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Abstract

Real-time media streams are a common application on the Internet today. For many such
streams, it is necessary to provide authentication, data integrity, and non-repudiation.
Some applications where this type of security may be necessary include voice-over-IP
(VoIP) calls, transmission of sensitive data such as medical records or personal informa-
tion, or financial data that needs to be updated in real-time. It is important to be able to
balance the need for security with the constraints of the environment, where data must be
delivered in a limited amount of time.

This thesis examines and classifies the different types of authentication based on a
number of factors, mainly the type of authentication (user or data), the way in which
authentication information is transmitted (embedded or appendix), and the secrecy of the
authentication information (covert or overt). This thesis then presents a specific real-time
communication system, and develops a novel method of achieving data authentication
for the system, based on previous work done in the area of hash-chaining authentication
schemes. Theoretical and simulated results are presented, showing that the new method,
the modified butterfly scheme, outperforms the original method, the butterfly scheme,
using the same amount of overhead.
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Chapter 1

Introduction

Real-time media streams are a common application on the Internet today. For many such

streams, it is necessary to provide authentication, data integrity, and non-repudiation.

Some applications where this type of security may be necessary include voice-over-IP

(VoIP) calls, transmission of sensitive data such as medical records or personal informa-

tion, or financial data that needs to be updated in real-time. It is important to be able to

balance the need for security with the constraints of the environment, where data must be

delivered in a limited amount of time.

This thesis examines and classifies the different types of authentication, starting with

the fundamental division between user authentication and data authentication. This thesis

then presents a specific real-time communication system, and looks at the best way to

perform data authentication for this particular system. A modification of an existing data

authentication technique (signatures with hash-chaining) is presented, and the modified

technique is compared to the original.

The remainder of this thesis is organized as follows. Chapter 2 presents some back-

ground on authentication methods, and classifies them based on various aspects. Chapter

3 examines some specific authentication systems that fall into different categories in the
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classification. Chapter 4 presents a real-time communication system, examines some tech-

niques for providing data authentication, and chooses a method to give the best tradeoff

between security and the requirements of the real-time environment. Chapter 5 provides

conclusions and areas for future work.
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Chapter 2

Classification of Authentication

Systems

Broadly, authentication can be divided into two main functions. The first is user authen-

tication - that is, ensuring that a user actually possesses the identity that he or she claims

to possess. The second is data authentication - preventing the unauthorized addition,

deletion, or modification of a message.

2.1 Data Authentication

A key concept in data authentication is the idea of a digital signature. That is, a sender

can provide some information (a signature) along with a message that allows the recipient

to verify that it has not been modified in transit. Menezes et al [1] divide digital signature

schemes into two categories: signature with appendix and signature with message recovery.

Appendix means that the signature and original message are sent separately, and the

original message is required as an input to the verification function, as in Figure 2.1.

3



Signature 
Generation Process

Randomness

Message

Signing Key

Signature
Signature 

Verification Process

Verification Key

Verification (Y/N)

Figure 2.1: General model of an appendix signature scheme.

Message recovery means that the message can be obtained from the signature itself,

so it is not required to have the original message in order to verify the signature. This

classification of signatures with message recovery can be expanded to a class that, in

this thesis, will be called “embedded” data authentication. This refers to any technique

where the message and signature are sent as an inseparable unit, as in Figure 2.2; that is,

there is no need to send the plaintext message separately from the signature component.

This covers both signature schemes with message recovery, as well as signatures that are

embedded in the message data in some way, as in watermarking systems.

Signature 
Generation and 

Embedding Process

Randomness

Message

Signing Key

Message with 
Embedded Signature

Signature 
Verification Process

Verification Key

Verification (Y/N)

Figure 2.2: General model of an embedded signature scheme.

Figure 2.3 shows a categorization of the different mechanisms for data authentication.

Categories are shown in white, while specific examples are shown in grey.
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Figure 2.3: Classification of data authentication schemes.

2.1.1 Embedded Data Authentication

Embedded authentication schemes can be divided based on what information is being

embedded. Some techniques, like steganography or digital watermarking, embed some
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authentication data in a message. In this thesis, this type of system will be referred to as

embedded signature. Other techniques, such as RSA signatures, embed a message within

a signature. These types of systems will be referred to as embedded message.

2.1.1.1 Embedded Message

In an embedded message scheme (also known as digital signature with message recovery),

the sender computes a signature of the message and sends it to the receiver. This is

generally done with a public key encryption system like RSA, which will be discussed

later. The receiver is then able to both verify the identity of the sender and extract the

message from the signature.

Digital signature schemes with message recovery can be either randomized or deter-

ministic. In a deterministic scheme, a given message and key will always produce the

same signature. In a randomized scheme, a given message and key can produce multiple

signatures, depending on a redundancy function that is applied to the message before it is

signed.

In practice, signature schemes with message recovery are rarely used, for two reasons.

First, the signature size is directly correlated to the message size. This means that the size

of the message that can be signed is limited, because the signature of a large message is

often expensive to compute. Second, it is easy to mount what is known as an “existential

forgery” attack, by sending a random string as the signature. Of course, the attacker has

no control over what the corresponding message will be, but the receiver will still treat it

as a valid message. It is desirable to prevent this type of attack, even though it is one of

the weakest forms of attack on a signature scheme.
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2.1.1.2 Embedded Signature

In an embedded signature scheme, some information (a signature) is embedded in the

message to identify the sender and content. Usually this is done in such a way as to be

imperceptible to someone consuming the message (especially for messages containing audio

or video data), but this is not always the case. The embedding of the signature can be

done either covertly or overtly.

The aim in a covert embedded signature scheme is to prevent the attacker from even

knowing that the authentication data exists. This type of system falls under the domain of

steganography. Steganography, from the Greek for “covered writing” [2], is the technique

of hiding not only a message, but the fact that the message exists at all. Generally, in such

a covert scheme, the focus is on concealing the signature’s existence, rather than making

it robust to attacks or attempts to remove it.

In an overt embedded signature scheme, the attacker (and everyone else) is aware that

the authentication data is embedded in the message. Therefore, to ensure data integrity, the

goal is to make it impossible to remove or alter the authentication data without destroying

the message. This type of system is a form of digital watermarking. If the original,

unmarked message is not required as an input to the verification function (as in the case of

an embedded signature), then the scheme is referred to as a public watermarking system.

2.1.2 Data Authentication with Appendix

Data authentication with appendix is differentiated from embedded data authentication

by the fact that it requires the original message in order to verify the authentication

information. It can be further divided based on what data is sent as the appendix: the

signature, or the message itself.

7



2.1.2.1 Signature as Appendix

This is the most commonly-used type of data authentication scheme. A signature of the

message is computed, and is then sent along with the message itself. Using the message and

the signature, the receiver can verify the data. This type of scheme typically relies on a hash

function, which means it can be applied to messages of any length. Like signatures with

message recovery, signatures sent as appendices can be either randomized or deterministic.

It is possible to construct an appendix scheme from any message recovery scheme simply

by hashing the message before signing it [1].

In a deterministic digital signature scheme with appendix, a hash of the data is com-

puted, using some well-known hashing algorithm like SHA-1 [3]. In this way, the signature

will be a fixed length, rather than varying with the size of the message. Then, the hash

will be signed, that is, encrypted with the sender’s private key. The signed hash is sent to

the receiver along with the original message.

The receiver can compute the hash of the message, then decrypt the signed hash with

the sender’s public key, and verify that they match. This ensures data integrity: if the

message or the signed hash are modified in any way, they will not match. If a secure

hashing algorithm is chosen, it should be computationally infeasible to modify the message

and signature in such a way that they will still match even after the modifications.

Randomized appendix signature algorithms, like their embedded counterparts, can pro-

duce different signatures for the same message-key pair. Some examples include ElGamal

signatures [4] and related schemes like the Digital Signature Algorithm (DSA) [5].

2.1.2.2 Message as Appendix

It would seem counter-intuitive to send a message as an appendix to the message itself.

However, this category encompasses mechanisms like private watermarking, where the

8



sender sends a watermarked version of the message, but the receiver must have a copy of

the original unmarked message in order to extract the watermark. The unmarked message

can be exchanged through a secure channel.

2.2 User Authentication

User authentication can be divided into real-time authentication and transfer-of-trust. The

goal in real-time authentication is to confirm that a user actually has the identity that he

or she claims. It typically involves a challenge and response (such as prompting a user

for their password). Transfer-of-trust means that a trusted third party vouches for the

user. This is often expressed by having the trusted third party issue a certificate to the

user, confirming his or her identity. The trust in the third party implicitly guarantees the

authenticity of the user. These two methods can be complementary to one another. For

example, a system could use real-time authentication to identify a user at the beginning of

a session, and then issue him or her a certificate to be used for the duration of the session.

Figure 2.4 shows a categorization of the different mechanisms for user authentication.

Categories are shown in white, while specific examples are shown in grey.

2.2.1 Real-Time User Authentication

Real-time user authentication can be broken down into three different factors, informally

known as “something you have,” “something you know,” and “something you are” [6].

Token-based authentication (something you have) is normally a physical device such as a

USB dongle or a security card. Knowledge-based authentication (something you know)

could be a password, or it could involve questions about the user’s life. Anyone who

has used online banking has likely been asked to set up several security questions such

9
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Figure 2.4: Classification of user authentication schemes.

as “Mother’s maiden name” or “Father’s middle name.” Biometrics (something you are)

can be further divided into physiological traits, like a fingerprint or retinal scan, and

behavioural traits, such as a handwritten signature or a voice sample [7]. Behavioural traits

may vary from sample to sample, whereas physiological traits are more or less constant.

2.2.2 Transfer-of-Trust

A transfer-of-trust system requires a third party that is trusted by the entity attempting to

authenticate the user. One basic example is a public key directory. When an entity receives
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a copy of a user’s public key, it must have a way to ensure that that key actually belongs to

the user in question, and not to an attacker. To accomplish this, all users can register their

public keys with a central directory, where they are signed with the directory’s public key.

The directory’s public key is known to everyone. An entity can then obtain a user’s public

key from the directory, and confirm its authenticity by decrypting it with the directory’s

public key. In this case, the directory is the trusted third party. More complex hierarchies

can be developed based on this simple approach, in order to improve performance.

11



Chapter 3

Examples of Authentication Systems

3.1 RSA Signatures

Rivest, Shamir, and Adleman [8] proposed the first digital signature scheme, RSA, in

the same paper where they proposed the first public-key encryption system. RSA is a

deterministic embedded message scheme. Like RSA encryption, RSA signatures are based

on the integer factorization problem. Each person who wants to create a signature performs

the following procedure. First, he chooses two large primes, p and q. He computes n = pq.

The product n is public knowledge, although p and q are not. He then chooses his private

key, d, and public key, e, such that:

ed ≡ 1 mod (p− 1)(q − 1) (3.1)

The private key is kept secret, and the public key is made available to all users of the

system. To sign a message m, the sender computes:

s ≡ md mod n (3.2)

12



The recipient must calculate:

m ≡ se mod n (3.3)

thereby recovering the message and verifying both its source and its integrity. Because the

message need not be sent separately, this system provides message recovery.

In practice, the public key e is generally chosen to speed up the verification calculation.

Common values are e = 3 and e = 216 + 1 [1]. The private key d is then calculated using

Equation 3.1. If d is chosen instead, and it is selected to be too small, then it is possible

to use an efficient algorithm to determine d from n and e, as shown by Wiener [9]. “Too

small” in the context of Wiener’s attack means, approximately, d ≤ n
4
. To avoid this

attack, it is generally recommended that d be approximately the same size as n [1].

If n can be easily factored, then an attacker can compute d with the public information

n and e. It is therefore important to choose the primes p and q in such a way that it

is computationally infeasible to factor n. The difference p − q should not be too small;

otherwise, p ≈ q ≈
√
n, which makes it easy to factor n [1]. In addition, p − 1 and q − 1

should each have a large prime factor. If they do not, then n can be factored using Pollard’s

p− 1 factoring algorithm, described in [10].

The RSA signature system is also vulnerable to an existential forgery attack - that is,

an attacker can easily create a valid message and signature pair, although not necessarily

of his choosing. To do so, he simply chooses a signature at random and decrypts it with the

sender’s public key to get the corresponding message. To thwart this type of attack, the

message can be hashed before signing it. However, this means that the system no longer

provides message recovery, making it a deterministic signature as appendix scheme.
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3.2 ElGamal Signatures

The ElGamal signature scheme [4] is a randomized signature as appendix scheme. All users

in the system must share p, a large prime, and α, a primitive element mod p. Additionally,

each user must have a private key, x, and a public key, y ≡ αx mod p.

To sign a message m, a user chooses a random number k between 0 and p − 1, such

that gcd(k, p− 1) = 1. He then computes:

r ≡ αk mod p (3.4)

and calculates s such that:

m ≡ xr + ks mod p (3.5)

He can then send the message m along with the signature (r, s).

To verify the signature, the recipient checks that:

αm ≡ yrrs mod p (3.6)

3.3 Nyberg-Rueppel Signatures

Nyberg and Rueppel [11] proposed a method of using the National Institute of Standards

and Technology’s Digital Signature Algorithm (DSA) [5] to create a signature with message

recovery. In the terminology of this thesis, the Nyberg-Rueppel signature is a randomized

embedded message scheme. The DSA is itself based on the ElGamal signature scheme. Ny-

berg and Rueppel further extended their method to add message recovery to any signature

scheme based on ElGamal encryption [12].

In Nyberg and Rueppel’s original algorithm, all users must share a large prime p, and

14



an element α of order p−1. In addition, each user must have a private key, x, and a public

key, y ≡ α−x mod p. To sign a message m, a user randomly generates a number k. He then

computes:

e ≡ mα−k mod p (3.7)

and:

w ≡ k + xe mod p (3.8)

The signature is the pair (e, w).

To verify the signature and recover the message, the recipient computes:

m ≡ αwyee mod p (3.9)

3.4 Canary Trap

One example of a covert embedded signature scheme is known as a “canary trap.” It is

useful for detecting the source of an information leak. In this scheme, several similar copies

of a document are prepared. They all differ slightly in their wording (using several pairs of

synonyms, for example). If a leaked version of the document appears, it can be traced back

to the source by the particular wording that was used. The name “canary trap” comes

from Tom Clancy’s novel Patriot Games. The following is the section of that book that

describes the canary trap in detail [13]:

“Each summary paragraph has six different versions, and the mixture of those

paragraphs is unique to each numbered copy of the paper. There are over a thou-

sand possible permutations, but only ninety-six numbered copies of the actual

document. The reason the summary paragraphs are so – well, lurid, I guess –

is to entice a reporter to quote them verbatim in the public media. If he quotes

15



something from two or three of those paragraphs, we know which copy he saw

and, therefore, who leaked it. They’ve got an even more refined version of the

trap working now. You can do it by computer. You use a thesaurus program to

shuffle through synonyms, and you can make every copy of the document totally

unique.”

3.5 Digital Watermarking

Digital watermarking refers to “the imperceptible, robust, secure communication of infor-

mation by embedding it in and retrieving it from other digital data” [14]. Rather than

a specific technique, digital watermarking encompasses a set of tools that are useful for

particular applications. An in-depth discussion of the entire field of digital watermarking

is outside the scope of this thesis; however, an overview of the relevant applications is

presented. Authentication is a common application; that is, confirming the source of a

piece of data, or ensuring that it has not been modified. A related application is copyright

protection, which includes identifying and proving the owner of the data.

An overview of the watermark embedding process is shown in Figure 3.1. The corre-

sponding watermark detection process is shown in Figure 3.2.

Digital watermarking systems are classified in a number of ways. One of the most

common is whether the original data is required in order to detect or extract the watermark.

If the original data is necessary, the system is classified as private watermarking. This is

considered a message as appendix scheme, since the original message must be sent along

with the “signature,” the watermarked message. If the original data is not required, it is

public watermarking. This falls under the category of overt embedded signature schemes.

Watermarks can also be classified based on robustness. Some watermarks, known as

fragile watermarks, are sensitive to any changes in the original data. Other watermarks are
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Figure 3.2: General watermark detection process.

designed to survive certain transformations of the data, such as compression, filtering, or

format changes. Fragile watermarks are useful for detecting any changes in the data. Non-
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fragile watermarks are useful in applications like copyright protection, where it is essential

that the watermark cannot be easily separated or removed from the cover data.

In contrast with steganography, in a digital watermarking system, it is generally known

that a watermark is embedded in the cover data. Therefore, the main attacks against

watermarks are to attempt to remove them or to corrupt them in such a way that they are

no longer recognizable. For this reason, a secure watermarking system should be robust

against these types of attacks. All practical watermarking systems use a key, or set of keys,

to ensure that only a legitimate user may embed or remove a watermark [2].
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Chapter 4

An Implementation of a Data

Authentication System

In this chapter, a specific implementation of a data authentication system is presented.

The system is a secure, authenticated, peer-to-peer voice-over-IP (VoIP) transceiver.

4.1 Overview of the System

The secure authenticated transceiver (SAT) consists of two prototype devices that commu-

nicate with each other over the Internet, sending compressed audio data back and forth.

The system also encompasses several servers to manage public key certificates, and a di-

rectory server to store the IP address of each device. The devices each have a hardware

certificate, and users are bound to a device for a certain length of time with a binding cer-

tificate. Each certificate server also has its own certificate, used to identify itself to other

servers. Binding certificates are used to authenticate users and devices, and to exchange a

session key that is used to encrypt each conversation. All public key certificates use elliptic

curve cryptography (ECC). Data is encrypted using the Advanced Encryption Standard
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(AES). The goal is to add a mechanism for non-repudiation, so that a conversation may

be stored (with signature) and authenticated after the fact.

One major concern with this system is that it handles real-time traffic, so the encryption

and signing process must be fast enough to avoid a noticeable end-to-end delay. It is also

desirable to minimize the power consumption of the prototype devices. Finally, there is the

issue of packets being lost or corrupted, which could affect the ability to verify signatures

at the receiving end. This is especially a concern in wireless environments. Note that if a

packet is lost, there is no attempt to retransmit it - it is simply dropped. Therefore, it is

desirable to sign the data in such a way that it can still be verified even if some percentage

of the packets are missing - in other words, a measure of partial authentication is necessary.

4.2 Proposed Solutions

A first attempt at a solution would be to sign a hash of every data packet, and send

this signature along with the data (a signature as appendix scheme). If a packet or its

signature is lost in transit, it is simply ignored. As long as only a small percentage of

the signatures are lost in this way, it should be possible to reconstruct the authenticated

conversation with reasonable fidelity - there will be a small amount of noise where packets

are missing or unverified. However, there is a problem with this approach. If a data

packet or its signature is received with only a single bit in error, the signature will not

match, and the whole packet will have to be thrown out. If the bit error rate is high (as

in a wireless channel), there could be very few authenticated packets. It may also not be

computationally feasible to sign every packet, as this would increase the time and power

consumption of the application.

Another possible solution is a content-based signature, as described by Schneider and

Chang [15]. Such a signature would allow small changes in the data, assuming that the

20



changes do not affect the overall content of the voice data. This could potentially allow the

system to handle small amounts of noise in the transmission channel, while still protecting

against malicious attacks. A disadvantage of this approach is that it is very data-dependent

– that is, different content-extraction functions would be needed for audio, video, images,

and other types of data.

A third approach is a hash-chaining mechanism, which allows one signature to authen-

ticate multiple packets. In the most basic such scheme, the hash of packet Pi is computed

and appended to packet Pi+1. Then, if Pi+1 is authenticated, so is Pi. This is done for

every packet, so that the packets form a chain, and the final packet in the chain is hashed

and signed. A simple hash-chain is shown in Figure 4.1. In this way, a single signature

can be used to verify the entire chain. Variations on the basic hash-chaining method can

provide better performance. This method is content-independent, and has a much lower

cost compared to signing each packet individually. In addition, it is possible to achieve

some measure of partial authentication, even if some packets are not able to be verified.

Therefore, the hash-chaining approach was chosen for the SAT project.

h
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P
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P
0

h
1

P
2

h
i-1

P
i

sig(h
i 
)...

Figure 4.1: A simple hash-chaining scheme.

4.3 Existing Hash-Chaining Schemes

In this section, some existing hash-chaining schemes are explored in more detail. A method

called butterfly hash-chaining is also described, which will be the foundation for the devel-
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opment of a new hash-chaining system to be used in the SAT project.

4.3.1 Simple Hash-Chaining

Gennaro and Rohatgi [16] first proposed a simple hash-chain, as described above, where

each packet’s hash is appended to the next, and the final packet is hashed and signed.

This reduces the number of signatures needed to authenticate a data stream, but does not

address the issue of packets that are lost in transit. So, if one packet in the chain is lost

or corrupted, then no packets after that can be authenticated.

A hash-chaining system can be represented as a directed graph, where each node rep-

resents a packet, and each edge represents a hash being appended to a packet. This is

shown in Figure 4.2. If a packet is lost, it and all its edges are removed from the graph.

To authenticate a packet, there must be a path from that packet to the signature node. It

is possible to deal with packet loss by appending each hash to more than one packet. This

means that there will be multiple paths from a given packet to the signature, so that if a

node on one path is lost, the packet may be verified through a different path.

...P
0

P
1

P
2

P
i sig

Figure 4.2: A simple hash-chain as a directed graph.

4.3.2 Efficient Multi-Chained Stream Signature

Perrig et al [17] proposed a method called Efficient Multi-chained Stream Signature (EMSS).

In EMSS, the authors experiment with appending anywhere from two to six hashes to each
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packet. The hashes are appended based on a vector. For example, [2, 3, 5] means that the

hash of packet Pi is appended to packets Pi+2, Pi+3, and Pi+5. All vectors up to length 6

were simulated to see which would give the best performance (the highest probability of

verifying a packet). It was determined that [5, 11, 17, 24, 36, 39] was one of the strongest

vectors. Signatures are sent at regular intervals, with up to 1000 packets sent between

signatures. This scheme can tolerate a high degree of packet loss, but requires significant

overhead - an extra six hashes per packet.

4.3.3 Augmented Hash-Chaining

Golle and Modadugu [18] presented what they call an augmented hash-chain. This scheme

allows some buffering of packets at the sender, so that it is possible to append the hash of

a packet Pi to a packet Pi−a preceding it. It is designed to resist bursty packet loss, which

is a common model of packet loss over the Internet. Golle and Modadugu’s scheme adds a

maximum of five hashes to any given packet, averaging two hashes per packet.

4.3.4 Star Chaining and Tree Chaining

Wong and Lam [19] proposed two techniques, tree chaining and star chaining. In their

paper, they presented star chaining first, and then generalized it to tree chaining.

In star chaining, packets are grouped into blocks. Within a block, each packet is hashed

to produce a digest. The packet digests are then assembled and hashed to produce a block

digest, as in Figure 4.3. In this figure, D1 through D8 are the packet digests, and D1−8

is the block digest. The block digest is signed and transmitted along with the packets

themselves.

To verify a packet at the receiver, some additional information, called the packet sig-

nature, is required. In this case, the packet signature consists of the digests of all other
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packets in the block. Using the example of Figure 4.3, when the receiver gets packet 3,

he can compute its digest, then combine it with the other packet digests to compute the

block digest, and thereby verify the packet. Digests can be cached, so that when the next

packet is received, the receiver only needs to verify its digest against the cached digest for

that packet.

Figure 4.3: Example of star chaining [19].

Obviously, star chaining requires a lot of overhead, since each packet must carry the

digests for all other packets. Tree chaining attempts to improve upon this by reducing the

size of each packet signature. In tree chaining, the packet digests are grouped into a tree,

as in Figure 4.4. The leaf nodes of the tree are the packet digests. All non-leaf nodes are

computed by hashing the node’s children together. The root node is the block digest, which

is signed and sent along with the packets. A packet signature in tree chaining consists of

the siblings of each node in the packet’s path to the root. For example, in Figure 4.4, the

signature for packet 3 would consist of D4, D1−2, and D5−8.

4.3.5 Butterfly Hash-Chaining

Zhang et al [20] proposed a butterfly-graph based hash-chaining scheme. In the butterfly

scheme, packets are grouped into blocks, and one signature is generated per block. Each

block is also divided into “stages” containing a certain number of packets. The hashes of
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Figure 4.4: Example of tree chaining [19].

the packets in each stage are appended to the packets in the following stage. If there are

N packets in a stage, then the number of packets in a block is T = N((log2N) + 1), and

the number of stages is M = (log2N) + 1. This makes the scheme somewhat limited, in

that it does not allow blocks or stages of arbitrary size. One signature is generated on the

hashes of all the packets in the final stage of each block. It is assumed that the signature

packet is received correctly. This can be guaranteed by, for example, retransmitting the

signature packet if it is lost.

The name of the scheme comes from the so-called “butterfly” pattern used to decide

which hashes are appended to which packets. It works as follows. The function γy(x) is

defined; its value is obtained by flipping the yth bit of x. Stages are numbered from M −1

to 0, and packets within a stage are numbered from 0 to N −1. If Pm,n is packet number n

in stage m, then the hash of Pm,n is appended to both Pm−1,n and Pm−1,γM−1−m(n). Figure

4.5 shows the directed graph corresponding to the butterfly authentication method, with

4 stages and 8 packets per stage, for a total of 32 packets per block. S is the signature of

the hashes in the final stage.
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As shown in Zhang et al ’s paper, the authentication probability for the packets in the

first stage (the one farthest from the signature packet) is:

Φmin = (1− p2)log2N (4.1)

where p is the probability of losing a packet, assumed to be equal and independent for all

packets.

Figure 4.5: Example structure of a butterfly graph [20].

This scheme can tolerate packet loss, and performs better than other hash-chaining

schemes with the same amount of overhead.

4.4 Modified Butterfly Scheme

The modified scheme that was developed for the SAT project is based on the butterfly

method. In the modified butterfly scheme, each hash is split into two halves. Some of these

half-hashes are XORed with others. The resulting hash segments are then rearranged and

appended to the packets of the next stage according to a certain algorithm. In this way, a
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packet can be partially authenticated even if part of its hash is lost or received incorrectly.

The modified method outperforms the original butterfly method using the same amount

of overhead.

4.4.1 Basic Operation

As in Zhang et al ’s scheme, the stream is divided into blocks of T packets. Each block is

divided into M stages of N packets each, where N = 22(M−1), and T = M × 22(M−1). The

stages are numbered from 0 to M − 1, and the packets in each stage are numbered from 0

to N − 1. Note that the stages are numbered in reverse order as compared to the original

butterfly scheme (the final stage is M − 1 instead of 0).

In stage m, for 0 ≤ m < M − 1, the hashes of all packets in the stage are computed

and each hash is divided into two halves. The half-hashes will be combined in a particular

way to form what are called “hash segments.” Each segment will be the same size as one

half-hash. Four such segments will be appended to each packet in the next stage, m + 1,

as shown in Figure 4.6. That way, the overhead of the modified scheme is the same as the

overhead of the original butterfly scheme. The sm+1,k in Figure 4.6 are the hash segments

appended to the packets in stage m+1. There are 4N such segments in every stage (except

stage 0), numbered from 0 to 4N − 1. The function C in Figure 4.6 is a permutation and

combination of the half-hashes, which will be described later in more detail.

Once the half-hashes are computed for stage m, they are assembled into a vector Hm

of length 2N .

Hm =
[
h1
m,0 h2

m,0 h1
m,1 h2

m,1 . . . h1
m,N−1 h2

m,N−1

]
(4.2)

h1
m,n (or h2

m,n) refers to the first (or second) half of the hash of packet Pm,n. Below is an
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Figure 4.6: Hash segments appended to each packet, for N=4.

example for N = 4.

H0 =
[
h1

0,0 h2
0,0 h1

0,1 h2
0,1 h1

0,2 h2
0,2 h1

0,3 h2
0,3

]

The goal is to generate a matrix Km+1 to indicate which half-hashes from stage m will

be combined to form the hash segments for stage m+1. It is then possible to obtain Sm+1,
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a vector of all the segments for stage m+ 1, as follows:

Sm+1 = Hm ×Km+1 =
[
sm+1,0 sm+1,1 . . . sm+1,4N−2 sm+1,4N−1

]
(4.3)

However, having one large matrix for the entire stage is rather unwieldy, and does not

scale well as N becomes large. Therefore, it was decided to break up the matrix Km+1 into

several smaller matrices.

For each packet in stage m + 1, a “local kernel matrix” Km+1,n, of dimension 2N × 4,

is generated. The local kernel matrix will select the half-hashes to be appended to that

packet, and can be generated on the fly using a set of simple equations. Each row of Km+1,n

corresponds to one of the half-hashes in the previous stage, m. A one in a particular row

selects that half-hash. Each column of Km+1,n produces one of the hash segments sm+1,k

to be appended to the packet Pm+1,n, as in Figure 4.6. Thus, there are four columns, since

four segments are appended to each packet. The combining operation is an XOR, rather

than simple addition. An example matrix is shown below, for N = 4.

K1,0 =



1 0 0 0

0 1 0 1

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0



(4.4)

Multiplying the vector Hm by a packet’s local kernel matrix yields another vector Sm+1,n
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of length 4, containing the four segments that are to be appended to packet Pm+1,n.

Sm+1,n = Hm ×Km+1,n =
[
sm+1,n sm+1,n+1 sm+1,n+2 sm+1,n+3

]
(4.5)

For example, using the local kernel matrix above yields the following vector (the ⊕ operator

represents XOR):

S1,0 = H0 ×K1,0

=
[
h1

0,0 h2
0,0 ⊕ h2

0,1 h1
0,2 h2

0,0 ⊕ h2
0,2

]
=

[
s1,0 s1,1 s1,2 s1,3

]

In the final stage, M − 1, all the packets are hashed, and the hashes are concatenated.

The concatenation of the hashes is signed and sent to the receiver. In this way, only one

signature needs to be sent for each block of T packets.

A packet is verifiable if there is a path from that packet to the signature. In the modified

butterfly scheme, a packet is only removed from the graph if neither one of its half-hashes

can be verified. So, as long as at least one half of a packet’s hash can be verified, that

packet may be used to verify other packets. If a higher degree of confidence is desired, a

packet can be removed from the graph if either of its half-hashes cannot be verified.

4.4.2 Generation of Local Kernel Matrices

The local kernel matrices are generated as follows. Ki,j
m,n is defined to be the entry at row

i and column j of the local kernel matrix of packet n in stage m. Note that i and j are

indexed starting from 0. The equations in Table 4.1 are used to determine which of the

Ki,j
m,n are equal to one. All other entries in the matrix are equal to zero. No local kernel

matrices are required for stage 0, because no hash segments are appended to the packets
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in stage 0. The function γy(x) is the bit-flipping function described in Section 4.3.5.

Table 4.1: Equations for calculating local kernel matrices.

i j

2n 0

2n+ 1 1

2γ2m−2(n) + 1

2γ2m−1(n) 2

2n+ 1 3

2γ2m−1(n) + 1

For example, to generate the matrix K1,0 in Equation 4.4, simply substitute m = 1 and

n = 0 in the equations in Table 4.1. This yields the coordinates shown in Table 4.2.

Table 4.2: Example matrix calculation for m=1, n=0.

i j

0 0

1 1

3 1

4 2

1 3

5 3

Thus:

K0,0
1,0 = K1,1

1,0 = K3,1
1,0 = K4,2

1,0 = K1,3
1,0 = K5,3

1,0 = 1

All other Ki,j
1,0 are equal to zero.
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4.5 Analysis and Results

In this section, the modified butterfly scheme is examined in more detail. A number of

factors are discussed, including the verification probability, overhead, and security of the

new method. The results of a simulation and comparison to the original butterfly scheme

are also presented.

4.5.1 Verification Probability

As in the original butterfly scheme, it is assumed that the signature packet will be received

correctly. To determine the probability of verifying a packet, consider the final stage, M−1.

In this stage, if a packet is received correctly, then it can be verified. So, the probability

of verifying any particular packet is simply 1 − p, where p is the packet error rate of the

channel, assumed to be equal and independent for all packets.

For stage M − 2, it is possible to calculate the probability of verifying the first or

second half of a packet’s hash, as follows. Figure 4.7 shows where the half-hashes for a

given packet (packet PM−2,0) are appended. For the purpose of calculating verification

probability, PM−2,0 can be any packet in stage M − 2; the verification probability for all

packets in a given stage will be the same, because of symmetry. h1
M−2,0 is the first half of

the hash of packet PM−2,0, while h2
M−2,0 ⊕ h2

M−2,1 is the second half of the hash of packet

PM−2,0 XORed with the second half of the hash of packet PM−2,1.

For completeness, Figure 4.8 also shows where the hash segments appended to a given

packet (packet PM−1,0) come from. However, in calculating the verification probability, it

is easier to refer to Figure 4.7.

Λm,n denotes the event that packet Pm,n can be verified, while Λ1
m,n (or Λ2

m,n) denotes

the event that the first (or second) half of the hash of packet Pm,n can be verified. Πm,n

denotes the event that packet Pm,n is received correctly.
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Figure 4.7: Destinations of a single packet’s half-hashes for the modified butterfly scheme.

For the first half of the hash of packet PM−2,0:

P (Λ1
M−2,0 | ΠM−2,0) = P (ΛM−1,0 ∪ ΛM−1,2 | ΠM−2,0) (4.6)

That is, the probability of verifying packet PM−2,0, given that it is received, is the probabil-

ity that either packet PM−1,0 or packet PM−1,2 can be verified. Since PM−1,0 and PM−1,2 are

both in stage M−1, the probability that they can be verified is the same as the probability

that they are received. That is:

P (Λ1
M−2,0 | ΠM−2,0) = P (ΠM−1,0 ∪ ΠM−1,2) = 1− p2 (4.7)

To verify the second half of the hash, at least one other packet, PM−2,1 or PM−2,2, is
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Figure 4.8: Sources of a single packet’s hash segments for the modified butterfly scheme.

required from stage M − 2. Conditioning on which packet is received yields:

P (Λ2
M−2,0 | ΠM−2,0) = P (Λ2

M−2,0 | ΠM−2,1 ∩ ΠM−2,2 ∩ ΠM−2,0)P (ΠM−2,1 ∩ ΠM−2,2) +

P (Λ2
M−2,0 | ΠM−2,1 ∩ ΠM−2,2 ∩ ΠM−2,0)P (ΠM−2,1 ∩ ΠM−2,2) +

P (Λ2
M−2,0 | ΠM−2,1 ∩ ΠM−2,2 ∩ ΠM−2,0)P (ΠM−2,1 ∩ ΠM−2,2)

(4.8)

From Figure 4.7, it can be seen that if both packets PM−2,1 and PM−2,2 have been received,

then the second half of packet PM−2,0 can be verified if any of packets PM−1,0, PM−1,1, or

PM−1,2 have been verified. If only packet PM−2,2 has been received, then either PM−1,0 or

PM−1,2 is needed; if only packet PM−2,1 has been received, then either PM−1,0 or PM−1,1 is
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needed. Thus, Equation 4.8 becomes:

P (Λ2
M−2,0 | ΠM−2,0) = P (ΛM−1,0 ∪ ΛM−1,1 ∪ ΛM−1,2 | ΠM−2,0)(1− p)2 +

P (ΛM−1,0 ∪ ΛM−1,2 | ΠM−2,0)p(1− p) +

P (ΛM−1,0 ∪ ΛM−1,1 | ΠM−2,0)p(1− p)

= P (ΠM−1,0 ∪ ΠM−1,1 ∪ ΠM−1,2)(1− p)2 +

P (ΠM−1,0 ∪ ΠM−1,2)p(1− p) + P (ΠM−1,0 ∪ ΠM−1,1)p(1− p)

= (1− p3)(1− p)2 + (1− p2)p(1− p) + (1− p2)p(1− p)

P (Λ2
M−2,0 | ΠM−2,0) = (1− p)2(1 + 2p+ 2p2 − p3) (4.9)

Similarly, it is possible to calculate the probability of verifying both halves of the hash

of packet PM−2,0 together. Again, this is done by conditioning on which of PM−2,1 and

PM−2,2 is received. In this case, if both PM−2,1 and PM−2,2 have been received, or just

PM−2,2, then either PM−1,0 or PM−1,2 is needed to verify both halves of PM−2,0. If only

packet PM−2,1 has been received, then either PM−1,0, or both of PM−1,1 and PM−1,2, is

needed.

P (Λ1
M−2,0 ∩ Λ2

M−2,0 | ΠM−2,0) = P (Λ1
M−2,0 ∩ Λ2

M−2,0 | ΠM−2,1 ∩ ΠM−2,2 ∩ ΠM−2,0)×

P (ΠM−2,1 ∩ ΠM−2,2) +

P (Λ1
M−2,0 ∩ Λ2

M−2,0 | ΠM−2,1 ∩ ΠM−2,2 ∩ ΠM−2,0)×

P (ΠM−2,1 ∩ ΠM−2,2) +

P (Λ1
M−2,0 ∩ Λ2

M−2,0 | ΠM−2,1 ∩ ΠM−2,2 ∩ ΠM−2,0)×

P (ΠM−2,1 ∩ ΠM−2,2)

= P (ΠM−1,0 ∪ ΠM−1,2)(1− p)2 +

P (ΠM−1,0 ∪ ΠM−1,2)p(1− p) +
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P (ΠM−1,0 ∪ [ΠM−1,1 ∩ ΠM−1,2])p(1− p)

= (1− p2)(1− p)2 + (1− p2)p(1− p) +

[P (ΠM−1,0) + P (ΠM−1,1 ∩ ΠM−1,2)−

P (ΠM−1,0 ∩ ΠM−1,1 ∩ ΠM−1,2)]p(1− p)

= (1− p2)(1− p)2 + p(1− p)(1− p2) +

[1− p+ (1− p)2 − (1− p)3]p(1− p)

P (Λ1
M−2,0 ∩ Λ2

M−2,0 | ΠM−2,0) = (1− p)2(1 + 2p+ p2 − p3) (4.10)

Ωm is defined to be the probability of verifying a packet (either the first or second half)

in stage m. It is possible to calculate ΩM−2 using Equations 4.7, 4.9, and 4.10, as follows:

ΩM−2 = P (Λ1
M−2,0 ∪ Λ2

M−2,0) = P (Λ1
M−2,0 ∪ Λ2

M−2,0 | ΠM−2,0)P (ΠM−2,0)

= [P (Λ1
M−2,0 | ΠM−2,0) + P (Λ2

M−2,0 | ΠM−2,0)−

P (Λ1
M−2,0 ∩ Λ2

M−2,0 | ΠM−2,0)]P (ΠM−2,0)

= [(1− p2) + (1− p)2(1 + 2p+ 2p2 − p3)− (1− p)2(1 + 2p+ p2 − p3)](1− p)

ΩM−2 = (1− p)2(1 + p+ p2 − p3) (4.11)

It is now possible to calculate the verification probability of stage M−3 (and subsequent

stages) using ΩM−2. The difference is that the verification probability is used in place of

the probability of receiving a packet. From the point of view of the packets in stage M−3,

not verifying a packet from stage M − 2 is equivalent to not receiving that packet, so this

substitution makes sense. For example, to calculate the verification probability for the first

half of packet PM−3,0:

P (Λ1
M−3,0 | ΠM−3,0) = P (ΛM−2,0 ∪ ΛM−2,2) = 1− (1− ΩM−2)

2 (4.12)
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In other words, the verification probability for the first half of PM−3,0 is the probability that

either PM−2,0 or PM−2,2 can be verified. A simplifying assumption is made here; namely,

that the verification probability of PM−2,0 is independent of the verification probability

of PM−2,2. This is not strictly true, since verifying PM−2,0 depends on some of the same

packets used to verify PM−2,2. However, it is a reasonably good approximation, as will be

seen in Section 4.5.8.

Using the same simplifying assumption, for the second half of PM−3,0:

P (Λ2
M−3,0 | ΠM−3,0) = P (Λ2

M−3,0 | ΠM−3,1 ∩ ΠM−3,2 ∩ ΠM−3,0)P (ΠM−3,1 ∩ ΠM−3,2) +

P (Λ2
M−3,0 | ΠM−3,1 ∩ ΠM−3,2 ∩ ΠM−3,0)P (ΠM−3,1 ∩ ΠM−3,2) +

P (Λ2
M−3,0 | ΠM−3,1 ∩ ΠM−3,2 ∩ ΠM−3,0)P (ΠM−3,1 ∩ ΠM−3,2)

= P (ΛM−2,0 ∪ ΛM−2,1 ∪ ΛM−2,2)(1− p)2 +

P (ΛM−2,0 ∪ ΛM−2,2)p(1− p) + P (ΛM−2,0 ∪ ΛM−2,1)p(1− p)

= (1− [1− ΩM−2]
3)(1− p)2 + 2(1− [1− ΩM−2]

2)p(1− p)

P (Λ2
M−3,0 | ΠM−3,0) = ΩM−2(1− p)(3− 3ΩM−2 + Ω2

M−2 + p+ ΩM−2p− Ω2
M−2p)

(4.13)

For both halves of PM−3,0 together:

P (Λ1
M−3,0 ∩ Λ2

M−3,0 | ΠM−3,0) = P (Λ1
M−3,0 ∩ Λ2

M−3,0 | ΠM−3,1 ∩ ΠM−3,2 ∩ ΠM−3,0)×

P (ΠM−3,1 ∩ ΠM−3,2) +

P (Λ1
M−3,0 ∩ Λ2

M−3,0 | ΠM−3,1 ∩ ΠM−3,2 ∩ ΠM−3,0)×

P (ΠM−3,1 ∩ ΠM−3,2) +

P (Λ1
M−3,0 ∩ Λ2

M−3,0 | ΠM−3,1 ∩ ΠM−3,2 ∩ ΠM−3,0)×

P (ΠM−3,1 ∩ ΠM−3,2)
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= P (ΛM−2,0 ∪ ΛM−2,2)(1− p)2 +

P (ΛM−2,0 ∪ ΛM−2,2)p(1− p) +

P (ΛM−2,0 ∪ [ΛM−2,0 ∩ ΛM−2,1 ∩ ΛM−2,2])p(1− p)

= (1− [1− ΩM−2]
2)(1− p)2 + (1− [1− ΩM−2]

2)p(1− p) +

(ΩM−2 + Ω2
M−2[1− ΩM−2])p(1− p)

P (Λ1
M−3,0 ∩ Λ2

M−3,0 | ΠM−3,0) = ΩM−2(1− p)(2− ΩM−2 + p+ ΩM−2p− Ω2
M−2p)

(4.14)

Finally, the verification probability for a packet in stage M − 3 can be calculated using

Equations 4.12, 4.13, and 4.14:

ΩM−3 = P (Λ1
M−3,0 ∪ Λ2

M−3,0 | ΠM−3,0)P (ΠM−3,0)

= [P (Λ1
M−3,0 | ΠM−3,0) + P (Λ2

M−3,0 | ΠM−3,0)−

P (Λ1
M−3,0 ∩ Λ2

M−3,0 | ΠM−3,0)]P (ΠM−3,0)

= [1− (1− ΩM−2)
2 + ΩM−2(1− p)(3− 3ΩM−2 + Ω2

M−2 + p+ ΩM−2p− Ω2
M−2p)−

ΩM−2(1− p)(2− ΩM−2 + p+ ΩM−2p− Ω2
M−2p)](1− p)

ΩM−3 = [1 + (1− ΩM−2)
2(ΩM−2[1− p]− 1)](1− p) (4.15)

Generalizing Equation 4.15 for m < M − 1 gives:

Ωm = [1 + (1− Ωm+1)
2(Ωm+1[1− p]− 1)](1− p) (4.16)

and:

ΩM−1 = 1− p (4.17)

Unfortunately, there is no convenient closed-form expression for Equation 4.16. How-
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ever, by setting Ωm = Ωm+1, it is possible to find the value to which it converges.

Ωmin =
3− 2p±

√
4p+ 1

2(1− p)
(4.18)

This is useful as an approximation to the verification probability for a given value of p,

regardless of the number of stages used.

4.5.2 Verification Probability for Both Halves

It is also possible to derive the verification probability under the assumption that both

halves of a packet must be verified in order to use that packet for further verification. The

math is the same as above, except that the verification probability Ωm is now defined as

the probability of verifying both halves of a packet in stage m. That is,

Ωm = P (Λ1
m,0 ∩ Λ2

m,0) = P (Λ1
m,0 ∩ Λ2

m,0 | Πm,0)P (Πm,0) (4.19)

Note that any packet in stage m could be used in place of Pm,0. Redoing the math with

this new definition yields:

Ωm = Ωm+1(1− p)(2− Ωm+1 + p+ Ωm+1p− Ω2
m+1p) (4.20)

with ΩM−1 the same as in Equation 4.17.

4.5.3 Overhead

The average overhead per packet is calculated as follows. There are 2 full hashes (4 halves)

appended to each of the T packets in the block, except for the packets in the first stage,

of which there are N . There is also one signature packet. Therefore, the average overhead
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per packet is:

Oavg =
2sh(T −N) + ss

T
= 2sh −

2sh
M

+
Nsh
T

= 2sh −
sh
M

(4.21)

where ss is the size of the signature packet and sh is the size of a hash. This is very close

to the overhead of the original butterfly scheme, differing only in the definitions of T , M ,

and N . For a 160-bit hash, with M = 5, the overhead of the modified scheme works out

to 288 bits, or 36 bytes, per packet.

4.5.4 Time and Space Complexity

The operations that take the most time are the hashing and signing of packets; compared

to these, the XOR and other operations like copying take a negligible amount of time.

For each block of T packets, it is necessary to compute T hashes and one signature. The

amount of computation time needed for one block is therefore Tth+ ts, where ts is the time

to sign a packet and th is the time to compute a hash.

In terms of storage space, it is necessary to buffer the hashes for an entire stage of

packets. Once the hashes have been appended to the next stage of packets, they can be

discarded. Therefore the space needed at the sender is Nsh.

At the receiver, none of the packets can be verified until the signature packet is received,

so it is necessary to buffer the entire block. The space needed at the receiver is therefore

Tsh.

4.5.5 Sender and Receiver Delay

At the sender, it is necessary to buffer a packet long enough to calculate the hash segments

that are to be appended to it. This will depend on the amount of time between packets. If
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the time between packets is large enough, then all the hash segments for stage M should

have been generated by the time the first packet of stage M + 1 is ready to send. In this

case, it can be sent immediately, with no delay. If, however, the time between packets is

small, then it may be necessary to calculate up to N hashes before sending a given packet.

In this case, the sender delay is Nth.

At the receiver, none of the packets can be verified until the signature packet has been

received. So, the maximum possible delay (for authentication of a packet, not reception)

at the receiver is of order T . The exact amount of the delay will depend on how long it

takes to send a packet across the network.

4.5.6 Security Concerns

One concern with the modified butterfly method is the reduction in security that comes

from dividing each hash into two halves. One might think that an attacker could success-

fully forge a valid packet-hash pair with only half the work required for a complete hash.

However, the chaining of the hashes mitigates the attacker’s advantage somewhat. It is not

enough to simply take a hash and find the corresponding packet by brute force; an attacker

would have to find a valid packet that also contains the hashes of the previous packets.

Therefore, although there is a reduction in security, it should not be reduced as far as half

of the number of bits of the hash. A more thorough analysis would be necessary in order to

have complete confidence in this scheme; however, for the purposes of this thesis, it suffices

to say that the security of this method appears to be adequate for the proposed usage.

4.5.7 Simulation

A Matlab simulation was written to compare the modified butterfly scheme to the original.

The Matlab code is shown in Appendix A, with comments.
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The packet hashes were simulated using random numbers. The program was designed

to iterate through several error rates, with a predefined number of simulation runs at each

error rate. For each run of the simulation, the random hashes were generated, and the

local kernel matrices were calculated for each packet and used to build the hash chains.

Once that was done, errors were randomly introduced into the packets at the current error

rate. The received packets were then verified, and a count was kept of how many were

verified by the first half-hash, the second half-hash, both halves, or either half. These

counts were accumulated over all the simulation runs, and the totals were stored for each

error rate. The number of correctly-received packets was also accumulated over all the

simulation runs, and was used to calculate the verification probability at each error rate.

4.5.8 Simulation Results

The modified scheme was simulated 3000 times, and the results were plotted against the

packet error rate, p, for T = 1280, N = 256,M = 5. The packet error rate varied from 5%

to 50%. Zhang et al ’s butterfly scheme was also simulated for T = 1024, N = 128,M = 8.

Since the two schemes have differing block sizes, it was not possible to use the same block

size, but these are close enough for a fair comparison. The results are shown in Fig. 4.9.

Shown in the graph are the average verification probabilities for the first half, second half,

both halves, and either half of a packet in the modified scheme; the average verification

probability of a packet in the original butterfly scheme; and the verification probability for

the modified scheme that was calculated using Equation 4.16.

As seen from the graph, the modified butterfly scheme is able to authenticate a packet,

at least partially, with a much higher probability than the original butterfly method. In

addition, the modified scheme can completely authenticate a packet with a probability very

close to the original scheme, even outperforming the original at a high enough error rate.

The 95% confidence intervals for the verification probabilities are shown in Table 4.3.
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Figure 4.9: Simulation results for the modified butterfly scheme with partial authentication
of packets.

Table 4.3: 95% confidence intervals for simulation results for the modified butterfly scheme.

Error Rate First Half Second Half Both Halves Either Half

0.0500 ±0.4068 ±0.3346 ±0.4375 ±0.0613

0.1000 ±0.7717 ±0.9344 ±1.3200 ±0.2642

0.1500 ±1.2762 ±1.2691 ±1.6342 ±0.5322

0.2000 ±1.3013 ±1.8704 ±2.2415 ±0.7189

0.2500 ±1.7375 ±2.9066 ±3.2474 ±1.2879

0.3000 ±3.3167 ±3.8325 ±4.2543 ±2.5673

0.3500 ±3.1592 ±3.9112 ±3.7059 ±2.5589

0.4000 ±4.0120 ±5.0492 ±5.3675 ±3.7541

0.4500 ±6.8171 ±6.9660 ±7.6072 ±6.0436

0.5000 ±7.5213 ±7.7284 ±7.5490 ±7.7155

At higher error rates, there is some deviation between the calculated verification prob-

ability and the simulated results. This is due to the simplifying assumption that the

verification probabilities of packets in the same stage are independent. While not strictly
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true, the results show that this assumption yields a fairly good approximation (within five

percent, even at the highest simulated error rate). It should also be noted that a channel

with a 50% error rate would be virtually unusuable, and that for all practical error rates,

the calculated value is very close to the simulated one.

In the simulation above, it was assumed that partially verified packets could still be

used to authenticate other packets. A simulation was also performed assuming that a

packet must be completely verified in order to be able to authenticate other packets. The

results of this simulation are shown in Fig. 4.10. Once again, the modified scheme outper-

forms the original in partial authentication of packets, although not by as large a margin.

The modified scheme is consistently lower than the original in complete authentication of

packets, except at very high error rates (not pictured).

Figure 4.10: Simulation results for the modified butterfly scheme with complete authenti-
cation of packets.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, a categorization of authentication schemes was presented, expanding the

classification given by Menezes et al in [1]. This categorization was based on a number of

factors, mainly the type of authentication (user or data), the way in which authentication

information is transmitted (embedded or appendix), and the secrecy of the authentication

information (covert or overt).

In addition, a novel method of achieving data authentication of a real-time audio stream

was presented. This method is an extension of previous work that has been done in the area

of hash-chaining authentication schemes. The new method, the modified butterfly scheme,

divides and mixes the hashes of each packet in order to spread the information among

a larger number of hash chains. The modified scheme adds the potential for a packet

to be partially authenticated, even if it cannot be fully authenticated. Theoretical and

simulated results were presented, showing that the modified butterfly scheme outperforms

the original butterfly scheme using the same amount of overhead.
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5.2 Future Work

There are several avenues of further work that can be done on the modified butterfly hash-

chaining scheme. A more rigorous security analysis, describing the degrees of freedom given

to a potential attacker, is necessary in order to have complete confidence in the security

of the system. A different way of combining the half-hashes, rather than XORing them,

could provide better security and performance. In addition, it may be possible to improve

the performance of the scheme by dividing each packet’s hash into more than two parts.

It should be determined how best to divide the hashes, in order to balance security and

performance. Finally, this scheme has potential applications in unequal authentication;

that is, increasing the verification probability of certain bits at the expense of others. This

could be done by adding some redundancy to the packets before hashing them. Again, this

would need to be balanced against the security requirements of the system.
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Appendix A

Matlab Simulation Code

modified butterfly.m

clear all;

% vector to store final verification probabilities

RSLT = [];

% vector to store final verification probabilities, by stage

ERR_RSLT = [];

% vector to store confidence intervals

ci = [];

RSLT2 = [];

% mode = 1 modified scheme

% mode = 2 original butterfly scheme

mode = 1;

% number of stages, M

M=4;
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if (mode == 1)

% total number of packets, T

T = (M+1)*2^(2*M);

% number of packets per stage, N

pkts_in_stage = 2^(2*M);

% number of hash segments appended to each packet

max_col_index = 4;

% hashes divided into this many segments

hash_count = 2;

elseif (mode == 2)

T=(M+1)*2^M;

pkts_in_stage = 2^(M);

max_col_index = 2;

hash_count = 1;

end % if

% packet error rate

for Err_rate = 0.05:0.05:0.50

% print error rate

Err_rate

% variables to track the number of packets verified

% cumulative over all simulation runs

HH=0; % first half verified

HL=0; % second half verified

HT=0; % both halves verified

HE=0; % either half verified

HH_all=[]; % first half verified

HL_all=[]; % second half verified

HT_all=[]; % both halves verified
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HE_all=[]; % either half verified

% vectors to track the number of packets verified in each stage

% cumulative over all simulation runs

lst_stg_ver_L = zeros(M,1); % second half verified

lst_stg_ver_H = zeros(M,1); % first half verified

lst_stg_ver_B = zeros(M,1); % both halves verified

lst_stg_ver_E = zeros(M,1); % either half verified

% total number of packets received correctly

% cumulative over all simulation runs

pkt_count = 0;

% number of simulation runs

for(Iterate = 1:3000)

% generate packets

Orig_pkt_set = zeros(T,hash_count+max_col_index+1);

Rec_pkt_set = Orig_pkt_set;

H_ver = zeros(T,hash_count);

% generate hash of each packet (represented by random numbers)

Orig_pkt_set(:,2:2+hash_count-1) = randint(T,hash_count,[1 99999]);

% build the hash chain

for i=0:M-1

H = (Orig_pkt_set(i*pkts_in_stage+1:(i+1)*pkts_in_stage,2:2+hash_count-1))’;

for j=1:pkts_in_stage

K=calc_kernel(i,j-1,pkts_in_stage,max_col_index,hash_count,mode);

Orig_pkt_set((i+1)*pkts_in_stage+j, ...

1+hash_count+1:1+hash_count+1+max_col_index-1) = H(:)’*K;

end % for j

end % for i
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Rec_pkt_set = Orig_pkt_set;

% generate errors in the received packets, according to error rate

m=rand(T,1);

err_index = find(m < Err_rate);

Rec_pkt_set(err_index,1:hash_count+max_col_index+1) = ...

-1000*rand(numel(err_index),hash_count+max_col_index+1);

% do the verification, starting from the last row

ver_index = find(Rec_pkt_set(M*pkts_in_stage+1:(M+1)*pkts_in_stage,1)>=0);

H_ver(M*pkts_in_stage+ver_index,1:hash_count) = ...

~H_ver(M*pkts_in_stage+ver_index,1:hash_count);

% work backwards to verify the packets in the remaining stages

for i=M-1:-1:0

H2= (Rec_pkt_set(i*pkts_in_stage+1:(i+1)*pkts_in_stage,2:2+hash_count-1))’;

for j=1:pkts_in_stage

if ( (Rec_pkt_set((i+1)*pkts_in_stage+j,1) >= 0) ...

&& (sum(H_ver((i+1)*pkts_in_stage+j,:)) >= 1) )

K=calc_kernel(i,j-1,pkts_in_stage,max_col_index,hash_count,mode);

Hash_chain = H2(:)’*K;

%check each entry by its corresponding member in the chain

for (k=1:max_col_index)

pkts_involved = find(K(:,k) == 1);

if (Hash_chain(k) == ...

Rec_pkt_set((i+1)*pkts_in_stage+j,hash_count+1+k))

for t = 1:numel(pkts_involved)

H_ver(i*pkts_in_stage + ...

ceil(pkts_involved(t)/hash_count), ...

hash_count-mod(pkts_involved(t),hash_count)) = 1;
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end % for t

end % if

end % for k

end % if

end % for j

end % for i

% accumulate the number of verified packets

HH = HH+numel(find(H_ver(:,1)==1));

HL = HL+numel(find(H_ver(:,2)==1));

HT = HT+numel(find(sum(H_ver’) == 2));

HE = HE+numel(find(sum(H_ver’) > 0));

% track overall verification probability for each run

% used to calculate confidence interval

HH_all = [HH_all; 100*numel(find(H_ver(:,1)==1))/(T-numel(err_index))];

HL_all = [HL_all; 100*numel(find(H_ver(:,2)==1))/(T-numel(err_index))];

HT_all = [HT_all; 100*numel(find(sum(H_ver’) == 2))/(T-numel(err_index))];

HE_all = [HE_all; 100*numel(find(sum(H_ver’) > 0))/(T-numel(err_index))];

% accumulate the total number of packets correctly received

pkt_count = pkt_count+T-numel(err_index);

% accumulate the number of verified packets by stage

for mm =1:M

lst_stg_ver_H(mm) = lst_stg_ver_H(mm) + ...

numel(find(H_ver(mm*pkts_in_stage+1:(mm+1)*pkts_in_stage,1) == 1));

lst_stg_ver_L(mm) = lst_stg_ver_L(mm) + ...

numel(find(H_ver(mm*pkts_in_stage+1:(mm+1)*pkts_in_stage,2) == 1));

lst_stg_ver_B(mm) = lst_stg_ver_B(mm) + ...

numel(find(sum(H_ver(mm*pkts_in_stage+1:(mm+1)*pkts_in_stage,:)’) ...

== 2));
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lst_stg_ver_E(mm) = lst_stg_ver_E(mm) + ...

numel(find(sum(H_ver(mm*pkts_in_stage+1:(mm+1)*pkts_in_stage,:)’) ...

>= 1));

end % for mm

end % for Iterate

% print the verification probabilities for the current error rate

% relative numbers - percentage of correctly-received packets

[100*HH/pkt_count 100*HL/pkt_count 100*HE/pkt_count 100*HT/pkt_count]

% add verification probabilities for current error rate to results table

% relative numbers - percentage of correctly-received packets

tmp = [Err_rate 100*HH/pkt_count 100*HL/pkt_count 100*HE/pkt_count ...

100*HT/pkt_count];

RSLT = [RSLT;tmp];

RSLT2 = [RSLT2; Err_rate mean(HH_all) mean(HL_all) mean(HE_all) mean(HT_all)];

% add confidence intervals for current error rate to results table

ci = [ci; [Err_rate 1.96*std(HH_all) 1.96*std(HL_all) 1.96*std(HE_all) ...

1.96*std(HT_all)] ];

% add verification probabilities by stage for current error rate to results table

% absolute numbers - percentage of all packets sent

tmp = [ [Err_rate; Err_rate; Err_rate; Err_rate] ...

lst_stg_ver_H./(Iterate*pkts_in_stage) ...

lst_stg_ver_L./(Iterate*pkts_in_stage) ...

lst_stg_ver_B./(Iterate*pkts_in_stage) ...

lst_stg_ver_E./(Iterate*pkts_in_stage)];

ERR_RSLT = [ERR_RSLT; tmp];

end % for Err_rate
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calc kernel.m

% calculate the local kernel matrix for a given packet

function[K] = calc_kernel(m,n,total_pkts_in_stage,max_col_index,hash_count,mode)

% m : stage index

% n : index of packet in stage

% other variables are as defined in modified_butterfly.m

if (mode == 1)

bit_size = ceil(log2(total_pkts_in_stage));

bit_map = de2bi(n,bit_size);

% initialize matrix to zeroes

K = zeros(hash_count*total_pkts_in_stage,max_col_index);

% iterate through columns of the matrix

for j=1:max_col_index

bit_map2 = bit_map;

% apply equations for modified butterfly scheme

switch (j)

case 1

K(2*n+1,j) = 1;

case 2

K(2*n+2,j) = 1;

bit_map2(2*m+1) = ~bit_map2(2*m+1);

K(2*bi2de(bit_map2)+2,j) = 1;

case 3

bit_map2(2*m+2) = ~bit_map2(2*m+2);

K(2*bi2de(bit_map2)+1,j) = 1;

case 4

53



K(2*n+2,j) = 1;

bit_map2(2*m+2) = ~bit_map2(2*m+2);

K(2*bi2de(bit_map2)+2,j) = 1;

end % switch

end % for j

elseif (mode == 2)

bit_size = ceil(log2(total_pkts_in_stage));

bit_map = de2bi(n,bit_size);

% initialize matrix to zeroes

K = zeros(hash_count*total_pkts_in_stage,max_col_index);

% iterate through columns of the matrix

for j=1:max_col_index

bit_map2 = bit_map;

% apply equations for original butterfly scheme

switch (j)

case 1

% direct link

K(hash_count*n+1,j) = 1;

case 2

% flip bit corresponding to current stage

bit_map2(m+1) = ~bit_map2(m+1);

K(bi2de(bit_map2)+hash_count,j) = 1;

end % switch

end % for j

end % if
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err calc.m

% given packet error rate and number of stages,

% returns the verification probability at each stage

function [Omega] = err_calc(p,Total_Stage);

% initialize all to zero

Omega = zeros(Total_Stage,1);

% formulas for last and second-last stage

Omega(Total_Stage) = 1-p;

Omega(Total_Stage-1) = (1-2*p^3+p^4)*(1-p);

% calculate other stages iteratively

for mm=Total_Stage-2:-1:1

Omega(mm) = ( 1+(1-Omega(mm+1))^2 *(Omega(mm+1)*(1-p)-1) )*(1-p);

end
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