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Abstract

The ring of polynomials over a finite field has many arithmetic properties similar

to those of the ring of rational integers. In this thesis, we apply the Hardy-Littlewood

circle method to investigate the density of rational points on certain algebraic varieties in

function fields. The aim is to establish asymptotic relations that are relatively robust to

changes in the characteristic of the base finite field. More notably, in the case when the

characteristic is “small”, the results are sharper than their integer analogues.
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Chapter 1

Introduction

1.1 Motivation

The problem concerning integral points lying on the hypersurface defined by an additive

equation has occupied a prominent position in number theory over the past century. Let

Z be the ring of integers and let N = {0, 1, 2, . . .}. For nonzero k ∈ N and nonzero

a1, . . . , as ∈ Z, one wishes to establish an asymptotic estimate for the density of integral

points lying on the hypersurface

a1w
k
1 + · · ·+ asw

k
s = 0. (1.1)

For positive P ∈ R, the set of real numbers, let Ms,k(P ) denote the number of integral

solutions of (1.1) in the box [−P, P ]s. When k is sufficiently large, subject to a local

solubility hypothesis, the work of Wooley [21] on Waring’s problem can be used to show

that Ms,k(P ) � P s−k whenever s ≥ k log k + O(k log log k). Moreover, by the work of

Ford in [6], we may prove that there are two positive constants D1 = D1(s, k; a1, . . . , as)

and µ1 = µ1(k) such that

Ms,k(P ) = D1P
s−k +O(P s−k−µ1),

whenever s ≥ k2 log k +O(k2 log log k).

Because of the homogeneity of (1.1), if a nonzero integral point w = (w1, . . . , ws) lies

on (1.1), then the rational line determined by this point {bw | b ∈ Q} is also contained in
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(1.1). Thus the above question is about the density of linear spaces of dimension 1. It is

therefore natural to ask about linear spaces of higher dimension. Asymptotic estimates

for the number of such spaces up to a given height have been considered in recent work

of Parsell (see [13], [14], [15], and [16]). Let V be a rational linear space of dimension d

when d ∈ N and d ≥ 2. Suppose that u1, . . . ,ud ∈ Zs form a basis of V . Then

V = Span{u1, . . . ,ud} =
{
b1u1 + · · ·+ bdud

∣∣ b1, . . . , bd ∈ Q
}
.

V is contained in the hypersurface defined by (1.1) if and only if every vector v =

(v1, . . . , vs) ∈ V is a solution of (1.1). Write v = b1u1 + · · ·+ bdud. Thus,

vj = b1u1,j + · · ·+ bdud,j (1 ≤ j ≤ s).

Note that v = (v1, . . . , vs) is a solution of (1.1) if and only if

a1v
k
1 + · · ·+ asv

k
s = 0,

i.e.,

a1(b1u1,1 + · · ·+ bdud,1)k + · · ·+ as(b1u1,s + · · ·+ bdud,s)
k = 0.

Using the multinomial theorem, for each j with 1 ≤ j ≤ s, we have

(b1u1,j + · · ·+ bdud,j)
k =

∑
i1+···+id=k

k!

i1! · · · id!
bi11 · · · b

id
d u

i1
1,j · · ·u

id
d,j.

On collecting the coefficients of bi11 · · · b
id
d for each d-tuple (i1, . . . , id) with i1 + · · ·+ id = k,

we have ∑
i1+···+id=k

k!

i1! · · · id!
(
a1u

i1
11 · · ·u

id
d1 + · · ·+ asu

i1
1s · · ·u

id
ds

)
bi11 · · · b

id
d = 0.

Certainly, the above equation is true for every d-tuple (b1, . . . , bd) ∈ Qd if and only if

u1, . . . ,ud satisfy the following system

a1u
i1
11 · · ·u

id
d1 + · · ·+ asu

i1
1s · · ·u

id
ds = 0 (i1 + · · ·+ id = k). (1.2)

The number of equations of the system (1.2) is given by

n1 =

(
k + d− 1

k

)
.
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Let Ms,k,d(P ) denote the number of solutions of the system (1.2) with ui,j ∈ [−P, P ] ∩ Z
(1 ≤ i ≤ d, 1 ≤ j ≤ s). In [15], Parsell applied the Hardy-Littlewood circle method to

estimate Ms,k,d(P ). In particular, he proved a generalization of Vinogradov’s mean value

theorem, which concerns the number of solutions of an auxiliary symmetric system

ui111 · · ·u
id
d1 + · · ·+ ui11s · · ·u

id
ds = vi111 · · · v

id
d1 + · · ·+ vi11s · · · v

id
ds (1 ≤ |i| ≤ k), (1.3)

where |i| = i1 + · · ·+ id. The number of equations of the above system is

n2 =

(
k + d

k

)
− 1.

The result in [15, Theorem 1.4] states that when k is sufficiently large in terms of d, subject

to a local solubility hypothesis, there are two positive constants D2 = D2(s, k, d; a1, . . . , as)

and µ2 = µ2(k, d) such that

Ms,k,d(P ) = D2P
sd−n1k +O

(
P sd−n1k−µ2

)
,

whenever

s ≥ 2n2k
(
(2/3) log n2 + (1/2) log k

)
+O

(
n2k log log k

)
. (1.4)

Let Fq[t] be the ring of polynomials over the finite field Fq of q elements whose char-

acteristic is p. Because of the remarkable analogy between Z and Fq[t], we can consider a

polynomial analogue of the above question. Let k ∈ N with p - k. For fixed coefficients

c1, . . . , cs ∈ Fq[t] \ {0}, we consider the hypersurface defined by

c1z
k
1 + · · ·+ csz

k
s = 0. (1.5)

For P ∈ R with P > 0, let Ns,k(P ) denote the number of solutions of (1.5) in Fq[t]s

with deg zj < P (1 ≤ j ≤ s). When k is sufficiently large, subject to a local solu-

bility assumption, Liu and Wooley [11] proved that Ns,k(P ) �
(
qP
)s−k

whenever s ≥
k log k + O(k log log k). They [12] also proved that there are two positive constants

D3 = D3(s, k; q; c1, . . . , cs) and µ3 = µ3(k, q) such that

Ns,k(P ) = D3

(
qP
)s−k

+O
((
qP
)s−k−µ3

)
whenever s ≥ 2n3k log(n3k) +O

(
n3k log(n3k)

)
, where 1 ≤ n3 = n3(k) ≤ k.
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In this thesis, we extend the result in [12] to higher dimensions. For d ∈ N with d ≥ 2,

let x1, . . . ,xd ∈ Fq[t]s be linearly independent vectors and define

Span{x1, . . . ,xd} =
{
f1x1 + · · ·+ fdxd

∣∣ f1, . . . , fd ∈ Fq(t)
}
.

The hypersurface (1.5) contains this space if and only if

c1(f1x1,1 + · · ·+ fdxd,1)k + · · ·+ cs(f1x1,s + · · ·+ fdxd,s)
k = 0.

Using the multinomial theorem, for each j, we have

(f1x1,j + · · ·+ fdxd,j)
k =

∑
i1+···+id=k

k!

i1! · · · id!
(f1)i1 · · · (fd)idxi11,j · · ·x

id
d,j.

This equation is true for every d-tuple (f1, . . . , fd) ∈ Fq(t) if and only if x1, . . . ,xd satisfy

simultaneously the following equations

k!

i1! · · · id!

(
c1x

i1
11 · · ·x

id
d1 + · · ·+ csx

i1
1s · · ·x

id
ds

)
= 0 (i1 + · · ·+ id = k).

Since charFq = p, the above system is equivalent to the following system

c1x
i1
11 · · ·x

id
d1 + · · ·+ csx

i1
1s · · ·x

id
ds = 0

(
(i1, . . . , id) ∈ L

)
. (1.6)

where the set L is defined by

L =

{
(i1, . . . , id) ∈ Nd

∣∣∣∣ i1 + · · ·+ id = k and p -
k!

i1! · · · id!

}
.

The cardinality of the set L can be calculated explicitly as follows. For every i ∈ N, it can

be represented uniquely as

i =
∞∑
h=0

ah(i)p
h

where ah(i) ∈ [0, p− 1] ∩ Z (h ∈ N). Write

k = a0(k) + a1(k)p+ · · ·+ aD(k)pD.

From Lemma 61, we have

cardL =
D∏
h=0

(
ah(k) + d− 1

ah(k)

)
.
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For a positive number P , let Ns,k,d,c(P ) = Ns,k,d(P ) denote the number of the solutions

of the system (1.6) with xij ∈ Fq[t] and deg xij < P (1 ≤ i ≤ d, 1 ≤ j ≤ s). We shall

frequently abbreviate a monomial of the shape xi11 · · ·x
id
d by xi. Also, for i = (i1, . . . , id) ∈

Nd, we write p - i if p - il for some l with 1 ≤ l ≤ d. Motivated by Parsell’s work in [15], to

estimate Ns,k,d(P ), we consider a generalization of Vinogradov-type mean value theorem.

More precisely, we need to investigate the number of solutions of the system

xi
1 + · · ·+ xi

s = yi
1 + · · ·+ yi

s (i ∈ R′0) (1.7)

where R′0 is a set of certain d-tuples satisfying

L ⊆ R′0 ⊆ {i ∈ Nd | 1 ≤ |i| ≤ k, p - i}. (1.8)

When k < p, let R′0 = {i ∈ Nd | 1 ≤ |i| ≤ k}. Thus the system (1.7) has the same shape

as the system (1.3). By applying the Linnik-Karatsuba method and the repeated efficient

differencing process, we may obtain results that are of the same strength as the integer

analogue considered in [15]. The case when k > p is much more complicated. Since

xp11 · · ·x
p
d1 + · · ·+ xp1s · · ·x

p
ds =

(
x11 · · ·xd1 + · · ·+ x1s · · ·xds

)p
,

the second containment in (1.8) is necessary in order to guarantee that the equations of

the system (1.7) are independent. However, one difficulty occurs as the Linnik-Karatsuba

method used in the integer case is ineffective for the system (1.7). To surmount this

barrier, we choose

R′0 = {i ∈ R0 | p - i},

where

R0 = {i ∈ Nd | ∃l ∈ N s.t. al(k) ≥ 1 and |ah(i)| ≤ ah+l(k) (h ∈ N)
}
.

It transpires that the system (1.7) is equivalent to the following augmented system

xi
1 + · · ·+ xi

s = yi
1 + · · ·+ yi

s (i ∈ R0). (1.9)

Furthermore, the Linnik-Karatsuba method is applicable to the system (1.9). Indeed, the

conclusion on the system (1.9) mirrors an expected Vinogradov-type result for the system

(1.7). From Lemma 69, we have

ν ≤ cardR′0 < ν
(

1 +
1 + d

d2

)
,
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where

ν =

((
a0(k) + d

d

)
− 1

)
D∏
h=1

(
ah(k) + d

d

)
.

Under a similar solubility condition as in [15], we employ a variant of the Hardy-Littlewood

circle method to prove the following theorem.

Theorem 1. Let p be the characteristic of Fq. Suppose that p - k and k ≥ d+ 2. Further

suppose that the system (1.6) has a non-singular solution in the completion of Fq(t) at ∞
and a non-singular solution in the completion Fq(t)w of Fq(t) at every irreducible element

w in Fq[t]. Let ι = cardL and r = cardR′0. Whenever

s ≥ 2rk
(

log(ιrk) + log
(

log
(
(2ι− 1)rk log k

)
+ 2k−1

)
+ 3 + log 4− log

(
1− (log k)−1

))
,

there is a positive constant C = C(s, k, d; q; c1, . . . , cs) such that

Ns,k,d,c(P ) = C
(
qP
)sd−ιk

+O
((
qP
)sd−ιk−δ)

,

where

δ = min

{
1

18kι
,

1− (log k)−1

4ιrk(log((2ι− 1)rk log k) + 2k−1
)},

and the implicit constant depends on s, k, d, q and c1, . . . , cs.

Let vq,d(k) denote the least positive integer s for which the above asymptotic formula

holds. It is remarkable that when k satisfies certain properties, both ι and r only depend on

d. For example, when k = 1 +pD (D ∈ N\{0}), we may find that ι = d2 and r = d(d+ 1).

Thus vq,d(k) = Oq,d(k log k), which is sharper than its integer analogue expressed in (1.4).

Furthermore, Theorem 1 establishes the existence of many rational linear spaces of

dimension d on the hypersurface (1.1), provided that the conditions in Theorem 1 are

satisfied. We define the height of a vector x = (x1, . . . , xn) ∈ Fq[t]n to be

H(x) =
max1≤i≤n〈xi〉
〈gcd(x1, . . . , xn)〉

,

where for x ∈ Fq[t], 〈x〉 = qdeg x. Now for a subspace V ⊆ Fq(t)s with basis vectors

x1, . . . ,xd ∈ Fq[t]s, we write

H(V ) = H(x1 ∧ · · · ∧ xd).
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If y1, . . . ,yd ∈ Fq[t]s is another basis for V , then we have Y = XB, where X and Y

denote the s× d matrices corresponding to each basis and where B is an invertible d× d
change-of-basis matrix. Since

y1 ∧ · · · ∧ yd = (detB)x1 ∧ · · · ∧ xd,

we see that the definition of H(V ) does not depend on the basis. Let Ns,k,d(P ) denote

the number of distinct linear spaces V of dimension d and height at most qP , lying on the

hypersurface (1.5). We may deduce from Theorem 1 that

Theorem 2. Under the same conditions as the ones in Theorem 1, there are two positive

constants C1 = C1(s, k, d; q; c1, . . . , cs) > 0 and C2 = C2(s, k, d; q; c1, . . . , cs) > 0 such that

Ns,k,d(P ) ≥ C1

(
qP
)s− kι

d
−d − C2

(
qP
)s− kι

d
−d− δ

d ,

where δ is defined as in Theorem 1.

1.2 The circle method for polynomial rings

Let A = Fq[t] be the ring of polynomials over the finite field Fq. Let p be the charac-

teristic of Fq. In what follows, write K∞ = Fq((1/t)) for the completion of Fq(t) at∞. We

may write each element α ∈ K∞ in the shape α =
∑

i≤n ait
i for some n ∈ Z and coefficients

ai = ai(α) ∈ Fq (i ≤ n). We define ordα to be the largest integer i for which ai(α) 6= 0

and write 〈α〉 = qordα. In this context, we adopt the convention that ord 0 = −∞ and

〈0〉 = 0. Let T = {α ∈ K∞|〈α〉 < 1}. We may normalize any Haar measure dα on K∞ in

such a manner that
∫
T 1dα = 1.

Let tr : Fq → Fp denote the familiar trace map. Also let eq : Fq → C× be a non-

trivial additive character defined for each a ∈ Fq by taking eq(a) = e
(
tr(a)/p

)
, where we

write e(z) for e2πiz.

We are now in a position to define an analogue of the exponential function. For

α =
∑

i≤n ait
i ∈ K∞, define resα = a−1. The exponential function e : K∞ → C× is

induced by defining, for each element α ∈ K∞, the value of e(α) to be eq
(
resα

)
. Then we

7



have the following orthogonality relation [10, Lemma 1],

∫
T
e(xα) dα =

1, when x = 0,

0, when x ∈ Fq[t] \ {0}.

Therefore, for n ∈ N \ {0}, (x1, · · · , xn) ∈ Fq[t]n, and α = (α1, · · · , αn) ∈ Kn
∞, we have∫

Tn
e(x1α1 + · · ·+ xnαn) dα =

n∏
i=1

∫
T
e(xiαi) dαi

=

1, when xi = 0 (1 ≤ i ≤ n),

0, otherwise.

(1.10)

For P ∈ R, let P̂ = qP and IP = {x ∈ A | 〈x〉 < P̂}. For α = (αi)i∈L ∈ Kι
∞ and P ∈ R

with P > 0, define

fj(α) = fj(α;P ) =
∑
x∈IdP

e

(∑
i∈L

cjαix
i

)
(1 ≤ j ≤ s).

By (1.10), we see that

Ns,k,d(P ) =

∫
Tι

s∏
j=1

fj(α)dα.

We analyze the above integral via the Hardy-Littlewood circle method. To this end,

we divide Tι into the Farey arcs defined as follows: given a = (ai)i∈L ∈ Aι, g ∈ A with

gcd(a, g) = 1, we define the Farey arc M(g, a) about a/g by

M(g, a) =
{
α ∈ Tι

∣∣ 〈gαi − ai〉 < P̂
1
2
−k (i ∈ L)

}
. (1.11)

Write 〈c〉 = max
1≤j≤s

〈cj〉. The set of major arcs M is defined to be the union of all M(g, a)

with

a ∈ Aι, g ∈ A, gmonic, gcd(a, g) = 1, and 0 ≤ 〈ai〉 < 〈g〉 ≤ 〈c〉P̂
1
2 (i ∈ L). (1.12)

The conditions (1.11) and (1.12) ensure that the arcs M(g, a) comprising M are disjoint.

Furthermore, we write m = Tι \M for the complementary set of minor arcs. In Chapter

2, we estimate the major arc contribution and obtain∫
M

s∏
j=1

fj(α)dα = CP̂ sd−ιk +O(P̂ sd−ιk−δ), (1.13)
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for some δ > 0 whenever

s ≥ 2k(ι+ 1) + 1,

where the constant C depends on s, k, d, q and c1, . . . , cs and C > 0 if the system

(1.6) satisfies the solubility hypothesis as in Theorem 1. In Chapter 3, we show that the

contribution over minor arcs is of the form∫
m

s∏
j=1

fj(α)dα = O(P̂ sd−ιk−δ),

for some δ > 0 whenever

s ≥ 2rk
(

log(ιrk) + log
(

log
(
(2ι− 1)rk log k

)
+ 2k−1

)
+ 3 + log 4− log

(
1− (log k)−1

))
.

Then in Chapter 4, we combine the above estimates to prove Theorem 1.

Notation Generally, the variable ε denotes a small positive number whose value may

change from statement to statement. The implicit constants in our analysis may depend

at most on ε, s, k, d, q and c1, . . . , cs. Since our methods involve only a finite number of

steps, all implicit constants that arise remain under control.
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Chapter 2

The major arc contribution

2.1 The generating functions

We recall that for P ∈ R with P > 0 and α = (αi)i∈L ∈ Tι,

fj(α) =
∑
x∈IdP

e

(∑
i∈L

cjαix
i

)
(1 ≤ j ≤ s),

and for g ∈ A and a = (ai)i∈L ∈ Aι,

M(g, a) =
{
a ∈ Tι

∣∣ 〈gαi − ai〉 < P̂
1
2
−k (i ∈ L)

}
.

The first step is to establish control of the generating functions fj(α) for α ∈M(g, a) ⊆M

by the auxiliary functions

S(g, a) =
∑

x∈Idord g

e

(∑
i∈L

ai
g

xi

)
,

and

Sj(g, a) = S(g, cja) (1 ≤ j ≤ s).

For this purpose, we introduce two useful lemmas.

Lemma 3. The exponential function e : K∞ → C× has the following properties.

(1) e is a continuous function.

(2) e(α + β) = e(α)e(β).

10



(3) e(x) = 1, if x ∈ A.

(4) If m ∈ N and x ∈ A, then

∫
ordα<−m

e(xα)dα =

q−m, if ordx < m,

0, otherwise.

(5) If a, g ∈ A, then

1

〈g〉
∑

x∈Iord g

e
(ax
g

)
=

1, if g | a,

0, if g - a.

(6) For α, β ∈ K∞, if 〈α− β〉 < q−1, then e(α) = e(β).

Proof. This is [10, Lemma 1].

For i = (i1, . . . , id), j = (j1, . . . , jd) ∈ Nd, write(
i

j

)
=

(
i1

j1

)
· · ·

(
id

jd

)
.

Lemma 4. For i ∈ Nd, define

Ri =

{
j ∈ Nd

∣∣∣ p - ( i

j

)}
.

For x,y ∈ K∞, we have

(x + y)i =
∑
j∈Ri

(
i

j

)
xjyi−j.

Proof. Let i = (i1, . . . , id), x = (x1, . . . , xd) and y = (y1, . . . , yd). Recall that (x + y)i =

(x1 + y1)i1 · · · (xd + yd)
id . By the binomial theorem, we have

(xl + yl)
il =

il∑
jl=0

(
il

jl

)
xjll y

il−jl
l (1 ≤ l ≤ d).

11



Thus,

(x + y)i =
d∏
l=1

il∑
jl=0

(
il

jl

)
xjll y

il−jl
l

=

i1∑
j1=0

· · ·
id∑

jd=0

(
i1

j1

)
· · ·

(
id

jd

)
(xj11 y

i1−j1
1 ) · · · (xjdd y

id−jd
d )

=
∑
j∈Ri

(
i

j

)
xjyi−j.

This completes the proof of the lemma.

Lemma 5. Suppose that α = (αi)i∈L ∈ Tι and that α = a/g+β with g ∈ A, a = (ai)i∈L ∈
Aι, 〈ai〉 < 〈g〉 ≤ 〈c〉P̂

1
2 and 〈βi〉 < 〈g〉−1P̂

1
2
−k (i ∈ L). If 〈c〉 ≤ P̂

1
2 , then

fj(α) = 〈g〉−dSj(g, a)fj(β) (1 ≤ j ≤ s).

Proof. Fix x ∈ IdP . We can write x uniquely as x = gy + z with z ∈ Idord g and y ∈ IdQ,

where Q = P − ord g. Since (gy + z)i ≡ zi (modg), by Lemmas 3 and 4, we have

e

(∑
i∈L

cjai
g

(gy + z)i
)

= e

(∑
i∈L

cjai
g

zi

)
.

It follows that

fj(α) =
∑
y∈IdQ

∑
z∈Idord g

e

(∑
i∈L

cjαi(gy + z)i
)

=
∑
y∈IdQ

∑
z∈Idord g

e

(∑
i∈L

cjai
g

(gy + z)i
)
e
(∑

i∈L

cjβi(gy + z)i
)

=
∑

z∈Idord g

e

(∑
i∈L

cjai
g

zi

)∑
y∈IdQ

e

(∑
i∈L

cjβi(gy + z)i
)

= Sj(g, a)
∑
y∈IdQ

e

(∑
i∈L

cjβi(gy + z)i
)
.

(2.1)

To treat the above sum, note that for each i ∈ L,

ord βi < −ord g + (1/2− k)P and |i| = k.

12



Moreover, since gy ∈ IdP and z ∈ Idord g, we deduce from Lemma 4 that

ord (cjβi(gy + z)i − cjβi(gy)i)

=ord cj + ord βi + ord
(
(gy + z)i − (gy)i

)
<ord c− ord g + (1/2− k)P + max

{
ord
(
(gy)i−lzl

) ∣∣ l ∈ Ri, l 6= 0
}

≤ord c− ord g + (1/2− k)P + max
{

(k − |l|)(P − 1) + |l|(ord g − 1)
∣∣ l ∈ Ri, l 6= 0

}
= max

{
ord c+ (1/2− |l|)P + (|l| − 1)ord g − k

∣∣ l ∈ Ri, l 6= 0
}
.

Since ord g ≤ ord c+ 1
2
P and ord c ≤ 1

2
P , we have

ord (cjβi(gy + z)i − cjβi(gy)i) < −k ≤ −1.

Thus, by Lemma 3 , we obtain

e
(
cjβi(gy + z)i − cjβi(gy)i

)
= 1,

i.e.,

e
(
cjβi(gy + z)i

)
= e
(
cjβi(gy)i

)
.

Therefore,

fj(β) =
∑

z∈Idord g

∑
y∈IdQ

e

(∑
i∈L

cjβi(gy + z)i
)

= 〈g〉d
∑
y∈IdQ

e

(∑
i∈L

cjβi(gy)i
)
.

(2.2)

By (2.1) and (2.2), we conclude that

fj(α) = 〈g〉−dSj(g, a)fj(β).

This completes the proof of the lemma.

For every g ∈ A, write

Ag =
{
a = (ai)i∈L ∈ I ιord g

∣∣ gcd(a, g) = 1
}
,

and

Bg =
{
β = (βi)i∈L ∈ Tι

∣∣ 〈βi〉 < 〈g〉−1P̂
1
2
−k (i ∈ L)}.
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In view of the definition of the major arcs, we have

M =
⋃

〈g〉≤〈c〉P̂
1
2

gmonic

⋃
a∈Ag

M(g, a).

Lemma 6.∫
M

s∏
j=1

fj(α)dα =
∑

〈g〉≤〈c〉P̂
1
2

gmonic

∑
a∈Ag

( s∏
j=1

〈g〉−dSj(g, a)

)∫
Bg

s∏
j=1

fj(β)dβ.

Proof. For M(g, a) ⊆M, it follows from Lemma 5 that∫
M(g,a)

s∏
j=1

fj(α)dα =

( s∏
j=1

〈g〉−dSj(g, a)

)∫
Bg

s∏
j=1

fj(β)dβ.

Since all M(g, a) ⊆M are pairwise disjoint, the result follows.

2.2 Preliminary observations in p-adic analysis

To obtain the asymptotic formula given by (1.13), we need to establish some results

in p-adic analysis. Let K be a complete field with respect to a discrete non-archimedean

valuation | · |. Let R = {x ∈ K| |x| ≤ 1}, π a primitive element, and F = R/(π). We also

suppose that F is a finite extension over Fp.

Definition 7. Let a ∈ K \ {0}. Define

τ(a) = log |a|/ log |π| and τ(0) =∞.

Let ϕ(x) = anx
n + · · ·+ a1x+ a0 ∈ K[x]. Define

τ(ϕ) = min
0≤i≤n

τ(ai), (2.3)

and

indϕ = max
{
j
∣∣ 0 ≤ j ≤ n, τ(aj) = τ(ϕ)

}
.
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Lemma 8. Let ϕ(x) ∈ K[x] \ {0}. Let ψ(x) = ϕ(πx) and φ(x) = πuϕ(x) where u ∈ N.

Then

indφ = indϕ and indψ ≤ indϕ.

Let ϕ′ and ψ′ be the derivatives of ϕ and ψ with respect to x respectively. Suppose that

ϕ′ 6= 0. Then

indψ′ ≤ indϕ′.

Proof. Suppose that ϕ(x) = anx
n + · · · + a1x + a0. For convenience, write j = indϕ and

τi = τ(ai) (0 ≤ i ≤ n). Thus, we have τj = τ(ϕ) and

τi > τj, if i > j; τi ≥ τj, if i < j. (2.4)

For any u ∈ N, τ(πuai) = u+ τi (0 ≤ i ≤ n). Thus,

τ(πuai) =

τi + u > τj + u, if i > j,

τi + u ≥ τj + u, if i < j.

Hence

indφ = j = indϕ.

Since

ψ(x) = ϕ(πx) = (anπ
n)xn + · · ·+ (a1π)x+ a0,

it follows from (2.4) that for i > j,

τ(aiπ
i) = τi + i > τj + j = τ(ajπ

j). (2.5)

Thus

indψ ≤ j = indϕ.

Since ψ′(x) = πϕ′(πx), we have

indψ′(x) = indϕ′(πx) ≤ indϕ′(x).

This completes the proof of the lemma.

Lemma 9. Let ϕ(x) and ψ(x) be defined as in Lemma 8. Let λ ∈ R. The following hold.

(1) If indψ = indϕ and τ(ϕ(λ)) ≥ τ(ϕ) + 1, then τ(λ) ≥ 1.

(2) If ϕ′ 6= 0, indψ′ = indϕ′, and τ(ϕ′(λ)) ≥ τ(ϕ′) + 1, then τ(λ) ≥ 1.
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Proof. (1) Let ϕ(x) = anx
n + · · · + a1x + a0 and j = indϕ. Write τi = τ(ai) (0 ≤ i ≤ n).

By Lemma 8, we have indψ = indϕ = j. Since τ(aiπ
i) = τi + i (0 ≤ i ≤ n), we see that

for i < j, τi + i ≥ τj + j and hence τi > τj. In combination with (2.4), it follows that

τi > τj (i 6= j). (2.6)

Since λ ∈ R, we have |λ| ≤ 1, i.e., τ(λ) ≥ 0. Suppose that τ(λ) = 0. From (2.6), we

deduce that τ(ϕ(λ)) = τj = τ(ϕ), which contradicts the condition that τ(ϕ(λ)) ≥ τ(ϕ)+1.

Thus τ(λ) ≥ 1.

(2) Since ψ′(x) = πϕ′(πx), we obtain that indψ′(x) = indϕ′(πx). If indψ′ = indϕ′,

we have indϕ′(πx) = indϕ′(x). Hence the result follows from (1).

Lemma 10. Let ϕ(x) ∈ K[x] \ {0} and λ, λ1, λ2 ∈ R. Define φ(x) = ϕ(x + λ) and

ϕλ(x) = ϕ(πx+ λ). The following hold.

(1) indφ = indϕ and τ(φ) = τ(ϕ).

(2) If indϕλ = indϕ and τ(ϕ(λ1)) ≥ τ(ϕ) + 1, then τ(λ1 − λ) ≥ 1.

(3) Suppose that ϕ′ 6= 0. Then indφ′ = indϕ′ and τ(φ′) = τ(ϕ′).

(4) Suppose that ϕ′ 6= 0. If indϕ′λ = indϕ′ and τ(ϕ′(λ2)) ≥ τ(ϕ′) + 1, then τ(λ2− λ) ≥ 1.

Proof. (1) Write ϕ(x) = anx
n + · · ·+ a1x+ a0 and φ(x) = bnx

n + · · ·+ b1x+ b0. Then

bi =
n∑
h=i

(
h

i

)
ahλ

h−i = ai +
n∑

h=i+1

(
h

i

)
ahλ

h−i (0 ≤ i ≤ n). (2.7)

Write j = indϕ. Since τ(λ) ≥ 0, by (2.4) and (2.7), we deduce that

τ(bi) > τ(aj), if i > j; τ(bj) = τ(aj), if i = j; τ(bi) ≥ τ(aj), if i < j.

Thus

j = indφ and τ(φ) = τ(aj) = τ(ϕ).

(2) Since τ(φ) = τ(ϕ) and φ(λ1 − λ) = ϕ(λ1), we find that

τ
(
φ(λ1 − λ)

)
= τ
(
ϕ(λ1)

)
≥ τ(ϕ) + 1 = τ(φ) + 1.

If indϕλ = indϕ, we have from (1) that indϕλ = indφ. Since ϕλ(x) = φ(πx), it follows

from Lemma 9 that τ(λ1 − λ) ≥ 1.
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(3) Since φ′(x) = ϕ′(x+ λ), we can deduce (3) from (1) .

(4) Note that ϕ′λ(x) = πϕ′(πx+ λ). It follows from Lemma 8 that

indϕ′(πx+ λ) = indϕ′λ(x) = indϕ′(x).

By (2), we have τ(λ2 − λ) ≥ 1.

Lemma 11. Let ϕ(x) = anx
n + · · ·+ a1x+ a0 ∈ K[x] \ {0}. For λ ∈ R, let

ϕλ(x) = ϕ(πx+ λ) and ψλ(x) = ϕ(πx+ λ)− ϕ(λ).

The following hold.

(1) τ(ϕ) + indϕλ ≤ τ(ϕλ) ≤ τ(ϕ) + indϕ. Furthermore, if τ(ϕ(λ)) ≥ τ(ϕ) + 1, then

τ(ϕλ) ≥ τ(ϕ) + 1.

(2) If indϕ > 0, then τ(ϕ) + 1 ≤ τ(ψλ) ≤ τ(ϕ) + n.

(3) Suppose that ϕ′ 6= 0. Then 1 + τ(ϕ′) ≤ τ(ψ′λ) = τ(ϕ′λ) ≤ n+ τ(ϕ′).

(4) indϕλ ≤ ϕ and indϕ′λ ≤ indϕ′.

Proof. (1) Suppose that ϕλ(x) = bnx
n + · · ·+ b1x+ b0. Then

bi =
n∑
h=i

(
h

i

)
ahλ

h−iπi = aiπ
i +

n∑
h=i+1

(
h

i

)
ahλ

h−iπi. (2.8)

Let j = indϕ. Then for each i with 0 ≤ i ≤ n, we have |aj| ≥ |ai| and hence |bi| ≤ |aj||πi|.
Let l = indϕλ. Then

τ(ϕ) + l = τ(aj) + l ≤ τ(bl) = τ(ϕλ).

Since |aj| > |ai| when i > j, we have |bj| = |aj||πj|. Thus, by (2.3), we find that

τ(ϕλ) ≤ τ(bj) = τ(aj) + j = τ(ϕ) + j. (2.9)

It follows that

τ(ϕ) + indϕλ ≤ τ(ϕλ) ≤ τ(ϕ) + indϕ. (2.10)

Now suppose that τ(ϕ(λ)) ≥ τ(ϕ) + 1. If indϕλ > 0, by (2.10), we get τ(ϕλ) ≥ τ(ϕ) + 1.

If indϕλ = 0, then

τ(ϕλ) = τ(b0) = τ(ϕ(λ)) ≥ τ(ϕ) + 1.
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(2) Note that ψλ(x) = ϕλ(x)−ϕλ(0) = bnx
n + · · ·+ b1x, where the bi’s (1 ≤ i ≤ n) are

defined as in (2.8). Let m = indψλ. Then |bm| ≤ |aj||πm|. Since j = indϕ > 0, we have

m ≥ 1 and hence

τ(ψλ) = τ(bm) ≥ τ(ϕ) +m ≥ τ(ϕ) + 1.

Moreover, we deduce from (2.3) and (2.9) that

τ(ψλ) ≤ τ(bj) = τ(aj) + j ≤ τ(ϕ) + n.

(3) Since ϕ′λ(x) = ψ′λ(x) = πϕ′(πx+ λ), we can see from (1) that

τ(ϕ′) + 1 ≤ τ(ϕ′λ) = τ(ψ′λ) ≤ τ(ϕ′) + (n− 1) + 1 = τ(ϕ′) + n.

(4) It follows from (1) that

τ(ϕ) + indϕλ ≤ τ(ϕ) + indϕ.

Hence indϕλ ≤ indϕ. Note that ϕ′λ = πϕ′(πx+ λ). By Lemma 8, we have

indϕ′λ(x) = indϕ′(πx+ λ) ≤ indϕ′(x).

Lemma 12. Let ϕ(x) ∈ K[x] \ {0} be of degree n. For u, v ∈ N with u ≥ v > n, define

Nu,v(ϕ) =
{
α(modπu)

∣∣ α ∈ R, τ(ϕ(α)) ≥ v + τ(ϕ)
}
.

Then

cardNu,v(ϕ) ≤ (cardF )n+1+u− v
n .

Proof. Suppose that x1, x2 ∈ R, |x1 − x2| ≤ |π|v, and |ϕ(x2)| ≤ |π|τ(ϕ)+v. We have

|ϕ(x1)− ϕ(x2)| ≤ |π|τ(ϕ)|x1 − x2| ≤ |π|τ(ϕ)+v.

Hence, the set Nu,v(ϕ) is well-defined and

cardNu,v(ϕ) = (cardF )u−v · cardNv,v(ϕ). (2.11)

For λ ∈ R, define

ϕλ(x) = ϕ(πx+ λ).
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Write Λ = {λ ∈ R | τ(ϕ(λ)) ≥ τ(ϕ) + 1}. If Λ = ∅, then Nu,v(ϕ) = ∅ and hence the result

holds immediately. We now suppose that Λ 6= ∅ and consider two cases.

Case 1: Suppose that there exists some λ ∈ Λ such that indϕλ = indϕ. Then for any

ξ ∈ Λ, by Lemma 10(2), we have τ(ξ − λ) ≥ 1. Hence ξ = λ+ πy for some y ∈ R. Thus,

cardNv,v(ϕ) = card
{
α (modπv)

∣∣∣ τ(ϕ(α)
)
≥ v + τ(ϕ) and α ≡ λ (modπ)

}
= card

{
y (modπv−1)

∣∣∣ τ(ϕ(πy + λ)
)
≥ v + τ(ϕ)

}
= card

{
y (modπv−1)

∣∣∣ τ(ϕλ(y)
)
≥ v + τ(ϕ)

}
.

(2.12)

Let σ = τ(ϕλ)− τ(ϕ). Then by Lemma 11(1), we have

1 ≤ σ ≤ n.

On recalling (2.12), we see that

cardNv,v(ϕ) = card
{
y (modπv−1)

∣∣∣ τ(ϕλ(y)
)
≥ v − σ + τ(ϕλ)

}
= (cardF )σ−1card

{
y (modπv−σ)

∣∣∣ τ(ϕλ(y)
)
≥ v − σ + τ(ϕλ)

}
= (cardF )σ−1cardNv−σ,v−σ(ϕλ).

(2.13)

Case 2: Suppose that for any λ ∈ Λ, indϕλ 6= indϕ. Then from Lemma 11(4), we have

indϕλ < indϕ. (2.14)

Let {λ1, . . . , λl} be a complete set of representatives of
{
λ (modπ)

∣∣ λ (modπv) ∈ Nv,v

}
.

Also, let σi = τ(ϕλi) − τ(ϕ) (1 ≤ i ≤ l). By a similar argument as in Case 1, for each

λi ∈ Λ, we see that

1 ≤ σi ≤ n,

and that

card
{
x (modπv)

∣∣ τ(ϕ(x)
)
≥ v + τ(ϕ) and x ≡ λi (modπ)

}
=(cardF )σi−1cardNv−σi,v−σi(ϕλ).

Thus

cardNv,v(ϕ) =
l∑

i=1

card
{
x (modπv)

∣∣ τ(ϕ(x)
)
≥ v + τ(ϕ) and x ≡ λi (modπ)

}
≤ cardF · max

1≤i≤l
(cardF )σi−1 · cardNv−σi,v−σi(ϕλi).

(2.15)
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Suppose that this procedure is repeated m times and we obtain that Nvj ,vj(ϕj) (1 ≤
j ≤ m), which satisfy that

degϕj = n, 1 ≤ vj − vj−1 ≤ n, and vm ≤ n, (2.16)

where ϕ0 = ϕ and v0 = v. We note here that Case 2 occurs not exceeding n times because

of the inequality (2.14). Therefore, by estimating cardNvm,vm trivially and combining

(2.13) with (2.15), we find that

cardNv,v ≤ (cardF )n · (cardF )v−vm−m · cardNvm,vm

≤ (cardF )n · (cardF )v−vm−m · (cardF )vm

≤ (cardF )n+v−m.

(2.17)

It follows from (2.16) that

mn ≥ v − vm ≥ v − n,

which yields that m ≥ v
n
− 1. On recalling (2.11) and (2.17), we can deduce that

cardNu,v ≤ (cardF )n+u−m ≤ (cardF )n+1+u− v
n .

This completes the proof of the lemma.

Lemma 13. Let ψ1, . . . , ψn be polynomials in R[x1, . . . , xn] with Jacobian ∆(ψ; x), and

suppose that a = (a1, . . . , an) ∈ Rn satisfies∣∣ψj(a)
∣∣ < ∣∣∆(ψ; a)

∣∣2 (1 ≤ j ≤ n).

Then there exists a unique b = (b1, . . . , bn) ∈ Rn such that

ψj(b) = 0 (1 ≤ j ≤ n) and
∣∣bi − ai∣∣ < ∣∣∆(ψ; a)

∣∣ (1 ≤ i ≤ n).

Proof. This is [7, Proposition 5.20].

Lemma 14. For h ∈ N \ {0} and γ1, . . . , γs ∈ R \ {0}, define

M(πh;γ) = card
{
x (modπh)

∣∣ γ1x
i
1 + · · ·+ γsx

i
s ≡ 0 (modπh) (i ∈ L)

}
.

Suppose that the system γ1x
i
1 + · · ·+γsx

i
s = 0 (i ∈ L) has a non-singular solution a ∈ Rds.

Then there exists an integer u = u(γ; a) such that whenever h ≥ u, we have

M(πh;γ) ≥ (cardF )(h−u)(ds−ι).
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Proof. We relabel the variables by writing

(z1, . . . , zds) = (x11, . . . , xd1, . . . , x1s, . . . , xds). (2.18)

For every i ∈ L, we let ψi(z) denote the polynomial γ1x
i
1 + · · ·+ γsx

i
s with x replaced by

z as in (2.18). Write ψ =
(
ψi

)
i∈L. Let a = (a1, . . . , ads) ∈ Rds be a non-singular solution

of the system ψi(z) = 0
(
i ∈ L

)
. Then there exist i1, . . . , iι such that

∆(ψ; ai1 , . . . , aiι) 6= 0.

Thus we can find an integer u satisfying∣∣∆(ψ; ai1 , . . . , aiι)
∣∣2 = |π|u−1.

For i 6∈ {i1, . . . , iι}, choose bi ∈ R with bi ≡ ai (modπu). Write vi = ai for i ∈ {i1, . . . , iι}
and vi = bi otherwise. Then we see that for every i ∈ L,

ψi(v) ≡ ψi(a) ≡ 0 (modπu),

and hence ∣∣ψi(v)
∣∣ ≤ |π|u < ∣∣∆(ψ; ai1 , . . . , aiι)

∣∣2.
Fix such a choice for b. We may regard ψi(z) as a polynomial in ι variables zi1 , . . . , ziι after

substituting zi = bi for i 6∈ {i1, . . . , iι}. By applying Lemma 13, we obtain ui1 , . . . , uiι ∈ R
such that

ψi(u,b) = 0 (i ∈ L).

Thus for every h ∈ N with h ≥ u, we have

ψi(u,b) ≡ 0 (modπh) (i ∈ L).

Furthermore, since there are (cardF )(h−u)(ds−ι) possible choices for the bi (modπh), we see

that

M(πh;γ) ≥ (cardF )(h−u)(ds−ι).

21



2.3 Estimates for exponential sums I

In this section, we aim to estimate the auxiliary functions

S(g, a) =
∑

x∈Idord g

e

(∑
i∈L

ai
g

xi

)
,

and

Sj(g, a) = S(g, cja) (1 ≤ j ≤ s).

Let w ∈ A be an irreducible element. Write | · |w for the usual w-adic valuation normalized,

i.e., |w|w = 〈w〉−1. Then R = Aw, π = w and F = Aw/(w). Thus, cardF = 〈w〉. For

future reference, we now illustrate the definition of τ in this situation. For a ∈ A \ {0},
since

τ(a) = log |a|w/ log |w|w,

τ(a) is the greatest integer τ for which wτ divides a. For ϕ(x) = anx
n+· · ·+a1x+a0 ∈ A[x],

τ(ϕ) = min
0≤i≤n

τ(ai),

and

indϕ = max
{
j
∣∣ 0 ≤ j ≤ n, τ(aj) = τ(ϕ)

}
.

On applying Lemmas 10, 11, and 12 to R = Aw and | · | = | · |w, we obtain the following

Lemmas 15 and 16.

Lemma 15. Let ϕ(x) ∈ A[x] \ {0} be of degree n with τ(ϕ) = 0 and ϕ(0) = 0. For λ ∈ A,

let

ψλ(x) = ϕ(wx+ λ)− ϕ(λ).

Suppose that ϕ′ 6= 0. The following hold.

(1) 1 ≤ τ(ψλ) ≤ n and τ(ψ′λ) ≤ n+ τ(ϕ′).

(2) indψ′λ ≤ indϕ′. If indψ′λ = indϕ′ and ϕ′(λ1) ≡ 0 (modwτ(ϕ′)+1), then λ ≡ λ1 (modw).

Proof. (1) Since τ(ϕ) = 0 and ϕ(0) = 0, we have indϕ > 0 and it follows from Lemma

11(2) that 1 ≤ τ(ψλ) ≤ n. In view of Lemma 11(3), we see that τ(ψ′λ) ≤ n+ τ(ϕ′).

(2) The result follows from Lemmas 10(4) and 11(4) immediately.
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Lemma 16. Let ϕ(x) ∈ A[x] \ {0} be of degree n. For u, v ∈ N with u ≥ v > n, let

Nu,v(ϕ) =
{
a (modwu)

∣∣ a ∈ A, τ(ϕ(x)) ≥ v + τ(ϕ)
}
.

Then

cardNu,v(ϕ) ≤ 〈w〉n+1+u− v
n .

Proposition 17. Let ϕ(x) ∈ A[x] be of degree n with τ(ϕ) = 0 and ϕ(0) = 0. For l ∈ N,

define

S

(
ϕ(x)

wl

)
=

∑
x∈I

ordwl

e

(
ϕ(x)

wl

)
.

Suppose that ϕ′ 6= 0. Then for all l ∈ N with l > 2τ(ϕ′) + 1, we have∣∣∣∣∣S
(
ϕ(x)

wl

)∣∣∣∣∣ < nn〈w〉l(1−
1

2n
)+

τ(ϕ′)
n . (2.19)

Proof. For λ ∈ A, define

ψλ(x) = ϕ(wx+ λ)− ϕ(λ)

and define gλ(x) ∈ A[x] by

ψλ(x) = wτλgλ(x)

where τλ = τ(ψλ). We have

deg gλ = n, gλ(0) = 0, τ(gλ) = 0, g′λ 6= 0.

By Lemma 15, we obtain

1 ≤ τλ ≤ n, τλ + τ(g′λ) = τ(ψ′λ) ≤ n+ τ(ϕ′). (2.20)

Fix l ∈ N with l > 2τ(ϕ′) + 1. For λ ∈ A, define

Sλ =
∑

x∈I
ordwl

x≡λ (modw)

e

(
ϕ(x)

wl

)
.
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Note that

|Sλ| =

∣∣∣∣∣ ∑
x∈I

ordwl

x≡λ (modw)

e

(
ϕ(x)

wl

)∣∣∣∣∣
=

∣∣∣∣∣ ∑
y∈I

ordwl−1

e

(
ϕ(wy + λ)− ϕ(λ)

wl

)∣∣∣∣∣
=

∣∣∣∣∣ ∑
y∈I

ordwl−1

e

(
wτλgλ(y)

wl

)∣∣∣∣∣.
If l > n, by (2.20), we have l > τλ and hence

|Sλ| = 〈w〉τλ−1

∣∣∣∣∣ ∑
y∈I

ordwl−τλ

e

(
gλ(y)

wl−τλ

)∣∣∣∣∣. (2.21)

If l ≤ n, we have

|Sλ| ≤ 〈w〉l−1. (2.22)

Next, we shall relate S
(
ϕ(x)
wl

)
to Sλ. For convenience, write σ = τ(ϕ′). Since l > 2σ + 1,

we have

Sλ =
∑

y∈I
ordwl−σ−1

y≡λ (modw)

∑
z∈Iordwσ+1

e

(
ϕ(y + wl−σ−1z)

wl

)

=
∑

y∈I
ordwl−σ−1

y≡λ (modw)

∑
z∈Iordwσ+1

e

(
ϕ(y) + ϕ′(y)wl−σ−1z

wl

)

=
∑

y∈I
ordwl−σ−1

y≡λ (modw)

e

(
ϕ(y)

wl

) ∑
z∈Iordwσ+1

e

(
ϕ′(y)z

wσ+1

)
.

If ϕ′(λ) 6≡ 0 (modwσ+1), for each y ≡ λ (modw), we have

ϕ′(y) ≡ ϕ′(λ) 6≡ 0 (modwσ+1),

which gives that Sλ = 0 by Lemma 3. Let {λ1, . . . , λh} ⊆ Iordw be a complete set of

representatives of {
λ (modw)

∣∣ϕ′(λ) ≡ 0 (modwσ+1)
}
.
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Thus,

S

(
ϕ(x)

wl

)
=

h∑
i=1

Sλi . (2.23)

We consider two cases.

Case 1: Suppose that there exists some λi such that indψ′λi = indϕ′. By Lemma 15,

we have λj ≡ λi (modw) (1 ≤ j ≤ h). Thus, h = 1 and (2.23) can be reduced to

S

(
ϕ(x)

wl

)
= Sλi . (2.24)

Case 2: Suppose that indψ′λi < indϕ′ (1 ≤ i ≤ h). Then

ind g′λi = indψ′λi < indϕ′ (1 ≤ i ≤ h). (2.25)

Since there are at most (n − 1) different λ (modw) with ϕ′(λ) ≡ 0 (modwσ+1), it follows

from (2.23) that ∣∣∣∣∣S
(
ϕ(x)

wl

)∣∣∣∣∣ ≤ n max
1≤i≤h

∣∣Sλi∣∣. (2.26)

If l ≤ n, from (2.22), (2.24) and (2.26), it follows that∣∣∣∣∣S
(
ϕ(x)

wl

)∣∣∣∣∣ ≤ n〈w〉l−1 ≤ n〈w〉l(1−
1
n

). (2.27)

If l > n, on applying (2.21), (2.24) and (2.26), we can reduce S
(
ϕ(x)
wl

)
to a similar

sum where the exponent of w is less than l. More precisely, suppose that this procedure is

repeated m times and we obtain S
(
gi(x)

wli

)
and τi (1 ≤ i ≤ m) which satisfy the following

properties as in (2.20):

deg gi = n, gi(0) = 0, τ(gi) = 0, g′i 6= 0,

1 ≤ τi ≤ n, τi + τ(g′i) ≤ n+ τ(g′i−1), li = li−1 − τi,

lj > max{2τ(g′j) + 1, n} (0 ≤ j < m), lm ≤ max{2τ(g′m) + 1, n},

(2.28)

where g0 = ϕ and l0 = l. Note that Case 2 occurs less than n times because of the

inequality (2.25). Therefore, from (2.21), (2.24) and (2.26), we have∣∣∣∣∣S
(
ϕ(x)

wl

)∣∣∣∣∣ ≤ nn−1〈w〉τ1+···+τm−m

∣∣∣∣∣S
(
gm(x)

wlm

)∣∣∣∣∣. (2.29)
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We now consider the situation when lm ≤ 2τ(g′m) + 1. By (2.28), we have

l − τ1 − · · · − τm = lm ≤ 2τ(g′m) + 1,

i.e.,

τ1 + · · ·+ τm + 2τ(g′m) ≥ l − 1. (2.30)

Furthermore, since τi + τ(g′i) ≤ n+ τ(g′i−1) , we deduce that

τ1 + · · ·+ τm + τ(g′m) ≤ mn+ τ(ϕ′). (2.31)

On combining (2.28), (2.30) with (2.31), we find that

2mn+ 2τ(ϕ′) ≥ 2(τ1 + · · ·+ τm) + 2τ(g′m) ≥ 1 + l − 1 = l.

Thus,

m ≥ l

2n
− τ(ϕ′)

n
.

Then by estimating S
(
gm(x)
wlm

)
trivially, from (2.29) and the above inequality, we see that∣∣∣∣∣S

(
ϕ(x)

wl

)∣∣∣∣∣ ≤ nn−1〈w〉τ1+···+τm−m+lm = nn−1〈w〉l−m

< nn〈w〉l(1−
1

2n
)+

τ(ϕ′)
n .

(2.32)

It remains to treat the case when 2τ(g′m) + 1 < lm ≤ n. On applying (2.27) to S
(
gm(x)
wlm

)
,

we have ∣∣∣∣∣S
(
gm(x)

wlm

)∣∣∣∣∣ ≤ n〈w〉lm−1. (2.33)

Since 1 ≤ τi ≤ n, we have l − lm = τ1 + · · ·+ τm ≤ mn. Thus,

l − n
n
≤ l − lm

n
≤ m, i.e.,

l

n
≤ m+ 1.

From (2.29), (2.33) and the above inequality, it follows that∣∣∣∣∣S
(
ϕ(x)

wl

)∣∣∣∣∣ ≤ nn〈w〉τ1+···+τm−m+lm−1 = nn〈w〉l−m−1 ≤ nn〈w〉l(1−
1
n

). (2.34)

By combining (2.27) with (2.32) and (2.34), the proposition follows.
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We are now ready to estimate the exponential sums when 〈w〉 is small.

Corollary 18. Under the conditions of the above lemma, if 〈w〉 ≤ n, then for l ∈ N \ {0},
we have ∣∣∣∣∣S

(
ϕ(x)

wl

)∣∣∣∣∣ < nn〈w〉l(1−
1

2n
)+

τ(ϕ′)
n .

Proof. From Proposition 17, it follows that the result is true for all l > 2τ(ϕ′) + 1. When

1 ≤ l ≤ 2τ(ϕ′) + 1, we have∣∣∣∣∣S
(
ϕ(x)

wl

)∣∣∣∣∣ ≤ 〈w〉l = 〈w〉l(1−
1

2n
)+ l

2n < nn〈w〉l(1−
1

2n
)+

τ(ϕ′)
n .

This completes the proof of the corollary.

Lemma 19. Let n ∈ N \ {0}. For each d-tuple (i1, . . . , id) with 0 ≤ i1, . . . , id ≤ n, let

ai1,...,id ∈ A. Define

F (x) =
∑

0≤i1,...,id≤n

ai1,...,idx
i1
1 · · ·x

id
d ,

τ(F ) = min{τ(ai1,...,id) | 0 ≤ i1, . . . , id ≤ n},

and

S

(
F (x)

wl

)
=

∑
x∈Id

ordwl

e

(
F (x)

wl

)
.

Suppose that τ(F ) = 0 and that there exists some nonzero aj with p - j. Let τj = τ(aj). If

〈w〉 ≤ n, then for all l ≥ 1, we have∣∣∣∣∣S
(
F (x)

wl

)∣∣∣∣∣ < ld−1n(n+1)d〈w〉l(d−
1

2n
)+

τj
n . (2.35)

Proof. We will prove this lemma by induction on d. For d = 1, if there exists a nonzero

aj with p - j, then F ′(x) 6= 0 and τ(F ′) ≤ τj. By Corollary 18, we have for all l ≥ 1,∣∣∣∣∣S
(
F (x)

wl

)∣∣∣∣∣ =

∣∣∣∣∣S
(
F (x)− F (0)

wl

)∣∣∣∣∣ < nn〈w〉l(1−
1

2n
)+

τ(F ′)
n ≤ nn〈w〉l(1−

1
2n

)+
τj
n .
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Suppose that the lemma holds for d− 1 variables and for any l ≥ 1. Consider the case

of d variables. If l ≤ τj + n+ 1, since 〈w〉 ≤ n, we have∣∣∣∣∣S
(
F (x)

wl

)∣∣∣∣∣ ≤ 〈w〉ld = 〈w〉l(d−
1

2n
)+ l

2n

≤ n〈w〉l(d−
1

2n
)+

τj
2n

< ld−1 · n(n+1)d · 〈w〉l(d−
1

2n
)+

τj
n .

(2.36)

It remains to consider the case when l > τj + n + 1. Write j = (j1, . . . , jd). Without

loss of generality, assume that w - aj and p - j1. Define

ϕi1,...,id−1
(xd) =

n∑
id=0

ai1,...,idx
id
d (0 ≤ i1, . . . , id−1 ≤ n),

and

S(xd) =

∣∣∣∣∣ ∑
x1,...,xd−1∈Iordwl

e

(
F (x1, . . . , xd−1, xd)

wl

)∣∣∣∣∣.
For each u ∈ N, write

Nu =
{
xd ∈ Iordwl

∣∣ τ(ϕj1,...,jd−1
(xd)

)
= u

}
,

and

Su =
∑
xd∈Nu

S(xd). (2.37)

Let

Γ1 =
∑

u≤τj+n

Su, Γ2 =
∑

τj+n<u<l

Su, and Γ3 =
∑
u≥l

Su.

Then ∣∣∣∣∣S
(
F (x)

wl

)∣∣∣∣∣ ≤ Γ1 + Γ2 + Γ3. (2.38)

For xd ∈ Iordwl , let

µ(xd) = min
{
τ
(
ϕi1,...,id−1

(xd)
) ∣∣ 0 ≤ i1, . . . , id−1 ≤ n

}
.

Thus,

S(xd) =

∣∣∣∣∣ ∑
x1,...,xd−1∈Iordwl

e

(
w−µ(xd)F (x1, . . . , xd−1, xd)

wl−µ(xd)

)∣∣∣∣∣
=

∣∣∣∣∣ ∑
x1,...,xd−1∈Iordwl

e

(∑
0≤i1,...,id−1≤n x

i1
1 · · ·x

id−1

d−1

(
w−µ(xd)ϕi1,...,id−1

(xd)
)

wl−µ(xd)

)∣∣∣∣∣.
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If xd ∈ Nu with 0 ≤ u ≤ l − 1, then 0 ≤ µ(xd) ≤ u and

τ
(
w−µ(xd)ϕj1,...,jd−1

(xd)
)

= u− µ(xd).

By the induction hypothesis, we have

S(xd) ≤ (l − µ(xd))
d−2 · n(d−1)(n+1) · 〈w〉(l−µ(xd))(d−1− 1

2n
)+

u−µ(xd)

n

≤ ld−2 · n(d−1)(n+1) · 〈w〉l(d−1− 1
2n

)+u
n .

(2.39)

For each u with 0 ≤ u ≤ τj + n, since cardNu ≤ 〈w〉l and 〈w〉 ≤ n, by (2.39) we have

Γ1 =

τj+n∑
u=0

Su ≤
τj+n∑
u=0

ld−2 · n(d−1)(n+1) · 〈w〉l(d−1− 1
2n

)+u
n · 〈w〉l

≤ (τj + n+ 1) · ld−2 · nd(n+1) · 〈w〉l(d−
1

2n
)+

τj
n .

(2.40)

For each u with τj + n < u ≤ l − 1, since τ(ϕj1,...,jd−1
) ≤ τ(ai) = τj, we have

u− τ(ϕj1,...,jd−1
) ≥ u− τj > n. (2.41)

Noticing that

Nu ⊆
{
xd ∈ Iordwl

∣∣ τ(ϕj1,...,jd−1
(xd)

)
≥ u

}
,

we deduce from Lemma 16 and (2.41) that

cardNu ≤ 〈w〉n+1+l−
u−τj
n ≤ nn+1 · 〈w〉l−

u
n

+
τj
n . (2.42)

It follows from (2.37),(2.39), and (2.42) that

Γ2 =
l−1∑

u=τj+n+1

Su ≤
l−1∑

u=τj+n+1

ld−2 · n(d−1)(n+1) · 〈w〉l(d−1− 1
2n

)+u
n · nn+1 · 〈w〉l−

u
n

+
τj
n

≤ (l − 2− τj − n) · ld−2 · nd(n+1) · 〈w〉l(d−
1

2n
)+

τj
n .

(2.43)

Recalling that τ(ϕj1,...,jd−1
) ≤ τj, we find that⋃

u≥l

Nu ⊆
{
xd ∈ Iordwl

∣∣ τ(ϕj1,...,jd−1
) ≥ (l − τi) + τ(ϕj1,...,jd−1

)
}
.

Since l − τj > n+ 1, it follows from Lemma 16 that

card
⋃
u≥l

Nu ≤ nn+1〈w〉l−
l
n

+
τj
n .
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Observing that S(xd) ≤ 〈w〉l(d−1), we have

Γ3 ≤ 〈w〉l(d−1) · nn+1〈w〉l−
l
n

+
τj
n < ld−2nd(n+1)〈w〉l(d−

1
2n

)+
τj
n . (2.44)

Therefore, by (2.38), (2.40), (2.43) and (2.44), we have∣∣∣∣∣S
(
F (x)

wl

)∣∣∣∣∣ ≤ Γ1 + Γ2 + Γ3 ≤ ld−1nd(n+1)〈w〉l(d−
1

2n
)+

τj
n .

Thus, the lemma holds by induction.

To estimate the exponential sums where 〈w〉 is large, we need to establish some tech-

nical lemmas.

Lemma 20. Let ϕ(x) = anx
n + · · ·+ a1x+ a0 ∈ A[x] with w - an and p - n. Let S

(
ϕ(x)
wl

)
be defined as in Proposition 17. Then for all l ≥ 1, we have∣∣∣∣∣S

(
ϕ(x)

wl

)∣∣∣∣∣ < nn〈w〉l(1−
1

2n
). (2.45)

Proof. Since w - an and p - n, we have ϕ′ 6= 0 and τ(ϕ) = τ(ϕ′) = 0. It follows from

Proposition 17 that for all l ≥ 2,∣∣∣∣∣S
(
ϕ(x)

wl

)∣∣∣∣∣ =

∣∣∣∣∣S
(
ϕ(x)− ϕ(0)

wl

)∣∣∣∣∣ < nn〈w〉l(1−
1

2n
). (2.46)

It remains to show that the lemma holds for l = 1. Let x = (x1, . . . , xn) and y =

(y1, . . . , yn). For each 1 ≤ j ≤ n, write

Xj = xj1 + · · ·+ xjn and Yj = yj1 + · · ·+ yjn.

We have ∑
b1,...,bn (modw)

∣∣∣∣∣ ∑
x (modw)

e

(
bnx

n + · · ·+ b1x

w

)∣∣∣∣∣
2n

=
∑

b,x,y (modw)

e

(
bn(Xn − Yn) + · · ·+ b1(X1 − Y1)

w

)

=
∑

x,y (modw)

n∏
j=1

( ∑
bj (modw)

e

(
bj(Xj − Yj)

w

))
=〈w〉nN,

(2.47)
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where N = card
{

(x,y) (modw)
∣∣Xj ≡ Yj (modw) (1 ≤ j ≤ n)

}
. By Newton’s formula,

every (x,y) (modw) counted by N must satisfy

(x− x1) · · · (x− xn) ≡ (x− y1) · · · (x− yn) (modw).

Thus,

N ≤ n!〈w〉n. (2.48)

Fix b̄ ∈ A. For any b ∈ A, ϕ(bx) ≡ ϕ(b̄x) (modw) must imply that bnan ≡ b̄nan (modw).

Since w - an, w, there are at most n choices for b(modw) such that ϕ(bx) ≡ ϕ(b̄x) (modw).

Thus, for b1, . . . , bn ∈ A,

card{b(modw) |ϕ(bx) ≡ bnx
n + · · ·+ b1x1 (modw)} ≤ n.

Hence,

1

n

∑
b∈Iordw

b6≡0 (modw)

∣∣∣∣∣S
(
ϕ(bx)

w

)∣∣∣∣∣
2n

≤
∑

b1,...,bn (modw)

∣∣∣∣∣ ∑
x (modw)

e

(
bnx

n + · · ·+ b1x

w

)∣∣∣∣∣
2n

. (2.49)

Note that if gcd(b, w) = 1, then

S

(
ϕ(bx)

w

)
= S

(
ϕ(x)

w

)
.

We deduce from (2.47), (2.48), and (2.49) that

〈w〉 − 1

n

∣∣∣∣∣S
(
ϕ(x)

w

)∣∣∣∣∣
2n

≤ n!〈w〉2n.

Therefore, ∣∣∣∣∣S
(
ϕ(x)

w

)∣∣∣∣∣ ≤ n〈w〉1−
1

2n .

This completes the proof of the lemma.

Lemma 21. Let n ∈ N with p - n. For each i ∈ Nd with |i| ≤ n, let ai ∈ A with

gcd(a(n,0,...,0), w) = 1. Define

F (x) =
∑

i∈Nd, |i|≤n

aix
i and S

(
F (x)

wl

)
=

∑
x∈Id

ordwl

e

(
F (x)

wl

)
.

Then for all l ≥ 1, we have ∣∣∣∣∣S
(
F (x)

wl

)∣∣∣∣∣ < nn〈w〉l(d−
1

2n
).
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Proof. Fix any choice of (x2, . . . , xd). Then∑
i∈Nd, |i|≤n

aix
i = a(n,0,...,0)x

n
1 +

∑
|i|≤n, i1<n

aix
i

is a polynomial in terms of x1. By Lemma 20, we can obtain that for all l ≥ 1∣∣∣∣∣S
(
a(n,0,...,0)x

n
1 +

∑
|i|≤n, i1<n aix

i

wl

)∣∣∣∣∣ < nn〈w〉l(1−
1

2n
).

Thus, ∣∣∣∣∣S
(
F (x)

wl

)∣∣∣∣∣ ≤ ∑
x2,...,xd∈Iordwl

∣∣∣∣∣ ∑
x1∈Iordwl

e

(
F (x)

wl

)∣∣∣∣∣
≤ 〈w〉l(d−1) · nn · 〈w〉l(1−

1
2n

)

= nn〈w〉l(d−
1

2n
).

This completes the proof of the lemma.

Lemma 22. For each i ∈ Nd with |i| ≤ n, let ai ∈ A. Define

G(x) =
∑

i∈Nd, |i|≤n

aix
i and S

(
G(x)

wl

)
=

∑
x∈Id

ordwl

e

(
G(x)

wl

)
.

Suppose that gcd(a, w) = 1 and 〈w〉 > n. Then there exists (f1, . . . , fd) ∈ Ad such that

w - G(f1, . . . , fd).

Proof. We will prove this lemma by induction on d. When d = 1, since gcd(a, w) = 1, we

may consider G(x) as a nonzero polynomial in A/(w)[x]. Suppose that for each f ∈ A/(w),

G(f) = 0. Then x〈w〉 − x | G(x) in A/(w)[x]. Thus n ≥ degG(x) ≥ 〈w〉, contradicting

〈w〉 > n. Therefore, there must exist some f ∈ A satisfying w - G(f).

Assume that the lemma is true for d − 1. Now we prove that the statement holds for d.

Since gcd(a, w) = 1, there exists some j such that gcd(aj, w) = 1. Let

I =
{
i ∈ Nd

∣∣ |i| ≤ n, (i2, . . . , id) 6= (j2, . . . , jd)
}
.

Hence

G(x) = g(x1)xj22 · · · x
jd
d +

∑
i∈I

aix
i,
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where

g(x1) =

n−j2−···−jd∑
i1=0

ai1,j2,...,jdx
i1
1 .

Since gcd(aj, w) = 1 and 〈w〉 > n ≥ n − j2 − · · · − jd, by applying the result in the case

when d = 1 to g(x1), we have that w - g(f1) for some f1 ∈ A. Then

G(f1, x2, . . . , xd) = g(f1)xj22 · · ·x
jd
d +

∑
i∈I

(aif
i1
1 )xi22 · · · x

id
d .

By the induction hypothesis, there exists (f2, . . . , fd) ∈ Ad−1 such that

w - G(f1, f2, . . . , fd).

By induction, the lemma follows.

Lemma 23. For each i ∈ Nd with |i| = n, let ai ∈ A. Define

G(x) =
∑

i∈Nd, |i|=n

aix
i and S

(
G(x)

wl

)
=

∑
x∈Id

ordwl

e

(
G(x)

wl

)
.

Suppose that gcd(a, w) = 1 and 〈w〉 > n. Then there exists

F (x) =
∑

i∈Nd, |i|≤n

bix
i

with bi ∈ A and gcd(b(n,0,...,0), w) = 1 such that for all l ≥ 1,

S

(
G(x)

wl

)
= S

(
F (x)

wl

)
,

where S
(
F (x)
wl

)
is defined as in Lemma 21.

Proof. From Lemma 22, it follows that there exists (f1, . . . , fd) ∈ Ad such that

w - G(f1, . . . , fd).

Suppose that w | fi for each 1 ≤ i ≤ d. Since every monomial in G(x) has total degree n,

w |G(f1, . . . , fd). This is a contradiction. Thus, without loss of generality, we assume that

w - f1. For each 1 ≤ i, j ≤ d, define fi,j by the following rule:

fi,j =


fi, if j = 1,

1, if i = j ≥ 2,

0, if i 6= j and j ≥ 2.
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Hence the matrix
(
fi,j
)

=
(
fi,j
)

1≤i,j≤d has determinant f1, which is a unit in A/(wl)
because w - f1. Thus, the matrix

(
fi,j
)

is invertible over A/(wl). Therefore, we have a

bijection from
(
A/(wl)

)d
to
(
A/(wl)

)d
, defined by

x 7→ (f1x1, f2x1 + x2, . . . , fdx1 + xd) =
(
fi,j
)
x.

Hence

S

(
G(x)

wl

)
= S

(
G
(
(fi,j)x

)
wl

)
.

Let

F (x) = G
((
fi,j
)
x
)

=
∑

i∈Nd, |i|≤n

bix
i.

It remains to show that w - b(n,0,...,0). Since

F (x1, x2, . . . , xd) = G(f1x1, f2x1 + x2, . . . , fdx1 + xd)

=
∑

i∈Nd, |i|=n

ai(f1x1)i1(f2x1 + x2)i2 · · · (fdx1 + xd)
id ,

we have

F (x1, 0, . . . , 0) = G(f1x1, f2x1, . . . , fdx1)

=
∑

i∈Nd, |i|=n

ai(f1x1)i1(f2x1)i2 · · · (fdx1)id

=

( ∑
i∈Nd, |i|=n

aif
i1
1 f

i2
2 · · · f

id
d

)
xn1

= G(f1, f2, . . . , fd)x
n
1 .

Thus, w - G(f1, . . . , fd) = b(n,0,...,0). This completes the proof of the lemma.

Lemma 24. For each i ∈ Nd, |i| = k, let ai ∈ A. Define

G(x) =
∑

i∈Nd, |i|=k

aix
i and S

(
G(x)

wl

)
=

∑
x∈Id

ordwl

e

(
G(x)

wl

)
.

Suppose that gcd(a, w) = 1. Then for all l ≥ 1,∣∣∣∣∣S
(
G(x)

wl

)∣∣∣∣∣ ≤ k(k+1)dld−1〈w〉l(d−
1
2k

).
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Proof. Since gcd(a, w) = 1, there exists aj such that (aj, w) = 1 and then τ(aj) = 0. Since

|j| = k and p - k, we have p - j. When 〈w〉 ≤ k, from Lemma 19, it follows that for all

l ≥ 1, ∣∣∣∣∣S
(
G(x)

wl

)∣∣∣∣∣ < k(k+1)dld−1〈w〉l(d−
1
2k

).

On the other hand, when 〈w〉 > k, by Lemmas 21, 22, and 23, we have that for all l ≥ 1,∣∣∣∣∣S
(
G(x)

wl

)∣∣∣∣∣ < k(k+1)dld−1〈w〉l(d−
1
2k

).

This completes the proof of the lemma.

Lemma 25. For each i ∈ Nd, |i| = k, let ai ∈ A. Suppose that g ∈ A is monic and that

gcd(a, g) = 1. Define

G(x) =
∑

i∈Nd, |i|=k

aix
i and S

(
G(x)

g

)
=

∑
x∈Idord g

e

(
G(x)

g

)
.

Then ∣∣∣∣∣S
(
G(x)

g

)∣∣∣∣∣ ≤ k(k+1)dν(g)Ω(g)d−1〈g〉d−
1
2k ,

where ν(g) is the number of distinct monic irreducible divisors of g and Ω(g) is the number

of distinct monic divisors of g.

Proof. Let g = wl11 · · ·wlmm be the canonical factorization of g into monic irreducible powers.

Then m = ν(g) and (1 + l1) · · · (1 + lm) = Ω(g). For each j with 1 ≤ j ≤ m, let

gj = gw
−lj
j

and

Gj(x) = gk−1
j G(x).

Since gcd(gk−1
j a, wj) = 1, it follows from Lemma 24 that∣∣∣∣∣S

(
Gj(x)

w
lj
j

)∣∣∣∣∣ < k(k+1)dld−1
j 〈wj〉lj(d−

1
2k

). (2.50)
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For each integer pair (i, j) with 1 ≤ i ≤ d and 1 ≤ j ≤ m, if yi,j runs through a complete

set of residues modw
lj
j , then xi = g1yi,1 + · · · + gmyi,m runs through a complete set of

residues modg. Moreover, we have

G(g1y1 + · · ·+ gmym)

=
∑
|i|=k

ai(g1y1,1 + · · ·+ gmy1,m)i1 · · · (g1yd,1 + · · ·+ gmyd,m)id

≡
m∑
j=1

∑
|i|=k

aig
k
j y

i1
1,j · · · y

id
d,j (modg)

≡
m∑
j=1

gjGj(yj) (modg).

(2.51)

From (2.51), we see that

S

(
G(x)

g

)
=

∑
x (mod g)

e

(
G(x)

g

)

=
∑

y1 (modw
l1
1 )

· · ·
∑

ym (modwlmm )

e

(
G(g1y1 + · · ·+ gmym)

g

)

=
∑

y1 (modw
l1
1 )

· · ·
∑

ym (modwlmm )

e

(
g1G1(y1) + · · ·+ gmGm(ym)

g

)

=
m∏
j=1

( ∑
yj (modw

lj
j )

e
(gjGj(yj)

g

))

=
m∏
j=1

S

(
Gj(x)

w
lj
j

)
.

Therefore, by (2.50), we have∣∣∣∣∣S
(
G(x)

g

)∣∣∣∣∣ =
m∏
j=1

∣∣∣∣∣S
(
Gj(x)

w
lj
j

)∣∣∣∣∣
≤

m∏
j=1

(
k(k+1)dld−1

j 〈wj〉lj(d−
1
2k

)
)

≤ k(k+1)dν(g)Ω(g)d−1〈g〉d−
1
2k .

This completes the proof of the lemma.
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Recall that

S(g, a) =
∑

x∈Idord g

e

(∑
i∈L

aix
i

g

)
.

We now are ready to estimate Sj(g, a) = S(g, cja) (1 ≤ j ≤ s).

Lemma 26. Let g ∈ A and a = (ai)i∈L with gcd(a, g) = 1. Then for each j with 1 ≤ j ≤ s,∣∣Sj(g, a)
∣∣ =

∣∣S(g, cja)
∣∣ ≤ 〈cj〉dk(k+1)dν(g)Ω(g)d−1〈g〉d−

1
2k .

Proof. Let g1 = g/gcd(g, cj) and b = cja/gcd(g, cj). Then gcd(g1,b) = 1 and

Sj(g, a) =
∑

x (mod g)

e

(
cj
g

∑
i∈L

aix
i

)

=
∑

x (mod g)

e

(
1

g1

∑
i∈L

bix
i

)

= 〈gcd(g, cj)〉d
∑

x (mod g1)

e

(
1

g1

∑
i∈L

bix
i

)
= 〈gcd(g, cj)〉dS(g1,b).

Applying Lemma 25 to S(g1,b), we obtain∣∣Sj(g, a)
∣∣ ≤ 〈cj〉d∣∣S(g1,b)

∣∣
≤ 〈cj〉dk(k+1)dν(h)Ω(g1)d−1〈h〉d−

1
2k

≤ 〈cj〉dk(k+1)dν(g)Ω(g)d−1〈g〉d−
1
2k .

This completes the proof of the lemma.

2.4 Singular series

We now introduce the singular series

Sk,d,s =
∑
gmonic

S(g), (2.52)

where

S(g) = 〈g〉−ds
∑

gcd(a,g)=1
a∈Iιord g

s∏
j=1

Sj(g, a). (2.53)
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Also for Q ∈ R with Q > 0, we define

Sk,d,s(Q) =
∑
〈g〉≤Q̂
gmonic

S(g). (2.54)

In this section, we aim to show that whenever s is sufficiently large, 1 � Sk,d,s � 1 and

Sk,d,s −Sk,d,s(Q)� Q̂−δ for some δ > 0.

Lemma 27. When s > 2k(ι+ 1), the following hold.

(1) Sk,d,s absolutely converges.

(2)
∣∣Sk,d,s −Sk,d,s(Q)

∣∣� Q̂1+ι− s
2k

+ε.

Proof. For each g ∈ A \ {0}, since 2ν(g) ≤ Ω(g), we have

k(k+1)dν(g) ≤ Ω(g)2(log k)(k+1)d,

and it follows from [10, Lemma 8] that

〈cj〉dk(k+1)dν(g)Ω(g)d−1 � 〈g〉ε.

By Lemma 26, we see that

〈g〉−ds
s∏
j=1

Sj(g, a)� 〈g〉−
s

2k
+ε.

Thus,

S(g)� 〈g〉ι−
s

2k
+ε,

which implies that

∣∣Sk,d,s(Q)
∣∣ ≤ Q∑

m=0

∑
ord g=m
gmonic

∣∣S(g)
∣∣� Q∑

m=0

qm+m(ι− s
2k

+ε).

Note that if s > 2k(ι+ 1), we obtain 1 + ι− s
2k

+ ε < 0. It follows that

∣∣Sk,d,s

∣∣� ∞∑
m=0

qm(1+ι− s
2k

+ε) � 1,

and ∣∣Sk,d,s −Sk,d,s(Q)
∣∣�k,d,s,ε Q̂

1+ι− s
k

+ε.

Thus the lemma follows.
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Note that

S(g) = 〈g〉−ds
∑

a (mod g)
gcd(a,g)=1

s∏
j=1

Sj(g, a).

Lemma 28. The function S(g) is multiplicative.

Proof. Suppose that g1 and g2 are monic polynomials in A with (g1, g2) = 1. Thus,

S(g1g2) = 〈g1g2〉−ds
∑

a (mod g1g2)
(a,g1g2)=1

s∏
j=1

Sj(g1g2, a).

As bi runs over
{
x (modgi)

∣∣ (x, g1) = 1
}

(i = 1, 2), by the Chinese Remainder Theorem,(
g2b1 + g1b2

)
runs over {

x (modg1g2)
∣∣ (x, g1g2) = 1

}
.

Therefore,

S(g1g2) = 〈g1g2〉−ds
∑

b1 (mod g1)
(b1,g1)=1

∑
b2 (mod g2)
(b2,g2)=1

s∏
j=1

Sj(g1g2, g2b1 + g1b2)

= 〈g1g2〉−ds
∑

b1 (mod g1)
(b1,g1)=1

∑
b2 (mod g2)
(b2,g2)=1

s∏
j=1

∑
x (mod g1)

∑
y (mod g1)

e

(
cj
g1g2

∑
i∈L

(
g2bi,1x

i + g1bi,2y
i
))

= 〈g1g2〉−ds
∑

b1 (mod g1)
(b1,g1)=1

∑
b2 (mod g2)
(b2,g2)=1

s∏
j=1

∑
x (mod g1)

∑
y (mod g2)

e

(
cj
g1

∑
i∈L

bi,1x
i

)
e

(
cj
g2

∑
i∈L

bi,2y
i

)

= 〈g1g2〉−ds
∑

b1 (mod g1)
(b1,g1)=1

∑
b2 (mod g2)
(b2,g2)=1

s∏
j=1

Sj(g1,b1)Sj(g2,b2)

= S(g1)S(g2).

This completes the proof of the lemma.

Since

Sk,d,s =
∑
gmonic

S(g),

converges absolutely when s > 2k(ι+ 1) and S(g) is multiplicative, we have

Sk,d,s =
∏

wmonic
irreducible

σ(w),
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where

σ(w) =
∞∑
h=0

S(wh).

Moreover, there exists a constant C = C(k, d, s) such that

1

2
<

∣∣∣∣∣ ∏
wmonic

irreducible
ordw>C

σ(w)

∣∣∣∣∣ < 3

2
. (2.55)

For g ∈ A, let

M(g) = card
{
x (modg)

∣∣ c1x
i
1 + · · ·+ csx

i
s ≡ 0 (modg) (i ∈ L)

}
.

Proposition 29. We have ∑
g1|g

g1monic

S(g1) = 〈g〉ι−dsM(g),

where ι = cardL.

Proof. By Lemma 3(5), we have

M(g) =
∑

x (mod g)

∏
i∈L

〈g〉−1
∑

ai (mod g)

e

(
ai
g

(
c1x

i
1 + · · ·+ csx

i
s

))

= 〈g〉−ι
∑

x,a (mod g)

e

(
1

g

∑
i∈L

ai
(
c1x

i
1 + · · ·+ csx

i
s

))

= 〈g〉−ι
∑

a (mod g)

s∏
j=1

( ∑
xj (mod g)

e

(
cj
g

∑
i∈L

aix
i
j

))
.

(2.56)

Write g1 = gcd(a, g). Let g2 = g/g1 and b = a/g1. Then

s∏
j=1

( ∑
xj (mod g)

e

(
cj
g

∑
i∈L

aix
i
j

))
=

s∏
j=1

( ∑
xj (mod g)

e

(
cj
g2

∑
i∈L

bix
i
j

))

= 〈g1〉ds
s∏
j=1

( ∑
xj (mod g2)

e

(
cj
g2

∑
i∈L

bix
i
j

))

= 〈g1〉ds
s∏
j=1

Sj(g2,b).
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On recalling (2.56), we see that

M(g) = 〈g〉−ι
∑
g1|g

g1 monic

∑
a (mod g)
(a,g)=g1

〈g1〉ds
s∏
j=1

Sj(g/g1, a/g1)

= 〈g〉−ι
∑
g1|g

g1 monic

〈g1〉ds〈g/g1〉dsS(g/g1)

= 〈g〉−ι+ds
∑
g1|g

g1 monic

S(g/g1).

Thus the proposition follows.

Corollary 30. Suppose that w is a monic irreducible polynomial in A. Then we have

σ(w) = lim
h→∞
〈w〉h(ι−ds)M(wh).

Proof. Applying Proposition 29 to M(wh), we obtain that

σ(w) =
∞∑
h=0

S(wh) = lim
h→∞

h∑
l=0

S(wl) = lim
h→∞
〈wh〉ι−dsM(wh).

Recall that w is an irreducible element in A. On applying Lemma 14 to R = Aw and

π = w, we have the following result.

Lemma 31. Suppose that c1x
i
1 + · · ·+csxi

s = 0 (i ∈ L) has a non-singular w-adic solution.

Then there exists an integer n = n(w) such that whenever h ≥ n, we have

M(wh) ≥ 〈w〉(h−n)(ds−ι).

Theorem 32. Suppose that for every irreducible element w ∈ A, the system

c1x
i
1 + · · ·+ csx

i
s = 0 (i ∈ L)

has a non-singular w-adic solution. When s > 2k(ι+ 1), we have

Sk,d,s > 0.
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Proof. By (2.55) and Corollary 30, there exists a constant C = C(k, d, s) such that

1

2
<

∏
wmonic

irreducible
ordw>C

σ(w) <
3

2
.

It suffices to deal with the monic irreducible elements w with ordw ≤ C. On combining

Corollary 30 with Lemma 31, for all w with ordw ≤ C we have

σ(w) = lim
h→∞
〈w〉h(ι−ds)M(wh) ≥ 〈w〉−n(ds−ι).

Thus,

Sk,d,s =
∏

wmonic
irreducible

σ(w) > 0.

This completes the proof of the theorem.

2.5 Estimates for exponential sums II

In preparation for the next section, the goal of this section is to analyze the exponential

sums of the form

TP (F ) =
∑

x∈Id−P

e

( n∑
i1=0

· · ·
n∑

id=0

αi1,...,idx
i1
1 · · · x

id
d

)
,

where αi1,...,id ∈ K∞, P ∈ R with P > 0, and

I−P =
{
β ∈ K∞

∣∣β = b−P+1t
−P+1 + · · ·+ b−1t

−1 + b0 (bi ∈ Fq)
}
.

Consider (K, | · |) = (K∞, 〈·〉), R = {x ∈ K∞ | 〈x〉 ≤ 1} and π = t−1. Thus for α ∈ K∞,

we have

τ(α) = log〈α〉/ log〈t−1〉 = −ordα.

Then whenever τ(α) ≥ 2, e(α) = 1. On applying Lemmas 10, 11 and 12, we obtain the

following Lemmas.

Lemma 33. Let f(x) ∈ K∞[x] with f ′ 6= 0 and deg f ≤ n. For a ∈ Fq, let ga(x) =

f(t−1x+ a)− f(a). The following hold.

(1) If f(0) = 0, then 1 + τ(f) ≤ τ(ga) ≤ n+ τ(f).

(2) 1 + τ(f ′) ≤ τ(g′a) ≤ n+ τ(f ′).

(3) ind g′a ≤ ind f ′. If ind g′a = ind f ′ and τ(f ′(b)) ≥ τ(f ′) + 1 for some b ∈ Fq, then a = b.
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Proof. (1) Since f 6= 0 and f(0) = 0, we have ind f > 0. It follows from Lemma 11(2)

that 1 + τ(f) ≤ τ(ga) ≤ n+ τ(f).

(2) It follows from Lemma 11(2) directly.

(3) By Lemma 11(4), we have

ind g′a ≤ ind f ′.

If ind g′a = ind f ′ and τ(f ′(b)) ≥ τ(f ′)+1, we deduce from Lemma 10(4) that τ(a− b) ≥ 1.

Since a, b ∈ Fq, we have a = b.

Lemma 34. Let f(x) ∈ K∞[x] \ {0} with deg f ≤ n. For u, v ∈ N with u ≥ v > n, let

Nu,v(f) =
{
β ∈ K∞

∣∣β = b−u+1t
−u+1 + · · ·+ b−1t

−1 + b0 (bi ∈ Fq), τ(f(β)) ≥ v + τ(f)
}
.

Then

cardNu,v(f) ≤ qn+1+u− v
n .

Proof. Note that
{
β ∈ K∞

∣∣β = b−u+1t
−u+1 + · · · + b−1t

−1 + b0 (bi ∈ Fq)
}

is a complete

set of coset representatives of (πu) in R. Since R/(π) = Fq, we see from Lemma 12 that

cardNu,v(f) ≤ qn+1+u− v
n .

Before proceeding to the next lemma, it is necessary to introduce some new notations.

For P ∈ N \ {0} and a ∈ Fq, let

I−P =
{
β ∈ K∞

∣∣β = b−P+1t
−P+1 + · · ·+ b−1t

−1 + b0 (bi ∈ Fq)
}
,

and

Ia,−P =
{
β ∈ K∞

∣∣β = b−P+1t
−P+1 + · · ·+ b−1t

−1 + a (bi ∈ Fq)
}
.

Let f(x) ∈ K∞[x]. Define

TP (f) =
∑
β∈I−P

e
(
f(β)

)
,

and

Ta,P (f) =
∑

β∈Ia,−P

e
(
f(β)

)
.

Moreover, for α ∈ K∞ and S1, S2 ⊆ K∞, define

αS1 =
{
αβ
∣∣ β ∈ S1

}
and S1 + S2 =

{
β1 + β2

∣∣ βi ∈ Si (i = 1, 2)
}
.
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Lemma 35. Let f(x) ∈ K∞[x] with 2τ(f ′) ≤ τ(f) ≤ 0. Let P ∈ N satisfy P + τ(f) ≥ 2.

If τ
(
f ′(a)

)
= τ(f ′) for some a ∈ Fq , then Ta,P (f) = 0.

Proof. Let u = −τ(f ′) + 1. On combining τ(f) ≤ τ(f ′) ≤ 0 with P + τ(f) ≥ 2, we obtain

1 ≤ u ≤ −τ(f) + 1 ≤ P − 1.

Thus Ia,−P = Ia,−u + t−uI−P+u and

Ta,P (f) =
∑

β1∈Ia,−u

∑
β2∈I−P+u

e
(
f(β1 + t−uβ2)

)
. (2.57)

Fix β1 ∈ Ia,−u and β2 ∈ Ia,−P+u. On letting f(x) = αnx
n + · · ·+ α1x+ α0, we find that

f(β1 + t−uβ2) =
n∑
h=0

αh

h∑
i=0

(
h

i

)
βh−i1 βi2t

−ui =
n∑
i=0

n∑
h=i

(
h

i

)
αhβ

h−i
1 βi2t

−ui.

For h ≥ i ≥ 2, since

2τ(f ′) ≤ τ(f) ≤ τ(αn), τ(β1) ≥ 0, and τ(β2) ≥ 0,

we see that

τ
(
αhβ

h−i
1 βi2t

−ui) ≥ τ(f) + 2u = τ(f) + 2(−τ(f ′) + 1) ≥ 2.

Thus

e
(
f(β1 + t−uβ2)− f(β1)− f ′(β1)t−uβ2

)
= e

(
n∑
i=2

n∑
h=i

(
h

i

)
αhβ

h−i
1 βi2t

−ui

)
= 1.

Hence

e
(
f(β1 + t−uβ2)

)
= e
(
f(β1) + f ′(β1)t−uβ2

)
.

Let γ = β1 − a. Since β1 ∈ Ia,−u, we have γ ∈ T, i.e., τ(γ) ≥ 1. Since

f ′(x) = nαnx
n−1 + · · ·+ 2α2x+ α1,

we have

f ′(β1) = f ′(a+ γ) =
n−1∑
i=0

n−1∑
v=i

(
v

i

)
(v + 1)αv+1a

v−iγi.
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Note that if i ≥ 1, then

τ

( n−1∑
v=i

(
v

i

)
(v + 1)αv+1a

v−iγi
)
≥ τ(f ′) + τ(γ) ≥ τ(f ′) + 1.

Otherwise, if i = 0, then

τ

( n−1∑
v=i

(
v

i

)
(v + 1)αv+1a

v−iγi
)

= τ(f ′(a)) = τ(f ′).

Hence τ
(
f ′(β1)

)
= τ(f ′(a)) = τ(f ′) = 1 − u. Write f ′(β1) =

∑
j≤u−1 bjt

j where bj ∈
Fq (j ≤ u− 1) and bu−1 6= 0. Therefore∑

β2∈I−P+u

e
(
f ′(β1)t−uβ2

)
=

∑
ai∈Fq

−P+u<i≤0

e

(
f ′(β1)t−u

∑
−P+u<i≤0

ait
i

)

=
∏

−P+u<i≤0

∑
ai∈Fq

e
(
f ′(β1)t−uait

i
)

=
∏

−P+u<i≤0

∑
ai∈Fq

e

( ∑
j≤u−1

bjait
i+j−u

)
.

For i = 0 and j ≤ u− 2, we have i+ j − u ≤ u− 2− u = −2. Hence

e

( ∑
j≤u−2

bja0t
0+j−u

)
= 1.

We have ∑
a0∈Fq

e

( ∑
j≤u−1

bja0t
0+j−u

)
=
∑
a0∈Fq

e(bu−1a0t
−1) =

∑
a0∈Fq

eq(bu−1a0).

On noting that ∑
a0∈Fq

eq(a0) =

p−1∑
j=0

e2πij/p · card
(
ker(tr)

)
= 0,

since bu−1 6= 0, we see that ∑
a0∈Fq

eq(bu−1a0) = 0.

Hence ∑
β2∈I−P+u

e
(
f ′(β1)t−uβ2

)
= 0.
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From (2.57) and the above equality, it follows that

Ta,P (f) =
∑

β1∈Ia,−u

∑
β2∈I−P+u

e
(
f(β1) + f ′(β1)t−uβ2

)
=

∑
β1∈Ia,−u

e
(
f(β1)

) ∑
β2∈I−P+u

e
(
f ′(β1)t−uβ2

)
= 0.

This completes the proof of the lemma.

Lemma 36. Let f(x) ∈ K∞[x] with 2τ(f ′) ≤ τ(f) ≤ 0. For every a ∈ Fq, let

ga(x) = f(t−1x+ a)− f(a) and δa =

1, if ind g′a < ind f ′,

0, if ind g′a = ind f ′.

Suppose that P ∈ N satisfies P + τ(f) ≥ 2. Then there exists b ∈ Fq such that

|TP (f)| ≤ qδb
∣∣Tb,P (f)

∣∣.
Proof. For every a ∈ Fq, since τ(f ′(a)) ≥ τ(f ′), from Lemma 35, we find that

TP (f) =
∑
a∈Fq

Ta,P (f) =
∑

τ(f ′(a))>τ(f ′)

Ta,P (f). (2.58)

Suppose that every a ∈ Fq satisfies ind g′a < ind f . We have

|TP (f)| ≤ qmax
a∈Fq
|Ta,P (f)| = qδb|Tb,P (f)|

for some b ∈ Fq. Otherwise, suppose that there exists b ∈ Fq such that ind g′b = ind f ′. By

Lemma 33(3), for every a ∈ Fq with τ
(
f ′(a)

)
> τ(f ′), we have a = b. By (2.58), we see

that |TP (f)| ≤ |Tb,P (f)| = qδb|Tb,P (f)|.

Proposition 37. Let f(x) ∈ K∞[x] with deg f = n and 2τ(f ′) ≤ τ(f) ≤ 0. Let P ∈ N
satisfy P + τ(f) ≥ 2. Then

|TP (f)| ≤ qn+P− 1+τ(f)−2τ(f ′)
2n .

Proof. Since

TP (f) =
∑
β∈I−P

e
(
f(β)

)
,
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we have |TP (f)| =
∣∣TP (f − f(0)

)∣∣. Without loss of generality, we assume that f(0) = 0.

For a ∈ Fq, let ga(x) = f(t−1x+ a)− f(a). Then

|Ta,P | =
∣∣∣∣ ∑
β∈Ia,−P

e
(
f(β)

)∣∣∣∣ =

∣∣∣∣ ∑
γ∈I−P+1

e
(
f(a+ t−1γ)− f(a)

)∣∣∣∣ =
∣∣TP−1(ga)

∣∣.
It follows from Lemma 33 that for every a ∈ Fq,

1 ≤ τ(g′a)− τ(f ′) ≤ n and 1 ≤ τ(ga)− τ(f) ≤ n.

Thus

P − 1 + τ(ga) ≥ P − 1 + τ(f) + 1 ≥ 2.

Let b and δb be defined as in Lemma 36. We have

|TP (f)| ≤ qδb|TP−1(gb)| and P − 1 + τ(gb) ≥ 2.

If 2τ(g′b) ≤ τ(gb) ≤ 0, we apply Lemmas 35 and 36 to TP−1(gb) and repeat this procedure

until we obtain TQ(g) such that τ(g) ≤ 2τ(g′) − 1 or τ(g) > 0. More concretely, suppose

that we stop after getting TP (g0) = TP (f), TP−1(g1), . . . , TP−m(gm), which satisfy

deg gi = n, g′i 6= 0, τ(g′i)− τ(g′i−1) ≤ n, 1 ≤ τ(gi)− τ(gi−1) (1 ≤ i ≤ m);

2τ(g′i) ≤ τ(gi) ≤ 0 (1 ≤ i ≤ m− 1); τ(gm) ≤ 2τ(g′m)− 1 or τ(gm) > 0;

|TP−i+1(gi−1)| ≤ qδi |TP−i(gi)| (δi = δbi , 1 ≤ i ≤ m).

(2.59)

By Lemma 36, in (2.59), δi = 1 if and only if ind gi < ind gi−1. Thus, this case occurs

less than n times. Therefore,

|TP (f)| ≤ qn|TP−m(gm)| ≤ qn+P−m. (2.60)

By (2.59), we have

τ(g′m)− τ(f ′) ≤ mn and τ(gm)− τ(f) ≥ m. (2.61)

If τ(gm) ≤ 2τ(g′m)− 1, by (2.61), we have

2mn ≥ 2τ(g′m)− 2τ(f ′) ≥ τ(gm) + 1− 2τ(f ′) > τ(f) + 1− 2τ(f ′),

and hence

m ≥ 1 + τ(f)− 2τ(f ′)

2n
.
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On recalling (2.60), we have

|TP (f)| < qn+P− 1+τ(f)−2τ(f ′)
2n .

It remains to consider the case when τ(gm) > 0. Since τ(f) ≤ τ(f ′), we have

mn ≥ τ(gm)− τ(f) ≥ 1− τ(f) ≥ 1 + τ(f)− 2τ(f ′).

Thus

|TP (f)| < qn+P− 1+τ(f)−2τ(f ′)
2n .

This completes the proof of the proposition.

Corollary 38. Let f(x) ∈ K∞[x] with deg f ≤ n and τ(f) ≤ 0. Let P ∈ N satisfy

P + τ(f) ≥ 2. Then

|TP (f)| ≤ qn+P− 1+τ(f)−2τ(f ′)
2n .

Proof. If 2τ(f ′) ≤ τ(f) ≤ 0, then the result is true by Proposition 37. If 2τ(f ′) > τ(f),

then

|TP (f)| ≤ qP ≤ qn+P− 1+τ(f)−2τ(f ′)
2n .

Lemma 39. For n ∈ N \ {0}, let

F (x) =
n∑

i1=0

· · ·
n∑

id=0

αi1,...,idx
i1
1 · · ·x

id
d ∈ K∞[x],

and for P ∈ N \ {0}, let

TP (F ) =
∑

x∈Id−P

e
(
F (x)

)
.

Let τ(F ) = min{τ
(
αi1,...,id)

∣∣0 ≤ i1, . . . , id ≤ n}. If there exists j such that p - j and

τ(αj) ≤ 0, then whenever P + τ(F ) ≥ 2 we have

|TP (F )| ≤ (−τ(F ) + 2)d−1q(n+1)d+Pd−
1+τ(F )−2τ(αj)

2n .

Proof. We will prove the lemma by induction on d. When d = 1, since there exists j with

p - j such that τ(αj) ≤ 0, we have

τ(F ) ≤ τ(F ′) ≤ τ(αj) ≤ 0.
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By Corollary 38, we see that

|TP (F )| ≤ qn+P− 1+τ(F )−2τ(F ′)
2n ≤ qn+P−

1+τ(F )−2τ(αj)

2n .

Assume that the lemma is true for d− 1. We first deal with the case when −τ(αj) ≤ 2n.

Since

(n+ 1)d− 1 + τ(F )− 2τ(αj)

2n
≥ τ(αj)− τ(F )

2n
≥ 0,

we find that

|TP (F )| ≤ qPd ≤ q(n+1)d+Pd−
1+τ(F )−2τ(αj)

2n .

We now consider the case when −τ(αj) ≥ 2n+ 1. Without loss of generality, suppose that

j = (j1, . . . , jd) satisfies p - j1 and define

ϕ(y) =
n∑
i=0

αj1,...,jd−1,iy
i, Fy(x) = F (x1, . . . , xd−1, y),

TP (Fy) =
∑

x∈Id−1
−P

e
(
Fy(x)

)
, and T (y) =

∣∣TP (Fy)
∣∣.

Since

τ(ϕ) = min
{
τ(αj1,...,jd−1,i)

∣∣0 ≤ i ≤ d
}
≤ τ(αj),

we have

−τ(ϕ) ≥ −τ(αj) ≥ 2n+ 1.

For each u ∈ N, define

Nu =
{
y ∈ I−P

∣∣ τ(ϕ(y)
)

= u+ τ(ϕ)
}

and Tu =
∑
y∈Nu

T (y).

Note that for each y ∈ I−P , τ
(
ϕ(y)

)
≥ τ(ϕ). Then I−P = tu∈NNu. Let

S1 =
n∑
u=0

Tu, S2 =

−τ(ϕ)∑
u=n+1

Tu and S3 =
∑

u>−τ(ϕ)

Tu.

Thus

|TP (F )| ≤
∑
y∈I−P

T (y) =
∑
u∈N

Tu = S1 + S2 + S3. (2.62)

Claim 1. For y ∈ Nu with 0 ≤ u ≤ −τ(ϕ), we have

T (y) ≤ (−τ(F ) + 2)d−2 · q(n+1)(d−1)+P (d−1)− 1+τ(F )−2(u+τ(ϕ))
2n .
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Proof. Let ϕi1,...,id−1
(y) be the coefficient of xi11 · · ·x

id−1

d−1 in the expansion of Fy, i.e.,

ϕi1,...,id−1
(y) =

n∑
id=0

αi1,...,idy
id .

For each y ∈ I−P , we see that

〈ϕi1,...,id−1
(y)〉 ≤ max{〈αi1,...,id〉 | 0 ≤ id ≤ n}.

Thus

τ
(
ϕi1,...,id−1

(y)
)
≥ min

{
τ(αi1,...,id−1,id) | 0 ≤ id ≤ n} ≥ τ(F ). (2.63)

Furthermore,

τ(Fy) = min
{
τ
(
ϕi1,...,id−1

(y)
)
|0 ≤ i1, . . . , id−1 ≤ n

}
≥ τ(F ).

Since P +τ(F ) ≥ 2, we have P +τ(Fy) ≥ 2. Note that p - (j1, . . . , jd−1) and ϕj1,...,jd−1
= ϕ.

Hence for y ∈ Nu with 0 ≤ u ≤ −τ(ϕ), we have

τ
(
ϕj1,...,jd−1

(y)
)

= τ
(
ϕ(y)

)
= u+ τ(ϕ) ≤ 0.

Now we are ready to apply the induction hypothesis to TP (Fy) with y ∈
⋃−τ(ϕ)
u=0 Nu. We

obtain that

T (y) =
∣∣TP (Fy)

∣∣ ≤ (−τ(Fy) + 2)d−2 · q(n+1)(d−1)+P (d−1)− 1+τ(Fy)−2τ(ϕ(y))

2n

≤ (−τ(F ) + 2)d−2 · q(n+1)(d−1)+P (d−1)− 1+τ(F )−2(u+τ(ϕ))
2n .

This completes the proof of Claim 1.

Claim 2.
∣∣TP (F )

∣∣ ≤ (−τ(F ) + 2)d−1q(n+1)d+Pd− 1+τ(F )−2τ(ϕ)
2n .

Proof. Since cardNu ≤ cardI−P = qP , by Claim 1, we can see that

S1 =
∑

0≤u≤n

Tu =
∑

0≤u≤n

∑
y∈Nu

T (y)

≤ (n+ 1) · (−τ(F ) + 2)d−2 · qP · q(n+1)(d−1)+P (d−1)− 1+τ(F )−2(n+τ(ϕ))
2n

≤ (n+ 1) · (−τ(F ) + 2)d−2 · q(n+1)d+Pd− 1+τ(F )−2τ(ϕ)
2n .

(2.64)

For v ∈ N with v ≥ n+ 1, let

Mv =
{
y ∈ I−P

∣∣ τ(ϕ(y)) ≥ v + τ(ϕ)
}
.
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Since τ(F ) ≤ τ(ϕj1,...,jd−1
) = τ(ϕ), we have P ≥ −τ(F ) + 2 ≥ −τ(ϕ) + 2. It follows from

Lemma 34 that for v ∈ N with n+ 1 ≤ v ≤ −τ(ϕ) + 1,

cardNv ≤ cardMv ≤ qn+1+P− v
n . (2.65)

From Claim 1 and (2.65), we have

S2 ≤
∑

n<u≤−τ(ϕ)

cardNu · (−τ(F ) + 2)d−2 · q(n+1)(d−1)+P (d−1)− 1+τ(F )−2(u+τ(ϕ))
2n

≤
∑

n<u≤−τ(ϕ)

(−τ(F ) + 2)d−2 · qn+1+P−u
n · q(n+1)(d−1)+P (d−1)− 1+τ(F )−2(u+τ(ϕ))

2n

≤ (−τ(ϕ)− n) · (−τ(F ) + 2)d−2 · q(n+1)d+Pd− 1+τ(F )−2τ(ϕ)
2n .

(2.66)

On noting that T (y) ≤ qP (d−1) and τ(F ) ≤ 0, we see from (2.65) that

S3 =
∑

u>−τ(ϕ)

∑
y∈Nu

T (y) ≤
(

cardM−τ(ϕ)+1

)
· qP (d−1)

≤ qn+1+P−−τ(ϕ)+1
n · qP (d−1)

≤ q(n+1)d+Pd− 1+τ(F )−2τ(ϕ)
2n .

(2.67)

Therefore, by combining (2.62), (2.64), (2.66) and (2.67), we have

|TP (F )| ≤ S1 + S2 + S3

≤ (−τ(ϕ) + 2) · (−τ(F ) + 2)d−2 · q(n+1)d+Pd− 1+τ(F )−2τ(ϕ)
2n

≤ (−τ(F ) + 2)d−1 · q(n+1)d+Pd− 1+τ(F )−2τ(ϕ)
2n .

This completes the proof of Claim 2.

By combining Claims 1 and 2, since

τ(ϕ) = min
{
τ(αj1,...,jd−1,i)

∣∣0 ≤ i ≤ d
}
≤ τ(αj),

we see that

|TP (F )| ≤ (−τ(F ) + 2)d−1 · q(n+1)d+Pd−
1+τ(F )−2τ(αj)

2n .

The lemma follows by induction.
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2.6 Singular integral

In Lemma 6, we establish the following relation for the major arc contribution.∫
M

s∏
j=1

fj(α;P )dα =
∑

〈g〉≤〈c〉P̂
1
2

gmonic

∑
a∈Ag

( s∏
j=1

〈g〉−dSj(g, a)

)∫
Bg

s∏
j=1

fj(β)dβ,

where

Ag =
{
a = (ai)i∈L ∈ I ιord g

∣∣ gcd(a, g) = 1
}
,

and

Bg =
{
β = (βi)i∈L ∈ Tι

∣∣ 〈βi〉 < 〈g〉−1P̂
1
2
−k (i ∈ L)}.

We have treated the above sum by estimating the singular series. In this section, we plan

to analyze the the integrals of the shape∫
Bg

s∏
j=1

fj(β;P )dβ. (2.68)

Some preparation is required before we can introduce our strategy. For α = (αi)i∈L and

x = (x1, . . . ,xs) where xj = (x1j, . . . , xdj), write

G(α; x) = G(α; x1, . . . ,xs; c) =
∑
i∈L

αi

(
c1x

i
1 + · · ·+ csx

i
s

)
,

and define the singular integral to be

J = Js,d,k =

∫
Kι∞

(∫
Tds

G(α,x)dx

)
dα.

We will first relate the integrals as in (2.68) to JP̂ sd−ιk and then show that 1� J� 1.

2.6.1 Preliminaries

Let G be a locally compact group and B(G) be the class of Borel sets, i.e., the smallest

σ-algebra containing the closed sets.

Definition 40. A function µ : B(G) −→ R is said to be an inner regular left invariant

measure if the following conditions hold.
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(1) For any E ∈ B(G), µ(E) ≥ 0.

(2) µ(∅) = 0.

(3) For any sequence Ei of disjoint Borel sets, µ
(⊔

i≥1Ei

)
=
∑

i≥1 µ(Ei).

(4) For any g ∈ G and E ∈ B(G), µ(gE) = µ(E).

(5) For any E ∈ B(G), µ(E) = sup
{
µK : K ⊆ E, K compact, K ∈ B(G)

}
.

Definition 41. A left Haar measure on a locally compact group G is the completion of

an inner regular left invariant Borel measure.

Theorem 42. Let G be a locally compact group. Then there is a left Haar measure µ on

G.

Proof. This is [18, Theorem 14.14].

Theorem 43. Any two left Haar measures on a locally compact group G are the same,

apart from a multiplicative constant.

Proof. This is [18, Corollary 14.22].

Let G = (K∞,+, 〈·〉). Then G is a locally compact group. Let µ be the Haar measure

on G normalized by µ(T) = 1.

Lemma 44. For Q ∈ Z, let BQ =
{
tQE

∣∣E ∈ B(G)
}

. Then BQ = B(G).

Proof. Let fQ : K∞ −→ K∞ defined by fQ(α) = tQα. Then fQ is a homeomorphism.

Since B(G) is a σ-algebra containing all the closed sets, BQ = fQ
(
B(G)

)
is also a σ-

algebra containing all the closed sets. Therefore, BQ ⊇ B(G). Since Q can be chosen from

Z arbitrarily, we have B−Q ⊇ B(G). Note that B(G) =
{
tQE

∣∣E ∈ B−Q}. We obtain

B(G) ⊇
{
tQE

∣∣E ∈ B(G)
}

= BQ. Thus BQ = B(G).

Lemma 45. For Q ∈ Z, define µQ : B(G) −→ R by µQ(E) = µ(tQE). Then µQ is a Haar

measure on G and µQ = Q̂µ.

Proof. Note that µQ satisfies Conditions (1), (2) and (3) of Definition 40 immediately. Let

fQ be defined as in the proof of Lemma 44. Since fQ is a homeomorphism, µQ satisfies

Condition (5). For any α ∈ K∞ and E ∈ B(G),

µQ(α + E) = µ(tQα + tQE) = µ(tQE) = µQ(E).
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Therefore, µQ satisfies Condition (4). Thus µQ is a Haar measure on G. Since µQ(T) =

µ(tQT) = Q̂, from Theorem 43 we have µQ = Q̂µ.

Lemma 46. Let ϕ =
∑n

i=1 riχEi be a non-negative simple function and X a measurable

subset of G. Then

Q̂

∫
t−QX

ϕ(tQα)dα =

∫
X

ϕ(α)dα.

Proof. Note that

ϕ(tQα) =
n∑
i=1

riχEi(t
Qα) =

n∑
i=1

riχt−QEi(α).

Thus ∫
t−QX

ϕ(tQα)dα =
n∑
i=1

riµ
(
t−QEi ∩ t−QX

)
.

Therefore ∫
X

ϕ(α)dα =
n∑
i=1

riµ(Ei ∩X) =
n∑
i=1

riµQ
(
t−Q(Ei ∩X)

)
= Q̂

n∑
i=1

riµ
(
t−QEi ∩ t−QX

)
= Q̂

∫
t−QX

ϕ(tQα)dα.

This completes the proof of the lemma.

Lemma 47. Let Q ∈ Z and X ⊆ K∞ be measurable. If f : K∞ −→ C is integrable, then

Q̂

∫
t−QX

f(tQα)dα =

∫
X

f(α)dα.

Proof. Write f = f1 + if2 with fi : K∞ −→ R (i = 1, 2). Let {ϕj,n}n∈N (j = 1, 2) be two

monotonic increasing sequences of non-negative simple functions such that limn→∞(ϕ1,n−
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ϕ2,n) = f1. By Lemma 46, we have∫
X

f1(α)dα =

∫
X

lim
n→∞

(
ϕ1,n(α)− ϕ2,n(α)

)
dα

= lim
n→∞

(∫
X

ϕ1,ndα−
∫
X

ϕ2,ndα

)
= Q̂ lim

n→∞

(∫
t−QX

ϕ1,n(tQα)dα−
∫
t−QX

ϕ2,n(tQα)dα

)
= Q̂

∫
t−QX

lim
n→∞

(
ϕ1,n(tQα)− ϕ2,n(tQα)

)
dα

= Q̂

∫
t−QX

f1(tQα)dα.

Similarly, we have ∫
X

f2(α)dα = Q̂

∫
t−QX

f2(tQα)dα.

Thus ∫
X

f(α)dα = Q̂

∫
t−QX

f(tQα)dα.

This completes the proof of the lemma.

Let τ : K∞ → Z be defined as in Section 2.5. In what follows, write

τ(c) = min
1≤j≤s

τ(cj).

For α = (αi)i∈L, write

τ(α) = min
i∈L

τ(αi) and F (α; x) =
∑
i∈L

αix
i.

For m ∈ Z, define

Jm = {α ∈ K∞ | ordα ≤ m}.

Moreover, recall that for α ∈ K∞ and S1, S2 ⊆ K∞,

αS1 =
{
αβ
∣∣ β ∈ S1

}
and S1 + S2 =

{
β1 + β2

∣∣ βi ∈ Si (i = 1, 2)
}
.

Lemma 48. Let m,Q ∈ Z. Then∫
Jιm

e
(
G(α; x)

)
dα = Q̂−ι

∫
Jιm+Q

e
(
G(t−Qα; x)

)
dα.
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Proof. On recalling that G(α; x) =
∑

i∈L αi

(
c1x

i
1 + · · · + csx

i
s

)
, we find from Lemma 47

that ∫
Jιm

e
(
G(α; x)

)
dα =

∫
Jιm

∏
i∈L

e
(
αi

(
c1x

i
1 + · · ·+ csx

i
s

))
dα

=
∏
i∈L

∫
Jm

e
(
αi

(
c1x

i
1 + · · ·+ csx

i
s

))
dαi

=
∏
i∈L

Q̂−1

∫
Jm+Q

e
(
t−Qαi

(
c1x

i
1 + · · ·+ csx

i
s

))
dαi

= Q̂−ι
∫
Jιm+Q

e
(
G(t−Qα,x)

)
dα.

This completes the proof of the lemma.

Lemma 49. Suppose that P ∈ N and α = (αi)i∈L ∈ Kι
∞ such that P + τ(α) + τ(c) ≥ 1.

Then we have

P̂−ds
∑

x∈(t−P IP )ds

e
(
G(α; x)

)
=

∫
Tds

e
(
G(α; x)

)
dx.

Proof. Fix x ∈ (t−P IP )d and z ∈ (t−PT)d. Let y = x + z. For every i ∈ L,

yi − xi = (x + z)i − xi =
∑

j∈Ri\{0}

(
i

j

)
zjxi−j.

Since x = (x1, . . . , xd) ∈ (t−P IP )d and z = (z1, . . . , zd) ∈ (t−PT)d, for i = (i1, . . . , id) ∈ L
and (j1, . . . , jd) ∈ Ri \ {0}, we have

ord xi−j = ordxi1−j11 · · ·xid−jdd ≤ 0,

and

ord zj = ord zj11 · · · z
jd
d ≤ −P − 1.

Thus,

ord
(
yi − xi

)
≤ max

j∈Ri\{0}
ord (zjxi−j) ≤ max

j∈Ri\{0}
ord zj ≤ −P − 1.

On recalling F (α; x) =
∑
i∈L

αix
i, we find that

ord
(
F (α; y)− F (α; x)

)
≤ max

i∈L
ordαi − P − 1 = −τ(α)− P − 1.
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Thus for each xj ∈ (t−P IP )d and yj ∈ xj + (t−PT)d (1 ≤ j ≤ s), we have

ord
(
G(α; y)−G(α; x)

)
= ord

s∑
j=1

cj
(
F (α; yj)− F (α; xj)

)
≤ max

1≤j≤s
ord cj

(
F (α; yj)− F (α; xj)

)
≤ −τ(c)− τ(α)− P − 1.

Since P+τ(α)+τ(c) ≥ 1, it follows that ord
(
G(α; y)−G(α; x)

)
≤ −2. Hence e

(
G(α; y)−

G(α; x)
)

= 1, i.e., e
(
G(α; y)

)
= e

(
G(α; x)

)
. Therefore, for each x = (x1, . . . ,xs) ∈

(t−P IP )ds, we have

P̂−dse
(
G(α; x)

)
= e
(
G(α; x)

) ∫
x+(t−PT)ds

1dy

=

∫
x+(t−PT)ds

e
(
G(α; x)

)
dy

=

∫
x+(t−PT)ds

e
(
G(α; y)

)
dy.

(2.69)

On noting that
⊔

x∈(t−P IP )ds

(
x + (t−PT)ds

)
= Tds, by (2.69), we have

P̂−ds
∑

x∈(t−P IP )ds

e
(
G(α; x)

)
=

∫
Tds

e
(
G(α; y)

)
dy.

This completes the proof of the lemma.

Lemma 50. Let m ∈ Z and P ∈ N with m ≤ (1− k)P + τ(c)− 1. Then∫
Jιm

s∏
j=1

fj(α;P )dα = P̂ sd−ιk
∫
Jιm+kP

(∫
Tds

e
(
G(α; x)

)
dx

)
dα.

Proof. On recalling
s∏
j=1

fj(α;P ) =
∑
x∈IdsP

e
(
G(α; x)

)
, we deduce from Lemma 48 that

∫
Jιm

s∏
j=1

fj(α;P )dα =
∑
x∈IdsP

∫
Jιm

e
(
G(α; x)

)
dα

= P̂−kι
∑
x∈IdsP

∫
Jιm+kP

e
(
G(t−kPα; x)

)
dα

= P̂−kι
∫
Jιm+kP

∑
x∈IdsP

e
(
G(t−kPα; x)

)
dα.

(2.70)
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On letting y = t−Px, we see that∑
x∈IdsP

e
(
G(t−kPα; x)

)
=
∑
x∈IdsP

e

(∑
i∈L

t−kPαi

(
c1x

i
1 + · · ·+ csx

i
s

))
=

∑
y∈(t−P IP )ds

e
(
G(α; y)

)
.

For α ∈ J ιm+kP , we have

P + τ(α) + τ(c) ≥ P − (m+ kP ) + τ(c) = (1− k)P −m+ τ(c) ≥ 1.

It follows from (2.70) and Lemma 49 that∫
Jιm

s∏
j=1

fj(α;P )dα = P̂−kι
∫
Jιm+kP

∑
y∈(t−P IP )ds

e
(
G(α; y)

)
dα

= P̂ ds−kι
∫
Jιm+kP

(∫
Tds

e
(
G(α; y)

)
dy

)
dα.

This completes the proof of the lemma.

Remark 1 Throughout, for m,Q ∈ Z, define

J(m,Q) =

∫
Jιm+kQ

(∫
Tds

e
(
G(α; y)

)
dy

)
dα.

Let P ≥ 2(1− τ(c)). For g ∈ A, let

mg =

−ord g + [(1
2
− k)P ], if 1

2
P 6∈ N;

−ord g + (1
2
− k)P − 1, otherwise.

By recalling

Bg =
{
β ∈ Kι

∞ |ord βi < −ord g + (1/2− k)P (i ∈ L)
}
,

we have Bg = J ιmg . Since P ≥ 2(1− τ(c)), it follows that

mg ≤ (1/2− k)P ≤ (1− k)P + τ(c)− 1.

By Lemma 50, we have ∫
Bg

s∏
j=1

fj(β;P )dβ = P̂ sd−ιkJ(mg, P ). (2.71)

Next, we will treat Js,d,k and Js,d,k − J(mg, P ).
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2.6.2 Estimates for Js,d,k

We first show that Js,d,k is bounded by a constant depending on s, d, k, and q. Recall

that

F (α; x) =
∑
i∈L

αix
i,

and

fj(α;P ) =
∑
x∈IdP

e
(
cjF (α; x)

)
(1 ≤ j ≤ s).

For α = (αi)i∈L and P ∈ N, define

TP (F ;α) =
∑

x∈Id−P

e
(
F (α; x)

)
.

Lemma 51. Suppose that P ∈ N and α = (αi)i∈L such that P + τ(α) + τ(c) ≥ 1. Then

we have

P̂−ds
s∏
j=1

TP
(
F ; cjt

−kα
)

=

∫
Tds

e
(
G(α; x)

)
dx.

Proof. By Lemma 49, we have

P̂−ds
∑

x∈(t−P IP )ds

e
(
G(α; x)

)
=

∫
Tds

e
(
G(α; x)

)
dx.

It remains to show that ∑
x∈(t−P IP )ds

e
(
G(α; x)

)
=

s∏
j=1

TP
(
F ; cjt

−kα
)
.

Since G(α; x) =
s∑
j=1

cjF (α; xj), it follows that

∑
x∈(t−P IP )ds

e
(
G(α; x)

)
=

s∏
j=1

∑
xj∈(t−P IP )d

e
(
cjF (α; xj)

)
. (2.72)

On letting xj = t−1yj (1 ≤ j ≤ s), we see that xj ∈ (t−P IP )d if and only if yj ∈ Id−P .

Thus, ∑
xj∈(t−P IP )d

e
(
cjF (α; xj)

)
=
∑

yj∈Id−P

e
(
cjF (α; t−1yj)

)
(1 ≤ j ≤ s).
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Note that for each j with 1 ≤ j ≤ s,

cjF (α; t−1yj) = cj
∑
i∈L

αi(t
−1yj)

i = cjt
−k
∑
i∈L

αiy
i
j = F (cjt

−kα; y). (2.73)

We deduce from (2.72) and (2.73) that

∑
x∈(t−P IP )ds

e
(
G(α; x)

)
=

s∏
j=1

∑
yj∈Id−P

e
(
F (cjt

−kα; y)
)

=
s∏
j=1

TP
(
F ; cjt

−kα
)
.

This completes the proof of the lemma.

Lemma 52. Let E = s
ι

(
1
2k
− ε(d − 1)

)
∈ R with ε(d − 1) ∈ (0, 1

2k
). Then there exists a

constant C = C(s, k, d; q; c; ε) > 0 such that∣∣∣∣ ∫
Tds

e
(
G(α; x)

)
dx

∣∣∣∣ ≤ C
∏
i∈L

(
1 + 〈αi〉

)−E
.

Proof. Recall that τ(α) = mini∈L τ(αi). We now consider two cases.

Case 1: τ(α) > −k, i.e., τ(αi) > −k (i ∈ L). Hence

〈αi〉 = q−τ(αi) < qk (i ∈ L).

Thus ∣∣∣∣ ∫
Tds

e
(
G(α; x)

)
dx

∣∣∣∣ ≤ 1 < (1 + qk)ιE
∏
i∈L

(
1 + 〈αi〉

)−E
. (2.74)

Case 2: τ(α) ≤ −k. Take P ∈ N with P + τ(α) + τ(c) ≥ 1. Fix j ∈ N with 1 ≤ j ≤ s.

Since τ(c) ≤ τ(cj) ≤ 0, we have

τ(c) + k + τ(α) ≤ τ(cjt
−kα) = τ(cj) + k + τ(α) ≤ 0

and

P + τ(cjt
−kα) ≥ P + τ(α) + τ(c) + k ≥ 1 + k ≥ 2.

Thus we deduce from Lemma 39 that∣∣TP (F ; cjt
−kα)

∣∣ ≤ (−τ(cjt
−kα) + 2)d−1 · q(k+1)d+Pd−

1−τ(cjt
−kα)

2k

≤ (−τ(c)− k − τ(α) + 2)d−1 · q(k+1)d+Pd− 1−k−τ(α)
2k

< (−τ(c)− k − τ(α) + 2)d−1 · q(k+1)d+
τ(α)+k

2k P̂ d.
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For any ε > 0, since limx→∞
−τ(c)+logq x+2

xε
= 0, there exits C1 = C1(q; c; ε) > 0 such that

(−τ(c) + logq x+ 2)d−1 ≤ Cd−1
1 xε(d−1)

for x ≥ 1. Since q−τ(α)−k ≥ 1, on letting C2 = Cd−1
1 q(k+1)d, we have

(−τ(c)− k − τ(α) + 2)d−1q(k+1)d+
τ(α)+k

2k ≤ C2

(
q−τ(α)−k)ε(d−1)

q
τ(α)+k

2k

= C2q
(τ(α)+k)( 1

2k
−ε(d−1)).

Thus

|TP (F ; cjt
−kα)| ≤ C2q

(τ(α)+k)( 1
2k
−ε(d−1))P̂ d. (2.75)

Since τ(α) ≤ 0, we have qτ(α)
(
1 + q−τ(α)

)
≤ 2. Since 1

2k
− ε(d− 1) > 0, we see that

qτ(α)( 1
2k
−ε(d−1)) ≤ 2

1
2k
−ε(d−1)

(
1 + q−τ(α)

)−( 1
2k
−ε(d−1))

.

On letting C3 = C2(2qk)
1
2k
−ε(d−1), we deduce from (2.75) that

|TP (F ; cjt
−kα)| ≤ C3

(
1 + q−τ(α)

)−( 1
2k
−ε(d−1))

P̂ d. (2.76)

On noting that −τ(α) ≥ −τ(αi) (i ∈ L), we find that

1 + q−τ(α) ≥
∏
i∈L

(
1 + q−τ(αi)

) 1
ι

=
∏
i∈L

(
1 + 〈αi〉

) 1
ι .

It follows from (2.76) that

|TP (F ; cjt
−kα)| ≤ P̂ dC3

∏
i∈L

(
1 + 〈αi〉

)− 1
ι
( 1

2k
−ε(d−1))

.

Since E = s
ι
( 1

2k
− ε(d− 1)), by Lemma 51, we have∣∣∣∣ ∫

Tds
e
(
G(α; x)

)
dx

∣∣∣∣ = P̂−ds
∣∣∣∣ s∏
j=1

TP (F ; cjt
−kα)

∣∣∣∣ ≤ Cs
3

∏
i∈L

(
1 + 〈αi〉

)−E
. (2.77)

On letting C = max(Cs
3 , (1 + qk)ιE) and combining Case 1 with Case 2, we have∣∣∣∣ ∫
Tds

e
(
G(α; x)

)
dx

∣∣∣∣ ≤ C
∏
i∈L

(
1 + 〈αi〉

)−E
.

This completes the proof of the lemma.
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Lemma 53. For m ∈ Z, let Jm = {α ∈ K∞ | ordα ≤ m}. If m ∈ N, then∫
Jm

(
1 + 〈α〉

)−E
dα =

∫
T

(
1 + 〈α〉

)−E
dα + (q − 1)

m∑
v=0

qv(1 + qv)−E.

Proof. For each m ∈ N, we have

Jm =
{
α ∈ K∞

∣∣ ordα ≤ m
}

= T
⊔( m⊔

v=0

⊔
x∈A

ordx=v

(
x+ T

))
.

Note that for each x ∈ A with ordx = v,∫
x+T

(
1 + 〈α〉

)−E
dα = (1 + qv)−E

∫
x+T

1dα = (1 + qv)−E.

Since card{x ∈ A | ordx = v} = (q − 1)qv, we obtain that∫
Jm

(
1 + 〈α〉

)−E
dα =

∫
T

(
1 + 〈α〉

)−E
dα +

m∑
v=0

∑
x∈A

ordx=v

∫
x+T

(
1 + 〈α〉

)−E
dα

=

∫
T

(
1 + 〈α〉

)−E
dα + (q − 1)

m∑
v=0

qv(1 + qv)−E.

This completes the proof of the lemma.

Lemma 54. For m ∈ Z, let Jm = {α ∈ K∞ | ordα ≤ m}. Whenever s > 2kι, there exist

two constants C = C(s, k, d; q; c) > 0 and C̃ = C̃(s, k, d; q; c) > 0 such that the following

inequalities hold.

(1)
∣∣J∣∣ ≤ ∫

Kι∞

∣∣∣∣ ∫
Tds

e
(
G(α; x)

)
dx

∣∣∣∣dα ≤ C.

(2)

∫
Kι∞\Jιm

∣∣∣∣ ∫
Tds

e
(
G(α; x)

)
dx

∣∣∣∣dα ≤ C̃q−(m+1)/(3kι) (m ∈ N).

Proof. (1) Recall that

J =

∫
Kι∞

∫
Tds

e
(
G(α; x)

)
dxdα.

Then ∣∣J∣∣ ≤ ∫
Kι∞

∣∣∣∣ ∫
Tds

e
(
G(α; x)

)
dx

∣∣∣∣dα.
Take ε =

(
6kd(2kι+1)

)−1
and let E = s

ι

(
1
2k
−ε(d−1)

)
. By Lemma 52, there exists C1 > 0

such that ∣∣∣∣ ∫
Tds

e
(
G(α; x)

)
dx

∣∣∣∣ ≤ C1

∏
i∈L

(
1 + 〈αi〉

)−E
. (2.78)
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Thus ∫
Kι∞

∣∣∣∣ ∫
Tds

e
(
G(α; x)

)
dx

∣∣∣∣dα ≤ C1

∫
Kι∞

∏
i∈L

(
1 + 〈αi〉

)−E
dα

= C1

∏
i∈L

∫
K∞

(
1 + 〈αi〉

)−E
dαi

= C1

(∫
K∞

(
1 + 〈α〉

)−E
dα

)ι
.

(2.79)

Since K∞ = ∪m≥0Jm and Jm ⊂ Jm+1, we deduce from Lemma 53 that∫
K∞

(
1 + 〈α〉

)−E
dα = lim

m→∞

∫
Jm

(
1 + 〈α〉

)−E
dα

=

∫
T

(
1 + 〈α〉

)−E
dα + (q − 1)

∞∑
v=0

qv(1 + qv)−E.

(2.80)

Since E > 0 and 1 + 〈α〉 > 1, we see that
∫
T

(
1 + 〈α〉

)−E
dα < 1. Moreover, whenever

s ≥ 2kι+ 1, we have

E =
s

ι

( 1

2k
− d− 1

6dk(2kι+ 1)

)
>

2kι+ 1

ι

( 1

2k
− 1

6k(2kι+ 1)

)
= 1 +

1

3kι
.

Hence

(q − 1)
∞∑
v=0

qv(1 + qv)−E < (q − 1)
∞∑
v=0

qv(1−E) <∞.

It follows from (2.80) that∫
K∞

(
1 + 〈α〉

)−E
dα < 1 + (q − 1)

∞∑
v=0

qv(1−E) <∞.

On letting C = C1

( ∫
K∞

(
1 + 〈α〉

)−E
dα
)ι

, we can deduce from (2.79) that∫
Kι∞

∣∣∣∣ ∫
Tds

e
(
G(α; x)

)
dx

∣∣∣∣dα ≤ C.

(2) Fix m ∈ N. Since Kι
∞ \ J ιm =

⋃
i∈L
{
α ∈ Kι

∞
∣∣ ordαi > m

}
, from (2.78), we have

63



that ∫
Kι∞\Jιm

∣∣∣∣ ∫
Tds

e
(
G(α; x)

)
dx

∣∣∣∣dα
≤
∫
Kι∞\Jιm

C1

∏
i∈L

(
1 + 〈αi〉

)−E
dα

≤C1

∑
i∈L

(∫
K∞

(
1 + 〈α〉

)−E
dα

)ι−1 ∫
ordαi>m

(
1 + 〈αi〉

)−E
dαi

≤ιC1

(∫
K∞

(
1 + 〈α〉

)−E
dα

)ι−1 ∫
ordα>m

(
1 + 〈α〉

)−E
dα.

On combining Lemma 53 with (2.80) and recalling E ≥ 1 + (3kι)−1, we find that∫
ordα>m

(
1 + 〈α〉

)−E
dα = (q − 1)

∞∑
u=m+1

qu(1 + qu)−E

< (q − 1)
∞∑

u=m+1

q(1−E)u

= q(1−E)(m+1)(q − 1)
∞∑
u=0

q(1−E)u

≤ q−(m+1)/(3kι)(q − 1)
∞∑
u=0

q−u/(3kι).

On letting C̃ = ιC1

( ∫
K∞

(
1 + 〈α〉

)−E
dα
)ι−1

(q − 1)
∑∞

u=0 q
−u/(3kι), we have∫

Kι∞\Jιm

∣∣∣∣ ∫
Tds

e
(
G(α; x)

)
dx

∣∣∣∣dα ≤ C̃q−(m+1)/(3kι).

This completes the proof of the lemma.

Next, we aim to show that Js,k,d > 0.

Lemma 55. For P,m ∈ N , define

Vs(P ;m) = card
{
x ∈ IdsP

∣∣ ord (c1x
i
1 + · · ·+ csx

i
s) < m (i ∈ L)

}
.

Suppose that the system c1x
i
1 + · · ·+ csx

i
s = 0 (i ∈ L) has a non-singular solution η ∈ Kds

∞.

Let m′ = −m + k(P − 1) − τ(c) + 1. Then there exists an integer u = u(c,η) such that

whenever u ≤ m′ ≤ P , we have

Vs(P ;m) ≥ q(P−u)ds−(m′−u)ι.

64



Proof. For each j with 1 ≤ j ≤ s, let

c̃j = tτ(c)cj and yj = t−P+1xj.

Then for every i ∈ L, we have

c1x
i
1 + · · ·+ csx

i
s = t−τ(c)c̃1(tP−1y1)i + · · ·+ c̃s(t

P−1ys)
i

= t−τ(c)+k(P−1)(c̃1y
i
1 + · · ·+ c̃sy

i
s).

Since I−P = t−P+1IP , on noting that −m′ = m+ τ(c)− k(P − 1)− 1, we have

Vs(P ;m) = card
{
y ∈ Ids−P

∣∣ ord (c̃1y
i
1 + · · ·+ c̃sy

i
s) ≤ −m′ (i ∈ L)

}
= card

{
y (mod t−P )

∣∣ ord (c̃1y
i
1 + · · ·+ c̃sy

i
s) ≡ 0 (mod t−m

′
) (i ∈ L)

}
.

Write

U(m′) = card
{
y (mod t−m

′
)
∣∣ ord (c̃1y

i
1 + · · ·+ c̃sy

i
s) ≡ 0 (mod t−m

′
) (i ∈ L)

}
.

When m′ ≤ P , we find that

Vs(P ;m) = q(P−m′)dsU(m′). (2.81)

By homogeneity, we can re-scale to ensure that η ∈ Rds. Thus the system c̃1y
i
1+· · ·+c̃syi

s =

0 (i ∈ L) has a non-singular solution in Rds. It follows from Lemma 14 that there exists

an integer u = u(c,η) such that whenever m′ ≥ u, we have

U(m′) ≥ q(m′−u)(ds−ι).

On recalling (2.81), we see that

Vs(P ;m) ≥ q(P−m′)dsq(m′−u)(ds−ι) = q(P−u)ds−(m′−u)ι.

This completes the proof of the lemma.

Lemma 56. For P,m ∈ N, let Vs(P ;m) be defined as in Lemma 55. Then∫
Jι−m−1

s∏
j=1

fj(β;P )dβ = q−ιmVs(P ;m).
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Proof. Since
s∏
j=1

fj(β;P ) =
∑
x∈IdsP

e

(∑
i∈L

βi(c1x
i
1 + · · ·+ csx

i
s)

)
,

we have ∫
Jι−m−1

s∏
j=1

fj(β;P )dβ =
∑
x∈IdsP

∏
i∈L

∫
ordβi<−m

e
(
βi(c1x

i
1 + · · ·+ csx

i
s)
)
dβi.

By Lemma 3(4), for every i ∈ L and x ∈ IdsP , we have

∫
ordβi<−m

e
(
βi(c1x

i
1 + · · ·+ csx

i
s)
)
dβi =

q−m, if ord (c1x
i
1 + · · ·+ csx

i
s) < m ,

0, otherwise.

Thus ∫
Jι−m−1

s∏
j=1

fj(β;P )dβ = q−ιmVs(P ;m).

Lemma 57. Suppose that the system c1x
i
1 + · · · + csx

i
s = 0 (i ∈ L) has a non-singular

solution η ∈ Kds
∞. Then there exists an integer u = u(c,η) such that whenever P ≥

max{2(1− τ(c)), 2(u+ τ(c) + k − 1)}, we have∫
Jι

[ 1
2P ]−1

(∫
Tds

e
(
G(α; x)

)
dx

)
dα ≥ q−sdu−(1−τ(c)−k−u)ι.

Proof. Let m = kP − [1
2
P ] and let m′ = −m+k(P −1) + 1− τ(c). When P ≥ 2(1− τ(c)),

we see that

m′ = [(1/2)P ]− k − τ(c) + 1 < P.

By Lemma 55, there exists an integer u = u(c,η) such that whenever m′ ≥ u, we have

Vs(P ;m) ≥ q(P−u)ds−(m′−u)ι.

When P ≥ 2(u+ k + τ(c)− 1), we have

m′ = [(1/2)P ]− k − τ(c) + 1 ≥ u.
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Thus whenever P ≥ max{2(1− τ(c)), 2(u+ τ(c) + k− 1)}, it follows from Lemma 56 that∫
Jι−m−1

s∏
j=1

fj(β;P )dβ = q−ιmVs(P ;m)

≥ q(P−u)ds−(m′−u)ι−ιm

= q(P−u)ds−(kP+1−τ(c)−k−u)ι

= q−sdu−(1−τ(c)−k−u)ιP̂ sd−kι.

Since

−m− 1 = −kP + [(1/2)P ]− 1 ≤ (1− k)P + τ(c)− 1,

we obtain from Lemma 50 that∫
Jι−m−1

s∏
j=1

fj(β;P )dβ = P̂ sd−ιk
∫
Jι−m−1+kP

(∫
Tds

e
(
G(α; x)

)
dx

)
dα.

On noting that −m− 1 + kP = [1
2
P ]− 1, we see that∫

Jι
[ 1
2P ]−1

(∫
Tds

e
(
G(α; x)

)
dx

)
dα ≥ q−sdu−(1−τ(c)−k−u)ι.

Theorem 58. Suppose that the system c1x
i
1 + · · · + csx

i
s = 0 (i ∈ L) has a non-singular

solution in K∞. Then

J =

∫
Kι∞

(∫
Tds

e
(
G(α; x)

)
dx

)
dα > 0.

Proof. Let m = kP − [1
2
P ]. Then −m− 1 + kP = [1

2
P ]− 1. Recall that for n,Q ∈ Z,

J(n,Q) =

∫
Jιn+kQ

(∫
Tds

e
(
G(α; y)

)
dy

)
dα.

By Lemma 54(2), we deduce that∣∣J− J(−m− 1, P )
∣∣� q−([ 1

2
P ])/(3kι) < qP̂−1/(6kι).

From Lemma 57, there exists an integer u such that

J = lim
P→∞

J(−m− 1, P ) ≥ q−sdu−(1−τ(c)−k−u)ι > 0.

This completes the proof of the theorem.
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2.7 The major arc contribution

We are now in a position to obtain asymptotic estimates for the contribution of the

major arcs.

Theorem 59. Suppose that for every irreducible element w ∈ A, the system

c1x
i
1 + · · ·+ csx

i
s = 0 (i ∈ L)

has a non-singular w-adic solution. Further suppose that this system has a non-singular

solution in K∞. When s > 2k(ι+ 1), we have∫
M

s∏
j=1

fj(α;P )dα = JSP̂ sd−ιk +O
(
P̂ sd−ιk−δ)

where 0 < JS� 1 and δ = 1
18kι

.

Proof. By Lemma 6, we have∫
M

s∏
j=1

fj(α)dα =
∑

〈g〉≤〈c〉P̂
1
2

gmonic

∑
a∈Ag

( s∏
j=1

〈g〉−dSj(g, a)

)∫
Bg

s∏
j=1

fj(β)dβ.

Let P ≥ 2(1− τ(c)). For g ∈ A, let

mg =

−ord g + [(1
2
− k)P ], if 1

2
P 6∈ N,

−ord g + (1
2
− k)P − 1, otherwise.

(2.82)

On recalling (2.71), we obtain∫
Bg

s∏
j=1

fj(β;P )dβ = P̂ sd−ιkJ(mg, P ).

On letting Q = −τ(c) + 1
2
P , we deduce that∫

M

s∏
j=1

fj(α;P )dα = P̂ sd−ιk
∑
〈g〉≤Q̂
g monic

S(g)J(mg, P )

= P̂ sd−ιk
(
JS(Q) +

∑
〈g〉≤Q̂
g monic

S(g)
(
− J + J(mg, P )

))

= P̂ sd−ιk
(
JS + J

(
S(Q)−S

)
+
∑
〈g〉≤Q̂
g monic

S(g)
(
− J + J(mg, P )

))
.
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By Lemma 54, for s ≥ 2ιk + 1 and g ∈ A with 〈g〉 ≤ P̂
1
3 , we see that

−J + J(mg, P )� q−(mg+kP+1)/(3kι) ≤ q−( 1
2
P−ord g)/(3kι) ≤ P̂−

1
18kι .

Hence by Lemma 27 for s ≥ 2k(ι+ 1) + 1, we find that∑
〈g〉≤P̂

1
3

g monic

S(g)
(
− J + J(mg, P ) = O(P̂−

1
18kι ).

By combining Lemma 54 with Lemma 27, for s ≥ 2k(ι+ 1) + 1, there exist δ1 = 1
6k
− ε > 0

and δ2 = 1
4k
− ε > 0 such that∑

P̂
1
3<〈g〉≤〈c〉P̂

1
2

g monic

S(g)
(
− J + J(mg, P )

)
= O(P̂−δ1),

and

J
(
S(Q)−S

)
= O(P̂−δ2).

On letting δ = 1
18kι

, we obtain∫
M

s∏
j=1

fj(α;P )dα = JSP̂ sd−ιk +O
(
P̂ sd−ιk−δ).

By Theorems 32 and 58, 0 < JS� 1. This completes the proof of the theorem.
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Chapter 3

The minor arc contribution

In this chapter, we will focus on the contribution of the minor arcs. More precisely,

we want to find a condition on s such that∫
m

s∏
j=1

fj(α;P )dα� P̂ sd−ιk−δ

for some δ > 0. To this end, we need to establish a generalization of Vinogradov’s mean

value theorem in Fq[t] and Weyl-type estimates for fj(α;P ) over the minor arcs.

3.1 Preliminaries

We first introduce some new notations. Fix k, d ∈ N and θ ∈ R with 0 < θ ≤ 1/k. For

every i ∈ N, it can be represented uniquely as

i =
∞∑
h=0

ah(i)p
h

where ah(i) ∈ [0, p− 1]∩Z (h ∈ N). Throughout, write D = D(k) = max{h ∈ N | ah(k) >

0}. It is useful to define the function γq : N→ N by

γq(i) =
∞∑
h=0

ah(i).

Also, for each i = (i1, . . . , id) ∈ Nd, write

ah(i) =
(
ah(i1), . . . , ah(id)

)
and γq(i) =

(
γq(i1), . . . , γq(id)

)
.
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Recall that for j = (j1, . . . , jd) ∈ Nd, |j| = j1 + · · ·+ jd. For 0 ≤ j < γq(k), we define

Rj =
{
i ∈ Nd

∣∣ |γq(i)| ≤ γq(k)− j
}
∩{

i ∈ Nd
∣∣∃l ∈ N s.t. al(k) ≥ 1 and |ah(i)| ≤ ah+l(k) (h ∈ N)

}
,

and define

R′j = {n ∈ Rj| p - n} and R′′j = {m ∈ Rj| p |m}.

For convenience, let r0 = cardR0 and r = cardR′0. Moreover, recall that for each i ∈ Nd,

Ri =

{
j ∈ Nd

∣∣∣ 0 ≤ jl ≤ il (1 ≤ l ≤ d), p -

(
i1

j1

)
· · ·

(
id

jd

)}
.

Lemma 60. For i ∈ Nd with |i| ≤ k, the following are equivalent.

(1) p - k!
i1!···id!(k−|i|)! .

(2) For every h ∈ N, ah(k) = ah(i1) + · · ·+ ah(id) + ah(k − |i|).

(3) For every h ∈ N, ah(k) ≥ ah(i1) + · · ·+ ah(id).

Proof. We first show that (1 )⇔ (2 ). Let σ : N→ N be the function defined by

σ(z) =
∞∑
h=0

[ z
ph

]
.

Thus, we have pσ(z) ‖ z!. Therefore p - k!
i1!···id!(k−|i|)! if and only if

σ(k) = σ(i1) + · · ·+ σ(id) + σ(k − |i|),

i.e.,
∞∑
h=0

[ k
ph

]
=
∞∑
h=0

([ i1
ph

]
+ · · ·+

[ id
ph

]
+
[k − |i|

ph

])
.

Since i1 + · · ·+ id + (k − |i|) = k, the above identity is also equivalent to

∞∑
h=0

{ k
ph

}
=
∞∑
h=0

({ i1
ph

}
+ · · ·+

{ id
ph

}
+
{k − |i|

ph

})
. (3.1)

Furthermore, from the equation i1 + · · ·+ id+(k−|i|) = k we deduce that for every h ∈ N,{ k
ph

}
≤
{ i1
ph

}
+ · · ·+

{ id
ph

}
+
{k − |i|

ph

}
.
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Thus (3.1) is equivalent to{ k
ph

}
=
{ i1
ph

}
+ · · ·+

{ id
ph

}
+
{k − |i|

ph

}
(h ∈ N). (3.2)

For any z ∈ N \ {0}, since z =
∞∑
h=0

ah(z)ph, it follows that

{ z

pn

}
=

1

pn

n−1∑
l=0

al(z)pl (n ∈ N \ {0}).

Thus (3.2) is equivalent to

ah(k) = ah(i1) + · · ·+ ah(id) + ah(k − |i|) (h ∈ N). (3.3)

Hence we have (1 )⇔ (2 ). To show (2 )⇔ (3 ), we observe that (2 ) implies

ah(k) ≥ ah(i1) + · · ·+ ah(id) (h ∈ N). (3.4)

It remains to show that (3.4) implies (3.3). Since |i| =
∞∑
h=0

|ah(i)|ph, we have

k − |i| =
∞∑
h=0

(
ah(k)− |ah(i)|

)
ph.

It follows from (3.4) that ah(k−|i|) = ah(k)−|ah(i)| (h ∈ N). Therefore, (3 )⇒ (2 ). This

completes the proof of the lemma.

Recall that

L =

{
i ∈ Nd

∣∣∣∣ |i| = k, p -
k!

i1! · · · id!(k − |i|)!

}
.

As an application of the above lemma, we may represent ι = cardL in terms of k, d.

Lemma 61. Let

L1 =
{
i ∈ Nd

∣∣ |ah(i)| = ah(k) (h ∈ N)
}
,

and

L2 =
{
i ∈ R′0

∣∣ |γq(i)| = γq(k)
}
.

Then we have L = L1 = L2. Furthermore,

ι = cardL =
D∏
h=0

(
ah(k) + d− 1

ah(k)

)
.
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Proof. Since p - k, we have a0(k) > 0. Thus p - i for every i ∈ L1 and hence L1 ⊆ R′0.

Since |γq(i)| =
∑∞

h=0 |ah(i)|, we have L1 ⊆ L2. From Lemma 60(2), we have

L =
{
i ∈ Nd

∣∣ |i| = k, ah(k) = |ah(i)|+ ah(k − |i|) (h ∈ N)
}
⊆ L1. (3.5)

We therefore have L ⊆ L1 ⊆ L2. It remains to show that L2 ⊆ L. Let i ∈ L2. Then

|γq(i)| = γq(k) and i ∈ R′0. In view of the definition of R′0, there exists some l ∈ N such

that

|ah(i)| ≤ ah+l(k) (h ∈ N). (3.6)

Thus

γq(k) = |γq(i)| =
∞∑
h=0

|ah(i)| ≤
∞∑
h=0

ah+l(k) ≤ γq(k).

It follows that
∞∑
h=0

|ah(i)| =
∞∑
h=0

ah+l(k) = γq(k) =
∞∑
h=0

ah(k). (3.7)

Since a0(k) > 0, by (3.7), l = 0. Then by (3.6), |ah(i)| ≤ ah(k) (h ∈ N). From the first

equality in (3.7) we see that

|ah(i)| = ah(k) (h ∈ N), (3.8)

and hence

|i| =
∞∑
h=0

|ah(i)|ph =
∞∑
h=0

ah(k)ph = k.

On recalling (3.5), we have i ∈ L and it follows that L2 ⊆ L. Since

L ⊆ L1 ⊂ L2 ⊆ L,

we have L = L1 = L2. Since |ah(i)| = ah(i1) + · · · + ah(id) (h ∈ N), it follows from (3.8)

that

ι = cardL = cardL2 =
D∏
h=0

(
ah(k) + d− 1

ah(k)

)
.

Lemma 62. (1) For i ∈ Nd, if j ∈ Ri, then Rj ⊆ Ri and |ah(j)| ≤ |ah(i)| (h ∈ N).

(2) For j ∈ N with 0 ≤ j ≤ γq(k), if i ∈ R′′j , then Ri ⊆ R′′j .
(3) R0 = ∪i∈R′0Ri = ∪i∈R0Ri.
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Proof. (1) From Lemma 60 we deduce that

p -

(
i1

j1

)
· · ·

(
id

jd

)

if and only if for all 1 ≤ l ≤ d and h ≥ 0,

ah(jl) ≤ ah(il).

Thus, in view of the definition of Ri, if j ∈ Ri, then |ah(j)| ≤ |ah(i)| (h ∈ N). Furthermore,

for n ∈ Rj and j ∈ Ri, we have

ah(nl) ≤ ah(jl) ≤ ah(il),

and hence n ∈ Ri. In particular, i = j if and only if |γq(i)| = |γq(j)|.

(2) Note that i ∈ R′′j implies that p | i. Thus we have |a0(i)| = 0. Take j ∈ Ri. Using

a similar argument as in the previous part, we have that for all 1 ≤ l ≤ d and h ≥ 0,

ah(jl) ≤ ah(il).

Thus |a0(j)| = 0 and |γq(j)| = |γq(i)| ≤ γq(k)− j, which implies that j ∈ R′′j .

(3) Clearly, ∪i∈R′0Ri ⊆ ∪i∈R0Ri. Let i ∈ R0. For each l ∈ Ri and h ∈ N, we have

|ah(l)| ≤ |ah(i)| ≤ ah+l(k). (3.9)

HenceRi ⊆ R0. Thus ∪i∈R0Ri ⊆ R0. It now suffices to show thatR0 ⊆ ∪i∈R′0Ri. Suppose

that j ∈ R0. There are two cases: p - j and p | j. In the first case, j ∈ R′0 ⊆ ∪i∈R′0Ri. In

the second case, |a0(j)| = 0. Let i = (j1 + 1, j2, . . . , jd). Since there exists l ∈ N such that

al(k) ≥ 1 and |ah(j)| ≤ ah+l(k) for all h ∈ N \ {0}, we have

|a0(i)| = 1 ≤ al(k) and |ah(i)| = |ah(j)| ≤ ah+l(k).

It follows that j ∈ Ri and i ∈ R′0. Hence j ∈ ∪i∈R′0Ri. We therefore conclude that

R0 ⊆ ∪i∈R′0Ri.

Suppose that (f) is a system of polynomials in A[x1, .., xv] and w is an irreducible

element in A. For every v-tuple z ∈ Av, we write rk Jac(f ; z;w) for the rank of the

Jacobian matrix Jac(f ; z) over A/(w).
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Lemma 63. For v ∈ N \ {0}, let R be a subset of {i ∈ Nd|1 ≤ |i| ≤ k} of cardinality

less than v. For each i ∈ R, let fi be a polynomial over A in v variables of total degree

not exceeding k. For every irreducible w ∈ A, let Cw,R(f ; a) denote the set of solutions

x ∈
(
A/(w)

)v
of the system

fi(x) ≡ ai (modw) (i ∈ R)

for which rk Jac(f ; x;w) = cardR. Also, let Bw,R(f ; u) denote the set of solutions x ∈(
A/(wk)

)v
of the system

fi(x) ≡ ui (modw|i|) (i ∈ R)

for which rk Jac(f ; x;w) = cardR. Then we have

cardCw,R(f ; a)�v,k,d 〈w〉v−cardR and cardBw,R(f ; u)�v,k,d 〈w〉kv−KR , (3.10)

where KR =
∑

i∈R |i|.

Proof. (1) for each L ⊆ {1, 2, . . . , v} with cardL = cardR, write Cw,R,L(f ; a) for the set of

solutions counted by Cw,R(f ; a) and with det(∂fi/∂xl)i∈R,l∈L 6= 0. From [12, Lemma 4], it

follows that

cardCw,R,L(f ; a)�k,d 〈w〉v−cardR.

Thus,

cardCw,R(f ; a) ≤
∑

L⊆{1,2,...,v}
cardL=cardR

cardCw,R,L �v,k,d 〈w〉v−cardR.

(2) To show the second inequality in (3.10), we note that the number of choices for

a ∈ (A/(wk))cardR which satisfy

ai ≡ ui (modw|i|) (i ∈ R)

is 〈w〉
∑

i∈R(k−|i|). Fix any choice for a. By [12, Lemma 4], the number of solutions x modulo

wk of the system

fi(x) ≡ ai (modwk) (i ∈ R)

is bounded by Ov,k,d(〈wk〉v−cardR). Thus,

cardBw,R(f ; u)�v,k,d 〈w〉
∑

i∈R(k−|i|)〈wk〉v−cardR �v,k,d 〈w〉kv−KR ,

where KR =
∑

i∈R |i|. This completes the proof of this lemma.
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Lemma 64. Let w ∈ A be irreducible and v ∈ N with v ≥ r. We denote by Sw the set

of z = (z1, . . . , zv), for which zn ∈ (A/(w))d (1 ≤ n ≤ v) and rk Jac((xn)n∈R′0 ; z;w) < r.

Then we have

cardSw �v,k,d 〈w〉v(d−1)+r−1.

Proof. For each z = (z1, . . . , zv) with each zn ∈ (A/(w))d, if

rk Jac((xn)n∈R′0 ; z;w) < r,

then there exist ci ∈ A/(w) (i ∈ R′0), not all zero, such that for all 1 ≤ l ≤ d and 1 ≤ n ≤ v,∑
i∈R′0

ci∂xi/∂xl(zn) ≡ 0 (modw).

Define

R1 =
{
i ∈ R′0

∣∣ p - i1} and Rl =
{
i ∈ R′0

∣∣ p|i1, . . . , p|il−1, p - il
}

(2 ≤ l ≤ d).

Then R′0 is a disjoint union of R1, . . . , Rd. Also, define R′l = {i ∈ Rl | ci 6= 0} (1 ≤ l ≤ d).

Since the ci are not all zero, there must exist some l such that R′l is nonempty. Let

m = min{l |R′l 6= ∅}. For each i ∈ Rm, since p - im and ∂xi/∂xm = imxix−1
m , we have∑

i∈Rm

ci∂xi/∂xm =
∑
i∈Rm

ciimxix−1
m 6= 0

in A/(w)[x]. By the minimality of m, for any i ∈ Rl with l < m, ci = 0 and so∑
i∈Rl
l<m

ci∂xi/∂xm = 0

in A/(w)[x]. For l > m, i ∈ Rl implies that p|im and hence ∂xi/∂xm = 0. Thus∑
i∈R′0

ci∂xi/∂xm =
∑
i∈Rm

ci∂xi/∂xm 6= 0,

which yields that the zn are the roots of a nontrivial polynomial in A/(w)[x]. Thus, for a

fixed choice of the ci, the number of choices for (z1, . . . , zv) modulo w is Ov,k,d

(
〈w〉v(d−1)

)
.

Also, the number of the choices for the ci is Ok,d

(
〈w〉r−1

)
because one of them can be

normalized to 1. Hence the total number of possibilities for the zn is Ov,k,d

(
〈w〉v(d−1)+r−1

)
.
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Definition 65. We say that the system of polynomials (Ψ) is of type (j, P ) if it satisfies

the following three conditions.

(1) (Ψ) consists of polynomials Ψi ∈ A[x1, . . . , xd] (i ∈ R0).

(2) For all i ∈ R0, n ∈ R′j and m ∈ R′′j , there exist Ti,n and Ti,m ∈ A such that

Ψi(x) =
∑
n∈R′j

Ti,nxn +
∑

m∈R′′j

Ti,mxm.

Furthermore, for each n ∈ R′j, Ti,n = 0 either if i ∈ R′0 with |γq(i)| − |γq(n)| < j or if

i ∈ R′′0. In addition, there exist i ∈ R′0 and n ∈ R′j with |γq(i)| − |γq(n)| = j such that Ti,n

is nonzero.

(3) For every i ∈ R0 and l ∈ Rj = R′j ∪R′′j , 〈Ti,l〉 ≤ P̂ kj.

For simplicity, throughout this chapter, we write k′ for γq(k).

Remark 2 (1) Let (Ψ) be of type (j, P ). Then we have the coefficient matrix T =(
T1 T2

0 T3

)
such that

(
(Ψi)i∈R′0
(Ψj)j∈R′′0

)
=

(
T1 T2

0 T3

)(
(xn)n∈R′j
(xm)m∈R′′j

)
.

Furthermore, by setting R′j,u =
{
i ∈ R′j

∣∣ |γq(i)| = u
}

and Tu,v = (Ti,n)i∈R′0,u,n∈R′j,v , we

have

T1 =

(
(Tu,v)u≥j+1, v∈{k′−j,...,1}

(Tu,v)u≤j, v∈{k′−j,...,1}

)
.

From Condition (2) in Definition 65, we deduce that Tu,v = 0 whenever u − v < j. Note

that in T1 we have v ≥ 1 and so (Tu,v)u≤j = 0. Therefore, T1 is in the following row-echelon

form

T1 =



Tk′,k′−j ∗ · · · ∗
0 Tk′−1,k′−1−j · · · ∗
...

...
. . .

...

0 0 · · · Tj+1,1

0 0 · · · 0
...

...
...

...

0 0 · · · 0


.
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Again, by Condition (2) in Definition 65, we find that the Tu,u−j are not all zero.

(2) Clearly T1 6= 0. Let r′ = rkT1. Then 0 < r′ ≤ r. In view of Condition (3) in

Definition 65, the determinant of every r′ × r′ sub-matrix of T1 can be bounded by P̂ rk2
.

Furthermore, for each of these nonzero determinants, the number of its irreducible divisors

w of degree [θP ] + 1 is bounded in terms of k,d and θ. Furthermore, the total number of

irreducible divisors of all the nonzero determinants under consideration is bounded by a

constant c = c(k, d, θ).

(3) Whenever P is sufficiently large and ε is small enough, there exists a set consisting

of [1/θ − ε] irreducible polynomials of degree [θP ] + 1, none of which divides any nonzero

determinant as in the above remark. Throughout, let P(θ, ε) denote this set.

(4) For R ⊆ R′0, define

Tu,v,R = (Ti,n)i∈R∩R′0,u,n∈R′j,v (3.11)

and

TR =


Tk′,k′−j,R 0 · · · 0

0 Tk′−1,k′−1−j,R · · · 0
...

...
. . .

...

0 0 · · · Tj+1,1,R

 . (3.12)

Since the Tu,u−j are not all zero, there exists a subset R of
{
i ∈ R′0

∣∣ |γq(i)| ≥ j + 1
}

such

that the matrix TR has rank cardR. The construction of P(θ, ε) yields that TR(modw)

has rank cardR whenever w ∈ P(θ, ε). In what follows, it is convenient to write K(Ψ) for

max
R

∑
i∈R

|i| where R runs over all the subsets as above.

Lemma 66. Let a ∈ Ad. Define A = (ai,j)i,j∈R0 with

ai,j =


 i1

j1

 · · ·
 id

jd

 (−a)i−j, if j ∈ Ri,

0, otherwise.

Let Au,v = (ai,j)i∈R′0,u,j∈R′0,v . Then for every u ∈ {k′, . . . , 1}, Au,u is the identity matrix, de-

noted by Iu, and Au,v = 0 whenever u < v. That is, the sub-matrix A1 =
(
Au,v

)
u,v∈{k′,...,1}
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is of the following form 
Ik′ ∗ · · · ∗
0 Ik′−1 · · · ∗
...

...
. . .

...

0 0 · · · I1

 .

Proof. Suppose that i ∈ R′0 and j ∈ Ri. By the proof of Lemma 62(1), we deduce that

|γq(i)| ≥ |γq(j)| as well as |γq(i)| = |γq(j)| if and only if i = j. Moreover, since ai,i = 1, we

have Au,u = Iu and Au,v = 0 when u < v.

Remark 3 Let A be defined as in Lemma 66. For j ∈ R′′0 and l ∈ Rj, it follows from

Lemma 62(2) that l ∈ R′′0. Thus, aj,i = 0 whenever j ∈ R′′0 and i ∈ R′0. Suppose that (Ψ)

is of type (j, P ) and (Φ) = A(Ψ). More precisely, we have(
(Φi)i∈R′0
(Φj)j∈R′′0

)
=

(
A1 A2

0 A3

)(
(Ψi)i∈R′0
(Ψj)j∈R′′0

)
.

As in Remark 2, we have(
(Ψi)i∈R′0
(Ψj)j∈R′′0

)
=

(
T1 T2

0 T3

)(
(xn)n∈R′j
(xm)m∈R′′j

)
,

and hence, (
(Φi)i∈R′0
(Φj)j∈R′′0

)
=

(
A1T1 ∗

0 A3T3

)(
(xn)n∈R′j
(xm)m∈R′′j

)
.

Thus,

Jac

(
(Φi)i∈R′0
(Φj)j∈R′′0

)
=

(
A1T1 ∗

0 A3T3

)(
Jac(xn)n∈R′j
Jac(xm)m∈R′′j

)
.

Since p|m whenever m ∈ R′′j , we see that

Jac

(
(Φi)i∈R′0
(Φj)j∈R′′0

)
=

(
A1T1Jac(xn)n∈R′j

0

)
.
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From Remark 2(1) and Lemma 66, it follows that

A1T1 =



Ik′ ∗ · · · ∗ ∗ · · · ∗
0 Ik′−1 · · · ∗ ∗ · · · ∗
...

...
. . .

...
...

...

0 0 · · · Ij+1 ∗ ∗
0 0 · · · 0 Ij · · · ∗
...

...
...

...
. . .

...

0 0 · · · 0 0 · · · I1





Tk′,k′−j ∗ · · · ∗
0 Tk′−1,k′−1−j · · · ∗
...

...
. . .

...

0 0 · · · Tj+1,1

0 0 · · · 0
...

...
...

...

0 0 · · · 0


.

Thus A1T1 is of the form

Tk′,k′−j ∗ · · · ∗
0 Tk′−1,k′−1−j · · · ∗
...

...
. . .

...

0 0 · · · Tj+1,1

0 0 · · · 0
...

...
...

...

0 0 · · · 0


.

For every w ∈ P(θ, ε), whenever z satisfies that rk Jac((xn)n∈R′j ; z;w) = cardR′j, on taking

R as in Remark 2(4), we may observe that the rows of A1T1 indexed by i ∈ R form a

sub-matrix MR(modw) of rank cardR and hence

Jac((Φi)i∈R; z;w) = MRJac((xn)n∈R′j ; z;w) = cardR.

3.2 The fundamental lemma

Let Js,k,d(P ) denote the number of solutions of the system

xi
1 + · · ·+ xi

s = yi
1 + · · ·+ yi

s (i ∈ R′0), (3.13)

with xn,yn ∈ IdP . In this section, we aim to establish a fundamental lemma for building up

Vinogradov-type estimates for Js,k,d(P ). It is convenient to have available a lemma that

provides the basis of our strategy in our subsequent deliberations.
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Lemma 67. For every nonzero j ∈ R0, there exist n ∈ R′0 and v ∈ N such that j = pvn.

Proof. Suppose that j ∈ R0 \ {0}. Then there exists (n, v) ∈ Nd × N such that

j = pvn = pv
∑
h≥0

ah(n)ph =
∑
h≥0

ah(n)ph+v.

Hence there exists l ∈ N such that al(k) > 0 and

|ah(n)| = |ah+v(j)| ≤ ah+v+l(k) (h ∈ N).

Thus n ∈ R′0. This completes the proof of the lemma.

In order to estimate Js,k,d(P ) via the Linnik-Karatsuba method, we shall analyze an

alternative system of equations. For any nonzero j ∈ R0, Lemma 67 implies that j = pvn

for some n ∈ R′0 and v ∈ N, and so

s∑
m=1

(xj
m − yj

m) =

( s∑
m=1

(xn
m − yn

m)

)pv
= 0,

whenever (x,y) is a solution of the system (3.13). Moreover, since R′0 ⊆ R0, the system

(3.13) is equivalent to the following system

xi
1 + · · ·+ xi

s = yi
1 + · · ·+ yi

s (i ∈ R0). (3.14)

Therefore, Js,k,d(P ) is also the number of solutions of (3.14) with xn,yn ∈ IdP .

We are in a position to establish the fundamental lemma by analyzing the system

(3.14). For α ∈ Tr0 and P ∈ R with P > 0, define

f(α;P ) =
∑
i∈IdP

e

(∑
i∈R0

αix
i

)
.

Let Ks(P,Q; Ψ) denote the number of solutions of the system

r∑
n=1

(
Ψi(zn)−Ψi(z

′
n)
)

=
s∑

m=1

(xi
m − yi

m) (i ∈ R0)

with zn, z
′
n ∈ IdP and xm,ym ∈ IdQ. Furthermore, let Ls(P,Q, θ, w; Ψ) denote the number

of solutions of the system

r∑
n=1

(
Ψi(zn)−Ψi(z

′
n)
)

= w|i|
s∑

m=1

(ui
m − vi

m) (i ∈ R0)
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with z and z′ as above, um,vm ∈ IdQ−θP , and znl ≡ z′nl (modwk) (1 ≤ l ≤ d). Finally, we

write

Ls(P,Q, θ; Ψ) = max
w∈P(θ,ε)

Ls(P,Q, θ, w; Ψ).

Lemma 68. Suppose that θP ≤ Q ≤ P and that (Ψ) is a system of type (j, P ). Then for

s ≥ 2µ− 1, there is a system (Φ) as in Remark 3, such that

Ks(P,Q; Ψ)� P̂ 2rd−(r+1)(1−θ)+εJs(Q) + P̂ θ(2sd+krd−µ−K)Ls(P,Q, θ; Φ),

where µ = card{i ∈ R′0|Ψi is a constant in A} and K = K(Ψ) defined as in Remark 2(4).

Proof. Let S1 denote the number of solutions counted by Ks(P,Q; Ψ) such that for all

w ∈ P(θ, ε),

rk Jac
(
(xn)n∈R′0 ; z, z′;w

)
< r.

Let S2 denote the number of remaining solutions, i.e., the solutions for which

rk Jac
(
(xn)n∈R′0 ; z, z′;w

)
= r

for some w ∈ P(θ, ε). Hence, Ks(P,Q; Ψ) = S1 + S2. There are two cases.

Case 1: Suppose that S2 ≤ S1. For every w ∈ P(θ, ε) , on taking v = 2r, it follows

from Lemma 64 that the number of possibilities for (z, z′) ∈
(
A/(w)

)2rd
with

rk Jac
(
(xn)n∈R′0 ; z, z′;w

)
< r

is O
(
〈w〉2rd−r−1

)
. Let u =

∏
w∈P(θ,ε) w. By the Chinese Remainder Theorem, the to-

tal number of choices for (z, z′) ∈
(
A/(u)

)2rd
is O

(
〈u〉2rd−r−1)

)
. For each fixed choice

(z0, z
′
0)(modu), there are at most (P̂ /〈u〉)2rd choices for the (z, z′) ∈ I2rd

P with (z, z′) ≡
(z0, z

′
0)(modu), and hence the number of (z, z′) ∈ I2rd

P under consideration can be esti-

mated by O
(
P̂ 2rd〈u〉−r−1

)
. Since 〈u〉 >

(
P̂ θ
)[1/θ−ε]

> P̂ 1−θ−ε, we have

P̂ 2rd〈u〉−r−1 < P̂ 2rd−(r+1)(1−θ−ε).

Thus,

Ks(P,Q; Ψ) ≤ 2S1 � P̂ 2rd−(r+1)(1−θ)+εJs(Q).

Case 2: Suppose that S1 ≤ S2. It follows that

S2 ≤
∑

w∈P(θ,ε)

S3(w)
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where S3(w) denote the number of solutions with

rk Jac
(
(xn)n∈R′0 ; z, z′;w

)
= r.

For each η ∈ {±1}r, write

G(α;η) =
∑

z=(z1,...,zr)

zm∈IdP

e

(∑
i∈R0

αisi(z,η)

)
, (3.15)

where

si(z,η) = η1Ψi(z1) + · · ·+ ηrΨi(zr).

Let Gw(α;η) denote the same sum in (3.15), but restricted to those z for which rk Jac
(
(xn)n∈R′0 ; z;w

)
=

r. After rearranging variables, we deduce that

S3(w) ≤
∑

η∈{±1}r

∫
Tr0
G(α;η)Gw(−α;η)

∣∣f(α;Q)
∣∣2sdα.

Thus by the Cauchy-Schwarz inequality, we have

S3(w)�
(∫

Tr0

∣∣G(α;η)
∣∣2∣∣f(α;Q)

∣∣2sdα) 1
2
(∫

Tr0

∣∣Gw(α;η)
∣∣2∣∣f(α;Q)

∣∣2sdα) 1
2

,

for some η ∈ {±1}r. It follows by taking complex conjugates that
∣∣G(α;η)

∣∣ =
∣∣G(α; 1)

∣∣
and hence that the integral in the first factor above is equal to Ks(P,Q; Ψ). Let S4(w;η)

denote the number of solutions of the system

r∑
n=1

ηn

(
Ψi(zn)−Ψi(z

′
n)
)

=
s∑

m=1

(xi
m − yi

m) (i ∈ R0)

with rk Jac
(
(xn)n∈R′0 ; z;w

)
= r = rk Jac

(
(xn)n∈R′0 ; z′;w

)
. On noting that P(θ, ε)� 1, we

find that

Ks(P,Q; Ψ) ≤ 2S2 � max
w∈P(θ,ε)
η∈{±1}r

S4(w;η). (3.16)

For convenience, we write S4(w) for the maximum in (3.16). Now consider the system

s∑
m=1

(xi
m − yi

m) = 0
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for all i ∈ R′0 with with Ψi a constant in A. So we can classify the solutions counted by

S4(w) according to the common residue classes of xi
1 + · · ·+ xi

s and yi
1 + · · ·+ yi

s modulo

w. Then, we write Cw(a) for the set of solutions modulo w of the system of congruences

s∑
m=1

xi
m ≡ ai (modw)

for all i ∈ R′0 with Ψi a constant in A. From Lemma 63 , it follows that the number

of non-singular solutions counted by Cw(a) is O(〈w〉sd−µ). Moreover, since w ∈ P(θ, ε),

Lemma 64 yields that the number of singular solutions is O
(
〈w〉s(d−1)+µ−1

)
. Therefore, we

deduce that

cardCw(a)� 〈w〉sd−µ,

provided that s ≥ 2µ− 1.

Next, we introduce the exponential sum

fw(α; y) =
∑
x∈IdQ

x≡y(modw)

e

(∑
i∈R0

αix
i

)
.

Note that

S4(w;η) =

∫
Tr0

∣∣Gw(α;η)
∣∣2 ∑

a∈(A/(w))µ

∣∣Uw(α; a)
∣∣2dα,

where

Uw(α; a) =
∑

(u1,...,us)∈Cw(a)

fw(α; u1) · · · fw(α; us).

Then it follows from Cauchy’s inequality that∣∣Uw(α; a)
∣∣2 � cardCw(a)

∑
u∈Cw(a)

∣∣fw(α; u1) · · · fw(α; us)
∣∣2

� 〈w〉sd−µ
∑

u∈Cw(a)

s∑
i=1

∣∣fw(α; ui)
∣∣2s,

which yields that

S4(w;η)� 〈w〉2sd−µ max
a∈(A/(w))d

S5(a, w;η),

where

S5(a, w;η) =

∫
Tr0

∣∣Gw(α;η)
∣∣2∣∣fw(α; a)

∣∣2sdα.
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We may observe that S5(a, w;η) is the number of solutions of the system

r∑
n=1

ηn

(
Ψi(zn)−Ψi(z

′
n)
)

=
s∑

m=1

(
(wxm + a)i − (wym + a)i

)
(i ∈ R0)

with zn, z
′
n ∈ IdP , xm,ym ∈ Ad, 〈xml〉, 〈yml〉 ≤ Q̂/〈w〉, and

rk Jac((xn)n∈R′0 ; z;w) = r = rk Jac((xn)n∈R′0 ; z′;w).

By [15, Lemma 2.3], we see that S5(a, w;η) is also equal to the number of solutions of the

system
r∑

n=1

ηn

(
Φi(zn)− Φi(z

′
n)
)

= w|i|
s∑

m=1

(xi
m − yi

m) (i ∈ R0)

with z, z′,x,y as above and (Φ) as in Lemma 64. Now let R be chosen as in Remark 2(4)

such that
∑
i∈R

|i| = K(Ψ). Since

rk Jac
(
(xn)n∈R′0 ; z;w

)
= cardR′0 = r,

we have rk Jac
(
(xn)n∈R′j ; z;w

)
= cardR′j. Hence by Remark 3, we have rk Jac

(
(Φi)i∈R; z;w

)
=

cardR. Thus S5(a, w;η)� S6(a, w;η;R), where S6(a, w;η;R) counts the number of so-

lutions of the system

r∑
n=1

ηn

(
Φi(zn)− Φi(z

′
n)
)

= w|i|
s∑

m=1

(xi
m − yi

m) (i ∈ R0),

with xm,ym ∈ IdQ−θP , zn, z
′
n ∈ IdP , and

rk Jac
(
(Φi)i∈R; z;w

)
= rk Jac

(
(Φi)i∈R; z′;w

)
= cardR.

Write αw for the r0-dimensional vector whose component indexed by i is αiw
|i| and put

ti(z,η) = η1Φi(z1) + · · ·+ ηrΦi(zr).

Now let Bw(u; Φ,R;η) denote the set of solutions z modulo wk to the system of congru-

ences

ti(z,η) ≡ ui (modw|i|) (i ∈ R)

with rk Jac((Φi)i∈R; z;w) = cardR. For simplicity, in the following, we write B for

Bw(u; Φ,R;η). Let

G̃w(α; z;η) =
∑
x∈IdrP

x≡z (mod wk)

e

(∑
i∈R0

αiti(x,η)

)
.

85



Let

Iw(α;η;R) =
∑
u

∣∣∣∣∑
z∈B

G̃w(α; z;η)

∣∣∣∣2,
where the first summation is over u with ui ∈ A/(w|i|) (i ∈ R). Thus

S6(a, w;η;R) ≤
∫
Tr0

Iw(α;η;R)
∣∣f(αw;Q− θP )2s

∣∣dα.
By Cauchy’s inequality and Lemma 63, we deduce that

Iw(α;η;R) ≤
∑
u

cardB
∑
z∈B

∣∣G̃w(α; z;η)
∣∣2 � 〈w〉krd−K∑

u

∑
z∈B

∣∣G̃w(α; z;η)
∣∣2.

Thus,

S4(w;η)� 〈w〉2sd−µ max
a∈(A/(w))dr

S6(a, w;η;R)

� 〈w〉2sd+krd−µ−K
∑

z∈(A/(wk))d

∫
Tr0

∣∣G̃w(α; z;η)2f(αw;Q− θP )2s
∣∣dα.

On noting that
∣∣G̃w(α; z;η)

∣∣ =
∣∣G̃w(α; z; 1)

∣∣ and considering the underlying equations, the

lemma now follows.

3.3 Vinogradov-type mean value estimates

In this section, the purpose is to establish an estimate of the shape

Js,k,d(P )� P̂ 2sd−K0+∆s ,

where

K0 =
∑
i∈R′0

|i|.

Lemma 69. Define

V =
{
i ∈ Nd

∣∣ |a0(i)| ≥ 1 and |ah(i)| ≤ ah(k) (h ∈ N)
}

and ν = cardV. The following hold.
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(1) ν =

((
a0(k) + d

d

)
− 1

)
D∏
h=1

(
ah(k) + d

d

)
.

(2) If D = 0, then r = ν. If D > 0, then

ν ≤ r < ν(1 +
1 + d

d2
).

(3) Let KV =
∑

i∈V |i|. Then

KV ≤
ν(dk + 1)

d+ 1
.

(4) If k ≥ d+ 2, then

K0 < (k − 1)(r + 1).

Proof. (1) The result follows from the fact that i ∈ V if and only if

1 ≤ |a0(i)| ≤ a0(k) and 0 ≤ |ah(i)| ≤ ah(k)
(
h ∈ N \ {0}

)
.

(2) If D = 0, in view of the definition of R′0, we have

R′0 =
{
i ∈ Nd

∣∣ |a0(i)| ≥ 1 and |ah(i)| ≤ ah(k) (h ∈ N)
}

= V .

Thus r = ν. We now consider the case when D > 0. Since V ⊆ R′0, we have ν ≤ r.

Suppose that {l ∈ N | al(k) ≥ 1} = {l0, . . . , lm} where 0 = l0 < l1 < · · · < lm = D. For

every i with 1 ≤ i ≤ m, define
Vi =

{
i ∈ Nd

∣∣ |a0(i)| ≥ 1 and |ah(i)| ≤ ah+li(k) (h ∈ N)
}
,

νi = cardVi,

ki = p−li
(
ali(k)pli + · · ·+ aD(k)pD

)
.

Then R′0 = V ∪
(
∪mi=1 Vi

)
. Fix i with 1 ≤ i ≤ m. Since ah(ki) = ah+li(k) (h ∈ N), we have

Vi =
{
i ∈ Nd

∣∣ |a0(i)| ≥ 1 and |ah(i)| ≤ ah(ki) (h ∈ N)
}
.

By Lemma 69(1), we see that

νi =

((
a0(ki) + d

d

)
− 1

)
D−li∏
h=1

(
ah(ki) + d

d

)

=

((
ali(k) + d

d

)
− 1

)
D∏

h=1+li

(
ah(k) + d

d

)
.
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Note that (
n+ d

d

)
≥ nd+ 1 (n ∈ N).

Thus

νi
ν

=

((
ali(k) + d

d

)
− 1

)((
a0(k) + d

d

)
− 1

)−1 li∏
h=1

(
ah(k) + d

d

)−1

<

((
a0(k) + d

d

)
− 1

)−1 li−1∏
h=1

(
ah+li(k) + d

d

)−1

≤
(
a0(k)d

)−1
li−1∏
h=1

(
1 + ah(k)d

)−1

≤ d−1(1 + d)−i+1.

Therefore,

r ≤ ν + ν1 + · · ·+ νm < ν + νd−1

m∑
i=1

(1 + d)−i+1

< ν + ν · 1 + d

d2
= ν

(
1 +

1 + d

d2

)
.

(3) We consider two cases.

Case 1: Let h ∈ N \ {0}. Since for u ∈ N with 1 ≤ u ≤ ah(k),

card
{
i ∈ V

∣∣ |ah(i)| = u
}

= ν ·

(
ah(k) + d

d

)−1

·

(
u+ d− 1

d− 1

)
.

By [15, Lemma 2.1], we have

∑
i∈V

|ah(i)| =
ah(k)∑
u=1

u · card
{
i ∈ V

∣∣ |ah(i)| = u
}

= ν ·

(
ah(k) + d

d

)−1

·
ah(k)∑
u=1

u

(
u+ d− 1

d− 1

)

= ν ·

(
ah(k) + d

d

)−1

· dah(k)

d+ 1

(
ah(k) + d

d

)

=
νdah(k)

d+ 1
.
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Case 2: Let h = 0. Since for u ∈ N with 1 ≤ u ≤ a0(k),

card
{
i ∈ V

∣∣ |a0(i)| = u
}

= ν ·

((
a0(k) + d

d

)
− 1

)−1

·

(
u+ d− 1

d− 1

)
.

We have

∑
i∈V

|a0(i)| =
a0(k)∑
u=1

u · card
{
i ∈ V

∣∣ |a0(i)| = u
}

= ν ·

((
a0(k) + d

d

)
− 1

)−1

·
a0(k)∑
u=1

u

(
u+ d− 1

d− 1

)

= ν ·

((
a0(k) + d

d

)
− 1

)−1

· da0(k)

d+ 1

(
ah(k) + d

d

)

=
νda0(k)

d+ 1

(
1 +

((
a0(k) + d

d

)
− 1

)−1
)
.

Since

(
a0(k) + d

d

)
− 1 ≥ a0(k)d, it follows that

KV =
∑
i∈V

|i| =
∑
i∈V

D∑
h=0

|ah(i)|ph =
D∑
h=0

ph
∑
i∈V

|ah(i)|

=
νdk

d+ 1
+
νda0(k)

d+ 1

((
a0(k) + d

d

)
− 1

)−1

≤ ν(dk + 1)

d+ 1
.

(4) Suppose that k ≥ d+ 2. Since

(ν + 1)(k − 1)− ν(dk + 1)

d+ 1
= k
(
ν(d+ 1)−1 + 1

)
− ν(d+ 2)(d+ 1)−1 − 1 > 0,

we have

KV < (k − 1)(ν + 1).

Take i ∈ R′0 − V arbitrarily. Then there exists some l ∈ N \ {0} such that

|ah(i)| ≤ ah+l(k) (h ∈ N).
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Hence

pl|i| =
∑
h≥0

|ah(i)|ph+l ≤
∑
h≥0

ah+l(k)ph+l =
∑
h≥l

ah(k)ph ≤ k − 1,

where the last inequality holds because l > 0. Thus,

K0 −KV ≤ p−l(r − ν)(k − 1) < (r − ν)(k − 1).

Therefore, whenever k ≥ d+ 2,

K0 = (K0 −KV) +KV < (r − ν)(k − 1) + (k − 1)(ν + 1) = (k − 1)(r + 1).

This completes the proof of the lemma.

We now define

(Ψ0) =
{

Ψi,0 ∈ A[x]
∣∣ Ψi,0 = xi (i ∈ R0)

}
.

Also, we define

(Φ0) = A(Ψ0),

where A is an r0 × r0 invertible matrix over A defined as in Lemma 66. On recalling

Remark 2(4), we see that

K(Ψ0) =
∑
i∈R′0

|i| = K0.

Write λs = 2sd−K0 + ∆s. We say that λs and ∆s are admissible if Js,k,d(P )� P̂ λs .

Lemma 70. If ∆s is an admissible exponent satisfying ∆s < (k − 1)(r + 1), then the

exponent ∆s+r = ∆s(1− 1
k
) is also admissible.

Proof. Let θ = 1
k
. Since

µ = card{i ∈ R′0|Ψi,0 ∈ (Ψ0) and Ψi,0 = 0} = 0,

it follows from Lemma 68 that

Ks(P, P ; Ψ0)� P̂ 2rd−(r+1)(1−θ)+εJs(P ) + P̂ θ(2sd+krd−K0)Ls(P, P, θ; Φ0). (3.17)

For every w ∈ P(θ, ε), we have 〈w〉 > qθP and hence 〈wk〉 > qkθP = P̂ . Since z ≡
z′ (modwk) and z, z′ ∈ IrdP , we have z = z′. Then by the definitions of Ls(P,Q, θ, w; Φ0)

and Js(Q), we have

Ls(P, P, θ, w; Φ0) = P̂ rdJs((1− θ)P ).
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Thus

Ls(P, P, θ; Φ0) = max
w∈P(θ,ε)

Ls(P, P, θ, w; Φ0) = P̂ rdJs((1− θ)P ).

We deduce from (3.17) that

Ks(P, P ; Ψ0)� P̂ 2rd−(r+1)(1−θ)+εJs(P ) + P̂ θ(2sd+krd−K0)+rdJs((1− θ)P ). (3.18)

Suppose that λs = 2sd − K0 + ∆s is admissible, where ∆s < (k − 1)(r + 1). Then

Js(P )� P̂ λs and Js((1− θ)P )� P̂ (1−θ)λs . On recalling θ = 1
k
, from (3.18) we have

Js+r(P ) = Ks(P, P ; Ψ0)� P̂Λ1 + P̂Λ2 ,

where

Λ1 = 2(s+ r)d−K0 + ∆s − (r + 1)(1− θ) + ε

and

Λ2 = 2(s+ r)d−K0 + ∆s(1− θ).

Since ∆s < (k − 1)(r + 1), it follows that Λ1 ≤ Λ2. Thus Js+r(P ) � P̂Λ2 , i.e., ∆s+r =

∆s(1− 1
k
) is admissible.

Theorem 71. For k ≥ d+ 2 and s ∈ N with s ≥ r, we have

Js,k,d(P )� P̂ 2sd−K0+∆s ,

where ∆s = rke−
s−r
rk .

Proof. By Lemmas 69 and 70 , ∆∗s = K0(1 − 1
k
)
s−r
r is admissible. Since K0 < rk, ∆s =

rke−
s−r
rk is also admissible .

3.4 Weyl-type estimates

For α ∈ Tr and P ∈ R with P > 0, define

f̃(α) = f̃(α;P ) =
∑
x∈IdP

e

(∑
i∈R′0

αix
i

)
.
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Theorem 72. Fix j ∈ L. Let M,P ∈ R with 1 ≤ M ≤ P . Let a and g ∈ A with

gcd(a, g) = 1 and ord g �k M . For α ∈ Tr, suppose that 〈gαj−a〉 < M̂−k and that either

〈gαj − a〉 ≥ M̂P̂−k or 〈g〉 > M̂ . Then there exists a constant C(q, k, ε) > 0 such that for

every s ∈ N with s ≥ r, we have∣∣f̃(α)
∣∣ ≤ C(q, k, ε)〈g〉εP̂ d+ε

(
M̂−1(P̂ /M̂)∆s

(
1 + 〈g〉(P̂ /M̂)−k

))1/2s

.

Proof. Let

U =
{
u ∈ A

∣∣ gcd(u, g) = 1, u is monic and irreducible with ordu = [M ]
}
.

Since ord g �k M , there exists C1(k, ε) > 0 such that when M is sufficiently large,

cardU ≥ 2C1

(
M̂1−ε − 〈g〉ε

)
≥ C1M̂

1−ε. (3.19)

Note that for each y ∈ IdP , we have

f̃(α) =
∑
x∈IdP

e

(∑
i∈R′0

αi(x + y)i
)
.

For u = (u1, . . . , ud) and v = (v1, . . . , vd), write uv = (u1v1, . . . , udvd). Thus∣∣∣cardUd ·
(
P̂ d/M̂d

)
· f̃(α)

∣∣∣ =

∣∣∣∣∣ ∑
u∈Ud

∑
v∈IdP−M

∑
x∈IdP

e

(∑
i∈R′0

αi(x + uv)i
)∣∣∣∣∣

≤ P̂ d max
x∈IdP

∣∣H(α,x)
∣∣,

where

H(α,x) =
∑
u∈Ud

∑
v∈IdP−M

e

(∑
i∈R′0

αi(x + uv)i
)
.

We have ∣∣H(α,x)
∣∣2s =

∣∣∣∣∣ ∑
u∈Ud

∑
v∈IdP−M

e

(∑
i∈R′0

αi(x + uv)i
)∣∣∣∣∣

2s

.

Let j = (j1, . . . , jd). Without loss of generality, assume that p - j1. By Hölder’s inequality,

we obtain∣∣H(α,x)
∣∣2s ≤ (cardUd)2s−1

∑
u∈Ud

∣∣∣∣∣ ∑
v∈IdP−M

e

(∑
i∈R′0

αi

∑
l∈Ri\{0}

( i

l

)
xi−lulvl

)∣∣∣∣∣
2s

≤ (cardU)2sd−1 max
u2,...,ud∈U

∑
u1∈U

∣∣∣∣∣ ∑
v∈IdP−M

e

(∑
i∈R′0

αi

∑
l∈Ri\{0}

( i

l

)
xi−lulvl

)∣∣∣∣∣
2s

.
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Define

H̃(α) = H̃(α;u2, .., ud; x) =
∑
u1∈U

∣∣∣∣∣ ∑
v∈IdP−M

e

(∑
i∈R′0

αi

∑
l∈Ri\{0}

( i

l

)
xi−lulvl

)∣∣∣∣∣
2s

.

Thus we have ∣∣f̃(α)
∣∣2s ≤ (cardU

)−1(
P̂ /M̂

)−2sd · P̂ 2sd · H̃(α). (3.20)

Note that

H̃(α) =
∑
u1∈U

∣∣∣∣∣ ∑
v1,...,vs∈IdP−M

e

(∑
i∈R′0

αi

∑
l∈Ri\{0}

( i

l

)
xi−lul(vl

1 + · · ·+ vl
s)

)∣∣∣∣∣
2

.

For y =
{
yh ∈ I|h|(P−M)

∣∣ h ∈ R′0
}

, define

a(y) = card
{

(v1, . . . ,vs) ∈
(
IdP−M

)s ∣∣ vh
1 + · · ·+ vh

s = yh
(
h ∈ R′0

)}
.

For each l ∈ R0 \ {0}, by Lemma 67, there exists a unique pair (hl, nl) ∈ R′0 × N with

l = pnlhl. Then we have

vl
1 + · · ·+ vl

s = (vhl
1 + · · ·+ vhl

s )p
nl .

Thus for every y ∈
{
yh ∈ I|h|(P−M)

∣∣ h ∈ R′0
}

=
∏

h∈R′0
I|h|(P−M), we have

a(y) = card
{

(v1, . . . ,vs) ∈
(
IdP−M

)s ∣∣ vl
1 + · · ·+ vl

s = (yhl
)p
nl
(
l ∈ R0 \ {0}

)}
.

Therefore

H̃(α) =
∑
u1∈U

∣∣∣∣∣∑
y

a(y)e

( ∑
l∈R0\{0}

σl(u1)(yhl
)p
nl

)∣∣∣∣∣
2

,

where y runs over
∏

h∈R′0
I|h|(P−M) and

σl(u1) =
∑

i∈R′0, l∈Ri

αi

( i

l

)
xi−lul

(
l ∈ R0 \ {0}

)
.

By the argument of [12, Lemma 20], there exists a subsetW of U satisfying that for any

two distinct elements u,w in W , we have uj1 ≡ wj1 (modg) if and only if u ≡ w (modg)

and satisfying that

H̃(α) ≤ C2〈g〉ε
∑
u∈W

∣∣∣∣∣∑
y

a(y)e

( ∑
l∈R0\{0}

σl(u)(yhl
)p
nl

)∣∣∣∣∣
2

, (3.21)
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where C2 = C2(q, k, ε) > 0. Note that for each y ∈
∏
h∈R′0

I|h|(P−M), we may write y =

(z, yj) with z ∈
∏

h∈R′0\{j}
I|h|(P−M). Rewrite a(y) with a(z, yj). It follows from Cauchy’s

inequality that∣∣∣∣∣∑
y

a(y)e

( ∑
l∈R0\{0}

σl(u)(yhl
)p
nl

)∣∣∣∣∣
2

≤ (P̂ /M̂)K
′∑

z

∣∣∣∣∑
yj

a(z, yj)e
(
σj(u)yj

)∣∣∣∣2,
where K ′ =

∑
h∈R′0\{j}

|h| . Since |j| = k, i ∈ R0 and p -
( i

j

)
, we have i = j so that

σj(u) = αju
j1uj22 · · ·u

jd
d . Now suppose that for any two distinct elements u,w in W , we

have

〈‖ σj(u)− σj(w) ‖〉 ≥ q−k+1 ·min{〈g〉−1, (P̂ /M̂)−k}.

On applying the large sieve inequality for function field as given by [9, Theorem 2.4], we

deduce that ∑
u∈W

∣∣∣∣∑
yj

a(z, yj)e
(
σj(u)yj

)∣∣∣∣2 ≤ C3

(
〈g〉+ (P̂ /M̂)k

)∑
yj

∣∣a(z, yj)
∣∣2,

where C3 = C3(q, k) > 0. Recalling (3.19), (3.20), and (3.21), we find that∣∣f̃(α)
∣∣2s ≤ (cardU)−1

(
P̂ /M̂

)−2sd · P̂ 2sd · H̃(α)

≤ CM̂−1+ε(P̂ /M̂)−2sd · P̂ 2sd · 〈g〉ε(P̂ /M̂)K
′(〈g〉+ (P̂ /M̂)k

)∑
z,yj

∣∣a(z, yj)
∣∣2,

where C = C−1
1 C2C3 + 1. Note that

∑
z,yj

∣∣a(z, yj)
∣∣2 =

∑
y

∣∣a(y)
∣∣2 = Js(P −M), and that

K ′ = K0 − |j| = K0 − k. We obtain∣∣f̃(α)
∣∣2s ≤ C〈g〉εP̂ 2sdM̂−1+ε

(
〈g〉+ (P̂ /M̂)k

)
(P̂ /M̂)−2sd+K′Js(P −M)

≤ C〈g〉εP̂ 2sdM̂−1+ε
(
〈g〉+ (P̂ /M̂)k

)
(P̂ /M̂)−k+∆s

≤ C〈g〉εP̂ 2sdM̂−1+ε
(
〈g〉(P̂ /M̂)−k + 1

)
(P̂ /M̂)∆s .

Thus ∣∣f̃(α)
∣∣ ≤ C〈g〉εP̂ d+ε

(
M̂−1

(
〈g〉(P̂ /M̂)−k + 1

)
(P̂ /M̂)∆s

)1/2s

.

It therefore remains to show that for distinct u, w ∈ W , we have

〈‖ σj(u)− σj(w) ‖〉 ≥ q−k+1 ·min{〈g〉−1, (P̂ /M̂)−k}.
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Now write β = αj − a/g. For u,w ∈ W with u 6≡ w(modg), we have uj1 6≡ wj1(modg).

Since 〈gβ〉 < M̂−k and ordu = [M ], it follows that ord β < −kM − ord g and hence

ord
(
β(uj1 − wj1)uj22 · · ·u

jd
d

)
< −kM − ord g + kM = −ord g.

Also, since gcd(auj22 · · ·u
jd
d , g) = 1 and uj1 − wj1 6≡ 0(modg), we have

ord ‖ a(uj1 − wj1)uj22 · · ·u
jd
d /g ‖≥ −ord g.

Therefore

ord ‖ σj(u)− σj(w) ‖≥ −ord g.

We now divide into two cases.

(i) Suppose that 〈g〉 > M̂ . Since every element inW has order less than M , one can easily

see that the elements in W are distinct modulo g and so are spaced at least 〈g〉−1 apart.

(ii) Suppose that 〈g〉 ≤ M̂ . For two distinct elements u,w ∈ W , if u 6≡ w(modg), then

they are at least 〈g〉−1 apart. Instead, if u ≡ w(modg), then we have

ord ‖ αj(u
j1 − wj1)uj22 · · ·u

jd
d ‖= ord ‖ β(uj1 − wj1)uj22 · · ·u

jd
d ‖ .

Since 〈gαj − a〉 ≥ M̂P̂−k, we get 〈gβ〉 ≥ M̂P̂−k, i.e., 〈β〉 ≥ M̂P̂−k〈g〉−1. Thus,

ord
(
β(uj1 − wj1)uj22 · · ·u

jd
d

)
≥M − kP − ord g + ord (uj1 − wj1) + (|j| − j1)(M − 1).

Note that since p - j1, the argument of [12, Lemma 20] yields

ord (uj1 − wj1) ≥ ord g + (j1 − 1)(M − 1).

Therefore

ord ‖ σj(u)− σj(w) ‖= ord ‖ αj(u
j1 − wj1)uj22 · · ·u

jd
d ‖≥ −kP + kM − (k − 1).

This completes the proof of the theorem.

3.5 The minor arc contribution

Recall that for each j with 1 ≤ j ≤ s,

fj(α) = fj(α;P ) =
∑
x∈IdP

e

(∑
i∈L

αix
i

)
.

Consider s = l + 2m with l,m ∈ N and m ≥ r.
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Lemma 73. For each j with 1 ≤ j ≤ l, we have

sup
α∈m
|fj(α)| � P̂ d−σ+ε

where σ = max
n∈N

1− (2ι− 1)∆nr

4nrι
.

Proof. Take α ∈ m and M = 1
2ι
P . By [10, Lemma 3], for each i ∈ L, there exist ai ∈ A

and monic gi ∈ A satisfying

0 ≤ 〈ai〉 < 〈gi〉 ≤ M̂k, gcd(ai, gi) = 1, and 〈gicjαi − ai〉 < M̂−k.

Assume that for every i ∈ L,

〈gi〉 ≤ M̂ and 〈gicjαi − ai〉 < M̂P̂−k.

Let g = cjlcm{gi|i ∈ L} and bi = gai/cjgi. Then gcd(g,b) = 1. Moreover, for every i ∈ L,

〈g〉 ≤ 〈cj〉
∏
j∈L

〈gj〉 ≤ 〈c〉〈gi〉M̂ ι−1 ≤ 〈c〉P̂ 1/2,

and

〈gαi − bi〉 = 〈gαi −
aig

cjgi
〉 =

〈g〉
〈cjgi〉

〈cjgiαi − ai〉 ≤ M̂ ι−1M̂P̂−k = P̂
1
2
−k.

Thus α ∈M, contradicting the condition that α ∈ m. Hence for some i ∈ L, 〈gi〉 > M̂ or

〈gicjαi − ai〉 ≥ M̂P̂−k. Then by Theorem 72, we have

|fj(α)| � P̂ d+ε− 1−(2ι−1)∆nr
4nrι

for every n ∈ N with n ≥ 1.

Let Im,k,d(P ) denotes the number of solutions of the system

xi
1 + · · ·+ xi

m = yi
1 + · · ·+ yi

m (i ∈ L) (3.22)

with xn,yn ∈ IdP . For h ∈ Ar, write Jm,k,d(P,h) for the number of solutions of the system(
xi

1 + · · ·+ xi
m

)
−
(
yi

1 + · · ·+ yi
m

)
= hi (i ∈ R′0)

with xn,yn ∈ IdP . By Lemma 61, L ⊆ R′0. Hence we see that

Im,k,d(P ) =
∑
h

Jm,k,d(P,h)
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where the summation is over all the vectors h ∈
∏
i∈R′0

I|i|P with hi = 0 when i ∈ L. Thus,

Im,k,d(P ) ≤ P̂K0−ιkJm,k,d(P )�m,k,d P̂
2md−ιk+∆m .

Lemma 74. Whenever s > min{l + 2m | lσ > ∆m,m ≥ r, l,m ∈ N}, we have∫
m

s∏
j=1

fj(α)dα� P̂ sd−ιk−δ

for some δ > 0.

Proof. It suffices to show that the result holds when

s = l + 2m = min{l + 2m | lσ > ∆m,m ≥ r, l,m ∈ N}.

Note that ∫
m

s∏
j=1

fj(α)dα ≤
l∏

j=1

sup
α∈m

∣∣fj(α)
∣∣ ∫

Tι

l+2m∏
j=l+1

∣∣fj(α)
∣∣dα.

By Hölder’s inequality, we have∫
Tι

l+2m∏
j=l+1

∣∣fj(α)
∣∣dα ≤ l+2m∏

j=l+1

(∫
Tι

∣∣fj(α)
∣∣2mdα)1/2m

.

On considering the underlying diophantine equations, for each j with l + 1 ≤ j ≤ l + 2m,

we have ∫
Tι

∣∣fj(α)
∣∣2mdα = Im,k,d(P )� P̂ 2md−ιk+∆m .

Hence, it follows from Lemma 73 that∫
m

s∏
j=1

fj(α)dα�
(
P̂ d−σ+ε

)l
· P̂ 2md−ιk+∆m = P̂ sd−ιk−(lσ−∆m)+lε

which can be bounded above by P̂ sd−ιk−δ for some δ > 0 provided that lσ > ∆m.

Lemma 75. Let f(x) = Ce−Ex + 2x with C,E > 0. Then f(x) obtains its minimum at

x0 = E−1 log(CE/2) and f(x0) = 2E−1
(
1 + log(CE/2)

)
.
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Proof. Since f ′(x) = −CEe−Ex + 2 is an increasing function and f ′(x0) = 0, f(x0) =

min f(x). On noting that

f(x0) = Ce− log(CE/2) + 2E−1 log(CE/2) = 2E−1
(
1 + log(CE/2)

)
,

the lemma follows.

Theorem 76. Suppose that k ≥ d+ 2. Whenever

s ≥ 2rk
(

log(ιrk) + log
(

log
(
(2ι− 1)rk log k

)
+ 2k−1

)
+ 3 + log 4− log

(
1− (log k)−1

))
,

we have ∫
m

s∏
j=1

fj(α)dα� P̂ sd−ιk−δ,

where

δ =
1− (log k)−1

4ιrk(log((2ι− 1)rk log k) + 2k−1
) .

Proof. By Theorem 71, ∆s = rke−
s−r
rk is admissible. Let f0(x) = C0e

−E0(x−r) + 2x with

C0 = σ−1rk and E0 = 1
rk

, where σ is defined as in Lemma 73. By Lemma 75, min f0(x) =

f(x0) where x0 = r + E−1
0 log(C0E0/2). Write f1(x) = rke−

x−r
rk . Let

l0 = [σ−1f1(x0)] + 2 and m0 = [x0] + 1.

Then

l0 > σ−1f1(x0) + 1 > σ−1f1(m0) + 1 = σ−1∆m0 + 1.

By Lemma 74, whenever s ≥ l0 + 2m0, we have∫
m

s∏
j=1

fj(α)dα� P̂ sd−ιk−δ0 (3.23)

where δ0 = l0σ −∆m0 − l0ε > σ if we choose ε small enough. Note that

l0 + 2m0 ≤ σ−1f1(x0) + 2x0 + 4 = f0(x0) + 4

= 2E−1
0

(
1 + log(C0E0/2)

)
+ 2r + 4

< 2rk
(

log σ−1 + 3
)
.

(3.24)

On taking

n = [k
(

log((2ι−)rk log k)
)
] + 2,
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we deduce that

σ = max
n∈N

1− (2ι− 1)∆nr

4nrι
>

1− (log k)−1

4ιrk(log((2ι− 1)rk log k) + 2k−1
) ,

i.e.,

log σ−1 < log(ιrk) + log
(

log
(
(2ι− 1)rk log k

)
+ 2k−1

)
+ log 4− log

(
1− (log k)−1

)
.

On recalling (3.23) and (3.24), whenever

s ≥ 2rk
(

log(ιrk) + log
(

log
(
(2ι− 1)rk log k

)
+ 2k−1

)
+ 3 + log 4− log

(
1− (log k)−1

))
,

we have ∫
m

s∏
j=1

fj(α)dα� P̂ sd−ιk−δ,

where

δ =
1− (log k)−1

4ιrk(log((2ι− 1)rk log k) + 2k−1
) .

3.6 Refinements via repeated differencing process

In order to apply the repeat differencing process, we first describe the systems Ψ of

type (j, P ). To this end, we then need to define the difference operators. Suppose that f(x)

is a function from Ad to A. For h = (h1, . . . ,hj) ∈ (Aj)d, define ∆j(f(x); h) recursively

by

∆0(f(x)) = f(x),

∆1(f(x); h1) = f(x + h1)− f(x),

and

∆j(f(x); h1, . . . ,hj) = ∆1

(
∆j−1(f(x); h1, . . . ,hj−1); hj

)
.

Next for w1, . . . , wj ∈ A, we define Ψi,j (i ∈ R0) recursively by taking Ψi,0(x) = xi, defining

Φi,j−1

(
x; Ψi,j−1(x; h1, . . . ,hj−1;w1, . . . , wj−1)

)
(3.25)
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as in Remark 3, and setting

Ψi,j(x; h; w) = w
−|i|
j ∆1

(
Φi,j−1(x); hjw

k
j

)
. (3.26)

We now remark that each Φi,j−1 is a linear combination of (Ψj−1). More precisely,

there exists a d-tuple a ∈ Ad with 〈al〉 ≤ 〈wj〉k (1 ≤ l ≤ d) for which we may define a

matrix Cj over A as in Lemma 64 such that

(Φj−1) = Cj
(
Ψi,j−1(x; h1, . . . ,hj−1;w1, . . . , wj−1)

)
i∈R0

= Cj(Ψj−1).

On writing Wj for the diagonal matrix (wi,j)i,j∈R0 with wi,i = w
−|i|
j (i ∈ R0), we have

(Ψj) =
(
Ψi,j(x; h; w)

)
i∈R0

= WjCj∆1

(
Ψj−1(x); hjw

k
j

)
.

Thus,

(Ψj) = WjCj · · ·W1C1∆j

(
Ψ0(x); h1w

k
1 , . . . ,hjw

k
j

)
= WjCj · · ·W1C1∆j

(
(xi)i∈R0 ; h1w

k
1 , . . . ,hjw

k
j

)
.

(3.27)

For each j ∈ N with 1 ≤ j ≤ γq(k), we aim to show that (Ψj) is of type (j, P ) when we

take w1, . . . , wj as in the proof of the fundamental lemma. It suffices to show the following:

(i) There is a block matrix

T =

(
T1 T2

0 T3

)
over A with each entry bounded by P̂ kj such that(

(Ψi,j)i∈R′0
(Ψj,j)j∈R′′0

)
=

(
T1 T2

0 T3

)(
(xn)n∈R′j
(xm)m∈R′′j

)
. (3.28)

(ii) We define in Remark 2(1) that

R′j,u =
{
i ∈ R′j | |γq(i)| = u

}
and Tu,v =

(
Ti,n
)
i∈R′0,u,n∈R′j,v

.

For u ∈ {1, . . . , γq(k)} and v ∈ {1, . . . , γq(k)− j}, we have that

Tu,v = 0 whenever u− v < j, (3.29)

and

Tu,u−j 6= 0 for some u ≥ j. (3.30)
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By (3.27), we start with analyzing ∆j(x
i; h1, . . . ,hj). Let A and B be two disjoint

subsets of {1, 2, . . . , n}. Write B = {j1, . . . , jm}. For h1, . . . , hn ∈ A, define

Dm

(
f(z); h;A;B

)
= ∆m

(
f

(
z +

∑
i∈A

hi

)
;hj1 , . . . , hjm

)
, (3.31)

where ∆m is the one-dimensional version of the difference operator defined above.

Lemma 77. Let j ∈ N \ {0} and let hl = (hl1, . . . , hld) (1 ≤ l ≤ j). We have

∆j(x
i; h1, . . . ,hj) =

∑
A1t···tAd
={1,...,j}

d∏
n=1

D|An|
(
xinn ; h∗n;A1 t · · · t An−1;An

)
,

where h∗n = (h1n, . . . , hjn).

Proof. The proof is identical to the one of [15, Lemma 3.3].

For a positive integer i, we denote the set

ĩ =

{
l ∈ Z

∣∣ 0 ≤ l < i, p -

(
i

l

)}
.

By Lemma 60, l ∈ ĩ if and only if

l 6= i and 0 ≤ an(l) ≤ an(i) (n ∈ N). (3.32)

Furthermore, if l ∈ ĩ, then

γq(i− l) =
∑
n≥0

(
an(i)− an(l)

)
= γq(i)− γq(l). (3.33)

Proposition 78. Let j ∈ N \ {0} and h1, w1, . . . , hj, wj ∈ A. Then the following hold.

(1) If 1 ≤ j ≤ γq(i), then

∆j(x
i;h1, . . . , hj) =

∑
γq(i−lj)≥j

lj∈ĩ

flj(h1, . . . , hj)x
lj ,

where

flj(h1, . . . , hj) =
∑

l1∈ĩ,l2∈l̃1,...,lj∈l̃j−1

(
i

l1

)
· · ·

(
lj−1

lj

)
hi−l11 · · ·hlj−1−lj

j
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is a nonzero polynomial in Fq[h1, . . . , hj] and is divisible by h1 · · ·hj.
(2) If j > γq(i), then ∆j(x

i;h1, . . . , hj) is identically zero in A[x].

(3) Let A and B be two disjoint subsets of {1, . . . , j} and let B = {j1, . . . , jm}. Then

Dm

(
xi;h1w

k
1 , . . . , hjw

k
j ;A;B

)
=

∑
γq(v)≥m
v∈ĩ∪{i}

∑
γq(v−l)≥m

l∈ṽ

gv,l(h,w)xl,

where

gv,l(h,w) =

(
i

v

)(∑
u∈A

huw
k
u

)i−v
fl
(
hj1w

k
j1
, . . . , hjmw

k
jm

)
,

and gv,l(h,w) is divisible by hj1w
k
j1
· · ·hjmwkjm.

Proof. (1) We prove it by induction on j. When j = 1, we see that

∆1(xi;h1) = (x+ h1)i − xi =
∑

0≤l1<i

(
i

l1

)
xl =

∑
γq(i−l1)≥1

l1∈ĩ

fl1(h1)xl1 ,

where fl1(h1) =

(
i

l1

)
hi−l11 is nonzero since p -

(
i

l1

)
. Suppose that the result is true

for j. By the induction hypothesis, we have

∆j+1(xi;h1, . . . , hj+1) = ∆1(∆j(x
i;h1, . . . , hj);hj+1)

= ∆1

( ∑
γq(i−lj)≥j

lj∈ĩ

flj(h1, . . . , hj)x
lj ;hj+1

)
.

On applying the result in the case when j = 1, we see that

∆j+1(xi;h1, . . . , hj+1) =
∑

γq(i−lj)≥j
lj∈ĩ

flj(h1, . . . , hj)∆1(xlj ;hj+1)

=
∑

γq(i−lj)≥j
lj∈ĩ

flj(h1, . . . , hj)
∑
lj+1∈l̃j

γq(lj−lj+1)≥1

(
lj

lj+1

)
h

(lj−lj+1)
j+1 xlj+1

=
∑

γq(i−lj)≥j
γq(lj−lj+1)≥1

lj∈ĩ,lj+1∈l̃j

(
lj

lj+1

)
flj(h1, . . . , hj)h

(lj−lj+1)
j+1 xlj+1 .
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It follows from (3.32) and (3.33) that

∆j+1(xi;h1, . . . , hj+1) =
∑

γq(i−lj+1)≥j+1

lj+1∈ĩ

flj+1
(h1, . . . , hj+1)xlj+1 .

Note that if l1 ∈ ĩ, l2 ∈ l̃1, . . . , lj ∈ l̃j−1, then

i− l1, l1 − l2, . . . , lj−1 − lj > 0.

In view of the definition of the function flj(h1, . . . , hj), we see that h1 · · ·hj divides

flj(h1, . . . , hj).

(2) Note that γq(i− l) ≥ γq(i) with l ∈ ĩ if and only if l = 0. Thus, when j = γq(i),

∆j(x
i;h1, . . . , hj) = f0(h1, . . . , hj).

Hence, when j > γq(i), ∆j(x
i;h1, . . . , hj) = 0.

(3) By (3.31) and the linearity of the difference operator ∆, we have

Dm(xi;h1w
k
1 , . . . , hjw

k
j ;A;B) = ∆m

((
x+

∑
u∈A

huw
k
u

)i
;hj1w

k
j1
, . . . , hjmw

k
jm

)

=
∑

γq(v)≥m
v∈ĩ∪{i}

(
i

v

)(∑
u∈A

huw
k
u

)i−v
∆m

(
xv;hj1w

k
j1
, . . . , hjmw

k
jm

)
.

From Proposition 78(1), we find that

∆m(xv;hj1w
k
j1
, . . . , hjmw

k
jm) =

∑
γq(v−l)≥m

l∈ṽ

fl
(
hj1w

k
j1
, . . . , hjmw

k
jm

)
xl.

Thus

Dm(xi;h1w
k
1 , . . . , hjw

k
j ;A;B) =

∑
γq(v)≥m
v∈ĩ∪{i}

∑
γq(v−l)≥m

l∈ṽ

gv,l(h,w)xl,

where

gv,l(h,w) =

(
i

v

)(∑
u∈A

huw
k
u

)i−v
fl
(
hj1w

k
j1
, . . . , hjmw

k
jm

)
.

Again by Proposition 78(1), gv,l(h,w) is divisible by hj1w
k
j1
· · ·hjmwkjm . This completes the

proof of the proposition.
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Corollary 79. Let j ∈ Z with 1 ≤ j ≤ k′, hl = (hl1, . . . , hld) ∈ Ad and wl ∈ A (1 ≤ l ≤ j).

Then the following hold.

(1) For every i ∈ R0, we have

∆j(x
i; h1w

k
1 , . . . ,hjw

k
j ) =

∑
l∈Rj

bi,lx
l, (3.34)

where each bi,l is a polynomial in (h1, . . . ,hj;w1, . . . , wj) and is divided by wk1 · · ·wkj .

(2) For i ∈ R0 and l ∈ Rj with |γq(i)| − |γq(l)| < j, we have bi,l = 0.

(3) For j ∈ R′′0 and n ∈ R′j, we have bj,n = 0.

(4) For every u ∈ N with j+1 ≤ u ≤ k′, there exist i ∈ R′0 with |γq(i)| = u and n ∈ R′j∩Ri

with |γq(n)| = u− j such that bi,n is a nonzero polynomial in (h1, . . . ,hj;w1, . . . , wj).

Proof. (1) In view of Lemma 77, if ∆j

(
xi; h1w

k
1 , . . . ,hjw

k
j

)
contains xl = xl11 · · ·x

ld
d ex-

plicitly, then there exists a disjoint union A1 t · · · t Ad = {1, . . . , j} such that each

xlnn (1 ≤ n ≤ d) appears in

D|An|
(
xinn ; h∗n;A1 t · · · t An−1;An

)
.

From Proposition 78(3) we deduce that for each n ∈ N with 1 ≤ n ≤ d, there exists

vn ∈ ĩn ∪ {in} such that

ln ∈ ṽn and |γq(vn)| − |γq(ln)| ≥ |An|.

On writing v = (v1, . . . , vd), we have

l ∈ Rv and |γq(v)| − |γq(l)| ≥
d∑

n=1

|An| = j.

Since vn ∈ ĩn ∪ {in} (1 ≤ n ≤ d), we have v ∈ Ri. It follows from Lemma 62(2) that

l ∈ Rv ⊆ Ri and |γq(i)| − |γq(l)| ≥ |γq(v)| − |γq(l)| ≥ j. (3.35)

Since |γq(i)| ≤ γq(k) = k′ and

Rj =
{
i ∈ R0

∣∣ |0 ≤ |γq(i)| ≤ k′ − j
}
,

by Lemma 62(4), we have l ∈ Rj. Thus

∆j

(
xi; h1w

k
1 , . . . ,hjw

k
j

)
=

∑
l∈Ri∩Rj

bi,lx
l, (3.36)
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where bi,l = bi,l(h,w) ∈ A. Next we will prove each bi,l is divisible by wk1 · · ·wkj . Fix a

disjoint union A1t· · ·tAd = {1, . . . , j}. For n ∈ N with 1 ≤ n ≤ d, by Proposition 78(3),

whenever An 6= ∅, we see that
∏

u∈An w
k
u divides the coefficients of the polynomial

D|An|
(
xinn ; (hw)∗n;A1 t · · · t An−1;An

)
,

where (hw)∗n =
(
h1nw

k
1 , · · · , hjnwkj

)
. It follows from Lemma 77 and Proposition 78 that

wk1 · · ·wkj divides the coefficients of ∆j

(
xi; h1w

k
1 , . . . ,hjw

k
j

)
.

(2) By (3.35), every nonzero bi,l in (3.34) satisfies |γq(i)| − |γq(l)| ≥ j.

(3) Suppose that j ∈ R′′0. It follows from Lemma 62(3) that if l ∈ Rj then l ∈ R′′0.

Thus Rj ∩Rj ⊆ R′′j . By (3.36), we obtain bj,n = 0 whenever n ∈ R′j.

(4) Fix u ∈ N with j + 1 ≤ u ≤ k′. Then there exists i = (i1, . . . , id) ∈ R′0 such that

|γq(i)| = u, γq(i1) ≥ j + 1 and a0(i1) ≥ 1.

Therefore, there exists n1 ∈ ĩ1 with p - n1 and γq(n1) = γq(i1)−j. Write n = (n1, i2, . . . , id).

Hence |γq(n)| = u− j and n ∈ Ri ∩R′j. By Proposition 78(1), ∆j(x
i1 ;h1, . . . , hj) contains

f(h1, . . . , hj)x
n1 , where

f(h1, . . . , hj) =
∑

l1∈l̃0,l2∈l̃1,...,lj∈l̃j−1

l0=i1,lj=n1

(
l0

l1

)
· · ·

(
lj−1

lj

)
hl0−l11 · · ·hlj−1−lj

j

is a nonzero polynomial in Fq[h1, . . . , hj]. On taking

A1 = {1, . . . , j}, A2 = · · · = Ad = ∅,

we have

∆j(x
i1 ;h1nw

k
1 , . . . , hjnw

k
j )x

i2
2 · · ·x

id
d

=

j∏
n=1

D|An|
(
xinn ; (hw)∗n;A1 t · · · t An−1;An

)
.

(3.37)

Thus the coefficient of xn1
1 x

i2
2 · · ·x

id
d appearing in (3.37) is f(h11w

k
1 , . . . , hj1w

k
j ). For a

disjoint union A1 t · · · tAd = {1, . . . , j} with An 6= ∅ for some 2 ≤ n ≤ d, by Proposition

78(2), D|An|
(
xinn ; (hw)∗l ;A1 t · · · t An−1;An

)
does not contain xinn explicitly. Therefore,

xn1
1 x

i2
2 · · ·x

id
d only appears in (3.37) explicitly. Thus in (3.34) bi,n = f(h11w

k
1 , . . . , hj1w

k
j ) is

a nonzero polynomial in (h,w).
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Remark 4 (1) For every 1 ≤ j ≤ k′, by Corollary 79(1) and 79(3), we have

∆j

((
(xi)i∈R′0
(xj)j∈R′′0

)
; h1w

k
1 , . . . ,hjw

k
j

)
=

(
B1 B2

0 B3

)(
(xn)n∈R′j
(xm)m∈R′′j

)
, (3.38)

where B1 =
(
bi,n
)
i∈R′0,n∈R′j

, B2 =
(
bi,m
)
i∈R′0,m∈R′′j

, and B3 =
(
bj,m

)
j∈R′′0 ,m∈R′′j

with all

entries defined as (3.34). By (3.27) and (3.38), we have

(
Ψj

)
=

(
(Ψi,j)i∈R′0
(Ψj,j)j∈R′′0

)
= WjCj · · ·W1C1

(
B1 B2

0 B3

)(
(xn)n∈R′j
(xm)m∈R′′j

)
. (3.39)

(2) Let

T = WjCj · · ·W1C1

(
B1 B2

0 B3

)
.

To prove that (Ψj) is of type (j, P ), we shall show that T satisfies (3.28), (3.29) and (3.30).

By Remark 3 and Lemma 66, for every l ∈ N with 1 ≤ l ≤ j, we may write

Cl =

(
Cl1 Cl2

0 Cl3

)
, (3.40)

where

Cl1 =


Ik′ ∗ · · · ∗
0 Ik′−1 · · · ∗
...

...
. . .

...

0 0 · · · I1

 . (3.41)

Recall that for each l with 1 ≤ l ≤ j,

Wl =
(
w

(l)
i,j

)
i,j∈R0

is the diagonal matrix with w
(l)
i,i = w

−|i|
l . For u ∈ N with 1 ≤ u ≤ k′, write

Wl,1,u =
(
w

(l)
i,j

)
i,j∈R′0,u

.

Then we can represent Wl by

Wl =

(
Wl1 0

0 Wl3

)
, (3.42)
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where

Wl1 =


Wl,1,k′ 0 · · · 0

0 Wl,1,k′−1 · · · 0
...

...
. . .

...

0 0 · · · Wl,1,1

 . (3.43)

By (3.40) and (3.42), we find that

T = WjCj · · ·W1C1

(
B1 B2

0 B3

)

=

(
Wj1Cj1 · · ·W11C11B1 ∗

0 Wj3Cj3 · · ·W13C13B3

)
.

For i ∈ {1, 3}, write

Ti = Wj1Cji · · ·W1iC1iBi. (3.44)

From (3.39) and Corollary 79(1), we see that

T =

(
T1 T2

0 T3

)
having entries over A and satisfies (3.28).

(3) To show that T also satisfies (3.29) and (3.30), we start by considering B1 in (3.38).

Recall that R′j,v = {n ∈ R′j| |γq(n)| = v} (0 ≤ j ≤ k′). Then by setting

Bu,v = (bi,n)i∈R′0,u,n∈R′j,v ,

we have

B1 =

(
(Bu,v)u≥j+1

(Bu,v)u≤j

)
.

By Corollary 79(2), we have Bu,v = 0 whenever u− v < j. Thus

B1 =



Bk′,k′−j ∗ · · · ∗
0 Bk′−1,k′−1−j · · · ∗
...

...
. . .

...

0 0 · · · Bj+1,1

0 0 · · · 0
...

...
...

0 0 · · · 0


.
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By (3.41), (3.43) and (3.44), we have

T1 =



Tk′,k′−j ∗ · · · ∗
0 Tk′−1,k′−1−j · · · ∗
...

...
. . .

...

0 0 · · · Tj+1,1

0 0 · · · 0
...

...
...

0 0 · · · 0


,

where

Tu,u−j =

j∏
l=1

Wl,1,uBu,u−j
(
u ∈ {k′, . . . , j + 1}

)
.

Moreover, the zero blocks imply that Tu,v = 0 whenever u − v < j. This means that T

satisfies (3.29).

(4) For every j + 1 ≤ u ≤ k′, write

Tu,u−j = (Ti,n)i∈R′0,u,n∈R′j,u−j .

By Remark 4(2), we have

Ti,n = (wj · · ·w1)−|i|bi,n.

By Corollary 79(4), Bu,u−j 6= 0. Thus, Tu,u−j 6= 0 for every u ∈ N with j + 1 ≤ u ≤ k′.

Thus T satisfies (3.30).

(5) It is worth a reminder that to prove that (Ψj) is of type (j, P ), since T has satisfied

(3.28), (3.29) and (3.30), it remains to show that every entry of T can be bounded by P̂ kj.

Corollary 80. Let h ∈ IdP . Then the coefficients of ∆1(xi; h) can be bounded above by

P̂ |i|.

Proof. By Lemma 77, we have

∆1(xi; h) =
∑
j∈Nd
|j|=1

d∏
l=1

∆jl(x
il ;hl).
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Every j ∈ Nd with |j| = 1 only has one jl = 1 and has the other coordinates equal to 0. It

follows from Proposition 78(1) that

∆1(xil ;hl) =
∑
n∈ĩl

(
il

n

)
h

(il−n)
l xn.

Thus every nonzero coefficient of ∆1(xi; h) must be of form

(
il

n

)
hil−nl , which is bounded

above by P̂ |i|.

Lemma 81. Let j ∈ N with 0 ≤ j ≤ k′. The following hold.

(1) The polynomials Ψi,j(i ∈ R0) form a system of type (j, P ).

(2) Suppose that j > 0. For hl = (hl1, . . . , hld) ∈ Ad and wl ∈ A (1 ≤ l ≤ j), suppose

that hlw
k
l ∈ IdP . Then for j ∈ N with 1 ≤ j < aD(k), we have K(Ψj) ≥ KR where

KR =
∑

i∈R |i| and

R =


{
i ∈ R′0

∣∣ aD(i1) ≥ j, |a0(i1)| ≥ 1
}
, if D > 0,{

i ∈ R′0
∣∣ |i| ≥ j + 1, i1 ≥ j

}
, if D = 0.

Proof. (1) When j = 0, Ψi,0(x) = xi, which is of type (0, P ). For j > 0, as we mention in

Remark 4(5), it suffices to show that each entry of

T = WjCj · · ·W1C1

(
B1 B2

0 B3

)

can be bounded above by P̂ kj. We prove it by induction on j. Assume that the result is

true for j ≥ 0, i.e.,

Ψi,j(x) =
∑
l∈Rj

Ti,lx
l

with Ti,l ≤ P̂ kj
(
i ∈ R0, l ∈ Rj

)
. Moreover, (Φ)j = Cj+1(Ψ)j where Cj+1 = (ai,j)i,j∈R0 is

defined as in Lemma 66 by

ai,j =


 i1

j1

 · · ·
 id

jd

 (−a)i−j, if j ∈ Ri,

0, otherwise.
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Hence

Φi,j(x) =
∑
j∈Ri

ai,jΨj,j(x) (i ∈ R0).

By (3.26) and the linearity of ∆1, we have

Ψi,j+1(x; h; w) = w
−|i|
j+1∆1(Φi,j(x); hj+1w

k
j+1)

= w
−|i|
j+1

∑
j∈Ri

ai,j
∑
l∈Rj

Ti,l∆1(xn; hj+1w
k
j+1).

Note that we can pick a = (a1, . . . , ad) ∈ Ad with 〈al〉 < 〈wj+1〉 (1 ≤ l ≤ d). Thus

〈ai,j〉 < 〈wj+1〉|i|. Also, since 〈Ti,l〉 ≤ P̂ kj, it follows from Corollary 80 that the coefficients

of Ψi,j+1 can be bounded by P̂ k(j+1). Thus, by induction, the system Ψj is of type (j, P ).

(2) Suppose 0 ≤ j < aD(k). It suffices to show that the matrix TR defined by (3.12)

has rank cardR. Write B1 =
(
bi,n
)
i∈R′0,n∈R′j

. On recalling Remark 2(4) and 4(4), we have

TR =


Tk′,k′−j,R 0 · · · 0

0 Tk′−1,k′−1−j,R · · · 0
...

...
. . .

...

0 0 · · · Tj+1,1,R

 , (3.45)

where for u ∈ N with j + 1 ≤ u ≤ k′,

Tu,u−j,R =
(

(wj · · ·w1)−|i|bi,n

)
i∈R∩R′0,u,n∈R′j,u−j

.

Define

Cu =
{(
i1 − jpD, i2, . . . , id

) ∣∣ (i1, i2, . . . , id) ∈ R ∩R′0,u}.
By the definition of R, we have R ⊆ R′j. Also, let Mu denote the sub-matrix of Tu,u−j,R

consisting of the entries (wj · · ·w1)−|i|bi,n indexed by i ∈ R ∩ R′0,u and n ∈ Cu. Assume

that every Mu has rank card(R ∩ R′0,u). Thus, Tu,u−j,R has rank card(R ∩ R′0,u). Since

R ⊆ ∪k′u=j+1R′0,u, we obtain

k′∑
u=j+1

card(R∩R′0,u) = cardR.

Hence TR has rank cardR and K(Ψj) ≥ KR.
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It remains to show that every Mu has rank card(R∩R′0,u). Now we write i � j if and

only if there exists l ∈ N with 1 ≤ l < d such that i1 = j1, . . . , il = jl and il+1 > jl+1.

For every u ∈ N with j + 1 ≤ u ≤ k′, we can place the entries of Mu in lexicographic

order ”�”. More precisely, bi′,n is above bi,n if i′ � i. Similarly, bi,n′ is at the left of

bi,n if n′ � n. We will show that Mu is a lower triangular matrix with nonzero diagonal

entries. For i ∈ R∩R′0,u, let ij = (i1− jpD, i2, . . . , id) ∈ Cu. Thus the bi,ij are the diagonal

entries, which are not zero by the argument of Corollary 79(4) with n1 = i1 − jpD. Take

i′, i ∈ R ∩R′0,u with i′ � i. Then i′j � ij and we have the following array of entries of Mu

(i′, i′j) · · · (i′, ij)
...

. . .
...

(i, i′j) · · · (i, ij).

Assume that the (i′, ij)-th entry is nonzero, i.e., (wj · · ·w1)−|i|bi′,ij 6= 0. Then ij ∈ Ri′ and

for all 2 ≤ l ≤ d, h ≥ 0 and 0 ≤ n < D, we have

ah(il) ≤ ah(i
′
l), an(i1) ≤ an(i′1), and aD(i1)− j ≤ aD(i′1). (3.46)

Since |γq(ij)| = |γq(i)| − j = u− j, we have

j = |γq(i′)| − |γq(ij)| =
d∑
l=2

(
γq(i

′
l)− γq(il)

)
+

D∑
h=0

(
ah(i

′
1)− ah(i1)

)
+ j. (3.47)

Thus
d∑
l=2

(
γq(i

′
l)− γq(il)

)
+

D∑
h=0

(
ah(i

′
1)− ah(i1)

)
= 0.

Since i′1 ≥ i1, we have aD(i′1) ≥ aD(i1). On recalling (3.46), we conclude that for all

1 ≤ l ≤ d and h ≥ 0,

ah(il) = ah(i
′
l).

Thus, i′ = i, which contradicts i′ � i. Therefore, bi′,ij must be zero. This completes the

proof of the lemma.

Recall that

f(α;P ) =
∑
i∈IdP

e

(∑
i∈R0

αix
i

)
,
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and hat Js(P ) = Js,k,d(P ) is defined to be the number of solutions of the system

xi
1 + · · ·+ xi

s = yi
1 + · · ·+ yi

s (i ∈ R0)

with xm, ym ∈ IdP . Also, recall that we denote by Ks(P,Q; Ψ) the number of solutions of

the system
r∑

n=1

(
Ψi(zn)−Ψi(z

′
n)
)

=
s∑

m=1

(xi
m − yi

m) (i ∈ R0)

with zn, z
′
n ∈ IdP and xm,ym ∈ IdQ. Furthermore, we denote by Ls(P,Q, θ, w; Ψ) the

number of solutions of the system

r∑
n=1

(
Ψi(zn)−Ψi(z

′
n)
)

= w|i|
s∑

m=1

(ui
m − vi

m) (i ∈ R0)

with z and z′ as above, um,vm ∈ IdQ−θP , and znl ≡ z′nl (modwk) (1 ≤ l ≤ d). We now set

up the apparatus necessary to achieve the efficient differencing process.

Lemma 82. Let (Φj) be the system defined as in (3.25). Suppose that θP ≤ Q ≤ P .

Write H = (1 − kθ)P . Then there exist h ∈ Ad with 1 ≤ 〈hl〉 ≤ Ĥ and w ∈ P(θ, ε) such

that

Ls(P,Q, θ; Φj)� P̂ (2d−1−(d−1)kθ)rJs(Q− θP ) + Ĥdr
(
Ks(P,Q− θP ; Ψj+1)Js(Q− θP )

)1/2

,

where (Ψj+1) is given by (3.26), i.e.,

Ψi,j+1(z) = w−|i|
(

Φi,j(z + hwk)− Φi,j(z)
)

(i ∈ R0).

Proof. Fix w ∈ P(θ, ε). For each i ∈ R0, the coefficients of Ψi,j+1(z) lie in A[h]. Consider

the roots h of the nonzero coefficients for all Ψi,j+1(z), and let T denote the set of roots

which also lie in {
h ∈ Ad

∣∣ 〈hl〉 ≤ Ĥ (1 ≤ l ≤ d)
}
.

Then we have Ls(P,Q, θ, w; Φj) = U0 + U1, where U0 denotes the number of solutions for

which zn = z′n + hwk for some n ∈ N with 1 ≤ n ≤ r and h ∈ T , and where U1 is the

number of solutions with zn 6= z′n + hwk for all n (1 ≤ n ≤ r) and h ∈ T .

First, suppose that U0 ≥ U1. Since the number of nonzero coefficients can be bounded

by a constant in terms of k and d, we have

cardT = O
(
Ĥd−1

)
= O

(
P̂ (1−kθ)(d−1)

)
.
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It follows that the number of pairs (zn, z
′
n) with zn = z′n + hwk for some h ∈ T is

O
(
P̂ dP̂ (1−kθ)(d−1)

)
. Write αw = (αiw

|i|)i∈R0 . In view of the congruence conditions on z

and z′, we have

U0 � P̂ dP̂ (1−kθ)(d−1)

∫
Tr0

Vw(α)r−1
∣∣∣f(αw;Q− θP )2s

∣∣∣dα,
where

Vw(α) =
∑

z∈(A/(wk))d

∣∣∣∣∣ ∑
x∈IdP

x≡z(modwk)

e

(∑
i∈R0

αiΦi(x,η)

)∣∣∣∣∣
2

.

It now follows from Hölder’s inequality that U0 is bounded above by

P̂ dP̂ (1−kθ)(d−1)

(∫
Tr0

gw(α)r
∣∣∣f(αw;Q− θP )2s

∣∣∣dα)1−1/r(∫
Tr0

∣∣∣f(αw;Q− θP )2s
∣∣∣dα)1/r

.

On considering the underlying equations, we see that

Ls(P,Q, θ, w; Φj)� P̂ (2d−1−(d−1)kθ)rJs(Q− θP ). (3.48)

Next suppose that U1 ≥ U0 instead. Write

z′nl = znl + hnlw
k (1 ≤ n ≤ r, 1 ≤ l ≤ d),

where hnl satisfy 1 ≤ 〈hnl〉 ≤ Ĥ and h 6∈ T . Therefore, U1 can be bounded above by the

number of solutions of the system

r∑
n=1

Ψi,j+1(zn; hn;w) =
s∑

m=1

(ui
m − vi

m) (i ∈ R0),

where zn ∈ IdP , hn ∈ IdH , and um,vm ∈ IdQ−θP . Now write

Ww(α; h) =
∑
z∈IdP

e

(∑
i∈R0

αiΨi,j+1(z; h;w)

)
.

Then we have

U1 �
∫
Tr0

( ∑
h∈IdH

Ww(α; h)

)r∣∣∣f(αw;Q− θP )2s
∣∣∣dα.

Furthermore, by Hölder’s inequality, we deduce that( ∑
h∈IdH

Ww(α; h)

)r

� Ĥd(r−1)
∑
h∈IdH

∣∣∣Ww(α; h)
∣∣∣r.
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Thus,

U1 � Ĥd(r−1)+d max
h

∫
Tr0

∣∣∣Ww(α; h)rf(αw;Q− θP )2s
∣∣∣dα

≤ Ĥdr max
h

(∫
Tr0

∣∣∣Ww(α; h)2rf(αw;Q− θP )2s
∣∣∣dα)1/2(∫

Tr0

∣∣∣f(αw;Q− θP )2s
∣∣∣dα)1/2

.

Since the first integral above is bounded byKs(P,Q−θP ; Ψj+1) where Ψi,j+1 = Ψi,j+1(z; h;w)

for some h ∈ Ad with 1 ≤ 〈hl〉 ≤ Ĥ. On recalling (3.48) and taking the maximum over

w ∈ P(θ, ε), the lemma follows.

In what follows, write Kj = K(Ψj), µj = card
{
i ∈ R′0

∣∣ |γq(i) ≤ j
}

, and Ωj =

K0 −Kj − µj.

Theorem 83. Let u ∈ N with u ≥ r. Suppose that ∆u < (k − 1)(r + 1) is an admissible

exponent, and let j ∈ N with 1 ≤ j ≤ γq(k). For each l ∈ N \ {0}, we write s = u+ lr and

define the numbers φ(j, s, J), θs, and ∆s recursively as follows. Given a value of ∆s−r, we

set φ(j, s, j) = 1/k and evaluate φ(j, s, J − 1) successively for J = j, . . . , 2 by setting

φ∗(j, s, J − 1) =
1

2k
+

(
1

2
+

ΩJ−1 −∆s−r

2kr

)
φ(j, s, J),

and

φ(j, s, J − 1) = min
{

1/k, φ∗(j, s, J − 1)
}
.

Finally, we set

θs = min
1≤j≤γq(k)

φ(j, s, 1)

and

∆s = ∆s−r(1− θs) + r(kθs − 1).

Then ∆s is an admissible exponent for s = u+ lr for all l ∈ N \ {0}.

Proof. Fix s ≥ u and suppose that δs is an admissible exponent. According to the hy-

pothesis of ∆u, we have

∆s ≤ ∆u < (k − 1)(r + 1). (3.49)

Take j to be the least integer for which φ(j, s+ r, 1) = θs+r, and write φJ = φ(j, s+ r, J)

for J = j, . . . , 1. The minimality of j ensures that φJ < 1/k whenever J < j. We adopt

the notation

Mi = φiP, Hi = (1− kφi)P, Qi = (1− φ1 − · · · − φi)P (1 ≤ i ≤ j),
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with the convention that Q0 = P . We now show inductively that for each J = j−1, . . . , 0,

Ls(P,QJ , φJ+1; ΦJ)� P̂ (2d−1−(d−1)kφJ+1)rQ̂J+1

λs
. (3.50)

When J = j − 1, it follows from Lemma 82 that

Ls(P,Qj−1, φj; Φj−1)� P̂ (2d−1−(d−1)kφj)rJs(Qj) + Ĥj

dr(
Ks(P,Qj; Ψj)Js(Qj)

)1/2
.

Since φj = 1/k, we have Ĥj = 1. By estimating Ks(P,Qj; Ψj)� P̂ 2rdQ̂j

λs
, we obtain

Ls(P,Qj−1, φj; Φj−1)� P̂ drJs(Qj)� P̂ drQ̂j

λs
.

Now suppose that the result holds for J ∈ {j − 1, . . . , 1}. Then by Lemmas 68 and 82, we

see that

Ls(P,QJ−1, φJ ; ΦJ−1)� P̂ (2d−1−(d−1)kφJ )rJs(QJ) + ĤJ

dr(
Ks(P,QJ ; ΨJ)Js(QJ)

)1/2
,

and

Ks(P,QJ ; ΨJ)� P̂ Γ1Js(QJ) + P̂ Γ2Ls(P,QJ , φJ+1; ΦJ),

where Γ1 = 2rd − (r + 1)(1 − φJ+1) + ε and Γ2 = φJ+1(2sd + krd − µJ − KJ). By the

induction hypothesis, we have

Ls(P,QJ−1, φJ ; ΦJ−1)� P̂ (2d−1−(d−1)kφJ )rJs(QJ) + ĤJ

dr
Q̂J

λs
(E1 + E2)1/2,

where

E1 = P̂ 2rd−r−1+εM̂J+1

r+1
and E2 = P̂ 2rd−rM̂J+1

2sd+kr−µJ−KJ−λs
.

On combining (3.49) with λs = 2sd−K0 + ∆s and µJ +KJ ≤ K0, we have

E1/E2 = P̂ ε−1+φJ+1(r+1)−φJ+1(kr−µJ−KJ+K0−∆s)

≤ P̂ ε−1+φJ+1(r+1−kr+∆s) < 1,

i.e., E1 < E2. Thus

Ls(P,QJ−1, φJ ; ΦJ−1)� Q̂J

λs
(P̂Λ1 + P̂Λ2),

where

Λ1 = (2d− 1− (d− 1)kφJ)r,

115



and

Λ2 = dr(1− kφJ) +
1

2
(2rd− r) +

1

2
(2sd+ kr − µJ −KJ − λs)φJ+1.

Then by the definition of φJ , we have Λ1 = Λ2. By induction, (3.50) follows. On applying

(3.50) with J = 0, we conclude that

Ls(P, P, φ1; Φ0)� P̂ (2d−1−(d−1)kφ1)r+(1−φ1)λs .

Thus we obtain from Lemma 68 that

Js+r(P ) = Ks(P, P,Ψ0)� P̂Λ3 + P̂Λ4 ,

where

Λ3 = 2rd− (1− φ1)(r + 1) + λs + ε,

and

Λ4 = (1− φ1)λs +
(
2d− 1− (d− 1)kφ1

)
r + φ1(2sd+ krd−K0).

By (3.49) and λs = 2sd−K0 + ∆s, we see that

Λ3 − Λ4 = ε− 1 + φ1(r + 1) + φ1kr(d− 1)− φ1(krd−∆s)

= ε− 1 + φ1(r + 1 + ∆s − kr)

≤ 0,

i.e., Λ3 ≤ Λ4. Hence the exponent

λs+r = Λ4 = 2(s+ r)d−K0 + ∆s(1− φ1) + r(kφ1 − 1)

is admissible. On recalling that φ1 = θs+r, the theorem follows by induction.

Lemma 84. Let j ≥ 2. Suppose that ∆s−r < (k − 1)(r + 1) is an admissible exponent.

Furthermore, suppose that Ω1, . . . ,Ωj−1 ≤ f < g ≤ ∆s−r. Set

ω =

2f/g, if j > 1 + log2(g/f);

21−j + f/g, if j ≤ 1 + log2(g/f).

Also suppose that φ(j, s, 1) and ∆s are defined as in Theorem 83. Let δ = ∆s−r/rk and

δs = ∆s/rk. Then

φ(j, s, 1) ≤ 1 + ωδ

k(1 + δ)
,
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and

δs < δ

(
1− 2− ω

k(1 + δ)

)
.

Furthermore,

δs + log δs < δ + log δ − 2− ω
k

.

Proof. On writing φJ = φ(j, s, I) (1 ≤ J ≤ j) and δ′ = (∆s−r − f)/rk, from Theorem 83

we have

φJ−1 ≤
1

2k
+

1

2
(1− δ′)φJ (2 ≤ J ≤ j).

Using a downward induction, we can find that

φJ ≤
1

k(1 + δ′)

(
1 + δ′

(1− δ′

2

)j−J)
(1 ≤ J ≤ j).

In particular, we see that

φ1 ≤
1 + δ′21−j

k(1 + δ′)
. (3.51)

Note that 1+αx
1+x

is a decreasing function of x whenever α < 1. Since δ′ > δ(1 − f/g), it

follows from (3.51) that

φ1 ≤
1 + δ(1− f/g)21−j

k
(
1 + δ(1− f/g)

) ≤ 1 + δ(21−j + f/g)

k(1 + δ)
.

For j > 1 + log2(g/f), we have 21−j + f/g < 2f/g. Thus ω ≥ 21−j + f/g. Therefore

φ(j, s, 1) ≤ 1 + ωδ

k(1 + δ)
.

Since

δs = δ(1− θs) + (θs − 1/k) ≤ (1− δ)φ1 + δ − 1/k,

we have

δs ≤ (1− δ) 1 + ωδ

k(1 + δ)
+ δ − 1

k
=

(ω − 2)δ − ωδ2

k(1 + δ)
+ δ

<
(ω − 2)δ

k(1 + δ)
+ δ = δ

(
1− 2− ω

k(1 + δ)

)
.

Thus

δs + log δs < δ + log δ − (2− ω)δ

k(1 + δ)
+ log

(
1− 2− ω

k(1 + δ)

)
< δ + log δ − (2− ω)δ

k(1 + δ)
− 2− ω
k(1 + δ)

= δ + log δ − 2− ω
k

.
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This completes the proof of the lemma.

Proposition 85. Let j ≥ 2. Suppose that Ω1, . . . ,Ωj−1 ≤ f < g ≤ (k − 1)(r + 1). Let ω

be defined as in Lemma 84 and let

sg = 3r + rk(2− ω)−1(1− g/rk − log(g/rk)).

If γs is the unique positive solution of the equation

γs + log γs = 1− (s− 2r)(2− ω)

rk
,

then ∆s = rkγs is admissible whenever 2r < s ≤ sg.

Proof. For s ∈ N with 2r < s ≤ 3r, rk(1− 1/k) is admissible because ∆2r = rk(1− 1/k)

is admissible. Since 0 < s− 2r ≤ r, we have

γs + log γs ≥ 1− r(2− ω)/(rk) > 1− 2/k > 1− 1/k + log(1− 1/k),

Thus ∆s = rkγs > rk(1− 1
k
) and ∆s = rkγs is admissible. When 3r < s ≤ sg, assume that

∆s−r = rkγs−r is admissible. Let δ = min{γs−r, (k − 1)(r + 1)/(rk)}. Then ∆∗s−r = rkδ is

admissible. Since s ≤ sg implies that

γs−r + log γs−r = 1− (s− 3r)(2− ω)/(rk) ≥ g/(rk) + log
(
g/(rk)

)
,

we get ∆∗s−r = rkδ ≥ g. Let δs be defined as in Lemma 84. Since ∆∗s−r = rkδ ≤
(k − 1)(r + 1) is admissible, by Theorem 83, ∆∗s = rkδs is admissible. By Lemma 84, we

have

δ + log δ − (2− ω)/k > δs + log δs. (3.52)

Since

γs + log γs = γs−r + log γs−r − (2− ω)/k ≥ δ + log δ − (2− ω)/k,

it follows from (3.52) that

γs + log γs ≥ δs + log δs,

and hence γs ≥ δs. Thus ∆s = rkγs is admissible since ∆∗s = rkδs is admissible.

Corollary 86. Suppose that k is sufficiently large in terms of d. When 1 ≤ s ≤ sg,

∆s = rke2e−
s(2−ω)
rk

is admissible.
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Proof. Let γs be defined as in Proposition 85. For 2r < s ≤ sg, on noting that

log γs < 1 + 2r(2− ω)/(rk)− s(2− ω)/(rk),

we have γs < e2−s(2−ω)/(rk). Thus ∆s = rke2e−
s(2−ω)
rk is admissible. For 0 < s ≤ 2r, since

∆s = rke2e−
s(2−ω)
rk > rke2−4/k ≥ rk,

it is admissible. This completes the proof of the corollary.

Lemma 87. Let k < p and s0 = 1
2
rk(log k − 2 log log k). Suppose that k is sufficiently

large. Then the exponents

∆s =

rke3e−
2s
rk 1 ≤ s ≤ s0,

r(log k)2e3e−
s−s0
rk s ≥ s0,

are admissible.

Proof. For a fixed j with 2 ≤ j ≤ k, in order to bound ΩJ(1 ≤ J ≤ j−1) we need to choose

some subsets of R′0 appropriately to approximate K(ΨJ). Take R̃J as in Lemma 81(2) and

let rJ = cardR̃J and K̃J =
∑

i∈R̃J |i|. It follows from Lemma 81(2) that K(ΨJ) ≥ K̃J .

By [15, Lemma 2.1], we have

K̃J =
dk + J

d+ 1

(
k − J + d

d

)
− J.

On picking j = [(log k)1/3], whenever 0 ≤ J < j for k sufficiently large, since µJ ≥ J , we

obtain

ΩJ = K0 − K̃J − µJ ≤
dk

d+ 1

((
k + d

d

)
−

(
k − j + d

d

))
≤ r(log k)1/2.

Let f = r(log k)1/2, g = r(log k)2, ω = 2f/g and sg = 3r+rk(2−ω)−1(1−g/rk−log(g/rk)).

For sufficiently large k, we have

1 + log2(g/f) = 1 + log2

(
log k

) 3
2 < [(log k)

1
3 ] = j.

By applying Lemma 85 and Corollary 86, the exponents

∆s = rke2e−
s(2−ω)
rk (1 ≤ s ≤ sg)
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are admissible. Note that

sg = 3r + rk(2− ω)−1(1− g/rk − log(g/rk))

= 3r + rk
(

2− 2(log k)−
3
2

)−1(
1− (log k)2/k − log

(
(log k)2/k

))
> 3r + 2−1rk

(
1 + (log k)−

3
2

)(
1− (log k)2/k − 2 log log k + log k

)
> 2−1rk(log k − 2 log log k).

On letting s0 = 2−1rk(log k − 2 log log k), we have s0 < sg and

s0ω

rk
=
(

log k − 2 log log k
)
(log k)−

3
2 < 1.

Thus the exponents

∆s = rke3e−
2s
rk (1 ≤ s ≤ s0)

are admissible. Since ∆s0 = rke3e−
2s0
rk = r(log k)2e3, it follows from Theorem 70 that

∆s =

rke3e−
2s
rk 1 ≤ s ≤ s0,

r(log k)2e3e−
s−s0
rk s ≥ s0,

are admissible. The lemma follows.

Theorem 88. Let k < p. Whenever

s > 2rk
(

2−1 log k+log(rι)+log log k+log
(

log
(
(2ι−1)rk log k

)
+2k−1

)
+6−log

(
1−(log k)−1

))
,

we have ∫
m

s∏
j=1

fj(α)dα� P̂ sd−ιk−δ

for some δ > 0.

Proof. By Theorem 87, on letting s0 = 1
2
rk(log k − 2 log log k), we have that

∆s =

rke3e−
2s

3rk 1 ≤ s ≤ s0,

r(log k)2e3e−
s−s0
rk s ≥ s0,

are admissible. Now let f(x) = Ce−E(x−s0) + 2x+ 1 with C = σ−1r(log k)2e3 and E = 1
rk

.

By Lemma 74, whenever s > min{f(x) |x ≥ s0}, we have∫
m

s∏
j=1

fj(α)dα� P̂ sd−ιk−δ
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for some δ > 0. By Lemma 75, min{f(x) |x ≥ s0} = 2E−1
(
1 + log(CE/2)

)
+ 2s0 + 1.

Note that

log(CE/2) = log σ−1 + 2 log log k − log k + 3− log 2

and

log σ−1 < log(ιrk) + log
(

log
(
(2ι− 1)rk log k

)
+ 2k−1

)
+ log 4− log

(
1− (log k)−1

)
.

We have

min
x≥s0

f(x) = 2E−1
(
1 + log(CE/2)

)
+ 1 + 2s0

<2rk
(

log σ−1 + 2 log log k − log k + 2−1 log k − log log k + 4
)

<2rk
(

2−1 log k + log(rι) + log log k + log
(

log
(
(2ι− 1)rk log k

)
+ 2k−1

)
+ 6− log

(
1− (log k)−1

))
.

This completes the proof of the lemma.

Roughly speaking, comparing the lower bounds for s in Theorem 76 and Theorem 88,

we achieve savings of the order of magnitude rk log k in the case when k < p via repeated

differencing process. Consider the case when k > p. On rewriting k as a0(k) + a1(k)p +

· · ·+ aD(k)pD, we have D > 0. It transpires that when aD(k) is sufficiently large, we may

obtain savings of the order of magnitude rk log aD(k) by following similar arguments to

Theorem 88.
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Chapter 4

The proofs of Theorems 1 and 2

4.1 The proof of Theorem 1

Theorem 1. Let p be the characteristic of Fq. Suppose that p - k and k ≥ d+ 2. Further

suppose that the system (1.6) has a non-singular solution in the completion of Fq(t) at ∞
and a non-singular solution in the completion Fq(t)w of Fq(t) at every irreducible element

w in Fq[t]. Let ι = cardL and r = cardR′0. Whenever

s ≥ 2rk
(

log(ιrk) + log
(

log
(
(2ι− 1)rk log k

)
+ 2k−1

)
+ 3 + log 4− log

(
1− (log k)−1

))
,

there is a positive constant C = C(s, k, d; q; c1, . . . , cs) such that

Ns,k,d(P ) = C
(
qP
)sd−ιk

+O
((
qP
)sd−ιk−δ)

,

where

δ = min

{
1

18kι
,

1− (log k)−1

4ιrk(log((2ι− 1)rk log k) + 2k−1
)}.

Proof. It follows from Theorem 76 that∫
m

s∏
j=1

fj(α)dα = O
(
P̂ sd−ιk−δ).

Moreover, by applying Theorem 59, we have∫
M

s∏
j=1

fj(α)dα = CP̂ sd−ιk +O
(
P̂ sd−ιk−δ),
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where C = C(q, k, d, s) > 0. Since

Ns,k,d(P ) =

∫
Tι

s∏
j=1

fj(α)dα =

∫
M

s∏
j=1

fj(α)dα+

∫
m

s∏
j=1

fj(α)dα,

the result follows.

It is worth a remark that when k < p, by applying Theorem 88, Theorem 1 holds

whenever

s ≥
(
1 + o(1)

)
rk
(

log k + 2 log(rι)
)
,

as k →∞.

4.2 The proof of Theorem 2

Recall that the height of a vector x = (x1, . . . , xn) ∈ An is defined to be

H(x) =
max1≤i≤n〈xi〉
〈gcd(x1, . . . , xn)〉

.

For a subspace V ⊆ Fq(t)s with basis vectors x1, . . . ,xd ∈ As, define

H(V ) = H(x1 ∧ · · · ∧ xd).

Let N∗s,k,d(P ) denote the number of solutions of (1.6) for which the vectors x1, . . . ,xd are

linearly independent and counted by Ns,k,d(P ). LetNs,k,d(P ) denote the number of distinct

linear spaces V of dimension d and height at most P̂ , lying on the hypersurface (1.5).

Lemma 89. Let Q ∈ R with Q > 0. For a subspace V ⊆ Fq(t)s of dimension d, define

βQ(V ) to be the number of bases for V with all basis vectors lying in IsQ. Then

βQ(V ) < Q̂d2

.

Proof. Fix a polynomial basis x1, . . . ,xd for V . Without loss of generality, assume that the

matrix
(
xi,j
)

=
(
xi,j
)

1≤i,j≤d consisting of the first d rows of the matrix X = (x1, . . . ,xd) is

non-singular. For another polynomial basis y1, . . . ,yd, there exists a d× d matrix B such

that Y = (y1, . . . ,yd) = XB. Thus B is uniquely determined by
(
yi,j
)

1≤i,j≤d. Hence the

number of choices for B is less than Q̂d2
.
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Lemma 90. Let βQ(V ) be defined as in Lemma 89. If Q̂ = (P̂ )1/d, then we have

N∗s,k,d(Q) ≤
∑

H(V )≤P̂

βQ(V ) ≤
(

max
V

βQ(V )
)
Ns,k,d(P ).

Proof. Suppose that x1, . . . ,xd ∈ IsQ are linearly independent. Let V = Span{x1, . . . ,xd}.
Since

H(V ) = H(x1 ∧ · · · ∧ xd) ≤ Q̂d = P̂ ,

the results follows immediately.

We are now in a position to prove Theorem 2.

Theorem 2. Under the same conditions as the ones in Theorem 1, there are two positive

constants C1 = C1(s, k, d; q; c1, . . . , cs) > 0 and C2 = C2(s, k, d; q; c1, . . . , cs) > 0 such that

Ns,k,d(P ) ≥ C1

(
qP
)s− kι

d
−d − C2

(
qP
)s− kι

d
−d− δ

d ,

where δ is defined as in Theorem 1.

Proof. Let Q̂ = (P̂ )1/d. By combining Lemma 89 with Lemma 90, we have

Ns,k,d(P ) ≥ N∗s,k,d(Q)Q̂−d
2

.

Let w be an irreducible polynomial in A with ordw = [Q]+1. If x1, . . . ,xd ∈ IsQ are linearly

dependent over Fq(t), then they must be linearly dependent modulo w. Thus, there exist

a1, . . . , ad (modw), not all zero, such that a1x1 + · · ·+ adxd ≡ 0 (modw). The number of

choices for the coefficients a1, . . . , ad is O
(
〈w〉d−1

)
, since one of them may be normalized

to be 1. For each fixed choice of a1, . . . , ad, the number of vectors x1, . . . ,xd (modw)

such that a1x1 + · · · + adxd ≡ 0 (modw) is O
(
〈w〉s(d−1)

)
. Thus the number of linearly

dependent vectors x1, . . . ,xd (modw) is O
(
〈w〉sd−s+d−1

)
. Hence the number of dependent

vectors x1, . . . ,xd ∈ IsQ is

O
(
〈w〉sd−s+d−1

)
= O

(
Q̂sd−s+d−1

)
= O(Q̂sd−ιk−2).

By Theorem 1, there exist C1 = C1(s, k, d, q) > 0 and C2 = C2(s, k, d, q) > 0 such that

N∗s,k,d(Q) ≥ C1Q̂
sd−ιk − C2

(
Q̂sd−ιk−δ).
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Therefore,

Ns,k,d(P ) ≥ N∗s,k,d(Q)Q̂−d
2

≥ C1Q̂
sd−ιk−d2 − C2Q̂

sd−ιk−d2−δ

= C1P̂
s− ιk

d
−d − C2P̂

s− ιk
d
−d− δ

d .

This completes the proof of the theorem.

4.3 Future work about the circle method in Fq[t]

In Theorem 1, we obtain a lower bound for s such that Ns,k,d(P ) is of magnitude

P̂ sd−ιk. A future research project is to largely reduce the lower bound for s by applying

another variant of the circle method. Recently, Parsell [16] studied an integer analogue of

this question and achieved impressive results. Motivated by his work, we may investigate

mean values of exponential sums over the polynomials having only small degree irreducible

divisors, called smooth polynomials. Such estimates are essential to the savings on s.

Furthermore, we may generalize our results to general function fields. In particular, we

could study Waring’s Problem and Vinogradov’s mean value theorem for finite extensions

of Fq(t).

Another direction that we may pursue is to consider the polynomial analogues of Roth’s

theorem on progressions. For N ∈ N \ {0}, let D3([1, N ]) denote the maximal cardinality

of an integer set A ⊆ [1, N ] containing no 3-term arithmetic progression. In [17], Roth

established a variant of the circle method and showed that D3([1, N ]) � N/ log logN .

Since his fundamental work, further refinements have been achieved by Heath-Brown [8],

Szemerédi [19], and Bourgain [3]. Therefore, it is interesting to find new variants of the

circle method to analyze the similar questions in function fields.
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Index

N the set of nonnegative integers 0, 1, 2, . . .

Z the set of integers 0,±1,±2, . . .

Q the set of rational numbers

R the set of real numbers

C the set of complex numbers

Fq the finite field of q elements

p the characteristic of Fq

A = Fq[t] the ring of polynomials over Fq

c c1, . . . , cs ∈ Fq[t] \ {0}

Fq(t) the fraction field of Fq[t]

K∞ = Fq((1/t)) the field of formal power series in terms of 1/t over Fq

α ∈ K∞ α =
∑

i≤n ait
i with ai ∈ Fq and n ∈ Z

‖α‖ ‖α‖ =
∑

i<0 ait
i if α =

∑
i≤n ait

i

ordα the integer n if α =
∑

i≤n ait
i and an 6= 0

〈α〉 qordα

P̂ qP

T the set of elements α ∈ K∞ with ordα < 0

eq : Fq → C a character of Fq (page 7)

e : K∞ → C an exponential function (pages 7, 10)
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M the major arc (page 8)

m the minor arc (page 8)

Ss,d,k singular series (page 37)

Js,d,k singular integral (page 52)

Jm the set of elements α ∈ K∞ with ordα ≤ m

IP the set of polynomials in Fq[t] of degree < P

Ns,k,d(P ) the number of solutions of the system (1.6) in IsdP

Js,k,d(P ) the number of solutions of the system (3.13) in IsdP

Im,k,d(P ) the number of solutions of the system (3.22) in ImdP

i (i1, . . . , id)

|i| i1 + · · ·+ id

xi xi11 · · ·x
id
d

Ri,Rj,R′j,R′′j certain sets of d-tuples (pages 11, 71)

L a set of d-tuples (pages 4, 72)

ι the cardinality of the set L (pages 4, 72)

r the cardinality of the set R′0 (pages 5, 71, 87)

r0 the cardinality of the set R0

K0

∑
i∈R′0
|i|

F (α,x)
∑

i∈L αix
i

G(α,x) c1F (α,x1) + · · ·+ csF (α,xs)

fj(α) = fj(α;P )
∑

x∈IdP
e
(
cjF (α,x)

)
f(α;P )

∑
x∈IdP

e
(∑

i∈R0
αix

i
)

f̃(α;P )
∑

x∈IdP
e
(∑

i∈R′0
αix

i
)

I−P the set of elements in K∞ of the shape
∑
−P<i≤0 ait

i

TP (F ;α)
∑

x∈Id−P
e
(
F (α; x)

)
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S(g, a)
∑

x∈Idord g
e
(
F (a/g; x)

)
where g ∈ A \ {0} and a = (ai)i∈L ∈ Aι

Sj(g, a) S(g, cja)

w an irreducible polynomial in Fq[t]

rk Jac(f ; z;w) the rank of the Jacobian matrix Jac(f ; z) over A/(w)

ah(i) i =
∑

h≥0 ah(i)p
h where ah(i) ∈ [0, p− 1] ∩ Z

γq(i) a0(i) + a1(i) + a2(i) + · · ·

ind (·) see page 14

τ(·) see pages 14, 22, 42, 55
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