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Abstract

Over the past 20 years a great deal of progress has been made towards understanding the
physics of the high-temperature (high-T,.) cuprate superconductors. Much of the low-
energy physics of these materials appears to be captured by two-dimensional Hubbard
or t-J models which have provided significant insight into a number of properties such
as the pseudogap, antiferromagnetism and superconductivity itself. However, intrinsi-
cally planar models are unable to account for the large variations in T, observed across
materials nor do they capture the electron-phonon (el-ph) interaction, the importance of
which a number of experimental probes now indicate.

This thesis examines the el-ph interaction in cuprates using a combination of ana-
lytical and numerical techniques. Starting from the microscopic mechanism for coupling
to in-plane and c-axis polarized oxygen phonons, the theory of el-ph coupling is pre-
sented. The el-ph self-energy is derived in the context of Migdal-Eliashberg theory and
then applied to understanding the detailed temperature and doping dependence of the
renormalizations observed by Angle-resolved photoemission spectroscopy. The qualita-
tive signatures of el-boson coupling in the density of states of a d-wave superconductor
are also examined on general grounds and a model calculation is presented for el-ph
coupling signatures in the density of states. Following this, the theory is extended to
include the effects of screening and the consequences of this theory are explored. Due to
the quasi-2D nature of the cuprates, screening is found to anomalously enhance the el-ph
contribution to d-wave pairing. This result is then considered in light of the material and
doping dependence of T. and a framework for understanding the materials variations in
T. is presented. From these studies, a detailed picture of the role of the el-ph interac-
tion in the doped cuprates emerges where the interaction, working in conjunction with a
dominant pairing interaction, provides much of the materials variations in T, observed
across the cuprate families.

Turning towards numerical techniques, small cluster calculations are presented which
examine the effects of a local oxygen dopant in an otherwise ideal BisSroCaCusOg.yg
crystal. Here, it is demonstrated that the dopant locally enhances electronic properties
such as the antiferromagnetic exchange energy J via local el-ph coupling to planar local
oxygen vibrations. Finally, in an effort to extend the scope of this work to the underdoped
region of the phase diagram, an examination of the properties of the single-band Hubbard
and Hubbard-Holstein model is carried out using Determinant Quantum Monte Carlo.
Here focus is placed on the spectral properties of the model as well as the competition
between the the antiferromagnetic and charge-density-wave orders. As with the small
cluster calculations, a strong interplay between the magnetic and lattice properties is
observed.
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Chapter 1

Introduction

1.1 High-Temperature Superconductivity

The pursuit of an understanding of high-temperature superconductivity (HTSC) in the
copper oxide family of transition metal oxides is one of the most intriguing questions of
modern condensed matter physics. However, despite more than 20 years of research since
their initial discovery in 1986 by Bednorz and Miiller [I], there is still no clear consensus
on the underlying physics of these systems and no comprehensive microscopic theory
exists. In fact, not only does the theory of Bardeen, Cooper and Schrieffer (BCS Theory)
[2, 3, 4] fail to provide an accurate description of the superconducting state but even
the traditional mechanism for electron pairing - a net attraction mediated by a phonon
- is generally thought to be inappropriate. Furthermore, superconductivity aside, the
cuprates still represent a serious challenge to the community in that even the normal
state properties of these materials are not well understood.

It is generally accepted that the principle barrier to understanding the physics of
the cuprates is due to the fact that they are members of a class of systems with strong
electron-electron (el-el) interactions known collectively as “strongly correlated systems”.
In such systems the el-el interaction is strong enough that the traditional Fermi Liquid
picture breaks down and the system can no longer be regarded as a sea of nearly free quasi-
particles in a band. As a result, a number of new theoretical techniques such as Quantum
Monte Carlo (QMC) methods, along with refinements in experimental techniques such as
Angle-Resolved Photoemission Spectroscopy (ARPES), have been developed. Although
understanding HTSC may open the door for manufacturing materials with still higher
T.’s it is clear that the last 20 years of research have been fruitful if only for these
advances.

One point of view regarding the cuprates is that their complexity is the result of a
number of competing interactions, which are brought in and out of play by various factors
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Figure 1.1: The generalized temperature-filling phase diagram of the high-T. cuprates.

including doping, pressure and temperature. This is exemplified in the “universal” phase
diagram for these materials. The now familiar temperature-doping phase diagram for the
hole- and electron doped cuprates is shown in figure[l.1} The undoped parent compounds
are charge transfer insulators displaying long range anti-ferromagnetic (AFM) order up
to a rather high Néel temperature. As the system is doped with carriers the magnetic
order is suppressed and superconductivity emerges at low carrier concentrations. With
continued doping T continues to rise until an optimal doping of ~ 1.16 carriers/ Cu atom
is reached. Beyond this point further doping only serves to suppress superconductivity.

The region between the AFM and superconducting dome is referred to as the pseudo-
gap phase - an anomalous region where many properties, including portions of the Fermi
surface are gapped out but superconducting order does not appear to be present. The
presence of the pseudogap has been interpreted in one of two ways; 1) the pseudogap is a
precursor to the full superconducting energy gap, where the system has a strong pairing
interaction but lacks phase coherence [5] or 2) it is a distinct energy gap due to some sort
of competing but presently hidden order such as a charge- or spin-density wave [0}, [7]. At
present, the debate over the one or two-gap issued is ongoing and serves as an example
of the unusual normal state properties of the high-T. cuprates.

Above the superconducting dome is a region where strange metallic behaviour begins
to emerge which does not conform to the traditional Fermi liquid picture. For example,
this region is characterized by a resistivity which famously varies linearly with temper-
ature T [8] as opposed to the T? dependence predicted by Fermi liquid theory [9, [10].
For this reason this region is often referred to as a “marginal Fermi liquid”. Finally,
on the overdoped side of the phase diagram the cuprates begin to conform well to the
Fermi-liquid description. Each of these regions of the phase diagram is an active field of
research and the breadth of physics to be explored is large. In the case of electron doping,



the AFM phase extends far further and possibly makes contact with the superconduct-
ing phase. Furthermore, it is unclear if there is a corresponding pseudogap phase in the
electron doped cuprates [11]. Finally, in the normal state, the electron- doped cuprates
also appear to conform closer to the expectations of Fermi liquid theory as indicated in

figure [1.1]

All of these areas of the phase diagram are being actively examined by various mem-
bers of the community and understanding the physics of the cuprates is clearly an im-
mense endeavour. This thesis will focus on a single aspect of the cuprate problem - that
of the role of the electron-phonon interaction. In the early days of high-T,. a sort of
consensus emerged in the community with the belief that phonons played a negligible
role. However this conclusion may have been premature. Thanks to a number of exper-
imental advances in the past 20 years a number of probes have uncovered evidence for
a significant el-ph interaction across whole families of cuprates. As a result, a number
of research groups have brought the question of phonons back to the forefront of high-
T. research. However, before proceeding to a review of the pertinent experiments and
theoretical work, a more general review of the properties of the cuprates is in order.

1.2 Properties of the High-T. cuprates

1.2.1 Crystal Structure

The crystal structure of the Hg-family of high-T. cuprates HgBayCa,,_1Cu,,Oyy, s is
shown in figure [1.2] This structure is representative of the other families of cuprates
in that these are quasi-two dimensional materials consisting of one or more CuO, planes
situated between rock salt layers (in this case the BaO/HgO layers). Traditionally these
layers are thought of as charge reservoirs for accepting interstitial or substitutional dopant
atoms. Such dopants donate or accept charge to the CuO, layers, where the low energy
physics occurs, and it is through this doping process that a number of the interesting
properties of the cuprates emerge. However, the introduction of these dopant atoms has
additional effects, which will be discussed in greater detail later in this work.

In the normal state these materials exhibit a strong anisotropy in transport and are
poor conductors along the c-axis perpendicular to the planes. Furthermore, experiments
indicate that superconductivity is largely confined to the CuO, planes [12] and for this
reason many theoretical models have focused on CuOs plane and neglected the remainder
of the crystal. However, in recent years this picture has begun to change and there is an
increasing amount of evidence pointing to the importance of the c-axis structures and
other off-plane effects. This is perhaps unsurprising since the maximum T, obtainable
with doping varies dramatically from material to material. As the number of CuO, layers
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Figure 1.2: The crystal structure of the HgBasCa,,_1Cu,,Oy4p 45 (n = 1 —5) family of high-T.
cuprates.

n is varied, T.s at optimal doping increase until n = 3 and decrease beyond this point.
Within a fixed number of layers, T, can be varied quite substantially as the atoms in the
charge reservoir layers are changed. In the single layer systems this effect can be quite
dramatic where T, varies by a factor of three. The role of off-plane effects will resurface
as a recurring theme throughout this work.

1.2.2 Electronic Structure in the Normal State

Much of the low energy physics in the cuprates occurs within the CuOs planes in bands
formed by the Cu and O atoms. Copper is a transition metal ion and, in the atomic
limit, it has a partially filled 3d%4s' valence state. In forming the solid the weakly bound
Cu 4s electron is liberated leaving the partially filled 3d orbital to hybridize with the
ligand oxygen atoms. Similarly, charge from the rock salt layers fills the O 2p orbitals
leaving them with a 2p® shell in the atomic limit. As shown in figure [1.2] the Cu atoms of
the outermost layers occupy an octahedral environment centred between 6 ligand oxygen
atoms (or 5 in multi layer systems). The crystal field generated by this ligand oxygen
configuration lifts the five-fold degeneracy of the 3d orbitals separating them into the e,
doublet and t,, triplet, as shown in figure [I.3]

The Cu®* ion is a well known Jahn-Teller ion [13] and in the cuprates this leads to
an elongation of the octahedron along the c-axis. The degree of elongation will vary
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Figure 1.3: A schematic of the orbital energy levels and covalent bonding in the CuOs plane.
Adapted from reference [13].

from material to material with the details of the environment, and it lifts the remaining
degeneracy of the ey, tp, orbitals leaving the 3d,2_,2 orbital lying highest in energy. The
crystal field of the tetragonal environment also lifts the degeneracy of the three O 2p
orbitals. Covalency effects then hybridize the orbitals, forming bands. The highest lying
partially filled band is the pd-o* band composed of the Cu 3d,2_,» and the O 2p,,
orbitals. These are the standard set of orbitals considered in multi-band tightbinding
models for the cuprates. From the simple valence consideration given above, one expects
that the undoped parent compounds of the cuprates will have a single hole per CuO,

unit, leaving the pd-c* band half filled. For this reason, this electronic configuration is
generically referred to as “half-filling”.

Based on the considerations above, one would expect the half-filled case to be metallic.
This expectation is confirmed by density functional theory (DFT) calculations using the
local density approximation (LDA). However, the parent (half-filled) compounds are
universally observed to be insulators displaying a long-range anti-ferromagnetic order.
This is due to a strong el-el interaction present in transition metal ions which were
neglected in the considerations thus far. Due to the electron’s high angular momentum,
the 3d wavefunction is spatially confining, and two electrons placed into these orbitals
cannot separate far from each other. They therefore exert a strong Coulomb interaction
upon one another and a large Coulomb energy must be paid to place two electrons into
these orbitals. In the case of the half-filled cuprates the el-el interaction localizes the hole
in the Cu 3d,2_,2 orbital, resulting in an insulating state. However, once the system is
doped with additional holes/electrons this barrier is removed and properties illustrated
in the phase diagram begin to emerge. The manner in which the cuprates are doped
away from the half-filled parent insulator will be discussed in greater detail in chapter [9]



Figure 1.4: A schematic picture of the
Zhang-Rice Singlet (ZRS).

1.2.3 The Zhang-Rice Singlet

The physics of the underdoped high-T. cuprates is thought to be that of a doped Mott
insulator [5]. Early on, Zhang and Rice showed a doped hole introduced to the antiferro-
magnetically ordered CuQOs plane of the parent system will primarily form a superposition
on the planar ligand oxygen sites [I4]. The doped hole forms a local singlet with the
localized hole on the Cu 3d,2_,2 site and the phase of the ligand hole alters, as shown in
figure [.4] in order to maximize its kinetic energy. This object is commonly referred to
as the Zhang-Rice Singlet and is thought to be the basic building block of the low-energy
excitations of the underdoped cuprates. Implicitly, when one works with down-folded
single-band models such as the single-band Hubbard or ¢-J model, where the oxygen
degrees of freedom have been integrated out, the carriers are thought to be ZRSs free to
move on a reduced square lattice.

1.3 Beyond the CuQO, Plane

As alluded to in section 1.2.1, there are increasing indications that c-axis structures and
effects off of the CuO4 plane are important to understanding the physics of the cuprates.
The most obvious example of this is the variation of T, with material composition which
was previously discussed. It is also empirically known that the location of out-of-plane
cation dopants with respect to the apical oxygen site can have a dramatic effect on how
rapidly T, is suppressed [15] [16], I7] and, in comparison, in-plane dopants have much less
of an impact on T..



T. has also been empirically linked to the Madelung energy difference between the
apical and planar oxygen sites A®,4 (or the Cu-Apical O bond distance) [I8]. This has
been supported by the recent ARPES studies on the multi-layer BayCazCuyOgFy systems,
where the apical O has been replaced with F [19, 20} 21], resulting in a vastly different
T. than in its counterparts with apical oxygens. Theoretical work has linked A®, to
the in-plane next nearest neighbour hopping of the ZRS #'. Pavarini et al. have shown
that the maximal T. in a given family scales with ¢ [22]. This is due to an increase
in the apical 2p,-Cu 4s hybridization with smaller A®,4. A strong 2p,-4s hybridization
raises the energy of the Cu 4s orbital relative to the pd-o* band and reduces the effective
O-0O hopping via the 4s pathway. Therefore, the further away the apical sits from the
CuO, plane, the higher the effective . T, has also been linked to an increase in the
overall magnitude of the coupling to the apical phonon mode which can be detrimental
to d-wave pairing via the phonon’s contribution to pairing in the s-wave channel [23].

Scanning Tunneling Microscopy has also linked in-plane electronic properties to off-
plane structures and dopant atoms. For example, STM has mapped the location of out-of-
plane oxygen dopants in BiySroCaCuyOg s (Bi-2212), and correlated these positions [24]
with features in the local density of states. This has been interpreted as an increase in the
local superconducting pairing potential by the dopant atom [25], 26, 27 28]. Furthermore,
real space modulations in the superconducting gap have been linked to supermodulation
effects in Bi-2212 [29].

All of these observations are difficult to reconcile with intrinsically planar models and
point to the need for considering off-plane effects. This need has been underscored by
the growing recognition of the importance of c-axis polarized oxygen phonon modes in
the cuprates [30], 31, 32, 33].

1.4 Phonons in HTSC

The original intuition by Bednorz and Miiller was that HT'SC would be caused by a strong
el-ph interaction with modes associated with the Jahn-Teller distortion in transition metal
oxides [I]. However, in the early days of high-T. the idea of phonon mediated pairing
was abandoned by many in favour of electronic pairing mechanisms. This is a possibility
that has been pursued heavily by the community, be it in the form of a boson exchange
analogous to phonons [34, [35], or an instantaneous mechanism associated with single
formation in the doped AFM such as the Resonating Valence Bond scenario proposed by
Anderson [36, [5].

In general, the role of phonons has been thought to be minimal. This is largely
due to several early experiments suggesting weak el-ph coupling in the cuprates. These
include the small isotope effect at optimal doping [37, 38, 39] and the apparent absence of



effects from phonons in the temperature dependence of the resistivity [40, 41]. However,
continued isotope experiments have shown that a substantial isotope effect, even in excess
of the v = 0.5 value predicted by BSC theory, occurs in underdoped samples [42], [43].
This seems to indicate that phonons are playing a role of some kind in the cuprates, and
this role is more pronounced in the underdoped region of the phase diagram.

It has also been argued that the d-wave nature of the superconducting gap does not
support a phonon pairing mechanism, since all known phonon-mediated superconductors
exhibit an s-wave energy gap. However this does not immediately preclude phonons
in the cuprates. For example, it has been shown that the el-ph vertex for coupling to
two c-axis oxygen phonon modes in the cuprates is attractive in the d-wave channel
due to the charge-transfer nature of the coupling [30] [44]. Renormalization effects can
enhance coupling in the d-wave channel if the remormalization enhances the forward
scattering peak in the el-ph interaction over the interaction at large momentum transfers
[45], [46]. Indeed, several works have shown that the effects of strong correlations will
do just that, suppressing the backward scattering peak at a rate faster than the forward
scattering peak [45,147]. As will be demonstrated in chapter @, the effects of poor screening
in the cuprates can contribute to the d-wave channel of the el-ph vertex by a similar
enhancement (suppression) of the small (large) q scattering. This renormalization may
also explain why the el-ph coupling is absent from the transport measurements.

Additional compelling evidence for the importance of phonons in the high-T. cuprates
comes from angle-resolved photoemission (ARPES) experiments. ARPES has uncovered
bandstructure renormalizations which have been interpreted as due to el-boson coupling,
with phonons being a likely candidate. Similar signatures have been observed in scanning
tunneling microscopy experiments in the form of modulations in the tunneling derived
density of states. The tunneling experiment is analogous to the pioneering work by
McMillian and Rowell [48], 149, [50] and the ARPES work has been considered as an angle
resolved equivalent. Furthermore, workers in both fields have found that these signatures
exhibit a clear *O isotope shift lending further support to the importance of the el-ph
interaction. In addition to this, a recent ARPES study on the parent compound of the
electron-doped cuprate CasCuO,Cly; uncovered broad spectral features at high binding
energy, normally associated with the lower Hubbard Band. The shape of this lineshape
does not conform to the expected Lortenzian form but rather is gaussian [51]. This has
been interpreted as a Franck-Condon sideband due to the formation of small polarons.

Since many of these experimental observations are the focus of this work, a more
detailed discussion of the evidence gathered by ARPES and STM will be given in the
following chapter. However, for the reasons given here it is clear that the issue of the el-
ph interaction in the cuprates is unresolved. Furthermore, due to the complex nature of
the cuprates, understanding the exact role of phonons in these materials is a worthwhile
undertaking as there is great potential for non-intuitive and interesting physics.



1.5 Scope and Organization

This thesis sets out to examine the role of el-ph interactions in the high-T,. cuprates
using a combination of analytical and numerical techniques. The overall organization is
as follows. In chapter 1 (this chapter) focus is placed on introducing superconductivity
in the cuprates and presenting some of their basic properties as well as a brief discussion of
the general arguments for and against the consideration of the phonons in these materials.

In chapter 2 a more comprehensive review of the literature will be conducted. This
will begin with a review of experimental data pertinent to el-ph coupling in the cuprates.
Here, focus will will be placed on data obtained from Angle-resolved photoemission spec-
troscopy and scanning tunneling microscopy, however neutron, infra-red and Raman
spectroscopy results will also be briefly discussed.

Chapters 3 and 4 will present aspects of the theory of el-ph coupling in the high-T,
cuprates within the framework of Migdal-Eliashberg theory, which is generally applicable
in the optimal and overdoped cuprates where the effects of correlations have been reduced
by doping. Chapter 3 will focus on the derivations of the el-ph vertices for coupling to
the relevant optical oxygen modes as well as the expressions for the self-energy. This
formalism will then be applied to understanding the anisotropy of the couplings and the
manifestation of this anisotropy in the single particle spectral function. In chapter 4 the
finer details of the temperature, doping and materials dependence of the renormalizations
observed in the high-T, cuprates will be examined. This effort will provide a means to
distinguish between the various proposed mechanisms for the band renormalizations.
Here, it will be shown that the coupling to the spectrum of oxygen phonon modes is the
most consistent interpretation given the available data.

In Chapter 5 attention is turned to the role of el-ph coupling in modulating the
density of states as probed by STM. Here, focus will be placed on understanding the
difference in phonon mode estimates obtained by STM and ARPES experiments as well
as what can be learned by the qualitative structure of these renormalizations in the
density of states.

Chapter 6 will examine the role of poor screening in the cuprates with the goal of
understanding how the quasi-2D nature of the cuprates directly affects the screening of
the el-ph interaction as a function of doping. It will be shown that as the system is
progressively overdoped the contribution to d-wave pairing provided by the phonons is
enhanced. Following this, considerations of the phonon’s role in d-wave pairing will be
considered with a straight-forward multi-well model for T.. In doing so, a framework for
understanding the variations in T, across the families of cuprates will be formulated.

In Chapter 7 a departure from the analytical methods used up to this point will
occur as the impact of local dopants is explored in an ideal Bi-2212 crystal. Here,



using exact diagonalization on small multi-band Hubbard clusters, it will be shown that
oxygen dopants modify a number of properties of the cuprates and an entanglement of the
lattice and magnetic degrees of freedom occurs, locally modifying the antiferromagnetic
exchange energies J and J', as well as the mobility of the ZRS through the dopant’s
impact on the lattice degrees of freedom.

This focus on numerical results for el-ph coupling in strongly correlated systems will
continue in chapters 8 and 9 as attention is turned to Determinant Quantum Monte
Carlo results on the Hubbard-Holstein model. The Hubbard-Holstein model is the sim-
plest model which includes both el-el and el-ph interactions. Here, focus will be placed
on the half-filled and nearly half-filled systems representative of the underdoped side of
the phase diagram. Chapter 8 will present the details of the method while Chapter 9 will
present the results of these calculations as well as provide a brief review of the literature
on the subject of el-ph coupling in strongly correlated systems.

Finally, in chapter 10, conclusions will be presented as well as discussion of possible
extensions of this work in the future.
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Chapter 2

Experimental Evidence for
Electron-Phonon Coupling

In recent years the role of electron-phonon (el-ph) coupling in the cuprates has returned
to the forefront of active research. This is due to the growing pool of experimental
evidence indicating the importance of the el-ph interaction. In this chapter the avail-
able data will be reviewed. This will motivate the study of the el-ph interaction in the
cuprates and provide an experimental foundation in which the theories presented in this
work can be cast. The primary experimental techniques discussed will be angle-resolved
photoemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM) due
to the wealth of data currently available. However, in the final section of this chapter
other probes such as neutron scattering, optical conductivity and Raman scattering will
be briefly discussed.

2.1 Angle-Resolved Photoemission Spectroscopy

Angle-resolved Photoemission Spectroscopy (ARPES) has emerged as an invaluable tool
for probing the electronic structure of materials [52]. In the field of high-T. super-
conductivity ARPES has provided a number of key insights including the mapping
of the Fermi surface [53], the determination of the d-wave gap structure in the su-
perconducting state [54], the observation of the pseudogap [6, [7, 55] and, most re-
cently, the observation of dispersion renormalizations throughout the Brillouin zone
(211, 56, (57, B8, 59, 60, 61, 62], 63, BT, [64].
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Figure 2.1: A cartoon picture of a typical
ARPES setup.

2.1.1 Experimental Setup

ARPES is a photon-in electron-out spectroscopy which exploits the photoelectric effect
to probe the electronic structure of a material. In an ARPES experiment, shown in figure
[2.1] a photon is directed at the sample where it is absorbed by an electron in quasiparticle
state |k,w). If the electron is given sufficient energy to overcome the work function it
is ejected and collected by a positionable detector at a solid angle (0, ¢). Energy and
momentum conservation are then used to infer information about the electron’s original
state including its binding energy and crystal momentum. During the photoemission
process only the component of the electron’s momentum parallel to the surface of the
sample is conserved [52,[32]. Therefore, ARPES is ideally suited for quasi-two dimensional
materials such as the high-T. cuprates.

The photoemission process is often thought about in terms of a “three step” model
[32]: (1) the electron in the n-body state W is first exited by the photon in the bulk of
the material, (2) the electron then travels to the surface of the material where it is ejected
paying an energy cost equal to the work function ® of the material and (3) the electron
travels to the detector where it is collected. A further conceptual simplification is often
made, reducing this to a single step from excitation of the bound state to collection of the
photoelectron. The photoelectron is assumed to have exited the sample quickly enough
that the system does not relax (the so-called “sudden approximation” [52]) and the final
state wavefunction can be written as |U;) = |¢,(k))|¥" ') where |¢),) is the plane wave
state of the photoelectron and [¥™~1) is the final n — 1 particle state left in the sample.
In this framework, the magnitude of the photocurrent [ is given by [52, [32]

I o< A(k,w)|M (k,w)[*n;(w) (2.1)

where |M (k,w)|? is the dipole matrix element for photoemission, ny is the Fermi function

12



and A(k,w) is the single-particle spectral function. A(k,w) is a fundamental quantity in
many-body theory and the utility of ARPES stems directly from its ability to probe this
quantity.

Before proceeding to the experimental data it is useful to briefly review the Green’s
function formalism for a superconducting materia]ﬂ In Nambu notation (with 7; the
usual Pauli matrices), the Green’s function is given by [9]

A

Gk,w) = Gok,w)— 2k w) (2.2)

 wZ(k,w)h + [e(k) + (k@)% + (kw7 0
W2k, )] — [e(k) + X0, w)]? — G2(k,w) |

where G(k,w) and Go(k, w) = [w7y—e(k)73]~! denote the 2 x 2 matrix propagators for the
dressed and bare electrons, respectively, ¢(k) is the band dispersion of the non-interacting
system, and Y (k, w) is the self-energy written in the canonical form [9, [65]

A

Y(k,w) =w[l = Z(k,w)]7o + x(k,w)73 + o(k,w) 7 (2.4)

Here, w[l — Z(k,w)] and x(k,w) the odd and even components of the single-particle self-
energy and ¢(k,w) is the anomalous self-energy of the Cooper pair. In the weak coupling
limit Z(k,w) = 1, x(k,w) = 0 and ¢(k,w) = A(k), where A(k) gives the momentum
structure of the superconducting gap with A(k) = Ag[cos(k,a) — cos(kya)]/2 in a d-wave
superconductor [9]. In this limit G/(k,w) is then given by

@mﬂg:“%ﬁi@g%g“ﬁl (25)

where E?(k) = €%(k) + A?(k) is the Bogoliubov quasiparticle energy. Finally, the spectral
function, as probed by ARPES; is related to the single-particle Green’s function A(k, w) =
- %ImGH (k7 w) .

This formalism can also be extended by setting the anomalous self-energy ¢(k,w) to
zero. In this case the spectral function reduces considerably
1 Im¥(k,w)

Ak ) = T a Res(k w))? + (S (k)

(2.6)

where Y(k,w) = w[l — Z(k,w)] + x(k,w) is the self-energy in the normal state. For the
non-interacting system Y(k,w) is zero and A(k,w) reduces to a J-function A(k,w) =
d(ex — w). In other words, the state |k,w = €) is an eigenstate of the system. In the
interacting case this is no longer so and ¥ (k,w) is non-zero. The state |k,w) becomes a

IThis subject will be discussed in greater detail in the following chapter and an excellent review of
the subject can be found in reference [65].
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Figure 2.2: (a) A simulated ARPES spectra for an electron-phonon coupled system in the
normal state. (b) A sample momentum distribution curve obtained by taking a slice of the
spectra shown in at fixed energy. The red dashed line indicates the peak position of the MDC
curve k,, used to define the MDC dispersion and the arrows indicate the width of the lineshape
used to determine the MDC width. (¢) An EDC curve obtained by taking a slice of the spectra
at fixed momentum. The deviations from a lorentzian lineshape are clearly visible.

quasiparticle state with a lifetime characterized by ImX(k,w) and shifted in energy by
ReX(k,w). It is through the self-energy that A(k,w) encodes information about inter-
actions in the system and by probing A(k,w) one gains valuable information regarding
the relevant physics of materials. This has been exemplified by the recent observation of
dispersion renormalizations in the cuprates.

2.1.2 Energy and Momentum Distribution Curves

There are two common ways of performing data analysis on ARPES spectra, which are
sketched in figure 2.2 The first is to examine the ARPES intensity at a fixed energy and
as a function of momentum (Fig. [2.2p). This is commonly referred to as a Momentum
Distribution Curve (MDC) analysis. Similarly, the momentum can be held fixed while
the energy is varied (Fig. . This approach is referred to as an Energy Distribution
Curve (EDC) analysis. Both techniques provide complementary information however,
the MDC analysis can be used to obtain an estimate for the self-energy.

In an MDC analysis, the ARPES lineshape near the Fermi level can be fit by a
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Lorentzian lineshape and the peak position k,, and linewidth I' are obtained. The dis-
persion of k,,, with binding energy is referred to as the MDC dispersion and it gives an
approximation for the dispersion of the pole in the Green’s function w — e(k) — ReX(k, w)
[52]. The MDC dispersion can therefore be used to extract an estimate for ReX. To do
so, a form for the bare band e(k) must be assumed. Typically this choice is taken to
be a straight line connecting the Fermi level crossing to a point in the MDC dispersion
at high binding energy. The difference between the assumed bare band and the MDC
dispersion is then an estimate for ReX. An estimate for Im> can be obtained from the
MDC line width with ¥ = v, I'/2, where vy, is the band velocity.

2.1.3 Nodal and Antinodal Regions of the Brillouin Zone

In what follows references will be made to the “nodal” and “anti-nodal” regions of the
Brillouin Zone. This nomenclature is common and is based on the momentum dependence
of the superconducting gap. The nodal region refers to k-points in the vicinity of the
lines k, = k, where the superconducting gap is zero. The anti-nodal region refers to
k-points near (+m/a,0) and (0,47/a) where the value of the superconducting gap is
maximal. Here, a denotes the in-plane CuO, lattice spacing.

2.2 Dispersion Renormalizations in the Cuprates

Strong evidence for the importance of an electron-boson interaction in the high-T .cuprates
has been revealed by numerous ARPES experiments with the discovery of a “kink” in the
nodal (0,0) - (7/a,m/a), dispersion and band renormalizations in the anti-nodal (0,7/a)
- (m/a,m /a) dispersion of many of the cuprates [57, B1], 34, 58, [66], 67, 59, 60, 63, 68, 61
69, 5ol [0, 211, 64], [71), [72] B3] [73] [74, [75, [76, [77, [78, 62]. These band renormalizations
represent an energy scale in the cuprates which has a direct impact on the low-energy
physics and therefore may be related to superconductivity. It is therefore hoped that
understanding the source of these renormalizations will provide important clues as to
the identity of the underlying pairing mechanism in the cuprates. However, at present,
the interpretation of these renormalizations is a subject of debate and a number of in-
terpretations have been proposed. These include self-energy effects due to the Hubbard
interaction [79], coupling to a magnetic excitation associated with a peak in the magnetic
susceptibility at (7/a, 7/a) and/or a continuum of spin excitations [66} (67, 34 [75] [76] and
renormalizations due to coupling to one or more phonon modes [80, 61], 30, BT, 72, [7T], 33].
Each of these interpretations will be discussed in greater detail shortly, but first some of
the salient experimental data is reviewed.
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Figure 2.3: ARPES spectra along the node
(0,0) - (m,m) of optimally doped Bi-2212 in
the superconducting state (T = 25, 26 and 16
K, respectively). The spectra were taken us-
ing different incoming photon energies: (a) 6
eV (laser system), (b) 28 eV and (c) 52 eV
(both synchrotron sources). The red circles are
the MDC derived dispersion for the laser data.
The blue and black circles are the MDC derived
dispersions obtained from the the synchrotron

Binding energy (meV)

data. Reproduced from reference [64].

2.2.1 The Kink Feature in the Nodal Region

In the nodal region the band renormalizations take the form of a “kink” in the band
dispersion, as shown in figure In this case spectra are shown for data taken using a
synchrotron light source and [2.3F) as well as a laser source (2.3p) [64]. Superimposed
on the ARPES false colour plots are the MDC derived dispersions. In all three sets of
data an abrupt change in the dispersion is evident at a well defined energy scale ~ 65—75
meV. The first appearance of the nodal kink in the literature was in a report by Valla et
al., however the authors argued for a lack of a discrete energy scale and viewed the kink
as a smooth curvature in the dispersion, interpreting the data as evidence for quantum

criticality. The first linkage of the kink to an energy scale in the problem was later made
by Bogdanov et al. [58].

The nodal kink is now known to be a universal feature of the high-T, cuprates having
been reported in nearly all of the hole-doped systems including Las_,Sr,CuO,4 (LSCO)
[61,62], Bi,SroCuOg (Bi-2201) [61}74], Bi-2212 [57, [31}, 58, 64} [61], BisSe»CasCusO1 (Bi-
2223) [81], T1;BayCuOg (T1-2201), TlyBasCaCuyOg (T1-2212), TIBayCasCuzOg (T1-1223)
[77], YBayCu3Og¢4, (YBCO) [67] and across the F-family, BayCaCuyOg(O,F), (F0223),
BayCa3zCuyOs(0,F), (F0234) and BayCasCuz010(0,F)s (F0245) [21], B3]. In each case
the energy scale of the kink occurs at approximately the same energy ~ 65 — 75 meV
and it is now recognized as the lowest lying energy scale in the problem which has been
observed universally in these systems. (Recently, a lower energy scale ~ 8 — 10 meV from
the Fermi level, has been reported in optimal doped Bi-2212 but it remains to be seen if
this will also be a universal feature in the dispersion of the cuprates. [82])

The typical metric for measuring the strength A of the kink is to determine the ratio
of the dispersion above and below the kink energy scale 1 + A\ = v /v where v. and v~
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denote the velocity de/dk below and above the kink energy, respectively [ [21, 61, [83].
Originally the nodal kink was only observed in the superconducting state [58] however, as
instrument resolution improved it was later found to persist into the normal state albeit
with a reduced strength [61, [31] [60]. Furthermore, the kink persists with progressive
overdoping of the samples but the value of A\ extracted from the overdoped samples is
diminished with progressive overdoping [61], 62 [33].

In addition to the sudden increase in the rate of dispersion there is also an increase in
the linewidth of the spectral function as the kink energy is crossed. This is not unexpected
since any self-energy effects which affect the dispersion (ReX) must be Kramers-Kronig
related to the linewidth (Im>J). This is evident not only in the raw spectra shown in
figure but is also shown explicitly in figure for the case of Bi-2212 in the normal
and superconducting states [83]. In both cases, at the kink energy there is an increase
in the linewidth of the spectral function, as indicated by the red and black arrows. The
jump in the linewidth corresponds to an increase in Im>: and is interpreted as a decrease
in the quasiparticle lifetime due to the onset of a new scattering channel at this energy
scale.

The temperature dependence of the nodal kink, also shown in figure[2.4] is also curious
in that the position of the kink does not change with the opening of the superconducting
gap [61], 311 [72, [71], 60, 83]. This is at odds with the expectations of coupling to a bosonic
mode where the energy scale would be expected to shift from the boson frequency €2 in
the normal state to 2+ A, in the superconducting state. Here, Ay denotes the maximum
value of the superconducting gap. Therefore, the observation of a constant kink energy
seems to indicate that a single bosonic mode picture is inconsistent with the data. This
point will be explored further in the following chapter.

2In the traditional framework of el-boson coupling one introduces a dimensionless coupling constant
A. The X defined is a poor measure of this dimensionless coupling strength however it does allow one to
identify trends in the coupling. This will be discussed in greater detail in chapter
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2.2.2 Band Renormalizations in the Anti-Nodal Region

ARPES experiments have also observed renormalizations in the anti-nodal region of
the Brillouin zone. These were first observed by Dessau et al. as the now famous
peak-dip-hump (PDH) structure in the spectral function near k = (7,0) in optimally
doped Bi-2212, as shown in figure [56]. In the normal state broad spectra, with no
discernible peaks are observed. In the superconducting state this peak sharpens into
a clear Bogoliubov quasiparticle peak. In the near nodal spectra (Fig. [2.5b) A(k,w)
falls monotonically at higher binding energies while in the near anti-nodal spectra a dip,
followed by a hump, in A(k,w) is observed. This PDH structure is reminiscent of the
classic Engelsberg-Schrieffer signature of el-boson coupling to a discrete Einstein mode
in a superconductor [80], 84]. In such a scenario the dip position should occur at Q + Ay
and taking Ay ~ 30 meV, Norman et al. associated the PDH with a magnetic resonance
mode €2 ~ 41 meV which had been observed by Neutron scattering in some systems [85].

The interpretation of the PDH structure was initially complicated by the effects of
bilayer splitting in the two layer system Bi-2212. However, resolution of the bilayer
splitting has allowed for a separation of the two effects and the PDH structure has now
been reported in a number of multilayer cuprates including Bi-2212 [31], Bi-2223, T1-2212
and T1-2223 [77, 33]. However, the PDH structure has not been observed in the single
layer cuprates [77, 133, 86, 87|, 88|, as shown in figure 2.6 The absence of the PDH in
the single layer systems implies that the origin for these renormalizations is constrained

18



Bi-2201 Bi-2212

Bi-2223

Figure 2.6: Representative EDCs near the
antinodal region of the Bi- and Tl-families of
cuprates, including the single-layer (Bi-2201,
T1-2201), bi-layer (Bi-2212, T1-2212) and tri-
layer (Bi-2223, T1-1223) compounds. The high
background in the data of T1-1223 is likely due
to the absence of a natural cleaving plane in
the crystal structure. Nevertheless, a peak-dip-
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hump structure in the spectrum can still be
discerned. The red dashed line is a guide-to-

the-eye to make the “hump” more discernible.

Reproduced from reference [33].
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by the number of layers in the material. In an electron-boson scenario, this mode is
either absent, or has a negligible coupling to the electrons in single layer compounds, but
exhibits a prominent coupling in the multi-layer systems.

The manifestation of the PDH in the antinodal region in the raw spectra function
differs qualitatively from the kink in the nodal region. Near (0,7), the energy of the dip
in the spectra, if interpreted as being due to el-boson coupling is the best measure of the
energy scale of the renormalization [89] 30]. This region of suppressed weight divides the
spectra into two regions, one at low binding energy, characterized by a sharp spectral
function (the peak), which disperses asymptotically to the energy scale of the mode, and
a broader peak at higher binding (the hump) with a weaker dispersion, as illustrated in

figure 2.7

2.2.3 Evolution from the Nodal To Antinodal Region

The kink in the nodal region and the PDH structure in the anti-nodal region indicate
that the renormalizations observed by ARPES exhibit a large anisotropy. More recent
studies have shown that these renormalizations are extended over large regions of the
Brillouin zone and an evolution between the two regions occurs [60, BT, 69, [77]. In
figure EDCs are plotted for Bi-2212 in the superconducting state along cuts oriented
parallel to the zone face and k, fixed to values ranging from near the nodal region
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Figure 2.7: ARPES EDCs for optimal doped Bi-2212 at various points throughout the Brillouin
zone. The thick black line corresponds to the Fermi momentum k. Reproduced from reference

[60].

to the anti-nodal region. Figure also illustrates the extent of the renormalizations
throughout the Brillouin zone. In the nodal region (k, = (0.457/a,0)) the EDCs follow
the trends already discussed - the peak in the EDC disperses until crossing the energy
scale of the kink where it then broadens and disperses more rapidly at higher energy.
This trend persists in the vicinity of the nodal cut as each cut is moved in the direction
of the antinodal region. However, for intermediate points between the node and anti-
node (k, = (0.597/a,0) and k, = (0.6407/a,0)) a crossover occurs. Here, the sharp
low-energy peak begins to track asymptotically to the energy scale characterizing the
kink, but with a trailing intensity, is observed. In conjunction, a broader dispersive
hump structure forms at higher binding energy and the spectra begin to form the PDH
structure. Moving still closer to the antinodal region, the dispersion of the sharp peak
continues to flatten while the dispersion of the broader peak remains. However, despite
the changes in the spectra the energy scale of the renormalization is constant throughout
the zone in the superconducting state.

The first observation of deviations from the 70 meV energy scale was made by Gromko
et al. who reported a kink in the antinodal region of overdoped Bi-2212 at an energy
scale of 40 meV [63]. This lead the authors to link the anti-nodal kink to the magnetic
spin resonance mode with a similar energy of 2 = 41 meV in YBCO. Another important
clue was reported by Cuk et al., who also tracked the anisotropy of the renormalizations
in optimal doped Bi-2212 and observed a change in the energy scale near the anti-node
in the normal and superconducting states [31]. It was found that in the superconducting
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state the 70 meV scale persisted throughout the zone but in the normal state this energy
scale shifted to ~ 40 meV for the spectra near the anti-node but remained at ~ 70 meV
near the node. This lead the authors to propose a scenario where two phonon modes with
an anisotropic el-ph coupling interacted with electrons in different areas of the Brillouin
zone [31], 30]. Tt is this proposal which is argued for and built upon in this work.

2.3 Coupling to a Bosonic Mode

A number of interpretations for these band renormalizations have been proposed. The
most popular proposals involve coupling between the electrons of the CuOs planes and
an underlying bosonic mode. These interpretations have attracted considerable interest
in the hopes that the features seen in the ARPES spectra will act as an angle-resolved
analog to the work of McMillian and Rowell on the tunnelling spectra of Pb [48] [65]. The
implicit assumption here is that high-T. superconducivity can be cast in terms of a pairing
glue mediated by a bosonic mode(s). However, at this time there is considerable debate
as to the identity of the bosonic mode, if it exists, and whether or not the mode(s) are
relevant to superconductivity [36]. In this section the viable bosonic mode interpretations
are presented and, in the following section, a purely electronic mechanism will be briefly
discussed.

2.3.1 Coupling to the Magnetic Resonance Mode

The first proposal for these band renormalizations is coupling to a collective mode ob-
served by neutron scattering near momentum transfers q = (7, 7) [90] 59, 63, 68, 85, 9T,
67, [34]. This mode is commonly referred to as the magnetic (or spin) resonance mode.
It manifests itself as a peak in the magnetic susceptibility which emerges as the super-
conducting transition temperature is crossed [90), 02, 93], 04, [95]. The initial motivation
for this proposal was the observation that both the mode and the nodal kink were origi-
nally only observed below T.. However, since the initial proposal was made, instrument
resolution has improved substantially and the kink is now known to exist in the normal
state as well [311, [61], 60}, (72, [7T), [74].

In support of the magnetic resonance scenario, a quantitative comparison of ARPES
and neutron measurements on YBayCu3zOgg has been made, and the overall strength of
the coupling inferred from the data was indicated to be sufficient to account for HTSC
[34]. However, it has been pointed out that a quantitative comparison between the spec-
troscopies is difficult due to the polar nature of the YBCO crystal structure (unlike the
non-polar Bi- and TI- families) which results in a heavy surface reconstruction when the
sample is cleaved [33]. Such reconstructions have the potential to produce significant
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differences between the bulk and surface layers of the material and can lead to incon-
sistencies where the Fermi surface revealed from ARPES matches that of an overdoped
material, while the neutron scattering spectra used in the phenomenology was obtained
on an underdoped material.

A number of other inconsistencies with the Neutron Resonance mode proposal have
also been pointed out. The relatively narrow width of the mode in momentum space
implies that the renormalizations should be relatively localized to impact electrons in a
narrow region of the Fermi surface near the AF zone boundary. Given that renormaliza-
tions have been observed throughout the Brillouin zone it is unlikely that they are due
to coupling with the magnetic resonance mode [69]. Furthermore, the appearance of the
magnetic resonance mode is limited to a subset of the cuprates and is inconsistent with
the materials in which renormalizations have been observed. For example, the resonance
mode has not been observed in heavily overdoped Bi-2212 but has been observed in the
single-layer T1-2201 system [95]. This is at odds with the observation of the anti-nodal
renormalizations in overdoped Bi-2212 [63] and the absence of the PDH in T1-2201 [33]

(Fig. 2.6).

2.3.2 Coupling to a Spectrum of Phonon Modes

An alternative proposal to coupling to the spin resonance mode is coupling to a spectrum
of phonon modes [61], BT, B0} [69] [72] [71), 23| [77, 33, [74]. Here, the relevant modes are
optical modes which involve the vibration of the lighter oxygen atoms and are therefore
the highest lying phonon modes in energy and are sketched in figure 2.8]

Lanzara et al. [61] were the first to make this association linking the nodal kink
to the an in-plane Cu-O bond stretching mode (figure 2.8(1,d2). These bond-stretching
modes lie at an energy ~ 65-75 meV at optimal doping as inferred from neutron scattering
experiments [96]. Later, Cuk et at. [31] and Devereaux et al. [30] proposed a two-phonon
mechanism to explain the nodal and antinodal renormalizations. In this scenario there is
a conspiracy of energy scales, combined with an anisotropic el-ph coupling vertex, which
results in an interplay between several phonon branches. In the normal state, the bond-
stretching oxygen breathing mode is responsible for the nodal kink while the 2 ~ 36 meV
(determined from optical conductivity measurements [97]) bond buckling mode (figure
) is responsible for the anti-nodal PDH. With the opening of the superconducting gap
(A ~ 35 meV) these modes shift to Q2+ A and the buckling mode dominates the spectra
throughout the zone setting the uniform energy scale of 70 meV. The modes proposed here
have been studied extensively in the context of Raman, infrared and neutron spectroscopy
[98, 44, 99, 100, 92, O4]. Note that in figure the A;,/B1, nomenclature of Raman
spectroscopy is used for the planar c-axis modes. Strictly speaking this only holds at
q = 0, however, throughout this work the out-of-phase branch is denoted as B, and the
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Figure 2.8: A sketch of the relevant oxygen phonon modes of the CuOz plane. (a) The
out-of-phase planar oxygen vibration along the c-axis or By mode. (b) The in-phase planar
oxygen vibration along the c-axis or Aj, mode. (c) The c-axis apical oxygen vibration. (d)
The in-plane oxygen vibration or half-breathing mode. A full breathing mode also occurs at
q = (m,m) for this branch which involves displacements of the four ligand oxygens. The Ay,
B4 and apical modes modulate the site energy of the oxygen as the atoms oscillate through a
local crystal field. This results in a charge transfer coupling indicated by the red arrows. The
half- and full- breathing modes are of a deformation type modulating the overlap between the
Cu 3d,2_,2 and O 2p, , orbitals as shown in (d2).

in-phase branch is denoted as Aj,.

In the case of the c-axis modes el-ph coupling can arise due to the modulation of the
atomic site energy as the ion oscillates through a local crystal field present in the system.
These local fields arise due to breaking of mirror plane symmetry along the c-axis. For
instance, in YBCO the Y** and Ba*" ions on opposite sides of the CuO, plane produce
a local field ~ 0.8-2.1 eV /A [I01]. The motion through this field then drives the charge
onto or off of the oxygen sites, as shown by the red arrows in figure 2.8] In the single
layer systems, the planar oxygen atom sits in a mirror plane and the local crystal field
is weak and the coupling must be of second order in ion displacement [98), [44] [T02] T03].
Therefore, coupling to the c-axis planar modes such as the B, mode which is responsible
for the antinodal renormalizations, is expected to be weak. This expectation is confirmed
by the absence of the PHD structure in the antinodal region of the single-layer systems
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(figure [2.6).

The phonon scenario has been criticized using evidence based on density functional
theory (DFT), within the local density approximation (LDA). These calculations have
provided evidence for a weak el-ph coupling in YBCO and LSCO [104], 105} 106} [107].
LDA predicts the total coupling of all the modes to be less than one, and when self-
energies are calculated within the weak coupling limit it is found that the coupling to
all modes is too small to account for the nodal kink by a factor of 3-5 [105], [106]. How-
ever, while DFT has been able to accurately predict phonon dispersions, the width of
the phonon lineshapes are underestimated in most cases in comparison with experiment,
sometimes by an order of magnitude [I08]. This is perhaps not unexpected given that
DFT predicts metallic behaviour for the undoped cuprates and over predicts the band-
width of the pd-o* by a factor of five in optimally doped Bi-2212 [109]. These observations
seem to indicate that that LDA may be the wrong formalism for describing the cuprates
and therefore it is unclear that these findings explicitly rule out lattice phonons.

2.4 An Alternative Proposal: Hubbard Renormal-
izations

An alternative proposal has recently been made by Byczuk et al. based on a purely
electronic origin for the kinks [79]. In this scenario, self-energy effects due to the strong
el-el interactions produce changes in the quasiparticle weight at an energy scale w*. This
in turn produces a change in width of A(k,w) and therefore the real part of the self-
energy, due to its Kramer-Kronig relation to the imaginary part, develops a peak at the
same energy scale, producing a kink in the bare dispersion. Since these features are due to
correlation physics the kinks would be expected in any strongly correlated system and do
not require the invocation of a bosonic mode. Furthermore, in this scenario the kink would
be expected in both the normal and superconducting states, as observed in experiment.
However, since the correlation strength is set by the charge transfer energy to move a
hole from copper to oxygen sites, one would naively expect the strength and position of
the renormalization to be constant throughout the zone and independent of temperature.
It is therefore difficult to reconcile this proposal with the nodal/antinodal dichotomy of
the band renormalizations and their temperature dependence. Furthermore, since the
charge transfer energy is roughly constant across the cuprate families, this proposal does
not predict a significant materials dependence to the renormalization features. This too
is at odds with current experimental observations and the absence of the PDH in the
single layer systems.
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Figure 2.9: (a) The MDC-derived band dispersions of optimally doped Bi-2212 at temperatures
above and below T.. The apparent kink and the onset of the HEA are approximately indicated
by the black and red arrows, respectively. The shaded area highlights the difference between the
band dispersion at these temperatures. The dashed line indicates the “bare band” assumed for
extracting the the ReX as described in the text. The inset shows the MDC derived dispersions
in the case of non-superconducting Bi-2201. (b) ReX, extracted from the normal state MDC
dispersion, using different choices for the bare band as plotted and labeled in the inset. The
shaded area indicates the energy of the subkink feature associated with the second boson mode.
Reproduced from reference [71].

2.5 Self-energy extraction from ARPES data: Cou-
pling to Multiple Bosonic Modes

One aspect which distinguishes the phonon coupling scenario from the other proposals is
the possibility for coupling to multiple phonon modes. If the system is coupled to more
than one phonon mode then features should appear in A(k,w) and X(k,w) at each of the
mode energies €2, + Ag. Indeed, there have been a number of studies indicating multiple
features in estimates for ReX extracted from ARPES spectra in the nodal region. Zhou
et al. were the first to report such features in optimally doped LSCO [73]. This was later
confirmed in optimal and overdoped LSCO by Meevasana et al. when they examined
the doping dependence of the self-energy in the same material [74]. A similar report of
a secondary feature in the temperature-dependent nodal self-energy of Bi-2212 was later
made by Lee et al. [71].

In order to extract ReX from ARPES spectra a standard procedure is applied. This
procedure is illustrated in figure for the case of optimally doped Bi-2212. First, the
MDC dispersion is obtained from the raw data. These are shown as the solid lines in
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figure 2.9h. Next, an underlying bare band is assumed, as indicated by the dashed lines,
and the difference between the MDC dispersion and bare band is taken as an estimate for
ReX. The choice of bare band will effect the overall magnitude of the extracted estimate
for ReX:, however the position of peaks or changes in slope in ReY is relatively immune
to this choice, as shown in figure 2.9p. It should also be noted that the choice of bare
band is complicated by the recent observation of a second band renormalization at high
binding energy ~ 300 meV, commonly referred to as the high-energy anomaly (HEA, see
below) or “waterfall”. The presence of the HEA results in changes to the band structure
and care must be taken to ensure that the choice in bare band isolates the self-energy of
the low-energy kink from the self-energy effects of the HEA. Therefore, as was done in
figure [2.9] the bare band is typically assumed to be a linear band connecting the Fermi
surface crossing with the MDC dispersion at an energy well below the low energy kink
(for example, at a binding energy of ~ 150 — 200 meV) but higher than the onset of
the HEA (~ 250 — 300 meV). With this choice, the extracted ReX can be viewed as an
estimate for the self-energy contribution of the low-energy mode superimposed over the
physics responsible for the HEA.

As shown in figure [2.9b, multiple features can be seen in the extracted self-energy
in the normal state. There is the main peak responsible for the 70 meV kink as well as
a “subkink”, indicated by the grey box, where the slope of the extracted ReX shows a
prominent change. Since the energy of this subkink in the normal state is ~ 35 — 40
meV this feature was interpreted as self-energy contribution from the lower energy B,
mode. Furthermore, the temperature dependence of the subkink was found to shift with
the opening of the superconducting gap as one would expect in the traditional el-boson
coupling framework. This will be discussed in greater detail in chapter |4 when the
temperature dependence of the el-ph self-energy is presented.

In the work of Zhou et al., the ReX was extracted in a similar manner while a
second estimate was obtained by calculating the self-energy using the standard Eliashberg
formalism for el-ph coupling (see Chapters|3|and . Zhou et al. then assumed a spectrum
of boson modes with spectral density o®F(v) which was used as input to the Eliashberg
formalism. An optimization procedure, based on the method of maximum entropy, was
then used to generate the o F(v) which optimized the agreement between the calculated
and extracted ReX [73]. This procedure produced a spectral density whose peaks had
a one-to-one correspondence with peaks in the phonon density of states obtained from
neutron scattering on the same material. This provided strong evidence for coupling to
multiple oxygen phonons in LSCO.

Meevasana et al. applied a similar procedure to the doping-dependent extracted ReX:
and found that a single phonon spectral density could account for the observed ReX
provided a filter function was applied to the strength of the low energy modes. This
function oc w?/(w? + w?.), was chosen to simulate the decreased coupling to low-energy
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modes which is expected from the increase in the material’s ability to more effectively
screen perturbations due to increased carrier concentrations [74]. Here, the filter function
had a single adjustable parameter, the characteristic screening frequency wsc, and this
simple model produced excellent agreement between the phonon density of states and
the ARPES extracted ReX. Each of these observations supports the picture of multiple
bosonic modes and directly connects these modes to the oxygen phonons in LSCO and
Bi-2212.

2.6 Magnetic Resonance vs Phonon Modes: The Iso-
tope Effect

In order to distinguish between the magnetic resonance and phonon scenarios, several
oxygen isotope experiments have been carried out on Bi-2212. The first of these was
reported by Gweon et al. who observed large shifts ~ 30 meV in the nodal state spectra
at high binding energies upon 80 substitution [I10]. Although the largest effect was
observed at high binding energy, the kink position was also observed to shift by ~ 3
meV as one would expect for an oxygen mode. It should be noted however that the large
changes at high binding energy are in dispute and have not been reproduced by another
group [I11, T12] and, if the high energy isotope effect is robust then it is very sensitive to
doping. Despite the dispute over the changes at high binding energy the changes in the
kink position are robust and the shift in the kink position with 1#0O substitution has been
confirmed in a recent high resolution laser ARPES study [I13]. The clear observation of
an isotope shift in the nodal region is compelling evidence for the el-ph coupling scenario
and with these observations even some of the original advocates of the spin resonance
mode now conclude that the nodal kink must be due to el-ph coupling [1T4].

2.7 The High-Energy Anomaly

Recently, a series of high-resolution ARPES experiments, extending up to ~ 1-1.5 eV
in energy, have uncovered a high-energy anomaly (HEA) in the dispersion of the hole-
[T15, 116, 117, 118, 119, 120, 121}, 122] and electron-doped [123] 124], 125], [126] cuprates.
Like the low-energy kinks already discussed, the HEA has attracted considerable interest
and a number of theoretical proposals have already been made. These include spin-charge
separation [I15], spin polarons [127], in-gap band-tails [I12§], coupling to a collective mode
such as phonons [I1§], plasmons [129], or paramagnons [119, 130}, 129} T31], photoemission
matrix elements [120] and strong correlation or “Mott” physics [116], [79], 132, 133, 134].
Furthermore, there have also been assertions that the HEA should not be found [133] in
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Figure 2.10: A comparison of the HEA in hole- and electron-doped systems. The left panel
shows the nodal ARPES data for Bi-2201. while the right panel shows the nodal data for NCCO.
The matrix element profile is shown in each panel as the blue line (see reference [136]). Although
the appearance of the HEA is affected by changes in the photoelectric matrix elements, they
cannot account for the strong band renormalizations.

the electron-doped cuprates. This assertion has been supported by one study [135] but
is contrary to other experimental findings [123] 124! [125] 126].

False colour plots of ARPES spectra in optimal doped Bi-2201 and nearly-optimal
doped Nd; g3Ce17CuOy (NCCO) are shown in figure The HEA renormalization
manifests itself as a kink or “waterfall” in the band dispersion and occurs at ~ 300 meV
in the hole-doped cuprates and ~ 500 — 600 meV in the electron-doped cuprates. At
low energies, the electronic dispersion tracks downward in energy following a band which
appears to be shallower than that predicted by LDA [84,[109]. Extracted EDC dispersions
follow this shallow band, tracking to the I'-point as weight is reduced by matrix elements
and self-energy effects [1106, 126]. (Estimates for the value of the photoemission matrix
element [1306] are shown as the blue line in in figure[2.10]) At the energy scale of the HEA
the false colour spectra undergo a sudden vertical drop while the width of the spectra
significantly broadens. This gives rise to the “waterfall” appearance in the dispersion,
shown in figure 2.10, MDC derived dispersions track this waterfall feature in the band
dispersion and show that the lower, incoherent portion of the band lies at an energy
greater than that predicted by LDA, as one would expect for a strongly correlated system.
Finally, the degree to which the shallow, low-energy band can be seen in the data can be
altered through the use of different photon energies [120, [126] or by probing the spectra
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in the second Brillouin zone [120].

Coupling to phonons can be ruled out based on the relatively high energy scale of
the HEA. Coupling to spin fluctuations or magnons is generally consistent with the en-
ergy scale of the HEA based on antiferromagnetic exchange energy J ~ 100-150 meV.
However, this interpretation is unable to account for the difference in the energy scale in
the hole- and electron-doped cuprates. Recent quantum Monte Carlo calculations have
shown that the HEA can be thought of a crossover point between the coherent quasi-
particle band formed by doping the Mott insulator and the incoherent lower Hubbard
band which is present due to strong correlations [126], 121], 123]. This proposal is able
to account for the dichotomy in the electron- and hole-doped materials and will be dis-
cussed in further detail in chapter 8, when the spectral properties of the Hubbard and
Hubbard-Holstein models are presented.

2.8 Scanning Tunnelling Microscopy

Scanning Tunnelling Microscopy (STM) is a complementary probe to ARPES in that it
provides real space information about the electronic structure at the surface of a sample.
In an STM experiment, a metallic tip is held at a distance (typically ~ 1 — 2 121) above
the sample and a bias voltage is applied across the tip-vacuum-sample interface resulting
in a tunnelling current. For a fixed distance between the tip and the sample, and an
applied bias voltage V', the tunnelling current is given by [9]

1=2¢ 3 [Tyl / 0 A, Avampe(p, €+ V) [ng(€) ~mgle + V)] (27)

where e is the fundamental unit of charge, A(k,¢) is the spectral function and Ty, is
the matrix element for tunnelling through the vacuum interface. The details of the
tunnelling matrix element T'(k, p, V') will depend on the details of the tip and sample as
well as the distance between the two, however, it is typically modelled as having a weak
momentum dependence. With this assumption it can be shown that the derivative of
the induced tunnelling current is proportional to the density of states dI/dV o« N(r,w)
of the underlying sample in the vicinity of the tip r. A state of the art STM setup is
equipped with tips which terminate at a point no more than a few atoms across. This
allows most modern tunnelling microscopes to achieve a spatial resolution of less than
the lattice spacing in most materials.

2.8.1 Local Inhomogeneity

STM experiments on the cuprates have indicated that these systems show a large degree
of electronic inhomogeneity. This inhomogeneity occurs both in the normal and super-
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conducting states and has been observed in Bi-2201 [137, [138], Bi-2212 [139, 140}, 24 141],
142], Bi-2223 [143]. Maps of the local value of the superconducting gap, obtained from
the peak-to-peak distance in dI/dV spectra, show patchwork regions with varying gap
magnitudes. Furthermore, the size of the local superconducting gap is also correlated
with the shape of the superconducting coherence peaks; large gap regions tend to have
muted coherence peaks while regions with a small gap tend to have sharp coherence peaks
[24]. Furthermore, in the case of BiySroCaCuyOgys, the size of the local superconducting
gap has been correlated with the location of interstitial oxygen dopants [24]. Despite this
correlation, however, the source of the electronic inhomogeneity is still unknown but the
fact that the correlation exists again ties the local electronic properties of the CuO, plane
to off-plane dopant atoms. This will be explored in greater detail in chapter 6 when the
interplay of local oxygen dopants with local el-ph coupling is explored.

2.8.2 Bosonic Mode Coupling in STM

The dispersion renormalizations observed by ARPES in the cuprates should also be man-
ifest in the density of states, which can néively be thought of as a sum over the ARPES
spectra. Indeed, recent STM studies have found modulations in the tunnelling derived
DOS of a number of cuprates. The first of these reports was made by Lee et al. in Bi-2212
[144]. Similar modulations have also been observed in Bi-2223 [143], which have been
interpreted as being due to the spin-resonance mode. Tunnelling experiments have also
been conducted on Bi-2201 and, in analogy to the ARPES studies, no clear modulation
of the DOS has been seen in the data [137, [I38]. In conventional superconductors, such
as lead, similar modulations of the DOS have been shown to correspond to peaks in the
phonon density of states and thus provided the most compelling evidence for phonon
mediated pairing [65, 48]. Therefore, as with the kinks discussed previously, these mod-
ulations are expected to carry information about the underlying pairing mechanism in
the cuprates.

Figure shows a set of typical spectra reported in reference [I44]. One clearly
sees the progressive muting of the coherence peak in the large gap spectra, which is
typical of the local inhomogeneity. A second feature can also be seen which is similar to
the peak-dip-hump structure observed in the anti-nodal region by ARPES. To the right
of the spectra d?I/dV? is also plotted in order to highlight this feature. In analogy to
the PDH structure as well as the DOS modulations in conventional superconductors, this
feature was originally interpreted as due to coupling to a bosonic mode, and perhaps the
same mode responsible for the ARPES observed renormalizations. In reference [144] the
shoulder on the high-energy side of the dip (the maxima in the d*I/dV?, indicated by
the black arrows) was taken as the energy scale of the bosonic mode. Taking this energy
relative to the local value of the superconducting gap produces a distribution of mode

energies as shown in figures [2.11p and :
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Figure 2.11: (a) Left: The STM derived DOS dI/dV for Bi-2212. Each spectra has been
spatially averaged over spectra with comparable gap sizes. Right: the corresponding d?1/dV?
highlighting the presence of modulations in the DOS. The black arrows indicate the feature used
to determine the energy of the bosonic mode. (b) The distribution of bosonic mode energies
versus the corresponding gap size. (c¢) The probability distribution of bosonic mode energies as
a function of energy. Adapted from reference [144].

There are a number of interesting observations about the extracted mode estimates,
which bear directly on identification of the responsible mode. First, the distribution of
mode energies is inversely correlated with the local gap size. Large gap regions tend
to have smaller mode estimates, which is opposite to the expectations of BCS theory
if the mode responsible for the modulations is also responsible for pairing. Second, the
average mode energy is ~ 55 meV which is inconsistent with the energy scale extracted
by ARPES. Jenkins et al., in reference [143], have asserted that the correct feature from
which the boson mode energy can be extracted is the local minima in dI/dV « N(w).
Once this correction is made the mode estimate falls to ~ 35 — 45 in both Bi-2212 and
Bi-2223 [143], 145]. In chapter 4 the manifestation of the boson in the single-particle
density of states will be examined in greater detail. It will be shown that the assertion
of reference [143] is in agreement with the el-ph coupling scenario. However, it will also
be shown that this observation has implications extending beyond a simple correction in
the mode energy estimate. Finally, the distribution of mode estimates exhibits a clear
oxygen isotope shift similar to that observed in ARPES and size of the frequency shift
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is consistent with that expected for O'® substitution. This isotope effect is again a clear
indication of a lattice origin for the renormalizations however, there is some debate as to
whether this lattice effect is intrinsic to the CuO, plane or is arising due to cotunneling
through the apical oxygen [146], [147].

Similar structures in the DOS have been reported in a number of other cuprates.
Bicrystal grain boundary SIS junction measurements on optimally doped LSCO thin
films observe modulations in the DOS at energy scales which correspond directly to
peaks in the neutron derived phonon spectra [I48]. The presence of multiple features in
the DOS of LSCO is consistent with multiple energy scales observed by ARPES discussed
previously [73]. Furthermore, examinations of tunneling data on YBCO and the electron
doped cuprate PrggglaCey12CuO,4 have also produced a similar correspondence between
the structure in the DOS and phonon density of states in these materials [149] 150] The
observation of multiple mode coupling, as well as the fact that the spin resonance mode is
well separated from the phonon energies in the electron-doped systems, provides further
evidence that the spin resonance mode is unlikely to be the source of these features.

2.9 Other Spectroscopies

A number of other spectroscopies have also observed evidence for strong el-ph coupling in
the cuprates. Inelastic neutron scattering, a natural probe for measuring phonon disper-
sions and linewidths, has made a number of interesting observations [I51]. For example,
an anomalous softening of the in-plane bond-stretching modes as a function of doping
has been reported in LSCO [96]. At optimal doping a discontinuity in the dispersion of
the in-plane modes has also been reported at low temperature [I52]. Furthermore, the
phonon linewidths observed by neutron scattering are consistently larger, by as much as
an order of magnitude, than those predicted by density functional theory in the local den-
sity approximation (LDA) [I0§]. Finally, in YBCO, the B;, phonon has been observed
to soften at the normal-to-superconducting phase transition [153].

A number of the phonon modes examined in this work are Raman active and, as one
might expect, Raman spectroscopy experiments performed on the cuprates also indicate
coupling to these modes. Raman experiments in YBCO show that the out-of-phase c-axis
oxygen vibration exhibits a Fano lineshape, which is indicative of a coupling to electrons.
Furthermore, the softening observed in neutron scattering is also observed [99, [154! [100].
The in-phase c-axis buckling and apical modes in a number of systems soften by as
much as 20 em™! (a 5%-10% change) with doping as well as with temperature or as the
normal-to-superconducting phase transition is crossed. This has been observed in many
systems including the Hg-family HgBayCa,,_1Cu,O4,1s (n = 1 — 4) [155], 156, 157] and
Bile"gC&gCllgOlo_H; [158]
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The phonon renormalizations reported in these neutron and Raman studies would not
be expected unless the lattice degrees of freedom were directly coupled to the electronic
degrees of freedom. We have now seen that multiple probes indicate that there is a
strong el-ph interaction in the cuprates. In the next chapter the theory of el-ph coupling
will be presented in the framework of Migdal-Eliashberg theory. This coupling theory
has been remarkably successful in accounting for the el-ph interaction in good metals
and conventional superconductors. In recent years a number of workers have applied the
theory to the high-T, cuprates in the optimal and overdoped regions of the phase diagrams
[30), B3, [72], [7T], 23]. In the coming chapters this theory will be applied to understanding
the doping and temperature dependence of the ARPES kinks. The theory will also be
extended to include the effects of screening.
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Chapter 3

Theory of Electron-Phonon
Coupling

In this chapter the theory of electron-phonon (el-ph) coupling in the cuprates is presented.
The cuprate unit cell contains many atoms and therefore a number of phonon modes are
present in these materials. However, in this work, focus is placed on four optical phonon
branches of the CuOs plane. They are the c-axis in-phase and out-of-phase planar oxygen
modes (denoted A, and By, respectively E[), the in-plane Cu-O bond stretching modes
(the half- and full-breathing), and finally the c-axis apical oxygen modes. These modes,
which are sketched in figure 2.8 primarily involve the motion of the lighter oxygen atoms
and therefore have the highest lying energies in the phonon spectrum. This makes them
ideal candidates for the modes responsible for the dispersion renormalizations discussed
in the previous chapter. Furthermore, a number of studies have indicated that these
modes have a particularly strong coupling to the CuO; electrons. For example, the A,
and Bj, modes have been studied extensively in the context of Raman, infrared and
neutron spectroscopies [99, 100, 02, 04, 98|, [44, O7] and are known to exhibit strong el-
ph coupling. The apical mode shows strong renormalizations across the superconducting
transition [I55] 159 157, [158], while the breathing modes exhibit a large degree softening
with doping [96]. These renormalizations indicate that these phonons interact with the
electrons of the system and provide direct experimental evidence for el-ph coupling to
these modes.

!This nomenclature is due to the Raman spectroscopy and the symmetry of the modes at q = 0
notation. For the sake of brevity, these modes will be denoted as “A;,” and “Bi,” throughout this
work.
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3.1 Derivation of the Bare Coupling Constants

In general, coupling between electrons and the lattice can occur through a number of
microscopic mechanisms. The first is via a deformation coupling where the atomic vi-
bration modulates the overlap of the atomic orbitals of neighbouring atoms. This is the
primary coupling pathway for the half- and full breathing modes [30}, 23], 160]. A second
mechanism is a charge transfer coupling. This occurs when the lattice site oscillates
through a local crystal field arising from an asymmetry in the local crystal environment.
In this case, the lattice vibration modulates the on-site energy of the atomic orbitals and
drives charge on or off of the site. In the cuprates, the coupling to the c-axis modes
is largely of this type [44 O8] however, this does not preclude a second pathway of a
deformation type. If the oxygen ion sites in a plane of mirror symmetry, such as in the
case of the CuO, planes in an ideal single layer cuprate, the Madelung energy of the
site is at a local minima. The modulation of the Madelung energy energy and therefore
the resulting coupling via the charge transfer channel must be of second order in dis-
placement [44], 30, 33], O8], 102), 103]. However, steric forces may force the CuO, plane
to buckle along the c-axis which then creates a deformation coupling to linear order in
the displacement that was previously forbidden by symmetry [I61]. It should also be
noted that these possibilities do not exhaust the list of possible coupling mechanisms.
For example, in semiconductors the piezoelectric coupling, where the atomic vibrations
induce changes in the polarization of the atomic orbitals, is important [9]. However, for
the purpose of this work only the deformation and charge transfer coupling mechanisms
will be considered.

The first step in modelling the el-ph interaction is the derivation of the form of the
matrix element g(k, q) for quasiparticle scattering from state k to p = k — q where q
is the momenta transferred to the lattice. In metallic systems g(k, q) is usually momen-
tum independent or purely a function of momentum transfer g(q) [9]. However, in the
cuprates, the form of g(k, q) depends on the details of the underlying bandstructure, the
symmetry of the phonon modes and the microscopic mechanism for coupling. Once the
el-ph vertex is known, the general form of the el-ph Hamiltonian can be cast in the form

9]
1
Her—ph = TN > gk, @)ef_q o (b +b-q) (3.1)

k,q,0

where CLU (ck,o) and bl (bq) are the electron and boson creation (annihilation) operators,
respectively.

The starting point for deriving the form of g(k, q) is a multi-band tightbinding model
for the CuOy plane. For coupling to the modes involving the planar oxygen atoms a
three band model, including the Cu 3d,2_,2 and O 2p,,, orbitals, is sufficient [44] 30, 23].
However, to derive the coupling to the apical mode the model must be extended to include
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Figure 3.1: A sketch of the orbitals included in the five-band model used to derive the el-ph
coupling constants g(k, q). The white and grey colours denote lobes of differing sign.

the Cu 4s and apical O 2p, orbitals. This extended five band model is shown in figure
3.1l The corresponding Hamiltonian is H = Hgye + Hyi, Where

Hgte = Y €adh ylng + > €Ph s Pnso + € Y b 0no+ €Y shosne  (32)

n,o n,d,o n,o n,o
and
Hkin = Z Pétpd[d:rl,apn,&a + hC] + Z P6,6’tppp1175,gpn,6’,a + Z Pétsp[sirmgpn,é,a + hC]
n,d,0 n,0,6’,0 n,d,0
— Y Pitaplal gpnse + hec] =t Y [s!ai0 + hec] (3.3)
n,d,0 n,o

Here, § = +2,£7 denotes the planar oxygen basis and the operators djw (dno), pL P
(Pnso)s @y (Gno) and si, (sne) are the creation (annihilation) operators for electrons
of spin ¢ on the Cu 3d,2_,2, planar O 2ps, apical O 2p, and Cu 4s orbitals, respectively.
The overlap integrals and site energies are denoted as indicated in figure 3.1 Finally,
the assumed phase convention is =Py, = Py, = £1, Pyy 4y = —Pig4y = £1 and
P., = P., = F1. In order to reduce this to the three band model used in previous works
[23], 30), 44], T02] the hoppings ts, and t,, are set to zero.
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One now invokes translational invariance and consequently, Fourier transforms the
fermion operators. Furthermore, following Ref. [162], one defines canonical fermions «,
[ from combinations of the ligand oxygen orbitals via the Wannier transformation

Ak o) ﬁk,o’ =41 Sin(kw’ya/Q)pk’m’a + Sin(ky,wa/%pk,y,g
Hx

where i = sin®(k,a/2) +sin®(k,a/2). The five band Hamiltonian is then H = > ko Hio
where

(3.4)

Hk,a = Hsite =+ 2tpp[al;gak,cr - 51206&0] +2 [tpdﬂdegak,a + tprkOfLaﬁk,a (35)
t
+ tpslfkslaak,a — tps)\kngﬁkJ - %sﬂvgak,a - tpa/@kaLaak,g + tpa)\kaLUﬁkJ + h.c.
and

sin?(k,a/2) sin®(k,a/2) sin?(k,a/2) — sin®(k,a/2)

=4 3 Rk =
Hic Fx
sin(k,a/2) sin(kya/2
Mk

The Hamiltonian is bilinear in fermion operators and is easily diagonalized. For the
sake of simplicity, the diagonalization is performed numerically using a linear algebra
package such as LaPack or Matlab. In what follows, the band eigenfunctions defining
the orthogonal transformation to the band basis are denoted as ¢y (k), ¢5(k), ¢, ,(k) and
¢a(k) for the Cu 3d and Cu 4s, planar O 2p,, and apical O 2p, orbitals, respectively.
In the case of the three band model the basis functions for the Cu and planar oxygen
orbitals reduce to a simple compact analytic form [30, 23]:

1

1%

Ak =2

Xk = AkFk.

D= g €0~ 1K)
ry = Figigg [0 () = 1. ()
NP = [0+ #2001 + [0)1(k) — 1, () ()] + [e(I)t, (k) — £ (1)1 (k)

where t'(k) = —4t,, sin(kya/2) sin(kya/2), to(k) = 2t,4sin(k,a/2) and e(k) is the anti-
bonding solution to the reduced three band Hamiltonian.

3.2 Charge Transfer Coupling

To derive the electrostatic coupling to c-axis phonons a modulation of the electrostatic
coupling between the charge density at the oxygen site and the electrostatic potential at
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that site ®q, is introduced. The Hamiltonian is of the form:

H;ite = —€ ZpLgpn,a(I)ext(Rn) (36)

where n is a site index, pl, , (pn,) are the creation (annihilation) operator at the oxygen
site, e is the electron charge, and R, denotes the atomic positions in the crystal. Ex-
panding for small displacements about the equilibrium position equation is rewritten
as H' = Hgte + He—pn where

Haph =€y phopnoEn- Un (3.7)

and E, is the local crystal field given by the gradient of the Madelung potential V - @
at site n and U, is the displacement of the oxygen atom from its equilibrium position.

The magnitude of the local crystal fields at the oxygen sites will depend on the
structural details as well as the chemical composition of the unit cell and will therefore
vary from system to system. If the oxygen atom sits in a mirror plane of the crystal, as
is the case of the CuO, planes in an ideal single layer systems then, by symmetry, the
Madelung potential landscape is at a local minimum and E =V ®is zero (small fields
can be developed in the real undoped system due to defects which break translational
symmetry). This is in contrast with the multi-layer cuprates where the CuO, plane does
not occupy a mirror plane and a sizeable electric field can be generated across the plane.
However, in the case of the field strength at the apical site, the apical oxygen atom
occupies a position between the CuO, plane and the charge reservoir layer. As such,
even in the single layer systems, coupling to the apical branch can occur. From these
considerations, coupling to the c-axis modes can develop a materials dependencd? and
this observation will be explored further in chapter [6]

3.2.1 The A, and B, planar modes

For coupling to the A;, and B;, modes one then has

Hel—ph = eEz,p Z Un,éplljg,gpn,d,a (38)

n,d,o

where U, s denotes the displacement of the planar oxygen atom along the c-axis and
E., is the component of the electric field along the c-axis at the planar oxygen site.

2Estimates for the local field strength as a function of material have been calculated by the author
in a previous work [23].
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Performing the usual Fourier transform and applying the transformation to the band
representation yields (p =k — q)

ek, ,

Hel—ph - \/N

D Ua(@)a(k)u(p) + Uy(a)dy (k) by ()] (3.9)

k,q,0

Finally, the oxygen displacement is expanded in terms of normal modes

Unla) =\ g7 gy (@ + Ll (3.10)

where M, is the mass of the oxygen atom, €(q) is the dispersion of the phonon branch
and €*(q) is the phonon eigenvector. For the A;, and B;, modes the eigenvectors are
[44], 30, 23]

~

é"¥(q) = S,

' N(aq)
where N?(q) = 4[cos?(gza/2) + cos*(q,a/2)] is a normalization factor and S, , = £1 for
the By, branch and S,, = 1 for the A, branch. The interaction Hamiltonian is now
cast in the form of equation with the el-ph coupling constant for the A;, and By,
branches given by

e~ M2 (1 4 ¢~ M) (3.11)

Alg,Blg

g<k, Q) = g(}\fw [(bx(k)@c(p)efiqzaﬂ(l + efiqya/Q) + ¢y(k)¢y(p)€ﬂ'qya/2(1 + e—z’qza/2))}
(3.12)

with go'9P9 = e, ,\/h/2MoQ(q) and the + corresponding to the A, and B;, modes,
respectively.

3.2.2 The Apical Oxygen Mode

To obtain the coupling to the apical mode a similar consideration for the modulation of
the apical site energy is undertaken

a eEZ,a a
Hey pp =¢€E., Zalgan,UUH = TN Z aLgapng (q). (3.13)

n,o q,k,0

As with the coupling to the planar oxygen branches, the band eigenfunctions are
introduced and the oxygen displacement is expanded in terms of normal modes. In this
case, the momentum dependence of the apical phonon is neglected and €*(q) = 2. The
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interaction Hamiltonian is again in the form of equation and the generic form of the
apical vertex is

g(k,q) = 95" ¢}, (k)da(p) (3.14)

with g7 = eE, o\/h/2M,Qupes(q). More complicated motion of the apical oxygen
atom, involving the motion of the planar oxygen atoms, can be treated accordingly.

To obtain the leading order momentum dependence of the apical coupling a down-
folding procedure [163] is applied to equation in order to determine the amount of
apical character of the band crossing the Fermi level. The resulting downfolded apical

eigenfunction ¢/ (k) is then
Rk

¢, = 2tap (3.15)

€k — €
The leading order momentum dependence of the apical coupling is then g(k, q) ~ dxd,
where dy = [cos(k,a) — cos(kya)]/2 is the d-wave form factor. The coupling is strongest
for electrons in the antinodal region and the momentum structure of the form factor is
similar to the c-axis hopping term between CuO; layers ¢, (k) [164]. Furthermore, this
coupling has an anisotropy similar in form to that of the B;, mode, however it does not
contribute to d-wave pairing due to its momentum dependence at large q.

3.3 Deformation Coupling: Planar Breathing Modes

The in-plane vibrations of the oxygen atoms produces a modulation of the Cu-O overlap
and the integral ¢, is now taken to be site dependent ¢7,;. It is assumed that displacement
of the Cu and O atoms, US* and U?, about their equilibrium position R, is small and
the overlap integral is expanded, keeping only terms to linear order in displacement

ot .
pi =t t 52| U = UL = ta + gual U™ — UL1O (3.16)
r=R

where § = &, § is the unit basis vector between the Cu and planar oxygen site. The first
term in equation is the Co-O overlap term appearing in the original Hamiltonian
while the second term provides the el-ph coupling. At this point the motion of the heavier
Cu atom is neglected leaving

Ot g
Hy ph =Y —Z[d} pnso+ h.clUns - 3.17

l—ph HZ&O_ 3U[ n,op )9, ] ,0 ( )
As with the previous two cases, equation is Fourier transformed and the normal
mode expansion for the in-plane vibration is introduced. For the breathing modes the

phonon eigenvectors are taken to be €(q) = sin(gq)d/N(q) with N2(q) = sin?(q,a/2) +
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sin2(qya/ 2) and 0 = #.,§ for the motion of the z and y oxygen atoms, respectively [23].
The final form for the coupling to the breathing mode is:

Gor(k, @) = g0 > Paca(@) [c08(paa/2)dn(P)da(k) — cos(kaa/2)da(P)ds(k)]  (3.18)
a=z,y
where gJ" = gpd\/h/QMthbr(q) and P,, = £1. The Cu 3d,2_,2 and O 2p,, orbital
overlap scales as t,q(d) ~ d=° with 3 = 3.5 [165] and an overall estimate for the strength
of the coupling to the breathing branches is gpq ~ 2 eV/zzl for tpg = 1.1 eV, d =192 A
and Qp,.(q) = Qp, = 70 meV, which results in g§" = 86 meV.

3.4 Momentum Dependence of the Bare Vertices

In the previous section it was shown how the explicit form for the el-ph coupling to
oxygen modes is determined by the nature of the coupling (charge transfer or deforma-
tion), the local environment surrounding the CuO, plane, and the orbital content of the
band crossing the Fermi level. The relevant parameters - the magnitude of the orbital
hybridization, the local crystal field, the charge- transfer energy, the shape of the Fermi
surface, and the density of states at the Fermi level - all control the overall magnitude
of the coupling as well as the full fermionic k and bosonic q momentum dependence of
the coupling ¢g(k, q). The band character enters through the band eigenvectors ¢, which
depend on the complexity of the unit cell. At the Brillouin zone center the wavefunctions
are atomic in character and the band is unique. Large momentum variations of the band
character then occur for increasing momentum and a very strong momentum dependence
of the overall el-ph coupling can occur, as has been observed in recent LDA treatments
[105].

One now wishes to estimate the magnitude and anisotropy of the bare couplings in the
absence of charge screening in order to determine the possible discrepancies with LDA
treatments, which treat correlations on the mean field level and includes 3D metallic
screening. In order to estimate general tendencies, both in momentum dependence as
well as magnitudes, some simplifications are now introduced. First it is assumed that
2t,q is much greater than any relevant energy scale in the system, keeping in mind that
the charge transfer energy A = ¢, — €5 ~ 0.8 eV when treating correlations at the mean
field level as is done in approaches such as LDA [I61]. In this limit the ¢ functions can
be represented as

boy = sin(k, 4a/2)

\/sm kya/2) + sin®(k,a/2)

+ O(A/2t,4)* (3.19)

and

AN
V/sin?(kga/2) + sin®(kya/2)

Pcu = O(A/2t,4)*. (3.20)
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To the same order, the denominators in these expressions are constant over constant en-
ergy contours. Therefore, since one is interested in states near the Fermi surface the band
eigenfunctions are represented by ¢, ,(k) = Aosin(k,,a/2), ¢p(k) = Acy and ¢q(k) =
Aglcos(kya)—cos(kya)]/2, with coefficients determined by A = (42, (k))/(sin® (ks ya/2)),
Az, = (9i(k)), and A, = (¢2(k))/{(cos(kya) — cos(k,a))?/4)). Here, (...) denotes a
Fermi surface average: (A) = >, Axd(ex)/ > ) 0(ex). With this approach, the overall
coupling anisotropy can be simplified without loss of generality. In what follows, the

Fermi surface averages are evaluated using the full five band model, defined by Eq. [3.5]

As a consequence of this simplification, the coupling to the breathing branches loses
its fermionic momentum dependence:

gbr(k7 q) = ggTAC’uAO Z Paea Sin(QQa/Q)

a=x,y

= g AcuAo \/sin2(qwa/2) + sin®(gq,a/2). (3.21)

This form for the coupling has also been obtained in a ¢-J model approach [160], but
in this case the degree of oxygen and copper character of the band has been explicitly
retained through the coefficients A, and Ao, respectively. Furthermore, in this form, the
fermionic k-dependence vanishes and the overall coupling of electrons to the breathing
branch is determined by spanning conditions across the Fermi surface and is governed
solely by the g-dependence of the coupling.

The coupling to the A, and B;, modes can be likewise simplified

2h ,
gBlg,Alg<k, q) = eEz’p\/MON(q>QBl » A2O€*l(Qz+Qy)a/2 % (322)
g,Alg

sin(k,a/2) sin(pya/2) cos(gya/2) £ sin(kya/2) sin(pya/2) cos(q.q/2)]

These expressions recover the Raman form factor in the limit q — 0 for each mode, and
they obey the symmetry conditions for momentum reflections about 7/2 as discussed
previously. The fermionic dependence cannot be neglected for either of these branches.

Lastly, the momentum structure of the coupling to the apical branch simplifies con-
siderably

Gapez (K, @) = g57" A2 [cos(kya) — cos(kya)] [cos(p.a) — cos(pya)] /4. (3.23)

Once again, a substantial fermionic dependence emerges from the c-axis charge transfer
pathways and the apical character of the band crossing the Fermi level.

Before proceeding further a few comments are in order. In using equations -
the form of the el-ph coupling has been simplified while explicitly retaining the role
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of the band character in determining the overall strength of the couplings. Since the
eigenfunctions enter to the fourth power for ¢g%(k, q), the total coupling strength deter-
mined in this approach may change considerably when adjusting multi-band parameters.
However, this method has the advantage that the materials dependence of the coupling,
parameterized by Ao, Ac., and A, can be calculated using a variety of methods such
as exact diagonalization, quantum Monte Carlo, tight-binding models or LDA. Tt is also
emphasized that the total coupling strengths (calculated in the next section) that are ob-
tained in this formalism are similar to those obtained from LDA treatments, even though
the latter includes the effects of screening [166], 167, 105, [104].

Another advantage of this approach is that it allows for the use of a renormalized
bandstructure while retaining the explicit band character of the original five-band model.
This is important since the overall strength of the el-ph couplings scales with the density
of states at the Fermi level Ng; narrow bandwidth systems will exhibit larger couplings
in comparison to large bandwidth systems with the same vertex g(k, q) and quasiparticle
weight. With an appropriate choice in parameters, the five-band model in section
reasonably reproduces the bandwidth (and Ng) determined by LDA calculations [109].
However, as has been noted in reference [108], LDA over-predicts the total bandwidth
(and consequently Np is under-predicted) in comparison with experiment. Therefore
it is expected that the total couplings will be underestimated if the five-band model
with parameters tuned to match LDA is used. A simple rescaling of the bandstructure
in conjunction with the full form of the ¢ functions is insufficient to correct this since
such a procedure would generate incorrect values for the ¢-functions and produce errors
in the band character as a function of k. The use of the el-ph couplings defined by
equations - allows for a resolution of this issue. Here, the correct band character
is captured by calculating Ap, A, and Ag, using the five-band model but the Fermi
surface and bandstructure can be obtained from a tightbinding model derived from fits
to ARPES data [168]. This approach allows one to capture the increased value of Np
while simultaneously retaining estimates for the correct band character.

In order to visualize the k-dependence of the coupling constants in more detail g(k, q)
is plotted in figure for momentum points on the Fermi surface in Bi-2212. The
coupling constants are plotted as a function of momentum transfer q starting from k-
points on the Fermi surface. The specific shape of the Fermi surface is not crucial to
the overall anisotropy of the coupling (but it does affect the overall magnitude of the
coupling) and so the Fermi surface is obtained from a 5-parameter tightbinding model
with parameters obtained from fits to ARPES data [I68]. The dependency on transferred
momenta arises from the nature of the charge-transfer coupling of the different modes.
The c-axis modes (Figs. 1—2,4 and 1-2,4), being electrostatic in nature, translate
into stronger coupling for small momentum transfers, while the deformation-type coupling
of the breathing branches gives stronger coupling at large q, and vanishes in the limit

q — 0 (Figs. B.291a3 and 3.2]1b3).
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Figure 3.2: Plots of the el-ph coupling con-

stant g(kp, q) for fermionic momentum on the

06F -~~~ _ @{F=IZI-~__ B2 Fermi surface as a function of transferred mo-
T 0 R \: ~ ] ST~ = mentum (g, 0) (al-a4) and (g, = ¢y) (b1-b4),
%0 \;/ / respectively. al,bl (a2,b2) plot coupling to
S V== the A4 (Biy) branches, respectively, a3,b3
645_ plot coupling to the breathing branch, and
G ! a4,b4 plot coupling to the apical branch. The
;1 colours denote angles from the corner of the
- 0 o b3 Brillouin zone (shown in the inset of Fig. [3.3)
= T a4 b4 with black - 0°, solid red = 15°, solid green
0 IS5 - 30°, solid blue - 45° (or the nodal point),
\ dashed green - 60°, dashed red - 75° and

4 =0 10 T 1 dashed black - 90°.

q, [m/a]

Apart from the breathing modes, an appreciable fermionic momentum dependence
of the couplings to the c-axis modes is found, which is a consequence of the symmetry
of the underlying phonon eigenvectors. For the case of the A, and apical modes, for
q along the zone diagonal (Figs. [3.2h1 and b4, respectively), the fermionic momentum
dependence is symmetric with respect to reflections about m/4 while the B;, coupling
(Fig. 2) changes sign. Momentum transfers along the zone face (Figs 1, 2,
4) do not obey any set selection rule, although the symmetric- or anti-symmetric-like
character of the coupling is evident in the form of the coupling g(k,q). Finally, the
strong momentum dependence of the charge transfer along the c-axis dictates that the
apical coupling vanishes for any fermion momentum along the zone diagonal 4).

The strong dependence of the coupling on k and q leads to anisotropic coupling
between electrons and phonons as has been pointed out in previous work [30, 23]. As
the most relevant scattering processes involve states near the Fermi level, the explicit
momentum dependence, as seen in ARPES, is most clearly envisioned by calculating k-
dependent self-energies, in terms of the dimensionless momentum-resolved el-ph coupling

A(k).
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of 6. Parameters used are defined in the text.

3.5 Coupling Strength \(k) on the Fermi Surface

In this section, the momentum dependence of the overall magnitude and anisotropy of
the bare el-ph coupling A is presented for the four phonon branches. Here, the effects
of screening, which are discussed in chapter [0] are neglected. The contribution of a
dispersionless mode with energy €2, to the electron self-energy A, (k) is defined as [9]:

MK) = o 3 lalk @)Pa(6) (324

with £(k) = ex — . The d-function restricts the sum to initial and final fermion states
k, p, on the Fermi surface, with scattering between them governed by the transferred
phonon momentum q.

The resulting ), (kp) for the four modes are shown in figure 3.3l By using this
bandstructure, the impact of the high-energy anomaly on the low energy bandstructure
are accounted for in an approximate manner. The el-ph vertices are evaluated using
Eqgs. - along with the conventional parameter set (in eV): ¢,y = 1.1, t,, = 0.5,
top = 0.29, ty, = 2.0, t4u = 1.5, ¢4 =0, ¢, = —0.8, ¢, = —1 and ¢, = 7 [161], [18]. For
this choice of parameters A2 = 0.446, A7 = 0.592 and A2 = 4.52 x 1072. Additionally,
estimates of the local field strength at the planar and apical oxygen sites for Bi-2212 are
used EZ, = 3.56, B2, = 16.33 eV /A, respectively.
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A strongly varying A(k) is obtained for the c-axis modes, largely weighting antinodal
fermion states. This arises from both the fermion dependence of the bare couplings as
well as the small momentum transfers connecting antinodal points on the Fermi surface.
This dependence has been noted in prior treatments of these modes [30], 23]. In the case
of the breathing modes, a weaker anisotropy is produced along the Fermi surface due to
large momentum transfers (7, ) connecting antinodal portions of the Fermi surface, as
well as (m,0) and (0,7) transfers connecting nodal points. The inclusion of a variation
of the copper character of the band across the Fermi surface yields a more anisotropic
coupling [30, 23]. However, this anisotropy is not as strong as that reported in a recent
LDA study [105], where the breathing branches couple more strongly to antinodal states.

3.5.1 Total A\, and A4

The full coupling A., which renormalizes the single particle self-energy, is given by a sum
over the contributions of each mode averaged over the Fermi surface, A, = > (A(k)).
This can be visualized as averaging over the curves of figure 3.3l A similar coupling
strength A\, can be defined for the phonon’s contribution to the anomalous self-energy of
the Cooper pair by projecting onto the momentum channel of the superconducting gap.
For a d,2_,» gap the d-wave projected Ay is

A — 2 Z Zk,p diedyp g, (k, @) [0 (ex)d (ep) (3.25)

TN 2 > () '
with dy = [cos(k,a) — cos(kya)]/2. A positive (negative) A, denotes an attractive (repul-
sive) interaction in the ¢ (d,2_,2) momentum channel. The value of A, , for the modes
discussed here are listed in table . Both the A, and B;, modes enhance d-wave pairing
while the breathing mode suppresses pairing and the apical mode gives no contribution.
The total value of A4 is far too small to account for the experimental value of T.. (In
order to reproduce the experimentally observed gap size A, 4 of order one are required.
A more thorough discussion of this is presented in chapter ) However, the sizeable con-
tribution from the B;, mode can work in conjunction with another pairing mechanism.
This will be discussed in further detail in chapters [ and [6]

The strength of the overall coupling depends on the planar oxygen character of the
band. Since the eigenfunctions enter to the fourth power in |g,(k, q)|* through the projec-
tions Ap, Ay and A,, A\ values may change considerably when adjusting the parameters
of the multi-band model. Likewise, these numbers will be increased if the bandwidth is
renormalized in accordance with experiment [I09]. The values obtained here are sim-
ilar to those obtained from LDA treatments, even though LDA includes the effects of
screening [104], T05], 106, 167, 166]. These effects will be incorporated in chapter @
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Total A, 4

Branch A Ag
Ay, 7.74 x 1072 | 4.42 x 1072
By, 0.17 0.12

Apical 8.27 x 1072 | —4.75 x 1072
Breathing | 1.11 x 1072 | 0
Total 0.341 0.1149

Table 3.1: Tabulated values of A, , for the four phonon branches considered in this work.

3.6 Weak Coupling Theory: Migdal-Eliashberg

The self-energy arising due to the el-ph interaction can be derived from the generic form
of the interaction Hamiltonian Eq. [3.1 In the usual treatment of el-ph coupling, the
so-called Migdal approximation, only the subset of rainbow diagrams shown in figure
are considered in calculating the electron self-energy. This approximation neglects
higher order diagrams such as the crossing diagrams shown in [3.4b. These diagrams give
a contribution to the self-energy of order (m*/M)Y? ~ Q/ep, where Q is the phonon
frequency and ep is the Fermi energy [169]. In good metals this approximation pro-
vides accurate results and the extension of this theory to the superconducting state by
Eliashberg, known as Migdal-Eliashberg theory [170], 9], provides an extremely powerful
framework for understanding conventional superconductivity. It has also been shown
that this approximation can account for much of the experimental data pertaining to
el-ph coupling in the optimal and overdoped high-T. cuprates [30] and, due to its previ-
ous success, this model will be further applied towards understanding the finer details of
the el-ph renormalizations in chapter [l The el-ph interaction will also have an affect on
the phonons, renormalizing their dispersions and imparting a finite lifetime. However,
typical approaches based on Migdal-Eliashberg incorporate the phonon self-energy in an
ad-hoc manner by using experimentally determined phonon dispersions [I71]. This is the
approach adopted here.

The class of diagrams neglected in the Migdal approximation (Fig. ) become crit-
ical when the strength of the el-ph interaction is large. In this limit the electron becomes
increasingly dressed by a cloud of phonons and the electron and surrounding lattice dis-
tortion become closely coupled. This results in an increase in the electron’s effective
mass as the lattice distortion must be moved in conjunction with the electron. The new
quasiparticle comprised of the electron plus the phonon cloud is a polaron. At moderate
el-ph coupling large polarons are formed where the lattice distortions extend over a large
volume with relatively small ion displacements. However, at a critical coupling strength
A ~ 1, a crossover occurs to a small polaron where the electron is heavily dressed and
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Figure 3.4: (a) The series of rainbow diagrams usually retained in calculating the el-ph self-
energy. (b) An example of the crossing diagram neglected in Migdal theory. Such terms give
corrections to the self-energy of order (m*/M)Y/? where m* is the effective mass of the electron
and M is the ion mass.

has a very large effective mass. There is a large body of work examining el-ph coupling
in this limit and a review of this work will be given chapter [0, where numerical work on
the Hubbard-Holstein model is presented.

3.6.1 The Superconducting State

In the superconducting state, the self-energy ¥ (k,iw,) on the imaginary frequency axis,
obtained from summing the infinite series of rainbow diagrams, is given by (in Nambu
notation, p =k — q)

2ua2F k,q, A ) R
S(K, iwy ) - W3 / o _qwn))zTga(p,zwm)Tg (3.26)

where w,,,, are Fermion frequencies, 73 is the usual Pauli matrix and o*F(k,q,v) =
—|g(k, q)|*ImD(q, v) is the effective el-boson spectral function. Here, D(q,v) is the
boson propagator and G(k,iw,) is the electron propagator given by:

iwn Z (K, iwn) 7o + [ex + X (K, iwn)] 75 + ¢k, iwn) 7y

G(k,iw,) = : 3.27
(b tn) = i 2k, i) — e+ X, i) P — G2 (K, i) (3.27)

The self-energy can also be written in the canonical form [65]
Sk, iwy) = iwn[1 — Z(K, iw,)]70 + (K, iw,) 73 + ¢(K, iw,) 71 (3.28)

where iw,[1 — Z(k,iw,)] and x(k,iw,) are the odd and even pieces of the single-particle
self-energy and ¢(k,iw,) is the anomalous self-energy. The el-ph coupling strength A,
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characterizes the contribution to Z(k,w) and x(k,w) while A\, characterizes the con-
tribution to ¢(k,w). Equations [3.2613.28 are solved self-consistently on the Matsubara
frequency axis. The self-energy on the real axis can then obtained by performing the
usual analytic continuation iw, — w + 70 where § > 0 is a real, infinitesimal number.

In general, a full analytic expression for the self-energy on the real axis cannot be
obtained if equation [3.26|is solved self-consistently. However, analytic expressions can be
obtained in the limit of large bandwidth, where the band dispersion at the Fermi level is
well approximated by a linear dispersion. A full derivation of the self-energy in this limit
is presented in appendix B. In systems with a narrow bandwidth, where the curvature
near the Fermi level is important, Eq. must be evaluated numerically and Marsiglio
et al. [I72] have developed an efficient iterative method for doing so. With this method,
52(k, w) is obtained by iteratively solving [172} I71]

. 1 s .
S(k,w) = N3 DY dolk, q,w — w73 G (K, iwp, )P (3.29)

p m=0

1 o0 » )
TN Zk: /—oo dva’F(k, q,v)[n(v) + ny(v — w)7sG (k, w — v)7s

using the solution obtained on the imaginary axis as input. Here, n, and ny are the usual
Bose and Fermi factors and

2v
w2 — 2

o0
Mok, q,w) = / dva’F(k, q,v) (3.30)
0

Note that the second term of equation [3.29| is identically zero when w = iw,, and reduces
to Eq. [3.26] The self-energies calculated using this formalism have been examined in a
previous work [23] and it was found that, for coupling strengths similar to those given
in table the effects of the multi-phonon rainbow diagrams give a small contribution
to the el-ph self-energy. Therefore, in examining phonon features in the ARPES spectra
due to el-ph coupling, it is sufficient to consider only a single iteration of the Eliashberg
equations, where simple closed form expressions for i](k, w) can be obtained. However,
if one wishes to calculate the self-energy for boson modes which significantly contribute
to pairing then the full solution to equation [3.29| is required. This will be the case in
chapter {4 when the generic signatures of bosonic modulations in the density of states
are considered.

In order to derive the simplified single-iteration expressions, the electron bare propa-
gator in the superconducting state is introduced

~

Gil(k, an) = iu)nﬁ) + €k7:3 + A(k)f'l (331)
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The optical oxygen modes, indexed by v, are modelled with dispersionless Einstein modes
of frequency €2, and their bare phonon propagator

2Q),

_m. (3.32)

Dy(qv Zwm) -

Substituting equations and into equation |3.26| and analytically continuing
to the real axis produces a simple form for the el-ph self-energy. The final form for the
imaginary part of the three self-energy components are E|

wZ(kw) = 5= o P (i) + np(Bp)3(w + 9 = Bp) +3(w — 2, + Byp)]

+[np () + np(—Ep)][6(w — Q, — Ep) + 8(w + Q, + Ep)]) (3.33)
0llw) = 50 >l @ 2 (m0) + ns (BB + 0 = Ey) = 8w 0+ By
+[nb(7Q,,) + ngp(—Ep)|[6(w — Q) — Ep) — 6(w + Q, + Ep)]) (3.34)

k) = 5 ok P FE () + s (B[ + L = Byp) = 3w = 0, + )

+ () + np(—Ep)|[0(w — Q — Ep) — 6(w + Q + Ep))) (3.35)

where Eg = ef, + Af, defines the quasi-particle energy in the superconducting state.
Finally, the real parts of the self-energy are obtained using the Kramers-Kronig relations
(See Appendix [Al).

To illustrate the energy structure of the self-energies the real and imaginary parts of
Z, x and ¢ are plotted in figure for a momentum point on the Fermi surface in the
antinodal region (k = (7/a,0.187/a)) of Bi-2212. Here, the self-energies are evaluated
using the same parameters used for Fig. and assuming a d-wave superconductor at
T = 25 K with Ay = 35 meV. The structure of the self-energies for other modes is similar
apart from the overall magnitude of the self-energy, reflecting the momentum structure

of g(k, q).

The imaginary parts of the self-energy Zs, x2 and ¢ all show an onset at the energy
of the bosonic mode €2,. This is due to energy conservation considerations which prevent
fermions within €2, of Fermi surface from coupling to the optical phonon modes at low
T [9]. At higher energies peaks in the three self-energies occur at two energy scales. The
first of these is set by €2, +Ag where A is the maximum value of the superconducting gap

3A full derivation of the self-energy has been presented in previous works by the author[23] [72].
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Figure 3.5: The electron-phonon self-energies calculated for coupling to the 36 meV Bi4 branch
in the superconducting state (25 K) of Bi-2212. Here, the self-energy has been calculated for a
point on the Fermi surface in the antinodal region with k = (7/a,0.187/a).

on the Fermi surface. The second peak is set by the van Hove singularity and occurs at
2, + E(0, 7). This feature can be muted with the inclusion of k, dispersion. In addition,
X has structure at higher energies associated with the van Hove singularities at the top
and bottom of the band. The real parts of the self-energies also develop peak structure,
which gives way to a step-down at €, + A¢ and €, + F(0,7) due to their Kramers-
Kronig relation to the imaginary parts. From the magnitudes of the self-energies shown
in figure|3.5it is also apparent that the self-energies are dominated by the renormalization
parameter Z(k,w). Based on the overall magnitude of the anomalous self-energy it is
clear that the phonons alone cannot account for the high T. observed in the cuprates.

The real and imaginary parts of single-particle self-energy —wZ(k,w)+ x(k,w), which
determines the renormalization of the single particle spectral function A(k,w), are shown
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Figure 3.6: The single-particle self-energy ¥ (k,w) = —wZ(k,w) + x(k,w) evaluated at a point
on the Fermi surface k = (7/a,0.187/a). (al),(a2) The self-energy in the superconducting state
(25 K) with Ag = 35 meV. (bl),(b2) the self-energy in the normal state (25 K, black and 100
K, red dashed). In both cases, the chemical potential shift determined by Rex(k,0) (at 25 K)
has been subtracted from the real part of the self-energy.

in figures[3.7a1, and [3.7a2, respectively. Following the structure in Z and y, the imaginary
part of the self-energy has an onset at 2, and peaks at Ag+€2,. It is this increase in the
ImY. which produces the lineshape broadening in A(k,w) below the kink energy. The real
part, again due to Kramers-Kronig consistency, has a peak at an energy just below this
energy scale, which gives way to a step down at Ag + €2,. It is this peak which produces
the kink feature in A(k,w).

3.6.2 The Normal State

The formalism given in the previous section can be extended to the normal state by
setting ¢ = Ax = 0 and replacing the quasi-particle energy with the band dispersion
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Eyx = ex. The self-energy in the normal state then reduces to

Yolk,w) = —wZa(k,w)+ xa(k,w)
= =5 2 Itk @) P [(np(wn — ) + 1)) — Q% — &)

+[ns(Q + w) + np(Q0)]0(w + Qo — €5)]  (3.36)

which recovers the standard result [9]. The real part of the self-energy is again obtained
from the Kramers-Kronig relations. The real and imaginary parts of (k,w) in the
normal state are plotted in figure [3.6b1 and [3.6b2, respectively. In order to highlight the
position of the peaks in the self-energy ¥ is plotted for 7" = 25 and 100 K. In the low
temperature plot a clear peak is found in ReY at the energy of the phonon mode €2,. At
this same energy scale Im> has an onset similar to that observed in the superconducting
state. In the 100 K spectra the self-energy is significantly broadened due to thermal
effects. As a result, the onset in Im¥ is rounded and the peak in ReX is broadened and
reduced in intensity.

3.7 The Single-particle Spectral Function

The single-particle spectral function is related to the imaginary part of the dressed
electron Green’s function A(k,w) = —iImGyy(k,w). In the superconducting state the
dressed Green’s function is given by

_ wZ<k7 w)%o + [61( + X(k7 w)]%?x - ¢(k7 w)%l

G(k,w) = . 3.37
(ot2) = 0 2l )P — e+ x () — 92(k,) (3:57)
while in the normal state the Green’s function reduces to the usual form
1
Gk,w) = (3.38)

w—e — S(k,w)+id

The spectral function is shown in figure for Bi-2212 in the normal (100 K, up-
per panels) and superconducting (25 K, lower panels) states. Here, coupling to the 36
meV By, and 70 meV breathing branches have been included. The form of the el-ph
vertices are defined by equations [3.21] and [3.22] with the overall strength of the el-ph
coupling is determined using the same parameters used in [3.3] Since the el-ph interac-
tion is insufficient to produce the full magnitude of the superconducting gap, a small
piece is added to the real part of ¢ in order to maintain the value of the gap function
Alk,w) = ¢(k,w)/Z(k,w) at the gap edge w = Ay, where A is the maximum value
of the superconducting gap. This procedure is consistent with the idea of the phonons
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Figure 3.7: The single-particle spectral function A(k,w) in (a) the normal (100 K) and (b)
superconducting (25 K) states. Here, A(k,w) is calculated for el-ph coupling to the 36 meV
B4 bond-buckling and 70 meV bond-stretching modes as was considered in reference [30]. The
cuts in momentum space are taken along (al,bl) the zone diagonal (k, = k) and along cuts
parallel to the zone face; (a2,b2) k, = 0.65, (a3,b3) k, = 0.75 and (a4,b4) k, = 0.85 (in units
of /a).

modulating the electronic properties of the system over another dominant pairing mech-
anism [89]. Panels 1 and 1 correspond to a cut taken along the nodal direction
(0,0) - (7/a,m/a). Panels [3.7Th2-a4 (and [3.7p2-b4) correspond to cuts taken parallel to
the zone face (0,7/a) - (w/a,m/a) for k, = 0.65, 0.75 and 0.85 7/a, respectively. These
results reproduce the trends observed in previous works [23] [30].

In the normal state (Fig. 1—a4) kinks occur in the spectral function at the energy
of the phonon branches €, (36 and 70 meV, respectively), corresponding to the peak
in the self-energy shown in figure . At this energy scale the width of A(k,w) grows
considerably due to the onset of phonon scattering channel, signified by the slow rise
in Im¥ (Fig. 2). In the superconducting state the energies of these features shift
by the maximum value of the superconducting gap on the Fermi surface, following the
shift in peak position of the self-energies. This occurs throughout the zone, even for
cuts in the nodal region where Ay is vanishing. This is due to the fact that the el-ph
scattering process links states from k to p located throughout the zone and thus the
scattered electrons feel the full gap. Furthermore, scattering to the antinodal states,
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where the gap is largest, is favoured by the B;, branch’s coupling. This further enhances
the sampling of the large gap in this region. The strength of the kink renormalizations in
the superconducting state are also increased in comparison with the corresponding cut in
the normal state, in agreement with experiment [31], [7T]. This is due to the enhancement
of the density of states in the antinodal region, which accompanies the opening of the d-
wave gap. (This point will be discussed further in the next chapter when the temperature
dependence of the renormalizations is examined in greater detail.) The anisotropy of the
coupling is also clearly reflected in the evolution of renormalizations through momentum
space. In the antinodal region the strength of the coupling to the B;, branch is largest,
following the structure of A\(kp) shown in figure , which results in more pronounced
el-ph features.

Another notable feature of the near anti-nodal cuts is the trailing intensity asymptot-
ically approaching the phonon energy €2, (or Ay + €2, in the superconducting state). At
the kink energy the coupling between the electronic and phononic states has mixed the
character of these states and the trailing intensity represents the electron states which
have developed significant phonon character and now track the dispersion of the phonon
(in this case a dispersionless phonon). If the band is shallow enough along a particu-
lar cut in momentum space (for example panels a4, b4) then this trailing intensity can
merge with the other side of the band. This produces a sharp quasiprticle band above the
phonon energy and a broader incoherent band at higher binding energies where the elec-
tron is dressed by phonon scattering. These two regions are separated by a region of low
intensity and this is the origin of the peak-dip-hump structure in the anti-nodal region.
This also highlights an important kinematic constraint that governs which fermion states
can couple to each mode. The spectra will show a mixing of electron and phonon states
if the band energy along a particular cut crosses the phonon mode energy. However, if
the band along a particular cut lies above the mode energy then the spectra will show a
level repulsion in the form of a flattened band bottom along that cut. In the cuprates,
the shallow band in the vicinity of the antinodal region of the Brillouin zone limits the
coupling to those states to modes with energies less than €(0, 7). Thus, one expects cou-
pling to the modes to disappear from the spectra when €2, < e(k) along the entire cut. In
the case of the apical mode, although coupling may be largest in the antinodal region, a
kink effect is prevented kinematically. Moreover, the breathing modes will be observable
only for near-nodal cuts and disappears in the antinodal region once the bottom of the
bare band rises above the phonon energy, as shown in figure [3.7h4.

3.8 Summary

This chapter presented the theory of el-ph coupling within the framework of the Migdal
approximation, which is generally valid in the limit of weak el-ph coupling. Attention was
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placed on a number of optical phonon branches in the cuprates which involve the planar
and apical oxygen atoms. In terms of the microscopic mechanisms for coupling, the c-
axis modes couple to the electrons via the modulation of the atomic site energy, arising
due to presence of a local crystal field generated by the surrounding environment. Since
the magnitude of the crystal field is determined by the structure and composition of the
unit cell the coupling to the c-axis modes will naturally have a materials dependence. In
contrast, the in-plane breathing modes couple via a deformation coupling, which depends
on the in-plane lattice constant. Since the latter only varies by only a few percent between
the cuprates, the coupling to the breathing branch should be relatively independent of
the material.

The observation of this materials dependence provides one pathway for distinguishing
between the phonon and magnetic resonance scenarios that have been proposed for the
“kinks”. In the single-layer cuprates, the peak-dip-hump structure is absent indicating
that either the coupling to the mode responsible is extremely weak in these systems or
that the mode is absent in these materials. In the phonon scenario, where the c-axis By,
mode is responsible for the antinodal peak-dip-hump, this can be naturally accounted for
since the electric field strength, and therefore total coupling to this mode, is expected to
be small. The spin resonance mode has been observed in some single layer systems [95]
and therefore a peak-dip-hump structure would be expected if the spin resonance mode
where responsible for this feature. These material dependent aspects of the coupling
to the c-axis modes will be discussed further in chapter [6] when considerations for the
phonon’s contribution to T, are presented.

With the microscopic mechanism for el-ph coupling identified, expressions for the el-
ph coupling constants g(k, q) were then derived. Due to the underlying symmetries of
the phonon eigenvectors, as well as the symmetries of the atomic orbitals, the momentum
structure of g(k, q) was found to be anisotropic in k around the Fermi level. In general,
the c-axis modes couple strongly in the anti-nodal region while the in-plane modes couple
strongly for large momentum transfers q. As a consequence of this anisotropic coupling,
momentum dependent renormalizations then naturally arises.

Finally, the structure of the self-energies and single-particle spectral functions were
also examined. In agreement with prior work, the formalism presented here captures the
observed anisotropy of the coupling in both the normal and superconducting states, as
well as the increased coupling strength in the superconducting state. Furthermore, the
cross over from a kink in the nodal region to a peak-dip-hump structure and band breakup
in the antinodal region was also captured. From these observations it is clear that the
gross features observed in ARPES experiments are present in this model. Investigation
will continue down this path in the following chapter and the model presented here will
be used to further examine the agreement between theory and experiment. In this case,
the details of the temperature and doping dependence of these renormalizations will be
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presented. Furthermore, there still remains the open question of how these dispersion
renormalizations observed by ARPES are related to the density of states modulations
observed by scanning tunneling microscopy. This question will also be addressed.
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Chapter 4

Temperature, Doping and Materials
Dependence of the ARPES Kinks

The Migdal-Eliashberg formalism presented in the previous chapter has been successfully
applied to understanding the anisotropy of the renormalizations observed in the high-T.
cuprates [23, B0]. In this chapter this work is extended and focus is placed on the details
of the temperature, doping and materials dependence of these renormalizations. Some
of the results presented in this chapter have appeared in references [71], [72], 33].

4.1 Temperature Dependence of the Kink

4.1.1 Temperature Dependence of the Peak-dip-hump

In the standard treatment of el-ph coupling effects, the Debye temperature sets a charac-
teristic temperature scale which is well above T, in conventional materials. However, in
the cuprates and other systems with small Fermi energies, these energy scales can be com-
parable. As a result, the temperature dependence of the phonon induced self-energies can
be very different from that of conventional superconductors. According to the ARPES
measurements on the Bi-2212 system, the band renormalization in the antinodal region
(the PDH structure) shows a dramatic superconductivity-induced enhancement when the
system undergoes the normal to superconducting phase transition. As discussed in chap-
ter [2, it has been argued that only a mode that emerges in the superconducting state
can explain this temperature-dependent effect [60)], [66, 68, [70] and phonons are thereby
excluded.

The sharpness of the el-ph self-energy is strongly temperature dependent due to the
fact that T, of optimally doped Bi-2212 is close to 100 K. To demonstrate this temper-
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Figure 4.1: The calculated (a) real part ReX, (b) imaginary part ImX of the self-energy and the
corresponding spectral functions A(k,w) in (c) the normal state and (d) the superconducting
state. An extra 5 meV is added to the imaginary part of the self-energy to provide a small
additional broadening below the phonon frequency. The location for this calculation is indicated
in the inset of (a) by a red dot with the red curve representing the FS. Insets (c) and (d) are
the data of optimally doped Bi-2223 systems (T, = 110 K) taken in the superconducting (25
K) and normal states (120 K) [81], respectively.

ature dependence, the self-energy in the normal (120 K) and superconducting states (25
K) is presented for a d-wave superconductor coupled to the 36 meV B;,, 55 meV Ay,
and 70 meV breathing modes. The el-ph coupling for the By, and breathing modes are
those given by Eqgs. and [3.18 Here, for simplicity, the A, coupling is treated as a
constant in the calculations presented in this section. The motivation for the three-mode
treatment here is the success of the two-mode calculation [30] as well as the recent discov-
ery of multiple mode coupling in LSCO [74] [73]. For this calculation, the tight-binding
band structure given in reference [66] has been used and the superconducting gap size has
been set to Ag = 35 meV. The real and imaginary parts of the single-particle self-energy
Y(k,w) = w[l = Z(k,w)] + x(k,w) and the spectral function A(k,w) at k = (0, 7) are
determined using equations[3.33]-[3.35] The results are shown in figure 4.1 For reference,
the corresponding experimental EDCs are plotted in the insets of panels and [4.14d.

At high temperature, both ReX(k,w) and Im¥(k,w) do not exhibit sharp features,
as shown by the dashed curve in Fig. and [4.Tp, respectively. This demonstrates
that thermal broadening at high temperature smears out the peak structure of the self-
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energy. In addition, broadening due to other many-body effects would further smear any
features in ¥(k,w) and subsequently A(k,w). Thus, one should not expect to observe
any sharp renormalizations from el-ph coupling at k = (0,7) in the normal state. In
the superconducting state, the peaks in the self-energy sharpen significantly. This is due
to two effects; the reduction of thermal broadening at low temperature and the opening
of the superconducting gap, which increases the density of states in the vicinity of the
phonon energies. As a result, the PDH structure of the spectral function at k = (0,7)
emerges at low temperature but disappears at high-temperature, as illustrated in Figs.
and [4.1d, respectively. This is in agreement with ARPES experiments on optimally
doped Bi-2212 and Bi-2223 [60} 3T, [70, 81]. While this behaviour is expected for any
phonon, it should be noted that the self-energies from coupling to modes that involve
momentum transfers within and between antinodal regions of the FS, such as the Ay,
and Bi, modes, are greately enhanced for all k due to the large DOS enhancements in
these regions via the opening of a d-wave gap.

4.1.2 Temperature Evolution of the Nodal Kink

As shown in chapter [3] in the Eliashberg formalism, coupling to a sharp bosonic mode
in a d-wave superconductor yields a dispersion kink in the nodal region at an energy of
Ap + Qo. Above Ty, this energy scale appears at the boson energy 2y due to the closing
of the gap. However, as was noted in chapter 2, this is not observed experimentally and
the apparent kink energy in the nodal region remains at ~ 70 meV in both the normal
and superconducting state. This lack of energy shift has been a long standing puzzle,
which seems to contradict theoretical predictions and has been cited as a reason to doubt
the el-ph interpretation for the band renormalizations [79].

In the previous chapter it was proposed that energy scales of the B, and breathing
modes as well as the gap size conspired to produce similar kink energies in the normal
and superconducting states. In this section, this claim will be examined in greater detail
by examining the temperature dependent shifts in spectral weight and it will be shown
that the experimental data is consistent with this proposal. In order to address this issue
focus is placed on the temperature dependence of the band dispersion in Bi-2212 along
the nodal cut (0,0) - (7,7). Compared to other cuprates with lower T.’s, the large gap
size Ay ~ 40 meV in optimal doped Bi-2212 provides a better opportunity to resolve the
superconductivity-induced shifts of the renormalizations.

Experimental estimates for ReX:, obtained from optimal doped Bi-2212 using the
procedure outlined in chapter [2], are presented in figure [4.2h. Data taken from above and
below T, are shown. At both temperatures, the maximum in ReX, which determines the
kink position, occurs at ~ 70 meV. This coincidence of the positions verifies the previous
observations of the absent shift of the kink position. In addition, the data below T.
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Figure 4.2: (a) ReX in the normal and superconducting state for optimally doped Bi-2212.
(b) Non-superconducting heavily overdoped Bi-2201. The insets plot ReX with their maximum
normalized to illustrate the difference of the self-energy profile. The arrows indicate the energy
positions of the kink and subkink. The error bars were estimated from the 99.7% confidence
interval of the fitted MDC peak positions. (c¢) The evolution of ReX across the superconducting
phase transition. Reproduced from reference [71].

has a much stronger peak in ReX, reflecting the increase in the kink strength in the
superconducting state. An additional feature can be seen in the normal state data - a
shoulder or “subkink” at about ~ 34 +4 meV, where the slope of ReX abruptly changes.
Furthermore, this feature is is not present in the data below T..

In figure similar estimates for ReX are shown for a Bi-2201 sample. The data was
obtained at similar temperatures but both were taken above the T, of the sample (< 5
K). In comparison to the Bi-2212 data there are two key differences. First, the overall
magnitude of Red) is comparable at the two temperatures, and second, no change in
slope occurs between the maximum in ReX and the Fermi level. This difference between
the two samples indicates that thermal effects alone cannot account for the temperature
dependent changes in Bi-2212. For Bi-2212 in the normal state, the 70 meV peak is
assigned to the in-plane breathing branch while the 34 meV feature is assigned to the
bond-buckling Bj, mode. The absence of the subkink feature in the Bi-2201 data is
interpreted as due to the weak coupling to the B;, mode in the single layer cuprates
where the CuO, plane sits in a plane of mirror symmetry.

The temperature evolution of ReX in the Bi-2212 sample, from above T, to below T,
is shown in figure [4.2c. The data at 88 K provides important information that was not
available in earlier experiments and two processes can be seen. First, both the maximum
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Figure 4.3: The self-energy Z(w) for two equally strong Einstein modes in the case of (a) a
normal state and (b) a d-wave superconductor with Ay = 37 meV. (¢) The extracted ReX by
applying the MDC analysis to the spectral functions calculated with three weighted Einstein
modes in a tight-binding band structure at different temperatures ranging from a normal state
(104 K) to a superconducting state (88 K with Ag = 20 meV, and 10 K with A¢g = 37 meV). The
arrows indicate the energy positions of the kink and subkink. (d) The band dispersion along
the nodal direction extracted from the spectral functions calculated using the same parameters
as (c). The shaded area highlights the difference between the band dispersions at these two
temperatures. The inset plots the MDC dispersions at 104 and 10 K extracted for the case of

a non-superconductor.

(shorter arrow) and the subkink (longer arrow) shift towards higher binding energy with
the opening of the superconducting gap. This energy shift is expected in the Eliashberg
formalism, lending further support for interpreting the fine structures in ReX as coupling
to the By, and breathing phonon branches. Second, a non-trivial redistribution of the
relative weight between the two features occurs as the gap opens. The feature occurring
lower in energy gradually grows until, at a temperature well below T. (15 K), the lower
energy feature dominates and sets the maximum of ReX. As a result, the higher energy
feature, associated with the breathing mode, is unresolvable. This gives an impression
that there is a superconductivity-induced change of mode coupling, favouring the lower
energy Bj, branch at the expense of coupling to the higher energy breathing branch as
T, is crossed.

To qualitatively understand the spectral weight redistribution of the features in ReX it
is sufficient to consider a simple bosonic spectrum consisting of two Einstein modes with
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energies 2 = 36 and 70 meV, respectively. These energies correspond to the energies
of the subkink and maximum in the ReX data. To simplify matters, the momentum
dependence of g(k, q) can be neglected since focus is placed on a specific cut in momentum
space and therefore the relative anisotropy is irrelevant. The single particle self-energy
w[l — Z(w)], calculated using the formalism presented in the previous chapter, is plotted
in figure and for the normal state (no gap) and a d-wave superconductor with
Ao = 37 meV, respectively. Here, the self-energy was calculated at 7' = 0 K and assuming
a parabolic band structure and a circular Fermi surface. In both cases the strength of
the coupling to the two modes are identical with 2\, = 52 meV. The total self-energy is
then given by the sum of the contributions from both modes shown in the figures.

When the superconducting gap is absent the two peaks of the total self-energy are
equally strong. However, in the superconducting state the lower energy peak appears
to be stronger than the high energy peak despite the fact that the two modes have
an equal coupling strength. This enhancement is in agreement with the experimental
data shown in figure According to the model, this enhancement is primarily due
to the highly asymmetric shape of w[l — Z(w)] near the singularity for each mode in
the superconducting state; it increases monotonically from Ey up to the singularity at
Qo+ Ay, then drops suddenly to a value near zero (Fig. 4.3b). Thus, when summing the
contributions from the two modes, the self-energy peak induced by the lower energy mode
“sits” on the rising slope of the self-energy of the higher energy mode. As a consequence
the low energy peak appears to be enhanced. Meanwhile, the self-energy peak of the
higher energy mode sits on the tail of the self-energy of the lower energy mode and no
significant enhancement occurs for this mode in the total self-energy. The normal state
case is qualitatively different - the self-energy peaks are more or less symmetric with
respect to the logarithmic divergence (Fig. [4.3a). Thus, in the normal state, the high
energy mode peak acquires an enhancement from the tail of the low energy mode’s peak.

The key features demonstrated in Figures and remain valid for bosonic
spectrums of more than one mode as well as for band structures representative of the
cuprates at finite temperatures. In figure self-energies from coupling to three phonon
modes, with energies of 36, 50 and 70 meV, are plotted at finite temperatures. The
relative strength of each mode has been adjusted such that the shape of ReX resembles
that of the 104 K data in figure [4.2h; the coupling strength then remains unchanged for
the superconducting state calculations (d-wave gap, at 88 K with Ay = 20 meV, 10 K
with Ag = 37 meV). The spectral functions along the nodal direction were calculated and
the convolved with a two- dimensional Gaussian response function with a 10 meV energy
resolution and a 0.0127/a momentum resolution. This allows for a simulation of a finite
instrument resolution. The MDC analysis used for actual ARPES data was then applied
to the simulated data in order to extract the renormalized band dispersions. As shown
in figure 4.3, the difference between the MDC dispersions at these two temperatures
(shaded area) is significantly larger than that caused by thermal broadening (the inset).
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Furthermore, the calculated self-energies reproduces the experimental data on optimally
doped Bi-2212 as well as the reference experiment on non- superconducting, heavily
overdoped Bi-2201 (Fig. [£.2).

The temperature dependent evolution of the calculated self-energy extracted from
MDC dispersions is shown in Fig. [4.3. As expected, the peaks in the ReX corresponding
to each of the individual modes, are less resolvable due to the superposition of the modes
and the smearing produced by the limited instrument resolution. This effect produces
subkinks in the ReX, which is reminiscent of the data shown in figure[f.2)and the extracted
ReX obtained from other cuprates [31I, [73]. The calculations also demonstrate that the
multimodes nature can still survive at temperatures of 104 K and manifests itself in the
profile of the self-energy. Furthermore, the two-process evolution of the ReX observed in
the data is qualitatively reproduced. Again, it is emphasized that the apparent kink (the
broad maximum of ReX) in the band dispersion at 15 and 104 K is caused by different
modes - at 104 K the 70 meV kink is produced by coupling to the breathing branch
while at 15 meV the kink is produced by coupling to the By, mode. However, in the case
of non-superconducting Bi-2201, the apparent kink in the dispersion is caused by the
same mode (the breathing mode), since no temperature dependent energy shift of ReX
is observed (Fig. . These results also indicate that the apparent kink position alone
does not tell a complete story of the renormalizations observed in the cuprate families.

4.2 A Phenomenological Model for Doping Depen-
dence of the Nodal Kink

One of the criticisms often levelled against the el-ph scenario for the dispersion kink is the
strong doping dependence of the kink’s position and strength. Based on wisdom gained
from studying conventional metals, phonons are not expected to have a strong doping
dependence in either their dispersions or coupling strength. However, these considerations
are not necessarily valid for layered, doped Mott/charge-transfer insulators where doping
dramatically changes the metallicity and the ability of the electrons to screen charge
fluctuations. Many experiments on various cuprates report strongly doping-dependent
el-ph coupling for the modes considered here. For example, inelastic neutron- scattering
measurements show that the half- and full-breathing modes exhibit prominent softening
of their dispersions as the systems are doped away from half-filling [96, [I73]. In Raman
and infrared spectroscopies the Fano line shapes of phonon modes with By, and By,
symmetries show strong doping dependences [103, [174]. Furthermore, the strength of the
phonon energy shift and line width variation across T, also changes strongly with doping
[100, 175].

Recent ARPES studies have also uncovered a sophisticated doping dependence of the
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Figure 4.4: False color plots of the spectral function in the superconducting state (a) without
resolution convolution and (b) with resolution convolution. The cuts are taken along the nodal
direction, as indicated by the blue line of the inset. The black curves are the band dispersion
extracted from the maximum position of the momentum distribution curves, which cut the
spectral function at fixed energy. The MDC-derived dispersions in (a) exhibit three sharp
“subkinks” due to the coupling to the three phonon modes used in the model, while in (b) the
subkinks are washed out by the finite instrument resolution effect leaving an apparent single
kink in the band dispersion. The white dashed line shown in panel (a) illustrates the bare band
for extracting ReX.

electronic self-energy. One is the observation of coupling to multiple bosonic modes along
the nodal direction [73]. The other is the doping dependent c-axis screening of the el-ph
interaction [74]. In chapter @ the full description of screening in the cuprates will be
presented. In short, for el-ph coupling at long wavelengths, the screening becomes more
effective at reducing the coupling strength when the c-axis conductivity becomes more
metallic. These two results, plus the variation of the superconducting gap with doping,
implies a highly convoluted doping dependence for the kink energy in the cuprates. This
section examines these issues in the case of the nodal kink in the superconducting state
of Bi-2212.

In figure 4.4 false colour plots of the calculated spectral functions are shown, including
coupling to the By,, A, and breathing phonon branches. Here, the superconducting gap
sizes were set to be 40, 20 and 10 meV for the optimal (OP) and more overdoped (OD1,
OD2) systems, respectively. At this level the effects of doping and screening are treated
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Figure 4.5: (a) The ReX extracted from Fig. |4.4h (dashed lines and (solid lines) by
subtracting a linear bare band (dashed line in Fig. [4.4h) from the band dispersion. The arrows
indicate the maximum positions of the ReY where the “single” apparent kink in the band
dispersion is usually defined. (b) A summary of the doping dependence of the apparent kink
energy and the apparent mode energy extracted by assuming a single mode scenario.

phenomenologically [74, [I76], leaving the full treatment of screening for chapter @ In
this approach, the coupling strength of the breathing mode, whose appreciable coupling
occurs only for short wavelengths and large momentum transfers, remains unchanged as a
function of doping. For the c-axis phonons (A;, and By,), a filter function w?/(w? +w?,),
with different values of the c-axis screening frequency w,. is applied in order to simulate
the doping-dependent coupling strength which arises due to the change in the material’s
ability to screen effectively along the c-axis [I76]. Although this is a simplification of
the screening effects, it represents the general behaviour of screening considerations for
phonons involving small in-plane momentum transfers. In addition, a component § + w?
eV, with 6 = 5 meV, is added to the imaginary part of the self-energy to mimic the
quasiparticle lifetime broadening due to electron- electron interactions.

As shown in figure [4.4h, the coupling to multiple phonon modes induces several “sub-
kinks” in the dispersion. The positions of these subkinks mostly corresponds to the
energies of the phonons plus the maximum value of the gap Ay. In figure ReX,
extracted by subtracting an assumed linear bare band, is plotted (dashed lines) for the
three cases considered. The dominant feature in ReY for the OP case is induced by the
36 meV By, mode, while for the OD1 and OD2 cases, the features of the 55 meV Ay,
and 70 meV breathing mode begin to out weigh the contribution from the B;, mode.
This demonstrates that the change of the SC gap magnitude and the effect of increased
screening of the c-axis modes with increasing doping alters the relative strength of each
phonon’s contribution to X (k,w).

To simulate the resolution limitation of experiment, the calculated spectral functions
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are convolved with a 2D Gaussian distribution characterized by a typical ARPES instru-
mental resolution: 12.5 meV in energy resolution and 0.012 7/a in momentum resolution.
The resolution broadened spectra are shown in figure and the extracted ReX. are
shown in figure (solid lines). As illustrated, the subkinks are less pronounced and
become broadened into a “single” kink in the dispersion which is located at roughly
the energy of the dominant phonon. This position is reflected in the maximum position
in ReY}, indicated by the black arrows in figure and the solid red squares in figure
[4.5p. If one assumes a single mode is responsible for the band renormalizations, and then
extracts the doping dependence of the mode by subtracting the value of the supercon-
ducting gap, then a doping dependence of the mode energy is obtained. The energy scale
obtained from this procedure is shown by the clear squares in figure [4.5b. It is important
to note that the apparent energy scale obtained from this procedure does not correspond
to any of the phonons used in the model; instead it is an average between the dominant
features. Clearly the kink energy should not be taken as a precise measurement of the
energy of any particular bosonic mode.

The calculations presented in this section cast doubt on the analysis of the doping
dependent properties of the kink in the nodal band dispersion based on a single mode
coupling scenario [67, [75]. More importantly, these calculations also serve to illustrate
the complex nature of lattice effects in the cuprates which can develop a complicated
temperature and doping dependence due to the interplay of a number of factors.

4.3 The Materials Dependence of Coupling to c-axis
Phonons

Having examined the temperature and doping dependence of the band renormalizations
attention is now turned to the materials dependence. As noted earlier, the coupling to
c-axis phonons is expected to have a strong materials dependence due to the electrostatic
environment generated by the structure and composition of the unit cell. In a previous
work by the author [23] variations in the Madelung potential and local electric fields
were calculated for the Bi-, Tl- and Hg-families of cuprates using the Ewald summation
technique [I77]. In this study a point charge model was assumed for each cuprate and
formal valences were assigned to each atom in the unit cell. Structural data obtained
from x-ray diffraction experiments was used to determine the structure of the unit cell.
The results for the E-field strength at the planar oxygen site of the outermost CuQO, layer
in the Hg-family are reproduced in figure (Similar trends were obtained for the TI-
(n = 1-4 layers) and Bi- (n = 1-3 layers) families.)

As discussed in chapter [3| the crystal field in the single layer system is identically
zero (absent any static buckling which may occur within the CuOs plane) since the
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CuOs plane lies in a mirror plane of the crystal. However, as the number of layers n is
increased the outermost CuQO, plane is moved away from this mirror plane and the field
strength increases until reaching a maximum in the n = 3 layer system. The variation
of the crystal field strength with the number of layers can be understood in terms of the
spatial variation of the Madelung potential. The gradient of the Madelung potential,
which determines the E-field, is identically zero at the mirror planes of the crystal. Such
mirror planes generally lie at the middle and edges of the unit cell. Since the crystal
is periodic, a point of steepest decent for the Madelung energy must exist at a location
between these mirror planes. (The trivial solution of a uniform Madelung potential is
also admitted, as is the case with CaCuO, [161].) Empirically, the Ewald calculations for
the Madelung potential [23] indicate that for n = 1 — 3 the outermost plane approaches
this point and therefore experiences a larger field due to the increased gradient. For
n > 3 the outermost layer passes this point and the field is reduced. Finally, as the
number of layers continues to increase there is an overall reduction in the amplitude of
the Madelung potential variations such that a uniform profile occurs in the limit of the
infinite layer compound CaCuQ,. The strength of the coupling to c-axis modes scales as
E? and therefore the coupling to the planar c-axis modes will exhibit a similar materials
dependence. Indeed, such a variation has been reported in the BayCa,,_;Cu,,04,(0,F),
family of cuprates, where the strength of the nodal kink in the hole-doped band diminishs
monotonically from the n = 3 system to the n = 5 system [33].

The variations in the crystal fields are not the only way in which the composition of
the unit cell will affect el-ph coupling. Changes in structure can also affect the planar
oxygen content of the pd-o* band at the Fermi level through modifications of the atomic
overlap integrals with changing interatomic distances. This will be reflected in a materials
dependent variation in the oxygen content of the band crossing the Fermi level and is
parameterized by A2, As discussed previously, there is an empirical relationship between
T. and the distance of the apical oxygen from the CuOs plane. This relationship has
generally been tied to the effective increase in the next nearest neighbour hopping of the
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Zhang-Rice Singlet ¢’ due to hybridization effects between the apical O 2p. and Cu 4s
orbital [I§] via the effective planar O-O hopping. Such hybridization effects also have a
direct impact on the coupling to the planar c-axis oxygen modes by lowering the value of
A, with decreasing apical distance. Since A, enters A, 4 to the fourth power, the apical
position can therefore exert a significant influence on the strength of the coupling to the
planar c-axis modes. It should also be noted that the coupling to the breathing branch
is not largely affected by this despite the fact that A, also enters into the coupling for
this mode. This is due to the fact that the breathing coupling also involves the copper
character and the total coupling to the breathing branches scales as A2A2,. As the
planar oxygen character varies with apical distance, so does the copper character but in
the opposite direction due to normalization requirements. Therefore as A, is increased
A., is decreased and the total coupling to the breathing mode is left relatively unchanged.

In figure a systematic examination of the variation of the local E-field and planar
oxygen character A, is presented as a function of the material’s T, at optimal doping.
To obtain A, the five band model presented in chapter [3]is used but with site energies
assigned using the energy level model of reference [18]. Using hole language, the on-site
energies are set to €5 =0, €, = A, ¢, = A + Ad 4 /e(00) and €5 = ¢4 — 7. Here, A is the
charge transfer energy associated with moving a hole from the oxygen site to the copper
site. A is related to the difference in the Madelung energies A® = &5 — $, on the two

sites and is given by )
= TN Leu() + Ao(2) - (1)
P
where I¢,(2) and Ap(2) are the second ionization and electron affinity energies for the Cu
and O sites, respectively [I8]. The factor €?/d, represents the contribution of the Coulomb
interaction between the introduced electron-hole pair and d,, is the in-plane Cu-O bond
distance. Following Ref. [I8], the values €¢(cc) = 3.5 and Ic, + Ao(2) + €*/d, = 10.9
eV are assumed. In determining ¢,, APy = &, — Py denotes the Madelung energy
difference between the apical and planar oxygen sites. The Madelung energies of the
individual sites are obtained from the electrostatic calculations of Ref. [23] in order to
account for the material dependent crystal environment of the CuO, plane. In terms of
the orbital overlaps, the apical distance also alters the overlap integrals t,, and t,, which
are adjusted using the scheme of reference [165]. The remaining overlap integrals, t,q, t,,
and t,,, which are a function of the in-plane bond distances are held fixed throughout
the calculation. Finally, the electron correlations are handled at the mean field level by
including Uyg = 8, Uy, = 4 and U,y = 1 (in units of eV) [160]. The overall effect of the
mean-field corrections is to shift the site energies

€(00)

€ = Uga(ng)/2+ 4Upa(ny) + Upa(ny)
€& = €+ Upp<n€>/2 + 2Upd<n?> (4.2)
€a = €+t Upp<n?>/2 + Upd<n§l>
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Figure 4.7: (a) The planar oxygen character at the Fermi surface A2 as a function of the

material’s T.. (b) The corresponding local E-field at the planar oxygen site of the outermost
CuOg plane in the parent compound. (c) The value of A, for the By, branch of the outermost
plane of the material.

while the value of €, is adjusted to maintain the difference €, — é¢; = 7 eV. In equation
n$ is the total number operator for orbital a at site ¢ and the paramagnetic solution
for (n$) has been assumed.

The results for A,, E, and the resulting A, , are shown in figure . Due to the
increased hybridization of the Cu 4s and apical O 2p. orbitals with decreasing apical
distance there is a direct correlation between T. (longer apical distance) and A,, as
shown in figure [£.7h. In figure the E, field at the planar oxygen site in the parent
compounds are shown, reproduced from reference [23]. Here, a similar correlation between
E. and T, is found for the reasons previously discussed. Finally, in figure [£.7c, the total
coupling A, (A\g) o< E?A? for the By, branch is given and, following the trends in A, and
E., a clear correlation between the total coupling and the T, of the material develops.
Here, focus has placed on the B;, branch since it provides the largest contribution to
pairing of the modes considered here.

The correlation between the material’s T, and the strength of the B;, coupling is
quite suggestive and provides a natural framework for understanding the large variations
in T, observed from material to material. Once again, the overall values of A, ;, shown
in figure are far too small to account for HTSC. However, this does not preclude
phonons from playing some role, perhaps by contributing to pairing and enhancing the
pairing correlations provided by another dominant interaction. Such a possibility has
been considered in previous works which have examined the contribution from el-ph cou-
pling in conjunction with antiferromagnetic spin fluctuations [I78] [I79]. In this scenario,
a baseline T is set by the spin fluctuations. This interaction is governed by the properties
of the CuO; plane, such as the charge transfer energy A or antiferromagnetic exchange
energy J, and therefore the strength of this interaction is likely to be independent of the
material (unless interlayer coupling plays some role in the interaction). T, is then further
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enhanced by the weaker contribution from the el-ph interaction which, as shown in figure
[4.7] is strongly materials dependent. This picture naturally explains the variations in T,
with composition and changes in the number of layers. It also provides direct microscopic
connection between the structure of the unit call and the T. of the material. However,
the question remains as to how enhancement is expected for the el-ph coupling strengths
reported here. This will be addressed in greater detail in chapter [6] when a calculation
for T, is presented for a multi-channel model for pairing mediated by bosonic exchange.

4.4 Summary

This chapter has examined the temperature, doping and materials dependence of el-ph
coupling within the weak-coupling framework of Migdal-Eliashberg theory. Overall, the
details were well accounted for in the framework of the el-ph scenario. On the other hand,
scenarios based on a single electronic mechanism or the spin resonance mode are unable to
account for these details. The key difficulties are: (1) the nearly constant energy scale in
the nodal kink as a function of doping in the small gap systems|72} 61], (2) the presence of
multiple energy scales in the nodal spectra, (3) the clear kink in the normal state data, (4)
the detailed agreement between the B, phonon mode and the momentum dependence of
the renormalization features [30}, 31], and (5) the tiny spectral weight (~ 2%) associated
with the spin resonance mode, which is unlikely to give sufficient strength to produce
the observed renormalizations. These weaknesses of the spin resonance mode, and the
agreement, between the phonon models and the data demonstrated here, provide further
support to the interpretation of the band renormalizations as being due to coupling to a
spectrum of bosonic modes.

The expected materials dependence of the coupling to the B;, branch was also pre-
sented and a clear correlation between the strength of the coupling and T, was demon-
strated. In light of this observation, a multi-channel scenario for pairing was proposed
to account for the materials variation in T.. In the following chapters this idea will be
explored in further detail. In chapter 5| attention will be turned to the el-ph coupling
induced modulations in the density of states as probed by scanning tunneling microscopy
experiments. Here, it will be argued that the qualitative signatures in the tunneling data
are consistent with the idea of such a multi-channel pairing scenario and a reconciliation
of the different energies scales extracted from the tunneling and photoemission data can
be achieved if such a scenario is adopted.

In assessing the materials dependence of el-ph coupling focus was placed on coupling
to the By, branch. However, the ARPES data shows clear signatures of coupling to
the breathing branch and the shape of the Re¥ indicated that coupling to the 55 meV
Ay, branch is also present. These modes will also contribute to the total values of A, ,
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and, in the case of the breathing mode this coupling is detrimental to pairing. Therefore
one might naively expect the contributions from the breathing branch might cancel the
contribution from the B;, branch. However, at this point the effects of screening have
only been included at a phenomenological level. In chapter [6] a microscopy theory of
screening is derived. There it is shown that the quasi-2D nature of the cuprates results
in incomplete screening of the coupling to c-axis modes in comparison to the screening
of the in-plane breathing modes. This reduces the pair-breaking contribution from the
breathing branch and enhances the total coupling in the d,2_,» channel provided by
the c-axis modes. With this observation, T, calculations are then presented in order to
further assess the degree to which phonons can enhance the overall value of T.. In this
case, a sizeable enhancement of T, is produced despite the small overall el-ph coupling
strengths presented here.
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Chapter 5

Phonon-Modulated Density of States

In conventional superconductors, the role of electron-phonon (el-ph) interactions as the
pairing “glue” was ultimately confirmed by McMillan and Rowell with their work on
the tunnelling spectrum of lead [49, 50, 48]. In this work, McMillan and Rowell used
the tunnelling-derived density of states (DOS) proportional to the derivative of the tun-
nelling current’s I-V characteristics N(w) oc dI/dV, as input to invert the strong-coupling
Eliashberg equations and obtained the effective boson spectrum responsible for supercon-
ductivity [48]65]. The extracted boson spectrum o*F accurately reproduced the phonon
spectrum measured independently by neutron scattering and a one-to-one correspondence
was found between peaks in a*F and minima in d*I/dV?2. This result was a striking con-
firmation of both Eliashberg theory and the phonon mediated pairing mechanism of BSC
theory.

Due to the success of McMillan and Rowell’s work, a great deal of effort has been
expended in search of similar signatures of bosonic structures in the cuprates. In the pre-
vious chapters such structures as observed by angle-resolved photoemission spectroscopy
(ARPES) have been discussed in the context of coupling to a spectrum of phonons involv-
ing oxygen vibrations. Formally, the DOS is given by a sum over the spectral function
N(w) = >, A(k,w). Therefore, if one neglects matrix elements, the tunnelling spectra
can be thought of as a sum over ARPES spectra and renormalizations observed in one
probe should also be present in the other. Indeed, as discussed briefly in chapter [2| ev-
idence for coupling to a bosonic mode(s) has also been reported in scanning tunnelling
microscopy (STM) [144] 145], [143] and superconducting-insulating-superconducting (SIS)
junction tunnelling experiments [148] 149, [150] where the el-boson coupling appears as
modulations in the DOS in analogy to the structures observed in lead. The manifestation
of el-ph coupling in the high-T. cuprates is the topic of this chapter and the major results
presented here have appeared in reference [180].
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5.1 A Discrepancy of Energy Scales

Despite the appearance of el-boson coupling in ARPES and STM experiments, a direct
reconciliation of the renormalizations observed by the two probes has been difficult. This
is due not only to complications arising from matrix elements but also the fact that
inconsistent methods for extracting mode energies from tunnelling data have appeared
in the literature. For example, in Bi-2212 [I44], estimates for the local gap size are
determined from the peak-to-peak distance of the coherence peaks while the energy of the
bosonic mode is identified as the energy position of a peak in d*1/dV?, measured relative
to the energy of the superconducting gap. While the positions of the superconducting
coherence peaks vary at different tip locations, estimates for the mode energy are inversely
correlated with the local gap size and a distribution of mode estimates is obtained, centred
at 52 meV. Furthermore, this distribution shows a clear '®O isotope shift [144]. The
energy of the bosonic mode also appears to be immune to doping while the tunneling
spectra change qualitatively. These observations rule out coupling to the spin resonance
mode and point to a lattice origin for the mode involving oxygen vibrations, similar to
those invoked to explain the band renormalizations observed by ARPES. However, the 52
meV mode energy is inconsistent with the energies of the dominant phonon modes used
to interpret ARPES data for the same material (the 36 meV Bj, and 70 meV breathing
modes) [30, BI]. This discrepancy raises questions regarding the identity of the mode
observed by STM. Is it one of the modes observed in ARPES? If so, why does it manifest
at a different energy scale in each of the probes? Or, if it does reflect a different bosonic
mode, why is it only manifested in the tunnelling experiments?

The interpretation of the STM data has been further complicated by two additional
studies: one the tri-layer system BiySroCasCuszOq945 (Bi-2223) [143] and a second study
on the bi-layer Bi-2212 [145]. In these works a mode energy €y ~ 35-45 meV was
obtained by identifying a local minima in N(w) (a root in d*I/dV?) with the mode
energy. Although this energy scale is consistent with both the B;, phonon and the
magnetic resonance modes, both works interpreted the data in terms of coupling to the
latter.

In the case of the SIS junction tunnelling experiments, multiple features have been
reported in the density of states of optimal doped Laj g4Srp16CuOy4 (LSCO) thin films
[148]. Similar features have also been reported in YBayCuzO7_5 [149], as well as the
electron-doped system Prg ggLaCeq 12CuOy [I50]. In analogy to the traditional signatures
of el-ph coupling in lead [48, 65 [49, 50, 181], these works associated minima in d?I/dV?
with the boson energy scale and found a direct correspondence between features in the
DOS and the phonon density of states obtained from neutron scattering.

The observation of multiple modes in the tunneling spectrum of LSCO, as well as the
fact that the spin resonance mode is well separated in energy from the low-lying phonon
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modes in the electron-doped systems, indicates the spin-resonance mode is unlikely to be
the source of these modulations. However, the question remains whether coupling to the
mode can be cast in the usual form of el-ph coupling to oxygen modes developed in this
work, or whether the structure in the DOS could be due to phonon-assisted co-tunneling
from the STM tip via the apical atoms as proposed by Pilgram et al. [147]. Co-tunneling
via a strong local apical coupling of electrons in the STM tip to the apical atom imparts
structure in the form of a peak in the DOS at an energy scale of Ay + €2 and multiples
of the phonon frequency Ag + 29, Ay + 3€2, ..., even though the coupling between the
planar superconducting electrons and the apical atom may be weak [146], [147].

From these examples it is clear that a well defined procedure for extracting bosonic
mode energies from d-wave superconductors is lacking. Therefore, before turning to a
model calculation, the qualitative signatures of el-boson coupling in a d-wave supercon-
ductor will be examined in order to explicitly determine how bosonic mode couplings
are expected to appear in the DOS. Furthermore, by examining the qualitative struc-
ture of the mode couplings, a means of differentiating between the extrinsic co-tunneling
proposal [I47] or intrinsic el-ph coupling [30], 23] [182] will also be obtained.

5.2 Qualitative Signatures in the Density of States

5.2.1 Projected Electron-Boson Couplings

In order to examine the signatures of el-boson coupling in a d-wave superconductor it is
important to consider the coupling of each mode projected onto the relevant momentum
channels. To this end, the el-boson coupling constant can be expanded in terms of
Brillouin zone harmonics

ZYJ g0 *Yr(k —aq) (5.1)
5’

where the sum J runs over the irreducible representations of the point group of the
crystal. For the purpose of discussion, assume that g;; is diagonal in this basis and

identify J = 0 and J = 2 with the s and d,2_,2 symmetries, respectively.
The overall strength of the el-boson coupling in momentum channel J is parameterized

by the dimensionless constant \;
. / 2dv Yoy q 2 F (k, q,v)Y;(k)Y;(p)o(6x)o(€p)
g o V > i Yo(k)?o(e .

k)
For an Einstein mode o?F(k,q,v) = |g(k,q)|*d(v — Q) and equation reduces to
equation [3.25 In a d-wave superconductor A\j—g = A, (Yo(k) = 1) charactenzes the

(5.2)
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contribution to the el-boson self-energies Z(k,w) and x(k,w) while \j—o = Ay (Ya(k) =
[cos(kya) — cos(kya)]/2) characterizes the contribution to ¢(k,w). The relative values of

A.,4 also determine the transition temperature T., which, in the weak coupling limit, is
given by [181], [183]

(5.3)

1+ A
kyT. = 1.13h82 exp [— i z] .

@
As can be seen from equation , a large A, relative to A\, results in a lower T.. In

general, A\, > Ay and, as will shown here, the relative magnitudes of A, 4 can affect the
qualitative signatures of the boson modulations in the density of states.

5.2.2 The Infinite Band Formalism

In order to calculate the boson-modulated density of states one must solve the Eliashberg
equations for a given boson spectral density. These equations will be solved using the
method of Marsiglio et al. [I72], with the self-energy obtained by self-consistently solving
equation [3.29] As a starting point, a set of approximations are made which are commonly
used in Eliashberg treatments of the cuprates [114], 184 [185] [I86]. Essentially, the role
of band structure is neglected by replacing the sum over k with an integral over the
normal state DOS N, (w). N,(w) is then replaced by its value at the Fermi level and
the limits if the energy integral are extended to infinity. For brevity, the resulting form
of the Eliashberg equations due to this approximation will be referred to as the infinite
band formalism. For further details the reader is referred to appendix [B]

Once the underlying structure of the band has been neglected the DOS Ng(w) in the
superconducting state can be written as

Ny(w) w
N, Re < —— AQ(k,w)> (5.4)

where Np is the density of states at the Fermi level and A(k,w) = ¢(k,w)/Z(k,w) =
A (k,w) +iAq(k,w) is the complex momentum-dependent gap function and (...) denotes
an average over the Fermi surface [65]. It is convenient to introduce the notation A, for
the maximum value of the superconducting gap on the Fermi surface, which is given by
the value of the gap function at the gap edge Ay = A(kjw ,w=14), where k?N denotes
the Fermi momentum point closest to (7w/a,0). For w > A, Eq. can be expanded
yielding

N,(w) 1, p
N, = L gatAilow) - Adkw)). (5.5)

From Eq. it is clear that the phononic substructure in Ng(w) is given by the frequency
dependence of the (A(k,w)).
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Figure 5.1: (al), (a2) Ng(w) and corresponding real Aj(w) and imaginary parts As(w) of
the gap function A(w), respectively, for an s-wave superconductor coupled to a single boson
mode with A = 0.8. (bl), (b2) Ns(w) and A(w) for a d-wave superconductor with A, = 1.6 and
A¢ = 0.8. The insets of panels (al),(bl), show dN,/dw and o®F(v + Ag) in order to highlight
the correspondence between features in the DOS and peaks in the boson spectrum.

For an isotropic s-wave superconductor, the momentum dependence of the gap func-
tion vanishes A(k,w) = A(w) and A\, = Ay. In Figs. [p.1p1, (.1h2, N,(w) and the
corresponding A(w) are plotted, respectively, for this case. Here, the boson spectral den-
sity a?F was modelled using a single Lorentzian distribution centred at Qy = 52 meV
and the half-width at half-maximum (HWHM) I', = 1 meV. Finally, the overall coupling
strength of the coupling has been set such that A = 0.8. As w — Ay + p, the real
part of A(w) begins to rise producing an enhancement in the DOS for w < Ay + Q. At
Ag + €y the real part begins to drop while the imaginary part experiences a sudden rise
due to Kramers-Kronig consistency. This results in a rapid suppression in weight at this
energy scale, driving N,(w) below its bare value. As a result, the energy scale Ay + €
manifests as a shoulder in the DOS or a minimum in d/N;/dw, as shown in the inset of
Fig. [5.Th1. This is the classic McMillan-Rowell signature of el-boson coupling, similar to
that observed in Pb where phonons are solely responsible for pairing. [48] [65] [18T]

In the case of a d-wave superconductor the situation is nearly identical when A, =
Ay = 0.8, and the magnitude of the gap function is comparable to that obtained for the
s-wave case with the same value of A\ (not shown). Since the boson contributes equally
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Figure 5.2: (a) Ng(w) for a d-wave superconductor where the Q ~ 52 meV mode renormalizes
over a dominant mode associated with spin fluctuations with Q. = 260 meV. Inset: dN,/dw
and a?F (v — Ag) highlighting the correspondence between the low-energy mode and structure
in Ng(w). (b), (¢) A(w) = Aj(w) + iAg(w) and Z(w) = Z1(w) + iZ3(w) for this case. The
red dashed lines indicate the energy of Ag + Q¢ where )y is the energy of the centre of the
low-energy spectra density (inset, panel (a)).

to the two momentum channels, the boson energy scale manifests as a shoulder on the
low-energy side of the modulations. The structure of the modulation is qualitatively
unchanged when A, > g4, as shown in figure [5.Ip1[5.1p2 for A, = 2X4, = 1.6. The only
discernible difference is the overall magnitude of A(w) which is reduced by a factor of
2. This illustrates the importance of the relative magnitude of A\, and A, in determining
the magnitude of the gap and T..

The next case considered is one of a low-energy boson that renormalizes over a sec-
ond mode, which is higher in energy and dominant in its contribution to pairing. This
high-energy mode is associated with spin fluctuations and is characterized by a broad
Lorentzian spectral density with I';; = 30 meV and centred at €2,y ~ 2J = 260 meV. The
total coupling to the spin fluctuation mode is set such that Ayf. = As. 4 = 1.6. For the
low-energy boson, a sharp spectral distribution with I', = 0.5 meV while still centred at
29 = 52 meV is assumed and the overall strength is set such that A, , = 1.6 and X\, 4 = 0.
In this case the sharper spectral density and increased coupling strength are required in
order to accentuate the weak low-energy feature.
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The results for Ny(w), A(w) and Z(w) obtained from this model are shown in Fig. [5.2]
The structure of the renormalizations in this case differs considerably and the shoulder on
the low energy side of the renormalization is significantly less pronounced than in figure
b.Il In the Eliashberg formalism, a high energy boson produces a gap function whose
real part is relatively frequency independent for energies on the order of lower energy
mode 2, while an instantaneous pairing interaction produces a frequency-independent
gap function up to an energy scale set by the Coulomb interaction [I87]. Therefore,
assuming a frequency independent pair field ¢y, modulated by el-boson coupling, the gap
function can be written as

Plw) ¢ +op(w) %o (1—1—(5@5/%)
Z(Ww)  Zo+0Z(w)  Zy \1+4+6Z/Z,

where d¢ and 0Z are the el-boson contributions to the self-energy. The DOS (for w > A)
can then be written as

N, (w) A2 ( 0p(w) 5Z(w)) _ (5.6)

=1 -
Nf + 2w2 ¢O ZO

To evaluate the structure in this case it is again noted that for any bosonic mode, includ-
ing phonons, A\, < A,. Furthermore, if the el-boson contribution to pairing is small (as is
the case in figure d¢ can be neglected and one sees that the fine structure tracks the
structure of 6Z(w) (Fig. |5.2c) and A;(w) (Fig. [5.2b) is suppressed as w — Ag+ €. This
behaviour produces a dip structure in N,(w) (Fig. [5.2h) with no pronounced shoulder on
the low-energy side of the renormalization. Finally, in this case energy scale of the boson
still appears as a minima in d/N/dw (inset of Fig. |5.2h).

Experimentally, the modulations in the tunneling spectra appear as a dip-hump struc-
ture with no pronounced shoulder on the low-energy side of the modulations [143], [144]
145]. It can therefore be concluded that, within the validity of Eliashberg theory, the
bosonic mode responsible for the DOS renormalizations cannot be the dominant contrib-
utor to pairing in the cuprates. If this were the case then the low-energy shoulder should
be present in the STM data. More likely, the low-energy boson modulates the electronic
structure over, or in conjunction with, the dominant pairing mechanism.

The two-mode scenario has already been invoked in the treatment of the ARPES data
presented in chapters 3] and ] There it was demonstrated that relatively small values of
A, ~ 0.3-0.5 are needed to reproduce the dispersion kinks. Since such coupling strengths
are far too small to account for high T, the superconducting gap was added by hand,
consistent with the idea of a dominant pairing interaction which is weakly modified by the
el-boson interaction [89]. Furthermore, the calculations presented here demonstrate that
such a two-mode model produces a dip in N(w) with no pronounced shoulder, consistent
with the shape of the spectra observed experimentally. However, although the two-mode
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Figure 5.3: The solutions to the finite band Eliashberg equations for the single- and two-mode
models. (al),(a2) N(w) and A(w), respectively, for a d-wave superconductor coupled to a single
low-energy mode which is the sole contributor to pairing. (bl),(b2) N(w) and A(w) for the
two mode case analogous to the case shown in Figs. 1,(32. The insets of panels (al) and
(b1) show dN/dw and the low energy component of a?F (v + Ag). (cl), (c2) The real and
imaginary parts of Z(w) calculated in the infinite- (solid) and finite-band (dashed) Eliashberg
formalisms. Here, a single iteration of the Eliashberg equations has been assumed with coupling
to an Einstein mode centred at {2 = 50 meV and assuming a d-wave gap of 35 meV.

model is able to account for the lack of shoulder feature in the DOS, the hump structure
on the high-energy side of the boson energy scale is absent in the model calculation.
This is due to the fact that the structure of the band has been neglected, as will be
demonstrated in the next section.

5.2.3 The Finite Band Formalism

The calculations presented in the previous section are now repeated, but this time equa-
tion [3.29| is solved while retaining the full k-dependence of the band structure. In figure
the solutions to these finite band Eliashberg equations are shown. As with the infinite
band calculations two cases are considered: a single mode with A, =19 = X,, ' =1
meV, and 2y = 52 meV, and a case with two modes parameterized by .y = 52, 300
meV 'y =1, 30 meV, A\, sf = Apsp = 1.7, A.p = 0.52 and Ay = 0. In order to model
the low energy dispersion the same 5-parameter tight-binding model used in the previous
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chapters has been used [16§].

Fig. [.3h1, a2, show N(w) and A(w), respectively, for the single low-energy mode
which acts as the sole source of pairing, and in analogy to Fig. [5.1b1,b2 and Fig. [5.3p1,b2
shows the results for the two mode calculation, in analogy to Fig. [5.2 The first obser-
vation is that the shoulder feature remains when the mode contributes significantly to
pairing, while a pronounced dip-hump structure is produced when the mode renormalizes
over another dominant mechanism. In the latter case the hump is more pronounced due
to the structure in the underlying band. In the cuprates the energy of the phonons (and
spin resonance mode) lie at an energy similar to that of the superconducting gap A,
and van Hove singularity €(0,7/a). Therefore, there is an overall enhancement of the
self-energy due to the increased density of states to which the bosons can couple in the
anti-nodal region. This degeneracy of energy scales has already been noted in studies on
the temperature dependence of the el-ph self-energy observed by ARPES [30, [72] (also see
chapter {4)). To further illustrate this point Fig. 1,02 compares the real and imaginary
parts of Z(w) in the two formalisms. In order to compare comparable cases Z(w) has
been calculated assuming a single iteration of the Eliashberg equations and the results
have been normalized by the value of A\,. When the full bandstructure is retained Z(w)
(as well as y and ¢) develops additional structure not present in the infinite band case. A
sharper peak at Ay + €y appears and an additional feature is produced at the energy of
the van Hove. As a result of this secondary feature Z;(w) drops more rapidly at Ag —+ €
and becomes negative at energies larger than Ay + F(0,7). It is this sharper drop and
sign change which results in the prominent hump observed in N(w). However, if the
underlying bandstructure is neglected Z;(w) remains positive and smoothly approaches
zero as w — oo and hence no hump is produced in the DOS. From these considerations it
is clear that the structure in the underlying band can contribute to the structure of the
self-energy and should therefore be retained in realistic treatments of narrow bandwidth
systems such as the cuprates.

The second observation is that the correspondence between the minima in d/N/dw and
peaks in a?F no longer holds (insets of Figs. 1 and bl). For the single-mode model
the peak in o?F(v) corresponds to the minimum in N(w) or the root in dN/dw while
for the two-mode model this energy scale does not correspond to any feature in dN/dw.
For the choice of o?F and e used here, the energy scale Ay + € is located between
the root and maximum in d/N/dw and either energy scale gives a reasonable estimate for
the mode energy. However, if broader phonon spectral densities are used, or additional
broadening mechanisms are introduced, then the two features will begin to merge and a
single maxima in dN/dw will occur at an energy set by the relative energy of these two
features. In figure N(w) and dN/dw are plotted for the two-mode model, calculated
for varying values of the low-energy mode’s spectral width I',. Here, the parameters of
the high-energy mode are the same as those used to generate figure |5.2| and the coupling
to the low-energy mode has been adjusted such that the total value of A, 4 is fixed for
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Figure 5.4: (a) N(w) and (b) dN/dw for energies in the neighbourhood of the low-energy
boson’s renormalizations for various values of the low-energy mode’s spectral width I'y (in
meV, see text).

each I'.

The qualitative change in the phonon fine-structure is the central result of this chapter.
It reconciles the discrepancy in the ~ 52 meV scale observed in STM [144] and the ~ 70
meV “kink” observed by photoemission in Bi-2212.[30] In Ref. [I44] the maxima in
d*I/dV? o« dN/dw was taken for the mode estimate, corresponding to the shoulder of
the dip-hump structure of the DOS. However, as shown above, the energy scale of the
mode is more accurately given by the minimum in N(w) (root in d?I/dV'?), Therefore, by
choosing the maxima in d?I/dV? as the energy scale of the boson mode an overestimate
for the mode energy is likely to be obtained. A closer examination of Fig. 1 of Ref. [144]
(reproduced in figure reveals that the minima in the DOS is ~ 15-20 meV lower in
energy. This brings the mode estimate in line with the energy of the B;, phonon invoked
to explain the kink in the nodal region of superconducting Bi-2212. Indeed, Ref. [145] has
tracked the minimum in the related Bi-2223 system, which also has strong coupling to the
B, phonon, and obtained a mode energy of 35 meV, consistent with our findings. This is
in agreement with Ref. [143] who used a similar procedure on Bi-2212 and also obtained a
mode estimate of 35 meV. The qualitative difference in structure also provides a pathway
to experimentally distinguish between fine structure due to co-tunnelling effects, where a
maximum in N(Qo+Ag) o< dI/dV|,=q,+a, 0ccurs, and intrinsic el-boson coupling where
a minimum is expected if the mode is not dominating pairing, or a shoulder is expected
if the mode is contributing significantly to pairing.
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5.3 A Model Calculation for Bi-2212

Attention is now turned to a model calculation for Bi-2212 including coupling to the out-
of-phase Cu-O bond buckling B;, phonon mode. Based on the arguments developed in the
previous section this phonon is assumed to renormalize over a dominant interaction. It is
therefore sufficient to consider el-ph self-energy in the same manner that was adopted for
the ARPES calculations of the previous chapters. Namely, only a single iteration of the
Eliashberg equations is considered and the phonon mode is modelled as a dispersionless
Einstein mode with 5 = 36 meV. For simplicity, the coupling constant is expanded as
lg(k, q)” = g7 + g;Ya(k)Ya(p) and g. 4 are set such that A, 4 = 0.31, 0.1. These values
are comparable to the values obtained in chapter [3] The zero-temperature expressions
for the imaginary parts of the self-energies are

wZy(k,w) = %Z|g(k,q)|2[5(Ep+Qo—w)+5(EP~I—QO~|—w)]
Ya(k,w) = Z|gk a)| (E + Qo —w) +0(Ep + Qo +w)]  (5.7)

pa(k,w) = Z|gkq [0(Ep + Qo — w) + 8(Ep + Qp — w)]

where F(k) = y/€2(k) + A%(k) and the real-part of the self-energies are obtained via the
Kramers-Kronig relations. In these calculations the superconducting gap 4, is taken as
an input parameter and, as in previous chapters, the real part of ¢ is supplemented in
order to maintain the value of the gap at the gap edge [R9, [72]. Finally, an intrinsic
damping I' = 5 meV, independent of w and k, is added to the imaginary part of Z(k,w)
and the band structure is taken from the usual 5-parameter tightbinding model [16§].

The DOS results are presented in figure [5.5], where three different values of Ay have
been chosen to mimic the variation in the LDOS observed in different regions of an opti-
mally doped sample. Note that in this case the DOS modulations are more pronounced
due to the d-function used to model the phonon spectral density. The calculated DOS
for the three gap values all show a clear dip in the spectra around Ag + €2y. The calcu-
lations also show a secondary structure at E(0, ) + €y due to the van Hove singularity
at k = (0, 7). Estimates are obtained empirically for the mode energy and gap size from
the calculated DOS via the gap referencing procedure used in Ref. [24] on the hole side
(w > 0) of the spectra, in order to avoid complications associated with the van Hove
singularity.

When the gap referencing procedure is applied to the data, the resulting gap estimate
is equal to the quadrature addition of the maximum value of the superconducting gap on
the Fermi surface Ay and the damping term I'. The empirically determined mode energy
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Figure 5.5: (a) The density of states calculated for coupling to the Bj, phonon branch at
T = 0. Each spectra is calculated using a 5-parameter tight-binding bandstucture and a d-wave
gap with Ag = 20 (black), 40 (red) and 60 (blue) meV. (b)-(d) dN/dw for the indicated gap
size. The red dashed lines indicate the position of the roots corresponding to estimates for Ay

and Ag + g, respectively.

is therefore underestimated since the effective mode position is Qp + Ag — /A%, + T2
Since a constant value of I' has been used for each value of Ay, the small gap data has a
larger ratio of I'/Ag, and thus the extracted mode energy systematically deviated from

Q.

The constant value of I" used in figure does not capture the local inhomogeneity
of the parameters entering into the DOS itself. In order to correct this the magnitude
of the el-ph coupling and inelastic damping I' included in both the spectral function and
evaluation of the self-energy are now modified as a function of gap size. The larger gap
values are naively associated with “underdoped” regions which, due to the reduction in
screening of the el-ph interaction, leads to an increase in the relative strength of the
coupling with gap size. At the same time, damping effects are taken to increase together
with the gap size to mimic the crossover to smeared gap structures in the large gap
regions. This is modelled as an increasing ratio of I'/Aq in the large gap region. The
DOS was then recalculated for input gap values ranging from 15 to 60 meV.

The new DOS spectra obtained are presented in Fig. [5.6p. For small gap inputs
sharp coherence peaks can be seen, followed by a defined dip-hump structure associated
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Figure 5.6: A waterfall plot of N(w) calculated for doping values spanning the large gap
to small gap regions. Each DOS was calculated for coupling the same mode used in figure
The gap values indicated in the legend denote the input values of Ay. (b),(c) dN/dw
for selected DOS presented in panel (a) for the hole side (w > 0) of the spectrum. The red
arrows indicate the roots used to estimate the energies Ay and Ag + Qp. (e) The mode energy
estimate obtained from the position of the local minima relative to the coherence peak. The
blue data points correspond to data for 'O simulations while the red data points correspond

to 80 simulations.

with the el-ph coupling. For larger gaps, the associated increased damping smears the
coherence peaks and they are washed away for Ay = 60 meV. The gap and phonon
energy scales can now be extracted from dN/dw, which are shown for selected spectra
in Figs. [5.6b-d. The resulting correlation between the extracted Ay and € are shown
in Fig. (blue dots). The anti-correlation which emerges between the two energies
stems from the progressive underestimation of the mode energy as the gap size and I are
increased.

In order to model the isotope effect, these calculations were repeated with adjustments
appropriate for the replacement of 0 with 80. Specifically, this includes a shift in the
phonon frequency by a factor of \/Ms/Mis and a decrease in the overall coupling by a
factor (Myg/Mg)*/*. (This substitution leaves the value of A unchanged.) The red data
points of Fig. show the correlation between the estimate for 2 and A, obtained
for O upon repetition of the previous calculations. In both cases, the anti-correlation
persists and a clear isotope shift can be seen, which is on the order of that observed
and that one would expect based on the known shift in the phonon energy. The overall
agreement with the experiments is good, and the anti-correlation can be accounted for
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relatively well by incorporating damping effects into a simple el-ph picture.

5.4 Summary

In this chapter the details of DOS renormalizations due to el-boson coupling in a d-
wave superconductor were examined. It was found that the appearance of el-boson
coupling in s-wave superconductors can be qualitatively different than superconductors
whose gap symmetry lies in a higher momentum channel. In general, the el-boson vertex
g(k, q) is projected onto the various momentum channels and the relative weight of the
s-wave projected coupling A, and the gap-symmetry (d-wave in the case of the cuprates)
projected coupling affects not only T, but also the qualitative structure of the el-boson
renormalizations in the single-particle density of states. As a consequence of this, the
general structure of the modulations can be used to infer information about the pairing
nature of a particular bosonic mode; if the mode contributes significantly to pairing then a
pronounced shoulder is expected to form on the low-energy side of the DOS modulations.
However, if the mode does not contribute significantly to pairing (its Ay < )\fﬁOt) then
the renormalizations should appear as a dip-hump structure with a hump appearing in
the high-energy side of the renormalizations. In STM experiments a clear dip-hump
renormalization has been observed, which lacks the classic McMillian-Rowell signature
[144], [145], [T43]. Therefore, one can conclude that the low-energy mode is not the primary
source of pairing in the high-T, cuprates.

This conclusion is also consistent with the el-ph model used to interpret the ARPES
experiments. In chapters (3| and |4]it was shown that relatively weak el-ph couplings with
A ~ 0.3-0.5 (A\y < A,) are required to accurately account for the kinks in the band
dispersion. Such el-ph coupling strengths are far to small to account for the high value
of T, in these systems and in the ARPES calculations it was assumed that the phonon
modes renormalize over a gap produced by some other coupling mechanism. The Bi-2212
model calculations presented in this chapter demonstrate that this model is also able to
reproduce the renormalizations in the DOS. Furthermore, using simple considerations for
additional local dampening, this model is able to reproduce the observed anti-correlation
and oxygen isotope shift. Although the arguments for the local dampening will also hold
for the coupling to spin-resonance mode, the isotope shift cannot be explained using
such models. From the combined ARPES and STM results a consistent picture emerges
- that of el-ph coupling renormalizing the low-energy electronic structure and acting in
conjunction with a dominant pairing interaction which acts at a higher energy scale.
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Chapter 6

Theory of Screening in the Cuprates
and Considerations for Phonon’s
Contribution to T,

The phenomenological treatment of the doping dependence of the nodal kink presented
in chapter 4| has highlighted the importance of screening effects. In this chapter a micro-
scopic theory for screening in the cuprates is presented in order to determine the effects of
screening in a more rigorous manner. In conventional metals, lattice vibrations are well
screened and the overall strength of the electron-phonon (el-ph) interaction is reduced
[9, 188]. However, the situation is quite different in the cuprates due to the quasi-2D
nature of the crystal structure. For example, in LSCO the ratio of the c-axis and in-
plane resistivities p./pa range from 8 x 10? for lightly underdoped samples to 1 x 103
at optimal doping [I89]. As a result, doped carriers have a greatly reduced conductivity
along the c-axis and are thus unable to effectively screen perturbations oriented along
this direction. This means that the screening of the c-axis phonons is incomplete and
this has a number of important consequences for the physics of the high-T, cuprates.

The role of screening in the cuprates has been examined in previous works in the
context of the anomalous softening of the in-plane bond stretching modes [190, 191], 192]
193]. In these works it was found that screening and charge fluctuation effects, which are
reduced along the c-direction, are needed in order to accurately reproduce the anomalous
softening of the half- and full- breathing branches with doping. Since the previous works
have focused largely on the role of screening in determining phonon self-energies, this
chapter will focus on the role of screening in renormalizing the electron self-energies, which
are reflected in experimental probes such as angle-resolved photoemission spectroscopy
(ARPES) and scanning tunneling microscopy (STM).
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Figure 6.1: The diagrams retained in calculating the screened el-ph vertex within the ran-
dom phase approximation. Here, g and g denote the renormalized and bare el-ph vertices,
respectively, and Vq is the Coulomb interaction.

6.1 Formalism

In the standard treatment of screening the renormalized el-ph vertex is calculated within
the random phase approximation [194]. The subset of diagrams considered in this ap-
proach are shown in figure |6.1] By summing these diagrams the screened el-ph vertex is
given by

Jk,q) = gk,q)+ Hg,l(q)vq + Hg,1<q)UqH1,1(q)Uq + Hg,l(q>vq[H1,1<q>Uq]2 +...

~ glia) + o (6.1)

where V, = 4me?/¢? is the 3D Coulomb interaction and II, (g, Q) is the frequency-
dependent polarizability calculated with vertices a,b respectively. The polarizabilities
are obtained by evaluating the electron-hole bubble yielding

I, 1 (q, i) = Niﬂ S gk, )Gk, i) Gk + g i, +i9). (6.2)

m  k,o

for the mixed polarizability II,; and an analogous expression for the pure polarizability
IT, ; with g(k,q) = 1. To evaluate the polarizabilities, attention is restricted to the
normal state and the bare electron propagator G (k,iw,) = iw, — e(k) is introduced,
resulting in the standard Lindhard expression [9]

f(Gk) - f(€k+q)

I Q) =
g,l(q> ph) €k — €k4q T thh + 0

> g9(k,q)

6.3
‘/cell ( )
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where & > 0 is an infinitesimal real number.

In good three-dimensional metallic systems the plasma frequency €2,; is usually much
larger than the phonon frequencies. In the limit q — 0 the effective coupling is g(k,q —
0) — dg with g denoting the average value of g(k,q — 0) on the Fermi surface. The
bare el-ph coupling is therefore well screened in this case. Turning to the cuprates, from
the point of view of the Coulomb interaction, the materials are 3D with q* = q3p, + ¢>
and qyp = (¢u,qy). However, due to the largely incoherent c-axis transport observed
across the under- and optimal-doped regions of the phase diagram, the polarizabilities are
largely determined by the planar conduction electrons. Therefore, the polarizabilities are
evaluated by restricting the momentum sum to the in-plane wavevectors and 11, ,(q, 2) =
Hgg(q2 p» ). This results in a number of important changes to screening for small in-
plane momentum transfers q,, < q.

A qualitative feel for the effects of poor screening can be obtained by considering the
case of a Holstein or g-dependent coupling g(k,q) = g(q). For this case, in the limit of
small in-plane momentum transfers, where vrpgap < €, the polarizabilities simplify to

2 2 2
ng n 1 0%ex 0%k
Maa ) =60 D= i |G G| 6
D ce k €T Yy
and
H ( Q ) o nqu n o g(Q) f(E ) |:826k + 8261(:| (6 5)
9,1\, Yiph mg(q)QZh mg(q) ‘/vceu k ak% 8[45@2/ .

where V.o is the unit cell volume and f is the Fermi distribution. The screened el-ph
interaction is then

(6.6)

g(a — 0) = g(a) — — i) 2l ]

(@) q) — 3, 9 [1 TR -,

with Q}%l(q) = Qf,l(qw /q)*. The effects of poor screening are clear; for small in-plane
momentum transfers q,, < q the screening correction in equation is small and the
bare el-ph vertex is recovered. As the ¢. component of the phonon momenta grows, the
region of small g, for which the correction is small also grows and a cone of momentum
transfers is produced where screening is inoperable. Thus, the c-axis Raman active
phonons, whose couplings are strongest for small momentum transfer q and ,,(¢) < Qpn,
will survive the effects of screening in the cuprates. These conclusions will also hold for
any quasi-2D layered system with poor conductivity along the c-axis.

6.1.1 The Two-Dimensional Coulomb Interaction

Due to the quasi-2D nature of the cuprates the full 3D form for the Coulomb interaction
is inappropriate for evaluating the screened el-ph vertex. Instead, a form for Coulomb
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interaction for a layered system with charge density confined to the layers but Coulom-
bically coupled across the planes is used [195] 196]

V 1
Gap@ tanh(Qab/QO) 1 + Fz '

Here, V = 2me?/a\/enec, qo = (4/¢)\/€c/€ap, With € and €. the in-plane and out-of-
plane dielectric constants, respectively. The c-axis lattice constant sets the in-plane
momentum scale beyond which the planes become effectively decoupled. This leads
to an interpolation between the 2D and 3D forms for the Coulomb interaction where
F, =sin(q,c/4)/ sinh(qus/q0) provides the g, dispersion of the interaction.

V(Qaban) = (67)

6.2 The Screened Electron-Phonon Vertex in
BigSI‘QC&CU_QOg_Hs

In this section the screened el-ph vertices for the case of Bi-2212 are presented. In figure
the pure charge polarizability II; ; and the screened vertices g(k,q) for the various
modes considered in chapter [3| are presented. The results are plotted for momentum
transfer along the zone face q,, = (¢,0) and the momentum axis has been plotted on a
logarithmic scale in order to highlight the behaviour at small q,,. Here, II; ; has been
calculated assuming an €2,, = 60 meV Einstein phonon. For the screened vertices the
parameters and bare vertices ¢g(k, q) given in chapter [3| have been used. In addition, an
artificial broadening 6 = 5 meV has been introduced in order to smooth the singularities
and €, was obtained from a tight binding fit for optimal doped Bi-2212 [168]. The lattice
parameters were obtained from structural data with a = b = 3.8 A and ¢ = 30.52 A [97].
The high-frequency dielectric constants, which determine the plasma frequency, were
obtained from optical conductivity data with e,,(00) = €.(c0) ~ 4.8 [97]. For this choice
in parameters €, = 0.914 eV at optimal doping, which is consistent with experiment
[197]. In order to calculate the screened el-ph vertex the static dielectric constants are
also needed. Here, €.(0) = 10, again obtained from optics measurements [97], while the
ratio €,(0)/e.(0) = 4 is assumed. This ratio produces a factor two reduction of the
breathing vertex at q = (0, 7), shown in figure [6.2f, in agreement with reference [160].

Turning now to the results for the pure charge polarizability, which are plotted in
figure . The real part of Iy ; rises as ¢* before abruptly falling when the condition
vpq = )y, is satisfied. At this point the imaginary part experiences a rise due to its
Kramers-Kronig relation to the real part. At higher momentum transfers the structure in
I1; ; is determined by the details of the band structure. These kinematic considerations
give rise to similar forms for the mixed polarizabilities II,;, although the detailed g-
dependence is different due to the different momentum dependence of the bare el-ph
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Figure 6.2: (a) Plots of the real (black) and imaginary (—1x, red) parts of the charge sus-
ceptibility II; ; and (b-f) the renormalized electron-phonon coupling g(k,q) in arb. units for
k = (0,7) and different values of ¢,, as a function of in-plane momentum transfers q = (g, 0).
In the case of the bond-stretching mode, a small ¢, component has been added in order to
better visualize the effects of screening on the breathing branches at small qy5. The plasma
frequency in this case is §2,; = 0.914 eV which corresponds to optimal doping.

vertices. For example, in the case of the breathing branches Il ; is largest at large q due
to the increased coupling associated with the deformation coupling mechanism.

In Fig. [6.2b-f the screened el-ph vertices for scattering from k = (0, 7) with momen-
tum transfers along the zone face q = (q,,0) are plotted for various values of ¢,. The
corresponding bare vertex (¢, = 0) is shown as the dashed black lines in each of the
panels. To illustrate the effects of poor screening on the long-range Coulomb interaction,
a momentum independent coupling g = 1 has also been included (Fig. [6.2b). For a
momentum-independent vertex II,; = gIl;; and, for Q@ < €Q,(q) screening is perfect,
leaving only a small el-ph interaction which survives at large in-plane momentum trans-
fer. This is shown as the black line in panel [6.2p, which corresponds to ¢. = 0. For
finite ¢, the cone of small momentum transfers forms where screening is inoperable. This
region of unscreened coupling occurs over a small range of g-vectors until q = (q,p, ¢.)
satisfies ©,(q) = pn. At this point a logarithmic divergence occurs, which is cut off by
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the damping introduced by a finite value of §. For increasing ¢, this condition moves to
progressively larger q,, and a window of momentum points opens where the vertex can
be well represented by its bare value.

Likewise, figures 3c-f plot the renormalized vertices for the A4, By4, apical and breath-
ing branches, respectively. Here, the renormalized vertices have been determined using
the simplified forms for the el-ph vertices, defined by equations - [3:23] and using
the same parameter set used to produce figure [3.3] For large q,, the c-axis couplings
are largely unaffected by screening due to the fall-off of the polarizabilities at large q,,.
However, for the breathing branch, where the bare coupling weights large momentum
transfers, the growth of the mixed polarizability leads to an overall suppression of the
screened vertex at large q,,. For small in-plane momentum transfer - relevant for c-axis
Raman active phonons considered here - screening is ineffective and the coupling is en-
hanced over the large q coupling. Again, for the breathing branch only small effects are
noticed at small q,, due to the nature of the deformation-type coupling. Furthermore,
since any fermionic dependence of the bare breathing couplings has been neglected, the
mixed polarizability II,; is proportional to the pure charge polarizability II;; in this
case.

The renormalized momentum-dependent coupling strength A, (qsp,) is defined by sub-
stituting the screened el-ph vertex into Eq. and summing over c-axis momenta

2Np

Av(Qzp) = N (l9(k, a, ) s (6.8)
(& 14 k,qz

This function is plotted in figure for the A4, By, apical and breathing branches
in panels (a)-(d), respectively. When summed over out-of-plane momentum transfers
q., the net coupling is on the order of the bare coupling for small q,,. The fermionic
momentum dependence of the bare vertices for the B, case noticeably alters A(q,p)
for momentum transfers along the zone diagonal, which are largely projected out, while
also preserving the small q,, form of the interaction. The A;, and apical cases are
similar to one another even though the anisotropy of the bare couplings for each mode
are substantially different and weight out different regions of the Brillouin zone. For
all of the c-axis modes, coupling is small for q,, = Qar = (7/a,7/a). The addition of
strong correlations are expected to further suppress the el-ph vertex for large q since both
Monte Carlo and slave-boson studies have shown that the Hubbard short-range term of
the Coulomb repulsion further suppresses coupling at large q [45, 47]. Therefore, with
the suppression of large q scattering, the Raman-active c-axis modes are not expected
to appear in transport measurements. Likewise, the breathing modes are altered at
small gy, but the overall coupling does not give substantial weight at these momentum
transfers.
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Figure 6.3: Plots of the renormalized momentum-dependent couplings A, (qsp) for the (a) Ay,
(b) By, (c) apical and (d) breathing modes. The momentum axis are plotted on a logarithmic
scale in order to highlight the region of poor screening at small qyp.

The g-dependence also has a strong effect on the d-wave projected pair interaction.
In figure [6.4] the d-wave projected coupling

2N
v,d — NCQ]/

qz

A

<|g(k7 q, Qpl)|2dkdk—q>ﬁFs (69)

for the four branches is plotted as a function of q,,. The phonons that strongly favour
small q scattering (the c-axis modes) promote d-wave pairing while the phonons that
favour large g-scattering (the bond-stretching modes) are detrimental. For the bond-
stretching modes, while a large region of g-space supports pairing, the large weight near
q = Q dominates the coupling and results in an overall suppression of the branch’s
contribution to d-wave pairing. The consequence of poor screening for finite ¢,, which
accentuates small q couplings is twofold: it enhances the overall d-wave coupling com-
pared to the coupling at g, = 0 and it diminishes the repulsive contribution from the
bond-stretching modes. Therefore, as the effects of screening become more prominent
with doping it is expected that the total contribution to pairing mediated by these optical
oxygen branches will increase.
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Figure 6.4: Plots of the renormalized momentum-dependent couplings projected onto the
d-wave channel )\, 4(qyp) for the (a) Ay, (b) By, (c) apical and (d) breathing modes. The
momentum axis are plotted on a logarithmic scale in order to highlight the region at small q,p.

6.3 Anisotropy of the Screened Electron-Phonon In-
teraction

The poor screening of the c-axis modes will also affect the overall anisotropy and magni-
tude of the el-ph coupling. Using the renormalized vertices, defined by Eq. A (k)
defined by Eq. [3.24] is plotted in figure [6.5 In order to mimic the effects of doping, the
plasma frequency has been varied from 0.289 - 0.914 eV, in accordance with experiment
and reflecting the increased metallic behaviour that occurs as the system is doped. This
is accomplished by rescaling the product egpe. while maintaining the ratio €, /€e.. The
values of A, (kp) are plotted in figure The black lines correspond to €2, = 0.289 eV
(underdoping) and the purple dashed lines correspond to €2, = 0.914 ¢V (Optimal dop-
ing). The intermediate curves correspond to the values of €2,,;, smoothly varying between
the under- and optimal-doped values.

Screening causes several noticeable effects compared to the unscreened case presented
in chapter [3] As the plasma frequency is increased the A;,, apical and breathing branches
are screened more effectively and the overall vertex is lowered for all k around the Fermi
surface. In the case of the A;, and apical branches, the largest effect occurs in the anti-
nodal region where the bare vertex is largest. However, in the case of the B, branch
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Figure 6.5: Plots of the screened el-ph A(kp) for fermions at the Fermi level as a function of
Fermi surface angle 6 for several different values of the plasma frequency. The plasma frequency
used varies from 0.914 eV (purple dashed) to 0.289 eV (solid black).

there is an anomalous anti-screening which occurs and the B, vertex in the antinodal
region is enhanced with increasing €2,;. This non-intuitive result is due to the out-of-
phase motion of the oxygen atoms since the only difference in the form of the bare
vertices for the A;, and B;, branches is the phase of the phonon eigenvectors. It is also
evident that the self-energy due to coupling to c-axis phonons should redistribute weight
around the Fermi surface as the number of doped holes varies. Such a redistribution of
weight could be directly probed in ARPES studies, providing a means to experimentally
verify these predictions. From these results it is inferred that in the cuprates a window
in g-space at small q,;, opens in which the c-axis el-ph interaction can be quite large
and avoid screening. This would vanish if the material were fully conducting along the
c-axis. Furthermore, this effect will become more pronounced in the underdoped systems
as (1 is reduced with decreasing hole concentration and the system becomes more ionic
in character.

In contrast to the c-axis modes, since poor screening does not affect large momentum
transfers, the strength of the coupling to the breathing branches dramatically increases
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Figure 6.6: Plots of the total A, (left) and Ay (right) as a function of the plasma frequency
1,;. The parameters used are defined in the text.

for smaller €2,;. This implies that the electron self-energy contribution from the breathing
branches should grow with underdoping. However, this finding must be viewed with a
degree of caution since the large q- behaviour is also strongly renormalized by Coulomb
interactions which have been neglected in this treatment.

Finally, in figure the total coupling A, , resulting from the screened el-ph vertex
is plotted as a function of Q. Following the trends in figure [6.5] the total coupling in
both channels for the A;,, apical, and breathing branches decreases with increasing 2.
However, for the B;, branch the couplings in both channels increases due to the anti-
screening effect and enhanced el-ph coupling a small q,,. In the case of the projected
d-wave coupling, the attractive interaction of the A, branch is largely cancelled by the
repulsive interaction of the breathing branch. Therefore, the total attractive d-wave
interaction mediated by phonons, which is primarily provided by the B, branch, is
enhanced with progressive doping.

6.4 Phonon Contributions to T.

In chapter {4f it was shown that the strength of a material’s coupling to the B, branch
is correlated with the material’s 7, at optimal doping. Based on this observation it was
argued that phonons could provide a pathway to understanding the material variations in
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T.. In such a picture, a two-channel model is invoked where phonons contribute to pairing
in conjunction with a dominant d-wave pairing mechanism. The effects of screening
presented in this chapter indicate that this proposal may also be able to account for the
doping dependence of T.. In this section such a proposal will be examined further using
a simple multi-channel model for superconductivity in the cuprates based on Eliashberg
theory. The primary goal is to determine the degree to which phonons can be expected to
modify T, and the implicit assumption here is that superconductivity can be described
in the usual bosonic exchange framework.

The starting point for calculating T, is the generalized d-wave Eliashberg equations
for coupling to a spectrum of Einstein modes characterized by frequency €2, and spectral
density B, (v) = §(v —€,). The expressions are

Alw)Z(w) = Z )\(m% /000 dzRe < \/Z2A_(WA)2C((:; 5:22(9) > K_(w,z,v)

Q, [~ z
wll—2Zw) = ZAZ’“?/O dzRe < A= A0) o (0) > K (w,z,v)

o
(6.10)
with kernals
1 1
Ba(w,2,) = Inle) T, (=20 | o s T o ma =2 w0
1 1
+ () +nyg(2)] Lu—Q—i—z—l—i(;j:w*—Q_ZWLM]

Here, the role of bandstructure has been neglected in order to allow for a simple analytic
solution for T.. The full derivation of these expressions is given in appendix [B] Attention
is now restricted to the two mode case with p = 1,2 corresponding to the B;, phonon
and an antiferromagnetic spin fluctuation, respectively. Each mode is characterized by
couplings A, and Ay ,,. In this calculation only the B;, phonon branch is considered since
this mode gives the largest contribution to d-wave pairing and the antiferromagnetic spin
fluctuation is considered to be the dominant pairing interaction.

In order to obtain an expression for T., a standard set of approximations [I8]] are
now made. First, the imaginary parts of A(w) and Z(w) are neglected. Next, it is noted
that in the vicinity of the superconducting transition 7" — T, the value of the gap is
small with A(w) — 0 for all w. Therefore A(w) appearing in the denominators of Egs.
can be neglected and A(w) can be replaced by its value at w = 0 on the right hand
side of Eq. [6.10} Finally, since the frequency of the boson modes is large, thermal bosons
can be neglected and n,(£2,) = 0. With these approximations the Eliashberg equations
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Figure 6.7: The double square-well model used to derive T..

simplify to

A0)Z(w) = ZA¢7MQ/A/OOOCZZR6<A<Z>COS2(9)> {nf(—z) nf(;ﬂ

z z—l—Q#_z—

1) = Dt | |y

At this level, the value of the mass renormalization parameter Z(w) is replaced with
its zero frequency and zero temperature value

o 1
H I

which is then substituted into the expression for the gap function. Lastly, z appearing
in the denominator of the terms inside the square bracket of A are neglected leaving the
final expression for the gap function

AW)Z(0) =3 Ao /0 T Aiz) tanh ( ;T ) . (6.12)

A double square-well model for the frequency dependence of A(w) [I83], as shown in
figure [6.7], is now introduced. This approximation produces the set of coupled equations

& Ay tanh(5%) @2 Ay tanh(5%)
Al(l + )\z,l + )\z,Q) = ()\¢71 + )‘fb,?) / dz% + ()\(b,l + )\¢,2) / dZ’fQTC
0 1
2 Ajtanh(s% Q2 Ay tanh(s3
A2<1 + )\272) = >\¢’2/ dzlf(zjﬂc) + )\¢,2/ dz%w (613)
0 Q1
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which are solved for the non-zero solution for A; and As. For ; ~ 35 meV and T, < 100
K the integrals can be replaced by their asymptotic value as z — oo [181], 183]

Q/2T.
/ dztanh(z) N 1.13491 (6.14)
0

z T,

This asymptotic form is substituted into equations (6.13)) and the system then solved for
T.. The final expression for, valid in the regime of weak coupling is (explicitly inserting
the k;, factor):

L+ A1+ A2 l+ Ao — Agalog(Qa/)

k1. = 1.134€2 — . 6.15
b 16%Xp |: )\¢71 + )\¢72 1+ )\Z72 ( )

This expression recovers the McMillan result [48, [I81] (1* has been neglected here) for
the single-well case in the limits of A\ ., A1 4 — 0 or Aa ., A2 s — 0. This expression differs
from that reported previously [I78] due to the assumed frequency dependence of Z.

The result for the two-channel model is plotted in figure[6.8h (solid curve) as a function
of the phonon’s projected d-wave coupling A; 4. Here, the phonon is associated with the
0 = 36 meV By, branch with the ratio A\ ,/A1 4 = 3 held fixed. The strength of the
2 = 260 meV spin fluctuation is also held fixed with Xy, = 2Xs4, A2 = 1, which
produces a baseline T, = 62 K without the contribution from the B;, branch. The value
of T obtained for phonon only mediated pairing is also shown (dashed curve), multiplied
by a factor of 10. For the double well model, the resulting T, is not a simple addition of
the T, obtained from each mode individually and even small el-ph couplings can produce
a sizeable enhancement of T..

The isotope exponent o = —AdlogT,./0log M defines the power law of the shift in
T. with respect to changes of oxygen ion mass M. In conventional phonon-mediated
superconductors o = 1/2 (with some notable deviations in systems with strong coupling
or large Coulomb pseudopotentials * such as Pb or Nb),[9, [I81] and the existence of an
isotope effect is unambiguous evidence for a phonon mediated pairing mechanism [2} 3], [4].
In the two-well model used here v = [1 — Ja|/2 where

T+A i+ A2 Ape
oo =
Mont Aoz 1+ A

(6.16)

reduces the overall magnitude of « from the value of 1/2 that would occur for a purely
phonon-mediated pairing. Without el-ph coupling (A\.; = Ag1 = 0) « is identically
zero. Furthermore, if the spin fluctuation mode is turned off (A,2 = Ag2 = 0) then
a = 1/2 as expected. A similar reduction in @ and enhancement of T, has been reported
when the phonon contribution to pairing is taken to be attractive in the d,2_,» channel
[179]. Figure shows the resulting value of o and demonstrates that a small isotope
exponent is possible despite large contributions to pairing provided by phonons.
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Figure 6.8: (a) T, for a d-wave superconductor with contributions from two channels, a 260
meV mode associated with spin-fluctuations and a 35 meV phonon as a function of the phonon
modes contribution to superconductivity. The dashed line shows the T one would expect from
the phonon alone (multiplied by a factor of 10). (b) The corresponding isotope exponent.

In comparing the results of figure to experiment a degree of caution is warranted.
Experimentally, the isotope exponent at optimal doping is small (~ 0.0 — 0.2) and in-
creases with underdoping [32], 37, [38]. However, the screening results of the previous sec-
tion indicate that the overall contribution to d-wave pairing mediated by el-ph coupling
increases with doping due to screening effects. Therefore, one might naturally expect that
the isotope exponent would increase with doping, contrary to experimental observations.
However, doping dependent changes are also expected for the spin-fluctuation mediated
pairing. Since it is the relative contributions from each channel that sets the value of
the isotope exponent, a direct calculation of o expected experimentally is not possible
until the details of the dominant pairing interaction are understood. Nevertheless, these
calculations show that phonons with relatively small coupling strengths can play a sub-
stantial role in determining T, while producing small signatures in traditional metrics
such as the isotope effect. It is also important to note that these results are limited by
the applicability of Migdal-Eliashberg theory and the fact that T, is difficult to calculate
correctly and is therefore generally a poor metric to compare with experiment. However,
this enhancement is generic to multi-channel superconductors and this result serves as a
guide for understanding the material dependence of T..
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6.5 Summary

In this chapter the theory of poor screening in the cuprates was formulated. It was shown
that due to the quasi-2D nature of the cuprate unit cell, and poor conductivity along
the c-axis, a window of small in-plane momentum transfers q,, opens where screening
becomes inoperable. As a consequence of this, coupling to c-axis phonon modes can
survive the effects of screening at small q,;, and the contribution to d-wave pairing
mediated by these modes is enhanced. Such effects are also expected in any quasi-2D
system with phonon modes polarized perpendicular to the plane and these effects are
entirely absent in good 3D metals.

Poor screening, when combined with the materials dependence of the el-ph coupling
presented in chapter [4] provides a natural means for addressing the doping and material’s
dependence of T.. In order to qualitatively assess the phonon-mediated contribution to
pairing a simple model calculation for T, was also presented. Using a simple two-well
model it was demonstrated that although the total values of A, , are small for el-ph
coupling, the inclusion of this pairing channel can give sizeable enhancements to T..
This multichannel scenario is also consistent with both the ARPES and STM results
discussed in chapters 4| and , respectively, where only moderate values of A, where
required to reproduce the renormalizations observed by these probes. This model for
high-temperature superconductivity is also supported by the observation that such a
two-channel model is required in order to reproduce the qualitative structures in the
tunnelling-derived density of states. From these results a consistent picture of high-
temperature superconductivity emerges where many factors cooperate in order to produce
the large observed value of T..
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Chapter 7

The Impact of an Oxygen Dopant in
BigSrQCaCu208+5

In this chapter the interplay between electron-phonon coupling and strong correlations
will be examined via exact diagonalization (ED) of small cluster Hamiltonians. This
treatment has the advantage of being exact but is limited in the size of problem that
can be handled due to the exponential growth of the Hilbert space with cluster size.
Due to this size limitation small cluster ED calculations are particularly well suited for
capturing local physics. Therefore, we consider el-ph coupling in the context of local
oxygen dopants interstitially placed in an otherwise perfect crystal of BisSroCaCusOs.
The key results presented in this chapter have appeared in ref. [198].

7.1 Dopant Atoms in the High-T,. Cuprates

The precise role of atoms lying off the CuO, planes has been an intriguing puzzle in
the study of the high-T. cuprates. Traditionally such dopants are thought to provide a
charge reservoir to dope holes into the CuO, plane. However, it has become clear that
an understanding of the pairing mechanism will require addressing the large variations
in T, arising from the local environment surrounding the CuOs planes [16]. Empirically,
the role of the apical or axial orbitals has been a vehicle linking T, either to an effective
electron hopping ¢’ along diagonal Cu-Cu bonds [22] or to the stability of the Zhang-Rice
singlet (ZRS) [18]. However, to date these arguments have pointed out possible links but
offer little microscopic reason for the impact on T, itself.

Scanning tunneling microscopy (STM) in BiySroCaCusOgys (Bi-2212) has revealed
that nanoscale inhomogeneity is correlated with the location of interstitial oxygen dopant
atoms [24] or the superlattice modulation [I99, 29]. The location of dopants has been
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correlated with suppressed peak features with larger gap energies in the observed local
density of states (LDOS), and has been associated with local modification of supercon-
ducting pairing [25], 200]. This suggests a non-trivial link between the dopant atoms and
the electronic properties of the material on a local level.

In metallic systems defects can be effectively screened and have little impact on the
electrostatics of the material. This is in contrast to the cuprates, which have poor
screening along the c-axis and are unable to effectively screen the dopant’s impurity
charge. As a result, these dopants and accompanying structural changes may have a
substantial impact on the electrostatic properties of the material. This may be reflected
in quantities such as the charge transfer energy A, effective hoppings ¢, ¢/, magnetic
exchange interaction J, or electron- phonon (el-ph) coupling strength .

From t-J studies [201], 202], it has been argued that dopants give an enhancement of J
and thus larger superconducting gap energies if one assumes a dominant spin-fluctuation-
based pairing mechanism. While the overall pairing mechanism - Coulomb repulsion,
magnons, phonons, or some combination - is still a subject of debate, the overall shape
of the observed LDOS suggests that incoherence, giving broad spectral features, is an
important ingredient to the understanding of local pairing modifications.

In order to quantitatively address these issues, electrostatic Ewald calculations are
performed for Bi-2212 supercells to determine the spatial dependence of the Madelung
energies around atomic sites in the crystal. It is found that while Madelung energies on
O and Cu are spatially varied on the scale of eVs, these changes largely cancel and A
is slightly increased near the dopant, yielding an overall suppression locally to J. This
information is then combined into exact diagonalization (ED) cluster studies, yielding
effective parameters t, ¢, J and J'. Large O(1) changes are found in both ¢’ and c-axis el-
ph coupling A, quantities known to strongly modify a d,2_,2 pairing interaction. Finally,
ED cluster studies including c-axis phonons are shown to produce a broadened spectra,
a reduced charge gap, in agreement with experiments [24]. As a consequence, a sizeable
local increase of J results due to reduced gap via a gain in lattice energy. While a unique
pairing mechanism cannot be determined in this approach, the results imply a strong
interplay and entanglement between el-ph coupling, local superconducting pairing and
antiferromagnetic correlations.

7.2 Electrostatics

7.2.1 The Undoped Lattice

The Ewald summation technique [I77] is a powerful method for evaluating sums of long-
ranged electrostatic interactions. In essence, it breaks the summation into two pieces; a
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well-behaved short-range piece plus the problematic long-range piece. The short range
piece is easily evaluated in real space, while the long range piece is evaluated in reciprocal
space where it becomes short ranged and rapidly convergent. Electrostatic calculations
using Ewald’s method are performed on supercell consisting of 3 x 3 x 1 Bi-2212 unit
cells for a total of 270 atoms. Supercells up to four times this size have been examined
and it was found that the results are not qualitatively different. Each unit cell contains
two primitive cells stacked along the c-axis for a total of four CuOs planes, as shown in
fig. [7.1h. Using formal valence for the atoms, along with the known structural data [97],
the Madelung energies ® obtained are ®,pey piane = 18.48, 10.16 €V, for the apical, planar
oxygen sites respectively, and ®¢, = —38.22 eV for the copper site, consistent with the
values reported previously [1§].

The in-plane charge transfer energy A is related to the difference in the Madelung
energies for the Cu and O sites A®,, = &o — P, and is given by
2
_ A% 9) 4 Ao(2) — 2— (7.1)
p
where I¢,(2) and Ap(2) are the second ionization and electron affinity energies for the
Cu and O sites, respectively. The factor of e?/d, represents the contribution of the
Coulomb interaction between the electron-hole pair introduced in the charge-transfer
process (this term is not included in the Ewald summation used to determine A®,;).
In this work, following reference[l8], we take the dielectric constant e(oco) = 3.5 and
Icu(2) — Ao(2) + €*/d, = 10.9 eV, yielding A = 2.92 eV in the ideal lattice. Besides
setting the scale for gap excitations, A largely governs the magnetic exchange energy J.
In the limit of small hole hopping J is given by[203]:

4t 1 2
J=——? |4 = | 7.2
B+ Uyg)? [Ud + 2A+UJ (72)

Using a canonical standard set of parametersﬂ an exchange energy J ~ 147 meV is
obtained, in rough agreement with experiments[151].

€(00)

7.2.2 The Doped Lattice

To model the doped lattice the Ewald calculation was repeated with a single oxygen
dopant atom inserted in the unit cell, shown schematically in fig. [7.1h, and the neigh-
bouring atoms displaced as indicated by a recent LDA study [204]. The oxygen dopant
was assigned formal valence, with surplus charge distributed equally among orbitals in
the CuOs planes.

YIn eV): Uy = 8.8, Uy, = 4.1, tpq = 1.0, t,, = 0.5, ¢4 = 0 and ¢, = 2.92 where U, and Uy are the
on-site Coulomb repulsion for the O 2p and Cu 3d,2_,2 orbitals, t,4 their overlap and ¢, is the O 2p-2p
overlap integral.
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Figure 7.1: (a) Schematic location of the dopant oxygen in the Bi-2212 unit cell. Individual
CuOg planes are labeled by the symbols shown. The arrows on the left indicate the orientation
of the local crystal field at the oxygen site in the undoped lattice. (b-d) Madelung energies
of the apical O, planar O and Cu sites, respectively, in the doped lattice. The local value of
the charge transfer energy A (e) and derived exchange interaction J (f), obtained by averaging
A® s between Cu and its four neighbouring O sites. (g) Resulting J for different distributions
of charges. All values have been normalized to the undoped lattice values. The distance to the
dopant is defined as the distance to the closest dopant, accounting for the periodicity of the
superlattice.

The site-dependent Madelung energies are presented in fig. [7.Ih-d, showing large
scale variations for sites closest to the dopant atom. Suppressions/enhancements of
O/Cu Madelung energies are observed, respectively, rising/falling to bulk values, shifted
by the presence of the doped holes, further away from the dopant. However, since the

relative sign of the Madelung energies for Cu and O are negative, these changes largely
cancel for A®,, and thus A (fig. [7.1e) is largely unaffected.

Modifications in A allow us to examine the effect of the dopant on the exchange
energy J (fig. [7.1f, equation . Reflecting the spatial variations of A, J is suppressed
by up to 20% near the dopant. Allocating the dopant’s excess charge on either Cu or O,
or distributed on both result in slightly different values of J (fig. [7.1g) but the overall
suppression seems rather immune to the way in which charge is distributed.

7.3 Small Cluster Calculations

Equation for J is based on a perturbative treatment in the limit of small hopping.
One would like to test the prediction of a suppression in J in a non-perturbative way. To
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do so, exact diagonalization (ED) studies of three-hole CuyO7 and CuyOg clusters were
employed to determine the changes to the Zhang-Rice singlet parameters [203]. The
clusters are shown schematically in fig. [7.2h-c. The ED calculations involve a three-
band model which includes the Cu 3d,2_,2, O 2p, and 2p, orbitals. The Hamiltonian is
H = Zi,a Hi,aa with

. . : 6 !
Hiy = €dl dig+> €'l spios+ > togldl spise +hc]+ > t07pls piso
5 5 540!

+ Udhighiy +Up > Rigiiisg (7.3)
0

where § denotes the Cu-O basis vectors and 7, is the number operator. From this three-
band model, an effective singleband Hubbard or ¢-J model is derived, with effective near-
est 2t and next-nearest 2t' neighbour hopping determined from the bonding-antibonding
splitting of the ZRS in the three-hole sector and J derived from the singlet-triplet split-
ting in the two-hole sector. In terms of clusters, CuyO; determines ¢ and J as the ZRS
involves a common bridging oxygen while CuyOg clusters yield ¢, J’, via O-O hopping
[203]. For the undoped lattice we obtain ¢ = 330, t' = —140 meV and antiferromagnetic
exchange couplings of J = 158, J' = 14.4 meV. Note that J may be further fine-tuned
by adjusting t,q and t,,.

The dopant is included by locally varying the on-site Cu and O energies €; and ¢,
respectively, as shown in figure . Here, two CupO7 s) clusters are used which differ
with respect to the location of the dopant, and the site energies have been determined
from site modified Madelung Energies (Fig. , according to eq. . For the CuyO7
cluster t = 336 and J = 155 meV are obtained. For the CuyOg clusters the values
t" = —187(—237) and J' = 15(15) are obtained, respectively. Electrostatic modulations
to J and J’ are slightly suppressed over the undoped cluster values, in general agreement
with the Madelung energy estimates, although the magnitude is smaller. Importantly,
it is noted that the symmetric placement of the dopant for the CuyO7; cluster gives
only small changes to ¢, while for the CuyOg cluster the increase is noticeably larger,
particularly for the geometry in fig. [7.2c. The asymmetric location of the dopant favours
occupation of the oxygen ligand orbitals in the plaquette containing the dopant, giving
larger modifications of t'.

These cluster calculations have been repeated including the modulations in ¢,,4 induced
by the structural distortions, according to the displacements of the Cu-O bond distances
predicted by LDA [204} 165], as shown in fig. [7.2|. Here, the values t = 324, J = 142,
t' = —180(—234) and J" = 17(19) meV. This tends to further suppress J. Thus, the
oxygen dopant’s net effect is to mildly suppress J and increase t’, indicating that the
dopant cannot be viewed as only modifying site energies and increasing J in downfolded
single-band models [201], 202]. This is also supported by recent perturbation examinations
of J due to local variations in band structure [205].
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In addition, the attractive or repulsive effect of the dopant on the local ZRS binding
energy has been investigated. When examining the ground state energy of the three hole
cluster in the presence of the dopant, the ground state is lowered in energy on these small
clusters and therefore the dopant may attract local hole charge density. It was found that
the dopant alters the ZRS density for the CuyO7 cluster, attracting 10% more weight in
the plaquette nearest to the dopant. Part of this charge reorganization will of course be
screened by the long-range Coulomb interaction and carrier metallicity which will tend
to minimize charge density variations, and will also be compensated by changes in the
overall chemical potential in the grand canonical ensemble. Thus, while this would be
better suited in larger clusters, it is inferred that the changes by the dopant to the local
ZRS properties t, J, t' and J’ seem to represent the most dominant effects on the local
bandstructure.
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Figure 7.3: (al),(bl) Normalized local crystal fields at the planar and apical oxygen sites of
the doped lattice. (a2),(b2) The corresponding electron-phonon coupling strength A oc E2. The
data points follow the same key as Fig.

7.4 Local Electric Fields and Electron-Phonon Cou-
pling

Since the Madelung energies are locally modified on the eV scale, real space modifications
may result in substantial changes to the local crystal fields. Ions vibrating along the c-
axis are sensitive to the spatial gradients of the Madelung energies and Devereaux et
al. [44] have shown that these values of the local field determine the overall strength
of el-ph coupling at the oxygen sites. This in turn controls the coupling to Raman
active Aj, planar and apical vibrations, and out-of-phase planar By, vibrations. While
these couplings themselves are not sufficiently strong to give high T.’s, local changes of
el-ph coupling due to eV scale changes in Madelung energies, in principle, can have a
strong impact on local bosonic pairing[I82, 27| 206, [144], polaron formation, as well as
magnetic based pairing via modifications of the overall properties of the ZRS. Therefore,
the dopant’s effect on the crystal field in connection to local changes in el-ph coupling
will be examined.
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For the undoped crystal, c-axis crystal fields are Egpes piane = 18.74, 1.16 eV/ A for
the apical and planar sites, respectively, oriented as indicated in fig. 7.1, For the doped
lattice, in fig. [7.3h1 and bl we plot the local c-axis electric field strength at the planar
and apical sites, respectively, and the corresponding el-ph coupling strength A\ oc £? in
fig. 2 and b2 [44]. One can see that the E-field strength is very sensitive to the local
symmetry breaking introduced by the dopant, especially in the case of the planar oxygen
atoms. The presence of the dopant’s bare charge in the otherwise positively charged
SrO/BiO structure suppresses the field in the closest lying plane, and the structural
changes further modify the local fields. The largest changes to the E-field occur in the
plane whose field is oriented towards the dopant. In this case, the geometry is such that
the dopant’s bare charge increases the strength of the original field, driving A for the c-axis
planar oxygen modes up by a factor of 5. As it is well known that the c-axis phonons give
an attractive interaction in the d,2_,» channel, this suggests that superconductivity may
be locally promoted by the dopant, in agreement with the assessment of ref. [25] 200].
The enhanced el-ph coupling may on the other hand drive a tendency to locally bind
a hole to the lattice near the dopant location. This raises the possibility that LDOS
modifications could be related to local polarons rather than pairing.

To address this issue, ED was employed for CuyO7; Hubbard clusters coupled to c-axis
oxygen vibrations. The Hamiltonian for the cluster is H = H + Hjot + Hep—pp, where Hy,
is defined in eq. [7.3] and

Hyy = Z Q,n” Helfph = Z gV(bi + bl/>eip;'r,5,gpi,5,a- (74)

1,1,0,0

Here, 7¥ is the phonon number operator for branch v, € is the polarization of the v-th
quantized local displacement, and g, = eE\/h/2Mp$Q, sets the el-ph coupling strength
for mode v. Here coupling to uniform out-of-phase B;, and in-phase A;, c-axis modes
(© = 36 and 55 meV, respectively) coupled to the oxygen hole density by local field eE' is
considered. Local modifications to the phonon mode energies compared to the bulk have
not been included. All ED calculations were performed for a truncated phonon Hilbert
space retaining only 6 quanta for each mode. The calculation has been checked for a
larger Hilbert space and the results are unchanged for a greater number of quanta for
the parameter range investigated here.

In order to make contact to STM LDOS measurements, the electron addition and
removal spectra A, defined as

Ax(w) =Y [0 e o W) *0(w — B + E3,), (7.5)

where U denotes the n-hole eigenstate with energy EI', are plotted in fig. and b

2

for different values of el-ph coupling g1y, = 1/55/36g414. As the coupling is increased,
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Figure 7.4: (a) The electron addition and removal spectra obtained from CusO7; clusters
coupled to c-axis oxygen vibrations as a function of el-ph coupling strength gp14. The energy
gap Ey is indicated. (b) The electron addition (positive energy) and removal (negative energy)
spectra as a function of energy for selected coupling strengths. (c, d) E,, J as a function of
el-ph coupling, respectively.

the spectral weight is gradually transferred into phonon side bands giving broader and
suppressed spectral peaks. The corresponding energy gap F, between the first removal
and addition states decreases with increasing gp1, (fig. ) as the effective charge
transfer energy is reduced by the gain in lattice energy. As a consequence, the value
of J (correspondingly determined from two-hole CuyO7 clusters with phonons) increases
substantially with increasing gp14, as shown in fig. |7.4d. The decrease of E, and increase
of J due to local phonons will overwhelm the countering effects from purely electrostatic
considerations as the coupling to the lattice increases.

In order to estimate the size of the effect for Bi-2212, E,j4,,. = 1.16 eV for the undoped
lattice yields ggiy ~ 0.073 eV, well into the large polaron regime where side bands are
weak. Near the dopant, however, gp1, is enhances to ~ 0.2 eV, where side bands begin
to develop spectral weight in the removal /addition spectra and the charge gap is reduced
(fig. |7.4h-c). At the same time, for this parameter regime, which is characteristic of multi-
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layer cuprates, J is increased by 20 meV. This is much greater than the small reduction
determined from electrostatic effects alone. Thus for realistic parameter regimes, c-axis
phonons act in concert with strong spatial variations of Madelung energies giving an
increase in J as well. The dopant may then provide two coupled channels for d-wave
pair enhancement, while causing suppressed spectral features as a consequence of strong
local el-ph coupling. This is qualitatively what has been observed in the experiments
[24]. Such synergy among phonons, polarons and antiferromagnetism has already been
noticed in cluster quantum Monte Carlo studies [207].

7.5 Summary

In this chapter we have examined electrostatic modulations of the local Madelung energies
arising from the presence of a dopant Oxygen atom in Bi-2212 unit cells. While eV
changes are found for the Madelung energies for copper and oxygen, these changes largely
cancel for the charge transfer energy and give a small local suppression to J. However,
the strong local variations in Madelung energies are manifest in order-1 changes in el-ph
coupling for c-axis oxygen modes. Using cluster studies, it was found that in combination,
electrostatic modifications and coupling to the lattice yield broadened spectral features,
reduced charge gap energies I/, and caused a sizeable local increase of J, implying a strong
local interplay between antiferromagnetism, polarons and superconducting pairing. The
amount of variation of the local charge gap can thus serve as an important diagnostic for
determining lattice coupling, electrostatic effects and pairing. However, at this time, it
is an open question whether a link between these quantities can be made experimentally.

114



Chapter 8

Determinant Quantum Monte Carlo

The analytical techniques employed in the previous chapters have been successful in ac-
counting for many of the electron-phonon (el-ph) signatures in the optimal and overdoped
regions of the phase diagram where the cuprates are more metallic. The natural exten-
sion to this is to begin examining the underdoped side of the phase diagram. However,
in this region the electron-electron (el-el) interaction becomes important, and in order
to proceed one requires a method for handling the el-el interaction non-perturbatively.
Furthermore, it is desirable to have a means for treating el-el and el-ph interactions on
an equal footing. Monte Carlo methods provide a natural way to do this. In this work
the method of choice will be Determinant Quantum Monte Carlo, which allows for treat-
ments of the full many-body problem with strong el-el and el-ph interactions. In this
chapter the framework of Determinant Quantum Monte Carlo (DQMC) is laid out and
in the following chapter the general results for the DQMC treatment of Hubbard and
Hubbard-Holstein models are given.

8.1 The General Methodology

DQMC is an auxiliary-field imaginary-time Monte Carlo method for simulating interact-
ing systems of particles in the grand canonical ensemble [208, 209, 210]. The goal is to
calculate the single-particle Green’s function at finite temperature

G(7,7)i5 = {Tleio(T)cho (M), (8.1)

by stochastically evaluating the finite temperature expectation value. The Green’s func-
tion is important since, in general, any single or multi-particle correlation function can
expressed in terms of G(7,7') through the application of Wick’s theorem [9].
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The thermodynamic expectation value of any observable O at finite temperatures is
defined as o i
0y =10 ) 52
Tr(e—AH)
In order to outline the method, consider the evaluation of the partition function Z =
Tre ?H (the generalization to evaluating the numerator is then straightforward), evalu-

ated for the single-band Hubbard model

. . 1 . 1
H=— Zti’j [C;[,UCJ}U + C}L-’Uci’g] - ,LLZHZ‘,U + UZ (nm — 5) (nj,l - 5) . (83)

27.]70-

Here, n;, = czacw is the usual number operator for site ¢ and spin o, ¢; ; is the matrix
element for hopping from site ¢ to site j, U is the on-site Coulomb interactionﬂ and p is
the chemical potential which is adjusted to maintain the desired filling.

To evaluate the partition function in imaginary time one divides the interval [0, (]
into L discrete time slices A7 = (/L in length. The partition function can then be
written as:

7 = Trle ") = Tr[e 2] ~ Tr[(e 2K e 27V (8.4)

where K is the solvable non-interacting portion of and V' contains the remaining
interaction term. (In the treatment of the Hubbard-Holstien model V' also contains the
el-ph interaction terms.) In the last step the Trotter approximation has been used where
the fact that K and V' do not commute is neglected. This approximation introduces a
systematic error on the order of (A7)? to measured quantities and is therefore a controlled
approximation [210, 211, 212], 213].

The interaction term, involving four fermion operators, is further reduced to a set of
quadratic terms through the introduction of an auxiliary field s;; = +1 at each site and
time slice and applying a discrete Hubbard-Stratonovich transform [214]

e_ATU(ﬁi,T_1/2)(ﬁi,l_1/2) — le—ATU/éL Z e—ATSiJ)\(?ALi,T—TALi’l). (85)
2
S,L‘yl::tl
where \ is defined by the relation cosh(A7A) = exp(A7U/2). At this stage, all terms
involving fermion operators have been made quadratic through the introduction of the
auxiliary field. The trace over the fermion degrees of freedom can now be explicitly
performed for a given configuration {s;,;} [208, 210} 215] (For a formal derivation please
refer to Appendix |C]) leaving

Z =Y det(M")det(M") (8.6)

Siyl::tl

'Here the interaction term has been written such that u = 0 corresponds to the half-filled case with
< n >=1 by absorbing an additional term into the definition of pu.
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where
M =1+ B]B]_,..BY. (8.7)

and [ is the identity matrix. The B; matrices are defined as

Bl:l: _ e:FATA’U(l)e—ATK‘ (88)

Here, v(l) denotes a diagonal matrix who’s i-th element is the field value s;;. All that
remains is to evaluate the sum over field configurations appearing in equation

For reasonably large lattice problems the number of possible configurations for the
Hubbard-Stratonovich field is prohibitively large. Therefore, one must resort to Monte
Carlo methods to evaluate the sum over {s;;}. To do this one generates a sequence of spin
configurations, distributed with probability Z~'detMdetM!, to be sampled. Generally,
the sum over {s;;} is dominated by a subset of configurations. Therefore, if the generated
sequence is primarily drawn from this subset then accurate measures of the properties
of the system can be obtained. This is accomplished by using an importance sampling
algorithm which will be discussed in the following section.

Finally, for an electron propagating through a given field configuration s;;, the equal-
time Green’s function G7(I) at discrete time 7 = [A7 is given by [210]

G ()5 = (Tleio(r)el 4 (M)]) = [ + By ..B{ B... B, ;7 (8.9)

370

and the determinant M7 is related to the Green’s function by
detM? = detG (1) = det[I + A°(1)] (8.10)

where A?(l) is shorthand for the product By...BfB{...Bf ;. In general, the largest and
smallest eigenvalues of B, scale as exp(SE) and exp(—(F), where E represents the energy
scale of the problem (for the non-interacting limit £ ~ 4t). Clearly, as the temperature
is lowered these eigenvalues become well separated and B; matrices become stiff. As
a result, the product defining A?(l) is numerically unstable as round-off errors become
larger than the smaller eigenvalues. In order to evaluate this product a stable matrix
product routine must be used which makes use of UDR-decompositions. The details of
this procedure can be found in appendix [D] as well as references [210, 216} 217].

8.1.1 Sampling the Hubbard-Stratonovich Fields

In order to sample the Hubbard-Stratonovich (HS) fields an importance sampling algo-
rithm commonly referred to as the Metropolis algorithm is employed. One begins by using
Eq. to calculate G(7) on a particular time slice for some initial (usually random)
configuration of s;;. Once G(7) has been calculated, a loop through the sites is carried

117



out and a flip of the field s;; — s}, is proposed at each site. The probability of accepting
such an update is given by the ratio R of the determinants before and after the change
in s,

detMVdet MV
detMTdetM! "

An efficient algorithm for calculating the ratio can be obtained by noting that for a
change s;; — —s;,; the resulting change in the matrix product A7(I) is

A7(1) = A7(1) = [I + A°(i, )] A" (1) (8.12)

where the matrix AT(i, 1), = 0;:0ki[exp(£2A7s;;) — 1] has a single non-zero element
[210]. Therefore, the ratio of the determinants before and after the update is then given
by

R=R'R' =

(8.11)

_detM?" detG(l)
~detMe  detGo'(1)
and the ratio for accepting a proposed change R = R'R' can be calculated from the
Green’s function for the current configuration. Therefore, all that is needed at a given

step in the Monte Carlo sweeps is the Green’s function at the current imaginary time
slice.

e

— 14 [1— G7(1)a] A (i, 1)y (8.13)

If the change is accepted then the Green’s function is updated accordingly G(I) —
G'(1). Computing G?(I) by evaluating equation [8.9|is costly since it involves multiplying
a sequence of L N x N matrices, which scales as LN?, where N is the total number of
sites in the lattice. One can gain a significant performance increase by using a “Sherman-
Morrison” updating scheme which exploits the fact that only a single row and column
of G?(l) are affected by a single flip of s;;. The updated Green’s function can then be
computed by from the current Green’s function [210], 216}, 217]

_ GTAGE DI - G (1)
1+ [1—G%(D)AL(i,1)

and since A“(7,1) has a single non-zero element no matrix multiplications are needed to

perform the update. The cost of updating in this manner is reduced to N? operations.

G7(1) = G (1)

(8.14)

Finally, once changes have been proposed for each site on a given time slice, and the
appropriate updates have been made, G7(I) is advanced to the next time slice and the
process is repeated. The advancement to the next time slice is done by a simple left and
right matrix multiplication

Go(1+1) = B, G ()(Bf,) (8.15)

This process is repeated several thousand times and the quantities of interest are “mea-
sured” periodically by calculating their current value at a given Monte Carlo step. These
measurements are then averaged together to produce a final estimate for the quantities
of interest.
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8.1.2 Unequal Time Green’s Function

At any given step in a sequence of field configurations (generally referred to as a Markov
chain) one has the equal-time Green’s function on a given time slice. However, in order
to measure dynamic quantities, one needs to measure the full time-dependent Green’s
function G(7,7") = G(7 — 7’). This can be constructed from the inverse of the NL x NL
matrix [20§]

I 0 0 .. 0 B
~B, I 0 .. 0 0
0 —Bs I .. 0 0
o= . S (8.16)
0 0 0 B, I |

where the B; matrices are defined as before and [ is the identity matrix. The full time-
dependent Green’s function is then given by the inverse of O

G(r,7) = eATER2O e ATE2, (8.17)

The N x N Green’s function G(7) at time 7 = (i — j)A7 is then given by the (i,7)
block of the larger NL x NL matrix. Evaluating the inverse of O scales as (NL)?
and is therefore computationally intensive for large clusters and low temperatures, even
if efficient numerical routines are used. A significant improvement can be made by
exploiting the fact that the matrix O is a sparse block matrix. By requiring that OO~! =
I one then obtains

Gii == [I—i-Bi,l...BlBL...Bi]il
Gij = ij [Bi—l c BJ] (Z > j) (818)
Gij = —ij [Bi—l ...B|By ... B]] (Z < j)

The first expression is simply the equal time Green’s function and the remaining two are
the 7 — 7 > 0 and 7 — 7" < 0 unequal time Green’s functions. Evaluating G;; requires
order N? operations to compute while the unequal time Green’s functions G;; requires
2N? operations.

8.2 The Fermion Sign Problem

In general, the factor det(M1)det(M') is not positive definite, and therefore the sampling
procedure just outlined occurs over an unrenormalized probability distribution which
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Figure 8.1: Plots of the average fermion sign as a function of filling on an 8 x 8 Hubbard
model cluster with U = 8¢ with (a) ¢ =0 and ¢’ = —0.3¢.

is not positive definite. To overcome this problem the absolute value of the product
|det(MT)det(M1)] is used and the expectation value of an observable must be augmented
(OF,)
(Fs)

where P, denotes the sign of the product det(M")det(M') and () denotes the same
averaging procedure outlined above.

(0) = (8.19)

The physical origin for the sign problem is Fermi statistics. The DQMC formalism
calculates expectation values in the grand canonical ensemble and at any point in the
simulation the method has no information regarding the many-body wavefunction. For-
mally, the electron configuration at a given step in the simulation is determined by the
current HS-field configuration and characterized by a set of creation operators {CIU}

However, the simulation does not have knowledge of the order in which the C']L'L,cr were
applied to the vacuum state in order to produce the various sampled states. Therefore
there can be an overall —1 phase factor associated with interchanges of the fermion op-
erators. If the wavefunction were known, such as in the case of exact diagonalization,
then the fermion operators are normal-ordered and the phase factor is explicitly taken
into account. However, since DQMC does not calculate wavefunctions explicitly, the
phase factor remains unknown. This affects the calculation of expectation values and is
reflected in the negative values of the product det(M")det(M?).

At low temperatures, the quantum statistics of the problem become increasingly im-
portant and the average sign of the product < Ps; > tends towards zero. This places a
severe limitation on the range of parameters accessible to the simulation, especially with
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respect to the temperatures that can be reached. Furthermore, the average sign depends
on a number of factors including the size of the system, the overall filling, the strength
of the interaction U, and inverse temperature (. In figure the average sign is plotted
as a function of filling for U = 8 and § = 1/t, 2/t and 3/t. The remainder of the
parameters used in the simulation are listed in the figure. Figure plots the average
sign without next nearest neighbour hopping ¢, and is for the case of ¢’ = —0.3t.
At half-filling, when ¢’ = 0, the sign is identically 1 due to particle-hole symmetry which
ensures that the product of determinants is positive [210]. When t’ is non-zero this sym-
metry is removed and a fermion sign develops even at half-filling. As the system is doped
away from half-filling the sign problem becomes more severe and the average sign takes
its lowest values around fillings of 0.8 and 1.2.

8.3 The Hubbard-Holstein Model

The goal in the next chapter is to study el-ph coupling in the presence of strong el-el
interactions. To this end, the Hubbard-Holstein (HH) model is examined, which is the
simplest model which includes both of these interactions. In the HH model phonons
are included as independent harmonic oscillators, characterized by a frequency €2, on
each site. The el-ph interaction is included as a local coupling similar to the coupling
mechanism discussed in chapter [3] for the c-axis modes. The Hamiltonian is given by
H = Hyb + Hiat + Hel—ph where Hy,y, is the Hubbard Hamiltonian defined by equation

8.3}

1 22 I~
Hp = Z SMOPXE + 2P (8.20)
and X
Helfph = Zgoﬁi,a’Xi,a' (821)

Here, )A(,-’l, ]32-,; are the position and momentum operators for the oscillator at site i,
and gy characterizes the strength of the el-ph interaction. In order to handle the lattice
degrees of freedom the operator XZ'J is replaced with a continuous variable X;; and the
momentum operator 151-71 is replaced with a discrete forward difference on the imaginary
time grid
Xigr1 — Xy
AT '
The interaction terms are handled as they were for the Hubbard model but with a simple
modification to the matrices B;

P = (8.22)

B — (FATN()-ATgX (D) ,-ATK (8.23)
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Here, X (1) is shorthand for the diagonal matrix whose ith diagonal element is the value
of the lattice displacement X; ;.

It is useful to define a dimensionless el-ph coupling strength A which is the ratio
of the lattice deformation energy E, = g3/(2MQ?) to half of the electronic bandwidth
W/2 = 4t: X\ = g2/MQ?*W. As previously discussed, A\ = 1 divides the boundary
between the weak and strong coupling limit and, for A > 1, a crossover to a polaron
system is expected to occur. This crossover is typically marked by a sudden drop in the
quasiparticle weight Z at the Fermi level, as the local lattice distortions tend to bind the
electron and increase its overall effective mass m*.

The lattice degrees of freedom also contribute to Hamiltonian and therefore the prob-
ability of accepting any update must also be augmented with the change in the energy
associated with the change in the phonon field. The new ratio for accepting an update
to the fields s;; and X;; must be amended to be R = R'R!exp(goATAFE) where R* is
the usual ratio of the determinants and AFE is the total change in kinetic and potential
energy of the phonon fields associated with the update.

8.4 Phonon Field Updates

8.4.1 Single Site Updates

In addition to the HS fields, the phonon displacement fields X; ; must now also be sampled.
There are a number of ways of doing this, and in general a minimum of two classes of
updating schemes are required to ensure that the phonon fields satisfy Bose statistics at
low temperature. The first class of updates are single-site updates where the displacement
field is sampled by proposing changes to the displacement field X;; — X;; + Az on a
site by site basis. In this case, Az is drawn from a uniform probability distribution
centered at zero while the width of the distribution is adjusted during runtime in order
to maintain a desired acceptance rate for the phonon fields. For single site updates the
Sherman-Morrison updating scheme can still be used for fast updates of the equal-time
Green’s function.

8.4.2 Block Updates

The second class of updates required are block updates, where an entire set of displace-
ments along a block of imaginary times slices are updated simultaneously. For the cal-
culations presented in the next chapter, a uniform block update is implemented where a
lattice site is selected at random and the displacement for that site is shifted by a uniform
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amount for all time slices. As with the single site updates, the size of the uniform shift
is drawn from a uniform distribution centered at zero and the width of this distribution
is adjusted at run time in order to maintain a specified block update acceptance rate.
In principle, the length of the block in imaginary time can be variable; however, tests
conducted here indicate that updating all 7 € [0, 5] is sufficient to recover the Bose statis-
tics. The main drawback of the block updating scheme is that the Sherman-Morrison
updating scheme cannot be used and the full Green’s function must be recomputed from
scratch.

Block updates are required due to a slowing of the rate of acceptance of single-site
updates at low temperature. For large values of 3 the total expectation value of the
phonon momentum is small and the DQMC algorithm will tend to reject large changes
of a single X;; since they will produce large changes in momentum. As a result, phonon
configurations can be frozen in and a large number of small phonon updates are required
in order to move such a configuration to another statistically independent configuration.
The introduction of the block updates allows for large changes in X;; for a whole set of
sites while maintaining a fixed or small change in kinetic energy. Therefore, the algorithm
can efficiently escape from frozen configurations and a proper sampling of the phonon
fields can occur.

8.5 Measurements

Estimates for the statistical error in measured quantities are obtained through a straight-
forward binning procedure. The Ny, measurement sweeps are divided into Np;,, inter-
vals and each bin is assigned a measurement value obtained from averaging the individual
measurements performed over that interval. After Ny, measurements are performed,
Ny, measurements are obtained for each quantity of interest. The binned measurements
are then treated as statistically independent measurements and a sample mean

is taken as the final measurement value while the error estimate is given by the sample

variance
1 Nyin,
2 —\2
= — i —T)% 8.25
S OICED (5.25)
Throughout this work, all error values quoted are 1o, for an overall confidence interval
of 67.3%. The definitions of individual quantities of interest will be given in the following

chapter as the results are discussed.
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Figure 8.2: Average lattice displacement at 7 = 0 for an 8 x 8 lattice as a function of the
warm-up sweep number.

8.5.1 Autocorrelation and Equilibration Times

The autocorrelation and equilibration times are two important quantities in Monte Carlo
simulations. For the Hubbard-Holstein model, especially at low temperatures, the phonon
fields are the bottleneck in terms of autocorrelations and warmup due to the lower rate
of acceptance of phonon updates [218]. Therefore, the equilibration and autocorrelation
times for the phonon field at 7 = 0 are considered here.

8.5.2 Equilibration Time

The equilibration time is defined as the number of warmup sweeps one must perform
before the system reaches thermal equilibrium and measurements can begin. If measure-
ments begin prior to this time then the Markov chain will be biased by the initial field
configuration and the measured quantities will not be accurate. In figure the average
value of the phonon displacement field (X;(7 = 0)), averaged over all sites in an 8 x 8
lattice, is plotted for the cases of a high (2 = ¢) and low (2 = 0.3t) frequency phonon
as a function of warmup sweep number. In all cases the phonon field was initialized to
zero and, as the warmup sweeps accumulate, the average phonon displacement rises until
reaching the equilibrium position indicated by the dashed lines. The longest warmup
times occur for the low-temperature cases with larger el-ph coupling constants. This
is due to the lower acceptance rates for phonon updates at low temperature and the
increased offset in the lattice equilibrium position with larger coupling. However, in all
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Figure 8.3: Sample autocorrelation functions for the phonon displacement field for the same
parameter set shown in figure In all cases AT = 0.1/t.

cases equilibrium is reached in approximately 1 x 10* sweeps (or less). In the remainder
of this work the number of warmup sweeps is set to 2 x 10* to 5 x 10* in order to ensure
a properly equilibrated field configuration prior to measurement sweeps.

8.5.3 Autocorrelation Time

The autocorrelation time is a measure of the amount of time one must wait between
measurements in order to ensure that the measurements are drawn from statistically in-
dependent field configurations. The autocorrelation time can be estimated by examining
the autocorrelation function for various quantities. The autocorrelation function A; for
a quantity X; is defined as [210]

<Xn+an> — <Xn>2

A= Ly

(8.26)

where the subscripts [ denotes the Monte Carlo sweep number and (X,, X, ;) = ﬁ Zanl X Xiin.

The autocorrelation function is plotted in figure for the same parameter sets used
in figure 8.2, In general, the autocorrelation time scales as oc 1/(A7€2) [2I8]. This is
apparent in fig. 8.3 as the autocorrelation times for the {2 = 0.3t case are substantially
longer that the 2 =t case.

The autocorrelation time also increases with the strength of the el-ph coupling. For
large values of \ at low temperature, the autocorrelation time becomes prohibitively long
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and using a single Markov chain becomes impractical. There are a number of methods
for decreasing the autocorrelation time such as parallel tempering [216], running multiple
Markov chains in parallel while defining fewer bins per chain, or by performing a principle
coordinate transform such as that recently proposed by Hohenadler et al. [218]. However,
the principle coordinate transform comes at a price of introducing a momentum field and
complex hopping terms to the Hamiltonian, which removes the ability to perform the
Sherman-Morrison updates. This is not an issue for the Holstein model since the loss of
performance would be recovered by the reduction in autocorrelation time. However, in
treating the Hubbard-Holstein model, no such compensation occurs for sampling the HS
fields. In the case of parallel tempering multiple Markov chains at different temperatures
are run in parallel. Periodically, the field configurations are switched between the chains
allowing for a frozen phonon configuration to “unfreeze” at the higher simulation tem-
peratures. However, in the DQMC simulations, the current value of the Green’s function
G7(l) is defined for a given instance of the fields. Therefore, after the field configura-
tions are swapped, additional warmup sweeps must be made in order to equilibrate the
swapped fields to the temperature of new chain. Therefore, in order to maintain the
ability to perform the fast Sherman-Morrision updates, and to avoid the costs associated
with parallel tempering, the method of parallel markov chains is used in this work to
overcome long autocorrelation times.

8.6 Analytic Continuation: The Method of Maxi-
mum Entropy

Since DQMC is an imaginary time formalism it provides information about the imagi-
nary time Green’s function. However, one is often interested in dynamical properties of
the system and in order to calculate them, the imaginary time Green’s function to be
Wick rotated to the real frequency axis. Formally, the Wick rotation is performed by
analytically continuing the Matsubara Green’s function G(iw,) to the real axis G(w) by
setting 1w, — w + 10, where ¢ is an infinitesimal positive real number. However, since
the DQMC method does not produce an analytical form for G this procedure must be
performed numerically.

In general, one is interested in calculating the single-particle spectral function A(w) =
ImG(w) which is related to G(7) by the integral equation

G(r) = / dw% (8.27)

with the +ve (-ve) sign for fermion (boson) problems. Obtaining A(w) from inverting
equation is known to be an ill-posed problem, especially when G(7) contains noise
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and is only known up to some statistical error. This is due to the fact that the kernel
exp(—7w)/[1 £ exp(—pw)] is small for |w| — oo and A(w) is therefore very sensitive to
small changes in G(7). However, the opposite problem of generating G(7) given A(w) is
well defined and a number of numerical procedures exploit this fact to determine A(w)
for a given G(7). One such method is the Method of Maximum Entropy (MaxEnt) [219],
which is the method that will be used in this work to perform the analytic continuation
of the Green’s function produced in the DQMC simulations.

From the DQMC simulation it is assumed that £ independent measurements of the
Green’s function at time 7; have been obtained which are denoted as GZ(»] ). For a suffi-
ciently large number of measurements, ng ) are normally distributed with a sample mean
of G;. For a given trial A(w) a proposed G; is then obtained from equation m The
A(w) which is best represented by the data is the one which maximizes the probabil-
ity that the data set G; would be drawn from the (unknown) parent population. This
probability depends on A(w) and is denoted by the conditional probability Pr[G|A]. Us-
ing Bayesian inference and the principle of maximum likelihood this probability can be
shown to be proportional to =9 [219], where

1

Q=aS— 5)(2 (8.28)
and S is a Shannon Entropy
S = / " dwA(w) — M(w) — A(w)log [ ﬁ(&))] , (8.29)

and M (w) is a default model. The default model incorporates information about the
solution A(w) which is known from physical arguments. This includes properties such as
the fact that A(w) > 0 for fermions or A(w) — 0 as |w| — 0. The parameter « controls
how closely the solution should conform to the default model. In equation the x?
metric is defined as

> =D (Gi— G)ICT,4(G; - Gy) (8.30)
ij
with covariance matrix
M
Cij = Z (G; — G5 (G — aW), (8.31)
k=1

Note that the above expressions for x? and the covariance matrix depend on the fact
that the data G; is normally distributed. This can be assured by apg)eahng to the Central
Limit Theorem and generating a large number of measurements G The quality of the
data set can be estimated by testing the statistical moments of the measurements to
ensure that they conform to the expectation of normally distributed data.
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To find the optimal A(w), which minimizes @), a stochastic optimization procedure is
applied. A(w) is defined on a discrete grid w; and changes to A; = A(w;) are proposed
until () is minimized. In general, the solution should be insensitive to the choice in default
model and one method for verifying the solution is to check that it holds for different
choices for the default model or «.

8.7 Summary

In this chapter the details of the Determinant Quantum Monte Carlo method have been
laid out for both the Hubbard and Hubbard-Holstein models. The advantage of this
method is that one can treat both models in their strong coupling limits and, in the case
of the Hubbard-Holstein model, both the el-ph and el-el interactions can be treated on
equal footing. DQMC also has the advantage of treating the full many-body problem,
which contrasts with methods like diagrammatic quantum Monte Carlo. In the next
chapter DQMC will be applied to the Hubbard and Hubbard-Holstein models in the
vicinity of half-filling, where the analytical treatments of the previous chapters break
down. In doing so, one hopes to gain insight into the role of el-ph coupling in the
underdoped region of the cuprate phase diagram where strong el-ph coupling may lead
to interesting physics.
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Chapter 9

DQMC Results for the Hubbard and
Hubbard-Holstein Models

The treatment of the electron-phonon (el-ph) interaction up to this point (with the
exception of the small cluster calculations discussed in chapter 7) has neglected the
role of electronic correlations. The details of the el-ph interaction in the presence of
strong electron-electron (el-el) interactions is a topic of great interest, not only in the
context of the cuprates but also in the colossal magnetoresistive manganites [220), 221]
and the fullerenes [222, 223]. In this chapter the results for the DQMC treatment of the
single-band Hubbard and Hubbard-Holstein models will be presented. In the case of the
Hubbard model, attention will be focused on the spectral function in order to determine
the role of correlations in forming the high-energy anomaly discussed in chapter[2] In the
case of the Hubbard-Holstein model a number of quantities will be examined in order to
study the el-ph interaction in the presence of strong correlations.

9.1 Electron-Phonon Coupling in Strongly Correlated
Systems

A great deal of effort has been expended on understanding el-ph coupling in strongly
correlated systems. Before turning to the results of the two models it is therefore useful
to review some of the salient results arising from these efforts. Much theoretical work
has focused models which incorporate the el-ph interaction into ¢-J [45] 224, 225 220,
2277, 228, [229], 230], 231, 232, 233], 234, 235], 236, 237, 238, 239] and single-band Hubbard
1240, 241, 242] 243], 244), 245], 207, 246], 47, 247, 248, 249], 250, 251] Hamiltonians, although
some work has also been done on multi-band models [160], 252] 253], 254, 255], 256] 257,
258]. Analytical solutions to the Hubbard model are lacking and the addition of the el-ph
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interaction further complicates the problem. Progress in this area has also been somewhat
hindered by the fact that the energy scales of the two interactions are quite different.
Furthermore, it is desirable to treat both interactions equally in order to address any
interplay that may occur between them. For these reasons, much of the work has focused
on numerical treatments of these models and a wide range of results has been obtained
depending on the methodology used.

There are two effects expected on general grounds for el-ph coupling in strongly cor-
related systems [259]. The first is the attractive interaction between electrons mediated
by the el-ph interaction which is expected to counteract the strength of the repulsive
Coulomb interaction. For a Holstein phonon in a single-band model, the el-ph coupling
term is given by equation [8.21],

Hel—ph = 4o Z ﬁi,UXi =g Z /ﬁ'i,a(b;’r + bz) (91)

where g = go\/h/2MS, © is the phonon frequency, M is the ion mass, gy is the el-

ph coupling strength and b; (bj) creates (annihilates) a phonon quanta at site . This
interaction can be transformed into a negative-U Hubbard interaction with a dynamical
(retarded) attractive interaction between electrons of different spins U = —922%& [9],244].

As a result, one might expect the low-energy physics of the Hubbard-Holstein model to
map onto an effective Hubbard model with a dynamical U.g defined as

2¢%Q

Ve =U = —

(9.2)

In the antiadiabatic limit 2 — oo this reduces to a frequency-independent effective
Hubbard model with Uyg = U — 2¢g?/Q — AW, where W = 8t is the total bandwidth of
the non-interacting system and A = ¢?/4tQ) is the dimensionless el-ph coupling strength.
Therefore, in the limit of large phonon frequencies it is expected that the el-ph interaction
will simply act to reduce the effects of the on-site Coulomb interaction.

The second effect expected from the el-ph interaction is the additional dressing of
carriers by phonon scattering processes, thus reducing the total quasiparticle weight Z. In
the limit of large el-ph coupling this can lead to polaron formation as the effective mass of
the carriers becomes large due to the presence of the local lattice distortions dressing the
carriers. However, in a correlated system these carriers are already dressed by correlation
effects. Therefore, there are two competing effects: one which reduces carrier mobility via
el-ph scattering and one which increases it through an effective reduction in the Coulomb
interaction. The resulting behaviour is difficult to predict on intuitive grounds and in
many cases it will depend on the values of parameters such as the phonon frequency
), Coulomb repulsion U, hopping parameters ¢, the el-ph coupling g, or alternatively A
[244], 259].
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A full solution to the two-site Hubbard-Holstein model [258] has been obtained by
treating the phonon degrees of freedom within the momentum average approximation
[260, 261]. For the half-filled case it was observed that for small A the ground state
consists of the two-site singlet with phonons tied to the electrons on each site. For
large A a crossover to a bipolaron state occurs where one site is doubly occupied with
an associated large number of phonon quanta. The value of A at which this crossover
occurred was set by a balance between the energy cost of the double occupation and
the energy gain associated with coupling to the lattice and the kinetic energy gain from
virtual hopping to the other site. As a consequence of this, larger values of the Coulomb
repulsion produced crossovers between the two ground states at higher values of .

Work carried out on the ¢-J-Holstein model has focused on a single hole doped in
the antiferromagnetic background. Mishchenko and Nagaosa [229] have examined the
spectral properties of the hole in the intermediate to strong el-ph coupling regime using
Diagrammatic Monte Carlo (DMC) for the el-ph interaction while treating the magnetic
excitations within the standard spin-wave approximation [262]. Above a critical el-ph
coupling A, this model exhibited small polaron formation with a spectral function dis-
playing a vanishing weight in the quasiparticle peak and a broad Frank-Conden shake-off
band at higher binding energy which inherited the dispersion of the hole in the ¢-J model
without phonons. These spectral features were found to be in good agreement with re-
cent ARPES measurements on the parent compound CayCuO,Cly [51], 263]. This study
also observed that the value of A\, was significantly reduced from the value obtained form
the pure Holstein model with the same value of nearest-neighbour hopping ¢. This was
attributed to the additional dressing provided by the magnetic excitations, which reduced
the mobility of the carriers thus making them easier to localize once the coupling to the
lattice is included. Similar results have been obtained using the spin-wave approxima-
tion in conjunction with the a variant of the momentum average approximation for the
phonon degrees of freedom [226], and in exact diagonalization (ED) treatments with a
reduced Hilbert space [225]. This work has also been extended to the extended range
t-t'-t"-Holstein model as well as models with non-local el-ph couplings using Lanczos ED
and the coherent state basis approach [227]. In general the results are similar to the ¢-J
approaches however, the extended range hopping produces stronger polaronic behaviour
in the antinodal region while the non-local el-ph interaction produces an enhanced sup-
pression of Z for A < A, and a reduced suppression for A > \.. Finally, ED studies of the
t-J which include the in-plane full- and half-breathing modes [238] have demonstrated
that the ¢-J model is capable of capturing the anomalous softening [96] of these modes.
This calculation provides an alternative proposal to the charge-fluctation models touched
upon in chapter [6] [190, 191], 192, 193].

Within dynamical mean field theory (DMFT) the effects of el-ph interactions have
produced mixed results, depending on the underlying phase assumed for the calculation.
Single-site paramagnetic DMFT (P-DMFT) calculations for the half-filled single-band
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Hubbard-Holstein model, carried out by Sangiovanni et al. [244], predicted that the
the el-ph interaction is strongly suppressed by the Coulomb interaction. It was also
demonstrated that the low-energy spectral properties of the Hubbard-Holstein model
could be accurately reproduced by the Hubbard model with an effective U. However,
discrepancies between the two models were observed in the spectral functions at higher
energies. It was therefore concluded that the primary effect of the el-ph interaction
was to renormalize U but with additional important effects due to retardation at higher
energy. Later DMFT work by the same group [245] considered an antiferromagnetic
(AF-DMFT) solution to the single-band Hubbard-Holstein model. In this case the el-
ph interaction suppressed much less as a function of U in comparison to the P-DMFT
results but the value of \. for the polaron crossover was found to increase from its value
in U = 0 limit. With progressive doping away from half-filling, \. was observed to
further increase. This indicates that, although A. in correlated systems is larger than
its value in the non-correlated system in DMFT, AFM does play a role in reducing ..
Barone el al. have also examined the single-band Hubbard-Holstein model, performing a
variational Lang-Firsov transformation for the lattice degrees of freedom and treating the
resulting Hamiltonian with the Kotliar-Ruckenstein slave-boson technique [240]. Within
this approach the Coulomb repulsion was reduced by the el-ph interaction, in agreement
with the DMFT results [244].

A third DMFT study was conducted by Werner et al. who took yet another approach
to the single-band Hubbard-Holstein model by applying a Lang-Firsov transformation to
the phonon coordinates [242]. For small A the half-filled case was found to be a Mott
insulator which gave way to a metallic state once the system was doped away from half-
filling. However, for large A the system underwent a phase transition to a bipolaronic
insulating phase for all values of doping. These results are in contradiction to reference
[2477], which found that the el-ph interaction stabilized the AFM phase against doping.
The difference between the two was attributed to the fact that reference [247] coupled
the phonons to the total density n while reference [242] coupled to 7 — 1. This choice
results in different chemical potential renormalizations which may change the filling of
the system. Results similar to reference [242] have been obtained at half-filling using
numerical renormalization group approaches [264] 265].

There are also indications that correlations may induce a momentum-dependent renor-
malization to local Holstein couplings. For finite values of {2, away from the antiadiabatic
limit, there are indications that the retarded nature of the el-ph interaction remains im-
portant and a non-trivial renormalization of the el-ph vertex occurs. For example, Huang
et al. extracted the renormalized el-ph vertex from Quantum Monte Carlo data obtained
for the single-band Hubbard model and found a suppression of the el-ph vertex for small
U and a strong enhancement of the forward scattering peak, with no substantial sup-
pression of the total el-ph vertex at large U [47]. As already noted, such an enhancement
of the vertex at small q is beneficial to d-wave pairing. As such, strong correlations may
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renormalize the el-ph vertex in favour of d-wave pairing in a manner similar to the effects
of poor screening. Slave-boson approaches on the t-J model have produced a similar
d-wave enhancement of the el-ph vertex [45, 232, 233]. In contrast to this, slave-boson
studies of the single-band Hubbard model with phonons has found no such enhance-
ment of forward scattering and an overall suppression in the el-ph vertex for all q at low
temperature [243]. However, this approach does produce an enhancement of the el-ph
vertex at small q at high temperature (5 ~ t-2t) and this behaviour was attributed to a
tendency towards phase separation. Cumulant expansion techniques on the same model
have also observed an enhancement of the el-ph vertex with accompanying evidence for
phase separation [241].

Using the dynamical cluster approximation (DCA), an extension of DMFT, exami-
nations of the el-ph interaction within small Hubbard clusters [207, 246] find an overall
suppression of the d-wave superconducting T, with increasing el-ph coupling. This oc-
curs despite an increase in the apparent pairing correlations in the d,2_,2 channel. The
reduction in T, was attributed to polaron formation, which reduces quasi-particle weight
at the Fermi level, suppressing T through the loss of carrier mobility. The enhancement
of pairing correlations reported in references [207, 246] indicates that bare el-ph vertex
has been renormalized in favour of d-wave pairing, consistent with the observations of
reference [47). Furthermore, exact diagonalization (ED) studies on the ¢-J model, which
include coupling to buckling and breathing vibrations, show that the former enhance
d-wave pairing while the latter suppress it [234].

A number of the correlated el-ph models have also been applied to understanding the
optical conductivity o(w) of a hole doped into the AFM background [266], 267, 268, 231
228]. DMC approaches show that both the ¢-J model and Holstein models predict sharp
peaks in o(w) at energies below the midinfrared peak observed experimentally [231] and
these predicted peaks have no corresponding feature in the data. The t-J-Holstein model
is able to reproduce the qualitative features of the data in the strong el-ph coupling
regime and it was concluded that both the magnon and polaron physics are essential for
understanding o(w) in the underdoped cuprates. Similar conclusions have been reached
in ED studies on the breathing phonon in the ¢-J model [22§].

From the variety of results it is clear that there is no definitive interpretation of the
effect of el-ph coupling in strongly correlated systems. It is therefore advantageous to
bring as many methods as possible to bear on the problem in order to gain further insight.

9.2 Spectral Properties of the Hubbard Model

Before discussing the results for the Hubbard-Holstein model a brief examination of the
single-band Hubbard model will be presented in order to obtain a point of comparison
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for the calculations with finite A\. Here, focus placed on the spectral properties of the
Hubbard model with the aim of addressing the role of strong correlations in the formation
of the high-energy anomaly (HEA) discussed in chapter . It will be demonstrated that
the HEA is the result of the strong el-el interactions and can be captured by the physics
of the Hubbard model. Although matrix elements may dress the aesthetics of these
band renormalizations, the presence of such a feature in the single-band Hubbard model
indicates that it is a genuine phenomena of the strong el-el interaction in the hole- and
electron-doped cuprates. The results of this section have appeared in references [126 269].

In what follows, the single-particle green’s function G(7, 7’) is calculated using DQMC
and the analytic continuation is performed using the method of maximum entropy (Max-
Ent), as described in the previous chapter. The calculations are performed on an
N = 8 x 8 cluster, in the strong el-el coupling limit with U = 8t. In order to cap-
ture the proper shape of the Fermi surface, a next-nearest neighbour hopping is included
with ¢ = —0.3t in the hole-doped system and ¢ = —0.2¢ in the electron doped system.
Finally, t = 1 and a = 1 set the units of energy and length throughout this chapter.

Because of the finite size cluster is used in these calculations A(k,w) is defined on
a discrete momentum grid k € K. In order to determine the spectral function at k
points lying off of this grid, an interpolation routine is used. First, Dyson’s equation is
used to extract the self-energy ¥(K, w) from the analytically continued Green’s function.
Then, assuming a weak momentum dependence for the self-energy, ¥(k, w) is obtained by
interpolating (K, w) in momentum space. Dyson’s equation is then reapplied to obtain
A(k,w) at an arbitrary point in k.

9.2.1 The Undoped Parent System

The spectral function A(k,w) of the half-filled Hubbard model (# = —0.3t) is shown
in figure for a cut taken along the nodal direction (0,0) - (7, 7) and at an inverse
temperature 3 = 3/t. As expected, the lower and upper Hubbard bands (LHB,UHB) are
clearly resolved and a Mott gap exists at the chemical potential (x = 0). Furthermore,
in the vicinity of k = (7/2,7/2) a weak satellite band is formed in each of the Hubbard
bands, in agreement with previous works [270} 271]. These satellite structures of the LHB
and UHB resemble low energy features observed in ARPES experiments on the parent
insulator [125] and serve as precursors to the quasiparticle band (QBP) which forms as
the system is doped.

9.2.2 Electron- and Hole-doped systems

Having established A(k,w) for the parent insulator, this calculation is then repeated for
14% hole- and 16% electron-doping. The results are shown in figure 9.2 Figures
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(0,0) (n/2,1/2)

Cut along ( 0, 0) to ( 7, m)

Figure 9.1: The single-particle spectral function A(k,w) for the Hubbard model at half-filling
along the nodal cut (0,0) - (m,7). Here, t' = —0.3t,6 = 3/t, A7 = 1/16t and U = 8t. The inset
shows a false colour plot of the spectra below the Fermi level. The labels denote the LHB, UHB
and the precursor structure to the QPB bands which form and cross Er with hole or electron
doping.

and show the evolution of A(k,w) along high symmetry cuts of the first Brillouin
zone for the hole- and electron-doped cases, respectively. Despite the fact that both the
tightbinding parameters and Fermi surfaces are similar for both the electron and hole
doped systems it is clear from figure 9.2 that the two spectra are not related by a simple
particle-hole transformation.

For the hole-doped system, the LHB is localized to the I-point (0,0) with trailing
intensity weakly dispersing towards (m,0) and (7,7). The point in k-space where the
suppression of the spectral weight in the incoherent LHB occurs coincides approximately
with the location of the HEA observed experimentally. A sharp dispersive QPB has also
formed in the Mott gap from the precursor structures shown in figure [9.1, with spectral
weight transferred from the UHB to the QPB with hole doping [272, 273]. Along the
nodal cut, the QPB is highly dispersive and crosses the Fermi level near (7/2,7/2).
However, near (m/4,m/4) the spectral weight of the QPB begins to drop and is nearly
completely suppressed at the I'-point. As a result, the HEA appears as a crossover from
this coherent QPB to the incoherent UHB at an energy ~ —0.5¢ to —0.75¢t. While the
spectral intensity decreases in the QPB as the I'-point is approached, there is a significant
range of k-space where the QPB and LHB co-exist in support of the cross-over scenario

[126].
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Figure 9.2: Calculated single-particle spectral functions A(k,w) for (a),(b) 14% hole-doping
(u = —2.5t, ¢ = —0.3t) and (c),(d) 16% electron-doping (1 = 2.25¢, ¢’ = —0.2¢). Panels (a) and
(c) trace the path cuts of high symmetry in the first Brillouin zone. Panels (b) and (d) show false
colour spectra along the cut (—m/2a,—7/2a) - (w/2a,7/2a), where representative photoelectric
matrix elements have been used to show the effect of matrix elements in determining the HEA.

Turning now to the electron-doped system, the dispersive QPB shown in figure [9.2
disperses further below the Fermi level than in its hole-doped counter part. In this case,
the cross-over occurs at an energy ~ —t to —1.5¢ or twice that of the hole-doped case.
This difference in energy scales is also in agreement with experiments discussed in chapter
(see for example figure . More importantly, in this case the QPB forms from the
precursor of the UHB in the undoped system [270, 271], in contrast to the spectral weight
forming the QPB of the hole-doped system.

The dichotomy between hole- and electron-doped systems is apparent in the relative
spectral weight of the LHB and UHB. Upon hole doping the chemical potential shifts
from the Mott gap into the LHB, and spectral weight is transferred from the UHB,
increasing weight near the Fermi level and forming the QPB. This is in contrast to
electron doping, where the chemical potential shifts into the UHB and spectral weight is
transferred primarily from the LHB to higher energy to form the QPB. These chemical
potential shifts and spectral weight transfers with doping are consistent with the results
of reference [272]. It should also be noted that in both cases the Mott gap does not
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collapse with doping but is instead shifted in energy. With electron doping the gap
becomes the intermediate energy region just below the HEA energy scale while with hole
doping the gap is pushed above the Fermi level.

The appearance of the HEA as a “waterfall” may be highlighted by multiplying
A(k,w) by photoelectric matrix elements, as shown in figures and for the hole-
and electron-doped systems, respectively. The values of the matrix elements are taken
to be representative of the experimentally derived values along the nodal cut [126, [136].
In both cases, and particularly for the hole-doped system, this leads to the appearance
of the HEA as a “waterfall” as intensity is suppressed in the QPB and LHB near the the
[-point. In the case of the electron-doped system, the lack of weight in the LHB results in
a simple suppression of intensity near the I'-point and no significant overlap between the
LHB and the QPB occurs. These results could change in a multi-band model calculation
with the inclusion of additional valence bands.

These calculations support the conclusion that strong correlations play an important
role in the formation of the HEA. They also demonstrate that the HEA is expected to
occur both in hole- and electron-doped systems, in agreement with experiment. Further-
more, the energy scale of the HEA is not simply related to the antiferromagnetic exchange
energy .J, as proposed by some, since this energy scale should be similar in both the elec-
tron and hole doped systems. Finally, the DQMC treatment of the single-band Hubbard
model captures the physics of all of the renormalization pathways in order to produce the
crossover behaviour from the coherent QPB to the incoherent LHB. This behaviour is
consistent with experiments and is not captured by weak coupling theories that produce
kink-like dispersions analogous to the el-ph features [130} 129, [131]. Similar conclusions
were reached in reference [I123] however, the results presented here highlight the inter-
play between doping, spectral weight transfer and band renormalizations in producing
the HEA, all of which are beyond examinations based on simple tightbinding analysis
with straightforward chemical potential shifts.

9.3 Results for the Hubbard-Holstein Model

9.3.1 The Fermion Sign

The average value of the fermion sign for the Hubbard-Holstein model is plotted in figure
[0.3] as a function of filling and A. These simulations were carried out in the strong
coupling limit U = 8t with a phonon frequency (2 = 0.3t. Results are presented both
with and without next-nearest neighbour hopping ¢ and the inverse temperature has
been set to § = 3/t. For small values of A the average sign follows the trends obtained
for the Hubbard model (see figure . For increasing A the average sign is suppressed
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Figure 9.3: The average value of the Fermion sign for the Hubbard-Holstein model as a
function of the el-ph coupling strength A. (al), (bl) The average sign as a function of filling for
selected values of A for ¢/ = 0 and ¢’ = —0.3t, respectively. The legend in panel (b1) applies to
both panels. (a2), (b2) A false colour plot of the average sign as a function of (n) and A for the
corresponding value of t’. The remaining parameters of the simulation are given in panel (bl).

at half-filling. This occurs even when ¢’ = 0, where the sign is protected by particle-hole
symmetry when A = 0. This is due to the fact that individual phonon field configurations
break particle-hole symmetry and can therefore induce a sign problem when ¢t = 0 or
exacerbate one when t' 2 0.

Away from half-filling the average sign is improved, due to the effective attractive
el-el interaction mediated by the phonons; the el-ph interaction term of the Hamiltonian
provides an energy gain by doubly occupying a given site which offsets the overall energy
cost of the Hubbard repulsion. This results in a renormalized effective Coulomb inter-
action Uz which improves the average value of the sign with increasing values of A\. A
similar reduction in the Coulomb interaction has been reported in DMFT calculations

Despite the improvement in the Fermion sign problem, DQMC simulations of the
Hubbard-Holstein model are still limited in terms of temperature and the average sign is
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(w = g<X>)/t

Figure 9.4: The average filling (n) as a function of p for the strongly correlated Hubbard-
Holstein model (U = 8¢, Q = 0.3t) with (a) ¢ = 0 and (b) ¢ = —0.3t. An overall chemical
potential shift g(X;), due to a uniform shift in the lattice’s equilibrium position, has been
subtracted. The remaining parameters are 8 = 3/t, AT =0.1, N = 8 x 8.

exponential suppressed with increasing [ as is the case with the Hubbard model [210].
As a result, simulations are still restricted to 3 ~ 3/t - 4/t for arbitrary fillings however,
lower temperatures can be reached at half-filling.

9.3.2 Filling vs Chemical Potential

The average filling (n) as a function of chemical potential p is plotted in figure and
for the cases ' = 0 and ' = —0.3t, respectively. The remaining parameters are
identical to those used in figure . In figure a uniform shift Ay = ¢g(X;) has been
subtracted from the chemical potential i in order to account for the shift in the lattice’s
equilibrium position with the inclusion of a non-zero coupling \.

For A = 0 (black triangles) the filling recovers the result for the Hubbard model in
the strong coupling limit and the Mott gap is clearly resolved as a flattening of (n) versus
w centred at p = 0. However, as the value of A is increased, the width of this flattened
region begins to narrow signifying a reduction in the size of the Mott gap. For A = 0.7 it
appears that the Mott gap has closed and the filling nearly varies linearly with p. This is
a reflection of the reduction in U produced by the attractive phonon-mediated interaction
and it is the same phenomenon responsible for the improvement of the average sign noted
earlier. Although it appears that the Mott gap has collapsed for A ~ 0.7, it should be
noted that the temperature § = 3/t used in figure is still relatively high and a small
Mott gap may still be present but obscured by thermal broadening.
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The results shown in figure [9.4] show no indication of phase separation in the form of
a negative d(n)/dpu, in contradiction to the results obtained using slave-boson techniques
at similar temperatures [243]. However, for increasing A the error bars for each data
point begin to grow signaling large variations in the measured fillings. This behaviour
has been generically observed in all simulations performed at half-filling, regardless of the
value of 2 or U. Furthermore, when \ > 1 these error bars become quite large and the
results obtained from the simulation have been generally found to be unreliable. There
are two possible sources for this instability. The first is that the increased error could
reflect a tendency for the system to phase separate. This would produce hole-rich and
hole-depleted regions in multiple Markov chains which, when averaged together, would
produce large errors in the estimated filling. The second possibility is that the growing
error bars reflect increased fluctuations due to a competition between the AFM-ordered
state at low A and a charge-density-wave state at large \. If the effective value of U is
lowered below the critical U, = 4t for the Hubbard model’s metal-insulator transition
then the CDW correlations would be expected to become increasingly important as the
Fermi surface re-forms and nesting conditions are reinstated. In order to address this
possibility a careful examination of the susceptibilities is required and this is the topic of
the following section.

9.3.3 Susceptibilities for the Half-Filled Model

The results for the average sign and filling indicate that there may be a competition
between the attractive interaction mediated by the phonons and the repulsive Coulomb
interaction. Therefore, attention is now turned to an examination of the various suscep-
tibilities relevant to the Hubbard-Holstein model. This will provide further insight into
any competition that may be occurring between the various possible ordered states.

It is well known that the Holstein model exhibits an instability to a Peierls charge-
density-wave (CDW) phase at a wave-vector set by Fermi surface nesting conditions
[274, T71]. A measure of the Peierls correlations can be obtained by calculating the
density-density correlation function

:l BdT ol T = glany .
xeow (@) = 55 | dr{pa(7)g (0) ph=> €My, (9.3)

n,o

In the half-filled Holstein model, with ¢ = 0, the CDW correlations are dominated by
the q = (m, m) nesting condition [I71]. When extended range hopping are included the
nesting condition may shift depending on the topology of the Fermi surface. However,
for the limited cluster sizes used here, the peak in xcpw will remain at q = (7, 7) for
finite ¢’ and near half-filling. Focus is therefore placed on xcpw (7, 7) in what follows.
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Near half-filling the Hubbard model has an instability towards an AFM ordered state
with wavevector q = (m,7) [210, 214]. A measure of the magnetic correlations is given
by [214]

1 : p
sz<q>=:;¢§Eje““ﬁ‘R”]/ dr [ () = 25 (7)][7251(0) = Az (O))  (9:4)

irj 0

where R; denotes the position of lattice site ¢ and the AFM correlations relevant to the
half-filled Hubbard model are characterized by xzz(m, ). The competition between the
el-ph driven bipolaron or CDW phase and the el-el driven antiferromagnetic phase will
be evident in xcpw and xzz. (Since attention is now restricted to specific ordering
wave vectors the q vector will be suppressed in order to simplify the notation.) For
completeness, the s- and d-wave pair-field susceptibilities are also examined in order to
provide a measure of the superconducting correlations. The pair-field susceptibility is
given by [210, 274]

B
e = | amamato) (9.5

where
AT = CZTC;l (9.6)

for an s-wave gap symmetry and

1
AT = 5 Z P(chTCLM (9.7)
0,6

for a d-wave gap symmetry. Here, § is an index that runs over the nearest neighbours of
the site ¢ and the phase factor Ps alternates in sign with Py; = 1 = —P;. To distinguish
between the two gap symmetries the pair-field susceptibilities will be denoted y, and yq4
for the s- and d-wave cases, respectively.

In figure[9.5]the results for the four susceptibilities obtained for the half-filled Hubbard-
Holstein model are plotted as a function of A\. Three cases are shown, corresponding to
U = 6t (blue), 8t (black) and 10t (red). In this case, a phonon frequency 2 = ¢ has
been used in order to allow A = 1 to be reached at an inverse temperature 3 = 4/t. For
lower values of €2, the sign problem becomes problematic for A > 0.7. From figure it
is clear that at half-filling the system is dominated by xcpw and xzz. For small A, the
AFM correlations dominate for all three values of U. As A is initially increased from zero,
Xzz is slowly suppressed and finally gives way to a more rapid suppression at larger \.
Once the AFM correlations are driven low enough, the CDW correlations begin to rise
signaling the onset of the CDW. The point at which the increased rate of suppression
in yzz (and subsequent rise in xcpw) occurs is dependent on the value of U with the

141



30

15/ (a) (b)
_ N = 8x8,
B 10l P=4/Mt Ar=0.11 { 20 ,
=< | t=0,Q-=t N
I a
N mU=10t .}
5 eu=st
v U=6t 1 |
0 ] 0
(c) L 1 (d) 0.4
75
o~ 0.3
o ] <
X 5 b 0.2’1
< |
25 0.1
y
0 0
0 0.25 0.5 0.75 10 0.25 0.5 0.75 1

Figure 9.5: A summary of the (a) (w,7) CDW, (b) AFM, (c) s-wave pair-field and (d) d-
wave pair-field susceptibilities for the Hubbard-Holstein model at half-filling and 5 = 4/t. The
parameters used in the DQMC simulations are given in panel (a).

larger values of U maintaining the AFM correlations out to larger values of \. For the
U = 10t case, only at A = 1 does xzz begin to decrease.

The superconducting susceptibilities also exhibit behaviour reflecting the AFM/CDW
competition. At A = 0 the on-site s-wave susceptibility is suppressed by the Coulomb
repulsion. As \ increases this suppression is relieved as U is renormalized by the el-ph
interaction and y, increases as a function of A, essentially in line with the suppression of
Xzz. In the case of the d-wave susceptibility similar behaviour is observed however, for
U = 6t, there is a marked decline in x4 for A > 0.5, precisely where the CDW correlations
begin to dominate. This is not surprising given that the CDW ordering tends to doubly
occupy sites in a checkerboard pattern which is detrimental to the pair field defined in
equation [9.7]

The trade off between yzz and ycpw at large A is consistent with a competition
between the AFM and CDW ordered states. In this scenario, the first order effect of the
el-ph interaction is to renormalize the Hubbard U. This behaviour was reflected in both
the average Fermion sign as well as (n) versus p and it is now appearing in the AFM and
CDW susceptibilities. Therefore, the increased error bars shown in the previous sections
are likely due to fluctuations associated with the phase transition from the AFM to CDW
ordered states which would occur at lower temperature.
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Figure 9.6: The susceptibilities of the Hubbard-Holstein model compared to an effective
Hubbard model with Uz = U — 2¢%/Q = U — AW, where W = 8t is the bandwidth of the

non-interacting system.

Given that the first order effect of the el-ph interaction is to renormalize the Coulomb
interaction it is tempting to try to describe the physics of the Hubbard-Holstein model
with an effective-U Hubbard model. The P-DMFT calculations of reference [244] have
shown that the low-energy physics of the Hubbard-Holstein model can be accurately
reproduced with such an approach. In figure a comparison is made between the
U = 8t results of figure [9.5] and an effective Hubbard model with U.s given by the
antiadiabatic limit of equation , Ug = U —2¢*/Q0 = U — A\W. For small \ the
two models give relatively good agreement however, as A is increased the results begin
to diverge rapidly, demonstrating the importance of retardation effects even for €2 = t¢.
For the CDW correlations, the Hubbard-Holstein model produces a smaller xycpw up
until the point at which the CDW correlations become dominant and beyond this point
the Hubbard-Holstein model overtakes the values of the U.g model. This highlights
the importance of the retarded nature of the el-ph interaction and the softening of the
phonon in establishing the CDW. Similarly, the AFM correlations are suppressed at a
much faster rate for the U, model. In the case of superconductivity, the Hubbard-
Holstein model predicts that ys and x4 remain suppressed for all A while for the U
model they are monotonically rising as Usg — 0 (A = 1). Previous DQMC calculations
for the Hubbard model have shown that y, and x4 are smaller than the values one obtains
from the non-interacting system [210} 275]. Therefore, the rise in the superconducting
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correlations for the U.g model represents the recovery of the results in the non-interacting
limit as Usg — 0. These results confirm the results of reference [244] in that they show
the importance of the retarded el-ph interaction which manifests at higher energy and
therefore in dynamic quantities such as the susceptibilities.

9.4 Spectral Properties of Hubbard-Holstein Model

Attention is now turned to the spectral properties of the Hubbard-Holstein model. Here,
A(k, w) is obtained using the interpolation scheme outlined above for the Hubbard model
calculations. Selected spectral functions for the half-filled Hubbard-Holstein model with
Q=1t,t =0and U = 8 are presented in figure for the inverse temperature 3 = 4/t.

For A = 0, A(k,w) recovers the result for the Hubbard model, similar to those shown
in figure but with minor changes in the dispersion due to the lack of next-nearest-
neighbour hopping. A clear Mott gap ~ 2t is observed with precursor structures in the
LHB and UHB. As the value of )\ is increased, the effect of the el-ph attraction begins to
grow and even for A = 0.25 the Mott gap begins to visibly narrow. In addition, A(k,w)
broadens due to self-energy effects from el-ph scattering processes. These trends continue
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Figure 9.8: The density of states for the half-filled Hubbard-Holstein model as a function of
the strength of the el-ph interaction at (a) § = 4/t and (b) § = 8/t. The parameters used in
this simulation are the same as those used in figure and are indicated in panel (a).

as A is further increased and for A = 0.76 the Mott gap has narrowed considerably with
thermal broadening filling in the weight across the chemical potential. As a result, a
suppressed but non-zero spectral weight is present at the Fermi level. These results mirror
the susceptibility results of the previous section and indicate that the el-ph interaction
is renormalizing the Coulomb interaction and destabilizing the AFM order.

The competition between the two interactions is also present in the single-particle
density of states N(w) = >, A(k,w), which is plotted in figure for § = 4/t. As
with the spectral function, for A = 0 the Mott gap is clearly present. As the value of A is
increased the gap begins to close and the peaks associated with the QPB precursor begin
to shift towards the chemical potential and broaden, again due to the el-ph scattering.
The structure in the DOS associated with the incoherent portions of the UHB and LHB,
located at w ~ £5t for A = 0, also broaden and shift somewhat to lower energies. For
larger values of A the Mott gap has become small enough that thermal broadening pro-
duces finite weight in the DOS at the chemical potential, echoing the behaviour observed
for A(k,w). The degree of thermal broadening can be assessed by examining figure ,
which shows N(w) at a lower temperature § = 8/t. For small A the structures associate
with the QPB precursor and Hubbard bands are clearly resolved, while with increasing
A the DOS follows the trends of the § = 4/t data. (In this case the A = 0.7656 data is
not present due to the significant sign problem for this temperature and el-ph coupling
strength.)
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Figure 9.9: N (w) for the Hubbard-Holstein model with parameters appropriate for the high-T
cuprates. (a) N(w) at half-filling, (b) 5% hole doping, and (c¢) 15% hole doping.

Turning now to finite doping, figure presents the DOS for Q = 0.3t, ¢/ = —0.3t
and U = 8t for (n) =1 (Fig. [9.9n), 0.95 (9.9p) and 0.85 (9.9k) at an inverse temperature
B = 3/t. The lower value of the phonon frequency is more appropriate for the cuprates
and this parameter set is identical to those used in references [207] and [246]. At half-
filling the results are similar to those shown in figure for increasing A\ the peaks
associated with the quasi-particle precursor bands are reduced in intensity and begin
to disperse to lower energy while spectral weight begins to rise inside Mott gap. These
results indicate that the apparent collapse of the Mott gap occurs even for smaller values
of Q, at least for temperatures as low as /3.

At finite doping, in the absence of el-ph coupling (solid black), the spectra exhibit
structures consistent with the results of section 9.2 The quasiparticle band has formed,
appearing as a peak in N (w) at the chemical potential, and the LHB and UHB manifest as
the peaks located at w = —2.5¢ to —3t and w = 6t - 8¢, respectively. The spectral weight
transfer from the UHB is also evident in the reduced weight of the UHB relative relative
to the half-filled case. For increasing values of A\ the spectra display behaviour similar
to that of the half-filled case. Both the intensity and peak-to-peak distance between the
Hubbard bands are reduced, while the spectral weight increases in the remnant of the
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Mott gap, which has been pushed above the Fermi level.

Results for N(w) in the 5% hole-doped system, obtained using the dynamical cluster
approximation on a 2 x 2 cluster have also been reported for the single-band Hubbard-
Holstein model [207]. The gross feature of the LHB and UHB shown in figure
are in agreement with these results in that with increasing A the quasiparticle peak is
suppressed and the UHB disperses to lower energy while broadening somewhat. However,
at the Fermi level the DCA results showed a suppression spectral weight with increasing
A. This behaviour was interpreted as a reflection of the formation of polarons, which
reduce carrier mobility and therefore lower the quasiparticle weight at the Fermi level.
The results obtained here using DQMC are clearly in conflict with this picture. There
are a two obvious possible sources for the discrepancy in the two sets of results. First,
and most likely, is the difference in temperature between the two calculations. The DCA
calculations were performed at a much lower temperature (8 = 11.5/¢) than the DQMC
calculations shown in figure and the changes in the spectra at w = 0 presented here
may be masked by thermal broadening effects or the fact that coherent phonon effects
are not expected for § < . Another possible source is the differences in cluster size.
The 2 x 2 cluster contains only three unique momentum points, (0,0), (0,7), (7, 0)and
(m,m). Therefore, N(w) obtained from such a cluster will oversample the anti-nodal
region whereas the DQMC spectra are obtained from a cluster with 16 unique momentum
points. In order to address this issue, a systematic study of the spectra with cluster size
should be carried out.

9.4.1 Discussion

The results presented in the previous sections indicate a suppression of the AFM or-
der and the subsequent collapse of the Mott gap with increasing el-ph coupling. It is
important to note that this transition is driven not by polaron formation but rather a
renormalization of the Hubbard interaction. As the value of the Hubbard U is renor-
malized, the Fermi surface is restored by the loss of magnetic order and the q = (7, )
nesting condition can again be satisfied allowing the CDW to begin to form. Therefore,
the DQMC treatment predicts that near half-filling the physics of the Hubbard-Holstein
model is dominated by competition between AFM and el-ph driven charge ordering.
Similar behaviour is also observed in the spectral function and density of states at finite
filling however, it should be reiterated that this statement can only be made at high
temperature 3 < 3/t due to the sign problem at these fillings. However, at half-filling
this behaviour extends to lower temperatures (8 = 8/t).

The competition outlined here has also been observed in various DMFT calculations
[244], 242]. These results are also in direct contrast to results obtained from the ¢-J
model [229, 225], which show an increased tendency towards polaron formation for a
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doped hole in an antiferromagnetic background. In ¢-J model based approaches the hole
is dressed by AFM fluctuations which increases its effective mass and makes it easier to
self-trap via coupling to the lattice. Thus the AFM background plays an important role
in reducing the value of A needed for the crossover to small polarons [229] 225] 245]. The
discrepancy between the t-J-Holstein results and the DQMC results presented here can
be understood in terms of the robust AFM state imposed by the ¢-J model (which is itself
the U — oo limit of the Hubbard model). As a result of the infinitely large Coulomb
interaction, the AFM order present in the ¢-J model cannot be destabilized, regardless
of the strength of any competing interaction, and any magnetic excitations which dress
the carriers will always be present. This is not the case with the DQMC treatment of
the single-band Hubbard model with finite U where the AFM order can be lost as the
strength of the el-ph interaction is increased. Indeed, as the value of U is increased
in the DQMC calculations presented here (see Fig. [9.5), the point at which the CDW
correlations become important is pushed to larger values of A\. Therefore, for sufficiently
large U it is expected that the el-ph interaction will reach the polaron crossover before
the Hubbard U is renormalized sufficiently enough to allow for the formation of a CDW
order.

9.5 Summary

In this chapter the Hubbard and Hubbard-Holstein models have been examined using
DQMC, with particular focus placed on the spectral properties of each model. First,
A(k,w) of the half-filled and doped cases of the Hubbard model were examined and found
to qualitatively reproduce the HEA observed in the electron- and hole-doped cuprates.
In this case, the HEA arose from a crossover between the coherent quasiparticle band
formed in the doping process and the incoherent UHB and LHB for the electron- and
hole-doped cases respectively. Although matrix elements may dress the aesthetics of this
feature, the calculations presented here demonstrate that the HEA is captured by the
physics of the Hubbard model and it represents a genuine renormalization arising from
correlated many-body effects in the cuprates. Furthermore, this calculation correctly
captures the dichotomy of the energy scales appearing in the electron- and hole-doped
cuprates. This aspect of the physics is not captured in models based on electron-boson
coupling to electronic excitations analogous to the low-energy kinks produced by el-ph
coupling.

Next, the various properties of the Hubbard-Holstein model were presented. In this
case, a number of metrics including the Fermion sign, (n), susceptibilities, A(k,w), and
the density of states, all revealed evidence for a competition between antiferromagnetism
and the q = (7, 7) charge-density-wave. This competition was not only present at half-
filling but also at finite doping. These findings are in contrast to studies on the ¢-J model,
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as well as DCA calculations on the single-band Hubbard models with phonons, which find
that antiferromagnetism dresses the carriers to such an extent that polaron formation
occurs at weaker couplings. These findings suggest the physics of el-ph coupling in
correlated models may depend critically on the robustness of any magnetic order present
in these systems. This is a topic which deserves attention in future works.
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Chapter 10

Conclusions

Over the last two decades significant progress has been made towards understanding the
cuprate family of high-temperature superconductors. Although it has generally been ac-
cepted that planar models for the CuO, plane capture the relevant low-energy physics
of the cuprates, there are increasing indications of a need to extend our thinking be-
yond intrinsically planar models. Perhaps the most compelling example of this fact is
the large variation in T. observed across the cuprates, which is difficult to account for
without involving the material-specific chemical environment of the CuOs plane. Further
evidence for the importance of off-plane structures and other c-axis effects has come from
the growing body of experimental evidence for strong coupling to the lattice. As was re-
viewed in chapter 2, angle-resolved photoemission spectroscopy (ARPES) has revealed
spectra with polaronic features in some parent compounds, and ubiquitous dispersion
renormalizations in the doped systems which have been interpreted in terms of coupling
to a spectrum of oxygen phonon modes. Similar signs of electron-phonon (el-ph) cou-
pling have appeared in scanning tunneling microscopy (STM) experiments as well as
Raman, IR, and neutron spectroscopies. The collective evidence provided by the various
probes points to the presence of a significant el-ph interaction in these systems and this
interaction requires extensions of the canonical strongly correlated models. With these
observations the challenge is then to determine to what extent the el-ph interactions
are playing a role in high-temperature superconductivity. Attempting to address this
question was the primary goals of this work.

The scenario that emerged from modelling the ARPES and STM data is that of a
two-channel model in which the phonons act in conjunction with an underlying dominant
pairing mechanism. (At present this second mechanism is unknown but antiferromagnetic
spin fluctuations appear to be a promising candidate.) This model was motivated largely
by observations made while examining the el-ph coupling in both ARPES and STM. In
terms of the band renormalizations observed by ARPES it was found that relatively small
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values for the total coupling A\, ~ 0.2-0.5 were required in order to obtain quantitative
agreement with the experimental data. Such a small value of A\, (A\y < A.) is far too
small to account for high-temperature superconductivity and therefore, in modelling
the ARPES data, the superconducting gap had to be introduced by hand. This fact
is consistent with the idea that the phonons are modulating over an existing pairing
interaction. In studying the signatures of el-boson coupling in the context of the STM
experiments this proposal was placed on firmer ground. Here it was found that the
qualitative signature of a boson that contributes heavily to pairing is quite different than
one that renormalizes over the dominant interaction. It was then argued that the scenario
most consistent with the STM data is the latter. Following this observation, the el-ph
model used to account for the ARPES data was then applied to understanding the STM
data and it was demonstrated that this model is sufficient to reproduce the features
observed experimentally.

The two-channel model can not only account for the data observed in various probes
but also provides a natural framework for understanding the materials dependence of
T.. As was shown in chapter [, changes in the chemical composition and structure of
the unit cell are reflected in the orbital character of the band at the Fermi level, the
strength of the local electric fields arising from structural-induced symmetry breaking,
doping-dependent changes in the underlying band structure, and the ionicity of the crystal
governing the material’s ability to screen c-axis perturbations. Given the sensitivity of
T, to the structural details of the crystal, it is clear that the underling mechanism(s)
for high-temperature superconductivity must address these factors. In this work it was
demonstrated that the overall coupling to the c-axis phonon modes is quite sensitive
to these factors and therefore the inclusion of the el-ph coupling provides a means of
linking the electronic properties of the CuOy plane to the structural elements of the
material as well as carrier concentration. In chapter 4] these details were systematically
examined and the resulting variation in the coupling to the B;, mode was found to be
correlated with the material’s T, at optimal doping. Furthermore, the T. considerations
presented in chapter @ showed that moderate values of X, 4, comparable to those required
to reproduce the ARPES and STM data, are capable of producing sizeable enhancements
in T, within the Eliashberg formalism.

The theory of el-ph coupling in the cuprates was then extended to include the effects
of screening in these systems. Due to the quasi-2D nature of the cuprates, with poor
conductivity along the c-axis, it was found that a window of small q opens in which
screening is inoperable. This results in an overall enhancement of the d-wave projected
coupling, enhancing the phonon’s ability to mediate d-wave pairing. With progressive
doping, the total phonon contribution to Ay was enhanced while the total contribution to
A., which suppresses d-wave pairing, was screened away. As a result, doping the system
away from half-filling resulted in an increased contribution to d-wave superconductivity
mediated by el-ph coupling. This may help to explain the doping-dependence of T.
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however, until the doping dependence of the dominant mechanism is understood this
remains an open question.

Up until this point, this work has focused on the doped-cuprates where Migdal-
Eliashberg theory appears to capture much of the experimental details. In an effort
to extend this analysis to the underdoped region of the phase diagram, where strong
correlations become increasingly important and experiments indicate the presence of
polaronic behaviour, numerical work was then undertaken. Here, the interplay between
strong correlations and the el-ph interaction was examined using determinant quantum
Monte Carlo (DQMC) and small-cluster exact diagonalization calculations.

The exact diagonalization calculations were performed in the context of an oxygen
dopant in an otherwise idealized lattice of BisSroCaCuyOg. In this case, the Madelung
energies of the CuQO, plane were modified by the dopant on an eV scale but, due to the
relative sign of Madelung energy on each site, these changes largely cancelled producing
only minor modifications to the local electronic properties if the el-ph interaction was
neglected. However, the dopant oxygen also produced sizeable enhancements to the lo-
cal el-ph coupling A which in turn produced a reduced charge gap, broadened spectral
features, and a sizeable local increase of J. All of these observations imply a strong
interplay between antiferromagnetism, polarons and superconductivity beyond the sim-
ple T, enhancement predicted by Eliashberg theory. The DQMC results obtained for
the single-band Hubbard-Holstein model produced a somewhat different picture. In this
case, evidence for a competition between the correlation-driven antiferromagnetism and
phonon-driven charge-density-wave was observed in multiple measurements. Here, the
antiferromagnetic correlations were suppressed not by the formation of polarons but
rather by a renormalization of the Hubbard U. These results are in contrast with re-
sults obtained from ¢-.J-Holstein model calculations, which observe an increased tendency
towards polaron formation for doped holes dressed by antiferromagnetic fluctuations.

From the high-temperature DQMC results it is clear that there are a number of
open questions regarding el-ph coupling in a correlated system. The obvious next step
is to revisit the destabilization of the antiferromagnetic order at lower temperatures.
Recently, a variant of the DQMC algorithm has been developed which imbeds the cluster
into a mean-field bath. This procedure allows inverse temperatures on the order of
3 ~ 10/t to be reached at optimal doping [276]. Implementing the Holstein phonon into
this approach should allow future simulations to reach much lower temperatures where
phonon coherence effects can occur. This could remedy the inconsistency between the
t-J model results and those presented here. There is also the possibility that since the
antiferromagentic is impossible to destabilize in the t-J model that the Hubbard model
with phonons will display qualitatively different physics, even at low temperatures.

Future work can also be carried out in considering different forms for the el-ph cou-
pling or by examining phonons in multi-band Hubbard models. In a three-band Hubbard
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model with c-axis oxygen phonons there is a clear partition between the lattice degrees
of freedom located on the oxygen sites and the largest Hubbard U term located on the
copper sites. Such a separation may help to counteract any competition between the two
interactions and could produce results more in-line with those of the ¢-J model. The
possible role of extended range el-ph coupling in polaron formation is also worth explor-
ing since such coupling would dress the carrier with extended lattice deformations and
allow for overlap between neighbouring large polarons. Finally, the role of bond phonons
in forming stripes presents another potential area of research.

Throughout this work a number of aspects of el-ph coupling in the cuprates have
been examined, reiterating the importance of this interaction in the physics of high-
temperature superconductivity. Within the traditional Migdal-Eliashberg framework,
phonons can provide substantial variations in T, and are likely required in order to
understand the material-specific properties of the cuprates. This behaviour stems in
part from the quasi-two-dimensional nature of the cuprates and would be absent in
good three-dimensional metals. Because of this, many of the results obtained here -
particularly the poor screening results - may be generalized to other layered systems
with large transport anisotropies. In extending the theory to the half-filled systems
and therefore moving beyond conventional Migdal-Eliashberg theory, numerical evidence
pointing towards competition and entanglement of antiferromagnetism, el-ph coupling,
and superconductivity was uncovered. This evidence further points to the potential for el-
ph coupling to play a complicated role in the cuprates, extending far beyond the validity of
conventional el-ph theory. This research highlights the importance for continued research
in this area.
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Appendix A

Kramers-Kronig Relations for the
Self-Energy

Let f(x) = fi(z) +ifs(x) for z € R, where fi(x) and fy(x) are real-valued functions. If
a describes a physical quantity governed by causality then the real and imaginary parts
are related by the Kramers-Kronig relations

ﬁ@j:lP/fdﬂéEQ ﬁ@g:—lp/fdyﬁﬁﬁ (A1)

/ /
T w =z us o U=z

where P denotes the principle part of the integral. The imaginary parts of the electron-
phonon self-energies y»(k, w) and ¢o(k, w) are odd with respect to w. Using this symmetry
one can the show that the real parts are given by

2 * Wxa(k,w)
X1 (k, w) = ;P/O mdw/ (A2)
e 2, [ Wk, w)
W Q2 K, W

The renormalization parameter Zs(k,w) also has odd parity; however it is the quantity
w[l — Z(k,w)] which is governed by causality and Z;(k,w) is given by

Z(k,w) = 1+2P/ w2k, ) (A4)
0

T w/Q _ w2
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Appendix B

The Eliashberg Equations

The starting point for deriving the Eliashberg equations is the electron-boson self-energy,
calculated within the Migdal approximation. The diagrams included are shown in figure
[3.4l Here, contributions from multiple bosonic modes are allowed for. Each mode indexed
by p, modelled as an Einstein mode of frequency (2, and assigned coupling constants
g.(k,q). Using the Nambu notation, the self-energy is then:

- 1

Z(k, an) - _N_ﬁ Z |g(k7 q)|2DM(qa Zu)m)f'?)é'(p’ iwn - iwm)%?) (Bl)

Hm,q

where p = k — q and D(q,iw,,), G(k,iw,) are the phonon and electron propagators,
respectively.

One now introduces the spectral representation for the propagators
, e 2xB,(x) , > dz G (p, 2)
D m) = dr———— G(k,iw,) = e B.2
(@iv) = [ ae 2 Gl = [ ZTRD (62)

where B, (z) = —Dj(z)/m = 6(x — ) for an Einstein mode. Substituting Eq. into
Eq. and carrying out the Matsubara sum over bosonic frequencies yields

[e.9]

- . 1 RN . .
Sk iwn) = 5> 1gu(k q)f? / RGP, 2) A, Qi) (B.3)
N’p
i (@) 4 ny(2) | () + ng(—2)
. ) +ng(z np, +np(—2
Alz, ;i) = { z—Q —iw, + z4+Q —iw, (B4)

where ny and n; are the Fermi and Bose occupation numbers. The el-boson self-energy
can also be written in the phenomenological form [65]:

~

Sk, iwn) = iwn[1 — Z(K, iwy)] o + (K, iwn)7s + (K, iw,) T (B.5)
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where w(1 — Z), x are the odd and even components of the normal state self-energy,
respectively, and ¢ is the anomalous self-energy. With this division of the self-energies,
the electron propagator is given by

2Z(k, 2)7 + [ex + x(k, 2)]273 + o(k, 2) 71

Gl 2) = [2Z(k, 2)]> — [ + x(k, 2)]> — ¢*(k, 2)

(B.6)

For a d-wave superconductor, one now assumes that the el-boson coupling constant
can be separated |g(k, q)|* = g7 ,+93 ,didp, with contributions to the self-energy in the s-
(g.) and d-wave channels (g,). Here, dx = [cos(k,a/2)—cos(kya/2)]/2 is the usual d-wave
form factor. If one only admits a d-wave solution for the gap function A(k,w) = A(w)dx
then Z and y are momentum independent and the momentum and frequency dependence
of the anomalous self-energy can be separated ¢(p,iw,) = ¢(iw,)dp. This simplifies the
expressions for the three self-energy components

alt = 2] = - D [ et | | A i

€p +

ep + Xp(2) ,
X (iwy,) =~ Nx Zgw/ dzIm [2222(2) _P(Ep +po) 5 dQ} A(z,Q,, iwy)

Opdy
P(iwn) = — Nﬂzgw/ dzImL2Z2(z)—(ep+xp) ¢2d2}

A set of standard approximations are now made [I81], [I83]. First, a cylindrical Fermi
surface is assumed and the d-wave gap is replaced with its f-representation dy — cos(26).
Second, the sum over momenta is replaced with an integral over the density of states N (¢)
and the density of states is replaced by its value at the Fermi level Ny.

NZA &) =Ny [ delag(e)

where (...) denotes an average over 6 = [0, 27]. Once these approximations are made,
the integral over € can now be explicitly carried out by extending the integral to the
complex plane [9]. In this case, the energy integral for y vanishes

Note that if the sum over momenta is evaluated explicitly then y will need to be retained.
For the remaining self-energies the € integrals are

/_: de< 272(2) = ;{(;)(2) 2 cos?(20) > < N - Sgn( 0)082(29) >
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/OO J < &(z) cos?(20) > . A(z) cos?(20)sgn(z)
€ =—7
ceo \22Z22%(z) — €2 — ¢(2)? cos?(20) V22 — A2(z) cos?(20)
where the gap function A(w) cos(26) = ¢(w) cos(20)/Z(w) has been introduced and sgn(z)
denotes the sign of z. The expressions for the self-energy are then

Alw)Z(w) = Z )‘dw% /000 dzRe < \/ZQA—(MA)QC((Z;) Ef))s2(9) > K (w,z,9,)

Q, [~ z
wll —Z(w)] = Eﬂ Azw?/o dzRe < A 0) o (0) > Ki(w,z8,)
(B.7)

with kernels

1 1
Ke(w,2,9Q) = [m(Q) +ng(=2)] [w—i—Q—f—z—i—iéiw—Q—z—l—ié}

1 1
+ () +ny(2)] L,_Q+z+i5iw+9—z+i5]'

In the final step the integral over z has been rewritten over the range [0,00), A\ ¢, =
2N¢19(,0)ul?/Q has been introduced and the analytic continuation iw, — w + 46 has
been explicitly performed.
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Appendix C

Evaluation of the Trace over
Fermion Degrees of Freedom

In deriving the DQMC methodology the trace over the Fermion degrees of freedom was
performed through the use of the identity

Tr (eCTTlceCTTQC...eCTT”C> =det(I +eMe™ ... ™). (C.1)

A formal proof of this identity is presented here using Slater determinants [f]

First, consider a Hamiltonian H = Zl ; c;r-Hijjci, which is bilinear in creation and
annihilation operators. The N x N matrix H is hermitian and therefore an orthogo-
nal transformation U exists such that UTHU = D where D is diagonal. The fermion
operators in the diagonal basis are given by

%=y Ule v =) U (C.2)
j j

and an arbitrary p-particle state is given by

ik, Aoy =T1] (Z C;Um> 0) =[] ("), I0). (C.3)

n=1
where |0) denotes the vacuum state, ¢! = [c], ¢}, ..., ¢l]is a row vector and (AP), denotes
that the matrix product AP be evaluated using only the n-th column of the rectangular
N x p matrix P. The state [], (c'P),|0) is a Slater determinant and it is the solution to

!The treatment here is an expanded treatment of that given in reference [215], and corrects a few
typographical errors which occur therein.

161



the bilinear Hamiltonian [215]. In order to prove the relation it first useful to derive
two lemmas regarding Slater determinants.

Lemma 1: For a hermitian matrix T’
p p

T T (" P)al0y = T] (" P)al0). (C.4)
n=1 n=1
In other words, when a Slater determinant is multiplied by the operator exp(ciTc) the
result is itself a Slater determinant.

Proof. Tt is convenient to first diagonalize UTTU = \ yielding
P P
" [LePlo) = @ T[GUP)I0)
n=1 n=1
— ™™ (v'UtP)

(v'u'p),, ... ('U'P), l0).  (C5)

a1 s
Each of the terms appearing in the brackets is simply a sum over the Fermion operators
~. Explicitly writing out these sums yields

P

T (e P)al0) = €™ 5 |F(UTP)ay1 + ... + Y (UTP)ay v | X

n=1

AU P)ass + oo 4 A (UTP) | .. (C6)

N Payi + .+ (UTP)a, x| 10)

Here, (UTP),; denotes the i-th row of the column vector produced by multiplying the
N x N matrix U' with the a column of the rectangular matrix P. Expanding the products
in Eq. will produce a sum of terms which are proportional to products of N fermion
creation operators. Any term which has a particular operator ’yj appearing more than
once is identically zero once it acts upon the vacuum state |0). Therefore, all that remains
is a sum of terms in which each of the ;s appear only once and Eq. can be reduced
to a sum over all permutations of of the product 7{ YN

P
ctTe f
et H(CTP)R|O> = Z e’ )\%717;[ . ‘7}V|O>(UTP)04171 e (UTP)ap,p
n=1 .
{v:}
_ Z ,yire)\l,l")/ir’}’l,}ge)\ZZ'Y;’}’Z N _,Y]TV(BAN,NWLWN |0>(UTP)Q1,1 o (UTP)%J,
{vi

}
- eyt ALV (0YUTP) 1 .. (UTP)ay,

Vi
p

= H('yTeAUTP)n\O).

n=1
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In the final step the sum has been recombined into a product, undoing the expansion
which was performed in equation [C.6] Transforming back to the original basis then gives

p p p p
e[ (' P)al0) = [ (vTerUTP)al0) = [[(c'UrUTP),J0) = [[ (e P)al0).  (C.7)
n=1 n=1 n=1 n=1
[
Lemma 2: The overlap of two p-particle Slater determinants |¢)) = P_(c"P)|0) and
[9) = [T5=1(c"P)[0) is ) )
(Y]¢) = det[PTP]. (C.8)
Proof.
B p p
Wle) = (O [P [T Pal0)
n=1 n=1
— Z Z(PT ap,p - P )al,l(ﬁ))ﬂl,l e (p)/gp,p X <0|CLP e CL1051 Ce Cﬁp‘O)

{ea} {es}

In the second step the products have been expanded as before. The product of fermion
creation operators is zero unless for every creation operator cLi there is a corresponding
annihilation operator cg, and each set of operators appears only once. The product of
fermion operators is now reordered such that

<7v/}|r(;> = Z Icoqcocz . Cocp|0 Z ijzp,p Pctl lpﬂ'(al)»l e pﬂ'(ap)ﬁl)
{ca}

where 7(a;) = (; is the permutation required to produce this ordering. The factor (—1)"
is the sign induced by reordering the Fermion operators.

<w|w> = Z Z(—l)ﬁpotw Potl 1pa177r—1(1) - papﬂr—l(p)
{ca} =

w1 D ~
= Y (-1 (P P)ip1y-.. (PTP)y 1)

™

The final line is the Leibniz formula for the determinant Det(PTP). O

All of the ingredients are now in place to prove the identity

Tr[e Tieec 2 e"TNe) = det(I + eTte’ .. €™) (C.9)
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where [ is the identity matrix. Let B = exp(T}) . ..exp(Ty) and U = exp(c'Tic) ... exp(cTic)
and write out the right hand side of Eq. using the Leibniz formula for the determi-
nant. (Let S,, denote the set of permutations of the matrix indicies of B.)

det(I+B) = Y (=1)"(I+ B)rya--- (I + B)aww

TESK
= Z (=1)"(Or)1 + Bry1) - - - (On(vy).n + Brvyn)
TESK
= Z (=1)"0r(1)1072),2 - - - Ox(N)N
TESK
+ Z Z 7r %),i 7r(1) 1- 57r(i),i cee 67r(N),N
i mwESH
+ Z Z B, (i),i (j)7j5ﬂ(1)71 - Sﬂ(i)ﬂ- - gﬂ.(j),j .. -57r(N),N + ...
j>i wES

where SW(W indicates that this term is omitted from the product. Consider now the second
term of the expansion in greater detail. The permutation operator ¢ = m(j) performs a
one-to-one mapping of the set of indices onto themselves. Therefore, the second term
will vanish for all permutations apart from the identity permutation (7 (i) = i, 7(j) = j)
and the transposition permutation (7 (i) = j, w(j) = 7). This set of permutations can be
represented by a N x 2 rectangular matrix P where the j-th row of the i-th column is
set to 1 and the remaining elements are zero. The second term can therefore be writen
as

Y BiiBis0x(0i0x(5).5 — BigBiidn()adx(g = Y _ det(PBP). (C.10)

j>1 7>

Equations and can now be applied to express this result in terms of fermion
operators

Det(P'BP) = DetP'P = (P|P) = (P|U|P) = (0|cic;Uclc]|0). (C.11)
The same argument can then be applied to the higher order terms. Therefore,

det(I + €7) = (0]0) +Z (0le:Uel]0) + > (0leic;Uckel|0) + >~ (OleicjerUclclel|0) +

J>i k>j>1

which is the definition of Tr(U) evaluated in Fock space.
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Appendix D

UDR Decomposition

In the DQMC formalism, the electron Green’s function G, (l) for propagation through
the auxiliary field {s;;} at imaginary time slice [ is given by the matrix product

G,'=1+B/...B{B]...B},, (D.1)

where the matrix B; is defined as B/"* = exp(FAT (1)) exp(~A7K). Here K is an
N x N hermitian matrix representing the kinetic and onsite terms of the Hamiltonian
and v(l) is an N x N identity matrix whose diagonal elements are v;;(l) = s;; (please
refer to chapter 7 for further details).

In general, the B, matrices are stiff with eigenvalues that scale as exp(—fFE) and
exp(BE), where E is some energy scale in the problem. Therefore, as the temperature is
lowered, the matrix product

A°(l)=B7...B{B}... B, (D.2)

is numerically ill-defined. In order to circumvent this issue, the product must be evalu-
ated using matrix factorization methods. These methods are standard linear procedures
and are commonly referred to as UDR or QR decompositions and are included in most
numerical linear algebra libraries such as LaPack or Matlab [217]. The stabilization pro-
cedure is as follows. Suppose that the first m right matrix multiplications in Eq. can
be evaluated without producing a numerical instability (from here on the o subscript is
suppressed in order to tidy the notation)

A(l) - Bl e BlBL e Bl+1+mA1 Al = Bl+m e BH_l. (D3)

The matrix A; is then factored using a UDR-decomposition A; = U; Dy Ry, where U; is an
orthogonal matrix, D; is a diagonal matrix and R; is an upper triangular matrix with ones
along the diagonal. The diagonal elements of D; contain the large variations associated
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with the eigenvalues of the original matrix product while U; and R; are generally well
behaved for numerical work. Once this decomposition has been completed, D; and R; are
set aside in storage and U is carried forward and the next m right matrix multiplications
are performed

A(l) = Bl v Bl+1+2mA2D1R1 AQ = Bl+2m ce Bl+m+1U1. (D4)

The matrix A, is then multiplied on the right by D;. This operation only rescales the
columns of Ay and is numerically stable. Then, a second UDR decomposition is performed
Ag = U2D2R2 to obtain

A(l) = By... Biy1pamUsDsRoRy = By ... By1pamUs Do R (D.5)

where in the last step R, = RsR;. Again, the product of the right triangular matrices
is generally numerically stable due to the fact their diagonal elements are one by con-
struction. This procedure is then iterated until the complete product has been evaluated
leaving A(l) = Up/mDrjmRr/m- The electron Green’s function is then given by

G () = I+UrmDrmBijm
= Um(Up )Ry + Dijm) Rijm
= Upm(U'D'R)Ry)m (Up By ) + Dijm = U'D'R)
= UDR

In the last step, a final UDR decomposition has been performed in the result from the
previous line. The final inversion required to obtain the Green’s function stable since
the problematic pieces are contained within the diagonal elements of D. It should also
be noted that the number of matrix multiplications m that can be performed between
the factoring procedure is variable and will decrease as the temperature is lowered. For
a Hubbard interaction strength U ~ 8t and § ~ 3 — 4, m should be set to 4-6.
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