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Abstract

The ring of polynomials over a finite field has many arithmetic properties similar
to those of the ring of rational integers. In this thesis, we apply the Hardy-Littlewood
circle method to investigate the density of rational points on certain algebraic varieties in
function fields. The aim is to establish asymptotic relations that are relatively robust to
changes in the characteristic of the base finite field. More notably, in the case when the

characteristic is “small”, the results are sharper than their integer analogues.
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Chapter 1

Introduction

1.1 Motivation

The problem concerning integral points lying on the hypersurface defined by an additive
equation has occupied a prominent position in number theory over the past century. Let
Z be the ring of integers and let N = {0,1,2,...}. For nonzero k¥ € N and nonzero
ai,...,as € 7, one wishes to establish an asymptotic estimate for the density of integral

points lying on the hypersurface
aywt + -+ awh = 0. (1.1)

For positive P € R, the set of real numbers, let M, (P) denote the number of integral
solutions of (1.1) in the box [—P, P]*. When £k is sufficiently large, subject to a local
solubility hypothesis, the work of Wooley [21] on Waring’s problem can be used to show
that M,(P) > P** whenever s > klogk + O(kloglogk). Moreover, by the work of
Ford in [6], we may prove that there are two positive constants Dy = D (s, k;aq, ..., as)
and py = pi(k) such that

M (P) = D1 P*" + O(P*~F1m),

whenever s > k*log k + O(k*loglog k).

Because of the homogeneity of (1.1), if a nonzero integral point w = (wy, ..., ws) lies

on (1.1), then the rational line determined by this point {bw |b € Q} is also contained in
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(1.1). Thus the above question is about the density of linear spaces of dimension 1. It is
therefore natural to ask about linear spaces of higher dimension. Asymptotic estimates
for the number of such spaces up to a given height have been considered in recent work
of Parsell (see [13], [14], [15], and [16]). Let V be a rational linear space of dimension d
when d € N and d > 2. Suppose that uy,...,uy € Z*° form a basis of V. Then

V:Span{ul,...,ud}:{b1u1+---+bdud‘b1,...,bd6Q}.

V' is contained in the hypersurface defined by (1.1) if and only if every vector v =
(vi,...,vs) € V is a solution of (1.1). Write v =bju; + - - - + bguy. Thus,

vj =bjuy; + -+ bug; (1 <7 <s).

Note that v = (vq,...,v,) is a solution of (1.1) if and only if

k k
a vy + -+ asv; =0,

ie.,
ar(biugg + -+ bdud,l)k + - Fas(biugs + -+ bdud,s)k = 0.

Using the multinomial theorem, for each 5 with 1 < j <'s, we have

k! . . .

k : 7 id 1 7
(blul,j +ooet bdud7j> = § : ﬁbll T bddullvj o 'udcfj'
ibetig=k 1 &

On collecting the coefficients of b' - - -bi;’ for each d-tuple (i1, ...,iq) with i, +---+i4 = k,

we have

k! , ) 4 o .
E . 1 td 21 d \ }1 d
W(alull...udl_’_...+asuls...ud5)b1...bd _0
inttig=k . d-

Certainly, the above equation is true for every d-tuple (by,...,b;) € Q% if and only if

uy, ..., uy satisfy the following system

The number of equations of the system (1.2) is given by

E+d—1
ny = .
k



Let M,y q(P) denote the number of solutions of the system (1.2) with u,; € [-P, P|NZ
(1<i<d, 1<j<s). In[15], Parsell applied the Hardy-Littlewood circle method to
estimate My 4(P). In particular, he proved a generalization of Vinogradov’s mean value

theorem, which concerns the number of solutions of an auxiliary symmetric system
i1 iq i1 ig __ o001 iq i1 iq :
Uy ug e UL g =g g e g (LI < R), (1.3)

where |i| =41 + - - - + i4. The number of equations of the above system is

k+d
Ng = + -1

The result in [15, Theorem 1.4] states that when k is sufficiently large in terms of d, subject
to a local solubility hypothesis, there are two positive constants Dy = Ds(s, k, d; aq,. .., as)
and s = ps(k, d) such that

Msvkvd(‘P) - DQPSd_nlk + O(PSd_nlk_H2)7

whenever
s > 2n2k((2/3)logns + (1/2)log k) + O(nok loglog k). (1.4)

Let IF,[t] be the ring of polynomials over the finite field F, of ¢ elements whose char-
acteristic is p. Because of the remarkable analogy between Z and F,[t], we can consider a
polynomial analogue of the above question. Let k& € N with p t k. For fixed coefficients
c1,...,¢s € Fy[t]\ {0}, we consider the hypersurface defined by

c1Zh + e =0. (1.5)

For P € R with P > 0, let Nyx(P) denote the number of solutions of (1.5) in F,[¢]°®
with degz; < P (1 < j < s). When k is sufficiently large, subject to a local solu-
bility assumption, Liu and Wooley [11] proved that N,,(P) > (¢” )S_k whenever s >
klogk + O(kloglogk). They [12] also proved that there are two positive constants
D3 = Ds(s,k;q;c1,. .., ¢5) and usz = ps(k,q) such that

Nox(P) = Ds(¢") "+ 0((¢")"" ")

whenever s > 2nsklog(nzk) + O(nsklog(nsk)), where 1 < ng = ns(k) < k.



In this thesis, we extend the result in [12] to higher dimensions. For d € N with d > 2,

let x1,...,%4 € F,[t]® be linearly independent vectors and define
Span{xy, ..., X4} = {f1x1 + -+ faxg | f1,...,fa € ]Fq(t)}.
The hypersurface (1.5) contains this space if and only if
c(fixig+---+ fdxd,l)k + - tos(fiws + - F fdxd,s)k =0.

Using the multinomial theorem, for each j, we have

k! i ig i1 i
(e + - +hawag) = Y )" (o) el -2,

c gl
i1+-Fig=k b td:
This equation is true for every d-tuple (fi,...,fqs) € F,(¢) if and only if x4, ..., x4 satisfy
simultaneously the following equations
—<Cl'rzlllxddl++cs'rzllsxdi> :0 (Zl+"'+ld:k)'
21! tee Zd!

Since charF, = p, the above system is equivalent to the following system
x4 el 2 =0 <(z’1,...,id) € £>. (1.6)

where the set L is defined by

rE

c:%@”w@ew

. . k!

W+ +ig=k andpfﬁ}.
AR d

The cardinality of the set £ can be calculated explicitly as follows. For every ¢« € N, it can

be represented uniquely as

an(i)p"
0

i —
h—
where ap (i) € [0,p — 1] NZ (h € N). Write

k = ao(k) +ai(k)p+ -+ ap(k)p®.

From Lemma 61, we have



For a positive number P, let N, gc(P) = N;.q(P) denote the number of the solutions
of the system (1.6) with z;; € F,[t] and degz;; < P (1 < <d, 1 <j <s). We shall
frequently abbreviate a monomial of the shape xlf = -xff by xi. Also, for i = (i1,...,i4) €
N¢, we write p {1 if p 114, for some [ with 1 <1 < d. Motivated by Parsell’s work in [15], to
estimate Ny 4(P), we consider a generalization of Vinogradov-type mean value theorem.

More precisely, we need to investigate the number of solutions of the system
Xt xi =y oyl (1€RY) (1.7)
where Ry, is a set of certain d-tuples satisfying
LCRyC{ieN|1<Ii| <k, pti}. (1.8)

When k < p, let Rj = {i € N¢|1 < |i] < k}. Thus the system (1.7) has the same shape
as the system (1.3). By applying the Linnik-Karatsuba method and the repeated efficient
differencing process, we may obtain results that are of the same strength as the integer

analogue considered in [15]. The case when k > p is much more complicated. Since
PP P P = p
Ty Ty + F Xy Ty = (xll Ta1 + + X1 :z:ds) ,

the second containment in (1.8) is necessary in order to guarantee that the equations of
the system (1.7) are independent. However, one difficulty occurs as the Linnik-Karatsuba
method used in the integer case is ineffective for the system (1.7). To surmount this
barrier, we choose

Ry ={i€Rolpti},

where
Ro={ieN|JeN st. qk)>1 and |an(i)| < appi(k) (h € N)}.
It transpires that the system (1.7) is equivalent to the following augmented system
x|+ +xi=y +-- 4yl (1€Ry). (1.9)

Furthermore, the Linnik-Karatsuba method is applicable to the system (1.9). Indeed, the
conclusion on the system (1.9) mirrors an expected Vinogradov-type result for the system

(1.7). From Lemma 69, we have

1+d>,

v < card Ry < V(l + 7
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where

B ao(k)+d \ 1y ( anlk)+d
() I

Under a similar solubility condition as in [15], we employ a variant of the Hardy-Littlewood

circle method to prove the following theorem.

Theorem 1. Let p be the characteristic of F,. Suppose that ptk and k > d + 2. Further
suppose that the system (1.6) has a non-singular solution in the completion of F,(t) at oo

and a non-singular solution in the completion Fy(t),, of F,(t) at every irreducible element
w in F[t]. Let v = card L and r = card R{,. Whenever

s> 2rk<log(m"k) +log (log (20 — 1)rklogk) + 2k~") 4+ 3 + log4 — log (1 — (log k)’l)),
there is a positive constant C = C(s, k,d;q;c1,. .., cs) such that

Ns,k,d,c(P) = C(qp>8d_Lk + O((qP)Sd—Lk—(S>’

where
_ { 1 1 — (logk)™* }
0 = min , )
18ke” durk(log((2e — 1)rklog k) + 2k—1)
and the implicit constant depends on s, k,d,q and cq, ..., cs.

Let v, 4(k) denote the least positive integer s for which the above asymptotic formula
holds. It is remarkable that when £ satisfies certain properties, both ¢ and r only depend on
d. For example, when k = 1+pP (D € N\ {0}), we may find that ¢ = d*> and r = d(d +1).
Thus v, (k) = Oy a(klog k), which is sharper than its integer analogue expressed in (1.4).

Furthermore, Theorem 1 establishes the existence of many rational linear spaces of
dimension d on the hypersurface (1.1), provided that the conditions in Theorem 1 are

satisfied. We define the height of a vector x = (x1,...,x,) € F,[t]" to be

maxi<i<n <.Z'Z>
(ged(zy, ... 2p)))

where for z € F[t], (x) = ¢?¢*. Now for a subspace V C F,(t)* with basis vectors

H(x) =

X1, ...,Xq € F,[t]*, we write
HV)=H(xi A AXq).

6



If y1,...,ya € F,[t]° is another basis for V, then we have Y = X B, where X and Y
denote the s x d matrices corresponding to each basis and where B is an invertible d x d

change-of-basis matrix. Since
ViAo Ayg= (det B)x; A+ A Xy,

we see that the definition of H (V') does not depend on the basis. Let Ny (P) denote
the number of distinct linear spaces V' of dimension d and height at most ¢”, lying on the

hypersurface (1.5). We may deduce from Theorem 1 that

Theorem 2. Under the same conditions as the ones in Theorem 1, there are two positive
constants Cy; = Cy(s, k,d; q; ¢1,...,¢5) >0 and Cy = Cy(s, k,d;q;¢q, ..., ¢cs) > 0 such that

_ke_ g4 3

Nawa(P) = Cy(q") ™4™ = Cy(¢P) 4%,

where 0 is defined as in Theorem 1.

1.2 The circle method for polynomial rings

Let A = TF,[t] be the ring of polynomials over the finite field F,. Let p be the charac-
teristic of F,. In what follows, write Ko, = IF,((1/t)) for the completion of F,(t) at co. We

may write each element o € K, in the shape a = > a;t* for some n € Z and coefficients

i<n
a; = a;(a) € F, (i < n). We define ord a to be the largest integer ¢ for which a;(a) # 0

orde  Tpn this context, we adopt the convention that ord0 = —oo and

and write (@) = ¢
(0) =0. Let T = {a € K|{(or) < 1}. We may normalize any Haar measure da on K, in

such a manner that fT lda = 1.

Let tr : F, — [, denote the familiar trace map. Also let ¢, : F, — C* be a non-
trivial additive character defined for each a € F, by taking e,(a) = e(tr(a)/p), where we

write e(z) for €™,

We are now in a position to define an analogue of the exponential function. For
a=>. a;it! € Ky, define resa = a_;. The exponential function e : K., — C* is

induced by defining, for each element a € Ky, the value of e(a) to be e,(res ). Then we



have the following orthogonality relation [10, Lemma 1],
1, when x =0,
/ e(ra)da =
T 0, when z € F [t] \ {0}.

Therefore, for n € N\ {0}, (21, ,z,) € F [t]", and & = (g, -+ , av,) € K2, we have

/ e(rioq + -+ + rpon,) da = H / e(z;04) doy;
" i=1 /T

, (1.10)
1, when z; =0(1 <i<n),

0, otherwise.

For P € R, let P = ¢” and Ip = {z € A|(z) < P}. For a = (a3)ier € K%, and P € R
with P > 0, define

e = flasr) = ¥ e Teant) 1<)

xelg iel

By (1.10), we see that

Ns,k,d(P) = /TL Hf](a)da

We analyze the above integral via the Hardy-Littlewood circle method. To this end,
we divide T* into the Farey arcs defined as follows: given a = (a;)ies € AY, g € A with
ged(a, g) = 1, we define the Farey arc 9(g,a) about a/g by

M(g,a) = {a €T | (gos —as) < P27 (i € E)}. (1.11)

Write (¢) = max (c;). The set of major arcs M is defined to be the union of all M(g, a)

1<j<s
with

N

ac A’ ge A, gmonic, ged(a, g) = 1, and 0 < (a;) < (g) < ()P2 (i€ L). (1.12)

The conditions (1.11) and (1.12) ensure that the arcs (g, a) comprising M are disjoint.
Furthermore, we write m = T* \ 9t for the complementary set of minor arcs. In Chapter

2, we estimate the major arc contribution and obtain
/ T1 /i(@)da = CPo= + O(Psi-1k=5), (1.13)

8



for some 6 > 0 whenever
s> 2k(t+1)+1,

where the constant C' depends on s, k, d, ¢ and c¢,...,cs and C' > 0 if the system
(1.6) satisfies the solubility hypothesis as in Theorem 1. In Chapter 3, we show that the

contribution over minor arcs is of the form
S
[ TLstalda= o(pet-5)
for some § > 0 whenever

s > 2rk( log(urk) +log (log ((2¢ — 1)rklogk) + 2k™1) 4+ 3 4+ log4 —log (1 — (logk)™1) ).
(Tog(erk) + log (1og (20~ Drklog k) (log k)

Then in Chapter 4, we combine the above estimates to prove Theorem 1.

Notation Generally, the variable ¢ denotes a small positive number whose value may
change from statement to statement. The implicit constants in our analysis may depend
at most on €,s,k,d, ¢ and ¢q,...,cs. Since our methods involve only a finite number of

steps, all implicit constants that arise remain under control.



Chapter 2

The major arc contribution

2.1 The generating functions

We recall that for P € R with P > 0 and o = ()i € T,

e = e Toat) i<

xeld el
and for g € A and a = (a;)jes € A,
M(g,a) = {acT| (g — a) < pa* iel)}.

The first step is to establish control of the generating functions f;(a) for a € M(g,a) C M

by the auxiliary functions

and
Si(g,a) = S(g,c;a) (1 <j<s).

For this purpose, we introduce two useful lemmas.

Lemma 3. The exponential function e : Koo — C* has the following properties.

(1) e is a continuous function.

(2) ela+ ) = e(a)e(B).

10



(3) e(x) =1, if v € A.
(4) If m € N and x € A, then

m

g™, ifordz <m,
/ e(ra)da =
ord a<—m 0, otherwise.

(5) If a,g € A, then
1 ax 1, ifg|a,
g2 5=,
xe[ordg 07 lfg/i,a
(6) For a, B € Ky, if (o — ) < ¢!, then e(a) = e(B).
Proof. This is [10, Lemma 1]. O
For i= (i1,...,14),j = (j1,--.,j4) € N, write

()0

Lemma 4. Fori € N¢, define
. nd i
Ry = JeN‘pf L)L
J

worrex (o

JER;: J

For x,y € K, we have

Proof. Let i = (i1,...,iq), x = (x1,...,7q) and y = (y1,...,vq). Recall that (x +y)! =
(1 +y1)" -+ (xqg + yq)'e. By the binomial theorem, we have

i :
(2 4+ )" = Z ( Z.l ) alyt T (1< 1< d).

=0 \ Ji

11



Thus,

i (g iy o o
=y ( . )( | )(w?y?‘”)---(asédyif‘“)
=0 jg=0 \ J1 Jd

This completes the proof of the lemma. n

Lemma 5. Suppose that o = (;)ies € T and that a« = a/g+ 3 with g € A, a = (a;)ier €
AY {as) < {g) < ()P7 and (B) < (g) "' P27 * (i€ L). If (c) < P, then

file) = {9)"S;(g,a) f;(B) (1<j<s).

Proof. Fix x € I4. We can write x uniquely as x = gy + z with z € [glrdg and y € Igg,

where Q = P — ord g. Since (gy + z)! = z' (mod g), by Lemmas 3 and 4, we have

(T ) ()

iel iel

It follows that

He) =% Y o Sy +a))

d d i
yelh zeld,, iel

-y ¥ e(zCjai(gy—l—Z)i)e(chﬁi(gy—i-Z)i)

5 g .
d d
yejQ Ze[ordg iel iel

-2 (S S e Lty )

d i d i
Ze[ordg iel YEIQ iel

= 500) X o Doy +9)

yeld el

To treat the above sum, note that for each i € L,

ordf; < —ordg + (1/2 — k)P and |i| = k.

12



Moreover, since gy € I$ and z € I, we deduce from Lemma 4 that

ord g’

ord (¢; B5(gy +2)" — ¢;8i(gy)")
=ord ¢; + ord f; + ord ((gy +2)' — (gy)")
<ordc—ord g+ (1/2 — k)P + max {ord ((gy)""'z") | 1€ Ri,1#£0}
<ordc—ord g+ (1/2 — k)P +max {(k — [1])(P — 1) + [lj(ordg — 1) | 1 € R;,1#£ 0}
=max {ordc+ (1/2 = [I))P + (|l = L)ordg — k | 1 € R;,1 #£ 0}.

Since ord g < ord ¢ + %P and ord ¢ < %P, we have
ord (¢;Bi(gy + 2)' — ¢;Bi(gy)') < —k < —1.
Thus, by Lemma 3 , we obtain
e(esbiloy +2)' = cibiloy)') = 1.

h €<Cjﬁi(9y + Z)i> = €<Cjﬁi(9}’)i>-

Therefore,

SDID I OIL T

zel? €l iel
o (2.2)
) G(chﬁi(gy)‘)-
yelg2 iel
By (2.1) and (2.2), we conclude that
file) = (9)7"Sj(g,2) £;(B)-
This completes the proof of the lemma. n

For every g € A, write

and

By={B=(Bicc € T'| (B) < () ' P+ (ic L)}

13



In view of the definition of the major arcs, we have

M = U U M(g,a)

(g)<(c) Pz 2 Ag

g monic
Lemma 6.

/myli[lfj(a)daz > ¥ (Mo-“se) [ IIse)

(g)<(oypd a€As Vi1 Bo j=1

g monic

Proof. For M(g,a) C M, it follows from Lemma 5 that

[ st~ (TTa s 6a) [ [oes

(9:2) =1 j=1

Since all 9t(g,a) C M are pairwise disjoint, the result follows.

2.2 Preliminary observations in p-adic analysis

To obtain the asymptotic formula given by (1.13), we need to establish some results

in p-adic analysis. Let K be a complete field with respect to a discrete non-archimedean
valuation |- |. Let R = {x € K| |z| < 1}, 7 a primitive element, and F = R/(7). We also

suppose that F' is a finite extension over F,,.
Definition 7. Let a € K \ {0}. Define
7(a) =logla|/log|r| and 7(0)= occ.
Let p(z) = apa™ + -+ a1z + ag € K|x]. Define
T(p) = min 7(a;),

and

indyp =max {j | 0<j <n, 7(a;) = 7(¢)}.

14
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Lemma 8. Let o(x) € K[x] \ {0}. Let ¥(z) = p(nx) and ¢(x) = np(x) where u € N.
Then
indg =indy and indvy < ind .

Let ¢’ and 4" be the derivatives of ¢ and 1 with respect to x respectively. Suppose that
¢ #0. Then
indvy’ <indy'.

Proof. Suppose that ¢(z) = a,2" + -+ - + a1z + ag. For convenience, write j = ind ¢ and
7, = 7(a;) (0 <4 < n). Thus, we have 7; = 7(¢) and

>, i P> g 1> 1, it <. (2.4)
For any u € N, 7(7%a;) = u+ 7 (0 <i <n). Thus,

T+ u>T7+u, if 1> 7,
T(m"a;) =
T +u>Ti+u, ifi <y

Hence

indp =7 =ind ¢.

Since

U(x) = p(rr) = (a,m")a" + -+ + (a1m)x + ag,
it follows from (2.4) that for i > j,
T(ar') =1 +i> 7+ j = 7(a;7). (2.5)

Thus
indy < j =inde.

Since ¢/ (x) = m¢'(mx), we have
ind¢’(z) = ind ¢'(rz) < ind ¢'(z).
This completes the proof of the lemma. O

Lemma 9. Let p(z) and i(x) be defined as in Lemma 8. Let A € R. The following hold.
(1) If ind¢ = ind ¢ and 7(e(X)) > 7(p) + 1, then 7(X) > 1.
(2) If ' #0, ind¢' =ind ¢, and 7(¢' (X)) > 7(¢') + 1, then 7(\) > 1.

15



Proof. (1) Let ¢(x) = apa™ + -+ a1x + a9 and j = ind p. Write 7, = 7(a;) (0 < i < n).
By Lemma 8, we have ind+ = indp = j. Since 7(a;7") = 7; +4 (0 < i < n), we see that
for i < j, 7, +i > 7; + j and hence 7; > 7;. In combination with (2.4), it follows that

Ti > Tj (Z#]) (26)

Since A € R, we have |A| < 1, i.e., 7(A\) > 0. Suppose that 7(\) = 0. From (2.6), we
deduce that 7(p(A\)) = 73 = 7(), which contradicts the condition that 7(p(X)) > 7(¢)+1.
Thus 7(\) > 1.

(2) Since ¥'(x) = m¢/(7wx), we obtain that indv¢/(x) = ind ¢'(7zx). If indy’ = ind ¢/,
we have ind ¢'(7x) = ind ¢'(x). Hence the result follows from (7). O

Lemma 10. Let p(z) € K[z] \ {0} and A\, i, s € R. Define ¢(x) = p(z + A) and
ox(x) = p(mx + N). The following hold.

(1) ind ¢ = ind ¢ and 7(¢) = 7(y).

(2) If ind oy = ind ¢ and 7(e(A1)) > (@) + 1, then 7(Ay — A) > 1.

(3) Suppose that ¢' # 0. Then ind ¢’ = ind ¢’ and 7(¢') = 7(¢’).

(4) Suppose that @' # 0. Ifind ¢\, = ind ¢’ and 7(¢'(N2)) > 7(¢') + 1, then T(Ay — ) > 1.

Proof. (1) Write p(z) = apz™ + -+ -+ a1x + ag and ¢(x) = byx™ + -+ - + by + by. Then

bi:i<}%>ah)\h_i:ai+ i (é)ah)\h_i (0 <i<n). (2.7)

h=i \ ¢ h=i+1

Write j = ind . Since 7(\) > 0, by (2.4) and (2.7), we deduce that
7(b;) > 7(a;), if i >j; 7(bj) =7(a;), if i=7; 7(b;) > 7(a;), if 1 < j.

Thus
j=ind¢ and 7(¢)="7(a;)="7(p).

(2) Since 7(¢) = 7(¢) and ¢(A\ — A) = ¢(A;1), we find that

T((b()‘l - )\)) = T(@()q)) >71(p)+1=1(¢) + 1.

If ind ¢ = ind ¢, we have from (1) that ind ¢\ = ind ¢. Since p,(x) = ¢(nz), it follows
from Lemma 9 that 7(A\y — A) > 1.
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(3) Since ¢'(x) = ¢'(x + A), we can deduce (3) from (1) .
(4) Note that ¢\ (z) = m¢'(mx + A). It follows from Lemma 8 that
ind ¢'(rz + A) = ind ¢ (z) = ind ' ().
By (2), we have 7(A\y — \) > 1. O

Lemma 11. Let p(z) = ap2™ + -+ + a1x + ag € K[z] \ {0}. For A € R, let
pa(@) = p(rz + A) and ¥y(z) = (72 + ) — p(A).

The following hold.

(1) T(p) + indpy < 7(px) < 7(p) +ind p. Furthermore, if T(p(\)) > 7(p) + 1, then
T(ea) = T(p) + 1.

(2) If ind p > 0, then 7(p) + 1 < 7(¢y) <
(8) Suppose that @' # 0. Then 1+ 7(¢’) <
(4) ind ) < ¢ and ind ¢ <indg'.

() +

(&) ( N < n+ (@)

Proof. (1) Suppose that py(x) = b,z"™ + -+ - + byx + by. Then
" h L X h .y
bi = Z ) Clh)\ rt = CLﬂT’L + Z . Cl,h)\ bt (28)
h=i \ * h=i+1 \ *

Let j = ind . Then for each i with 0 < ¢ < n, we have |a;| > |a;| and hence |b;] < |a;||7"|.
Let [ = ind ¢). Then
() +1=7(a;) + 1 <7(b) = 7(pn)-

Since |a;| > |a;| when i > j, we have |b;| = |a;||m7]. Thus, by (2.3), we find that

7(pa) < 7(bj) = 7(ay) +j = 7(p) + J. (2.9)
It follows that
7(p) +ind px < 7(pa) < T(p) +ind p. (2.10)

Now suppose that 7(p(X)) > 7(¢) + 1. If ind py > 0, by (2.10), we get 7(¢r) > 7(p) + 1.
If ind ) = 0, then
7(pa) = 7(bo) = 7(p(A) = 7(p) + 1.
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(2) Note that ¢\ (z) = oa(z) — @a(0) = byz™ + - - - + byz, where the b;’s (1 <i < n) are
defined as in (2.8). Let m = ind¢y. Then |b,,| < |a;||7™|. Since j = ind¢ > 0, we have
m > 1 and hence

T()) = 7(by) > 7(p) + m > 7(p) + 1.

Moreover, we deduce from (2.3) and (2.9) that
T(¥x) < 7(by) = 7(a;) +j < 7(p) +n.
(3) Since ¢\ (x) = Y} (z) = m¢'(mx + A), we can see from (1) that
(@) +1<7(e)) =7 < 7(¢) + (n = 1) + 1 =7(¢) + 1.

(4) Tt follows from (1) that
7() +indpy < 7(p) +ind .
Hence ind ) < ind ¢. Note that ¢\ = 7¢/(mx + A). By Lemma 8, we have
ind p)\ (z) = ind ¢'(mz + A) < ind ¢'(z).
[
Lemma 12. Let p(z) € Kx] \ {0} be of degree n. For u,v € N with u > v > n, define
Nuw() = {a(mod ) | a € R, 7(pla)) = v+ (o)}

Then
card N, ,(¢) < (card F)" e,

Proof. Suppose that 1,2, € R, |21 — 25| < |7]?, and |@(22)| < |7[7®)*. We have
(1) = p(x2)] < |77y — | < |7
Hence, the set N, ,(¢) is well-defined and
card N, , () = (card )" - card N, , (). (2.11)

For A\ € R, define
oa(x) = p(mz + A).
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Write A = {\ € R|7(¢(\)) > 7(¢) + 1}. If A =0, then N, ,(¢) = 0 and hence the result

holds immediately. We now suppose that A # () and consider two cases.

Case 1: Suppose that there exists some A € A such that ind ¢, = ind ¢. Then for any
¢ € A, by Lemma 10(2), we have 7(§£ — A) > 1. Hence £ = A + 7y for some y € R. Thus,

card N, ,(¢) = card {a (mod7")

T(gp(oz)) >v+7(p) and a = A (modﬂ)}
= card {y (mod 7~ 1) ‘ T(e(ry+ ) > v+ 7'((,0)} (2.12)
m(r(®) = v+ 7(0) b

Let 0 = 7(p5) — 7(¢). Then by Lemma 11(1), we have

= card {y (mod 7~ 1)

1<o<n.
On recalling (2.12), we see that

card N, ,(¢) = card{y (mod ¥~ 1) ) T(ea(y) > v—0+ T(go,\)}

= (cardF)”_lcard{y (mod 7™ 7) | 7(pa(y)) >v—0+ T((p)\)} (2.13)

= (card F)7 card Ny_g0_o(02).
Case 2: Suppose that for any A € A, ind ¢, # ind ¢. Then from Lemma 11(4), we have
ind ) < ind . (2.14)

Let {A1,..., A} be a complete set of representatives of {A (modn) | A (mod7®) € N,,}.
Also, let 0; = 7(py,) — 7(¢) (1 < i < [). By a similar argument as in Case 1, for each
Ai € A, we see that

1<0;<n,
and that
card {x (mod®) | 7(p(x)) = v+ 7(p) and z = \; (modﬂ)}
=(card F)%card Ny, o_0; (0)-
Thus

!
card N, , = card{x (modn’) | 7(p(z)) > v+ 71 and x = \; (modm
A =3 {& (mod") | 7(p(2) = v+ 7(%) (mod) } o)

< card F - {Eaicl(card F)7 7 card Ny o, -0, (90,)-
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Suppose that this procedure is repeated m times and we obtain that N, .. (¢;) (1 <
Jj < 'm), which satisfy that

degp;=n, 1<v;—vj1<n, and wv, <n, (2.16)

where g = ¢ and vy = v. We note here that Case 2 occurs not exceeding n times because
of the inequality (2.14). Therefore, by estimating card NV,
(2.13) with (2.15), we find that

trivially and combining

m>Um

card N, , < (card F)" - (card F')*""~"™ . card N,

< (card F')" - (card F)*""~"™ . (card F')"™ (2.17)

< (card F)"tv—™,

It follows from (2.16) that

mn2uv—=uv,>v—n,
which yields that m > 2 — 1. On recalling (2.11) and (2.17), we can deduce that
card N, , < (card F)""*™ < (card F)"*1+e=n,
This completes the proof of the lemma. O

Lemma 13. Let ¢y,...,1, be polynomials in R|xy,...,x,| with Jacobian A(;x), and
suppose that a = (aq,...,a,) € R" satisfies

@) < [A@ra)f (1<) <n).
Then there ezists a unique b = (by,...,b,) € R" such that
Yi(b)=0 (1<j<n) and |bi — a,-| < ’A(?j);a){ (1<i<n).
Proof. This is [7, Proposition 5.20]. O
Lemma 14. For h € N\ {0} and v,...,7s € R\ {0}, define
M (7" ~) = card {x (mod7") | v1x} + -+ + 7,x, = 0 (modn") (i€ L)}.

Suppose that the system y1x} + -+ +7,x. = 0 (i € L) has a non-singular solution a € R%.

Then there ezists an integer u = u(y;a) such that whenever h > u, we have

M (7" ~) > (card F)h—w(ds=0),
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Proof. We relabel the variables by writing

(21, -y Zas) = (X110, o, Taly - -y Tlgy e -+ Tas)- (2.18)

For every i € £, we let ¥;(z) denote the polynomial y,x! + - -+ + v,x! with x replaced by
z as in (2.18). Write ¢ = (qﬁi)ieﬁ. Let a = (ay,...,aq4) € R*™ be a non-singular solution
of the system 1);(z) = 0 (i € ﬁ). Then there exist iy,...,4, such that

A(’QZJ, Ajyy oo ,aib) ;é 0.
Thus we can find an integer u satisfying

= f]*.

AW ai,, .. a;,)|
| A(t; a;, )

For i & {iy,...,4,}, choose b; € R with b; = a; (mod7"). Write v; = a; for i € {iy,...,i,}

and v; = b; otherwise. Then we see that for every i € L,

Yi(v) = i(a) =0 (mod "),

and hence
2

|¢i(V)| <" < |A(¢;ai,,- .., a;,)

Fix such a choice for b. We may regard v;(z) as a polynomial in ¢ variables z;,, ..., z;, after

substituting z; = b; for i & {iy,...,4,}. By applying Lemma 13, we obtain u;,,...,u;, € R
such that
Yi(u,b) =0 (i€ L).

Thus for every h € N with h > u, we have
Yi(u,b) = 0 (mod7") (i € L).

Furthermore, since there are (card F')("="(45=t) possible choices for the b; (mod "), we see
that
M (7" ) > (card F)(h—w(ds=),
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2.3 Estimates for exponential sums I

In this section, we aim to estimate the auxiliary functions

Sga)= > e(Z%Xi),

) »
erordg icl

and
Si(g,a) =S(g,cja) (1<j<s).

Let w € A be an irreducible element. Write |- |,, for the usual w-adic valuation normalized,
ie., |wly = (w)~'. Then R = A,, 7 = w and F = A, /(w). Thus, card ' = (w). For
future reference, we now illustrate the definition of 7 in this situation. For a € A\ {0},

since
7(a) = log|al,/ log |w],

7(a) is the greatest integer 7 for which w™ divides a. For p(z) = a,2"+- - -+a1x+ay € Alz],

7(p) = min 7(a;),

0<i<n
and
ind ¢ = max {j | 0<j<n, 7(a;) =7(p)}.
On applying Lemmas 10, 11, and 12 to R = A, and |- | = | - |, we obtain the following

Lemmas 15 and 16.

Lemma 15. Let p(z) € Alz]\ {0} be of degree n with () =0 and ¢(0) = 0. For A € A,
let

a(r) = p(wz + A) = p(A).
Suppose that ¢’ # 0. The following hold.

(1)1 < 7(¢y) <mn and 7(Y)) < n+71(¢).
(2)ind ¢, <indy'. Ifindy}, =ind ¢’ and ¢’ (M) =0 (modw™@)*1) then A = A\, (modw).

Proof. (1) Since 7(¢) = 0 and ¢(0) = 0, we have ind ¢ > 0 and it follows from Lemma
11(2) that 1 < 7(¢0)) < n. In view of Lemma 11(3), we see that 7(¢}) < n+ 7(¢').

(2) The result follows from Lemmas 10(4) and 11(4) immediately. O

22



Lemma 16. Let p(z) € Afz] \ {0} be of degree n. For u,v € N with u > v > n, let
Nuo(p) = {a (modw*") | ac A (o) >v+7(p) }

Then
card N, (@) < (w)"HHHea,

Proposition 17. Let p(z) € Alz| be of degree n with 7(p) =0 and ¢(0) = 0. Forl € N,
define
() p(@)
S (7) = > (7 -
‘Telordwl

Suppose that @' # 0. Then for all 1 € N with | > 27(¢') + 1, we have
g (w(f))
w

Ua(x) = p(wz + A) — p(N)

< M) -3+ (2.19)

Proof. For A € A, define

and define g, (z) € Alz] by
a(z) = w™ga(x)

where 7, = 7(1)). We have
deggr =n, gx(0) =0, 7(gx) =0, g\ #0.
By Lemma 15, we obtain
1<m<n, =n+7(0\) =7 <n+7(¢). (2.20)

Fix | € N with [ > 27(¢’) + 1. For A € A, define
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Note that

o] 3 )
7= )\(modw)
|y e(sz)(wyml)—so(x))‘
YEL g yi-1 v
_ Z e(w”Q?(?J))I.
Yl g i1 v

If [ > n, by (2.20), we have [ > 7, and hence

Ta— Iy
S = (w7t > e(ﬂ;i}) ‘ (2.21)
ye[ordwl_f)\
If I < n, we have
1Sy| < (w) L, (2.22)

Next, we shall relate S < ) to Sx. For convenience, write 0 = 7(¢'). Since | > 20 + 1,

we have

5= % 3 e(w(y+zi"1Z))

yEIord wl—o—1 ze[ord wot1
y=A (mod w)

. > e(w(y)+w’(%)wl‘”‘12>

yel, ordwl—o—1 Ze[ordw’-"""1

y=\ (mod w)
_ p(y) ¢'(y)z
B Z 6< w! ) Z e(wa+1 :
ye[ordwl_”_l Zelordw0+1
y=\ (mod w)

If ©'(\) # 0 (modw*?), for each y = A (modw), we have

¢ (y) = ¢'(A) # 0 (modw™),

which gives that Sy = 0 by Lemma 3. Let {A1,...,\s} C Ioqw be a complete set of

representatives of

{A (modw) | ¢'(A) = 0 (modw’*")}.
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Thus,
p2)\  +
S(T) = Z Sy, (2.23)
We consider two cases.

Case 1: Suppose that there exists some ); such that ind ¢\ = ind¢’. By Lemma 15,
we have \; = \; (modw) (1 < j <h). Thus, h =1 and (2.23) can be reduced to

S(‘p(x)) = S\ (2.24)

w'

Case 2: Suppose that ind+) <ind¢' (1 <i < h). Then
ind g}, =ind¢), <ind¢' (1 <i < h). (2.25)

Since there are at most (n — 1) different A\ (modw) with ¢’(\) = 0 (modw™1), it follows
from (2.23) that

()
S(T) < nlrgiagﬂsM : (2.26)
If | <mn, from (2.22), (2.24) and (2.26), it follows that
P\ - 1
S(%) < n{w)' =t < nw) ), (2.27)

If | > n, on applying (2.21), (2.24) and (2.26), we can reduce S(%) to a similar
sum where the exponent of w is less than [. More precisely, suppose that this procedure is
repeated m times and we obtain S (%) and 7; (1 < i < m) which satisfy the following
properties as in (2.20):

deg g; = n, g;(0) =0, 7(g:) =0, g; # 0,
1< <n, 7+7(9) <n+7(g_1), i =li1—7, (2.28)
l; > max{27(g}) + 1, n} (0 < j <m), l,, <max{27(g,,) + 1, n},

where g9 = ¢ and [y = [. Note that Case 2 occurs less than n times because of the
inequality (2.25). Therefore, from (2.21), (2.24) and (2.26), we have

S(%ﬂf)) S(g’”(x)> | (2.29)

< nnfl <,w>7'1+---+7'm7m

w'lm
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We now consider the situation when [, < 27(g/,) + 1. By (2.28), we have
l—1— =T =l < 27(g),) + 1,

ie.,

T4+ T+ 27(g,) > -1 (2.30)

Furthermore, since 7; + 7(g,) < n+ 7(g;_,) , we deduce that
Tit e T+ T(g) < mn+7(e). (2.31)
On combining (2.28), (2.30) with (2.31), we find that
2mn+27(¢") > 2(m + -+ 1) + 27(g,) > 1 +1—-1=1
Thus,

(') -

m >

[\3|<\
N

wtm

Then by estimating S (gml(m)> trivially, from (2.29) and the above inequality, we see that

(2.32)

It remains to treat the case when 27(g},) + 1 < l,,, < n. On applying (2.27) to S(gm(x)>,

(%)

Since 1 < 7; <n,wehavel —1,, =7+ -+ 7, < mn. Thus,

we have

< n(w)m~1. (2.33)

From (2.29), (2.33) and the above inequality, it follows that

(z) oy T ng Vemed < ng VI
S(F) < ()L = )l <t ) ) (2.34)
By combining (2.27) with (2.32) and (2.34), the proposition follows. O
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We are now ready to estimate the exponential sums when (w) is small.

Corollary 18. Under the conditions of the above lemma, if (w) < n, then forl € N\ {0},
we have
s(22)
w

Proof. From Proposition 17, it follows that the result is true for all [ > 27(¢’) + 1. When
1 <1< 27(¢") + 1, we have

&

This completes the proof of the corollary. n

< (w)! = ()03 < o ()03 +

Lemma 19. Let n € N\ {0}. For each d-tuple (iy,...,iq) with 0 < iy,...,iq < n, let
iy € A. Define

.....

Fo= 3 anet o,

0<i1,...,ig<n

7(F) = min{7(a;, i) |0 <iy,... 54 < n},

.....

Fx) Fx)
S( o ) = Z e( o)
Suppose that 7(F) = 0 and that there exists some nonzero a; with ptj. Let 7y = 7(a3). If
(w) <, then for all I > 1, we have

and

w'

S(F(X)) ‘ < ld_ln(n+1)d<w>l(d—ﬁ)+%' (235)

Proof. We will prove this lemma by induction on d. For d = 1, if there exists a nonzero

a; with p1 7, then F'(z) # 0 and 7(F") < 7;. By Corollary 18, we have for all [ > 1,

S(f«p)': S(F@»—zwm)

w'

< nn<w>l(1fﬁ)+%ﬂ> < nn<w>l(1fﬂ)+7'
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Suppose that the lemma holds for d — 1 variables and for any [ > 1. Consider the case

of d variables. If | <73 +n + 1, since (w) < n, we have

(57)

< <w>ld _ <w>l(df%)+%

< n(w)l(d_ﬁH% (2.36)
< [4-1 . (4D <w>l(d—i)+%_

It remains to consider the case when [ > 73+ n + 1. Write j = (j1,...,jqs). Without

loss of generality, assume that w { a; and p { j;. Define
iy, ..., id_1($d) = Z Qiy,..., id$ild (0 <y, ... iq-1 <),

and

5 e(F(xl,...u,Jlxdl,xd)>"

Tl Td—1€1 4,10

For each u € N, write

Nu - {xd € ]ordwl ‘ T(Spjl ~~~~~ jdfl(xd)) - u}7

and
Su= > S(xy). (2.37)
T ENy,
Let
i= > S, To= Y S, and T3=)» S,
u<Ti+n Tj+n<u<l u>l
Then

<Ty+TDy+Ts. (2.38)

)

p(wa) = min {7 (s, iy, (€a)) |0 <idn,.oiga <},

For x4 € I,.q..t, let

wl_ﬂ(xd)

—p(zq)
S(za) = Z . w F(xl,...,xd_l,md)>'

T1yeees :Bdflefordwl

wl—#(xd)

Z . <20<i1,...,id_1<n ﬂl e 'xiid:f (ww(zd)%‘l ..... id—l(xd)>> ‘
l

T1y..ey xd,lelordw
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If g€ N, with 0 <wu <[—1, then 0 < p(z4) < u and

T<w_“(xd)<ﬂj1 ..... jdfl(ﬂﬁd)) = u— p(xa).
By the induction hypothesis, we have

u—p(zyg)
S(l’d) < (l _ ,U,(l‘d))d72 . n(dfl)(n+1) . <w>(lfu(:vd))(dflf%)+#

1 (2.39)
< [42 . pld=Dntl) <w>l(d717g)+%'

For each u with 0 < u < 77 + n, since card N, < (w)! and (w) < n, by (2.39) we have

Tj+n Tj+n
S < ld 2, 1)(n+1) | <w>l(d—1—ﬁ)+% . <w>l
< (73 P N I GO <w>l(d7ﬁ)+%'
For each u with 75 +n < u <[ —1, since 7(¢j,, ., ) < 7(a;) = 73, we have
U= T(Pj1,.ojas) = U= T5 > 1. (2.41)
Noticing that
Nu g {Id € [ordwl‘ T(ijl ..... jd,l(xd)> Z u}a
we deduce from Lemma 16 and (2.41) that
card N, < (w)" =" < bl )i+ (2.42)
It follows from (2.37),(2.39), and (2.42) that
-1 -1 -
Z S, < Z 42 . p(d=1)(n+1) <w>l(d—1—i)+% . <w>z-g+;J
u=Tj+n+1 u=T7j+n+1 (243)

S (l_Q—Tj _n)‘ld—Q‘nd(n—&-l) < >(d—ﬁ)+ J‘

Recalling that 7(¢j,,. ;, ,) < 73, we find that

U Nu € {2 € Lovawt| 7051 5uss) = U= 7) +7(0515us) }-

u>l

Since | — 73 > n + 1, it follows from Lemma 16 that

! 7j

L3

card UN < )

u>l

29



Observing that S(z4) < (w)" @Y we have
Ty < (w)@-D .nn+1<w>l7%+% < ld72nd(n+1)<w>l(d7ﬁ)+%. (2.44)
Therefore, by (2.38), (2.40), (2.43) and (2.44), we have
F
(%)
w

Thus, the lemma holds by induction. O]

7i

< Ty + Dy + Dy < 13 1D () d=s) 457

To estimate the exponential sums where (w) is large, we need to establish some tech-
1

< n™(w)!-2m), (2.45)

nical lemmas.

Lemma 20. Let p(z) = a,z" + -+ 4+ a1z + ap € Alz] with wt a, and pfn. Let S(wﬁ)
be defined as in Proposition 17. Then for alll > 1, we have

S("D(’f))
w
Proof. Since w t a, and p { n, we have ¢’ # 0 and 7(¢) = 7(¢’) = 0. It follows from
Proposition 17 that for all [ > 2,

— (0 1
w w
It remains to show that the lemma holds for [ = 1. Let x = (xy,...,2,) and y =

(Y1, ---,Yn). For each 1 < j <mn, write
Xj=a)+-+al and Yy=yl+ -+

We have

2n

2

b1,...,bn (mod w)

b(Xp = Y,) +---+01(Xhi — 1
_ ¥ )€<< ESSEL.1 >>

b,x,y (mod w

Z . by + -+ i
w

z (mod w)

(2.47)
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where N = card {(x,y) (modw)| X; = Y; (modw) (1 < j < n)}. By Newton’s formula,
every (X,y) (modw) counted by N must satisfy

(x—x1) - (r—xp) =(x—y1) - (r — yp) (modw).

Thus,
N < nl{w)". (2.48)

Fix b € A. For any b € A, ¢(br) = p(br) (modw) must imply that v"a,, = b"a, (modw).
Since w { a,,w, there are at most n choices for b(modw) such that ¢(br) = ¢(bx) (modw).
Thus, for by,...,b, € A,

Hence,

DS

card {b(modw) | p(bx) = bx™ + - -+ + byxy (modw)} < n.
b€ ord w

2n
S(s@(bx))' .
w
b#0 (mod w)

Note that if ged (b, w) = 1, then

() =050

We deduce from (2.47), (2.48), and (2.49) that

2

2n

(2.49)

Z . by + -+ i
w

z (mod w)

w) — 1 < nl{w)?".

Therefore,

This completes the proof of the lemma. O

Lemma 21. Let n € N with p { n. For each i € N* with |i| < n, let a; € A with
ged(amp,...0), w) = 1. Define

F)= Y axi and 5<F5‘))_ 3 e(Fﬁ))-

ieNd, |i|<n

Then for all | > 1, we have
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Proof. Fix any choice of (z,...,24). Then
i n i
E ;X' = Q(n,,...,00T7 + g aiX
ieNd, Ji|l<n li[<n,i1<n

is a polynomial in terms of x;. By Lemma 20, we can obtain that for all [ > 1

n i
g <a'(n,0 ..... 0)T7 + Z|i|§n,i1<n aix )

< n™(w)! 02,

W
Thus,
F(x) F(x)
STl T | X o5
L2000 xde[ordwl xle[ordwl
< <w>l(d—1) .. <w>l(1—%)
_ nn<w>l(d—ﬁ)‘
This completes the proof of the lemma. n

Lemma 22. For each i € N¢ with |i| < n, let a; € A. Define

Gx)= 3 ax and S(GSI“)): 3 e(%)

iENd, Ji|<n xel?

ord w!

Suppose that ged(a, w) = 1 and {(w) > n. Then there exists (fi,. .., fa) € A? such that

witG(fi,..., fa)

Proof. We will prove this lemma by induction on d. When d = 1, since ged(a, w) = 1, we
may consider G(x) as a nonzero polynomial in A/(w)[z]. Suppose that for each f € A/(w),
G(f) = 0. Then ) — 2 | G(x) in A/(w)[z]. Thus n > degG(x) > (w), contradicting
(w) > n. Therefore, there must exist some f € A satisfying w { G(f).

Assume that the lemma is true for d — 1. Now we prove that the statement holds for d.

Since ged(a, w) = 1, there exists some j such that ged(a;, w) = 1. Let

T= (i € N i| < m, (iny. . ia) # (- - J0)}-

Hence
G(x) = g(zy)z - -x‘zld + Z a;x',

i€l
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where

n—ja——jd ‘
g@) = Y gt
i1=0
Since ged(aj, w) = 1 and (w) > n > n — jo — -+ — jg, by applying the result in the case

when d =1 to g(x;), we have that w1 g(f;) for some f; € A. Then

G(fr, 22, wa) = g(f)ad - alf + ) (afi)ay - ajf.

ieZ

By the induction hypothesis, there exists (fa, ..., fs) € A1 such that

wiG(f1, f2, - fa)-

By induction, the lemma follows. ]
Lemma 23. For each i € N¢ with |i| = n, let a; € A. Define

Gx)= > ax' and 5(%’1‘)): 3 e(%)

ieNd, |i|l=n xerd

ord w!

Suppose that ged(a, w) =1 and (w) > n. Then there exists
F(X) = Z biXi
ieNd, |i|<n

with by € A and ged(b(ny,...0), w) = 1 such that for all I > 1,

()= (57)

where S(@) is defined as in Lemma 21.

w

Proof. From Lemma 22, it follows that there exists (fi,..., f4) € A? such that

wtG(fi,. .., fa)

Suppose that w | f; for each 1 < i < d. Since every monomial in G(x) has total degree n,
w|G(f1,-.., fs). Thisis a contradiction. Thus, without loss of generality, we assume that
wt f1. For each 1 <4, j <d, define f;; by the following rule:

fi7 lszla
fij=11, ifi=j>2,
0, ifiz#jandj>2.
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Hence the matrix (fl-J) = (fi7j)1<l.j<d has determinant f;, which is a unit in A/(w')

because w t fi. Thus, the matrix (f;;) is invertible over A/(w'). Therefore, we have a
bijection from (A/(w")? to (A/(w!))?, defined by

x = (fizn, foxr + o, .., farr 4+ za) = (fij)x

S(G<}f)> _ S<G(<f—lﬂ)x)>

Hence

Let

It remains to show that w { b, 0). Since

F($17$2a"'7$d) :G(flxl,fQ.flfl‘l‘l’g,.--,fdl'l—‘—xd)
- Z ai(fren)" (foxr + 22)" - - (fawr + x4)",

ieNd |i|=n

we have

F(21,0,...,0) = G(frzr, forr, -, fawn)
- Z ai(fre)) (fowy)2 - -+ (faxy)™

ieNd, |ij=n

— 11 f£i2 id n
—< E aiJy 2"'d>$1

ieN? |i|=n
= G(fb f27 S 7fd>$7f-

Thus, w{ G(fi,..., fa) = bm,o,. 0 This completes the proof of the lemma. O

Lemma 24. For each i € N4, |i| =k, let a; € A. Define

Gx)= Y axi and S(GSIC)): 3 e(@)

wl
ieNd, |i|=k xel?

ord w!

Suppose that ged(a, w) = 1. Then for all 1 > 1,

(%)

< k(k+1)dld71<w>l(d7ﬁ)_
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Proof. Since ged(a, w) = 1, there exists a; such that (a;,w) = 1 and then 7(a;) = 0. Since
lj| = k and p 1 k, we have p 1 j. When (w) < k, from Lemma 19, it follows that for all
1> 1,

s (G(X) > < KDL =),

On the other hand, when (w) > k, by Lemmas 21, 22, and 23, we have that for all [ > 1,

w!

g (G(X) ) < JREDdA (=)

This completes the proof of the lemma. O]

Lemma 25. For each i € N4, |i| =k, let a; € A. Suppose that g € A is monic and that
ged(a, g) = 1. Define

Gx)= Y ax' and s(ﬁ): > e(&x))

xerd g
(%)

ord g
Then
where v(g) is the number of distinct monic irreducible divisors of g and Q2(g) is the number

1

< k(kJrl)du(g)Q(g)dfl <g>d7ﬁ7

of distinct monic divisors of g.

Proof. Let g = wlf -+ -w!™ be the canonical factorization of g into monic irreducible powers.
Then m =v(g) and (1 +1;)--- (1 +1,) = Q(g). For each j with 1 < j <m, let

—.
9 = gw;’

and
G,(x) = gf_lG(x).

Since gcd(g;?_la, w;) =1, it follows from Lemma 24 that
Ly

W

(L) < s, (250)
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For each integer pair (i,7) with 1 <i < d and 1 < j <m, if y;; runs through a complete
set of residues modwéj, then z; = ¢1yi1 + -+ + gm¥Yim runs through a complete set of

residues mod g. Moreover, we have

G(g1y1+ -+ gm¥m)
=Y ailgyia - A gutin)" - (G1Yar o GnYam)

li|=F
- 0o 2.51
=D gy vy (modg) 220
j=1 |ij=k
=Y " g;G;(y;) (modyg).
j=1
From (2.51), we see that
G G
S( (X)) _ Z e( (X))
g x (mod g) g
- Y ¥ €<G(91y1 +-- +gmym))
y1 (mod wlll) ¥m (mod w%n) g
_ Z _ Z . aGi(yr) +- -+ gme(ym))
yi(modw'l)  ym (modwi) g
:ﬁ Z e(QJGJ(YJ)>>
_ _ g
I=E Ny (modw)
~1Is(%)
j=1 wy
Therefore, by (2.50), we have
G e G,
i)
g i=1 wy
< H (k(k+1)dl¢—1<wj>zj(d—ﬁ)>
- J
j=1
< k<k+1)dy(g)9(9)d_l <g>d—i‘
This completes the proof of the lemma. n
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Recall that

Sga)= 3 e<zaigxi>.

xe]grdg iel
We now are ready to estimate S;(g,a) = S(g,¢;a) (1 <j <s).
Lemma 26. Let g € A and a = (a;)icc with ged(a, g) = 1. Then for each j with1 < j < s,

1

|Sj(9,a)| = ’S(g,cja)’ < <cj>dk(k+1)dy(g)Q(g)d—1<g>d_ﬁ.

Proof. Let g1 = g/gcd(g, ¢;) and b = ¢;a/ged(g, ¢;). Then ged(gr, b) =1 and

Si(g,a) = Z e(%Zaixi)

x (mod g) iel
1 .
= el — bix'
B ED I
x (mod g) iel
]' 1
= (ged(g, ;)" > e(—Zblx)
(modgr) I ez

Applying Lemma 25 to S(g1,b), we obtain

|Sj(g,a)| < <Cj>d|5(gl,b)‘
< (cj) k(kﬂ)dl’(h)Q(gl)dfl<h>d,i
< <Cj>dk:(k+1)d”(g)9(g)d_1(g)d—i'

This completes the proof of the lemma. O

2.4 Singular series

We now introduce the singular series

Sras= Y S(9), (2.52)
g monic
where \
S = > 1Isa. (2.53)
gcd(?,g)zl j=1
acl!



Also for ) € R with @ > 0, we define

Shas(Q) = Z S5(9). (2.54)

(9)<Q

g monic

In this section, we aim to show that whenever s is sufficiently large, 1 < &4, < 1 and
Gras — Cras(Q) < Q9 for some & > 0.

Lemma 27. When s > 2k(v + 1), the following hold.
(1) Sy.as absolutely converges.
(2) |G s — Gras(Q)] < QU aRte,

Proof. For each g € A\ {0}, since 2" < Q(g), we have

k(k—i—l)du(g) < Q<g)2(logk’)(k+l)d

and it follows from [10, Lemma 8| that
<Cj>dk(k+1)dy(g)Q(g)d—1 < <g>e

By Lemma 26, we see that

(9) " [] 55(9.2) < ().

Thus,
S(g) < (g) =,

which implies that

Q Q
|6k,d7s(Q)} < Z Z |S(g)} < Z qm-i-m(L—%_;_e).
m=0 ord g=m m—0

g monic

Note that if s > 2k(s + 1), we obtain 1+ ¢ — 5 4+ € < 0. It follows that

oo
|6k‘,d,s‘ < Z qm(l—l—L—i-‘re) < 17

m=0
and
}6k7d75 B Gk:d,S(Q)’ <<k,d,s,e Q1+L_%+E.

Thus the lemma follows. O
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Note that

S(9) Y HS g.a

a modg) 7j=1
ged(a,g)=

Lemma 28. The function S(g) is multiplicative.

Proof. Suppose that g; and gy are monic polynomials in A with (g1, g2) = 1. Thus,

S(gge) = (rg2)™ > [ %9192 2)

a(mod g1g2) j=1
(379192):1

As b; runs over {x (modg;)| (x,91) =1} (i = 1,2), by the Chinese Remainder Theorem,
(ggbl + glbg) runs over
{X(modg1g2)| (X, 9192) = 1}.

Therefore,

S(9192) = (9192)~ Z Z HS (9192, g2b1 + g1b2)

by (mod g1) bz (mod g2) j=1
(b1,91)=1 (b2,92)=1

(9192)” Z Z H Z Z <9192 Z (g2b11%" + glbi,2yi)>

b (mod g1) b2 (mod g2) j=1 x (mod g1) y (mod g1)
(b1,g1)=1 (b2,92)=1

ZYSSED VRN SN | D DI DIV (D SUTY H D w(Y

b1 (mod g1) b2 (mod g2) 7=1 x (mod g1) y (mod g2) iel
(b1,91)=1 (b2,92)=1

(9192)" Z Z HS (91, b1)5;(g2, ba)

b1 (mod g1) bz (mod g2) j=1
(b1,91)=1 (b2,92)=1

= 5(91)5(g2)-
This completes the proof of the lemma. O]

Since

Skas = Z 5(9),

g monic

converges absolutely when s > 2k(v 4 1) and S(g) is multiplicative, we have

Gk,d,sz H a(w),

_w monic
irreducible
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where

o(w) =Y S").

Moreover, there exists a constant C' = C'(k,d, s) such that

<

N | —

H. a(w)‘ < ; (2.55)

irreducible
ordw>C

For g € A, let
M(g) = card {x (modg)| e1xt + - -+ e,xi = 0 (modg) (i € £)}.

Proposition 29. We have

> Slg) = (g9)*M(g),

gilg
gimonic

where v = card L.

Proof. By Lemma 3(5), we have

M= 3 Lo X o Bexi+sen))

x (mod g) i€L a; (mod g)

=™ > e(EZai(cle---Hin)) (2.56)

%, a (mod g) g iel

D H(Z <gzx>)

a(modg) j=1 (mod g) iel
Write g; = ged(a, g). Let go = g/g1 and b = a/g;. Then

1 = (55m))-1( £ (2Em))

Jj=1 \ x; (mod g) iel j=1 \ x; (mod g) iel

oI S (zEm)

J=1 \ x; (mod g2) iel

= <91>d8 H Sj(gm b).
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On recalling (2.56), we see that

s

M(g)=(9)™" > > () ][[Si(9/9.a/9)

gilg a(modg) j=1
g1 monic (a,g)=g1

= (9™ D {9)™(9/9)"S(9/91)

g1lg
g1 monic
= ()™ > Slg/g).
gilg
g1 monic
Thus the proposition follows. m

Corollary 30. Suppose that w is a monic irreducible polynomial in A. Then we have

o(w) = lim (w)" =% M (wh).

Proof. Applying Proposition 29 to M (w"), we obtain that

O

Recall that w is an irreducible element in A. On applying Lemma 14 to R = A, and

m = w, we have the following result.

Lemma 31. Suppose that ¢;xi+---+c,x! =0 (i € L) has a non-singular w-adic solution.

Then there ezists an integer n = n(w) such that whenever h > n, we have
M) > (w)m,
Theorem 32. Suppose that for every irreducible element w € A, the system
axi 4+ Fex=0(i€L)
has a non-singular w-adic solution. When s > 2k(1 + 1), we have

Gk,d,s > 0.
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Proof. By (2.55) and Corollary 30, there exists a constant C' = C'(k, d, s) such that

%< 11 a(w)<§.

w monic
irreducible
ordw>C

It suffices to deal with the monic irreducible elements w with ordw < C. On combining

Corollary 30 with Lemma 31, for all w with ordw < C' we have

o(w) = lim (w)" =M (wh) > (w) 47,

h—o00
Thus,
Gk,d,s = H (7(’LU) > 0.
w monic
irreducible
This completes the proof of the theorem. n

2.5 Estimates for exponential sums II

In preparation for the next section, the goal of this section is to analyze the exponential

sums of the form
n n
_ i1 iq
To(6) = 3 e oo D anagat s,
x€ld, 11=0 ig=0

i €Koo, P €R with P > 0, and

.....

Ip={BeKu|B=b_put " 4 Fbat™" +by (b €F,)}.

Consider (K, |-|) = (K, (), R={z € K | (z) <1} and 7 = t~*. Thus for a € K,
we have
7(a) = log{a)/log(t ') = —ord a.
Then whenever 7(a) > 2, e(a) = 1. On applying Lemmas 10, 11 and 12, we obtain the

following Lemmas.

Lemma 33. Let f(x) € Kylz] with f' # 0 and deg f < n. For a € F,, let g,(x) =
f(t™lz +a) — f(a). The following hold.

(1) If £(0) =0, then 1 +7(f) < 7(g9.) < n+7(f).

(2) 1+ 7(f) < 7(ga) <n+7(f).

(3)ind g, <ind f'. Ifind g, = ind f" and 7(f'(b)) > 7(f")+1 for some b € F,, then a = b.
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Proof. (1) Since f # 0 and f(0) = 0, we have ind f > 0. It follows from Lemma 11(2)
that 1 +7(f) < 7(9.) < n+7(f).

(2) Tt follows from Lemma 11(2) directly.
(3) By Lemma 11(4), we have
ind g, <ind f".
If ind ¢, = ind f" and 7(f'(b)) > 7(f’) + 1, we deduce from Lemma 10(4) that 7(a —b) > 1.
Since a,b € F,, we have a = . O

Lemma 34. Let f(z) € K[z] \ {0} with deg f < n. For u,v € N with u > v > n, let
Nuo(f) = {B € Keo| = bowirt ™ 4+ byt + by (b € Fy), 7(f(B) = v+7(/)}.
Then

card N ,(f) < ¢" e,

Proof. Note that {ﬁ € Koolﬂ = byt bt by (b € Fq)} is a complete
set of coset representatives of (7*) in R. Since R/(m) = F,, we see from Lemma 12 that
card N, ,(f) < g"FHea. O

Before proceeding to the next lemma, it is necessary to introduce some new notations.
For P € N\ {0} and a € F,, let
I_p= {6 € Koo‘ﬂ = b,P+1t7P+1 + -+ bfltil + bo (bl S Fq>},

and
L-p={BEK|B=b_put "+ +b 1t +a (b €F,)}.

Let f(z) € Ki[z]. Define

and

T.r(f)= > e(f().

6610,,7P
Moreover, for a € K, and S7, Sy C K, define

0451:{045‘5651} and Sl+52:{ﬁ1+ﬂz\ﬁiesi(z’:1,2)}.
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Lemma 35. Let f(z) € Koo[z] with 27(f") < 7(f) < 0. Let P € N satisfy P + 7(f) > 2.
If 7(f'(a)) = 7(f") for some a € F, , then T, p(f) = 0.

Proof. Let u= —7(f") 4+ 1. On combining 7(f) < 7(f') <0 with P+ 7(f) > 2, we obtain
l<u<-7(f)+1<P-1.
Thus I, p =14y +t7"I_pyy, and

Top(f) = Z Z e(f(ﬁl + t_u52)). (2.57)

Blela,—u ,BQEI,eru

Fix fy € I, and 5y € I, _pyy. On letting f(z) = a,z™ + - -+ + a1z + ap, we find that

n h
FBr+tB) = any ( ’Z ) 1Bt = ZZ < ) oy Byt

h=0 =0 1=0 h=i

For h > 1 > 2, since

ZT(f/) S T(f) S T(an)7 7_(61) Z 07 and 7—(52) Z 07

we see that

T(onBy 5t ™) = 7(f) +2u = 7(f) + 2(—7(f) + 1) > 2.

Thus

e(£(81+ 178 = F(80) = £ (BB = ( ( ' ) ahgfi/s;tm) 1

1=2 h=i

Hence
€(f(ﬁl + 77”52)) = e(f(ﬁﬂ + f%ﬁl)tiuﬂg).

Let v = /5y — a. Since f; € I, ., we have v € T, i.e., 7(y) > 1. Since
f(@) = napa™ 4 -+ 2007 + o,

we have

n—1 n—1
f'(B1) = fa+7) :ZZ< _ ) (v + Dagp1a” A"



Note that if ¢ > 1, then

T(i ( i ) (v + 1)ozu+1a”‘ivi) >7(f)+71(v) > 7(f)+ 1.

?

v=t

Otherwise, if 7 = 0, then

(5 ( ) (0 D™ ) = (7a) = (£

v=1

Hence 7(f'(81)) = 7(f'(a)) = 7(f) = 1 —u. Write f'(8;) = > j<u_i bjt! where b; €
F, (j <w—1) and b,—_; # 0. Therefore

2 e = 3 6(f’(5l)t‘“ 3 t)

Bo€l_pyy, a;€F, —P+u<i<0
—P+u<i<0
= 11 > e(rtat)
—PHu<i<0 a;eF,

0 ze( 3 bjaitw—u).

—P+u<i<0 a;€Fq j<u—1
Fort=0and j <u—2, wehavei+j—u<u—2—u=—2. Hence
6( Z bja0t0+j_“) = 1.
j<u—2

We have

> e< > bja0t0+j_“) = elbuiagt™) = Y eq(buiag).

ao E]Fq I<u—1 ao E]Fq ao G]Fq

On noting that

p—1
Z eq(ap) = Z 2™/ . card (ker(tr)) =0,
aoqu 7=0
since b,_1 # 0, we see that
Z efJ(bu—lao) = 0.
ao€Fy

Hence

> e(f (BB = 0.

B2€l_piy
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From (2.57) and the above equality, it follows that

Tor(f)= Y. > e(f(B)+ (Bt "p)

B1€1la,—u B2EI_pyy,

= ) e(f(B) D elf(B)tTB)

ﬁlela,—u BQEI—P+1L

= 0.
This completes the proof of the lemma.
Lemma 36. Let f(z) € Ky[z] with 27(f") < 7(f) < 0. For every a € F,, let
1, if indg, <ind f’,
0, if indg, =ind f’.

ga(z) = f(t 'z +a) — f(a) and 4, =

Suppose that P € N satisfies P+ 7(f) > 2. Then there exists b € F, such that
Te ()] < ¢”|Top(f)]-
Proof. For every a € F, since 7(f'(a)) > 7(f’), from Lemma 35, we find that

Tp(f) =Y Tor(f)= > Tup(f).

aclq T(f'(a))>7(f")

Suppose that every a € F, satisfies ind g;, < ind f. We have

ITp(F)] < qmax|To p(f)] = 0" To.p(f)]

(2.58)

for some b € F,. Otherwise, suppose that there exists b € F, such that ind g; = ind f’. By
Lemma 33(3), for every a € F, with 7(f'(a)) > 7(f’), we have a = b. By (2.58), we see

that |Tp(f)| < |To,p(f)] = ¢*|Typ(f)]-

]

Proposition 37. Let f(x) € Kyo[z] with deg f = n and 27(f") < 7(f) < 0. Let P € N

satisfy P+ 7(f) > 2. Then

1+7(f)=27(f")
2n .

Tp(f)] < ¢~

Proof. Since



we have |Tp(f | ))| Without loss of generality, we assume that f(0) = 0.
For a € Fy, let ga( ) (t z+a)— f(a). Then

> ()] -
Bel, _p

It follows from Lemma 33 that for every a € F,,

|Ta7P| =

> e(fla+ty) = fa)| = |Tr-1(ga)|.

YEl_pt1

L<r(g)—7(f)<n and 1< 7(g)—7(f) <n.

Thus
P—1+47(gs)>P—-1+7(f)+1>2.

Let b and d, be defined as in Lemma 36. We have
Te(f)| < ¢*|Tp-1(g)] and P —1+7(g)>2.

If 27(g;) < 7(g») < 0, we apply Lemmas 35 and 36 to Tp_;(g,) and repeat this procedure
until we obtain T (g) such that 7(g) < 27(¢’) — 1 or 7(g) > 0. More concretely, suppose
that we stop after getting Tp(g0) = Tp(f), Tp-1(91), - - - Tp—m(gm), which satisfy

deggi=n, ¢ #0, 7(g)—7(g9i_1) <n, 1<7(g) —7(gi-1) (1 <0 <m);
27(g)) < 7(g) <0 (1 <i<m—1); 7(gn) <27(g,)—1 or 7(gm)>0; (2.59)
Tp_iv1(gi1)| < q5i|TP—i(gi)| (0; = 0p,, 1 < i <m).

By Lemma 36, in (2.59), ; = 1 if and only if ind g; < ind g;_;. Thus, this case occurs

less than n times. Therefore,
Tp(f)] < ¢ Tp-m(gm)| < g™ 0™ (2.60)
By (2.59), we have
() —7(f) <mn and 7(gn)—7(f) > m. (2.61)
If 7(gm) < 27(¢g,,) — 1, by (2.61), we have
2mn > 27(g,,) — 27(f') 2 7(gm) + 1 = 27(f') > 7(f) + 1 = 27(f"),
and hence

mz LT =2)
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On recalling (2.60), we have

147 (f)=27(f")
np— U2

Te(f) <q

It remains to consider the case when 7(g,,) > 0. Since 7(f) < 7(f’), we have

mn > 7(gm) = 7(f) 2 1=7(f) 2 1+ 7(f) = 27(f").

Thus

147 (f)—=27(f")
ntP-——

Tp(f)l <q

This completes the proof of the proposition. O

Corollary 38. Let f(x) € Ky[z] with degf < n and 7(f) < 0. Let P € N satisfy
P+7(f)>2. Then

1+7(H)=27(f")
2n .

Te(f)] < ¢
Proof. 1t 27(f") < 7(f) < 0, then the result is true by Proposition 37. If 27(f") > 7(f),
then

_ 1T —2r(f)
Tp(f)] < gF < gP 020

Lemma 39. Forn € N\ {0}, let

Let 7(F) = min{r (o, )|O < dy,...,0q < n}. If there exists j such that p 1 j and
7(0y) < 0, then whenever P+ 7(F) > 2 we have

1+T(F)—2‘r(aj)

| Tp(F)| < (=7(F) + 2) g erre—
Proof. We will prove the lemma by induction on d. When d = 1, since there exists j with
p 1 j such that 7(a;) <0, we have
7(F) < 7(F") < 7(aj) <0.
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By Corollary 38, we see that

L (F)—27(F') nip T —27(e;)

|Tp(F)| < q”JrP* 2n o

Assume that the lemma is true for d — 1. We first deal with the case when —7(a;) < 2n.

Since
(n+1)d — 1+ T(F; —27(q) > T(aj)Q— T(F) >0,
n n
we find that
1+T(F)—2‘r(aj)
ITo(F)| < gt < g P HEEREed

We now consider the case when —7(a;) > 2n+ 1. Without loss of generality, suppose that

j=(j1, ..., ja) satisfies p1 j; and define

QO(y) = Z Qg jd_l,iyi7 Fy(x) = F(xb ceey Xd—1, y)a
=0

Tp(Fy) = Z e(Fy(X))a and T(y):‘TP(Fy)’~

Since
7(p) = min {r(a, iy ,.1)[0 <1 < d} < 7(ay),
we have
—7(p) > —7(aj) > 2n+ 1.
For each u € N, define
Ne={yelp|r(e) =u+7(p)} and T,= > T(y).
YENy

Note that for each y € I_p, T(go(y)) > 7(p). Then I_p = UyenN,. Let

n —7(p)
Slzz:Tu, Sy = Z T, and S;= Z T,.
u=0

u=n+l u>—7(p)
Thus
Tp(F)[ < Y T(y) = Tu="51+S5+Ss (2.62)

yel_p u€eN

Claim 1. Fory € N, with 0 <u < —7(p), we have

1+7(F)—2(ut7(p))
2

T(y) < (=7(F) + 2)%2 . grDd-D+P(d-1)- 1
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Proof. Let @i, i, ,(y) be the coefficient of i -xf;_*f in the expansion of F, i.e.,

For each y € I_p, we see that

(#in,.oias (1)) < max{(ai, ) [0 <ig <nj.

Thus
T(Soil ~~~~~ idfl(y)) > min {T<Oéi1,~~~7id—177:d) | 0<iqg< n} > T(F) (263>

Furthermore,
7(F,) = min {T(g@il ..... id_1(y))|0 <y, ig < n} > 7(F).
Since P+7(F) > 2, we have P+7(F),) > 2. Note that p{ (j1,...,Ja—1) and ¢j, _j, , = ¢

Hence for y € N, with 0 < u < —7(p), we have

T(Phdas @) = T(0(y) =u+7(p) 0.

Now we are ready to apply the induction hypothesis to Tp(F),) with y € U;g@) N,. We

obtain that
T(y) = |To(F,)| < (—r(F,) + 2)42 - gt D1 4P HrEn e

< (—T(F) + 2)d—2 . q(n+1)(d—1)+P(d—1)—

17 (F) —2(ut7(¢))
2n

This completes the proof of Claim 1.

Claim 2. ‘Tp(F)‘ < (—T(F) + 2)d—1q(n+1)d+Pd_W.

Proof. Since card N, < cardI_p = ¢¥, by Claim 1, we can see that

5=y n-Y Y1

0<u<n 0<un yeN,
_ Ltr(F)—2(n+7(p) (2.64)

S (n + 1) . (—T(F) + 2)d—2 . qP . q(n+1)(d—1)+P(d—1) o
< (n+ 1) (—7(F) +2)72 . g P ST
For v € Nwith v >n+ 1, let
M, ={yeIp|t(e(y) >v+7(p)}.
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Since 7(F) < 7(¢jy...501) = T(@), we have P > —7(F) +2 > —7(p) + 2. It follows from
Lemma 34 that for v € Nwithn+1<ov < —7(p) + 1,

card N, < card M, < ¢"T . (2.65)

From Claim 1 and (2.65), we have

$< Y cardN, - (—7(F) +2)12 . gt +plan)- B
n<u<—7(p)

< 3 (—r(F) 42y P DD PR (9 66)

n<u<—7(¢)

< (=7(p) = n) - (=7(F) +2)2 - gHDerra

147 (F)—27(p)
2n

On noting that T'(y) < ¢~V and 7(F) < 0, we see from (2.65) that

S3 = Z Z T(y) < (CardM*T(Lp)Jrl) - gP@=D)

u>—7(p) YENu
n _=r(o)+l _ 2.67
<q +1+P £ .qP(d 1) ( )

< q(n—l-l)d—l-Pd—w'

Therefore, by combining (2.62), (2.64), (2.66) and (2.67), we have

ITp(F)| < Sy + S5 + S
< (=7(9) +2) - (—7(F) + 2)42 . gln+ it Pd— il

< (—7(F) +2)17t . g P B,
This completes the proof of Claim 2.
By combining Claims 1 and 2, since
7(¢) = min {T(a]’h”.7jd71’i)|0 <i< d} < 7(0y),

we see that
1+T(F)72‘r(aj)

|Tp(F)| < (=7(F) +2)4 . gD+ i

The lemma follows by induction. O]
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2.6 Singular integral

In Lemma 6, we establish the following relation for the major arc contribution.

[ I tecryia = > > (o s) [ e

(g)<(e) P 2 I= Bo =1
gmomc
where
= {a=(aiec € I, | ged(a,g) = 1},
and

By={B=(Bicc €T'| (&) < (9) ' P (ieL)}.

We have treated the above sum by estimating the singular series. In this section, we plan

to analyze the the integrals of the shape

/ H f;(B; P)d (2.68)
9] 1
Some preparation is required before we can introduce our strategy. For e = ()ies and

x = (X1,...,X,) where x; = (21j,...,%4), write

G(a;x) = G(a; Xq, ..., Xs;C) = Zai(clxil ey,
iel

and define the singular integral to be

:j = 3s,d,k = / </ G(a,x)dx) dox.
/éo Tds

We will first relate the integrals as in (2.68) to JP**~** and then show that 1 < J < 1.

2.6.1 Preliminaries

Let G be a locally compact group and B(G) be the class of Borel sets, i.e., the smallest

o-algebra containing the closed sets.

Definition 40. A function p : B(G) — R is said to be an inner regular left invariant

measure if the following conditions hold.
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(1) For any E € B(G), u(E) > 0.

(2) u(0) = 0.

(3) For any sequence E; of disjoint Borel sets, ,u<|_|i21 E,) =D s HED).
(4) For any g € G and E € B(G), u(gF) = u(E).

(5) For any E € B(G), u(E) = sup {uK : K C E, K compact, K € B(G)} .

Definition 41. A left Haar measure on a locally compact group G is the completion of

an inner reqular left invariant Borel measure.

Theorem 42. Let G be a locally compact group. Then there is a left Haar measure i on

G.

Proof. This is [18, Theorem 14.14]. O

Theorem 43. Any two left Haar measures on a locally compact group G are the same,

apart from a multiplicative constant.
Proof. This is [18, Corollary 14.22]. O

Let G = (K, +, (-)). Then G is a locally compact group. Let p be the Haar measure
on G normalized by u(T) = 1.

Lemma 44. For Q € Z, let Bo = {{°E| E € B(G)}. Then Bg = B(G).

Proof. Let fo : Koo — Ky defined by fo(a) = t?a. Then fg is a homeomorphism.
Since B(G) is a o-algebra containing all the closed sets, By = fo(B(G)) is also a o-
algebra containing all the closed sets. Therefore, By O B(G). Since @) can be chosen from
Z arbitrarily, we have B_o 2 B(G). Note that B(G) = {t?E|FE € B_g}. We obtain
B(G) 2 {tYE| E € B(G)} = Bq. Thus Bg = B(G). O
Lemma 45. For Q) € Z, define jg : B(G) — R by pg(E) = u(t°E). Then pg is a Haar
measure on G and puy = Q,u.

Proof. Note that ug satisfies Conditions (1), (2) and (3) of Definition 40 immediately. Let
fo be defined as in the proof of Lemma 44. Since fg is a homeomorphism, p¢ satisfies
Condition (5). For any a € K, and F € B(G),

po(a+ E) = p(t% +1°F) = u(t°E) = no(E).

53



Therefore, g satisfies Condition (4). Thus pg is a Haar measure on G. Since pg(T) =
u(t9T) = @, from Theorem 43 we have pg = Qu. O

Lemma 46. Let o = Y rixg, be a non-negative simple function and X a measurable

subset of G. Then
Q/ da—/ o(a)da.
X

= ZﬁXEi(tQOZ) = ZriXt*QEi(O‘)
i=1 i=1

Proof. Note that

Thus .
/ o(t%)do = Z riu(t_QEi N t_QX).
=X i=1
Therefore
/ pla)da =Y rp(E;NX) ZTZ,LLQ (t (BN X))
X =1 =1
=Q Z riu(t_QE N t_QX)
i=1
=Q / p(t%a)da
t-QX

This completes the proof of the lemma. n

Lemma 47. Let () € Z and X C K, be measurable. If f : Ko, —> C is integrable, then

Q[ steayia= [ fa)a

Proof. Write f = f1 +ify with f; : Koo — R (i = 1,2). Let {@;n}nen (j = 1,2) be two

monotonic increasing sequences of non-negative simple functions such that lim, (1, —

54



w2n) = f1. By Lemma 46, we have

/x fila)do:= /XJLH;O (¢ra(@) = p2a(a))da

= lim </ gplﬁnda—/ ¢27nda)

=@ lim (/ ©1.0(t%)dax —/ gpgm(thz)da)
oo\ Ji-eXx t=QX
=Q lim (1, (t%) — 2,4 (t%a))day

Similarly, we have

Thus

X t—@X
This completes the proof of the lemma.

Let 7 : K — Z be defined as in Section 2.5. In what follows, write

7(c) = min 7(c;).

For a = ()ier, write

T(a) = riréigw(ai) and F(o;x) = iezﬁaixi.

For m € Z, define
I = {a € Ky |orda < m}.

Moreover, recall that for a € K and S, Ss C K,
aSi={af|BeSi} and Si+8={b+5:|6 € Si(i=12)}

Lemma 48. Let m,(Q) € Z. Then



Proof. On recalling that G(o;x) = >, ai(cixi + -+ + ¢;x!), we find from Lemma 47
that

/ ( a;X) da—/ He o clx1 ---+csxi8)>da

m iel

= H/ o4 clx1 -+ csxi))dai

iel
_HQ / Coi(ax) + -+ oex ))doz1

icl Im+Q
— O e(G(t—Qa,x))da.

JWLYH-Q
This completes the proof of the lemma. O]

Lemma 49. Suppose that P € N and o = (o)iec € K. such that P+ 7(a) + 7(c) > 1.

Then we have

Pt Y e(Gla) = [ elGlax)ix

Xe(t_PIp)ds
Proof. Fix x € (t7FIp)? and z € (¢ F'T)¢. Let y = x + z. For every i € L,
yl_X1: (X_'_Z)I_XIZ Z < ) > 7zIx17J
jeri\{o} \ J

Since x = (z1,...,2q) € (tFIp) and z = (21,...,24) € 7 FT)?, for i = (i1,...,iq) € L
and (ji,...,J4) € Ri\ {0}, we have

ordx' = ord % 77t .. e <0,

and
ordzd = ord 2" - --zéd <-P-1
Thus,
ord (y' —x') < max ord(z’x') < max ordz' < —P—1.
JER\{0} JER\{0}
On recalling F(a;x) = Z a;x', we find that

iel

ord (F(asy) — Fo;x)) < maﬂxord a—P—-1=—-—7(a)—P—1.
1€
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Thus for each x; € (¢ FIp)? and y; € x; + (t7FT)? (1 < j < s), we have
ord (G(osy) — G(o;x)) = ord Zc] (a;y;) — Flosx;))

< max ord¢; (F(as y;) — F(a;x;))

1<5<s

< —7(c) —7(ax) = P — 1.

Since P+7(a)+7(c) > 1, it follows that ord (G(o; y)—G(a; x)) < —2. Hence e(G(a;y)—
Gla;x)) = 1, ie., e(G(a;y)) = e(G(o;x)). Therefore, for each x = (x1,...,%,) €
(t=PIp)®, we have

Prive(Glax) = ¢(Glai) / Ldy

+(t—PT)ds

/ Py (e %)) dy (2.69)
/ e o;y))dy.
') =

T, by (2.69), we have

On noting that | |, ;-ry, e <x+ =P

Pty e(G(a;x))=/Tdse(G(asy))dY-

XE(tiPIp)dS

This completes the proof of the lemma. n

Lemma 50. Let m € Z and P € N with m < (1 — k)P +7(c) — 1. Then

/L T1 /(e Pydac = P /wp </Tdse(G(a;X))dX>da.

m j=1

Proof. On recalling H fila; P) = Z e(G(a;x)), we deduce from Lemma 48 that

i=1 xe Il
/ Hf] a; P)da = Z /
T j=1 xelds
= p Z / e(Gt ™ a; x))da (2.70)
e[lrgs ‘]'an+kP
= ph Z e(Gt " s x))da
g



On letting y = t~F'x, we see that

S (6l aix) = 3 o e anfensd 4t e

xelfs xelfs el
= Y e(Glmy)
yE(t_PIp)ds

For a € J, \.p, we have
P+71(a)+71(c)>P—(m+kP)+7(c)=(1—-k)P—m+7(c) > 1.

It follows from (2.70) and Lemma 49 that

/L f[fj(a;P)daz P /J Y e(Glasy))da

m j=1 m+kP ye(t—PIp)ds

= pleh /J </Tdse(G(a;y))dy)da.

m-+kP

This completes the proof of the lemma. O

Remark 1 Throughout, for m, Q) € Z, define

am.Q) = [ ( /. e(G(a;y))dy)da.

Stk
Let P> 2(1 —7(c)). For g € A let
—ordg+ (3 — k)P, if iPEZN;

my =
—ordg+ (5 — k)P — 1, otherwise.

By recalling
By ={B €K lord g < —ordg + (1/2— k)P (i € L)},

we have By = J;, . Since P > 2(1 — 7(c)), it follows that
mg < (1/2—k)P<(1—k)P+7(c)— 1L

By Lemma 50, we have

| TL5:8: P = P53, ). 2.11)

9 j=1

Next, we will treat Js 4% and Js a1 — J(my, P).
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2.6.2 Estimates for J; 4

We first show that J; 44 is bounded by a constant depending on s,d, k, and g. Recall
that

Flo;x) = Z ',
ieL

and

file; P) = Z e(c;F(a;x)) (1< j<s).

xe[?,

For a = ()iec and P € N, define

Tp(F;a) = Z e(F(a;x)).

d
xel?,

Lemma 51. Suppose that P € N and o« = ()iec such that P+ 7(a) + 7(c) > 1. Then

we have

P‘dSHTp(F; ot Fa) = /Tds e(G(a;x))dx.

=1

Proof. By Lemma 49, we have
ps Z e(Gla;x)) = / e(G(a; x))dx.
x€(t—PIp)ds Tde
It remains to show that
Z e(Gla;x)) = HTp(F;cjt_ka).
xe(t—PIp)ds Jj=1

Since G(a; x) = Z c;F(a;x;), it follows that

j=1
Z e(Gla;x)) = H Z e(c;F(a;x;)). (2.72)
xe(t—FIp)ds J=lx;e(t—FIp)d

On letting x; = t7'y; (1 < j < s5), we see that x; € (¢t 71p)? if and only if y; € I¢p.
Thus,
Y elgFlax))= Y e(gF(aty)) (1<j<s).

XjG(t_PIp)d ijIiP
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Note that for each j with 1 < j <'s,
c;F(ost™ly;) = ¢ Zai(flyj)i =ct " Z&iy;- = F(cit "asy). (2.73)
icL icL
We deduce from (2.72) and (2.73) that
Z e(G(a;x)) = H Z e(F(cjt’ka;y)) = HTP(F;cjt’ «
xe(t—FIp)ds Jj=1 ijIiP Jj=1
This completes the proof of the lemma. n

Lemma 52. Let E = 2(5- —e(d — 1)) € R with e(d — 1) € (0, 5;). Then there exists a
constant C = C(s, k,d; q; c;€) > 0 such that

/Tds e(G(a;x))dx| < C’H (1+ (ai>)_E.

iel

Proof. Recall that 7(a) = minje, 7(ay). We now consider two cases.

Case 1: 7(at) > —k, i.e., 7(oy) > —k (i € L). Hence
(as) = ¢ < ¢" (i€ L).

Thus

‘/ e(Gla;x))dx| <1< (1+4" LEH (1+ (o)) F (2.74)
Tds iel

Case 2: 7(a) < —k. Take P € Nwith P+7(a)+7(c) > 1. Fix j e Nwith 1 <j <.
Since 7(c) < 7(¢;) <0, we have

7(c)+k+71(a) < T(Cjt_ka) =7(¢;))+k+71(a) <0
and
P+r1(cit*a)>P+r1(a)+7(c) +k>1+k>2.

Thus we deduce from Lemma 39 that

l—T(cjtika)

| Tp(F; et a)| < (=7(ejt™ o) +2)71 - gFHDHP—50
< (=7(c) — k= r{a) + 21 g

< (=7(c) =k —7(a) +2)" " q(k+1)d+%pd.

1—k—7(ax)
2k
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—7(c)+log, x+2
xG

For any € > 0, since lim,_,, = 0, there exits C1 = C1(gq;c;€) > 0 such that

(—7(c) +log, x4+ 2)4" < Cd=1geld=D)

for £ > 1. Since ¢~ 7®~* > 1, on letting Cy = C¥1¢*+D4 we have

T(a)+k

(—7(c) — k — 7() + 2)4 g+ "5 < (q_T(a)_k)e(dq)q
= C’Qq(T(a)Jrk)(ﬁfe(dfl)).

T(o)+k
2k

Thus
I Tp(F; et a)| < Coq(@) ) (g —e(d=1) pd (2.75)

Since () < 0, we have ¢™®) (14 ¢~™(®)) < 2. Since 5. — e(d — 1) > 0, we see that

(fmxﬁ—wkn>Sgﬁ-qmn(1+q_ﬁw)4ﬁ-whny

On letting Cy = Co(2¢%) 2~ we deduce from (2.75) that

d—1)) 7

(A,
ITp(F; it )| < Cy(1 4 ¢ 7(@) = pd, (2.76)

On noting that —7(a) > —7(y) (i € £), we find that
Tg @ =TT (1) =TT (1+ (o)
icL icL
It follows from (2.76) that

> (A (d—
| Tp(F; et ™*a)| < PCs T (1 + (as)) Hgg—e(d=1)

iec
Since E = £(3 — €(d — 1)), by Lemma 51, we have
/ e(Gayx))dx| = P~ T Tr(F; cjt_ka)‘ < [T+ ()" (2.77)
Tds . .
j=1 iel

On letting C' = max(C%, (1 + ¢*)*¥) and combining Case 1 with Case 2, we have

<CTL(+ ()"

iel

/T ¢(Gla:x))dx

This completes the proof of the lemma. O
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Lemma 53. For m € Z, let J,,, = {o € Ko |[orda < m}. If m € N, then

m

/ (1+ (a))_Eda = /T (1+ (a))_Eda +(qg—1) Zq“(l +¢")7E.

v=0

Proof. For each m € N, we have

Jm:{aeKoo|orda§m}:T|_|(|i| | ] (g:+1r)).

v=0 zx€A
ord x=v

Note that for each x € A with ordx = v,
/ (1+ (a})fEda =1+ q”)_E/ lda = (1 +¢°)7%.
x+T x+T
Since card{z € A |ordz = v} = (¢ — 1)¢", we obtain that

/m (1+<a>)Eda:/T(1+<a>)EdOz+§: 3 /m (14 () “da

v=0 x€A z
ord r=v

-E o o —
:/(1+<a>) da+(q—1)2q(1—|—q)E.
T v=0
This completes the proof of the lemma. n

Lemma 54. Form € Z, let J,,, = {a € K |orda < m}. Whenever s > 2k, there exist
two constants C = C(s,k,d;q;c) > 0 and C = C’(s,k, d;q;c) > 0 such that the following

imequalities hold.

Wl | ) |, e(Glax)ax
(2) /T e(Glasx)dx

Ko\

da < C.

da < Cq~m+V/Bk) (1 € N),

Proof. (1) Recall that

J= /oo /Tds e(G(a; x))dxde.

3] < /Kgc /Tdse(G(a;x))dx

Take € = (6kd(2kH—1))_l and let E = 2(5-—e(d—1)). By Lemma 52, there exists C; > 0
such that

Then
do.

<[]+ (es) " (2.78)

iel

/T e(Glas ) dx
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Thus

J

/Tds e(Ga;x))dx|da < C /KL H (1+ <ai>)—Eda

oo iel

_ (JIH/W (1+ {as)) oy (2.79)

iel

_ Ol(/w (1+ <a>)_Edo¢>L.

Since Koo = U0 and J,, C Jyi1, we deduce from Lemma 53 that

L
oo

-EB : -
/OO (1+{(a)) "da= Jim . (1+(a)) “da
i - (2.80)
= / (14 () “da+(q—1) Zq”(l +q¢")7F.
T v=0
Since £ > 0 and 1+ (a) > 1, we see that [ (1 + <a>)_Eda < 1. Moreover, whenever

s > 2kt + 1, we have

s<i_ d—1 ) 2k¢—|—1<i_ 1 )_1+_
2k 6dk(2ke+ 1) 2k 6k(2ke+1)) T 3kt

L L

Hence - .
(@1 ¢"0+¢) " <(g-1)> ¢ <o
v=0 v=0

It follows from (2.80) that

/ (1+ <Oz>)7EdOz <1l+(¢g—-1) iq”(l_E) < 00.

St v=0

On letting C' = C} ( Je (1+ (a})_Eda>L, we can deduce from (2.79) that

J

(2) Fix m € N. Since K¢, \ J, = U, {@ € K |orda; > m}, from (2.78), we have

da < C.

/Tds e(G(a;x))dx

L
o0
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that

da

/Kgo\% /Tds e(G(a;x))dx
= /Kboo\% C [T (1 + () "den

iel

<1y (/m (14 () “da - /Ordaim (1+ () "dey

iel

SLCl(/m (1+ <a>)Eda) o /Ordwm (1+ () “da

On combining Lemma 53 with (2.80) and recalling F > 1+ (3k¢)™", we find that

-FE > u U\ —
/ (14 () Tda=(q—1) Y q¢"(1+¢")"
ord a>m u=m—+1
<(g—1) Y """
u=m++1
— =B mn Zq
u=0
<q —(m+1)/ 3kL) Zq 3kL)

~ . 1—1
On lettlng C = LCl ( fKoo (1 + <a>) Eda) (q - 1) ZZO:O q*u/(3k‘L)’ we have

/Kgo\J;n /Tds e(G(a;x))dx

This completes the proof of the lemma. O

dow < Cg(m+1/(3k).

Next, we aim to show that Js 54 > 0.

Lemma 55. For P,m € N, define
Vy(P;m) = card {x € I{¥ | ord (e1x) + -+ exi) <m (i€ L)}.

Suppose that the system c;x3 +- -+ +c,x. =0 (i € £) has a non-singular solution n € K%.
Let m' = —m + k(P — 1) — 7(c) + 1. Then there exists an integer u = u(c,n) such that

whenever u < m' < P, we have

V;(P, m) > q(Pfu)dsf(m’fu)L.
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Proof. For each j with 1 < j <, let

— t*P‘i*lXj.

Cj = tT(C)cj and y;
Then for every i € £, we have

axi 4+ fex =0 (P y ) b e (T )
Since I_p =t~ Ip, on noting that —m’ = m + 7(c) — k(P — 1) — 1, we have

Vy(P;m) = card{y € I%, | ord Gyl +-+&y) <—m/ (i€ L)}
= card {y (mod¢™") | ord (G1y} + -+ &yl) =0 (modt™™) (i€ L)}.

Write
U(m') = card {y (modt™™) | ord (&1y} + - + &y') = 0 (modt ™) (i € £)}.
When m' < P, we find that
Va(Pim) = P (). (281)

By homogeneity, we can re-scale to ensure that n € R%. Thus the system ¢,yl +- - -+¢,y! =
0(i € £) has a non-singular solution in R%. Tt follows from Lemma 14 that there exists

an integer u = u(c,n) such that whenever m’ > u, we have
U(m/) > q(m’—u)(ds—L)'
On recalling (2.81), we see that

‘/S(P) m) > q(P—m’)dsq(m’—u)(ds—L) _ q(P—u)ds—(m’—u)L

This completes the proof of the lemma. n

Lemma 56. For P,m € N, let V,(P;m) be defined as in Lemma 55. Then

/JL 11 7:(8; P)dB = g Vi(P;m).

-m—1 j=1
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Proof. Since

f[lfj(ﬂ; P) = Z G(Z&(clxil et csxis)>,

xelfs €L

we have

/JL Hfj(5§P)dﬁ: Z H/dﬁ' - 6(5i(C1Xi1+"'+Cins)>dﬁi-

—-m—1 j5=1 XEI}%S iel

By Lemma 3(4), for every i € £ and x € I%, we have

_ _ g™, iford(e;xi 4+ +exl) <m,
[ eltend o s - 1
ord Bij<—m

0, otherwise.

Thus )
/L 11 #(8:P)dB = g~ mVi(P;m).

-m—1 j=1

]

Lemma 57. Suppose that the system c¢;x} + -+ + ¢xi = 0 (i € £) has a non-singular
solution n € K%. Then there exists an integer u = u(c,n) such that whenever P >

max{2(1 — 7(c)),2(u + 7(c) + k — 1)}, we have

/ (/ e(G(a; X))dX) da > q—sdu—(l—T(c)—k—u)L'
Jt Tds

(3P)]-1

Proof. Let m = kP —[3P] and let m’ = —m+k(P—1)+1—7(c). When P > 2(1—7(c)),
we see that
m' =[(1/2)P] —k—7(c)+1 < P.

By Lemma 55, there exists an integer u = u(c,n) such that whenever m’ > u, we have
Vi(Pym) > gProdstmzue,
When P > 2(u+ k + 7(c) — 1), we have

m' =1[(1/2)P] =k —7(c)+ 1 > w.
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Thus whenever P > max{2(1 —7(c)),2(u+7(c) +k —1)}, it follows from Lemma 56 that

[ TLs6:rs=amvirim)

-m—1 j=1

> q(P—u)ds—(m’—u)L—Lm

_ (P—u)ds—(kP+1—7(c)—k—u)

_ q—Sd’u—(1—T(C)—k‘—u)Lde—k‘L‘

Since
—m—1=—kP+[(1/2)P]—1< (1—k)P+7(c) — 1,

we obtain from Lemma 50 that

/JL f[fj(ﬂ; P)dg@ = psd-t* /Jim_l . (/Tdse(G(a;x)>dx) do.

-m—1 j=1

On noting that —m — 1+ kP = [ P] — 1, we see that

/ (/ e(G(a;x))dx) do > q_Sdu_(l_T(c)_k_“)L.
L Tds

[5P)-

]

Theorem 58. Suppose that the system c1x} + -+ + csxt = 0 (i € £) has a non-singular

3:/&0 (/Tdse<G(a;x)>dx>da>O.

Proof. Let m = kP — [3P]. Then —m — 1 + kP = [1P] — 1. Recall that for n,Q € Z,

Q)= [ ([ eGlaivyiy)da

n+kQ

By Lemma 54(2), we deduce that

solution in K. Then

|3 = 3(=m — 1, P)| < g~ GP/Gk) < g p1/(k)
From Lemma 57, there exists an integer u such that
J= Plim J(=m —1,P) > g sdu-(-mle)=k—ue -
—00

This completes the proof of the theorem. O
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2.7 The major arc contribution

We are now in a position to obtain asymptotic estimates for the contribution of the

major arcs.
Theorem 59. Suppose that for every irreducible element w € A, the system
axi+--texi=03G0€L)

has a non-singular w-adic solution. Further suppose that this system has a non-singular

solution in Ko. When s > 2k(1 + 1), we have
/ H fila; P)da = JG Ptk 4 O(de_‘k_‘s)
m

where 0 < J6& K 1 and § = 18,”

Proof. By Lemma 6, we have

/mi[lfj(“)d 3 Z(H )15, (g, )/ 156

(gy<ie) P a€As = Bo j=1
g monic

Let P >2(1 —7(c)). For g € A, let
—ord g + [(3 — k)P, if SP¢N,

m, = (2.82)
—ordg + (5 —k)P — 1, otherwise.

On recalling (2.71), we obtain

/ Hf] B; P)dB = P***3(m,, P).

9]1

On letting @ = —7(c) + 3P, we deduce that

/Hfjana—PSd‘kZS J(my, P)

Jase
_ psd—ik <”6(Q) Z S(g)(— I+ J(my, P)))
(9)<Q
g monic
_ psd—ik (36 +3(6(Q) -6) + Z S(g) (-3 +3(mg,P))).
(9<Q
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By Lemma 54, for s > 2tk 4+ 1 and g € A with (g) < ]3%, we see that

—3+3(mg,P) < q—(mg+kP+1)/(3kL) < q—(%P—ordg)/(i‘Ikb) < f)_mlm_

Hence by Lemma 27 for s > 2k(¢ + 1) + 1, we find that

A

> S(9)(— 3+ 3(my, P) = O(P~m),

L1
(9)<P3
g monic

By combining Lemma 54 with Lemma 27, for s > 2k(v+1) + 1, there exist §; = g —¢ > 0
and 0, = ﬁ — € > 0 such that

and

. o 1 .
On letting 0 = 15—, we obtain

/ H fj<a§ P)da = 36?5‘#% + O(de*ka(g).
m

j=1

By Theorems 32 and 58, 0 < J& <« 1. This completes the proof of the theorem. n
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Chapter 3
The minor arc contribution

In this chapter, we will focus on the contribution of the minor arcs. More precisely,

we want to find a condition on s such that
S
/ ] fi(e P)do < P50

for some § > 0. To this end, we need to establish a generalization of Vinogradov’s mean

value theorem in F,[t] and Weyl-type estimates for f;(a; P) over the minor arcs.

3.1 Preliminaries

We first introduce some new notations. Fix k,d € N and 6 € R with 0 < § < 1/k. For

every ¢ € N, it can be represented uniquely as

h=0
where ap(i) € [0,p — 1] NZ (h € N). Throughout, write D = D(k) = max{h € N|a,(k) >
0}. It is useful to define the function v, : N — N by

() = an(i).
h=0
Also, for each i = (i1, ...,iq) € N¢, write

ap(i) = (ah(il), s ah(id)) and (i) = (7q(2'1), . ,’yq(id)).
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Recall that for j = (j1,...,74) € N, |j| =1+ + ja. For 0 < j < v,(k), we define
Rj :{i e N’ ’ |7q(i)| < %(k) - j}ﬂ
{ieN|FeN st. qk)>1 and |ay(i)| < ansi(k) (h € N)},

and define
Rj={neRj[ptn} and Rj={meR;/p|m}

For convenience, let ry = card Ry and r = card R{,. Moreover, recall that for each i € N¢,

Ri=dienfo<j<i<i<da,pt ")) b
J1 Jd

Lemma 60. Forie N% with |i| < k, the following are equivalent.

(1) P! s
(2) For every h € N, a(k) = ap(ih) + - - - + ap(ia) + an(k — |i]).
(3) For every h € N, ap(k) > ap(iy) + -+ + an(iq).

Proof. We first show that (1) < (2). Let 0 : N — N be the function defined by

o(z) = hi:% [1%]

Thus, we have p°) || z!. Therefore p { “k—w if and only if

[

o(k) = (i) + -+ o (ia) + o — [i),

ie.,

S (5] =3 (3] [2]+ [5)

h=0

Since i3 + -+ 4+ iq + (k — |i]) = k, the above identity is also equivalent to

{§}I§;<{%}+"‘+{%}+{k;h|il}>- 51)

Furthermore, from the equation iy +- - - +i4+ (k —|i|) = k we deduce that for every h € N,
k i1 iq k — i
PRt AR P S s
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Thus (3.1) is equivalent to
e () () e

For any z € N\ {0}, since z = Z an(2)p", it follows that
h=0

|
—

n

[2)- LS ap (neN {ob).

T n
p P

I
=)

Thus (3.2) is equivalent to
(lh(l{?) = ah(il) + -+ ah(id) + Clh(k? - |1D (h S N)
Hence we have (1) < (2). To show (2) < (&), we observe that (2) implies

ah(k‘) > ah(il) + -+ ah(id) (h S N)

It remains to show that (3.4) implies (3.3). Since |i| = Z lay (1) |p", we have

k=il = (an(k) — lan(i)])p".

It follows from (3.4) that as(k — [i|) = an(k) — |an(i)| (h € N). Therefore, (3) = (2).

completes the proof of the lemma.

Recall that

E:{ieNd

o k!
li| = ,pTh!...idy(k—lil)!}'

As an application of the above lemma, we may represent ¢« = card £ in terms of k, d.

Lemma 61. Let
Ly = {ieN||ay(i)| = an(k) (h € N)},
and
Ly = {i€ Ry |l(i)] = 4(k)}.
Then we have L = L1 = Lo. Furthermore,

t =card L = U ( ah(k;h—é_;)l -1 ) .

72

(3.2)

This
O]



Proof. Since p t k, we have ag(k) > 0. Thus p {1 for every i € £, and hence £; C Ry,.
Since |v,(1)| = Dy lan(i)], we have £, C Ly. From Lemma 60(2), we have

L£={ieN|fi| =k, an(k) = |an(i)] + an(k — i]) (h € N)} C L;. (3.5)

We therefore have £ C £ C L5. It remains to show that £, C £. Let i € £5. Then
17,(1)| = 74(k) and i € Rj. In view of the definition of Ry, there exists some [ € N such
that

an ()] < ansa(k) (h € N). (3.6)

Thus - .
Yo(k) = 1@ =) lan(@)] <D ana(k) < yy(k).
h=0 h=0
It follows that

Do lan®l = anlk) = (k) =Y an(k). (3.7)

Since ag(k) > 0, by (3.7), I = 0. Then by (3.6), |an(i)| < an(k) (h € N). From the first
equality in (3.7) we see that
|an(i)] = an(k) (h € N), (3-8)

and hence - -
i =) lan@)p" =) an(k)p" = k.
h=0 h=0
On recalling (3.5), we have i € £ and it follows that £, C L. Since

LCL CLyCL,

we have £ = L1 = L. Since |ap(1)| = an(iy) + - - + an(ia) (h € N), it follows from (3.8)

that 5
k)+d—1
L:cardﬁzcardﬁzzn an(k) + .
h=0 an(k)

Lemma 62. (1) Forie N¢ ifj e R;, then R; C Ri and |an(j)| < |an(i)| (h € N).
(2) For j € N with 0 < j <~,(k), ifi € R}, then R; C RY.
(3) Ro = Uiery Ri = Uier, Ri-
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Proof. (1) From Lemma 60 we deduce that

W Jd
if and only if for all 1 <[ < d and h > 0,

an(j1) < an(ir).

Thus, in view of the definition of R;, if j € R;, then |as(j)| < |an(i)| (h € N). Furthermore,
for n € R; and j € R;, we have

an(m) < an(ji) < an(ir),
and hence n € R;. In particular, i = j if and only if |v,(i)| = |,()|-

(2) Note that i € R} implies that p | i. Thus we have |ao(i)| = 0. Take j € R;. Using

a similar argument as in the previous part, we have that for all 1 <[ < d and h > 0,

an(jr) < an(i).
Thus |ao(j)| = 0 and |v,(j)| = [74(i)] < v4(k) — j, which implies that j € R.
(3) Clearly, Uiery Ri € Uier,Ri. Let i € Ro. For each 1 € R; and h € N, we have
an (D] < lan(@)] < apsi(k). (3.9)

Hence R; € Ry. Thus Uier,Ri € Ro. It now suffices to show that Ry C Uiery Ri- Suppose
that j € Ro. There are two cases: ptj and p | j. In the first case, j € R C Uier,Ri. In
the second case, |ag(j)| = 0. Let i = (j1 + 1, ja, ..., ja). Since there exists [ € N such that
a;(k) > 1 and |an(j)| < apyi(k) for all h € N\ {0}, we have

lao(@)| =1 < a(k) and [an(i)] = lan(j)] < ani(k).

It follows that j € R; and i € Rj. Hence j € Uicr;Ri. We therefore conclude that
Ro C Uiery Ri. O

Suppose that (f) is a system of polynomials in A[zq,..,z,] and w is an irreducible
element in A. For every v-tuple z € AV, we write rk Jac(f;z;w) for the rank of the

Jacobian matrix Jac(f;z) over A/(w).
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Lemma 63. For v € N\ {0}, let R be a subset of {i € N1 < |i| < k} of cardinality
less than v. For each i € R, let f; be a polynomial over A in v variables of total degree

not exceeding k. For every irreducible w € A, let C, z(f;a) denote the set of solutions
x € (A/(w))" of the system

filx) =a; (modw) (ieR)

for which rk Jac(f;x;w) = cardR. Also, let B, r(f;u) denote the set of solutions x €
(A/(w))" of the system
fix) =uw (modw) (ieR)

for which rk Jac(f; x; w) = cardR. Then we have
cardCy = (f;a) Kypa (W)™ and  card B, g (f;u) <4 pa (w) 57, (3.10)

where Kr =3 ;o |i].

Proof. (1) for each L C {1,2,...,v} with card L = card R, write C,, z . (f;a) for the set of
solutions counted by Cy, % (f;a) and with det(9fi/0x)ierer # 0. From [12, Lemma 4], it
follows that

carde,R,L(f; a) <<k,d <w>vfcard7€'

Thus,

cardCy, z(f;a) < g cardCy »,1, Ko k.d (w)veard R,
Lg{1727'"7’u}
card L=card R

(2) To show the second inequality in (3.10), we note that the number of choices for
a € (A/(w*))@dR which satisfy

a; =u; (modwl) (ieR)

is (w)2ier ®=li)  Fix any choice for a. By [12, Lemma 4], the number of solutions x modulo
w® of the system
fix) =a; (modw®) (ieR)

is bounded by O, j 4({w*)*=r4 %) Thus,
cardBw,R(f; u) <<v,k,d <w>2ien(k*\i\)<wk>v*0ard73 <<v,k,d <w>kv7KR,
where K = ) |i]. This completes the proof of this lemma. O
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Lemma 64. Let w € A be irreducible and v € N with v > r. We denote by S,, the set
of z = (21,...,2,), for which z, € (A/(w))* (1 < n < wv) and rk Jac((X™)nery; 2;w) < 7.
Then we have

card Sy, <y k.d (w)od=Dtr=1,

Proof. For each z = (zy, .. .,2,) with each z, € (A/(w))?, if
rk Jac((x" )nery; z;w) <1,
then there exist ¢; € A/(w) (i € Ry), not all zero, such that forall 1 <[ < dand 1 <n <w,
Z ¢0x' /0x(z,) = 0 (modw).
iR},

Define
Ri={ieRy|ptir} and R ={ieRy|plir,....pli_1,pti} (2 <1<A).

Then Ry is a disjoint union of Ry, ..., Ry. Also, define Rj = {i € R;/|¢; #0} (1 <1 <d).
Since the ¢; are not all zero, there must exist some [ such that Rj is nonempty. Let

m = min{l | R} # 0}. For each i € R,,, since p{i,, and 9x'/0z,, = i,,x'z,}, we have

Z ¢0x' 02, = Z CilX'z b # 0

ieRm i€eRm

in A/(w)[x]. By the minimality of m, for any i € R; with [ < m, ¢; = 0 and so

Z ciﬁxi/ﬁxm =0
ieR;
l<m

in A/(w)[x]. For I >m, i€ R; implies that pli,, and hence 9x'/dx,, = 0. Thus

Z c0x' [0z, = Z c0x' [0z, # 0,
ieRy i€Rm,
which yields that the z, are the roots of a nontrivial polynomial in A/(w)[x]. Thus, for a
fixed choice of the ¢;, the number of choices for (z,...,z,) modulo w is Ovjk,d(<w>”(d’1)).
Also, the number of the choices for the ¢ is Ok,d(<w>7”_1) because one of them can be
normalized to 1. Hence the total number of possibilities for the z, is O, q({w)*@=DF=1).
]
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Definition 65. We say that the system of polynomials (¥) is of type (j, P) if it satisfies
the following three conditions.

(1) (®) consists of polynomials V; € Alzy,...,z4] (i € Ry).

(2) For alli € Ry, n € R and m € R}, there exist Ti n and Ty m € A such that

U;(x) = Z Tinx" + Z TimX™.
nER;. mER;-’

Furthermore, for each n € R, Tin = 0 either if i € Ry with |v,(i)| — [vg(n)| < j or if
i€ Ry. In addition, there existi € Ry and n € R with |v,(i)| — [v4(n)| = j such that T; ,
1S MONZETO.

(8) For everyi € Ro and1 € R; = R; URY, (Tiy) < Phi

For simplicity, throughout this chapter, we write &’ for v, (k).

Remark 2 (1) Let (¥) be of type (7, P). Then we have the coefficient matrix T =

T T,
such that
0 T3

(Wi)iery, (T Iy (X™)ner;
(\I/j)jeRg 0 T3 (Xm)meR;’
Furthermore, by setting R}, = {i € R | 17()| = u} and T, = (Tin)ier) , mery, ., We

T = ( (Tu,v)uzjﬂ,ve{k’—j ..... 1} ) .

(Tu,fu)ugj, ve{k’'—j,...,1}

have

From Condition (2) in Definition 65, we deduce that T;,, = 0 whenever u — v < j. Note

that in 77 we have v > 1 and so (T3, )u<; = 0. Therefore, T} is in the following row-echelon

form
Tk’,k’*j % P *
0 Tk:’—l,k’—l—j s *
T, = 0 0 Tit11
0 0
0 0 0
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Again, by Condition (2) in Definition 65, we find that the T, ,_; are not all zero.

(2) Clearly Ty # 0. Let " = rk7T;. Then 0 < ' < r. In view of Condition (3) in
Definition 65, the determinant of every ' x ' sub-matrix of T} can be bounded by P,
Furthermore, for each of these nonzero determinants, the number of its irreducible divisors
w of degree [0P] + 1 is bounded in terms of k,d and 6. Furthermore, the total number of
irreducible divisors of all the nonzero determinants under consideration is bounded by a
constant ¢ = ¢(k, d, §).

(3) Whenever P is sufficiently large and e is small enough, there exists a set consisting
of [1/6 — €] irreducible polynomials of degree [#P] + 1, none of which divides any nonzero

determinant as in the above remark. Throughout, let P(6, €) denote this set.

(4) For R C Ry, define

Tuwr = (Tin)iernry,, mer;, (3.11)
and
T w—in 0 . 0
T — 0 Ty p-1-jr -+ 0 (3.12)
0 0 o Tipam

Since the T),,; are not all zero, there exists a subset R of {i € R{||v,(i)| = j + 1} such
that the matrix Tk has rank card R. The construction of P(0, ) yields that Tk (modw)
has rank card R whenever w € P(6,¢). In what follows, it is convenient to write K (¥) for
max Z li| where R runs over all the subsets as above.
=
Lemma 66. Let a € A% Define A = (aij)ijer, with
Y | ca)s, i jers,
aij = J1 Jd

0, otherwise.

Let Ay = (aij)icry , jery, - Then for everyu € {k',... 1}, Ay, is the identity matriz, de-

noted by I,,, and A, = 0 whenever u < v. That is, the sub-matriv A; = (Au,v) . }
u,ve{k’,...,1
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is of the following form

Ik’ * *
0 Ik’—l *
0 0 L

Proof. Suppose that i € R{, and j € R;. By the proof of Lemma 62(1), we deduce that
17(1)| > |7,()| as well as |y,(1)| = |v,()| if and only if i = j. Moreover, since a;; = 1, we

have A,, = I, and A, , = 0 when u < v. O

Remark 3 Let A be defined as in Lemma 66. For j € R{ and 1 € Ry, it follows from
Lemma 62(2) that 1 € Rj. Thus, a;; = 0 whenever j € R{ and i € R{,. Suppose that (¥)
is of type (7, P) and (®) = A(¥). More precisely, we have

( (Pi)iery ) _ ( Ar A > ( (Wi)ier;, )
(P3)jemy 0 As (U)jery |

As in Remark 2, we have
< (Wi)iery, ) _ ( T T > ( (X")ner; >
(¥5)5ery 0 T (X™)mery ’
(Pi)iery, | _ [ ATy * (X" )ner;
(®5)jery 0 AsT; (X™)mer

Thus,
( Jac(x“)neR;_ )

Jac (Pi)iery, | _ [ ATy *
(P; )jeRg 0 AsTy JaC(Xm)meR;’

Since pjm whenever m € R, we see that

Jac( (q)i)ieR{) ) _ < AlTlJaC(Xn)neR; )
(q)j)jeRg 0

and hence,

79



From Remark 2(1) and Lemma 66, it follows that

Ik;’ * * X .. X Tk’,k’—j * *
0 [k’/—l tte * * ttt * O Tk/—l,k/—l—j LA X

AT, = 0 0 - Iy * * 0 0 S
0 0 I « 0

Thus AT is of the form

Tk”,k’—j *k e *

0 Tklfl,k/flfj ce *
T

0 0 0

For every w € P(6, €), whenever z satisfies that rk Jac((x)ner; 2; w) = card R}, on taking
R as in Remark 2(4), we may observe that the rows of A;T} indexed by i € R form a

sub-matrix Mg (modw) of rank card R and hence

Jac((Pi)ier; z; w) = MrJac((x")ner;; 2;w) = card R.

3.2 The fundamental lemma

Let Jxqa(P) denote the number of solutions of the system
orx =yl byl ieRY), (3.13)

with X,,, ¥, € I%. In this section, we aim to establish a fundamental lemma for building up
Vinogradov-type estimates for Jgxq4(P). It is convenient to have available a lemma that

provides the basis of our strategy in our subsequent deliberations.
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Lemma 67. For every nonzero j € Ry, there exist n € R}, and v € N such that j = p’n.

Proof. Suppose that j € Rq \ {0}. Then there exists (n,v) € N¢ x N such that
j=p'n=yp" Z an(n)p" = Z an(n)p" .
h>0 h>0

Hence there exists [ € N such that a;(k) > 0 and

|an(0)] = lanto ()] < angoni(k) (h € N).

Thus n € R{. This completes the proof of the lemma. O

In order to estimate Jsj 4(P) via the Linnik-Karatsuba method, we shall analyze an
alternative system of equations. For any nonzero j € Ry, Lemma 67 implies that j = p'n

for some n € R}, and v € N, and so

v

> - = (Lo -ww) =0

m=1 m=1
whenever (x,y) is a solution of the system (3.13). Moreover, since R{, C Ry, the system

(3.13) is equivalent to the following system
x|+ +xi =y +--+y. (i€ Ry). (3.14)
Therefore, J, 1 q4(P) is also the number of solutions of (3.14) with x,,,y, € I%.

We are in a position to establish the fundamental lemma by analyzing the system
(3.14). For ¢ € T™ and P € R with P > 0, define

fla; P) = Ze( Z ozixi>.
ield ieRo

Let K (P, Q; ¥) denote the number of solutions of the system

s

S ()~ W) = S0k, ¥4 (€ Ro)

n=1 m=1
with z,,z/, € I% and X, Y € Ig). Furthermore, let Ls(P,Q,6,w; ¥) denote the number

of solutions of the system

T

S (Wilz) ~ Wi(z)) = i_min i) (i€ Ro)

n=1
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with z and 2" as above, Wy, Vi, € I§_4p, and 2z, = 2z, (modw”) (1 <1 < d). Finally, we
write

Ls(P,Q,0;¥) = max Lg(P,Q,0,w;¥).
weP(0,€)

Lemma 68. Suppose that 0P < Q < P and that (V) is a system of type (j, P). Then for
s > 2u —1, there is a system (®) as in Remark 3, such that

KS(P, Q; \Il) < p2rd7(r+1)(170)+6J8(Q) + p9(23d+krdﬁu7K)Ls<P7 Q, (9; (b),

where p = card{i € R{|¥; is a constant in A} and K = K (W) defined as in Remark 2(4).

Proof. Let S; denote the number of solutions counted by K (P,Q;¥) such that for all
w e P(be),

rk Jac((xn)ng%; z,z;w) <.

Let Sy denote the number of remaining solutions, i.e., the solutions for which
rk Jac((x“)nené; z,7;w) =r

for some w € P(0,¢). Hence, K (P,Q; ¥) = S; + Sz. There are two cases.

Case 1: Suppose that Sy < S;. For every w € P(f,€) , on taking v = 2r, it follows
from Lemma 64 that the number of possibilities for (z,2') € (A/ (w))zrd with

rk Jac((x")ne%; z,z;w) <r

is O((w)*"). Let u = [[,eppew- By the Chinese Remainder Theorem, the to-
tal number of choices for (z,z') € (A/ (u))Qrd is O((u)? =), For each fixed choice
(2o, z})(mod u), there are at most (P/(u))*? choices for the (z,z) € I¥¢ with (z,2') =
(20, 2zj)(modu), and hence the number of (z,z’) € I#? under consideration can be esti-

mated by O(P?%(u)~"~1). Since (u) > (]59)[1/9761 > P1=0=¢_we have

p2rd<u>—r—1 < lf)2rd—(r+1)(1—0—e).
Thus,

Case 2: Suppose that S < S5. It follows that

SH< Y Sy(w)

weP(6,€)
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where S3(w) denote the number of solutions with
rk Jac((X")nery: 2,25 w) =1

For each m € {£1}", write

Gam) = 3 o Loz, (3.15)

z=(21,...,2r) ieRo

where
si(z,m) = mVi(z1) + - - + 1. Vi(2,).

Let G, (o; 1) denote the same sum in (3.15), but restricted to those z for which rk Jac ((x™)nery; 2; w) =

r. After rearranging variables, we deduce that

Ssw) < > [ Glasm)Gu(—ain)|fle: Q)| da.

nef1yr 7T

Thus by the Cauchy-Schwarz inequality, we have

siw) < ([ Jo@nf i@ ) ([ Guenl|faef )’

for some i € {£1}". It follows by taking complex conjugates that |G(a;n)| = |G(a; 1)
and hence that the integral in the first factor above is equal to K (P, Q; ¥). Let Sy(w;n)

denote the number of solutions of the system

> (i) = W) = (K, — vh) (i€ Ro)
n=1 m=1
with rk Jac((x“)ng%; Z; w) =r=rk Jac((x“)ne%; 7' w). On noting that P(0,¢) < 1, we
find that
K.(P.Qi®) <25 < max Sy(win). (3.16)
we ,€

ne{£1}"

For convenience, we write Sy(w) for the maximum in (3.16). Now consider the system
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for all i € R, with with ¥; a constant in A. So we can classify the solutions counted by
Si(w) according to the common residue classes of xi + -+ +xi and yi + - +yi modulo

w. Then, we write C,(a) for the set of solutions modulo w of the system of congruences

Z x. =a; (modw)
m=1

for all i € R{, with ¥; a constant in A. From Lemma 63 , it follows that the number
of non-singular solutions counted by C,(a) is O((w)*~*). Moreover, since w € P (0, ¢),
Lemma 64 yields that the number of singular solutions is O((w)s(d_1)+”_1). Therefore, we
deduce that

cardC,,(a) < (w)**,

provided that s > 2p — 1.

Next, we introduce the exponential sum

flaiy) = 3o Tand).

xelé i€eRo
x=y(mod w)
Note that
2 2
S4(w;n)=/” Gulasm)|” Y |Uu(eza)| dey,
o ac(A/(w))#
where

Uslza) = > fulosw) - fulasuy).

(up,...,us)€Cy (a)

Then it follows from Cauchy’s inequality that

]Uw(a;a)|2 < cardC,(a) Z \fw(a;m) - fulag us)|2

uely(a)

S

<) 37 | Fules )7

uely(a) =1

which yields that

Si(w;m) < (w)? 7 max Sa(a,wim),

where

Sitavuin) = [ Gu(esm) [ ufes )] da.
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We may observe that Ss(a,w;n) is the number of solutions of the system

im(wi(zn) . xlfi(z'n)) - Z ((wxm +a) — (wym + a)i) (i€ Ro)

with 2,2z, € 1%, X, Yo € AL (200), () < Q/(w), and
rk Jac((xn)neﬂg; Z; w) =r=rk Jac((x“)ne%; z’; w)'

By [15, Lemma 2.3], we see that Ss(a,w;n) is also equal to the number of solutions of the

system
> i (@i(za) = @i(z,)) = w3, —yh) (€ Ro)
n=1 m=1

with z,2’, x,y as above and (®) as in Lemma 64. Now let R be chosen as in Remark 2(4)
such that Z li| = K(¥). Since

ieR
rk Jac((xn)ne%; z;w) = card Ry =,
we have rk Jac((xn)neR;; z;w) = card R’;. Hence by Remark 3, we have rk Jac((®i)ier; z; w) =

cardR. Thus Ss(a,w;n) < Sg(a,w;n; R), where Sg(a, w;n; R) counts the number of so-

lutions of the system
T S
> 1 (®i(20) = ®i(71) ) = w D0, — yh) (i € Ro),
n=1 m=1
with X,,, ym € Igfgp, z,, 2, € 1%, and
rkJac(((I)i)ien;z;w) = rkJac(((I)i)ien;z’;w) = card R.
Write acw for the ro-dimensional vector whose component indexed by i is awil and put

ti(Z, ”7) = 771<I>i(Z1) + -+ 77T<I>i(zr).

Now let B, (u; ®,R;n) denote the set of solutions z modulo w* to the system of congru-
ences

ti(z,m) =u; (modwl) (ieR)

with rk Jac((®;)ier;z;w) = cardR. For simplicity, in the following, we write B for
B,(u;®,R;n). Let

Gulaszim) = ) e( > aiti(x, n))-
xeIg i€eRo
x=z (mod wk)
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Let

L(a;mR) =

u

Zgwazn

zeB

where the first summation is over u with u; € A/(wll) (i € R). Thus

Ss(a,w;m; R) < / [w(a;n;R)‘f(a’w;Q - 9P)23|d0"

T"o

By Cauchy’s inequality and Lemma 63, we deduce that

I,(a;m;R) < anrdBZ ‘gw a;z;m) | < krd_KZZ ‘(’jw(oz;z;’n){2

zeB u zeB
Thus,
Si(w;n) < (w)*T*  max  Sg(a,w;n;R)
ac(A/(w))4r
& (w)2sdthrd=—p=K Z / ‘Qw a;z;n)° faw; Q — P)*|da.
Tro

ze(A/(wk))?

On noting that }gw(a; Z; n)‘ = ‘gw(a; Z: 1)‘ and considering the underlying equations, the

lemma now follows. O]

3.3 Vinogradov-type mean value estimates

In this section, the purpose is to establish an estimate of the shape
Js,k,d(P) < std—KO—i-AS,
where

= > il

ieR;

Lemma 69. Define
V= {ieN||a(i)| > 1 and |as(i)| < ay(k) (h € N)}

and v = cardV. The following hold.
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B ao(k)+d \ 1y [ anlk)+d
e () ) ()

(2) If D=0, thenr=v. If D >0, then

1+d
d? )

v<r<wv(l+

(3) Let Ky =) oy, |i|. Then ( |
v(dk +1
Ky < ———=.
Y= d 4
(4) If k > d + 2, then

Ko< (k—=1)(r+1).
Proof. (1) The result follows from the fact that i € V if and only if

1< lap(i)| < ao(k) and 0 < |an(i)| < an(k) (h € N\ {0}).

(2) If D =0, in view of the definition of R{,, we have
Ry ={i € N’||ao(i)| > 1 and |as(i)| < an(k) (h € N)} = V.

Thus » = v. We now consider the case when D > 0. Since V C Ry, we have v < 7.
Suppose that {{ € N | a;(k) > 1} = {lp,...,lm} where 0 =1y <l < --- <, = D. For
every ¢ with 1 < i < m, define

Vi ={i e N"||ao(i)| > 1 and |a(i)| < aniy, (k) (h € N)},
v; = cardV;,
ki =p " (a, (k)p" + -+ + ap(k)p®).
Then Ry = VU (U, V;). Fix i with 1 <4 < m. Since ap(k;) = a4y, (k) (h € N), we have
Vi={ieN|a(i)| > 1and |ay(i)| < an(k:) (h € N)}.

By Lemma 69(1), we see that

B ao(k;) + d D an (k) +d
() I

B a () +d ) Do an(k)+d
- d h=1+1; d .
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Note that

Thus
vi _ ai, (k) +d 1 ag(k) +d 1 k an(k) +d -
d d Pt d
< ( < ao(k) +d > B 1)‘”1‘* ( ans, (k) + d )
d Pt d
< (ao(k)d)‘q’if[(1-+-ah(k)d)
<d '(1+d)"
Therefore,

T§V+V1+"'+Vm<V+l/d_12(1+d)_i+1
i=1

14+d 1+d
<v+v- d2 :V<1+7>

(3) We consider two cases.

Case 1: Let h € N\ {0}. Since for v € N with 1 < u < ap(k),

Card{iev"ah(m:u}zy.(ah(/f)er) ,<u+d—1)'

d d—1

By [15, Lemma 2.1], we have

ap (k)

Z lan(i)] = Z u- card{i € V‘ lan ()] = u}
- a® +d\ M urd—
_y.< d ) Z( - )
() +d\ dak) [ an(k) +d
-7 d d+1 d
_ydah(k‘)
od+1
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Case 2: Let h = 0. Since for v € N with 1 < u < ao(k),

card{i € V||ao(i)| = u} =v- ((ao(k‘;+d)_1> (uji—le>

We have

ao (k)

Z]ag \—Zu card {i € V| |ao(i)
o(k) + RS R
(( : )—1) Zu( ")
»  dao(k) ( an(k) +d
S d+1 d
 vdag(k) ap(k) +d !
B )

k) +d
Since ( 4ol c)lJr ) — 1 > ag(k)d, it follows that

Ky => i —-j{jj£:|ah )[p" ——EE:Z? > Jan(i)]

iey ieV h=0 = iey
-1
_ vdk N vdag(k) ag(k) +d \ .
Cd+1 d+1 d
< v(dk + 1).
- d+1

(4) Suppose that k > d + 2. Since

v(dk + 1)

(v+1)(k—1)— T

=k(w(d+1)""+1) —v(d+2)(d+ 1) = 1>0,
we have

Ky <(k—=1)(v+1).
Take i € R{, — V arbitrarily. Then there exists some [ € N\ {0} such that

lan(i)| < anya(k) (R €N).
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Hence

p||_2|ah h+l<zahz = ZCL k)p" < k-1,

h>0 h>0 h>1

where the last inequality holds because [ > 0. Thus,
Ko—Ky<p'r—v)(k—1) < (r—v)(k—1).
Therefore, whenever k£ > d + 2,
Ko=(Ko—EKy)+Ky<(r—v)(k—1)+k—-1wr+1)=(k—-1(r+1).

This completes the proof of the lemma. O

We now define
{\IlloeA |\I/10—X ( ER())}.

Also, we define
(o) = A(¥o),

where A is an ry X ro invertible matrix over A defined as in Lemma 66. On recalling

Remark 2(4), we see that
=il = Ko.
ieRy
Write A\ = 2sd — Ko + A;. We say that Ay and A are admissible if Jg g q(P) < P

Lemma 70. If A, is an admissible exponent satisfying Ay < (k — 1)(r + 1), then the

exponent Agy,. = Ag(1 — %) 15 also admissible.

Proof. Let 6 = % Since
p = card{i € Rg|V¥ip € (Py) and ¥; =0} =0,
it follows from Lemma 68 that

K, (P, P; W) « Prro-il0ie j(p) 4 poGathrd=Ko [, (P, P,6; &), (3.17)

~

For every w € P(0,¢), we have (w) > ¢’F and hence (w*) > ¢*" = P. Since z =
z' (modw") and z, z' € I}¢, we have z = z'. Then by the definitions of L,(P, Q,0,w; ®g)
and J5(Q), we have

Ly(P,P,0,w; ®y) = P"J,((1—6)P).
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Thus

Ly(P, P.0; ®0) = max Ly(P.P.6,w:®o) = P (1= 6)P).
we ,€

We deduce from (3.17) that
K (P, P; W) < pri-tr+D(=01+¢j (p) 4 pd@sdthrd=Ko)trd 5 (1 _ g)p). (3.18)

Suppose that A, = 2sd — Ky + Ay is admissible, where Ay < (k — 1)(r + 1). Then
J,(P) < P* and J,((1 — 0)P) < PU=9X On recalling 6 = =, from (3.18) we have

Joir(P) = K (P, P; W,) < PM 4 P2,
where
A =2(s+r)d— Ko+ Ay —(r+1)(1—-0)+e¢

and
AQ = 2(8 —f- T’)d — K() + A8<1 — 0)

Since Ay < (k —1)(r + 1), it follows that A; < Ay. Thus J,..(P) < P2 e AV

Ay(1 — 1) is admissible. O

Theorem 71. For k> d+ 2 and s € N with s > r, we have
Js,k,d(P) < p?sd—Ko—i-AS?

s—r

where Ay = rke™ & .

Proof. By Lemmas 69 and 70 , A = Ky(1 — 1) is admissible. Since Ky < rk, A, =

rke~ % is also admissible . O

3.4 Weyl-type estimates

For a« € T" and P € R with P > 0, define

fa) = faiP) = X e X and).

x€I} iRy
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Theorem 72. Fix j € L. Let M,P € R with 1 < M < P. Let a and g € A with
ged(a,g) =1 and ord g < M. For e € T", suppose that (go; —a) < M~* and that either
(gog — a) > MP™* or (g) > M. Then there exists a constant C(q,k,€) > 0 such that for

every s € N with s > r, we have
Fe)] < Otk e)g) P (1PN (1 + {g) (/D) 1))

Proof. Let
U={u€eA|ged(u,g) =1, uis monic and irreducible with ordu = [M]}.
Since ord g <) M, there exists Cy(k,€) > 0 such that when M is sufficiently large,
cardU > 2C, (]\Afl’E —{9)°) = Oy M. (3.19)

Note that for each y € I, we have

fla)= X e ¥ it v

xe]?3 i€R6
For u = (uq,...,uq) and v = (vq,...,vq), write uv = (uqvy, ..., uqvq). Thus
)cardud-(]sd/Md f ‘ Z Z Z (ZCMIX—I-UV))
ueldd veld , xeld iER

< P?max [H (e, x)|,
xeld

where
Z Z ( Z a;(x +uv)' )
ueld veld . ieRy
We have ’s
Hax* = T (Zalx+uv)>
ueid velfg M ieRy

Let j = (ji1,---,Ja). Without loss of generality, assume that p { j;. By Hoélder’s inequality,

we obtain
2s

{H(a,x)‘zs < (cardY®)*~! Z

ucyd

ST X () )

veld ., ieR|  1eR;\{0}

> (T 3 (1))

veld ieRy 1leR;\{0}

2s

< (cardU)**!  max Z

ug,...,ug €U

u1 €U
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2s

S oo Ta ¥ (1))

velt ., iRy  1eR;\{0}

w1 €U

| F(@) | < (cardtd) ™ (P/M1) 50 P F(a). (3.20)
Note that
2
ZOED S D SN O DD DI G R RARERG)
weld | vy, .. veeld ieRy  1leR;\{0}

For y = {yn € Injp-rr) | h € Rf}, define
aly) = card {(vi,.,va) € (Thay)” [ v+ o+ v = (h € Ry)}

For each 1 € Ry \ {0}, by Lemma 67, there exists a unique pair (h;,n;) € Ry x N with

1 = p™h;. Then we have
Vidbvi= (V4 vy
Thus for every y € {yh € Injp-m) ‘ h e 7%} = HheR{) Iin|(p—nr), We have
aly) = card{(vl, ..., Vg) € (]]‘i_M)S | Vi + -4 Vi = (yhl)f”n1 (l € Ro\ {0})}

Therefore )

H(a) = Z

u1 €U

Y

Sawe( X alw)om)”)

y leRo\{0}

where y runs over 1 _an and
y [Tner; Liip—n1)

o(uy) = Z ai( : )xi_lul (1€ Ro\{0}).

ieR(, lI€R;

By the argument of [12, Lemma 20], there exists a subset W of U satisfying that for any
two distinct elements u,w in W, we have v/! = w’* (modg) if and only if u = w (mod g)
and satisfying that

: (3.21)

Save( X atwm”)

y 1eR\{0}

9Dy
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where Cy = Cs(q,k,e¢) > 0. Note that for each y € H Iinj(p—ny, We may write y =
heR;,
(z,y;) with z € Hhe%\{j} Imip—nry- Rewrite a(y) with a(z,y;). It follows from Cauchy’s

inequality that

Save( X atwom”)

y 1eRo\{0}

2

< (P/MYS N1 a(z,y5)e(o5(w)y;)

z Yj

2

Y

i
where K’ = 37y rry 5y || - Since [j| = &, i € Ro and p ¢ <j ), we have i = j so that

oj(u) = ozjujlu%2 x -uzf. Now suppose that for any two distinct elements u,w in W, we

have
(Il o5(u) = o3(w) [I) > ¢~ - min{{g)~", (P/M)~"}.
On applying the large sieve inequality for function field as given by [9, Theorem 2.4], we

deduce that
2

Z (ZyJ)( ()yj) §C3(< P/M Z} Zyj )

Y;

2

ueW

where C3 = C3(q, k) > 0. Recalling (3.19), (3.20), and (3.21), we find that

—2sd

‘f(a)’% < (cardl)~* (15/]\;[) . prl. ﬁ(a)
< CNS(P/I) 2 PR (g) (/DY ((9) + (P/31)F) D |a(z, )"

Z,Yj

where C = C;'C,C3 + 1. Note that Z |a(z,yJ Z ‘ (P — M), and that

K' = Ky — |j| = Ko — k. We obtain o
|Fle)|™ < Clo) PN ({g) + (P/NI)F) (P/N) 2K J (P — M)
< C{g)P* N1 ((g) + (P/M)F) (P /N )+
< C{g) P> N1 ((g) (P/M)™F + 1) (P/M)™

Thus
|F@)] < Clay P (87 (g)(P/31) ™ + 1) (/1))

It therefore remains to show that for distinct u, w € W, we have
(Il o3(u) = o3(w) [I) = ¢~**" - min{(g) ", (P/M) 7"},
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Now write 8 = a5 — a/g. For u,w € W with u # w(modg), we have w/' # w’'(modg).
Since (gf) < M=* and ordu = [M], it follows that ord 8 < —kM — ord g and hence

ord (B(ujl _ wj1>ujé2 R uff) < —kM — ordg + kM = —Ordg_
Also, since ged(aud? ---u’t, g) = 1 and u' — w’* # 0(mod g), we have
ord || a(w’* — w)uf ---ult/g |> —ord g.

Therefore
ord || o3(u) — o3(w) |[> —ord g.

We now divide into two cases.

(i) Suppose that (g) > M. Since every element in W has order less than M, one can easily

see that the elements in W are distinct modulo g and so are spaced at least (g)~' apart.

(ii) Suppose that (¢) < M . For two distinct elements u,w € W, if u # w(mod g), then
they are at least (g)~! apart. Instead, if u = w(modg), then we have

ord || ag(u —w)uy - ||=ord || Blu —w)uy - |l
Since (ga; — a) > MP~*, we get (gB) > MP~*, ie., (8) > MP*(g)~". Thus,
ord (B(u — w)ul? - --ufid) > M — kP —ord g + ord (v’ — w') + (|j| — j1)(M — 1).
Note that since p 1 ji1, the argument of [12, Lemma 20] yields
ord (u* —w’') > ord g+ (j; — 1)(M — 1).
Therefore
ord || o5(u) — o5(w) ||= ord || ay(u?* — w)ul? - wlt ||> kP + kM — (k — 1).

This completes the proof of the theorem.

3.5 The minor arc contribution

Recall that for each j with 1 < j <'s,

o) = P = 3 e L),

xe[d iel

Consider s =1+ 2m with [,m € N and m > r.

95



Lemma 73. For each j with 1 < j <, we have

sup | f;(e)] < PO

acm

1—(2t—1)A,,
where o = max .
neN 4nre

Proof. Take a« € m and M = %P. By [10, Lemma 3], for each i € L, there exist a; € A
and monic g; € A satisfying

0 < {a;) < {g;) < M*, ged(as, ;) = 1, and (gic;os — a;) < M~*.
Assume that for every i € L,
(g:) < M and (gicjous — az) < MP*
Let g = ¢;lem{¢;]i € L} and b; = ga;/c;g;. Then ged(g,b) = 1. Moreover, for every i € L,

(9) < (e) [ [{an) < (Mg =t < () P72,

jeL

and

aig> = ﬂ@jgiai —q;) < MNP = pak,
C;iGi <ngi>

Thus a € 9M, contradicting the condition that o € m. Hence for some i € £, (g;) > M or
(gicjou — az) > MP=*. Then by Theorem 72, we have

(gai — bi) = (gou —

1-(2.—1)Any

fi(@)| < P am

for every n € N with n > 1. O]

Let I, kqa(P) denotes the number of solutions of the system
i+ x =yl 1yl (e l) (3.22)
with x,,, y, € I%. For h € A", write J,, ;. 4(P, h) for the number of solutions of the system
(xi+-+x)—(yi+ - +yn)=h (i€R)
with x,,,y, € I%. By Lemma 61, £ C R,. Hence we see that

I pa(P) = Z I k.a( P, h)
h
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where the summation is over all the vectors h € H Ijyp with hy = 0 when i € £. Thus,
ieR;

]m,k:,d(P) < pKO_LkJm,k,d(P) oy p2md—Lk+Am.

Lemma 74. Whenever s > min{l 4+ 2m|lo > A,,,m > r,l,m € N}, we have
/Hf](a)da < psd—Lk—é
for some 6 > 0.

Proof. 1t suffices to show that the result holds when

s=14+2m=min{l +2m|loc > A,,,m > r,l,m € N},

Note that l Lo
/ Hfj(a)da < Hsup ’fj(a)|/ H ‘fj(a)‘da.
m o j=1 &M T i—i141

By Holder’s inequality, we have

I+2m 4+2m 1/2m
fila)|da < < fila) 2mda> :
/TL jl:—II—I | | jI:—IH /TL | |

On considering the underlying diophantine equations, for each j with [ +1 < 7 <[+ 2m,
we have
/ }f] (a>‘2mda _ ]ka;,d(P) < med—Lk-f—Am'
'H‘L

Hence, it follows from Lemma 73 that

/Hf](a)da < <pd—o+e>l . Pde—Lk+Am _ psd—bk—(la—Am)—‘rle

which can be bounded above by Psd=tk=0 {61 some § > 0 provided that lo > A,,. O]

Lemma 75. Let f(z) = Ce % 4 2z with C,E > 0. Then f(z) obtains its minimum at
zo = E'log(CE/2) and f(zo) = 2E7 (1 +log(CE/2)).
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Proof. Since f'(z) = —CEe P® + 2 is an increasing function and f'(zo) = 0, f(zo) =
min f(z). On noting that

flao) = Ce *8CF/2) 4 2F 1 og(CE/2) = 2E7' (1 + log(CE/2)),
the lemma follows. O
Theorem 76. Suppose that k > d + 2. Whenever
s> 2rk<log(m“k) +log (log ((2¢ — 1)rklogk) + 2k~") 4+ 3+ log4 — log (1 — (log k)_l)),

we have )
/ [ /i(@)da < P72,

where
1 — (logk)™t

5= :
4ork(log((20 — 1)rklog k) + 2k—1)

Proof. By Theorem 71, A, = rke™ % is admissible. Let fy(z) = Coe 27 4 22 with
Co=o0"1rk and £, = %, where o is defined as in Lemma 73. By Lemma 75, min fo(x) =
f(x0) where zo = r + Ey*log(CoEy/2). Write fi(z) = rke™ % . Let

l(] = [O’ilfl(x())] +2 and mo = [.CL’(]] + 1.

Then
lo > O'ilfl(l’o) +1> 071f1<m0) +1= O'ilAmo + 1.

By Lemma 74, whenever s > [y + 2mg, we have
/ [[ fi(e)da < Ptk (3.23)

where 6y = lpo — A, — lpe > o if we choose € small enough. Note that

lo + 27710 S Uilfl(xo) + 2.T0 +4 = fo(l’o) +4
=2E; ' (1 +1og(CoEo/2)) +2r +4 (3.24)
< 2rk(10g o+ 3).
On taking
n= [k:(log((2L—)rk310g k‘))] + 2,
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we deduce that

0 = Imax

ie.,

1— (20— 1A, 1— (logk)™?
> )
neN dnre 4urk(log((20 — 1)rklog k) + 2k—1)

logo ™t < log(urk) + log (log ((2L — D)rklog k) + 21{:_1) + log4 — log (1 — (log k)_l).

On recalling (3.23) and (3.24), whenever

s > 2rk( log(wrk) + log (log ((2¢ — 1)rklogk) + 2k™') +3 4+ log4 — log (1 — (logk)™") ),
(Tog(urk) +1og (log (20 — 1)rklog k) (log k)

we have

where

/ Hfj(a)da < PSd_Lk_‘;,
m g

1— (logk)™!
)= .
4uork(log((20 — 1)rklog k) + 2k—1)

3.6 Refinements via repeated differencing process

In order to apply the repeat differencing process, we first describe the systems ¥ of

type (j, P). To this end, we then need to define the difference operators. Suppose that f(x)
is a function from A% to A. For h = (hy,...,h;) € (A%, define A;(f(x);h) recursively

by

and

Next for wq, . .

)

Ao(f(x)) = f(x),
Ai(f(x);hy) = f(x+hy) — f(x),

Aj(f(x);hy, ... hy) = A (A (f(x);hy, ... hy)s hy).

w; € A, we define U; ; (i € Ry) recursively by taking W; o(x) = x', defining

(I)i,jfl (X, \I’i’jfl(X; hl, Ce ,hjfl; Wi, ... ,’U}jfl)) (325)
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as in Remark 3, and setting

Wiy (1 w) = w; A (@40 (%) hyw).

(3.26)

We now remark that each ®;;_; is a linear combination of (¥;_;). More precisely,
there exists a d-tuple a € A? with (a;) < (w;)* (1 <1 < d) for which we may define a

matrix C; over A as in Lemma 64 such that

(@j,l) = C] (\IjiJ,l(X; h17 c. ,hj,l; Wi, ... ’wj*l))iGRo = Cj(\Iljfl)

On writing W; for the diagonal matrix (w;;);jer, With wi; = w;m (i € Ry), we have

(T;) = (Viy(xhyw)), = Wi AL (1 (x); hyuf).

ieER
Thus,
(®;) = W;C; - WiC1 A (T (x); hywf, ... hyw!)
= WjCj te WlClAj((Xi)ieRO; hlw]f, ce ,h]wf)

(3.27)

For each j € N with 1 < j <~,(k), we aim to show that (¥,) is of type (j, P) when we

take wy, ..., w; as in the proof of the fundamental lemma. It suffices to show the following:

(i) There is a block matrix
Ty T
T 1 12
0 T
over A with each entry bounded by P guch that
(\I’i,j)ieRg _ T Ty (Xn)neR;
(¥5.5)5ery 0 T3 (X™)mer
(ii) We define in Remark 2(1) that
R;M = {i € R; | |fyq(i)| - U} and Tu,v -
Foru e {1,...,7,(k)} and v € {1,...,7,(k) — j}, we have that

Ty, =0 whenever u—v <y,

and

Tyu—j #0 for some u > j.

100

(Tiv“)ieR{) WNERS

(3.28)

(3.29)

(3.30)



By (3.27), we start with analyzing A;(x';hy,...,h;). Let A and B be two disjoint
subsets of {1,2,...,n}. Write B = {j1,...,Jm}. For hy,... h, € A, define

Dy (f(2)ih; A; B) = A <<z+2h> PR ) (3.31)

€A

where A,, is the one-dimensional version of the difference operator defined above.

Lemma 77. Let j € N\ {0} and let hy = (hyg, ..., hg) (1 <1 <j). We have

Aj(xhy, L hy) = ) HDW wr s AU U A, s Ay,

where hY = (hin, ..., hjn).
Proof. The proof is identical to the one of [15, Lemma 3.3]. O

For a positive integer i, we denote the set

i= {leZ|O<l<z p)(<l>}.

By Lemma 60, [ € 7 if and only if
l#1¢ and 0<a,(l) <ay(i) (neN). (3.32)

Furthermore, if [ € 7, then

Ya(i = 1) = (an(i) = an(l)) = 7(i) — 74(0). (3.33)

n>0

Proposition 78. Let j € N\ {0} and hy,ws,...,hj,w; € A. Then the following hold.
(1) If 1 < j < ,(i), then

Aj(l’i;hl,...,hj) = Z flj(hl,...,hj>$lj,
Wq(i_lj)Zj
ljei

i L\ o
fiy(hay oo hy) = E e hlfll...hé?—l b
=\ L
li€i,l2€l,... .l €l 1

.....

where
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is a nonzero polynomial in Fy[hy, ..., h;] and is divisible by hy - - - h;.
(2) If j > 7,(i), then Aj(z%; hy, ..., hj) is identically zero in Alx].
(3) Let A and B be two disjoint subsets of {1,...,7} and let B = {j1,...,jm}. Then

Dm(:ti;hlw’f,.. hw AB Z Z Goi(h, w)x

Yq (~ v)=m yq(v— l)>m
veU{i} lev

where

gvl(hw ( ><Zh1ﬂ)_fl( 71 ]17...,hijJ§€m)7

uceA
ch; wk

J1 j1. Jm Jm”

and g,,(h, w) is divisible by h;,w

Proof. (1) We prove it by induction on j. When j = 1, we see that

Ay(z5hy) = (x+hy) — 2" = Z ( ! ) zt = Z fi, (hy)z™,

0S11<i 'Yq(i—ll)ZI
llei
where fi,(h1) = l hi™" is nonzero since p ¢ ( l ) Suppose that the result is true
1 1

for 7. By the induction hypothesis, we have

Aj+1(fl€i; hy, ..., hj—i—l) = Al(Aj(Ii; hy, ..., hj)% hj+1)

= A1< Z fi;(ha, .o hj)l"lj; hj+1)-
(

Ya i_lg;)Zj
ljci

On applying the result in the case when j = 1, we see that

Ajir(x'shy, .o hig) Z fi,(hy,...,h DALY )
Yq(i=1j)=7
ljei
L 11
= Z fl (h1,...,hyj) Z ( ! )h§+1j+1) lj+1
Yq ( >.7 lj+1€l; Jj+1
L el Yq(l—lj41) =1
lj (i—=lj1) 1iq
= > fis (B, - ) RS ) i
Yq(i—15)>7 lj+1
Ya(l; *lj+1)>1
1€l 1€l
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It follows from (3.32) and (3.33) that

Aj+1<$i;hla'-'7hj+l) = Z flj+1(h17---,hj+1)£[}lj+1.

Yali=lj11)25+1
l]'+1 €1

Note that if Iy € 7,15 € Iy,...,l; € [,_y, then
i—l,l =1l oy —1; > 0.
In view of the definition of the function f,(hs,...,h;), we see that hy---h; divides
fi;(ha, .o hy).
(2) Note that v,(i — 1) > 7,(i) with [ € ¢ if and only if [ = 0. Thus, when j = 7,(i),
Aj(x' by, hy) = fo(ha, ..., hy).
Hence, when j > 7,(i), Aj(a’; by, ..., h;) = 0.

(3) By (3.31) and the linearity of the difference operator A, we have

Dm(xi;hlwlf,...,hjw?;A;B): <<x+2hw> i 31?" hjmwjm>

ueA
= Z ( t ) (Zhuwﬁ> A, (I hjlel, .,hij)?m).
~Yq(v)>m v ucA
v€iU{i}
From Proposition 78(1), we find that
AN G hjlel,...,hjmwfm) = Z fz i le"' mefm):cl.
Yg(v=0)>m
led
Thus
Dy (2% haw?, . .. hw A B) = Z Z Goi(h, w)x
’Yq(~)>m’7q(v l~)>m
veiu{i} lev
where
Gui(h,w) = ( ) <Zhw) fi(hj, Jl,...,hjmwfm).
ueA
Again by Proposition 78(1), g (h, w) is divisible by hj,w¥ - hj w . This completes the
proof of the proposition. O
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Corollary 79. Let j € Z with1 < j < k', hy = (hy, ..., hg) € A andw; € A (1 <1< j).
Then the following hold.
(1) For every i € Ry, we have

Aj(x'hywy, . hywh) = Z biix', (3.34)
IERj
where each by is a polynomial in (hy,... hj;w, ..., w;) and is divided by wy - wf

(2) Forie Ry and 1€ R; with |v,(1)] — |7,(1)| < 7, we have b;; = 0.
3) Forj € Ry and n € R, we have b;, = 0.
0 J J
(4) For every u € N with j+1 < u < K, there existi € Ry with [,(i)| = u andn € RiNR;

with |y,(n)| = w — j such that by is a nonzero polynomial in (hy,... hj;wy, ... w;).

Proof. (1) In view of Lemma 77, if Aj(x';hywf,... hjw?) contains x' = 2t - 2l ex-

plicitly, then there exists a disjoint union A; U --- U Ay = {1,...,7} such that each
zln (1 < n < d) appears in

Dy (s Ay U U Ap 15 Ay).

From Proposition 78(3) we deduce that for each n € N with 1 < n < d, there exists
vy € in U {i,} such that

bn € 0nand  |yg(on)] = |7(ln)] = [Anl-

On writing v = (vy, ..., v4), we have

d
leRy and | (V)| =] = ) M| =

n=1

Since vy, € i U {in} (1 < n < d), we have v € R;. It follows from Lemma 62(2) that
leRy CRi and  |y(0)] = [y(D] = |7 (V)] = (D] = J. (3.35)
Since |v,(i)] < v4(k) = k" and
R ={i€ Ry |10 < |y() <+ -},
by Lemma 62(4), we have 1 € R;. Thus

Aj(x byt hjwf) = Z birx, (3.36)

IeRiNR;
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where b;; = bj1(h,w) € A. Next we will prove each b; is divisible by w’f . wf

disjoint union A, LI---UA; = {1,...,75}. Forn € Nwith 1 <n < d, by Proposition 78(3),

whenever A, # 0, we see that [],., w divides the coefficients of the polynomial

Fix a

Dy (7 (hw)ss Ay U - U A5 Ay,

where (hw), = (hiuwf,- -+ hjw?). It follows from Lemma 77 and Proposition 78 that

wh - wé»“ divides the coefficients of A; (Xi; hywt, ... ,hjwf).
(2) By (3.35), every nonzero b in (3.34) satisfies |y,(i)] — |v4(1)| > J.

(3) Suppose that j € Ry. It follows from Lemma 62(3) that if 1 € R; then 1 € RY.
Thus R; NR; € RY. By (3.36), we obtain bj, = 0 whenever n € R/

(4) Fix uw € N with j +1 <wu < k’. Then there exists i = (iy,...,75) € R, such that
|’Yq(i)| = u, Vq(ll) Z ] + 1 and a,o(il) Z 1.

Therefore, there exists ny € i, with p fny and y,(n1) = v,(i1)—7. Writen = (ny, i, ..., 4q).
Hence |y,(n)| = u—j and n € R;NR). By Proposition 78(1), Aj(z"; hy, ..., h;) contains
f(hi,..., h;)z"™, where

l li L
f(hl,...,hj): Z (lo )( Jl'l )hllo_ll"'h;]_l lj
llefo,lzeﬁ lel;\:l 1 J

.....

lo=i1,l;=n1

is a nonzero polynomial in F[h4, ..., h;]. On taking
A1I{1,...,j}, AQZ“’:Ad:@7
we have
A (z; hlnwlf, o hjnwf):v’; . -xif
J . (3.37)
=[] D (s (w)is Ay U LA, p5 A).
n=1
Thus the coefficient of 'z --- ' appearing in (3.37) is f(hpw?, .. -, hjiw}). For a

disjoint union A, U---UA; = {1,..., 7} with A, # 0 for some 2 < n < d, by Proposition
78(2), Dya,|(zir; (hw);; Ay U -+ U A,_15A,) does not contain zir explicitly. Therefore,
ni 1o

o o -+ o only appears in (3.37) explicitly. Thus in (3.34) by = f(hnw?, ..., hjwy) is

a nonzero polynomial in (h, w). ]
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Remark 4 (1) For every 1 < j <k, by Corollary 79(1) and 79(3), we have

: iER] B B n ner’
Aj (X) €Ro ) hlwlf, PN ,hjU};-C = ! 2 (X ) GRJ , (338)
(x))jery 0 Bs (X™)mery
(bi:n)iE’R{),neR;’ By = (bivm)ie’Rg,meR;” and B; =
entries defined as (3.34). By (3.27) and (3.38), we have

(®,) = ( (Wij)iery ) _ W0 TG < 131 By > ( ((X;‘)neR; ) ' (3.39)

(W55)jery

where B; = with all

(ijm>j€7€{)’,me72;.’

By B,
T:VV]C]T/VlCl 0 .

To prove that (¥;) is of type (7, P), we shall show that 7" satisfies (3.28), (3.29) and (3.30).
By Remark 3 and Lemma 66, for every [ € N with 1 <[ < j, we may write

cyp C
Cl _ 1 2 ’ (340)
0 Cj
where
I, * *
0 Iy, - =
cu=1| . " ] (3.41)
0 0 I

Recall that for each [ with 1 <1 < j,

W, — ( .(l.))
! Wi i,jeRo

is the diagonal matrix with w(li) = wl_m . For u € N with 1 <u <k, write

i,

Wit = (wl(?) :
’ 17.167%,“
Then we can represent W; by
%1% 0
wi=[ " : (3.42)
0 Wi
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where

Wiaw 0
0 Witk —
Wy = 1,1.,1{ 1 | (3.43)
0 0 Wiia
By (3.40) and (3.42), we find that
B, B
T=w,C;---wycy [ 78 7
0 Bs
_ WjIle - WinCn By *
0 Wi3Cjz - - - Wi3C13B3
For i € {1, 3}, write

From (3.39) and Corollary 79(1), we see that

Ty T
T 1 1o
0 Tj
having entries over A and satisfies (3.28).

(3) To show that T" also satisfies (3.29) and (3.30), we start by considering B in (3.38).
Recall that R, = {n € R}| |y,(n)| = v} (0 < j < &'). Then by setting

By, = (bi,n)iER{),u,nER;w?

Bl _ ( (Bu,v)uzjﬂ ) '
(Bu,v)USj

By Corollary 79(2), we have B,,, = 0 whenever u — v < j. Thus

we have

Bk',k’*j k oo *k
0 Bk’—l,k’—l—j e *
B, = 0 0 Bji1a
0 0
0 0 0
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By (3.41), (3.43) and (3.44), we have

Tk’,k’*j k s *
0 Ty pr—1—j -+~ *
T = 0 Titia |
0 0 0
0 0 0

where ‘
j
Tu,ufj = H I/Vl,l,uBu,ufj (u € {kl7 o 7j + 1})
=1
Moreover, the zero blocks imply that T, , = 0 whenever v — v < j. This means that T’

satisfies (3.29).

(4) For every j 4+ 1 < u < K/, write

Tu,ufj = (ﬂ,n)ieRgﬂu,ne'Rg,uij-

By Remark 4(2), we have

ﬂ,n — (wj e wl)_|l|b17n

By Corollary 79(4), By u—j # 0. Thus, T}, ,—; # 0 for every v € N with j +1 < u < k.
Thus T satisfies (3.30).

(5) It is worth a reminder that to prove that (¥;) is of type (j, P), since T" has satisfied
(3.28), (3.29) and (3.30), it remains to show that every entry of T’ can be bounded by P*/.

Corollary 80. Let h € 1. Then the coefficients of Ay(x';h) can be bounded above by
pi.

Proof. By Lemma 77, we have

d
A (x';h) = Z HAjz (2 hy).
jend =1
lil=1
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Every j € N¢ with |j| = 1 only has one j; = 1 and has the other coordinates equal to 0. It
follows from Proposition 78(1) that

Al(xil;hl) = Z ( u > hl(ilin)xn.
n

neil

i

Thus every nonzero coefficient of A;(x'; h) must be of form < ) hi'~" which is bounded

n
above by Pl O]

Lemma 81. Let j € N with 0 < j < k’'. The following hold.

(1) The polynomials V; ;(i € Ro) form a system of type (4, P).

(2) Suppose that j > 0. For hy = (hy,...,hyg) € A% and w, € A (1 <1
that hwy € I%. Then for j € N with 1 < j < ap(k), we have K(¥;)
Kr = ier [i| and

7), suppose

< J),
> Kgx where

{ie Ry |ap(ir) > j, |ao(ir)] > 1}, if D >0,
{ieRy|li|>j+1,4 >4}, if D = 0.

Proof. (1) When j = 0, ¥;4(x) = x', which is of type (0, P). For j > 0, as we mention in
Remark 4(5), it suffices to show that each entry of

B, B,
TZVVjCj'"chl
0 Bs

can be bounded above by P* . We prove it by induction on j. Assume that the result is

true for j > 0, i.e.,

Uij(x) =) T

IERj

with Ty < P (i € Ro, 1€ R;). Moreover, (®); = Cj41(¥); where Cji1 = (aij)ijer, i
defined as in Lemma 66 by

(—a)i_j, if jERi,
0, otherwise.
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Hence

®;5(x) = > aiz¥;(x) (i€ Ry).

JER4

By (3.26) and the linearity of A;, we have

i1 (0 T w) = w0 A (@i (x); By

- w;Jlrlll Z i Z TiaAi(x" hywy,,).
JER: IERj
Note that we can pick a = (a1,...,as) € A with (@) < (w;j1) (1 <1 < d). Thus
(aiz) < (wj1). Also, since (Tj)) < P¥ it follows from Corollary 80 that the coefficients
of U; ;11 can be bounded by PFG+D | Thus, by induction, the system ¥, is of type (4, P).

(2) Suppose 0 < j < ap(k). It suffices to show that the matrix T defined by (3.12)
has rank card R. Write By = (bin) On recalling Remark 2(4) and 4(4), we have

iGRg,neR; ’

T iR 0 . 0
0 T . 1. .. 0
Tr = ' FobmR _ : (3.45)
0 0 o Tiar

where for u € N with j +1 <u < ¥/,

i
Tyu—jr = ((wj o 'wl) | Ibim).
iIERNRG , MER,

Define

Qz{@—ﬂ?@,wmﬂum%mJ@eRﬂR@}
By the definition of R, we have R C R/. Also, let M, denote the sub-matrix of T, . ;=
consisting of the entries (w; - --w;) by, indexed by i € RNR, and n € C,. Assume
that every M, has rank card (R N Ry, ). Thus, T;,,jr has rank card (R N'R;,,). Since
R C U, Ry, we obtain

k/
Z card (R N Ryg,) = cardR.

u=j+1

Hence Tk has rank card R and K (¥;) > Kg.

110



It remains to show that every M, has rank card (R N'R;,,). Now we write i >~ j if and
only if there exists [ € N with 1 <[ < d such that ¢; = j1,...,4 = 7, and 441 > Jio1-
For every u € N with j + 1 < u < k', we can place the entries of M, in lexicographic
order ”>". More precisely, by, is above by, if i’ > i. Similarly, b, is at the left of
bin if n’ > n. We will show that M, is a lower triangular matrix with nonzero diagonal
entries. For i € RNRG,, let i; = (iy — jpP.ia, ..., 1q) € Cy. Thus the bii; are the diagonal
entries, which are not zero by the argument of Corollary 79(4) with n, = i, — jp?. Take
i',ie RNRG, with i =i Then i} = i; and we have the following array of entries of M,

(i, 1) - (1)

(i) - (11)

Assume that the (i, i;)-th entry is nonzero, i.e., (w;---wi) by ;, # 0. Then i; € Ry and
forall2<[1<d,h>0and 0<n< D, we have

an(iy) < ap(iy), an(in) < an(iy), and ap(iy) —j < ap(iy). (3.46)

Since |y ()] = [7(i)] — j = u — j, we have

d D
7= 1) = 174(iy)] Z ('Yq i) — (i ) + Z <ah i) —ay 21)) +7 (3.47)

=2 h=0

Thus

Z (751 i) — Yq(i1) ) + Z (ah — ap( Z1)> =0.

1=2
Since i} > i1, we have ap(i]) > ap(i1). On recalling (3.46), we conclude that for all
1<i<dandh >0,

(lh(il) = ah(zg)

Thus, i’ = i, which contradicts i’ = i. Therefore, by ;; must be zero. This completes the

proof of the lemma. O
Recall that

fle; P) = Z€< > OéiXi)

ield " i€Ro

111



and hat Js(P) = Js1.q(P) is defined to be the number of solutions of the system
Xj+hx =y oy, (1€ Ro)

with X,,, ¥m € I%. Also, recall that we denote by K (P, Q; ¥) the number of solutions of
the system

S (Wit~ Wila)) = Yo, — ) (i€ Ro)

n=1 m=1

with z,,z € I% and X,y € Ié. Furthermore, we denote by L(P,Q,0,w;¥) the

n
number of solutions of the system

r

3 (\pi(zn) - wz;)) — Wl S (ul, = Vi) (i€ Ro)
n=1 m=1
with z and 2’ as above, Wy, Vi, € I§_p, and z, = 2, (modw") (1 <1 < d). We now set

nl

up the apparatus necessary to achieve the efficient differencing process.

Lemma 82. Let (®;) be the system defined as in (3.25). Suppose that 6P < @ < P.
Write H = (1 — k0)P. Then there exist h € A* with 1 < (b)) < H and w € P(0,€) such
that

1/2

LS(P’ Q’ 9’ (I)]) < P(Qdili(dil)ke)rJS(Q - QP) + ﬁdr (KS(P7 Q - GP; \Ilj+1>=]s<Q - 9P)> )
where (W;41) is given by (3.26), i.e.,

Wij1(2) = w1 (@y5z+ hut) — @1,(2)) (i€ Ry).

Proof. Fix w € P(f,¢). For each i € Ry, the coefficients of U; ;11(z) lie in A[h]. Consider
the roots h of the nonzero coefficients for all U; ;11(z), and let 7 denote the set of roots
which also lie in

(he Al () <H(1<1<d)}.
Then we have Ly(P, Q,0,w; ®;) = Uy + Uy, where Uy denotes the number of solutions for
which z, =z, + hw” for some n € N with 1 < n < r and h € T, and where U; is the
number of solutions with z, # z/, + hw® foralln (1<n<r)andhe T,

First, suppose that Uy > U;. Since the number of nonzero coefficients can be bounded

by a constant in terms of £ and d, we have
cardT = O(I:Id_l) = O(ﬁ’(l_ke)(d_l)).
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It follows that the number of pairs (z,,z,) with z, = z, + hw* for some h € T is
O(pdp(l_ke)(d_l)). Write aw = (ajw!!)icr,. In view of the congruence conditions on z
and z’, we have

UO < pdp(lfk:@)(dfl) Vw(ay’fl
T7o

flaw; Q — OP)*|de,

where

V() = Z

ze(A/(wk))?

S o S etixn)
xEIj‘_E, i€Ro
x=z(mod w")

It now follows from Hoélder’s inequality that Uy is bounded above by

1-1/r
pd]f)(l—kG)(d—l)(/ su(@)’ da) (/
T"0 T"0

On considering the underlying equations, we see that

flaw;Q — oP)* flaw;Q — OP)*

1/r
da) )

Ly(P,Q,0,w; ®;) < PE1==Dkr j () _gp). (3.48)

Next suppose that U; > Uy instead. Write
2= 2+ hgwt (1<n<r 1<1<4d),

where h,,; satisfy 1 < (h,;) < H and h & T. Therefore, U; can be bounded above by the

number of solutions of the system

S

D Vi@ haw) = ) (w), —v,) (i€ Ro),

n=1 m=1
where z,, € If_l,, h, € Iﬁ,, and u,,,v,, € Ig?_ap. Now write
Wy (e h) = Z e( Z ;Ui j11(z; h; w))
zeld  “NiERg
Then we have

do.

Uy < /wo < Z Ww(a;h))r‘f(aw;Q —0P)*

held

Furthermore, by Holder’s inequality, we deduce that

( > Ww(a;h)> < HUD Y ’Ww(a;h)

helg, herd,

T
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Thus,

Uy < =1+ m}z}x/ W(a;h)" faw; Q — 0P)* |da

Tro

1/2 1/2

< H max / do / do .
h T"o T"0

Since the first integral above is bounded by K (P, Q—0P; ¥, ;) where ¥; ;11 = ¥ j11(z; h; w)
for some h € A? with 1 < (k) < H. On recalling (3.48) and taking the maximum over
w € P(6,¢), the lemma follows. O

Wo(a; ) flow; Q — 0P)* flaw;Q — OP)*

In what follows, write K; = K(¥;), p; = card{i € R{||(i) < j}, and Q; =
KO — Kj — M.

Theorem 83. Let u € N with v > r. Suppose that A, < (k— 1)(r + 1) is an admissible
exponent, and let j € N with 1 < j < ~,(k). For each | € N\ {0}, we write s = u+Ir and
define the numbers ¢(j, s, J), Os, and Ag recursively as follows. Given a value of As_,., we
set ¢(7,s,7) = 1/k and evaluate ¢(j,s,J — 1) successively for J = j,...,2 by selting

» 11 QAL
" (4,5,J 1)_ﬁ+(§+T)¢(]’S’J)’

and
¢(j,8, J — 1) = min{l/k7¢*(j78) J — 1)}
Finally, we set

f, = min 1,8, 1
1<j<vq(k) ¢(j )

and

Ay = Ay (1—0,) + (k6 —1).

Then Ag is an admissible exponent for s = u+ Ir for all 1 € N\ {0}.

Proof. Fix s > u and suppose that J, is an admissible exponent. According to the hy-

pothesis of A,, we have
Ay <A, < (k—=1)(r+1). (3.49)

Take j to be the least integer for which ¢(j, s + r,1) = 0,4, and write ¢; = ¢(j, s+ 1, J)
for J = j,...,1. The minimality of j ensures that ¢; < 1/k whenever J < j. We adopt

the notation
M;=¢;P, Hi=(1-k¢;)P, Qi=1—-¢1—---—¢;)P (1<1<y),
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with the convention that )9 = P. We now show inductively that for each J =j5—1,...,0,

A s
LS(P7 QJu ¢J+1; ¢)J) < P(Zdili(dil)k(ﬁJJrl)TQ‘H»l . (350)

When J = j — 1, it follows from Lemma 82 that

1/2

Lu(P, Q1,653 ®;_1) <€ P70k () 1 B (KL(P,Qy: W) 1,(Q))
Since ¢; = 1/k, we have 1/'-1\] = 1. By estimating K,(P,Q;; ¥;) < PQ’”d@/\S, we obtain
L(P, Q1. 0 ®y0) < PUI(Q) < PUQ; .
Now suppose that the result holds for J € {j —1,...,1}. Then by Lemmas 68 and 82, we

see that

1/2

~ —~dr
Ly(P,Qy1, ¢y ®5-1) < PRTIZEDRIr 1 (O )+ Hy (K(P,Qr; %) Js(Qr) "7,
and
Ko(P,Qu; ;) < P JJ(Qy) + PP L(P,Qy, dy11; @),
where I'y = 2rd — (r + 1)(1 — ¢y41) + € and 'y = ¢y41(28d + krd — py — K;). By the
induction hypothesis, we have

A —~dr —~MXg
Lo(P,Qy_1,05;®,_1) < PRIk J QY+ Hy Q) (B + Ey)Y?,

where

r+1

~ L — ——2sd+kr—pj—Kj—As
El — P2rd r 1+6MJ+1

and EQ = PZTd?TMJJrl
On combining (3.49) with Ay = 2sd — Ko + A and py + K; < Ky, we have
E\/E, = pPeltora(r+) = g (kr—ps—Kj+Ko—As)

< P671+¢J+1(T’+1*k‘1”+A5) <1

Y

ie., By < F,. Thus
A B HA2
Ly(P,Qj-1,05®5-1) Qs (P + P™),

where

A =2d—1—(d—1koy)r,
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and

1 1
Ao =dr(1 —koy) + 5(27”65 —r)+ 5(25d+ kr— g = Ky = As) s

Then by the definition of ¢, we have A; = As. By induction, (3.50) follows. On applying
(3.50) with J = 0, we conclude that

Ls(P7 P7 ¢1; QO) < p(Qd_l_(d_1)k¢1)r+(1_¢1)>\5'
Thus we obtain from Lemma 68 that
Joir(P) = K (P, P, W) <« P 4 PMs,

where
A3 =2rd— (1 —¢1)(r+1)+ s+,

and
A= (1= ) s+ (2d—1—(d—1Dk¢1)r + ¢1(2sd + krd — Ko).

By (3.49) and Ay = 2sd — Ky + A, we see that

Ag—A4:E—l—}—qbl(?“—}—l)—{—gblk”f‘(d—1)—¢1(k”l"d—A5)
=e—1+¢(r+14+ A, —kr)

<0,
i.e., A3 < A4. Hence the exponent
Asir =Ny =2(s+71)d — Ko+ As(1 — ¢1) + (ko — 1)
is admissible. On recalling that ¢; = 6,,., the theorem follows by induction. O

Lemma 84. Let j > 2. Suppose that As_, < (k—1)(r + 1) is an admissible exponent.
Furthermore, suppose that q,...,Q;1 < f<g<A,_,. Set

2f/4g, if j > 1+logy(g/f);
2'7 + f/g, ifj <1+1logy(g/f).

Also suppose that ¢(j,s,1) and As are defined as in Theorem 83. Let 6 = As_,./rk and
ds = Ag/rk. Then

1+ wd

¢(j>3>1) < k(1+5)7
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and

5, < 5(1 - k?fﬁs))‘

2_
5, 4+ logd, < 6 +logd — T“’

Furthermore,

Proof. On writing ¢; = ¢(j,s,1) (1 < J < j)and ¢ = (As—, — f)/rk, from Theorem 83
we have
1 1

P11 < o + 5(1 -0y (2T <).

Using a downward induction, we can find that

—5\i—
@Sﬁ(ud’(z )J J) (1<J<39).

In particular, we see that

1+ 421
< — .
$1 < k(14 07)
Note that ﬁ—af is a decreasing function of x whenever o < 1. Since &' > §(1 — f/g), it
follows from (3.51) that

(3.51)

L+3(1— f/9)2"7 _ 14627 + f/g)

<
$1 < k(1+0(1—f/g) — k(1+0)
For j > 1+1logy(g/f), we have 2177 + f/g < 2f/g. Thus w > 277 + f/g. Therefore
. 1+wd
< .
Since
ds=0(1—05)+ (0s—1/k) < (1 —=09)p1 + 0 — 1/k,
we have
14+ wé 1 (w—2)§ —wd?
< — e — —_ = =
e T B Sy wc ey s
(w—2)0 B 2-w
“kazo 07\ raxyy)
Thus

(2—w)d 2—w
0s +logds < 6 +logd k(1+5)+10g1 15 0)

(2—-w)d 2 —w
<Ot logd =TT T A o)
2—w
— 6 +logd - =,
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This completes the proof of the lemma. n

Proposition 85. Let j > 2. Suppose that y,...,Q;1 < f<g<(k—1)(r+1). Letw
be defined as in Lemma 84 and let

sg=3r+1k(2 —w)"' (1 — g/rk —log(g/rk)).

If v is the unique positive solution of the equation

(s —2r)(2 —w)
rk ’

’ys"f_log'ys:l_

then Ay = rkvy is admissible whenever 2r < s < sg,.

Proof. For s € N with 2r < s < 3r, rk(1 — 1/k) is admissible because Ay, = rk(1 — 1/k)

is admissible. Since 0 < s — 2r < r, we have
Vs +logys >1—r(2—w)/(rk) >1—-2/k>1—1/k +log(1 —1/k),

Thus Ag = rkvys > rk(1— %) and Ay = kv, is admissible. When 3r < s < s,, assume that
As_, = rkvs—, is admissible. Let 6 = min{vys_,, (k —1)(r +1)/(rk)}. Then A*_ = rkd is

admissible. Since s < s, implies that

Yoor 1087 = 1= (5= 3r)(2 — w)/(rk) > 0/ (rk) +log (9/(rk),

we get AY = rkd > g. Let 05 be defined as in Lemma 84. Since A¥_ | = rkd <
(k—1)(r + 1) is admissible, by Theorem 83, A* = rkd, is admissible. By Lemma 84, we
have

d+logd—(2—w)/k > ds + log ds. (3.52)
Since

Vs +1Og’78 = Vs—r +10g'75_r - (2 _w>/k > 6+1Og6— (2 —CU)/]{?,
it follows from (3.52) that
Vs + log s > 05 + log ds,

and hence v, > 6. Thus Ay = rkv, is admissible since A¥ = rkd, is admissible. O

Corollary 86. Suppose that k is sufficiently large in terms of d. When 1 < s < s,

_s(2-w)

A, = rkee” "k

18 admissible.
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Proof. Let v, be defined as in Proposition 85. For 2r < s < s,4, on noting that
logys < 142r(2—w)/(rk) — s(2 —w)/(rk),

we have v, < e275C2=9)/(k) Thus A, = rke2e= "% is admissible. For 0 < s < 27, since

s(2—w)

A, =rke*e” " > rke* Yk > rk,
it is admissible. This completes the proof of the corollary. O

Lemma 87. Let k < p and sy = %Tk:(logk‘ — 2loglogk). Suppose that k is sufficiently

large. Then the exponents
rkede” 1 <s < s,
r(log /{;)2636_% 5> s,

are admissible.

Proof. For a fixed j with 2 < j < k, in order to bound ,(1 < J < j—1) we need to choose
some subsets of R}, appropriately to approximate K (¥ ;). Take R, as in Lemma 81(2) and
let 7; = cardR; and K, = > ier, |li|- Tt follows from Lemma 81(2) that K(¥,) > K.
By [15, Lemma 2.1], we have

~ dk+J [ k—J+d
K; = —J
J d+1 ( d )

On picking j = [(log k)/?], whenever 0 < J < j for k sufficiently large, since puy > J, we

obtain

. dk k+d k—ij+d
Oy =Ky— K7 —puy < —— - < r(log k)'/2.
J 0 J MJ_d+1<< d ) ( d ))_r(og)

Let f = r(logk)Y/?, g = r(logk)?, w = 2f /g and s, = 3r+rk(2—w) "} (1—g/rk—log(g/rk)).

For sufficiently large k, we have

1+ log,y(g/f) = 1 + log, (log k) * < [(logk)3] = j.

By applying Lemma 85 and Corollary 86, the exponents

_s(2-w)

Ay =rke*e” (1 <s<sy)
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are admissible. Note that

sg=3r+rk(2— w) N1 — g/rk —log(g/rk))

3

—1

=3r+rk (2 — 2(log k)_5> <1 — (log k)?/k — log ((log k)Q/k:)>
> 3r + 2’17’11’(1 + (log k)’%) <1 — (log k)?/k — 2loglog k + log k)
> 27 rk(log k — 2loglog k).

On letting so = 27 'rk(logk — 2loglog k), we have sy < s, and

% = (logk — 2loglog k) (log k)~

ol

< 1.

Thus the exponents

A, = rkede (1 <s<sp)

are admissible. Since A,, = rke’e=+# = r(log k)2¢?, it follows from Theorem 70 that

rke3e 1 < s < s,

r(logk)%ede™ " s> s,
are admissible. The lemma follows. ]
Theorem 88. Let k < p. Whenever
s > 2rk (2’1 log k+log(rt)+log log k-+log (log ((2¢—1)rklog k)+2k~")+6—log (1—(log k)’1)>,
we have

/Hfj(a>da < Psdekfé
m

for some § > 0.

Proof. By Theorem 87, on letting so = 3rk(logk — 2loglog k), we have that

2s
rked3e 3k 1 < s < s,

r(log k’)2€36_% 5> s,

are admissible. Now let f(z) = Ce #=0) 4+ 27 + 1 with C' = o~ 'r(logk)?¢® and E = L.

By Lemma 74, whenever s > min{ f(z) |z > s¢}, we have
/Hfj(a>da < Psd—ak—é
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for some 6 > 0. By Lemma 75, min{f(z) |z > so} = 2E7'(1 + log(CE/2)) + 259 + 1.
Note that
log(CE/2) =logo ™' + 2loglogk — log k + 3 — log 2

and
logo ™t < log(irk) + log (log ((2L — 1)rklog k:) + 21{:_1) + log4 — log (1 — (log k)_l).

We have

min f(z) = 2E7" (1 4 log(CE/2)) + 1 + 250

>80
<2rk;(log o'+ 2loglogk —logk 4+ 27 log k — loglog k + 4)
<2rk (2’1 log k + log(re) + loglog k + log (log ((2¢ — 1)rklogk) + 2k~")

+ 6 —log (1 — (log k;)_l)>.

This completes the proof of the lemma. O

Roughly speaking, comparing the lower bounds for s in Theorem 76 and Theorem 88,
we achieve savings of the order of magnitude rklog k in the case when k < p via repeated
differencing process. Consider the case when k > p. On rewriting k as ag(k) + a1 (k)p +
-+ ap(k)p?, we have D > 0. It transpires that when ap(k) is sufficiently large, we may
obtain savings of the order of magnitude rklogap(k) by following similar arguments to
Theorem 88.
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Chapter 4

The proofs of Theorems 1 and 2

4.1 The proof of Theorem 1

Theorem 1. Let p be the characteristic of F,. Suppose that p{k and k > d + 2. Further
suppose that the system (1.6) has a non-singular solution in the completion of Fy(t) at oo
and a non-singular solution in the completion Fy(t),, of F,(t) at every irreducible element
w in F[t]. Let v = card L and r = card R{,. Whenever

5> 2rk<log(w’k) + log (log ((2L — 1)rklog k:) + 21{:_1) + 3 +log4 — log (1 — (log k:)_l)>,

there is a positive constant C' = C(s, k,d;q;c1, ..., cs) such that

Ny pa(P) = C(qP)Sd_”€ i O((qp)scl—LkHs)7

_ { 1 1— (logk)™* }
0 = min , )
18ke” durk(log((2e — 1)rklog k) + 2k—1)

where

Proof. Tt follows from Theorem 76 that

/ Hfj(a)da = O(PSd’Lk"s).

Moreover, by applying Theorem 59, we have
/ H f](a)da _ Cpsd—ak + O(PSd_Lk_5)7
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where C' = C(q, k,d, s) > 0. Since

Ny ja(P) = fila)da = file)de + file)de,
wlr) = | Tptene= | Tt [ T1
the result follows. O

It is worth a remark that when & < p, by applying Theorem 88, Theorem 1 holds
whenever

s> (1+o(1))rk(logk + 2log(re)),

as k — 0.

4.2 The proof of Theorem 2

Recall that the height of a vector x = (z1,...,2,) € A" is defined to be

maxi <i<n(T:)

(ged (1, ..y 10))

For a subspace V' C F,(t)® with basis vectors x1,...,x4 € A®, define

H(x) =

HV)=H(xi A AXq).

Let N7, 4(P) denote the number of solutions of (1.6) for which the vectors xy, ..., %, are
linearly independent and counted by Nj . 4(P). Let N 4(P) denote the number of distinct
linear spaces V of dimension d and height at most P, lying on the hypersurface (1.5).

Lemma 89. Let Q € R with @ > 0. For a subspace V- C F(t)* of dimension d, define
Bo(V) to be the number of bases for V' with all basis vectors lying in I3). Then

Ba(V) < Q.

Proof. Fix a polynomial basis x1, ..., x4 for V. Without loss of generality, assume that the

matrix (x”) = (a:i,j)1<ij<d consisting of the first d rows of the matrix X = (x1,...,xy4) is

non-singular. For another polynomial basis yy, ..., yq4, there exists a d x d matrix B such
that Y = (y1,...,y4) = XB. Thus B is uniquely determined by (y,-7j)1<ij<d. Hence the
number of choices for B is less than Q% ]
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Lemma 90. Let 3o(V) be defined as in Lemma 89. If Q = (P)Y/?, then we have

Nia@ =Y BoV) < (max fo(V) ) Nowa(P).

V)<P

Proof. Suppose that xi,...,x4 € I} are linearly independent. Let V' = Span{x,...,%4}.

Since

~

HV)=H(x A Axq) < Q%=

>

the results follows immediately. ]

We are now in a position to prove Theorem 2.

Theorem 2. Under the same conditions as the ones in Theorem 1, there are two positive

constants Cy; = Cy(s, k,d; q; c1,...,¢5) >0 and Cy = Co(s, k,d;q;cq, ..., ¢cs) > 0 such that

ku _ki_g_8

Naga(P) > Ci(q") 7 = Co(g") 0,
where J is defined as in Theorem 1.

Proof. Let Q (P )1/d By combining Lemma 89 with Lemma 90, we have

Noga(P) > Ns*,k,d(Q)Q_d2~

Let w be an irreducible polynomial in A with ordw = [Q]+1. If xy, ..., %4 € I} are linearly

dependent over FF,(¢), then they must be linearly dependent modulo w. Thus, there exist

ai,...,aq (modw), not all zero, such that a;x; + -+ - + agxy = 0 (modw). The number of
choices for the coefficients aq,...,aq is O(<w>d*1), since one of them may be normalized
to be 1. For each fixed choice of ay,...,aqy, the number of vectors xi,...,x4 (modw)

such that a;x; + -+ 4+ agxg = 0 (modw) is O((w)*@~V). Thus the number of linearly
dependent vectors xi, ..., %4 (modw) is O ((w)**~*T*=1). Hence the number of dependent

vectors Xi,...,Xq € 1 is
O(<w>sd—s+d—1) _ O(Qsd—s—l—d—l) _ O(QSd_Lk_Q).
By Theorem 1, there exist C; = Ci(s, k,d,q) > 0 and Cy = Cy(s, k,d, q) > 0 such that

N;,k,d(Q) > 01Q8d_Lk — Y (Qsd—bk—é)‘

124



Therefore,

Noa(P) 2 N2 o Q)Q™"
Z CIQSdekfdQ o Cb@sdekfde(S
— O Pl o, PG,

This completes the proof of the theorem. n

4.3 Future work about the circle method in F[t]

In Theorem 1, we obtain a lower bound for s such that Ny q(P) is of magnitude
Psd—k A future research project is to largely reduce the lower bound for s by applying
another variant of the circle method. Recently, Parsell [16] studied an integer analogue of
this question and achieved impressive results. Motivated by his work, we may investigate
mean values of exponential sums over the polynomials having only small degree irreducible
divisors, called smooth polynomials. Such estimates are essential to the savings on s.
Furthermore, we may generalize our results to general function fields. In particular, we

could study Waring’s Problem and Vinogradov’s mean value theorem for finite extensions
of F,(%).

Another direction that we may pursue is to consider the polynomial analogues of Roth’s
theorem on progressions. For N € N\ {0}, let D3([1, N]) denote the maximal cardinality
of an integer set A C [1, N] containing no 3-term arithmetic progression. In [17], Roth
established a variant of the circle method and showed that Ds([1, N]) < N/loglog N.
Since his fundamental work, further refinements have been achieved by Heath-Brown [8],
Szemerédi [19], and Bourgain [3]. Therefore, it is interesting to find new variants of the

circle method to analyze the similar questions in function fields.
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the set of rational numbers

the set of real numbers

the set of complex numbers

the finite field of ¢ elements

the characteristic of F,

the ring of polynomials over F,

c1,...,cs € F[t] \ {0}

the fraction field of F,[t]

the field of formal power series in terms of 1/t over F,
=3y, at" with a; € Fy and n € Z
ol = >0 a;it’ if o = Zign a;t’

the integer n if @ = >~ a;t’ and a,, # 0

ord o

q

qP

the set of elements o € K, with ord o < 0
a character of F, (page 7)

an exponential function (pages 7, 10)
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m the major arc (page 8)

m the minor arc (page 8)

Sk singular series (page 37)

Js.dk singular integral (page 52)

I the set of elements o € K, with orda <m

Ip the set of polynomials in F,[t] of degree < P

N je.a(P) the number of solutions of the system (1.6) in I3
Jsk.a(P) the number of solutions of the system (3.13) in I35
I ka(P) the number of solutions of the system (3.22) in %4
i (11, ..+, 1q)

li i+t g

x! git gl

Ri, Rj, R}, R certain sets of d-tuples (pages 11, 71)

L a set of d-tuples (pages 4, 72)

L the cardinality of the set £ (pages 4, 72)

r the cardinality of the set R, (pages 5, 71, 87)

To the cardinality of the set Ry

K, Sher

Fla,x) Die X'

G(a, x) aFla,xy) 4+ + s Fa, xg)

fila) = filas P) ¥ cpe(eiF(ex))

fla; P) erzg, €<Zie720 O‘ixi>

f(e: P) Sery € Lier, i)

I p the set of elements in K., of the shape Z_P<i§0 a;t’

Tp(F; ) erzgpe(F(CX;X))
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rk Jac(f; z: w)
an (i)

Vq(2)

ind ()

()

Zxdgrdg e(F(a/g;x)) where g € A\ {0} and a = (a;)iez € A
5(g, c;a)

an irreducible polynomial in F[t]

the rank of the Jacobian matrix Jac(f;z) over A/(w)

i =Y hso an(i)p" where an(i) € [0,p — 1] NZ

ao(?) + a1(7) + az(i) + - -

see page 14

see pages 14, 22, 42, 55
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