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Abstract

An analog controller has been analyzed and built for an electrostatic micro-cantilever
beam. The closed loop MEMS device can be used as both actuator and sensor. As an
actuator it will have the advantage of large stable travel range up to 90% of the gap. As a
sensor the beam is to be driven into chaotic motion which is very sensitive changes in the

system parameters.

Two versions of the controller have been analyzed and implemented, one for the actuator
and one for the sensor. For the actuator, preliminary experiments show good matching
with the model. As for the sensor, the dynamic behavior have been studied and the best

operating regions have been determined.
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Chapter 1

Introduction

1.1 Motivation

The MEMS industry grew quickly over the past two decades from a rich research area into
a multi-billion dollar industry. Very broadly, MEMS devices are usually classified into two
categories namely sensors and actuators. MEMS actuators are used commercially in many
applications including, inkjet heads [3], 4] [5 [6], micro pumps [7], RF switches [8, 9], micro-
mirror manipulators [10, 11}, [12], robotic surgery [13], micro-grippers [14} [15] 16l 17, 18], [19],
and probe-based disc drives [20]. In addition to having small size, MEMS actuators have
the advantage of low cost, ease of integration with electronic components on one chip and

high precision.

MEMS are divided into four groups based on the method of actuation. These groups
are electrostatic, thermal, piezoelectric, and electromagnetic. Electrostatic actuation has

the advantages of |21} 22]:

e High speed as compared to thermal actuation.
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Figure 1.1: Concept of electrostatic actuation.

e Ease of fabrication and integration with CMOS technology, as compared to piezoelec-
tric actuation that requires deposition of ceramic materials which is both challenging

and expensive.

e High energy density as compared to electromagnetic actuation.

In electrostatic actuation, two electrodes are set to move relative to each other, Figure
[1.1) under the influence of an electrostatic force that arises due to a voltage difference
between the electrodes. The electrostatic force is directly proportional to square the voltage

difference between the electrodes and inversely proportional to the gap between them.

In MEMS, electrostatic actuation is realized by cantilever beams, fixed-fixed beams,
or comb-drives, Figure [I.2] In all cases, the electrostatic force pulls against an elastic
restoring force, and the position of the actuator is determined by the balance between the

two forces [23].

The major drawback of electrostatic actuation is pull-in instability, which takes place
when the elastic force is not able any more to balance the growing nonlinear electrostatic
force, forcing the moving electrode to suddenly snap into the fixed one. In cantilever beams,
pull-in instability limits the travel range of the tip of the beam to less than one third of

the gap for static operation [23], and prevents operation in a large range of frequencies
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Figure 1.2: Electrostatic actuation types.

Figure 1.3: Pull-in instability in a micro-cantilever beam.

for dynamic operation [24]. Figure shows a micro-cantilever beam after experiencing

pull-in.

MEMS electrostatic beams are also used as sensors due to their small size and high
sensitivity. Recent applications are mass sensing [25], 26, 27] and mass spectrometry [28].
Sensing is achieved by either measuring the static position change [25] or tracking a change
in dynamic behavior as a result of change in the mass of the beam. The change in dynamic
behavior can be either a shift in the natural frequency [29, B0] or a sudden change in

position (due to a bifurcation) [26, [31].

1.2 Relevant Literature Review

Several approaches have been explored in order to overcome the limited travel range of
electrostatically actuated micro-beams. These approaches may be divided into four cat-

egories, namely changing the geometric design, adding a series capacitor, charge control,



and feedback control.

Examples of the first category are leveraged bending [22] and curved beams [32]. In
leveraged bending, a short electrode is placed under a long beam, the part of the beam
above the electrode operates in the stable region while the rest of the beam acts as a lever
and moves through larger ranges. The drawback of this approach is the need to use a
higher actuation voltage or a bigger device area. In curved beams, the beam is attracted
towards a curved electrode. In experiment, it was found that the beam experiences local

instabilities and can only be used as a bi-stable structure.

In the second category [33], [34], a series capacitor is added between the beam and
the actuation voltage. As the moving beam itself acts as a variable capacitor, the whole
system resembles a voltage divider circuit. When the beam moves closer to the electrode,
its capacitance increases, thus the voltage across it decreases. Adding the series capacitor
resembles the effect of increasing the gap and moving in the stable region of the new gap
(which can be equal to the original gap). The drawback of this method is that it requires
higher actuation voltages and there is a need to minimize parasitic capacitance in the

design.

In the third category, the charge on the electrode is directly controlled using an external
circuit [35], B6]. If the electrostatic force is modeled using the charge instead of voltage,
the instability disappears and the beam can be positioned anywhere within the gap. This
technique uses slightly higher voltage than the open-loop operation, but it requires addi-
tional charge control circuitry and leakage current in the order of pico-Ampere should be

controlled.

Feedback control was first suggested by Chu and Pister [37]. They used a nonlinear
controller in which the input voltage is scaled by the gap. They were able, in simulation,
to produce a travel range larger than 80% of the gap. Lu and Fedder implemented position

feedback using analog electronics and a capacitor as a position sensor. They used a linear



time-invariant controller to simplify implementation and linearized the system while using
gain and phase margin to ensure stability. They were able to obtain a stable travel range

of only 60% of the gap [38].

Rocha et al. [39] achieved over 90% of stable travel in experiment using on-off control
with capacitive position sensing. A comparator is set to compare the position of the beam
with a set position, as long as the position of the beam is lower than the set position, the
input voltage is higher than the pull-in voltage. When the beam position is larger than the
set position, the input voltage switches to a voltage lower than the pull-in voltage. The
beam keeps oscillating around the required position and the ripples magnitude depend on
the delays in the controller circuit. The ripples magnitude can be very high and cause

pull-in in systems with high Q factor.

Closed-loop control has more advantages over the other methods. It can stabilize the
system beyond the pull-in instability in addition to adding robustness to the system against

parameter uncertainties and deterioration over time.

Using the same feedback control proposed by Lu and Fedder, Liu et al. [40] observed bi-
stability, period doubling bifurcations, and chaotic behavior in an electrostatically actuated
micro-cantilever beam. This observation is also reported in a study of the system dynamics

by Towfighian et al. [41], targeting mass sensors.

Chaos is the appearance of long-term aperiodic behavior in a deterministic dynamic
system that exhibits sensitive dependence on initial conditions. It was first observed in
the 1880’s by Henri Poincaré; however, useful applications of this interesting phenomenon
did not emerge until the 1990’s [42]. Chaotic attractors’ metrics are highly sensitive to
system parameter variations [43]. That is why it can be used in system and parameter
identification. Ghafari et al. [44] used the Lyapunov exponent of the chaotic oscillations of
rolling elements to detect faults. Yin and Epureanu [45] were able to detect experimentally

small variations in the mass of a cantilever beam by detecting changes in the attractor



shape after driving it chaotically. Epureanu el al. [46] were able to detect damage in
thermo-shielding panels undergoing chaotic oscillations. Wu et al. [47] used the 3D fractal
dimension of the fetal cortical surface to assess the maturation of cortical development and

to detect morphologic abnormalities in fetuses.

Chaos in MEMS was observed by Bienstman et al. [48] when using an electrostatically
actuated impact resonator, Wang et al. [49], and DeMartini et al. [50]. Bienstamn et
al. [48] used a simple fixed-fixed beam driven by a voltage larger than the pull-in voltage.
When the beam pulls in, a short circuit is introduced. As a result the voltage drops and the
mechanical stiffness becomes larger than the electrostatic force, thus forcing the beam away
from the electrode. When the contact is lost, the electric force starts building up again and
the beam pulls in again. This switching like operation produces large periodic motions.
Chaos was observed in the system and thus tracked to be avoided. Wang et al. [49]
used non-overlapping comb-drives thus creating a bi-stable structure similar to the duffing
oscillator. They successfully measured chaotic oscillations experimentally. However, there
were large mismatches between the model and experiment. The mismatch was mainly
due to inability to estimate the system parameters. DeMartini et al. [50] used a similar

structure and were also able to produce chaotic motions experimentally.

De and Aluru [51] reported chaos in an open-loop electrostatically actuated parallel-
plate resonator prior to pull-in. Najar et al. [52] reported an incomplete cascade of period-
doubling bifurcations just before pull-in in electrostatic actuators. They concluded that
chaos cannot occur in open-loop electrostatic actuators due to occurrence of homoclinic

bifurcation which leads to rapid dynamic pull-in.



1.3 Scope of This Work

In this work, the feedback control strategy developed by Lu and Fedder is utilized to
develop a low-frequency actuator with a large stable travel range and a chaotic resonator.
The chaotic resonator developed here will be used as a platform to design a mass sensor.
The controller is designed and implemented using analog electronics. A vibrometer is used

as a sensor in the experiments to close the loop.

The design and implementation of the controller are presented in Chapter 2. Chapter 3
presents the system analysis and realization for using the device as an actuator in addition
to experimental results for the closed-loop system. Close-loop experiments were conducted
in conjunction with Ms. Towfighian. In Chapter 4 the dynamic analysis of the system is
presented for a mass sensor. Conclusions and future work are then presented in Chapter

d.



Chapter 2

Controller Design

2.1 Introduction

Open-loop electrostatically actuated micro-cantilever beams, Figure (a), can be repre-
sented, using lumped-mass modeling, as an equivalent single degree of freedom spring-mass
system. In this model, Figure (b), the effective mass of the beam is approximated as a
point mass positioned at the tip of the beam, the distributed electrostatic force is lumped
to a single force F' acting on the point mass, and the mechanical stiffness of the beam £ is
lumped to a single spring. Using FEuler-Bernoulli beam theory, the spring constant can be

approximated as
3ET
where F is Young’s modulus, [ is the second moment of area, and L is the beam length.

Using Newton’s second law, the equation of motion of the lumped-mass can be written

md = —kd + F (2.2)

where m is the mass of the beam and d(t) is the displacement of the beam tip in the z
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Figure 2.1: Diagram of the cantilever beam.

direction. The electrostatic force F' is represented in closed-form by

2
Ve

P=u—ae

(2.3)

where c is the electromechanical coupling coefficient, Ve is the voltage difference between

the two electrodes, and ¢ is the capacitor gap [23]. Equation (2.3) can be presented in

first-order form as:

k CVIQ)C
m T (g - @y

where v(t) is the velocity of the beam tip.

For static analysis, d and © are zero, yielding the two equations:

0=vw

CVD02

0=—kd+-—2_
(g —d)?
We can rearrange equation ([2.7)) to obtain

2
d* = 29d® + g*d = CV%C

(2.8)

The algebraic solutions of equation (2.8) include the equilibrium positions of the beam.

Since equation ([2.8)) is a third-order polynomial, the system has three solutions at every

9



input voltage. Figure shows the solutions of the equilibrium equation (2.8]) for one of
the micro-actuators under study in this work. The actuator dimensions are listed in table

[2.1] where L is the beam length, w is the beam width, and h is the beam thickness.

At Vpe = 168V, two of the solution branches in Figure meet in a saddle-node
bifurcation and disappear. After this bifurcation two of the roots of equation (2.8)) become

imaginary. The third root (dash-dotted), is always larger than 2um. This means that it is

Table 2.1: M

[icro-actuator dimensions.

L
w

h
g

200pm
80pum
4.5um
21 m

aphysical as the beam displacement can not exceed the gap length g.

3.0,
2.51
- 2’051.:‘::-‘-:"-'
: : -...-""'h._
= 1.5 el
T 10} ALY N
0.5 ]
i P ]
0.0t —
0 50 100 150
Foe (V)

Figure 2.2: Solutions of Equation [2.8] as functions of Vp¢.

The stability of the equilibrium points can be determined by examining the eigenval-

10




ues of the Jacobian of the right-hand side of equations (2.6)) and (2.7) evaluated at the
equilibrium point. The Jacobian of the system is given by

0 1

_k 2cVpc?
m + m(g—d)3 0

J:

When all the eigenvalues of J have negative real parts, the equilibrium position is said
to be asymptotically stable. Otherwise it is unstable. It was found that the solid line in
Figure is the locus for stable positions and the dashed line is the locus for unstable
positions. Beyond the saddle-node bifurcation point, no physical equilibria exist and the

moving beam snaps into the fixed electrode in what is called pull-in.

For any stable equilibrium position, the location of the saddle (unstable equilibrium)
serves as an upper bound on the maximum realizable oscillations. The range of realizable

static positions is limited by the displacement at pull-in.

It is clear from Figure that the beam cannot be positioned beyond one-third of the
gap length. The control strategy proposed here will seek to stabilize electrostatic micro-
actuators beyond their open-loop pull-in voltage by introducing a control voltage that seeks
to prevent electrostatic forces from growing in an unbounded fashion as the capacitor gap

decreases.

2.2 Close-Loop System

Figure 2.3 shows a block diagram of the system under close-loop control. A commanded
voltage signal V, is inserted to actuate the beam. A vibrometer is used to measure the
beam motions and output a voltage signal proportional to the velocity of the beam tip v.
This signal is then used to produce a feedback control voltage V, that is subtracted from
the actuation voltage, then the output of the adder is multiplied by a gain G and fed to

the beam.

11
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Figure 2.3: The block diagram of the close-loop system.

2.2.1 Plant

The plant under control is an electrostatic actuator composed of a fixed electrode, above
which lies a micro-cantilever beam. Figure [2.4] shows a picture of the micro-actuator
taken using an optical profilometer. The beam is fabricated using the MUMPs fabrication
process. The beam is made of the first structural polysilicon layer Poly 1, the gap is made
of the First Oxide sacrificial layer and the electrode is made of the ground polysilicon layer

Poly 0.

2.2.2 Controller

The controller realized by Lu et al. [38] uses analog electronics and a capacitor to sense the
position of the beam. In this work, a vibrometer is used as a sensor to measure the velocity
of the beam tip. Digital and analog control approaches were considered as candidates to
realize the control law. Digital control converts the analog signal of the vibrometer into a
digital signal and uses a computer to implement the control law. The output digital signal

is then converted back to its analog equivalent to close the loop on the micro-actuator. To

12
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Figure 2.4: A beam-based micro-actuator [I].

implement this control setup one can either use a computer along with a data acquisition
card or a microcontroller. As for analog control, an electronic circuit alone fulfills the

control law requirements.

The advantages of digital control are simplicity and versatility in both implementing
and modifying the control law. All that is needed to implement a new control law or
change an existing law is to change a code. On the other hand, it has the disadvantages
of high cost, time delays particularly in the analog to digital conversion, and errors due
to quantization and discretization. Of course the time delays can be decreased at the cost
of using more expensive equipment. As for the analog control, it has the advantages of
low cost, minimal time delay, and simple integration of the MEMS plant with the driving
electronics. The main disadvantage of analog control is that both the initial design and

subsequent modifications of the control law are non-trivial tasks.

The time delays incurred in closing the loop should be negligible compared to the period
of free oscillations of the plant T' = 27 /w otherwise they can drive the system to instability
[53]. The natural frequency of a cantilever beam is the square root of the ratio of the
stiffness to mass. The mass of a cantilever beam scales like the length cubed L3, while

stiffness scales like length L. Dimensional analysis of the natural frequency shows that it

13



is inversely proportional to the dimensions of the beam

w—\/goc@—% (2.9)

The dimensions of MEMS actuators are in micro-meters, thus they are typically high-
frequency devices. The natural frequencies of the class of micro-beams used in this study
range from 65 to 150 kHz. Therefore the minimum period of the plant is 7},;, = 6.67us.
To meet this requirement, we need to use a ADC with a sampling frequency more than

300kS/s and a time delay less than 0.5us.

In order to reduce the requirements on the minimum time delay of the controller com-
ponents, it was decided to use analog control to implement the control law. Further, an
electronic bread-board is used to facilitate tuning and modifying the controller parameters

in the design and test stages.

2.2.3 Sensor

The vibrometer used, is a Polytech msv 400 which uses the principle of laser interferom-
etry to measure mechanical vibrations. As shown in Figure [2.5] the vibrometer targets
a helium-neon laser beam at a point on the surface of a moving object and collects the
scattered beam. The optical signal (typically at 40 MHz) is fed into a high frequency signal
conditioner. The vibrometer is equipped with decoders to recover the velocity or displace-
ment of a moving point from the optical signal. The velocity of vibration is measured from
the frequency difference between the original and the scattered laser beam which arises
due to the Doppler effect. The displacement is measured using the phase shift between the

two laser beams [2].

The msv 400 used is equipped with the velocity decoder VD-02. The VD-02 can work

at frequencies up to 1.5 MHz and outputs an analog signal that represents velocity of the

14
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Figure 2.5: Operating principle of the vibrometer [2].

object [54]. The decoder provides the signal scaled to one of four dynamic ranges, namely
(5,25,125,1000) mm/s/V with a range of 20 V peak-peak. The dynamic range is set to the
smallest admissible acquisition setting so as to obtain the highest possible resolution. The
analog signal from the vibrometer is integrated then normalized so that 1 volt is equivalent

to a displacement equal to the capacitor gap g. The reason for this normalization is given

in the next section.

The normalization is performed as follows. Using the dynamic range of 5mm/s/V means
that after integration, 1 volt will represent a displacement of 5mm. Since in the control
law, 1 volt should represent a displacement equal to the gap, namely 2um therefore, the
integrated signal should be multiplied by a gain of 5X10 = 2500. If the dynamic range of
25mm/s/V is used, then the gain after the integrator should be equal to 25“0 = 12500.
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2.3 Control Law Dimensionalization and Realization

After adding the controller, the close-loop system equations, represented in first-order form,

are [41]:

d=wv (2.10)
. —ng — C4d2 - C5d3 + CGGZ(‘/Q\/_ - ‘/5)2

= — 2.11
v fo * Co + Cld + d2 ( )
. d

where d(t) and v(t) represent the displacement and velocity of the tip of the beam in the z
direction (Figure [2.1)), Vi(t) is the control voltage, V,(t) = Vpe + Vac sin(wt) is the actua-
tion voltage, ¢; are non-dimensional modal coefficients obtained from a one-mode Galerkin
expansion, u is the non-dimensional damping coefficient, r is the controller damping, G
is the voltage gain, ¥ is the displacement gain and « is the electromechanical coupling
coefficient. The tip position, voltage, and time are nondimensionalized with respect to
the capacitor gap g, the electromechanical coupling coefficient «, and the time constant of
the beam T = %? respectively, where o has the dimensions of volts 2, A = hw, E is
Young’s modulus, I = “’1—23 and (L, h,w) are the beam dimensions. The previous equations
are derived using a reduced order model for the micro-beam assuming one mode shape.

The first two equations govern the position and velocity of the tip of the beam, and the

third governs the controller voltage.

The previous equations are represented in a non-dimensional form to improve the sta-
bility of numerical simulations. In order to realize the controller, we re-dimensionalize the

controller equation by using the dimensional variables V, and t, where V,= Y and { = (7.

Vo
As a result, the dimensional control voltage V, becomes
o dv, 1 dV,
Vi=—F=—+ 2.13
dt  Tya dt (2.13)
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avs
dt

substituting for from (2.12) gives:

2 1 N d —7 A d
Vs = T—\/a[_'f’(vs\/a - m‘l’\/a)] = T(VS - m‘p) (2.14)

Note that there is no need to dimensionalize d since it appears in a ratio form. However,
when implementing the controller, the voltage representing d should be scaled so that a
d

travel equal to the capacitor gap is equal to 1 Volt. Otherwise, the ratio t%; would have

to be redimensionalized.

Figure [2.6|shows a block diagram for the control law. A voltage signal representing the
displacement is subtracted from a 1 volt input voltage. Then the displacement signal is
divided by the output. In the next stage, the signal is multiplied by the displacement gain
V. In the final stage, a unit feedback loop exists with a forward path containing a gain %

and an integrator.

d . VE‘

» —d/(1-d) _
= Y

Figure 2.6: Control law block diagram.

The vibrometer used as a sensor for closing the control loop only supplies information
about the beam tip velocity. Therefore, the controller will have the additional task of
integrating d to obtain the beam tip position d. Figure shows a block diagram repre-
sentation of the actual controller circuit. It includes two additions to the previous block
diagram, the first is an integrator at the beginning to convert the velocity signal from the
vibrometer into displacement, and the second is for subtracting the controller voltage from

the actuation voltage and multiplying the result by the voltage gain.
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Figure 2.7: Actual controller block diagram.

2.4 Controller Blocks

The basic components of the controller shown in Figure are:

e addition of two signals

addition of a signal to a constant

multiplication of a signal by a constant

integration of a signal

division of a signal by another signal

The implementation of all the previous operations is simple and straight forward except

for integration of a signal and division of a signal by another.

2.4.1 Introduction to Op-Amps

Ideally, an Op-Amp (Figure is a differential input, single output amplifier with an
infinite gain [55]. It has two input nodes V, and V_ and one output node V,,. The

governing equation of the amplifier is:
Vour = A(Vy = V2) (2.15)
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where A is the amplifier open-loop gain that is ideally infinite. The amplifier is driven
through DC voltage supplies V.. and V,.._. V,,; is limited by the values of V.., and V._,
and any value outside this limit is clipped. If the output signal is totally outside that
range, the Op-Amps is said to be saturated. Usually V... and V... are omitted from the
diagram and the Op-Amp is presented as in Figure [2.9]

VCC+
2

Vout
V.

Vcc-

Figure 2.8: Op-Amp.

V.
VOUt

Figure 2.9: Op-Amp with power connections omitted.

When negative feedback is added to this ideal amplifier, reasonable gains that are inde-
pendent of the infinite open-loop gain can be obtained. With other components (resistors,
capacitors, etc.) connected around the Op-Amp with different combinations, many math-
ematical operations such as addition, subtraction, integration, and differentiation can be

modeled.

As Op-Amps are not ideal devices, the open-loop gain in reality is both finite and
frequency dependent. The gain value is usually in the range of 10° — 107. The frequency
dependence is due to the presence of parasitic capacitances. Each capacitor in parallel

with a resistor introduces a pole in the system, thus making the whole device frequency
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dependent. Op-Amps are typically internally compensated to act as a single-pole device

according to the equation:
1
1+ =
where A is the open-loop gain of the Op-Amp, A is the open-loop gain at DC, w is the

Aw) = Ao( ) (2.16)

input frequency, and w, is the cutoff frequency of the Op-Amp. At frequencies w >> w,,

the Op-Amp gain may be calculated as

We

Aw) = Ag(=5) (2.17)

w

thus decreases 20 dB every decade in frequency. The frequency at which the open loop
gain A is equal to unity is called the Gain Bandwidth Product (GBP). For Op-Amps to
operate close to the ideal, the GBP of the circuit should be less than that of the Op-Amp.

2.4.2 Multiplication by a constant

There are two main configurations for multiplication [55]:

e “inverting amplifier”, Figure[2.10] where the non inverting input (V, ) is connected to
ground, the input voltage is connected to the inverting input (V_) through a resistor
R;y, and a feedback resistor (Ry) is connected between the inverting input and the

output of the Op-Amp.

e “non-inverting amplifier”, Figure where the inverting input (V_) is connected
to ground through a resistor (R;), the input voltage is connected directly to the non-
inverting input (V.), and a feedback resistor (Rsy) is connected between the inverting

input and the output of the Op-Amp.

The amplifier can be used to multiply an input voltage V;,, by a gain. For the inverting

amplifier, the governing equation is

R
‘/;)ut = _R_ZJ;‘/WL (218)
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W
Vin"_w >_"_,, ;
+ ou

Figure 2.10: Inverting amplifier.

V +
i - 2 Vout

—/W——

2

i}
ke
.

Figure 2.11: Non inverting amplifier.

and for the non inverting amplifier, the governing equation is

R
Vour = Vin(1 + 22) (2.19)
Ry

The advantage of the inverting amplifier is the simplicity, but it has the disadvantage
of producing an inverted output. If the inverted output is not desired at the next stage,
another inverting amplifier with a unity gain has to be added to get the desired output.
On the other hand, the non-inverting amplifier is a bit more difficult to implement but it

can save an unwanted additional stage [55].
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2.4.3 Addition

The configuration shown in Figure is used to add several weighted input voltages [55].

The governing equation for the circuit is

Vi Vi v,
Viur = —Rf(ﬁll+é+...+R—) (2.20)

In order to subtract an input voltage V;, addition can be used after inverting V; by

using an inverting amplifier with both resistors equal R;,, = R [55].

R

Il

R
WA
v, AW >_H,th
+

Figure 2.12: Addition using Op-Amps.

2.4.4 Signal Multiplication and Division

We use the identity
a.b

In(a) + In(b) — In(c) = In(—) (2.21)

c

to implement multiplication and division of two signals. This is accomplished using a diode

in the Op-Amp circuit. A diode is characterized by an exponential relation between the
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current passing through it and the voltage difference between its terminals. The relation
is given by

Vb

Ip =I(eVr —1) (2.22)

where, Ip is the current through the diode, Vp the voltage across its terminals, I the
reverse saturation current, and Vp the thermal voltage. The reverse saturation current I

and the thermal voltage Vi are constant characteristics of the diode.

V. o—AAA ~
H >—"_° Vout

Figure 2.13: Logarithmic output Op-Amps circuit.

Thus in order to implement Z—;, first we take the natural log of both signals, this is done
using the configuration in Figure 2.13] where the output voltage is given by

Vin
IR

Vout = =V In( ) (2.23)

We also have to take the natural log of an input of 1 volt. Then we add the outputs from
v1 and the 1 volt and subtract the output from vy (using similar Op-Amps so that the term

IR cancels out ) to get

U1

IR

V2

IR

U1

1
In(—) — Vrl
)+VT H( ) VT n( UQISR

R ) (2.24)

— [VT ln(

)] = —VT ln(

Vin
Then the configuration in Figure [2.14] where V,,, = —RI,eVr, is used to get the final

output as
-V ln(iv;jiR) vl

‘/;mt = _ste Vr = — (225)
Vg
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Similarly, multiplication can be implemented by adding the natural log of the two signals

and subtracting the natural log of an input of 1 volt then taking the exponent of the result

[55].

V. ;._Dl ~
H >—"_° Vout

Figure 2.14: Exponential output Op-Amps circuit.

2.4.5 Integration

The standard integrator circuit [55] is shown in Figure where

‘/out = ‘/zndt

" RC
The transfer function of the integrator in the Laplace domain is

‘/out(s) o ]-

Vin(s) — sRC

(2.26)

(2.27)

where s is the Laplace variable. Equation (2.27) gives a Bode plot of a line with a slope of

-20 dB per decade in the amplitude plot and a line at —90° in the phase plot. This means

that for low frequency noise, a huge amplification in amplitude will take place, causing the

Op-Amp to saturate. To overcome this problem, another resistor is connected in parallel

to the capacitor, as shown in Figure to act as a path for low frequency signals. As a

result, the circuit changes from an integrator into a low pass filter and the transfer function

of the system in the Laplace domain changes to

V;)ut(s) - _& 1
%n(s) B Rl 1+ RQCS
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Thus for frequencies higher than the cutoff frequency w,. = ﬁ the low pass filter behaves

as an integrator while at the same time the DC gain Gpec = g—f is limited. Figure [2.17
shows the Bode plot of an integrator circuit in dashed line and a low pass filter circuit in
solied line with R; = 1k€2, Ry = 10M ) and C = 20nF'. For the low pass filter to function
properly as an integrator, the input signal should be at least two decades higher than the

cutoff frequency w,. = 5rad/s.

Vino—VWWA >_._.,
+ out

Figure 2.15: Op-Amp integrator circuit.

Figure 2.16: Low pass filter.

In all Op-Amps, there exists a DC voltage offset between the two input pins which is
due to manufacturing imperfections. This DC offset shows as a small DC input voltage

to the integrator and thus gets magnified by Gpe and shows at the output as a large DC
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Figure 2.17: Bode plot of an integrator and a low pass filter.
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voltage added to the signal. Even when using the low pass filter configuration, a relatively
high DC gain exists. In the last example Gpe = g—f = 10,000, thus an offset of 1 mV will
show as 10 V which will corrupt the output signal. To get rid of this DC voltage, a DC
voltage that is equal to the offset but with opposite polarity is added to the input of the
integrator. As the offset is not constant (may change over time from one test to another),
the added amount should be controllable. A voltage divider circuit with a variable resistor

is used to add this controlled voltage.

To be able to add a small DC voltage with positive and negative polarity, the two ends
of the variable resistor are connected to two equal voltage sources with opposite polarities
through large equal resistors. The middle leg is then connected to the input of the Op-
Amp. By doing this, a controlled small voltage can be added to the input and tuned until
a zero DC offset between the two input pins can be achieved [55]. Figure shows the
configuration used for nulling the offset. The values of Rdl,Rd2 and Rv control the range
of voltages that can be added to the input. We can assume that no current flows to the

Op-Amp, therefore V, is calculated through voltage divisions as

Rdl + Ruvl

V, =2V —
YRdl +RA2 +Rv *

(2.29)

where Ruvl is the resistance between the left and middle pin of the variable resistor and
can take a value between 0 — Rv2. When Rdl = Rd2 = 100k€2, Rv = 2k§2, and V = 15V,
then the input voltage to the Op-Amp is within the range V,, = [—0.1485V, 0.1485V].

2.5 Low and High-frequency Versions of the Controller

Two versions of the controller will be realized: one version will be integrated with a class
of MEMS beams to create low-frequency actuators; the second version will be integrated

with the same class of MEMS beams to create steady-state chaotic resonators. For the
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-15v

Output Y

Figure 2.18: Voltage divider circuit connected to an integrator.

actuator, the system’s operation should be either static or in low frequency (compared to
the micro-beam’s natural frequency). On the other hand, for the sensor, the system should

operate dynamically at frequencies as high as the natural frequency of the micro-beam.

Two main sets of experiments are to be performed after integrating the controller into
the system, namely low frequency tests and high frequency tests. The low frequency tests
are intended to verify the use of the system as an actuator. On the other hand, high
frequency tests are to validate the dynamic behavior and exploit the chaotic behavior of

the system.

2.5.1 Actuator Controller

In Figure[2.6] the end feedback loop alone can be regarded as a linear system with an input

\If%d and an output V,. This system’s transfer function is

[

1
s — (2.30)
s Tl

S

T, = L
U

Sl
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which is a low pass filter with unit gain and a cutoff frequency at %. Given that the
value of % is greater than 50 kHz for the target beam class in this work, at slow operating
frequencies this part of the block diagram reduces to a unit gain and can be removed.

Therefore, the block diagram for the controller of the low frequency actuator is as shown

in Figure 2.19

E G (Va-Vs)

Vﬂ d lx;|_|d!(1-d);w

+ Va

Figure 2.19: Block diagram of the controller operating at low frequencies.

In this case, the control law becomes

V,=0—— (2.31)

2.5.2 Chaotic Resonator Controller

The target micro-beam class natural frequencies are in the range of 60-120 kHz. As a result
they requires high speed Op-Amps (high GBP) that can operate at these frequencies and
supply a constant gain. In addition, at these high frequencies working on a bread-board
can cause stability problems due to parasitic capacitances that arise from the bread-board
itself and are significant only at high frequencies. Instead of a bread-board, a Printed

Circuit Board (PCB) was designed and fabricated to suite the high frequency operation.
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Chapter 3

Actuator Realization

3.1 Introduction

The objective of the actuator under design is to hold a desired static position while tracking
a relatively low-frequency w path around it. Driving the actuator using this harmonic

command signal will produce a tip velocity of
v = Aw sin(wt) (3.1)

where A is the amplitude the tip displacement. The nominal capacitor gap g is 2um.
Assuming a travel range of 90% of the gap, yields a maximum travel of 1.8um. Therefore,
a maximum displacement amplitude of A,,,, = 0.9um is reasonable. On the other hand, a
vibrometer acquisition setting of 5hmm/s/V limits the amplitude of the signal to 50mm/s.

This means that for this setting, the maximum allowable frequency of operation is

50 x 1073
Jmae = 5700 <106 — 8.8kHz (3.2)

slightly higher frequencies can also be used when displacements are known to be limited to
smaller values. If higher frequencies are to be used then the next higher acquisition setting

(25mm/s/V) should be used.
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3.2 Static analysis of the system

Equations ([2.10])-(2.12)) govern the dynamics of the close-loop system. For static analysis,

the time derivatives are zero, which yields:

0=0v (3.3)
—c3d — cyd® — c5d® + csG*(Vper/a — Vi)?
_ 4
0 Qo + L ed T & (3.4)
d
0=—r(Vs— m?ﬂ\/a) (3.5)

where Vpe is the actuation voltage.

Substitute equations (3.3]) and (3.5)) into equation (3.4)) to obtain:
d
csd® + cad® + c3d = cG*(Vpov/a — mq/f\/af (3.6)
which becomes, upon rearranging, a fifth-order polynomial in d. The polynomial has five

solutions and potentially five equilibrium positions for every value of Vp¢.

The equilibrium positions of the close-loop actuator for a voltage gain G = 7 and
position gain W = 2 are shown in Figure[3.1. The solid line is the locus of stable equilibrium
positions and the dashed line is the locus of unstable equilibrium positions. One of the
other three roots is aphysical, and the remaining two are complex conjugates. From the

figure it can be seen that the actuator can reach a stable position as far as 90% of the gap.

Figure shows an input voltage of V;, = 10 4+ 10sin(wt)V and the corresponding
actuator response in simulation. It is clear that the beam tip follows the input signal and

reaches more than 80% of the gap distance.
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Figure 3.1: Equilibrium positions of the close-loop actuator where G =7 and ¥ = 2.

Table 3.1: Micro-actuators dimensions.

Nominal MA1 | Nominal MA2 | Identified MA2
150pm 120pm 128 um

20pm 20pm 20pm

2pum 2pum 1.9pum

2p m 2pum 1.70 m

3.3 Experimental Results

3.3.1 Test setup

Two micro-actuators, dubbed MA1 and MA2, were tested. The nominal dimensions of

MA1 and MA2, as well as the experimentally identified dimensions of MA2, are listed in
Table [3.1] [56].

The vibrometer was set to a dynamic range of 5mm/s/V. A function generator was used

to generate the actuation voltage V,, and the controller was implemented on a bread-board.
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Figure 3.2: Close-loop input voltage and simulated beam tip displacement.

Figure [3.3| shows the implemented controller on a bread-board.

3.3.2 Controller testing

Before closing the loop with the actual micro-beam, the controller was tested alone as a
block. The controller testing was done for each major stage alone and then for the whole

. . . . . . 1 _
controller. During testing, the following values were used: integrator gain e = 100,
U =1, and G = 4.84.

The integrator was tested using a sine wave input at two different frequencies. The
output of the integrator was further multiplied by 25 to produce a total gain of 2500,
which is needed to normalize the displacement as mentioned in section [2.2.3] For the first
test a signal V' = 1sin(€2t)V was used at a frequency of 1 kHz. Figure shows the output
of the integrator multiplied by 2500 for both simulation and experiment. For the second

test, the input signal was V' = 4sin(Q¢)V, at a frequency of 10 kHz. Figure shows the
output also multiplied by 2500 for both simulation and integration.

For testing the next stage of the controller, a voltage signal d = 0.3 4+ 0.3sin(Q¢)V was

33



SYSTEMS DESIGN
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Figure 3.3: The controller implemented on a bread-board.
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Figure 3.4: Integration output for a sine wave input.
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Figure 3.5: Integration output for a square wave input.
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Figure 3.6: ﬁ for an input signal d = 0.3 + 0.3sin(Q2t) at 1kHz.
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used to represent a displacement signal. Figure shows %d in simulation and experiment

for a frequency of 1 kHz.

Finally, the whole controller was tested for two different signals. For the first test, the
input voltage was v = 0.6sin(Qt)V at 1 kHz and for the second test v = 3sin(2t)V. For
both cases, an actuation voltage V, = 2sin(Qt)V was used. Figures and show the
displacement d, controller voltage Vi, and total voltage G(V, — V) for the first and the

second test respectively.

3.3.3 Close-loop testing

Using the potentiometer mentioned in Section [2.4.5] the DC shift of the displacement signal
can be adjusted. In the first close-loop tests, the system behaved properly only when the

displacement signal was shifted to about half of the gap. Accordingly the control law is
adjusted from equation [2.31] to

d+y
Vi=V¥—-F—— 3.7
1—(d+y) (3.7)

where y is the DC shift added to the nominal displacement signal.

After testing, we found that although the signal representing the displacement was seen
as steady on the oscilloscope, it was actually riding on top of a low frequency noise signal.
This noise signal was at 30 Hz with an amplitude of 0.5 V which corresponds to half the
gap.

It was found that the vacuum pump used to hold the chip under the laser beam in
the vibrometer is the source of this 30 Hz vibration. This vibration, after the integrator,
appears as a sinusoidal signal with an amplitude of more than 0.5 V added to the displace-
ment. Figure 3.9 shows the velocity (ch 1, orange) and displacement (ch 2, blue) with the

vibrometer laser on but without driving the micro-beam. It can be seen clearly that there
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Figure 3.7: Controller outputs for an input signal v = 0.6sin(2¢) at 1 kHz.
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Figure 3.8: Controller outputs for an input signal v = 3sin(€Qt) at 10 kHz.
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Figure 3.9: Velocity (orange) and Displacement (blue) without driving the micro-beam.

is an undesired noise signal at 30 Hz with amplitude that is equivalent to more than half

the gap.

A second-order passive High-Pass-Filter was designed and implemented to remove this

low frequency noise.

- Close-loop test results

After adding the HPF, the close-loop system was tested using an actuation voltage of
Vo = 2.5 + 2.5sin|wt] at a frequency of 10 kHz. The voltage gain was set to G = 4.8
and the position gain was set to ¥ = 0.5. Simulation results were obtained by numerical

integration of the system equations (2.10))-(2.12)) using the actuator parameters identified

experimentally for MAT.

Figure [3.10] shows the experimental and simulation results of the test. The results
show good agreement between the model and experiment. The experimental displacement

shows a travel range of more than 35% of the gap length which proves that the controller
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Figure 3.10: Experiment and simulation results for close-loop system at V, = 2.5 +

2.5sin(wt), w =10kHz, G = 4.8, and ¥ = 0.5.

successfully stabilized the system past the pull-in instability. Further resutls can be found
in [1]

To get higher displacements, the vibrometer setting should be changed to the higher
dynamic range of 25 mm/s/V.
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Chapter 4

Sensor Realization

4.1 Introduction

Chaotic behavior is very sensitive to changes in the system parameters. As a result chaotic
resonators are an attractive platform for highly sensitive detectors. In order to achieve
this goal, three conditions should be satisfied. First, the resonator should be able to
realize steady state chaotic behavior over a relatively large domain in the parameter space.
Otherwise, small changes in the measurand will send the resonator out of the chaotic
domain and sensing will fail. The second condition is that the system dynamics are clearly
identified and understood so that the sensor can be easily calibrated. The third condition
is the development of a calibration curve to relate changes in a specific system parameter
to a metric of the chaotic attractor. The first two conditions are addressed in this work

and the third will be addressed in future work.

Bifurcation diagrams are generated for four different AC voltage amplitudes while using
the frequency as the control parameter. From the bifurcation diagrams, the best operating

region is determined, and a complete picture for the dynamic behavior is obtained.
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Table 4.1: Close-loop system parameters.

Parameter | Value

L 200pm

w 80pum

h 4.5pum

g 3pum

E 166 GP

! 0.73

) 2331kg/m?

r 100

¢ 1.593 x 10721 Fm

4.2 System Setup

Equations (2.10)-(2.12)) are used to represent the close-loop dynamic system. The system
parameters used in these simulations are listed in table [41].

Towfighian et al. [41] found that a region of bistability exist in the parameter space of
the voltage and sensor gains G and V. Bistability introduces rich dynamics to the system
response and increases the likelihood of chaos. Figure shows the static response of the
close-loop actuator for G = 0.8 and W = 3. The solid lines represent the locus of stable
equilibria and the dashed lines represent the locus of unstable equilibria. At all voltage
values the system has an equilibrium position that is aphysical (d > 1). In the range
between Vpe = 108V and 113V the actuator has four equilibrium positions, two of which
are stable. Outside this range the system has one stable and one unstable equilibrium

position.

In order to operate the actuator in the bi-stable region, the input voltage to the beam
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Figure 4.1: Static equilibria at G = 0.8 and ¥ = 3.

is set to V' = 110 4 V¢ cos(wt). The introduction of the AC voltage results in a harmonic
force that destroys the stable foci and turn them into limit cycles around the equilibrium
positions. A limit cycle is a closed curve in phase plane representing a periodic (oscillatory)
motion. The equilibrium position around which the actuator oscillates is determined by
the RMS value of the total actuating voltage. The equilibrium positions and corresponding

natural frequencies for Vyo = [2,2.5,3,3.5]V are listed in Table [4.2]

4.3 Bifurcation Diagrams

A bifurcation is a qualitative change in the number of solutions and/or their stability as
a system parameter changes. A bifurcation point is the location of this bifurcation in
parameter space. Bifurcation diagrams are used to describe the evolution and relative

position of system response (solution branches) as a function of a control parameter. They
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Table 4.2: Stable positions and corresponding natural frequency.

Vae  equilibrium position natural frequency €2;  Stability
2V 0.371037 1.9742 Stable
0.681634 0 Unstable
0.863958 4.43694 Stable
0.984587 43.6285 Unstable
2.5V 0.371144 1.97343 Stable
0.681441 0 Unstable
0.864018 4.44096 Stable
0.984588 43.6302 Unstable
3V 0.371276 1.97250 Stable
0.681206 0 Unstable
0.864092 4.44586 Stable
0.984588 43.6322 Unstable
3.5V 0.371432 1.97139 Stable
0.680928 0 Unstable
0.864092 4.44586 Stable
0.984589 43.6345 Unstable
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are constructed by stacking one-dimensional or two-dimensional Poincaré sections along
an axis describing the progression of the control parameter. Poincaré sections describe the
intersection of the system orbits in phase space with a lower-dimension object. They are
either one-sided, where they record the intersection points as the orbit evolves from one
side only to the other side of that object, or two-sided, where they record all intersections
of the orbit with the object. In this work, we used the plane v = 0 as a Poincaré section.
Accordingly, the value of d at the intersections with this section represent the maximum
and minimum positions of the beam’s tip. We used two-sided Poincaré sections because
they allow us to describe both the existence and relative location of the orbit as well as its

size.

The bifurcation diagrams were constructed using the following procedure:

1. At an excitation frequency w away from the natural frequencies 2; and 25, long time
integration was performed until the system settled on a stable period-one orbit. The
numerical integration was carried out in Mathematica using the Modified Adams
method. The Modified Adams method is a numerical method for integration that

uses a Predictor-Corrector technique [57].

2. The states at an arbitrary point on the orbit were recorded and used as an initial
guess (dy, vy, Vso) for the shooting method. The shooting method turns the problem
of finding the closed orbits to a boundary-value problem where the initial and final
points on the orbit after one period are matched. It then uses an initial-value solver
to integrate the system equations for a period and interprets the difference between

the initial and final point as an error to be corrected iteratively.

3. The shooting method was impl