Multiple Roots of Estimating

Functions and Applications

Zejiang Yang

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Statistics

Waterloo, Ontario, Canada, 2000

©Zejiang Yang 2000



i~l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et

Bibliographic Services
395 Waellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your fie Votre reférence

Our file Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’ auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-51239-8

Canadi



The University of Waterloo requires the signatures of all persons using or pho-

tocopying this thesis. Please sign below, and give address and date.

il



Abstract

An estimating function may give multiple solutions. This creates a certain amount
of confusion as to which of these roots is the most appropriate choice as an estimate
of parameter. This thesis discusses the existing methods, and proposes two new
approaches to choose the best root among multiple roots. One approach is based
on the root intensity, which is an extension of the probability density function of an
estimator to the multiple root case. This method is also applied to some practical
examples such as logistic regression models with measurement error and bivariate
normal mixture models. Another one is the shifted information method, which can
be used in transformation models and, in particular, the location models. Though
multiple roots of estimating functions arise in some cases, it can be shown that
under some regularity conditions, there is a unique root with high probability in a

given bounded closed set which includes the true value.
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Chapter 1

Introduction

1.1 Preliminaries

The expression estimating function is a very general statistical term. By estimating
function we mean a function of both the parameters and the data. on which the
inference for parameters in a statistical model is based. It is used in many aspect
of theoretical and applied statistics, ranging from statistical inference. stochastic
processes, time series, survey sampling, biostatistics, to finance. The theory on
estimating functions has been developed since the publication of Godambe’s (1960)
work on this theory. Heyde (1997) surveyed the major works on both the theoretical

and applied aspects of this theory.

In classical statistical theory, least square (LS) and maximum likelihood (ML)
methods for estimation are widely used. These two methods have been merged
into a single method of estimation from the perspective of estimating function.
In fact. almost all methods of estimation correspond to a set of estimating func-

tions. Obviously, method of moment, least square and maximum likelihood are
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based on a set of simple estimating functions. In the case of nuisance parame-
ters, many approaches have been proposed to eliminate or reduce their impact on
inference. These approaches, including marginal likelihood, integrated likelihood,
conditional-likelihood, profile log-likelihood and partial likelihood also give rise to a
set of estimating functions. In time series, biostatistics and finance, there are many
statistical models developed from the theory of stochastic processes. In this case,

the estimating functions typically involve more complex stochastic process settings.

In section 1.2, we will review some basic theory of estimating functions. First,
the concept of optimal estimating function, also known as quasi-score estimating
function is introduced. The initial quasi-score function, first considered by Wed-
derburn (1974), is applied in a statistical model that only specifies a relationship
between the mean and variance. One should note that the quasi-score estimating
function discussed in this thesis is considered more generally than that in Wedder-

burn’s original definition.

Most of the literature is about the estimating functions themselves. Since in-
ference for parameters is based on estimating functions, from which the estimated
parameters are obtained, it is important to explore the properties of estimates based
on the estimating functions. In particular. when there are several roots of estimat-
ing functions, it is important to rule out extraneous roots. As Hanfelt and Liang
(1995) pointed out, “Modifying the method to discriminate among roots is an area
of future research”. Studying this problem constitutes the main part of this thesis.
In section 1.3, we will briefly discuss this issue and related methodology on this
issue. A more comprehensive discussion will be given in Chapter 2. In this thesis,
we will propose two approaches to choose the best root as a parameter estimator
for the true value. One method is based on the root intensity, which is an extension

of the probability density function of an estimator to the multiple root case. The
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concept of root intensity will be discussed in Chapter 3. Another method is based

on shifted information, which will be discussed in Chapter 3.

1.2 Theory of Estimating Functions

In this subsection, the basic concept of estimating functions will be stated. The

related results are outlined in Heyde (1997).

Definition 1.1 An unbiased estimating function G(80) is a function of the data
and unknown parameter & € © C R*, such that an estimator of the unknown

parameter can be obtained as its root, with the property E(G(8)) = 0.

The following estimating function derived from the estimating function G(8):
G = —-(EG)'(EGG')"'G (1.1)

is called a standardized estimating function, where G = (8G;/88;). and ()’ denotes

transpose.

The information criterion is
E(G) = E(GYGY') = (EG) (EGG )" (EG) (1.2)

which is the Fisher information for the score estimating function.

Definition 1.2 G~ is the optimal estimating function within a class of estimat-

ing function H if G* € ‘H and

E(G™) — E(G) (1.3)
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is nonnegative definite for all G € H and 6 € O.

In addition to the above definition, there are several equivalent conditions, such
as trace criterion, determinant criterion, smallest eigenvalue criterion and average

variance criterion (Heyde, 1997).

The following is a useful and practical criterion for optimal estimating function,

which is due to Heyde (1988).

Theorem 1.1 G* is an optimal estimating function within H if
E(G"®)GY') = E(GWG) = E(GPG™) (1.4)
or equivalently
(EG)"'EGG™

is a constant matrix for all G € H. Conversely, if # is convex and G~ € H is an

optimal estimating function. then (1.4) holds.

There is a similar criterion for optimality in the asymptotic sense (Heyde, 1997,
p28), which can be applied to martingales estimating functions. In that case, the
optimal estimating function maximizes the martingale information. Estimating
functions that are optimal in either sense will be referred to as quasi-score estimat-

ing function and the corresponding estimator as quasi-likelihood estimator.

Wedderburn (1974) proposed the original quasi-score estimating functions as a
basis for analyzing a generalized linear regression. He also discussed the existence

and uniqueness of the maximum likelihood estimates for some generalized linear
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models (see Wedderburn, 1976). The usual likelihood approach needs to specify
the form of the distribution of the observations, but the quasi-score function is
based only on the first two moments of observations, and provides an analogue to
fully parametric likelihood functions for inference. Let &' = (z,,...,z,) be random
observations with the joint distribution p(@) for some k-dimensional parameter 6

in the parameter space @, and the first two moments:

p(8) = Ez = (1(0),...,pn(0))
V(8) = (cov(xi.z;)) = (Vi;(8)) i.j=1,....n

The Wedderburn’s quasi-score estimating equation (see McCullagh and Nelder,

1989) is defined as
q(8.z) = (j2(8)) (V(8)) ™ (z — p(8)) = 0 (1.3)

where f1(0) is a n x k-dimensional derivative matrix. The function on the left hand
side of (1.3) can be shown to be the projection of the score function into the class
G of linear unbiased estimating functions of the form a(8)(x — p(8)). It is also an
optimal estimating function in G in Godambe’s sense (1960). Based on the results
of orthogonal estimating functions, Godambe and Thompson (1989) extended the
Wedderburn’s quasi-score estimating function by incorporating possible knowledge

of the skewness, kurtosis and higher moments of the underlying distribution.

Furthermore, the generalized estimating equation (GEE) approach (Liang and
Zeger, 1986: Diggle, Liang and Zeger, 1994) was formulated to deal with the prob-
lems of longitudinal data analysis where one typically has a series of repeated
measurements of a response variable. together with a set of covariates. This ap-
proach deals with a longitudinal data set consisting of responses y;, t = 1,2,...,n;,
t =1.2,.... K, where i indexes the individuals, and ¢ indexes the repeated obser-

vations per individual. Observations on different individuals would be expected to
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be independent, while those on the same individual would be correlated over time.
Let the covariance matrix of ¥; = (¥i1....,Yin;) be Vi = Vi(p;. i), i =1,2,... . K
where pu; = p4,(0) is the vector of means for the ith individual and «; is the vector
of the parameters that includes variance and correlation components. Then the

generalized estimating equation is:
K
9(0.y) = (5:(8))V;" (5, — u(9)) = 0. (1.6)
=1

In practice, the unknown V; is replaced by “working” or approximate covariance

matrices.

Another important class of estimating functions — martingale estimating func-
tion - arises in time series and stochastic process models. Such process (X, F;)

admits a continuous semimartingale representation:
.Yg = .Xo -+ ./‘/Ig + .4¢

where Xj is a random variable, M, is a continuous local martingale and A4, is a
continuous process with a locally bounded variation. In the continuous case. the

widely applicable class H of martingale estimating functions is:
t
G(0) = / a,(0)dM,(0) (1.7)
0

where o,(8) is predictable with respect to filtration {¥,}, and M,(8) is the local
martingale due to the semimartingale representation of the process. The continuous
martingale estimating function has be used in studying some finance models. In

the discrete time case, the martingale estimating function is:
G(6.z) =) gi(0,z)
=1
with the martingale property

E[gi(0)|-7:i—l] = gi-1(8)
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where F;_, = o(&,,®2,...,2i—1). A typical example of this is the autoregression
model in time series.

In the past several decades, many methods have been developed for estimating
functions. These methods are used in many different fields of theoretical and applied
statistics such as biostatistics and finance. Apart from Godambe’s (1960, 1985)
optimality idea which underlies estimating function theory, the optimal estimating
function can be looked upon as a projection on a class of unbiased estimating
functions (McLeish & Small 1988, 1992; Small & McLeish 1988, 1989, 1994). This
idea was developed into a useful way to search for an approximation to estimating
functions. In particular, it provides a potential way to choose the best root among

multiple roots (see Section 1.3 and Chapter 2).

1.3 Multiple Roots of Estimating Functions

As discussed above, the estimating function method is widely used in theoretical
and applied statistics such as biostatistics and finance. However, this method is
plagued by the problem qf multiple roots. A basic example of multiple solutions
is the score estimating function for the Cauchy location model. Multiple roots can
also occur in the likelihood equations for mixture models and nonlinear regression

models. More examples will be provided in Chapter 2.

For maximum likelihood estimation, the accepted practice is to use the like-
lihood itself to discriminate between multiple roots. As the roots to the score
estimating equation represent various local maxima and minima of likelihood func-
tion, the root corresponding to the global maximum of the likelihood is usually
chosen as the estimator of parameter. In many cases, the maximum likelihood esti-

mator is consistent. However, there do exist examples where the global maximum
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of the likelihood is an inconsistent estimator while at the same time another local
maximum of the likelihood is consistent. See Lehmann (1983, p420). Therefore, one

may not just use the maximum of the likelihood to discriminate between roots.

For estimating functions other than the score estimating function, the roots
cannot easily be interpreted as local maxima and minima of some real valued func-
tion. Finding an analogue of the likelihood for more general estimating functions
has motivated the search for potential functions. McLeish and Small (1992) and
Small and McLeish (1994) proposed the projected likelihood function method. B.
Li (1993). Hanfelt and Liang (1995) later developed the approximate likelihood
ratio method, which provides a possible way to pick up the best root for the quasi-
likelihood setting. Heyde (1997) proposed three simple direct methods to choose
the correct root for estimating functions. Singh and Mantel (1999) also suggested
an alternative criterion which minimizes the square of a supplementary estimating
function. From another viewpoint, Small and Yang (1999) considered the distribu-
tion of the roots as a random set and proposed the concept of root intensity. Based
on root intensity, this thesis proposes a new method to choose the best root among
multiple roots, since it can be shown that under some regularity conditions, the root
intensity at the true value tends to infinity as the sample size approaches infinity
(see Chapter 4). For transformation distributions, the shifted information method
is also suggested to solve multiple root problem. Simulation results demonstrate
that the root intensity and the shifted information methods are reasonable. These
methods are also applied to some practical examples such as logistic regression

models with measurement error and bivariate normal mixture models.



Chapter 2

Multiple Roots of Estimating

Functions

2.1 Preliminaries

Estimating functions are widely used in statistics. However, in some cases, the
estimating equation can produce several roots. This can create a certain amount of
confusion as to which of these roots is the most appropriate choice for estimating
the parameter. A basic example is the score estimating function for the Cauchy
location model with density f(z;8) = {7[1+(z —8)?]}~! (see Section 2.2.1, Section
3.4). Another classical example constructed by LeCam (1979) indicates that the
conditions of Theorem 2.3 of Chapter 6 in Lehmann’s book (1983) are not enough to
ensure the consistency of the maximum likelihood estimator. Multiple roots often
appear in mixture models (see Section 2.2.6) and nonlinear regression models. This
problem also arises in the Littlewood model (see Section 2.2.4) in software reliability.

In addition, the score estimating function in the Tobit regression model seems to
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have multiple roots since the Hessian is not necessarily negative definite; However,

Olsen (1978) indicated that it has only one root.

An interesting problem is how to discriminate among multiple roots in the
estimating equations. There have been several ways proposed in the literature to
attack this problem. The common goal of all these methods is to find an analogue
of the likelihood function whose local maxima and minima occur at the roots of
the estimating function. By maximizing this objective function, the hope is to
be able to distinguish among the roots. However, in practice it is difficult to
find a complete satisfactory objective function with the required properties. The
first method is the approximate estimation function method. McLeish and Small
(1992) and Small and McLeish (1994) proposed the projected likelihood function,
which projected the likelihood ratios for independent observations into a class of
estimating functions consisted of the tensor products. B. Li (1993) suggested linear
projected likelihood ratio as an approximate likelihood ratio for the Wedderburn'’s
quasi-score estimating functions. Hanfelt and Liang (1995) later developed the

approximate likelihood ratio method to general estimating functions.

Furthermore, B. Li (1997) also extended this idea and the minimax approach
to the generalized estimating equations. It also provide a possible way to pick up
the best root. Recently, Heyde and Morton (1998) proposed three simple direct
methods to choose the correct root for estimating functions. The methods in-
volves (1) examining the asymptotics to see which root provides a consistent result;
(2) picking the root for which G(O) behaves asymptotically as its expected value
Ee{G(8)}; and (3) using a least square or goodness of fit criterion to select the best
root. Singh and Mantel (1999) developed this least square criterion by providing a
general guideline to ensure the suitability of the criterion, and proposing a criterion

for general estimating functions. This criterion chooses the root which minimizes
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the square of the supplementary estimating function. Wang and Small (1998) put
forward a general method to test consistency of roots to an estimating function
by bootstrapping the quadratic local likelihood ratio. This method also provides
an alternative way to choose the best root among multiple roots. In Section 2.3,
we will describe these methods briefly. From another viewpoint, Small and Yang
(1999) considered the distribution of the roots as a random set and proposed the
concept of root intensity, which is an extension of the probability density function
of an estimator to the multiple root case. Since it can be shown that under some
regularity conditions (see Chapter 4), the first order root intensity at the true value
tends to infinity as the sample size increases. As a result, we propose a new ap-
proach to choose the best root based on root intensity. For the transformation

models, we develop an information criterion to select the best root.

2.2 Examples

2.2.1 Cauchy Location Model and Normal Stratified Sam-
pling

The Cauchy location model is a classical example of multiple roots. Suppose a
sample is taken from a Cauchy location model with density function f(z;6) =
1/{#[1 + (z — 0)?]}. The score estimating equation is

i 20zi —6) _

2 TH (w07

which is equivalent to a polynomial equation of degree 2n — 1. That is, it may
admit 2n — 1 distinct roots. Reeds (1983) showed that if the true value § = 0, r,
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is the number of roots, then for each k,

n—oo yigad o )

(2.1)
That is, the number of false local maxima of the Cauchy score estimating function

is asymptotically Poisson with parameter 1/x. This is consistent with the computer

experiment results reported in Barnett (1966).

When estimating the normal mean in a stratified sampling, an estimating func-
tion similar to the above score estimating equation for the Cauchy location model
can be derived. Suppose r;y,---, i, are taken from N(u.o?) (¢ = 1,2,---,m),
let 2; = 3" zij/ni and s? = 3 (z;; — Zi)?/n;. We are interested in estimating the
common mean ux based on r;; ({ = 1,---,m, j = 1,---.n,). Neyman & Scott (1948)
considered an estimating function of the form

m

wi(Zi — p) :
Zs G _"#)2=0 (2.

N
V]
A

with general weights w;. When w; = n; — 1, it is the estimating function advocated
by Kalbfleish & Sprott (1970) based on sufficiency and ancillarity arguments. The
profile likelihood results in an estimating equation with w; = n; in (2.2). Neyman
& Scott (1948) found that the estimator with w; = n; — 2 is asymptotically more

efficient than the maximum likelihood estimator.

Similar to the Cauchy location model, (2.2) corresponds to a polynomial equa-
tion of degree 2m — 1, which may have 2m — 1 roots. However the Cauchy location
model and stratified normal models are quite different, so the probabilities of mul-
tiple roots arising in the two models are quite different. That is, the distribution

of these roots is not similar.
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2.2.2 Estimation of the Correlation Coefficient

Let us consider a sample (z;,y;) from a bivariate normal distribution (X, Y) which
is standardized to have mean p, = puy = 0 and variances 62 = 02 = 1. We assume
that there is an unknown correlation coefficient p between X and Y. The estimating

equation which is equivalent to the score function for p is:

A+p°) i ziyi _ pXici(zl+yl) _ 0 (2.3)

S(p) =p(1 - p*) +

which can have as many as three real roots in the interval (—1,1). Small, Wang and
Yang (1999) discussed all cases. When the discriminant of the quadratic equation
S'(p) =10

D= 4[——2,’:""]2 +12[1 - ————Z(”iJr i), (2.4)

is zero or strictly negative, $'(p) = 0 has at most one real solution. Thus S’ (p)
is nonnegative or nonpositive since S'(p) is a quadratic function. Then the cu-
bic function S(p) will be monotone, thus having a unique real root. From the
law of large numbers, Y ziyi/n - E(XY) = p, S z?/n — E(X?) = 1, and
Y y?/n — E(Y?) =1, so D converges to 4p®> — 12 as n — oo. Therefore, with
probability converging to one, the estimating equation (2.3) will have a unique root
for large samples. This is consistent with our general result in Chapter 5 (Theorem
5.3). Figure 3.1 in Chapter 3 shows the root intensity function for this estimating

equation.

2.2.3 Censored Regression Models

The Tobit regression model (Greene, 1989) is:

V]
[$1}

yi=Bzi+¢ yi = max(0,y;) (2.
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where ®; is the explanatory vector observed for observation i, y; is the observed
counterpart to the latent dependent variable y;, and €; ~ N(0,02). We use Y_, to
indicate summation over all observations where y; = 0, ), is the summation over
all observations where y; > 0, and N, is the number of observations where y; > 0.

Apart from a constant, the log-likelihood is:
logL = (—=Ni/2)logo® —(1/20%) Y (i — B'z:)? (2.6)
1
+_log[l — ®(8'z:/7)].
0

Since the Hessian of the corresponding score estimating functions in the Tobit model
is not necessarily negative definite, it suggests that the score estimating equation
could have multiple roots. However, when the model is reparameterized in terms
of y =B/0 and § = 1/0 (Olsen, 1978), (2.6) becomes

log L = (Ni/2)log6® - (8y; — v'z;)?

1

+ Z log[l — ®(v ;)]

The Hessian matrix in terms of 4 and 6 is negative definite. So there is a unique
root. That is, nonnegative definiteness does not necessarily imply multiple solu-

tions.

2.2.4 Counting Processes

The multiple root problem also arises in some counting processes in reliability
and survival analysis. We assume that a computer program contains a finite but
unknown number of N faults initially. Let n(¢) denote the number of faults detected
at time ¢. If testing could go on indefinitely, all the N faults would be detected
with probability one. Let T;, ¢ = 1,2.---, N be the failure times. In the model,
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introduced by Littlewood (1980), it is assumed that at any time, the failure rate
is proportional to the number of remaining errors. For the Littlewood model with
intensity

(N —n(t-))
1+ et

At) = 2 t e [0,7]

the loglikelihood function is:

log(1 + en)
€

log L.(N, a,€) = n(t)log(a) — a(N — n(7))
n(r) n(r)
. log(1 + €T)
log(N —i+1)— —_— .
+'Z=; og(! 1+ 1) (a+e)iz=; .
Barendregt and Van Pul (1995) showed that for parameter 8 = (V, o, €), the corre-
sponding system of the score estimating equations may have more than one solution.
In their paper, they presented the following data set: = = 709.5, n(7) =3, T, = 1,
T; = 399.9. and T; = 400.1, and found that for this data set, log L-(V, a,€) has a

global maximum at the boundary (.V = n(7) and € = 0) and both a local maximum

and saddle-point in the interior of the parameter set.

2.2.5 Functional Normal Regression Models

Stefanski and Carroll (1987) considered functional normal and logistic regression
models. Assume that

yi ~ N(a + B'u;,0?)
and u; cannot be observed but independent measurements x; is available and
var(z|u) = Qo? where Q is known. Stefanski and Carroll (1987) derived the esti-

mating function for B as

G(B) = —B Sz498 + (S Q — 5:2)B + Say (2.8)
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where
Szz = Zn:(z-' —-z)°
=1
Sey = zn:(z.- —Z)(y:i — 9)
=1
Sy = i(yi -9)%
=1

This is a quadratic equation, so there are two roots. The corresponding estimate
of « is given by j—0B &. Multiple roots also appear in functional logistical regression

models. which will be investigated in Chapter 4.

2.2.6 Mixture Models

Mixture models are widely used in biostatistics. Consider a practical example
about plasma glucose distribution in south Pacific populations, which was studied
by Raper. L.R. et. al. (1983). Surveys were carried out in August and September,
1978, and January, 1982 in Western Samoa and Nauru respectively. In both surveys,
subjects were asked to fast and then present themselves to the Survey Center by
8.00 a.m. A fasting blood sample was taken and a 75g oral glucose load was
administered. Two hours after the glucose load, a further blood sample was taken.
The following group data presents the observed values for log two-hours plasma
glucose (PG) concentration (mg/100 ml) in a sample of 89 Western Samoa females,
aged 43-54.

The distribution for the logarithms of 2-h PG concentration is assumed to be a

bimodal normal with the following mixture model:

(z=u1)? (z—u2)2

a -] g el

e * 4+ e 2 (2.9)
g1 2w o] 27

f(z) =
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Table 2.1: Log 2-hours Plasma Glucose Concentration

Log PG Number Log PG Number
(50, 59.46) 1 (168.18.200) 5
(59.46,70.71) 4 (200,237.84) 2
(70.71,84.09) 9 (237.84,282.84) 3
(84.09.100) 18 (282.84.336.36) 3
(100, 118.92) 2 (336.36,400) 1
(118.92,141.42) 15 (400,475.68) 1
(141.42,168.18) 1

In other words, the distribution function is:

F(z) = a®(Z—E%) 4 (1 — a)0(Z=£2) (2.10)

g1 a2

where ®(z) is the standard normal distribution function. For group data. the
likelihood function is:
k
L8.z) « [J(F(z:) — F(ziz1))™ (2.11)
=1
where n; is the number of observations in (z;-;, z;]. For the plasma glucose data,
we obtained the estimates of parameters for the above unrestricted model by using

a gradient search in Matlab:

a = 0.8003
iy = 102.0206 g, = 234.6601
o1 =19.3099 &, = 84.6602.

If a in (2.9) is known, and is a = 0.80, say, two local maxima can be found. That

is, the two roots of the corresponding score estimating function are:
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Figure 2.1: Mixture Model for Plasma Glucose Data

1 = (fi1, fi2, 61, 52) = (102.0196,234.5956, 19.3082, 84.6888)
2 = (A1, iz, &1, 52) = (141.8957,101.6242, 77.4806, 12.0523).

D [~ Y]

Since the loglikelihood for él is -184.6139, the loglikelihood for 92 1s -212.8364, 91 is
the better estimator. Figure 2.1 also shows that 8, ( corresponding to the correct

restricted model) is much better than 8, (corresponding to the false restricted

model).
In Chapter 4, we will investigate a more complex practical example which in-
volves in a bivariate normal mixture. In this example, we will consider a real data

set taken from Habbema, Hermans and van den Broek (1974).

2.2.7 An Application in Finance

Wedderburn’s quasi-score estimating function is only based on the assumption con-

cerning a relationship between the first two moments of the distribution. Godambe



CHAPTER 2. MULTIPLE ROOTS OF ESTIMATING FUNCTIONS 19

and Thompson (1989) extended it by using the knowledge of the skewness and kur-
tosis of the distribution. From the first two moment conditions, we have two basic

estimating functions

h1=X—,u

hy = (X — p)? — o

where 4 = E(X) and 0? = Var(X), then we can construct an orthogonal estimating

function to h;:
hs = (X —p)® — o — no(X — p) (2.12)

where v; = E(X — u)3/0®. Following Godambe and Thompson (1989), for an
unknown parameter 6, we may obtain the following optimal linear combination of

estimating functions h; and hj.
I"=a"h, + 3°h;3 (2.13)

where

Since it is a quadratic estimating function in g, it has multiple roots. In particular,

when 6 = pu,
_EBEGH 1 (2.14)
E(R?) — o2 ’
_ E(%‘l) — T

B =

E(RE) ~ o312 +2—143)

where v, = E(X — u)t/o* - 3.
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X. Li (1999) applied this approach to calculating Value at Risk in which skew-
ness. kurtosis and volatility are explicitly used. Nowadays, Value at Risk(VaR) is
a popular risk management method. For a given time horizon ¢ and confidence
level p, the value at risk is the loss in the market value over the time horizon ¢
that is exceeded with probability 1 — p. Thus, it is our interest to estimate the
mean of the market value and construct an approximate interval for it based on
estimating function (2.13). Many observed financial return series have tails that
are “fatter” than those implied by a normal distribution, the VaR calculated un-
der the normal assumption underestimates the actual risk. Without the normality
assumption, some parametric and nonparametric approaches were proposed. such
as a mixture of two normal distributions (Hull and White, 1998), order statistics
method or Monte Carlo simulation. Since [~/ \/V'F(I'_) has a standard normal dis-
tribution approximately, then we can construct an approximate confidence interval.
This method is applied to the daily exchange rates for 12 major currencies between
February 17, 1989 and February 8. 1999. In this case. the financial return series
are the daily logarithm change X, = In(S,/S,—). where S, is the spot exchange
rate at time ¢. This study shows that the estimating function approach captures
the extreme tail much better than the standard VaR calculation method such as

RiskMetrics approach.

2.3 Methodologies for Root Selection

In this section, I will review the existing methods, describe some potential methods,
and propose our new methods in discriminating among multiple roots of estimat-
ing functions. These methods include projected likelihood ratios, one-root esti-

mating functions, statistical information methods based on consistence, chi-square
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criterion, and the methods based on the root intensity function and the shifted

information.

2.3.1 Projected Likelihood Ratios

When an estimating function has multiple roots, an approximate estimating func-
tion can be constructed with a certain property, then the best root is chosen among

several roots of the estimating function based on these properties.

Let us begin with the Wedderburn’s quasi-score estimating function
a(0.z) = (f4(6)) (V(8)) (= — u(8)) = 0 (2.15)

where g is the n x 1 vector of mean responses, 8 is a k x 1 vector of regression
parameters relating to explanatory variables to g, and V(80) denotes the n x n
variance matrix of the response. By analogy with the relationship between the
score function and the log-likelihood function, a line integral can be performed to

obtain the quasi-likelihood ratio,

]
Q(8.7) = /n q(t,z) - dt. (2.16)

However. it should be noted that this integral is path-dependent when k£ > 1,
unless there is a potential function U such that 8U/89, = q,, s =1,2,....k. That
is. the derivative matrix for g(@,z) is symmetric provided g(8,z) is continuously
differentiable. To overcome this difficulty, McLeish and Small (1992) proposed the
projected likelihood ratio, which projects A(6,m) = L(n)/L(8) for independent
observations with mean x;(@) and variance 0?(8) (: = 1,2,...,n) into a class of

estimating functions. This class is the largest class of estimating functions which

can be determined by the mean and variance of z;. By a direct calculation, they
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obtained the projected likelihood ratio
A8.7m) = [[[1 + o72(8) {mi(m) — wi(@)Hzi — 1i(0)}] (2.17)
=1
which is tangent to the quasi-likelihood ratio function at 8. Later, B. Li (1993)

suggested the following linear projected likelihood ratio R(n,8) as an alternative:

é(#(n) — 1(0){(V(8)) " (z — u(8)) + (V(n) ™' (= — p(n))} (2-18)

which is anti-symmetric and linear in observation. As the projected likelihood ratio,
it is also the first order approximation of the quasi-likelihood ratio. Furthermore,

under certain conditions, as n — oo, for all 7 in © and 1 # 8,

P{R(n,00,2) < R(6,,80,z);: 8o} — 1 (2.19)
P{R(6o,m.2) > R(np,n,x);8,} — 1.

This result indicates that for any inference point, no matter whether the reference

point is at the true parameter value 8 or the wrong value,
P{R(8,. inference points, ) > R(7n, inference points, );: 8o} — 1. (2.20)

Since the linear projected likelihood ratio is a good approximation of quasi-likehood
functions, which may be path-dependent, it is reasonable to use the linear projected
likelihood ratio to distinguish the roots of the Wedderburn’s quasi-score estimating
functions. B. Li (1993) discussed the circle model of McCullagh (1990). which
assumed that z,;, z2; ({ = 1,...,n) are independent random variables satisfying
po = (cosb,sinf) and V4 = n~'I. The corresponding Wedderburn’s quasi-score

function is

q(8,z) = —nsin6(z; — cosb) + ncos 6(z, — sin §). (2.21)
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There are two roots éo = tan~!(Z,/%,), él = éo + w. In this case, both functions
R(n. 6o, ) and R(n,6,,z) take the maximum at n = 6o and the minimum at n=8,.
Naturally, 6, is picked as the better estimator. In general, when there is a root 6o
(for example, the one close to the real parameter) such that for all other roots
8; (i =1,2,---,k), R(8o,0:,z) > R(6;,0;,,2) i = 0,1,--- .k, j = 1,2,---.k)
hold with probability close to 1 as the sample size n is large. this method can
work. However, when two roots @1 and 92 of an estimating function are found with
properties: R(8;,8,,2) > R(0,,0;,z) = 0 and R(8,,0,,z) > R(6,.8,,z) = 0,
The question of which root to choose arises.

Hanfelt and Liang (1995) considered the approximate likelihood ratios in the
more general case. The elementary estimating function is assumed to be g(¥¢, z).
where g is a vector of length k such that E¢ {g(¥p,2)} = 0 for all 4. The optimal
estimating function in the class of the weighted estimating functions (a(y))'g(¥. z)

is
a(¥.2) = DiyVy'a($.)

where D¢ = E¢(—Og/3¢) and V’l’ = Var¢(g). When the elementary function
is ¢ — p(0). it is the Wedderburn’s quasi-score estimating function. The general

linear projected likelihood ratio R(8.n) is defined as
2CO. (V) a($(m),2) ~ 3C(n. 0} (V(O) 'g(w(0).2)  (222)

where C(0.n) = Eg{g(¥(n).z)}. V(n) = varn{g(¥(n),=)}. Hanfelt and Liang

(1995) further considered the case with a nuisance parameter. They also discussed
the generalized quasi-likelihood ratio which is path-dependent and which can also
be used to discriminate the multiple roots. The general linear projected likelihood
ratio has similar properties as the linear projected likelihood ratio, so it can used

in discriminating among multiple roots as well.
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2.3.2 Minimax Approach to Estimating Functions

Doob (1934) and Wald (1949) demonstrated that the global maximum of the like-
lihood function is consistent under certain regularity conditions. Yet, there is no
analogy to the likelihood function for a general estimating function. For the lin-
ear projected likelihood ratio R(8,7n) defined in (2.18), B. Li (1996) has shown
that a consistent estimator 8 for the Wedderburn's quasi-score estimating function
can be identified as the minimax points of R(8,n) under mild conditions. That is,
sup,{R(8,7n)} = infgsup, {R(8,7)}. Later, B. Li (1997) extended this result to the
generalized estimating equation(GEE), which is widely used for longitudinal data
analysis in biostatistics. The longitudinal data set usually comprises an outcome
variable, yi, and a p x 1 vector of covariates, z;,, observed at time ¢t = 1,....n;
for subjects i = 1,...,A". Let p;(B) and ¢~'V;,(B) be the mean and variance of
the observation y;;. We will assume that pui(8) = p(=B), and V4 (B) = V(z!,8)
for some known functions u(.) and V(.) as in the generalized linear models. The
dispersion parameter ¢ is always taken to be positive. The dependence within each
! is modeled by the correlation matrix R(a) = {R,, (cx) : t,t =1,...,n;}. Across
i, Ry (a) is assumed to remain constant as long as observations y;; and y,;, are
present in the cluster ;. That is, R(«) is independent of cluster except for its di-
mension. Let Vi(B) = diag(Vii(B),..., Vin;(B))!. We refer to R(ax) as a ‘working’

correlation matrix. We also call

N|=-

Wi(B. 6, @) = ¢~'Vi(B)} R(a)Vi(B)

a ‘working’ covariance matrix, which will be equal to cov(y;) if R(a) is the true
correlation matrix for y;’s, where y; = (yi1,-..,¥yin;)!- If the working correlation
assumption were correct, then for each fixed ¢ and a, the optimal linear combina-

tion of {yir — pi(B)} which yields the highest information about B in the sense of
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Godambe (1960), is

.
a(B.6,a) = Y _{#(B)}{Wi(B. 6, )} {y, — wi(B)} = 0 (2.23)

i=1
where p,(B) is the n; x 1 vector {uia(B) : t = 1,...,n;}, p;(B) is the n; x p
dimensional gradient matrix of g;(3). The above equation can be re-written as
a function of B alone by replacing ¢ with a /R -consistent estimate q")(ﬂ), and o
with a V' R-consistent estimate a(s, é(ﬂ )}). That is,

a(B) = q{B.4(B), &(B,$(B))} =0 (2.24)

which is called the generalized estimating equation according to Liang and Zeger
(1986). Though a generalized estimating equation has a consistent solution with
the probability tending to one under regularity conditions, it remains to show how
to identify a specific sequence of solutions which is consistent, since it may either
have multiple solutions or have none at all in many Applications. B. Li (1997) pro-
posed a minimax procedure which yields a consistent estimate. In order to state
this result. we need an analogy to the linear projected likelihood ratio for the gen-

eralized estimating equation.

Definition 2.1 Let 8, = (B8,,¢1,a})! and 0, = (B,, %, a})" be two points
in the parameter space @. The parameter space for 8 will be written as B. Let

D:® x ® xY — R! be the function

A
D(61,62) = D {m(B2) — mi(BL)Y (2.25)
(W00, ~ (8] + ZWB2)ly: — (B}
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The deviance function of the generalized estimating equation (2.24), is a mapping

R : B x Bx Y — R! defined by

-
’

R(B,.8,) = D{B,.8(B,), &(B,,(8,)): B, (B,), &(8,.$(8,))}  (2.26)

The centering function J(83,,8,;) of R(8,,8,) is the mapping J : B x B —» R!
defined by

Eg,D{B:.Ed(B,), E&(B1, 4(8,)): B2, ES(B,). E&(B,,4(B.))}.  (2:27)

Obviously, J(B,:8>) = =J(B2,B,)- Since Eg (y:) = #;(Bo)- J(Bo.B) is the nega-

tive quadratic form:
.
=2 _{mi(B) — m(Bo) YW (B, ES(B), E&(B. E$(B))Hp:(B) — 1:(Bo)}

When n = n;, (i = 1,2,---,R’), and some regularity conditions hold (B. Li.

1997), then any parameter value 3 that satisfies the relation

sup R(B.B) = inf sup R(B,8) (2.28)
eB ﬂGBﬂ'eB

is a consistent estimate of 3. Furthermore, when

inf sup R(B.8') = sup inf R(B.8) (2.29)
€8g'cp ﬁ'eBﬂeB

then any solution B of equation (2.24) that satisfies

sup R(B,8) =0 (2.30)

Bes

is consistent, where B is the set of all solutions to the generalized estimating equa-

tion (2.24).
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The above results suggest a method to choose a consistent solution for the
generalized estimating equation, since (2.30) indicates that we need to compare the
roots of the generalized estimating equations (2.24) only. However, the conditions
(2.28) and (2.29) are not generally true and cannot easily be checked. Improving

these conditions and finding alternative conditions required further work.

2.3.3 Approximate One-root Estimating Functions

In the last subsection, we discuss the approximate estimating function which can
used to compare the different roots. From other viewpoint, Kolkiewicz (1995) and
McLeish and Small (1988) considered the approximate one-root estimating function.
In other words, they built a new estimating function which has only one root, as
an approximation to the original estimating function in some senses. This root is
closely related to the roots of the original estimating function; so it can be taken

as an estimator of the parameter.

Projection to monotone functions: Kolkiewicz (1993) considered the projection
of score functions into a set of monotone functions, which have only one root. This
provides an alternative projection for the estimating functions. He discussed this
case in which the score estimating function s(z) is in the class G with the following
property: there exists points m; and m, such that on the interval [m;, m,] the
function is nonincreasing, on the interval (—oo,m;) U (m,,o0) it is nondecreasing

and

lim s(z,60) > ILm s(z; 0). (2.31)

I—»—00

The subclass G, consists of all continuous non-increasing functions on [z, z,] which

are constant outside [z, z,]. The projection into G, from G is fully determined by
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only points z; and r, which satisfy m; < z; < m; and m, < z, < m,, where m,
and m_ are such that
s(m;) = lim s(z)
r—-20
s(m.) = lim s(z)
00
For a location parameter model with density function f¢(z) = fo(z — 6), by using

Lagrange’s method of multipliers, it can be found that z; and z, uniquely satisfy

the following equations respectively:

Iy I
[ sotefatzide = so(an) [ folz)de (2:32)
/ so(z) fo(z)dx = so(.r,)/ fo(z)dzx (2.33)
where so(z) is the score function when § = 0. When f5(z) is symmetric, z; = —z,.
By projecting s(z;,0) = so(z; — 8) into G,, the score function S(z,....,zn:6) =

Y i=1 8(ri.0) can be projected onto a function in G,, which yields one root only.
It is easily checked that the score estimating function for the symmetric Student’s
t-distribution with v degree of freedom (including Cauchy distribution) with a
location parameter is in G. The loss of efficiency of the projected score estimating
function is maximal for the Cauchy distribution (less than 13% ) and decreases

quickly as v becomes larger.

Reducing the number of roots: In order to rule out the incorrect roots for the
score estimating functions, McLeish and Small (1988) suggested a method to reduce
the number of roots. Suppose L(6, z) is a likelihood function defined on (—oc, +0)
that is continuously differentiable with a finite number of local maxima and minima,
and L(6,z) vanishes at infinity. Let

vo(0,2) = S(6,x) (2.34)

L@ +e,x)—L(6—¢x)
ve(6,2) = 2¢L(6,z)
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where 5(6, &) is the score function. It should be noticed that this is a particular
case of Daniel’s smoothed likelihood (1960) . The smoothed likelihood, with kernel
u(y) is defined as

— +oo
i(6) = / 1(6 — y)u(y)dy (2.35)

0

where [(§) = log L(8). The parameter value § which maximizes I(6) is called a
smoothed mazimum likelihood estimator. Assume that we can interchange deriva-

tives and integrals, § can be written as the root of the smoothed score:

+oo |
3(6) = / [(8 — y)u(y)dy. (2.36)

(= <)

When u(y) = 1/2¢ for |y| < € and u(y) = 0 for |y| > €, 8 will be a solution to the
equation L(6 + €) — L(# — €) = 0. This is the same as (2.34).

It can be shown (see below) that when ¢ is large enough, ¢, has only one root.
Thus ¢, provides a straightforward estimate in small samples. In order to extend
this method to a more general class, which provides more flexibility to choose

coefficients, we consider the following estimating function in the form of:

Go.z) = 3 ML +z(;l’)“ L6.2)] (2.37)

Assume that 3 = A; = 0 for unbiasedness of G(8, z) since J L(6,z)dx = 1 for all 6.

i=1

=1

(2.34) is obviously the special case of (2.37) when ¢; = —e; =€, A\; = =)\, = 1/2e.
Under the above assumptions about L(f,z) and the condition \;e; > 0 for all
r=1...., m, there is only one root of G(#, ) = 0 when l&i] (1 =1,...,m) is large
enough. In fact, since L(§, ) has only a finite number of local maxima and minima
and vanishes at infinity, we can conclude that there is a sufficient large number M
such that L(6,z) decreases in 8 on [M, +oo] and increases on [—oc, —M]. Assume
that 6, and 6, are two roots of é(ﬂ.:c) = 0, that is:

i Ai[L(6; + €;,x) — L(6;,2)] =0 (2.38)

=1
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for [ =1,2. Without loss of generality, we assume 8; < #;. According to the above

discussion, when l¢;| is large enough, we have:

L6, +€,2) > L(0; + ¢, z) € >0 (2.39)
L6, +€,2) < L(6; +¢;,z) € <0 (2.40)
Thus, when Me; >0fori=1,...,m,

NE

XN[L(61 + €, 2) — L(B1, )]

i=1

AiL(6, + €, 2)

I
.Ms

1

M

NL(O2 + &, 2) — (D X)L(62.2)

1

A,[L(eg + 6;,2) - L(02, a:)]

I
.Ma

1

This contradicts the (2.38). Thus G(8,z) = 0 has at most one root. Now we
will extend the method to more general estimating functions. For an estimating

function G(6.x) which is continuous in 8. we define
Lb,z) = /: G(r,x)dr (2.41)
Then under the above conditions imposed on \; and ¢; and
G0,z)G(—6.2) <0 if 8 large (2.42)

which ensures that L(#, ) is monotone when |6] is large. Thus G(8, ) defined as
in (2.37) has at most one root when |¢;| is large enough. Since log(#) is a strictly
monotone function, we can use the following alternative estimating function

G (0,z) = i Aillog L(6 + €;,z) —log L(0, z)] (2.43)

=1

where ) A; =0, but it is not an unbiased estimating function.
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2.3.4 Four Methods for Choosing a Root

A completely different approach is to find some simple and direct methods for root
selection in the multiple root case. That is, we wish to define statistical information
based on estimating function as criteria to choose the best root among the multiple
roots. Heyde (1997) and Heyde and Morton (1998) suggested three methods to
choose among multiple roots. Let us describe the methods and some examples

discussed in their paper.

Method 1. Examining the asymptotics and choosing the root which is consis-
tent. If an estimating equation has several roots, and one of them is consistent. we
will choose it as the estimator of the true parameter. For example. let r,,....z,
be i.i.d with mean 8§ (—oc < 8 < oo) and known variance 0% and consider the

estimating function

n

G(8) = {a(zi~6) + (z: — 8)* — 0*} (2.44)

i=1

Let

A=—-a + z? ——Z:c + o?

where 7 is the sample mean. Then. on the set {A > 0} the roots of G() = 0 are

- 1
01=§a+.7‘:—/_\”2

P 1

6, = §a+1‘:+Al/2
and the strong law of large numbers gives 6, — 6o, 62 — 6o + a. where 6; is the
true value. Thus. we should select él as the correct root.

Method 2. Picking the root for which G (#) behaves asymptoticallv as its

expected value E4G'(8) . Let us go back to the estimation of the angle in circular
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data (see Section 2.3.1), the quasi-score estimating function is
G(8) = —nz, sin(f) + nz, cos(8). (2.435)

Then G(#) = 0 has two solutions 8, and 6, in (—7/2,7/2): 6, = tan~'(z,/z,), 6, =
8, + = . Note that E¢G'(8) = —1, and G'(6,)/E; G'(6;) — 1, G'(82)/E;, G (62) —

~1. Thus we will choose ;. Method 1 also gives the same choice.

Method 3. Selecting the best root based on least square or goodness of fit

criterion. Assume that  has mean p(0), and consider
1 ,
5(0) =~ (z:— p(8) (=: — u(8))
i=1

or weighted least squares. By using the law of large numbers, they justified that
the S(@) at the wrong root is far more larger than that at a consistent root. When
applying this method to (2.44), we find S(ég) —-S(él) = 2aA% ~ a®n, so we prefer 6,
to §,. For (2.43), the same result can be obtained by using Method 1 and Method

2

Recently, Singh and Mantel (1999) developed a least square criterion and pro-

posed another method based on the theory of minimum chi-square estimation.

Method 4. Choose the root which minimizes the square of a supplemen-
tary estimating function. Let us consider a general estimating function of the
form G(z,0) = Y wi(0)gi(zi,0), where gi(;,0) are elementary estimating func-
tions based on observation &;. When G(z,0) = 0 gives multiple roots, we de-
fine a supplementary estimating function Ge¢(z.8) = 3 a,(8)gi(z:,8) such that
Eo{Ge(x.0)} = 0 and Ge(z,0) # 0 at the roots @ of G(z,0). The choice of the
supplementary estimating function can be based on model testing Hp: £ = 0. This

method chooses the root that minimizes Gi(z, 8).
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2.3.5 Proposed New Methods

The root intensity is an extension of the probability density function to the case
when an estimating function has multiple roots. It can be shown that under regu-
larity conditions, the root intensity at the true parameter tends to infinity as the
sample size n approaches infinity. Utilizing the asymptotic property of root in-
tensity, this thesis proposes a new method to select the best root. This method
suggests choosing the root with the largest estimated root intensity among several
roots of the estimating functions. Simulation results have shown that this is a use-
ful method. In Chapter 4, we will discuss this method thoroughly from theory to

applications.

For transformation models, in particular, location models, we will define the
shifted information (see Chapter 5), then choose the root which has the largest

estimated shifted information as the estimator of the parameter.

2.4 Discussion

In this chapter, we have discussed several methods to choose the root among the
multiple roots of estimating functions. However no one method can be used in a
general context. Note that the (extended) projected likelihood ratio is only the first
order approximation of the quasi-likelihood ratio function, if we wish to obtain a
good approximation, we may use a higher order approximation, which makes the
solution more complex. In addition, this method can only be used in a limited case.
As we have pointed out in Section 2.3.1, this method may fail when R(%, 8;, ) takes
the maximum at different points, where 8; (z=1,2,...,k) are different roots. The

methods of projection into monotone function and reducing the number of roots
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are used to build an estimating function with a unique root. The former imposes
strong conditions on the score estimating function, and is harder to use in a wider
class. The latter is based on the fact that G(, €) in (2.34) and (2.37) has a unique
root when |¢;| is large. In this case, however, G(#, z) may be very different from

the original estimating function.

Since approximation methods do not give a good solution. many direct methods
have been proposed. These include the three criteria (method 1,2,3) proposed by
Heyde and Morton(1998) and the chi-square criterion (method 4) recently suggested
by Singh and Mantel (1999). In addition, the minimax approach (B. Li, 1996, 1997)
and the local likelihood function approach (Wang and Small, 1998) suggested useful
ways to choose a consistent root. Since root intensity is a general concept for the
estimating functions, the method based on root intensity can be used in a wide
class of estimating functions. As a complement, the shifted information is also a
quite useful tool for transformation models. Though there is no general method
to solve the multiple root problem, the above methods provide useful ways to deal
with the problem. The root intensity method can be shown to be a useful method

in most examples discussed in Section 2.2.



Chapter 3

Root Intensity of Estimating

Functions

3.1 Preliminaries

The estimating function approach is a popular method to estimate the unknown
parameter, which includes maximum likelihood and least squares as well as many
semiparametric methods. Asymptotic theory shows that for a wide variety of cases,
there exists a unique consistent root. Perlman (1983) discussed the limiting behav-
ior of multiple roots of score estimating equations. In general, Crowder (1986) has
considered the consistency and inconsistency of estimating equations. However, the
estimating equation G(@,z) = 0 may give multiple solutions. As an extension of
probability density function to the multiple root case, Small and Yang (1999) con-
sidered the distribution of the roots as a random set and proposed the concept of
root intensity function for which some important results have been obtained. The

form of the root intensity depends upon a complete specification of the model and

35
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its parameters. In practice, of course, the unknown parameters are the quantities
we are trying to estimate. So the root intensity cannot be assumed to be known.
However. we shall consider some empirical approximations to the true root intensity
using sample-based methods such as the bootstrap and the saddlepoint approxi-
mation. Based on this approximation to the root intensity, a method is suggested
to discriminate among multiple roots of estimating function. In the following sec-
tions, the concept of root intensity and its properties will be discussed in detail,
and some approximations for root intensity such as the saddlepoint approximation
will be suggested, also the root intensity for Cauchy score estimating function will

be investigated extensively.

3.2 Root Intensity

By a random zero set of an estimating function G we mean a subset of the parameter

space @ € RF given by
Z2={0ecO:G(0)=0} (3.1)
Let the count statistic N4 be the cardinality of the set Z() A, and N’ =

No(Ns —1)(Nq—2)...(Na—r+1). The following Definition 3.1, and Theorems
3.2 and 3.3 are due to Small (Small & Yang, 1999).

Definition 3.1 We define the r-th order root intensity function A, for G(8) to

be a function of the form

A, : O > R* (3.2)
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where ©" = © x ... x O(r times), satisfying

E(J] Na) =/ o | AL(8y,...,6,)d6, ...0, (3.3)
iml A, A
for every sequence of disjoint measurable subsets A, ..., A, of ©.

It should be pointed out that the first order root intensity is the same as the
probability density function of the estimator. when thé corresponding estimating
equation has only one root. When an estimating function has two roots 8, and 6,
with probability one, and 6, and 6, have density functions f1(8) and f,(8) respec-

tively, then the first order root intensity function is

A(8) = f1(8) + f2(6).

Example 3.1: Let us consider the circle model of McCullagh (1990) again. In
this case, £; ~ N(cos(6).1/n), and Z, ~ N(sin(6).1/n), where 8y € (—7/2.7/2).
and they are independent. A routine calculation gives the density function of

él = tan“(irg/:i'l):

f(8) = sec2(0)exp[—zcosz(ﬂ)(sin(ﬂo) — cos(fo)tan(8))] (3.4)
{cos 2(6)

exp[— —(cos(ao) + sin(fo) tan(8))? cos?(8)]

+1 / (cos (60) + sin(bg) tan(8)) cos>(8)

[2@(\/17cos(9)(cos(00) +sin(fg)tan(f))) - 1]} —=-<b<

(O

[RCR ]

We have known that another root is éz = él + 7, thus the first order root intensity

function A(8) = f(8) + f(# — x). When 6y = 0. f(8) = f(6 — =), the first order
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Figure 3.1: Root Intensity for Normal Correlation Coefficient (p = 0)

root intensity is

A(8) = 2sec2(0)exp[£?-1£20—)] (3.5)

{c052(9) exp[~ "COSZ(O ]_ ‘/—coss(e )[2®(—V/n cos(8)) — 1]}.

i

Example 3.2. When estimating the correlation coefficient for a bivariate normal
distribution, we obtain the estimating function given by (2.3). Based on Theorem
3.3. using simulation and kernel approximation method (see Section 3.4), we obtain

an approximation to the first order root intensity function with sample size 10.

The following theorem (Small & Yang, 1999) states that the distribution of N4

can be expressed in terms of root intensities.

Theorem 3.2 Suppose that there exists a positive integer m such that Ny < m

with probability one. Furthermore, suppose that the r-th order root intensities A,
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exist and are continuous for all orders 1 < r < m. Then the probability function

of N, is given by

. 1 *= (=1)
P{Nys=r}= = Z (7-)—/.; . --/AA,-.H(OI,... ,0,4,)d0, ...dO; ., (3.6)
i=0

where the zero-fold integral of Aq is defined to be equal to one, and the higher order

root intensities A,, r > m vanish everywhere.

In order to state the following results, some notations have to be introduced.
Let ¢, y, z be random vectors. We shall write y = op(2) if there exists a positive

function k(¢) with lim,04 t'k(¢) = 0, such that

Lim P(||y |[[> k() |[[2 [[<t) =0 (3.7)

t—04
A combination of the two conditions z = op(&) and z = o,(y) will be denoted as
z = op(x,y).

Let é( @) be the one-step estimator defined as
8 =6 — G(8)(9G(9))™" (3.8)

and () be the root of G(0) = 0 which is closest to #. For most estimating

functions. it is reasonable to suppose that
6—~0=0,0-6,6-0). (3.9)

Jensen and Wood (1999) have shown that the above assumption is true under some
regularity conditions on the model and estimating function (also see Skovgaard,
1990). However, we find some examples such that (3.9) does not hold. For example,
consider the estimating function (Z — 8)® = 0, then 8 = (20 + z)/3, § = Z, then

6 —6=20—z)/3, and § — 8 = (z — 6)/3, thus (3.9) is not true.
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The following theorem (Small and Yang, 1999) provides a method to evaluate
the root intensity functions and investigate the properties of roots based on the

estimating function itself.

Theorem 3.3 Let f(z,,...,2,;6,,...,0,) be the density function of the continu-

ous random vector
(~G(01)[0G(01)]™,. .., —G(8,)[3G(0,)]™). (3.10)
Then under (3.9), we have
An(8y,-.-,0,) = £(0,...,0;04,...,8,) (3.11)

for all 6,,...,0, € ©.

In particular, the first order root intensity of the estimating function G(8) is
A(8) = £(0;0) (3.12)

where f(z; @) is the probability density function of the continuous random variable

~G(0)[0G(8)]!.

3.3 Approximation to Root Intensity

3.3.1 Approximation Formula

In the last section, the formula for the root intensity is obtained. However it is
not easy to calculate the root intensity in most situations, so some approximation
methods are needed. In the following, we will use a saddlepoint approximation to

find the approximations of some root intensity functions. It will be seen that the
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saddlepoint approximation provides a very good approximation to the exponential
family. For simplicity, assume that the parameter space is a subset of the real line.
However, all discussions can be extended to higher dimensions. Let us consider the

following estimating function:

Gb;zy,z2,---,2,) = Zg(O; z;). (3.13)
i=1
Then
0G(0; 21,72, . Zn) <= 09(6; z))
- T = ; 56 (3.14)
where z1,z2,..., . T, are identically and independently distributed as X. Assume

that the characteristic function of (g(8, X),—g (8.X)) is C(t,s;8). Then the char-
acteristic function of (G(8), —G'(8)) is C™(t.s:8). Thus, by inverse Fourier trans-
formation, their joint probability density function can be expressed as:

1 +oc +oc
flz,y:0) = (9“ )2/ C"(t.s:0)exp(—itz — isy)dtds

+i00 +wo
2 / / exp(nk(t,s:0) — tr — sy)dtds  (3.13)
ul - -

where R'(t,s;8) is the camulant generating function of (g(8. X). —¢ (6. X)). By the
saddlepoint approximation (McCullagh, 1987, p179 and Daniels, 1954), we have

the following approximation

F(z.y:0) ~ \/—II 5, 5;0)1‘/2erp<—nlf'(

SRS

Y.
' 8)) (3.16)
where A™*(z,y) is the conjugate function of A'(t.s;#) which is defined as
K (z.y) = sup,{tz + sy — K(s,t)}

and A7, (z.y) is the second derivative matrix. Here we also use the fact that the

conjugate function of nK'(¢,s) is nR™(z/n.y/n). Since the probability density



CHAPTER 3. ROOT INTENSITY OF ESTIMATING FUNCTIONS 42

function of —G(8)/G’(9) is given by
400

f(zy,y:0)lyldy

—oo
then the first order root intensity becomes
+oc

A(f) = £(0,y;8)[y|dy

—Q0

~ /+°° _1_[[{' (0 g-O)I'/zerp(—nK'(O g—-O))[yldy
e 2mm ‘n’

+o0
= 712\“/1.’7 |R7,(0, z;0)["?exp(—nK=(0, z; 8))| z|d=.

Assume that KA™™(0, z;3) has a smooth absolute minimum at the interior point zg,

that is, 9K*(z0)/dz = 0, and 8°K"(z0)/8z* > 0. It is also assumed that for all

-0

: # 29, OKN"(2)/0= # 0. Then when n is large. using the Laplace’s formula, we

have

n

~ V27 K*"(0, z0; 8

A(6) )IK:(0,:o;e)l‘“erp(—nlf'(o,zo;o))lzol (3.17)

s

Note: In some cases, g'(§, X) is independent of X. That is, g'(6) = ¢(8), which
does not depend on the data. Using the saddlepoint approximation, we may obtain:

n|K="(0; 8)|
27
where A™(r) is the conjugate function of the cumulant generating function A’(¢) of

g(8.X).

A(8) ~ c(8)exp(—nk"(0:6)) (3.18)

3.3.2 Examples

Example 3.3. Assume that (g(8, X), —g (8, X)) has a bivariate normal distribu-
tion with mean (u,(6), u2(8)) and covariance matrix:

coo [ O A0
p(O)or(B)oa(®)  o3(6)
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then the cumulant generating function of (g(8, X), —g'(8, X)) is
1
KR (t,s) = mi(0)t + p2(0)s + —a 2(0)t? + p(0)ay(8)o2(8)ts + 503(9)32

and the conjugate function K*(z,y) of K(¢,s;6) is:

o3(6)(z — p11(0))? — 2p(8)01(8)02(6)(x — p1(8))(y — p2(8)) + oF(O)(y — p2(6))?
2(1 — p2(6))at(6)03(6)

In this case,

1
K (z =
I ra( ’y)l (1 _p2(0))o,?(0)0_3(0)
Zo = p2(0) — p(a)?l((?)#lw)
2

Then (3.17) gives the approximation to the first order root intensity:

6 6 ]
\/2_7:71(9) exp(— nﬂ;((o) 12(8) — Pl )?1((00))#[( )I- (3.19)

On the other hand, since (G(6), —G'(8)) has a bivariate normal distribution with

A(6) ~

mean (nu,(0), np.(0)) and covariance matrix:

0. (6) nol(6)  np(6)o1(8)ox(6)
np(6)01()02(8)  nai(6)
by direct calculation (see the more general case below), we may obtain the first

order root intensity A(8):

o2(8)\/1 — p*(6) n /11(9) v1(8)
i exel =Gk + 70 + YT 2a(r(6) - 1)

where

#2(0)a1(8) — 11(6)p(8)a2(6)

0 =
7(8) V1= p2(8)5(6)72(6)
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This is a special case of formula (3.20) (see below).

In general, when (G(;z,,---,2,),—G (0;,,---,z,)) has a bivariate normal

distribution with mean (v,(8), v2(0)) and covariance matrix:
2
0(8) = 81(8) r(6)8:(8)5:(6) |
r0)5(6)5(0)  63(0)

The typical examples appear in linear and nonlinear regressions. In this case, the

corresponding first order root density A(0) is:

5:(0)V/T— p%(8) 1 vi(8) | $%(8),, , s(0)
o L P (g + )+ (28(s(6) 1] (320)

where

_ v2(6)61(8) — p(8)11(8)5(9)

s(6) = V1 = p2(6)6,(6)5,(8)

The above formula can be derived by assuming that the joint density function

of (G(9),~G'(8)) is f(z.y;8), then

AB) = / £(0,4:8)lyldy

sl ] 1 vi 2r(y — v2)  (y — 1r)?
¢ [ Wlexp{— gy + T pas

oC

U2 o0 2
= cexp(—ﬁ)/ lerXP(—%a—f-)—)dy
1 —00

where ¢ = 1/(278,62v1 — r2?), a = V1 — 128, and p = v, — r118,/6;. Note that

e N2
[ et 4y

oo

e 4 o '2
= a/ (at+p)e"72dt+a/ (at — p)e” 7 dt

8 &
a

a

2

= ale" 27 + ay\/Q?(q)(-g') - q’(:a/"t'))
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so (3.20) can be easily obtained from the above equalities.

An interesting example is the compartmental model:

yi=e %+ (3.21)
where ¢; ~ N(0,0%),i=1,2,---,n, o is fixed. In this case, the estimating function
for 8 is :

G(8) = ) ti(yi — e % )e ™. (3.22)

=1

Then (G(68), —G (8)) has a bivariate normal distribution.

Example 3.4. Let us consider the exponential family of distributions parame-

terized by 6 in the form:
fx(z;8) = exp{fx — K(0)} fx(x) (3.23)

where A'(.) is the cumulant generating function of the distribution fx(z). Then
the cumulant generating function of fx(z;6) is A(t +68) — K(8). In this case, the
first order root intensity, which is the probability density function of the estimator,
can be found directly. The following example will demonstrate that the saddlepoint
approximation is a very good approximation. Note that g(8; X) = X — R (6), and
g (8; X) = —R"(#). Under the hypothesis that § = 0, the cumulant generating
function of g(#; X) = X — K'(6) is G(t;:8) = K(t) — K'(8)t, and the corresponding
conjugate function G*(z;6) is A*(z + K'(8)), where K™™(z) is the conjugate function

of A'(8). By (3.18), we have:

A(8) ~ \/ n|A- éf‘ (0))'1{"(9)exp[—nK-(A"(o))]. (3.24)

Now we apply (3.24) to Gamma distribution which has the density function:

ﬂa—ll.a—le—B:

I(a)

fx(z:8) = = exp(8z — K(0))fx(z) (3.25)
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Figure 3.2: Saddlepoint Approximation vs Real Root Intensity for Gamma Distri-
bution with ¢ =1 and 8 =1 for n = 10,20. 50

where « is fixed, § =1—3, K(t) = —alog(l1—t) and fx(z) = z° 'e~*/I'(a). Then
K*(z) =z — a + alog(a/z), the saddlepoint approximation of the first order root
intensity for 8 is:

! Ili’-exp{—na(—40— + log(1 — 6))}.

A0~ 15\ 5 1—#8

Then the saddlepoint approximation of the first order root intensity for 3 is:

AB) ~ 31/ 3= exp{-na(* 52 +log(8)}. (3.26)

Under the hypothesis that § = 1 (8 = 0), the maximum likelihood estimator

3 = na / > X has the following density function:

1
Bl'(na)

In Figure 3.2, the saddlepoint approximations and the first order root intensities

h(z;B) =

exp{—na(% — logna +log8)}. (3.27)

for Gamma distribution when sample sizes n = 10,20,50 are plotted. The plots
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indicate that the saddlepoint approximation is a perfect approximation to the first

order root intensity of the scale parameter in the Gamma distribution.

3.4 The Root Intensity for Cauchy Distribution

The Cauchy location parameter family is an important example involving multiple

roots. The Cauchy score estimating equation is:

< 9 1
g(6,z2) = ; -a—alog R P (3.28)

_ . 2(z; — ) _
= LT

=1

Reeds (1985) established a remarkable result on the number of its roots: the number
of false relative maxima has asymptotically a Poisson distribution. The properties
of the Cauchy score estimating equation will be investigated from the viewpoint
of the root intensity. To begin, 5000 simulations, each with sample of size 5, were
taken from the standard Cauchy distribution X (i.e., § = 0). then the ‘sturm’
command in Maple V is used to compute the number of roots. The ‘sturm’ is
based on the Sturm’s Theorem for polynomials. The Sturm’s Theorem provides a
way for finding the number of the roots of a polynomial in a given interval. Suppose
that we wish to find the number of roots of a real polynomial f(z) over an interval
I = [a,b], the Sturm chain for f(z) is a sequence of polynomials fo, fi. f2, .. -,
where fo = f, fi = f, and for j > 0, fi = qifis1 — fj+2. that is, —f;12 is the
remainder when f; is divided by f;;;. Finally, we will obtain f,, which is a nonzero
constant. If the number of sign changes of the sequence (fo(a). fi(a),-- -, fs(a)) is
p. and the number of sign changes of the sequence ( fo(d), fi(d),-- -, f.(b)) is ¢, the

Sturm’s Theorem states that the number of real roots over (a.,b) is p — g. After
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Table 3.1: Numbers of Roots Based on 5000 Simulations

Interval Number | Interval | Number | Interval | Number
(-20.0,-15.0) | 228 | (-4.5,-3.5) 79 (4.5, 5.5) 72
(-15.0,-12.3) 177 (-3.5,-2.5) 103 (5.5,6.5) 66
(-12.5,-10.5) 206 (-2.5,-1.3) 205 (6.5.7.5) 74
(-10.5.-9.5) 120 | (-1.5-0.5) | 1018 | (7.5.8.5) 121

(-9.5,-8.3) 119 (-0.5,0.5) 2853 (8.5.9.5) 147
(-8.5,-7.5) 118 | (0.5,1.5) | 979 | (9.5,10.5) 131
(-7.5,-6.5) 70 (1525) | 217 |(105.12.5)] 216
(-6.5,-3.3) 51 ( 2.5,3.3) 101 (12.5,15.0) 172
(-3.3,-4.5) 65 (3.5,4.3) 62 (15.0,20.0) 241

dividing (—20.0,20.0) into 27 intervals, we use the ‘sturm’ command in Maple V to
calculate the number of roots on each interval. The total number of roots in these

intervals for 5000 simulations are shown in the following table.

The corresponding histogram is shown in Figure 3.3. From this histogram,

secondary local maxima can been seen that are close to 9. From Theorem

3.3. the r-th order root intensity A,(6,,...,6,) = f(0,....0:6,,...,6,). where
f(zy . ...z, 64,...,6,) is the density function of the random vector

(_g(elt z)[g,(el’ z)]—lv R _g(ort z)[g'(O,, z)]—l)
where

[ ° r; — 4 2 _
g(6,z) = Z_; (3(+ = ) 0)23)22 (3.29)
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Figure 3.3: Histogram of Root Intensity for a Sample of Size 5 from the Standard

Cauchy Distribution

It is easy to check that

—2né
Elg(8,2)] = = (3.30)
' _ 2n(6% — 4)
Elg(6,2)] = 47 (3.31)
Let r(8.2) = —g(6,x)/g (8. ). then the first order root intensity is:
A(d) = f(0:0) = lim =R <r(6:2) < R) (3.32)

h—0 2h

1
= lim— r(6,z)dz.
h—=0 2k Jir0.2)1<h

Since it is not easy to find the value of the above integration, the Monte-Carlo
method can be used to find the first order root intensity. In order to increase the
efficiency of calculation, a C program was written to implement this method. Based
on 50000 simulations with sample size 5, a rough graph was produced for the first

order root intensity. Since it contained many irregular parts, the kernel method



CHAPTER 3. ROOT INTENSITY OF ESTIMATING FUNCTIONS 50

was used to smooth it. In other words, an approximation was made by using the

kernel estimator:

£(0: 8) de (=8 ”‘)) (3.33)

where the kernel function is

(Lot P+t 2] <1

Kz)={ Lz@—|zl)® l<l|o| <2 (3.34)

‘ 0 lz| > 2

as suggested by Silverman(1978). By taking m = 50000, and width d = 0.50, a
kernel approximation of the first order root intensity for the Cauchy distribution
can be made (see Figure 3.4). By comparing Figure 3.3 with Figure 3.4, we find that
they have the same shape, which suggests that the method is reasonable. While the
Sturm Theorem is only valid for polynomials, the Monte-Carlo and kernel methods

can be used in more general situations.

In order to investigate why the root intensity of the Cauchy distribution appears
as in Figure 3.3 and 3.4, especially the appearance of the bumps, let us decompose
the first root intensity into two parts by Polar representation: upcrossing intensity
and downcrossing intensity (see Figure 3.5 and 3.6), which represent the intensity
for local minima and maxima of the likelihood respectively. From these graphs, the
upcrossing intensity contributes mainly to the bumps. Similarly, a kernel approxi-
mation of the second order root intensity was obtained using the standard bivariate
normal density function h(z,y) as the kernel function (see Figure 3.7). That is, the

kernel approximation is:

£(0,0;6,,6,) = mizm: 0‘ z) rwzd"’)) (3.35)
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Figure 3.4: Kernel Approximation of First Order Root Intensity for a Sample of

Size 5 from the Standard Cauchy Distribution

In order to check the dependence between roots, the value Ay(8,602)—A(6;)A(82)
was plotted as in Figure 3.8. In this case, the function is nonpositive and discern-
ably strictly negative for a number of values of 8, and 6,;. There is a tendency
for the roots to be isolated from each other, which provides a guarantee that for
large samples the roots closest to any y/n—consistent estimator will be uniquely

determined and consistent.

3.5 Discussion

In this chapter, the concept of root intensity and some related results have been
discussed. Theorem 3.3 provides a method to evaluate the root intensity, which
is the foundation of further study on root intensity. It has been seen that the

saddlepoint approximation provides a very good approximation. Laplace formula
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Figure 3.5: Kernel Approximation of Downcrossing Intensity for a Sample of Size

5 from the Standard Cauchy Distribution
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Figure 3.6: Kernel Approximation of Upcrossing Intensity for a Sample of Size 5

from the Standard Cauchy Distribution
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Figure 3.7: Kernel Approximation of Second Order Root Intensity for a Sample of

Size 5 from the Standard Cauchy Distribution

Figure 3.8: A2(6:,02) — Ay(6:)A(82) for Cauchy Score
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is also a very useful method to approximate the first order root intensity. Root
intensity of Cauchy location distribution is studied in detail, which describes the

root distribution for Cauchy location models.



Chapter 4

Root Selection Based on Root

Intensity

4.1 Preliminaries

In this chapter, we consider estimating functions in the form of
G(8) =) _g(6.X:)
=1

where X, --, X, are an i.i.d. sample from f(z,600), 8 € ® C R™. This class of
estimating functions includes all score estimating functions with i.i.d. observations.
We have introduced the concept of root intensity for estimating functions in Chapter
3. It will be seen that the root intensity can provide a new approach to choose the
best root among multiple roots.

We assume that F(g(8,X;)) # 0 for all 8 # 8,. We will show that under certain
regularity conditions, the first order root intensity at the true value for a sample

with size n. A(")(8q), tends to infinity in the order of n™/2, while A{")(8) at any

Q0
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other point tends to 0 exponentially as n approaches infinity. This result underlies

an approach to choose the best root among multiple roots.

However. an immediate question is how to estimate the first order root intensity
based on observations. A simple method is based on the central limit theorem.

According to Small and Yang (1999), the first order root intensity
A(8) = f(0;0) (4.1)

where f(z; 0) is the density function of —G(8)/G (6). In this case, each component
in both G(8) and G’ (8) is the sum of independently and identically distributed ran-
dom variables. The central limit theorem and related limiting distribution theory
imply (Serfling. 1980)

G(8) _ u(9)
G'(8)  (8)

vn( ) = N(0,2(8))

where €2(8) depends on the mean vector (1(8),v(0)) and covariance matrix £(8)
of (G(8),G'(8)). Thus () can be estimated by the corresponding sample mean
and sample variance. Based on the above result, it is reasonable to use a normal
density function to approximate the density function of —~G(8)/G (8). so we may

obtain an approximation of the root intensity.

Alternative methods to estimate the first order root intensity include the Edge-
worth approximation, the general saddlepoint approximation, the bootstrap method
with a kernel approximation. The trimmed method is also used to diminish the
effect of outliers. Once we obtain an estimate of the root intensity, this approach
suggests picking the root with the maximum value of the estimated root intensity
as an estimate of parameter. Simulation results indicate that this is a reasonable

method to choose the best estimator among multiple roots.
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4.2 Asymptotic Properties of Root Intensity

In this section, we will discuss the asymptotic properties of the root intensity of
the estimating function in the form of

G8) =) g(8,X:) (4.2)

=1
where X;,..., X, are a sample from X. We will show that under some regularity
conditions, the root intensity at the true value tends to infinity with rate n™/2 as

the sample size n become large, where m is the dimension of the parameter space.

Based on Theorem 3.3, in order to find the first order root intensity function, we
need the probability density function of —G(0)[0G(8)]"!. For estimating function
(4.2), it is the ratio of two sums of independent and identical random variables in
one dimensional case. In the next subsection, we will discuss this case. In 4.2.2. the

result in the single parameter case will be extended to the multiparameter case.

4.2.1 Single Parameter Case

Geary (1944) has proved the following result when Y is nonnegative. Here we

rewrite it for a more general case, that is, ¥ # 0.

Proposition 4.1. If (X,Y) has a bivariate density function f(z,y) and charac-
teristic function @(¢, s), let the characteristic function of (Xsign(Y'), |Y]) be o(t. s).

We assume that lim, .1 (,;)(t, s) = 0. Then the density function for R = X/Y is:

1 [= Ad(t, s)
fR(r) - % _oo[ aS ]a:—rtdt (4.3)

provided the above integral is absolutely convergent.
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Proof: The density function of R is:
Fa(r) = / F(ry, v)lyldy
= /0 [f(ry,y) + f(—ry, —y)lydy

Let

flz,y) =

otherwise

{ f(z,9) + f(~z.—y) ify>0

which is the density function of (Xsign(Y'),|Y]). Thus

fa(r) = / Fry, y)ydy

= 471.'2 / / B(t, s)e~ tr+vdtds|ydy

= = e ry[ 3(t, s)ye~"*¥ds|dtdy.
4?/ / /

Since lim,_ 400 ¢7>(t, s) = 0, the partial integration of integral gives:

—isy a@(t S) -lys
2“/ &(t.s)y ds —2“/ ds.

Note that

~ +oo

dto)= [ ewixitydy
where

- +m . -

éx(t,y)=/ e f(z,y)dzx
we have

+o0

1 . .
ox(t,y) = 5 é(t,S)e"”’ds

l

(4.3)

(4.6)
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when y < 0, f(x,y) = 0, then cf)x(t,y) = 0, therefore g(t,y) = iyéx(t,y) = 0.

From (4.7),
a- t, +oo ) +00 i
2 = [Tatmeray= [ attyieray (48)
S —~oo 0
Then, from (4.6)
1 +o0 +00 R
far) = g [ [ ettty (49)
4 - JO
1 to 96(t, s
= o) PG et

—0C

Remark 4.1. In order to discuss the asymptotic properties of the first order root
intensity, we hope to find the relationship between the distribution of the ratio and
joint distribution of two random variables. Based on Daniels (1954). consider the

following density function:
1 -
h(z,y) = Eyf(r,y) (4.10)

where n = E#(Y) and f(z.,y) is defined by (4.3). The corresponding characteristic
function:

_ 19é(t,s)

n i0s (4.11)

b(t,s)

Assume that (U, V) has the density function h(z.y), let W = U — rV', then the

density function of W is:

1 +oc
fw(w) = 7 flw+ry, y)ydy. (4.12)
0
So from (4.4) and (4.3), fr(r) = nfw(0). Obviously, the characteristic function of

W

_ 1,04(t,s)

n [ zas ]s=-—rt (413)

dw(t) = ¥(t, —rt)
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Remark 4.2. If Y is positive, then f(z.y) = flz,y), c;(t,s) = ¢(t,s), so the
density function for R = X/Y is:

1 ® 0¢(t,s)
fR(r)—é—E/:m[ 5 Ja=—redt. (4.14)

Now we apply Proposition 4.1 to inquire into the properties of the first order
root intensity. When E(Y’) # 0, without loss of generality, we can assume that
E(Y') > 0, by the strong law of large numbers. T, = 3_I_, Y; > 0if n is large enough.
Let &(t.s) be the characteristic function of (X,Y),and (X;,Y;) (: =1,2,...,n) bea
sample from this distribution. We wish to find an approximation to the distribution

of

R. = ZL"Y_' = Xn (4.15)

where X, and Y, are sample means. Based on the above discussion and the sad-

dlepoint approximation, we have the following result:

Proposition 4.2. Let the cumulant generating function of (X,,Y,) be A (t,s),

then there is tg such that the density function of R, is:

n
fRn (7') - [ZWIX’I'(to, —Tt()
K (to,

—T‘to) 1
e 'R IES)

)]l/2 exp[nK(to, —7to)] (4.16)
x|

where OR'/0u is the derivative with respect to the second variable, and to satisfies

OK (t,~rt) _ -
[——at_]'='° =0 (4.17)
d*K(t, —rt)]

[ a2 =ty > 0.
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Proof: Since the characteristic function of (X,,Y;) is

A ol Sy = (s
%(ts)—[@(n,n)] —exp[nlx(n,n)]
then
donlt.s) _ . (8 sy 2Ry,
s = lexp(n’l\(n’ n )][ Ju ]r:';',u:%'

As with Remark 4.1, we assume that (U,.V,) has a density function given by
Yyfa(z:y)/n, where f.(z.y) is the probability density function of (X,.Y,), and the
corresponding characteristic function is ¥,,(¢, s). For any givenr, let W, = U,—rV,,,
then the characteristic function of W, is

_ 1,06a(t,5)

¢W’n (t) = Iz)n(t’ —T‘t) T][ laS ]s:—rt

where n = E(Y,) = E(Y). The density function of R,, is:

n [*

fr.(r) = 1fw,(0) = on ow, (t)dt (4.18)
1 fF it —irt OGN (T u), _
- 57? — exp[nl\(;’ )][ au ]f:%,u:%"dt
_n fotie . OK (7,u)
— o [ etk (e, ) P ot
— n 1/2 ST OR (to, —rto) 1
- [QWI\"'(to, —rto)] explnR(to, ~rto)]| Ju I+ O(n )

where ¢, satisfies (4.17). In the last equality, we used the saddlepoint approxima-

tion (Daniels, 1954).

Remark 4.3. We may assume that K'(¢, —rt) has only a local minimum. From

(4.17), 1t has been seen that

K(tg, —rto) = ixllf(I\'(t, —rt)).
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When r = 0, K(¢p, —rto) = inf,(K(¢,0)) = inf, AK’x(t). Note that we have the

following useful fact:
Lemma 4.1. If E(X) = 0, then inf, K'x(¢t) =0; if E(X) # 0, then inf, K'x(¢) < 0.

Proof: When E(X) = 0, then A'x(0) = 0 and
Kx(t) = log E(e'*) > E(loge!*) = E(tX) =0

thus inf, A’x(¢) = 0. On the other hand, since Ay (0) = E(X), when E(X) # 0.
R'x(t) is strictly increasing or decreasing locally at 0, there is a point ¢~ in the

neighborhood of 0 such that A'x(¢") < 0, thus inf, A'x(¢) < 0.

From Proposition 4.2, Remark 4.3 and Theorem 3.3, the first order root intensity
A")(6) of the estimating function G(8) = 3 g(8, X;) is the density function of
—G(8)/G’(9) evaluated at 0. Since —G(8)/G’(8) is the ratio of the sums of random
variables, Proposition 4.2 can be applied to this case. That is, the first order root

intensity of G(f) can be expressed as
AM(8) = fr.(0;8) = c/n exp[n irrlf(Kg(t, )1 + 0(%)]

where R, (t,8) is the cumulant generating function of g(4, X). and c is a constant
independent of n. Based on Lemma 4.1, when Eg,[g(X:60)] = 0, inf,[R,(¢,60)] = 0,
and when Ejy,[g(X;8)] # 0, inf,[Ay(¢.8)] < 0. Thus we have the following result:

Theorem 4.1. Let X,---, X, be a sample from X. Assume that

(1) Eg[9(X;0)] # 0 if 8 # 6o; and Eg,[g(X;60)] = O.
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(ii) Eg[g'(X;8)] # 0 for all 6 € O.

Then the first order root intensity A(™)(8) of the estimating function G(#) has the
following properties:
(1)
. AlM(6,)
Y

(i1) For any 6 # 6o, there is a a = a(8) > 0 such that

=c>0.

lim A™(8)e™ = 0.

n-$+o0

In other words, A(")(8) tends to 0 exponentially as n.

4.2.2 Multiparameter Case

In order to obtain an estimate of the first order root intensity, based on theorem 3.3,
we hope to find an estimate for —G(0)[0G(8)]~!. To this end, we need to extend
Geary’s (1944) result to a higher dimension case. To the best of my knowledge,
there is no literature about this. In the following, I will use the properties of Fourier

transformation for a higher dimension to develop a similar result.

In order to state the following result, we need some notations:

(i) If S = (si) and Y = (yu) are two m xm matrix, we define S'Y = S0 ™7 spyu.

(1) Let t = (t1,---.tm)  and © = (r1,-- -, ™),

tiry --- Uirm
t®r=tr1=

tmP1 - tmTm
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(1i1) Let the characteristic function of (z,Y") be ¢(¢, S), that is,

o(t, S) = E(e"(tlz'*’s’y)) = E(e' (X teret ity Tily suiua)

(1v) Denote an operator is defined as

3 ) 2]

381 1 3312 a"lm
92

A= Os2, 9322 ds2m

d 3 )
aaml asmz ISmm

That is,
amé(t. S)

APt S) = Z (—1)7TGr72dm)
Nr2--Im

where (j1j2---Jm) is the permutation of {1,2.---.n} and 7(jij2--"Jm) is

le,-, 382]'2 LR asm]’m

the number of inverse orders in this permutation. Fox example, 7(21) = 1,
7(231) = 2. When m = 2,

3*9(t,S)  B¢(t.S)
05110527 0512052,

Ao(t, S) =

In the following, we will extend Geary’s result to R = Y ~!'& case, where & is the m
dimension random vector, Y = (y,,---,¥,,) is m X m random matrix. This matrix
is also regarded as a m x m dimension vector. In order that Y is invertible, without

loss of generality, we assume that det(Y) > 0.

Proposition 4.3. Assume that for the characteristic function ¢(¢,S)

lim ¢(t,S)=0 kl=1.2,---m

s“-)ioo

and all integrals, derivatives and limits are exchangeable, then the joint density

function for R = Y la is:

1
falr) = G [ A0 S)]s__popdt (419)
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Proof: Assume that the density function of (,Y) is f(z.Y). Then the density

function of R = Y !

fr(r) = / f(Yr,Y)det(Y)dY (4.20)
= (— ! yrm(m+1) / / / &(t, S)e —it'yres’ Y)dtdS]det(Y)dY
2‘1’ Rm? Jpm2 m
= (21~ m(m+1) / / VYT / é(t, S)e™*5 Y det (Y )dS]dtdy
i m Rm
where Q0 = {¥Y € R™ ,det(Y) > 0}. Let
gt.¥) = [ st $)e=S'Y det(Y')dS (4.21)
= (B, 5)e™Y N (1) Iy v Y dS
Rm (r j2--dm}
= Z (_1)f(jsz---jm)/ e—i(S' Y=L sij, vk, )
{itja=-jm} R =m

[/ O(t, S)e™ Thzt mintkinyy; -y dsiy, - dSmj, |dST
where 5 =S5 — {s1j, - -Smjn }- Forl =1,2,---,m, denote
- l R .
Ui(t, 5,) = Ll ch(t, S)e"‘ L k=1 Skjkyklkyljl e ylj,dslj, ... dSlj,

where S; = S — {y1;,. -+, 5, }- By assumptions, we have lim,,; 1o ¥i(E.51) =0
when k£ > [. Using partial integration, we have:
wi(t, S1) / é(t, S)e iy, dsy;,

/' do(t, 5) e~ vy dsyj,

33111

We also note that

le v}
Ua(t, S) = / 1(t, Sy )e 22 Wiy, ds,
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—i oo a"/)l(t~ Sl

) e""'l’.iz Y252 d‘gzj2
~00 382]‘2

2
(—1)2 / a¢ (t’ S) e_i("lil Y1y +82j, y?iz)ds 17 d82j2 .
R

2 asljl 332]'2

Repeat this step. Finally, we obtain:
amo(t, S)

RmM 031]-, .- asm]’m

Um(t, Sm) = (—i)" e Xkm Mibkids, - dspmj,.  (4.22)

Therefore,
g(t,Y) (4.23)
= > (=1 / e~ S Y ~ TRt ki3 ) (£, Sy )d S
Gt ja-im} R =m
. e am(t.S) sy
= (_l)"'/ (_l)f(Jln---Jm) e! dsS

= (i)™ /R Aet, $)e=*S'Y ds.
Since ¢(¢,S) can be written as
&(t, S) = /R ) eSY 3x (¢, Y)dY (4.24)
where
oz (t,Y) = / ) et T f( 2 V)dz.

From (4.21) and (4.24), we have

g(t,Y)
(27)m*det(Y)"

ba(tY) = () / 6(t, S)e SV dS =

Since it is assumed that P{det(Y) > 0} = 1, when Y € Q°, f(z,Y) = 0, then
oz (t.Y) =0, therefore g(t,Y) = (27:)"‘2det(Y)¢z(t, Y) =0. From (4.23),

ym

(2m)m

im

Ad(t, S) = / gt V)eSYdy = / gt Y)eESYdY,  (4.25)
Rm? (27)™" Jo
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Then,

fr(r) = (S=)mtm+v / / g(t,Y)e-t Y Taydt (4.26)
27? m JO

— (é}:)m(mi—l)/ /g(t’};)e—i(t@f)')’d}l-dt
" m Q
1

= (2ﬁz)m /l;m[l\é(t. S)]5=—t®zdt'

This completes the proof of Proposition 4.2.

Lemma 4.2. Assume that the density function and characteristic function of
(z.Y) are f(z,Y") and &(t, S) respectively, and (u, V) has density function:
l - - - -
h(z,Y) = Sdet(Y)f(z.Y) if det(Y) >0
0 otherwise

where n = Ey(det(Y")). Then the characteristic function of (u, V) is:
(=)™
n

W(t.S) = Aé(t, S) (4.27)

For any given r. let w = u — Vr, then the density function of R = Y~l&, fa(r) =
nfw(0), where fi(w) is the density function of w.
Proof: It is obvious that
AG(t,S) = AE e T+ (4.28)
= A f(2,Y)et B+ V) gp gy

Rm(m+l)
= im/ f(z,Y)det(Y)e't Z+SV gz dy
Rm(m+l)
= imnEh[ei(t'z+S’Y)]
= Mpu(t, S).
Thus (4.27) is obtained. Since the density function of w = u — Vr is:

fiv(w) = / L hw+ Ve V)V = % 2w YrY)deu(Y)dY  (429)
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Therefore from (4.20), fr(r) = nfw(0).

Now, we consider a sample (&,,Y}) from (&,Y’), for which E(det(Y)) > 0. Let

Ra= (3 %)Y 2 (4.30)
i=1 =1

Since E(det(Y')) > 0, when n is large enough, det(3_7_ ¥.) > 0.

Proposition 4.4. Let the cumulant generating function of (z,Y) be K(t,S),

then the density function of R, has the following approximation:

_ _Tl— %exp[nl\’(to, —to ® f)]!\o[\’(to, —to @ f) l
Jra(r) = (2’-" [det(Ke,e;(f0, —to @ f))lé- 1+ 0 n ) (431

where ¢, satisfies

VRt —t®r)lg, =0 (4.32)
and
) )
3u“ aulz aulm
8K O8K_ .. 9K
J\OK—(T, U) — Bua Au22 Au2m
aK_ 8K . _dK
auml aum2 aumm
Proof: We use &, = % A T Y, = % o, Yi to substitute £ and Y in Lemma

4.2 respectively. All corresponding functions and random variables will be denoted

by the same notation with subscript n. In this case, the characteristic function of

(Zn, Yn) 1s:

3|

on(t,5) = [6(2, 2))" = explni (L, ).
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For any given r, the w, corresponding to w in Lemma 4.2 has characteristic

function:

ow,(t) = En, [et (u,.—v,,r,.)] = Ep, [et u,.—(tsr)rvn] = (_—;)_.A[én(t, S)]5=_t®,.

where n = E(det(Y,)) = E(det(Y)). In fact, let y (I = 1,2,...,n) be a sample

from y;;.
_ ( 1 (J1---Jm) n ! ! I
Een(a) = B Y CHTTI S @y (30 )
{n-Jjm} Lh=1 2=1 {m=1
° 1) TGiam) I
- Y B Y BTy

h=1,l=1,-Im=1 {Jl ]m}
n

= Z n—mE(det(Y)) = E(det(Y)).

lh=1,2=1,---Im=1

So the density function of R, is:

Fra(r) = nfia(0) = G [ o (t1at (4:33)
N
= @) S MOl Nse—tordt
1 it —it@r
= @) /Rm exp[nI\(; NAK (7, U)] =%.U=—"tn3"dt
where A"A'(7,U) = Z{j‘ _._J-m}(—l)"(-"l "I L. i R (T.U), where
OK OK oK
U
L BT U) = = Gaan " Bum
N 1( I?*K oK IK oK 17]% O*K )
n ' Quyj Ouaz, Quz;y  Oupmy,, Quij,  Oum-2)j,_; Oim—1)jm_, Omijn
4 4 O"K
n"‘“‘au,jl <o au,,.jm )

Therefore, A*R(7.U) can be written as

NR(r,U) = AoK(7,U) + %AJ\'(T, U).
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Thus. from Bruijn (1981) and Bleistein (1975),

fr.(r) = (2';)," / exp[nK(t.—t Q@ r]A"K(t,—t @ r)dt
i Cm
= (2ri)m / exp(nK(t,—t @ r]AoA(t. -t @ r)dt
I3 cm
m—1
+ (r;-),,. / exp[nK (¢, -t @ r]A A (t,—t @ r)dt
7 cm

n™  exp[nK(ts,—t, @r)] 27 m .
= Tl—)2 J\oI\ t . —t or
(27 )™ Idet([{,_.,j(to,-to®r))|5( n *1 (to ~to @)

1 ) 1
+—A K (o, —to @) + O(=)]
n n

— (l)v_;__ exp[nK(to, —to @ f)]AQI\’(to, —to ® 1')
27 |det(I\'¢‘.¢j(t0, —to (059) 1'))":T

[1+0(2)]
where C = {z7;z € R}. This completes our proof.
Similar to the single parameter case, it has been seen that
K(to,—to2r) = irtlf(K(t, —-t2r)).
When r = 0. A(to, —to @ ) = infg(K(£,0)) = infy Kz (t), Note that the following

important fact:

Lemma 4.4. If E(z) = 0, then infg Kz (t) =0; If E(z) # 0, then infg Az (t) < 0.

Proof: When E(z) = 0, then A'z(0) =0 and
Kz(t) =log E(et %) > E(loget ©) = E(t'z) = 0

therefore, infg A'z(t) = 0. On the other hand, since 8h'z(0)/8t; = E(z;). when
E(z) # 0, there is a point ¢* in the neighborhood of 0 such that Az(¢") < 0, so
infg Kg(t) < 0.
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From Proposition 4.2, Lemma 4.4 and Theorem 3.3, based on the similar argu-

ments derived to Theorem 4.1, we can obtain the following results:

Theorem 4.2. Let X, --, X, be the sample from X. Assume that

(i) Eelg(8,X)] # 0if 6 # 80; and Eg_[g(8o, X)] = 0;

(i) Eg [Vg(X;8)] # 0 for all 6.

Then the first order root intensity A(™(8) of the estimating function G(8) =

> g(8,X;) has the following properties:

(i
A)(8o)

n—+oo nm/2

=c>0.

(ii) For any 6 # 89, A(™(8) tends to 0 exponentially as n.

Example 4.1: We can illustrate this result using the following simple estimating

functions:
n
gi(p.0?) = ZX.- —np =0
=]
9r(m.0%) = )X} —n(p* +0%) =0
=1
where X, ---, X, is a sample from standard normal distribution. By solving these
estimating functions, we obtained i = X,, 02 = m(Xi — Xa)?/n = S2. Since

X, and S? are independent, and S? ~ y2_,, we can easily obtain the joint density
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function for ([1,0:2), that is, the first order root intensity for the above estimating

functions is:

I N _ng? n(ncrﬁz)";l“e‘mz’2
A(ﬂ,d) = 5-¢ °? n—1\g2=l
2m [(23)2z
n n n=3 n

)ile=3(02) e 1o

_ng? /n
—e 2 _(
27 2y n—3
In the above, we have used the Stirling formula for I'( "2;') Note that

lim ( " =é
n—oo n —
then we have
. A(0,1) 1
Li - = .
n—?olo n 2\/57.-

Note that f(z) = ze'~* < 1 for all positive z # 1, when o2 # 1, (¢2e!~72)"/2 tends
to 0 exponentially. Therefore, the root intensity at any point except for (0. 1) tends

to 0 exponentially as n approaches infinity.

4.3 Estimation Methods for Root Intensity

In this section, we will discuss some practical methods to estimate the root intensity
functions. In order to present these methods more clearly, we only describe them

in the single parameter case. However, all these methods can be easily extended

into the multiparameter case.

4.3.1 Normal Approximation

We have shown in Chapter 3 that the first order root intensity for one parameter 8
1s:

A(8) = £(0:6) (4.34)



CHAPTER 4. ROOT SELECTION BASED ON ROOT INTENSITY 73
where f(x;0) is the density function of —G(8)/G’(8). Since
G(6) = ‘:9(0,-’1’.-)
i=1
and
G(6) = Z g'(6.X:)
=1

G(8) and G'(0) are the sums of independently and identically distributed random
variables. Assume that E[g(8)] = u;(8) and E[g'(8)] = u2(9), and

a}0)  p(8)ou(8)ox(6) ) |

Cov(g(),g'(8)) = =(8) =
p(8)o1(8)o2(8) o(6)

To continue our discussion, we need the following result (Serfling, 1980):

Theorem 4.3. Suppose that X, is a k-dimensional random vector and /n( X, — )
has multinormal limiting distribution with mean 0 and covariance matrix ¥. Let

g(z) be a differentiable vector valued function, then
vn[g(X,) — g(u)] - N(0, DTD') (4.35)

in distribution, where D = (8¢;/9z;)mxi at p.

Thus from the central limit theorem and Theorem 4.3. we have

~G(0) _ m(6) i
Vel ~ g = NO.w*0) (4.36)

in distribution. where

oi(8) _ 2p1(8)p(6)01(8)a2(8) | pi(6)o3(8)

() =
0= 2@ 2(6) 3(6)
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That is. —Gn(0)/G, (8) are distributed with N(—p,(8)/u2(8),w?(8)) asymptoti-
cally. In practice, it is reasonable to use the corresponding normal density function

to approximate the density function of —G,(6)/G.(6).

For example. if X, X3, --, X, has exponential distribution with mean 1, then

— Z?:l ‘Yi —-n
T, = o

has a standard normal distribution asymptotically. By a direct calculation and use

of Stirling formula, the probability density function for T}, is:

VAVt + aeVRe

fr.(t) = T(n)
~ _1__(1 + L)ne—\/ﬁt
V2r vn
Since
n log(1l + %) — /nt
t t2 1
= n(ﬁ ~ 5. +0(\—/—;) - Vnt
_ t? 1
we have

-2
2

e

1
t) —
an( ) \/2?
which is the probability density function of the standard normal distribution.

According to this idea, the first order root intensity can be approximated by

the normal density at zero:

/N nuj(8)
f2(0:8) = s x5 ey ey

As w(0) depends only on the means and covariance matrix of (g(8), g'(8)), we may

use the corresponding sample means and sample variances to estimate u,(8), p(8)
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and w(@). For each # in the parameter space,

= ?:l g(l‘.,a)

21(8) ?
f2(8) = E?=ns; (z:,6)

n ‘ 2
i) = i=1[grfx.,6)] — [(8))%

n B . 2
o) = 2=l Ol oy
5(9) = 2mim[9(zi:8)g (i 0)] — miy (6)z2(6)
p no:l(o)ég(g) .

When there are outliers, we use the trimmed method described in Section 4.3.5 for

the above estimates. Then the corresponding estimate of «?(#) is:

2(6) = F1O) _ 2(O)p0)5:(8)5:(6) | (9)53(6)
“O=E® a6 me

Thus we can obtain an estimate of f,(0,6):

v ni(6) ] _

fn(0.6) = = Gy exp ["W

It is reasonable to use fn(O;G) as an estimate of the first order root intensity. The
simulations in the next section show that this is a useful and simple method. It is

straightforward to extend the above method to a multiparameter case.

4.3.2 Edgeworth Approximations

An alternative approximation is the Edgeworth approximation (McCullagh 1987.
Barndorff-Nielsen and Cox, 1979.1989, 1994) which can give a more accurate ap-
proximation. The Edgeworth expansion for a density function of random vector

X is the normal density, which has the same mean vector and covariance matrix
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as X, multiplied by a sum of correction terms whose coefficients are simple com-
binations of cumulants of X. The normal approximation is a special Edgeworth
approximation which only takes the leading term. Let us consider
Ga(8) _ mi(6)
vn (c.-:,(a) uz(o))
w(6)

which is a nonlinear function of G,.(#) and G, (8). We can also get a form of stochas-

Wa.(8) = (4.37)

tic expansion of a random variable whose distribution has an Edgeworth expansion
with coefficients determined from the standard expansions for the cumulants of
Gn(6) and G, (8) (see Barndorff-Nielsen and Cox, 1989). This is similar to Gen-
eral Saddlepoint Approzimations in the next subsection. Thus we skip the details
and leave them to the next subsection. However, the Edgeworth approximation is
less accurate than the saddlepoint approximation, particularly in the far tails of
the distribution. The saddlepoint approximation is often sufficiently accurate even
when the sample size is small (see Section 3.3.2). It also preserves high relative ac-
curacy over all possible value. However, unlike the saddlepoint approximation, the

Edgeworth series can be easily computed without knowing the generating function.

4.3.3 General Saddlepoint Approximations

The normal approximation is a simple method, however it may be less accurate than
the general saddlepoint approximation. The saddlepoint approximation introduced
by Daniels (1954) provides a better approximation than the normal approximation
for the distribution of a statistic. Reid (1988) gave a good review of the saddlepoint
approximation. However, it was basically proposed as a method of approximating
the density of a sum of independently and identically distributed random variables
with a known cumulant generating function. Therefore it cannot directly be ap-

plied to the ratio of two sums of independently and identically distributed random
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variables. Easton and Ronchetti (1986) proposed the general saddlepoint approx-
imation which can be used for statistics in multivariate analysis expressed as the
smooth functions of a sum of random vectors. This method uses the approximate

cumulant generating function based on the first four cumulants of a statistic.

The approximate cumulant generating function of W, in (4.37) is:

ky o ks ki,
K.(t) = Lt+-2—'t +3't +4,t
1

1 1
= 3t°+ —(alt + gaat®) + ( axt? + —aut*) + o(n=%)

N 24

where
" )
a) = ——3—(Ho1H11 — K1oH02
#31“-’
— 1 2 2 _ 4 3 2 2 3
a = # o2 (0#011111 Ho1H1oMo3 ~— HorH20 + Ipgy Hozi20 + 2pg  K10M11
o1
+8#10/1(2)2 - #czullfoﬂoz - 2#31#21 — 16p01 104024211 + 4/131,1110#12)
1 3 3 5
az = ] (3#oxﬂlo#12 + #01#30 + 12#01ﬂ10ﬂu o1 0H03 — 3tig H21 10
0%
18#01#10#02#11 - 6#01#20#11 + 6#31/‘101102#20 + 6#31.“:1;0#(2)2)
a4 = ulg 3 (24ﬂ01l‘10P02#03 + 288#01/‘10#11#02 - 12.“01#10#11#20
o1%

+48ug, niotoattzr — 60ug, piopozitis + 84ud, 1iopiipiz — 36pd, u3omr1 o3
—348pg, 1iopT1Hoz + 168ug, 1op11ozit20 — 60uS triopiipar — 1263 om0z
+6#81ﬂf0#02#20 + 12#81#?0/‘?1 - 72#51#?0/—‘32 + 120#(5)1#10#:1‘1

+3/‘31ﬂ‘1‘0ﬂ(2)2 — Ho1HioHos — 6#81#%()#22 + 4/‘81#?01113 - 60#81#?1/‘20

—84p0) pioudaH20 — HoyHao + 12p8 1130 + 4pfyptiopa

~1245, prozpize + 12pg1120p21 + 3§y plo — 1208, tiopoztizo

—2446\ proptaoprz + 1263 p2opaopiao).
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These values are computed by using Maple V. Once we obtain A,(t), then the

general saddlepoint approximation to the density of W, is:

F () = [t 112 o £ (40) — to
f,,(.'lt) = [27‘_11,',‘,“0)] exp{l\n(to) to } (438)

where ¢, is determined as a solution of the equation K,(¢) = z. Thus the general
saddlepoint approximation to the density of G,(8)/G., () can be derived straight-
forward. Though it can give a more approximate estimate, computation seems very

tedious for our purpose.

4.3.4 Bootstrap Method

For a given sample #, we may use the nonparametric or parametric bootstrap

method to produce m independent bootstrap samples z*!, 22, - - -, 2*™. Our goal is
to estimate the value at zero of the density function of R.(8.z) = ~G,.(8.z)/G. (8. z).
Based on the m samples, we can calculate r; = R,(8.2), i = 1.2.---.,m. Thus

we may use
1 m

where d is bandwidth and A’(t) is a kernel function. Usually. the kernel A'(t) is a
symmetric probability density function. The common kernels for one dimensional
case are Silverman kernel (see Chapter 2), Epanechnikov, Biweight, Triangular,

Gaussian (Silverman, 1986, p43). A special case is the Rectangular kernel:
Liifil<1
K@y=] z Tl (4.40)
0 otherwise

which gives the Obsenblatt estimator (or naive estimator). That is,

A(9) = no. of ry,ry, -,y falling in (—d, d)]. (4.41)

2md[
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4.3.5 Trimmed Method

In order to eliminate or diminish the effect of outliers. the trimmed method should
be used. That is, for a given sample, we consider the corresponding order statistic:
oM, 2@ ... (™) then delete several largest values or smallest values. For sym-
metric case, we delete the several largest values and smallest values, so we only

consider the following sample,

D Z(k42) L (n—k=1) o (n—k)

then apply the above methods to this new sample.

4.3.6 Comments

In this section, we have discussed several methods to estimate the first order root
intensity. The normal approximation is an easy method. Although it may give
less accurate estimate, it can give the result much faster. Simulation results (see
Section 5.3) also suggest that it is a good practical method. The generalized saddle-
point method and bootstrap method need more complex algebraic and numerical
calculations, thus they are less attractive. For an m dimensional parameter space,
they may involve a very complex calculation, even though we use the multi-normal
approximation, since we have to calculate all the sample means, variance and co-
variances of g(0) and 9g(@) and perform the corresponding algebraic calculation
. In this case, the bootstrap method may give a good alternative. The bootstrap
method may need more computation time, which is not a problem in this computer

stage, however we can save a lot of laborious work.

Basically, the estimate of the first order root intensity is based on the probability

density estimation. All methods of the probability density estimation can be applied
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to this case. Tapia and Thompson (1978) and Silverman (1986) discussed many
different methods of the probability density estimation in their books. Besides
the kernel method mentioned in Section 4.3.4, other methods include the nearest
neighbour method, the variable kernel methods, the orthogonal series estimators,

more generally, the general weight function estimator.

In order to avoid repetition, we will present simulation results about Cauchy
location model in Chapter 5. In Section 5.3, we will compare four different ap-
proaches based on sample: likelihood, median, root intensity, shifted information
methods and the fifth method which is based on the known true value. It will be
shown that these methods can make the same choice with high probability. The
likelihood method usually gives a consistent estimator, however it can only be ap-
plied to the score estimating functions. Thus we advocate the root intensity and
the shifted information methods. They can be used in a far more larger class of

estimating functions than the score estimating functions.

4.4 Examples

4.4.1 Regression with Measurement Error

Stefanski and Carroll (1987) considered the generalized linear models in which the
covariates cannot be observed directly, but can only be measured with a certain
amount of measurement error. Multiple root problem arises in this problem. A
special case is the logistic regression with errors in covariates. Suppose that Y; is a
binary response with p; = P(Y; = 1), we use a logistic model to fit it. That is.

Di

=a +51$;.
1 —pi

log
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Suppose that the covariates z; are not observed directly, but only indirectly through
zi = I; + €;, where the measurement error ¢; is assumed to be normally distributed
with mean zero and covariance matrix Q. Stefanski and Carroll (1987) obtained
the conditional score when conditioning on the complete sufficient statistic for the
nuisance parameters r;, namely, A; = z; + y;Q3. Hanfelt and Liang (1995) modified

this conditional score by building the following estimating function:
t
9@ =3 (1 d) (wi—u) (4.42)

where

e _ _expla+(Ai—- 108) 8}
A +exp{a + (4; — 303)'8}

and d; = A; + (uf — 1)Q23. Wang and Small (1998) used a method based on local

likelihood function to discuss its multiple root problem. Consider the case with
only two parameters a and 3. we generate a sample with size n = 100 with z; ~
N(0.0.8%) and ¢ ~ N(0,(0.8/3)%), and the true values of parameters is a = —1.4,
3 = 14. We will find two roots using Matlab: (—1.05.2.33) and (—0.96.8.83).
In this case, there are only two parameters, the normal approximation is a good
choice since its simplicity. Based on the normal approximation, the root intensity
at (—1.05,2.33) is 0.7531, the root intensity at (—0.96, 8.83) is 0.3645. So we should
choose (—1.05,2.33), which is closer to the true value (—1.4,1.4). It seems that it is
a right choice. At the true value, the root intensity is 1.8229, which is much larger

than the value at other points. This supports the conclusion of Theorem 4.2.

4.4.2 Mixture Models

In this subsection, we apply our method to a practical example (see McLachlan and

Basford, 1987). We obtain this data set from Professor McLachlan. This is a data
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Figure 4.1: Data from Habbema, Hermans and van den Broek (1974)

set consisting only of two bivariate populations. This data set was the same as the
one studied in Habbema, Hermans and van den Broek (1974). The question is how
to discriminate between normal women and haemophilia A carriers based on two
variables. r; = log,o(AHF activity) and z, = log,,(AHF-like antigen). The avail-
able data set contains 30 observations on known noncarriers and 45 observations
on known obligatory carriers. We will denote these observations as ri; (1 = 1,2;
J = 1l....,n;). The data set is plotted in Figure (4.1). Let F, and F, be the
populations of noncarriers and carriers respectively. It is assumed that the popu-
lations have a bivariate normal with means pu; = (11, 12) and g, = (g21, p22)

respectively and common covariance matrix

2

o po o

1 102
0=

2
PO 102 ag;.

Basford and McLachlan(1985) used a mixture model of a bivariate normal model

to fit these 75 observations. That is, these observations are considered to be taken
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Table 4.1: Estimates Under Homoscedasticity

P H11 Hi2 K21 B22 T
0.716 -0.206 -0.080 -0.321 0.079 0.0265 0 0.0171 75.00 0.0251
0.528 -0.121 -0.019 -0.370 -0.052 0.0137 0.5760 0.0220 73.49 0.2486
0.681 -0.153 0.012 -0.420 -0.135 0.0138 0.2252 0.0175 73.29 0.3094

LI Rl M)

p o3 L RI
)

from a mixture of F} and F, with unknown proportions p and 1 — p. Thus the
corresponding score estimating functions give three roots which are shown in Ta-
ble 4.1. Since there are 8 parameters, the score estimating equation G(8) = 0
consists of 8 estimating equations. Then dG(8) is a 8 by 8 matrix, which has 36
different components since it is symmetric. Suppose that we use the normal ap-
proximation, we need to compute 44 different sample means, variances and their
correlations. This is computationally burdensome. The same problem occurs for the
Edgeworth approximation and the generalized saddlepoint approximation. Based
on the bootstrap method, we got the estimated root intensity function shown in
the last column in Table 4.1. We use 1000 bootstrap resamplings and the naive
estimator to get the above estimations. According to these values. the first local
maximum with the largest loglikelihood value is not a good choice. This agrees
with Basford and McLachlan (1983). However, the root intensity estimation based
on the bootstrap method suggests that the third root rather than the second one
(Basford and McLachlan, 1983) is the best choice.
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4.5 Discussion

This chapter is an important one in this thesis. We have developed the asymptotic
result for the root intensity in this chapter. It says that under some regularity
conditions, the first order root intensity at the true value tends to infinity for large
samples, while its value at other point tends to zero quickly. This provides a basis
for root selection of estimating functions. In Section 4.3, many different estimation
methods for the root intensity were discussed. Two practical examples were also
presented in Section 4.4. However, these theoretical results in this chapter are based
on the estimating functions in the form of (4.2). It is of interest to investigate how
to extend it to more general estimating functions such as martingale estimating

functions. This is a future research topic.



Chapter 5

The Shifted Information Criterion

5.1 Preliminaries

In this chapter, an alternative criterion is proposed to choose among the multiple
roots of estimating functions for transformation models. This information-based
criterion is simple in practice. The typical example of multiple roots is the Cauchy
location model. For this model, we will investigate and compare different ap-

proaches to choose the best root among multiple roots.
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5.2 Single Parameter Location Models

5.2.1 Shifted Information Functions

Let X, X,,---, X, be independently and identically distributed with location model

f(x —6p). The score estimating function is:
S gXi—-8)=0 (5.1)
i=1

where g(z) = —f'(z)/ f(z).
For the true value g, we define the shifted information function as

_ [Eeg (X - 0)]

[/ = 5.
I( 05 0) Evoogz(‘xr _ 0) (0 2)
which is Godambe information at 6, when 8 = 8, (see Godambe, 1960).
Assume that for all t € R,
flz+t)f (x) -0 (5.3)

lim
x| —+o0 f(z)
which is satisfied by regular distributions including Cauchy distribution and normal

distribution. In general, when the function f(z) is in the form of:

f(z) ~ p(z)exp(—kz®) as |z] = oo

f'(z) ~ q(z) exp(~kz®) as |z] —+ o0

where a > 0. p(z) ~ 27, g¢(z) ~ 27, —00 < 8,7 < o0, 0or a = 0, v < 0, then the
equation (5.3) holds. The normal distribution is in the first case, but the Cauchy
distribution is in the second case. There are no exceptions to (5.3) among distri-

butions commonly used in statistical practice.
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Proposition 5.1: Under condition (5.3), I(6q,60) > I(6o,8) for all 4.

Proof: Since
’ +m r
Eoo(g'(X — 6)) = / J'(z — ) f(z — bo)dz

+oc0
- [ i@ty t=6-6

@) e [ |
S e / 9ty + t)dy

> fy)f(y+ t), dy
—0 f(y)

and
+o0
Eo,g*(X —8) = / 7*(z — 0)f(z — Bo)dz

_ +°°f(y)2 —_a_
—/ EDpsy+ndy t=0-6

In order to prove that (8o, 60) > I(6,,8). it is sufficient to prove that

K (60.0) = [Eg,g (X —60)]*E6,g*(X — 8) — [Esog (X — 8)]2Eg,g*(X — 6o)

~ (f(y) . [ £
= [/w Fly ]/x(f(y))f(“”"y

+oo
[/ f(yf(y+t) ]2/- (ffg))) dy

2

Using the Cauchy-Schwartz inequality,

fyf (y+t)
[/ )
™ FWFf v+ 1) -
= U Fofwen @

), REACEDI
< /_m(f( i f+dy [y

R (F'@)?
‘/ (g flw+Ddy /_w ) Y
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Thus R'(60,8) > 0, that is, I(8o,8) > I(60,0). This completes our proof.

To use this inequality as a method for a root selection, we need to find an
estimate of the shifted information function I(8q,8), where 6, is the true value
of the parameter. Naturally, we can use the sample mean as an estimate of the

corresponding mean, that is,

ooy (i g (zi — ) -
BRSSP (54

can be regarded as an estimate of the shifted information function. Based on the

above result, we choose the root which maximizes the estimated shifted informa-
tion function as the estimator of the location parameter §. It will be shown that
this method can be extended to a higher dimension and more general estimating

functions.

5.2.2 General Estimating Functions

In the last section. we have shown that the shifted information is maximized when
6 = 6o. In the following, we will argue that this idea can be extended to more
general estimating functions, though it lacks the rigorous proof. Let g(z) be a
function with a continuous derivative, which satisfies conditions (A), (B) and (C)

in Chapter 6. Furthermore, we assume that g(z) satisfies

g(z) _
i g2y 0 (

(@]
O
g

then

[J72 g'(z = 8) f(z — 6o)dz]?
1= g%z — 0)f(z — bo)dz

([22 g'(z + t) f(z)dz]?

T2 gz +t) f(z)dz

-0

1(60,8) =
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FR(LEH f(2)dz [+ (g(z + 1)) f(z)da

B o gtz + 1) f(z)dz

-0

+o0 ./ T
= [ &

Under suitable regularity conditions, we can exchange the order of integration and

limit, thus,

+oo S
. . g(z+t)
li I(65,0) < 1i —_—
o 10, 8) < lim [ (T

)2 f(z)dz = 0.

Assumption (5.5) implies the above result. Under conditions (A), (B) and (C) in
Chapter 6, the probability that G,(8) = 0 has a unique root on any finite interval
approaches to 1 when the sample size is large. Furthermore, this root is close to the
true value with high probability. Therefore, when G,(6) = 0 has multiple roots,
say bo. é,, .-+, Oy, all roots but one (éo) lie outside the given finite interval. When
the finite interval is chosen to be wide enough, based on the above discussion, the
corresponding shifted information [ (00,5;)(i = 1,---,k) is small comparing with

1(6,. éo), which is closer to I(6p,68,). Thus it is reasonable to choose the root which

has the largest estimated shifted information as the estimator of parameter.

5.3 Invariant Information Functions

Assume that the random variable X has the probability density function f(z;4).
Under the reparameterization § = h(a), where k() is a strictly monotone function
with a continuous derivative, the probability density function becomes fi(z;a) =

f(z:h(a)), and the corresponding score function is

nlz:a) = aln_g,i:r;a)
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Define the information function as :

a 1
{an [Ea(mgh(x; Q))]}2

Ea,[(gn(z; a))?]

In(ag,a) =

for any fixed ag. Then we have the following result.

Proposition 5.2. The information function defined in (5.6) is independent of

h in the sense that In(h~!(65),R~1(#)) is independent of A.

Proof: Since

Oln fa(z;a) Oln f(z;h(a))
gn(zia) = da - da
In f(z;h 0 .
T fleshlal 22 — k(agta: h(e)

where g(r; ) is the score function corresponding to f(z;8), that is,

;6
9(1;9)=————81n£§f’ )
thus
_a __1 ; _ dg(z; h(a)) oy dg(z; h(a))
dah(a) T = =5 =hle) =7
9,1 ' dg(z; h
{an[aa(h,(a)gh(lf;a))]}2 = (R'(0))*[Eay( g(xéo(a)))]z

7 I; h
= (el [ 22D fa: ) daf
R

= W) D e bo)da’

= (K (@) (B (2L
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where = h(a), 6o = h(ag). Similarly,
Eoo[(gn(z; @))?] = (R (a))? Eg[(9(x;6))?]

therefore

(Ea (22502

=1 00’
Eq,[(9(z;6))?] (%:6)

[h(ao, Q) =

which is independent of A.

Remarks:

(1) Based on Proposition 3.1, for any distribution which can be transformed to
a location model, we can define its information function as in (5.6). Further-

more, we can conclude that

In(ao, ag) > In(ag, ) for all o

(2) In particular, for the scale model:
1 T
fo(z;a) = —fo(=) >0
a’ a
where a > 0. Let a = €, £ = €Y, it can be transformed into
fi(y; 8) = fo(e*™%)ev™? YER

when we define

Feolp(00u(X: )

Eq, [932("(; C‘)]

I,(ag,a) =

where
. _dlnfi(z:a)
gu(zi0) = T2
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then
I, (o, 09) > L(ap, ) a>0

holds. The following example demonstrates this result.

Example 5.1. Consider the exponential distribution which has the probability
density function:

F4

flz,a) = l'-e_c z>0
a

where a > 0. Assume the true value ag = 1. In this case, the score estimating
function is

_ Oln f(z,a) _T—a

glz,a) = =221 =
thus
. a* —2a+2
an [g2(_x’ C!)] = a-&

1
Fool o (ag(z: )] = —

Then
1 1

I(ao.a)=02_20+2 - 1+ (a—-1)2

which is maximized at the true value ag = 1.

5.4 Multiparameter Location Models

In the following, I will discuss the multiparameter location models. Assume that

T,,---,&, are identically and independently m-dimensional random vectors from
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f(x — 0y). The estimating functions are

gi1(z — 8o)
Gz.0)= | % - %) 1 _y (5.7)
gm(z —00)

In the following discussion. assume that the following condition is satisfied:
(A) [zl}m f(+t)g(x) =0 foranyt

Let us denote

.4(00,0) = EOO(G) = (aij(007 0))mxm

where
dgi(z — 6 dgi(z — 0
0:;(60.8) = Ego[$] --/ —g(_az—)f(z—oo)dz
7 m J
- _/ 99(2) ¢ 4 t)dw  t=8— 8
g +t
- [ s,
m 7
vand
B(80.8) = Eg (GG') = (5i;(60,8))mxm
where

b:j(60.0) = Eg [g:(z — 6)g;(z —9)]
- [ s@u@fe+tis t=0-0,
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Also denote

[ af@), 1
o= f (o e

By using Cauchy-Schwartz inequality, under condition (A), we have

(0(00.0)7 = | ai()HZ Naay? (58)
If(e+¢), 1
< [ a@ferom [ ZEI0p— e

= b,','(oo. O)CJ'.

As an extension of the shifted information function for the single parameter

case, we define the shifted information function for multiparameter as

dgi(z — 8). .,
A T U O
(Cr(Ba, iz — O} (L0, 5(60,0)F

When the estimating functions are the score estimating functions, that is,

1(60,0) = (3.9)

_Olnf(z—8) df(z—6) 1
gz —8) = —Fp— = 36; f(z—0)

thus a,i(0o,00) = —b;i(00,00) = —c;,fori1 =1,2,---,m.

Proposition 5.3. Under conditions (A), for the score estimating functions,

1(60.60) > 1(6,,0).

By (5.8), we have

iafi(oo’a) < Zm:b-'i(oo, 0)c: < [Zb (6.6 ZC?]%-

=1 =1 =1
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Thus.
Za,,(oo,a)][Zb (80.80)]?
< [Zb (80,0))* z_j [Zb (80,80)]*
= [Zb,,(ao,o)] [ia"(oo 80)]* [Zl a%(8o,00)]%
= Zb {80,0)]* [; 2(80.60)]-
Therefore,

llu

[, %(80,0)]7 — [z:n_lb?.(ooﬁo)]
That is, I(89,0) < I(60,80) for all 6.

2,0%(00,8) _ ST, a%(60,60)

Similar to the single parameter case, we can extend the shift information func-
tion (35.9) to multiparameter transformation models.
5.5 Simulation Results

Let us consider the Cauchy location model. In this case, the score estimating

equation is

n Ty — 6 -
G(8.z) = Z_: I‘i'((x——;_)z (5.10)

We will use five different methods to choose the best root from multiple roots:

e Likelihood method: Choose the root which has the maximum value of

likelihood function as the estimator of parameter.



CHAPTER 5. THE SHIFTED INFORMATION CRITERION 96

e Median method: Choose the root which is the closest to sample median.

¢ Root intensity method: Choose the root which has the maximum value of
estimated root intensity function. In order to get a more robust estimation,
we use the trimmed method. Here we discard the observation which has the
largest absolute value, then use the normal approximation method discussed

in Section 4.3.1 to estimate the root intensity function.

e Shifted information method: Choose the root which has the maximum
value of estimated shifted information function. For the same reason, we
discard the observation which has the largest absolute value, then use the

method discussed in Section 3.2 to estimate the shifted information.

e True value method: The above four methods are based only on the sample.
In this simulation, we have known that the true value of parameter is zero.
Thus we choose the root which is closest to the true value as the estimate of
the parameter. Then we will compare this estimate with the choices based

on the other four methods.

We use Splus to implement the simulation for the standard Cauchy distribution. In
each trial, Splus generates a sample with size 10, the C program calculates all roots
of the corresponding score estimating equation (5.10) using the bisection method,
then we get the corresponding values of the likelihood function, the distances to the
sample median, the distance to the true value, the values of the estimated root in-
tensity function, the values of the estimated shifted information function. In order
to get a more robust estimation, we use the trimmed method for estimations of the
root intensity function and the shifted information function. Here we discard the
observation which has the largest absolute value. Then use the normal approxima-

tion method discussed in subsection 4.3.1 to estimate the root intensity function.
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The estimated shifted information function can also be obtained by using sample
mean to estimate the corresponding mean. Finally, we use the above methods to

choose the best root.

Based on 2000 trials, there are at least two roots in 591 trials. We find that in
1959 trials, the root which maximizes the estimated root intensity function is the
one closest to the true value; in 1951 trials, the root corresponding to the largest
estimated shifted information function is the same as the one closest to the true
value: in 1981 trials, the global maximum of likelihood is just the root closest to the
true value; while in 1987 trials, the root which is the closest to the sample median
and the one closest to the true value are the same. We may consider the choice of
true value method as the ‘right’ choice. This simulation also indicates that that in
1962 trials, the root which maximizes the estimated root intensity function is the
global maximum of likelihood; in 1954 trials, the root corresponding to the largest
estimated shifted information function is the global maximum of likelihood: while
in 1989 trials, the root which is the closest to sample median is the global maximum

of likelihood.

The multiple root case is of special interest. The following table compares
the root intensity method and the shifted information method with the likelihood

method and the ‘right” method.

Table 5.1: Comparison between Different Methods

Likelihood ‘Right’
Root Intensity 553 | 93.6% | 350 | 93.1%
Shifted Information | 545 | 92.2% | 542 | 91.7%
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The above simulation results show that among the multiple root cases, at 93.6%
of times, the likelihood and root intensity methods gives the same choices; at 92.2%
of times, the likelihood and the shifted information methods is consistent; at 93.1%
of times, the root intensity method gives the ‘right’ choice; while at 91.7% of times,
the selection of roots based on the shifted information method is the same as the

‘right’ choice.

Since the likelihood method is widely accepted method. and the ‘right’ method
is a natural choice, the simulation results show that both methods are reliable
methods. However, the likelihood method can be only used in specific parametric
models, where we know the form of distributions except for the parameters. In
contrast to the likelihood method, the root intensity method can be applied in a
very wide class of estimating functions. The shifted information method can also
used to a more general class of estimating function for location models or related

transformation models.

5.6 Discussion

In this Chapter, we have considered an information-based criterion for root selec-
tion in the location models. This method is based on the fact that the shifted
information function for the score estimating function gets its maximum at the
true value. This method can be extended to any trarsformation models which can
be transformed into location models. In addition to the score estimating functions,
this method can also be applied to some more general estimating functions. The

higher dimension case is also discussed in Section 5.4.



Chapter 6

Number of Roots for Large

Samples

6.1 Preliminaries

In this chapter, we will discuss the number of the roots of estimating functions
for large samples. Assume that X, X,,---, X, are identically and independently
distributed random variables with density function f(z.#8,), we will show that under

some regularity conditions, an estimating function in the form of
G(8) =) g(X:,0)
=1

has a unique solution in any fixed interval which includes 8y for large samples.

99
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6.2 Review

In this section, we will introduce some related concepts and results (Billingsley,
1968). Let X be a mapping from (£2, 3, P) into C[0, 1], which is the set of all con-
tinuous functions on [0,1]. That is, for every w € 2, X(w) is a continuous function

on [0.1].

Definition 6.1 Let C[0,1] be endowed with the supremum norm and its as-
sociated topology. We say {X,} is tight when {P,} is tight, where {P,} is the
distribution of {X,}. That is, for any positive e, there exists a compact set A" such

as P(X,, € K') > 1 — ¢ for all n.

Definition 6.2 The modulus of continuity of an element z of C[0,1] is defined
by

we(é) = w(z,8) = sup |z(s)—z(t)] 0<dé<1. (6.1)
js—t|<é

Then we have the following result (Billingsley, 1968. p53-58):

Theorem 6.1 The sequence { X, } is tight if and only if the two conditions hold:
(i) For each positive i, there exists an « such that
P{IX.(0) >a} <7 n>1

(i1) For each positive € and 7, there exists a §,0 < § < 1, and an integer ng such

that

P{w(Xn,86) > €} <n n>no.
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In section 6.3, we will use the following important Tightness Criterion (Billings-

ley, 1968, p95):

Theorem 6.2 The sequence {X,} is tight if it satisfies the two conditions:

(i) The sequence {X,(0)} is tight on the line, that is, for each positive 7, there

exists an a such that

P{IXa(0)>a}<n n>1

(i1) There exists constants v > 0 and a > 1 and a nondecreasing, continuous

function F on [0,1] such that
P{IXa(ts) — Xa(t1)] 2 A} < 1= IF(82) — F(t1)|° (6.2)
holds for all ¢, ¢;, n and all positive .
Remarks:
1. From Chebyshev’s inequality, the moment condition
E{|Xa(t2) — Xa(t1)["} < [F(t2) — F(t1)|* (6.3)

implies (6.2). Especially, we may take v = 2 and a = 2 and F(t) = kt (k > 0).

2. Obviously, all the results hold when [0, 1] is replaced by any closed interval
[a, b].
6.3 Convergence Results

Proposition 6.1. Assume that for all 8 € [a,b], X,(8), --- , X,(8) are identically

and independently distributed random variables with the properties:
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(i) E[X1(8)] =0 and var(X,(8)) = o*(8) for all 8 € [a, b).

(ii) E[(X1(01) — X1(82))%] < C(8y — ;)2 for all 6,,6, € [a,b] .

Let

Y.(0) = %Zx;w)

=]

then {Y.} is tight in Cla,b].

Proof: For any 6y € [a.b], by Chebyshev’s inequality, for any € > 0, when M is

large enough,

var(Yn(6o)) _ o*(6o)

e = 3 <e foralln

P{[Y,(80)] > M} <
That is, {Y¥,,(60)} is tight on the line. Furthermore,

E{[Ya(61) — Yo(62)]*} = var(Y.(6,) — Ya(62))

n

= % . var(X;(6:) — Xi(82)) = E[(X,(6,) — _}(1(02))2]
< C6 -8,

It follows from Theorem 6.2 that {Y¥,} is tight on C|a,d].

Proposition 6.2. Under the conditions of Proposition 6.1, for any positive e

and n, there exists ng such that
P{ sup | X.(6:) — Xn(62)| > e} <n n>ng (6.4)
01 ,Eze[a,b]

where

n

Xo0) = =30 Xil6) = —=Ya0)

i=1
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that is supg, g, (a8 | Xn(8:) — Xn(62)| converges to 0 in probability.

Proof: Let T = b— a, from Proposition 6.1, for any positive € and 7, there exists

m independent of n, such that

P{ sup |Yn(61) — Ya(6:2)] > e} <n n>np. (6.3)
6, —621< L
Since
sup [Ya(61) = Ya(82)| <m  sup |Y,(6)) - Ya(6)] (6.6)
61 .62€a.b] 61 —621< L

when taking no = max(m?,n,), from (6.5) and (6.6), we have: for n > n,,

P{ sup | Xa(8:) — X.(62)] > e}

6, .62 €la,b]

= P{ sup |Y;l(01)—}';1(02)l>\/;€}

61 .62€[a.b]

< P{m sup [Y;,(O,)—Y;,(Og)|>me}

6 —621< L
< 7.

This completes the proof.

6.4 Main Result

Let X, X3,---, X, be identically and independently distributed as X with density
function f(z,6), and g(z,8) have a continuous derivative with respect to 8. We

consider the following estimating function:
Ga(8) =Y g(Xi,6) =10 (6.7)
i=1

and assume that the following conditions hold:
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(A): For any 6,,68, € [-R, K],

Eg{[9(X.0:) — 9(X, 82)]*} < C1(6: — 6,)*

a6 06

2
Es, {[ag(X’ 6,) - 99(X, 02)] } < Cy (6, -02)2'

(B): 8 € (—K, K) and

Egog(X, 00) = 0
Egg(X,0) =u(0) #0 forall 6 #6,

(C):

Es, [_0__2(_.8’&;_00)} #0

104

(6.10)
(6.11)

(6.12)

Note that the above conditions are satisfied easily. For instance, when Egq,[0g(X, 8)/6]

and FEg,[0%g(X, 8)/6?%] are bounded, the condition (A) holds. Under the above as-

sumptions, we can derive the following main result.

Theorem 6.3 Under the conditions (A),(B) and (C), the probability that

Gn(0) =0 on [—A, K] has a unique root tends to 1 as n approaches to oc.

In order to prove the above theorem, we first state two Lemmas:

Lemma 6.1. If

(1) Ya(6o) — 0 in probability for some 6o € [a,b];

(i1) supgepapy |¥n(6) — Ya(6o)| — 0 in probability.
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Then for any positive €, n, there exists ng such that n > ng

P{ sup |Yn(8)] > e} <n

6€[a b}
That is. supgefe s |Yn(8)| — O in probability.

Proof: For any € > 0 and 1 > 0, since

P { sup |Ya(8)| > e}
8€[a b}

105

(6.13)

< P{ sup [Ya(8) = Ya(8o)l + [Ya(60)] > }
6€fa b}
= P{ sup [Ya(6) ~ Ya(60)| +Ya(60)| > €. [Ya(60| > =
8€([a,b] 2
+P{ sup Y2 (8) — Ya(60)] + [Ya(60)| > €. ¥a(6o] < 5}
6€[a,b) 2
< P{I¥a(8el > £} + P sup |Ya(8) — Ya(bo)| > £
2 o€lab] 2
— 0

there exists a ng such that n > ng,

P{ sup |Ya(8)| > e} <.

0€la.b]

This completes the proof.

Lemma 6.2. If lim P(A,) =1 and lim P(B,) = 1, then lim P(A,B,) = 1.

This proof is standard.

We also introduce some notations:

Ga(6) = ) _ 9(Xi; 6)

=1



CHAPTER 6. NUMBER OF ROOTS FOR LARGE SAMPLES 106

Ga(6) = =3 g(X:0)
i=1

Gr(6) = — Y [0(Xi:0) — u(0)] = Cw(6) - u(6)
i=1

— 1 <=9 X;; 6
Gxn(9)=gzg—(aa—)

i=1

Guie) = 23 |25 0)] = Guit) - vt0)

=1

where v(8) = Eg, [09(X, 8)/06)].

Proof of Theorem 6.3: We will prove the above theorem in three steps.

Step 1: In this step, we will prove that for some positive §,

lim P{G,(9) =0 has at most one root in [fg — 8,8y + d]} =1 (6.14)

n—oc
Without loss of generality, assume that

ag(‘x'-. 00)] >0

C°=E"°[ 98

then there exists § > 0 such that

dg(X.8)

Z/(O):Ego [—5;—} > % 06[00—6,00-{-6]

Consider g,(X,8) = 09(X.6)/06 — v(8), then Eq, (g:(X,8)) =0, and
Eoo {[gl(-xf 01) — g1 (-Yv 02)]2}

_ 9g(X.6,) dg(X.6) ?
= Eoo{[ 7T )—(u(el)—u(oz))]}

99(X,0,) 8g(X,6,)]° 2
= Eoo{[ g(ael - g(aol )] }—[V(ol)—u(02)]

< Cy(6, — 8;)?
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By applying Proposition 6.2, for any € and 7, there exists ng such that

P{ sup IC—}'I,,(O) - G'I,,(Oo)l > e} <n n>ng
0€(60 —6,60+6}

By the law of large numbers, Gj,(6y) converges to 0 in probability. From Lemma

6.1, for any e,

n—oo 0€[b0 -5.60+4]

lim P{ sup |G3.(8)] > e} =0
By taking € = ¢5/4, then

lim P{ sup If;";,,(o)l < %} =1. (6.15)

n—hoo 6€[60—6,60 +6)

Since
[G1a(8)] = |G1(8) + v(6)] > v(6) — |GL.(6)]
thus
> )
€60~ 680+6]lG1"(0l - ee[ool—rgeoq-& (v(8) = [G1a(6)])
> 1 f 0 —_— =i 0
= 06[0013;'0”6]1/() 06[005391,204.5][ 1n(0)]
> 22— sup  [GL.(0)]
2 0€(60—48.6+6]
therefore
— Co co
sup 5 OOl s 70 C Gia(6) 2 7 6.16
{66[00_5”6]1 n(0)] < 4} {aity @122 616)

If Ga(0) = 3__, 9(Xi;0) = 0 has at least two roots on [f — 6,68 + 4],
then there exists 6 € (65 — &, 8, + &) such that

0G.(67) = Bg(Xiib7)
o~ o °

i=1
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that is, G1,(8") = 0. Let

A, ={G.(#) =0 has at most one root in [6y — &, 8, + 6]}

}ca.

then

{ inf [Gin(8)] >

6€[0p—6,00 +6]

NES

From (6.15), (6.16) and (6.17), we have,

lim P(A,) = 1.

n—»oc

Step 2: We will prove

lim P{G,(0) =0 hasnorootin [—K,8,—8]U[6+ 3, K]} =1.

Since

Eo,9(X;6) =pu(0) #0 forall 68#6,

We may assume
() >c1 >0 for 6O€&€l=[-RK,00—6U[6+46 K]

Since

E'oo{[g(X; 6,) — g(X; 02)]2} < Ci(6, - 92)2

similar to (6.15), we have

n—oo 06[_ ,‘—',"]

lim P{ sup |GL(8)| < 02—'} =1.

When

sup
0€[~R,R]

108

(6.17)

(6.18)

(6.19)

(6.20)
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we have
inf [Ga(0)] = inf |4(6) + G, ()|
> inf |u(6)| - sup |G, ()
el sel
>inf|u(8)| — sup |G,(9)|
fel 6€[-K.R]
c
SE NS
Let
B, = {G.(#) =0 has no root in I}
then

8€[-K K] 5

{ sup [G1(0)] < } c{it G2 2} c B
By (6.20), we get
lim P(B,) = 1.
n—oc
Step 3: We will prove

lim P{Gn(f) =0 has at least one root in [y — .60 + 8]} =1

In fact,

inf G (6 0) — G, (8
06[901—%.004-5] tn () 06[001—.5.0o+5] “(6) oe[oos—lfs%ow]l 1n(6)]
CO —
Z o sup IGln(a),

2 9By —6.00+9]

we can obtain from (6.15) and (6.16)

lim P{ inf  Gia(6) > C—"} = 1.
n—oc 0€[6o —6,60 +9] 4

109

(6.23)

(6.24)
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On the other hand. since Eg,g(X;6p) = 0, G.(6o) — 0 in probability, that is

lim P {|6,.(00)| < c"‘;} =1. (6.25)

n—+00 4

Let
Cn = {Gn(6) = 0 has at least one root in [0y — &, 8, + 4]}

we claim that

: red Co — cod
{96[001—%%‘00+6] Gln(a) 2 ‘Z} N {IG"(OO)l < T} - Cn- (626)

In fact, since G'»(8) = Gin(6) > co/4 > 0, G.(8) is a strictly increasing function.

(i) If Gn(80) = 0, then G(6o) = 0. In other words, G,.(8) = 0 has at least one
root in [y — 4,8, + J]-

(ii) If Ga(6o) > 0, by mean value theorem for differentiation, there exists a 67 €
(8o — 94, 60) such that

G c Yed = )
Gn(6o) — Gn(bo — 8) = G'a(8;)6 = G1(6;)6 > %
then G.(6o) < coé/4 implies

Gn(bo—6) <0

thus there exists §; € (8 — 6, 6p) such that G, (84,) = 0.

(iii) Similar to (ii), if Gn(6o) < 0, then

therefore there exists 8, € (8o — &, o) such that G,(6;) = 0.
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In all cases, G,(8) = 0 has at least one root in [6g — ¢,60p + &]. Thus (6.23) holds.
From (6.24), (6.25) and (6.26), we obtain

lim P(C,) =1 (6.27)

n—o0o

(6.18), (6.22) and (6.27) implies lim, o0 P(AnBaC,) = 1, that is, the probability

that G,(#) = 0 has unique root in [-K,K] approaches to 1 as n — oco.



Chapter 7

Summary and Future Work

In this thesis, we have discussed the multiple root problems of estimating functions
and proposed two new approaches to solve these problems. One is based on the root
intensity, which can be applied to more general estimating functions. For transfor-
mation models, in particular, the location models, the shifted information methods
can be used. In Chapter 1, the basic theory of estimating functions was reviewed
and the problem of multiple roots was put forward. In Chapter 2, some exam-
ples in statistical theory, biostatistics and economics and many different methods
to solve this problem were presented. These methods include projected likelihood
ratio methods (McLeish and Small, 1992; B. Li., 1993; Hanfelt and Liang, 1995;
B. Li, 1997), approzimate one-root estimating function methods (Kolkiewicz,1995;
McLeish and Small, 1988) and statistical information methods (Heyde and Morton,
1998:; Singh and Morton, 1999; Wang and Small, 1998). In Chapter 3, the concept
of root intensity was introduced and its properties and approximation methods
were discussed. The root intensity for Cauchy location models was studied in more

detail. Based on root intensity, a new approach to choose the best root was devel-
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oped in Chapter 4. This involves both theoretical foundation and practical methods
such as the normal approximation and the bootstrap methods. These methods were
also applied to two practical examples, namely, the logistic regression models with
measurement error and the normal mixture models for clustering data. In Chapter
5. the shifted information was proposed for transformation models, which can be
used in the root selection for transformation models, for example, Cauchy location
model. Different approaches were also compared for Cauchy location models. Al-
though the multiple root problems may appear in many cases, it can be proved that
for regular estimating function, with high probability, there is only one root for any
given compact set including the true value in parameter space. The mathematical

proof of this result for one dimension case was given in Chapter 6.

Although we have studied the multiple root problem of estimating functions in
detail, there are many issues which is still worth studying. Future work includes
two aspects: one is to extend the existing methods to a more general case, another

is to find some new approaches. The future work can be the following problems:

e We have proposed the root selection method based on root intensity in Chap-

ter 4, this method can be applied to estimating function in the form of
G(8) =D g(z:,0)
=1

where ®; (1 = 1,2,---,n) are identically and independently distributed ran-
dom vectors. Can the approach be extended to dependent random variables?
For stochastic processes, more complex estimating functions can be derived
in principle. For instance, in mathematical finance, diffusion processes are
widely used. The typical examples are geometric Brownian models for stocks,

Vasicek and CIR interest rate models (see Hull, 1997). The one-dimensional
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diffusion processes defined by the following class of stochastic differential

equations:
.Xo = X9

The function o is assumed to be positive, 8§ € @ C R*. There are many
different methods to build estimating functions for this model (see Serensen,
1997). Kessler (1997) built explicit estimating functions using differential
operators; Kessler and Serensen (1993) constructed martingale estimating
functions based on eigenfunctions; McLeish and Kolkiewicz (1997) proposed
estimating functions based on higher order It6-Taylor expansions. Kloeden
and Platen (1992) considered an estimating function using the normal den-
sity approximation of the transition density. On the basis of this estimating
function, Bibby and Serensen’s (1995,1996) derived the martingale estimating
function. In particular, when the quadratic term is neglect, the martingale

estimating function is

G'(8) = g j((;;f;;;;;:;;’;o o~ F(Xe02:8)  (72)
where
F(2:8) = Eo(XalXo = 2) (7.3)
and
$(2:0) = Viara(XalXo = z) (7.4)

It follows from Theorem 1.1 that the optimal estimating function in the class

of the martingale estimating functions is of the form

=~
&1}
N

G(6) =D gi1(8)(Xia — F(X(i_1)a:8)) (

i=1
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where g;_, is F;_; measurable and a continuously differentiable function of
6. Since these estimating functions usually are nonlinear functions in the

parameters, they may have several roots.

e The shifted information works well in transformation models. Is it possible to
define a more general information which can be applied to more general mod-
els? That is. we need to find an information function which has the property
that the information function at the true parameter is distinguishable. This

seems a very challenging problem.

e Once we have provided a theoretical foundation to a method, we need a good
approximation to the related information function based on the given sample.
Althrough the normal approximation and the bootstrap method have been
shown to be useful methods, a further exploration into alternative method is

still needed.
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