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Abstract

An analog controller has been analyzed and built for an electrostatic micro-cantilever

beam. The closed loop MEMS device can be used as both actuator and sensor. As an

actuator it will have the advantage of large stable travel range up to 90% of the gap. As a

sensor the beam is to be driven into chaotic motion which is very sensitive changes in the

system parameters.

Two versions of the controller have been analyzed and implemented, one for the actuator

and one for the sensor. For the actuator, preliminary experiments show good matching

with the model. As for the sensor, the dynamic behavior have been studied and the best

operating regions have been determined.
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Chapter 1

Introduction

1.1 Motivation

The MEMS industry grew quickly over the past two decades from a rich research area into

a multi-billion dollar industry. Very broadly, MEMS devices are usually classified into two

categories namely sensors and actuators. MEMS actuators are used commercially in many

applications including, inkjet heads [3, 4, 5, 6], micro pumps [7], RF switches [8, 9], micro-

mirror manipulators [10, 11, 12], robotic surgery [13], micro-grippers [14, 15, 16, 17, 18, 19],

and probe-based disc drives [20]. In addition to having small size, MEMS actuators have

the advantage of low cost, ease of integration with electronic components on one chip and

high precision.

MEMS are divided into four groups based on the method of actuation. These groups

are electrostatic, thermal, piezoelectric, and electromagnetic. Electrostatic actuation has

the advantages of [21, 22]:

• High speed as compared to thermal actuation.
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Figure 1.1: Concept of electrostatic actuation.

• Ease of fabrication and integration with CMOS technology, as compared to piezoelec-

tric actuation that requires deposition of ceramic materials which is both challenging

and expensive.

• High energy density as compared to electromagnetic actuation.

In electrostatic actuation, two electrodes are set to move relative to each other, Figure

1.1, under the influence of an electrostatic force that arises due to a voltage difference

between the electrodes. The electrostatic force is directly proportional to square the voltage

difference between the electrodes and inversely proportional to the gap between them.

In MEMS, electrostatic actuation is realized by cantilever beams, fixed-fixed beams,

or comb-drives, Figure 1.2. In all cases, the electrostatic force pulls against an elastic

restoring force, and the position of the actuator is determined by the balance between the

two forces [23].

The major drawback of electrostatic actuation is pull-in instability, which takes place

when the elastic force is not able any more to balance the growing nonlinear electrostatic

force, forcing the moving electrode to suddenly snap into the fixed one. In cantilever beams,

pull-in instability limits the travel range of the tip of the beam to less than one third of

the gap for static operation [23], and prevents operation in a large range of frequencies
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Figure 1.2: Electrostatic actuation types.

Figure 1.3: Pull-in instability in a micro-cantilever beam.

for dynamic operation [24]. Figure 1.3 shows a micro-cantilever beam after experiencing

pull-in.

MEMS electrostatic beams are also used as sensors due to their small size and high

sensitivity. Recent applications are mass sensing [25, 26, 27] and mass spectrometry [28].

Sensing is achieved by either measuring the static position change [25] or tracking a change

in dynamic behavior as a result of change in the mass of the beam. The change in dynamic

behavior can be either a shift in the natural frequency [29, 30] or a sudden change in

position (due to a bifurcation) [26, 31].

1.2 Relevant Literature Review

Several approaches have been explored in order to overcome the limited travel range of

electrostatically actuated micro-beams. These approaches may be divided into four cat-

egories, namely changing the geometric design, adding a series capacitor, charge control,
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and feedback control.

Examples of the first category are leveraged bending [22] and curved beams [32]. In

leveraged bending, a short electrode is placed under a long beam, the part of the beam

above the electrode operates in the stable region while the rest of the beam acts as a lever

and moves through larger ranges. The drawback of this approach is the need to use a

higher actuation voltage or a bigger device area. In curved beams, the beam is attracted

towards a curved electrode. In experiment, it was found that the beam experiences local

instabilities and can only be used as a bi-stable structure.

In the second category [33, 34], a series capacitor is added between the beam and

the actuation voltage. As the moving beam itself acts as a variable capacitor, the whole

system resembles a voltage divider circuit. When the beam moves closer to the electrode,

its capacitance increases, thus the voltage across it decreases. Adding the series capacitor

resembles the effect of increasing the gap and moving in the stable region of the new gap

(which can be equal to the original gap). The drawback of this method is that it requires

higher actuation voltages and there is a need to minimize parasitic capacitance in the

design.

In the third category, the charge on the electrode is directly controlled using an external

circuit [35, 36]. If the electrostatic force is modeled using the charge instead of voltage,

the instability disappears and the beam can be positioned anywhere within the gap. This

technique uses slightly higher voltage than the open-loop operation, but it requires addi-

tional charge control circuitry and leakage current in the order of pico-Ampere should be

controlled.

Feedback control was first suggested by Chu and Pister [37]. They used a nonlinear

controller in which the input voltage is scaled by the gap. They were able, in simulation,

to produce a travel range larger than 80% of the gap. Lu and Fedder implemented position

feedback using analog electronics and a capacitor as a position sensor. They used a linear
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time-invariant controller to simplify implementation and linearized the system while using

gain and phase margin to ensure stability. They were able to obtain a stable travel range

of only 60% of the gap [38].

Rocha et al. [39] achieved over 90% of stable travel in experiment using on-off control

with capacitive position sensing. A comparator is set to compare the position of the beam

with a set position, as long as the position of the beam is lower than the set position, the

input voltage is higher than the pull-in voltage. When the beam position is larger than the

set position, the input voltage switches to a voltage lower than the pull-in voltage. The

beam keeps oscillating around the required position and the ripples magnitude depend on

the delays in the controller circuit. The ripples magnitude can be very high and cause

pull-in in systems with high Q factor.

Closed-loop control has more advantages over the other methods. It can stabilize the

system beyond the pull-in instability in addition to adding robustness to the system against

parameter uncertainties and deterioration over time.

Using the same feedback control proposed by Lu and Fedder, Liu et al. [40] observed bi-

stability, period doubling bifurcations, and chaotic behavior in an electrostatically actuated

micro-cantilever beam. This observation is also reported in a study of the system dynamics

by Towfighian et al. [41], targeting mass sensors.

Chaos is the appearance of long-term aperiodic behavior in a deterministic dynamic

system that exhibits sensitive dependence on initial conditions. It was first observed in

the 1880’s by Henri Poincaré; however, useful applications of this interesting phenomenon

did not emerge until the 1990’s [42]. Chaotic attractors’ metrics are highly sensitive to

system parameter variations [43]. That is why it can be used in system and parameter

identification. Ghafari et al. [44] used the Lyapunov exponent of the chaotic oscillations of

rolling elements to detect faults. Yin and Epureanu [45] were able to detect experimentally

small variations in the mass of a cantilever beam by detecting changes in the attractor
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shape after driving it chaotically. Epureanu el al. [46] were able to detect damage in

thermo-shielding panels undergoing chaotic oscillations. Wu et al. [47] used the 3D fractal

dimension of the fetal cortical surface to assess the maturation of cortical development and

to detect morphologic abnormalities in fetuses.

Chaos in MEMS was observed by Bienstman et al. [48] when using an electrostatically

actuated impact resonator, Wang et al. [49], and DeMartini et al. [50]. Bienstamn et

al. [48] used a simple fixed-fixed beam driven by a voltage larger than the pull-in voltage.

When the beam pulls in, a short circuit is introduced. As a result the voltage drops and the

mechanical stiffness becomes larger than the electrostatic force, thus forcing the beam away

from the electrode. When the contact is lost, the electric force starts building up again and

the beam pulls in again. This switching like operation produces large periodic motions.

Chaos was observed in the system and thus tracked to be avoided. Wang et al. [49]

used non-overlapping comb-drives thus creating a bi-stable structure similar to the duffing

oscillator. They successfully measured chaotic oscillations experimentally. However, there

were large mismatches between the model and experiment. The mismatch was mainly

due to inability to estimate the system parameters. DeMartini et al. [50] used a similar

structure and were also able to produce chaotic motions experimentally.

De and Aluru [51] reported chaos in an open-loop electrostatically actuated parallel-

plate resonator prior to pull-in. Najar et al. [52] reported an incomplete cascade of period-

doubling bifurcations just before pull-in in electrostatic actuators. They concluded that

chaos cannot occur in open-loop electrostatic actuators due to occurrence of homoclinic

bifurcation which leads to rapid dynamic pull-in.
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1.3 Scope of This Work

In this work, the feedback control strategy developed by Lu and Fedder is utilized to

develop a low-frequency actuator with a large stable travel range and a chaotic resonator.

The chaotic resonator developed here will be used as a platform to design a mass sensor.

The controller is designed and implemented using analog electronics. A vibrometer is used

as a sensor in the experiments to close the loop.

The design and implementation of the controller are presented in Chapter 2. Chapter 3

presents the system analysis and realization for using the device as an actuator in addition

to experimental results for the closed-loop system. Close-loop experiments were conducted

in conjunction with Ms. Towfighian. In Chapter 4 the dynamic analysis of the system is

presented for a mass sensor. Conclusions and future work are then presented in Chapter

5.
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Chapter 2

Controller Design

2.1 Introduction

Open-loop electrostatically actuated micro-cantilever beams, Figure 2.1(a), can be repre-

sented, using lumped-mass modeling, as an equivalent single degree of freedom spring-mass

system. In this model, Figure 2.1(b), the effective mass of the beam is approximated as a

point mass positioned at the tip of the beam, the distributed electrostatic force is lumped

to a single force F acting on the point mass, and the mechanical stiffness of the beam k is

lumped to a single spring. Using Euler-Bernoulli beam theory, the spring constant can be

approximated as

k =
3EI

L3
(2.1)

where E is Young’s modulus, I is the second moment of area, and L is the beam length.

Using Newton’s second law, the equation of motion of the lumped-mass can be written

md̈ = −kd+ F (2.2)

where m is the mass of the beam and d(t) is the displacement of the beam tip in the z
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Figure 2.1: Diagram of the cantilever beam.

direction. The electrostatic force F is represented in closed-form by

F =
cV 2

DC

(g − d)2
(2.3)

where c is the electromechanical coupling coefficient, VDC is the voltage difference between

the two electrodes, and g is the capacitor gap [23]. Equation (2.3) can be presented in

first-order form as:

ḋ = v (2.4)

v̇ = − k
m
d+

cV 2
DC

m(g − d)2
(2.5)

where v(t) is the velocity of the beam tip.

For static analysis, ḋ and v̇ are zero, yielding the two equations:

0 = v (2.6)

0 = −kd+
cVDC

2

(g − d)2
(2.7)

We can rearrange equation (2.7) to obtain

d3 − 2gd2 + g2d =
cVDC

2

k
(2.8)

The algebraic solutions of equation (2.8) include the equilibrium positions of the beam.

Since equation (2.8) is a third-order polynomial, the system has three solutions at every
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Table 2.1: Micro-actuator dimensions.

L 200µm

w 80µm

h 4.5µm

g 2µ m

input voltage. Figure 2.2 shows the solutions of the equilibrium equation (2.8) for one of

the micro-actuators under study in this work. The actuator dimensions are listed in table

2.1, where L is the beam length, w is the beam width, and h is the beam thickness.

At VDC = 168V, two of the solution branches in Figure 2.2 meet in a saddle-node

bifurcation and disappear. After this bifurcation two of the roots of equation (2.8) become

imaginary. The third root (dash-dotted), is always larger than 2µm. This means that it is

aphysical as the beam displacement can not exceed the gap length g.

Figure 2.2: Solutions of Equation [2.8] as functions of VDC .

The stability of the equilibrium points can be determined by examining the eigenval-
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ues of the Jacobian of the right-hand side of equations (2.6) and (2.7) evaluated at the

equilibrium point. The Jacobian of the system is given by

J =

 0 1

− k
m

+ 2cVDC
2

m(g−d)3
0


When all the eigenvalues of J have negative real parts, the equilibrium position is said

to be asymptotically stable. Otherwise it is unstable. It was found that the solid line in

Figure 2.2 is the locus for stable positions and the dashed line is the locus for unstable

positions. Beyond the saddle-node bifurcation point, no physical equilibria exist and the

moving beam snaps into the fixed electrode in what is called pull-in.

For any stable equilibrium position, the location of the saddle (unstable equilibrium)

serves as an upper bound on the maximum realizable oscillations. The range of realizable

static positions is limited by the displacement at pull-in.

It is clear from Figure 2.2 that the beam cannot be positioned beyond one-third of the

gap length. The control strategy proposed here will seek to stabilize electrostatic micro-

actuators beyond their open-loop pull-in voltage by introducing a control voltage that seeks

to prevent electrostatic forces from growing in an unbounded fashion as the capacitor gap

decreases.

2.2 Close-Loop System

Figure 2.3 shows a block diagram of the system under close-loop control. A commanded

voltage signal Va is inserted to actuate the beam. A vibrometer is used to measure the

beam motions and output a voltage signal proportional to the velocity of the beam tip v.

This signal is then used to produce a feedback control voltage Vs that is subtracted from

the actuation voltage, then the output of the adder is multiplied by a gain G and fed to

the beam.
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Figure 2.3: The block diagram of the close-loop system.

2.2.1 Plant

The plant under control is an electrostatic actuator composed of a fixed electrode, above

which lies a micro-cantilever beam. Figure 2.4 shows a picture of the micro-actuator

taken using an optical profilometer. The beam is fabricated using the MUMPs fabrication

process. The beam is made of the first structural polysilicon layer Poly 1, the gap is made

of the First Oxide sacrificial layer and the electrode is made of the ground polysilicon layer

Poly 0.

2.2.2 Controller

The controller realized by Lu et al. [38] uses analog electronics and a capacitor to sense the

position of the beam. In this work, a vibrometer is used as a sensor to measure the velocity

of the beam tip. Digital and analog control approaches were considered as candidates to

realize the control law. Digital control converts the analog signal of the vibrometer into a

digital signal and uses a computer to implement the control law. The output digital signal

is then converted back to its analog equivalent to close the loop on the micro-actuator. To
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Figure 2.4: A beam-based micro-actuator [1].

implement this control setup one can either use a computer along with a data acquisition

card or a microcontroller. As for analog control, an electronic circuit alone fulfills the

control law requirements.

The advantages of digital control are simplicity and versatility in both implementing

and modifying the control law. All that is needed to implement a new control law or

change an existing law is to change a code. On the other hand, it has the disadvantages

of high cost, time delays particularly in the analog to digital conversion, and errors due

to quantization and discretization. Of course the time delays can be decreased at the cost

of using more expensive equipment. As for the analog control, it has the advantages of

low cost, minimal time delay, and simple integration of the MEMS plant with the driving

electronics. The main disadvantage of analog control is that both the initial design and

subsequent modifications of the control law are non-trivial tasks.

The time delays incurred in closing the loop should be negligible compared to the period

of free oscillations of the plant T = 2π/ω otherwise they can drive the system to instability

[53]. The natural frequency of a cantilever beam is the square root of the ratio of the

stiffness to mass. The mass of a cantilever beam scales like the length cubed L3, while

stiffness scales like length L. Dimensional analysis of the natural frequency shows that it
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is inversely proportional to the dimensions of the beam

ω =

√
k

m
∝

√
L

L3
=

1

L
(2.9)

The dimensions of MEMS actuators are in micro-meters, thus they are typically high-

frequency devices. The natural frequencies of the class of micro-beams used in this study

range from 65 to 150 kHz. Therefore the minimum period of the plant is Tmin = 6.67µs.

To meet this requirement, we need to use a ADC with a sampling frequency more than

300kS/s and a time delay less than 0.5µs.

In order to reduce the requirements on the minimum time delay of the controller com-

ponents, it was decided to use analog control to implement the control law. Further, an

electronic bread-board is used to facilitate tuning and modifying the controller parameters

in the design and test stages.

2.2.3 Sensor

The vibrometer used, is a Polytech msv 400 which uses the principle of laser interferom-

etry to measure mechanical vibrations. As shown in Figure 2.5, the vibrometer targets

a helium-neon laser beam at a point on the surface of a moving object and collects the

scattered beam. The optical signal (typically at 40 MHz) is fed into a high frequency signal

conditioner. The vibrometer is equipped with decoders to recover the velocity or displace-

ment of a moving point from the optical signal. The velocity of vibration is measured from

the frequency difference between the original and the scattered laser beam which arises

due to the Doppler effect. The displacement is measured using the phase shift between the

two laser beams [2].

The msv 400 used is equipped with the velocity decoder VD-02. The VD-02 can work

at frequencies up to 1.5 MHz and outputs an analog signal that represents velocity of the
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Figure 2.5: Operating principle of the vibrometer [2].

object [54]. The decoder provides the signal scaled to one of four dynamic ranges, namely

(5,25,125,1000) mm/s/V with a range of 20 V peak-peak. The dynamic range is set to the

smallest admissible acquisition setting so as to obtain the highest possible resolution. The

analog signal from the vibrometer is integrated then normalized so that 1 volt is equivalent

to a displacement equal to the capacitor gap g. The reason for this normalization is given

in the next section.

The normalization is performed as follows. Using the dynamic range of 5mm/s/V means

that after integration, 1 volt will represent a displacement of 5mm. Since in the control

law, 1 volt should represent a displacement equal to the gap, namely 2µm therefore, the

integrated signal should be multiplied by a gain of 5×103

2
= 2500. If the dynamic range of

25mm/s/V is used, then the gain after the integrator should be equal to 25×103

2
= 12500.
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2.3 Control Law Dimensionalization and Realization

After adding the controller, the close-loop system equations, represented in first-order form,

are [41]:

ḋ = v (2.10)

v̇ = −µv +
−c3d− c4d

2 − c5d
3 + c6G

2(Va
√
α− Vs)2

c0 + c1d+ d2
(2.11)

V̇s = −r(Vs −
d

1− d
Ψ
√
α) (2.12)

where d(t) and v(t) represent the displacement and velocity of the tip of the beam in the z

direction (Figure 2.1), Vs(t) is the control voltage, Va(t) = VDC + VAC sin(ωt) is the actua-

tion voltage, ci are non-dimensional modal coefficients obtained from a one-mode Galerkin

expansion, µ is the non-dimensional damping coefficient, r is the controller damping, G

is the voltage gain, Ψ is the displacement gain and α is the electromechanical coupling

coefficient. The tip position, voltage, and time are nondimensionalized with respect to

the capacitor gap g, the electromechanical coupling coefficient α, and the time constant of

the beam T =
√

ρAL4

EI
respectively, where α has the dimensions of volts−2, A = hw, E is

Young’s modulus, I = wh3

12
and (L, h, w) are the beam dimensions. The previous equations

are derived using a reduced order model for the micro-beam assuming one mode shape.

The first two equations govern the position and velocity of the tip of the beam, and the

third governs the controller voltage.

The previous equations are represented in a non-dimensional form to improve the sta-

bility of numerical simulations. In order to realize the controller, we re-dimensionalize the

controller equation by using the dimensional variables V̂s and t̂, where V̂s = Vs√
α

and t̂ = tT .

As a result, the dimensional control voltage ˆ̇Vs becomes

ˆ̇Vs =
dV̂s

dt̂
=

1

T
√
α

dVs
dt

(2.13)
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substituting for dVs

dt
from (2.12) gives:

ˆ̇Vs =
1

T
√
α

[−r(V̂s
√
α− d

1− d
Ψ
√
α)] =

−r
T

(V̂s −
d

1− d
Ψ) (2.14)

Note that there is no need to dimensionalize d since it appears in a ratio form. However,

when implementing the controller, the voltage representing d should be scaled so that a

travel equal to the capacitor gap is equal to 1 Volt. Otherwise, the ratio d
1−d would have

to be redimensionalized.

Figure 2.6 shows a block diagram for the control law. A voltage signal representing the

displacement is subtracted from a 1 volt input voltage. Then the displacement signal is

divided by the output. In the next stage, the signal is multiplied by the displacement gain

Ψ. In the final stage, a unit feedback loop exists with a forward path containing a gain r
T

and an integrator.

Figure 2.6: Control law block diagram.

The vibrometer used as a sensor for closing the control loop only supplies information

about the beam tip velocity. Therefore, the controller will have the additional task of

integrating ḋ to obtain the beam tip position d. Figure 2.7 shows a block diagram repre-

sentation of the actual controller circuit. It includes two additions to the previous block

diagram, the first is an integrator at the beginning to convert the velocity signal from the

vibrometer into displacement, and the second is for subtracting the controller voltage from

the actuation voltage and multiplying the result by the voltage gain.
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Figure 2.7: Actual controller block diagram.

2.4 Controller Blocks

The basic components of the controller shown in Figure 2.7 are:

• addition of two signals

• addition of a signal to a constant

• multiplication of a signal by a constant

• integration of a signal

• division of a signal by another signal

The implementation of all the previous operations is simple and straight forward except

for integration of a signal and division of a signal by another.

2.4.1 Introduction to Op-Amps

Ideally, an Op-Amp (Figure 2.8) is a differential input, single output amplifier with an

infinite gain [55]. It has two input nodes V+ and V− and one output node Vout. The

governing equation of the amplifier is:

Vout = A(V+ − V−) (2.15)
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where A is the amplifier open-loop gain that is ideally infinite. The amplifier is driven

through DC voltage supplies Vcc+ and Vcc−. Vout is limited by the values of Vcc+ and Vcc−,

and any value outside this limit is clipped. If the output signal is totally outside that

range, the Op-Amps is said to be saturated. Usually Vcc+ and Vcc− are omitted from the

diagram and the Op-Amp is presented as in Figure 2.9.

Figure 2.8: Op-Amp.

Figure 2.9: Op-Amp with power connections omitted.

When negative feedback is added to this ideal amplifier, reasonable gains that are inde-

pendent of the infinite open-loop gain can be obtained. With other components (resistors,

capacitors, etc.) connected around the Op-Amp with different combinations, many math-

ematical operations such as addition, subtraction, integration, and differentiation can be

modeled.

As Op-Amps are not ideal devices, the open-loop gain in reality is both finite and

frequency dependent. The gain value is usually in the range of 105 − 107. The frequency

dependence is due to the presence of parasitic capacitances. Each capacitor in parallel

with a resistor introduces a pole in the system, thus making the whole device frequency
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dependent. Op-Amps are typically internally compensated to act as a single-pole device

according to the equation:

A(ω) = A0(
1

1 + ω
ωc

) (2.16)

where A is the open-loop gain of the Op-Amp, A0 is the open-loop gain at DC, ω is the

input frequency, and ωc is the cutoff frequency of the Op-Amp. At frequencies ω >> ωc,

the Op-Amp gain may be calculated as

A(ω) = A0(
ωc
ω

) (2.17)

thus decreases 20 dB every decade in frequency. The frequency at which the open loop

gain A is equal to unity is called the Gain Bandwidth Product (GBP). For Op-Amps to

operate close to the ideal, the GBP of the circuit should be less than that of the Op-Amp.

2.4.2 Multiplication by a constant

There are two main configurations for multiplication [55]:

• “inverting amplifier”, Figure 2.10, where the non inverting input (V+) is connected to

ground, the input voltage is connected to the inverting input (V−) through a resistor

Rin, and a feedback resistor (Rf ) is connected between the inverting input and the

output of the Op-Amp.

• “non-inverting amplifier”, Figure 2.11, where the inverting input (V−) is connected

to ground through a resistor (R1), the input voltage is connected directly to the non-

inverting input (V+), and a feedback resistor (R2) is connected between the inverting

input and the output of the Op-Amp.

The amplifier can be used to multiply an input voltage Vin by a gain. For the inverting

amplifier, the governing equation is

Vout = − Rf

Rin

Vin (2.18)
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Figure 2.10: Inverting amplifier.

Figure 2.11: Non inverting amplifier.

and for the non inverting amplifier, the governing equation is

Vout = Vin(1 +
R2

R1

) (2.19)

The advantage of the inverting amplifier is the simplicity, but it has the disadvantage

of producing an inverted output. If the inverted output is not desired at the next stage,

another inverting amplifier with a unity gain has to be added to get the desired output.

On the other hand, the non-inverting amplifier is a bit more difficult to implement but it

can save an unwanted additional stage [55].

21



2.4.3 Addition

The configuration shown in Figure 2.12 is used to add several weighted input voltages [55].

The governing equation for the circuit is

Vout = −Rf (
V1

R1

+
V2

R2

+ ...+
Vn
Rn

) (2.20)

In order to subtract an input voltage Vi, addition can be used after inverting Vi by

using an inverting amplifier with both resistors equal Rin = Rf [55].

Figure 2.12: Addition using Op-Amps.

2.4.4 Signal Multiplication and Division

We use the identity

ln(a) + ln(b)− ln(c) = ln(
a.b

c
) (2.21)

to implement multiplication and division of two signals. This is accomplished using a diode

in the Op-Amp circuit. A diode is characterized by an exponential relation between the
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current passing through it and the voltage difference between its terminals. The relation

is given by

ID = Is(e
VD
VT − 1) (2.22)

where, ID is the current through the diode, VD the voltage across its terminals, Is the

reverse saturation current, and VT the thermal voltage. The reverse saturation current Is

and the thermal voltage VT are constant characteristics of the diode.

Figure 2.13: Logarithmic output Op-Amps circuit.

Thus in order to implement v1
v2

, first we take the natural log of both signals, this is done

using the configuration in Figure 2.13, where the output voltage is given by

Vout = −VT ln(
Vin
IsR

) (2.23)

We also have to take the natural log of an input of 1 volt. Then we add the outputs from

v1 and the 1 volt and subtract the output from v2 (using similar Op-Amps so that the term

IsR cancels out ) to get

− [VT ln(
v1

IsR
) + VT ln(

1

IsR
)− VT ln(

v2

IsR
)] = −VT ln(

v1

v2IsR
) (2.24)

Then the configuration in Figure 2.14, where Vout = −RIse
Vin
VT , is used to get the final

output as

Vout = −RIse
−VT ln(

v1
v2IsR

)

VT =
v1

v2

(2.25)
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Similarly, multiplication can be implemented by adding the natural log of the two signals

and subtracting the natural log of an input of 1 volt then taking the exponent of the result

[55].

Figure 2.14: Exponential output Op-Amps circuit.

2.4.5 Integration

The standard integrator circuit [55] is shown in Figure 2.15 where

Vout = − 1

RC

∫
Vindt (2.26)

The transfer function of the integrator in the Laplace domain is

Vout(s)

Vin(s)
= − 1

sRC
(2.27)

where s is the Laplace variable. Equation (2.27) gives a Bode plot of a line with a slope of

-20 dB per decade in the amplitude plot and a line at −90o in the phase plot. This means

that for low frequency noise, a huge amplification in amplitude will take place, causing the

Op-Amp to saturate. To overcome this problem, another resistor is connected in parallel

to the capacitor, as shown in Figure 2.16, to act as a path for low frequency signals. As a

result, the circuit changes from an integrator into a low pass filter and the transfer function

of the system in the Laplace domain changes to

Vout(s)

Vin(s)
= −R2

R1

1

1 +R2Cs
(2.28)
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Thus for frequencies higher than the cutoff frequency ωc = 1
R2C

the low pass filter behaves

as an integrator while at the same time the DC gain GDC = R2

R1
is limited. Figure 2.17

shows the Bode plot of an integrator circuit in dashed line and a low pass filter circuit in

solied line with R1 = 1kΩ, R2 = 10MΩ and C = 20nF . For the low pass filter to function

properly as an integrator, the input signal should be at least two decades higher than the

cutoff frequency ωc = 5rad/s.

Figure 2.15: Op-Amp integrator circuit.

Figure 2.16: Low pass filter.

In all Op-Amps, there exists a DC voltage offset between the two input pins which is

due to manufacturing imperfections. This DC offset shows as a small DC input voltage

to the integrator and thus gets magnified by GDC and shows at the output as a large DC
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Figure 2.17: Bode plot of an integrator and a low pass filter.
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voltage added to the signal. Even when using the low pass filter configuration, a relatively

high DC gain exists. In the last example GDC = R2

R1
= 10, 000, thus an offset of 1 mV will

show as 10 V which will corrupt the output signal. To get rid of this DC voltage, a DC

voltage that is equal to the offset but with opposite polarity is added to the input of the

integrator. As the offset is not constant (may change over time from one test to another),

the added amount should be controllable. A voltage divider circuit with a variable resistor

is used to add this controlled voltage.

To be able to add a small DC voltage with positive and negative polarity, the two ends

of the variable resistor are connected to two equal voltage sources with opposite polarities

through large equal resistors. The middle leg is then connected to the input of the Op-

Amp. By doing this, a controlled small voltage can be added to the input and tuned until

a zero DC offset between the two input pins can be achieved [55]. Figure 2.18 shows the

configuration used for nulling the offset. The values of Rd1,Rd2 and Rv control the range

of voltages that can be added to the input. We can assume that no current flows to the

Op-Amp, therefore Vv is calculated through voltage divisions as

Vv = 2V+
Rd1 +Rv1

Rd1 +Rd2 +Rv
− V+ (2.29)

where Rv1 is the resistance between the left and middle pin of the variable resistor and

can take a value between 0−RvΩ. When Rd1 = Rd2 = 100kΩ, Rv = 2kΩ, and V = 15V ,

then the input voltage to the Op-Amp is within the range Vv = [−0.1485V, 0.1485V ].

2.5 Low and High-frequency Versions of the Controller

Two versions of the controller will be realized: one version will be integrated with a class

of MEMS beams to create low-frequency actuators; the second version will be integrated

with the same class of MEMS beams to create steady-state chaotic resonators. For the
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Figure 2.18: Voltage divider circuit connected to an integrator.

actuator, the system’s operation should be either static or in low frequency (compared to

the micro-beam’s natural frequency). On the other hand, for the sensor, the system should

operate dynamically at frequencies as high as the natural frequency of the micro-beam.

Two main sets of experiments are to be performed after integrating the controller into

the system, namely low frequency tests and high frequency tests. The low frequency tests

are intended to verify the use of the system as an actuator. On the other hand, high

frequency tests are to validate the dynamic behavior and exploit the chaotic behavior of

the system.

2.5.1 Actuator Controller

In Figure 2.6, the end feedback loop alone can be regarded as a linear system with an input

Ψ d
1−d and an output Vs. This system’s transfer function is

Tf =
r
T

1
s

1 + r
T

1
s

=
1

s
r/T

+ 1
(2.30)
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which is a low pass filter with unit gain and a cutoff frequency at r
T

. Given that the

value of 1
T

is greater than 50 kHz for the target beam class in this work, at slow operating

frequencies this part of the block diagram reduces to a unit gain and can be removed.

Therefore, the block diagram for the controller of the low frequency actuator is as shown

in Figure 2.19

Figure 2.19: Block diagram of the controller operating at low frequencies.

In this case, the control law becomes

Vs = Ψ
d

1− d
(2.31)

2.5.2 Chaotic Resonator Controller

The target micro-beam class natural frequencies are in the range of 60-120 kHz. As a result

they requires high speed Op-Amps (high GBP) that can operate at these frequencies and

supply a constant gain. In addition, at these high frequencies working on a bread-board

can cause stability problems due to parasitic capacitances that arise from the bread-board

itself and are significant only at high frequencies. Instead of a bread-board, a Printed

Circuit Board (PCB) was designed and fabricated to suite the high frequency operation.
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Chapter 3

Actuator Realization

3.1 Introduction

The objective of the actuator under design is to hold a desired static position while tracking

a relatively low-frequency ω path around it. Driving the actuator using this harmonic

command signal will produce a tip velocity of

v = Aω sin(ωt) (3.1)

where A is the amplitude the tip displacement. The nominal capacitor gap g is 2µm.

Assuming a travel range of 90% of the gap, yields a maximum travel of 1.8µm. Therefore,

a maximum displacement amplitude of Amax = 0.9µm is reasonable. On the other hand, a

vibrometer acquisition setting of 5mm/s/V limits the amplitude of the signal to 50mm/s.

This means that for this setting, the maximum allowable frequency of operation is

fmax =
50× 10−3

2π0.9× 10−6
= 8.8kHz (3.2)

slightly higher frequencies can also be used when displacements are known to be limited to

smaller values. If higher frequencies are to be used then the next higher acquisition setting

(25mm/s/V) should be used.
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3.2 Static analysis of the system

Equations (2.10)-(2.12) govern the dynamics of the close-loop system. For static analysis,

the time derivatives are zero, which yields:

0 = v (3.3)

0 = −µv +
−c3d− c4d

2 − c5d
3 + c6G

2(VDC
√
α− Vs)2

c0 + c1d+ d2
(3.4)

0 = −r(Vs −
d

1− d
ψ
√
α) (3.5)

where VDC is the actuation voltage.

Substitute equations (3.3) and (3.5) into equation (3.4) to obtain:

c5d
3 + c4d

2 + c3d = c6G
2(VDC

√
α− d

1− d
ψ
√
α)2 (3.6)

which becomes, upon rearranging, a fifth-order polynomial in d. The polynomial has five

solutions and potentially five equilibrium positions for every value of VDC .

The equilibrium positions of the close-loop actuator for a voltage gain G = 7 and

position gain Ψ = 2 are shown in Figure 3.1. The solid line is the locus of stable equilibrium

positions and the dashed line is the locus of unstable equilibrium positions. One of the

other three roots is aphysical, and the remaining two are complex conjugates. From the

figure it can be seen that the actuator can reach a stable position as far as 90% of the gap.

Figure 3.2 shows an input voltage of Vin = 10 + 10 sin(ωt)V and the corresponding

actuator response in simulation. It is clear that the beam tip follows the input signal and

reaches more than 80% of the gap distance.
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Figure 3.1: Equilibrium positions of the close-loop actuator where G = 7 and Ψ = 2.

Table 3.1: Micro-actuators dimensions.

Nominal MA1 Nominal MA2 Identified MA2

L 150µm 120µm 128µm

w 20µm 20µm 20µm

h 2µm 2µm 1.9µm

g 2µ m 2µm 1.7µ m

3.3 Experimental Results

3.3.1 Test setup

Two micro-actuators, dubbed MA1 and MA2, were tested. The nominal dimensions of

MA1 and MA2, as well as the experimentally identified dimensions of MA2, are listed in

Table 3.1 [56].

The vibrometer was set to a dynamic range of 5mm/s/V. A function generator was used

to generate the actuation voltage Va and the controller was implemented on a bread-board.
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(a) Input voltage (b) Simulated beam tip displacement

Figure 3.2: Close-loop input voltage and simulated beam tip displacement.

Figure 3.3 shows the implemented controller on a bread-board.

3.3.2 Controller testing

Before closing the loop with the actual micro-beam, the controller was tested alone as a

block. The controller testing was done for each major stage alone and then for the whole

controller. During testing, the following values were used: integrator gain 1
R1C

= 100,

Ψ = 1, and G = 4.84.

The integrator was tested using a sine wave input at two different frequencies. The

output of the integrator was further multiplied by 25 to produce a total gain of 2500,

which is needed to normalize the displacement as mentioned in section 2.2.3. For the first

test a signal V = 1 sin(Ωt)V was used at a frequency of 1 kHz. Figure 3.4 shows the output

of the integrator multiplied by 2500 for both simulation and experiment. For the second

test, the input signal was V = 4 sin(Ωt)V , at a frequency of 10 kHz. Figure 3.5 shows the

output also multiplied by 2500 for both simulation and integration.

For testing the next stage of the controller, a voltage signal d = 0.3 + 0.3 sin(Ωt)V was
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Figure 3.3: The controller implemented on a bread-board.

Figure 3.4: Integration output for a sine wave input.
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Figure 3.5: Integration output for a square wave input.

Figure 3.6: d
1−d for an input signal d = 0.3 + 0.3 sin(Ωt) at 1kHz.
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used to represent a displacement signal. Figure 3.6 shows d
1−d in simulation and experiment

for a frequency of 1 kHz.

Finally, the whole controller was tested for two different signals. For the first test, the

input voltage was v = 0.6 sin(Ωt)V at 1 kHz and for the second test v = 3 sin(Ωt)V . For

both cases, an actuation voltage Va = 2 sin(Ωt)V was used. Figures 3.7 and 3.8 show the

displacement d, controller voltage Vs, and total voltage G(Va − Vs) for the first and the

second test respectively.

3.3.3 Close-loop testing

Using the potentiometer mentioned in Section 2.4.5, the DC shift of the displacement signal

can be adjusted. In the first close-loop tests, the system behaved properly only when the

displacement signal was shifted to about half of the gap. Accordingly the control law is

adjusted from equation [2.31] to

Vs = Ψ
d+ y

1− (d+ y)
(3.7)

where y is the DC shift added to the nominal displacement signal.

After testing, we found that although the signal representing the displacement was seen

as steady on the oscilloscope, it was actually riding on top of a low frequency noise signal.

This noise signal was at 30 Hz with an amplitude of 0.5 V which corresponds to half the

gap.

It was found that the vacuum pump used to hold the chip under the laser beam in

the vibrometer is the source of this 30 Hz vibration. This vibration, after the integrator,

appears as a sinusoidal signal with an amplitude of more than 0.5 V added to the displace-

ment. Figure 3.9 shows the velocity (ch 1, orange) and displacement (ch 2, blue) with the

vibrometer laser on but without driving the micro-beam. It can be seen clearly that there
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Figure 3.7: Controller outputs for an input signal v = 0.6 sin(Ωt) at 1 kHz.
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Figure 3.8: Controller outputs for an input signal v = 3 sin(Ωt) at 10 kHz.
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Figure 3.9: Velocity (orange) and Displacement (blue) without driving the micro-beam.

is an undesired noise signal at 30 Hz with amplitude that is equivalent to more than half

the gap.

A second-order passive High-Pass-Filter was designed and implemented to remove this

low frequency noise.

- Close-loop test results

After adding the HPF, the close-loop system was tested using an actuation voltage of

Va = 2.5 + 2.5 sin[ωt] at a frequency of 10 kHz. The voltage gain was set to G = 4.8

and the position gain was set to Ψ = 0.5. Simulation results were obtained by numerical

integration of the system equations (2.10)-(2.12) using the actuator parameters identified

experimentally for MA1.

Figure 3.10 shows the experimental and simulation results of the test. The results

show good agreement between the model and experiment. The experimental displacement

shows a travel range of more than 35% of the gap length which proves that the controller
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Figure 3.10: Experiment and simulation results for close-loop system at Va = 2.5 +

2.5 sin(ωt), ω = 10kHz, G = 4.8, and Ψ = 0.5.

successfully stabilized the system past the pull-in instability. Further resutls can be found

in [1]

To get higher displacements, the vibrometer setting should be changed to the higher

dynamic range of 25 mm/s/V.
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Chapter 4

Sensor Realization

4.1 Introduction

Chaotic behavior is very sensitive to changes in the system parameters. As a result chaotic

resonators are an attractive platform for highly sensitive detectors. In order to achieve

this goal, three conditions should be satisfied. First, the resonator should be able to

realize steady state chaotic behavior over a relatively large domain in the parameter space.

Otherwise, small changes in the measurand will send the resonator out of the chaotic

domain and sensing will fail. The second condition is that the system dynamics are clearly

identified and understood so that the sensor can be easily calibrated. The third condition

is the development of a calibration curve to relate changes in a specific system parameter

to a metric of the chaotic attractor. The first two conditions are addressed in this work

and the third will be addressed in future work.

Bifurcation diagrams are generated for four different AC voltage amplitudes while using

the frequency as the control parameter. From the bifurcation diagrams, the best operating

region is determined, and a complete picture for the dynamic behavior is obtained.
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Table 4.1: Close-loop system parameters.

Parameter Value

L 200µm

w 80µm

h 4.5µm

g 3µm

E 166 GP

µ 0.73

ρ 2331kg/m3

r 100

c 1.593× 10−21 Fm

4.2 System Setup

Equations (2.10)-(2.12) are used to represent the close-loop dynamic system. The system

parameters used in these simulations are listed in table 4.1 [41].

Towfighian et al. [41] found that a region of bistability exist in the parameter space of

the voltage and sensor gains G and Ψ. Bistability introduces rich dynamics to the system

response and increases the likelihood of chaos. Figure 4.1 shows the static response of the

close-loop actuator for G = 0.8 and Ψ = 3. The solid lines represent the locus of stable

equilibria and the dashed lines represent the locus of unstable equilibria. At all voltage

values the system has an equilibrium position that is aphysical (d > 1). In the range

between VDC = 108V and 113V the actuator has four equilibrium positions, two of which

are stable. Outside this range the system has one stable and one unstable equilibrium

position.

In order to operate the actuator in the bi-stable region, the input voltage to the beam
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Figure 4.1: Static equilibria at G = 0.8 and Ψ = 3.

is set to V = 110 + VAC cos(ωt). The introduction of the AC voltage results in a harmonic

force that destroys the stable foci and turn them into limit cycles around the equilibrium

positions. A limit cycle is a closed curve in phase plane representing a periodic (oscillatory)

motion. The equilibrium position around which the actuator oscillates is determined by

the RMS value of the total actuating voltage. The equilibrium positions and corresponding

natural frequencies for VAC = [2, 2.5, 3, 3.5]V are listed in Table 4.2.

4.3 Bifurcation Diagrams

A bifurcation is a qualitative change in the number of solutions and/or their stability as

a system parameter changes. A bifurcation point is the location of this bifurcation in

parameter space. Bifurcation diagrams are used to describe the evolution and relative

position of system response (solution branches) as a function of a control parameter. They
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Table 4.2: Stable positions and corresponding natural frequency.

VAC equilibrium position natural frequency Ωi Stability

2V 0.371037 1.9742 Stable

0.681634 0 Unstable

0.863958 4.43694 Stable

0.984587 43.6285 Unstable

2.5V 0.371144 1.97343 Stable

0.681441 0 Unstable

0.864018 4.44096 Stable

0.984588 43.6302 Unstable

3V 0.371276 1.97250 Stable

0.681206 0 Unstable

0.864092 4.44586 Stable

0.984588 43.6322 Unstable

3.5V 0.371432 1.97139 Stable

0.680928 0 Unstable

0.864092 4.44586 Stable

0.984589 43.6345 Unstable
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are constructed by stacking one-dimensional or two-dimensional Poincaré sections along

an axis describing the progression of the control parameter. Poincaré sections describe the

intersection of the system orbits in phase space with a lower-dimension object. They are

either one-sided, where they record the intersection points as the orbit evolves from one

side only to the other side of that object, or two-sided, where they record all intersections

of the orbit with the object. In this work, we used the plane v = 0 as a Poincaré section.

Accordingly, the value of d at the intersections with this section represent the maximum

and minimum positions of the beam’s tip. We used two-sided Poincaré sections because

they allow us to describe both the existence and relative location of the orbit as well as its

size.

The bifurcation diagrams were constructed using the following procedure:

1. At an excitation frequency ω away from the natural frequencies Ω1 and Ω2, long time

integration was performed until the system settled on a stable period-one orbit. The

numerical integration was carried out in Mathematica using the Modified Adams

method. The Modified Adams method is a numerical method for integration that

uses a Predictor-Corrector technique [57].

2. The states at an arbitrary point on the orbit were recorded and used as an initial

guess (do, vo, Vso) for the shooting method. The shooting method turns the problem

of finding the closed orbits to a boundary-value problem where the initial and final

points on the orbit after one period are matched. It then uses an initial-value solver

to integrate the system equations for a period and interprets the difference between

the initial and final point as an error to be corrected iteratively.

3. The shooting method was implemented by integrating the system equations starting

from the initial guess for a period T = 2π
ω

. The difference between the initial guess

and the terminal point (df , vf , Vsf ) is then used to correct the initial guess until
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the magnitude of the Euclidean norm of the error vector, the difference between the

initial and terminal points on the orbit, is less than 10−3.

4. The monodromy matrix of the obtained orbit was evaluated by integrating the system

of equations augmented with the system of linearized perturbations around the orbit

for a period starting from an initial condition on the converged orbit [43]. The

monodromy matrix describes the growth or decay of perturbations to the initial

point in each of the directions of phase-space as the system evolves along the orbit

for one period.

5. The Floquet multipliers (the Eigenvalues of the monodromy matrix) were calculated.

Floquet theory [43] was then used to determine the stability of the orbits, based on

the values of those multipliers, and to determine the type of the bifurcation according

to the following protocol

- Orbits of non-autonomous system are stable when all multipliers lie inside the

unit circle in complex plane.

- The orbit undergoes a cyclic-fold bifurcation, if one of the Floquet multipliers

leaves the unit circle through the point (1,0). At a cyclic-fold bifurcation a branch

of stable orbits meets a branch of unstable orbits and they both vanish.

- The orbit undergoes a period-doubling bifurcation, if one of the Floquet multi-

pliers leaves the unit circle through the point (-1,0). There are two types of period-

doubling bifurcations, supercritical and subcritical. In both cases, a stable branch of

orbits looses stability at the bifurcation point. In supercritical period-doubling bifur-

cations, a branch of stable period-doubled orbits is created at the bifurcation point.

In a subcritical period-doubling bifurcations, a branch of unstable period-doubled

orbits vanishes at the bifurcation point.

6. The excitation frequency was incremented to a larger or smaller value depending on
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the sweep direction and a point on the converged orbit at the previous frequency was

used as the initial guess for the shooting method.

7. Steps 3-6 were repeated until the tracked orbit lost stability.

- Where stability was lost through a period-doubling bifurcation, steps from 2 to

6 were repeated and the period of integration was doubled.

- Where stability was lost through a cyclic-fold bifurcation, steps from 1 to 6

were repeated while searching for a new set of orbits.

8. Unstable orbits were tracked where relevant.

9. For every orbit, the intersections with the zero-velocity line (v = 0) were recorded,

thus the bifurcation diagram represents a set of two-sided Poincaré sections. A

period-one orbit is represented by two points, a period-two orbit is represented by 4

points, etc.

10. The bifurcation diagram was then constructed by stacking the Poincaré sections as a

function of the excitation frequency. Since the increment in frequency is small, these

discrete points appear as continuous lines. For unstable orbits, one of ten points was

plotted in order to appear as dotted lines.

11. Because motion within a chaotic attractor is aperiodic, the shooting method fails

there. Instead, long-time integration was used and the intersections with the zero-

velocity line were recorded after at least one hundred periods to allow for the transient

response to decay.

4.3.1 Lyapunov exponent

The Lyapunov exponents are calculated to verify the existence of and to characterize the

chaotic attractors. The Lyapunov exponent is a measure of expansion or contraction of
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perturbations around a given trajectory. It is an asymptotic quantity defined locally in

state space. Quantitatively, if two trajectories start close to each other in state space

with an initial separation of δs, then the evolution of the distance between them can be

described by

|δs(t)| ≈ eλt|δs(t)| (4.1)

where λ is the Lyapunov exponent. The rate of contraction or expansion depends on the

orientation of the initial perturbation. Any dynamic system has a number of Lyapunov

exponents equal to its order. A dissipative system, where phase-space is contracting, be-

comes chaotic when at least one Lyapunov exponent is positive [43] indicating the presence

of an exponentially growing process inside the contracting space.

Nayfeh and Balachandran [43] present an algorithm to calculate the Lyapunov expo-

nents for autonomous systems. Since our system is non-autonomous, we transformed it

into an autonomous system by replacing the explicit time dependence ωt in equation [2.11]

with a new state variable θ and adding a state equation describing its evolution to the

system:

ḋ = v (4.2)

v̇ = −µv +
−c3d− c4d

2 − c5d
3 + c6G

2(
√
α(VDC + VAC cos θ)− Vs)2

c0 + c1d+ d2
(4.3)

V̇s = −r(Vs −
d

1− d
Ψ
√
α) (4.4)

θ̇ = ω (4.5)

To calculate the Lyapunov exponents, the following steps were followed:

1. The system equations were augmented with the system of linearized perturbations

around the orbit y(t), and integrated for a period of time Tf . The initial conditions

of the dynamic system were chosen arbitrarily while the initial conditions of the

linearized perturbations system y(0) were set equal to the identity matrix.
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2. The vectors y1(Tf ), y2(Tf ), y3(Tf ), and y4(Tf ) were obtained from the columns of

y(Tf ).

3. A new set of vectors was obtained by orthonormalizing the set yi(Tf ) using the

Graham-Schmidt procedure:

ŷ1 =
y1(Tf )

||y1(Tf )||
(4.6)

ŷ2 =
y2(Tf )− (y2(Tf ).ŷ1)ŷ1

||y2(Tf )− (y2(Tf ).ŷ1)ŷ1||
(4.7)

ŷ3 =
y3(Tf )− (y3(Tf ).ŷ2)ŷ2 − (y3(Tf ).ŷ1)ŷ1

||y3(Tf )− (y3(Tf ).ŷ2)ŷ2 − (y3(Tf ).ŷ1)ŷ1||
(4.8)

ŷ4 =
y4(Tf )− (y4(Tf ).ŷ3)ŷ3 − (y4(Tf ).ŷ2)ŷ2 − (y4(Tf ).ŷ1)ŷ1

||y4(Tf )− (y4(Tf ).ŷ3)ŷ3 − (y4(Tf ).ŷ2)ŷ2 − (y4(Tf ).ŷ1)ŷ1||
(4.9)

where (X.Y) denotes the dot product.

4. The augmented system was integrated again for a period Tf while using the state

values at t = Tf as initial conditions for the system equations, and ŷi vectors as initial

conditions for the linearized perturbations. After the integration, the yi vectors are

orthonormalized using the Graham-Schmidt procedure.

5. The Lyapunov exponents were calculated as

λi =
1

rTf

r∑
k=1

lnNk
i (4.10)

where N is the norm in the denominator of ŷi, the subscript i refers to the ith

vector, the superscript k refers to the iteration number, and r is the total number of

iterations.

6. Steps 2-4 were repeated until the values of the Lyapunov exponents asymptotically

converged.
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Figure 4.2: Bifurcation diagram for VAC = 2V .

The Lyapunov exponents were calculated for large branches of chaotic attractors. The

value of the maximum Lyapunov exponent was used to verify the existence of chaos and

to measure the relative activity of the chaotic attractor.

4.3.2 Excitation amplitude VAC = 2V

Figure 4.2 shows the bifurcation diagram for an AC amplitude of VAC = 2V where solid

lines represent stable orbits and dotted lines represent unstable orbits. The effect of the

two potential wells is obvious in the appearance of orbits limited to the lower well and

others limited to the upper well. No two-well orbits were observed at this excitation level.

In the upper well, Figure 4.3, orbits undergo significant qualitative changes. Starting

at ω = 10 and sweeping the frequency down, a branch of stable period-one orbits exists

in the upper well, this branch will be dubbed branch A. The stable period-one orbit loses

stability due to a supercritical period-doubling bifurcation at ω = 9.245. Beyond the

period-doubling bifurcation, a stable period-two orbit coexists with an unstable period-
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Figure 4.3: Upper well orbits for VAC = 2V .

one orbit. As shown in Figure 4.4, the period-two orbit deforms as the frequency decreases

and intersects the zero-velocity line only twice per period. The reason for this anomaly is

that the response of the system at ω
2

continues to grow as the frequency decreases until it

dominates the response at ω = 9.07. As a result, each cycle sees only two velocity reversals

and appears in the bifurcation diagram as two points instead of four.

The stable period-two orbit originating from the previous bifurcation undergoes a cas-

cade of period-doubling bifurcations leading to chaos. Period four appears at ω = 7.231

and chaos starts at ω = 7.065.

The period-one unstable orbit originating from branch A regains stability through a

subcritical period-doubling bifurcation at ω = 8.165 where a new branch of stable solutions,

dubbed branch B, starts. This stable period-one orbit coexists with an unstable period-

two orbit born at the bifurcation point as well as the stable orbits of branch A described

above. Sweeping down in frequency, branch B experiences a cascade of supercritical period-

doubling bifurcations leading to chaos. Period-two orbits appear on the branch at ω =

51



Figure 4.4: Phase portrait and time profile of velocity for a period-two orbit at VAC = 2V

and ω = 9.

4.589, period-four orbits appear at ω = 4.374, and chaos appears at ω = 4.344.

Still in the upper-well, but at low frequencies, Figure 4.5, another set of branches exist.

The first branch (blue) starts from a cyclic-fold bifurcation at ω = 2.833. Figure 4.6 shows

the phase portrait and FFT plot for an orbit on this branch at ω = 2.2. The orbit shows a

superharmonic resonance of the order two. This can be deduced from the FFT of the orbit.

The dominant peak is present at twice the excitation frequency. This orbit experiences a

cascade of supercritical period-doubling bifurcations leading to chaos. Period-two orbits

start at ω = 2.132, period-four orbits start at ω = 2.061, and chaos starts at ω = 2.05.

Coexisting with the previous orbits is a set of period-two periodic orbits (red) that

appears at ω = 2.53 from a cyclic-fold bifurcation. Figure 4.7 shows the phase portrait of

both orbits. The two orbits look as if they intersect, but that is only because the figure

is a 2-D projection of the 3-D phase space (d, v, Vs). The period-two orbits experience

superharmonic period-doubling bifurcation at ω = 2.419 and then goes through a cascade

of period-doubling bifurcations ending with chaos at ω = 2.045.

Similarly, superharmonic orbits of order three (yellow) and four (green) are observed

in the neighborhood of ω = Ω2

3
and ω = Ω2

4
. These orbits appear through a cyclic-fold

bifurcation and disappear through a cascade of period-doubling bifurcations and chaos.
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Figure 4.5: Bifurcation diagram showing superharmonics at the upper well at VAC = 2V .

Figure 4.6: Phase portrait and FFT plot of an orbit at ω = 2.2 and VAC = 2V .
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Figure 4.7: Phase portrait at ω = 2.5 and VAC = 2V for different initial conditions leading

to coexisting orbits.

The last branch of orbits (blue) is born through a cyclic-fold bifurcation at ω = 0.94

and produces superharmonic orbits of higher order. Due to the small spacing between

these superharmonic orbits, no boundaries appear between them.

It is obvious from Figure 4.5 that the region of existence of superharmonic orbits in

frequency decreases as the order of superharmonic increases.

On the other hand, no qualitative change takes place in the lower well orbits and there is

only a dynamic amplification in the response in the neighborhood of the natural frequency

of the lower equilibrium position Ω1, see Figure 4.2. This branch of orbits starting from

ω = 10 will be called branch C.

4.3.3 Excitation amplitude VAC = 2.5V

Figure 4.8 shows the bifurcation diagram for an AC amplitude VAC = 2.5V . In the upper

well, branches A and B are qualitatively similar to those appearing at VAC = 2V . Starting
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Figure 4.8: Bifurcation diagram for VAC = 2.5.

from ω = 10, a branch of stable period-one orbits exists and looses stability through a

supercritical period-doubling bifurcation at ω = 9.37. As before, a cascade of period-

doubling bifurcations takes place and ends with chaos. Branch B starts at ω = 7.79.

Again, this branch looses stability through a supercritical period-doubling bifurcation that

occurs at ω = 5.09 and then experiences a cascade of period-doubling bifurcations ending

with chaos at ω = 4.76.

Figure 4.9 shows the bifurcation diagram of the chaotic region. The chaotic region

spans a significantly larger region than the case with the VAC = 2V excitation. This is

primarily due to its existence farther from the lower-well resonance and thus having enough

energy in the upper-well. The chaotic attractor experiences an interior crisis at ω = 4.76,

after which is expands in size.

In the lower well new dynamics appear around the natural frequency of the lower

equilibrium position. Branch C splits into two branches, C at high frequencies and D at

low frequencies. For branch C, starting from ω = 10 and sweeping down in frequency, a
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Figure 4.9: Bifurcation diagram for chaos in the upper-well at VAC = 2.5V .

cascade of period doubling bifurcations takes place. Period-two orbits start at ω = 1.385,

period-four at ω = 1.363, period-eight at ω = 1.359, and chaos at ω = 1.352, see Figure

4.10. Only the period-two orbit branch is shown due to the very small span of higher-order

orbits.

Branch D starts through a cyclic-fold bifurcation at ω = 1.48, thus coexisting with

part of the other branch of period one orbits and with all its higher-order orbits. Sweeping

down, these orbits do not experience any qualitative change except for the appearance of

superharmonic resonances in the region between ω = 0.55 and 0.86.

The behavior of the system in Figure 4.10 indicates a softening-type system. Figure

4.11 shows a typical softening-type bifurcation diagram where two branches of stable orbits

exist. The two stable orbits coexist over a region and they both lose stability in a cyclic-

fold bifurcation. In our system, period-doubling bifurcations and chaos occurred due to

the presence of the controller which suppresses the orbit’s size expansion.
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Figure 4.10: Inset of Figure 4.8.

Figure 4.11: Softening-type bifurcation diagram.
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Figure 4.12: Bifurcation diagram for VAC = 3V .

4.3.4 Excitation amplitude VAC = 3V

At an AC amplitude of VAC = 3V , Figure 4.12, minor changes occur in the upper-well

orbits while major changes occur in the lower-well orbits. For the upper well, it can be

observed that the period-two stable branch originating at the supercritical period-doubling

bifurcation at ω = 6 meets the branch of unstable orbits originating from the subcritical

bifurcation at ω = 7.1 and both orbits vanish in a cyclic fold bifurcation. Following the

same trend, the region of existence of the stable period-one orbits of branch B decreased

more. For branch A, chaos was observed around ω = 7.7.

As for the lower well, branch C goes through a cascade of period-doubling bifurcations

that ends with chaos. Period-two orbits start at ω = 1.69, period-four orbits start at

ω = 1.643, period-eight orbits start at ω = 1.634, and chaos starts at ω = 1.632. The

chaotic region of grew significantly compared to the chaotic region at VAC = 2.5. Figure

4.13 shows the bifurcation diagram of the chaotic region. The chaotic region starts with a

banded chaotic attractor that exists primarily in the lower well with occasional excursions
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Figure 4.13: Bifurcation diagram of the lower well chaotic attractor at VAC = 3V .

Figure 4.14: Maximum Lyapunov exponent for the chaotic region at VAC = 3V .
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Figure 4.15: Phase portrait and FFT plot of banded chaotic attractor at ω = 1.615 and

VAC = 3V .

over the saddle. Figure 4.15 shows the phase portrait and FFT plot of an attractor at

ω = 1.615. The broadband character of the orbit’s frequency spectrum is a distinguishing

characteristic of chaotic solutions [43]. The attractor expands abruptly to a two-well fully-

developed chaotic attractor at ω = 1.612 after experiencing an interior crisis. Figure 4.16

shows the phase portrait and FFT plot of a fully developed attractor at ω = 1.615.

The white spaces inside the attractor are periodic windows. A period-six window

appears at ω = 1.627, a period-five window at ω = 1.618, a period-four window at ω =

(1.585, 1.574, 1.522), and a period-three window at ω = 1.493. This sequence of periodic

windows was experimentally observed by Simoyi et al. [58] in chemical reactions. Figure

4.17 shows the return map constructed from the phase portrait at ω = 1.615 using a one

sided Poincaré section at v = 0. The map is uni-modal in accordance with theory stating

that any system that goes through period doubling sequence would have dynamics similar

to the 1D map [58].

Figure 4.14 shows the maximum Lyapunov exponent for the region ω = [1.45 − 1.65].
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Figure 4.16: Phase portrait and FFT plot of a fully developed chaotic attractor at ω = 1.55

and VAC = 3V .

Figure 4.17: The uni-modal return map of the chaotic attractor at ω = 1.615.
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Figure 4.18: Transient chaos at ω = 1.442 and VAC = 3V .

The Lyapunov exponent is negative for the periodic orbits preceding that chaotic region,

zero at bifurcation points, and positive at chaotic attractors. The figure shows that chaos

starts at ω = 1.632, grows with increasing the size of the attractor, and then settles after

reaching the full-size of the attractor. The downward spikes inside the chaotic region are

caused by the chaotic windows.

The chaotic attractor ends at ω = 1.494 after colliding with an unstable branch in a

boundary crisis. In its place appears transient chaos which settles down onto a two-well

period-one stable orbit. In the transient chaos region, chaotic behavior for more than 200

exciting period then settles onto the two well periodic orbit. Figure 4.18 shows the phase

portrait at ω = 1.442 before and after settling to the two well orbit.

The two-well period orbit appears from a cyclic fold bifurcation at ω = 1.493. Sweeping

the frequency down, the two well stable orbit goes through a cascade of period doubling

bifurcations ending with banded chaos.

Again, branch D appears at low frequencies coexisting with the two-well chaotic region,

see Figure 4.20. Figure 4.19 shows a chaotic attractor coexisting with a stable one-well

orbit in the lower well at ω = 1.25.

62



Figure 4.19: Two-well banded chaos coexisting with a one-well stable orbit at ω = 1.25

and VAC = 3V .

Figure 4.20: Coexistence of two-well branch of orbits and chaos with a stable one-well

periodic orbit.
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Figure 4.21: Bifurcation diagram for VAC = 3.5.

4.3.5 Excitation amplitude VAC = 3.5V

Figure 4.21 shows the bifurcation diagram at an excitation amplitude of VAC = 3.5V .

Branch A continues to exist in the upper well. It starts with a stable period-one orbits

that lose stability in a supercritical period-doubling bifurcation as seen before. The stable

period-two orbits born at this bifurcation experience a cascade of period-doubling bifurca-

tions culminating in chaos. As before, chaos appears in a very small region of the frequency

spectrum and is very difficult to observe due to its proximity to pull-in. On the other hand,

the branch of unstable period-one orbits does not regain stability and, as a result, branch

B disappears from the bifurcation diagram.

In the lower well, the banded chaotic attractor, primarily residing in the lower-well,

still exists but starts at a higher frequency and exists over a smaller frequency range. On

the other hand, the banded two-well chaotic attractor expands and becomes even wider

in frequency than the primarily one-well chaotic region. Figure 4.22 shows an inset of

the bifurcation diagram showing both primarily one-well and two-well chaotic attractors.
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Figure 4.22: Bifurcation diagram for chaotic regions at VAC = 3.5V .

Figure 4.23: Maximum Lyapunov exponent for chaotic attractors at VAC = 3.5V .
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Figure 4.24: Phase portrait and FFT plot of a two-well chaotic attractor at ω = 1.2 and

VAC = 3.5V.

Figure 4.24 shows the phase portrait and the FFT of a two-well chaotic attractor at ω = 1.2.

Figure 4.23 shows the maximum Lyapunov exponent for the two chaotic attractors

in figure 4.22. From the FFT and Lyapunov exponents plots, it can be seen that fully

developed two-well chaotic attractor evolving from the banded one-well chaotic attractor

is more active than the one evolving from the banded two-well chaotic attractor. The

maximum Lyapunov exponent for the first reaches 0.4, while for the second it only reaches

0.3.

Orbits on branch D appear at lower frequencies and experience period-doubling bifur-

cations to chaos. Figure 4.25 shows the a zoom in on the bifurcation diagram from ω = 1.2

to ω = 0.1.

66



Figure 4.25: Bifurcation diagram for superharmonic orbits at VAC = 3.5V .

4.4 Analysis of the Chaotic Attractors

Steady-state chaotic attractors are present at all the excitation levels considered. The

availability of steady-state chaos over a wide range in parameter space is requirement in

order to use chaos in sensing application. All the upper well branches of chaotic attractors

cover narrow bands in frequency domain and are too close to the pull-in instability, ren-

dering them bad choices as operating regions. On the other hand, the branch of primarily

lower-well chaotic attractors and the branches of two-well chaotic attractors, where they

are available, cover wider bands in frequency domain and are located farther away from

the pull-in instability.

The bandwidth of the branch of primarily one-well chaotic attractors increases as the

excitation amplitude increase from VAC = 2.5V to VAC = 3V then decreases as the excita-

tion amplitude continues to increase from VAC = 3V to VAC = 3.5V . Thus the maximum

bandwidth of the primarily one-well branch exists in the neighborhood of VAC = 3V . On

the other hand, the bandwidth of the two branches of fully-developed two-well chaotic

attractors increase consistently with the forcing amplitude. The two-well branches have
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the advantage of wider bandwidth, while the primarily one-well branch has the advantage

of operating away from the pull-in instability. The bifurcation diagram for VAC = 4V are

presented in [56].

To further investigate the long-time behavior of the chaotic attractors, the basin of

attraction of selected chaotic attractors were generated. They confirm the availability of

a wide basin of attraction that assures system robustness. Figure 4.26 shows the basin of

attraction for a banded primarily one-well chaotic attractor at VAC = 3 and a frequency

of ω = 1.62. This figure was constructed by dividing the phase space into a grid of initial

conditions while holding Vs[0] = 0 then starting long time integration from each grid point.

After one hundred integration periods, the system settled on an orbit and the maximum

position in the last two integration periods was recorded. The basin of attraction was then

plotted as a grid where the color intensity decreases with the recorded position.

Inside the potential wells, the initial conditions are well mixed due to the action of

the chaotic attractor. Outside the wells, all initial conditions go to pull-in. Therefore,

the basin of attraction of the chaotic attractor encompasses a wide region in phase space

comprising the two potential wells. Figure 4.27 shows the basin of attraction for a two-well

chaotic attractor at VAC = 3 and a frequency of ω = 1.62. The similarity between the

basin of attraction of both figures ensures robustness of both chaotic attractors.

In contrast to the previous figures, Figure 4.28 shows the basin of attraction of three

coexisting stable orbits at VAC = 2V and ω = 7.5. The orbit on branch A and pull-in

appear in a light hue. The orbit on branch B appears in a slightly darker hue. The

orbit on branch C appears dark. The basin of attraction shows the separation of initial

conditions as the stable and unstable manifolds deform.

As a conclusion, operating in the two-well chaotic region is preferred when the sys-

tem operation requires a wide frequency range and at the same time working in a low

noise environment. On the other hand, the one-well chaotic region would be preferred in
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Figure 4.26: Basin of attraction of chaotic attractor at ω = 1.62 and VAC = 3V .
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Figure 4.27: Basin of attraction of chaotic attractor at ω = 1.2 and VAC = 3.5V .
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Figure 4.28: Basin of attraction at ω = 7.5 and VAC = 2V .
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environments with noise to add more robustness to the sensor.

4.5 Experimental Issues

For the families of beams used in experiments, a nondimensional natural frequency of

ω = 2 is equivalent a frequency of 60-100 kHz. Working in this frequency range requires

special Op-Amps with high GBP. These Op-Amps are more vulnerable to instabilities. The

parasitic capacitances existing due to the bread-board when combined with environment

noise are sufficient to convert each Op-Amp into a self-excited oscillator. In order to

overcome this, a Printed Circuit Board (PCB) is used to implement the controller of the

chaotic resonator.

Figure 4.29 shows the controller implemented on a PCB. Potentiometers are used to

give flexibility in changing the values of the voltage gain G, the displacement gain Ψ, the

integrator gain (to account for different vibrometer dynamic ranges), and the beam time

constant T .

In testing the controller, we could not relate the input to the output of the controller.

Troubleshooting was not possible on the PCB since it was not equipped with intermediate

test points. Another PCB should be designed with test points and jumpers in order to be

able to test and troubleshoot each stage separately .
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Figure 4.29: Chaotic actuator controller implemented on a PCB.
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Chapter 5

Conclusion and Future Work

An analog electronic controller has been realized for an electrostatically actuated micro-

cantilever beam. Using the controller, the close-loop system can be utilized as a robust

actuator and a mass sensor. The controller gains can be adjusted so that the system is

uni-stable or bi-stable. For the uni-stable system, the pull-in instability is removed and

simulations show the controller’s ability to position the beam tip to over 90% of the gap

in smooth stable operation. The controller has been realized on a bread-board and tested

successfully. Preliminary testing of the close-loop system showed stable motions beyond

the pull-in limit as well as good matching with the model.

When the controller is adjusted to have bi-stability, chaotic regions appear and the

system can be utilized as a sensor. Dynamic analysis of the close-loop system has been

conducted. Period-doubling bifurcations, chaos, transient chaos, and super-harmonic orbits

have been observed and analyzed. By generating four bifurcation diagrams for different ac-

tuation voltages, the dynamic behavior of the system at any region can now be determined.

The best operating regions for the chaotic actuation have been identified and proven to be

suitable for use as a sensing mechanism. The high frequency version of the controller has

been designed and realized on a PCB.
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For the actuator, the next step will be pursuing a stable travel up to 90% of the gap

experimentally. After that, design and fabrication of a complete on chip system is to

be pursued. A piezo-electric material will be used as a position sensor instead of the

vibrometer, and in this case there will be no need for an integrator in the controller circuit.

But on the other hand, the sensor dynamics must be put in account and compensated for.

As for the sensor, the same steps as for the actuator are needed in addition to identifying

a robust routine for relating changes in the chaotic behavior with changes in the system

parameters.
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