
A Concurrent IFDS Dataflow
Analysis Algorithm Using Actors

by

Jonathan David Rodriguez

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2010

c© Jonathan David Rodriguez 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

There has recently been a resurgence in interest in techniques for effective programming
of multi-core computers. Most programmers find general-purpose concurrent programming
to be extremely difficult. This difficulty severely limits the number of applications that
currently benefit from multi-core computers. There already exist many concurrent so-
lutions for the class of regular applications, which include various algorithms for linear
algebra. For the class of irregular applications, which operate on dynamic and pointer-
and graph-based structures, efficient concurrent solutions have so far remained elusive.
Dataflow analysis applications, which are often found in compilers and program analysis
tools, have received particularly little attention with regard to execution on multi-core
machines. Operating on the theory that the Actor model, which structures computations
as systems of asynchronously-communicating entities, is a more appropriate method for
representing irregular algorithms than the shared-memory model, this work presents a
concurrent Actor-based formulation of the IFDS, or Interprocedural Finite Distributive
Subset, dataflow analysis algorithm. The implementation of this algorithm is done using
the Scala language and its Actors library. This algorithm achieves significant speedup
on multi-core machines without using any optimistic execution. This work contributes to
Actor research by showing how the Actor model can be practically applied to a dataflow
analysis problem. This work contributes to static analysis research by showing how a
dataflow analysis algorithm can effectively make use of multi-core machines, allowing the
possibility of faster and more precise analyses.

v

Acknowledgements

I wish to recognize the following people:

Ondřej Lhoták, who had high expectations for this work and endured all manner of
half-baked ideas before I figured out what I was doing.

Barbie Rodriguez, who helped cheer me up when the work got difficult.

Tarek Chammah, who has an inexhaustible ability to discuss anything of academic
interest.

Shaun Harvey, who endeavoured to fix my problems, to keep me entertained, and has
an inexhaustible ability to discuss anything, period.

Krzysztof Borowski, who endeavoured to be my friend.

Nomair Naeem, who helped write the code this work depends on.

Peter Buhr, who knows more about control flow than anyone else I have met to date.

Patrick Lam, who first introduced me to the field of static analysis.

Tim Brecht, who has a contagious excitement about multi-core computing.

Dad and Mom, who kept telling me I needed to go to graduate school.

Tobiah Rodriguez, who reminded me that life is more than graduate school.

vii

Dedication

My intention in this work has been, as Albert Einstein once put it, to know the mind
of God with regard to a particular matter. There is something divine about the process of
seeking a timely and well-balanced solution to a particular problem, and of recombining
old ideas to yield new possibilities.

This work is dedicated to the hunt – to the knowledge that there can be better solutions
than the ones we already have.

ix

Contents

List of Algorithms xv

List of Figures xviii

List of Tables xix

1 Introduction 1

2 Related Work 5

2.1 Concurrent Programming Difficulties . 5

2.2 The Actor Model . 7

2.2.1 Related Computational Models . 9

2.3 The IFDS Algorithm . 10

2.4 Studies of Irregular Applications . 11

2.5 Previous Approaches to Concurrency . 11

2.5.1 Fully Automatic Solutions . 12

2.5.2 Semi-Automatic Solutions . 12

2.5.3 Solutions for Preserving Determinism 14

2.5.4 Software Transactional Memory . 15

2.5.5 Language Solutions . 17

xi

3 Background 19

3.1 The Actor Model . 19

3.1.1 Defining Actor Classes . 20

3.1.2 Formal Properties of the Actor Model 22

3.2 The IFDS Algorithm . 22

4 The E-IFDS Algorithm 31

4.1 Demand Construction of the Exploded Supergraph 33

4.2 Demand Construction of Summary Edges 34

4.3 Caller Context for Return-Flow Functions 34

4.4 Multiple Called Procedures Per Call Site 36

4.5 Redundant Fact Removal . 36

4.6 Additional Presentation Notes . 37

5 The IFDS-A/AD Algorithms 39

5.1 IFDS-A Node-Actor Classes . 41

5.2 Redundant Fact Removal . 45

5.3 Using Detach for Increased Concurrency 46

6 Evaluation 51

6.1 The Variable Type Analysis . 51

6.2 Implementation Details . 51

6.3 Testing Methodology . 53

6.3.1 Modeling Ideal Performance . 53

6.3.2 Performance Assessment . 54

6.3.3 Data Collection and Handling . 55

6.4 Results . 56

6.4.1 Input Characteristics . 56

6.4.2 Ideal Performance . 59

6.4.3 Performance Assessment . 62

xii

7 Conclusions 69

A Raw Performance Data 71

References 75

xiii

List of Algorithms

3.1 Original IFDS Algorithm reproduced from Reps et al. [RHS95] 27

4.1 The E-IFDS Algorithm . 32

4.2 E-IFDS Propagate with Redundant Fact Removal 37

5.1 The Top-Level IFDS-A Algorithm . 40

5.2 IFDS-A Node-Actor Classes . 42

5.3 IFDS-A Redundant Fact Removal . 45

5.4 IFDS-A Redundant Fact Removal on Callee-Path-Edges 46

5.5 IFDS-AD Call-Site Node-Actor Class . 48

5.6 IFDS-AD Procedure-Exit Node-Actor Class 49

5.7 IFDS-AD Intraprocedural Node-Actor Class 49

xv

List of Figures

3.1 The Actor Abstraction . 20

3.2 Actor Class Definition . 21

3.3 IFDS Supergraph for One Procedure (G∗) 23

3.4 IFDS Supergraph for a Procedure Call (G∗) 24

3.5 IFDS Exploded Supergraph for One Procedure (G∗ and corresponding G]) 25

3.6 IFDS Summary Edge Generation (G∗ and corresponding G]) 28

4.1 Caller Context Example (Java Syntax) . 35

5.1 Detach Example . 47

5.2 Meaning of Detach . 47

6.1 Node-Actor Reaction Loop in Scala . 52

6.2 Top-Level IFDS-A Solver Code . 53

6.3 Available-Parallelism Charts . 58

6.4 Ideal Speedup Model (Opteron8) . 60

6.5 Ideal Speedup Model (Sparc64) . 60

6.6 IFDS-A Self-Speedup (Opteron8) . 61

6.7 IFDS-A Self-Speedup (Sparc64) . 61

6.8 IFDS-A Speedup vs. E-IFDS (Opteron8) 63

6.9 IFDS-A Speedup vs. E-IFDS (Sparc64) . 63

6.10 IFDS-A Computational Efficiency (Opteron8) 64

6.11 IFDS-A Computational Efficiency (Sparc64) 64

xvii

6.12 IFDS-A / IFDS-AD Speedup (Opteron8) 66

6.13 IFDS-A / IFDS-AD Speedup (Sparc64) . 66

xviii

List of Tables

6.1 Input Characteristics . 56

6.2 Parallelism Characteristics . 57

6.3 IFDS-A Overhead and Efficiency Summary 65

A.1 Antlr on Opteron8 . 72

A.2 Jython on Opteron8 . 72

A.3 Luindex on Opteron8 . 73

A.4 Antlr on Sparc64 . 73

A.5 Jython on Sparc64 . 74

A.6 Luindex on Sparc64 . 74

xix

Chapter 1

Introduction

For several decades, researchers have supposed that the development of multi-core com-
puter architectures would eventually become necessary. It has only been in the last few
years, however, that certain physical realities have prevented the continued exponential
acceleration of single-core processing speeds. Power consumption and heat dissipation, in
particular, constitute major barriers to increasing the speed of single-core machines. Since
then, there has been intense industry interest in producing multi-core architectures for
both specialty applications and for the mass market.

Unfortunately, learning to effectively program multi-core architectures has been diffi-
cult. The essential issues involved in multi-core programming are two-fold. First, parti-
tioning a problem into independently executable tasks can be difficult for certain types of
computations. Second, correctly handling data dependencies among tasks is essential for
correct program operation. The first issue is largely one of performance; an improper dis-
tribution of work among cores can result in poor execution performance. The second issue
is of greater concern because improper handling of dependencies can result in generation
of incorrect results or the production of subtle concurrency bugs.

Most common multi-core architectures offer a shared-memory abstraction. This shared-
memory model offers a common address space to all tasks, and it is up to the individual
tasks to not corrupt each other’s data. Using locks to enforce mutual exclusion is prob-
ably the most common way of ensuring that common data structures are not corrupted.
In practice, however, lock-based shared-memory programs can be extremely difficult to
construct correctly, to reason about, and to debug.

In response to the need for a better model of concurrent computation, the Actor model
was developed. The Actor model expresses computations as a set of independent entities
which communicate by passing messages. There is no assumption of either a shared memory
or a global address space in the Actor model; each task proceeds using its own local data

1

only. Although the Actor model has been in existence for over three decades, its level
of practical significance remains an open question. Because it represents a significant
departure from the shared-memory model, there are currently very few real programming
projects that use an Actor-based structure to perform computation.

The main question addressed by this work is whether or not an Actor-based approach
can be used to efficiently solve a concurrency problem that is not easily solved through
conventional techniques.

The easiest type of concurrency problem is arguably the “embarrassingly parallel” type.
Embarrassingly parallel problems exhibit no communication among tasks except at task
completion. Once started, a set of embarrassingly parallel tasks can run to completion
without any blocking or shared-memory interactions.

Regular problems are a superset of embarrassingly parallel problems. Regular problems
include many types of numeric computation and simulation problems (e.g. those involving
linear algebra), which exhibit very predictable data and control-flow dependencies. As a
result, it is often possible to statically discover data parallelism within regular problems.
Much work has been done in this domain, and efficient solutions for many types of regular
problems are known.

A more difficult class of concurrency problems is the class of irregular problems. Irregu-
lar problems typically involve construction or traversal of pointer-based structures such as
trees and graphs. Because the dependencies among data are often not predictable, static
discovery of data parallelism is impossible for many irregular problems. For this reason,
very few irregular algorithms have been implemented in a concurrent fashion.

The class of Interprocedural Finite Distributive Subset problems, or IFDS problems,
are a class of dataflow-analysis problems that are irregular in nature. This work presents
a concurrent formulation of the IFDS solver algorithm based on the Actor model. This
work is the first known concurrent formulation of the IFDS algorithm.

The algorithm is implemented in the Scala language using Scala’s Actors library. No-
table properties of this implementation include:

• Significant multi-core speedups despite small work unit size. The average work unit
execution time for the tested inputs varied from a few microseconds to a few tens of
microseconds on commodity hardware.

• Significant multi-core speedups without using any form of optimistic execution.

This work makes the following contributions:

• A case study of the application of the Actors model to a concurrency problem that
is considered difficult to solve using conventional methods. This case study helps
determine the practical importance of the model.

2

• The presentation of a concurrent IFDS algorithm. IFDS and other dataflow analysis
algorithms are used in many compilers and program-analysis tools. As an example
of a concurrent dataflow analysis algorithm that is shown to provide substantial
speedups on multi-core architectures, this work offers insights that may help increase
the speed and precision of future compilers and analysis tools.

• The presentation of a set of extensions to the sequential IFDS algorithm that increase
its speed and practical utility for many types of analyses.

• The introduction of the detach construct, a novel construct designed to help increase
concurrency in practical actor-based programs.

• An experimental methodology designed to discover the real efficiency of a concurrent
algorithm implementation even in the presence of background processes and shared
machine resources.

Chapter 2 contains a survey of work related to the Actor model, to the IFDS algo-
rithm, and to various approaches to the problem of concurrency as it relates to irregular
algorithms.

Chapter 3 contains background material on the Actor model and on the IFDS algorithm.

Chapter 4 presents the Extended IFDS algorithm, which contains certain modifications
designed to make the IFDS algorithm more useful in practice.

Chapter 5 presents the concurrent IFDS-Actors algorithm, or IFDS-A. This chapter
also introduces the detach construct, and presents a version of IFDS-A, called IFDS-AD,
that uses detach to obtain increased concurrency.

Chapter 6 discusses and evaluates implementations of Extended IFDS, IFDS-A, and
IFDS-AD. The relative performance, self-speedup, and computational efficiency of these
implementations are evaluated on two different hardware architectures.

3

Chapter 2

Related Work

Many different approaches have been taken in the attempt to allieviate the difficulty of
concurrent programming. A large body of existing work is dedicated to the issue of perfor-
mance in regular applications such as scientific computing and other numeric code, but this
work is not examined in this thesis. The work surveyed here is targeted at a more difficult
class of applications, the class of irregular applications. Unlike regular applications, ir-
regular applications typically involve operations over trees, graphs, or other pointer-based
structures, which makes their dynamic behaviour very difficult to predict. As a result,
efficient parallel execution of irregular applications necessitates a different approach to
parallelism.

2.1 Concurrent Programming Difficulties

Current practice in concurrent programming generally uses threading libraries to set up
multiple concurrent execution paths through sequential object-oriented code. The following
papers discuss why explicitly-parallel code with shared memory is difficult to produce, and
what may be missing in the current approach to concurrent programming.

The Intel Concurrent Collections project has identified three fundamental barriers in
automatically converting sequential code into concurrent code [Kno09]. First, sequential
code requires a sequential ordering to be specified between operations, even if that ordering
is arbitrary. It can be very difficult for a compiler to reverse this process and uncover the
real sequential dependencies in the program. Second, imperative sequential code expresses
data access in terms of location-based variables, not values. Variables can be overwritten,
which over-constrains possible operation orderings. Third, sequential code does not distin-
guish the question of if an operation is executed from the question of when it is executed.

5

In sequential code, the answer to the “when” question is always “now,” again enforcing an
arbitrary ordering of operations that can be difficult to undo.

Edward Lee has built a case that the threads model of concurrency, although apparently
a straightforward extension of the sequential programming model, actually discards the
most desirable properties of sequential code [Lee06]. In contrast to the sequential model,
the threads model is “wildly non-deterministic” and therefore extremely difficult to reason
about. It is nearly impossible to find and correct all concurrency errors in even trivial
programs using standard testing techniques, and subtle concurrency errors are likely to
exist in nearly all concurrent programs. Lee states that the real world has many examples
of concurrent physical dynamics that are in fact very natural for humans to reason about,
and therefore it is not concurrency itself that is difficult to understand. It is only the
threads model itself that is difficult for humans to comprehend. Lee hypothesized that the
solution to this issue is to always achieve deterministic ends using deterministic means,
and only introduce non-determinism explicitly and where needed.

Lynn Andrea Stein argues that a new computational metaphor is required to make
progress in the field [Ste99]. The choice of metaphor has far-reaching implications because
it shapes the understanding and design of systems. Certain problems that are very difficult
to comprehend under one metaphor can be easy to comprehend under another, and vice
versa. The traditional computational metaphor is “computation-as-calculation,” which
views computation as an immutable process that starts with a set of inputs and terminates
with some result. The inputs are the “problem” and the result is the “solution.” The
intermediate steps are only considered important insofar as they produce the desired end
result. While the computation-as-calculation metaphor has been very useful in the past, it
has now become a problem because it cannot effectively describe the way current computer
systems are being used. Internet services, embedded systems and artificial intelligence
systems are all poorly described by this metaphor. Stein suggests that a more appropriate
metaphor is “computation-as-interaction” – the purpose of the computation is to produce
behaviours that emerge from interactions among components. That is, “to replace the
conventional metaphor a sequence of steps with the notion of a community of interacting
entities.” Under this latter metaphor, the most important thing about a computation is
not the answer that it produces, but the behavioural invariants it exhibits.

Tim Sweeney of Epic Games highlighted three areas that are sorely lacking in today’s
mainstream programming languages [Swe06]. First, better abstraction facilities are needed
to increase the flexibility and modularization of application components. Second, stronger
and more flexible type systems are required to reduce run-time failures. Third, pervasive
support for both implicit and explicit concurrency is required to overcome performance
challenges and programmer productivity challenges. Software transactional memory and
automatic parallelization of pure functions were suggested as means to increase concur-
rency. Sweeney remarked on the strong apparent relationship between language features

6

that provide increased reliability and language features that enable concurrency. In par-
ticular, dependent types are able to remove sequencing constraints that would have been
imposed by null pointer exceptions and array bounds violation exceptions.

2.2 The Actor Model

The Actor model was originally developed to represent computations where the code and
data are distributed among some number of independent entities. Communication in the
Actor model occurs exclusively through asynchronous message passing. The model does
not include a built-in concept of either shared memory or a global clock – each actor is
only aware of its own local state and its neighbouring actors. Section 3.1 provides more
extensive discussion of the Actor model.

Events in any distributed system, including Actor-based systems, are partially ordered
with respect to a global clock [Lam78]. Given two events in such a system, it is sometimes
impossible to tell which event occurred “first.” Lamport described an algorithm for using
logical clocks to impose a total ordering on events, and showed how it could be used to solve
a simple synchronization problem. This algorithm guarantees a maximum upper bound
on the total skew that logical clocks may experience relative to each other. However,
such a total ordering is arbitrary, and may disagree with an observer’s perception of time.
Lamport stresses that the ordering of events in a multi-process system is unavoidably a
partial ordering.

The Actor model allows the control structure of a program to emerge as a result of
message passing patterns among objects [Hew77]. The proposed programming methodol-
ogy consists of the following activities: defining the types of actors present in the system,
defining the types of messages each type of actor receives, and defining what each actor
does in response to each type of message.

The Actor model is based on an Actor theory that defines certain laws followed by Com-
municating Parallel Processes, or CPP [HB77]. This theory is motivated by the need to
model concurrent computations in a useful way without resorting to hardware or operating
system primitives that lack precisely-defined semantics. In the Actor model, computations
are not defined in terms of hardware primitives or functional reductions, but as partial
orders of events. The model encourages computational expression in relativistic terms,
replacing global notions of state, time, and name spaces with local notions. Furthermore,
the model supports a dynamic communication topology allowing dynamic creation of new
actors and dynamic re-arrangement of communication paths. Because actor-based compu-
tations are described directly as partial orderings of events, these orderings can be used to
reduce the complexity of many correctness proofs.

7

Agha developed a formalized model of concurrency based on actors [Agh86]. The
basic primitives in this model, namely behaviours, messages, and mailboxes, are able to
express many higher-order constructs such as lazy evaluation. Abstraction in this model
is accomplished by limiting an observer’s view of a system to only those actors designated
as interface actors. Non-interface actors cannot be seen by an external observer, but
it is possible for a non-interface actor to obtain interface status if an existing interface
actor passes its address to an external observer. This work furthermore demonstrates that
dynamic detection and removal of semantic deadlock is possible within the Actor model.
Deadlock in a strict syntactic sense cannot occur. Agha argues in this work that the Actor
model is a relatively easy and natural way to express concurrent programs.

ActorScript is a direct implementation of the Actor model in a programming language
[Hew09]. Its intent is to create a high level of performance, scalability, and expressiveness
with a minimum of language primitives. Everything in the language is accomplished using
message passing, including features such as futures, co-routines, and serializers. No refer-
ences to threads, locks, or other low-level constructs are required, although the language
implementation may expose them if desired. Message passing in the Actor model exhibits
unbounded non-determinism, which permits message delivery to take an arbitrary length of
time, and furthermore the message receipt order is undefined. However, message delivery
is ultimately guaranteed.

Actors in C++, or ACT++, is a language that integrates the actor model proposed
by Agha into the C++ language [Kaf90]. ACT++ implements synchronous messaging
by means of futures and special-purpose reply mailboxes. ACT++ makes a distinction
between active objects, or actors, which possess their own threads of control and mutual
exclusion between their methods, and passive objects, which have neither their own threads
of control nor mutual exclusion on their members. All shared data must belong to active
objects; each passive object may only be accessible to a single active object.

The Erlang language implements an actor-like programming model [VWW96]. De-
signed for real-time industrial control applications, one of the first projects to use the
language was a telephone exchange system. Erlang intentionally does not support higher-
order functions, currying, lazy evaluation or other features in an effort to remain simple
and robust. All communication in Erlang takes the form of message-passing. Since each
Erlang object possesses its own logical thread of control, systems written in Erlang are
intrinsically concurrent by default.

Scala is a language designed to support higher degrees of component abstraction and
composition than most existing languages [OZ05]. In addition to better abstraction and
composition capabilities, one of the intentions behind the design of Scala is to provide natu-
ral support for concurrent programming and web-based applications. Unlike Erlang, Scala
supports higher-order functions, currying, lazy evaluation. Scala includes three language
abstractions that enable higher-degree abstraction and composition. First, abstract-type

8

members enable classes to contain both types and values as parameters. Scala distinguishes
abstract classes from concrete classes, where abstract classes may contain undefined types
and values, but concrete classes cannot. Second, selftype annotations allow the program-
mer to explicitly specify the type of this. Selftype annotations are necessary when the
type of this refers to a generic type. Third, modular mixin composition is a flexible way
to perform component composition. Scala introduces traits for this purpose. Traits may
generally be used in place of abstract classes; however, traits may not have parameters.
Scala’s creators argue that it should be possible to transform any assembly of static pro-
gram parts into a system of reusable components that contains neither static data nor
hard references. Scala compiles to Java bytecode, and is able to inter-operate with Java
libraries.

The standard Scala distribution provides a library that implements the Actor model
[HO09]. The message-based concurrency offered by the Actor model is seen as a viable
solution to both multi-core and distributed programming challenges. The Scala Actors
implementation is influenced by Erlang’s massage-passing model. It requires no special
compiler support, relying on Scala’s support for partial functions, pattern matching, and
other abstraction capabilities to provide ease-of-use. The authors of the library strongly
discourage usage of shared state, but the implementation does not restrict such usage. The
library provides a unification of thread-based and event-based programming models. This
unification prevents an inversion of control that would otherwise occur when converting a
program from a threaded or stack-based form into an event-loop-based form. The authors
make a claim that the Actors implementation makes concurrent programming significantly
more accessible to programmers. This claim is made based on three factors. First, accessing
an actor’s mailbox is a race-free operation. In many cases, this can be both safer and more
convenient than shared-memory locking. Second, actors are lightweight, which enables a
very large number of actors to be active simultaneously without requiring the programmer
to write any thread-pooling code. Third, each Java VM thread is treated like an actor,
which enables inter-operation between actors and threads.

2.2.1 Related Computational Models

The Actor model was not the first model of computation to represent concurrent programs
as sets of communicating entities. Particularly notable are Petri nets and the Communi-
cating Sequential Processes model.

Petri nets are a graphical and mathematical modeling tool for describing systems that
are asynchronous, concurrent and/or non-deterministic [Mur89]. A Petri net models a
system as a set of places, a set of transitions, and a set of weighted arcs that connect
places to transitions and transitions to places. Each place may hold some number of
tokens. Tokens may travel from one place to another when the conditions for firing a

9

transition are met. In particular, the number of tokens available at each of the transition’s
input places must be at least as large as the weight on the input arc. When a transition
fires, the required tokens are removed from its input places, and then tokens are issued to
its output places in amounts equal to the weights on the outgoing arcs. A transition is not
required to fire; provided its conditions are met, a transition may fire at any time or not
at all. One way that Petri nets can model concurrent systems is to interpret each place
as a computation state, each transition as an instruction, and each token as a thread of
control.

Communicating Sequential Processes, or CSP, is founded on the principle that in-
put and output are basic primitives of programming, and that the parallel composition of
sequentially-executing processes is a fundamental method of structuring programs [Hoa78].
CSP performs communication through synchronous message passing. The send primitive
“!” outputs an item to another process. The receive primitive “?” inputs an item from an-
other process. Many kinds of useful program structures, such as monitors and procedures,
may be constructed from these fundamental primitives.

2.3 The IFDS Algorithm

This thesis presents a concurrent formulation of the Extended IFDS algorithm. The IFDS
and Extended IFDS Algorithms exhibit irregular parallelism, but previous work presents
these alogirthms in sequential form only. Section 3.2 presents a more detailed overview of
the IFDS algorithm. Chapter 4 presents a more detailed overview of the Extended IFDS
algorithm.

Reps et al. proposed an algorithm to precisely solve interprocedural, finite, distributive,
subset problems, or IFDS problems, that is asymptotically faster than any previously-
known algorithm for this type of problem [RHS95]. “Precise” in this context means that,
with respect to function calls in the input program, only call-flow and return-flow paths
that may actually be taken are considered. Distributive subset problems restrict the set
of facts generated at each input program-node to be a subset of the powerset of some
finite set of facts. Furthermore, the flow function must distribute over either the union
or intersection operator. Distributive subset problems represent a large class of useful
dataflow-analysis problems.

A set of extensions to the IFDS algorithm increases its applicability to a wider range
of analysis problems than the original IFDS algorithm [NLR10]. In particular, the algo-
rithm features an extension for demand-driven construction of the exploded supergraph,
an extension to provide caller-context information to return-flow functions, an extension
to improve the precision of analyses using Static Single Assignment, and an extension to

10

speed up computation on certain types of problems where some dataflow facts subsume
others.

2.4 Studies of Irregular Applications

Irregular applications present certain difficulties with respect to parallelization. In particu-
lar, determining an optimal work-distribution strategy, predicting memory-access patterns,
and determining the dependencies among operations are often impossible prior to applica-
tion execution.

The Galois project has concluded that irregular programs, which operate on directed
graphs or pointer-based structures, exhibit amorphous data-parallelism, a type of paral-
lelism that often cannot be discovered using static techniques [KBI+09]. The ParaMeter
tool was developed in conjunction with the Galois project to determine how much data-
parallelism actually exists in these types of programs. Each of six work-list-based algo-
rithms is instrumented so that multiple items from the work-list are speculatively executed
in parallel. If any two items interfere with each other, ParaMeter chooses one to complete
in the current iteration and the other is deferred to the next iteration. Each iteration
therefore contains a set of work-list items that can be executed in parallel without con-
flict, provided the set of available processors is sufficiently large to execute all items. Peak
available parallelism was found to be in the hundreds to thousands of potentially parallel
items. The level of parallelism discovered by ParaMeter is not necessarily the maximum
level of parallelism possible, but is an informative approximation that may approach this
maximum.

Panwar et al. have studied the implementation of irregular programs. Each prob-
lem studied is expressed as a maximally concurrent ideal algorithm where each fine-grain
unit of computation is encapsulated in an actor [PKA96]. The ideal algorithm specifica-
tion is portable across different hardware architectures because it naturally expresses the
dependencies among computations without reference to any particular work distribution
strategy. The work shows how different partitioning and distribution strategies, or PDSs,
affect performance. Of the PDSs examined, dynamic load-balancing is found to be the
most effective.

2.5 Previous Approaches to Concurrency

In consideration of the difficulty of concurrent programming, many approaches have been
proposed to alleviate this difficulty.

11

2.5.1 Fully Automatic Solutions

The two methods discussed here propose techniques for parallelizing unmodified code via
hardware and compiler support. In both cases, the proposed hardware is simulated.

Thread-Level Data Speculation, or TLDS, is a technique designed to automatically
introduce thread-level parallelism into non-numeric sequential code [SM98]. A TLDS-
enabled compiler identifies speculative regions in the code, normally corresponding to loops
or recursive functions. Each dynamic iteration or recursive call is a set of executable
instructions called an epoch. Multiple epochs execute in parallel, and a hardware-assisted
runtime system determines if any read-after-write dependencies have been violated. If such
a violation occurs, the epoch that performed the bad load and all epochs that follow it may
be fully or partially rolled back and re-executed to restore data correctness. Unlike STM
approaches, which require programmers to make explicit decisions about where mutually-
exclusive regions are, TLDS discovers these regions automatically. In addition, the compiler
is free to make potentially unsound optimizations with respect to memory accesses, since
any unsound accesses are correctable at run-time. Benchmark tests were performed on
simulated hardware. Benchmark tests indicated simulated speedups between 1.03 times
and 3.87 times on a four-processor system. The speedups realized were heavily dependent
on the percentage of execution time spent within speculative regions.

Program Demultiplexing, or PD, is a hardware-assisted technique for speculatively
executing program methods in parallel with the main thread [BS06]. Based on data from
execution profiles, PD selects certain program methods to begin execution before before
their call sites in the main thread are reached. Their side effects are stored in an execution
buffer. When the main execution thread reaches the call site for such a method, it waits
for the method’s execution thread to complete, then commits the contents of the method’s
execution buffer if no data dependency violations are detected. If a dependency violation
is detected, the method’s execution buffer is invalidated and the method is re-executed.
Parallel method execution is triggered as soon as the method’s entire read set is likely to
be available. The read set availability is based on an execution profile generated during
prior profiling runs of the program. This profile has a high probability of being correct,
and the remaining incorrect executions are corrected at run-time. Benchmark tests were
performed on simulated hardware. Benchmarked applications were all able to make use
of at least three processors, and some could make use of up to six processors. Speedups
ranged from 1.4 times to 2.7 times.

2.5.2 Semi-Automatic Solutions

There is a large existing corpus of sequential code that may benefit from conversion into
multi-threaded code. Due to the difficulty of creating fully automatic parallelization so-

12

lutions, the techniques in this section involve the programmer in making decisions about
how to safely create multi-threaded code.

Rul et al. developed a framework to identify potential parallelism opportunities within
sequential programs [RVDB07]. This framework attempts to discover non-speculative par-
allelism by observing data dependencies among functions. The technique is profile-based,
so correct execution of a candidate program requires either a speculative technique such
as thread-level speculation [SM98] or manual modification of the program source code. In
addition to identification of data dependencies, the framework also attempts to identify the
parallel constructs that best describe the program’s data usage patterns. The framework
attempts to cluster strongly related functions into threads, providing hints about which
data structures should be thread-private and which need to be shared among threads. The
bzip2 program was analyzed by the framework, then hand-modified to support multiple
threads. On a four-processor system, the maximum speedup observed for the compression
portion of bzip2 was 3.64, and the maximum speedup observed for the decompression por-
tion was 1.41. Due to the data dependency structure, the decompression portion could
only be divided into two threads.

ReLooper is a system designed to assist programmers with refactoring sequential it-
erations over standard Java arrays into parallel operations over Java’s ParallelArray

construct [DRT+09]. In many programs, there is significant latent parallelism available in
iterating over arrays of objects. However, there can be dependencies among iterations that
are difficult to discover, making manual transformation of sequential loops into parallel
operations difficult and time-consuming. ReLooper addresses this problem by automating
the process of determining whether loop iterations are safe to parallelize. If so, the loop can
be automatically replaced with an equivalent parallel operation. If not, potential conflicts
are shown to the programmer, who can attempt to resolve these conflicts before re-running
the analysis. This approach significantly reduces the amount of effort required to re-write
parallel loops, and it is fast enough to allow interactive use by programmers. ReLooper’s
conclusions are conservative, i.e. it will only declare a loop to be safe if it can prove its
safety.

The Galois system has introduced syntactic constructs for iterating over ordered and
unordered sets [KPW+07]. Iterations are optimistically executed in parallel with other
iterations. A runtime system detects and rolls back potentially conflicting accesses to
shared memory. The syntactic constructs introduced are designed to be integrated with a
variety of object-oriented languages. The Galois approach to parallelism is informed by the
beliefs: that “Optimistic parallelism is the only plausible approach to parallelizing many,
if not most, irregular applications;” that new syntactic constructs embedded in an object-
oriented language are necessary to enable the programmer to easily express parallelizable
operations; and that “Concurrent access to mutable shared objects is fundamental, and
cannot be added to the system as an afterthought as is done in current approaches to

13

optimistic parallelization.” Two irregular work-list-based algorithms were implemented
twice, one version using fine-grain locking, and the other version using the Galois system
to generate optimistically executing code. Although speedups over sequential code were
seen with as few as two hardware threads, the Galois approach did not provide better
performance or scalability than fine-grain locking.

The Concurrent Collections programming model, or CnC, enables direct expression of
the real dependencies in a given computation [Kno09]. All data is logically passed by
value, forming a partial ordering of data dependencies. Control dependencies are defined
by control tags. A control tag is generated when it is known that a particular computation
step needs to run, but it is up to the scheduler to decide when a tagged computation step
is actually performed. The goal of this work is to separate the role of the domain expert
from the role of the tuning expert. The domain expert, who does not have any particular
expertise in parallelism or performance optimization, expresses a computation without any
explicit parallel constructs. The results of this computation are deterministic regardless of
scheduling order, configuration, or machine architecture. The tuning expert, which may be
a person or an automated static or dynamic analysis, configures the program for optimal
execution on a particular machine architecture. Implementations of CnC currently sup-
port architectures that provide task parallelism, pipeline parallelism, or data parallelism.
Static and dynamic scheduling are both supported, as well as both shared and distributed
memories. The focus of CnC is on computation tasks. Long-running or I/O-heavy tasks
are not well-supported.

2.5.3 Solutions for Preserving Determinism

Sequential code, with the exception of I/O operations, can provide a guarantee of determin-
istic execution. The next two approaches, Kendo and Deterministic Shared Memory Mul-
tiprocessing, attempt to return a similar level of determinism to ordinary multi-threaded
code. The insight behind these approaches is that a guarantee of deterministic execution
is first of all very advantageous for locating bugs in multi-threaded code. Secondly, a de-
terminism guarantee is likely to reduce the number of concurrency-related bugs actually
experienced because the number of possible thread interleavings is drastically reduced.

Kendo is a software system that provides deterministic execution of multithreaded
programs [OAA09]. Kendo uses deterministic logical clocks that count arbitrary events on
each thread. A thread may only acquire a lock if it is not only free in physical time, but
also free in logical time. Correct operation of this technique requires that the application
be free of data races. Kendo includes a data-race detector that is guaranteed to detect
the first data race encountered in any particular application execution. One issue not
addressed by this work is how the fundamentally non-deterministic nature of I/O affects
applications of this technique.

14

Deterministic Shared Memory Multiprocessing, or DMP, enables deterministic commu-
nication among threads [DLCO09]. This guarantee allows arbitrary multithreaded shared-
memory programs to execute deterministically with very little performance penalty, pro-
vided some hardware support exists. Each access to data shared among processors can
only occur if the accessing processor possesses the token for that piece of data. Tokens are
passed from processor to processor in deterministic order. Due to guarantees of determin-
istic communication among threads, DMP can substantially reduce time spent debugging
multithreaded programs. DMP may also increase reliability of deployed software by ensur-
ing that deployed software executes with the same determinism as it did during testing.
DMP requires hardware and OS support to function correctly.

2.5.4 Software Transactional Memory

Software transactional memory is a recently-developed method of providing mutual exclu-
sion in shared-memory systems. However, it is not suitable for all types of concurrency
problems, and its usefulness in large-scale real-world systems is still uncertain.

Software transactional memory, or STM, has been proposed as a way to simplify the
construction of concurrent programs without requiring any new hardware support [ST95].
STM supports serializable transactions in shared memory. The assumption is that the set
of data read or modified by any one transaction has a high probability of being indepen-
dent of the data sets modified by concurrent transactions, i.e., transactions are executed
optimistically. If any of a transaction’s reads are invalidated before the transaction com-
mits, the transaction is aborted and optionally restarted. The STM implementation in this
paper is non-blocking and provides a guarantee that some transaction will always succeed,
thereby avoiding deadlocks by design.

Dan Grossman proposed an analogy to assist in the understanding of transactional
memory [Gro07]. Grossman says, “Transactional memory (TM) is to shared-memory con-
currency as garbage collection (GC) is to memory management.” Grossman makes a
conjecture that the analogical similarity between TM and GC implies TM may follow a
course of development similar to that of GC. Namely, that TM does not require hardware
support to succeed, that TM may take much longer to reach mainstream than currently
expected, and that unmodified TM semantics are sufficient to meet the requirements of
most applications. However, TM is not likely to make concurrent programming as easy as
GC makes memory management. First, TM does not provide guidance about how large
atomic sections should be or where they should be placed. Second, incorrect interleavings
between atomic sections are not a very easy problem to avoid.

Baldassin and Burckhardt developed alternative transaction semantics for games [BB09].
For the application studied, STM did not perform well due to a high abort frequency.

15

Lock-based mutual exclusion did not provide sufficient concurrency. For both STM and
lock-based mutual exclusion, modifying the lengths and positions of the transactions for
the purpose of performance tuning proved to be a non-trivial task. The proposed solution
is to avoid transaction aborts by replicating modified objects on write and periodically
merging changes so they become visible to future transactions. Merge functions and task
barriers, which the programmer may use to specify dependencies among objects, ensure
data consistency. Using this approach, the application was able to approach maximal
concurrency on a four-core machine.

The Atomic Quake project is an evaluation of the effectiveness of STM when applied
to a real-world software system [ZGU+09]. A lock-based concurrent implementation of the
Quake game server was restructured to use STM for all mutual-exclusion requirements.
A total of 61 atomic sections were identified. They ranged in duration from 200 cycles
to 1.3 million cycles, and accessed data read and write sets that ranged from a few bytes
to 1.5 megabytes. Transactions were nested up to nine levels deep. A few of the atomic
sections contained calls to functions with unknown side effects. A transaction that executes
such a call becomes irrevocable. Only one transaction at a time may be in irrevocable
mode. Examples of transactions containing error handling and recovery code were found.
Examples of data accessed from both within and outside transactions were found. No
examples were found where the kind of access to one piece of data depended on the value
of another piece of data. The performance scalability of STM for this application was
found to be poor relative to fine-grain locking – eight threads with STM were slower than
two threads. Loss of scalability was attributed to transactional system overhead and to
the cost of aborted transactions.

Yoo et al. identified four major types of bottlenecks that occur when using STM in
complex, large-scale workloads [YNW+08]. False conflicts occur when the conflict detec-
tion scheme is overly coarse. Over-instrumentation occurs when the compiler generates
unnecessary read/write barriers due to lack of application-level knowledge. Privatization-
safety cost is the overhead associated with guaranteeing that non-transactional operations
do not interfere with transactional operations. Conservative assumptions made by the
compiler add privatization overhead where it is not needed by the application. Poor amor-
tization occurs when the costs of transaction startup and teardown overwhelm the costs
of actual transaction execution, causing poor scalability. A new set of metrics for charac-
terizing complex transactional loads was proposed, as well as a new interface that allows
programmers to declare that certain transactions do not require privatization-safety. The
new interface enabled an average 32% speedup over STM without the new interface.

16

2.5.5 Language Solutions

Language solutions are designed to support the creation of new concurrent code. Fortress
and Oz support implicit concurrency. µC++, Cilk, and X10 support explicit concurrency.

Fortress is a language development effort undertaken by Sun Microsystems [Ste06].
Fortress is designed to encourage as much parallelism as possible, to the extent that se-
quential loops are intentionally a little harder to write than parallel loops. The language
is designed to represent formulae graphically so that computations expressed in a program
appear very similar to computations expressed in traditional mathematical notation. One
objective of Fortress is to move as much functionality as possible out of the compiler and
into the libraries. A rich parametrized polymorphic type-system guides decisions about
how to organize concurrent computations and data.

The Oz language and programming model integrates the functional and object-oriented
programming models with constraint logic programming [Smo95]. The result is a system
that provides implicit support for concurrency. Computation is defined by a set of reduction
tasks that operate on a store. A reduction task may create new reduction tasks and/or
modify the store. Reduction is atomic, and once a reduction is finished its task is deleted.
Concurrency is achieved by the inherent possibility that there may be many reducible tasks
present in the system at any given time. Concurrency control is achieved when a reduction
synchronizes on the store. Synchronization on the store means that a task is not reducible
until a certain condition is met, e.g. a symbol required by the reduction becomes defined.
Each reduction is deterministic, and the programming model is built in such a way that
once a task becomes reducible it cannot become irreducible. The result is that reductions
always proceed in a well-defined manner regardless of how many tasks may be executed in
parallel.

The µC++ language adds a set of concurrency-supporting constructs and a lightweight
threading system to the C++ language [BDS+92]. Four concurrency abstractions are
introduced as extensions to C++’s object model: coroutine, monitor, coroutine-monitor,
and task. Because these abstractions are based on C++’s object model, they support
all of C++’s object-oriented features, including templates, inheritance, destructors, and
virtual methods. Aside from the coroutine, all of these abstractions support implicit mutual
exclusion among their member methods. By default, communication between threads is
synchronous and type-safe. µC++ is designed to operate with shared-memory systems.

The Cilk system adds a small number of new keywords to the C language to provide
high-performance fine-grain task execution [FLR98]. The model of concurrency used by
Cilk is called structured parallelism. The cilk keyword identifies a function as a Cilk
task. Cilk tasks must be called using the spawn keyword. The sync keyword denotes a
barrier that waits for previously spawned tasks to complete. Cilk’s concurrency model
is a hierarchically-structured parallelism where tasks have parent-child relationships and

17

child tasks always complete before their respective parent tasks. The inlet keyword
denotes a sub-function whose argument is the return value of a child task. Inlets execute
atomically and may handle the return values of multiple child tasks. The abort keyword
may be executed inside of an inlet to immediately terminate all remaining child tasks. The
abort facility was designed to allow easy termination of speculative search tasks where the
discovery of an answer by one task renders the other tasks unnecessary. Cilk was designed
for a specific class of compute-heavy applications, and therefore does not include features
to ease general-purpose concurrent programming.

The Cilk implementation includes what is claimed to be the first “provably good” work-
stealing scheduler [BL99]. “Provably good” means that the expected execution time, the
maximum bound on space required, and the maximum bound on total inter-task commu-
nication are all known and reasonable for any well-structured computation. The commu-
nication bound is evidence that work-stealing schedulers, which balance loads by letting
idle threads steal work items from other threads, are more communication-efficient than
work-sharing schedulers, which attempt to evenly distribute work items to threads as the
items are generated.

The X10 language is built on a work-stealing scheduler similar to Cilk’s scheduler
[ABB+07]. X10 enhances the Cilk model in a number of ways, notably the notion of ex-
ecuting computations at explicitly-specified logical places. A place binds together a set
of shared variables and a set of activities that operate on those shared variables. Pro-
grams that use X10’s async, finish, atomic and place constructs are guaranteed to
be deadlock-free. X10 also provides a generalized form of barriers called clocks. Programs
that use clocks are guaranteed to be deadlock-free provided computation, memory, and
communication resources are unbounded. X10 is designed to accommodate a much larger
range of applications than Cilk.

18

Chapter 3

Background

This chapter describes the Actor model, followed by a presentation of the original IFDS
algorithm.

3.1 The Actor Model

The Actor model is a computational model that seeks to define the operation of concurrent
programs as simply as possible. The basic notion behind the Actor model is that any
computation can be defined as a set of entities, or actors, which communicate by passing
messages. Each actor processes the messages it receives in some sequential order. The
actor buffers received messages until it can process them, as shown in Figure 3.1.

The Actor model also suggests a particular design process for writing actor-based pro-
grams. This process is similar to the process of object-oriented programming. The three
stages of this design process are:

1. Identify the types of actors in the system, which is similar to the object-oriented
process of determining how to model various physical or logical entities as classes.

2. Decide the types of messages each type of actor should respond to, which is similar
to defining class interfaces.

3. Define what each type of actor does in response to each type of message, which is
similar to creating implementations of the defined interfaces.

The main difference between actor-based programming and object-oriented program-
ming is that actor-based message-passing is asynchronous and unordered. Asynchronous

19

1

Message

In

Message

Out

Message

Buffer

The Actor

Abstraction

Actor

object

Figure 3.1: The Actor Abstraction

means that the sender of a message continues execution immediately after sending a mes-
sage, without waiting for the receiver to process it. Unordered means that messages can
arrive in any order, not just the order in which they were sent. Messages in object-oriented
programming languages, which are often optimized to be simple function calls, are nor-
mally synchronous and therefore also ordered. Whenever a synchronous function call takes
place, the caller waits until the function returns before continuing execution. It is possible
for an actor-based program to use synchronous message-passing by pausing to wait for a
reply after sending a message, but this process is typically less efficient than making an
equivalent function call.

3.1.1 Defining Actor Classes

The notation used to define actors is shown in Figure 3.2. An actor definition is called an
actor class to distinguish it from an ordinary class. This notation contains the following
components:

1. A name.

2. An optional list of arguments. These must be supplied when the actor is created.

3. An initial set of executable statements stmtsinit. These statements are the actor’s
constructor and execute immediately after creation.

20

def ActorName(arguments)
stmtsinit

begin (message) switch
case message matches pattern1 : stmts1
. . .
case message matches patternn : stmtsn

finally : stmtsfinal

end

Figure 3.2: Actor Class Definition

4. A set of cases that match incoming messages with typed patterns. A match only
succeeds if the message type and the number of message parameters is the same
as the pattern. For example, the message AddEdge〈“A”,“B”〉 matches the pattern
AddEdge〈d1, d2〉. When the match succeeds, the values of d1 and d2 are “A” and
“B”, respectively.

5. A set of executable statements that follow each case statement.

6. A set of statements following a finally keyword that are executed every time a
message is received. Any code that follows a successful case match is executed first,
followed by the code after finally.

All argument variables and all local variables created by stmtsinit persist for the lifetime
of the actor and are visible to all statements stmts1 through stmtsn and stmtsfinal. This
set of variables is analogous to member variables in object-oriented languages. These
variables persist until the actor is garbage-collected. Any variables created by stmts1

through stmtsn or stmtsfinal are only live and visible inside their respective statement
blocks. These variables are only created in response to a received message and so do not
need to persist after the message is processed.

This notation’s similarity to ordinary function definitions is intentional. Like an ordi-
nary function, an actor takes a set of arguments. Also like an ordinary function, an actor
allocates an execution frame and executes a set of statements when it is invoked. The
contents of all arguments and local variables are stored in this execution frame. Unlike an
ordinary function, it does not return any values. When stmtsinit finishes execution, the
address of the actor is returned instead. Normally, this address points to a heap-allocated
object that contains the execution frame. Formally speaking, it returns a function closure.
Because this closure is persistent, the notation “new ActorName(arguments)” is pre-
ferred to denote the creation of a new actor instead of the more concise function-call-style
“ActorName(arguments)”.

When the actor receives a message, it selects at most one case statement for processing.
The local variables created by the statements following case are stored in a temporary

21

frame which is discarded as soon as those statements finish execution. If the actor’s closure
is like a heap object in object-oriented programming, then these temporary frames are like
the stack frames created during calls to member functions. Unlike member function calls,
which normally create these temporary frames on the caller’s stack, temporary frames
created in response to messages are normally created by the receiver of the message.

Logically, each actor consists of exactly one thread that is either idle while waiting to
receive a message, or busy executing a received message. If a message arrives while the
actor is busy, it is normally placed in some kind of buffer. The implementation is free to
choose any kind of buffering mechanism it wants, under the condition that all sent messages
are guaranteed to be eventually received.

Implementations of the Actor model do not normally assign each actor a unique OS
thread, but use a scheduler to dynamically assign actor-generated tasks to a pool of OS
threads. It is accurate to say that each actor is assigned a unique user-thread, and the job
of the scheduler is to map user-threads to OS threads.

3.1.2 Formal Properties of the Actor Model

A pure actor-based program is an expression of partial orderings or dependencies among
operations. The act of sending a message to another actor represents a sequential depen-
dency between the sender of the message and the receiver of the message.

In addition to being unordered, message-passing in the Actor model has an unbounded
delay, which means that there may be an arbitrarily large amount of time between the
sending of a message and its receipt.

The Actor model provides a guarantee that all messages sent will eventually be deliv-
ered. The Actor model considers the guarantee of delivery to be orthogonal to guarantees
of timeliness or ordering.

3.2 The IFDS Algorithm

The IFDS algorithm introduced by Reps et al. is a precise dataflow-analysis algorithm that
solves interprocedural, finite, distributive, subset problems in polynomial time [RHS95].

• Precise refers to a merge-over-all-valid-paths solution, in contrast to a merge-over-
all-paths solution. The all-valid-paths solution only includes control-flow paths that
can actually be taken given standard call/return method invocation semantics. In
contrast, an all-paths solution treats the problem as a giant intra-procedural prob-
lem, and therefore may include control-flow paths that do not obey call semantics,

22

e.g. paths at one return-site that are only reachable through call-sites in a different
procedure. The inclusion of these additional dataflow edges would never make the
solution unsound; it merely means that the static approximation is less precise.

• Interprocedural problems take called methods into account when performing the anal-
ysis. The information computed for any given method may vary depending on the
information computed for other methods called by that method.

• Finite problems are those problems where the domain of possible dataflow facts that
may be computed for any given instruction is finite.

• Distributive problems are those where the flow-functions distribute over the merge
operator, typically the union operator. Applying a flow-function to the union of
multiple facts is equivalent to applying the flow-function to each fact individually
and performing a union on the results. For fact sets a and b and flow-function f ,
f(a) ∪ f(b) = f(a ∪ b). If the merge operator is the intersection operator, it is
possible to transform the problem instance into one that uses the union operator.
If the problem instance is “must-be-X” with the intersection operator, then it is
equivalent to a “may-not-be-X” instance with the union operator.

• Subset problems are those where the set of facts present at any given instruction is a
subset of the total set of facts D. The domain of the flow-functions is therefore the
powerset of D.

Start

Exit

Instr

. . .

Figure 3.3: IFDS Supergraph for One Procedure (G∗)

Each instruction in the input program corresponds to a single node n ∈ N∗, where
N∗ represents the complete set of program instructions. There is a corresponding set
of directed edges E∗ that represents the control-flow dependencies between instructions.
Figure 3.3 shows the structure of a single procedure. The boxes are nodes in N∗, and the
lines are edges in E∗. Each procedure must have a single start node and a single exit node.

23

If the procedure contains multiple return statements, additional edges must be created so
that all possible control flows pass through the exit node before leaving the procedure.

Start

Exit

Instr

. . .

Start fn()

Exit

Instr

. . .

Call fn()

Return

Figure 3.4: IFDS Supergraph for a Procedure Call (G∗)

The graph G∗ = (N∗, E∗), or the supergraph, represents all instructions in the program
plus the intra-procedural and inter-procedural dataflow dependencies between them. For
each procedure p, there is:

• a single start node sp;

• a single exit node ep;

• a set of call-site nodes Callp;

• a set of return-site nodes Retp;

• an edge from each cp ∈ Callp to the start of its corresponding called procedure s′p;

• an edge from each e′p to each corresponding rp ∈ Retp;

• and an edge from each cp to its corresponding rp.

See Figure 3.4 for an illustration of a procedure call that includes all of the required edges
and nodes. Np is the subset of nodes in N∗ that comprise procedure p.

A particular IFDS problem instance is denoted by the graph G]
IP = (N], E]), or the

exploded supergraph. Each node n in N∗ is “exploded” so that the corresponding node

24

n] in N] consists of all pairs 〈n, d〉 where d is either a fact in D or the special zero fact.
Formally, N] = N∗× (D∪{0}). The zero fact (roughly) represents the empty set. Passing
the zero fact to a flow-function means that the flow-function should return those facts that
are always true at the given node. In general, passing the zero fact to a flow-function
should always include the zero fact in the result. Formally, 0 ∈ f(0).

Figure 3.5 shows how the supergraph G∗ relates to the exploded supergraph G]. At
each node in G∗, there are a number of nodes in G], each corresponding to a single fact in
D. In Figure 3.5, D contains the elements A and B, so G] contains nodes corresponding
to 0, A, and B for each node in G∗. Likewise, for each edge in G∗, there are a number of
edges in G]. If the source node of an edge in G] is an argument to a flow-function, then
the destination node is contained in the result set of that flow-function.

Start

Exit

Instr

. . .

(0, A, B)

(0, A, B)

(0, A, B)

. . .

] flowStart

] flowInstr

] flow

G* G#

Figure 3.5: IFDS Exploded Supergraph for One Procedure (G∗ and corresponding G])

It is important to note that IFDS does not call any flow-functions; the edges in E]

are the flow-function – they represent the dataflow relationships between the nodes in
N]. Essentially, the IFDS algorithm represents the dataflow-analysis problem as a graph-
reachability problem.

Formally, if FLOW (m,n) is the flow-function from node m to node n in N∗, and d1, d2

are elements of D ∪ {0}, then:

E] = {〈m, d1〉 → 〈n, d2〉 | m→ n ∈ E∗ and d2 ∈ FLOW (m,n)({d1})}

An edge in E] that starts with the zero fact represents a constant function.

The key property that enables a graph-based representation of the flow function is
the distributivity. This means that for a fact set D in the domain of a distributive flow-
function f , calling f with the argument D gives the same result as calling f separately on

25

each element of D and on the empty set, and performing a union of the results. Formally,
the following identity holds:

f(D) = f(∅) ∪
⋃
d∈Df({d})

One implication of the distributivity property is that flow-function composition is “com-
pressible.” A flow-function may be represented by a graph with at most (|D|+ 1)2 edges.
This maximum bound consists of every fact in set D plus the zero fact mapped to all facts
in D plus the zero fact. For any two flow-functions f and g, the composition g ◦ f also
has at most (|D|+ 1)2 edges. The accumulated effects of any number of flow-functions are
therefore representable in a compact fashion.

The IFDS algorithm is shown in Algorithm 3.1. The algorithm uses the following
functions:

• returnSite(c) maps a call node c to its corresponding return-site node;

• procOf(n) maps a node n to the name of its enclosing procedure;

• calledProc(c) maps a call node c to the name of the called procedure;

• callers(p) maps a procedure name p to the set of call nodes that represent calls to
that procedure.

The IFDS algorithm operates by finding all nodes in N] that are reachable from the
node 〈smain,0〉 through some valid path in E]. Performing an intra-procedural analysis
of any procedure p yields a set of edges of the form 〈sp, d1〉 → 〈np, d2〉 where sp is the
procedure start node, np is some node in the procedure, d1 is a fact present at the start
node, and d2 is a fact at np that is reachable from 〈sp, d1〉. Edges of this form are called
path-edges.

Whenever the algorithm discovers a new path-edge, it adds that edge to a work list.
This addition occurs in the Propagate function on line 9. A common implementation of the
IFDS algorithm uses a queue structure for the work list, thereby processing new path-edges
in the order of discovery. However, the algorithm places no constraints on the order in
which the work-list contents are processed. Implementations are free to choose alternate
orderings.

The main ForwardTabulateSLRPs function terminates when the work list is empty. An
empty work list implies that no additional nodes in N] are reachable from 〈smain,0〉. Lines
6 through 8 in the algorithm then collect in Xn the set of reachable facts at node n.

The algorithm retains precision by adding edges according to the all-valid-paths criteria
instead of the all-paths criteria. The all-valid-paths criteria means that when the algorithm

26

declare PathEdge, WorkList, SummaryEdge: global edge set

algorithm Tabulate(G]
IP)

begin

[1] Let (N], E]) = G]
IP

[2] PathEdge := { 〈smain, 0〉 → 〈smain, 0〉 }
[3] WorkList := { 〈smain, 0〉 → 〈smain, 0〉 }
[4] SummaryEdge := ∅
[5] ForwardTabulateSLRPs()
[6] for each n ∈ N∗ do
[7] Xn := { d2 ∈ D | ∃ d1 ∈ (D ∪ {0}) such that

˙
sprocOf(n), d1

¸
→ 〈n, d2〉 ∈ PathEdge }

[8] od
end

procedure Propagate(e)
begin

[9] if e /∈ PathEdge then Insert e into PathEdge; Insert e into WorkList fi
end

procedure ForwardTabulateSLRPs()
begin

[10] while WorkList 6= ∅ do
[11] Select and remove an edge 〈sp, d1〉 → 〈n, d2〉 from WorkList
[12] switch n

[13] case n ∈ Callp :
[14] for each d3 such that 〈n, d2〉 →

˙
scalledProc(n), d3

¸
∈ E] do

[15] Propagate(
˙
scalledProc(n), d3

¸
→

˙
scalledProc(n), d3

¸
)

[16] od
[17] for each d3 such that 〈n, d2〉 → 〈returnSite(n), d3〉 ∈ (E] ∪ SummaryEdge) do
[18] Propagate(〈sp, d1〉 → 〈returnSite(n), d3〉)
[19] od
[20] end case

[21] case n = ep :
[22] for each c ∈ callers(p) do
[23] for each d4, d5 such that 〈c, d4〉 → 〈sp, d1〉 ∈ E] and 〈ep, d2〉 → 〈returnSite(c), d5〉 ∈ E] do
[24] if 〈c, d4〉 → 〈returnSite(c), d5〉 /∈ SummaryEdge then
[25] Insert 〈c, d4〉 → 〈returnSite(c), d5〉 into SummaryEdge
[26] for each d3 such that

˙
sprocOf(c), d3

¸
→ 〈c, d4〉 ∈ PathEdge do

[27] Propagate(
˙
sprocOf(c), d3

¸
→ 〈returnSite(c), d5〉)

[28] od
[29] fi
[30] od
[31] od
[32] end case

[33] case n ∈ (Np − Callp − {ep}) :
[34] for each 〈m, d3〉 such that 〈n, d2〉 → 〈m, d3〉 ∈ E] do
[35] Propagate(〈sp, d1〉 → 〈m, d3〉)
[36] od
[37] end case

[38] end switch
[39] od

end

Algorithm 3.1: Original IFDS Algorithm reproduced from Reps et al. [RHS95]

27

Start fn()

Exit

Call fn()

Return

(0, A, B)

(0, A, B)

(0, A, B)

(0, A, B)

Call-flow edges

Return-flow edges

Callee
path-edges

Summary
edges

G* G#

Figure 3.6: IFDS Summary Edge Generation (G∗ and corresponding G])

encounters a procedure call, it only considers the call edges and return edges that are
applicable to that particular call-site. An edge that results from the composition of a
call-flow-function, a set of intra-procedural summary edges, and the corresponding return-
flow-function is called a Summary Edge. Intra-procedural summary edges are called callee
path-edges in the remainder of this document. Callee path-edges are exactly those path-
edges that end at the exit node of some procedure. A single set of callee path-edges
is generated for each procedure, but there is a different set of summary edges that is
generated for each site that calls the procedure.

Whenever a new callee path-edge is generated, the algorithm queries E] on line 23 to
obtain the call-flow edges and return-flow edges that connect with it. The composition of
these edges is stored in the SummaryEdge set on line 25. These summary edges represent
the effect of the called procedure in the caller’s context; summary edges are dynamically
generated dataflow edges from the call-site to the return-site. Figure 3.6 illustrates this
process of summary edge generation. The solid lines on the right-hand-side of the figure
represent edges in E], and the dashed lines represent dynamically computed edges.

Once a new summary edge is discovered, the tabulation must be made to proceed as
if that summary edge already existed as part of E]. Lines 26 through 28 of Algorithm
3.1 propagate any new path-edges that may be generated as a result of adding a new
summary edge. New path-edges may also need to be propagated when a new path-edge

28

ending at a call-site is discovered. Line 17 takes the known summary edges into account
when performing the call-site to return-site query.

29

Chapter 4

The E-IFDS Algorithm

The original IFDS algorithm as presented by Reps et al. [RHS95] has certain limitations
when applied in practice. In particular, many analyses involving objects or pointers to
objects are unsuitable for use with IFDS without certain modifications. The modifications
listed here comprise E-IFDS, shown in Algorithm 4.1:

• Demand construction of the exploded supergraph. See Section 4.1.

• Demand construction of summary edges. See Section 4.2.

• Caller context for return-flow-functions. See Section 4.3.

• Multiple called procedures per call-site. See Section 4.4.

• Redundant fact removal. See Section 4.5.

The following sections detail these modifications. The E-IFDS algorithm shares some
characteristics with the Extended IFDS algorithm presented by Naeem et. al. [NLR10],
but the two algorithms are not identical. The differences include the following:

• The Extended IFDS algorithm maintains a SummaryEdge set, whereas E-IFDS does
not.

• The Extended IFDS algorithm supports the Static Single Assignment form, or SSA,
without loss of precision. As presented in this thesis, E-IFDS does not make any
special provisions for SSA.

• E-IFDS explicitly allows multiple called procedures at a single call-site, whereas the
Extended IFDS algorithm does not.

31

declare PathEdge, WorkList: global set of triples from D0 ×N∗ ×D0

declare CallEdgeInverse: global set of 4-tuples from ProcNames×D0 ×N∗ ×D0

algorithm Tabulate(G∗, flowi, flowcall, flowret, flowthru)
begin

[1] Let (N∗, E∗, smain) = G∗

[2] PathEdge := { 0→ 〈smain, 0〉 }
[3] WorkList := { 0→ 〈smain, 0〉 }
[4] CallEdgeInverse := ∅
[5] ForwardTabulateSLRPs()
[6] for each n ∈ N∗ do
[7] Xn := { d2 ∈ D | ∃ d1 ∈ D0 such that d1 → 〈n, d2〉 ∈ PathEdge }
[8] od

end

procedure Propagate(e)
begin

[9] if e /∈ PathEdge then Insert e into PathEdge; Insert e into WorkList fi
end

procedure ForwardTabulateSLRPs()
begin

[10] while WorkList 6= ∅ do
[11] Select and remove an edge d1 → 〈n, d2〉 from WorkList; Let p = procOf(n)
[12] switch n

[13] case n ∈ Callp :
[14] for each p′, d3 such that p′ ∈ calledProcs(n) and d3 ∈ flowcall(〈n, d2〉 , p′) do
[15] Propagate(d3 →

˙
sp′ , d3

¸
)

[16] Insert 〈p′, d3 → 〈n, d2〉〉 into CallEdgeInverse
[17] for each d4 such that d3 →

˙
ep′ , d4

¸
∈ PathEdge do

[18] for each d5 ∈ flowret(
˙
ep′ , d4

¸
, 〈n, d2〉) do

[19] Propagate(d1 → 〈returnSite(n), d5〉)
[20] od
[21] od
[22] od
[23] for each d3 ∈ flowthru(〈n, d2〉) do
[24] Propagate(d1 → 〈returnSite(n), d3〉)
[25] od
[26] end case

[27] case n = ep :
[28] for each 〈c, d4〉 such that c ∈ callers(p) and 〈p, d1 → 〈c, d4〉〉 ∈ CallEdgeInverse do
[29] for each d5 ∈ flowret(〈ep, d2〉, 〈c, d4〉) do
[30] for each d3 such that d3 → 〈c, d4〉 ∈ PathEdge do
[31] Propagate(d3 → 〈returnSite(c), d5〉)
[32] od
[33] od
[34] od
[35] end case

[36] case n ∈ (Np − Callp − {ep}) :
[37] for each m, d3 such that n→ m ∈ E∗ and d3 ∈ flowi(〈n, d2〉) do
[38] Propagate(d1 → 〈m, d3〉)
[39] od
[40] end case

[41] end switch
[42] od

end

Algorithm 4.1: The E-IFDS Algorithm

32

4.1 Demand Construction of the Exploded Supergraph

The original IFDS algorithm requires construction of the entire exploded supergraph G]
IP

prior to tabulation. The number of nodes in this graph is proportional to the size of the
fact set D times the number of instructions in the program, i.e. |N]| = |N∗| × (|D| + 1).
For many types of analyses, the fact-set domain D can be extremely large, resulting in
a correspondingly large number of nodes in N]. For example, an analysis designed to
determine the possible types of variables in a program might define the elements of D to
have the form 〈v, T 〉 where v is a variable name and T is a possible type of v. Since the
size of N∗ is proportional to the number of instructions in the program, the size of N] is
proportional to the number of instructions in the program, times the number of variables
in the program, times the number of possible types in the program. When |D| is large,
G]

IP can take a very long time to construct. In addition, the memory required to store G]
IP

can be prohibitive for all but the most trivial analyses.

For many analyses, the IFDS algorithm only traverses a small percentage of the edges
in G]

IP . E-IFDS replaces queries of E] in the original IFDS algorithm with calls to flow-
functions that compute the set of exploded-supergraph edges leading out of a given node.
The following flow-functions are defined:

• flowi(n
]) computes intra-procedural dataflow edges.

• flowcall(n
], p) computes call-to-start dataflow edges when n] is at a call-site. This

function also includes the called procedure name p because more than one procedure
may be callable from each call-site. See section 4.4.

• flowret(n
], c]) computes exit-to-return-site dataflow edges when n] is at an exit node.

The c] argument is the caller context for n]. See section 4.3.

• flowthru(n]) computes call-to-return-site dataflow edges when n] is at a call-site.
These edges represent intra-procedural information that is not affected by called
procedures.

The n] and c] parameters are elements of N], which are of the form 〈n, d〉 where n ∈ N∗
and d ∈ (D ∪ {0}). Note that in addition to the elements of D, d may be the zero fact.

One difficulty with demand-driven construction is that the original algorithm requires
the inverse flow-function in the first query on line 23 of Algorithm 3.1. The query is
attempting to find all call nodes 〈c, d4〉 where there is an edge to the procedure start-
node 〈sp, d1〉. Enumerating all possible edges for these flow-functions is not practical, and
writing an inverse flow-function may not be straightforward. E-IFDS works around this
issue by memoizing the call-flow edges as they are encountered on line 16 of Algorithm 4.1.

33

Finding the inverse of the call-flow-function is simply looking up the memoized edges on
line 28.

An additional issue with demand querying of E] is that the complete set of call-flow
edges is not necessarily available at the query on line 28. The original IFDS algorithm is
able to make this assumption on line 23 because it assumes the entire set of dataflow edges
E] is constructed in advance. Because E-IFDS cannot make this assumption, the effects of
the exit node computation on lines 28 through 34 must be replicated at the call-site node
computation on lines 17 through 21 as new call-flow edges are discovered.

4.2 Demand Construction of Summary Edges

Every time a new call-flow edge or callee start-to-exit edge is discovered, the set of summary
edges must be updated. Unlike the original IFDS algorithm, which stores these computed
edges in the SummaryEdge set, E-IFDS propagates new summary edges immediately.
Although the SummaryEdge set is never stored, it is a straightforward matter to reconstruct
it either during or immediately after tabulation if required.

The original IFDS algorithm obtains some measure of efficiency by not performing
any summary edge computation at the call-site nodes. This efficiency is predicated on
static construction of E]. Since E-IFDS uses demand construction of E], this particular
efficiency is impossible. Since there is no reason to store the SummaryEdge set in the
E-IFDS algorithm, any new summary edge discovered is propagated immediately on lines
19 and 31 in Algorithm 4.1.

Whenever a new call-flow edge is discovered, it is composed with the known set of
path-edges that represent the called procedure, then with the return-flow-function for that
procedure. These functions correspond with lines 17 and 18 of Algorithm 4.1. Likewise,
whenever a new path-edge is discovered at the exit node of a procedure, it is composed with
the known set of call-flow edges to that procedure, and then with the return-flow-function
for that procedure. These functions correspond with lines 29 and 30 of Algorithm 4.1.

4.3 Caller Context for Return-Flow Functions

The original IFDS algorithm cannot provide return-flow-functions with information about
which call-flow edges are taken. As illustrated below, this information may be important
to certain analyses, but is unavailable in the original algorithm due to the assumption that
E] is statically constructed.

34

For a flow fact n] at the exit node of a procedure, and each call-site node c that calls
that procedure, there exists some set of edges in E] that map from n] to some set of facts
at the return-site following c. In the original IFDS algorithm, the second query on line 23
obtains this mapping. This mapping, however, does not take into account any facts that
may exist in the caller’s context at c. The equivalent query in the E-IFDS algorithm calls
flowret on lines 18 and 29. In addition to the fact n], flowret also takes a fact in the caller’s
context c]. n] is always reachable from c] through some fact at the procedure’s start node.

Unlike the original algorithm, where each return-flow edge either exists in E] or it does
not, the existence of an edge from n] to some particular fact at the return-site may depend
on which predecessor fact c] is being considered. Where the original algorithm requires a
conservative approximation here, the extended algorithm is able to retain precision.

void caller() {
Shape x = ...;
ensureCircle(x);

}
void ensureCircle(Shape y) {
Shape z = y;
(Circle) z;

}

Figure 4.1: Caller Context Example (Java Syntax)

For example, consider a variable types analysis on the code in Figure 4.1. For the
ensureCircle procedure, the original IFDS algorithm is able to deduce that y and z point
to the same object, and that this object must be a subtype of Circle if ensureCircle exits
normally. This information appears in the PathEdge set as 〈sensureCircle, 〈y, Shape〉〉 →
〈eensureCircle, 〈z, Circle〉〉.

Because the original IFDS algorithm represents all flow-functions as edges in the ex-
ploded supergraph, the only pieces of information available to the return-flow function
are the called procedure’s exit node, i.e. eensureCircle, the facts at that exit node, i.e.
〈z, Circle〉, and the caller’s return-site node, i.e. some r ∈ Retcaller. Although E] con-
tains the edge 〈c, 〈x, Shape〉〉 → 〈sensureCircle, 〈y, Shape〉〉, where c is the call-site node in
Callcaller, there is no way for the tabulation to use this piece of information to infer any-
thing about x after the call to ensureCircle returns. As a result, it must conservatively
say that x may be any Shape.

To correct this problem, E-IFDS includes 〈c, 〈x, Shape〉〉 as the second parameter to
the return-flow-function flowret, which indicates that x points to the same object as the
first parameter to flowret, e.g. z. The PathEdge set contains 〈sensureCircle, 〈y, Shape〉〉 →
〈eensureCircle, 〈z, Circle〉〉, and the CallEdgeInverse set contains 〈sensureCircle, 〈y, Shape〉〉
→ 〈c, 〈x, Shape〉〉. Therefore, the algorithm is able to determine that a valid path-edge

35

to 〈eensureCircle, 〈z, Circle〉〉 goes through 〈c, 〈x, Shape〉〉. That is, x in caller points
to the same object as z in ensureCircle, and this object is a subtype of Circle after
ensureCircle completes. This determination is made on line 28 of the extended algorithm.

4.4 Multiple Called Procedures Per Call Site

The original IFDS algorithm assumes a single called procedure per call-site. In practice,
this can be problematic for the analysis of object-oriented programs that include virtual
functions or reflection. Proper analysis of such programs requires either that the dataflow
dependency graph G∗ be transformed so that each possible procedure call is associated
with a unique call-site node, or that the algorithm be augmented to support multiple
called procedures per call-site. E-IFDS incorporates the latter option.

In the E-IFDS algorithm, the calledProc function, which maps a call-site node to a
single target, is replaced by the calledProcs function, which maps a call-site node to a set
of potential targets.

4.5 Redundant Fact Removal

The original IFDS algorithm treats each element in the fact set D equally, without as-
suming any kind of structural relationship among the elements of D. For many analyses,
however, structural relationships among the elements of D do exist. For example, an anal-
ysis designed to determine possible types of variables might define the elements of D to
have the form 〈v, T 〉 where v is a variable name and T is a possible type of v. For example,
if a variable x at a particular node is determined to be of type Shape or of type Circle,
and Circle is a subtype of Shape, then the fact associating x with Circle is redundant.

For an arbitrary analysis to take advantage of set structure, it must define a partial
order ≤ on the elements of D, and a corresponding partial order v on the subsets of D.
Normally, the relationship between ≤ and v is such that:

D1 v D2 ⇐⇒ ∀d1 ∈ D1∃d2 ∈ D2 such that d1 ≤ d2

To ensure that the analysis always terminates, the flow-functions must be monotone on
this partial order, i.e. a v b ⇒ flow(a) v flow(b).

For the types-analysis example, 〈x, Circle〉 ≤ 〈x, Shape〉 means that the fact “x is a
subtype of Circle” is less than or equal to “x is a subtype of Shape.” Because Circle is a
subtype of Shape, the former statement implies the latter. Therefore, if both of these facts

36

procedure Propagate(e)
begin

[9] Let d1 → 〈n, d2〉 = e
[9.1] if @ d1 → 〈n, d3〉 ∈ PathEdge such that d2 ≤ d3 then
[9.2] Remove all edges d1 → 〈n, d4〉 such that d4 ≤ d2 from PathEdge
[9.3] Insert e into PathEdge
[9.4] Insert e into WorkList
[9.5] fi

end

Algorithm 4.2: E-IFDS Propagate with Redundant Fact Removal

are present at a single program node, it is possible to remove the “smaller” fact 〈x, Circle〉
without affecting the soundness or precision of the analysis.

The Extended Propagate procedure in Algorithm 4.2, which is a drop-in replacement
for the Propagate procedure in 4.1, only propagates a particular edge if no “equivalent” or
“larger” facts (with respect to the ordering defined by ≤) already exist in the PathEdge
set. This condition is shown on line 9.1. Before an edge is propagated, all “smaller” facts
are removed from PathEdge on line 9.2. In contrast, the original propagate procedure only
checks for the existence of an “equivalent” fact; it does not take into account any “larger”
or “smaller” relationships among facts.

4.6 Additional Presentation Notes

Edges in the original algorithm are presented in the form 〈m, d1〉 → 〈n, d2〉. However,
storing m explicitly is redundant. For all path-edges stored by E-IFDS, m is always equal
to sprocOf(n). Therefore, edges stored by E-IFDS are presented in the equivalent form
d1 → 〈n, d2〉.

The notation d1 → 〈n, d2〉 is equivalent to the tuple 〈d1, n, d2〉. Similarly, the notation
〈p, d1 → 〈n, d2〉〉 is equivalent to the tuple 〈p, d1, n, d2〉. Because these tuples logically refer
to edges in E], the arrow notation is preferred for clarity.

The set D0 includes all elements of the fact set D plus the zero fact. Formally, D0 =
D ∪ {0}.

Line 28 of the E-IFDS algorithm contains a spurious condition “c ∈ callers(p).” Al-
though not strictly necessary, this condition is retained for continuity of presentation with
the original IFDS algorithm and the IFDS-A algorithm.

37

Chapter 5

The IFDS-A/AD Algorithms

The E-IFDS algorithm improves performance over the original IFDS algorithm through
demand construction of the exploded supergraph and through removal of redundant facts.
However, neither algorithm is able to harness any performance gains that may be possible
due to multi-core architectures. The IFDS Actors algorithm, or IFDS-A, is designed to
correct this problem. IFDS-A is the first known IFDS-derived algorithm expressed in
concurrent form.

IFDS-A takes the same parameters and produces the same results as E-IFDS, but takes
advantage of parallelism opportunities. Algorithm 5.1 shows the main IFDS-A algorithm.
Algorithm 5.2 defines the IFDS-A actors that respond to path-edge propagation.

The differences between E-IFDS and IFDS-A include:

• E-IFDS operates on shared data sets, but IFDS-A partitions these data sets into
actor-local sets.

• The IFDS-A design encodes decisions about place, or the logical location where com-
putations are performed.

• IFDS-A introduces a Tracker object to solve the problem of knowing when the com-
putation is complete.

The IFDS-A algorithm is built on a conceptually straightforward abstraction. Each
node in the supergraph G∗ is represented by a single actor, called a node-actor, and each
path-edge propagation is represented by a message passed from one actor to another.

IFDS-A’s Tabulate function signature in Algorithm 5.1 is identical to E-IFDS’s Tabulate
function signature in Algorithm 4.1. Both Tabulate functions take the supergraph G∗,
which consists of the set of instruction nodes N∗, the set of control-flow edges E∗, and a

39

algorithm Tabulate(G∗, flowi, flowcall, flowret, flowthru)
begin

[1] Let (N∗, E∗, smain) = G∗

[2] for each n ∈ N∗, let p = procOf(n) do
[3] switch n
[4] case n ∈ Callp : NA[n] := new CallSiteActor(n) end case
[5] case n = ep : NA[n] := new ProcExitActor(p) end case
[6] case n ∈ (Np − Callp − {ep}) : NA[n] := new IntraActor(n) end case
[7] end switch
[8] od
[9] Tracker := new TrackerActor(currentThread)
[10] Propagate(smain, AddPathEdge〈0, 0〉)
[11] Wait for Done〈〉
[12] for each n ∈ N∗ do
[13] Xn := { d2 ∈ D | ∃ d1 ∈ D0 such that d1 → d2 ∈ NA[n].PathEdge }
[14] od

end

pure function Propagate(n, message)
begin

[15] Send synchronous Inc〈〉 to Tracker
[16] Send message to NA[n]

end

def TrackerActor(receiver)
[17] local count: Integer := 0

begin (message) switch
[18] case message matches Inc〈〉 : count := count + 1
[19] case message matches Dec〈〉 :
[20] count := count - 1
[21] if count = 0 then Send Done〈〉 to receiver fi

end

Algorithm 5.1: The Top-Level IFDS-A Algorithm

reference to the start node of the main function smain. Both Tabulate functions also take
the set of flow-functions flowi, flowcall, flowret, and flowthru, which must be referentially
transparent.

Lines 2 through 8 in Algorithm 5.1 create the set of node-actors. There is exactly
one node-actor for each element of N∗. There are three different types of node-actors:
the CallSiteActor, the ProcExitActor, and the IntraActor. These three types of actors
correspond to the three different types of behaviours in E-IFDS, i.e. the behaviours that
correspond to the cases n ∈ Callp, n = ep, and n ∈ (Np − Callp − {ep}), respectively.
Compare the switch statement starting on line 3 of Algorithm 5.1 with the switch statement
starting on line 12 of Algorithm 4.1.

The algorithm begins by propagating the dummy edge 0 → 0 to the node smain on
line 10 of Algorithm 5.1. This is similar to lines 2 through 5 in Algorithm 4.1, which add
the dummy edge explicitly to PathEdge and WorkList, then call the tabulation procedure
directly. The asynchronous nature of IFDS-A requires that it explicitly wait for tabulation
to complete on line 11 of Algorithm 5.1 before proceeding.

40

The Actor model provides no built-in way of determining the status of other actors;
each actor is aware of its own local state only. As a result, once tabulation begins, there is
no easy way to determine when it is complete. The Tracker actor is introduced to solve this
problem. The Tracker actor, which is created on line 9 and defined on lines 17 through 21
of Algorithm 5.1, keeps track of the total number of unprocessed node-actor messages, and
sends a message to wake up the main thread when no unprocessed messages remain. The
activity of the Tracker is in some ways similar to a barrier, except that the total number
of unprocessed tasks may increase as a result of processing previous tasks. Before a node-
actor message may be dispatched, the Tracker must be notified by an Inc〈〉 message, which
increases the internal count by one. Correspondingly, the Tracker must be notified of the
completion of message processing by a Dec〈〉 message, which decreases the internal count
by one. When the count reaches zero as a result of a Dec〈〉 message, indicating that all
outstanding messages have been processed, the Tracker sends a Done〈〉 message back to the
main thread informing it that tabulation has been completed. To prevent the count from
reaching zero before tabulation has been completed, there are two conditions that must
be met. First, the Tracker must receive the Inc〈〉 message before the corresponding Dec〈〉
message. Second, if the processing of any node-actor message results in the sending of any
new node-actor messages, then the Tracker must receive the Inc〈〉 corresponding to each
of the new messages before it receives the Dec〈〉 corresponding to the original node-actor
message. To meet these conditions, it is sufficient to send the Inc〈〉 message synchronously,
as is done in the Propagate function on line 15 of Algorithm 5.1. Although this logically
incurs an overhead cost of two messages sent to the Tracker and one message received from
the Tracker for every node-actor message passed, in practice this overhead cost is minimal
because the implementation (see Section 6.2) reduces the Inc〈〉 and Dec〈〉 operations to
hardware-supported atomic integer operations.

Both the IFDS-A and the E-IFDS Tabulate functions compute identical results. Lines
12 through 14 in Algorithm 5.1 build the same result set Xn as lines 6 through 8 in the
E-IFDS algorithm, Algorithm 4.1. The only difference between these two computations of
Xn is that IFDS-A queries the contents of each node-actor to obtain the result, whereas
E-IFDS queries a single PathEdge set.

5.1 IFDS-A Node-Actor Classes

Algorithm 5.2 defines the IFDS-A node-actor classes. The three node-actor classes in
IFDS-A are CallSiteActor, which handles all path-edge propagation at call-site nodes;
ProcExitActor, which handles all path-edge propagation at procedure exit nodes; and
IntraActor, which handles path-edge propagation at other types of nodes.

Each node-actor contains a local PathEdge set, which stores all of the intra-procedural

41

def CallSiteActor(n)
[1] local PathEdge: set of pairs from D0 ×D0 := ∅
[2] local CallEdge: set of triples from ProcName×D0 ×D0 := ∅
[3] local CalleePathEdge: set of triples from ProcName×D0 ×D0 := ∅

begin (message) switch
[4] case message matches AddPathEdge〈d1, d2〉 :
[5] if d1 → d2 /∈ PathEdge then
[6] Insert d1 → d2 into PathEdge
[7] for each p, d3 such that p ∈ calledProcs(n) and d3 ∈ flowcall(〈n, d2〉 , p) do
[8] Propagate(sp, AddPathEdge〈d3, d3〉)
[9] Insert 〈p, d2 → d3〉 into CallEdge
[10] for each d4 such that 〈p, d3 → d4〉 ∈ CalleePathEdge do
[11] for each d5 ∈ flowret(〈ep, d4〉, 〈n, d2〉) do
[12] Propagate(returnSite(n), AddPathEdge〈d1, d5〉)
[13] od
[14] od
[15] od
[16] for each d3 ∈ flowthru(〈n, d2〉) do
[17] Propagate(returnSite(n), AddPathEdge〈d1, d3〉)
[18] od
[19] fi
[20] case message matches AddCalleePathEdge〈p, d1, d2〉 :
[21] Insert 〈p, d1 → d2〉 into CalleePathEdge
[22] for each d4 such that 〈p, d4 → d1〉 ∈ CallEdge do
[23] for each d5 ∈ flowret(〈ep, d2〉, 〈n, d4〉) do
[24] for each d3 such that d3 → d4 ∈ PathEdge do
[25] Propagate(returnSite(n), AddPathEdge〈d3, d5〉)
[26] od
[27] od
[28] od
[29] finally : Send Dec〈〉 to Tracker

end

def ProcExitActor(p)
[30] local PathEdge: set of pairs from D0 ×D0 := ∅

begin (message) switch
[31] case message matches AddPathEdge〈d1, d2〉 :
[32] if d1 → d2 /∈ PathEdge then
[33] Insert d1 → d2 into PathEdge
[34] for each c ∈ callers(p) do Propagate(c, AddCalleePathEdge〈p, d1, d2〉) od
[35] fi
[36] finally : Send Dec〈〉 to Tracker

end

def IntraActor(n)
[37] local PathEdge: set of pairs from D0 ×D0 := ∅

begin (message) switch
[38] case message matches AddPathEdge〈d1, d2〉 :
[39] if d1 → d2 /∈ PathEdge then
[40] Insert d1 → d2 into PathEdge
[41] for each m, d3 such that n→ m ∈ E∗ and d3 ∈ flowi(〈n, d2〉) do
[42] Propagate(m, AddPathEdge〈d1 → d3〉)
[43] od
[44] fi
[45] finally : Send Dec〈〉 to Tracker

end

Algorithm 5.2: IFDS-A Node-Actor Classes

42

path-edges that terminate at the node-actor’s node. Specifically, if some fact d2 at some
node n is reachable from some fact d1 at the start of the procedure sprocOf(n), and d1 is
reachable from the initial fact 〈smain,0〉, then the PathEdge set of the node-actor corre-
sponding to n contains the edge d1 → d2 by the time tabulation is completed.

The CallSiteActor, defined on lines 1 through 29 of Algorithm 5.2, defines three sets and
responds to two types of messages. The AddPathEdge〈〉 message informs the CallSiteActor
of a path-edge that reaches the CallSiteActor node, and AddCalleePathEdge〈〉 informs the
CallSiteActor of a path-edge that reaches the exit node of a procedure called from the
CallSiteActor node. The three sets contained by the CallSiteActor are:

• The PathEdge set contains path-edges that reach the call-site node associated with
the CallSiteActor.

• The CallEdge set contains the reachable flow-function edges from the call-site node
to the start nodes of called procedures.

• The CalleePathEdge set contains the path-edges that reach the exit nodes of called
procedures.

The contents of the CallEdge set, the contents of the CalleePathEdge set, and the return-
flow-function flowret suffice to generate the set of summary edges that begin at the call-site
node.

The CallEdge set contains the set of call-flow edges that are reachable from the call-site
node. Each call-flow edge is a 3-tuple 〈p, d2, d3〉, or 〈p, d2 → d3〉, where p is the procedure
being called, d2 is a reachable fact at the call-site node, and d3 is the destination fact at
the start node of procedure p. The contents of the CallEdge set, which are inserted on line
9, are the memoized edges discovered from calling flowcall on line 7. Just as in E-IFDS, the
purpose of this memoization is to provide the inverse of flowcall that is needed to compute
summary edges. The CalleePathEdge set contains the reachable path-edges that have been
discovered at a called procedure’s exit node. CalleePathEdge elements are 3-tuples of the
form 〈p, d3, d4〉, or 〈p, d3 → d4〉, where p is a called procedure, d3 is a fact at the procedure’s
start node, and d4 is a fact at the procedure’s exit node. The CalleePathEdge set provides
the necessary path-edges for summary edge generation since the PathEdge set of the called
procedure’s exit node is not available from within the CallSiteActor.

When the CallSiteActor receives an AddPathEdge〈〉 message, it propagates three dif-
ferent types of path-edges. The first type of propagated edge is the call-flow edge, which
is discovered on line 7, propagated on line 8, and memoized on line 9. The second type of
propagated edge is the path-edge generated in response to the generation of a new sum-
mary edge. Given a new call-flow edge, lines 10 and 11 generate the set of facts that should
appear at the return-site. The set of generated summary edges is the set of edges starting

43

at the fact d2 at the call-site node and ending at each of the d5 facts at the return-site node.
Instead of generating these summary edges explicitly, the composition of the path-edge at
the call-site and each summary edge is propagated directly. Line 12 propagates the path-
edge from the source fact d1 to each summary edge destination fact d5. The third type of
propagated edge is the flow-through edge that represents information that is unmodified
by called procedures. The flow-through edges are discovered on line 16 and propagated on
line 17.

The second message received by the CallSiteActor is the AddCalleePathEdge〈〉message.
The ProcExitActor sends this message whenever a new callee path-edge is discovered. This
edge is memoized on line 21 for possible future use by an AddPathEdge〈〉message. Lines 22
and 23 compose the set of CallEdges, the new callee path-edge, and the return-flow edges
to obtain the set of possibly-new summary edges. Line 24 composes the set of reachable
path-edges at the call-site node with these new summary edges, and the resulting path-
edges are propagated to the return-site node on line 25. For E-IFDS, this propagation
occurs in the end-node logic at lines 28 through 34 of Algorithm 4.1. However, because
this propagation depends on the path-edges that belong to the call-site, IFDS-A forwards
new callee path-edges to the call-sites for processing. Because summary edges are always
composed with path-edges received at the call-site node, and the resulting path-edges are
always propagated to the return-site node that follows the call-site node, it is logical to
handle all summary edge logic from within the CallSiteActor.

The ProcExitActor, defined on lines 30 through 36 of Algorithm 5.2, is only responsible
for forwarding all path-edges received at a procedure exit node to all of the corresponding
call-site nodes. Although this causes replication of all such path-edges to all applicable
call-sites, it avoids versioning issues that may otherwise occur if these path-edges were
only stored in a single location. Specifically, execution of the exit node logic must be
serializable with respect to the execution of the call-site logic.

The IntraActor, defined on lines 37 through 45 of Algorithm 5.2, performs path-edge
propagation for all non-call-site and non-exit nodes. Line 41 queries the intra-procedural
flow-function, and line 42 propagates the composition of the incoming path-edge with the
result of this flow-function.

One consequence of defining the PathEdge sets in this manner described in this section
is that a redundant path-edge can only be rejected at the destination node-actor. The
sender of the AddPathEdge〈〉 message does not have access to the destination node-actor’s
PathEdge set, and therefore cannot know whether or not the new AddPathEdge〈〉 message
is redundant.

Instead of defining PathEdge to contain edges that end at the current node, it is possible
to define PathEdge to contain edges that end at successor nodes. This change enables
many redundant path-edges to be rejected before being sent to successor nodes. However,

44

this approach causes redundant messages to be sent to node-actors that have multiple
predecessors, and each predecessor must store its own copy of every path-edge, increasing
storage requirements and causing an increase in the number of redundant-edge checks that
must be executed. How beneficial this alternative PathEdge definition could be depends
on the efficiency of the message-passing implementation, the nature of the input program,
and the nature of the analysis used.

In summary, the IFDS-A algorithm requires several changes and additions with respect
to the E-IFDS algorithm. The Tracker object solves the problem of knowing when tabu-
lation is complete. Shared data sets in E-IFDS are partitioned into actor-local data sets.
In the case of IFDS-A, a straightforward partitioning of this data among actors is possi-
ble, where the notion of place, or the logical location where a computation is performed,
becomes important. In particular, the design encodes decisions about where to check for
already-seen path-edges and where to handle path-edges appearing at called-procedure
exit nodes. The properties of the Actor model automatically exclude the possibility of
deadlock and shared-memory corruption. The handling of each message is atomic with
respect to all other messages, removing any need to reason about instruction-level exe-
cution interleavings. However, in cases where two or more actors contribute updates to
the same set of data, reasoning about message-level interleavings becomes necessary. For
example, ProcExitActors forward callee path-edges to CallSiteActors so that the summary
edge generation and propagation code does not miss any updates to the callee path-edge
sets.

5.2 Redundant Fact Removal

IFDS-A can support redundant fact removal in a fashion similar to the Extended Propagate
Procedure in Algorithm 4.2. If a partial order ≤ is applied to the elements of the fact-set
D in accordance with the conditions specified in Section 4.5, then it is possible to support
redundant fact removal by extending the conditionals that check for prior existence of
path-edges. Algorithm 5.3 shows the replacement of the conditional on line 5 of Algorithm
5.2. Similar replacements apply to lines 32 and 39.

[5] if @ d1 → d3 ∈ PathEdge such that d2 ≤ d3 then
[5.1] Remove all edges d1 → d4 such that d4 ≤ d2 from PathEdge

Algorithm 5.3: IFDS-A Redundant Fact Removal

Because path-edges at exit nodes are sent to the CallSiteActor, redundant edge removal
is also moved to the CallSiteActor. Algorithm 5.4 shows the addition of the removal
operation into the call-site logic.

45

[20.1] Remove all edges 〈p, d1 → d3〉 such that d3 ≤ d2 from CalleePathEdge

Algorithm 5.4: IFDS-A Redundant Fact Removal on Callee-Path-Edges

5.3 Using Detach for Increased Concurrency

IFDS-A provides substantial concurrency because each node-actor is able to execute inde-
pendently of other node-actors in the system. However, messages received by any particular
node-actor are processed serially. This serialization can cause an execution bottleneck if
the number of outstanding messages destined for distinct actors is smaller than the number
of OS (Operating System) threads for any length of time. (For the purposes of this discus-
sion, there is a 1:1 correspondence between the number of OS threads assigned to execute
actor-based computations and the number of independent program-counters, or “proces-
sors,” supplied by the underlying hardware.) This bottleneck can be especially problematic
for relatively long computations, such as those performed by the CallSiteActor.

If there were a way to de-serialize some of the CallSiteActor computations, these com-
putations could be performed on otherwise-idle OS threads while the CallSiteActor itself is
freed to begin processing additional messages. Some parts of the CallSiteActor cannot be
de-serialized because they contain updates to the actor’s mutable state. Other parts of the
CallSiteActor, however, only perform computations and send messages without needing to
touch mutable state.

The detach construct is a novel construct designed to perform exactly this function.
The code between the begin detach and end detach keywords may be spawned as a
separate execution task that is concurrent with the surrounding code. There is an arbitrary
length of time between spawning the detached section and its execution.

A practical implementation of the detach function takes as an argument a first-class
function closure, or a structure containing a function pointer and the data the function
requires. The closure contains the code inside the detach section. The detach function
passes this closure to the scheduler’s execute method, which queues the closure for execu-
tion by an OS thread. The details of the scheduler’s implementation determine which OS
thread executes the closure, and when the execution actually takes place. Note that it is
semantically valid (but not necessarily beneficial) to avoid calling the scheduler altogether
by simply executing the closure in-line.

46

def storeAndForward(nextActor)
local edgeSet: set of edges := ∅

begin (message) switch
case message matches AddEdge〈edge〉 :

Insert edge into edgeSet
begin detach

Send AddEdge〈edge〉 to nextActor
end detach

end

def storeAndForward(nextActor)
local edgeSet: set of edges := ∅

begin (message) switch
case message matches AddEdge〈edge〉 :

Insert edge into edgeSet
Let detached = new anon (edge, nextActor)
Send 〈〉 to detached

end

def anon (edge, nextActor)
begin (message) switch

case 〈〉 :
Send AddEdge〈edge〉 to nextActor

end

Figure 5.1: Detach Example Figure 5.2: Meaning of Detach

For example, Figure 5.1 shows a simple actor that receives a message with a single value,
stores that value in a local mutable set, and forwards that value to another actor. The
insertion statement is not part of the detached section because it updates mutable state,
but the message send statement is part of the detached section because it does not touch
mutable state. This code is small for the sake of example. Real programs would normally
only use detached sections for operations that are more computationally expensive than a
single message send.

Figure 5.2 shows how Figure 5.1 could be de-sugared into an actor-based program
without detach. Logically, execution of a detached section is equivalent to spawning a
new actor and sending that actor a single message telling it to execute the detached code.
The only variables accessible by the detached section are those that can be passed by value
to the new actor. The detached section does not see any modifications of variables that
may occur after the detached section is spawned.

Algorithms 5.5, 5.6, and 5.7 show modified versions of CallSiteActor, ProcExitActor,
and IntraActor which take advantage of the detach construct. These actor definitions
combined with the top-level IFDS-A code in Algorithm 5.1 collectively constitute the IFDS
Actors-with-Detach algorithm, or IFDS-AD.

Note that the Tracker must be informed when a detached execution takes place. Be-
cause the detached execution constitutes a logically independent unit of work, sending
a synchronous Inc〈〉 to the Tracker before entering each detached section and an asyn-
chronous Dec〈〉 when the detached section completes ensures that the Tracker count only
reaches zero when tabulation completes.

Within each detached section, no interaction with mutable state can occur. To acco-
modate this requirement, the algorithm requires certain minor adjustments. For example,
the operation of the detached section beginning on line 9.3 of Algorithm 5.5 depends only
on the contents of d1, d2, D4, n, and p. The query of CalleePathEdge, previously on line
10, becomes a query of the fact set D4. The query of CalleePathEdge moves to line 9.1 and

47

def CallSiteActor(n)
[1] local PathEdge: set of pairs from D0 ×D0 := ∅
[2] local CallEdge: set of triples from ProcName×D0 ×D0 := ∅
[3] local CalleePathEdge: set of triples from ProcName×D0 ×D0 := ∅

begin (message) switch
[4] case message matches AddPathEdge〈d1, d2〉 :
[5] if d1 → d2 /∈ PathEdge then
[6] Insert d1 → d2 into PathEdge
[7] for each p, d3 such that p ∈ calledProcs(n) and d3 ∈ flowcall(〈n, d2〉 , p) do
[8] Propagate(sp, AddPathEdge〈d3, d3〉)
[9] Insert 〈p, d2 → d3〉 into CallEdge
[9.1] Let D4 = { d4 | 〈p, d3 → d4〉 ∈ CalleePathEdge }
[9.2] Send synchronous Inc〈〉 to Tracker
[9.3] begin detach
[10] for each d4 ∈ D4 do
[11] for each d5 ∈ flowret(〈ep, d4〉, 〈n, d2〉) do
[12] Propagate(returnSite(n), AddPathEdge〈d1, d5〉)
[13] od
[14] od
[14.1] Send Dec〈〉 to Tracker
[14.2] end detach
[15] od
[15.1] Send synchronous Inc〈〉 to Tracker
[15.2] begin detach
[16] for each d3 ∈ flowthru(〈n, d2〉) do
[17] Propagate(returnSite(n), AddPathEdge〈d1, d3〉)
[18] od
[18.1] Send Dec〈〉 to Tracker
[18.2] end detach
[19] fi
[20] case message matches AddCalleePathEdge〈p, d1, d2〉 :
[21] Insert 〈p, d1 → d2〉 into CalleePathEdge
[22] for each d4 such that 〈p, d4 → d1〉 ∈ CallEdge do
[22.1] Let D3 = { d3 | d3 → d4 ∈ PathEdge }
[22.2] Send synchronous Inc〈〉 to Tracker
[22.3] begin detach
[23] for each d5 ∈ flowret(〈ep, d2〉, 〈n, d4〉) do
[24] for each d3 ∈ D3 do
[25] Propagate(returnSite(n), AddPathEdge〈d3, d5〉)
[26] od
[27] od
[27.1] Send Dec〈〉 to Tracker
[27.2] end detach
[28] od
[29] finally : Send Dec〈〉 to Tracker

end

Algorithm 5.5: IFDS-AD Call-Site Node-Actor Class

48

def ProcExitActor(p)
[30] local PathEdge: set of pairs from D0 ×D0 := ∅

begin (message) switch
[31] case message matches AddPathEdge〈d1, d2〉 :
[32] if d1 → d2 /∈ PathEdge then
[33] Insert d1 → d2 into PathEdge
[33.1] Send synchronous Inc〈〉 to Tracker
[33.2] begin detach
[34] for each c ∈ callers(p) do Propagate(c, AddCalleePathEdge〈p, d1, d2〉) od
[34.1] Send Dec〈〉 to Tracker
[34.2] end detach
[35] fi
[36] finally : Send Dec〈〉 to Tracker

end

Algorithm 5.6: IFDS-AD Procedure-Exit Node-Actor Class

def IntraActor(n)
[37] local PathEdge: set of pairs from D0 ×D0 := ∅

begin (message) switch
[38] case message matches AddPathEdge〈d1, d2〉 :
[39] if d1 → d2 /∈ PathEdge then
[40] Insert d1 → d2 into PathEdge
[40.1] Send synchronous Inc〈〉 to Tracker
[40.2] begin detach
[41] for each m, d3 such that n→ m ∈ E∗ and d3 ∈ flowi(〈n, d2〉) do
[42] Propagate(m, AddPathEdge〈d1 → d3〉)
[43] od
[43.1] Send Dec〈〉 to Tracker
[43.2] end detach
[44] fi
[45] finally : Send Dec〈〉 to Tracker

end

Algorithm 5.7: IFDS-AD Intraprocedural Node-Actor Class

49

the results are cached in the immutable set D4 that is passed into the detached section.
This prevents future modifications of CalleePathEdge from interfering with the operation
of the detached section.

50

Chapter 6

Evaluation

This chapter discusses the implementation and empirical evaluation of the IFDS-A and
IFDS-AD algorithms.

6.1 The Variable Type Analysis

The analysis used for evaluation is the Variable Type Analysis, or VTA, described by
Naeem et al. [NLR10]. This analysis defines the fact-set D to be the set of all pairs 〈v, T 〉
where v is a variable and T is a class type in the source program. The presence of a fact
〈v, T 〉 in the result set means that the variable v may point to an object of type T . Stated
differently, the presence of 〈v, T 〉 means that the analysis is unable to prove that v will not
point to an object of type T .

The set of types is structured because some types are subtypes of other types. If facts
〈v, T 〉 and 〈v, superclass(T)〉 both exist in the same subset, then 〈v, T 〉 is redundant and
may be removed. Furthermore, this fact does not need to be considered in any future
processing.

6.2 Implementation Details

The E-IFDS, IFDS-A, and IFDS-AD algorithms and VTA flow-functions are implemented
in the Scala language. The original IFDS algorithm is not implemented because it is
impractical for use with VTA.

The Scala language has high-level facilities for managing sets and maps, for partial
functions, and for pattern matching. As a result, many of the lines in the algorithms have
a one-to-one correspondence with lines of Scala code.

51

The node-actor classes inherit from the Actor class in the Scala Actor library. This
class defines an abstract method called act that defines the actor’s behaviour. Figure 6.1
shows the implementation of act for all the node-actors.

def act = {
loop {
react {
case msg: Any => {
message(msg)
Tracker.dec()

}
}

}
}

def message(msg: Any) = {
msg match {
case AddPathEdge(d1, d2) => ...

}
}

Figure 6.1: Node-Actor Reaction Loop in Scala

Each node-actor also implements a message function that takes the incoming message
as an argument. Because the incoming message is of type Any, a supertype of all other
types, it is dynamically matched against type-patterns to determine what type of message
was actually sent.

The loop and react “keywords” are implemented as functions in the Actor library;
Scala’s flexible syntax and support for first-class functions and partial functions enable
library functions to look like built-in constructs. The react function waits for a message
to be received and then matches it against a set of case statements. The react function
does not block; if no message is available, it returns control to the scheduler. In essence,
react blocks a user-thread, not an OS thread. One advantage of this approach is that any
number of user-threads may be mapped to a small number of pooled OS threads, thereby
conserving memory and reducing context-switching time. In this implementation, there
is a 1:1 correspondence between user-threads and actors, a 1:n correspondence between
user-threads and pooled OS threads, and a 1:1 correspondence between pooled OS threads
and independent hardware program-counters, or “processors.”

One disadvantage of using react is that it loses its calling context when it returns
control to the scheduler. As a result, react never returns after it executes the contents
of its body. The loop function mitigates this issue by implicitly creating a new actor to
restart execution after react completes.

52

. . . Initialize node-actors . . .
val s main = . . . get the Start node of the main function . . .
propagate(s main, (Zero, Zero))
self.receive {
case Done =>

}
. . . Collect results and return . . .

Figure 6.2: Top-Level IFDS-A Solver Code

The Actor library also provides a receive function that blocks an OS thread while
waiting for a message. The top-level IFDS solver code uses receive to wait for the algo-
rithm to finish executing. Figure 6.2 shows how the IFDS-A algorithm starts execution
and then waits for the actors to finish. Zero is a constant representing the zero fact in D0.
The self object represents the currently-executing actor. If the current execution context
is just an OS thread, then the Actor library generates an implicit proxy object that allows
the thread to behave like an actor. This code in this figure corresponds to lines 10 and 11
in Algorithm 5.1.

The Tracker object is implemented as a Scala object that contains an AtomicInteger

count variable. Calls to the Tracker.inc() function increment this count, and calls to
Tracker.dec() decrement this count and send a Done message to the main thread when
the count reaches zero.

The algorithm implementations are compiled with Scala 2.8.0 Beta 1 and run with Ora-
cle JRockit JVM version 3.1.2. All of the implemented algorithms extend Soot [VRCG+99],
a Java bytecode optimization framework.

6.3 Testing Methodology

6.3.1 Modeling Ideal Performance

Arriving at an accurate assessment of algorithm performance on a multi-core machine
requires an accurate model of ideal machine performance. Without an accurate model, it
is difficult to assess the algorithm’s true scalability. Processor architectures are complex
and varied, and multiple processors may share common resources such as memory busses,
caches, and computation units. Furthermore, the load placed on these shared resources
may vary considerably from application to application. Consequently, it is inaccurate to
assume a perfectly linear speedup model, i.e. that two non-communicating parallel threads
can perform twice as much work as one, and four can perform twice as much as two, etc.

53

Building a model of ideal machine performance starts with the Worklist-A algorithm.
The Worklist-A algorithm computes results identical to IFDS-A, except that the concurrent
task-scheduling and message-passing systems are replaced by a single-threaded scheduler
which uses a work-list to track unprocessed messages. For a single thread, the difference in
execution time between IFDS-A and Worklist-A is the cost of task-scheduling and message-
passing overhead.

Running t instances of Worklist-A on t parallel OS threads provides an estimation of
the maximum work that a particular machine can perform per unit time. If the machine
exhibits truly linear speedup, then the execution of t parallel instances occurs in the same
amount of wall-clock time as the execution of a single instance. If the execution of parallel
instances produces contention for shared machine resources, then some degree of slowdown
is expected as t increases. Running a large number of Worklist-A instances in parallel
causes the allocation of a very large amount of memory, making a complete solve infeasible
for larger benchmarks. The Ideal solver alleviates this problem by executing precisely the
same set of work units in the same manner as Worklist-A, but only produces a partial
solution for the given input. Whereas Worklist-A executes until its work-list is empty, the
Ideal solver terminates after 50,000 executing work units, regardless of the total number
of work units required to produce a complete solution (e.g. Worklist-A with the Variable
Type Analysis on the antlr input executes approximately 9.1 million work units). Under
the assumption that the first 50,000 work units are a representative sample of the complete
set of work units in terms of memory consumption, types of computation performed, etc.,
then:

It/I1 = Wt/W1

where It and Wt are respectively the execution times of t parallel instances of Ideal and
Worklist-A.

Therefore, the expected limit to the speedup S of IFDS-A given t OS threads is:

St = tI1/It

6.3.2 Performance Assessment

The scalability, or self-speedup, of IFDS-A at t OS threads is the increase in work-per-unit-
time relative to IFDS-A with one OS thread, or:

SelfSpeedup = A1/At

54

where A1 and At are the execution time of IFDS-A with one thread and t threads, respec-
tively.

The reference speedup of IFDS-A at t OS threads is its performance relative to E-IFDS.
Given At, or IFDS-A execution time with t threads, and E, or E-IFDS execution time,
then:

ReferenceSpeedup = E/At

Reference speedup is also computed for IFDS-AD.

The computational efficiency of IFDS-A at t OS threads is

Efficiency = W1/(StAt)

where St is the speedup limit derived from the Ideal solvers at t threads. Intuitively, this
efficiency is the proportion of available processor time IFDS-A spends performing computa-
tions that contribute to the final result. Any inefficiency, i.e. the “wasted” computational
time 1− Efficiency, is attributable to scheduling overhead, message-passing overhead, and
idle processor time. For a single thread, all inefficiency results from scheduling and message-
passing overhead. For larger numbers of threads, lack of sufficient parallelism opportunities
may cause inefficiency due to idle processor time.

6.3.3 Data Collection and Handling

Due to the difficulty of obtaining exclusive access to the machines used to perform the
experiments, the raw execution timings exhibit some degree of noise and bias. Identifying
and removing outliers from the data set mitigates the effect of noise, although noise may
still cause the reported error ranges to be larger than they otherwise would have been.
Comparing ratios instead of raw data eliminates the effect of bias in the results.

Timing data are collected in sets of replications, where each replication contains one
run of each of the following solvers:

E,W1, {It|t ∈ {1...T}}, {At|t ∈ {1...T}}, {Dt|t ∈ {1...T}}

where E is E-IFDS, W is Worklist-A, I is Ideal, A is IFDS-A, D is IFDS-AD, and {1...T} is
the set of thread counts tested. Within each replication, solvers are executed in randomized
order.

Means and confidence intervals are taken with respect to performance, then inverted to
obtain speedups. For example, the self-speedup mean and error range is computed using
the following:

55

SelfSpeedupt = 1/mean(all At/A1)
SelfSpeeduptmin = 1/(mean(all At/A1)+confidence(all At/A1, α = 0.05))
SelfSpeeduptmax = 1/(mean(all At/A1)−confidence(all At/A1, α = 0.05))

6.4 Results

All tests were performed on two machines. The first machine is a 4-socket SMP machine
with a dual-core AMD Opteron in each socket. It has 16 gigabytes of memory and a total
of eight processors. The remainder of this document uses the name Opteron8 to refer to
this machine.

The second machine is a single-socket Sun UltraSparc T2. It has 32 gigabytes of memory
and 64 processors. The remainder of this document uses the name Sparc64 to refer to this
machine.

6.4.1 Input Characteristics

Input Methods Variables Instructions Possible Types
antlr 949 10,839 16,621 257
jython 5489 56,090 74,031 1079
luindex 1306 12,519 18,131 617

Table 6.1: Input Characteristics

The test programs are part of the DaCapo Benchmark Suite version 2006-10-MR2
[BGH+06]. The antlr, jython, and luindex benchmarks are selected as inputs. Table 6.1
contains the number of methods, variables, instructions, and types within each of the
inputs. The number of instructions is the same as the number of nodes in the G∗ graph.
The size of the fact-set D is the number of variables times the possible types.

Table 6.2 shows the parallelism characteristics of the inputs. The Total Work Units
column is the total number of messages processed during execution of the single-thread
Worklist-A solver. The IFDS-AD statistics are gathered with a version of Worklist-A
that also counts each detach section as an additional work unit. Note that the exact
number of work units processed by IFDS-A and IFDS-AD may vary from run to run
due to non-deterministic ordering of work units. The Mean Parallel Width column is the
mean number of operations that may be executed in parallel at any given time. To derive
the mean parallel width, the work-list execution loop in Worklist-A is transformed into a
doubly-nested loop. The outer loop finds a maximal set of work units from the work-list

56

Total Work Mean Parallel Parallel Mean Grain Size
Input Algorithm Units Width Height Opteron8 Sparc64

antlr
IFDS-A 9.1 mil. 86.5

104,873
32 µs 193 µs

IFDS-AD 15.0 mil. 142.7 19 µs 117 µs

jython
IFDS-A 80.9 mil. 134.7

600,395
7 µs 27 µs

IFDS-AD 107.2 mil. 178.6 5 µs 20 µs

luindex
IFDS-A 14.4 mil. 4.8

301,653
42 µs 243 µs

IFDS-AD 19.6 mil. 6.5 31 µs 179 µs

Table 6.2: Parallelism Characteristics

that could be executed in parallel, and the inner loop executes this set of work units.
Two work units are deemed to be executable in parallel if and only if they operate on
different actors. Of the three inputs, luindex is likely to be at a performance disadvantage
because its mean parallel width is relatively small when compared with antlr and jython.
The Parallel Height column is the number of iterations that the outer loop requires to
complete execution. The parallel height is the length of the critical path, or the longest
chain of sequentially-dependent work units. The exact length of the critical path may vary
depending on the order in which the work units are processed. The parallel height remains
the same whether or not detach sections are enabled, since detach sections are presumed
to execute in the same outer-loop iteration as their parent work units. The Mean Grain
Size is the average length of time required to execute a work unit, computed by taking
the quotient of the total work units and the mean Worklist-A execution time. The grain
size affects execution time because larger grain sizes are more easily able to amortize the
overhead costs of message passing and task scheduling. Of the three inputs, jython is likely
to be at a performance disadvantage because its mean grain size is relatively small when
compared with antlr and luindex.

Figure 6.3 shows graphically the parallel width, or available parallelism, for each input as
a function of the percentage of work units completed. These charts provide some indication
of how many processors the algorithm can keep busy for the given input, and for how long.
For example, antlr provides sufficent parallelism to keep 100 processors busy for the first
85% of work units processed. The last 15% of work units will take longer than 15% of the
total execution time because of insufficient parallelism to keep 100 processors busy. Jython
has a similarly large available parallelism. In contrast, luindex has considerably smaller
available parallelism, where a substantial fraction of the total work done exhibits a parallel
width of only 2 units. This lack of available parallelism may severely limit the scalability
of luindex.

57

1

10

100

1000

10000

0% 20% 40% 60% 80% 100%

Total Work Done (Antlr)

A
v
a

ila
b

le
 P

a
ra

lle
lis

m

IFDS-A

IFDS-AD

1

10

100

1000

10000

0% 20% 40% 60% 80% 100%

Total Work Done (Luindex)

A
v
a

ila
b

le
 P

a
ra

lle
lis

m

IFDS-A

IFDS-AD

1

10

100

1000

10000

0% 20% 40% 60% 80% 100%

Total Work Done (Jython)

A
v
a

ila
b

le
 P

a
ra

lle
lis

m

IFDS-A

IFDS-AD

Figure 6.3: Available-Parallelism Charts

58

6.4.2 Ideal Performance

An ideal speedup function S(t) models the speedup possible on real machines assuming zero
message-passing and scheduling overhead and unlimited available parallelism. Deriving
S(t) requires first that the mean of all ideal speedups St for all inputs be taken, and
secondly that a model be fit to these means. No significant difference in Ideal solver
performance between antlr, jython, and luindex was found, so the mean speedup is taken
across all It/I1 samples. The ideal speedup function for the Opteron8 machine, shown
in Figure 6.4, is chosen to be a best-linear-fit function under the constraint S(1) = 1.
(The S(1) = 1 constraint reflects the fact that one thread always yields a speedup of 1
by definition.) The ideal fit function for Opteron8 is S(t) = 0.8154t + 0.1846, which says
that the expected ideal performance improvement for each additional OS thread added is
approximately 81.5%. The measured ideal speedup S2 is somewhat lower than the ideal
model speedup S(2), but because the measured IFDS-A speedups for two threads exceed
S2, it is likely that there is some detrimental interaction between the Ideal solver and the
hardware at two OS threads which does not occur when running IFDS-A. Therefore, S(2)
is assumed to be closer to the actual ideal performance.

The Sparc64 machine is fit with a quadratic function, as shown in Figure 6.5. Unlike
Opteron8, where each processor had dedicated computational resources, each “processor”
on Sparc64 shares computational resources with seven other “processors.” It is, therefore,
reasonable to expect a linear (or nearly-linear) speedup up to eight OS threads, but also
a reduction in the speedup factor thereafter. The architecture of the Sparc64 machine
has eight compute cores, each of which maintains eight hardware threads. For numbers of
OS threads larger than eight, the ideal speedup possible on this machine depends on the
application’s characteristic behaviour, particularly the ratio of compute time to memory
latency. The characteristic behaviour of IFDS-A with the Variable Type Analysis at eight
threads is nearly linear (S(8) = 7.8), but is notably sub-linear at 64 threads (S(64) = 38.5).
One anomaly encountered on Sparc64 is that the performance of the Ideal solver bifurcates
at 64 OS threads. The faster 50% of the Ideal solver timings have a mean speedup of
38.5x with a narrow error interval, but the slower 50% have a mean speedup of 6.4x with
a similarly narrow error interval. Because the majority of IFDS-A timings exceed 6.4x
speedup at 64 threads, and 38.5x provides a much cleaner fit to an ideal model, the slower
50% of Ideal timings at 64 threads are likely to be the result of an interaction between the
Ideal solver and the hardware that does not occur when testing IFDS-A. Therefore, the
ideal fit function S(t) does not take the slower 50% into account. Figure 6.5 shows the
slower 50% as Ideal Data B.

59

S = 0.8154t + 0.1846

R
2
 = 0.9959

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

OS Threads (Opteron8)

Id
e
a
l

S
p

e
e
d

u
p

Linear

Ideal Data

Ideal Model

Figure 6.4: Ideal Speedup Model (Opteron8)

S = -0.0068t
2
 + 1.0365t - 0.0297

R
2
 = 1

0

8

16

24

32

40

48

56

64

0 8 16 24 32 40 48 56 64

OS Threads (Sparc64)

Id
e
a
l

S
p

e
e
d

u
p

Linear

Ideal Data

Ideal Data B

Ideal Model

Figure 6.5: Ideal Speedup Model (Sparc64)

60

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

OS Threads (Opteron8)

S
e
lf

-S
p

e
e
d

u
p

Ideal Model

Antlr

Jython

Luindex

Figure 6.6: IFDS-A Self-Speedup (Opteron8)

0

4

8

12

16

20

24

28

32

36

40

0 8 16 24 32 40 48 56 64

OS Threads (Sparc64)

S
e
lf

-S
p

e
e
d

u
p

Ideal Model

Antlr

Jython

Luindex

Figure 6.7: IFDS-A Self-Speedup (Sparc64)

61

6.4.3 Performance Assessment

Figure 6.6 shows the self-speedup of IFDS-A for the three inputs on Opteron8, along
with the ideal fit function S(t). Data points in this and following graphs may be adjusted
slightly on the horizontal axis to show the error interval bars clearly. Antlr exhibits the best
self-speedup of about 5x out of an ideal maximum of 6.7x using 8 OS threads. Luindex
exhibits the worst self-speedup, achieving a maximum of 3.2x at 6 OS threads, which
decreases to 1.7x at 8 OS threads. Since luindex exhibits a mean parallel width of only
4.8, it is reasonable to expect that it reaches maximum performance between 4 and 6
threads. Adding additional threads beyond 6 is likely to incur additional overhead without
significantly increasing parallelism.

Figure 6.7 shows self-speedup on Sparc64. As expected, antlr shows the best self-
speedup, peaking at 21.3x out of an ideal maximum of 38.5x using 64 OS threads. Luindex
peaks at 32 OS threads despite a mean parallel width of 4.8. A possible explanation for
this behaviour is that it takes 32 OS threads to fully utilize four cores. Jython self-speedup
peaks at 16 OS threads before dropping below luindex performance. A possible reason for
this behaviour is that Jython’s small grain size causes significant synchronization overhead
with larger thread counts.

Figures 6.8 and 6.9 show reference speedups on Opteron8 and Sparc64, respectively.
Peak speedups over E-IFDS on Opteron8 are 2.8x, 1.6x, and 1.5x for antlr, jython, and
luindex, respectively. Peak speedups on Sparc64 are 11.2x, 3.2x, and 5.5x, respectively.

Figure 6.10 shows the computational efficiency of IFDS-A on Opteron8. As expected,
the computational efficiency tends to decrease as the number of OS threads increases.
Antlr exhibits the highest efficiency. The efficiency of luindex decreases more rapidly than
antlr because its mean available parallelism is smaller, dropping to 24% efficiency at eight
threads while antlr maintains 62% efficiency. The efficiency of jython is lower than antlr
because it incurs more overhead due to a smaller grain size, but jython’s efficiency decreases
at approximately the same rate at antlr’s due to similar levels of available parallelism. At
one thread, jython’s efficiency is 17% lower than antlr’s, and at eight threads jython’s
efficiency is 16% lower than antlr’s.

Figure 6.11 shows the computational efficiency of IFDS-A on Sparc64. Antlr and luin-
dex both have an efficiency of 81% at one OS thread, but the efficiency of luindex drops
much more rapidly than antlr due to lack of available parallelism. At 64 threads, antlr
maintains a 45% efficiency, but luindex drops to 17% efficiency. The cost of a smaller grain
size on Sparc64 is higher than on Opteron8. At one thread, jython only reaches a 47% effi-
ciency, and at 64 threads, it drops to 7%. Jython’s peak self-speedup occurs at 16 threads
(see Figure 6.7), where it maintains a 37% efficiency. At 32 threads, jython’s efficiency
drops to 13%, outweighing any benefit gained by additional parallelism. A possible cause

62

0

1

2

3

4

0 1 2 3 4 5 6 7 8

OS Threads (Opteron8)

S
p

e
e
d

u
p

 v
s
.

E
-I

F
D

S

Antlr

Jython

Luindex

E-IFDS

Figure 6.8: IFDS-A Speedup vs. E-IFDS (Opteron8)

0

2

4

6

8

10

12

0 8 16 24 32 40 48 56 64

OS Threads (Sparc64)

S
p

e
e
d

u
p

 v
s
.

E
-I

F
D

S

Antlr

Jython

Luindex

E-IFDS

Figure 6.9: IFDS-A Speedup vs. E-IFDS (Sparc64)

63

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8

OS Threads (Opteron8)

C
o

m
p

u
ta

ti
o

n
a
l

E
ff

ic
ie

n
c
y

Antlr

Jython

Luindex

Figure 6.10: IFDS-A Computational Efficiency (Opteron8)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 8 16 24 32 40 48 56 64

OS Threads (Sparc64)

C
o

m
p

u
ta

ti
o

n
a
l

E
ff

ic
ie

n
c
y

Antlr

Jython

Luindex

Figure 6.11: IFDS-A Computational Efficiency (Sparc64)

64

of this efficiency drop is that contention for entry into synchronized methods reaches a
critical performance threshold between 16 and 32 threads due to small grain size.

1-Thread 1-Thread “Best” Reference “Best”
Overhead Efficiency Speedup Efficiency

Input Opteron8 Sparc64 Opteron8 Sparc64 Opteron8 Sparc64 Opteron8 Sparc64
antlr 13% 19% 87% 81% 2.8x 11.2x 62% 45%
jython 30% 53% 70% 47% 1.6x 3.2x 46% 37%
luindex 11% 19% 89% 81% 1.5x 5.5x 57% 40%

Table 6.3: IFDS-A Overhead and Efficiency Summary

Table 6.3 summarizes the efficiency and overhead for each of the inputs. Shown in this
table are the overhead costs and the computational efficiencies of IFDS-A, the maximum
speedups IFDS-A achieves relative to E-IFDS, and the computational efficiencies at these
speedups.

Figures 6.12 and 6.13 show the mean reference speedups across all inputs for IFDS-A
and IFDS-AD. These results do not indicate any significant difference between the per-
formance of IFDS-A and IFDS-AD. Although IFDS-AD has a larger mean parallel width
than IFDS-A, it also incurs a proportionally larger scheduling overhead. Furthermore,
IFDS-AD does not significantly increase parallel width in the low-parallelism “tail” of the
computation, as shown in Figure 6.3. Lack of parallelism in this “tail” results from a
lack of new work – most of the work done at the end of the computation is checking for
previously-seen or redundant path-edges.

In summary, the major findings of these experiments include:

• The maximum attainable performance of IFDS-A with the Variable Type Analysis
depends on the characteristics of the input. Larger work unit sizes and greater
available parallelism tend to increase maximum attainable performance.

• Maximum self-speedups range from 3.2x to 5.0x on the Opteron8 machine, and from
11.7x to 21.3x on the Sparc64 machine.

• Relative to the E-IFDS reference implementation, maximum speedups range from
1.5x to 2.8x on the Opteron8 machine, and from 3.2x to 11.2x on the Sparc64 machine.

• The IFDS-A implementation spends a significant amount of time performing message-
passing and scheduling activities, between 11% and 53% of total processing time for
a single thread.

65

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 1 2 3 4 5 6 7 8

OS Threads (Opteron8)

S
p

e
e
d

u
p

 v
s
.

E
-I

F
D

S

IFDS-A

IFDS-AD

E-IFDS

Figure 6.12: IFDS-A / IFDS-AD Speedup (Opteron8)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 8 16 24 32 40 48 56 64

OS Threads (Sparc64)

S
p

e
e
d

u
p

 v
s
.

E
-I

F
D

S

IFDS-A

IFDS-AD

E-IFDS

Figure 6.13: IFDS-A / IFDS-AD Speedup (Sparc64)

66

• The performance of IFDS-AD does not differ significantly from IFDS-A. Although
IFDS-AD increases available parallelism, that increase does not offset the costs of
increased scheduling overhead.

67

Chapter 7

Conclusions

Most current compilers and program-analysis tools fail to take full advantage of multi-
core computer architectures. Dataflow-analysis algorithms, which are prime consumers of
computation time in these applications, are generally not parallelized due to the difficulty
of constructing concurrent formulations of such algorithms using the threads model.

This work, culminating in the creation of the IFDS Actors algorithm, or IFDS-A, is
a case study that examines the application of the Actor model to a dataflow-analysis
algorithm, following the intuition that the Actor model might lend itself readily to the
concurrent formulation of such an algorithm.

The Actor model was developed over 30 years ago in anticipation of distributed and
multi-core computing. Despite its theoretical maturity as a computational model, there
are currently very few practical applications of this model. The practical importance and
usefulness of the model remains unproven.

The first contribution of this work is a presentation of the E-IFDS algorithm, which
contains extensions to the IFDS algorithm that are able to increase its performance and
utility for many types of analyses. The E-IFDS algorithm allows for demand construction of
the exploded supergraph, demand construction of summary edges, providing caller context
to return-flow functions, multiple called procedures per call site, and removal of redundant
facts.

The second contribution of this work is the IFDS-A algorithm, which computes the
same results as E-IFDS, but is able to make use of multi-core computers. IFDS-AD, a
variant of IFDS-A, offers increased concurrency through use of the detach construct.

IFDS-A and IFDS-AD were implemented in the Scala language and Scala’s Actor li-
brary. Subjectively, the implementation process was very straightforward; no deadlocks
were possible, and very little reasoning about data conflicts or consistency was required.

69

The key findings of this work are:

• The maximum self-scalability of IFDS-A ranges from 3.2x to 5.0x on an eight-
processor machine, and from 11.8x to 21.3x on a 64-processor machine. The maxi-
mum ideal scalability for this algorithm is 6.7x on the eight-processor machine and
38.5x on the 64-processor machine.

• The maximum speedup IFDS-A achieves over the sequential E-IFDS algorithm ranges
from 1.5x to 2.8x on an eight-processor machine, and from 3.2x to 11.2x on a 64-
processor machine.

• No significant difference in performance between IFDS-A and IFDS-AD was found.
The detach construct, although able to provide increased concurrency, was not able
to translate that increase into improved performance.

Open questions include:

• How well does IFDS-A perform with analyses other than the Variable Type Analysis?

• What other types of analysis algorithms are easily expressible in Actor-based terms,
and do the implementations of these algorithms exhibit significant performance im-
provements on multi-core machines?

• Which other Actor-based algorithms can make use of the Tracker-object concept?

• Which other Actor-based algorithms can make use of the detach construct?

• Based on computational efficiency measurements and work-unit grain sizes, Scala’s
Actor library incurs and overhead of between 2 and 5 µs on the eight-processor
machine for every message passed. By how much can this overhead be reduced?

This work endeavours to open up new ways of thinking about the problem of concur-
rency. The expression of the IFDS-A algorithm in concurrent form, although presenting
certain challenges not encountered in the construction of the sequential E-IFDS algorithm,
was not fundamentally difficult. Future work may yield more answers about concurrent
program construction in general and the applicability of the Actor model in particular.

70

Appendix A

Raw Performance Data

The following tables contain the raw data obtained from performance measurements. All
measurements are in wall-clock seconds. The gray cells are data points that appear to be
outliers, and have been excluded from the results.

The first column in each table is the name of the solver implementation. For names
that end in a number, the number is the number of OS threads used for the timings in
that row.

71

Solver Replications
Implementation 1 2 3 4 5 6 7 8
E-IFDS 189.228 184.773 185.834 181.066 185.139 180.136 177.168 191.738
Worklist-A 286.596 283.375 298.303 299.274 279.837 288.911 299.501 297.857
IFDS-A-1 332.311 348.396 356.823 326.618 321.785 341.979 328.749 333.260
IFDS-A-2 183.131 179.684 169.998 169.615 175.423 167.225 176.637 244.096
IFDS-A-4 96.668 97.472 97.292 96.132 98.314 92.443 92.328 95.683
IFDS-A-6 71.351 71.944 72.320 75.866 72.907 73.502 69.155 74.798
IFDS-A-8 64.626 68.933 95.764 66.883 66.300 63.309 66.688 83.261
IFDS-AD-1 325.583 320.771 348.954 319.422 318.092 346.162 331.615 357.602
IFDS-AD-2 182.520 179.754 179.777 177.081 188.825 185.136 183.428 177.790
IFDS-AD-4 111.760 107.828 103.673 101.268 109.287 110.003 100.173 109.167
IFDS-AD-6 86.359 86.880 78.721 77.115 81.209 77.848 80.968 91.457
IFDS-AD-8 96.706 70.941 107.394 72.832 71.114 73.846 80.418 98.479
Ideal-1 0.905 0.928 0.693 0.651 0.737 0.632 1.121 1.562
Ideal-2 1.045 1.144 0.876 1.219 1.013 1.203 0.907 1.050
Ideal-4 0.844 0.947 0.882 1.027 0.926 1.083 0.832 0.960
Ideal-6 0.966 0.899 0.847 0.832 1.190 0.890 0.941 0.778
Ideal-8 0.985 0.961 0.873 0.921 0.945 0.906 1.045 1.018

Table A.1: Antlr on Opteron8

Solver Replications
Implementation 1 2 3 4 5 6 7 8
E-IFDS 287.265 295.413 274.480 260.580 276.809 277.441 286.731 295.708
Worklist-A 852.362 540.614 571.397 571.961 568.088 561.197 541.320 536.788
IFDS-A-1 757.337 856.845 781.768 748.138 779.294 851.608 750.182 767.941
IFDS-A-2 426.475 416.305 628.033 406.956 465.250 467.478 432.896 427.784
IFDS-A-4 255.967 313.008 253.850 259.994 256.791 306.002 273.368 240.906
IFDS-A-6 244.705 190.131 353.716 222.739 458.035 192.327 182.033 187.468
IFDS-A-8 183.657 194.450 242.065 264.517 166.739 206.817 164.868 164.463
IFDS-AD-1 727.319 724.835 747.467 720.989 871.432 789.315 805.668 741.938
IFDS-AD-2 495.896 476.648 476.638 470.418 490.577 447.277 464.617 476.092
IFDS-AD-4 278.275 324.929 279.923 284.875 2012.522 296.955 287.934 319.667
IFDS-AD-6 209.989 263.918 238.580 246.730 240.893 241.177 245.191 311.144
IFDS-AD-8 185.086 232.264 444.421 363.352 208.379 201.125 278.687 201.522
Ideal-1 0.769 0.571 0.502 0.670 0.898 0.464 0.449 0.739
Ideal-2 1.121 1.010 3.489 0.886 0.831 0.868 0.697 0.861
Ideal-4 0.780 0.847 0.646 0.897 0.658 0.677 0.692 0.757
Ideal-6 0.818 0.804 0.707 0.604 0.738 0.846 0.758 0.680
Ideal-8 0.767 0.921 0.848 0.746 0.736 3.073 0.695 0.785

Table A.2: Jython on Opteron8

72

Solver Replications
Implementation 1 2 3 4 5 6 7 8
E-IFDS 31.835 29.295 28.989 30.597 30.521 29.759 31.927 31.105
Worklist-A 57.820 55.092 58.544 58.446 65.446 68.912 62.586 61.336
IFDS-A-1 67.752 73.029 65.848 65.543 68.199 62.121 64.963 74.485
IFDS-A-2 42.428 39.276 38.767 38.823 41.073 38.085 41.763 39.629
IFDS-A-4 24.131 22.744 23.645 23.210 21.576 24.186 22.097 24.832
IFDS-A-6 18.457 18.813 20.785 24.590 19.237 20.089 22.226 23.401
IFDS-A-8 41.773 23.415 31.988 37.548 49.279 42.458 37.828 43.955
IFDS-AD-1 70.038 70.430 68.643 65.864 79.302 72.742 74.892 73.804
IFDS-AD-2 39.443 36.865 38.266 39.777 38.291 40.086 40.478 38.288
IFDS-AD-4 23.961 24.136 23.717 25.282 24.792 23.033 23.742 24.071
IFDS-AD-6 19.924 20.448 21.113 21.763 19.915 20.667 20.761 17.998
IFDS-AD-8 35.121 24.697 39.858 36.340 32.818 37.269 26.742 24.460
Ideal-1 0.821 0.660 1.256 0.871 1.117 1.088 0.919 0.880
Ideal-2 0.929 1.136 1.377 0.841 1.002 0.686 0.796 0.911
Ideal-4 0.884 0.832 1.155 0.851 0.922 0.950 0.922 0.871
Ideal-6 0.932 0.966 0.962 0.875 1.458 1.062 0.946 1.066
Ideal-8 1.021 1.037 0.942 0.978 1.341 0.949 0.940 1.030

Table A.3: Luindex on Opteron8

Solver Replications
Implementation 1 2 3 4 5 6
E-IFDS 1133.760 1119.000 1125.879 1122.295 1136.917 1120.009
Worklist-A 1749.923 1745.709 1746.785 1750.224 1746.153 1748.640
IFDS-A-1 2155.183 2148.884 2146.169 2168.832 2141.611 2147.903
IFDS-A-2 1081.015 1094.226 1085.663 1084.180 1079.718 1087.013
IFDS-A-8 289.037 292.011 290.523 290.399 286.610 293.431
IFDS-A-16 156.763 173.232 166.211 166.445 169.400 167.423
IFDS-A-32 110.085 112.586 110.994 120.122 106.623 115.893
IFDS-A-48 99.021 105.561 99.802 113.928 103.518 101.240
IFDS-A-64 176.727 103.440 95.526 137.622 105.617 99.177
IFDS-AD-1 2141.660 2160.317 2137.353 2172.106 2160.862 2141.978
IFDS-AD-2 1089.207 1090.732 1089.035 1093.834 1091.368 1088.746
IFDS-AD-8 294.241 309.212 290.812 295.175 293.295 294.547
IFDS-AD-16 235.389 171.635 169.409 178.688 222.839 166.332
IFDS-AD-32 112.314 116.617 111.541 110.106 114.838 114.552
IFDS-AD-48 101.845 102.315 108.536 108.708 104.209 108.526
IFDS-AD-64 132.930 101.585 111.673 137.123 101.609 149.730
Ideal-1 3.822 3.903 3.831 3.845 3.747 3.739
Ideal-2 3.875 3.871 3.851 3.868 3.782 3.763
Ideal-8 3.895 3.914 3.900 3.901 3.810 3.839
Ideal-16 4.226 4.080 4.115 4.085 3.979 3.991
Ideal-32 4.728 4.690 4.682 4.777 4.587 4.751
Ideal-48 5.518 5.439 5.531 5.536 5.761 5.429
Ideal-64 14.212 30.774 31.646 31.036 6.492 22.265

Table A.4: Antlr on Sparc64

73

Solver Replications
Implementation 1 2 3 4 5
E-IFDS 1266.852 1261.177 1245.767 1257.678 1264.439
Worklist-A 2106.569 2018.644 2254.169 2043.044 2373.160
IFDS-A-1 4609.300 4620.185 4596.172 4609.855 4556.902
IFDS-A-2 2354.222 2359.907 2299.896 2418.937 2349.710
IFDS-A-8 679.869 669.430 646.302 647.306 630.161
IFDS-A-16 380.547 393.278 390.178 396.344 397.260
IFDS-A-32 645.102 308.870 813.731 682.764 662.578
IFDS-A-48 876.473 786.107 683.791 951.098 1055.722
IFDS-A-64 728.127 754.890 732.518 823.150 1087.598
IFDS-AD-1 4588.204 4576.350 4609.596 4608.330 4562.790
IFDS-AD-2 2357.918 2372.692 2342.913 2327.696 2369.132
IFDS-AD-8 662.333 665.686 660.805 661.575 678.685
IFDS-AD-16 354.837 415.297 419.530 408.550 421.912
IFDS-AD-32 297.000 453.589 722.841 418.547 577.815
IFDS-AD-48 816.260 836.571 804.552 993.905 902.646
IFDS-AD-64 755.422 822.999 866.923 856.363 1258.727
Ideal-1 2.651 2.501 2.505 2.509 2.578
Ideal-2 2.505 2.506 2.533 2.517 2.615
Ideal-8 2.533 2.725 2.577 2.533 2.764
Ideal-16 2.694 3.133 2.652 2.706 2.771
Ideal-32 3.035 3.037 3.064 3.058 3.134
Ideal-48 3.468 3.456 3.457 3.453 3.586
Ideal-64 3.991 35.232 34.018 29.674 4.112

Table A.5: Jython on Sparc64

Solver Replications
Implementation 1 2 3 4
E-IFDS 186.965 183.617 181.753 182.109
Worklist-A 351.019 348.083 354.877 348.119
IFDS-A-1 431.323 433.712 431.720 431.873
IFDS-A-2 232.861 233.222 234.272 249.930
IFDS-A-8 73.990 61.601 67.540 69.880
IFDS-A-16 53.792 42.336 48.334 35.994
IFDS-A-32 35.699 35.496 29.203 34.338
IFDS-A-48 40.608 40.402 41.272 56.883
IFDS-A-64 58.313 56.404 62.356 42.467
IFDS-AD-1 434.330 431.029 439.744 432.409
IFDS-AD-2 235.571 249.309 232.739 250.010
IFDS-AD-8 63.993 67.695 66.248 65.155
IFDS-AD-16 41.638 41.810 41.236 39.011
IFDS-AD-32 33.504 33.678 33.923 34.676
IFDS-AD-48 49.393 36.948 36.074 38.950
IFDS-AD-64 48.325 50.522 65.295 77.535
Ideal-1 3.885 3.887 3.798 3.812
Ideal-2 3.833 3.898 3.823 3.827
Ideal-8 3.888 3.942 3.884 3.889
Ideal-16 4.078 4.071 4.049 4.065
Ideal-32 6.199 4.688 4.681 4.703
Ideal-48 5.510 5.463 5.431 5.464
Ideal-64 6.572 6.544 6.516 6.536

Table A.6: Luindex on Sparc64

74

References

[ABB+07] Shivali Agarwal, Rajkishore Barik, Dan Bonachea, Vivek Sarkar, Rudrap-
atna K. Shyamasundar, and Katherine Yelick. Deadlock-free scheduling of
X10 computations with bounded resources. In SPAA ’07: Proceedings of the
nineteenth annual ACM symposium on Parallel algorithms and architectures,
pages 229–240, New York, NY, USA, 2007. ACM.

[Agh86] Gul Agha. Actors: a model of concurrent computation in distributed systems.
MIT Press, Cambridge, MA, USA, 1986.

[BB09] Alexandro Baldassin and Sebastian Burckhardt. Lightweight software trans-
actions for games. In Proceedings of the First USENIX Workshop on Hot
Topics in Parallelism (HotPar ’09), 2009.

[BDS+92] P. A. Buhr, Glen Ditchfield, R. A. Stroobosscher, B. M. Younger, and C. R.
Zarnke. µC++: Concurrency in the object-oriented language C++. Software
- Practice and Experience, 22(2):137–172, 1992.

[BGH+06] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo bench-
marks: Java benchmarking development and analysis. In OOPSLA ’06: Pro-
ceedings of the 21st annual ACM SIGPLAN conference on Object-Oriented
Programing, Systems, Languages, and Applications, pages 169–190, New York,
NY, USA, October 2006. ACM Press.

[BL99] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded com-
putations by work stealing. J. ACM, 46(5):720–748, 1999.

[BS06] Saisanthosh Balakrishnan and Gurindar S. Sohi. Program demultiplexing:
Data-flow based speculative parallelization of methods in sequential programs.
In ISCA ’06: Proceedings of the 33rd annual international symposium on

75

Computer Architecture, pages 302–313, Washington, DC, USA, 2006. IEEE
Computer Society.

[DLCO09] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. DMP: determin-
istic shared memory multiprocessing. In ASPLOS ’09: Proceeding of the 14th
international conference on Architectural support for programming languages
and operating systems, pages 85–96, New York, NY, USA, 2009. ACM.

[DRT+09] Danny Dig, Cosmin Radoi, Mihai Tarce, Marius Minea, and Ralph Johnson.
ReLooper: Refactoring for loop parallelism. Technical report, University of
Illinois at Urbana-Champaign, 09 2009.

[FLR98] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implemen-
tation of the Cilk-5 multithreaded language. In PLDI ’98: Proceedings of
the ACM SIGPLAN 1998 conference on Programming language design and
implementation, pages 212–223, New York, NY, USA, 1998. ACM.

[Gro07] Dan Grossman. The transactional memory / garbage collection analogy. In
OOPSLA ’07: Proceedings of the 22nd annual ACM SIGPLAN conference on
Object-oriented programming systems and applications, pages 695–706, New
York, NY, USA, 2007. ACM.

[HB77] Carl Hewitt and Henry Baker. Laws for communicating parallel processes. In
1977 IFIP Congress Proceedings, pages 987–992, 1977.

[Hew77] Carl Hewitt. Viewing control structures as patterns of passing messages.
Artificial Intelligence, 8(3):323–364, 1977.

[Hew09] Carl Hewitt. ActorScript(TM): Industrial strength integration of local and
nonlocal concurrency for client-cloud computing. CoRR, abs/0907.3330, 2009.

[HO09] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and
event-based programming. Theor. Comput. Sci., 410(2-3):202–220, 2009.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, 1978.

[Kaf90] Dennis Kafura. ACT++: building a concurrent C++ with actors. J. Object
Oriented Program., 3(1):25–37, 1990.

[KBI+09] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav Pingali, and
Calin Casçaval. How much parallelism is there in irregular applications? In
PPoPP ’09: Proceedings of the 14th ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 3–14, New York, NY, USA, 2009.
ACM.

76

[Kno09] Kathleen Knobe. Ease of use with concurrent collections (CnC). In Proceed-
ings of the First USENIX Workshop on Hot Topics in Parallelism (HotPar
’09), 2009.

[KPW+07] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan,
Kavita Bala, and L. Paul Chew. Optimistic parallelism requires abstrac-
tions. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation, pages 211–222, New York,
NY, USA, 2007. ACM.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[Lee06] Edward A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[Mur89] Tadao Murata. Petri nets: Properties, analysis, and applications. Proceedings
of the IEEE, 77(4):541 – 580, 1989.

[NLR10] Nomair A. Naeem, Ondřej Lhoták, and Jonathan Rodriguez. Practical ex-
tensions to the IFDS algorithm. In Compiler Construction, volume 6011 of
Lecture Notes in Computer Science, pages 124–144. Springer-Verlag, Berlin,
2010.

[OAA09] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: efficient de-
terministic multithreading in software. In ASPLOS ’09: Proceeding of the 14th
international conference on Architectural support for programming languages
and operating systems, pages 97–108, New York, NY, USA, 2009. ACM.

[OZ05] Martin Odersky and Matthias Zenger. Scalable component abstractions. In
OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pages
41–57, New York, NY, USA, 2005. ACM.

[PKA96] R. Panwar, W. Kim, and Gul Agha. Parallel implementations of irregular
problems using high-level actor language. In IPPS ’96: Proceedings of the
10th International Parallel Processing Symposium, pages 857–862, Washing-
ton, DC, USA, 1996. IEEE Computer Society.

[RHS95] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In POPL ’95: Proceedings of the
22nd ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 49–61, New York, NY, USA, 1995. ACM.

77

[RVDB07] Sean Rul, Hans Vandierendonck, and Koen De Bosschere. Function level
parallelism driven by data dependencies. SIGARCH Comput. Archit. News,
35(1):55–62, 2007.

[SM98] J. Gregory Steffan and Todd C. Mowry. The potential for using thread-level
data speculation to facilitate automatic parallelization. High-Performance
Computer Architecture, International Symposium on, 0:2, 1998.

[Smo95] Gert Smolka. The Oz programming model. In Computer Science Today,
volume 1000 of Lecture Notes in Computer Science, pages 324–343. Springer-
Verlag, Berlin, 1995.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In PODC
’95: Proceedings of the fourteenth annual ACM symposium on Principles of
distributed computing, pages 204–213, New York, NY, USA, 1995. ACM.

[Ste99] Lynn Andrea Stein. Challenging the computational metaphor: Implications
for how we think. Cybernetics and Systems, 30(6):473–507, 1999.

[Ste06] Guy L. Steele, Jr. Parallel programming and code selection in Fortress. In
PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, pages 1–1, New York, NY, USA,
2006. ACM.

[Swe06] Tim Sweeney. The next mainstream programming language: A game de-
veloper’s perspective. In POPL ’06: Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 269–269, New York, NY, USA, 2006. ACM.

[VRCG+99] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam,
and Vijay Sundaresan. Soot - a java bytecode optimization framework. In
CASCON ’99: Proceedings of the 1999 conference of the Centre for Advanced
Studies on Collaborative research, page 13. IBM Press, 1999.

[VWW96] Robert Virding, Claes Wikström, and Mike Williams. Concurrent program-
ming in ERLANG (2nd ed.). Prentice Hall International (UK) Ltd., Hert-
fordshire, UK, 1996.

[YNW+08] Richard M. Yoo, Yang Ni, Adam Welc, Bratin Saha, Ali-Reza Adl-Tabatabai,
and Hsien-Hsin S. Lee. Kicking the tires of software transactional memory:
why the going gets tough. In SPAA ’08: Proceedings of the twentieth annual
symposium on Parallelism in algorithms and architectures, pages 265–274,
New York, NY, USA, 2008. ACM.

78

[ZGU+09] Ferad Zyulkyarov, Vladimir Gajinov, Osman S. Unsal, Adrián Cristal, Eduard
Ayguadé, Tim Harris, and Mateo Valero. Atomic quake: Using transactional
memory in an interactive multiplayer game server. In PPoPP ’09: Proceedings
of the 14th ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 25–34, New York, NY, USA, 2009. ACM.

79

