o( ~s + (2.175)

by (2.167), and for j = 1,2,...,7 + 1, from (2.170)

Djs-0

= {3 j6=0 [(1 _ M=o ) cb “i=o0 Yk 5=0 u® ]}-1.
7= ¢c—Du/(c— Ds_,-,5=0)2 c—Dp = 77 (p — 856=0)FH!
(2.176)

Note that (2.141) and (2.142) also apply here.
To show (2.172), we can differentiate both sides of (2.168) (j — m — 1) times

with respect to s and then let s — u. The consequence for the left side is

dj—m—l D r+1 D
[T+

dsi-m-1]| g =18 — s

s=p
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= COem e e
DO r+1 Dk
N rered

k=1

= (Y —m -2

which is exactly (—1)""™=1(j — m — 1)! times the left side of (2.172). Thus, it is
sufficient to show the (j —m —1)** derivative of the right side of (2.168) at u equals
to 0. Let a(z) ~. b(z) as z — c denote lim._,.a(z)/b(z) = 1. Then the right side

of (2.168), as s — p,

1 1
B bg" \ b bt b\ " bugqg( B\
O i =rl “(755) ] (75)
8[ +P 1 b—pu/b—s b—pgq“ ph—s b—pu \u—s
_ G—u)u—s)y
bg gr=pr+?
j—m—1
Since j—m—-1=0,1,...,j—1 < r, we have g (#—3)"| =0 which implies
=u
di—m-1 bg" \ b bg® N . B )‘] }“ _
_dsj""‘l{s[1+ﬁ—(l—b—p)b—s—b—pkz::lq" (y—s .=,.—0.
For the case b = yu, similar arguments show
K(u) =8 Die™"", (2.177)
k=1
a combination of exponential functions, where s, s,,...,s, satisfy
r 7 )k+l
" =1+ 2.178
ké:l /3 (" s B ( )



CHAPTER 2. SURPLUS PROCESS WITH A DIFFUSION FACTOR 70

and

ST i L
D; = {3- q'———} , =12,...,r, 2.179
2 2 kz=:1 k (# _ 8j)k+2 2 ( )

with relationships (2.146) and (2.147) but 8, and Ko(u) replaced by 8 and K(u),
respectively.

When D = 0, similar derivations lead to

Ko(u) =B Z Dype™ "4, (2.180)
k=1
a combination of exponential functions, where s;, $2,...,8, satisfy
r I‘ k
v = 2.
z=:1‘1k(”_8) 1+ fo (2.181)
and
r kpk -1 .
Dj = {s,Zq,:_m} y J = 1,2,...,1‘. (2.182)
k=1 (I‘ - sj)

Note that (2.146) and (2.147) also hold in this case.

To get explicit analytical solutions for ¢¢(u), ¢4(x) and &,(u), since (2.173) and
(2.177) have the same expressions as (2.135), equations (2.149), (2.151) and (2.153)
apply for b # u case, whereas substitute r for r+1 in the upper index of summation
in these three equations for b = y. Similarly, equations (2.150), (2.152) and (2.154)
apply for 9(u), ¥a(n) and ¥, (u) by the argument above.

Alternative explicit analytical solutions for ¢,(u), ¢4(u) and ¢,(u) can be ob-

tained as follows for b = u case if (2.159), K(u) = e Y 6,.(”%'), is used. First
=

calculate K * H(u) = /0 ‘ K(z)pe #=2dz = Z C.
n=0

u
/ e e gneHu-2) g,
n! Jo
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- (lm)"*“1
Z C. n ) Then from (2.102) and (2.103)
n=0

$e(v) = K+ H(u) = e Z C. M} — ehu Z (""')" (2.183)
"(n+1)!

with C_; = 1. Moreover, from (2.101) and (2.103) we have

#alw) = ZE[RTH@) - K
_ 1+ ,,,,2[ ,.-1—0](’"‘_)" 1-;[3 -,,..Z (")(2184)
and
N°d —pu — [~ ( u)n
$s(u) = K(u) — ﬂ¢4(u) =e g[c,. - %]"n—, (2.185)

O

2.5 Asymptotic formula and Tijms-type approx-
imation

In this section, we will first study the adjustment coefficient and propose the asymp-
totic formula for the defective renewal equations ¢(u) in (2.17), then give the Tijms-
type approximation for the associated compound geometric distribution function
K (u) in (2.87).

Recall from (1.32) that p > 0 satisfies generalized Lundberg’s equation Ap(§) =
A48 —c€ — DE. If we define
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T(€) =A+6—ct— D¢ = -D(¢ + —)2 +ptA+e, (2.186)

then Ap(§) = A + & — c€ — DE? is equivalent to
Ap(€) = 7(§) (2.187)

Since AF'(£) = —A /0 " ze~¢p(z)dz < 0 and AF'(€) = A /0 ¥ 22e~¢p(z)dz > 0, we
have that Aj(€) is a decreasing convex function with Ap(0) = A. Moreover, due to
the negative coefficient(—D) of the ¢2 term in (2.186), T(£) is a concave parabola
with 7(0) = A+4 and the maximum {%+,\+5 at £ = -%. Therefore (2.187) has
exactly two roots, one nonnegative, says &, which is p(4) by (1.32), and another
negative, say §; = —x(d), where x(4) > 0.

Note that since 7(—b) = 7(p(d)) < 7(—~(d)), we have b > £(d). In addition,
when & — 0, & = p(d) is decreasing to 0 and |&| = k(4) is also decreasing. And if

6 — 0, which implies p — 0, then from (1.32),
é A - o
5 =PD+c=S[1—p(p)] = pD +c— ,\/0 e *P(z)dz - c — Ap;.  (2.188)
P

Let du(£,8) = /0 ~ e=¢,,(u)du, we multiply (2.15) by e~¢%, and integration

from u = 0 to u = oo yields

Pu(€,8) = Bu(£,0)F(€,8) + Gu (€, 6). (2.189)
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Therefore,

7 — §W(£1 5) _ ~ -n
¢W(£a 6) - 1_—5(63—6) = ng)gu(£7 6)9 (fa 6)1

which is the Laplace transform of
Pu(u) = Y g * g™ (u).
n=0

From (2.19), after some computations, we get

AP (§) + [c + 2D€]3(¢, 9)
b+8(-&D

g'§9) =

and

Ap(E) + DE2 +c€—6 - A
(6+8)(p - 6D
_ () — ()
G+8(p-8D

g(&&) -1 =

Then from (2.22), (2.190) and (2.193), we obtain

1-9(6)  7(§)—Ap(€)

‘Zw(fv d) =

73

(2.190)

(2.191)

(2.192)

(2.193)

(2.194)

If w(z,y) = 1, then fu(u) = fu(u), w(z) = P(a), a(s) = [ e~ P(z)ds =

0
1 —p(s) and
S

A [1 -5 1 —ﬁ(#)]

e GES - ,
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Ap[L — H(€)] + £(8 — cp — Dp?)
EPp(1 = 5(6)) + p(8 — c£ — DE2)] (2.195)

where ¢,(¢,6) = /:o e *“¢,(u)du. If we further let § — 0, then from (2.188)

FL =56+ 2~ c~pD

v _£
2[1 —p(&)] — Apx All — pi€ - 5(€)]

- $.(é) = (2.196)

AL =€) - € — D& ~ &AL~ p(€)) — & — D]
where 4,(£) = /o- = e *“y,(u)du. Moreover, if D — 0, then equations (2.195) and
(2.196) reduce to (2.59) and (2.60) of Gerber and Shiu (1998a) [29], respectively.

Now to obtain the asymptotic formula for ¢,(u) satisfying (2.15), ¢u(u) =
$w * g(u) + go(u), we seek a & > 0, called the adjustment coefficient, such that
/0 " e g(z)dz = §(~x,6) = 1. By (2.193), §(—~,8) = 1 is equivalent to Ap(—K) =
7(—&). Therefore —« is exactly &,, the unique negative root of (2.187), which has
been mentioned by Gerber and Landry (1998) [24] too.

With the asymptotic formula (1.46) for a renewal equation, we can apply it to

(2.17) and obtain the following theorem.

Theorem 2.4 The asymptotic formula for $(u) satisfying (2.1 7) is

A [T @ =) [T wle,y ~ z)p(y)dydz + wolp + K)D

L2

$(u) ~ —AF(—r)—c+2xD e "™, asu — oo,
(2.197)
where —p'(—k) = /:o ze™“dP(z), K = —£; and & is the unique negative root of

(2.187).
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Proof: From (2.22), (2.192), §(—«,8) = 1 and the fact that b > K, we have as

u — 0o
/oo e~ [gw(z) + woe'b"] dz
P(u) ~ =2 ES e
/(; ze™g(z)dz
G, 8) + 7=
— — K e nu
—gl(_na 5)

Alo(=~r) —@(p)] + wo(p +5)D _,,
—Ap'(—&) —c+2xD
z\/ow(enc —e™%%) /:o w(z,y — z)p(y)dydz + wo(p + k) D _

= €

—Ap'(—Kk) —c+ 2D

Ky

a

Note that when D = 0, (2.197) reduces to (4.10) of Gerber and Shiu (1998a) [29],

which agrees with the fact that the defective renewal equation (1.33) is a special
case of (2.17).

Corollary 2.6 If w(z,y) = 1, then the asymptotic formula for é(u) satisfying
(2.17) is

~ [6 + (‘lDO - l)p".'D](p + K’) e Y
PE[—AP/(—K) — c + 2x D) ’

é(u)

as u — oo, (2.198)

[ <]

where —p'(—k) = / ze™dP(z), k = —§; and & is the unique negative root of
0

(2.187).

Proof: If w(z,y) = 1, from (2.197), integration by parts and that both p and —k

satisfy (2.187), we have as u — oo
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A /0 Tle= - e %) /o T p(z + y)dydz + wo(p + k) D .
#u) ~ “AP(—K) — c + 2xD ¢
A /0 ("% — e™)P(2)dz +wo(p + K)D

= e

—Ap/(—K) —c+2sD
Mp(=s) = 1] | Alplp) ~ 1]
: p

ru

+ wo(p + x)D

K —Ku
= AP (—K) — c+ 25D €
D2 — en — Da?
6+cr..x Dk +6 cp— Dp +wo(p+K)D
= AP (—K) —c + 2xD ¢
_ [6 + (‘H)o — l)pND](p + ") e "
T pR[=AF(—K) —c+ 2xD]
a
Note that if D = 0, let § — 0, then [0 + (wo - 1::'601(’) + ) = %+% —c—Apy
. c—Apy —xu c .
by (2.188), and (2.198) implies ¢o(u) ~ T3P (=) —e which is exactly the

equation (4.15) of Gerber and Shiu (1998a) [29)].
Recall that if wy = 1 and w(z,y) = 1, then ¢(u) = K(u). Now we have

1+
the asymptotic formula for K(u) as follows:

Corollary 2.7 If wo =

1 _*l_ﬂ and w(z,y) = 1, then the asymptotic formula for
K (u) satisfying (1.89) is K(u) ~ Ce™™", as u — oo, where

[ —lfﬂan](p-i-n) _ J[I—D:Tnfc—p](p+n)

- pE[—AP/(—K) —c+ 2xD] ~ pr[—Ap(—K) — c + 2D’

(2.199)

—p'(—k) = ‘/(;oo ze"*dP(z), kK = —&; and &; is the unique negative root of (2.187).
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1
Proof: Substitute
ro ubstitu 133

From both a numerical and an analytical viewpoint, Tijms (1986) [43] suggested

for wo in (2.198), then from (2.35) we obtain (2.199). O

approximating K (u) by

Dp* +cp—é
Dp? +cp

- C)e""‘ +Ce™ = ( - C) e™+Ce™, u>0,

(2.200)

where a is chosen so that the approximation preserves the mean / Kr(u)du =

/0 K(u)du, i.e.

[1 e C] [/ K (u)du — g]_l, (2.201)

with /0 " R(u)du = “G#(”)

Note that the approximation preserves the true value K(0) = (1 +8)"!, the

by (2.95) and ue,1(p) given in (2.75).

mean, and the asymptotic right tail behavior as u — oo if @ > x. Moreover, Kr(u)
is exactly equal to K(u) if P(z) (or more generally, K (u)) is the sum or mixture of

two exponentials.

2.6 Reliability-based class implication and bound

In this section, we are going to propose reliability-based class implications between
P(z) and G(z). A lower bound and an upper bound on the associated compound
geometric distribution function K(x) in (2.87) can be developed provided the claim
size distribution P(z) is in some of the reliability-based classes.

Recall we have defined the mean residual lifetime and the failure rate of the

claim size distribution function P(z) in the last section of the previous chapter.
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Since P (z) = / = ?(t)dt/ /0 T P(t)dt = / ~ P(t)dt/py by (1.54) with n = 1, rp(z)

in (1.48) becomes rp(z) = p; P,(z)/P(z). By L’Hopital’s rule,

Tp(w) = zliglo Tp(::) = lim ___F(z) = lim 1 1

e TP(E) - S ha(z)  he(eo)  (2202)

provided rp(oo) and hp(oo) are well defined.
Similar to (1.48), the mean residual lifetime of the distribution I(z) is defined

by
/, L(t)de /o Tz + t)de

rr(z) = ) @) ; (2.203)

and rr(z) = pra(p)T1(z)/T(z) by (1.58). From (1.52) and (1.55),

oo had —py °°.F2+ ded o —Pvﬁl 4

#r.1(P)=/ F(z)dz=/o c w/o _( y)dz y=P1/0m e T (¥) v
0 /; e " P(y)dy /0 e=VP(y)dy

(2.204)

Then by (1.57),

o

pli@) [ e Piy)dy  pm

—_— z

" ePiw)dy [ e P(y)raly)dy
rr(z) = = % =

T(e) [~ e Ply)dy [Py [T e Py)ay
(2.205)

a weighed average of values of rp(z) with weights proportional to e ”*P(z). By
L’Hopital’s rule,

rr(00) = lim rp(z) = lim —e™P@)relz) _ o rp(z) =rp(oo0)  (2.206)

Zz—+00 _e-ﬂ-p(z) =00

provided rp(o0) is well defined.
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From (2.48), we have the failure rate of G(z) =T * H(z),

ho(z) = %((:)) - b[ _ g(:))] (2.207)

with 0 < hg(z) < b = hy(z) and hg(0) = 0 since G'(0) = 0, and the mean residual

lifetime of the distribution G(z),

f:o Gttt | r=Fpa 1 hs(z)
role) = g — = = p e [1- 280y (220g)

with the help of (2.48), (2.203) and (2.207).

Note that ry(z) = 1 < rg(z) < H + rr(z) = ru(z) + rr(z) and rg(0) =

b b
pc1(p). In addition, Since rg(oo) = 1/hg(o0), from (2.208) rg(o0) = rg(oo0) +
[1 - :z((:)) ]rp(oo), or equivalently,

or rg(o0) =rr(co0) = rp(oo) (2-209)

[~

rg(o0) = rg(oo0) =

provided rg(oo), rr(o0) and rp(oo) are well defined.
Similar to Theorems 1.3 and 1.4 which are concerning class implications between

P(z) and T'(z), we have the following theorem regarding class implications between

P(z) and G(z) too.

Theorem 2.5 The following class implications hold.
(a) If P(z) is IFR then G(z) is IFR.
(b) If P(z) is DMRL then G(z) is DMRL.
(c) If P(z) is UBA then G(z) is UBA.
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(d) If P(z) is UBAE then G(z) is UBAE.
(e) If P(z) is 2-NBU then G(z) is NBUE.

Proof: If P(z) is IFR (DFR) then I'(z) is IFR (DFR) by Theorem 1.3.(a). Based
on the facts that convolution preserves the IFR property (that is, if X and Y are
independent with IFR distribution functions, then X+Y has an IFR distribution
function), since G(z) = H «I'(z) by (2.40), the convolution of distribution functions
H(z) and I'(z), and H(z) = 1 — e %= is IFR, we have that if P(z) is IFR, so are
I'(z) and G(z), proving (a).

From Theorem 1.3.(b), if P(z) is DMRL (IMRL) then I'(z) is DMRL (IMRL).
Since H(z) is IFR, by Bondesson (1983) [2], G(z) = T * H(z) is DMRL, proving
(b).

By Theorem 1.4, if P(z) is UWA (UBA) then I'(z) is UWA (UBA) and that
if P(z) is UWAE (UBAE) then I'(z) is UWAE (UBAE). Since H(z) is both UBA
and UBAE, and UBA and UBAE are closed under the convolution operation by
Alzaid (1994) [1], we get that G(z) = T = H(z) is UBA (UBAE) if P(z) is UBA
(UBAE), proving (c) and (d).

If P(z) is 2-NBU (2-NWU) then I'(z) is NBUE (NWUE) from Theorem 1.3.(¢),
that is, rr(z) < (2)rr(0). From (2.208), re(z) < %+ r(z) < %+rr(0) = rg(0),
that is, G(z) is NBUE, proving (e). @)

Lin (1996) [35] demonstrated that if the mean residual lifetime of G(z) satisfies

0<r <rg(z) <r; < oo then

(1—rr2)e™™ < K(u) < (1 —kry)e™™, u>0. (2.210)
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In addition, Lin and Willmot (1999) [36] showed that if P(z) is 2-NWU (2-NBU)
then rr(z) > (<)pr.a(p), and that if P(z) is NWUC (NBUC) then rp(z) > (<)
1/hr(0).

Therefore, since % < re(z) < -11; +re(z),

if P(z) is 2-NBU then L+ < re(z) < -,1; + #ra(p) = pea(p) and

b
[1 - ruGa(p)le™ < K(u) < [L—&/ble™", u>0; (2.211)
. . 1 1 1
if P(z) is NBUC then 3 <re(z) < A + m and
{1 - h[% + %(0)] }e“"" <K(u)<[l-x/ble ™, u>0; (2.212)

if P(z) is UWAE with rp(o0) € (0, o) then I'(z) is UWAE (that is, rr(z) < rp(o0))
by Willmot and Cai (1999) [46]. Hence % <rg(z) < %+ rr(oo) = %-}- rp(co) by
(2.206), and

{ 1— h[% + rp(oo)]}e_"" < K(u) <[1—r/Be™™, u>0: (2.213)
whereas if P(z) is UBAE with rp(c0) € (0,00), Alzaid (1994) [1] showed that
re(z) = 0. CE+ Y)Y 1 _ 1 _

T GR) = minfhr(), k()] _ minlhp(co), hu(co)]

= maz(rp(co), rg(o0)] = maz{rp(oo),1/8] with the help

min(1l/rp(00), 1/hg(o0)]
of (2.202) and (2.206), and

K(u) < {1 — k[maz(rp(c0),1/b)]}e™™*, u >0, (2.214)
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a tighter upper bound than [1 — x/ble~*«.

Note that no matter what class the distribution P(z) is, we always have the
upper bound [1 — %]e"‘“ for K(u). Moreover, the bounds in (2.210) may be im-
proved. For example, if G(z) is IMRL (DMRL), then the factor 1 — xr, (1 — kry)
may be replaced by (1 + B)~'. See Lin (1996) [35] and Willmot (1997) [45] for
details. Since if P(z) is IFR then G(z) is IFR, which implies that G(z) is DMRL,

we have that (1 + 8)"le™** < K(u).



Chapter 3

Moments

In this chapter, we first derive the expression for the (discounted) moments of deficit
at the time of ruin. An upper bound is also given if the claim size distribution
function satisfies a certain condition. Next, we will show that the Jjoint moment of
the penalty function and the time of ruin due to a claim satisfies a defective renewal
equation, and has an explicit expression. Then the joint moment of the deficit at
ruin and the time of ruin is just a special case by appropriate choice in the penalty
function w(z,y). Finally, the moments of the time of ruin due to oscillation and
caused by a claim, respectively, are studied. We also find that these two kinds of
moments of the time of ruin have the same recursive expressions. The expressions
for these functions based on the classical risk model without a diffusion process have
been proposed in Lin and Willmot (1999) [36], and Picard and Lefévre (1998) [38]
and (1999) [39].

83
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3.1 A technical preliminary

Recall that T,(z) is the n** equilibrium tail of the distribution function I(z) =
Lo(z). If we define v_,(p) = p; and v,(p) = J°Ta(z)dz forn =0,1,2, ... (that is,
Yn(p) is the mean of the n** equilibrium distribution function T.(z) of ['(z)), then
from (1.54), (1.56) and (2.78) we have

[T [T e Pa)dyae
/°° e " P,(y)dy
0
_/:o _/:o e~ P,.(z + y)dydz B /:o e—Pv /ow Po(z + y)dzdy

Il

(o) = [ Tu(a)dz =

= -py_ =<} -pv_
./o e " P,.(y)dy /0 e~ Pn(y)dy
Gl Po@)zdy [ e Punly)dy
[ e Pa)dy (m+1en [T emP, (y)dy
0 0

® —ou
Pn+2 ‘/0 e %dPnya(y) — Bra+1(p) n=01,....(3.1)
(n + 2)pnt1 /Oo e~ dP, .1 (y) (n + 1pr.a(p)’ v
0

Note that if § = 0, which implies p = 0, then pp.(0) = (n{’:—T)p by (2.77), and
1

_ Pn+2
m(0) = m (3.2)

Therefore Tny1(z) in (1.58) can be expressed as

/; Ca(y)dy _ (m + 1)pra(p) “f (y)dy, n=0,1,2,.

(p) bra+1(p) - (3.3)

Fn<l~1 (z) =
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Since Tny1 * H(u) = /0 “Cog1(u — 8)H'(s)ds = b i “Fat1( — s)e~ds, then by
[1]
(3.3)

b/o" Tn(u—s)ebds _ T xH(u)
Tn(p) T lp)

dPn+1 * H(u)

- (3.4)

= brn+1(0)e-bu +

Hence, we get
[ T Bz = 1a(p) [ dCnss  H(z) = va(p)Tmri s H(w),  (3.5)
where

Toyi * H(u) = 1—Toyy * H(u) = H(u) + H(u) ~ Toyy * H(u) = H(u)+ Toypy + H(w).
(3.6)

If we define

(i, p) = 7a(p) [/O"F(u — 2)dlpis  H(z) + Tomi = H H(u)], n=-1012,...,
(3.7)

with a,(0, p) = 7a(p), then by (3.4) and (3.5),
an(u,p) = /u-l?(u —z)T, « H(z)dz + /OOF,. * H(z)dz, n=0,1,2,..., (3.8)
0 u
and since 7_;(p) = p1, G(z) =T *« H(z) =T * H(z), by (1.39),

a1(u,0) = (1 +B)| [ Ki(u — 2)dG(z) + Cw|=n+AHK@.  (39)
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b / * e~Hu-=) / = e Pv=3P, (y)dydz
1) z
[)w e—wﬁn(y)dy

has the same form as g(u) = %/ou e~bu-2) /oo e v~ p(y)dydz, by (2.18) in

Since T, * H(u) = b/" e u-aF (z)dz =
0

lemma 2.1, T,, * H(u) can be expressed as

2/; e"’(“‘”’ﬁn(y)dy+/u e—p(v-u)p"(y)dy_e—bufo e"”’ﬁ,,(y)dy
a /0 e""’ﬁ,,(y)dy

T, * H(u) =
(3.10)
Therefore, when D — 0, then b/a — 1,
/ T eI, (y)dy

T+ H(u) & 22— — =Ca(u), ifu >0, (3.11)
/0 e~ P, (y)dy

and

Fo*H(u) = H(u) —Tpx H(u) - Th(u), ifu>0. (3-12)

We remark that for the case § = 0, (3.11) and (3.12) still hold by just replacing
To(u) by Prys(u), and H(u) by H.

Hence, in the case that D — 0, by (2.89), (3.11) and (3.12), equations (3.7),
(3.8) and (3.15) become

aO;n("'v P)
= 7o) [ Kols — 2)dluns(z) +Tan(@), n=-1,01,..., (313)
= /0 “Ro(u — z)Ta(z)dz + / “Tu(z)dz, n=0,1,2,.. ., (3.14)
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and

ao;—1(u, p) = p1(1 + Bo)Ko(u). (3.15)

There is a recursive equation for ay,(u,p) as follows:

Lemma 3.1 Foru>0

aﬂ+l(u, P)
= 5o [ entpre = [T - ;KR @) (3.16)
= 7 tp) fm an(t, p)dt — /mK* H(t)dt, n=—-1,0,1,..., (3.17)

where K x H(u) can be replaced with ¢,(u) by (2.103).

Moreover, when D — 0, an4;(u, p) reduces to

1 [~ ) oo ____
Qomia(p) = /; Qom(t, p)dt — /.. Ko(t)dt, n=-1,0,1,2,.... (3.18)
Proof: For n=-1, 0,1, 2, ..., by interchanging the order of integration, and by

integration by parts

/,, * /o "R(t — z)dTyy * H(z)dt
= /0" /u°° K(t — 2)dtdT sy = H(z) + /u°° /:° K(t — )dtdT s, * H(z)
= [ 7 R@)dtdCoss « H(z) + [ [l s H(z)] o
= [r,‘+1 . H(z)] /u ‘: f(t)dt,:- /0 L1 * Hz)K(u — z)dz +

T+ H(u) /0 " R(t)dt
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= [Fors « H@) [“ B0yt ~ [ R(w - )y + H(2)ds +
T v H(u) /o " R(t)at
= /0 “ R(t)dt — /0 “K(u - z)H(z)dz + /O “R(u ~ 2)Tors + H(z)dz,

combining with / o+ H(t)dt = / THt)dt + / ~ Fasa + H(t)dt by (3.6), then

u

from (3.7) and (3.8) we obtain

[ antt, )it
= 7a(p) r / > i "R (t — 2)dToyy + H(z)dt + /., ooI‘,.ﬂ_*H(t)dt]
= 1a(p) ia,.ﬂ(u, p) + /0 “R(t)dt — /: R(u — z)H(z)dz + /u = _I'I—(t)dtj
= 2(p) ia,,ﬁ(u, )+ ( /., “ i ") R(t)dt — /0 “K(z)H(u — z)dz + i > F(t)dt]
= a(p) ta,,.H(u, o+ “R(t)dt + i “R(z)H(u — z)dz + i = _I?(t)dt;
= 1olo) [anri(w.0) + [TR@dt + 7 [ R~ 2)dH(z) + SH@)|

= tm(p)|anni(wp) + [T K@)t + IKFE (O

hich implies (3.16) as well as (3,17) by.(2.107).
O e D b b el as (1T By 2400, (2.89), and

%K * H(u) = il)_[/o" K(u — z)dH(z) + F(u)]: /ou K(u — z)e "dz + %e‘b“ -0,
(3.19)

or

K+«Hu)=K(u)+H+K(u) = K(u)+ [0 " 642 K'(z)dz + K(0)H (u)
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— Ko(u)or 1, (3.20)

depending on u > 0 or u = 0, either implies

%tp) /:° @on(t, p)dt ~ /.. " Ro(t)dt. -

In addition to expressions (3.8) and (3.16), we also have the following alternative

ans1(u, p)(u) = agpsr1(, p)(u) =

representation for a,(u,p) from lemma 3.1.

Theorem 3.1 Foru >0

o __ 1o o°______ 1+8
ao(w,p) =B [ K(a)dz — ;K+H(w) = [ K+ H(z)dz - =K * H(u),
(3.21)
and forn=1, 2, §, ...
= B °c>:z:—u"_:z: r — — = m:t:—-u"“1 *« H(z)dz
wolr) = il R e - s [ e - K H o)
[ ™| sra-ilp) (2 — VR e H (z)dz 9
b3 I [ - R=H@)e, (3.22)

where prn(p) is given in (2.70), and K = H(u) can be replaced with ¢,(u) by (2.108).
Moreover, when D — 0, (8.21) and (8.22) reduce to

aoo(u,p) = o [ Ro(z)de, (3.23)

and forn=1, 2, 8, ...
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n—-1

—u)"Ko(z)dz— #rn=i(p) z—u) Ko(z)dz.
an(it ) = 22 (2= ) Ra(z)a Do M Bt 8l [ (@e~u)Ro(z)d

(3.24)

Proof: Since 7-1(p) = p; and a_;(u,p) = pi(1 + B)K(u) from (3.9), with n =

~1 and by (2.107), equation (3.17) becomes ao(x, p) = "M / K(z)dz —

f K+ H(z)dzs = ﬂ/ K(z)dz — -II;K v H(u) =

ﬂ/u K+ H(z)dz — [%’ E]K* H(u) = /., K+ H(z)dz —
We would like to prove (3.22) by induction on n with the help of the following

K = H(u).

1+
b
equation. For j > —1, by interchanging the order of integration we have

[ - Ry = 1 [T i Repe. @25)

Note that (3.25) still holds if we replace K(z) by K = H(z).
Now by 7(p) = pr.1(p) from (3.1), equation (3.17) becomes with n = 1

o (u, p)
= 70:,,) [ aott, p)at — [~ K= H(t)de
- 'nfp) /:b /t°° K(z)dzdt — b.,ol( ) / TR H(t)dt - / K+ H(t)dt
= #Ff(p) [ @-wR(@)dz - m/ K+ H(z)dz —/ K+ H(z)dz,

which shows (3.22) with n = 1.
Assume (3.22) holds for n = m, m > 1, then by (3.1), (3.17) yields with
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n=m+1

am+1(usp)
- ﬁ[‘m am(t,p)dt—/:o K+ H(t)dt

_ (m+Durm(p) B had wz_ mF =dt —
" prmei(p) I‘I‘.m(P)/u /t (= =)7K (=z)dzdt

(m+ Dprm(p) m il aP A a— e
sr,m+1(p) bpp,,,.(p)/., /: (z —t)" 7K * H(z)dzdt /u K + H(t)dt

S ™ | (At Durmp) prm-jlp) = (= BT
—.7';0 j Br.m+1(p) sr.m(p) -/': '[ (z =ty K« H(z)dzdt

m+l /w(z—u)"'K*H(z)dz—

—_ z_um+l r —
alrwrd A (O —r A

Hr m+l(P

m-—1 1 . oo R, c______
z m + f‘m(ﬂ/ (z —u)Pt'K « H(z)dz — / K * H(z)dz
=0\ j+1 Brm+1(p) Ju “

m+1 /w(z—u)"‘K*H(z)dz—

—u)" "' K(z)de — ———
) (z) bl‘r,m+1(P) u

ﬂ 00
m L @

~ [ ™+l | prme-i(p) [ T
i — u)K * H(z)dz,
,-2:3 j #r.m+1(p) /; (= =) =)

which proves (3.22).
When D — 0, B — B, (3.21) — (3.23) by (2.89) and (3.19), and (3.22) —
(3-24) by (2.89) and (3.20), and since the second term of the right side of (3.22)

approaches to 0. O
From (3.21), the defective tail probability of K (u) is
o __ 1 1——— 1 1
[” Riz)dz = E[ao(u, p)+ K+ H(u)]: E[ao(‘u, p) + 3¢,(u)]. (3.26)
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1

1+
counted (with discount factor 4) probability of the time of ruin caused by a claim

Since K(u) = ¢a(z) + #.(u), by (2.110) and (3.26), the defective tail dis-

1s

oo _ oo ___ 1 %) _ C!o(‘u, P)
/u éo(z)dz = /; R(e)dz ~ /.. bulz)de = 22200 (3.27)

where aqg(u, p) is explicitly given by (3.7) or (3.8) with n = 0.

In the special case § = 0, which implies p = 0, then 8 = 4, H(u) = Hy(u),
T.(z) =P, —  Pniz 17d -1
La(2) = Pasa(2), 1(0) = (P — by (3.2), and Kio(w) = 1 alu) +#i(u)
by (2.93). In addition, K * H(u) = ¢(u) turns out to be Ksz—o * Hy(u) = ¢u(u).

If we denote 7,(u) = an-1(%,0), n = 0,1,2,..., then with H(u) = H,(u), (3.7),

(3.8) and (3.9) become
no() = pu(1 + OFemolu) = pi [ba(w) + 1+ O (w)],  (3:28)
and forn =1,2,3,...,

= Pn1 & -z * z P.o,*H, (u .
’"(“)—m{/o Ksco(u ~z)dPuy » Hi(2) + Pt s Hy(w)},  (3.29)

or equivalently,
Ta(u) = / “ Kisco(t — 2)P, + Hy(z)dz + / TP« Hy(z)dz,  (3.30)
0 u
with Ks-o(u) given in (2.93) and

7a(0) = /ow P * Hy(z)dz = (n’_’:ﬁ. (3.31)
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Note that when D — 0, Kj-0(u) — t0o(u) by (2.92), and from (3.11) and (3.12),
equations (3.28), (3.29) and (3.30) reduce to

To0(u) = p1(1 + O)tpo(u), u >0, (3.32)
and forn =1,2,3,...,
_ Pn+1 u“ >
(@) = =E{ [y 2)dPus(z) + Pann@)}  (333)
= /0 " o(u — 2)Po(z)dz + / “ Po(z)dz, u>0. (3.34)

Furthermore, when D — 0, by (3.20) with H replaced by H,

Ko * Hi(u) = Kos=0(u) = ¢o(u) or 1, (3.35)

depending on u > 0 or u = 0.
In the special case § = 0 and by (2.77), (3.2) and (3.35), lemma 3.1 and theo-

rem 3.1 respectively become

Corollary 3.1 Foru >0

Tase(u) = (—’% /;  ra(t)dt — /., Koo+ Hy(t)dt, n=0,1,2,..., (3.36)

where Ks—o * H,(u) can be replaced with v.(u) by (2.105).

Moreover, when D — 0, 7,4,(u) reduces to
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(n +1)p,

Ton+1(u) = Pt
n

[ ma®)dt— [To(tdt, m=0,12... (337
Corollary 3.2 Foru >0

oo D
n(w) = 6 /., Ks=o(z)dz — —Kiszo * Hi(u)

o __ D ——
= 6 /.. Kimo* Hy(z)dz — Koo = Hy(), (3.38)
and forn=2, 8, 4, ...
Tn(u)
_ mp @ [ 15 n(n —1)Dp, [ o \ner——F
= (z — u)" " Ks=o(z)dz — T (z —u)""*Ks=0 * H\(z)dz
n—2 n _: oo .
- z% . ”; 3 /., (z — u)Ksmo + Hy(z)dz, (3.39)
= J n

where Ks=o(u) is given in (2.93), and K=o * H;(u) can be replaced with Ye(u) by
(2.105).
Moreover, when D — 0, (3.88) and (3.89) reduce to

roa(w) =8 [ po(z)dz, (3.40)

u

and for n=2, 3, 4,...
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np, o n-2 n n-J
A e ol Il L P VAR Rty

i=o \ j

Tomn(u) =

Example 3.1 Combination of exponentials and mixture of Erlangs (b # u)

r41
As shown in example 2.5 and example 2.6 that K(u) = 8 Z Die™"*" and K * H(u)
k=1
r+1 b
=83 28 —uv By (3.9) and (3.21),
k=1 b— Sk
_ r+1
a_1(n,p) = p1(1 + B)K(u) = p1B(1 + B) }_ Dre~ (3.42)
and
oo ___ ) P
ao(w,p) = B[ R(z)dz — ;K +H(u)
r+l1 r+l D b
— 2 —aiz k e~y
- ﬂZDk/ dz bzb—sk
r+l1 ﬂ 1
— ~ _ -8 u
> D,,Lk b_“]e , (3.43)

a combination of exponential functions. To compute a.(u,p) for n = 1, 2,3,...,

first calculate

/w(z —u)"K(z)dz
r+l r+l

= ﬂZDk/ (z —u)"e™***dz =3 Die” "‘"/O‘ zhe” " dr

k=1
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r+1
Bn! D e
: n+l

k=1 Sk

—_ —au

and

/ “(z — w) K+ H(z)dz

96

r41
by / (= - we=ds
r+1
—8hY
A7 E 1 (6— .sk).s’+l (b—s)sitT°

Then by prq(p) = n! 2 z—' in (2.79), (3.22) for n = 1,2,3,. .. becomes,
=1
2 r+1 r+1
— ] e~y 1 e 'Y _
anliop) = o w3 pe ol > o
n-1 r+l b
B sra-i(P)3' Y ﬁe"""]
i=0 \ j k=1 (b— si)s;
,H r+l [ ,6 1 1 ] _
= D p— sgu
i 9% kz=:1 gt T B —sk)sp .1z=t:: mz:—l p? (b— se)siil®
i=1 ,‘:‘
Jé; r+1 Dk{ﬂ [ r q. n-1 "—1-.1 B
S, PSS SF ia | IO
Eq_'kglsz Sk b—sk Eﬂmgpﬂl’
=1 "?
1-(2£Y"
B '*‘Dk{ﬂ 1 [ “(,T,,,) ]}_
- _P it ) N b ___N4wm/ “nu 44
Z':‘I_:’g%‘ w b-alt :‘-:xq"' s 155 (344)
=1 l‘?

a combination of exponential functions.
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Since Ta(u) = an-1(u,0) for n = 0,1,2,..., from (3.42), (3.43) and (3.44)

— r+1
To(u) = p1(1 + 6)Ks=o(u) = p18(1 + ) Y D s—oe™"t4=0%, (3.45)
k=1
n(uw) = = _ -, =0“’ 4
: k=1 ké=0 [3k,6=0 ¢/D — shs:o]e ( )

and forn =1,2,3,...

T (u) _ 0 H Dk,J:O
" i qi-,5=0 k=1 3:;;0
=1 "?-1
Sks=0\"!
{ 8 1 [1+cz': - 1_(""') ]}-'u-ou
_ — _ e ké=0%,
Sks=0 ¢/D — s 45-0 D &= m.s=0 Bm — Sks=0
(3.47)
0

3.2 Discounted moment of the deficit

In this section, we are going to study the (discounted) moment of the deficit at
the time of ruin caused by a claim. To see this, let’s consider the special case that
w(z,y) = y™ where n is a positive integer, then a relatively simple expression exists

for (2.2) as follows:
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Theorem 3.2 Foru>0andn=1,2,3,...,

E{e"TIU(TIMIT < o0, U(T) <0)}= },[nur.,.-l(p)a..-l(u,p)—pr.n(p)Tf*_H(u)]
(3.48)

where an(u,p) is given in (3.22), and K + H(u) can be replaced with de(u) by

(2.108).

In addition, when D — 0, equation (3.48) reduces to

E{e“‘TIU(T)I"I(T < oo)}= ﬂio[n#r.n-l(l’)aom—l(“,ﬁ) - nr.n(p)?o(u)] (3.49)
with ag.n(u,p) given in (3.24).

Proof: From (1.54), (1.55), (1.56) and (1.57), B(u) in (2.114) with w(z,y) = y"

becomes

et /ou e** /m e~ /w(y — z)"dP(y)dzds
1 foo _
s e Py
pae” /Ou e er? /w e **P,.(z)dzds
1 =)
Zpl/(; e dP,(y)
pbe™t /u eb'r,.(s)ds . .
- Jo / e="P,(y)dy
p [ e dPy) o

pn Py /0 e="VdP,,(y)

p1(n+1)p, /°° e~*dP,(y)
0

B(u) =

[be"’" /ou eb'Fn(s)ds] .

Then by (2.77) and (2.78),
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B(u) = pra(p) /0 “Ta(s) H'(u — s)ds = #r.a(p)Tn * H(u), (3-50)

and from (3.1), (3.6) and (3.7), (1.44) becomes

bow) = 5 ["Rlu-2)dB(e) + 3B(s) ~ SBOK@)
= “r#(f’) t_ /0"7(1, ~z)dl, « H(z) + T, * H(u)]
- "F#W - [R(u - 2)dlH(z) - T x H(z)] + Ta ¥ B (w) - Hu)|
= “L-};.(L) :/0“?(1, —z)dTy * H(z) + T x H(u) = K * H(u) — F(u)]
- ) - T
= Mrsilo u,p) - SO TR W)

That is, £{e~T|U(T)"I(T < 00, U(T) < 0)}= 5 [P0-1(p)n-1 (. ) = pre.a(p)
KE~H H(u)] which is (3.48). If D — 0, then 8 — fo, and K+ H(u) — Ko(u) for

u >0 b{ (3.20), proving (3. 49) for the case u > 0.
he case u = % ) with v = 0 becomes

i inllr,n—x(l’)aom_x(ﬂ, p) — m.'"(p)’j?o(o)]

1

= E :[.l["n(P) - 1 _:ﬂol‘l‘.n(P)]

pra(p)
(1+Bo)’

by (3.1) and (3.14). Moreover, from (1.44), (2.77), (2.116), (1.55), (1.56) and (2.78),
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#0(0)

% [Bo(0) - Bo(0)Fo(0)]
1

550 Bo(0)

) /0 ¥ g /, "y — z)"dP(y)dz

(1+ Bo) /w e " P(z)dz

]
1 Pn /:O e P, (z)dz
(1+ 5o) / ~ e P(z)dz
(1]

e [
(14 Bo) (n + 1)p; /m e " dP\(z)
0

l‘l‘.n(P)
(14 Bo)’

which shows that (3.49) also holds for the case u = 0.

When n = 1, by (3.21) and pc,1(p) = pra(p) + %, (3.48) turns out to be

with pg,1(p) given in (2.75). If further D — 0, then by (3.23), (3.49) becomes

E{e“’TlU(T)II(T < 00, U(T) < 0)|U(0) = u}

1
B
1

u

[1eolp)ao(u,p) ~ ura(p) K= H(u)|
58 [ K@)z - JRTH@W) - pra( K+ H(w)|

[ " K(z)dz — "L';(”lm(u)

100

(3.51)
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Bl U < w)|U(0) = u}= [~ Ro(e)dz - A Row)  (352)

1
where ur,1(p) = 1—__1)% s

If in the special case that § = 0, then 8 = 6, H(u) = Hi(u) and a,-;(u,0) =
Ta(u), and from (2.77) and (3.35), theorem 3.2 becomes

Corollary 3.3 Foru>0andn=1,2,3,...,

n _\_ 1 _ Pt o ]
E{ [U(T)["I(T < o0, U(T) < 0)|U(0) = u}-- 3 [p,,r,.(u) Post Koo Hi(u)
(3.53)
where T,(u) is given in (3.88) and (3.89), and Kz—o x H 1(u) can be replaced with
Ye(u) by (2.105). In addition, when D — 0, equation (3.58) reduces to

n _ _ 1 Pn
E{|UT)IMIT < 0)lU(0) = u}= g [Porom(w) - Ptgow)] (350

with 1,(u) given in (8.40) and (3.41).

When n = 1, by (3.38), (3.53) turns out to be

E{IU(T)II(T < 00, U(T) < 0)|U(0) = u}

cp2 + 2D

rep g Ko=o * Hi(u) (3.55)

= /., * Kso(z)dz —
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where Kj-0 * H,(u) can be replaced with ¥,(x) by (2.105). If further D — 0, then
Ks-0(u) = ¥o(u), and by (3.35), (3.55) reduces to

Yo(u). (3.56)

— ol ™ P2
E{[U(T)II(T < o0)|U(0) = up= [ Yo(z)dz - P

The second moment, and hence the variance, of the deficit at the time of ruin

caused by a claim can also be easily obtained from (3.53).

Example 3.2 Combination of exponentials and mixture of Erlangs (b # u)

r+l
As shown in example 3.1 that ao(u,p) = ﬂz D, [g -3 13 ]e""" and for n =
Sk — Sk

& D 1 — (S&/ e )"
1,2,3,..., [1+b - | Jeme.
an(u,p) = Eq' ,; ST 3,‘ b—s mz—l in — 0% e

bl Ly
Combine these with ur,(p) = n! Z: z': from (2.79) and K * H(u) =

. m=1
r+
3 2 kab ~** from (2.149), (3.48) with n = 1 turns out to be

E{e“’TIU(T)ll(T < 00, U(T) < 0)|U(0) = u}

= Z[a0wp) — prap KT H )]
— l = E - 1 —-5nu _ Im sy Dkb e—thu
B ﬂ[ﬂng Sk b—sk)e mz_:lllm k=1 b— sk ]
r+41 ﬂ -.‘u
- ’;Dk[;—b_”(l+b'§1 £ ] (3.57)

a combination of exponential functions, and for n = 2,3,4,. ..,
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E{e“‘TIU(T)I“I(T < 00, U(T) < 0)|U(0) = u}
o T AL

m=1
e r+4+l
q Db _
n' am — e L3

mz_:l [ 1 kX-: — Sk

r+1 = u-l —_ an—1 n-1
B e B

k=1 % sk — Sk m=1 I‘;'n- Bm — Sk Hm

r+1 Dk (Sk/I‘ )
= Yy 2 [ (1 +53 ¢ m )] - 3.58

k=1 Sk ! — Sk mz—x — Sk ( )

a combination of exponential functions. Note that (3.58) with n = 1 reduces to
(3.57). Therefore, (3.58) holds for » = 1,2,3,.... When 6§ =0, for n = 1,2,3,...,

(3.58) turns out to be

E{ [U(T)["I(T < o0,U(T) < 0)|U(0) = u}

= ql 'f Dk 5_0 [ ) _ D
21 Skdmo LSks=0 ¢ — Dsps—0
1- (Ska_o/M)")] -
1+=Y ¢ isou (359
( mz_l 4=0 Bm — Sk5=0 ( )

a

Now, we have an upper bound for functions of the deficit at the time of ruin

caused by a claim as follows:
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Theorem 3.3 If P(z) is DMRL, then forn =1,2,3,...,
E{e=T\U(T)I"I(T < o0, U(T) < 0} bralp) K (w). (3.60)

Proof: If P(z) is IMRL(DMRL), by theorem 3.2 of Lin and Willmot (1999) [36],
I(z) is IMRL (DMRL) which implies (Fagiuoli and Pellerey, (1994) [19]) that the
n** equilibrium distribution function I's(z) is NWUE (NBUE), that is, Ty, (z) >
(<) Ta(z). Then by (3.50), B(u) = pra(p)Tn ¢ H(u) > (<) pra(p)T = H(u) =
#rn(p)[G(u) — H(u)).

Therefore, if P(z) is DMRL, then B(u) < pr.n(p)[C(x) — H(w)] < pirn(p)C(x)
which implies E{e"“TIU(T)I"I(T < 00, U(T) < 0)}5 pr.n(p) K (u) by theorem 1.1.

a

Corollary 3.4 If P(z) is DMRL, then forn =1,2,3,...,

E{ [U(T)|"[(T < o0, U(T) < 0)}5 (—ﬁ%l)p,?‘ﬂ(") - (-n%l)pl[ bulw)+ fdiug]

(3.61)
Pr:of: When & = 0, pra(0) = (n‘:ﬁ by (2.77), and Kiseo(u) = 4.(u) +
Trgv) =

When D — 0, we can obtain both lower bound and upper bound for functions

of the deficit at the time of ruin caused by a claim as follows:

Corollary 3.5 If P(z) is IMRL (DMRL), then forn =1,2,3,...,

E{eTIU@)I(T < 00)}2 (<) pr.a(p)Ko(w). (3.62)
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Proof: From the proof of theorem 3.3, if P(z) is IMRL (DMRL), then B(u) =
#r.a(p)Tn * H(u) > (<) pra(p)T * H(u). When D — 0, by (3.11) the inequality
reduces to Bo(u) = pra(p)Tn(u) > (<) pra(p)T(u), then by theorem 1.1 which
becomes “By(u) > (<) c¢"T(u) where 0 < ¢* < o0, then ¢o(u) > (<) c"Ko(u)” in
the case that D — 0, we get (3.62). ]

To obtain the discounted joint moments of the surplus U(T —) before the time of
ruin and the deficit [U(T')| at the time of ruin due to a jump, just set w(z,y) = z™y",

for m,n=0,1,2,..., in (2.2) to form
$u(u) = Ele™*TU(T—)"|U(T)|I"I(T < 00, U(T) < 0)], u>0. (3.63)

Then by (1.55), B(u) in (2.114) becomes

B e b /ou e* /.oo e g™ /:o(y — z)*dP(y)dzds

B(u)
O —
- Py
s [ e Py
—bu Yoas [ —-pz, MDD
_ bp.e /Oe [ e "z P,,(:z:)dzds.
[ e Py
If we define
Pma(p) = /:o e~ *z™ Pp(z)dz (3.64)
and
_ e’ / T ey P, (y)dy / ~ ey Po(y)dy
Lmn(z;p) = —53 =—= (3.65)

/ T ey Pay)dy Pmn(P)
0
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with T n(z; p) = Tn(z) and T, (z;0) = P,.1(z), then B(u) can be written as

B(u) = pn’;‘%((:)) 0" T n(s; p)be™"ds = d,, .(p)Tran(p) * H(u) (3.66)

where d n(p) = p,,w. From (1.44), (3.63) turns out to be
Poo(p)

E[e~TU(T—)™|U(T)|"I(T < oo, U(T) < 0)]

= _% 0" K(u —z)dB(z) + %B(u) - %3(0)7(“)

_ dmz(p) T_ /’0" K(u ~ z)dTma(p) * H(z) + Tnlp) « H (u)]

= “m;(”) T_ /0 “K(u ~ 2)d[H(z) — Tmn(p) * H(z)] + Tn(p) = H(u) — F(u)]
- d"'v;’(”) [ R(s ~ 2)dTomn(p) * H(z) + Tra(p) # H(w) ~ K + H(u) - Hw)]
_ dm.g(p) [ B~ 2)dCma(p) » H(z) + Tmn(p) * B(w) - K% H)|- (367

In general, the integration calculation for Ty n(z;p) (or [ n(z; p)) is very com-
plicated, especially when m is large. It seems that we have no similar expression

like (3.48), in which case m is equal to 0.

3.3 Joint moment of the deficit at and the time
of ruin

In this section, we will study the joint moment of the deficit [U(T)| at ruin and the

time of ruin T due to a claim. First, consider ¥; ,,(u), the joint moment of the time
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of ruin T caused by a claim, and the associated penalty function, w(U(T-), |U(T))),

that is,
Y1w(u) = E[Tw(U(T-), |[U(T)) (T < 00,U(T) < 0)|U0) =u|, u>0, (3.68)

then we can differentiate (2.2) with respect to § and set § = 0 to get ¥y . (u),
namely, ¥ ,(u) = —%cﬁw(u)I;:o. Now we will show that 4, ,(u) satisfies a defec-

tive renewal equation and has an explicit expression as follows:

Theorem 3.4 Foru >0, ¥, ,(u) in (3.68) satisfies the defective renewal equation
'/ (u)——l-/udw (v — z)dP, *H(z)+—1—B (u) (3.69)
lw -1+00 1wl .'B) 1 1 1+0 1w l¥), .

and is given ezplicitly by

Yrwl(u) = Ap% [ Rioco x Hyu = 2)u seole)de

1 (e -
+ Aplgz [/0 KJ:O * Hl(u - z)B&:o(:l:)d:B <+ /': BJ=0(z)dz —_

RKicov Hi(u) /o B;=o(z)dz], (3.70)
where

$us=o(v) = E[w(U(T-),|U(T))I(T < o0, UT) <O)U0) =]  (3.7)
1
5
Bso(u) = pi [ bau—2) [7 wty)dyde, (3.73)

- _% /0 " Rico(u — 2)Bi_y(z)dz + ~Bso(u), (3.72)
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Bru(u) = ,\; [ hu—z) [ busmoly)dyd (3.74)
= o7 [ / Komo * Hy(u — z) Bs—o(z)dz + /,. * Bico(z)dz —
Hi(u) /o B,=0(z)dz], (3.75)

and Ks—o * H,(u) can be replaced with 1(u) by (2.105).

In addition, when D — 0, equation (8.69) reduces to

Yo wlu) = 1+0/ Youu(n - 2)dPi(z) + 7 0301.,,(14) (3.76)

and is given ezplicitly by

Yow(u) = ’\—1}1—9 /ou Yo(u — z)¢0'5=o(z)dz
+ A,,Lo [ ol — 2)Boseo(z)dz + [~ Bosoofa)da —

Yolu) [~ Bo,5=o(z)dz], (3.77)

where

Yoi(u) = ETw(U(T-), [W(D)IT < 0)lU(0) = vl = —du(w)lsa (3.78)

$os=0(v) = E[w(U(T-),|U(T))I(T < o)|U(0) = u] (3.79)
= —% /ou Yo(u — z) By 5_o(z)dz + %B(M:o(u), (3.80)

Boseo(u) = pll [ wle)dz, (3.81)



CHAPTER 3. MOMENTS 109

and

Bonw(u) = :\11)_1 /u°°¢0,5=o(z)dz (3.82)

- ’\p%[ O" Yol — ) Boseo(z)dz + /.‘ > Bma:o(z)dz]. (3.83)

Proof: Perform the Laplace transform on the both sides of (2.2), then by (2.19)
and (2.22), equation (2.189) becomes

s ABEO -1+ D+ ep—35 A&(E) — (o)
W)= G ae-0p @)t GroG-ep

Since 71(6) = ~—EE and (64 £)(p — D] - (ABE) — 1] + D + cp — 6} =
[D(p* —€*)+ec(p—E€)]—[—Ap1&p1 (§) + Dp* +cp—8) = —{Df’+c£[1—ﬁﬁx(£)]—6},

we have

{D€ +et[1 - (0] -6} dule.8) = A0 ~a00)]. 80

Since 1.0(6) = [~ e hru(ldu = — 25 [T e (udulioo = — 5, (€, ) oco,

differentiating with respect to § and then setting § = 0 lead to
S | L
30(6,0) + { D€ + €[t = 551(0)] }1l&) = #0) [ zu(e)ds.

Further letting £ = 0 gives $,,(0,0) = p'(0) /co zw(z)dz. Therefore,
0

{6 + e[t = 125710 H(©) = 00,0 - 4t 0).
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Division by (D€? + c€) yields

1 _¢/D _1 c/D $u(0,0) ~ $u(£,0)
which is exactly the Laplace transform of (3.69) with B, ,(u) given in (3.74). The
uniqueness of the Laplace transform gives (3.69).

From (2.13), ¢ws=0(y) in (3.71) satisfies the defective renewal equation

1 v 1
bus=ow) = 755 [ buseoly — )hu x ha(t)dt + 5 Bomoly),

with Bs—o(y) given in (3.73). Then by (1.44) with § = 0, @, s-0(y) can be expressed

as
1 v 1
bus=o(y) = —5 [ Kooy — ) Bioo(t)dt + 5 Boco(y).
c YV . had
If —/ e'U'/ w(z)dzdt — oo, as y — oo, then by L’Hopital’s rule, we have
D Jo t

i_ﬁf;’e%' I w(z)dzdt . lim eBY [* w(z)dz

yli»nolo Bs=oly) = v p, D etV p1 D y=e -B—e%”
1 . - <}
= p—lull&lo ’ w(z)dz = 0. (3.85)
Therefore,

A ” fov s=0(y — t) Bj_o(t)dtdy
/oz ” Ks=o(y — t)B;_,(t)dydt + /:o /;w Kis—o(y — t)Bi_o(t)dydt
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= [ [ oo Bicaltrayt + [ [~ Bioo@)dt] [ [~ Rucoly)a]
= Biolt) [ m=o(y)dy|:— [ Banolz — ) Bsolt)dt -

Bi—o(@) | Kioly)dy
= — [ Riozolz ~ y) Bsco(y)d.

Integrating (3.72) for ¢y s=0(y) from y = z to y = oo yields

1 foo pv__ 1 pe=
~5 L [ Fomoly - 0Bs_o(t)itay + 7 [~ Bicoly)dy

1 = 1 po
= 5[} Fonolz =) Bosolwddy + 5 [ Bocoly)ay.

/x ~ $w.s=0(y)dy

Then by the associative property of convolution, integration by parts, and

K=o * Hy(u) = Ks=0 * H(u) + H,(u), equation (3.74) becomes

Bl‘w(u)

1 u %
= /0 hy(u — z) L bus=o(y)dydz

1 [ pu z__
= [ bau—2) [ Rico(z ~ y) Binoly)dydz +

Ap:16t
/0 * hy(u - 2) /, > B.;___o(y)dydz] (3.86)

= o5 Koo * Hi(u—2)Bocola)dz + L[ Bolw)dydBi(u - )|

= .0 .‘/(: Ks—o * Hy(u — z) Bs—o(z)dz +/u Bs=o(y)dy —

Hi(u) /:o Bs-o(y)dy + /Ou H(u - z)Bs__-o(z)dz] .

which is (3.75).
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Since By o(u) = % [ ) [ busoly)dydz, and from (3.72)

<o 1 «© o ___ 1 oo
'/0 ¢w,5=0(u)du = —5/(; B;=o(z)dz/0 K5=o(u)du+ 5/0 B;=o(u)du

1 - <]
= 5/0 Bs—o(u)du (3.87)
by B;s=0(0) = 0 and (3.85), then we have

Blutw) = 3=[ln@) [ busmolo)dy — [ ma(e)busmolu - 2)de]

1 ) 1 “
= —z\plohl(u)/o Ba:o(y)dy - E/O hl(u — z)¢w,5=o(:l:)dz.

Apply (1.44) again with § = 0 and by the associative property of convolution,

Yiw(n) = _% /0 “ Kiseolu — 2) B, (z)dz + %B;,.,,(u)
= ,\;}10 /ou Ks-o(u —z) /Oz hi(z — y)¢w s=0(y)dydz + %Bl.w(") -
ﬁ /0 " Kol — z)hy(z)dz /0 ~ Bso(y)dy
= 557 Fomot Hilw — 2)dusmoleldz + 3 Brufu) -
I#fs:o * Hy(u) /om Bs=o(y)dy, (388)

which is (3.70), by (3.75) and Ks—0 * H,(u) = Ks-0 * Hy(u) + H,(u).
When D — 0, dP, « Hy(z) = hy * hy(z)dz — hy(z)dz = dP;(z) by (1.19) and
(2.20), and

[ m=2) [~ du(y)dyde
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[ [ tut)dydBy(u - )

Hiw—2) [ du(w)dy] + [ Hi(u — 2)gu(z)de

= [ e@ds - Fatw) [~ bulelde + [“Hi(u - z)du(z)dz
. /u°°¢o(z)dz, if u>0,

which prove equations (3.76) and (3. 82) for u > 0 from (3.69) and (3.74).
Similarly, when D — 0, Bymo(u) = - / hy(u — z) / w(y)dydz —

—/ w(z)dz = Bggs=o(u), and all Ks-o(u), Ks—0 * H;(u) and Kj—o * H. H,(u) ap-

proach to to(u) for » > 0, which imply (3.73) — (3.81), (3.72) — (3.80), (3.75) —

(3-83) and (3.70) — (3.77) for « > 0. In fact, equations (3.76)-(3.83) can be shown

for both cases z > 0 and u = 0 by similar derivations based on the traditional risk

model (1.1). o
We remark that /; = Bjs—o(z)dz and /0 ~ B;_o(z)dz on the right side of (3.70)

and (3.75) can be written as follows:

/:o Bs=o(y)dy
- pll :° /O”h,(y—t) /. * w(s)dsdtdy
_ I.}l_/o'/:" hl(y—t)/:ow(s)dsdydt+pl1/zm /:" hl(y—t)/‘ww(s)dsdydt
- % /0 * / Z hyi(y) /e ~ w(s)dsdydt + pll[ /0 * h,(y)dy] /, = /t * w(s)dsdt
= p_ljozﬁl(z —t)/:mw(s)dsdupll/f /:w(s)dtds
_ pil /0 “Hi(z—t) [ ~ w(s)dsdt + pll /, (8 — z)w(s)ds (3.89)

— -;—l/:o(s — z)w(s)ds = /:o By s=o(y)dy, when D — 0, (3.90)
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and

[ Bicoly)dy = pl [ sws)ds = [~ Boseolu)dy. (3.91)

Theorem 3.4 provides the explicit expression and the defective renewal equation
for 11 w(u), the joint moment of the time of ruin T due to a claim, and the associ-
ated penalty function w(U(T—), [U(T)|). If we consider the important special case
w(U(T-),|U(T)|) = |U(T)|", and define

Y1.n(x) = E[T|U(T)["I(T < 00, U(T) < 0)[U(0) =4}, «>0, n=0,1,2,...,
(3.92)

the joint moment of the time of ruin T caused by a claim, and the deficit to the

n'* at ruin, then we have the following result.

Theorem 3.5 Foru >0andn =0,1,2,..., Y1n(u) in (8.92) satisfies the defective

renewal equation

Yrnw) = —— [ fra(u — 2)dPs » Hy(®) + —Pr o hi(u),  (3.93)

1+6Jo (n + 1)cp,8
and s given ezplicitly by
‘wl.n(u)
Pn [“——F (1 _ _ Pn+2 T
ot , Komow Ha(u = 2)ra(e)de = ot Koo ()
o +P;)+;p_292 [Tn+1 (u) — /0 Ks—o* H)(u — z)Kj5-0 * Hl(z)dz] (3.94)
1
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where T4y * hy(u) = /ou hi(u — z)Top1(z)dz, To(u) = p1(1 + 0)Ks=0(u), T1(u) is
gwen by (3.38), T.(u) is given by (3.89) forn = 2,3,4,..., and Ks—o0 * Hy(u) can
be replaced with y(u) by (2.105).

In addition, when D — 0, equation (8.93) reduces to

1,00;1'"(11.) = 1—_1_0T /ou 1/)0;1,13(‘“ - z)dPI(z) + (n__:%'l-cp—lé‘l’o;n.{,_l(u), (395)
and is given ezplicitly by
Vo) = 335 [ ol = Dhrom(a)de ~ g B (a)
(n +pi‘;:p20_2 [1'0'11+1(u) /0 Yo(u — z)¢o(z)dz] (3.96)

where To,0(u) = p1(1 + 6)4po(u), Toa(u) is given by (3.40), Ton(u) i given by (3.41)
forn=23,4,..., and

Yoan(n) = E[T|U(T)|"I(T < )|U0) =u], ,u>0, ,n=0,1,2,.... (3.97)

Proof: When w(z,y) = y™ and § =0, T(z) = Pp+1(z), and from (2. 77) and (3.50),
_ Pl 5

Bs—o(u) = _(n ¥ 1)m Py * Hy(u). (3.98)

By (3.30) and (3.86),

1+ oB‘ w(v)
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1 Pn+1 [ z __ _
= - =o(z — y) P, dyd
Ap16(1 + 6) (n + 1)p, Eh‘(“ "’)/0 Ks=o(z — y)Pn1 + Hi(y)dydz +

_/(; hi(u — z)/ P+ Hl(y)dyda:]
Pn+1 u z__ —
(n + 1)ep18 Jo h(u —z) [/0 Ks=0(z — y)Pns1 = Hi(y)dy +
_/ Py * Hl(y)dy]d$
Pn+1

= m A hl(u - 2)1',,+1(z)d:l:
= (nfl;wr"“ * hi(u),

I

which is the second term of the right side of (3.93). And hence the second term of
the right side of (3.88),

1
—Bl'w(u)

6
DPn41
= WT,“H' * h1 (u)

= (n—-{-p]_'%%‘/o ‘r,,+1(:c)d§1(u—z)

= -(n—-{»-% [Tn+l(3)Fl / H1 (u z) +1(z)d1:]

= '(n_:’ﬁg_g ["'n+1(“) — Tut1(0)Hy (u) + M/ Hi(u — z)7a(z)dz —
_/ Hy(u—z)K;-0 * Hl(z)dz]

= _—_p"+1 Pn+2 ﬁl(u) +

(n + 1)Ap262 T () = (n + 1)(n + 2)\p36?

/ Hy(u — z)1,(z)dz — (_-:;.';:—1)302[) H\(u — z)K;5-0 * Hy(z)dz,

Ap=0=

by (3.31) and (3.36).
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Next, using (3.53), ¢ws=0(u) in (3.71) becomes

Pw,s=0(u) = [p.. To(u) — p"“ mx(ﬂ)]

Therefore, the first term of the right side of (3.88) turns out to be

1 “_ ) e
_Ap202 / Ks—0* Hy(u—2z) [p,,‘r,,(z) - P-;-ll Ks—0 * Hl(z)] dz

202 / K=o * Hy(u — z)7r,(z)dz ~

arioed f, Komo® Hilu — 2)Kizo v Hy(2)de.

Finally, from (3.31), the third term of the right side of (3.88) is simplied to

1 Pn+1 37 * &
5o T Dy Koo Ha(®) [ Py * Hiy)dy

Pn+1 Pny2 74
_ Ks—o* H
(n + )APIO? (n + 2)pngy =0 * 1)

(n + 1)(n + 2)Ap20

Adding up together these three alternative expressions above for the right side of
(3.88) gives (3.94) using Ks—o * H,(u) = K=o * Hy(u) + Hy(u).

As regarding (3.95) and (3.96), they can be shown either by similar arguments
above from (3.76) and (3.77) or by letting D — 0, 7,4, * hi(u) = 7o.041(u),
Ta(u) = Tom(u) and Ks—o * H,(u) — to(u) in (3. 93) and (3.94). The latter ap-

proach, however, can show only for u > 0. a
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Corollary 3.6
Y1,1(n) = E[T|U(T)I(T < 00, U(T) < 0)|U(0) = 4], u>0, (3.99)
satisfies the defective renewal equation
Y1.1(u)
1 1 fu oo -
= {77 /0 Y1a(v — 2)dP x Hy(z) + 2 /0 hy(u — z) /, (v — z) Ks=o(y)dydz
2Dp, + cp; (v o
e )y mu=2) [ Ko Hyy)dyds (3.100)

and s given ezplicitly by

Y1,1(u)
- ol T B o) [ Romow Huydyds + [ = 2)Fico(z)da]
- %l?\%%’z/ Kizo * Hy(u — 2)Ksmo * Hy(z)dz
_ 3%:_@: / Kico + Hy(z)dz — o 021{5_0 H,(u) (3.101)

where Ks=o * H,(u) can be replaced with 1.(u) by (2.105).
In addition, when D — 0, equation (3.100) reduces to

doaaw) = g [ ona(w=2)aP) + 5 [T (o= whbole)de — P [* gofa)de
(3.102)
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and is given ezplicitly by

Yo;1,1(n)
oL Vote = 2) [ vowldyde + [~z — upo(a)ie]
~ g [, Yolu—2Wo(e)dz + [ go(z)de] ~ SaggrYolu) (3.103)

where

Yoa,1(v) = E[T|U(T)|I(T < 00)|U(0) = u], u > 0. (3.104)

Proof: When n = 1, 1,4,(z) in (3.93) becomes r;(z) = 2p:

__ 2Dpy + cp;
cp2
Combining the expression for 72(u) with 7(z) = 0/ K=o * H,(y)dy —
D

FKG:O * H,(z) by (3.38), equation (3.94) with » = 1 becomes
1

/ (v — z)Ks=o(y)dy

/ Ki—o * Hy(y)dy by (3.39) with n = 2, whxch leads to (3.100).

Y1.1(n)

X D ___
= Ap19’/ Ks_o*Hl(u—z)[/; Ks:o*fll(y)dy——K5=0*H1(,,)]dz

A
_ Pz [2pf 2Dp, + cp;
ZAp262 [ / (z — u)Ks=o(z)dz — B f Ks—o * Hy(z)dz —

/0 Ki—o * Hy(v — z)Ks—o * Hy(z)dz| — K=o + H, (),

] 6A 202

which is (3.101) after some rearrangements.

(3.102) and (3.103) can be shown either by similar arguments from (3. 95)
and (3.96) with 7o,4(z) = 0/ %o(y)dy and 7o2(z) = 2p10/ (y — z)¥o(y)dy —
/ Yo(y)dy by (3.40) and (3.41), or by letting D — 0, both Ks—o(u) and
K=o * Hy(u) = vo(u) in (3.100) and (3.101). The latter approach, however, can




CHAPTER 3. MOMENTS 120

show only for u > 0. o

Example 3.3 Combination of exponentials and mixture of Erlangs (b # u)

As shown in example 2.5 and example 2.6 that K;_g = H,(u) =

ch r41 Dk §=0 i _ r4l
D — "ok d=ot d K —otUuU) = 0 D = -'k.‘=0u' Then
D kgl C/D —_ sk‘5=oe an é 0( ) kzzz k,6=0€

ch r+1 D k.5=0

°°K= Hy(z)dz = =
/u s=0 * H,(z)dz D kz=:1 (¢/D — sik.5=0)3ks5=0

etk i=0y (3.105)

[(u — z)e~ *h4=0%

The integrations / u(u—z)e""-‘“‘dz = - + / e—u.o=ozdz]
0 o Jo

8Lk 5=0
u e~ fkd=0u _ ]
= + 3 and
Sk,s=0 3’:,5:0
“ ue-'k.‘zou’ ifj — k’
/ e—lk.l:o(u—t)e—li.l=ozdz = e—l,'"=ou - e—cg_ggou (3.106)
° , f7#k
Sk,8=0 — 3j5=0
lead to
u . r+1 “
/ (v — 2)Kseo(z)dz = 8 Diseo /0 (1 — z)e™**4=0%dg
0 k=1
r+1 u e"k,‘:ﬂ“ —_—
= 6 Dips- [ ], 3.107
kz=:1 k8=0 Sk.5=0 3% 5—0 ( )
/0 Koo # Hy(u —z) / RKico * H,(y)dydz
c?g? Firtl D s—0D;s-0 /“ .
—_ —.— i T e“k.l=0(“-z)e-.).lsozdz
D2 kz=:1 1_2_; (¢/D — si5=0)(c/D — 8;5=0)3;4=0 Jo



CHAPTER 3. MOMENTS 121

6202 r4l r+1

= pra X

k=1 j=17¢k (¢/ D — Sk6=0)(¢/D — 8;5=0)(Sk.6=0 — 8;5=0)8;5=0

6% '+1( Di 50 )2 1

e %id=0y _ —'h,l=o“] +
[ € D? ,,2 ¢/D — sk40

Dy s=0Djs=0

e~*bi=o%  (3.108)
8k.86=0

and

/O Koo * Hi(u - 2) Ko * Hy(2)dz

c'4!02 r+lr4l Dk §=0 Dj $—0 - .
= — 0= 0= =84 =0 (u—zx) —4j.4=02 g

D2 ég (c/D - 8),,5=0)(C/D - 3,;5:0) /(; € € *
_ 6202 'il 'il Dk,&:ODj,5=O

D? (= ;-t#k (¢/D — sk520)(c/D — 35=0)(8k,6=0 — 8;5-0)

i 6%y H! Dy s-0 2
—85;,6=0U __ 8 =0 0= ~8k §=0U
[e i e ]+ o kg (C/D = 31:,6:0) e : (3.109)

Therefore, (3.101) becomes

r+l  r41
1/11,1(15) = 60(1+0)Z E [ 1 _2D+/\p3

k=1 j=1,j#k

Dk,6=0 Dj,5=0 [e—a,-,o=ou _ e—lg,l=ou]

8;.6=0 2z\p1 é

+
(C - DSk'b':o)(C - DSj,S:o)(Sk,5=o - 3,1',6:0)

r+1 2
cH(1 + B)u Z[ 1 2D+ Apz]( Di =0 ) e—thamou _

o8k s=0 2Ap18 J\c — Dsy 40
2Dpy +cpy H: Dis=0 —ersou
2\pio E (c— DSk,&:o)sk,.s:oe T
cps ' E Dis-o

e-‘l.l=0u +

6Ap18 = ¢ — Dsi 5-0

1 1 1
1 1 Des=o 'i Dis=o | - Drs=o__u, ou
u — 2_ + —_— = .

Apy z

(3.110)
k=1 Sk,6=0 k=1 3k.5=0 k=1 sk.5=0
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after some rearrangements. a

3.4 Moment of the time of ruin due to oscillation

In this and the next sections, we are going to derive the n®* moment of the time
of ruin caused by oscillation, and the n** moment of the time of ruin due to a
claim. We will see that these two kinds of n** moments have the same recursive

expressions.

Theorem 3.6 Foru >0 and n = 1,2,3,..., the n** moment of the time of ruin

due to oscillation, if this kind of ruin occurs,
Yam(u) = E[T"I(T < 00,U(T) = 0)[U(0) = u], (3.111)
satisfies a sequence of integro-difference equations

Yan() = 155 [ ban(u = 2)aPe (o) + 2 [*hatu - 2) [ bumer()dyde
(3.112)

and is given recursively by

Van() = 35| [ Ko v Hi(u = 2lum-s (e + [~ Yo (z)de -

u

Kicov Hu(a) [ Vin-s(2)de] (3.113)

in terms of Pan—1(u) with Yao(u) = Ya(u) and
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[ dantrdu = 575 [= wpus(uha, (3.119)

where Ks—o * H,(u) can be replaced with v,(u) by (2.105).
In addition, when D — 0, Ygn(u) -0, n=0,1,2, ...

Proof: Perform the Laplace transform on the both sides of (1.22), we get

. _A[p(€) = 1)+ Dp* +cp—6 - 1
e T A CUBS -

by (2.19)’ where $d(€7 6) = -/0°° e‘€u¢d(u)du. With D (E) = 1. ;lp;(f) and

[(6+&)(p—&) D1 —{A[B(€) — 1]+ Dp*+cp~8} = [D(p* —€2)+e(p—€)] — [- Ap1€51 (€) +

Dp*+cp—6] = —{DE’+C€[1— 1

Y ———p1(€)] — 6}, the equation above can be written

as

{D€ + <[t - o 2(6)] ~a}daté.5) = Dle - . (3.115)

Since ¢4(u) = E[e~*TI(T < 0o, U(T) = 0))], Ygn(nu) = (- l)ndtf_"¢d(u) R
%Zd;n(f) L panturdu = [T -1y T gutu)|du=
(- 1)n—¢.,(5, 5) = (—=1)"¢{V(£,0), n = 0,1,2,.. ., and p(0) = 0, differentiating

(3.115) both sxdes n (n > 1) times with respect to § and then setting § = 0 lead to

(D€ +et[1 - (o))} Fmdute. 0| — = [59u06.8) — Dpa)]|_
= (-1"{D +ct[1 = ;25O Jaml®) ~ n(-1)"""annr () + DH™(0)

= 0.
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Letting £ = 0 gives n(—l)"“t/;dm-l(O) = Dp™(0). Thus, equation (3.115)

becomes
(1{ D€ + e[t = TG (O] J9an@) = (=1 [Fims(6) = Finea(0)]

or equivalently,

(D€ +ct[1 = 251(0)] Janl) = n[Fins©) ~ Fanr(@)].  (3.126)

Dividing (3.116) by D¢? + £ leads to

_n c/D Pain-1(0) —'/;dm—l(f)

[1 1 ¢/D
1+6&+c/ D
which is the Laplace transform of (3.112). The uniqueness of the Laplace transform
~gives (3.112).
Now apply (1.44) with B(u) = "(1:” 6) / “hi(z) / ™ Yam1(y)dydz and & = 0,
0 u—-z

then

B'(u) = [hl(u) / Va1 (z)dz — / * by () (u — z)dz],

and hence by the associative property of convolution, Ydan(u) can be written as

¢d-n(u)
- = s | [ Rimo # Hi(n = 2)pumos(2)dz + [ b =2) [* bans(w)dydz —

Ko * Hy(u) /0 ¢.,,,._,(z)dz]. (3.117)
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Next, using integration by parts,

/: hi(u - z) _/:” Vdn-1(y)dydz
= /ou /:O Vin-1(y)dydH1(u — z)
= Hiw—2) [~ bans)dy] + [ Fi(w ~ 2)punas(e)de
= [ sy~ i) [ Yamor )y + [ Fo = hams(2)i

Combining this with K;—o * H,(u) = Ks_o * Hy(u) + Hy(u) gives (3.113) from
(3.117).

Since

/0°° /0" Ydn(u — z)dP, * Hy(z)du = [/0“ ¢d;"(u)du] [/ooo b Hl(z)]
= /ooo Ydin(u)du

and

/0°° ./ou hi(u — z) /;oo Yain—1(y)dydzdu
- ./:o /;oo hi(u — z) /:o Ydin-1(y)dydudz

T
= /ooo /: Yan-1(y)dzdy

= /0 ~ Y¥dn-1(y)dy,

integrating (3.112) from u = 0 to u = oo gives (3.114).
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From (3.113), we know that v,.,(u) is expressed recursively in terms of Yg4n-1(u),
n = 1,2,3,..., and hence is expressed in terms of Ya0(u) = Ya(u). Since when
D — 0, ¥a(u) — 0 by theorem 2.3, we have $4,(u) — 0 for n = 0,1,2,... a
The mean of the time of ruin caused by oscillation can be obtained by letting

n = 1in (3.112) and (3.113).

Corollary 3.7 The mean time to ruin due to oscillation, if this kind of ruin occurs,
Ya1(u) = E[TI(T < 00,U(T) = 0)|U(0) = uf, (3.118)
satisfies the defective renewal equation

Yaa(u) = ‘—/ Yaa(u — z)dP, « Hy(z) + 110 /Ou Ks—o* H(u — z)H,(z)dz

1+6
(3.119)
and is given ezplicitly by
1 0

baalw) = 0 Koo Hy(u—2)Hy s Kio(2)de  (3.120)

with
o 1 oo ADp, +2D?
: = — = " 1

/0 Yaa(u)du Y A upa(u)du Ve (3.121)
where Hy * Ks=o(u) = Ks—0 * Hy(u) — Ks_o(u) can be replaced unth 1/)d(u) by
(2.104) with § = 0, and K;s—o * H,(u) can be replaced with v,(u) by (2.105).
Proof: Since ¥4(z) = 1+ 0[1{5_0 « H,(z) — K;_o(z)]= ﬂ[{l * Ks—o(z) by

D [

(2.101) and (2.104) with § = 0, / Ya(z)dz = —(1+—)KJ_0 * H,(u) by (2.110)

cf
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D(1 +6)

7 by (2.111) with § = 0, we have from

with § = 0, and /0 ba(z)dz =
(3.113) with n = 1

Vi) = o[ Ko B = 2Waledde + [ pu(e)ds -
Kios Hiw) [ 1/)4(2)43]

0
= oo [ Kicos Hy(u - 2) 270, « Kyo(z)dz +
D1+6)———_ D(1+6)
—(ca—)K6=0 * Hl(u) - %K5=O * Hl(u)] ’
which is (3.120). Again, using /m Ya(y)dy = D(;;-QIQ:Q = H,(z) by (2.110)

with § = 0, the second term of (3.112) with n = 1 becomes

1 fu D1+6)-—— 1 w___ —

z/o hl(u - 2)71{5:0 * Hl(Z)dZ = ,\1’7/‘; K5=0 * Hl(u - :!:)Hl(:z:)dz,
which is the second term of (3.119).

Clearly, letting n = 1 in (3.114) gives / Yaa(u)du = p 0/ upg(u)du =

1 D(1+6) [,‘G 1(0) ] D [ pr D D] ADps+2D?
Api6 <6 6 T clT el vt TlT Toaee Y (276)
and (2.112) with § = 0. a

Example 3.4 Combination of exponentials and mixture of Erlangs (b # u)

As shown in examples 2.5 and 2.6 that
cO r+1 Dk 5=0

Koot Ha(w) =) = 5 3

——— e hi=0% g5 d

C/D — 8ks=0
ba(w) = 2[R Hu(w) - Rszo(u)|= (1+0) z: %‘sf%e'“ é=o%, Then

(3.120) becomes
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Ya,1(u)
(1l + 9) i Dis=0D;s-08;4=0 ré=0(u—2) o
_ —8y s=0(u—2 —8j4=0%
WD 25 25 (oD = srsma)(e/D —szrce) o © ©TeE
STREES Dis=oDj 08340
- D 1 + 6 2 k,6=047546=08;6=
( ) ’¢2=:l.i=§ 2k (¢ — Dsis0)(c — Ds;s-=0)(Sk.5=0 — $j5=0)

r+1

2
[e—-,-.a=ou — e m]wu +0)u Y (CD—I';::‘;_) Sk.s=0€™ 4% (3.122)
k=1 ‘""" =0

with the help of (3.106), which is a combination of exponential functions. m]

Corollary 3.8 Foru > 0, the second moment of the time of ruin due to oscillation,

if this kind of ruin occurs,
Ya:2(u) = E[T*I(T < oo, U(T) = 0)|U(0) = u], (3.123)

satisfies the defective renewal equation

baa(u) = 1 / Yaa(u — 2)dPy * Hi(2) + 7 03,,;2(1‘) (3.124)
with
2D [ u = __
Baaw) = yaags|[[ mlu—2) [ Kamav By (e - y)Koma v Hilu)dydz +

i “hi(u - z) i "R+ H Hl(y)dyd:c] (3.125)

and is given ezplicitly by
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2(1+6
Yaa(u) = i ,03’ [ Koo Hiu~2) [ Koz Hu(e — y)H * Kinoly)dyde
+ Aa 393 [_/ Ksco*H\(u—z)Ks o+ H H,(z)dz +_/ Ks—o * Hl(z)dz]
ADp; +2D*
—II\’;W—KJ—O * Hy(u) (3.126)

where Hy * Ks_o(u) = Kz—q * H,(u) — Ks_0(u) can be replaced with 1 i 0¢d(u) by
(2.104) with § =0, and Ks=o * H,(u) can be replaced with v,(u) by (2.105).

Proof: First, for any two functions X() and Y(),

/, = /0" X(y — )Y (t)dtdy

/0 - /, ~ X(y — )Y (¢)dydt + /, = /‘ " X(y — )Y (¢)dydt

- /o : /, ‘: X(y)Y (t)dydt + /, Y ()dt /; = X(y)dy

= /0 “Y(z—1t) /‘ ” X(y)dydt + /, “y(t)de /0 ~ X(y)dy. (3.127)

Then from (2.104), (2.106) and (2.107) with § = 0, and by (3.127), integrating
(3.120) for Y4.1(y) from y = z to y = oo gives

L Va1 (y)dy
14860 o v .
= Ap, 62 ./ / Ks=o * Hi(y — t)H, * K;-o(t)dtdy

1+86
= ,\p+02 [ / Hy * Ks—o(z — t) / Kizo * H,(y)dydt +
1

/z H, = Ks:o(t)dt/O Ks—o * Hl(y)dy]
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1+6D
- Ap182 ¢ [_/ _/ Ksox H H,(y)dydK;—o = H,(z — t) +

Kico * Hi(2) /0 Ko+ H Hl(y)dy]
D [ o .
= W [KJ:O * H,(z — t)/" K5=o x Hl(y)dy,o-{-
[ oAz - yEis Hu)at +
Kosos Hy() [ Roco v Hi(u)dy
= pig [f Kis—o * Hy(y)dy +/ Ks—o* Hi(z —t)Ks—0 * Hl(t)dt]
(3.128)

With this, (3.124) and (3.125) can be obtained directly from (3.112) with » = 2.
Using (3.120), (3.121) and (3.128), equation (3.113) with n = 2 leads to (3.126). O

We remark that the variance of the time of ruin caused by oscillation can be

obtained explicitly by (3.120) and (3.126).

3.5 Moment of the time of ruin caused by a claim

The next theorem shows that the moments of the time of ruin caused by a claim
have the same recursive expression as the moments of the time of ruin caused by

oscillation given in theorem 3.6.

Theorem 3.7 Foru >0 and n = 1,2,3,..., the n** moment of the time of ruin

due to a claim, if this kind of ruin occurs,

Yan(u) = E[T"I(T < 00, U(T) < 0)|U(0) = 4], (3.129)
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satisfies a sequence of integro-difference equations

Yn®) = g [ e = )P Hi(@) + 2 [t —2) [ umea(y)dde
(3.130)

and is given recursively by

1/’.;7:(“) = ﬁ;‘; [/0“ Ks—0 * Hl(u - z)¢nm-l(z)dz + Loo ¢a:n—l(z)dz -

Koo Hi(u) /0 * ¢,;n_1(z)dz] (3.131)
in terms of Yun—1(u) with P,o(u) = ¥s(u) and
/0 " Yem(u)du = ;7 /0 ” Whumes (u)du. (3.132)

where Ks=o * H,(u) can be replaced with .(u) by (2.105).

In addition, when D — 0, equation (3.180) reduces to
You(w) = 15 [ Yomlu ~ 2)aPi(2) + 2 [~ Yo 1(2)dz (3.133)
0;n U —'1+0 o O;in 1 cJu On—1 .
and s given recursively by

Yonl) = 1o [ $otu—2)bom-r(z)dz+ [ don-s(e)dz—vo(w) [ Yorm-1(2)de]
(3.134)

in terms of Yon—1(u) with oo(u) = ¢o(u) end

[ bom(u)du = Socd o Won-s(u)du. (3.135)
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where

Yom(u) = E[T"I(T < o0)|U(0) = ], u>0. (3-136)

Proof: When w(z,y) = 1, w(z) = P(z) by (2.7), and w(€) = /oo e %w(z)dz =
L=20®) _ 1,51(¢). Therefore, the right side of (3.84), ,\[u(p) —w(g)] ,\[;f@

'
_plﬁl(f)] De? +pCP g _ Apipi(€) = ;{Dp + cp[l -3 +0p1(§)] } since p

satisfies generalized Lundberg’s equation (1.32), and then (3.84) with ¢y, (u) = ¢,(u)

in the case w(z,y) = 1 can be written as

{De +ct[1 - (6] ~8}o0)6€.6) = Do) +co)[1 - o)) -5

(3.137)

Since p(0) = 0, differentiating (3.137) both sides n+1 (n > 1) times with respect
to 6 and then setting § = 0 lead the right side of (3.137) to

1 . dn+l
o+°[1“ 1+o"‘(5)] pree=vatl )l dsn+15

=0

n n+1
= D) ( * ) P11 (0)p")(0) + c[l -1 i 0131(6)] p"+1(0) (3.138)

where p{™ is the n** derivative of p, while the left side is

{De* + et — (@) e [p@18.6.9)] |~ s (016, ) L

- {sz + c£[1 — ﬁgﬁl(f)]}%[p(a)‘;'(e’ 6)] ls:o_
(n + 1);%[;)(6)&.(6,

(3.139)
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Moreover, since ¢.,.(u)_( 1)"W¢,(u)l and Pon(€) = f e, . (u)du

= "e"( 1)"—,.4’-(“) d" = (-1)" ,,¢.(E,5) = (-1)"¢{(¢,0), n =
dé dé
0,1, 2 .., we have

= [p®8.6.9)] 5

=0 k=0

n—1 n \ .
= Y PR (0)4{4) (¢,0)

= ni(—l)k " ) P(n_k) (0)1/.,0*(6)'
k=0 \ k

Equating (3.138) and (3.139) gives

{sz + cf[l 1+ 0”‘(f ]}Z( 1)* ( : ' ) PR (0) .k (€)

k=0

n

~ n+1
= +D (-1 ) )p‘"""’(om;k(e) +DY" ( : )p<"+l-'=>(0)p<'=>(0)
k=0 k=1

+ e[t- Sgm©]eio). (3.140)

Setting £ = 0 in (3.140) leads to

n n+1
Dy ( ) ) p+174(0)pM(0)
k=1 4

k=0

n—~ 1 n4+1
- —m+) (- l)k(k)”( 9(0)9.4(0) ~ e[t — 155] o 0).
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. )
Since when § — 0, — — ¢ — Ap; by (2.188); in the case (3.137) turns out to be

{Deret[1-500)] Joute.0) = e[1- 0] ~[e-rm] = 5 [1-muc6)]

Combining these above with 1[-',;0(6) = J».({, 0), forn > 1, (3.140) can be simplied

to

k=0

~+ 1) T ( ) ) P H0) [fa(0) - Baa(€)]

n+1

r —

= {sz +C£ 1-— ) (n+1- k)(o)"l'a:k(f)

G }g(—l)"(

{pe + g1~ Zomi0) } - 1)"“( i 1) P (O) ks (€)
- +

k=0

- st 1){D§2 + c{[l - +0p1(£)]}2( l)k ( n ) (n-k)(O)"/’akkilif),

k=0 k

(3.141)

We declare that for n = 1,2,3,.. .,

(D€ +ct[t = 21O Jonl®) = n[funs @)~ Fomcn()] . (3142

which is exactly the same form as the expression (3.116). Therefore, equations
(3.130), (3.131) and (3.132) can be shown just like (3.112), (3.113) and (3.114). An

alternative expression for ¥,.n(z) as (3.117) for $4.n(u) is
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Puin(u)
= 55 L Fomot Hala = 2)bum-s(edde + [ halu = 2) [~ pumes(y)dyds -
Kio* H(w) [~ Yuns(2)dz]. (3.143)

Equation (3.142) can be proved by induction on n. Letting n = 1 in (3.141)
shows the case n = 1 in (3.142). Assume that forn = 1,...,m — 1, identity (3.142)
holds. Now let n = m in (3.141), then these terms but the last terms on both sides

of (3.141) are canceled out. Thus (3.141) reduces to

(=14 mp(0) [Frm-1(0) = Fusm-1(6)
= {pe+ &1 - 5] } 0O Om(©),

which is equal to (3.142) for n = m.

Since when D — 0, ¥,n(2) — Won(u), which implies (3.132) — (3.135). As
in the proof of theorem 3.4, (3.133) and (3.134) can be shown either by similar
arguments based on traditional risk model (1.1) or by letting D — 0 in (3.130) and
(3.131). The latter approach, however, can show only for u > 0. 0

To get the mean of the time of ruin because of a claim, just set n = 1 in (3-130)

and (3.131).

Corollary 3.9 The mean time to ruin due to a claim, if this kind of ruin occurs,

Yan(u) = E[TI(T < 00, U(T) < 0)|U(0) =], u >0, (3.144)
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satisfies the defective renewal equation

136

1 u 1 foo—
139 ), $le—2)dPx Hi(e) + - [* Koo Hy(z)de

'\ - =H Aps +2D
E/o Hy(u — z)Ks-o * H,(z)dz — APz T+ U

and is given ezplicitly by

[(1 +9) /0 Kimo * Hi(u — 2)Kso(z)dz —

/0 ‘Ko vHy(u-2)Kimav H Hl(z)dz]
Apz +2D

(3.145)

Kimo * Hi(u) (3.146)

/ * Kico s Hy(z)dz —

3Ap? + 2Ap;p36 + 6Dp,

o0 1 o0
[ buatu)du = oo [ vy =

where Ks=o * H,(u) can be replaced with 1,(u) by (2.105).

In addition, when D — 0, equation or (8.145) reduces to
1 u 1 pe
Yoa(u) = m/; You(u — z)dPy(z) + z[‘ Yo(z)dz

and i3 given ezplicitly by

Yoa(w) = 1oz [ [ ol — 2)bo(e)de + [~ a(z)ds -

(3.147)

(3.148)

(3.149)
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with
*° __1 f= _ 3p3 +2p1paf
/0 You(u)du = o0 /0 uto(u)du = DT (3.150)
where
Yo.1(u) = EITHT < o0)|U(0) = u], u > 0. (3.151)

Proof: Since /:o Y.(y)dy = ao(;,O) 1’1(:1:) / K=o * H,(y)dy —

/\;I;)GK‘;:O * H,(z) from (3.27) with § = 0 and (3.38), the second term of the right
1
side of equation (3.130) with n = 1 become

1 pu 00 D
-C—./(') hl(‘u — z)'/z KJ:O * Hl(y)dydz - ﬁ /" hl(u - $)K6=0 * Hl(Z)dZ
1 u poo____ 0 __

- 2[) -/z Ks=o x Hy(y)dydH:(u — z) - Ap16 / Hi(u ~ 2)Ks—0 * Hy(z)dz

1 poo 1— oo
= L[ BBy - JHuw) [ Ko w Hy(y)dy +

1 e — 1 e ____
Z/o H(u — z)Kimo + Hy(z)dz — W/o Hi(u — z)Kimo » Hy(z)dz,

which shows (3.145) using / Ki—o * Hy(y)dy = pr.1(0) D(l +6)  p. 4

6 cl 2p10
D Ap+2D
/\p10 - 2/\p10

In addition, ¥,(z) = [¢4(z) + (14 0)¢.(z) — 1/’:(3)] =
A Ksmo* Hi(z) by (1.7), (2.93) and (2.105), and / ¢.(y)dy = KL,

by (2.77) and (2.109) with § = 0.

K;_o(z) —
1(0) D2 by

8 6  2p6
(2.77) and (2.119) with p = 0 and B = 4, equation (3.131) with » = 1 leads to
(3.146).
. % 1
Clearly, (3.132) with n = 1 becomes / Yo (u)du = n/ uy,(u)du =
1 {I‘r 1(0) [#c 2(0) ] urz(O)}_ { [ +2 D _]+ }
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3Ap3 + 2Ap1p36 + 6Dp, ) _
12320360 by (2.76), (2.77) and (2.120) with § = 0.
Letting D = 0 in (3.147) leads to (3.150). Equations (3.148) and (3.149) can be

shown directly from (3.133) and (3.134) with » = 1, and /0 ” $o(z)dz = 2:”7 by

(2.77) and (2.119) with p = 0 and 8 = 4. a

Note that the covariance of T, the time of ruin due to a jump, and the associ-
ated penalty function, w(U(T-), |U(T)|), can be obtained from (3.70), (3.72) and
(3.146). Especially, when w(U(T-), |U(T)|) = |U(T)|", the covariance of T (due
to a jump) and [U(T)|" follows from (3.53), (3.94) and (3.146).

Example 3.5 Combination of exponentials and mixture of Erlangs (b # u)

As shown in example 2.5 and example 2.6 that K;—o * H,(u) =

Co § Dk §=0 e‘u,l:ou and K (u) = 0 'il Dk s= e—..,‘=ou Then
D C/D — 8k =0 §=0 = ,6=0 .

/u Ks—o * H,\(v — z)K;s-0(z)dz

r+lr+l
— ch? f:l i Dk J—ODJ 6=0 / e—c..;=o(u—z)e—q,‘=ozdz
D k=1 j=1 C/D — 8k §=0
r+l r+l
— coz i z+: Dk,&:OD:i.J:O [e""-‘=°" _ C-""=°u]+
k=1 i1k (€ — D3k g=0)(8k6=0 — 3j5=0)
r41 D
02 k5—0 —.i"=°u 3.1 2
¢ uZC—DSkJ—o ( 5)

with the help of (3.106). Combining this with (3.105) and (3.109), (3.146) turns

out to be
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Y (u)
r+1  r+l c Dy s=0Djs=0 [e-'u:o“ - e“‘-‘=°"]
= (1+86 [ 1+6)— ] | L
( )k2=:1 j=lz.,1;¢k ( ) c— D-’J'.5=0 (c - Dsk,&:O)(Sk.&o - 85,5:0)
(1+6) 'ZH[(HO) x ] Diszo ompsurn
u _— 2 e S=0U
k=1 Cc — Dsg';=o Cc— Dsk'.s:o
r+1 Dk §=0
1486 kg e %k i=0Y __
( ) ;1 (c — Dsrs=0)3k5=0
8) =
(Apz +2D)(1 +6) Dis-0 e—*hé=ou (3.153)
2)p,0 i1 ¢— Dsrs=0o
after some rearrangements, which is a combination of exponential functions. a

Corollary 3.10 For u > 0, the second moment of the time of ruin due to a claim,

if this kind of ruin occurs,
Yu2(u) = B[T*I(T < 00,U(T) < 0)|U(0) = u], (3.154)
satisfies the defective renewal equation

bealw) = 75 [ beals — 2)dPy ¢ Bi2) + s Bualu) (3.155)
with

2 u T __ oo ____
B,2(u) = Fp—'f_é[./o hy(u — z)/; Ks—o(z — y)/y Ks—o * H,(t)dtdydz +

[ me-2 ["w-aKsvE, (v)dydz]|
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cp ,0, [ matu—2) [7 Koo v By (y)dydz +

[ =) [ Reov Hy(z~ v) Koo+ Hi(y)dydz]

ADp; + 2D? (v S
- C—I:\zap:lw— /0 hy(v ~ z) Ks=o * H,(z)dz (3.156)

and is given ezplicitly by

Ya2(u)
= 25203 (1+9) O" Ks=0* Hy(u — z) oz Ks=0 * H\(z — y)Ks-0(y)dydz —
A?p

[ B i —2) [ Kicow Hu(e - y) Koo+ H, (y)dyds]
2 [ f*p—— Sl .
+ W[fo KJ:O*H1(“—$)/; Ks=o0 * H,(y)dydz +
‘/(; T{—5=O(u - Z)/ KJ:O * Hl(y)dydz +
/w(t —u)Ks=0 * Hl(-"’)dz]
p2 . 2D2+0)] v —
- [Azpi‘os T o IR R A oy AT

2p1p3f + 3p2  DAp,(2 +6) + 2D%8
- [ 6A2 194 cA3p364

- cAz / Ks—o+ H H,(z)dz (3.157)

]ml(u)

where Ks—o * H,(u) can be replaced with ¥,(u) by (2.105).
In addition, when D — 0, equation (8.155) reduces to

Yoa(w) = 1 [ Yoale — 2)dPi@) + S Boalu)  (3.158)
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with
2 u co oo
Bg;a(u) = m[j) Yo(u — t)‘/z Yo(y)dydz + /; (z — u)1/:o(z)dz] (3.159)

and is given ezplicitly by

Yo2(u) = Az—pzfﬁ /0" Yo(u — z) /:: Yo(z — y)¥o(y)dydz
+ #}02 /‘0“ Yo(u — z) /:o %Yo(y)dydz + %w /:o(z — u)yo(z)dz

u 2p1p36 + 3p2
= Sapt Jy Vole = DWo(e)dz — PEERy (u) (3.160)
where
Yo2(u) = E[T?I(T < 00)|U(0) = u}, u > 0. (3.161)

Proof: Equations (3.120) and (3.146) imply that

Y (u)

Aps +2D——
1+0"”‘“( “) ~ “xiprgr Koo * Hulv)

[ f Kizo * Hu(u — 2)Kiseo(z)dz + / Ko » Hl(z)dz] (3.162)

+
Ap: 6

By changing the order of integration,
I /,,  Koco * Hy(t)dtdy = [ Rocow H,(t)dydt = [Tt - F Hy )
Also using (3.127), we have / / Kico = Hi(y — t)Ks=o(t)dtdy = / Kso(z —t)
/ Koo * H, (y)dydt+ /°° Ki-o(t)dt / Kao = Hy(y)dy. With the help of (3.128)
for / Yaa(y)dy, (2.107) with & = 0 for / Rimo* Hi(y)dy = / Ris—o(y)dy +
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D __ . o Ap2 + 2D
—Kizo * Hy(2), and (2.109) with § = 0 for /o Kizo* Hulo)dy = B22, we
obtain

[ by

1 z Q0 oo
- Ap_o[/ Kooz ~y) [ Kocos Halt)itdy + [ (4 - o) Koo s B Hi(v)dy|

D . __ z
T cAp 62 [_/; Ks=0 * Hy(y)dy +/0 Ks—o* H (2 — y)Ks=0 = H,(y)dy

ADp, + 2D?

2cxipigr Ro=o* Hi(@). (3.163)

Letting n = 2 in (3.130) leads to (3.155) and (3.156). Now use (3.146), (3.147) and
(3.163), and apply (3.131) with n = 2, we have (3.157) after some rearrangements.
Note that when D — 0, /w Ya;1(y)dy in (3.163) reduces to

/:o Yoa(z)dz = —15[/ 1/’0(“—::)/ ¢o(y)dydz+/ (z—u)¢o(z)dz] (3.164)

Equations (3.158), (3.159) and (3.160) can be shown by similar arguments from
(3.133), (3.134), (3.149), (3.150) and (3.164). Or they can be proved by letting
D — 0 in (3.155), (3.156) and (3.157). The latter approach, however, can show
only for u > 0. o

We remark that the variance of the time of ruin caused by a claim can be

obtained explicitly by (3.146) and (3.157).
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Discounted distribution and

probability density functions

In this chapter, we are going to derive the explicit expressions based on (1.4) for
F(z,y;9d, D|u), Fi(z; 6, D|u) and Fy(y;é, D|u), the discounted joint and marginal
distribution functions of U(T —), the surplus immediately prior to the time of ruin,
and |U(T)|, the deficit at the time of ruin, and for Fz(z;8, D|u), the discounted
distribution function of the amount of the claim causing ruin, {U(T-) + [U(T)[}.
Then the discounted probability density functions, f(z,y;é, Dlu), fi(z;é, D|u),
f2(y; 8, D|u) and fz(z;4, D|u) are obtained by differentiating the corresponding
discounted distribution functions. We will show that Fi(z;4, D|u), Fy(y; 8, D|u)
and Fz(z;4, Dlu) also satisfy a defective renewal equation, respectively. Besides,
the explicit expressions, which have been derived by Lin and Willmot (1999) [36],

and defective renewal equations based on (1.1) can be easily got by letting D — 0.

143
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4.1 Introduction

When ruin occurs due to a claim, let f(z,y, ¢; Dlu) denote the defective joint proba-
bility density function of U(T'—), |[U(T)| and T, and define the discounted defective

marginal probability density functions with the discount factor 4 > 0 as follows:

fay:d, D) = [~ e ®f(z,y,6 D, (4.1)
fi:8,0w) = [ flz,:8,Dpu)dy = [~ [~ e F(z,u,t Dlu)dedy, (4.2
fay;8,0t) = [ f@,:8. Dlu)dz = [~ [* e f(z,y,t; Dlu)dtdz. (4.3

Dickson (1992) [5] derived the defective probability density function of U (T-),
the surplus before the time of ruin, for the case § = 0 based on the classical surplus

process (1.1) as follows:

A= 1 — vo(u) .
( Z])(;1:) ——1—¢0(0), 1f0§u<:c,
f(2;0,00u) = | (4.4)
Az Yo(u —z) —do(u) .
PO Ty HO<esw
with 1o(u) given in (1.3)
f1(=;0,0/0) = %F(z) (4.5)

Later, Gerber and Shiu (1998a) [29] generalized Dickson’s formula for the case
d > 0 to get the discounted defective probability density function of U (T-)
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[ A e™ — K, (u) .
—e = —_— <
p P(z) T=R,(0) fo<u<gz,
fi(z;6,0lu) = J (4.6)
A e e~ Ky(u~—z)—-K,(u) . <
‘ Ce P(z) 1=K, , f0<z<u,
with
fi(=;46,0/0) = %e""ﬁ(z), (4.7)
and
K, (u) = E[e~* T[T < o0)|U(0) = u, u>0. (4.8)

Set w(z,y) = e in (1.2), then from (1.13) K ,(u) satisfies the defective renewal

equation as follows:

?p(“)

A

_ A e * g=ply—u) A [T gmotv=w) [* —oz-v)
= c/o K,,(u—z)L e dP(y)dz + /':e /y e p(z)dzdy

P

-~

A fY__ oo A [ rz
= - _ —p(y—u) - —-p(z—u)
- = /0 K.(u — z) /, e dP(y)dz + - /.. /u e p(z)dydz

e A B o) [P omry—u) A [P ale—rlz—u)
= = /0 K,(u—z) /, e dP(y)dz + /.. (z — u)e plz)dz  (4.9)

Ay o
= 2 - —p(y-u)
= = ./o K,(u z)'/; e dP(y)dz +

A foo . A oo .
A [ otz _2A _ y)e-Pl=-w S
p” /‘; e P(z)dz cp/u (z —u)e P(z)dz, u>0,

with K, (u)|s=0 = Yo(u).

(4.10)

Since p(d) is a root of (1.14), we have A\j(p) = A + § — cp. If we differentiate
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with respect to 4, then cp’(d) — 1 = Ap’(4) / = ze **p(z)dz. Therefore, from (4.9)
0

we obtain

K,(0) = :c\-fooo ze p(z)dz =1 — (4.11)

1
cp'(8)’
with K,(0)[s=0 = Ap1/c =1/(1 + 8) = 1o(0).

Later we are going to derive the more general discounted defective probability
density function of U(T-), the surplus before the time of ruin, for the discount

factor § > 0 based on the surplus process (1.4) with an independent Wiener process.

4.2 Discounted joint distribution and probability
density functions of |U(T')| and U(T-)

First of all, by appropriate choice in the penalty function w(z,y), we have that the
discounted defective joint distribution function of U(T—) and |U (T')| is equal to
¢w(u). Then the explicit expression for the discounted defective Jjoint distribution
function of U(T'—) and |U(T')| can be obtained by (1.36) and (1.44). To see this,
for any fixed z and y, let

1, fz; <z,z, <y,
w(z1,25) = Pemmey (4.12)

0, otherwise.

Then by (4.1), ¢y(u) in (2.2) becomes

$u(v) = Ele™Tw(U(T-), [UT) T < o0, U(T) < 0)|U(0) = u]
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= /ooo /Ooo /Ow e % w(zy, z3) f(21, 22, t; D|u)dtdz dz,

- /0 * /0 Y /0 ~ &7 f(2y, 23, t; Dlu)dtdz,dzs

- /'0 - /0 * f(21,22; 6, Dju)dzydzs (4.13)
= F(z,y:6, D), (4.14)

the discounted joint distribution function of U(T~) and |[U(T)|. And the function
B(u) in (2.114) can be written by (2.34) and (1.52) as follows:

fo<u<e,

B(u)

= %(1 +0) /0 ¥ gblu=s) / * emelz1-1) /, °° w(zy, 23 — 71)p(z2)dzadz,ds

- Mo [resers [Frsncn [

= %(1 +8) [ * gblu-s) [ e [F(zl ) — Pz, + y)] dzyds

= %(1 +8) [ et [ eser-0P(z, )z, — / Z e~#=1 =V P(z,)dz, —
e—P(z—9) [/:" e"’("")—l_’-(zl)dzl - LZ’

= b [" e {T(s) = T(s + 1) - e~ [[(e) ~ Tz +y)] } s

= b /0 ¥ g=blu=s) [F(s +y)— F(s)] ds — be=r=e~bu [f(z) ~T(z + y)] fo “etds

wty ;
= z; /,, e~buHV=)(5)ds — /0 [(s)H'(z — s)ds —

Zemrmebu(e™ — 1)[[(=) — (= + )]

= G(v) - G(u+y) - Hu)G(y) - 36"”(6”" —e™)[[(z) —-T(z +y)], (4.15)

+y
p(z2)dzodz,ds

o= -=-V>F(z1)dzl] }ds
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and for u > 0

B'(v) = G'(u+y)-G'(v)+H '(u)G(y)—ge"”(Pe"" +be™™)[[(2)-T(z+y)]; (4.16)

fo<z<u,

B(u)

and

A v o_ u—s *® - z)—8 >
S(1+p) [ et [ e / w(Z1, 72 — 71)p(z2)dz,dz, ds

_3_(1 +8) [/: +/:‘] e~b(u—0) /.z e—Plz1-0) Lrl+vp(z2)dzzdzlds

% (1+8) /o' e~blu—1) /. * e—plz1-0) /z T'ﬂ' p(z2)dzodz, ds

b/: e b(u—) {F(s) —T(s+y)—e =9 [F(z) -T(z + y)] }ds

b/: eb(u—2) [F(s +y)— I‘(s)] ds — be " e [r(z) -T(z + y)]‘/o-== e**ds
/ "M pebluty-ap(g)ds — -bu2) /0 " be~4=-)I(s)ds —

ge""e'b“(e“ —1)[F(z) - T(z + v)]

ebe-a) [ T peb=tu-op(5)ds — e~ [ beb=r(s)ds
e~blu-2) /0 " beb==r(s)ds — ge-""(e"’ — e77)[[(z) - T(z + y)]
H(u - z)[G(z) — G(z +y)] - H(v)G(y) —

ge"’"(eb’ — e=)[[(z) - (= + v)], (4.17)

B'(u) = —H'(u—2)[G(z)—G(z +y)] + H'(v)G(y) +
SH'(u)(e"' — e 7)[[(z) — T(z +y)]. (4.18)
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When D — 0, aﬁ — 1 and G(z) — I'(z); in this case B(u) becomes

T(u) - T(u + — e ?E9[(z) - T(z + , fo<u<e,
By < | @) =T +y)] () - T +y)), f0< @)

0, fo<z<u.
We remark that the expression above for Bo(u), 0 < u < z, also holds when « = 0,
which can not be obtained by D — 0, but by derivations similar to (4.15) from

A oo 0
Bo(u) = —(1 +,30)/ e“’(""“)/ w(z1, T2 — z1)p(z2)dz.dz,.
C u )

Theorem 4.1 The discounted defective joint distribution function of U(T—) and
lU(T)] is

F(z,y;4, D]u)
148, . — 1
[ 5~ [Ew - K+ )| -560) K Hw)
+%§e"’" [F(z) -T(z+ y)]
[p /ou e”K(u —t)dt + K « H(u) — e""]
+% [ Ru+y-06wa, fo<u<s,
- (4.20)

5 [ Ra-0]e® -y +0)d- FCWETH )

16 __[= - z _—
+E;e ”’[I‘(z) —I(z+ y)] [P/o e”K(u—t)dt + K = H(u)]
+5((6@ - Bz +9) -2 (Fe) ~ Tz +4)) [K Hea - ),

f0 <z <u,

with
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F(z,y;4,D|0) =0, (4.21)

where K * H(u) can be replaced with ¢(u) by (2.108).

When D — 0,
F(z,y;4,0]u)
1+ Bo [+ N 1 yd
(1 1 [Ro(w) - Kotu +)] - A Kol
e [F(z) —Tz+ y)] [p /0 e Ro(u — t)dt + Ko(u) — e""]
+ﬂl [ Rotu+y - o'ty fo<u<e,
= (4.22)

1 = M) ’ 1 J’é
o J Ralu - )[1(0) ~ P + )] e - 7T Ko(x)

tae[F@) - T+ v)] [p [ Rotu - ) + Ro(w)],

f0<z<u,

with

F(z,y;6,00) = [e"""[‘(z) +D(y) — e*T(z + y)]. (4.23)

1+ o
If further let § = 0,
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F(z,y;0,0u)
[ 222 [bo(w) — bl +9)] +5 [Pl(z +9) - Pi(2) - Pu(y)|o(a)
—-[Pl(z +y)— Pl(a:)] +——/ Yo(u +y — t)P(t)dt,
= fo<u<z (4.24)
= /1 “Yolu = )[P(6) - Ply + 1))

+3|PE+n - @ - P@|wE,  Fo<z<u

with

F(z,5:0,00) = ——[P\(2) + Pi(y) - Pi(= + v)]- (4.25)

1
1+6
Proof: If 0 < u < z, from (1.39), (4.14), (4.15) and (4.16), equation (1.44) becomes

F(z,y; 6, Dlu)
1 pu_ , 1
= -3 /0 R(u~t)B(t)dt + 7 B(x)

1 pu_ ’ ’ 1 4 1
- ﬁ/ K(u—t)[G(t)—G(t+y)]dt—BG(y)/o K(u — t)H'(t)dt +

%ge—n [F(@) = Tz + 9)] [ Rw—0)pe + be]at +

5[0 - B+ 1) - Hw6w) - Zele — e IT(w) - Tz + vl
_ ' ;ﬂx( ) - 56)[F * H) + )]+

15

Ea—e-ﬂ [l"(z) T+ y)] [p [“ #R(u - t)dt + B « H(w) + Hu) - e""] -

5 L K(u+y —t)G'(t)dt — %ﬁ(u +v)
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-1 ;ﬂ [K(u) K(u+ y)] ——G(y)K “Hu)+ 5 / K(u+y~t)G'(t)dt +
16

E‘e“"‘ [F(z) —T(z + y)] [ /0 e*K(u—t)dt + K = H(u) — epu].

For v = 0, by (1.39),

F(z,y;8,D|0) =

"‘ul
E

LR - K(y)]——G(y)+ 5, Fu-06 @
o

K@)+ 5 [ Ky —146() + 580)

“!

= 0,

showing (4.21).
Similarly, if 0 < z < u, from (1.39), (4.14), (4.17) and (4.18), equation (1.44)

turns out to be

F(z y; &, Dlu)
- _E "R~ t)B'(t)dt - % [ Ru-0B()a+ %B(u)
= 3 /0 R(u—t) [G’(t) G+ y)]dt - %G(y) [ R~ +
%ge_” [F(z) _T(z+ y)] [ Rw- [peﬂ‘ + be""] dt +
l[G(a,- +y)— G(z)] / “K(u—t)H'(t ~ z)dt — lc:(y) / “R(u—t)H'(t)dt —
;Z [e —e ”] [P(z) Tz + y)] / R(u— t)H'(t)dt +

5 Hw—2)C() ~Cle +y)] - ZH@GC) -

Fae (e — e T(@) - Tz + )]
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_ % /O “K(u-t) [G’(t) ~G'(t+ y)]dt - %G(y) [?* H(u) + ﬁ(u)] +

Gee[[@) ~ T +9)|[p [ Riu— t)at + K « Hw) + Hw)|+

é[ﬁ(z) ~C(z + y)] [/: K(u - t)H'(t — z)dt + H(u ~ z)] -
%g [F(z) —T(z+ y)] [ [ R - t)B(t ~ )t + Heu - z)]

1 = ’ v 1 K « H
- E/o K(u—t)[G (t) —G(t+y)]dt— [-,G(y)K*H(u) +

%Ee’” [r(z) —-T(z+ y)] [p /: e”K(u — t)dt + m(u)] +

a

%[[a(z) -G(z +y)] - g[f(z) —T(z+ y)]]
[ /0 T R(u -~z — s)H'(s)ds + H(u— z)]

1 = , , 1 T
= E/o K(u—t)[G(t)—G(t+y)]dt—EG(y)K*H(")+

%ge_”’ [f(z) -T(z + y)] [p /: e K(u —t)dt + m(u)]+

1

5[C@) ~ B+ )l - 2I(e) ~ T + )] K7 Hu - o)

proving (4.20).

When D — 0, 8 — By, g — 1, G(y) = C(y), K(v) = Ko(x), and by (3.20),
K x H(u) - Ko(u) or 1 depending on u > 0 or u = 0. Therefore, (4.20) — (4.22)
when D — 0.
Note that the expression in (4.22) for F(z,y;4,0|u),0 < u < z, also holds for u = 0,
which can not be obtained by D — 0 from (4.20), but by derivations similar to

(4.20) from F(z,y;é,0[u) = —ﬁ% /0"' Kol(u — t)Bl(t)dt + ﬂ—loao(u) - iBo(O)_I?o(u)

with Bo(u) given in (4.19). When u = 0, by (2.91), (4.22) reduces to
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Fawis o) =~ Roly)] - ot +

Bo l1+B;

ie'” [F(z) -T(z+ y)] [1 ':ﬂo - 1] -i-ﬁi0 /oy Ko(y — t)dL(t)
1 14+ Bo— 1 1

% 7 Ko(y) - [ﬂ_o - m]r(y) +

e " [I"(z) ~I(z + y)] +ﬂi0[(1 + Bo)Ko(y) — f(y)]

1+ 6o

T35 ¢ T(@) +Tw) — T +y)],

which is (4.23).
If further § = 0, then By = 8, Kos=0(u) = ¥o(u), ['(z) = Py (z) and I'(z) =

PIE:B) - In this case, (4.24) can be easily obtained from (4.22). When u = 0, similar
1

arguments show (4.25) from (4.24) by (2.91) with § = 0. Alternatively, when & = 0,
p =0, Bo =0 and I'(z) = Pi(z), (4.25) is easily obtained from (4.23). a

Corollary 4.1 The discounted defective joint probability density function of
U(T-) and |U(T)| is

f(z,y; 6, Dlu)
( R Ll
Ae~"p(z + y) e"“—K*H(u)-—p/o e”K(u — t)dt o <
c+2pD 1-K(0) f0su<s,

= (4.26)

re=p(z +y) K Hu—z) - K+ H(u) - p fo "R (u — t)d
c+2pD 1-&(0) ’
f0<z<u,
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with

f(z,y;4,D|0) =0, (4.27)

where K * H(u) can be replaced with ¢,(u) by (2.103).

When D — 0,
f(z,y;6,0]u)
r A . e — Ko(u) — p/o e”Ko(u — t)dt o<
—e 7p(z +y) T=Ky0) » f0<u<az,
= J _— _ £ 4 — (4.28)
\ e Ko(u — z) — Ko(u) — p / e Ko(u — t)dt
—e~p(z + y) T ,
c 1 — Ko(0)
f0<z<u,
with
A
f(z,y;4,0/0) = —e™p(z +y). (4.29)
If further let § = 0,
[ A 1 — vo(u) :
A =~ Yol¥t) <
cp(z+y)1_¢o(0), f0<u<rg,
f(z,y;0,0[u) = J (4.30)

%p(z +vy) 'IJO(ul——z'/)’OzO,fO(u), f0<z<u,

.

with
£(2,4:0,000) = 2p(z +). (4:31)
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2
Proof: Since f(z,y;d, Dju) = 9 F(za yé: Dlu) m (4.20)
if0<u<z,
3y B
_lé —pPT PETT (4 — pu]
ﬂae r (:L'+y)[p/‘; e”K(u—t)dt+ K+« H(u) — e
+1G’( VK (u) + 1 / Y K'(u+y —t)G'(t)dt
8 y 8 Jo y s
and

0*F(z,y; 8, Dlu)
Jzdy

= %3 [pe"”F'(z +y)+e”I'"(z + y)] [p /ou e”K(u—t)dt + K+ H(u) — e""]

= %ge‘“ [pf(z +y)+ L' (z+ y)],[p /0 * e”K(u—t)dt + K « H(u) — e""]

= G U+ AP+ y)p [ AR — e+ Ko B (w) - ]

e™ — K = H(u) --p/:‘e”‘?(u—t)dt

A
~pz
= cxzpp° Pty 1 - K(0) ;

with the help of (2.44);

fo<z<u,
0F(z,y;6, D|u) _ 1 " _ _1_ ’
o = -3/, K(u t)G"(y + t)dt ﬁG (y)K * H(u)

52T+ v [ R (ut)dt + Ko Hw)

_%[ﬁ'(z +y) — g—f'(z + y)]K * H(u — z),
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9*F(z,y; 4, Dlu)
0z dy

= —5C"=+9)R(u - 2) - 52Tz +y)peK(u — 2)

+52le T @)+ +y)] [o [ Riw - 0+ KT H ()

Ba

_% [ﬁ”(z +y) - SF”(z + y)]m(u —z)

5[0 +1)- 2+ )| [FoH@ - 2) - K- =)

2
= —é— [G"(z +y)+ ba—pf'(z +y)—bG'(z +y)+ %f’(z + y)]F(“ —z)

157

_% [a-"(z +y) - Sf"(z +y) +bG'(z +y) - %F’(z + y)]K *H(u—2)

K+ H(u)+p /; " R (u — t)dt
1-K(0)

_ -pz
c+ 2pD“3 Pz +y)

= _%[ba_p -b+ 9;]?’(1: +y)K(u — z)

2
~5[6- DG +9) + 20 + )| BT H@ - 2)

A R+H(u) +p /0 "R (u — t)dt

— —pPz O
cr2oD° Plz+y) 1= K(0)

= —%2%(1 +B)P'(z+y)K « H(u — z)

R+H(u) +p /0 " K (u — t)dt
1-K(0)

— —pT
C+2pDe p(z+y)

e”K*H(u—z)— K x H(u) —p./:e"‘f(u—t)dt

e ”p(z +y)

c+2pD 1-K(0)

with the help of (2.44), (2.48) and (2.106).
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Similar arguments show (4.28) from (4.22). If further § = 0, then Kos=o(u) =
Yo(u), and (4.28) reduces to (4.30). Letting u = 0 in (4.26), (4.28) and (4.30) easily
lead to (4.27), (4.29) and (4.31), respectively. a

4.3 Discounted distribution and probability den-
sity functions of |U(T)|

The discounted distribution function of |U(T')|, Fa(y; 6, D|u), now is easily obtained

from F(z,y;d, D]u) by letting z — oo
Corollary 4.2 The discounted defective marginal distribution function of [U(T)|

s

Fa(y;$, Dlw) = 2 [R(w)~R(wty)| - ;60K H@+ 5 [ Riuty -G
(4.32)

with
Fy(y;6,DI0) =0 (4.33)

and
. 1+8— 1—
Fy(00; 8, D|u) = yl:ngo Fy(y;6,D|u) = TK(u) - EK * H(u) = ¢,(u), (4.34)

where K * H(u) can be replaced with ¢,(u) by (2.108).
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When D — 0,
1 — —_ 1 — 1 rv— ,
F3(y;6,0|u) = +Fo [Ko(u)—Ko(u+y)] ——F(y)Ko(u)+—/ Ko(u+y—t)['(t)dt
Bo Bo Bo Jo
(4.35)
with
1
Fy(y;6.0(0) = r 4.36
2(4:6,00) = 17=-T(w) (4.36)
and
Fi(00;6,0lu) = Jim Fy(y;4,0lu) = Rou). (437)

If further let 6 = 0,

Fa(4:0,00u) = =2 [#o(w)— dulu+9)] ~5 Pululbolu) + 5= [ Yol +y—)P()at
(4.38)

with
Fu:0,00) = =5 Pw) = 2 ["P(o)at (4:39)

and
Fa(00i0,00u) = Jim Fi(y:0,0lu) = yo(u). (4.40)

Proof: By letting z — oo in the case 0 < u < z (since u is fixed) of (4.20), which
implies both T'(z) and T'(z + y) — 0, we easily get (4.32). Equations (4.35) and
(4.38) can be proved from (4.22) and (4.24), respectively, by similar arguments,
whereas (4.33), (4.36) and (4.39) can be shown from (4.21), (4.23) and (4.25),

respectively.
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When y — oo, K(u +y) — 0 a.nd/ K(u+y—t)G’(t)dt </ Ku+y—t)

G’(t)dt — 0, which imply Fy(y; 8, Dlu) » ~FPR(u) — 1R+ H(u) = B(u) -

B B
$a(u) = ¢.(u) by (2.101) and (2.103), proving (4.34). Similar arguments

1+ ﬂ
show (4.37) and (4.40). =]

Corollary 4.3 The discounted defective probability density function of [U(T)| is

f2(y; 6, Dlu) = —%ﬂl{ (u+y)— —G'(y)H *K(u) + ~ /0,, K'(u+y—t)G'(t)dt
(4.41)

with
f2(y: 6, D|0) = 0, (4.42)

where H * K(u) = K + H(u) — K(u) can be replaced with 1 fﬂcﬁd(u) by (2.104).

When D — 0,
Filys8,000) = ~ SRy +9)+ o [(Kywty—0r@d (443
with
£24:6,000) = =T (0). (4.44)
If further let § = 0,
Fa(w; 0,00) = -2 a4 W4g [ Vaty-0POd (44

with
Fi;0,00) = 5 P0) = G7gP0) = PG (446)
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Proof: By differentiating (4.32) with respect to y, we get

£aly: 6, Dlu) = —1—';—"1(( uty) = 560 [ H@) - K@)+

3 /(') B'(u+y—t)G'(t)dt.

Combining this with K * H(u) — K(u) = H * K(u) by (2.104), we obtain (4.41).
Similarly, differentiating (4.35) and (4.38) give (4.43) and (4.45), respectively,
whereas differentiating (4.33), (4.36) and (4.39) give (4.42), (4.44) and (4.46), re-

spectively. Alternatively, when u = 0, (4.41) becomes

f2(y; 6, D|0)
= 1;'31(( )——G’ [1—1—+—ﬂ]+ / K'(y—t)G'(t)dt
- 1+ﬂ K'(y )_1+ﬁ (y )+ﬂ[6 K(y-t)dG(t)—K(O)G’(y)]
_ _l_gﬁ W) - 13500 + 5[0+ AR W) - T - KOG W)

= 0

with the help of (1.39), proving (4.42). Similar arguments show (4.44) and (4.46)
from (4.43) and (4.45), respectively. a

Theorem 4.2 The discounted defective distribution function of |U(T)| satisfies the

defective renewal equation

Fy(y; 6, Dlu) = %ﬂ / Fy(y; 6, Dlu — z)dG(z) +
1

—ﬂ-[G(u) Glu+y)— G(y)H(u)] (4.47)
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When D — 0,

Fu(w3 ,00) = 1 [ Fulws 6,0 — 2)d(e) + - [F(w) ~ T +9)] - (4.98)
If further let § = 0,
Fa(y:0,00u) = — [ Pty 0,01 —2)dP(z) + 1o [Fiw) - Putu+y)], (4.49)

which is (5) of Gerber, Goovaerts, and Kaas (1987) [29)].

Proof: For any fixed y, let

1, fz<y,
w(z,z) = (4.50)

0, otherwise.

Then by (4.1) and (4.3), ¢u(u) in (2.2) becomes

$u(u) = EleTw(U(T-),|U(T))(T < o0,U(T) < 0)|{U(0) = u]
- /o * fo > /0 ~ e=Stw(z, z) f(z, z, t; Dlu)dtdzdz
- /0" /0 = /0 ¥ e=% f(z, z,¢; Dlu)dtdzdz
- /0“ /0 ~ f(z, 26, Du)dzdz
[ #2268, Dluydz
Fa(y; 6, Dlu), (4.51)

the discounted distribution function of |U(T)|.
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By (2.15), Fa(y; 8, D|u) satisfies the defective renewal equation

Fo(y; 8, Dlu) = [ Fy(y; 6, Dl — z)g(=)dz + gu(u) where g (u) = h » 7,(x). From

(2.7) and (2.14),

A fro© =)
7.(8) = Z/. c"’(‘_')/o w(z, z)p(z + z)dzdz

A > v

- 2 —p(z—2)

= c/. e /(; p(z + z)dzdz
A oo — =

= 2 —p(z—s) -

= c./. e [P(z) P(z+y)]dz

= %/{;we‘”[ﬁ(z +38)—P(z+s +y)]dz,
and by (1.49) and (1.52)

2D ) ) (s +4) = Do +9) - T(o).
/(; 7(y)dy Z/o e Y P(y)dy

This implies

_gu(v) _ /Ou h(w — s)v.(s)ds
/000 g(z)dz /0 ~ h(z)dz /0 ~ (y)dy
= /(;"H'(u—s)[l"(s+y)_p(3)]ds

- / " H(u +y — t)T(t)dt — C(u)

= Glu+y) - /0" H'(u +y — t)[(t)dt — G(u)
= Gu)—Clu+y)—e™ /O" H'(y — t)T(t)dt
= G(u) - G(u+y) — Gy)H(u).
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: * 1 / 9(z)
Since g(z)dz = —— and G'(z) = ————,
) 1+8 [ 9(2)dz
1]
F2 (y; 67 DI“)
= [ Falwi6, Dlu — 2)g(2)dz + gu(u)

1 u z gu(u)
= —— [ Fy(y;8,Dlu— z)—s dz + .
T /0 2(y; 6, Dlu — z) oo 2+ 1 o

1 u , 1 - _ .
= 1+8 / F2(y; 6, Dlu — z)G'(z)dz + m[c'(u) ~Gu+y) - G(y)H(u)].

(4.48) and (4.49) can be shown by similar arguments. Alternatively, when D —
0, B — Bo, H(u) = 0 for u > 0 and G(z) — I(z), (4.47) — (4.48) for u > 0. If
6 = 0 then By = 6 and ['(z) = Pi(z), (4.48) reduces to (4.49). a

We remark that (4.47) can be shown from a probabilistic viewpoint. Since g(z)
defined in (1.30) is the discounted probability that the first record low (the first
time where the surplus falls below the initial level) is caused by a jump where z is
the amount by which the resulting first record low caused by a claim is below the
initial surplus u, and H(u) = e~ is the expected discounted value of a contingent
payment of 1 that is due at ruin, provided that ruin occurs before the first record
low that is caused by a jump, by conditioning on the time and amount of the first

record low caused by a claim, we obtain

Fa(yi6,Dlw) = [ Fa(y; 6, Dlu—2)g(=)dz+ [ Y (z)dz—H() [ a(@)dz. (4.52)
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Note that the second term of the right side includes an unwanted contribution

for the situation where ruin occurs by oscillation prior to the first record low caused

by a jump; the third term is the corresponding offset.

Since '/(;°° g9(2)dz = l—j-ﬂ. and G'(z) = Tg;(%, (4.52) can be written as
Fy(y; 6, Dlu)
= 155 ) B Du-2)G () + 1 -;l-ﬂ [ 6'@)de -
1 v _,
T2 /0 G'(z)dz
= ﬁ [} Fly:6, Dlu— 2)dG(z) + ﬁ [ -G +9) - G H)|,

which is exactly equation (4.47).

Corollary 4.4 The discounted defective probability density function of |U(T)]| sat-

tsfies the defective renewal equation

Flw 8, i) = 5 [ (438, Dlu = 2)dG(@) + 15 (6w +9) - C WA ).

(4.53)
When D — 0,
fa(wi6,0lw) = = [* fi(i8,0lu = 2)T(2) + — (uty).  (454)
3 2 1 +ﬁ0 0 b] 1 1 +ﬁo
If further let § = 0,
: R T A _ 1 P(u+y)
£2(4:0,000) = 5 [* o4 00w — 2)dPA(e) + g — ot (455)
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Proof: Differentiating (4.47), (4.48) and (4.49) with respect to y easily yield (4.53),
(4.54) and (4.55), respectively. a

Since F3(o0;4, Dlu) = limy,o Fi(y;d, Dju) = &.(u), Fy(y;6,D|u) is a dis-
counted defective distribution function. It is convenient to define the discounted

proper distribution function as follows:

FZ(y; 67 Dlu)

Fu(y;6,D) =1 —F,,(y;d,D) = 4.56
2,u(Y ) 2,u(Y ) (1) (4.56)
Then we have the following result for
F200(y; 8, D) = 1 — F3 50(y; 6, D) = limyo0 F2,u(y; 8, D).
Theorem 4.3 F, . (y;4, D) = lim,_,, Fu(y; 8, D) satisfies
[ =[6@ -G +v) - 6@
Fr00(y;8,D) = =2 —— — (4.57)
[T [G(z) - H(z)]dz
5 _ - l Gly)—em / = e~ T (t)dt
= £ —k ﬂ 1 Y ' Yy Z 07 (4'58)
K b-—&

where & satisfies / = e™dG(z) = 1 + B, or equivalently, x = —&, and &, is the
0

unique negative root of (2.187).
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Proof: Since ¢,(u) satisfies (2.117), ¢,(u) = 1 +ﬁ-/ ¢. ﬂ
H(u), and Fz(y, 4, D|u) satisfies (4.47), F3(y; 8, D|u) = —— Fz(y; 4, Dlu —z)

.3
dG(z) + I+—ﬂ [_G_(u) _Cu+y)- G(y)ﬁ(u)], by theorem 1.2,

—Ku __

/0 ze"*dG(z) /0 ~ ze™dG(z)

e " as u — oo,

and

[e * [G(:z:) ~Gz+y) - G(y)H(z)]dz
/0 ze**dG(z)

—-Ry

Fy(y; 6, Dlu) ~ , @GS U — 00,

where & is positive and satisfies / = e**dG(z) =1 + B. Therefore,
0

“uFZ(y; 67 Dlu)

Jim, e~*d,(u)
/o e [6(:) _Cz+y) - G(y)ﬁ(z)] dz
/0  ene [E(z) - F(z)] dz

F00(y;6,D) = lun Fu(y;6,D) =

which is (4.57).
: 2 KZ7Y — o~V *® CYal ® k2T = ® —(b—x)z
Smce‘/0 e”G(z+y)dz=e /,, elG(t)dt,_/; e H(lz)da: /0 e dz
- < and/(: e~G(z)dz = ;/0- G(z)de™ = E[e

I e"‘dG(z)] =B (4.57) leads to (4.58). =
0 X
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4.4 Discounted distribution and probability den-

sity functions of U(T-)

The discounted distribution function of U(T—), Fi(z; 4, D|u), is directly obtained
from F(z,y;d, D|u) by letting y - oo

Corollary 4.5 The discounted defective marginal distribution function of U(T—)

18
Fl(z; 67 Dlu)
( #F(u) -~ %_—K ~H(u)
+%§e"”‘f(z) [p /: e”K(u—t)dt + K « H(u) — Cp"] )
J f0<u<ez,
-, . , . (4.59)
3 /0 K(u - )G'(®)dt ~ 5K+ H(u)
+‘-;-§e_"zf(z) [p /: e”K(u—t)dt + K = H(u)]
+%[§(z) - -gf(z)]K * H(u — z), f0<z<u,
with
Fy(z;6,D|0) =0 (4.60)
and

Fy(c0; 8, D|u) = lim Fy(z; 6, Dlu) = I‘;Tﬂ?(u) - %_K « H(u) = ¢,(u), (4.61)
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where K * H(u) can be replaced with ¢,(u) by (2.103).

When D — 0,

Fi(z;4,0[u)
r Ko(u) + Blge""f"(z) [p /ou e Ko(u — t)dt + Ko(u) ~ e""] ,

fo<u< :z:,( 62)
1 r=— , ) 4.
= fo f(o(u ~ OF'(t)dt ~ -Fo(u)

+—oe_"'f(z) [p /: e”Ko(u — t)dt + _Ifo(u)] y #0<z<u,

= 9

~ B
with
Fy(2;6,0[0) = — [1 —o=T, 4.63
1(258,000) = - [1 - eT(2)] (4.63)
and
Fi(00;4,0|u) = :li_glo Fi(z;4,0[u) = Ko(u). (4.64)
If further let § = 0,
P,(z) P, (z) i
1+ —— - if 0 < ,
Fi(2:0,00u) = [1+ o Jh - 1 PO e
5;‘/(; 1/10(‘& - t)P(t)dt - Epl(:t)‘l/lo(u), ’LfO <z<u,
with
Fi(2:0,000) = - Pi(2) (4.66)
and

Fy(00;0,0[u) = zﬁ_{go Fi(z;0,0|u) = ¥o(u). (4.67)
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Proof: By letting y — oo in (4.20), which implies K (x +y), [(z +y), G(z +y) and
G'(y+t) - 0, G(y) — 1, and /0 "Rluty-t)G(t)dt < /o " Rut+y—£)G(t)dt — 0,
we obtain (4.59). Equations (4.62) and (4.65) can be shown from (4.22) and (4.24),
respectively, by similar arguments, whereas (4.60), (4.63) and (4.66) can be shown
from (4.21), (4.23) and (4.25), respectively.

When z — oo, Fi(z; 4, Dju) — 1—;—37(14) - %m(u) = K(u) — 7 -+1-ﬂ¢d(u)
= ¢.(u) by (2.101) and (2.103), proving (4.61). (4.64) and (4.67) can be shown

directly. a

Corollary 4.6 The discounted defective probability density function of U(T—) is

f1(z; 4, Dlu)
r Ae-=<P(z) ¢ — Kx H(u) = p /0 K (u — t)dt
— if0 <
et 2pD T=R(0) , 0<u<z,
= 4 z (4.68)
Ae#P(z) K+ Hu—-2)-K+Hw —p [ "K(u- t)dt
c+2pD 1 - K(0) ’
{ f0<z<u,
with
fi(z; 6, D[0) =0, (4.69)

where K * H(u) can be replaced with ¢,(u) by (2.103).
When D — 0,
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fi(z; 4,0]u)
A e — Ko(u) — p/o e Ko(u — t)dt -
P P(z) [ —Kq(0) , f0<u<z,
= J _ — z (4.70)
e RKo(u—z)—Kofu)—p / " Ko(u — t)dt
Ze*=P(z) ~__Jo ’
o4 1-—- Ko(O)
‘ f0<z<u,
with fi(z;4,0|0) given (4.7).
If further let § = 0,
[ A= 1 —1o(u) .
E’P(z)m, zf0$u<z,
fi(z;0,0[u) = | (4.71)
Asiy Yolu —z) —Po(u) .
k <P(=z) T4 ' f0<z <,

with fi(z;0,0|0) given (4.5).

Proof: By (2.44) and K(0) = %ﬁ’ differentiating (4.59) with respect to z leads
to that
if0<ucx<z,
fi(z;6,Du) = lé[e"”f(:c)]l[p/u e”K(u —t)dt + K = H(u) — e""]
T Ba 0
16 A

= —52ip +Ae=P) [p [ R - t)dt + K= Hu) - e""]
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\ _ em-—K*H(u)-p/"eﬂ?(u-t)dt
= e "*P(z) —=0 ;
c+2pD 1 - K(0)

if 0 < z < u, with the help of (2.48) and (2.106),

fi(z; 8, D|u)
1b

Ga [e‘“F(z)J,[p _/: e”K(u —t)dt + T(—*_ﬁ(u)] +

- %-I_{_(‘u —2)G'(z) +

1b _ .= R (u—z2)+ LT () = el T —z
52 TEpeK(u—2) + 5[6'(e) - @)K Hu~ =) +
%Tﬁ(z) - gf(z)]m'(u —z)
= lfa Yot Bu - =)+ LG (2) — EF ) e F (w —
= ﬂ_G (z) + a[‘(z)]K(u )+ﬂ[G (z) — T )]K H(u—z)+
A SRR T —
510 - ;T@)| [F7H@-2) - Ru-2)| -
A . E¥H@+p /0 " R (u — t)dt
c+ 2pDe P(z) 1- K(0)
17, bp= — B 11—
- E[G (2) + £T(z) - 8G(z) + :P(z)] K(u—z)—

2
5l6'@ - 2r(@) - 86e) + x| B H@ - o) -

B
A ExH@+s /:eﬂ'?(u—t)dt
cr2p° @ 1 - K(0)
— L BT R — o) -
_ 5[7 b+a][‘(z)K(u )

108 . b, Qe

B-[(; - (=) - T (:z:)]K v Hu-z)—

K*H(u)+p/:e”‘?(u—t)dt
1 - K(0)

- %g [PF(@) + ()| Ko H(w ~ 2) -
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E+H(u)+p /0 " R (u — t)dt
1 - K(0)
A _ e”K*H(u—z)—K*H(u)—p/ze"‘—f(u—t)dt
e 7 P(z) = 0
c+2pD 1 - K(0)

Similar arguments derive (4.70) from (4.62). If further § = 0, then Ko s=0(u) =
Yo(u), and (4.70) reduces to (4.71). Setting u = 0 in (4.68), (4.70) and (4.71) easily
give (4.69), (4.7) and (4.5), respectively. ]

Now equate (4.6) and (4.70), we get

em _Bw) €~ Kolw)—p /o " e Bo(u — t)dt
1-K,(0) 1 — Ko(0) ’

or equivalently,

K _w_l"—mew__u_ “e—u_
Ro(w) =~ 1= |~ Folw) —p [ Rolu—t)de],  (a72)

with K, s-0(u) = Ko s-0(x) = ¢o(u).

Theorem 4.4 For 0 < u < z, the discounted defective distribution function of

U(T —) satisfies the defective renewal equation

Fi(z:6,Dfw) = 137 [*Fi(z:d, Dlu ~ y)dG(y) +
1 (= S
m{l‘*f[(u)—;e T@)[e -]} (a13)

When D — 0,
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Fy(z;6,0/u) = — / * Fy(z:6,00u — y)dT(y) + — [F(u) - e-ﬂ“""ﬂz)]-
1 Y 1 +ﬂO o L] 1 +ﬂ0

(4.74)
If further let 6§ = 0,

1 u 1 [— —_
. - _ . — —_— — . 7
Fi(z;0,0[u) 1 +0A Fi(z;0,0lu — y)dP,(y) + 1 +0[P1(u) Pl(:l:)] (4.75)
Proof: For any fixed z, let

1, fz< 2,
w(z,y) = (4.76)

0, otherwise.

Then by (4.1) and (4.2), ¢, (u) in (2.2) becomes

$u(v) = Ele™Tw(U(T-),|U(T))I(T < oo,U(T) < 0)|U(0) = u]
- /o * /0 * /O ~ e~%w(z,y)f(z,y, t; Dlu)dtdydz
= /0 i} /0 = /0 ~ e f(2,y,; Dlu)dtdydz
= [ [ #(.v:6, Dlu)dyd=
- /Ozf,(z; 8, Dju)dz
= Fy(z;6, D), (4.77)

the discounted distribution function of U(T-).
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By (2.15), Fi(z; 4, Dlu) satisfies the defective renewal equation

Fi(z;6, Dlu) = /0., Fi(z; 4, Dlu — y)g(y)dy + g.(u) where g,(u) = h * v,(u). For

0 < u < z, from (2.7) and (2.14),

A [ —p{(z—s bt
rlo) = 2 [T e [Tz y)p(z +y)dyds
A f= —p{z—s had
= Z/‘ e )/; p(z + y)dydz
A [ — o P
— Z[./: e—"(‘")P(z)dz—-/z e=*( )P(z)dz]

= é[/co e—P(“‘)F(z)dz — e P(=-9) /‘°° e—p(z—z)'ﬁ(z)dz]

c

and by (1.49) and (1.52)

Tols)  _ Yo () =T(s) — e#=-9T(z).
[ 1)y 2 [ e Plyydy

This implies

o) b snls)ds
Iwers [ hz)dz [y
= /Ou H'(u — s) [f"(s) - e-p('—‘)F(z)] ds

= T=H(u) - e *T(z)be ™ /: et+P)ed,

= [x*H(u) - e“"f(z)b _t pe""" [e(b*")" - 1]

= CxH(u) - ge'””r(z) [e”" - e‘b"] .
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Since /co g(2)dz = 1 and G'(z) = o‘;q(—z),
0 1+ / 9(z)dz
0
Fl(z; Ja D'u)
= _/; Fy(z; 4, Diu — y)g(y)dy + gu(u)
= —— [ Fi(z;6,Dlu — y)—== dy + S
1+ [ /0 9(z)dz 1+5 /0 9(z)dz

1 e )
= 155/ Bl -y)G )y +
1 (< b —
—_ ——pPZ pu _ ,—bu
- +B{P* H(u) - e l‘(z)[e e ]}
(4.74) and (4.75) can be shown by similar arguments. Alternatively, when D —
0, 8 — fo, b/a - 1, T « H(u) - T(x) and H(u) =e™™ — 0 for u > 0, (4.73) —
(4.74) for w > 0. If § = 0 then fy = 8 and I'(z) = Pi(z), (4.74) reduces to (4.75).

a

Corollary 4.7 For0 < u < z, the discounted defective probability density function

of U(T—) satisfies the defective renewal equation

u A .
fi(z; 6, Dju) = %ﬁ/o fi(z; 6, Dju — y)dG(y) + e+ 25D e 7 P(z) [e”" - e'b"] .
(4.78)
When D — 0,
£ 6,010) = 13 [ Fi(2i8,00u ~ 9)dT(w) + 2e=P@). (419)

If further let § = 0,
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fu(=i0,010) = 15 [ Au(e;0,0lu — )dPi(y) + 2P(a). (4.80)

Proof: Differentiating (4.73), (4.74) and (4.75) with respect to z lead to (4.78),
(4.79) and (4.80), respectively, with the help of (2.44). a

Dickson (1992) [5] proposed a relationship between Fj(z;0,0|u), the probability
that ruin with initial surplus u and the surplus immediately prior to ruin caused by
a claim is at most z, and F3(y;0,0|u), the probability of ruin with initial surplus u

and the deficit immediately after the claim causing ruin is at most y, as follows:

Fi(z;0,0lu) = Fz(z;0,0|u—z)—[l+Plo(z)] [1/)0(11.—-2:)—1/)0(14)], 0<z<u (4.81)
We also have corresponding relationships between F(z; 8, D|u) and F; (y; 8, D|u)
and between Fi(z;4,0|u) and F,(y;4,0|u) as follows:

Lemma 4.1 For0 <z < u,

Fi(z;4, Dlu)

= Fy(2;4, Dlu—~z) — [?(u _z)— ?(u)] —%ge"”f(z) Ji " et dR (u —t) —
%[1 - gf(z)] [?(u —z)-K+H(u- z)]+

%[1 — -:-e""'r(z)] [?(u) - m(u)]. (4.82)

When D — 0,
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Fi(z;6,0/u) = Fy(z; 6, 0lu—z) — [?o(u—z)—fo(u)]—ﬁl;’-e'”f‘(z) [ e#dRo(u—1).
(4.83)

If further let § = 0, (4.83) simplifies to (4.81).

1+5

B
,3 / K(u — t)dG(t). Deducting this from (4.59) (the expression for 0 < z < u)

Proof: By (4.32), F(z;d, Dju—z) = [K(u z)— K(u)]——G(y)K*H(u z)

gives

F\(z; 6, D|u) — Fy(z; 4, D|u — z)

- --1—;?- [K(u —z)— T(‘(u)]+l[m(u —z)— m(u)]—
3 aF(:c)K T H(u—z)+ Efe-”r(z)[ / "R (u — t)dt + K—*F(u)]
- —-Hﬂ—ﬂ[l((u —z)— K(u)]+§ [K v H(u—z)— m(u)]—
%gf(z)l( “Hu—z)+
;abe ~T(2) [ K(n — 2) - K(u) - [ emdRu—1) + m(u)]

= — .K(u —-z)— 7(1;)] —Ege‘”f(z) /: e”*dK(u —t) —

1 - gf(z)] [?(u —2)—K+H(u— z)] +

W= W+~

:1 - ge_”"r(z)] [F(u) - m(u)]

after some arrangements.
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When D — 0, b/a - 1, 8 — Bo and both K(u) and K = H(u) — Ko(u),
implying that (4.82) — (4.83). If § = 0 then By = 6, T(z) = Py(z) and Ko(u) =
Po(xu), (4.83) reduces to (4.81). o

4.5 Discounted distribution and probability den-
sity function of {|U(T)| + U(T-)}

When ruin occurs due to a claim, {|{U(T)|+U(T—)} is the amount of the claim

causing ruin. If we observe corollaries 4.1 and 4.6, we find some relations as follows:

f(z,y; 6, Dlu) _ f(2,y;6,0lu) _ f(z,y;0,0lu) _ p(z +y)
fi(z;6,Dlu)  fi(z;9,0lu) — fi(=;0,0u) P(z) ’

(4.84)

independent of u, where z + y is the amount of the claim causing ruin. Though
Dickson and Egidio dos Reis (1994) [8] first showed the relation above for the
case D = 0 and § = 0, their proof seemed complicated. Later, Gerber and Shiu
(1997) [28] gave a easier proof.

If we let w(z,y) = z +y, then by (4.1), ¢, (u) in (2.2) becomes

$u(u) = E[T(UT-)+ |UT))IT < 00, U(T) < 0)|U(0) = u]
= [T [ [T ez +9)f(zy.t; Diu)dtdzdy
- /0 * /0 " (¢ +y)f(z,y; 6, Du)dzdy
[)w z‘/oz f(z,z — z; 6, Dju)dzdz
= /0 ” 2f2(z; 6, Dlu)dz, (4.85)
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the defective Laplace transform or the expectation of the present value of the
amount of the claim causing ruin, where

z fi(z; 4, Dlu)

O (4.86)

fz(2;6, Dju) = /0 " f(z,z — 2;6, Dlu)dz = p(z) [

by (4.84), is the discounted defective probability denmsity function of the amount
of the claim causing ruin. (4.86) provides alternative formulas for obtaining the
expression for fz(z;4, D|u) since the explicit expressions for f(z,y;6, Dju) and
f1(z; 4, Dl|u) are available from (4.26) and (4.68), respectively.

Theorem 4.5 The discounted defective probability density function of {U(T-) +
[U(T)I} is

fz(2;48, D|u)

( a: ;\p 55, 16__"’%((?) {pe”‘ [ / B H(u—t)dt — / “Ru-— t)dt]+

[e”* — e™] — [e”* — 1]K * H(u) + p/ou e”*K(u — t)dt}, if0<uc<z,

T ;‘p 5 f-_”%((;)) {pe"‘ [ /0 K H(u-t)dt — /0 "R(u- t)dt] _

[e?* —1]K = H(u) + p‘/z e K(u — t)dt}, if0< z<u,
\ o]

with
fz(2;46,D]0) =0, (4.88)

where K * H(u) can be replaced with ¢,(u) by (2.103).
When D — 0,
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fz(z;4,0]u)
f Ao, (6% — e™] — [e”* — 1]Ko(u) + p-/; e Ko(u — t)dt
56 p(Z) 1-— ?0(0) ?
if0<u<z,
= 4 (4.89)
A .l = 1Ro(u) +5 /0 " Ro(u—t)dt
\ ;e p(Z) 1 _‘k‘o(o) 7 lfo <z< u,
with
fa(5:8,000) = 2125 ) (4.90)
If further let § = 0,
r A [z —u] — Yo(u)z + /u Yo(u — t)dt '
Zp(z) 1 — ¢0(6)) ’ ‘lfO S u <z,
fz(z;0,0u) = (4.91)
A —vo(w)z+ [ wolu—t)t
-P z) 1_;’0(0) ) if0 < z<u,
with
fz(2;0,0[0) = %zp(z). (4.92)

Proof: By (4.68), if 0 < z < u, (4.86) becomes
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fz(2; 6, Dju)

= A p(z) /0‘ K« H(u — z)dz — K * H(u) /0‘ e "dz —

c+2pD 1 - K(0)
p/: e~ /z e K(u — t)dtdz:}
0

_pg

- A p(z) [ BvH@-2)dz - LR H@) -

c+2pD 1 - K(0)
p / ) / T e PR (4 — t)dzdt}
0 t

..pg

= A p(z) "K+Hu-z)dz -
= c+2pD 1—?(0){/0 K Hu-z)d

/0 * [1 - e"’("')] Klu - t)dt} (4.93)

_ A e'p‘p(z) pz xT _ _ z___ w — _
" (c+2pD)p 1= K(0) \¥€ [o Kox H(u —t)dt /OK( t)dt]

K« H(u) —

[ — YR+ H(u) + p / R (u - t)dt};
0
whereas if 0 < u < 2, decompose -/o : into / : and / " Then from (4.93)
o] u

fi(z; 6, Dlu)
p(z )/ P dz

= p(2) * H(u — 1= W'*—u -
- c+2pD l—K(O){/ K+ H(u - t)dt P K+ H(u)

/0 [1 - e"’(“")] K(u-— t)dt},

and from (4.68)
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ple) [T 120 D) g,

P(z)
- Tn i (Tzf)w) { - Ko - [ Klu~t)at} [ ea
e +;”D 1 j)(%)(0) {em — K= H{u) - P/;u e”K(u — t)dt}u
— e=plz—u) - _ o—pr___
N C+;pD 11,(%)(0) 1 e,, - = pe K H(u) -

/u [e'”("") - e"’(‘")] K(u - t)dt}.
0

Therefore, for 0 < u < z,

fz(z; 4, D|u)
_ A r(2) {1 —ePxw) ] _epr___
~ ¢+2pD 1-K(0) p T p K+ H(u) +
B — [ — —ee-0]% —
[ B H@ -t / [1 e ]K(u t)dt}
A e **p(z)

- Dy T {pe”" [/0" KeHu-t)dt - [ K- t)dt] +

[e°* — e™] — [e** — 1]K = H(u) + p/ou e”K(u — t)dt}.

Similar arguments show (4.89) and (4.91) from (4.70), (4.71) and (4.86). Alterna-
tively, when D — 0, both K * H(u) and K(u) — Ko(u) for u > 0, which implies
(4.87) — (4.89) for v > 0. When 6§ — 0, p — 0 and Ko(u) - Yo(u), it is easy to
see that (4.89) — (4.91).

When u = 0, (4.88), (4.90) and (4.92) are easily obtained from (4.87), (4.89)

and (4.91), respectively. 0O
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The expressions for Fz(z; 4, D|u), Fz(z;4,0|u) and Fz(z;0,0|u), the discounted

defective distribution functions of the amount of the claim causing ruin, can be

obtained from (4.86) as follows:

F(z:6,Dfw) = [ f2(4:6, Dhu)dy

= [To [ 25 ey

_ fi(z;6,Dlu) ,

=-f L Sy 4 dPw)

_ o [* filz;6,Dlu)
~P@) [ & .

= Fy(x4,Dlu) - P() [

dz| + [ fi(y;6, Dlu)dy

* fu(#:6, Dlu)
P(z)

dz. (4.94)

That is, subtractions of (4.87), (4.89) and (4.91) with p(z) replaced with P(z) from
(4.59), (4.62) and (4.65) with z replaced with z give Fz(z; 6, D|u), Fz(z; 4, 0ju) and

Fz(z;0,0|u), respectively, since fz(z; 6, D|u) = p(z) /z %dz.
0 z

In addition, integrations of fz(t; 4, D|0), fz(¢;4,0[0) and fz(¢;0,0|0) from ¢t = 0
to t = z in (4.88), (4.90) and (4.92), respectively, yield

Fz(z;6,D|0) = 0, (4.95)

Fz(2;6,0[0) = %[ [ Pty - 1 _'"F(z)] (4.96)

and

Fa(z:0,000) = 2[pP(2) - 2P(2)]. (4.97)
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We remark that

FZ(W; 67 Dlu)

Fz(o0;4,0[u)

and

Fz(00;0,0|u)

185
lim Fz(z;6, Dlu) = 4,(u)
lim Fy(z;9, Dlu) = lim Fy(y; 6, D[u), (4.98)
,li.’ﬁ, Fz(z;4,0ju) = Ko(u)
lim Fy(z;6,00u) = lim Fy(y; 4, 00u) (4.99)
‘liglo Fz(2;0,0[u) = ¥o(u)
zlixgo Fi(z;0,0|u) = vli_glo Fy(y; 0, 0]u). (4.100)

Theorem 4.6 For 0 < u < z, the discounted defective distribution function of

{U(T—) + |U(T)|} satisfies the defective renewal equation

FZ(Z; 67 Dlu‘)
1 u 1 —
= 1335/ Fa(a:6,Dlu — 5)d6(w) + m{r « H(u) -
ge""r(z) [e”" - e""‘] }—c +’;pD 1 _: i’ P(z) [e”“ - e’b"] . (4.101)

When D — 0,
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Fa(z6,0l) = 1= ﬂ / Fz(z;6,0[u — y)dT(y) +
1 — Pl ] AT — )
ey [I‘(u) e Iz )] ———P(2).(4.102)

If further let 6§ = 0,

Fz(2;0,0/u) = -l—i—o /ou Fz(z;0,0lu — y)dP,(y) + ﬁ [ﬁl(u) —Py(z) - p—z—l-l_’-(z)] .
(4.103)

Proof: From (4.94), %‘;/“Fz(z'ﬂ Dlu — y)dG(y) =

z) f* r* fi(z; 9, Dju —
1+ﬂ/ Fi(z; 6, D|u — y)dG(y) — 111[)& /0 h( ﬁ(z')“ Y) 42dG(y).

Subtraction of this equation from (4.94) and by (4.73) and (4.78) yields

Fz(2; 6, Dlu) — —— / Fyz(z; 8, Dlu — y)dG(y)

= Fi(z;96,D|u) - Fl(z; 4, Dlu — y)dG(y) —

m 0
P(e) [ gy [fu@i8, 1) = 1 [ @36, Dlu — )dG(y) de

= ﬁ{f* H(u) — ge""‘f(z) [e"" - e"b"] }—

c +2pDﬁ(z) [em - e—bu] / e da
_ liﬂ{I‘*H(u) —2e "‘I"(z)[e”" "“]}—
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proving (4.101). (4.102) and (4.103) can be shown by similar arguments. Alterna-
tively, when D — 0, 8 — By, b/a - 1, T » H(u) — T(v) and H(u) = e — 0 for
u >0, (4.101) — (4.102) for v > 0. If § = 0 then Bp = 8 and I(z) = Pi(z), (4.102)
reduces to (4.103). ]

Corollary 4.8 For0 < u < z, the discounted defective probability density function
of {U(T—) + |U(T)|} satisfies the defective renewal equation

f2(2:8, Dju) = ﬁ /o" fa(z: 5,D|u_y)da(y)+c+;pp 1 —:-mp(z) [eP"—e'b"].
(4.104)
When D — 0,
£a(z:8,00) = 15 [ Fa(ei 6,00 — y)ary) + 2L g5
If further let 6 = 0,
f2(2:0,0u) = 1+—e [ £2(2:0,00 — y)dPy(y) + —zp(z) (4.106)

Proof: Differentiating (4.101), (4.102) and (4.103) with respect to z give (4.104),
(4.105) and (4.106), respectively, with the help of (2.44). a
Since (4.82) gives the expression for Fi(z; §, Dju)— Fy(z; 4, Dlju—z)for0 < z < u,
combining this with (4.94), Fz(z; 8, Dlu) = Fi(z; 5, Dlu) — P(z) /o : M%tf"‘h::,
we can obtain the expression for Fz(z; 48, D|u) — F3(z;8, Dju — z) for 0 < z <u.
Note that since each of the expressions for the discounted probability dis-

tribution functions F(z,y;d, D[u), Fi(z;$, D|u), Fy(y;§, Dju) and Fz(z;é, D|u),
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and for the discounted probability density functions f(z,y; 0, Dlu), fi(z;é, Dlu),
f2(y; 6, D[u) and fz(z; 4, D|u) involves G(u), T'(x), K(u) or/and K « H(u) which
have explicit analytical solutions in (2.50), (2.54), (2.59), (2.63), (2.135) and (2.149)
if P(z) is a combination of exponentials or a mixture of Erlangs, each of these ex-
pressions for the discounted distribution functions and probability density functions
can be obtained explicitly if P(z) is a combination of exponentials or a mixture of

Erlangs.



Chapter 5

Summary and future research

5.1 Summary

A defective renewal equation for the more general expected discounted function of
a penalty at ruin which involves the time of ruin, the surplus immediately before
the time of ruin, and the deficit at the time of ruin, based on the surplus process
of ruin theory with an independent diffusion process, has been derived. When
the variance of the distribution of the diffusion process (with the mean of zero)
goes to zero, the defective renewal equation reduces to the one based on the surplus
process of classical risk model. In addition, the asymptotic formula for this expected
discounted function of a penalty at time of ruin is proposed by applying Feller’s
renewal theorem to the corresponding defective renewal equation.

Given the claim size distribution function P(z), we can construct the classical
distribution function I'(z) and the associated claim size distribution G(z) which is

Just the convolution of I'(z) and an exponential distribution function H (z). Then

189
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the associated compound geometric distribution function K(u) can be expressed
in terms of G(u). A Tijms-type approximation (a combination of two exponential
functions) is given for K(u). When P(z) is a combination of exponentials or a
mixture of Erlangs, an explicit analytical solution (a combination of several expo-
nential functions) to K(u) is achieved. Once K (u) has explicit analytical solution
or Tijms-type approximation, so do ¢4(u) and ¢,(u), the discounted probabilities
of ruin due to oscillation and a claim, respectively, since both ¢;(u) and #,(u) can
be written in terms of K(u).

Moreover, when P(z) satisfies a certain reliability-based class condition, not
only upper and lower bounds on the compound geometric distribution function
K (u) are obtained, but also I'(z) and G(z) satisfy the same reliability-based class
condition.

The (discounted) moment of the deficit at the time of ruin, the joint moment
of the deficit at ruin and the time of ruin, and the moments of the time of ruin
due to oscillation and caused by a claim, respectively, are also studied in detail,
including the corresponding defective renewal equations and explicit expressions.
The explicit expressions for the covariance of the deficit at ruin and the time of
ruin, and for the variances of the time of ruin due to oscillation and caused by a
claim, respectively, can be obtained from these (joint) moments. We also find that
the moment of the time of ruin caused by a claim has the same recursive expression
as the moment of the time of ruin caused by oscillation. When P(z) is DMRL
(decreasing mean residual lifetime), the discounted moment of the deficit at the

time of ruin is bounded above by a constant multiplied by K (u).
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The explicit expressions and defective renewal equations for the (discounted)
Joint and marginal distribution functions of the surplus immediately before the
time of ruin and the deficit at the time of ruin, F(z,y;6, D|u), F\(z;é, D|u) and
F3(y; 6, Dlu), respectively, and for the (discounted) distribution function of the
amount of the claim causing ruin, Fz(z; 4§, D|u), are derived. Then the (discounted)
probability density functions are obtained by differentiating the corresponding (dis-
counted) distribution functions. Besides, the relationships between Fi(z; 4, D|u)
and F3(z;d, Dlu — z) and between Fy(z; 4, Dlu) and Fz(z; 8, Dlu) are also given.

Since each of the discounted distribution functions, F(z,y; 6, D|u), F\(z;$, D|u),
F3(y; 8, Dlu) and Fz(z;4, D|u), and each of the discounted probability density func-
tions, f(z,y;9, Dlu), fi(z; 8, Dlu), fa(y; 4, D[u) and fz(z; 4, D|u) can be expressed
in terms of P(u), [(v), G(v) and K(u), if P(z) is a combination of exponentials or a
mixture of Erlangs, each of these discounted distribution functions and probability

density functions has an explicit analytical solution.

5.2 Future research

In the case where no explicit analytical solutions are available, some numerical
algorithms (for example, Dickson and Waters (1991) [12], and Dickson, Egidio dos
Reis and Waters (1995) [11]) can be applied to compute the value of probability of
ruin if the specific initial surplus u is given.

In this thesis, the number of claims is assumed to follow a Poisson distribu-
tion, which is equivalent to that the inter-arrival time between successive claims is

exponential distributed. There are some other assumptions about the interarrival
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time, like Erlang-2 (the probability density function is k(£) = y2te~"* for t > 0)
and Coxian-2 (see pp. 360-361 of Tijms (1994) [44]) distributions. In particular,
Dickson (1998) (7] and Dickson and Hipp (1998) [10] have proposed some results
based on the Erlang-2 assumption.

Since our surplus process contains a diffusion factor, some applications to the
pricing of financial securities, such as certain (American) perpetual options, are
feasible. See Gerber and Shiu (1994) [25], (1996a) [26], (1996b) [27], (1998b) [30]
and (1999) [31], and Gerber and Landry (1998) [24] for more details.
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