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Abstract

The search for new device concepts for applications in optical and millimeter-wave
communications has recently led to the possibility of utilizing the nonlinear electronic properties
of optical and high-temperature superconducting (HTS) materials. However. analysis of these
devices is considerably complicated by the very fact that the material constitutive relations are
nonlinear. and a rigorous solution of the problem in general requires a numerical approach.
Toward this aim. we propose in this thesis an efficient hybrid Finite-Difference Time-Domain
(FDTD) method for analyzing nonlinear wave propagation in two-dimensional optical and
millimeter-wave devices. By employing different numerical schemes to solve for the
electromagnetic fields separately in the regions of linear and nonlinear materials. the
computation time of the overall method can be reduced without compromising the accuracy of
the solution. In particular, for TE-polarized wave. the hybrid method combines the
computational simplicity of the conventional explicit FDTD scheme with the superior stability
property of a partiaily-implicit discretization to provide efficient and stable solutions to the scalar
wave equation. For the case of TM polarization. a full-wave analysis using the leap-frog scheme
with subgridding capability is integrated into the explicit scalar solution. In addition. in order to
extend the FDTD method to nonlinear HTS media. a method of analysis based on the nonlinear
London theory of superconductivity is proposed. The formulation directly incorporates the
nonlinear Meissner effect into the analysis to give an approach that is expedient to FDTD
solution and yields considerable saving in computation time over the traditional technique based
on the Ginzburg-Landau theory. The result is an efficient and accurate algorithm for analyzing

nonlinear propagation in HTS waveguides.

The hybrid FDTD method introduced provides a powerful tool for analyzing a large class
of two-dimensional nonlinear devices. We demonstrate its application to a number proposed
novel devices for optical and millimeter-wave signal processing. Examples include nonlinear
periodic optical waveguides for wavelength and power discrimination. nonlinear HTS
transmission lines for impulse generation via shock-wave formation. and nonlinear resonating
structures for frequency mixing and harmonic generation with high conversion efficiencies.
Numerical results obtained for these devices serve to demonstrate the potential applications of

material nonlinearity in millimeter-wave and optical integrated circuits.
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Chapter 1

Introduction

The ever-increasing demand for larger bandwidth for high-speed communication is
constantly pushing the telecommunication technology to higher frequencies and higher bit rates.
Already terabit optical networks are well under way to commercialization. and sub-millimeter-
wave wireless systems aimed at meeting the increasing need for mobility have been proposed.
The technology of tomorrow’s information systems depends crucially on the development of
electronic and optical components that can perform efficiently and reliably at tens-of-gigahertz
frequencies and beyond. This engineering challenge is pushing research effort worldwide
forward in two general directions: optimizing existing technology for more efficient and faster
devices. and searching for new and novel technologies. In the latter case. it is often true that with
the introduction of a new technology. new mathematical tools are also needed to facilitate the

analysis of the device performances.

The continuous exploration of new device concepts for applications in optical and
millimeter-wave communications and signal processing has recently led to the possibility of using
the nonlinear electronic properties of materials. Some examples of nonlinear devices that have
been suggested are switches, beam steerers and logic elements. In the optical frequercy range.
material nonlinearity is commonly manifested in the form of second-order Pockels effect and
third-order Kerr effect. In the millimeter-wave regime. high-temperature superconducting (HTS)

materials provide a strong nonlinearity that can be exploited to realize novel devices. The
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nonlinear characteristics of these materials afford one an additional degree of design flexibility in
experimenting with new device structures. At the same time. however. the resulting complex and
sometimes non-intuitive behaviour of nonlinear systems presents a barrier in the understanding of
the device operation. In this respect. the ability to numerically simulate and analyze the device
accurately and quickly would be an invaluable asset in the design process. In time-critical market
production. such a simulation tool would also prove to be an essential aid in enabling the engineer
to predict and optimize device characteristics before fabrication. thus resulting in a significant

saving in both development time and cost.

Analysis methods of millimeter-wave and optical devices range from approximate
analytical techniques. such as the Coupled-Mode Theory. to full-wave numerical solution of
Maxwell's equations in the time domain. Within the class of numerical simulators there are
several widely-used techniques such as the Beam Propagation method (BPM), the Finite-
Difference Time-Domain method (FDTD). and the Finite Element method (FEM). Of these.
however. the FDTD method proves to be the most versatile because it can readily incorporate
almost any type of constitutive relation describing the medium in use, including nonlinear media.
Recently. reports of its application to simulate nonlinear dispersive slab waveguides. optical
grating structures. and HTS microstrips have demonstrated the power of FDTD in solving
nonlinear problems [3-6,98]. However. many relevant numerical issues associated with the

nonlinear method have not been addressed or are not futly understood.

To date, many reported applications of the FDTD method to nonlinear media commonly
employ an explicit-time discretization scheme in which the field-dependent permittivity at the
unknown time step n+l is computed using the electric field at the current time step n. This
scheme results in a simple explicit linear propagator which can be used to march the field
efficiently through time without requiring an iterative solution. A major drawback of this
approach. however, is the restrictive stability condition which places a severe constraint on the
time step and mesh sizes [16.46]. It has been shown that in some cases the time step has to be
reduced 20 to 30 times below the limit set by the CFL stability condition in order to achieve
stability in the nonlinear regions [16]. In other cases, the stability of the numerical solution may
not even be guaranteed. On a more fundamental level, the method introduces an artificial time

lag equal to the discrete time step Ar, because the displacement vector at time (n+1)Ar is
computed using the permittivity at time nAr and electric field at (n+1)Ar. i.e., D" = E(E" )E"H .

A more accurate approach is to solve the nonlinear discrete equations exactly by using an
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iterative method of root finding. Furthermore, to enhance the overall stability of the method. an
implicit-time discretization may be used. although the computation effort required can be
prohibitively large if the scheme is applied to the entire computational domain. In this thesis we
will introduce a hybrid implicit-explicit FDTD method for solving the TE scalar wave equation in
two dimensions. The method applies a partially-implicit scheme selectively only to regions of
nonlinear materials to eliminate the instability issue associated with nonlinearities. while retaining
the computational simplicity of the explicit scheme in the linear material regions. The proposed
hybrid method demonstrates superior stability properties over the existing explicit FDTD scheme.
and is particularly suitable to structures comprising of small nonlinear regions in an otherwise

linear medium.

Central to any numerical scheme are the questions of stability and accuracy. Both of
these issues. as well as the phenomenon of numerical dispersion inherent in any hyperbolic
system. will be dealt with. The validity of the numerical solutions will then be verified by
applying the method to a variety of nonlinear optical devices such as slab waveguides. periodic
waveguides. and microring resonators. The results obtained from the hybrid scheme will also be
compared to those of the non-iterative explicit scheme to demonstrate the advantages of the

proposed technique.

In the millimeter-wave frequency range. it was mentioned that nonlinearity can be
derived from the magnetic field dependence of the penetration depth of high-temperature
superconducting materials. However. as there is no explicit model for the nonlinear constitutive
relation of HTS materials. a phenomenological model will be adopted based on the two-fluid
London theory of superconductivity and the nonlinear Meissner effect. This constitutive relation
along with Maxwell’s equations forms the basis for a full-wave time-domain formulation of
propagation in HTS media. An efficient FDTD algorithm is then proposed for solving the

resulting equations for nonlinear wave propagation in HTS materials.

The nonlinear FDTD simulator provides a powerful tool which will enable us to explore
and analyze a variety of novel nonlinear devices. both in the optical and millimeter-wave
frequency ranges. In general, with some minor modifications. device concepts in optics can be
transferred to millimeter-wave applications and vice versa. For example, the same principle of
operation of an optical grating filter can be used to design a periodic millimeter-wave filter. and

the idea of using ring waveguides as resonators in microwave can also be applied to make optical
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resonators. In this thesis, we extend the functions of these structures by introducing nonlinearity
into the materials. One way of exploiting the nonlinear material propenties is to construct devices
whose responses depend on the applied power. A particularly important application is the
distributed Bragg resonator with nonlinear corrugations. Such a filter can provide a response that
is both wavelength and power selective. In another application, nonlinearity is used for the
generation of new frequencies. We propose an optical nonlinear microring for three-wave mixing
with high conversion efficiency. The same device can also be realized in the millimeter-wave
regime using one-dimensional resonators. These proposed devices serve to demonstrate the

potential applications of material nonlinearity in millimeter-wave and optical integrated circuits.

1.1 Thesis Organization

This thesis is organized into six chapters. This chapter presents the research problem and
gives the motivations for the work. A general background of the problem is provided through an
overview of nonlinear devices and a review of the current state of computational electro-
magnetics. Chapter 2 gives the mathematical formulation of the new hybrid FDTD scheme for
simulating nonlinear wave propagation. Relevant numerical issues such as absorbing boundary
conditions. stability. accuracy. and convergence are also discussed. Chapter 3 presents the
application of the proposed FDTD scheme to nonlinear optical devices. The versatility of the
method is demonstrated and comparison to the conventional non-iterative FDTD method is made.
Chapter 4 addresses the issues specific to the numerical analysis of propagation in high-
temperature superconducting materials. An approach for describing the nonlinear behaviour of
superconductors that is expedient to numerical analysis is introduced. In Chapter 5. the proposed
FDTD method is used to analyze nonlinear HTS millimeter-wave devices. Here the emphasis
will be placed on the investigation of the phenomena associated with nonlinear propagation in
HTS waveguides. and their potential applications in millimeter-wave signal processing. Finally.
Chapter 6 summarizes the thesis. provides conclusions drawn from the research and outlines

directions for future work.
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1.2 Background

To set the stage and provide proper perspective for the thesis, an overview of nonlinear
microwave and optical devices for communications and signal processing is given in this section.
followed by a review of existing numerical techniques for electromagnetic analysis. The focus
will be placed on the phenomenon of nonlinear wave propagation and the numerical techniques

available for its analysis.

1.2.1 Nonlinear devices

Nonlinear devices are those whose response depends on the amplitude of the applied
signal. This nonlinear characteristic can be utilized to perform functions that are not possible in
linear devices. such as pulse shaping and frequency generation. In other cases. nonlinear effects
may be used to improve the performance of a device or a network. For example. in long-haul
optical communication networks solitons offer a potential solution to the problem of bandwidth

degradation due to dispersion in the fibre.

Nonlinear microwave and optical devices can be classified as either active or passive
clements. Although active devices =xhibit stronger nonlinearity than passive elements. the former -
need external biasing sources which complicate the implementation of the device. Examples of
active devices are semiconductor microwave p-n junctions and transistors. and p-i-n photodiodes
and lasers for optical applications. In this work we concentrate only on passive devices in which
the nonlinearity arises solely from the direct interaction of electromagnetic waves propagating
through the material. In this case the nonlinear effect manifests itself in the dependence of the
complex propagation constant of the wave on the amplitude of the propagating electromagnetic
field. Common nonlinear effects which can be found in many optical crystals such as SiO..
LiNbO;. LiTaOs, GaAs, are the linear electro-optic Pockels effect. the quadratic Kerr effect and
Raman scattering [58,59]. The refractive index of these crystals is a function of the amplitude of
the impinging electric field. In the microwave and millimeter-wave frequency range. high-
temperature superconductors such as Ytrium-based and Thallium-based cuprate oxide compounds
also exhibit nonlinear properties through the dependence of the penetration depth on the magnetic

field. a behaviour often referred to as the nonlinear Meissner effect [{91-94].
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Nonlinearity in passive microwave and optical devices is used to perform two types of
functions: phase modification due to self-phase modulation and frequency generation due to
cross-phase modulation. In the first class of devices. the phase of a wave propagating in the
medium is altered by its amplitude so that the device response can be controlled by varying the
power of the input signal. Examples of this type of devices are pulse-sharpening circuits for the
generation of sub-picosecond and femtosecond optical pulses, soliton formation for high-
bandwidth optical transmission systems. and microwave and optical couplers used as switching
elements. The second class of nonlinear devices concemns the generation of new frequencies by
nonlinear mixing and harmonic generation. The phenomena of frequency doubling. sum and
difference frequency mixing associated with second-order optical effect. and third-harmonic
generation and four-wave mixing associated with third-order optical effect are all well-known in
nonlinear optics. There is experimental evidence that some of these phenomena can also be
observed in HTS microwave devices where the mixing is provided by the nonlinear Meissner

effect in the superconductor [82].

1.2.2 Numerical techniques for electromagnetic analysis

With the increasing availability of powerful computers. numerical techniques are
becoming more popular in electromagnetic analysis. especially for handling complicated
structures or media with complex constitutive relations. The past several years have seen a
dramatic increase in research effort in developing more efficient and accurate numerical
algorithms. To date there are three prominent differential equation-based methods that have been
applied to a wide range of electromagnetic propagation problems: the Beam Propagation method.
the Finite Element method, and the Finite-Difference Time-Domain method. Each of these
methods will be reviewed in the following. with an emphasis on how they can be extented to

handle nonlinear media.
(a) Beam Propagation Method

The Beam Propagation method is used extensively in the simulation of wave propagation
in inhomogenous wave-guiding structures where the energy flow is primarily along a single
direction (e.g.. the z-direction). The method finds a wide range of applications in integrated

optical devices such as gratings [17], couplers [18]. and waveguide junctions [19.20]. The central
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assumption of the method is the decomposition of the transverse electric field into a slowly-

varying envelope and a fast-oscillating carrier,
E,(x.v.2)=E, (x.y.z)e /B

This assumption enables the vectorial Helmholtz wave equation to be reduced to the Fresnel wave
equation describing the spatial evolution of the envelope. The latter equation is then solved

numerically using the finite difference method [22].

The BPM method has a great advantage over the FDTD method in that a coarser mesh
can be used since only the slowly-varying envelope is solved for. The drawback is that the phase
across an index discontinuity is correct only to the first order of the Taylor series. so that phase-
critical phenomena such as reflections and diffractions are usually not properly accounted for
[22]. Within the slowly-varying envelope approximation. the BPM method can be extended to
accomodate nonlinear media. where the index of refraction is now a function of the electric field.
The formulation in general results in the nonlinear Schrodinger equation. which can be
discretized and solved using an iterative procedure. The method has been used by Thylen et. al.
to analyze nonlinear directional couplers [23]. However. due to the envelope approximation. not
all nonlinear effects can be observed. especially for ultrafast pulses whose bandwidths are

comparable to the carrier frequency.
(b) Finite Element Method

The Finite Element method is a powerful numerical technique which is widely used in
structural analysis and hydrodynamic flow problems. The past ten years also saw an increasing
interest in applying the method to solve electromagnetic problems. The mathematical principle of
the method lies in expanding the solution field in terms of a set of basis functions. which
ultimately reduce the vector wave equation to an algebraic system [24]. The versatility of the
method arises from its use of unstructured grids. which greatly facilitate the modeling of complex
geometries. In guided-wave technology. this capability allows waveguides of arbitrary shape and
refractive index profile. including nonlinear index. to be analyzed [25]. Of particular importance
is the method's ability to conform smoothly with curved geometries such as ring waveguides.
thereby drastically reducing the staircase discretization errors which are always present in finite-

difference techniques.
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The drawback of the method lies in the greater complexity of the algorithm as compared
to BPM and FDTD methods. and the challenge in generating unstructured meshes. As a result the
FEM method has not enjoyed as much popularity as its two counterparts. especially in wave-
guiding devices which have relatively simple geometries. Nevertheless. some applications of the
method to analyze nonlinear structures have been reported: for example, rectangular channel
waveguides with instantaneous nonlinearities [26]. and strip-loaded optical waveguides with

saturable nonlinearity [27]. As in the BPM method. the common approach in all these finite

element analyses is to assume an e/ (cr -B2) dependence of the field and solve for the slowly-

varying modal field profile.
(c) Finite-Difference Time-Domain Method

The Finite-Difference Time-Domain method is arguably the most versatile and widely-
used of the three numerical techniques. Since its first application by Yee in 1966 to solve
electromagnetic scattering problems [1]. the method has been refined and extended to handle a
wide range of problems involving wave interactions in complex media. including frequency
dispersive. nonlinear. and highly-conductive media [15.16]. By directly sclving Maxweil's
equations simultaneously with the medium constitutive relation in the time domain. the method
fully accounts for the effects of reflection. diffraction and radiation. The versatility of the FDTD
method enables virtually any constitutive relation to be incorporated into the solution of
Maxwell's equations. Since the method makes no assumption regarding the nature of the solution
field. it fully accounts for the complete time evolution of the field. and is therefore particularly
suitable for mnonlinear problems where subtle nonlinear effects cannot be predicted by
approximate analytical or other numerical techniques. Furthermore. since nonlinearity causes
frequency mixing and harmonic generation, frequency-domain techniques such as BPM are
strictly not valid as the principle of linear superposition of frequency components cannot be
invoked. Therefore. a rigorous solution of the nonlinear wave equation must be obtained in the

time domain [98].

In recent years. as the power of the FDTD method is increasingly appreciated within the
optics community. there has been growing interest in applying the method to nonlinear structures.
Phenomena associated with pulse propagation in nonlinear waveguides, such as self-focusing
effect and soliton formation. have been studied by Jamid and Al-Bader [7]. Chu [8]. Ackerly and
Chaudhuri [9]. and Schulz er. al. [10]. Goorjian. Taflove and coworkers used FDTD to model
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femtosecond optical solitons in nonlinear Lorentz-dispersive media by direct time integration of
Maxwell’s equations [5.6.11]. Their nonlinear model included such effects as the instantaneous
Kerr and Raman interactions. Ziolkowski and Judkins studied the interaction of ultra-short pulses
in Kerr media exhibiting finite response time by solving an additional phenomenological
susceptibility equation simultaneously with Maxwell’s equations [3]. The method was also used
to analyze pulse propagation in nonlinear corrugated waveguides [4]. Ziolkowski later extended
the scheme to incorporate a general microscopic. quantum mechanical material model to produce
a semi-classical FDTD method for ultra-fast optical pulse simulation [12]. Finally. Megahed and
El-Ghazaly recently applied a 3D FDTD scheme to model nonlinear high-temperature
superconducting microstrip lines {98]. In their approach. the authors first solved the Ginzburg-
Landau equations for the magnetic field and position dependence of the penetration depth of the
superconducting strips. which was then used in the FDTD calculation of the electric and magnetic

fields in the structure.

The most serious drawback of the FDTD method is the restrictive stability constraint
imposed on the time step and mesh sizes, which often incurs extensive computational resource
requirement in performing a simulation. With the aim of improving the computation speed and
accuracy of the algorithm. the idea of usirig hybrid FDTD schemes has long been introduced to
linear problems. For example. in an inhomogeneous domain. it is sometimes desirable to use
finer meshes in small sub-regions to obtain more accurate solutions. Toward this aim. Chevalier
et. al. recently introduced a local-grid method which allows dielectric and/or conducting material
traverse to cross the boundaries between the main grid and local grids [39]. With a different
motivation. Lu and Shen proposed a domain decomposition technique which partitions the
computation domain into sub-regions. whereby parallel solution of the finite-difference equations
can be more efficiently sought [41]. While these approaches are differently motivated from our
research goals. they represent ideas that compliment our hybrid algorithm to produce a more

computationally efficient nonlinear FDTD scheme.

Parallel to the work in refining the FDTD algorithm. much progress has also been made
in the treatment of the computational boundaries as absorbing or impedance boundary conditions.
One of the most widely-used absorbing boundary conditions (ABC’s) is Mur’s second-order one-
way wave equation [29]. This ABC provides adequate results for most structures. although its
performance deteriorates for incidence angles far from the normal incidence. An improved ABC

is Liao’s transmitting boundary. which uses Newton extrapolation to predict the fields on the
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computational boundaries from the fields at interior points [32]. More recently. Berenger
proposed an artificial absorbing layer that is perfectly matched to the physical medium at all
frequencies and incidence angles {30.31]. The perfectly matched layer has been shown to yield
significant improvement in accuracy over Mur’'s ABC. So far, however, no attempt at extending

these absorbing boundary conditions to handle nonlinear boundaries has been reported.

1.3 Summary

In summary. our research objective is to develop an efficient hybrid FDTD scheme for
simulating nonlinear propagation in millimeter-wave and optical devices. We will limit the scope
of our present work to instantaneous nonlinearities in optical and HTS materials. and leave
nonlinear media with finite response time to future research effort. The proposed FDTD scheme
will be used to investigate the possibility of constructing power-dependent devices and passive
frequency generators for use in communications and signal processing. Unlike others who study
nonlinearity in HTS devices as an undesirable parasitic effect. our objective here is to exploit and
enhance this property for practical use. The aims of this research effort are to contribute to the
field of electromagnetic computation, to enhance the understanding of wave interaction in
nonlinear media. especially superconducting materials. and to demonstrate the potential practical

applications of material nonlinearity.
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Chapter 2

The Hybrid FDTD Technique

The basic principle behind the hybrid FDTD method is to apply different numerical
schemes separately to regions of linear and nonlinear materials in the computation domain in
order to maximize the efficiency and accuracy of the overall simulation. We introduce in this
chapter a hybrid implicit-explicit FDTD method which combines the explicit and partially-
implicit time-stepping schemes to produce a stable and efficient algorithm for solving the
nonlinear TE wave equation. This method is particularly suited for optical structures which
comprise of small nonlinear regions in an otherwise linear medium. For TM-polarized wave
propagation. a combination of scalar and full-wave solvers with subgridding capability is
introduced as an efficient and accurate way of simulating thin-film conducting waveguides at the
microwave and millimeter-wave frequencies. This hybrid method, which we refer to as the
single-field leap-frog scheme. will serve as the tool for analyzing nonlinear HTS devices in
Chapters 4 and 5. In this chapter we present the formulation of the two hybrid FDTD schemes.
followed by a detailed discussion on related numerical issues such as error. stability. dispersion,

and convergence.

2.1 The Nonlinear Wave Equation

In a source-free. isotropic, non-magnetic medium. the propagation of electromagnetic

waves is governed by the two Maxwell’s curl equations:
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dH
VXE =—ug—. .0
X Ro EY
VxH =ai(sE)+ oE. (2.2)
¢

where o is the vacuum permeability. € is the permittivity. and o is the conductivity. The
permittivity €. which describes the polarizability of the material in response to an applied electric

field, is in general a function of the field.
e=¢(E). (2.3)

with the specific functional dependence being a property of the material. Furthermore. for certain
media such as plasma and superconducting materials. the conductivity may also depend on either
the electric or magnetic field. Thus for generality we allow & to be also field-dependent in the

following analysis.

In the conventional full-wave FDTD method. Egs.(2.1) and (2.2) are discretized using a
leap-frog scheme where the electric and magnetic field components are offset in time and space
with respeci to each other by half a grid size and half a time step. The scheme thus requires
storage of all six field components at each time step. In order to reduce the memory requirement
and simplify the computation. we seek to reduce the two Maxwell’s curl equations to one second-
order partial differential equation in terms of either the electric or magnetic field. Toward this

goal. we take the curl of both sides of Eq.(2.1) to obtain

d 3?2 )
VXVXE=-uq E(VXH)=—110 % (EE)-no E(GE)'
a° d )
o Mo (EE)+uo E(GE)=V E-V(V-E). (2.4)
2

Using the fact that V-(eE)=eV-E+E-Ve=0. we obtain V-E=V(l/e)-¢E. which. when

substituted into Eq.(2.4), results in

2
Ho a, (eE)+uoP—(oE)=V2E—V(Vl~eE). (2.5)
dr- ot £
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The above equation expresses the electromagnetic propagation in a general nonlinear and
inhomogeneous medium in terms of the electric field. The term V[V(l/e)- eE] on the right hand

side represents the polarization coupling effect. To obtain an equation similar to Eq.(2.5) in terms
of the magnetic field, we take the curl of both sides of Eq.(2.2) to get
2
VxVxH=Vx| —e+0[E.
ar
-V’H= iz-:+o' xE+ iVs«t»ch xE,
or or

which. with the use of Eq.(2.1). becomes

uo(%e+o]-aa%=vzﬂ +[§I-V€+VO’JXE.
or uo(-éa?eaa—lr{)i»uooaa—?:VZH +(§—'V€+VO’]XE. (2.6)

If the medium is linear and homogeneous. Ve = Vo = 0. and the polarization coupling term

vanishes to yield a wave equation in terms of only the magnetic field:

9°H oH _>
HoE Y +Ugo6—=V
.2

H. 2.7)
or (

For nonlinear and inhomogeneous media. the duality between E and H collapses and Maxwell’s

curl equations cannot be reduced to a single wave equation containing only the magnetic field.

In two-dimensional (2D) wave-guiding structures where d/dy = 0 . Maxwell's equations

can be separated into two independent sets of equations corresponding to the transverse electric

(TE) case:

0 oH, OH.

— E L= _x —_———— R 2-8
a0 s )= =5 ok, (282
oH X aEv 2

- = —— 2.8b

0735, 3% ( )
oH . oF . ,

—_— . --8 )

Ho =5, ax (2.8¢
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and the transverse magnetic (TM) case:

v 2.9

Ho ot dx dz (%)
oH ..

%(ssx )=-=-ok, (2.9b)

9 oH .

—(eE. )= ——okE.. 2.9

5 (eE.) o~ ~OE: (2.9¢)

Note that the above decomposition of the solution of Maxwell’s equations into two independent
sets of TE and TM modes is completely general and valid even in nonlinear media. This
important property applies only to 2D but not 3D structures. Since there is only one component
of the electric field in the TE case. we can reduce Eqs.(2.8) to a single nonlinear scalar wave

equation in E, with the help of Eq.(2.5):

Ko i(0'5_\' )+ L’_
¢

)= L+ 2.10
= ' (2.10)

in which ¢ is the velocity of light-in vacuum and &, is the relative permittivity. The polarization
coupling term V[V(l/e)-sE] vanishes for the TE mode in 2D media because the gradient vector

V(1/¢) does not have a component in the v-direction. Moreover. the above equation is general
and exact: no assumption is made as to the nature of the electric permittivity or the conductivity.
By contrast. the equations for the TM case cannot be reduced to a single nonlinear equation in H,
unless the medium is linear and homogeneous or the assumption of no polarization coupling is
made. For accurate analysis, the coupling term must be included and all three equations (2.9a).

(2.9b) and (2.9¢) must be solved simultaneously for the fields.

In the terminology of partial differential equations. the scalar wave equation in (2.10) is
of a mixed parabolic and hyperbolic type. However. assuming a principally sinusoidal field
variation of frequency ®. if we » o, the second-order time derivative term dominates over the
first-order time derivative and the equation can be regarded as predominantly hyperbolic. This
case is applicable to dielectric materials with small loss. On the other hand. if we « &, which
corresponds to highly conducting materials, the situation reverses and the equation is
characterized as predominantly parabolic. A characteristic of a hyperbolic system is that the field

evolves through time in a wave-like manner, whereas in a parabolic system the field is governed
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by a diffusion-like equation. Thus in a medium with low conductivity the electric field behaves
as a wave, whereas in a highly conductive medium it propagates in a diffusive manner. As will
be shown later. the stability condition of the general wave equation depends on the dominant type

of behaviour.

In addition, the formal distinction between the two types of behaviour suggests the
discretization scheme to be used for each case. A characteristic of parabolic equations is that the
domain of dependence is infinite; i.e.. the solution at a point (i, /) at time step n+! depends on the
field values at all the other points in the domain at the same time step. This property suggests that
an implicit or partially-implicit discretization scheme is more suitable since at each time step all
the node values are simultaneously solved for. On the other hand. hyperbolic equations have
finite domain of dependence. which implies that an explicit scheme is sufficient provided the
stability criterion is met. The choices of discretization schemes will be examined in more detail

in light of stability and other numerical issues.

2.2 Nonlinear Medium Models

The interaction of electromagnetic wave with a medium is characterized by the material’s
constitutive relations. For the materials of interest in this thesis, the relevant constitutive relations
are those that describe the macroscopic dependence of the displacement current D and the electric

current J on the electric field:

D=¢E .11
and J=cE. (2.12)

If the dielectric constant € and the conductivity o are field-dependent. the wave equations (2.5)
and (2.6) become nonlinear. In this section we focus on dielectric materials whose constitutive
relation (2.11) is nonlinear. The case where relation (2.12) is nonlinear applies to

superconducting materials and will be treated in more detail in Chapter 4.

In dielectric materials nonlinear response arises from the anharmonic motion of bound

electrons under the influence of an applied electric field. In an isotropic medium. the induced



CHAPTER 2: THE HYBRID FDTD TECHNIQUE 16

polarization P. defined as D — &E. depends on the applied field according to the general relation

(61}

P=€0[X(l) +x(2)|El+x(3)|E|2 +...]E. (2.13)

where € is the vacuum permittivity and ¥ is the j™-order susceptibility. The linear
susceptibility. x'". is usually the dominant effect. with higher-order susceptibilities representing
nonlinear contributions. The second-order susceptibility. x'. is responsible for the Pockels effect
and is present only in materials with asymmetric molecular structures. For most optical materials
the dominant nonlinearity comes from the third-order susceptibility, . which is responsible for

the Kerr effect. The relative permittivity of Kerr-type materials is commonly expressed as

£, =(l +x(‘))+ )5(3)|I5|2 =ng +a|E[2. (2.14)

where ng represznts the linear refractive index and « is the nonlinear constant describing the

dependence of the permittivity on the electric field intensity.

Equation (2.14) describes the simplest instantaneous nonlinear medium model. which is
often adequate for weak applied fields. In some cases. however, the model may be modified to
include cther effects. One comunon effect is the saturation of the polarization under intense
electric field. In such saturable media, the simple Kerr law is replaced by either an exponential

saturation model [62].
€, =ng +Asm,[l—exp(—a|E|2/Aem, )] (2.15)

or a two-level saturation model.

) (IIEI 2

£, =ng + ) (2.16)
T l+a|E|2/Asm,

In either model. the permittivity is still a function of the electric field intensity and may be

expressed generally as
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e, =ng + f([Ef ) @17
where fis a function describing the particular model in use.

Another modification to the Kerr law is the finite response time of the material. which
gives rise to retarded nonlinear effects. Strictly speaking, the electronic response of a material is
not instantaneous but is characterized by a time delay. The nonlinear susceptibility is usually
assumed to be governed by the phenomenological equation

2 1 o2

— AN +— =—|E|". (2.18)

or AL T T ANL 1:[ l
where T is the material relaxation time. usually of the order of 1-10fs [3]. Approximating

Eq.(2.18) as

AU vL
At

T +XNL =a|E|2. : (2.19)

we see that if Az » 1. the phenomenological equation reduces to the instantaneous Kerr model.
2 .
XL =OlE{~. : (2.20)

Thus. if our working time scale. e.g. the rise time of the incident light pulse. is much larger than
the material response time. the instantaneous model will suffice. On the other hand. in sub-
femtosecond systems where the pulse duration is comparable to or shorter than . the finite-
response model in Eq.(2.18) must be used. In this thesis. we will be concerned with pulses of the
order of tens of femtoseconds or longer so that the material response can be assumed to be

instantaneous.

2.3 The Hybrid Implicit-Explicit FDTD Method

A new hybrid implicit-explicit FDTD method is introduced in this section to solve the
scalar wave equation (2.10) for TE polarization in structures with mixed nonlinear and linear
regions. The hybrid technique combines the computational simplicity of the explicit scheme in

linear medium regions with the superior stability property of a partially-implicit scheme in
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regions of nonlinear materials. As a result. potential problems of instabililty associated with
nonlinearity are eliminated and the restrictive stability condition imposed by the linear non-
iterative scheme in nonlinear regions is also removed. The formulation of the finite-difference
equations in each of the linear and nonlinear material regions. and the procedure for solving them.

are discussed below.

2.3.1 Discretization

[n the finite-difference method the computational domain is partitioned into a rectangular
grid of sizes Az and Ax. Figure 2.1 shows a mesh superposed onto a region of mixed linear and
nonlinear media. Each node corresponds to an unknown electric field value E, to be solved for.
We designate a node as being explicit if it falls in a linear medium region. and implicit if it
belongs 0 a nonlinear medium region. In the hybrid FDTD method we apply the explicit
discretization scheme to the linear regions and a partially-implicit scheme to the nonlinear

regions.

In the linear regions. an explicit discretized form of the scalar wave squation (2.10) is
obtained using the forward-difference formula for the first-order time derivative and central-

difference formulae for the second-order time and space derivatives. Thus for an explicit node i.

linear
medium

nonlinear
medium

Figure 2.1. Rectangular mesh superposed onto both linear and nonlinear medium regions. Node i is an
explicit node. while node j is an implicit node with both implicit and explicit neighbours.
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using the notation E;' to denote the field value at node i and time step n. we discretize Eq.(2.10)

as

n+l _ pn n+l _5pn n—l
WoO; El El +(Er)' Ex -E, °+ E:
At ! (CAI)' 221
E" —2E" +E" E" -2E" +E" o
= R i ;]
(az)? (ax)?

The subscripts ii. ig. iy and ig indicate the neighbour nodes left. right. above and below.
respectively. of node i. In the nonlinear material regions. a weighted-average time-stepping
scheme is employed in which the spatial derivatives are averaged over the three time steps n—1. n.

and n+l. The general discrete equation for an implicit node j with possibly explicit neighbours is

(cEY}* - (oE); . € EN -2, E)} + (e, E)}

Ho

Ar (cAr )2
El 2™ +E. EL 2™ L EL
_ Jr J/ JR Ja J JB
=m 2 + B
(Az) (Ax)*
[E" _2E"+E" E" —2E"4+E" (2.22)
+ jL J TR Ja J jB
as ) >
(Az) (Ax)

ET -2ET'+ET  ET —2E7 4+ EM
JL IR L JA JB

(az)? (Ax)?

+aj

In the above equation. a,. @, and a; are weighting factors such that a, + a: + a; = 1. Setting a, =
a: =0 and a: = 1 reduces Eq.(2.22) to the nonlinear explicit form, which is often adequate for
low-loss dielectrics. However. for highly-conducting media at frequencies for which ¢ » we. the
wave equation (2.10) becomes predominantly parabolic. and a partially-implicit scheme with
weightings a; = a; = 1/4 and a. = 1/2 yields better stability than the explicit form. It is also noted
that the fully-implicit scheme with a, = 1 and a» = a3 = O suffers from amplitude attenuation and

thus results in erroneous solutions.

To handle the interfaces between the linear and nonlinear material regions. the time

indexes [ and m of the neighbour nodes in Eq.(2.22) are assigned as follows: if a neighbour node
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Jn € {jL.jR.j,-‘.jB} is also an implicit node, then [(jy)=n+1 and m(jy)=n-1: ifjn is an
explicit node. then [(jy)=n and m(jy)=n. This convention of assigning time indexes to the

neighbour nodes is observed to minimize the numerical discontinuity. and hence reflection, at the
interfaces between the explicit and implicit schemes. Furthermore. as will be apparent. it results

in a symmetric Jacobian matrix for the nonlinear system.

2.3.2 Numerical solution

The discrete equations (2.21) and (2.22) are algebraically solved to obtain the unknown

field at time step n+1 at each node. For the linear material regions. the unknown field E,v"dl'l in

Eq.(2.21) can be explicitly expressed in terms of the known field values at time steps n and n—1:

, 1 - '
E,‘H.l =:&7,'E,’" ! +CiE,'n +CLR.I'(EI',;‘ + E,nR )+Cf\3.i(Ei"\ +El"B )]. (223)

4]
t
where a.. b,. c.. ¢z, and c,g . are position-dependent constants given by

O; £,
a,—=u0 Ly T

Ar (CAI)2 )
E .
b = =T .
l (CAI)2
. = UoO; <€, _9 1 + I
oA (ear)r L) (ax)
c I
LR.{ — 3
( \2
1
CAB.i

On the other hand. Eq.(2.22) is nonlinear because &, and possibly & depend on the field and thus
has to be solved by an iterative algorithm such as Newton-Raphson's method. Observing that

Eq.(2.22) can be re-arranged in the form
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n+lf _n+l pn+l n+tl \_ _nf _.n _n-1 gn pn n—1 n-1
fj (EJ .Ej 'Ej“ )—Sj(ej.ej .Ej.Ejn.Ej .Ejn ) (2.24)
we define the residue of node j at the k™ Newton-Raphson iteration as

ky _ k) n
=S8

n (k) E, (k)
Let o = r,?' and E(k)= E:z
s Ey

where M is the number of implicit nodes. the (k+1)" estimate to the true solution of E™' is given

by the matrix equation
or EG+D _ gk _[,(k)]"r(k)_ (2.26)

The Jacobian J* is computed at each k™ iteration; its (j. /) element is obtained numerically from

2210

, (k) ( (k) ) ( (k)
arj =rjEl +AE—rjEI )
AE
where AE is a small differential (usually about 10°V/m). The Jacobian is a square. symmetric
MxM matrix with five non-zero diagonals. Solution of the linear matrix equation (2.25) may be

efficiently sought using an iterative matrix solving algorithm.

Because at each time step the weighted-average scheme requires solution of a linear
matrix equation. the method may become unattractively slow if the computation overhead in
solving the matrix equation is not minimized. Therefore it is essential that we use an efficient
matrix solving algorithm by exploiting the properties of the Jacobian matrix. For most optical
materials we observe that the conductivity 6 can be assumed constant; furthermore. for the
particular case of materials obeying the nonlinear intensity law (2.14). the Jacobian matrix has the

important property that it is symmetric positive definite. To prove this. consider the weighted-
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average discrete equation with a; = a; = 1/4 and a> = 1/2. The function f}k) defined in Eq.(2.24)
is
(k)

g E,); :
f;“: ( r)j" +p00’+ | _ + | E;L)
(cAr)” Ar o 2(Az)”  2(Ax)

(k) . k) 1 ( (k) (k))
-—— (EjL +EjR )——2 Ej,\ +Ej8
4(Az) 4(Ax)

from which the elements of the Jacobian matrix can be computed. For a general row j of the

Jacobian. there are 5 non-zero elements:

a(axy sazy 7 ey 4(ax)®
where the diagonal element D, is given by
k) (k) ] (k))2
. =afj _ (Er)j L B0 I PO +2a(Ej
; _ .
TOER | (ear) A AP 2acf | (ear)?

It is clear that for each row. the diagonal element is always positive and greater than the sum of
the absolute values of the off-diagonal elements. implying that the matrix is positive definite.
This property of the Jacobian enables the linear system in Eq.(2.25) to be solved very efficiently

by the iterative method of Conjugate Gradient [56].

2.3.3 Absorbing boundary conditions

At the boundaries of the computational domain we need to apply outward radiating
conditions to guide the waves without reflection out into the infinite space surrounding the
structure. We review here two commonly-used absorbing boundary conditions, Mur’s 2™-order
one-way wave equation and Liao’s transmitting boundary condition. The former method is used

for linear boundaries while the latter can absorb waves at the boundary of a nonlinear medium.
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In Mur's 2™-order ABC. a wave which arrives at a boundary node is approximated by a
plane wave over a local region surrounding the node. This wave can then be guided out of the
computational domain by the one-way wave equation. Consider a plane wave in two-dimensional

space,

E_‘. = Eoej(‘”’iB::th-‘)' (2.28)

crossing the boundary at = = %. In the above equation the minus signs indicate propagation in the

positive x- and z-directions. Using the relationship

9

il
”~

Bz +B?

where &k = @\/ig€ is the wave number. we can estimate B. in terms of B, as

2 2
B- =k‘/l—B—';=k(l-B—",). (2.29)
k2 2k2

The above approximation is accurate to second order. Differentiating Eq.(2.28) with respect to =

gives

E,
a—:'='*_'jB:Ey.

and making use of the approximation in Eq.(2.29). we get

d_ . B2
E+ jk(l— 2/("2 HE}. =0,

N R l,.
or /kr-(ﬂc)l + (/B )2]6_‘- =0.

By identifying jk =uo€(d/dr) and jB, =9/9x. we arrive at Mur's absorbing boundary

condition for a wave crossing a boundary at z = z,.

-

9% _ 9% 1292
,/p.os - +UoE 32 iEaxz ]E'\. =0. (2.30)
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The boundary condition for a wave crossing a boundary at x = xo can be similarly obtained:

3 _ a2 19?2
(\/uoe e T HoE iz ,2]5_‘.=0. (2.31)

Equations (2.30) and (2.31) are discretized using a finite-difference scheme and incorporated into
the FDTD solution. Mur’s 2™-order ABC has been shown to yield good radiation condition with

little reflection for waves crossing the boundaries at close to normal incidence [29].

The above absorbing boundary condition is applicable only to linear boundaries. In the
case where the nodes on the boundary have nonlinear material property. a simple and
straightforward ABC that can be used is Liao’s transmitting boundary condition. The method
predicts the field value at a boundary node by using Newton's extrapolation of interior nodes at
the previous time steps [15.32]. Thus Liao’s ABC does not depend on the material property of

the boundary node and works for both linear and nonlinear boundaries.

The method is based on the assumption that a wave arriving at a boundary can be
expressed as a summation of plane waves. each traveling in a different direction but at the same
speed equal to ac along the axis perpendicular to the boundary. The parameter « is called the
unified transmitting coefficient and is usually chosen between 0.5 and 2.0. Figure 2.2 shows a

boundary node at xo in a nonlinear medium. Liao’s transmitting formula for the boundary field

wf* = u((n + 1)Ar. xqg) is

N .
T R ey v} @32
where
N!
cV =
L (N=

and N is the order of corrections (in this work we used N = 3). Since in general the values u((n —j
+ DAt xo - jacAt) do not correspond to nodal locations in the FDTD grid. as illustrated in Figure
2.2, a quadratic interpolation scheme is used to express them in terms of those at the nodal points.

We thus have
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transmitting
nonlinear medium boundary
u, u,
——— - —>
X, ¢

Figure 2.2. Location of nodes used in Liao’s transmitting boundary condition: ug. ;. 4. are nodes on the
FDTD grid. whereas nodes marked by x are interpolated values that are actually used in Liao’s transmitting
formula.

u((n —j+ 1)At, xo — jacAr)y = T,u,

where
- ~j — i+l
uj=Ll" j+l u,'_,' AL "S'j;f ]f
and
Tj_l 0 0
TJ-—TI 0 Tj_l o |,
in which

T/—I =[T/—l.l T iz « T]—I.Z[-IL
T, = [Tn T TIS]'
T“ =(2—S)(l —S)/?.

Tlg = S(2 —S).
T|3 = S(S - l)/2.
5 = acAt/Ax.

The resulting Liao’s boundary condition is
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N .
wgtt =¥ (1Yt (2.33)
J=i
The above absorbing boundary condition has been shown to yield excellent results in both scalar
and vector electromagnetic problems [33], although it was observed that for certain values of o

the transmitting formula causes instability.

2.3.4 Computation flow

Figure 2.3 illustrates the computation flow of the hybrid implicit-explicit FDTD
algorithm. Starting with known field profiles at time steps n—1 and n. the field in the nonlinear
material regions at the next time step n+1 is computed first using Newton-Raphson's iterative
procedure. with the initial guess taken to be the field at the current time step n. Next. the field in
the linear material regions is computed. Note that since we are not using any neighbour field
values at time step n+! in our linear explicit scheme (Eq.(2.21)), the explicit time-marching step
can be performed before or after the Newton-Raphson iteration loop. On machines capable of
parallel processing. the fields in both the linear and nonlinear material regions can be solved
simultaneously. yielding a saving in computation time. Finally. absorbing boundary conditions

are applied and time is advanced to6 the next step.

2.4 Subgridding for TM Polarization

It was shown that for TE polarization in two-dimensional structures. Maxwell’s equations
can be reduced to a single second-order wave equation in terms of E,. given by Eq.(2.10). We
refer to this scheme as the single-field formulation. By contrast. for TM-polarized waves in
inhomogeneous or nonlinear media. it is not possible to reduce Maxwell's equations to an
analogous second-order wave equation in H,. even in two dimensions. Therefore all three field
components E.. E. and H, must be solved from the system of equations (2.9) using Yee's leap-

frog scheme. These equations are conventionally discretized as

n+l _ n n+l/2 n+l/2 n+l/2 n+l/2
.Vli.j H", _ :|i+|/2.j ‘ :Ii—l/Z.j _ E—‘Ii.j+l/2 _ -'li-i-'/2 (2.34a)
At Ax Az B

Ho
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Figure 2.3. Computation flow for the hybrid implicit-explicit FDTD method.

n+1/2 n-1/2 n _ n
€El; jri2 ~EExli jey2 _ -"|i+|.j -“li.j £ (112 5
A = A -o -\’|i.j+l/2 (2.34b)
n n
EE-I{H.I/?- ) _GE-ITI-—VZ ) l — l
Sli+l/2.j livl/2.j ¥+ i j n+l/2
= ~OE_|; ). (2.34¢)

At Ax
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The leap-frog time-marching algorithm starts by assuming H, at time step n and E| and E. at time
step n—1/2 are known, and solves for the unknown fields E, and E. at n+1/2 from Eqs.(2.34b) and

(2.34c). The new field H, at n+1 is then obtained from Eq.(2.34a).

The above leap-frog scheme requires storage of the fields E.. E. at n—1/2 and H, at n. so
the memory requirement is 3N, where N is the number of nodes in the mesh. By contrast. the
memory requirement of the single-field scheme given by Eq.(2.21) is only 2N. For large
problems. the saving in memory from using the latter scheme can be considerable. Therefore. for
structures containing small regions of inhomogeneous materials, we can use a combination of the
leap-frog scheme and the single-field scheme to maximize memory efficiency. In the
inhomogeneous region all three TM field components E.. E. and H, are solved for using the leap-
frog scheme. while in the homogeneous region only the field H, is solved for using the single-
field scheme. Besides the memory saving. such a hybrid scheme also allows for the possibility of
having different grid sizes in the two regions. This capability is particularly important in the
simulation of thin-film conducting waveguides. in which the thin conductors can have much finer
discretization than the dielectric substrate, and consequently a more accurate solution can be

obtained for the field inside the conducting strips.

Many subgridding algorithms have been proposed in the literature. starting with Kunz
and Simpson’s sequential technique in which a coarse FDTD calculation is refined by a second
solution on a finer grid [35]. More recent approaches allow for the simultaneous computation of
the fields in both the coarse and fine grids by special treatment of the fields at the boundaries
between the two grids. Notable among these works are Kim and Hoefer's method of time and
space interpolation to obtain the fields on the grid boundaries [36]. and Zivanovic er. al.’s
approach of using the wave equation to estimate the boundary fields [37]. The latter method was
observed to have poor stability property. so in the following we adopt the interpolation approach

because of its simple implementation and superior stability.

We begin by designating the homogeneous material region as the main domain and the
inhomogeneous medium region as the local domain. Figure 2.4 shows the interface between the
main domain and the local domain for the case where the local grid is three times finer than the
main grid. so that the ratio of the main grid sizes (Az, Ax) to the local grid sizes (8z. 8x) is r = 3.

In order to preserve the stability of the hybrid scheme. the ratio of the main time step Ar to the
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local grid
(6z. dx)

h)"h.k J

e:lh.k+ 12

MG-LG
boundary

main grid
(Az. Ax)

T g T AS

Figure 2.4. Interface between global and local domains in the hybrid single-field leap-frog FDTD method.
The main-grid-local-grid ratio is r = 3. The black circles represent the main-grid magnetic field H,; the
white circles and arrows represent the local magnetic field 2, and local electric fields e.. e.. respectively.

locai time step & must also be equal to r. In the hybrid time-marching algorithm, the global field

A, in the main grid is first obtained using the single-field discrete equation

T YN N N R N i PPN N YN
-"li.j “l -"li.j 2 -"|i—l.j ¥ |i+l.j 3 -"li.J 1 ¥
(2.35)

1

H |n+l _
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where H“.I;'j =H, (iAz. jAx.nAr).
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Cy = -
T (az)?
x = 1

7 (Ax)?

The fields in the local domain are then computed using the leap-frog equations (2.34):

m-1/2 S m m
m+1/2 (E,"k+l/2/8')?:|"~k+l/2 +(l/8x1 h-",h.k+| —Il.\. h.k ) (2.36a)
e. Ty = . 2.36a
<l 2 Enk+1/2 /O +0h k112
m—-1/2 . m m
m+1/2 (8h+l/2'k /SI}II'”'I/?-'L' —(1/8"(,1-"|11+l.k h-"lh.k (2.36b)
‘xl"“/z'k - Ensl/2.k [O1+ O 12 4 ) -
[f' m+l/2 —e m+l1/2 ) (e m+1/2 —e m+1/2 J
Slhk+1/2 Sihok-1/2 Xh+1/2.k Xth—-1/2.k
, m+l —h .lm + 1.k +1/ 1 y _ 1+1/ -1/ ‘ (2.36¢)

ij Mij W/t Hodz /St
where the subscripts /2 and k denote the nodes of the local grid, and the superscript m indicates the
local time step. For zach coarse time interval from 2 to n+1. the local time index-m runs from 0

to r. with m = 0 coinciding to the coarse time n and m = r coinciding to n+1. Thus for each global

time step Ar. the local fields are marched r times. each at the fine time step ¢.

In the fine grid FDTD calculations. Eq.(2.36¢) can be used to march the magnetic field A,
at all local nodes except for the nodes on the boundaries between the main grid and the local grid
(MG-LG boundaries). On the other hand. in the coarse grid calculations, Eq.(2.35) can be used to
obtain the field H, at the global nodes on the boundaries only at the global time steps n—1. n and
n+1. Hence the values of A, on the boundaries cannot be computed by either Eq.(2.35) or (2.36¢)
but must be obtained by interpolation of the global fields H,. Since the wave equation is a
second-order equation. it is natural to use a quadratic interpolation scheme to minimize the
approximation errors. Moreover. it was observed that linear interpolation results in instability of
the overall hybrid scheme. Higher-order interpolation schemes such as cubical splines and shape
preserving splines have also been experimented by others [40]. These in general yield smoother
transition at the boundaries between the main grid and the local grid but require more numerical

effort.
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Quadratic interpolation in time and space of the magnetic fields on the MG-LG
boundaries is obtained by expressing the field around a main grid point in terms of the second-
order Taylor series. Since along the MG-LG boundaries the field is a function of time ¢ and only
one spatial dimension, z or x. we have. as an example. the following expansion for the field

around the main grid point (i. j, n) on the boundary parallel to the z-axis (refer to Figure 2.4):

azh_v (Z - iAZ)2

dh,
hy(zoxj.t)=hy(iAz. jAx.nAr)+ -EI_L(: —iAz)+

.,
-~ - 2
2 cE ’a~a’ <37
h., “h. (1 - - “h.
+%(1-nm)+ E)t;‘ (s ';At) + az(;: (z = iAz)r ~ nAr)

The value of the field A, at the local grid point (iAz + I8z, jAx. nAt + p&t) is thus

h-"lz!_,o = H_‘.I:J +D_(18z)+ %(18:)2 + D, (p&t)+ %”—(p&)2 + D, (18z)pdr). (2.38)

in which the discrete derivatives D are computed as fcllows:

1 ¢ n n
D. =;—_~LH_‘.|. ~H| .
2Az i+hj -1y

I _‘.In "2H‘-|n +H ln

D= (az)*\ i+l j ¥lij ¥ii-1.j )

1 n+l n-1
D, —E(H_‘.L_J -H\| )

n n-1
—ZH\.I_ _+H\.!_ .
Slig g

n+l

1
D, =——| H.
g (At)z( ’ l"-f
1 n+l n+l n-1 n-1
Pu _m(’{-"lm.j_ -"li—l.j_ -"|i+'-1'+H'V|""'!')'

Equation (2.38) allows the magnetic field 4, at all local grid points on the MG-LG boundaries at
all local time steps m. m =0, 1, 2. .... r. to be estimated from the field values at the adjacent main
grid points. In Figure 2.5. we summarize the computation flow of the hybrid single-field leap-

frog FDTD method.

Recall that the main reason for implementing the leap-frog scheme in the local domain is

to support TM propagation in inhomogeneous media. Material inhomogeneity in the local
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domain is accomodated by aligning the material boundaries to the locations of the tangential
electric fields e. or e,. In calculating these tangential electric fields at the material boundaries
using Eqs.(2.36a) and (2.36b), the material properties € and © are taken to be the anthmetic

averages of the properties of the two interfacing media. Thus. for example, we have

|
Ehk+1/2 -3(€iz.k +€h.k+l)'
and o =L(o, +o )
hk+1/2 =5 \Ohk hk+1/-
Note that material inhomogeneity must be located at least one main grid cell deep from the MG-

LG boundaries. and that no material traverse is allowed along the MG-LG boundaries. However.

an important case which is relevant to our study of TM propagation in conducting waveguides

Compute H,|""! in coarse
erid. Eq.(2.35)

y

m=0

:

Compute E.["'* and EJ™"* in
fine grid. Eqs.(2.36a). (2.36b).

!

Interpolate H,[™" at local nodes on
MG-LG boundaries. Eq.(2.38).

y

Compute H,[™" in fine grid,
Eq.(2.36¢)

m=m+1

m=r-17?

NO

YES

n=n+1

Figure 2.5. Computation flow of the hybrid single-field leap-frog FDTD method.
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concerns the crossing of the MG-LG boundaries by a perfect electric conductor (PEC). This

situation is depicted in Figure 2.6 and is considered next.

For all points on the MG-LG boundary that are inside the PEC (points 2b. 3. 3a), the

magnetic field is identically zero for all time steps and hence they do not need further
consideration. The field H, at the global nodes 2 and 4 can be obtained from the boundary

condition that E. = O on the PEC surface. However, the field &, at the local nodes 2a and 3b

cannot be obtained by quadratic interpolation using . at the adjacent main grid nodes in the

manner of Eq.(2.38). because the tangential magnetic field H, is discontinuous across the PEC

surfaces. Nonetheless. interpolation is still possible if we make use of the boundary condition

that dH \ /dx =0 on the PEC surfaces. Toward this end. we construct a parabola through the

points (x;. H,];) and (xa, H,|:) such that

3H
dx -
xX=xp
4 I [} 1
L S R
1 [} (] 1 ] ]
s 0 S O S W
; T : ' ' :
: PP, S 5 S S S
PPEC T v
N S i o T, S S
i ' ' : : "
E I3 S
X =+ 0 ' ' i i
: 23 Ommm oo b
Lk, I
S - VS S S G S
2 ] ] 1 ]
Bl U N
] = Elatate bbbl Dl il St
5 A
LH, b
]
[}

MG-LG
boundary

Figure 2.6. A PEC plate traversing the MG-LG boundary. for the case where the MG-LG ratio r = 3. The
black circles represent the main-grid magnetic fields H,; the white circles are the local-grid magnetic fields

h,.
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Writing the equation for the approximating parabola as
P(x) = a(x — x)* + b, (2.39)

it is straightforward to show that the fitting coefficients a and b are given by

=iH_\.|l ~H,|,
3 (axp

, —H_‘.ll).

a

b=%@HY

From Eq.(2.39) for the parabola. we can compute the derivatives D,. D, and D, at node 2:

D, = 2a(x> — xp).

D =2a.

D, =(pr+' - pr-! yzA: .

n+l

- . I
where D_'('+l and D7 ! are obtained from the parabolas passing through A _‘,KH and H |

-1 -1
and through H ¥ :’ and H ¥ : . respectively. The derivatives D, D,, and D, can then be used

in the interpolation formula (2.38) to estimate the local-grid field value Ix.'.{;"
-lea

2.5 Numerical Issues

Because the FDTD method approximates the partial differential wave equation with
finite-difference operators over a finite grid. the numerical solution necessarily suffers from
discretization and dispersion errors. In this section the approximation error. the stability of the

numerical scheme. and the dispersive effects of the finite grid are analyzed in detail.

Most of the numerical analyses in this section were carried out for the single-field
second-order discrete wave equation. However, the results apply equally to the leap-frog
equations because the two schemes are numerically equivalent. To demonstrate this. consider the

conventional leap-frog equations for TE-polarized wave in a general lossy dielectric medium:
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i J +1 Xli+l/2. j
+lcE. ) " =

) n+i/2 n-1/2 Y_ 1 _
E(Hxliﬂ/lj-H.r,i-bl/l.j) E(E |,+|j E.\'I

Ko n+lf/2 _oom=i2 Y_ 1 no .
E(Hzli.ﬁ}-l/Z Hi':‘.j+l/2)_ Ar(E."I,',jH E-"Ii_j)'

We shall now show that the above equations are reducible to a single second-order wave

equation. Applying Eq.(2.40b) to node (i-1/2. ) and Eq.(2.40c) to node (. j-1/2). we get

Wo n+/2 n—1/2 _ 1 n _ n

E( H.rl,'-l/?__j - H-rli-l/z.j )" E( Ey ij E-"Ii—l.j )
Ko n+1/2 n-1/2 L " el

Kz—( | - 1/7) E(E_\ju E; ) )

Next subtracting Eq.(2.41a) from Eq.(2.40b) and dividing by A-.

Eq.(2.41b) from Eq.(2.40c) and dividing by Ax. we obtain

n+l/2 n+lf2 n+l/2 n+1/2
H.l;  ~Hlioya _ H:Ii.jn/z - :li.j—l/Z
Ax
(2.40a)
" ) (2.40b)
(N
(2.40c¢)

(2.41a)

(2.41b)

and likewise subtracting

n+l/2 n+l1/2 n-1/2 n-1/2 _ar I n
-"|i+l/2.j —H—fli—l,’.‘l.j - H, L«H/"  —H, |, -1/2.j +£E~"|i+l.j "E-"li.j+E-“li-|.j
Az Az Ho (a:)?
(2.42a)
n+i/2 n+1/2 n-1/2 n-1/2 _ar " n
:li.j+1/2 - :|i.j+/1/2 _ H:li.j-l/‘.! - ~l: j-y2 _ﬂE-" ij+1 'E-"li.j +E""i.j—l
Ax Ax Ko (A.t)2
(2.42b)
Substitution of Eqs.(2.42a) and (2.42b) into Eq.(2.40a) gives
(T )’*' €£, X,‘j e
A7 +(0'E_V i
n n n n n n
P -2
Ar E»"li+|.j ‘|.+|., +E-"|i-|./ Ii.j-l - "Im.j "li.j—l
Ko (az)? (Ax)*
n-1/2 n-1/2 n-1/2 n-1/2
_ H, |:+|/’ —H, I, —-1/2.j H l, j+l/2 H‘-Il i~12
Az Ax



CHAPTER 2: THE HYBRID FDTD TECHNIQUE 36

Eliminating H, and H. on the right hand side of the above equation using Eq.(2.40a). we arrive at

(EE_‘. y”" —(eE_vX.' )

ij J +(°Evy,-';l _

Ar
1 n 1 n
_A_I_l—E-vlzl'«f-l.j —25-"':‘;1.,' * EP"i—l.j . E-"li.j—l =2 -"|‘,'+1.j * E-"lf.j—l
Ho [ (a<)? (ax)?
eE. ) —(eE !
_ ( ¥ yltj A’( ¥ J +(GE\Z1.J
which can be simplified to
(sE_‘. )l'“;' —-2(&1;‘}. g +(eE_‘.)’_'.;' (cE).X_'.;' —(GE_\.X_"j _
Ko () *tHo Al =
5 n n n 5 n |n (2.43)
£ l:+|., _'E‘li+l., +E, Ii—l.j . E-"Ii.j-l _”E-"li+l.j T E; j-1
(az)? (Ax)®

We recognize Eq.(2.43) as being identical to the single-field discrete equation of the second-order
wave equation. The leap-frog scheme therefore is expected to have the same numerical

behaviour as the single-field scheme.

2.5.1 Discretization errors

The wave equation (2.21) is discretized using the forward finite-difference formula for
the first-order time derivative d/dr which is accurate only to order O(At). Therefore the error due
to truncation of the Taylor series is proportional to the first order of the time step. i.e..

AE; =< Ar. A second-order accuracy can be obtained if a central difference scheme is used for

the derivative d/dr. but such a scheme is not practical since it is always unstable in the parabolic
limit. There are also contributions of second order from the grid sizes Az and Ax. so that the total

local discretization error for each node i is

AE; o O{Az)(Az)z.(Ax)2 } (2.44)
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For optical materials having small losses, & « e, the first-order time derivative is much smaller
than the other terms in Eq.(2.21). In this case the discretization approaches second-order

accuracy in both time and space:
AE; = ofar).(az)?.(Ax)? |. (2.45)

Other errors. such as those due to convergence of the Newton-Raphson iterations. numerical
dispersion and attenuation. may also exist and add to degrade the accuracy of the schemes below

the order of accuracy formally defined in Eqs.(2.44) or (2.45). These errors are discussed next.

2.5.2 Stability

The issue of stability is intimately related to accuracy because an unstable scheme will
necessarily result in inaccurate and non-physical solutions. More fundamentally. according to the
Lax Equivalence Theorem. stability is a necessary condition for convergence of the finite-
difference solution to the exact solution in the limit as Az, Ax. and Az approach zero [48]. Since
stability is a local effect. we can study it separately in each of the linear and nonlinear medium

regions.

In the linear material regions the stability of the explicit scheme has been extensively

studied. We consider two cases of the wave equation:

e Hyperbolic limit (@€ » G):

Fer the hyperbolic case. stability is given by the well-known Courant-Friedrichs-Lewy
(CFL) condition [15.16]

(CA')Z[ L 1 }51. (2.46)
e L&) (axf

The above condition implies that smaller time step is required for materials with smaller

permittivity. Since €, > 1, free space imposes the most stringent stability requirement.
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e Parabolic limit (W€ « 6):

For the parabolic case. the scheme is stable if Ar. Az, and Ax satisfy the condition (e.g..

(48D

247)

|-

At[ L, 1 J<
oo | (Az)*  (ax)* |

In the mixed case where both € and o are present. stability is determined by the more stringent of
the two conditions (2.46) and (2.47). which is usually the CFL condition for problems of our

interest.

In the nonlinear material regions. stability analysis becomes considerably more
complicated by the dependence of €, and G on the field. We consider here the important case of

the explicitly discretized wave equation (a; =a; =0. a» = 1):

(E,.E):-'“ _2(€rE)? +(£rE):_"| _ E,.'Z -2E!' + El."R E'.':‘ -2E! + Ei';,

= 5 + 3 (2.48)
(cAr) (Az) (Ax)

where 6 = 0 and nonlinearity appears only in the field dependency of the relative permittivity,

€/{E). The analysis presented in Appendix A results in the stability condition

-1
- dgf 1 1
(cAr)| —£ ~+ <I. (2.49)
E! | L) (ax)

where g =(g,E)?. This condition is similar to the CFL stability condition for the linear

scheme except that in place of the constant relative permittivity €,, we have the term

€ £ =, (£r)+[ Z) £ (2.50)
r&; r\&; aEi i

dg/! 0
dE] OE[

We consider below the two most common types of optical nonlinearities. the third-order Kerr

effect and the second-order Pockels effect.
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e Third-order optical nonlinearity:

For third-order nonlinearity the permittivity depends on the electric field intensity and

can be expressed in the general form
o] 9
£, =ng +f(|E|' ) (2.51)

where no is the linear refractive index and f is a positive. monotonically increasing function

describing the nonlinear model (e.g.. exponential saturation, two-level saturation). We thus have

n 2 n 2
—ag—’=n3+f( El )+2(di) E' =n3. (2.52)
oE! dE J;
Substituting the above into Eq.(2.49) gives
("A:)—[ S an. (2.53)
ng I_(A: ) (Ax)”

which shows that the stability condition for the nonlinear scheme is the same as the CFL

condition for a linear medium with refractive index no.

e Second-order optical nonlinearity:

For second-order nonlinearity. the relative permittivity is given by
2 2
e, =ng +xE. (2.54)
where %'’ is the second-order susceptibility. In this case we have

9087 _ 2 o (o2~ (2)
B = pd+ 20 VEr 203 ~24PE_ . (2.55)

9E"

where En,, is the maximum field occurring during the simulation. The stability condition of the

FDTD scheme for second-order nonlinearity is thus
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_ ("A(’,))' { L. ‘,JSL (2.56)
ng =20 Emax [ (A2)°  (Ax)

which is equivalent to the CFL condition for a linear medium with relative permittivity equal to

ng - ZZ(Z)EmM .

The above nonlinear stability conditions apply only to the explicitly-discretized wave
equation. For the weighted-average scheme. a closed-form expression for the monotonicity
condition cannot be derived. but simulations running with third-order nonlinearity have been
experimentally observed to be stable if the CFL condition is satisfied. The fully-implicit scheme

was not considered because it suffers from numerical attenuation.

The stability conditions derived in this section give the maximum time step that can be
used in the FDTD simulation without causing unbounded growth in the numerical solution. The
overall stability of the hybrid implicit-explicit FDTD scheme is determined by the most stringent
stability condition imposed by each of the linear and nonlinear medium regions in the
computational domain. For the important case of third-order optical nonlinearity. the stability of
the hybrid method is determined only by the linear part of the refractive indexes present in the
structure. Consequently. the strength of the nonlinearity does not affect the stability, and hence
the grid sizes and time step used. This is in contrast with the conventional non-iterative scheme
where in general, stronger nonlinearity requires the grid sizes and time step be further reduced

below the CFL limit in order to ensure stability [16].

We conclude this section by noting that since the hybrid single-field leap-frog FDTD
method is a linear scheme, the stability condition is formally defined by either Eq.(2.46) or (2.47).
In practice. however. stability is degraded because interpolation at the MG-LG boundaries
introduces additional approximation errors. Furthermore, the interfaces between the coarse and
fine grids cause numerical reflections. and the energies from these reflections can build up inside
the local domain. which acts as a numerical resonant cavity, and eventually causes the solution to
blow up.”’ In general it was observed that for larger MG-LG ratio r. the time step must be further

reduced below the maximum stability value given by Eq.(2.46) or (2.47) in order to ensure

“ Acknowledgment goes to Prof. Raj Mitra of Penn State University for this illuminating observation.
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stability. Also. introduction of a small artificial or physical loss into the local domain helps
dampen the energy build-up in the numerical cavity and enhances the stability of the solution.

L d

2.5.3 Numerical dispersion and dissipation

Due to the use of finite grid sizes and time step. the numerical solution of a hyperbolic
system suffers from frequency dispersion and amplitude attenuation. For linear problems. Fourier
mode analysis is often used to estimate the amounts of dispersion and dissipation. which depend
on the discretization scheme used. The same analysis. however, cannot be applied to nonlinear
problems because of the resulting frequency mixing effect. Moreover. in problems of wave
propagation through a nonlinear medium. the dispersive effect inherent in the physical medium is
also present. which may be further enhanced or reduced by the type of nonlinearity in the .
material. Therefore it is difficult to separate the numerical dispersive effect from the physical
effect. Nonetheless. results obtained from linear analysis give an indication of the relative
amount of dispersion and attenuation introduced by different discretization schemes. In the
following. we compare the explicit scheme. the weighted-average scheme and the fully-implicit

scheme based on their dispersion and dissipation in a lossless linear medium.

In Fourier mode analysis. we apply to the discrete equation a test solution of the form

E,'" =}\"’e!'B:I'A:eJBxkA-" .57
1.K N
where j=v-1, A =|l|ej° is in genera! a complex number. and B. and B, are the propagation

constants in the z- and x-direction, respectively. Over one period, the change in the amplitude [A|
gives the attenuation or amplification factor. and the phase ¢ gives the amount of dispersion due
to both the material and the numerical scheme. The results obtained from the analyses presented

in Appendix B are as follows:

e Explicit scheme: (ay =1, a:=a;=0)

[A[=1.
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P

Ax - 1 9
- 2
] *2 (kvAr) b . (2.58)

LR

k k

5 2
and ¢ = kvAr]l——- [Q—A*—] +(B
24
where v=c/,/e, is the velocity of light in the medium. and k2 =B§ +B_?; = (w/v)?' is the wave

number. The first term in Eq.(2.58). kvAr. accounts for the material dispersion and the other
terms are due to numerical dispersion. It is seen that the explicit scheme has no amplitude
attenuation but suffers from a negative phase error. i.e.. phase lag. Note that the phase lag is zero

only for the special case where B. =, and the time step and grid sizes satisfy the condition

(Ax)? +(az)? = (2vAr)?.

o Weighted-average scheme: (a, = a; = Y. a» = '2)

Lary? ! (2.59)

Thus the weighted-average scheme has no amplitude error. but suffers from a phase lag slightly

greater than that cf the explicit case.

e Fullv-implicit scheme: (a; = a;=0.a.=1)

A =1-L(var) <1. (2.60)

Thus the fully-implicit scheme. while unconditionally stable. suffers from amplitude attenuation.
This attenuation is multiplied at each time step. so that after several hundred time steps the

amplitude of the wave becomes greatly attenuated from the correct solution.

The foregoing discussion concerns only with dispersion in a lossless linear medium. For
lossy conducting media the numerical dispersive effect becomes more pronounced and is the
dominant source of numerical error. To quantify the dispersion error. we again apply the test
solution (2.57) to the discrete wave equation and derive the dispersion relation. The result for the

explicit discretization scheme is
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sin?(B.Az/2) N sin®(B,Ax/2) _ (o€ + Lpgonr )sinz(mAt/Z) _ilpgo sin(war)

(a)? (Ax)? (Ar)? ! ar

2.61)

Assuming, for simplicity. a z-propagating wave so that 8, =0 and the wave number k = B_. we can
then calculate the effective index of refraction /i(w) = ck(w)/® from the above equation. Given

that the exact analytical refractive index of the medium is

n(w)= e, - jo/weg . (2.62)

we can compute the relative dispersion error. Re{fi(w)- n(w)l/Re{n(w)}. and the relative
dissipation error. Im{fi(w) - n(w)}/Im{n(w)}. Figures 2.7(a) and 2.7(b) show the relative errors as

a function of the frequency. The effects of the conductivity parameter 6 and the grid size Az are
illustrated by calculating the errors for two different values of 6. 10°S/m and 10’S/m. and two
different values of Az. Ium and 10pum. In all the calculations €, = 1 and the time step At is set at
the maximum CFL limit. The plots in Figure 2.7 show that both the dispersion and dissipation
errors increase with the frequency, the grid size. and the conductivity. In the millimeter-wave
regime (~100GHz) the dispersion error for a lum grid size can be as high as 30% for a good
conductor such as copper (6 = 6x10’S/m). This error poses a serious limitation to the ability of
the FDTD methed to simulate millimeter-wave devices. However. since in this work we are
concerned only with thin-film waveguides in which the conducting material occupies very thin
layers. the dispersion error is tolerably small and can be further minimized by the use of

subgridding to reduce the grid size in the conducting regions.

2.5.4 Convergence

In the hybrid implicit-explicit method. beside the convergence of the discrete solution to
the exact solution. which has been discussed in conjunction with stability. there is also the issue
of convergence of the Newton-Raphson iterative procedure for solving the nonlinear system in
Eq.(2.22). If the system has a single root. then for a sufficiently close initial guess. Newton-

Raphson iteration will converge to the true solution at an almost quadratic rate. Because our
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Figure 2.7. (a) Relative dispersion error and (b) relative dissipation error for the explicit FDTD scheme in
lossy conducting media.
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initial guess of the field values at time step n+! is taken to be the field at time step n. for
sufficiently small time steps, the iterate will already be very close to the true solution. and near
quadratic convergence of the Newton-Raphson method can be achieved. As shall be

demonstrated in Chapter 3. convergence is usually obtained after 4 or § iterations.

2.6 Summary

We introduced in this chapter two hybrid FDTD techniques: a hybrid implicit-explicit
scheme for solving the scalar TE wave equation in mixed linear and nonlinear media, and a
hybrid single-field leap-frog scheme with subgridding for simulating TM propagation in
inhomogeneous media. For the implicit-explicit method we presented three alternative
discretization schemes — explicit, weighted-average. and implicit —~ for the nonlinear medium
regions and investigated the stability and numerical dispersion of each. The conclusion is that the
explicit scheme is the best choice for nonlinear dielectric media, whereas the weightzd-average
scheme provides better stability condition for solutions in highly lossy materials. The implicit
scheme is not practical because it suffers from severe numerical attenuation. In the next chapter

the hybrid implicit-explicit FDTD method will be applied.to analyze nonlinear optical structures.

In the second hybrid FDTD scheme. which combines the single-field and leap-frog
formulations of the wave equation, a subgridding algorithm based on time and space interpolation
of the fields on the grid boundaries was presented. This method will be used for simulating
propagation in microwave and millimeter-wave devices. and will be extended to include

nonlinear HTS materials in Chapter 4.
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Chapter 3

Optical Device Applications

In this chapter application of the hybrid implicit-explicit FDTD scheme developed in the
previous chapter for analyzing wave propagation in nonlinear optical devices will be presented.
We shall first demonstrate the stability and accuracy of the two nonlinear schemes — the
nonlinear explicit and the weighted-average schemes. by applying them to the simple cases of an
open nonlinear dielectric medium and a nonlinear slab waveguide. The versatility and
applicability of the hybrid FDTD method will then be illustrated by exploring more complicated
nonlinear wave-guiding structures. Two specific devices will be focused on: the nonlinear
periodic waveguide and the nonlinear microring resonator. with an emphasized view on how they

may be used as elements in optical communication systems.

3.1 Stability of the Nonlinear FDTD Method

We investigate numerically the stability of the two nonlinear FDTD schemes introduced
in Chapter 2, the nonlinear explicit scheme and the weighted-average scheme. Two numerical
experiments are presented, the open nonlinear dielectric medium for validation of the analytical
stability condition (2.49) for the nonlinear explicit FDTD method, and the nonlinear slab
waveguide for comparison and physical verification of the nonlinear explicit and weighted-

average schemes.
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3.1.1 Stability of the nonlinear explicit method

It was shown that for the nonlinear explicit FDTD scheme the stability condition can be
expressed analytically by condition (2.49). Moreover. for the specific case of third-order optical
nonlinearity the stability condition is given by Eq.(2.53). which depends only on the linear part
of the refractive index of the medium; while for second-order optical nonlinearity the stability
condition requires an estimation of the maximum electric field En, occurring during the
simulation. as stated in Eq.(2.56). To verify these conditions. we performed numerical
experiments by applying the hybrid FDTD method on the test structure shown in Figure 3.1. A
linear dielectric waveguide with index contrast 3:1 is used to launch a TE, mode at the source
plane. which radiates into an open nonlinear dielectric region having the linear part of the
refractive index. n. equal to 1.0. The structure is surrounded by vacuum so that the minimum
refractive index. which determines the linear stability limit. is also 1.0. With the grid size choice
of Az = Av =0.025um, the maximum CFL time step allowed. assuming all materials are linear. is

(At)cq. = 0.058966fs. At this At value the CFL coefficient defined by

S W source plane
:
N
]
'
=1.0
09 um ton
g : FoTTTTTTTETTS N
| ' nonlinear N
: ' medium ' 0.6 um
T 1 n, = 1.0 : <
' E %, x® '
09 um : e e-————— :l' A4
1 n=10 £ |
! 2.0 ym
v,
]
[}

Figure 3.1. Open nonlinear dielectric structure for testing the stability condition of the nonlinear explicit
FDTD scheme. The nonlinear medium has susceptibility ¥ = 10°m/V or x® = 10"°m*V? depending on
the type of nonlinearity under investigation.
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CFL =22 Ji/(az)? +1/(ax) G.1)
ng

is equal to 0.99999. A continuous-wave signal at wavelength A = lpum with peak electric field E,
= 0.04V/um was launched into the dielectric waveguide. We performed FDTD simulations of
wave propagation through the dielectric block for two types of nonlinearity: third-order
nonlinearity with susceptibility coefficient x'*’ = 10"°m* V>, and second-order nonlinearity with

X = 10°m/v.

Since third-order nonlinearity imposes no additional constraint on the stability of the
FDTD method. the maximum stable time step in this case can be taken to be Ar = (Af)cp, =
0.058966fs. The simulation was run for 10.000 time steps and the electric field profile was
recorded. Figures 3.2(a) an_d 3.2(b) show in solid lines, respectively, the longitudinai field
profile along the z-axis and the transverse field profile at the centre of the nonlinear dielectric
region. For ccmparison. the field profiles obtained from simulating the same structure without
nonlinearity are also shown in the plots by the dashed lines. From both plots it is seen that the
nonlinear simulation remained stable up to 10.000 time steps at CFL = 1, as predicted by the

stability condition (2 53).

For second-order nonlinearity the stability limit is slightly more difficult to determine
because it requires knowledge of the maximum electric field. En,.. occurring during the
simulation. This maximum field value can be estimated by performing a linear simulation over a
few time periods. and recording the maximum field that occurs in the region where the
nonlinearity would be present. The value of Enr« determined in this way was 0.05V/um. which
gives a minimum equivalent permittivity, ng —2)((2)Emax . of 0.9 in the nonlinear region. The
maximum stable time step. for Az = Ax = 0.025um, given by condition (2.56) is 0.055940fs.
which corresponds to a CFL coefficient of 0.94868. The simulation was then performed at this
value of Az up to 100.000 time steps. and the longitudinal and transverse field profiles through
the centre of the dielectric were recorded and shown by the solid lines in Figures 3.3(a) and
3.3(b). respectively. No signs of instability are observed in both plots. indicating that the
numerical solution was stable. By contrast. when the simulation was run at the maximum CFL

time step (Ar)cr.. Which corresponds to CFL = 1.0, the solution became unstable after only 460
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Figure 3.2. Simulation results with third-order nonlinearity after 10,000 time steps: (a) longitudinal
electric field profile along z-axis: (b) transverse electric field profile through the centre of the nonlinear

dielectric.
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Figure 3.3. Simulation results with second-order nonlinearity after 100.000 time steps: (a) longitudinal
electric field profile along :-axis; (b) transverse electric field profile through the centre of the nonlinear
dielectric. When CFL = I, instability (dashed lines) resulted after 460 time steps.
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time steps, as indicated by the dashed lines in the same figures. Note that the instability
originates inside the nonlinear region in the form of oscillations whose amplitudes grow
unboundedly with time. The appearance of these oscillations signifies that the monotonicity
condition required for stability in the analysis in Appendix A is no longer satisfied. thus leading

to the observed instability.

The onset of the instability was further investigated by numerically determining the time
step at which the nonlinear FDTD method became unstable. In Figure 3.4 the number of time
steps until the first signs of instability were observed is plotted as a function of the CFL
coefficient. At CFL = 1. the simulation became unstable after only a few hundred time steps. As
the CFL coefficient was reduced. it took increasingly longer before instability set in until at CFL
= 0.982. an abrupt change occurred in the plot indicating that the method became stable. Note
that our stability condition (2.56) predicts a slightly more conservative CFL figure of 0.95 as the

point at which the simulation becomes stable.
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Figure 3.4. Number of time steps to instability as a function of the CFL coefficient for the nonlinear
explicit FDTD method with second-order nonlinearity.
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The numerical results presented in this section provide experimental validation to the
analytical formula (2.49) for the stability condition of the nonlinear explicit FDTD method. This
stability condition gives the maximum time step Ar that can be used in the simulation without
causing unbounded growth in the numerical solution. This result represents a valuable
contribution to the nonlinear FDTD technique since up to date. stability could only be verified by
actually running the simulation at various reduced time steps until the numerical solution is

observed to remain bounded up to the simulation time of interest.

As mentioned in Chapter 2 it is not possible to derive a closed-form expression for the
stability condition of the weighted-average scheme. However. simulations running with Kerr-
type nonlinearity were observed to be stable up to tens of thousands of time steps if the linear
CFL condition is satisfied. In the next section we compare the numerical solutions of the
weighted-average scheme and the nonlinear explicit scheme by studying propagation in a
nonlinear dielectric slab waveguide. The slab waveguide also serves to provide physical
validation to the hybrid FDTD method since approximate analytical solution is known for this

simple structure.

3.1.2 The nonlinear dielectric slab waveguide

The nonlinear dielectric slab waveguide is the simplest nonlinear optical device with
which we can study the effects of material nonlinearity on wave propagation. Figure 3.5 shows
the structure of a two-dimensional slab waveguide with a core section having instantaneous Kerr-
type nonlinearity. The linear waveguide adjacent to the left boundary with index contrast of
1.5:1.0 serves as the launcher in which the TE, mode is excited at the source plane. The linear
part of the refractive index of the nonlinear waveguide, n-. is also 1.5 and the strength of the
nonlinearity is determined by the susceptibility x'*’. The entire structure is discretized using grid
sizes Az = 0.0lum and Ax = 0.02um. The maximum stable time step is Ar = 0.02983fs.
corresponding to a CFL coefficient of 0.9998. The solution of the field in the nonlinear
waveguide was obtained using three FDTD schemes: the nonlinear explicit scheme. the
weighted-average scheme. and the non-iterative scheme. The last scheme uses the same explicit

discretization in Eq.(2.48) but computes the permittivity values at time step n+1 using the field
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Figure 3.5. Two-dimensional nonlinear dielectric slab waveguide. The third-order susceptibility x* is

10" m*V? for weak nonlinearity. and 10"°m*V?* for moderate nonlinearity.

n+l _

values at time step n. i.e.. €,.|. =€ ,.|E" ). This approximation leads to a discrete equation that
p rli r\E; pp q

can be explicitly solved for the unknown field E™*' without requiring any nonlinear iteration. We
investigated propagation in the nonlinear waveguide under two modes of excitation: continuous

wave and Gaussian pulse.
(a) Continuous-wave excitation

The input electric field for continuous-wave excitation is given by
Einc (. 29.1) = Eg(x)sin(wr —Bzo). (3.2)

where z = 7 is the location of the source plane, Eq(x) is the modal field profile of the TE, mode.
and B is the propagation constant. In the simulation the wavelength of the input signal was
1.0um and the input power was 1W/m. corresponding to a wave amplitude E, of 0.0311V/um.

The waveguide was simulated for the cases of weak and moderate nonlinearities. For the weakly
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nonlinear waveguide. the third-order susceptibility x>’ was set to 10"'m*/V>, which results in a
maximum change of 0.12% in the refractive index of the core due to the applied electric field.
Figure 3.6 shows the field profiles along the core center (z-axis) at the time instant T = 59.96fs.
as obtained by the nonlinear explicit scheme. the weighted-average scheme and the non-iterative
scheme. It is seen that the three results are stable and almost identical. although closer
examination reveals that the weighted-average scheme yielded a slightly larger numerical phase
dispersion (phase lag) than the explicit schemes. as was theoretically predicted in Section 2.5.3.
For the case of moderate nonlinearity. ¥ was set to 10"°m*/V=. corresponding to a maximum
change of 1.2% in the refractive index of the core. The field profiles along the core centre at T =
59.96fs obtained by the three schemes are again compared and shown in Figure 3.7. The non-
iterative scheme is seen to produce unstable solution which grew unboundedly with time.
whereas the nonlinear explicit and weighted-average solutions remained bounded and were

almost identical. with the wave amplitude slightly modulated due to the nonlinear effect of self-
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Figure 3.6. Electric field profile along the core centre (z-axis) of the weakly nonlinear slab waveguide
under continuous-wave excitation (at T = 59.96fs). Results were obtained using the hybrid FDTD method
with the nonlinear explicit scheme. the weighted-average scheme. and the non-iterative scheme.
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phase modulation. It is thus concluded that the non-iterative method, while much faster than the
other two schemes, is not suitable for simulating propagation in materials with moderate to

strong nonlinearities.

The stability of both the nonlinear explicit and weighted-average schemes demonstrated
above is achieved at the expense of greater computaticn effort. Since these nonlinear methods
require a Newton-Raphson iteration loop at each time step to solve a nonlinear matrix equation.
the overall computation speed is slower than that of the non-iterative method. Therefore the
convergence rate of the nonlinear matrix solver has a major impact on the overall computation
speed of the hybrid FDTD scheme. To give an indication of the extra computation requirement
due to the nonlinear solver. we show in Table 3.1 the /;-norm of the residue vector at several
typical iteration steps for the weighted-average method. It is seen that for the nonlinear slab

waveguide. with a convergence tolerance of 10'° on the residue norm. convergence was obtained
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Figure 3.7. Electric field profile along the core centre of the moderately nonlinear slab waveguide under
continuous-wave excitation (at T = 59.96fs). Results were obtained using the hybrid FDTD method with
the nonlinear explicit scheme. the weighted-average scheme. and the non-iterative scheme.
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Time NR iteration O NR iteration | NR iteration 2 NR iteration 3 NR iteration 4
T (fs) Initial residue Final residue
59.7 1.915x10* 8.646x10" 3.627x10° 9.350x10”° 1.119x10"!
59.8 1.918x10* 8.554x10" 3.619x107 9.287x10° 1.11ox10™"
59.9 1.919x10* 8.537x10' 3.607x10°? 9.211x10" Lit7x10™"
60.0 1.926x10* 8.605x10' 3.589x10° 9.132x10”° 1.106x10™"!

Table 3.1. The f;-norm of the residue vector in the Newton-Raphson (NR) iteration of the weighted-
average FDTD method. The convergence tolerance was set at 107'°.

just after about four iterations. In practice, the tolerance is usually set at 10, which results in
even faster convergence. Thus the extra computation requirement for the Newton-Raphson
iteration loop is tolerably small. As an example, the 3um X 7um slab waveguide structure in
Figure 3.5 required about 44 minutes of CPU time on the Sun Ultra 10 Workstation when
simulated using the weighted-average scheme. and 11 minutes when the nonlinear explicit
scheme was used. The nonlinear explicit scheme is superior to the weighted-average scheme in
terms of computation speed because the nonlinear matrix resulted at each time step has a simple

diagonal structure which can be solved with minimum effort.
(b) Gaussian pulse excitation

The self-phase modulation (SPM) effect mentioned in the previous section can be more
clearly observed with Gaussian pulse-modulated excitation. The input field in this case is

described by the equation

(3.3)

,
t—To Y | .
Eine(x.29.1) = Eg(x)exp —( W 0 ) sin(wr —Bzg ).

where T, defines the pulse center and 2W is the pulse width at l/e amplitude. In the simulation

the temporal pulse width was set to about 4T, where T,, is the optical period of the carrier
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signal. Figure 3.8 shows the field profile along the waveguide center at T = 74.6fs for the
moderately nonlinear waveguide (x'¥ = 2x10'°m*/V?) as obtained by the weighted-average
scheme. The self-phase modulation effect is evident. manifesting itself in the rarefaction of the
carrier signal at the front of the pulse and compression at the end. a phenomenon known as
frequency chirping. In addition. the back (left) side of the pulse becomes steepened as it
propagates along the waveguide. This nonlinear phenomenon can be understood in the context
of the dependence of the phase velocity on the field intensity. which causes the peak of the pulse
to see a larger refractive index and thus travel more slowly than the front and rear ends. The
result is that the spatial pulse shape becomes increasingly skewed to the left as it propagates
along the waveguide. as seen in the figure. The frequency spectra of the pulse recorded at - =
lum and z = 8um are shown in Figure 3.9, where the effect of spectrum broadening

accompanying self-phase modulation can be seen.
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Figure 3.8. Electric field profile along the core centre (z-axis) of the moderately nonlinear slab waveguide
under Gaussian pulse-modulated excitation (at 7 = 74.6fs). The result was obtained using the hybrid FDTD
method with weighted-average nonlinear scheme.
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Figure 3.9. Frequency spectra of the Gaussian pulse at z = 1.0um and = = 8.0um of the moderately
nonlinear slab waveguide. Spectral broadening due to self-phase modulation is observed after the pulse has
travelled a distance of 7.0um.

For pulses whose temporal width W is greater than 10fs. approximate analytical solution
of the nonlinear wave equation can be obtained if second- and higher-order effects of waveguide
dispersion are neglected [61]. Since the period of the optical carrier frequency. T,,. is in the
order of 1fs. the assumption W > 10fs allows us to make use of the slow envelope approximation

and express the electric field as

E,(x.z1)= Re{EO F(.r)u(:.r)ef(‘”"ﬁol)}. (3.4)

where F(x) is the transverse modal profile, U(z.r) is the normalized pulse envelope. and B, is the
propagation constant of the linear waveguide. In the absence of second- and higher-order
waveguide dispersion effects (i.e., B. = B3 = 0). it can be shown that the evolution of U(z.7) in a

Kerr medium is governed by the equation [61]

a—U+si(|U|2U)=-jIU|2U. (3.5)
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in which s is a parameter defined as

_ Topt _ 22 (3.6)
nW/\/z oW’

N

and t and Z are normalized time and length scales given by

I—:/vg
T=—"—, 3.7
w/\2
-1
daf
o=lBy = 2] (3.8)
Ve /1 (([m]
- ()2
7= -9x"E (3.9)
LNL 2'10(‘Aeﬂ'
”F(.t]zdx
/\eﬂ' =::°——’—-—. (3.[0)
”F(x]"dr

In the above. v, is known as the group velocity and A.; is the effective core area of the
waveguide. The term involving s in Eq.(3.5) is responsible for self-steepening effects. while the
term on the right hand side accounts for self-phase modulation. Equation (3.5) can be solved

analytically if we let

U(z.t)= J1(z. 1)e0=T), (3.11)

where /(z.1) is the normalized intensity profile. For the specific case of a Gaussian pulse input.

-

1(0.t)=e"" . the solution for / = U* can be implicitly expressed as

1(Z.7)= e~ (3512) (3.12)

Given a propagated distance Z, the value of / at each time T can be obtained from Eq.(3.12) by an
iterative method. In Figure 3.10 we show the analytical result for a pulse envelope with initial

width W = 29fs and amplitude E; = 0.0311V/um. after having travelled a distance of 7um in the
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Figure 3.10. Normalized amplitude U(T) of a Gaussian pulse after having travelled 7um in a moderately
nonlinear dielectric waveguide. as obtained by analytical solution and FDTD simulation. The pulse has
initial width W = 29fs and amplitude £, = 0.0311{V/um.

moderately nonlinear waveguide. The steepening of the pulse’s falling edge due to nonlinearity
can be seen. Also shown in the plot is the instantaneous field of a carner signal modulated by
the same pulse as obtained by the hybrid FDTD method. It is seen that the envelope profile of
the numerical result agrees well with the analytical solution. This agreement. however. was
observed to deteriorate as the pulse width was decreased. due to the fact that second- and higher-
order dispersive effects became important and could no longer be neglected in the analytical

solution.

We have in this section provided numerical verifications to the hybrid implicit-explicit
FDTD method for simulating propagation in nonlinear optical media. The results showed that
for most nonlinear optical materials. the hybrid FDTD method with the nonlinear explicit scheme
produces accurate and stable solutions. and is considerably faster than the weighted-average
scheme. However. it was observed that the nonlinear explicit solution tends to suffer from

oscillations in cases where the nonlinearity is strong or the applied power is high [67]. In these
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cases the weighted-average FDTD scheme provides more accurate solutions at the expense of

greater computational effort.

The remainder of this chapter will be devoted to studying propagation characteristics in
more complicated nonlinear structures that have potential applications in optical communication
systems. As mentioned previously. the two structures we are interested in are the nonlinear
periodic waveguide and the nonlinear microring resonator. We will assume that the materials are
moderately nonlinear so that the simulations can be performed using the nonlinear explicit FDTD

method.

3.2 Nonlinear Periodic Waveguides

Periodicity provides a wavelength selection mechanism in optical devices. In periodic
waveguides. the structural or index grating serves to assist the coupling between the forward and

backward modes whose propagation constant f satisfies the phase-matching condition.

,
2B - 'j’\"‘:o, (m=1.2.3. ). (3.15)

where A is the grating period. The result is that reflection is enhanced at wavelengths that

approximately satisfy the condition
A=mrJd2 (3.14)

and suppressed at all other wavelengths. thus producing a bandstop filter response. In Eq.(3.14)
the integer m is referred to as the grating order. An important feature of gratings of order 2 and
higher is that they induce radiation loss, making them more useful as beam-steering elements.
For our study of grating filters. we are interested only in first-order gratings which do not suffer
from radiative loss. By introducing nonlinearity into the index gratings. we can produce filters
whose frequency responses depend on the power of the input signal. We consider two types of

periodic waveguides: distributed feedback resonators and distributed Bragg resonators.
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3.2.1 Distributed feedback resonators

The simplest periodic waveguide structure is the distributed feedback resonator (DFR),
shown in Figure 3.11. The structure consists of a volume index grating which produces a
periodic longitudinal index profile. For first-order grating. the period A is chosen to be equal to
AJ2. The index discontinuities in each period cause reflections that reinforce each other to

produce a high reflection coefficient for input wavelengths near A..

Distributed feedback structures with linear index gratings have been extensively studied
using the Coupled-Mode Theory (e.g.. [64.65]) as well as numerical methods [2]. The reflection
spectrum has the shape of the sinc function centered around A,. which resembles the response of
a bandstop filter. By introducing nonlinearity into the gratings. we can produce a reflection
characteristic that is dependent on the power of the input pulse. Specifically. since self-focusing
nonlinearities such as Kerr effect cause the guided wavelength in the medium to decrease with
increasing power. the phase-matching condition (3.14) will be satisfied for frequencies
corresponding to longer free-space wavelengths. Consequently. the reflection spectrum will be

shifted toward longer wavelengths as the input power is increased.
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Figure 3.11. Nonlinear distributed feedback resonator with volume index grating. For first-order grating.
A = 2J2. The linear part of the refractive index of the nonlinear regions is n; = 2.30. and x> = 10"°m¥V>.
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To demonstrate this nonlinear shift in the resonance spectrum. we simulated a DFR
structure with instantaneous Kerr-type nonlinear grating. As shown in Figure 3.11. the grating

consists of alternating linear regions of index n: = 2.22 and nonlinear regions having relative
ce . . _ .2 3) 1t 2 . -1 3 _ 10710 22
permittivity given by €, =n3 +x"”|[E|”. with n; =2.30 and x = 10"'°m™V?. At the free-space

wavelength Ag = 1.3um. the non-corrugated waveguide with index contrast 2.22:1.50 supports a
TE; mode with propagation constant f§ = 10.457rad/um. which corresponds to a guided
wavelength A, of 0.60um. We thus chose the grating period A to be A/2 = 0.30um. and assumed
N = 25 for the number of periods in the grating. The structure was then excited by a Gaussian

pulse-modulated signal with centre wavelength Ag = 1.3um.

Figure 3.12 shows the incident pulse carrying 1W/m of power and the reflected pulse in
the time domain. as obtained by the hybrid FDTD method with the nonlinear explicit scheme.
Similar to the linear case. the amplitude of the reflected pulse was observed to increase with

increasing index discontinuities in the grating. and the reflected pulse duration was longer for
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Figure 3.12. Incident and reflected pulses recorded at the core centre of the nonlinear DFR. The power of
the input Gaussian pulse is | W/m and the corresponding pulse amplitude Eq is 0.023V/um.
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larger N. The reflection spectra for three different incident powers. IW/m. 10W/m and 20W/m.
are plotted in Figure 3.13. where it can be seen that the resonance spectrum experiences a larger
shift toward longer wavelengths as the input power is increased. For instance. at 20W/m the
shift is almost 20nm. Also. the reflectivity is higher for spectra at higher incident powers
because the nonlinear Kerr law causes the index discontinuities in the grating to increase with

power.

The reflection spectrum of a DFR can be improved for practical use as a notch filter by
increasing the number of periods per grating. However. bandstop filters are not as useful as
bandpass filters in wavelength division multiplexing (WDM) systems. In the next section we
look at another periodic wave-guiding structure which can be used as a channel filter: the

distributed Bragg resonator.
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Figure 3.13. Reflection spectra of the nonlinear DFR at | W/m. 10W/m and 20W/m incident powers. Each
spectrum is normalized with respect to the spectrum of the input Gaussian pulse.
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3.2.2 Distributed Bragg resonators

Distributed Bragg resonators (DBR) consist of two distributed feedback structures
separated by a phase-shift region. as shown in Figure 3.14. The length [ of the phase-shift region

is chosen to satisfy Bragg's condition,

[=(2n+1)xg
—

(n=01.2...). (3.19)

so that the phase-shift region can be viewed as providing impedance matching at the guided
wavelength A,. As a result. wavelengths that satisfy Bragg's condition are transmitted with little
reflection. The reflection spectrum of a DBR thus has a null at the centre wavelength A, and
large reflection lobes on both sides. making the device suitable for use as a bandpass filter in
optical communication systems. By introducing nonlinearity into the gratings. the transmission
characleristic of the DBR filter can be made to depend on the power of the input signal in the
same way as with the nonlinear DFR structure. We will first investigate the frequency response
of a simple quarter-wave-shifted Bragg resonator. then modify the structure to obtain more

practical filter response shapes.
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Figure 3.14. Nonlinear distributed Bragg resonator as a bandpass filter. For first-order grating, A = A/2.
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The linear part of the refractive index of the nonlinear regions is n; = 2.30. and x> = 10"°m*/V>.
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(a) Quarter-wave-shifted Bragg resonator

In a quarter-wave-shifted DBR. the length ! of the phase-shift region satisfies Bragg's
condition (3.15) with n = 0. so that / = A /4. At the free-space wavelength A = 1.3um. the guided
wavelength of the TEo mode is 0.60um. so for first-order gratings (m = 1). we have A = AJ2 =
0.30pum and / = 0.15um. The number of periods per grating was set to N; = N> = 25. Both the
grating and phase-shift region were given Kerr-type nonlinearity with x*’ = 10'°m*/V:. A IW/m
Gaussian pulse was applied to the structure and the reflected pulse was recorded. The time-
domain signal is shown in Figure 3.15, in which it is seen that the reflected signal actually
consists of two large consecutive puises produced by reflections from the two gratings. Figure
3.16 shows the reflected spectra normalized by the incident spectrum at three different input
power levels. IW/m. 10W/m and 20W/m. Two effects due to the nonlinear grating are observed.
Firstly, as the incident power is increased. Kerr nonlinearity causes the periodic steps in the
refractive index to become effectively higher, resulting in stronger reflections for wavelengths in
the stopbands. At 10W/m and 20W/m incident powers. the reflectivities of the two side lobes are
actually greater than unity because spectrum broadening associated with SPM causes the signal
components at these wavelengths to gain in magnitude over the incident spectrum. The second
observed effect is that Kerr-type nonlinearity causes the reflection spectra to shift towards longer
wavelengths. in a similar manner to that observed in the nonlinear DFR structure. Figure 3.16
shows that the spectrum at 20W/m incident power is shifted by nearly 10nm toward longer

wavelengths compared to the spectrum at 1W/m.

Next we investigated the effect of the phase-shift region on the reflection spectrum. It is
expected that a phase-shift region composed of nonlinear material will further enhance the shift
in the reflection spectrum because the impedance of the quarter-wave section will also depend on
the power level. Moreover, the length / of the phase-shift region will also modify the reflection
spectrum via self-phase modulation. Figure 3.17 compares the reflection spectrum of a DBR
filter having a nonlinear 5A./4-shift region with one in which the phase-shift region is linear.
The gratings in both structures were of the same nonlinear material. The power of the incident
signal was 10W/m. As expected. the DBR filter with nonlinear phase-shift region shows a
slightly larger spectral shift than the filter with linear phase-shift region. In Figure 3.18, the

reflection spectra of three DBR filters with different nonlinear phase-shift lengths, [ = A /4.
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Figure 3.15. Incident and reflected pulses recorded at the core centre of the nonlinear DBR. The power of
the input Gaussian pulse is I W/m.
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Figure 3.16. Reflection spectra of the nonlinear DBR at 1W/m. l0W/m and 20W/m incident powers. Each
spectrum is normalized with respect to the spectrum of the input Gaussian pulse.
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Figure 3.18. Reflection spectra of nonlinear DBR filters with nonlinear phase-shift lengths { = A /4. 3A/4,
and 5A/4. The gratings are nonlinear, having 25 periods to each grating. The power of the input Gaussian
pulse is I0W/m. Each spectrum is normalized with respect to the incident spectrum.
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3A/4, and 5A /4. are shown. The spectrum corresponding to / = SA/4 is observed to experience
the largest shift. However. these spectral shifts are negligibly small. indicating that the variation
in the phase-shift length [ has little effect on the reflection characteristic. The reason for this
observation is that the phase-shift lengths are too short to cause an appreciable change in the
spectrum of the pulse as it traverses the phase-shift region. From the results for the nonlinear
slab waveguide in Section 3.1.2, we saw that even for moderately strong nonlinearities. distances

over 10 wavelengths were required to produce any visible nonlinear effect.

(b) Compound phase-shifted Bragg resonator

The responses of the quarter-wave-shifted DBR filter in Figure 3.16 are not suitable for
practical use because of the shallow filter slopes and poor out-of-band rejection. By using
multiple gratings and phase-shift regions. Zengerle and Leminger demonstrated that the DBR
filter can be synthesized to have better transmission characteristics [66]. Figure 3.19 shows an
example of such a compound phase-shifted Bragg resonator with four gratings and three quarter-

wave-shifted regions. all having Kerr-type nonlinearity. The grating parameters are A = 0.30um.
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Figure 3.19. Nonlinear compound phase-shifted Bragg resonator with 4 gratings and 3 quarter-wave-
shifted regions. The number of periods per grating are N; = Ny = 15, N> = N3 = 35. The linear part of the
refractive index of the nonlinear regions is n; = 2.30. and x® = 107%m¥/ V2.
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[=0.15pm. Ny = Ny = 15. N2 = N3 = 35, n; = 2.30 and ¥’ = 10"°m% V> In Figure 3.20 we show
the time-domain incident and reflected signals at IW/m input power. The reflected signal is seen
to consist of a train of pulses due to reflections from the four gratings. Figure 3.21 compares the
transmission spectrum of the compound phase-shifted DBR filter to that of a simple DBR. The
compound DBR is seen to have a more box-like filter response. steeper slopes. better out-of-band
rejection. and wider stopbands than the simple DBR. For our design. the 3dB-bandwidth of the
filter is |7nm. with 20nm stopbands on both sides. Compound DBRs afford greater design
flexibility than simple DBR structures because their transmission characteristics can be
controlled by varying the number of phase-shift regions and the number of periods per grating.
In general. the more phase-shift regions used, the more box-like the shape of the filter response
becomes. The transmission loss and out-of-band rejection can be improved by increasing the
number of periods per grating. And finally. the relative widths of the passband and stopband can
be controlled by varying the ratio of the number of periods in the inner gratings to the number of

periods in the outer gratings (e.g.. No/N and N+/N,).
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Figure 3.20. Incident and reflected pulses recorded at the core centre of the nonlinear compound phase-
shifted DBR filter. The power of the input Gaussian pulse is 1 W/m.
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Figure 3.21. Filter responses of the compound phase-shifted DBR and the simple DBR filter. -

The reflection spectra of the nonlinear compound DBR filter at two input powers. 1W/m
and 1OW/m. are shown in Figure 3.22. Nonlinearity causes the passband of the filter with
10W/m input power to be shifted by about 8nm with respect to the passband at 1W/m. This
means that a 1W/m signal at the centre wavelength 1.327um will pass through the filter with
little loss. but a 10W/m signal at the same wavelength will experience very strong reflection.
The ability to discriminate both the wavelength and power of nonlinear DBR filters make them

potentially useful as wavelength switching elements in WDM systems or as optical limiters.

The practicality of the nonlinear DBR filter as a switching element is determined by its
sensitivity with respect to the applied power. In Figure 3.23 we plotted the percentage change in
the resonance wavelength of a nonlinear grating with 25 periods as a function of the input power.
The plot shows that the resonance wavelength increases linearly with respect to the power. The
rate of change is 0.072% per W/m. which translates to 0.95nm per W/m of the input signal

power. Considering that each channel in current commercial WDM systems occupies about
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Figure 3.22. Reflection spectra of the nonlinear compound phase-shifted DBR filter at | W/m and 10W/m
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Figure 3.23. Percentage change of the resonance wavelength of a nonlinear DFR filter as a function of the
input power. The number of periods per grating is 25. The solid line represents the best fit. The power
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Inm. the power required to switch a channel is thus less than 2W/m. Note from Figure 3.22.
however. that the filter shape becomes distorted at high powers so that there is a practical limit

on the maximum power level that can be applied to the nonlinear DBR.

3.3 Nonlinear Microring Resonators

Optical ring resonators are commonly used for wavelength filtering. switching.
muitiplexing and demultiplexing [69-71]. Recent fabrication advances have made it possible to
realize high index contrast microrings with strong mode confinement and negligible bending
loss. leading to resonators having theoretical quality factors Q in the order of 10* [70]). Since the
ratio of the input field amplitude to the field amplitude inside the ring is inversely proportional to
the coupling coefficient between the input/output (I/O) waveguides and the ring. the field stored
in the ring of a high-Q resonator can be one to two orders of magnitude higher than the input
field. It is obvious that with such an intense field circulating in the ring. a slight nonlinearity in
the material can induce large nonlinear effects. making the resonator ideal for nonlinear mixing
processes. In particular, we are interested ir the degenerate case of four-wave mixing in which a
material having third-order optical nonlinearity illuminated with two waves at frequencies @, and
o radiates a third wave at frequency 2w; — .. In this section. we present the design and FDTD

analysis of a nonlinear microring resonator for use as a frequency mixing device.

Consider the standard single-ring resonator evanescently coupled to two straight
waveguides serving as input and output buses. as shown in Figure 3.24. The core index of the
straight waveguides is n,. which is assumed to be linear. while the ring waveguide has third-order

nonlinearity characterized by susceptibility coefficient x**’, so that its relative permittivity is
. . 2 2 .
given by the usual expression €, =n{ +x(3)|E| . A pump beam at frequency ®, and an input

signal at frequency w, are coupled into the ring via port P; of the input waveguide. In order for
the energies of the pump beam and input signal to be amplified and sustained in the ring. ®, and

o). must be resonant frequencies of the ring:

w; = ny

neﬂ—R
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Figure 3.24. Nonlinear microring resonator. The input and output straight waveguides are linear. while the
ring waveguide is made of a matenal with third-order nonlinearity.

and Wy =i .
neﬁR

where m, and m; are irteger resonance mode numbers. and n; and R are the effective core index
and radius. respectively. of the ring waveguide. Third-order mixing generates a new wave at s

= 20y — w.. which is also at resonance since

c

3.16
R (3.16)

Wy = 20.)[ —Wy = (2"1] —mz)
In the above we have assumed that the frequencies w;. - and w; are sufficiently close to each

other so that the effect of waveguide dispersion is small.

The resonant frequencies and the spacing between them (usually referred to as the free-
spectral range) are controlled by choosing a suitable radius. width. and index contrast for the
ring. However. since the index contrast is usually fixed by the process technology. and the ring
width d should be chosen small in order to obtain a high confinement factor in the ring. the only

flexible parameter is the ring radius. In our design. with ng = 1.00. n; = 3.00. and d = 0.2um. we
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set Ry = 0.9um and R> = 1l.1lum. which results in the resonance spectrum shown in Figure 3.25.
In using the resonator as a mixer. the pump beam was fixed at resonance mode m; = 12 (A, =
1.36um). and the input signal was set at another resonance. for example, at mode m. = 14 (A» =
1.20um). The result of third-order mixing will then occur at A; = 1.58um. which corresponds to

the resonance mode m; = 10.

In order to achieve high conversion efficiency in the mixer. we require the microring
resonator to have a high quality factor. since the conversion efficiency is proportional to the
pump power in the active region [58]. which in our case is the ring. It can be shown that the
quality factor Q of a ring resonator depends on the effective radius R and the coupling coefficient

K between the ring and the /O waveguides via [70]
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Figure 3.25. Resonance spectrum of the linear microring with radii R, = 0.9um. R, = [.lum. Other
parameters are ng = 1.00, ny = 3.00, and d = g = 0.2um.
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Thus with R fixed by the choice of the resonant frequencies. we can maximize Q by minimizing
K. The coupling coefficient, which depends on the gap g and the frequency. is usually set to
around 5% for high quality-factor rings. Figure 3.26 shows the variation of x with wavelength
for a fixed coupling gap g = 0.2um. The plot was obtained by simulating the coupling of a

Gaussian pulse between a straight waveguide and a semi-circular waveguide. as depicted in the
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Figure 3.26. Coupling coefficient between a straight waveguide and a semi-circular waveguide. as shown
in the diagram. The parameters of the structure are: 19 = 1.00. n, = 3.00, d = g = 0.2um. R, = 0.9um and R,
=1.lum.
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figure. Since the energy coupled into the curved waveguide exits directly at port P,. the coupling
coefficient is simply the square of the ratio of the output signal amplitude at P; to the input signal
amplitude at P,. The plot in Figure 3.26 shows that the coupling coefficient is around 1.7% at
the 1.20um resonance and 4.2% at the 1.36um resonance. Both of these values are suitably low
for achieving high quality factors at these wavelengths. Simulations indicated that the loaded Q

of the resonator was on the order of 1000.

Third-order nonlinearity causes the effective index n.; of a nonlinear waveguide to
increase with increasing input power. In fact, using first-order perturbation analysis. it can be
shown that n., varies approximately as the square of the signal amplitude. £, [61]:

5+ (3)
X g2 (3.18)

n =N, 0 +
eff e. ng Ae_ﬂ'
where 1o is the effective index of the linear waveguide. and A4 is the effective core area given

by Eq.(3.10). Consequently. the resonance wavelengths A, of a nonlinear ring will also increase

2 . . .
as Eg since they are directly proportional to ng

2rin,.y R
eyt (3.19)

Am =
m

This power dependence of A, is simply another manifestation of the self-phase modulation effect
and is numerically illustrated in Figure 3.27. The plot shows the resonance spectra of a nonlinear
microring at two different applied powers. IW/m and 50W/m. The physical parameters of the
resonator are np = 1.0, n; = 3.0, ¥ = 10°m/V>, d = 0.2um. g = 0.2um, R, = 0.9um and R: =
I.Ipm. It is seen that the resonance peaks at the higher applied power are indeed slightly shifted
towards longer wavelengths. The spectral shift observed in the nonlinear ring is completely
analogous to the shift observed in the frequency response of the nonlinear DFR and DBR filters
in Section 3.2. The effect. however, is especially amplified in a microring mixer. where the
pump beam. whose amplitude is usually much larger than the signal beams. provides a constant
bias intensity level in the ring which can cause the effective indexes seen by the signals to be
very high. Figure 3.28 shows the shifts in the resonance wavelengths of the modes m = 14 and m

= 15 as a function of the power of the pump beam, which was fixed at resonance mode m = 12 (A



CHAPTER 3: OPTICAL DEVICE APPLICATIONS

: 1 1 T .l 1 1 1
: — P;, =1W/m
0.8 L ! ---- P,, =50W/m
X s
2 06} '
2 :
= lf m=18 m =14 m =13
E 18
2 18 ]
s 0.4 :: ;
7 L N
O_F : A
; A
b ¢ A \ 4
vl 1 2

0 L
1.1 .12 1.14 1.16  1.18 1.2 122 124 1.26

wavelength, A (um)

78

Figure 3.27. Resonance spectra of the nonlinear microring for input pulses with two different peak powers,
IW/m and 50W'm. The nonlinear coefficient ¥'* is 10'°m?¥V>. The spectra are normalized with respect to

the incident spectra.
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Figure 3.28. Variation of the resonance wavelength with respect to the pump beam power for resonance

modes m = 14 and m = 15. The pump beam is fixed at resonance mode m = 12.
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= 1.368um). It is seen that for both modes. the resonance wavelength increases linearly with the
pump power, i.e.. quadratically with the field amplitude as expected. and that the percentage

change is almost identical for the two different resonance modes.

In designing the nonlinear microring mixer. the detuning in the resonance due to self-
phase modulation must be taken into account to ensure that the pump beam and signal beam are
sustained in the ring by resonance. Following the result in Figure 3.28, we fixed the pump beam
at wavelength A, = 1.368um and field amplitude E; = 0.04V/um (P, = IW/m). The input signal
was chosen at A; = 1.210um. with amplitude equal to one-tenth that of the pump beam, or
0.004V/um. Figure 3.29 shows the input amplitude spectrum (at port P,). consisting of two tones
at A; and A:. normalized with respect to the pump amplitude. Simulation of the resonator was
then performed until steady state was reached. Figure 3.30 shows the power spectrum of the
signal recorded at point X inside the ring (refer to Figure 3.24). normalized by the input pump

power. Note that the pump power inside the nonlinear ring is greater than the input pump power

l 1] 1 T 1 ]
0.9 |- pump beam 7
'qg’ 08 F Ay=1368um _
S 07f -
£
£ 0.6 .
= -
S 05 -
[¢3)
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=]
8 03
= a input signal ]
§ 02 I Ap=1.210um .
c
0.1 ~
0 JJL . g 1
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Figure 3.29. Amplitude spectrum at the input port. P;. of the microring mixer. consisting of the pump
beam A; and the input wave A,. The spectrum is normalized with respect to the amplitude of the pump
beam.
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because resonance causes the energy to be built up in the ring. Also observed in the plot is the
appearance of the idler wave at A; = 1.573um which is generated by the third-order mixing
process. Figure 3.31 gives the power spectrum of the signal at the output port P;, aiso
normalized by the input pump power. All three tones at A, A, and A; are observed at the output.
Note that the signal A; generated in the ring is actually coupled partly out into the output bus and
partly back into the input waveguide to exit at port P,. The conversion efficiency of the unloaded
mixer. which is the ratio of the power inside the ring at A; to the input power at A,. was
calculated to be 40%. Compared to an efficiency of less than 10% obtained for a mixer using a
nonlinear straight waveguide having the same length as the circumference of the microring. the

superior performance of the ring topology is evident.

The biggest disadvantage of the nonlinear microring mixer is the detuning effect due to
self-phase modulation. Since the most difficult aspect of fabricating a microring is the precise
control of the gaps between the ring and the input and output waveguides. we studied the effect
of the gap parameter g on the theoretical conversion efficiency n of the mixer. In Figure 3.32 the
conversion efficiency is plotted for several values of g. The plot shows that n peaks at g =
0.2um. which is the value for which the microring mixer was originally designed and optimized.
As g is increased beyond 0.2um. the conversion efficiency exhibits a drastic drop well below that
of the straight-waveguide mixer The reason is that as g is increased. the stored power in the ring
also increases. which causes both the pump beam and input signal to be detuned out of
resonance. Consequently the efficiency of the mixer is severely degraded. The high sensitivity
of the device performance on the gap size as illustrated in Figure 3.32 is likely to present a great
challenge in the current fabrication technology in realizing microring mixers with high

conversion efficiency.

3.4 Summary

In this chapter we demonstrated the validity and versatility of the hybrid implicit-explicit
FDTD scheme by presenting simulation results for several nonlinear structures of practical

interest. The stability of the nonlinear FDTD schemes was confirmed by numerical experiments



CHAPTER 3: OPTICAL DEVICE APPLICATIONS 82

lm T i T 1 t 1

N (%)
)
3

straight-waveguide
mixer

0.1 |-

conversion efficiency,

0.01

0.15 0.2 0.25 0.3
gap, g (um)

Figure 3.32. Effect of the gap size g on the unloaded conversion efficiency of the nonlinear microring
mixer. Also shown for comparison is the conversion efficiency (9.4%) achievable for a muxer using a
nonlinear straight waveguide having the same length as the circumference of the microring.

with open nonlinear dielectric test structure and nonlinear dielectric waveguide. The results also
showed that the explicit non-iterative FDTD scheme is not suitable for simulating devices with

strong nonlinearity because of instability problems.

Many important phenomena associated with nonlinear propagation were illustrated in a
number of practical applications. In particular, the well-known self-phase modulation and self-
steepening effects associated with optical Kerr nonlinearity were demonstrated in nonlinear slab
waveguides. In nonlinear periodic dielectric waveguides. the SPM effect results in the power
dependence of the phase-matching condition. Numerical analyses of nonlinear DFR and DBR
structures showed that the transmission bands of the filters are shifted toward longer wavelengths
as the input power is increased. so that these devices may be used to discriminate both signal

wavelengths and powers.
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Finally the design and FDTD analysis of a nonlinear microring resonator for third-order
frequency mixing was presented. Along with the design concerns for high quality factor and
wide free-spectral range of a linear ring resonator. the nonlinear spectral shifts in the resonance
peaks also need to be taken into account. The nonlinear microring mixer has the advantage that
due to resonance. a high-intensity pump beam can be achieved in the ring without requiring a
strong input beam. In addition. very narrow output wavelength channels can be realized by

increasing the quality factor of the ring resonator.

Our work on nonlinear optical device applications of the hybrid implicit-explicit FDTD
scheme concludes with this chapter. In the remainder of the thesis. we explore a different type of
material nonlinearity in the microwave and millimeter-wave regimes. the type that is found in

high-temperature superconductors.
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Chapter 4

FDTD Analysis of HTS Media

Since the discovery of high-temperature superconductors (HTS) in 1986. there has been
increasing interest in using these novel materials in microwave and millimeter-wave applications.
The advantages of HTS materials over normal conductors are manifold. Superconducting
striplines have surface resistance several orders below that of copper. and can carry large current
densities with very little heat dissipation. The frequency dispersion in HTS is also negligibly
small compared to that of normal metals. Moreover. the drastic reduction in thermal noise at the
superconducting temperatures makes the materials also ideal for low-noise applications. With
these superior electrical properties. HTS materials are finding themselves in a growing number of

applications. especially in the microwave and millimeter-wave areas.

Parallel to the search for novel HTS devices is a growing need to develop accurate
numerical methods for analyzing electromagnetic propagation in HTS media. The analysis of
wave propagation in superconductors is complicated by the now established fact that these
materials are inherently nonlinear. Nonlinearity in HTS materials has been measured. studied
and modeled over a wide range of frequencies. from DC to millimeter-wave, by many researchers
(81-87.90-93]. In order to accurately simulate propagation in an HTS medium. a rigorous
numerical method must take into account the nonlinear electrodynamic effects of the material.

With the proven versatility of the FDTD method in the treatment of optical nonlinearities. it is
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the aim of this chapter to extend the time-domain method to provide a full-wave analysis of

propagation in HTS materials that will fully account for the nonlinear effects.

Several numerical techniques have been proposed for modeling nonlinearities in
superconductors. most assuming a power series dependence of the surface impedance on the field
[83.86.87]. More rigorous techniques involve solution of the Ginzburg-Landau (GL) equations
for the nonlinear response of the material to an applied magnetic field [95.98]. Most notably
among these is Megahed and El-Ghazaly's approach of incorporating the GL equations into the
FDTD solution of Maxwell’s equations [98]. While the GL theory provides a rigorous treatment
of the nonlinearity in superconductors, due to the complexity of the equations involved. the
approach has the disadvantage of requiring substantial computational effort. especially when
incorporated into an FDTD analysis. To overcome this limitation. we propose a new FDTD
formulation which is based on the simpler London equations and the nonlinear Meissner effect.
The approach directly employs the measured field dependency of the penetration depth of the
HTS. and yields considerable saving in computation time over the iraditional GL approach. In
the course of developing the method, the relationship between the GL and London equations of
superconductivity will also be discussed. In order to provide the proper theoretical background
to the work. we begin below by first giving an overview of the origin and existing theories of the

nonlinearity in HTS materials.

4.1 Nonlinearity in High-Temperature Superconductors

High-temperature superconducting materials are composed of conglomerates of oxides
such as YBaCu;O, (YBCO). Bi:Sr.CaCu-O, (BSCCO). and Tl:Ba,CaCu.O, (TBCCO). In 1956
Cooper showed that. assisted by a certain mediating action of the lattice vibrations in a solid, two
electrons can become bound to each other to form a pair. now known as a Cooper pair [78]. This
remarkable finding later formed the foundation of the Bardeen-Cooper-Shrieffer (BCS)
microscopic theory of superconductivity. which states that superconductivity results from the
correlated electron-phonon interactions of Cooper pairs. These electron pairs exist in the
superconducting state, which forms when the temperature. the magnetic field. and the current
density in the material fall below their respective critical values of T.. H,. and J.. At a constant

temperature. the presence of a strong current or equivalently. a strong magnetic field. causes
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these pairs to dissociate. giving rise to a dependence of the superconducting electron population
density on the applied current density. This current dependency is the origin of the so-called
intrinsic nonlinearity in all superconductors. Other sources of nonlinearity may also be present.
For example. because HTS materials do not have regular lattice structures but are composed of
clusters of oxide grains. the boundaries between the grains act as weak superconductor-insulator-
superconductor (SIS) junctions. also known as Josephson junctions. The nonlinear
characteristics of these junctions collectively contribute to the macroscopic nonlinear
phenomenon observed in the superconductor. In addition. in Type-Il HTS materials such as
cuprate oxides. a mixed state can form in which magnetic flux can penetrate the material one flux
quantum at a time. forming flux tubes called vortices. The dynamics of these vortices. which are
governed by the Lorentz forces exerted by the self magnetic field. also contribute to the nonlinear

response of the HTS material.

Macroscopically. nonlinearity in HTS materials has been experimentally observed in the
dependence of the surface impedance of a superconducting stripline on the magnetic field. or
equivalently. on the surface current density. Figure 4.1 shows the experimental data of the
surface resistance R, of a YBCO stripline at 1.5GHz and 77K as a function of the peak RF
magnetic field. H,,. as reported by Oates er. al. [83]. The graph may be divided into three regions
of nonlinearity. In the low-field limit. H,r < H.,. the field dependence of R, is of first order. with
the nonlinearity predominantly due to the weak Josephson links in the HTS thin films. In the
intermediate-field region. H,, < H; < H.. the nonlinearity is thought to arise from the
dissociation of the Cooper pairs. The surface resistance in this region may be modeled by the

quadratic relation
Rs(m.T.H,f)=R0((n.T)+A(m.T)-HS}.. @.1)

where Ry is the zero-field surface resistance. and A(w.7) is a fitting parameter depending on the

frequency and temperature. In the high-field region. H,, > H,. the surface resistance varies as
«
H o

dynamics in the HTS material.

with & > 2. The nonlinearity in this region is thought to be determined by the vortex

Nonlinearity in superconductors can be expressed more intrinsically as the magnetic
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Figure 4.1. Empirical dependence of the surface resistance R, on the peak RF magnetic field, H,5 in a
YBCO stripline at 1.5GHz and 77K [83].

field dependence of the penetration depth. a phenomenon known as the nonlinear Meissner
effect. Analogous to the skin depth in normal metals, the penetration depth A measures the
degree of penetration of an applied magnetic field into the superconductor. Measurements of A
versus the magnetic field strength H have been reported for many high-temperature
superconducting cuprates such as YBCO, TBCCO and BSCCO [91.92.93]. One of the latest
results, shown in Figure 4.2, indicates a linear variation of A with respect to H in the DC case
[93]. Another group reported a quadratic dependence of A on H as the field is decreased below a
certain crossover value H’ [91]. From a physics point of view, the behaviour of the penetration
depth with respect to the magnetic field is important because it provides insight into the structure
of the Cooper pairing state of the superconductor. For some time there has been much debate in
the physics community as to whether HTS cuprates possess s-wave or d-wave symmetries,
referring to the form of the energy function in the momentum space. In light of new
experimental evidence, Xu, Yip and Saul recently proposed a theory based on the nonlinear

current-velocity response of the superconducting pairs, which proves that s-wave and d-wave
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Figure 4.2. Experimentally measured linear dependence of the penetration depth A on the applied DC
magnetic field for YBa,C;Og.9s [93].

superconductors can be distinguished from each other by measuring the functional dependence of
the penetration depth on the magnetic field [94]. According to the theory, superconductors with
the conventional s-wave symmetry predicted by the BCS theory exhibit a quadratic magnetic
field dependence of A,

MT.H) 1 le H T |
Ao(T)  1-¢@)H/Ho(T)P l c(T{”o(T)] ' “2)

in which A, is the zero-field penetration depth, H, is a characteristic field of the order of the

thermodynamic critical field H., and {(7) is a temperature-dependent coefficient. For

unconventional d-wave superconductors, the dependence is characteristically linear, given by

MT.H) 1 ey H |
M)  1=y[H/H(T)] 1 Vo) 4.3)
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where v is a temperature-independent anisotropy parameter which has the value of | or l/ V2

depending on the orientation of the field. However, below a crossover field H = (T/T,)H,,
thermal smearing effect causes A to vary quadratically with H. even for d-wave superconductors.
Both the linear dependency at high fields and quadratic variation at low fields of the penetration
depth have been experimentally observed for YBCO, BSCCO and TBCCO. pointing to the

suggestion that HTS cuprates possess d-wave symmetry [91.92.93].

To incorporate the nonlinear behaviour of the penetration depth discussed above into a
numerical electromagnetic analysis of HTS devices. we require a theory of superconductivity
which is accurate but mathematically tractable. Moreover. the theory should ideally be
macroscopic so that it can be easily incorporated into Maxwell's equations. Among the many
macroscopic theories that have been proposed. the most comprehensive is Ginzburg and
Landau’s theory (78]. The GL theory approaches the superconducting phenomenon from a
thermodynamical point of view. treating the normal and superconducting states as two distinct
thermodynamic phases. It postulates the existence of a complex-valued order parameter y which
depends on the position r, such that its squared absolute value gives the superconducting electron

density:
lw(n)[* = ny(r).

Using quantum mechanical analogy. the order parameter can thus be thought of as a wave
function of the superconducting electrons. except that y depends only on position. whereas wave
functions are in general functions of both position and time. Ginzburg and Landau further
assumed that near the critical temperature T, and in the absence of a magnetic field. the Gibbs
free energy density of a system consisting of normal and superconducting phases can be

approximated by a power series in n,:
§(T.ng)= g, (T)+ (T, + LB(T)n7 | 4.4)

where g, is the zero-field Gibbs free energy density at temperature T of the normal state. and o
and P are coefficients which depend only on the temperature. The parameters o and B can be

shown 1o be related to the critical magnetic field H, via
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,
o= _Mofe (4.5)

n*

2
and B = Pofle (4.6)

(n*)

in which n* is the equilibrium density of the superconducting electrons. In the presence of an
applied magnetic field. the Gibbs free energy of the superconducting system also depends on the
field. The equilibrium condition of the normal and superconducting states. which is achieved by

minimizing the total Gibbs free energy of the system. is described by the two Ginzburg-Landau

equations.
c + Byl v+ —(jAV + 4, Py =0 @)
=""'s
ih 2 5
-Js = s (‘U*V‘U—‘VV‘V*)“'&'{‘U!'A- (4.8)
g m

In the above equations. m, and ¢, are the mass and charge. respectively. of the superconducting
electrons. J, is the supercurrent density. and A is the magnetic vector potential. It can be seen
that Eq.(4.7) is ronlinear by virtue of the power relation (4.4). In the presence of a non-zero
magnetic field, the above two equations also become coupled so that they have to be solved
simultaneously for y and A. Although derived only for temperatures near the critical
temperature, the GL equations give a remarkably accurate description of many properties of
superconductors. Furthermore. the theory can also be shown to be a direct consequence of the

BCS microscopic theory [78].

Another macroscopic theory which is simpler but as widely-used is Londons’
electrodynamic theory of superconductivity. Although originally derived only for linear
superconductors. Londons” equations can be easily extended to include nonlinear effects. The
theory is predicated on the two-fluid model, which assumes the existence of two kinds of
electrons in the superconductor: the normal conducting electrons with population density n,. and
the superconducting electrons with population density n,. The total current density J in a
superconductor is thus J, + J,. The normal current component is assumed to obey the usual

Ohm’s Law,
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J.=0,E. 4.9)

where the normal conductivity o, can be derived from the electron drift model for normal
conductors:
2t
n,e
n =—. 4.10)
m,

In the above equation e is the electronic charge. T is the relaxation time. and m, is the mass of the
normal conducting electrons. On the other hand. the superconducting current is thought to

experience zero resistance: therefore the motion of the superconducting electrons under the

influence of an electric field obeys the simple acceleration equation.

v _4s g @.11)

dr mg

where v is the zlectron velocity. and ¢, and m, denote. respectively. the effective charge and mass
of the superconducting electrons. In light of the BCS theory. the superconducting electrons are
found to be in fact pairs of electrons. or Cooper pairs as previously mentioned; hence ¢, and m,

can be replaced by 2e and 2m,. Since the supercurrent density J, is given by
J.=nqv. (4.12)

we can write Eq.(4.11) as

d| m
R =Js |=E.
(1’ nxq;

or %(uoxz.ls)= E. (4.13)

where A is the London penetration depth. related to the superconducting electron density n, by

A= fL, . (4.14)
Ronsqs

Equation (4.13) is known as the first London equation. The second London equation,
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vx@2y,)=-H. (4.15)

is phenomenologically deduced from the Meissner effect. which describes the tendency of the
superconductor to expel magnetic field from its interior. It should be noted that in the London
theory. the penetration depth is assumed to be independent of the applied field. implying that

Egs.(4.13) and (4.15) are applicable only to linear superconductors.

For time-harmonic fields with & variation. Eq.(4.13) becomes

J,=—L-E, (4.16)
AT

from which we can define the complex-valued superconductivity & as

5, (w)=—2L=-jo,. (4.17)

The total conductivity of the superconductor is thus

\
-1
c=c,-jo, =t _; 1 (4.18)
my, U)HO;L"

Using the above expression for the conductivity, we can derive the surface impedance of an HTS

parallel-plate transmission line having infinite thickness (z » A) as [77]
Z, =R, + jX; =Lw?udrle, + jopgr (4.19)

Note that the above expression states that the surface resistance R, of an HTS stripline varies as

0. a fact which has been confirmed experimentally.

To account for the dependence of the surface resistance on the magnetic field as
observed in Figure 4.1. the assumption of a constant penetration depth must be relaxed and A. or
equivalently. n,. allowed to vary with the current or the magnetic field. A theoretical dependence
of n, on the current density has been obtained by Xia er. al., who employed an assumed Gaussian

distribution function for the velocity n(v) of the electrons at a constant temperature [90]. By
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assuming that those electrons with energies below the transition energy E,. are in the
superconducting state, the superconducting electron density can be obtained from
V('(T)

| ()V)riv. (4.20)

n (/)= (n
v (T

where v, is the maximum velocity for which the kinetic energy of the superconducting electron is
equal to the transition energy at a given temperature 7. Experimentally, n, and A can be obtained
from measurements of the surface reactance X, of an HTS stripline. By performing
measurements on a YBCO stripline at 1.5GHz and 77K. Qates er. al. showed that the dependence
of A on the peak RF magnetic field, H,. at the HTS thin-film surface may be modeled by the

power relation [83]
M H g )=o)+ C(T) HE. 4.21)

where A, is the zero-field penetration depth and C(7) is a fitting parameter. Putting Eqs.(4.1).
(4.19 and (4.21) together. we can derive a general empirical model for the surface impedance Z,

of an HTS stripline:
ZS((D.H,:,‘)=0)2(R0+BH:}-)'*‘_/(L)uo(ko +CH:;-). (4.22)

where B. C, and « are fitting parameters depending only on the temperature. Note that the above

equation explicitly includes the ” variation of the surface resistance R,.

In applying the FDTD method to conducting waveguides. electrically thin conductors are
usually treated as surface impedance boundary conditions so as to eliminate the need for fine
meshes in the conducting regions. Superconducting microwave and millimeter-wave structures
also consist of HTS films whose thicknesses are usually small compared to the entire device
geometry; therefore it appears that the superconductors may also be conveniently treated as
impedance boundaries. We will briefly explore this approach now to show that, contrary to the
above argument. the technique is considerably complicated by the fact that the HTS materials are
nonlinear. In the frequency domain. the electric field E, on a superconducting surface is related

to the magnetic field H, by the surface impedance Z,.
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E;(0)=Z,(0)H (). (4.23)

Given the nonlinear empirical model for the surface impedance described by Eq.(4.22), the above

equation becomes

E, ()= [Ro + BH 2 @), (©)+ jomo o + CHE @) , (©). 4.24)

Assuming o = 2. Eq.(4.24) translates into a sum involving double convolutions in the time

domain for the case of monochromatic excitation,

3°H,
-
2

oH LaH, 1ot
+Horo —=+poCJ [H G (1 —T~E)dEdr.
ot 0 ot 0

B Th, €, — T2 )ede

aZ
Es (’)’—‘_RO 3
CA (4.25)

t
_BJ'
0

Numerical evaluation of the double convolution integrals in general requires saving H, values at
all time steps starting from 7 = 0. In the case of linear impedance boundary, which involves only
a single convolution term. the discrete convolution can be approximated by a recursive
expression which results in a significant saving in computational resources. For the nonlinear
case given by Eq.(4.25), however. to date a computationally feasible scheme has not been found.

so the nonlinear impedance boundary condition is currently not a practical approach.

It seems then that a rigorous analysis of wave propagation in HTS media requires a full
solution of Maxwell’s equations along with the appropriate nonlinear model for the constitutive
relation of the superconductor. As mentioned previously. this approach was adopted by
Megahed and El-Ghazaly. who incorporated the GL equations into Maxwell's solution [98].
Their method first solves the GL equations numerically for the superconducting electron density

n, = |y[*, from which the penetration depth A can be computed using Eq.(4.14),

Alr. H) = Y7 Ho (4.26)

qs IW(I‘. Hx -

The result is that A depends on both the position r and the magnetic field H via yw(r.H). The
value of the penetration depth is then used in the first London equation (4.13) to solve for the

supercurrent density J.. from which the electric and magnetic fields can be updated in the usual
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FDTD solution of Maxwell’s equations. It is apparent that at each FDTD time step. the method
requires solution of the two nonlinear GL equations. which amounts to substantial overall

computational requirement for the algorithm.

In the next section we show that the GL equations can be replaced by the much simpler
London equations and an appropriate model for the nonlinear Meissner effect. In particular. it
will be shown that with the appropriate function for A(H). the nonlinear London equations give
excellent approximation to the GL solutions. This result allows us to formulate an efficient
FDTD algorithm for simulating propagation in HTS media based on the nonlinear London

equations.

4.2 The Nonlinear London Equations

In the previous section it was stated that Londons’ theory is strictly applicable only to
linear superconductors since the penetration depth A is assumed constant. Under weak field
conditions where HTS materials can be assumed linear. the London theory provides a good
approximation to the GL solution and can thus be used to model the electromagnetic response of
the superconductors [96]. In the presence of strong magnetic fields. however. Eqs.(4.13) and
(4.15) are no long accurate because they fail to account for the position dependence of the
superelectron density n, = |y[*, as predicted by the GL theory [95]. We show in this section that
the London equations can be used to describe the response of superconductors at high fields if
the nonlinear Meissner effect is also included. i.e., if the penetration depth is allowed to vary

with the magnetic field.

The rationale for our approach hinges on the link between the GL equations and the
nonlinear London equations. By assuming that the field-dependent penetration depth is still

related to the order parameter y by the relation.

A(H) = YMs /Mo @.27)

qslw(H])
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we can show that the second nonlinear London equation can be directly derived from the GL

theory. Letting y = I\yle 78 in the second GL equation (4.8). we obtain

2
3, =T pyPve + LA (4.28)
m mg

s

Making use of relation (4.27). we rewrite the above equation as

wor2J, = ve-a. (4.29)
qs

Taking the curl of both sides of Eq.(4.29) gives

uOVxQ.ZJs)=iVxV9—VxA.

s

and using the fact that VxV0 =0 and VxA =ugH . we arrive at

vx@ly,)=-H. - (4.30)

which is the second Londor equation (4.15). Note that Eq.(4.30) is in general nonlinear because
we have allowed A to depend on H. The foregoing result shows that the second GL equation and
the second nonlirear London equation are identical to each other. both describing the flux-
expelling tendency of superconductors. We conclude, then, that the first GL equation (4.7) is
responsible for two effects: the nonlinear dependence of y on H and the anisotropy of the

material. The nonlinear London theory accounts for these effects by the explicit inclusion of the

nonlinear Meissner dependence of A on H.

To verify that the second London equation along with the appropriate nonlinear Meissner
model produces the same electromagnetic response as the GL equations. we considered the
simple example of a one-dimensional HTS slab subject to an applied magnetic field H,. as shown
in Figure 4.3. The slab has thickness 5A¢. where A, is the low-field London penetration depth.
The GL solution for the slab has been obtained numerically by other researchers [95.98]. so we

will only briefly outline the approach. By introducing the normalized quantities,



CHAPTER 4: FDTD ANALYSIS OF HTS MEDIA 97

0 510 z

Figure 4.3. One-dimensional HTS slab subject to an external DC magnetic field H,. The thickness of the
slab is 5A. where A, is the low-field penetration depth.
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the two GL equations can be simplified to

_l_ 2 r_ _/ IR v 2 _ _l_ 2 4 3[
sz w_—ﬁKA vy +\y‘(|w’] l+2|A'] ] (4.31)
VZ2.A'= g Im(y'V'y’ *)+ MZ A (4.32)

’

For the one-dimensional case. letting r’ = ", ¢ = ue® and A’ = ak . we can further reduce the

above system to
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2 2
—l,—%=[g7——l}l +ul, (4.33)
K- d’~ 2
a2, (4.34)
d="~

We then solved the above system of second-order differential equations using the finite-

difference method. with boundary conditions

(1(1 ’ H
’ = —“'OHG = —_a
d’li =0 H
and ﬂ; =0.
dz ==0

The solutions for the normalized superconducting electron density |y’ ll. and the corresponding

normalized penetration depth. A" =A/Ag = I/|w’]. are shown in Figures 4.4 and 4.5. respectively.

as functicns of the normalized magnetic field. H” = H/H., inside the slab. The depletion of the
superconducting electron density as the field approaches H.. signifying the loss of
superconductivity. can be observed in Figure 4.4. Note that the field dependencies of both y’
and A’ are irrespective of the position z’. implying that the penetration depth at an arbitrary point
inside the superconductor is uniquely determined by the magnetic field at that point alone. This
observation is important because it allows us to model the variation of the penetration depth as a

function of only the magnetic field.

Recalling our hypothesis that the first GL equation can be replaced by an explicit mode!
of the nonlinear Meisser effect. we next sought a functional description of the A” versus H’ curve

in Figure 4.5 by performing curve fitting to the data. The best fit function was found to be

MH) _ 1
*o - (usm 2}

(4.35)

The above equation explicitly describes the nonlinear Meissner effect as predicted by the GL
theory. Using this model for A(H), we then numerically solved the second nonlinear London

equation for H1z") in the one-dimensional slab:



CHAPTER 4: FDTD ANALYSIS OF HTS MEDIA

99

normalized superelectron density, 12

0 1 1 1 ~1 1 y

—l 1

1
Y 0.1 0.2 0.3 0.4 0.5 0.6 07

normalized magnetic field, H’

0.8 09 l

Figure 4.4. GL solution of the normalized superelectron density. |\y’i2 = ;w/\yo[:. as a function cf the
normalized magneiic field. H* = H/H,.. The gradual loss of superconductivity as H approaches K. can be

observed.
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Figure 4.5. GL solution of the normalized penetration depth, A" = A/A. as a function of the normalized

magnetic field, H = H/H,.
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L[;;Z ()41 ): H (4.36)

[1:’ 7

<~

and compared the results with those obtained from the GL equations. The solutions for the
normalized superconducting electron density. n’(z") = Iw'(:')?' . and the normalized supercurrent
density. J;(z)=AoJ;/H.. are shown in Figures 4.6 and 4.7. respectively, along with the
corresponding GL results. It is seen that both the London solutions and the GL solutions are in
excellent agreement with each other. In particular. Figure 4.6 shows that the nonlinear London
equation correctly modelled the position dependence of the superconducting electron density.
predicting increased partial loss of superconductivity at the edge of the slab as the applied
magnetic field was increased. In Figure 4.7. the London solutions also yielded the correct GL

depairing critical current density. J;,a,-,. which occurs at the peaks of the J.(z") plots for

applied fields near the critical value (e.g.. H, = 0.9H,) [95]. The depairing current density is the
maximum current density that a Cooper pair can withstand without breaking up: it thus gives a

measure of the critical current density J. of the superconductor. The GL theory predicts a value

245/3\/5 =0.54 for J;,a,-, [78]. which agrees with our numerical result shown in the figure.

The above exercise validates our claim that the GL equations can be approximated by the
nonlinear Londen equations. which can be more readily incorporated into an FDTD solution of
Maxwell's equations to simulate propagation in a general superconducting medium. It also
shows that instead of solving the GL equations at every FDTD time step for A at each point in the
grid as proprosed in [98]. the penetration depth can be directly obtained from the explicit GL

model for A(H) given by Eq.(4.35) with negligible computational effort.

The analysis in this section also shows that a numerical model for the nonlinear Meissner
effect can be extracted from the GL theory, which predicts an H*-dependence for A at low fields
since for H/H, « 1, Eq.(4.35) can be approximated by a quadratic function. As mentioned in
Section 4.1. recent measurements on HTS cuprates indicated that the measured A tends to vary as
H at low fields and as H at high fields. The deviation of the GL model from experimental data
at high fields may be due to the fact that the theory was developed only for type-I

superconductors. which do not exhibit a mixed state of gradual penetration of the magnetic field
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Figure 4.6. GL and London solutions for the normalized superelectron density inside the HTS slab. Both
ihe GL and London results predict increased loss of superconductivity at the edge of the slab (z” = 0) as the
applied magnetic field is increased.
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Figure 4.7. GL and London solutions for the normalized supercurrent density. J,” = AoJ/H.. inside the HTS
slab. Both the GL and London results predict a peak supercurrent density of 0.54 near the edge of the slab.
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in the form of vortices. For more realistic results. therefore. the empirical models of A(H) such
as those reported in [91] and [93] can be directly used in the analysis of propagation in the HTS
materials. This approach is much similar to that in nonlinear optics where the refractive index
depends on the electric field and the material model is described by experimentally-determined

nonlinear susceptibility coefficients.

4.3 FDTD Simulation of HTS Devices

The second nonlinear London equation and the GL equations provide accurate
electromagnetic description of magnetoquasistatic superconducting systems such as the one-
dimensional HTS slab example. For general electrodynamic systems it is more appropriate to
use the time-varying first London equation in the analysis. Thus. to simulate propagation in an
HTS medium. we require that the following system of equations based on the two-fluid model be

satisfied everywhere in the material:

JH

VXE=—ug—. 4.37)
Ho 5 (
VxH:e-aa£+o,,E+JS, (4.38)
¢
3 (.
o E‘(ICJS )= E. (4.39)

Here the London equation can be regarded as the corstitutive relation between the supercurrent
density and the electric field. The parameters that characterize propagation in a superconducting
medium are €, G,. and A; however. since W€ « 6, and € « 1/A°. the permittivity can usually be

neglected.

In Section 4.1 we defined the superconductivity o, of a superconducting medium in
relation to the penetration depth A via Eq.(4.17). Since A is a function of the temperature T and
magnetic field H, both the superconductivity o, and the normal conductivity &, will also depend
on 7T and H [98]. The requirement of the conservation of the total electron density. n = n, + n,,.

establishes a relationship between the penetration depth. which depends on n, via (4.14). and the



CHAPTER 4: FDTD ANALYSIS OF HTS MEDIA 103

normzal conductivity. which is related to n, via (4.10). Suppose fIH/H,) describes the field
dependency of A/Ao; the penetration depth can be expressed as

Ao

Vl_(T/Tc).‘

where the Gorter-Casimir model for the temperature dependency has been used [79]. Solving for

MT.H)= f(H/H,). (4.40)

n, from Eq.(4.14), we obtain

mg _ mg I- (T/Tc )4 _ 1- (T/Tc )4

moa? BT H)F  noathy F(H/HE  ° Ur(H/HP @40

n,(T.H)=

in which n,q is the superconducting electron density at zero temperature and zero field. Since the

total electron density is conserved and equal to n, we have

1- (T//Tc )4

"LrH/H R

n,,(T.H)=n—nS(T.H)=n—nS (4.42)

Recognizing that n,, = n since there are no normal electrons at OK and zero ficld. we arrive at the

following expression for the temperature and field dependency of the normal electron density:

n,(T.H)= n{l—:—(ﬂ}. (4.43)

r(H/H P

The normal conductivity can be determined from n, using Eq.(4.10):

c,(T.H)= "ezt{l— - ) } (4.44)

my, [f(H/HC )F
Moreover, since

2
ne-t

Cn (Tc °0) =

my

and  0,(T.0)=0,(T.0XT/T.)*.
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we can express Eq.(4.44) in the form

6,(T..0)-c,(T0) (4.45)

Lr(H/H P

Cn (T~ H ) =0, (Tc '0)_

The above equation gives the complete temperature and field dependency of the normal

conductivity and can be used in Eq.(4.38) in the analysis of propagation in HTS media.

Unlike common optical materials, we see that nonlinearity in HTS materials appears in
the complex conductivity. 6, — jO,. instead of the permittivity. The normal conductivity o,
constitutes the real part of the complex conductivity of the HTS medium and is thus responsible
for diffusive effects on wave propagation. On the other hand. the superconductivity o, makes up
the imaginary part and is responsible for dispersive effects. Hence. nonlinearity in HTS
materials acts on both the diffusive and dispersive mechanisms of wave propagation in the

media.

Several techniques exist for analyzing nonlinear microwave circuits. most prominent
among them being harmonic balance analysis and Volterra series analysis [119]. However. these
methaods are frequency-domain based which assume the input signal to consist of a finite number
of discrete tones. and thus they are more applicable to steady-state problems such as harmonic
generation and frequency mixing. A more rigorous solution of the system of equations (4.37) — .
(4.39) that fully accounts for all the nonlinear effects. steady-state and transient. must be sought
in the time domain. We thus propose FDTD as the method of solution. Since the system cannot
be reduced to a single differential equation in either E or H field. it must be solved in a leap-frog
fashion for all components of E, H and J,. However. in two-dimensional structures. the system
can still be decomposed into two independent sets of solutions. corresponding to the familiar TE
and TM polarizations. Furthermore. in conducting waveguides. the magnetic field is maximum
at the surfaces of the conductors for TM polarization and minimum for TE polarization: and
since nonlinearity in HTS materials is manifested in the H-field dependence of A and ©,. the
nonlinear effects will be more pronounced for TM case than for TE case. For this reason we will

consider only TM polarization in our work.

In two-dimensional HTS structures with d/dv = 0. the equations for the propagation of

the TM fields with components H,. E.. J.., E. and J,, are



CHAPTER 4: FDTD ANALYSIS OF HTS MEDIA

E, _OE. W

= ox Bz
agf_\. ﬂ%ﬂynaz +J s
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Ho %(lzjﬂ): £
" % 2 )= E,
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(4.46)

447

(4.48)

(4.49)

(4.50)

We discretize the above equations using the leap-frog scheme. with the following space and time

assignments for the field components: H, at (nAt. iAz, jAx), E. and J,. at ((n+1/2)Ar. iAz.

(+172)Ax). and E, and J, at ((n+1/2)At, (i+1/2)Az. jAx). The locations of the field components

arc iliustrated in Figure 4.8.

With the above field assignments. Eqs.(4.46) — (4.50) are

discretized as follows, which is based on a direct integration scheme proposed by Cumimer for

cold plasmas [50]:

E Ill+l/2 _ |n+l,-’2 |"+l/2 _ ln F1/2 H |n+l_ n
“vlivif2. V-2 TRlijepe sl j-1/2 u Mij ij
Az Ax 0 At
l" _ in |n+l/2 _ ,n-—l/Z
i g+ -"|i. j o Tsli 2 zhi j+1/2
Ax At
O, n+l/2 n-1/2 n+l/2 n—1/2
+ T( E-l jey2 + E<li i ) Iselijoya sl i
n _ n n+1/2 n-1/2
Yii+l.f y li.j _ xli+l/2.j —EE-‘li+l/2.j
Az Ar
Gn n+l/2 n—-!/2 Il+l/2 n—l/Z
+ 2] (E-‘|i+l/2.j + E-"Ii+l/2.j 5 Jf-f|i+l/2.j + ‘I-‘-‘li+l/2.j
2 n+l 2 n
A J-‘:li.j+l/2 A ‘ISZIi.jH/Z 1 n—-i/2
Ho =~ E| l; j+1/2
Ar 2 tJrY =
-2 n+l 2 n
A "leiﬂ/z.j A ‘l-‘-‘li+l/2,j 1 E +E n-1/2
Ho Ar Y x| -“'i+l/2.j :

)

)

.5

(4.52)

(4.53)

(4.54)

(4.55)
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Figure 4.8. Space and time assignments of the field components for the HTS FDTD method. J..-and J,, are
co-located with E.. and E,,. respectively. in time and space.

Note that in order to obtain a second-crder accurate discretization, semi-implicit time indexing is
used for the terms ,£. and 6,E, in Eqs.(4.52) and (4.53) instead of the implicit scheme that was
employed in Eqs.(2.34b) and (2.34c). This discretization is stable as long as either € # 0 or A #

(==

In the FDTD procedure. we assume that at time step n the values of H ).ln . E:["_l/ 2.

—{/2 - -
Exln l/". Jo.["Y and JSII" Y2 are known. The time-marching algorithm begins by first

sz

updating E. and E, using Eqs.(4.52) and (4.53). In order to express E. and E, in terms of known
quantities. we first rewrite Egs.(4.54) and (4.55) as

n+lf2 n-1/2 Ar n+1/2 n~l/2
S:Ii.j+|/2 - s:li.j+l/2 +ﬁ——(51|i.j+l/2 + E:Ii‘jﬂ/‘l ) (4.56)
_l‘lok.' .
i,j+1/2
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n+l/2 n-1/2 Ar n+l/2 n-1/2
J sxlm/z. j = sxlipya ¥ 7—,,.__( E-rlm/z. it Xy ) @.57)
“HoA”
i+1/2.f

where the values of A on cell boundaries are obtained using harmonic averages; for example.

(o ) o )

l; w2 S T YT
t.J 2 Aln In AII I:jﬂ

ij i.j+l ij

with ll:lj =){H_‘.I:j )

Note that since A o< 1/G,, harmonic averaging of the penetration depth is equivalent to taking the

arithmetic average of the superconductivity. As will be shown later, the other material
parameters, € and ©,. are also computed using arithmetic averaging. so for consistency A must be
averaged using the harmonic formula. Substituting Eqs.(4.56) and (4.57) into Egs.(4.52) and

(4.53). respectively. we obtain the marching formulas for E, and E..

n+l/2 _ aq) n-l/2 1 n n) 1 n~42 1<
:If-f‘*'/’? __EZI"-!'*'/Z * mAr(H"Ii.jH H-"li.j) as J‘:Ii-j+l/2 (4.58)
n+lj2 b -2 1 no ny_ L n-1/2 .
-‘li+l/2‘j " by clivya.j baAz -"|i+|.j Hy ij) by J""iﬂ/lj’ .59
in which
n
_Eijei2 °"li.j+l/2 _ At
2 n
ar - 4uoA”
i.j+1/2
G lll
an = & j+12 L0 ij+1/2 + Ar
- At 2 n
duor|
ij+i/2
n
b o Eitl2) °"|i+|/2.j At
1 = - - »
2 n
ar - 4“0A.'
i+1/2.j
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! - 4“0l2
i+1/2.f

In the above. the values of the material properties, € and o,. on cell boundaries are computed

using arithmetic averaging; for example.

_1
€ j+1/2 = E(ei.j +E; j+i )

n 1 n
G"'l“jé-l/z ZE[G"(H}. i‘j

)+o,,(H_VI:jH )]

n+l/2

. . 2 .
Having obtained E:|"+V and E_r| . the superconducting current components J,. and J;, can

be updated using Eqs.(4.56) and (4.57). Finally the H, field is marched using Eq.(4.51):

(a2 . a+l/2 42 2
I ln i j+1/2 E:Ii.j-l/z B Eviivyz.j ~ Exiiyz (4.60)
Yii g Fli j At/ugAx At/ugAz

[n Figure 4.9 we summarize the computation flow of the FDTD algorithm for HTS media. Note
that by virtue of our scheme of assigning time and space indexes to the field and current
components, the above FDTD procedure does not require soiution of nonlinear equations and can

thus be executed in a speedy and efficient manner.

If the superconducting medium is assumed linear. the HTS FDTD algorithm can be
shown to be stable if the CFL condition (2.40) is satisfied [50]. An analytical stability condition
for the nonlinear case is unknown. but no problems of instability have been encountered for
simulations running with CFL coefficient almost equal to 1. Also. the numerical dispersion
relation for the HTS leap-frog scheme is similar to Eq.(2.61) derived for normal conducting

media. except for an additional term involving A:

sin> (BAz/2) N sinZ (BAx/2) _

(Az)? (Ax)? 4.61)
1 sin> (wAz/2 . sin{wAr
- (2}‘)2 + 6‘108 + %MoonN)—(—z/—) - J%“Oon '—_g;_)

(ar)
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Figure 4.9. Computation flow for the HTS FDTD method.

As in the case of normal conductors. the errors due to numerical dispersion are dominated by
finite grid-size effects at millimeter-wave frequencies. and can be reduced by using mesh

refinement.

In this thesis, all HTS structures of interest can be canonically respresented by the 2D
waveguide shown in Figure 4.10. The structure consists of a perfect electric-conducting (PEC)
waveguide which serves as a launcher and in which various TM modes can be excited. These
modes are then fed into the structure under simulation. which is an HTS waveguide whose
superconducting walls may be patterned with normal conductors. The dielectric substrate is
assumed to be linear. We use the hybrid single-field leap-frog FDTD method developed in

Chapter 2 to simulate the structure. in which the HTS thin films are designated as local domains.
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Figure 4.10. Canonical structure for simulating HTS waveguides. The PEC waveguide at the input serves
as the mode launcher. Fields in the local domain are solved using the leap-frog HTS FDTD method. while
fields in the main grid are marched using the explicit single-field FDTD scheme. .

In the procedure. the fields in the HTS local domains are first computed using the full-wave HTS
FDTD method developed in this section. The fieids in the dielectric substrate and in the regions
surrounding the waveguide are next obtained using the single-field scheme. Finally PEC
boundary conditions are applied on the walls of the launcher. Note that the case of a PEC plate
traversing a main-grid-local-grid boundary has been considered in our development of the hybrid
single-field leap-frog FDTD scheme in Chapter 2. Also. since our hybrid scheme allows
subgridding in the local domain. the mesh in the HTS regions can be made finer than the global
grid in order to more accurately resolve the fields in the HTS thin films. where the nonlinear

effects occur.

4.4 Summary

In this chapter a comprehensive discussion of nonlinearity in HTS materials was
presented. We showed that by incorporating the nonlinear Meissner effect into the London

theory of superconductivity. the resulting nonlinear London equations can be used to provide
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accurate analysis of the electromagnetic responses of HTS materials. We established a
relationship between the London and GL theories by showing that the second nonlinear London
equation is identical to the second GL equation. and along with the appropriate model for the
field dependence of the penetration depth. provides excellent approximation to the GL solutions.
For simulating wave propagation in HTS microwave and millimeter-wave devices. we developed
an efficient FDTD method which incorporates the first nonlinear London equation into the
solution of Maxwell’s equations. The new technique has both the computational simplicity of

the explicit FDTD method and the accuracy of the GL-based approach.



Chapter 5

HTS Device Applications

In this chapter we demonstrate the application of the FDTD method developed in the
previous chapter to simulate practical HTS microwave and millimeter-wave devices. Using the
linear HTS parallel-plate waveguide as a benchmark, we first validate the numerical method by
comparing simulation results to analytical solutions. This is followed by investigation of more
complicated HTS structures. In particular. nonlinear wave propagation in resonating and
periodic waveguides are discussed in detail. and the practical applications of these devices to

microwave and millimeter-wave signal processing will be explored.

5.1 HTS Parallel-Plate Waveguides

Like the two-dimensional dielectric slab waveguide, the HTS parallel-plate waveguide is
the simplest structure with which we can study propagation of guided waves in HTS media. We
will first consider the low-field case where the superconductors can be considered linear. The
known analytical solution of the linear HTS transmission line allows us to verify the simulation
results, thereby validating both the HTS FDTD method and the hybrid single-field leap-frog
scheme proposed in Chapter 2. Nonlinearity is then introduced into the HTS thin films to study

its effect on wave propagation in the waveguide. The various nonlinear Meissner models for the
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magnetic field dependency of A are also investigated. An understanding of the propagation
characteristics in the nonlinear HTS parallel-plate waveguide will help give insights into more

complicated HTS devices to be investigated later in the chapter.

We consider the two-dimensional HTS parallel-plate waveguide shown in Figure 5.1.
Both upper and lower plates of the waveguide are assumed to be made of YBCO deposited on
LaAlO; substrate. which is chosen because of the relatively low loss tangent of the dielectric
(less than 107). Like most HTS materials, YBCO is highly anisotropic. exhibiting vastly
different material properties depending on the direction of the current flow with respect to the
Cu-O planes, commonly known as the ab planes. in the superconductor [77]. For example. the
penetration depth of YBCO is 0.15um for current flow parallel to the ab plane but can be as high
as 0.77um for current flow perpendicular to the plane. Because the direction parallel to the ab
plane experiences the least resistance. it is the preferred direction for current flow. and hence
HTS materials are usually deposited with the ab plane parallel to the substrate. Assuming this is
the case for our waveguide. the value of the zero-field penctration depth at OK. Aq. for YBCO is
then O0.15um. Other parameters of the HTS are € = €. G,(T.) = 4.0S/um and T, = 92K. The
thickness of the superconducting plates is‘I. The LaAlO; substrate has a nominal dielectric
constant of 24.0 and thickness h. The waveguide is excited by the TEM mode at the source plane

located in the perfect electric-conducting waveguide launcher.

source plane

PEC HTS

—a —Z x

substrate

h €, = 24.0g,

D [T, [ oSy S FRN

Figure 5.1. Two-dimensional HTS parallel-plate waveguide. The superconducting plates are assumed to
be YBCO and the substrate is LaAlO;.
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(a) Linear response

It was stated that the response of an HTS material can be considered linear in the low
field limit, H « H.. Under this condition the superconductor can be assigned a complex but linear

conductivity.
-~ . . 2 =
=0, + jlweg —o,)=0, + _]((1)80 ~ 1/ opgh? ) 5.1)

in which o, and A are functions of temperature but independent of frequency. If the HTS plates
are assumed to have infinite thickness (z » A), we can derive the exact analytical expression for

the complex propagation constant [102]:

2Z
Y=a+ jB=jky4 I -j— (5.2)
(Duoh

where k; = w\/lo€y . and Z, is the surface impedance of the HTS plates:

Z, =\/ JOHo _ : (5.3)
G, +j(0)€0 _Gs)

Note that for the infinitely thick plates. Z, is also equal to the intrinsic impedance of the HTS
medium. In the superconducting state. o, » W€ and G, » G,; in this case the surface impedance

can be approximated from Eq.(5.3) as follows:

7 :\/ quo _ _iwno/o, = jougt 1= J
Ly
,/l+jo,, /o 20,
and hence
. 1..2,,243 .
Z; =R, + jX =50 UgA 0, + jough . 5.4)

The above equation is identical to Eq.(4.19). If we further assume that 2Z/wyieh « | in Eq.(5.2).
which is valid for thick plates with negligible loss. the complex propagation constant can be

approximated to first order as
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VA ‘
'{=jkd(l—j > ) (5.5)
W gh

Substituting Eq.(5.4) for Z; into the above equation. we obtain

B=kAl + A/h). (5.6)

kR o’ g Mo
and o=2dfs O HoyHotd A On . (5.7)
WUoh 2h

which show that the propagation constant f§ varies linearly with frequency whereas the

attenuation constant o varies as ®".

We simulated the HTS waveguide in Figure 5.1 under the assumption of linear response
to study the temperature and frequency dependencies of the complex propagation constant y.
The thickness r of the HTS plates was set at [.5um and the substrate thickness i at 6.75um. To
investigate the effect of the temperature. we fixed the frequency of the input TEM-mode
continuous-wave signal at 40GHz. and varied the normalized temperature, T, = T/T,. from O to 1.
The temperature variations of the penetration depth and the superconductivity were assumed to

follow the Gorter-Casimir relations [79]

Ao

A= —, (5.8)
VI-T}
G,=0, (Tc )rr;‘ - (5.9

The structure was discretized with grid sizes Ax = 0.25um and Az = 5.0um. and the simulations
were run at time step Ar = 4.0fs (CFL = 098). The ratio of the main grid to local grid was set to
1. Liao’s absorbing boundary condition was used to absorb waves at the computational

boundaries.

For each temperature value. the FDTD simulation was run for several time periods and
the signals at two points separated by a distance dz in the waveguide were recorded. From the
information on the phase and amplitude differences between these two signals. the propagation
and attenuation constants can be computed. This method of extracting y is referred to as the two-

probe method:; it gives a fast and relatively reliable way of calculating the complex propagation
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constant of the TEM mode. In Figures 5.2(a) and (b) we plotted the extracted propagation and
attenuation constants as functions of the normalized temperature. The analytical values
computed using Eq.(5.2) are also shown for comparison. The plots show that the FDTD results
are in good agreement with theory. The error in f was determined to be less than 1%. while the
error in o was less than 5% for T,, > 0.4 but could be as high as 20% for 7, < 0.4. A major source
of these errors could be traced back to the extraction procedure of the complex propagation
constant from the time signals recorded during the FDTD simulations. As the temperature
approaches OK. the corresponding decrease in the attenuation constant causes the amplitude
difference at successive positions in the waveguide to be more difficult to be resolved accurately.
leading to a degradation in the accuracy of the extracted o In addition, numerical reflections
due to imperfect absorption at the computational boundaries also contributed to the errors in the
amplitudes. [t was observed that these numerical reflections had a more adverse effect on the
signal amplitude than on the phase, which explains the fact that the accuracy of B was generally

better than that of ct.

An important observation which can be made from the plots in Figure 5.2 is that ¢
generally exhibits a stronger dependence on temperature than B. Over the entire normalized

temperature range. ¢ changes by almost six orders of magnitude. while f varies by only 5%. The
reason for the large variation in « is partly due to assumed T,," dependency of the normal
conductivity. The logarithmic plot in Figure 5.2(b) has a slope close to 4 at low temperatures,
indicating that the attenuation constant also varies as T,,". This relationship can be checked

using Eq.(5.7). which states that

e 13(T, )oq (T, ).

Substituting Eqs.(5.8) and (5.9) for the temperature dependencies of A and o, into the above
relation. we obtain

o< AYo,(T,) =T}, for T, « 1.

T}
/2
(l"rn.t)3
which confirms that to first order, the attenuation constant of the waveguide increases as the

fourth power of the temperature.
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Figure §.2. Analytical and simulated temperature variations of (a) the propagation constant § and (b) the
attenuation constant « of the YBCO parallel-plate waveguide at f = 40GHz.
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We next investigated the frequency variation of the complex propagation constant at a
fixed temperature T = 77K. At this ambient temperature the values of the penetration depth A
and superconductivity o, were 0.210um and 1.96S/um, respectively. Simulations were
performed over the frequency range 10 — 120GHz. The complex propagation constant was
extracted from the simulation results using the two-probe method. and plotted against the
frequency in Figures 5.3(a) and (b). Also shown in the plots by the solid lines are the analytical
values of 3 and a computed using Eq.(5.2). The numerical and theoretical results are again seen
to be in excellent agreement with each other, both showing the expected linear f dependency for
B and f* dependency for o of the HTS waveguide. To compare these results with those of a
normal conducting waveguide we also included in the plots. with dashed lines, the propagation
and attenuation constants of a copper waveguide with identical dimensions to those of the HTS
waveguide. The copper was also assumed to be at 77K; at this cryogenic temperature its
conductivity is 255S/um. nearly ten times higher than the value at room temperature. The plots
show that the superconducting waveguide and the metal waveguide have almost the same
propagation constant . but the latter is one to two orders of magnitude more lossy. However,
the attenuation constant of the metal waveguide varies only as f ", whereas in the HTS
waveguide. it increases as f~. Thus there exists a cross-over frequency beyond which the
superconducting waveguide becomes more lossy than the copper waveguide. For YBCO at 77K.

this cross-over point occurs in the 200 — 300GHz range.
(b) Nonlinear response

As stated in Chapter 4. the nonlinear Meissner effect causes the field to penetrate more
deeply into a superconductor as the external field is increased. This phenomenon was
demonstrated in that chapter for the case of a static magnetic field applied to a one-dimensional
HTS slab. We now show that the same field behaviour is also observed for the electrodynamic
case of wave propagation in an HTS waveguide. Consider the same parallel-plate transmission
line shown in Figure 5.1. except that the HTS was now assumed to exhibit nonlinear Meissner
effect described by the XYS model. The expression for the dependence of A on H is given by
Eq.(4.3) with the anisotropy parameter y = |. The waveguide was assigned substrate thickness /
= 5.70um and superconducting film thickness 1 = 0.90um. The ambient temperature 7 was set to

77K. which gives A(T) = 0.210um and o,(T) = 1.96S/um. The structure was excited with a
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Figure 5.3. Analytical and simulated frequency variations of (a) the propagation constant 8 and (b) the
attenuation constant ¢ of YBCO and Cu parallel-plate waveguides at T = 77K.
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TEM-mode continuous-wave signal at 40GHz. In order to better resolve the field profile inside
the HTS thin films. we simulated the structure using the hybrid single-field leap-frog FDTD
scheme with local-to-global mesh ratio r = 3. The main grid sizes were Ax = 0.3um and Az =
6.0um. with global time step Ar = 4.8fs (CFL =0.98). The simulation was observed to be stable
for several thousand time steps. after which instability began to develop at the interfaces between
the main grid and local grid. As discussed in Chapter 2. this instability resulted from
interpolation errors at the main-grid-local-grid boundaries and from numerical resonance inside
the local domain. To avoid erroneous solutions. all simulations were terminated well before they
became unstable. It should be noted that for mesh ratio r = 1, instability was not observed

because no interpolation was required.

In Figure 5.4 we show the transverse magnetic field profile inside the lower HTS plate
for different input signal amplitudes. All the fields were normalized with respect to the

maximum field value. H.. which occurred at the inner HTS surface of the waveguide. For

T3 L T T T T T T T T
: HTS gsubstrag

normalized magnetic field, H/H pax

36 38 4 4.2 4.4 4.6 48

transverse distance, x (um)

Figure 5.4. Transverse magnetic field profile inside the lower HTS plate with XYS nonlinearity. The field
is normalized with respect to the maximum value at the surface of the superconducting plate. Also shown is
the field profile in a linear HTS plate (dashed line).
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comparison. the analytic e**™ decay exhibited by the field inside a linear superconductor is also
shown in the plot by the dashed line. It is evident from the figure that nonlinearity causes field
penetration into the HTS plate to become more pronounced as the input power is increased. This
effect implies that high-amplitude waves travel more slowly in the waveguide and suffer from

higher loss than waves with low amplitudes.

To further investigate the effect of nonlinearity on wave propagation. we next looked at
the variation of the complex propagation constant with respect to the input field amplitude. Four
nonlinear models for A(H) were considered: the GL model. the first-order model, the second-
order model and the XYS model. all of which are summarized in Table 5.1 along with the
corresponding field dependencies of the normal conductivity. FDTD simulations for each case
were performed and the complex propagation constant y extracted using the two-probe method
described previously. Figures 5.5(a) and 5.5(b) show the percentage changes of § and a with
respect to the linear (low-field) values as functions of the input magnetic field amplitude. It is
evident that the effect of nonlinearity is to decrease the phase velocity and increase the skin loss.
We also observe that the variation of § with respect to H tends to follow the functional
dependence of A(H): for example. f varies linearly with H when the HTS is assumed to have
first-order nonlinearity. This is expected because. as indicated by Eq.(5.6). the propagation

constant is proportional to A(F) at low fields where first-order approximations can be made. A

GL model A= (1 _u2f” Gy =Opnc —(Gpc 0o Xl ~H" y/z
first-order model A= |+|H'I 6, =G = (Ope =g )/(l +IH,D2
second-order model | 37 _ |4 g2 P )/(l . H,z)z
XYS model A=(-H)" O =6pe —(Onc —0n0 N1~ H')

A = Mhg; One = O(T:.0);

H =HI/H, G.0 = G,(T.0):

Table 5.1. Nonlinear Meissner models for A(H) and the corresponding field dependences of the normal
conductivity.
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Figure 5.5. Percentage changes of (a) the propagation constant f and (b) the attenuation constant o with
respect to linear (low-field) values as functions of the input field amplitude. The HTS waveguide is at 77K

and the input frequency is 40GHz.
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direct consequence of this observation is that the field dependence of B can provide a signature
for the underlying field dependence of A. Thus by measuring the variation of the propagation
constant of an HTS transmission line with respect to the input signal amplitude. the nonlinear

Meissner model for A(H) of the superconductor can be deduced.

From the formulas in Table 5.1 it is seen that both the XYS and GL nonlinear models
predict that the penetration depth becomes infinitely large as the field approaches the critical
value H,. The normal conductivity G,, however, remains finite and approaches the value of the
normal state. 6,(7..0). This implies that the normal skin depth & constantly decreases as H
approaches the transition point. and reaches the value corresponding to the normal state at H..
We thus expect that there exists a cross-over field where the penetration depth A exceeds the skin
depth: at this point the normal conduction mechanism begins to dominate over the
superconductive effect in the HTS. In the limit 8 « A. which occurs near the critical field H,, the
propagation and attenuation constants in Eqs.(5.6) and (5.7) are simply replaced by the

expressions for a normal conducting waveguide:

B =kl +8/2h) ‘ (5.10)
a = kO/2h. (5.11)

Thus as H approaches H.. we expect that the propagation and attenuation constants in Figures
5.5(a) and (b) approach the values of the waveguide in the normal conducting state. Note that in
order for G, to approach 6,(7..0) at H = H.. the function {H/H,) in Eq.(4.45) must become
infinite at H,. This property is satisfied in the XYS and GL models but not in the first-order and
second-order models. implying that the latter two models are not physically valid near the critical
field. However, this observation does not completely invalidate these empirical models because
they are simply fitting functions for measurements of A at low fields. and are thus expected to be

valid only in the low-field limit.

The dependence of the propagation constant on the field. as observed in Figure 5.5(a).
implies that harmonic frequencies are generated during the nonlinear propagation through the
HTS transmission line. Consider a wave traveling in the positive z direction; its propagation can

be described to first order by the equation
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H . (5.12)

a:
where Y = a + jB is the compiex propagation constant. Assuming the superconducting films have
XYS nonlinearity. from the results in Eqs.(5.6) and (5.7). it is seen that both « and B are
functions of |H|. which implies that Y is an even function of H. Supposing now that the

transmission line is excited by an input wave of the form
H (1) = H, + H,.cos(2Rfyt), (5.13)

we consider two cases: (a) Hy =0 and (b) A, 2 H,- # 0. In the first case. the applied signal
oscillates about the origin with no DC offset, so in the small-signal limit. y(|H]) can be

represented by a series expansion around O which contains only even-order terms:
Y(H) =a:H* + a.H* + ... (5.14)
Substituting the above expression into Eq.(5.12). we obtain

-%—{{=—(12H3—¢14H5—.... (5.15)
from which it is evident that only odd-order harmonics will be generated during the propagation.

In the second case. the input sinusoidai signal is biased at a DC value. Hy = H,,. so the small-

signal series expansion of Y(|H|) around H, contains both odd- and even-order terms:
Y(H)) =bo+ b\H + b2H + b:H> + byH* + ... (5.16)
Substituting this expression into Eq.(5.12) gives

%_{—=—boH—b,H2—b2H3—b3H4—b4H5—.... 5.17)

which shows that both even- and odd-order harmonics will be generated.

Experimentally. harmonic generation resulting from propagation through BSCCO and
YBCO thin films has been observed and was reported. among others. by Golosovsky er. al. in
(82]. That experiment, however. used low-frequency microwave transmission through HTS thin

films instead of wave propagation in HTS waveguides. The authors also presented an analysis of
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the nonlinear process based on the dependence of the complex resistivity of the films on the
applied magnetic field. In the following we will show by FDTD simulations that harmonic

generation can also be observed for wave propagating in an HTS transmission line.

Assuming XYS nonlinearity for the YBCO. we simulated the HTS parallel-plate
waveguide under two input conditions: for case (a). H; = 0 and H,. = 0.97H,; and for case (b).
Hy4 = H, = 0.49H.. Note that in both cases the peak input magnetic field was less than the
critical field H, so that the HTS films were not driven into the normal conducting state. The
frequency f, of the input sinusoid was 30GHz. The length [ of the nonlinear transmission line.
also acting as the active region. was 1Smm. Figures 5.6 and 5.7 show the spectra of the output
signals recorded under the two input conditions. The spectrum powers were normalized with
respect to the power of the fundamental harmonic f;. As expected, only odd-order harmonic
frequencies are observed in the first case. whereas for the second case. the inclusion of the DC
bias resulted in both even- and odd-order harmonics being generated. Note that the strength of
the harmonics decreases with the harmonic order because of the corresponding increase in the
energy required to generate them. and also because of the rapid increase in the superconductor
loss at high frequencies. Also, the small spikes corresponding to even harmonics in Figure 5.6
are purely numerical artifacts, most likely due to imperfect numerical absorption at the

computational boundaries.

The conversion efficiency. defined by the ratio of the harmonic power to the power of
the fundamental frequency. was calculated to be 1.3% for the third-order harmonic under input
condition (a). For case (b), the conversion efficiency was 2.3% for the second-order harmonic
and 0.2% for the third-order harmonic. Note that these values correspond to a peak applied field
almost equal to the critical magnetic field. In an analysis of nonlinear distributed LC
transmission lines. Champlin and Singh showed that the conversion efficiency in general is
proportional to the square of the input signal amplitude and the length of the active region {1 16}.
The authors also showed that for low-loss transmission lines, the optimum length [ for which the
second-order harmonic power is maximized approaches infinity. In our HTS example. further
increasing the applied field would only drive the HTS films into the normal state without
improving the conversion efficiency. Therefore the only way to increase the efficiency is to

increase the interaction length ! of the nonlinear transmission line. Based on the analysis of
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Champlin and Singh we also expect the optimum length / for second-order harmonic generation

in the low-loss HTS transmission line to be also very large.

The numerical results presented above show that it is possible to generate harmonic
frequencies using HTS transmission lines. although the conversion efficiencies are low compared
to conventional technology using distributed active elements in normal transmission lines [112-
115]. Also. although we considered only the case of XYS nonlinearity. all the other nonlinear
models listed in Table 5.1 will result in harmonic generation since the mechanism for frequency
generation is the same. namely. the dependence of A and 6, on the magnetic field. Note that
since all the models describe field dependencies of A which are even functions of H. it is
expected that a pure AC input will result in the generation of only odd-order harmonics, whereas
all harmonic orders will be generated if a DC bias is also applied. The difference among the
models is the strength of the generated harmonics for a given applied field amplitude and a fixed
length of the HTS transmission line. It is obvious that the stronger the nonlinearity. the higher

the conversion efficiency that can be achieved.
(c) Applications

The most common application of HTS transmission lines is their use as delay elements.
Delay lines are the basic elements of tapped delay line structures, which are used to perform a
large number of analog signal processing functions [108]. Because of their extremely low
insertion loss and compact size. HTS delay lines are superior to normal transmission lines. With
the introduction of nonlinearity. the delay time of an HTS line also depends on the input signal
power. presenting an additional parameter that can be exploited for signal processing. We saw in
Figure 5.5(a) that the XYS nonlinear model resulted in a maximum increase of nearly 1.4% in
the propagation constant, or an increase of 6x10 rad/um at 40GHz. This translates to a delay
time of 0.2fs/um. As an example. a Ins delay line using the paraliel-plate transmission line in
Figure 5.1 has a length of 60cm at 40GHz. For this delay line. nonlinearity would cause the
delay time to vary by 13ps. corresponding to slightly over & radians in phase shift. With this
sensitivity of the phase with respect to the input power, important functions could be achieved.,
such as power discrimination using HTS tapped delay lines. and signal switching using coupled

HTS transmission lines.
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The generation of higher frequency components in an HTS transmission line. as
demonstrated in the previous section. implies that fast time-varying signals can be generated.
This phenomenon leads to the potential application of nonlinear HTS transmission lines in the
generation of picosecond impulses via shock-wave propagation. With only a small amount of
dispersion in an HTS transmission line to counteract the nonlinearity. a current pulse traveling
down the line will become increasingly sharpened and eventually form a shock wave. The
mechanism for shock-wave formation arises from the amplitude-dependent velocity experienced

by different parts of the pulse, which is given to first order by

~—X7d__ v, [i-A(H)/h]. (5.18)

where v =l/,/p0£d is the wave velocity in an unbounded substrate medium with dielectric

constant £,. Since A increases with H. the peak of the pulse will travel more slowly than the front
and the tail: consequently. the back side of the pulse will become increasing steepened as it
propagates down the line. This phenomenon can be used to generate pulses with very fast fall-

times.

To demonstrate this effect. we launched a Gaussian pulse into the nonlinear HTS
waveguide described in the previous section. The nonlinearity of the superconductor was
assumed to follow the XYS model. The initial width of the input pulse was 8ps (FWHM). which
corresponds to a bandwidth of 65GHz. Figure 5.8 shows the evolution of the pulse shape after
traveling 4mm and 9mm along the transmission line. The sharpening of the tail and broadening
of the front of the pulse as it traverses the waveguide are evident from the plot. In addition.
attenuation of the pulse amplitude with distance is also seen. By contrast, Figure 5.9 shows a
pulse in a linear HTS waveguide in which only dispersive effect is present. Without nonlinearity
in this case. frequency dispersion causes the pulse to constantly broaden as it propagates down

the waveguide.

In Figures 5.10 and 5.11. we show the 90%—10% fall-time and the amplitude.
respectively. of an 8ps pulse and a 4ps pulse as functions of the distance travelled. Also shown
for comparison in the plots by the dashed lines are the fall-time and amplitude of a pulse

traveling in a linear HTS waveguide. We make two important observations. Firstly. the fall-time
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of the 8ps pulse in the nonlinear HTS waveguide is seen to decrease constantly with distance, as
expected. However. the initial rate of decrease is larger than the rate toward the end of the
waveguide. The reason is that. as seen in Figure 5.11, as the pulse progresses down the
waveguide. its amplitude is also attenuated. causing the velocity difference between the peak and
the tail to lessen. Consequently, the pulse is steepening at a decreased rate. Secondly, the fall-
time of the 4ps pulse is seen to decrease initially, then reaches a minimum point at Zp, = 6.5mm.
and begins to increase slightly again. Since the 4ps pulse has a wider spectral content than the
8ps pulse. it experiences larger frequency dispersion and greater attenuation. the latter effect is
evident in Figure 5.11. At distances shorter than z,, the pulse amplitude is still sufficiently
large so that the nonlinear effect dominates over dispersion. and pulse sharpening occurs with the
decreasing fall-time. After zny,. the pulse amplitude has attenuated so much that the induced
nonlinear effect is weak and can be easily overcome by the dispersive effect: consequently the
pulse begins to broaden again. At the minimum distance zmn. the two effects exactly balance out.
creating a condition for soliton propagation. However. due to the large dissipation at high
frequercies. the soliton may not be sustained indefinitety in the waveguide. It is expected that at
lower frequencies and temperatures, where the superconductor loss is negligible. the HTS
transmission line can potentially support soliton propagation. Also note in Figure 5.10 that for
the linear HTS waveguide in which only dispersive effect is present. simulation showed that the

fall-time constantly increases with the distance travelled.

Pulse sharpening by shock-wave generation has been previously reported for normal
conducting transmission lines periodically loaded with nonlinear elements. and in several
commercial microwave instruments. sampling circuits using shock-wave formation to generate
50GHz pulses have already been introduced [109.110]. In conventional technology the nonlinear
elements in these periodic circuits are usually reverse-biased diode capacitances [109]. and in
superconducting technology Josephson junctions have been proposed as the source of
nonlinearity [111]. Due to the discrete nature of these circuits, their bandwidths are limited by
either the periodic Bragg frequency or the bandwidth of the nonlinear elements. By contrast the
simple nonlinear HTS transmission line proposed here is a broadband device which can operate
up to millimeter-wave frequencies. A disadvantage of our device. however. is the rapid f *
increase in the skin loss of the superconducting films. One way to reduce this loss is to lower the

operating temperature of the device.
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5.2 HTS Resonators

One of the most important microwave applications of HTS materials is in the
construction of high-Q resonators. Because of the extremely low surface resistance of the
superconducting thin films, the quality factor of an HTS microwave resonator can be two to three
orders of magnitude higher than that of its normal conducting counterpart {77]. At the same
time. the high Q value also implies that intense fields can build up in the resonator. resulting in
significant nonlinear effects such as resonance frequency shift and increased losses. In
applications such as filters. the large currents concentrating at the edges of the HTS thin films
can drive the superconductors into the normal conducting state. resulting in a degradation of the
performance and power-handling capability of the resonator. In our work. however, we wish to
exploit the amplified nonlinear effects in the HTS resonator without driving the device into the
normal state. for the efficient generation of harmonic frequencies. The idea is analogous to the
nonlinear optical microring resonator presented in Chapter 3. in which the intense optical field

built up in the ring is used for frequency mixing with high conversion efficiency.

Consider the one-dimensional HTS resonator shown in Figure 5.12. which is coupled to
the input and output waveguides via gaps of length g. The parameters of the waveguide were h =
4.5um. r = 1.0um. and €; = 24.0go. The superconducting resonator was assumed to be made of

YBCO. cooled to a fixed ambient temperature of 77K. with nonlinearity described by the XYS

i g HTS g PEC
A e s e s
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]
; XA o} Xc
: Ik
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substrate €, = 24.0g,

Figure 5.12. One-dimensional HTS resonator coupled to input and output PEC waveguides by gaps. The
resonator has length [ = mA. /2, with m = 2. The positions marked A, B and C are probe points.
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model. The structure was designed to resonate at f; = 30GHz. which corresponds to a guided
wavelength A, of 2.040mm. Assuming a resonance mode m = 2, the length of the resonating

section was thus ! = mA /2 =2040um. The width g of the coupling gaps was set at 6.0pum.

A Gaussian pulse having a bandwidth of 10GHz and modulated on a 30GHz carrier was
applied to the input waveguide of the device. Its amplitude was 4.3H.. which resulted in a
maximum wave amplitude of 0.9, being coupled into the HTS resonator. Since this maximum
value is less than the critical magnetic field. the HTS films remained in the superconducting state
throughout the simulation. The signal at probe point B (indicated in Figure 5.12). which
corresponds to the location of a maximum in the standing wave pattern in the resonator. was
recorded and shown in Figure 5.13 along with the input pulse. The plot shows that the resonator
was completely charged up and reached steady state after 0.4ns. It is also seen that the steady-
state signal in the resonator is a sinusoidal wave oscillating at the fundamental frequency f;- The
Fourier transform of the signal power. shown in Figure 5.14 along with the input power
spectrum. indicates that the resonance occurs at 28.10GHz. Note that the amplitude of the
resonant peak is almost 12dB higher than the input power at the same frequency. The plot also
indicates the appearance of the third- and fifth-order harmonics generated inside the resonator.
In Figure 5.15 we show the power spectrum of the signal recorded in the output waveguide (at

probe C). Again both the fundamental frequency and its odd harmonics can be seen.

The conversion efficiency. calculated from the ratio of the power of the harmonic
frequency inside the resonator to that of the fundamental frequency at the input. was 7% for the
third-order harmonic. This figure is more than five times higher than that achieved with the
straight HTS transmission line presented in Section 5.1(b). The improvement in the conversion
efficiency is due to two reasons. Firstly, as mentioned before, the resonance condition causes an
intense field to be built up in the resonator. thereby amplifying the nonlinear process without
requiring a high input field. Secondly. as stated in Section 5.1(b). the conversion efficiency of a
nonlinear transmission line increases with the interaction length. By regarding the standing wave
pattern inside the resonator as a sum of two waves traveling in opposite directions. it is clear that
the effect of the two reflection ends of the resonator is to increase the interaction length infinite
fold. However. due to coupling and radiation losses. the efficiency achieved is much smaller

than that of an infinitely long nonlinear transmission line.
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Figure 5.13. Input pulse and the signal recorded at probe B inside the resonator. where a field maximum of -
the standing-wave pattern occurs.
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Figure 5.14. Power spectra of the input pulse and the signal recorded at probe B inside the resonator. The
spectra are normalized with respect to the peak power of the incident spectrum.
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Figure 5.15. Power spectrum of the signal recorded at the output of the resonator (probe C). The spectrum
is normalized with respect to the peak power of the incident spectrum.

5.3 HTS Periodic Waveguides

In this section we investigate nonlinear propagation in two-dimensional periodic
waveguides in which the periodicity is produced by corrugations in the upper HTS thin film.
Three different types of corrugations were considered. as depicted in Figure 5.16. to determine
which provides the best frequency selection characteristics. In configuration (a), the
corrugations are composed of YBCO sections alternating with normal conducting sections made
of copper. both materials assumed to be at 77K. Numerical simulations of the structure showed
that. because the difference in the characteristic impedances of the HTS and normal conducting
sections was small. reflections in each period were not strong enough to produce good frequency
selectivity. In configuration (b). the HTS sections are periodically separated by gaps. Numerical
results for this case were opposite of those in case (a): the reflections in each period were too
strong. leading to very weak transmitted signals. In configuration (c) the corrugations are

realized in the form of rectangular teeth by periodically changing the substrate thickness. From
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the simulation results it was seen that this type of periodicity provided good frequency selection
characteristics with well-defined stopbands. In microstrip or coplanar technology. analogous
forms of corrugations may be realized by periodically varying the widths of the superconducting

films.
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Figure 5.16. Different configurations of HTS periodic waveguides: (a) alternating HTS and normal
conducting sections: (b) HTS sections periodically separated by gaps: (c) HTS waveguide with periodically
varied substrate thickness.
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We first studied the effect of nonlinearities in the HTS films on the reflection
characteristics of the periodic waveguide used as a distributed feedback resonator. Both upper
and lower conducting plates were assumed to be made of YBCO at 77K and exhibit XYS
nonlinearity. The thickness 1 of the superconducting plates was 0.9um. The substrate was
assumed to be LaAlO; with permittivity €, = 24.0g and thickness & = 5.7um. At 40GHz. the
guided wavelength A, is 1.520mm. so for first-order grating we chose the period A to be A/2 =
760um. The height of the teeth was d = 0.6um and the width was w = A/2 = 380um. The

number of periods was set to N = 20.

The waveguide was excited by a TEM-mode Gaussian pulse modulating on a 40GHz

carrier. The signal recorded at the output is shown in Figure 5.17 for different input field
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Figure 5.17. Transmitted signals recorded at the output of the HTS periodic waveguide for applied field
amplitudes equal to 0.1H.. 0.5H, and 0.9H,. The inset figure shows the zero-crossings of the signals.
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amplitudes. From the inset of the figure we see that nonlinearity in the HTS films causes the
transmitted signal to be increasingly delayed at higher input field amplitudes. Figure 5.18 shows
the spectra of the reflected signals for input field amplitudes equal to 0.1H4. and 0.9H,. It is
observed that the spectrum at the higher input field is slightly shifted towards lower frequencies
with respect to the spectrum at the lower field. The reason is that the increase in the propagation
constant 3 with input power causes the phase-matching condition of the grating to be satisfied at
lower frequencies. Thus in the frequency domain. the effect of nonlinearity is to decrease the
resonant frequency. similar to the effect caused by Kerr nonlinearity in optical DFR filters
presented in Chapter 3. From the zerocrossings of the transmitted signals in Figure 5.17 we
extracted the resonant frequencies and computed the percentage change with respect to the linear
(low-field) value. The result is plotted against the input field amplitude in Figure 5.19. The
decrease in the resonant frequency with respect to increased field amplitude is clearly seen.
Associated with this nonlinear resonance shift is the signal attenuation due to increased
superconductor loss at high input powers as a result of deeper field penetration into the HTS

films. This effect is demonstrated in Figure 5.20. which shows the transmitted amplitudes,
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Figure 5.18. Magnitude spectra of the reflected signals of the HTS periodic waveguide at 0.1H. and 0.9H,
input field amplitudes.
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Figure 5.19. Percentage change of the resonant frequency of the HTS periodic waveguide with respect 1o
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Figure 5.20. Percentage change of the transmitted amplitude at the resonant frequency of the HTS periodic

waveguide with respect to the linear (low-field) value as a function of input field amplitude.
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normalized with respect to the linear (low-field) value. as a function of the input field.

The reflection spectrum of the 20-period DFR shown in Figure 5.18 has a centre
frequency of 38.9GHz and a 3dB bandwidth of 3.1GHz. Figure 5.19 also shows that the
maximum change in the resonant frequency due to HTS nonlinearity was about 0.2%. or less
than 0.1GHz. Therefore nonlinearity does not noticeably degrade the transmission characteristic
of the DFR filter. Although it is expected that the frequency shift becomes more pronounced as
the number of periods is increased. the shift is not likely to be large enough to provide power

discrimination in this broadband filter. as was demonstrated for optical DBR filters in Chapter 3.

A potential application of the nonlinear HTS periodic waveguide is to provide harmonic
generation simultaneously with frequency filtering. It was seen in Section S.1(b) that
propagation of a sinusoidal signal with a DC bias in an HTS transmission line generates second-
order harmonic along with higher-order frequency components. If we are interested only in
second-order harmonic generation, the higher-order frequencies represent unwanted components
and should be suppressed. In particular. the third-order harmonic would be of greatest concern
since it represents the parasitic component with the highest power. By designing a nonlinear
DFR structure which suppresses the transmission of the third-order harmonic. a cleaner second-

order harmonic signal can be obtained at the output of the device.

To demonstrate the operation of such a device. consider the DFR structure in Figure
5.16(c) used to generate the second-order harmonic of input frequency f; = 25.7GHz. For third-
order harmonic suppression. we designed the periodic waveguide to have a stopband centered
around 3f, = 77.5GHz. The parameters of the waveguide were t = 0.9um. i = 5.7um. A =
380um. w = 180um ~ A/2, d = 0.6um and N = 40. A signal consisting of a sinusoidal wave at the
fundamental frequency. fo. biased on a DC component with amplitude H,. = H,. = 0.5H.. was
applied to the input of the device. The power spectrum of the transmitted signal is shown in
Figure 5.21. It is observed that both the second- and third-order harmonics are present. but the
power of the third-order harmonic is much reduced. To determine how much suppression can be
achieved by using corrugations, we compare in Figure 5.22 the power of the third-order harmonic
obtained in the DFR waveguide with that obtained using an identical but non-periodic

transmission line. The length of the nonlinear section, i.e. the interaction length. of the
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Figure 5.21. Power spectrum of the transmitted signal at the output of the HTS periodic waveguide for
input signal H,,(r) = 0.5H (1 + cos(2mfyt)). with f = 25.7GHz. The spectrum is normalized with respect tc
the power of the input fundamental frequency.
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Figure 5.22. Power of the third-order harmonic frequency generated in the HTS periodic waveguide and in
the non-periodic HTS transmission line. The spectrum is normalized with respect to the power of the input
fundamental frequency.
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transmission line was 15.2mm. which is equal to the length of the grating in the periodic
waveguide. [t is seen that the DFR structure indeed suppresses the transmission of the third-
order harmonic by as much as 62%. or 4.2dB. The conversion efficiency for the second-order
harmonic was calculated to be 2.5%, which is comparable to that of the nonlinear transmission

line.

5.4 Summary

In this chapter we demonstrated the application of the nonlinear FDTD method for
analyzing propagation in HTS media to several two-dimensional wave-guiding structures. The
method was first validated against analytical solutions for the linear HTS parallel-plate
waveguide. It was then applied to HTS transmission lines with XYS nonlinearity to demonstrate
many important effects of nonlinear propagation. Specifically. it was shown that the effect of
HTS nonlinearity is to slow down wave propagation and increase the skin loss as a consequence
of deeper field penetration into the superconducting films. In addition. the dependence of the
phase veiocity on the wave amplitude results in the formation of shock waves and possibly
solitons. It was suggested that the former phenomenon has the potential application for
generating ultrafast impulses. possibly even in the sub-picosecond range. Finally. it was shown
that the dependernce of the propagation constant on |H| also leads to the generation of harmonic
frequencies. Both third-order and second-order harmonic generations were demonstrated as a

result of nonlinear propagation in HTS resonating and periodic structures.



143

Chapter 6

Conclusions

A hybrid FDTD method for simulating electromagnetic propagation in nonlinear optical
and HTS media has been presented. The method combines the conventional explicit FDTD
scheme with a partially-implicit scheme for solving the TE scalar wave equation in nonlinear
optical materials. For TM propagation in HTS materials. a hybrid single-field leap-frog scheme
was introduced which also allows for mesh refinement via subgridding. By combining the
computational simplicity of the explicit method with the accuracy and stability of the proposed
nonlinear schemes. the hybrid FDTD technique provides an efficient algorithm for solving

Maxwell’s equations and the associated nonlinear material constitutive relation.

To assess the proposed nonlinear schemes. we presented a detailed discussion on the
relevant numerical issues such as error, stability. dispersion and convergence. In particular. a
stability condition for the nonlinear explicit FDTD method was derived. It was shown that for
Kerr-type nonlinearities, the nonlinear schemes do not impose additional stability contraint on the
algorithm, so that the overall stability of the hybrid FDTD technique is still given by the usual
CFL condition.

We verified the hybrid FDTD method by comparing numerical simulations with
analytical solutions of simple dielectric slab waveguides and HTS parallel-plate waveguides. The

method was then applied to more complex structures such as periodic waveguides and resonators
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to study nonlinear wave propagation in these devices and to demonstrate potential applications of

material nonlinearity to optical and millimeter-wave signal processing.

In the next section, we highlight the major contributions of this thesis. followed by an

outline of suggested directions for future work in Section 6.2.

6.1 Summary of Contributions

The major contributions of this thesis can be categorized into four areas: nonlinear
FDTD techniques. propagation characteristics in HTS media. nonlinear optical devices. and
nonlinear HTS millimeter-wave devices. The contributions in each of these areas are discussed in

more detail in the following.

6.1.1 Nonlinear FDTD techniques

* Implicit formulation of the FDTD method. We presented a general partially-implicit
scheme for discretizing the scalar wave equation and provided an algorithm for solving the
resulting discrete equation. The scheme reduces to the efficient nonlinear explicit FDTD
method for lossless diclectric materials. while for nonlinear materials with high loss. a
weighted-average scheme is suggested. Because an implicit scheme in general requires
solution of a matrix equation at each FDTD time step. the extra burden in computational
effort causes the method to be traditionally viewed as inefficient and not promising.
However. for nonlinear problems and problems involving highly conductive materials. we
showed that the superior stability property of the implicit scheme allows for accurate

solutions to be obtained without the need to reduce the time step below the CFL limit.

Furthermore. in low-loss linear media. the unconditional stability of the implicit scheme
offers unique advantages that are worth pursuing. For example. one area that could benefit
from the method is mesh refinement. In subgridding schemes. for every global time step the
fields in the local domain have to be marched at the local reduced time step r times, where r
is the local-to-global mesh ratio. to ensure that the CFL stability condition is satisfied. By

applying implicit discretization to the local domain. the local time step can be made equal to



CHAPTER 6: CONCLUSIONS 145

the global time step, so that the local fields can be obtained in one single pass of the FDTD
procedure. Another area that could benefit from using the implicit scheme is in the treatment
of irregular boundaries that do not conform to the rectangular Yee mesh. Because the
boundary elements are not rectangular, the CFL condition is not applicable. and the time step
must usually be reduced below the CFL limit in order to ensure stability. This constraint on

the time step can be removed by solving the fields in the boundary cells implicitly.

* Stability condition of the nonlinear explicit FDTD scheme. We presented a rigorous
stability analysis for the nonlinear explicit FDTD method. and derived an analytical
expression for the stability condition in general nonlinear optical media with instantaneous
response. The specific cases of second-order and third-order optical nonlinearities were
investigated and verified with numerical experiments. It was also shown that the nonlinear
FDTD stability condition reduces to the CFL condition for linear media. The stability
condition derived in this thesis represents a significant contribution to nonlinear FDTD
techniques because until now, stability of the nonlinear explicit method has not been fully
understood and has usually been determined by trial and error, i.e.. by running the simulation

at various reduced time steps and observing that the numerical solution remains bounded.

* Hybrid implicit-explicit FDTD technique. We introduced a method for integrating the
explicit and partially-implicit discretization schemes into one hybrid FDTD algorithm. The
technique provides a way of assigning time indexes to nodes on the interfaces between the
explicit and implicit regions so that numerical reflections are minimized. One advantage of
our proposed scheme is that the fields in both these regions can be independently computed.
lending the algorithm naturally to parallel processing. Although the idea of incorporating
different schemes in an FDTD simulation to maximize the computational efficiency is not
new. our work represents the first attempt to integrate the implicit scheme into the
conventional explicit FDTD method for analyzing structures with mixed linear and nonlinear

materials.

*  Hybrid single-field leap-frog FDTD technique with subgridding. A full-wave solution of
Maxwell’s equations using the leap-frog scheme was integrated with the TM solution of the
second-order wave equation. In addition to the advantage of memory saving, the technique
allows for the capability of mesh refinement in the local domains where the full-wave

solutions are sought. An interpolation scheme in both space and time was used to compute
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the unknown local field values on the main-grid-local-grid (MG-LG) boundaries. The special
case of a perfect electric-conducting (PEC) plate traversing the MG-LG boundary was also
treated. This case is important because it allows a PEC mode-launching waveguide to be
connected to the input of the device under simulation. When mesh refinement is used. the

hybrid scheme is stable for finite-energy input signals such as pulses.

* FDTD method for nonlinear HTS media. An FDTD algorithm for solving Maxwell's
equations simultaneously with the second nonlinear London equation as a constitutive
relation for HTS materials was presented. Based on Cummer’s Direct Integration scheme.
the algorithm does not require solution of nonlinear equations at each time step, and thus can
be executed with the numerical efficiency of the explicit FDTD scheme. As a result. the
method is considerably faster than the traditional approach based on the Ginzburg-Landau
equations. An expression for the numerical dispersion relation of the discrete equation was
also derived. The method was verified for linear HTS parallel-plate waveguides for which

approximate analytical solutions are known.

6.1.2 Propagation in HTS media

* Relationship between the London and Ginzburg-Landau theories of superconductivity. It
was shown that. if the penetration depth is assumed to vary with the magnetic field. the
second nonlinear London equation can be directly derived from the second GL equation. We
then hypothesized and verified that the first GL equation is responsible for the nonlinear
Meissner effect. and explicitly computed the functional dependence of the penetration depth
on the magnetic field as predicted by the theory. The result allowed us to compare the GL
theory with experimental measurements of A and the more recently developed theory of Xu,
Yip and Sauls. The conclusion is that the GL theory and experimental data agree in the low-

field limit but deviate from each other as the field approaches the critical value.

*  Electromagnetic analysis of HTS media using the London theory. The above relationship
between the London and GL theories allows us to formulate an analysis of nonlinear
propagation in superconductors using the second London equation as the material constitutive
relation. Nonlinearity is accounted for via the nonlinear Meissner effect which describes the

dependence of the penetration depth on the magnetic field. This method of analysis is
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universal in that it can accomodate both theoretical and empirical nonlinear material models.
so that as more accurate and rigorous models of A(H) become available. they can be readily

incorporated into the analysis.

* Nonlinear phenomena associated with propagation in HTS media. The effect of
nonlinearity on wave propagation in a superconducting medium is to decrease the wave
velocity and increase the dissipation. as a result of deeper field penetration into the material.
Focusing our study on HTS materials with XYS nonlinearity. we went on to demonstrate that
a superconducting transmission line can support shock waves and solitons. Specifically.
depending on its amplitude and spectral content, an input pulse can evolve into a shock wave
or a solitary wave as a result of the competition between waveguide dispersion and HTS
nonlinearity. We also showed that under the condition of continuous-wave excitation,
propagation in an HTS transmission line also leads to the generation of new harmonic

frequencies.

6.1.3 Nonlinear optical devices

* Power-selective DBR filters. It was demonstrated by numerical simulations that Kerr-type
optical nonlinearity causes the resonance spectrum of a dielectric waveguide with
periodically varying index to shift toward longer wavelengths. Consequently. the passband
of a nonlinear DBR filter can be made to vary depending on the power of the input signal.
We suggested that this effect could potentially be used to realize optical filters that also

discriminate the signal power.

* Nonlinear microring mixers. We proposed a nonlinear optical microring resonator for use as
a three-wave mixing device. Due to the high intensity of the optical field circulating in the
resonator. strong nonlinear mixing can be achieved which results in high conversion
efficiency. In addition, very narrow output channel wavelengths can be obtained due to the
high quality factor of the microring. Over a narrow bandwidth where waveguide dispersion
is small. the microring mixer can be used to generate a spectrum of equally-spaced
wavelength channels, each comresponding to a resonance mode. for use in wavelength

_division multiplexing optical communication systems.
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6.1.4 Nonlinear HTS millimeter-wave devices

* Nonlinear HTS tapped-delay lines. It was stated that nonlinearity causes the phase velocity
in an HTS transmission line to depend on the amplitude of the propagating signal. This
phenomenon provides a way of controlling the phase delay of an HTS transmission line
section by varying the signal amplitude. We showed that the sensitivity of the phase delay
with respect to the signal amplitude is high enough to potentially allow for the use of HTS
transmission lines as elements in a tapped-delay line. Such a structure may be used to

perform novel analog signal processing functions based on the wave amplitude.

* Impulse generation using HTS transmission lines. The dependence of the phase velocity of
a pulse on its amplitude causes the pulse falling edge to become increasingly sharpened with
the propagating distance. eventually leading to the formation of shock waves. Using this
phenomenon. we demonstrated picosecond pulse compression on a nonlinear HTS
transmission line. At low operating temperatures where the skin loss of the waveguide is
small. it is suggested that this technology has the potential of generating pulses in the sub-

picosecond range.

* Harmonic frequency generation using HTS nonlinearity. The generation of second-order
and third-order harmonic frequencies in a nonlinear HTS transmission line was demonstrated.
We suggested that the conversion efficiency could be improved by taking advantage of the
intense field stored in a resonating structure such as the one-dimensional HTS resonator.
Also. suppression of high-order harmonics could be achieved by having the nonlinear process
take place in a distributed feedback structure. Besides harmonic generation. HTS
nonlinearity may also be used in similar devices for frequency mixing and parametric

amplification.

6.2 Future Research Directions

The hybrid nonlinear FDTD method presented in this thesis solves the TE scalar wave
equation and TM full-wave equations in two-dimensional structures, which do not exhibit cross-
polarization effects. In order to account for this nonlinear phenomenon. the method needs to be

extended to three dimensions. Many millimeter-wave devices, such as those based on coplanar
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waveguide and microstrip technologies. are inherently 3D structures. Furthermore. HTS
materials and many optical crystals tend to be highly anisotropic., so a more accurate analysis
would require the inclusion of anisotropy. Extension of the hybrid method to three dimensions
with anisotropy is straightforward. requiring only minor reformulations of the scheme. although
the computational complexity will increase considerably. In addition. numerical analyses of
stability and convergence become significantly more unmanageable for the nonlinear wave

equation in 3D.

Other types of material nonlinearities may also be incorporated into the FDTD solution of
the wave equation. An immediate example is optical materials with finite response time. In this
case. the medium constitutive relation is described by a differential equation, which must be
solved simultaneously with the wave equation. The method of solution is not much different
from our proposed FDTD scheme for HTS materials. whose constitutive relation is also governed
by a differential equation. Other types of materials include nonlinear dispersive materials and
nonlinear magnetic materials. In general. the more complex the constitutive relation. the more
challenging it is to ensure stability and convergence of the numerical solution. In these cases. the

implicit scheme could prove to be beneficial.

Several computational aspects of the FDTD method may also be improved to provide
more accurate and efficient numerical solutions. For example. the perfectly-matched layer (PML)
boundary condition may be implemented to reduce reflections from the boundaries. Also. the
computation speed of the hybrid implicit-explicit scheme may be accelerated by employing

parallel processing techniques.

A numerical method for electromagnetic analysis of HTS media was presented in this
thesis. The next step is to experimentally verify the numerical results and the mathematical
models used in the analysis. Specifically. the validity of the nonlinear London theory of
superconductivity needs to be experimentally confirmed for different ranges of temperatures and
frequencies. and for different types of superconductors such as low-T, materials and type [ and
type II high-T. materials. This is accomplished by performing microwave measurements on
simple HTS structures such as microstrip transmission lines. and comparing the measured data
against simulated results. The extent to which theory agrees with experiments will provide an

assessment of the mathematical models used and their limitations.
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Finally. a number of novel nonlinear device concepts were proposed. both in the optical
and millimeter-wave regimes. Specifically. we demonstrated numerically the operations of
nonlinear optical DBR filters, optical microrings for frequency mixing. HTS transmission lines
for impulse generation. and HTS resonators for millimeter-wave frequency mixing. By
fabricating these devices and experimentally evaluating their performances. practical issues such
as power-handling capability and strength of material nonlinearities can be investigated to

realistically assess the practicality and potential commercial applications of these devices.
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Appendix A

Stability Analysis of the Nonlinear Wave Equation

We present here an analysis of the stability of the fully-explicit FDTD scheme for the
nonlinear wave equation.

L2, E)-
%

2 2
o’ o )
- z~  dx~

Using the index notation E,-'_'j = E(iAz. jAx.nAt). the fully-explicit discretized form of the above
hyperbolic equation is

(erE):.’_jl - 2(8,5):{] + (s,E);';'

(car)? 7 0((A’ 7

(A2)
_ ElLj—2Elj+ Ei':»l.j Eij —2E(; + Efjn +0((A:)2 (At)z)
(az)® (Ax)?
. cAr _cAt _ n .
Letting ©. =I .0, = ~ and g,-'fj -(E,E)‘-_j. we can rewrite Eq.(A.2) as
n+l n—1

=g v02er,  -2Er v e, )r02(Er, £l v ED)
+0 (Az)z.(Az)Z.(Af)z)
= F(Ei'.'r El ;i -El - Eli-Ef ju )
(A.3)

We shall now show that if the function F is monotonically increasing, then the discretization
scheme (A.2) is stable.

From Eq.(A.3) we see that the sum gt

ij + g{fj'»' is bounded by the extreme values of F.
ie..
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me—gz";l"’gﬁ;lspmax' (A.4)

Define E". = min{E H j} and Ef,, = max{E,—'_' j—} for all nodes (i. j). Observing that the quantity

min

=¢,.E is also maximum at E.,, and minimum at E,,. if F is a monotonically increasin
g r

function. then we have from Eq.(A.3) that

Fmiﬂ = F(En Er’rlun min*® Er'rlxin * Er,rllin )= 2g r,:-un ’ (A.5)
and Frax =F(Egmx°Er’r'mx'Erlllmx'Er'!lmx Eglax) 28 max - (A.0)

Relation (A.4) thus becomes
|
Zgg“n-g,"j +g:_/ —-gmax (A.7)
Focusing our attention first on the second inequality in (A.7). we have since g/’ j < gmu that

1 1
8l +8i —81"7 +gil <2gM ... (A.8)

Proving by induction. we first assume g . < gmax or

n-| (A.9)

~ 8max S gmax

and add both sides of the second inequality in (A.8) to (A.9) to obtain

87! < gthax - (A.10)
In a similar manner. if we assume gmm 2> 3mm . then it can be shown that
n n+l (A.1D)

gm|n =8i. J

Together. relations (A.10) and (A.11) give a statement on the boundedness of the quantity g at

time step n+1:

I . .
gmm _g,j < g max for all i. . (A.12)
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The above condition shows that g at any time step is always bounded by the extreme values at the
previous time step. implying by the principle of Local Extremum Diminishing that the numerical

scheme in Eq.(A.2) is stable.

The stability of the nonlinear scheme deduced above results from our assumption that the
function F is monotonically increasing. We now seek to find the conditions for the monotonicity
of F. which will also give the stability conditions of the fully-explicit scheme. In order for F to

be monotonically increasing. all its first-order partial derivatives must be positive. i.e..

n R

oF =2ag"’ -202-202>0 (A.13)
oE!.  EM =TT

i.J i.J

af = a"F =62 20, (A.14)
dE;, j OE; . j

and - anF =- anF =07 20. (A.15)

OE; ;i OE; ;.

Conditions (A.14) and (A.15) are automatically satisfied. For condition (A.13) to be true, we

must have
. gl
02 +02 < 5 (A.16)
aE{fj
dg" - ) P
or (cary?) == >+ —— ISI. (A.17)
oE!; | [(az)y”  (ax) ]

Condition (A.17) gives a constraint on the time step Ar and grid sizes Az and Ax required for the

nonlinear fully-explicit FDTD scheme to be stable.
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Appendix B

Dispersion Analysis of the Linear Wave Equation

B.1 Fully-Explicit Scheme

In the linear medium region. the explicit discrete equation (A.2) for a node (/1. k) becomes

n+l n n—1
Epy —2E,; +Epy
9
VAL )”®
(vAr) (B.1)
-n _9fn n n _ypn n
CEhu 2B v Epn Eppoy m2EL . YEf g

(ac)? (ax)?

where v =c/,/e, is the velocity of light in the medium. Letting 6. =% and 6, =%. we
> X

can rewrite the above equation as

+1 2 2 \en 2 2 -1 _
Eyy ‘2(1‘9: -0x )Eh.k _OZ(EI':-—LL- +Ef ik )‘ 0y (El':.k-l +Ep )* Ep; =0
(B.2)

Define the Fourier mode
Ej = A JB:hAz g JBokAY (B.3)

where j=+-1. A.=|A|ej° is in general a complex number, and B. and B, are the propagation

constants in the z- and x-direction, respectively. Applying the above test solution to Eq.(B.2) and

kAx

after factoring out the common factor A"~ /8742 /B , we get
g g

A%~ 2(1 -2 - ei) -202Acos(B.Az)— 202A cos(B Ax)+1=0. (B.4)
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Letting w. =B.Az/2 and y, =B ,Ax/2 . Eq.(B.4) can be simplified to

32 -2(1-202sin%y_ ~202sin2y h+1=0. (B.5)
Further defining &2 = 63 sin> V. +9_:'; sin? V¥ .. we obtain the solution to Eq.(B.5) as

A= (1 —éz)i JENJ1-E (B.6)

Assuming ¢ < 1. which is the stability condition of the fully-explicit scheme. the amplitude of A is

p-{-eF rserf-e?)] -

and the phase is given by

28
tanp =+ = (B.8)
1-&~
Expanding the right-hand side of Eq.(B.8) in a Taylor series. we get
tan¢ = +(7§ +383 + Bgd -2g7 +) (B.9)
from which the phase ¢ can be estimated as
o=ttan"'(22+32% + 25 - 227 +. )-she+ 183 +..) (B.10)

To express ¢ in terms of Ar. Az, and Ax. we approximate & using Taylor series expansion:

2
§=(9§ sin? W +02sin° \yx)l/

/2
2 n 3 ]
[6 wo—Lwledyl- --)'+9;(\v_r—§wx+§w§—~-)'}

v
o2 °+erw()—%( teotui)e..}?

| 203
() bk 2 o biaf ]

P
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. . 2 2 2
Using the relation K~ =B7 +f3, we get

2
£= kvAr - 1 B A~ . BzAx
2 24| &k k

2
] _ ®.11)

Substituting the above result into Eq.(B.10) gives the final form for the phase

2 -
0= +hvAri]——— B-A:
240 &

] [B A‘] +—(kvAt) (B.12)

B.2 Weighted-Average Scheme

The discrete equation for the weighted-average scheme is

+1 i o+l +1 +! +1 +1 +1
Eix =2Epi +Eqy _1L Eplix = 2Enx + Eix +E;:A 1 72E5 0 Y Epa
(var)? 4 (az)? (ax)?
oL Epyx —2E5 +Ef s . Epp— 2By Y EL
2 (az)? (ax)?
e 1 -1, 1
oA Ep s E"L +Elx+lL . Epio1 —2E5p + Ef gy
4 (az)? (ax)?
(B.13)
which can be rewritten as
02 0 03 ( a ) 0% (nut n+l
(HT*—,‘]E" T( [ty +EI':+IL) _4“(’5“ |+EH+1)
2 o? )- 03 (n n
‘(2‘9: 0y )EhL T( 1k * Ensix '2_( hok— l+EhA+l) (B.14)

62 03| a 02 ( nu o )02 (pnnt -1
+[1+T+TX]E;:A- ‘—~(E;"-|. EI’:HL) 2 (EhL x*’El':m)'O
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Applying the Fourier mode given in Eq.(B.3) and after simplification. we get

(l+6§ sin® y. +02 sin> W,r)\z —2(1—93 sin® y_. -02sin” W.\')‘

+(l +9‘3: sin’ v, + 9% sin> W )=O,

or in terms of &.
(l+&_2)»2 —2(1—&2)\+(l+§2)=0.
The solution to Eq.(B.16) is

+ j2
2

>n
n
|
Jn
9
S
g

+
Jes

from which we see that the amplitude is

1+E°

=l‘

A[=

and the phase is given by

ran® =x :§2=i2('&_,+§3+§5+ )
1-g
or  o=xfg-282+.)

Using Eq.(B.11) for &, we get the final result

20V (a2A )
0 = thvard - [Pﬁ\ +[&J ]_L(km,)-’-
214l & J k 12
d

B.3 Fully-Implicit Scheme

The fully-implicit discretization of the wave equation is

171

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)
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n+li n n-1 n+l n+l n+l n+l n+l n+l
Eni —2Ep4 *Epy Eplix —2Epx YEpiix Epg —2Egx Y Epiy

= = (B.21)
(var)? (az)? (Ax)’

which can be written in terms of 0. and 8, as

2 2 \pn+l _q2(pn+l n+l )_ 2( n+l n+l )_7 n n-{ _
(” 20; +26% )Eh.k BI(Eh—l.k +E k)" O\Ep g Y Ep )7 2E, Y Ey =0

(B.22)

Applying the Fourier mode in Eq.(B.3) to the above equation and after some simplification, we

get

(1+40§ sin? V. +49_?€Sin2‘llx)~2 -2A+1=0. (B.23)
or in terms of &,

(1+4§2)’»2-2?~+l=0. (B.24)

The solution to the above equation is

+ iE
=122 (B.25)
1+45°
from which we see that the amplitude is given by
5 1
A= ——==<1. (B.26)

\/l+4§2 -

Thus the fully-implicit scheme suffers from amplitude attenuation. The attenuation factor can be

shown to depend predominantly on the time step as

A =1-1 (kvar)>. (B.27)





