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ABSTRACT

In this thesis we investigate two approaches to quantum gravity. The first is the emergence

of gravity from a discrete fundamental theory, and the second is the direct quantisation of

gravity. For the first we develop tools to determine with relatively high accuracy the speed

of propagation of information in collective modes which ultimately should give us some

information about the emergent causal structure. We found a way of finding the depen-

dence on the relative interaction strengths of the Hamiltonian and we also managed to

calculate this speed in the case where the operators in the Hamitonian were not necessar-

ily bounded.

For the second approach, we investigated the phenomenology of Loop Quantum Grav-

ity. We found that ultra light black holes (lighter than the Planck mass) have interesting

new properties on top of being non-singular. First their horizon is hidden behind a Planck-

sized wormhole, second their specific heat capacity is positive and they are quasi-stable,

they take an infinite amount of time evaporate. We investigated the dynamics of their col-

lapse and evaporation explicitly seeing that not only was there no singularity, but there

is also no information loss problem. Looking at how primordial black holes were in exis-

tence, we found that they might account for a significant portion of dark matter. And if

they did, their radiation spectrum is such that the black holes in the dark matter halo of
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our galaxy could be the source for the ultra high energy cosmic rays we observe on earth.
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Chapter 1
Introduction

1.1 Statement of the problem

It is well known that modern physics is inconsistent. Indeed, the foundations of modern

physics rests on two pillars: General Relativity (GR) which is our theory explaining space

and time, and Quantum Physics or more precisely, the Standard Model of particle physics

(SM) which is our theory of matter. Matter and space-time are, at a fundamental level, in-

timately linked, and cannot be decoupled. This is because space-time is shaped by matter,

and matter can only exist inside the confines of space-time. However, GR and SM form

two incompatible languages. This implies that there must exist an overarching theory in

which matter and space-time can be described by the same language. In order to have a

consistent view of nature, it is of prime importance to discover such an overarching theory.

It is the goal of Quantum Gravity (QG) to find a language which can consistently describe

both matter and space-time.

There are many proposed theories and models for quantum gravity: Superstring the-
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Chapter 1. Introduction

ory, supergravity, twistor theory, asymptotic safety, non-commutative geometry, group

field theory, spinfoam models, causal dynamical triangulation, causal sets, loop quantum

gravity, quantum graphity and quantum causal histories, are but some of the main pro-

posals. One of the main challenges to date for all but the first four of these models is to

obtain, from the fundamental theory, a semi-classical description of space-time. This is

absolutely vital in order to predict deviations from General Relativity and make contact

with experiments and observations. Bridging the gap between the fundamental theories

and models and the semi-classical macroscopic world is not an easy task. The aim of the

present thesis is to bring us a step closer to bridging that gap. The thesis is divided into two

largely independent sections (Part II and Part III). The first part of the thesis concerns itself

with the building of more powerful tools to investigate the possible emergence of gravity

in such models as quantum graphity. In the second part, we investigate the symmetry

reduction of a theory, Loop Quantum Gravity, to obtain a solvable system and explore the

phenomenological ramifications of the theory assuming that not too much is lost through

the reductions and simplifications.

1.2 Overview and main results

In chapter 2 we quickly review to approaches to quantum gravity. First Quantum Graphity

which is the justification for Part II of this thesis then Loop Quantum Gravity, upon which

will be based the black holes we investigate in Part III. The quick review of Loop Quantum

Gravity is strongly based on the recent review by Sahlmann [99].

In part II we develop tools to investigate the emergence of gravity in condensed-matter-
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Chapter 1. Introduction

like systems, Quantum Graphity in particular. These tools are based on the Lieb-Robinson

bound which give a bound on the maximal speed at which information can travel. In chap-

ter 3 we give a brief introduction to the Lieb-Robinson bound as well as general remarks

as to how it can be used as a tool to detect the emergence of gravity. In chapter 4 we de-

rive a Lieb-Robinson bound which is sensitive to the relative interaction strengths, this is

important in order to understand the functional dependence of the speed or propagation

of signals on the different interactions which provides us with tools in investigating quan-

tum phase transitions, the way the universe emerged according to Quantum Graphity, but

it is also important in order to give a tighter bound. We also give three examples of the

application of the bounds we derived, including one example in which a Minkowski space

with U(1)-Yang-Mills emerges from a non-relativistic condensed matter system and where

we show that the Lieb-Robinson speed we derived is a relatively good approximation to

the emerging speed of light. This chapter is largely based on [94]. In chapter 5 we now

generalise the Lieb-Robinson bound to a class of systems where the Hamiltonian does not

need to be composed of bounded terms. Instead the terms can be commutator bounded,

that is the commutator of any two or three of the local operators composing the Hamilto-

nian must be bounded. In the end we give an application to the XY-Model. This chapter

is largely based on [93]. Finally we put our results together in chapter 6 where we pro-

vide a bound which is applicable for a Hamiltonian with many interactions and one with

commutator-bounded operators.

In Part III we investigate the phenomenology of the Loop Quantum Black Hole and

lighter than Planck mass black holes have positive heat capacity and are quasi-stable. All of

Part III with the exception of chapter 10 is largely based on [76]. Chapter 10 is largely based
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Chapter 1. Introduction

on [53]. We discover that they could be a major constituent of dark matter and find that

could be the elusive source behind the ultra high energy cosmic rays (UHECR). In chapter 7

we review the black holes as well as the technique for obtaining them, and we demonstrate

the intriguing duality that they exhibit. In chapter 8 we investigate the thermodynamics

of the Loop Quantum Black Holes and see how ultra light black holes have positive heat

capacity. In chapter 9 we investigate the properties of ultra light black holes more closely

and see that their horizons are hidden behind a Planck-sized worm hole and that they take

an infinite amount of time to fully evaporate, they are quasi-stable in the low-mass regime.

In chapter 10, guided by the Vaidya metric we investigate the collapse and evaporation of a

Loop Quantum Black Hole. Chapter 11 investigates the creation of primordial Black Holes

and we find that assuming they were created by matter fluctuations in the early universe,

it is not unreasonable to think that ultra light Loop Quantum black holes of a typical mass

of 10−5mP could constitute a significant part of the dark matter today and in chapter 12 we

find that those same black holes, which would constitute dark matter today, would emit

ultra high energy cosmic rays to the order of what we observe on earth and so might be the

elusive source for those as yet unexplained particles. We summarise our results in chapter

13.

In Part IV we conclude.
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Chapter 2
Two Models for Quantum Gravity

2.1 Quantum Graphity

The combination of General Relativity and Quantum Mechanics suggests that there is a

UV cut-off at the Planck Energy which corresponds to (via the Fourier transform) a mini-

mum length scale. Heuristically, this is the reason why many1 theories for quantum grav-

ity involve a discretisation of space and/or space time. However, it turns out that one

of the most challenging things to do in those theories is to recover the familiar smooth

spacetime manifold of General Relativity. Quantum Graphity, first proposed by Konopka,

Markopoulou-Kalamara and Smolin in [64], is a toy model designed to investigate how

the continuous manifold-like nature of General Relativity could emerge from a more fun-

damental theory based on fundamentally discrete space/spacetime. Before pursuing this

line of investigation, we should point out here that the discretisation of spacetime need

not be taken so literally, it is possible to have a UV cutoff by having a finite information

1Example of theories of quantum gravity which predict a discrete space or spacetime structure include:
Loop Quantum Gravity, Spinfoam Models, Group Field Theory, Causal Dynamical Triangulations, Causal
Sets, Quantum Causal Histories, non-commutative geometry theories, etc.
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density in the fields but still having continuous fields [58], having a fundamentally discrete

geometry is only one possibility. The goal then of Graphity is to study how a manifold-like

structure can emerge from discrete fundamental entities which are not manifestly organ-

ised in manifold-like structure. To simplify things (it is a toy model) Graphity makes a

split between “space” and time. It is a quantum theory which is evolved by a Hamiltonian

H via the unitary transformation U(t) = eiHt where t is called time variable because of

the role it plays in the dynamics of the theory, even though it might not correspond to the

physical time experienced by internal observers in the low energy limit of the theory.

2.1.1 Kinematics

In what follows we will be considering two different graphs. From experience, we know

those two graphs are often confused so we wish here to distinguish them clearly from the

outset and so we will give them here two different names by which we will identify them

in what follows:

• The Fundamental Graph KN : the fundamental is the fixed graph KN that is the

complete graph on N vertices.This fundamental graph with M = N(N−1)
2 edges, one

edge between any two pairs of vertices, is not dynamical, but is used to characterise

the Hilbert space of the quantum theory.

• The Space Graph S(t): the space graph is a subgraph of the fundamental graph, KN .

It is dynamical and is evolved by the dynamics. Intuitively, in the low energy limit,

S(t) describes the space-like slice of the spacetime manifold at time t.

7
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The Hilbert space of the theory is the following. Let E be the set of edges of KN and

V the set of its vertices. Let He and HV be two Hilbert spaces (which in the following

will be finite dimensional, but the harmonic oscillator would be a natural choice which

is not finite dimensional), we interpret HE to be the local Hilbert space that sits on each

edge of the fundamental graph KN and HV to be the local Hilbert space for each of the

vertices. We then have that the total Hilbert space is H =
(
(
⊗

e∈E HeE) ⊗ (
⊗

v∈V HvV )
)
/R,

where HeE and HvV are just identical copies of the Hilbert spaces HE and HV and R is

an equivalence relationship (which can be thought of as being generated by some global

symmetry, for example the permutation group of the vertex labels) by which the tensor

product of the local Hilbert space is quotiented. In what follows, we takeR to be trivial and

so we can ignore it. A final element is needed to finish the description of the kinematics:

a distinguished element | 0〉 ∈ HE and the subspace of HE orthogonal to it O so that we

have HE =| 0〉 ⊕ O. If a state | ψ〉 can be written as | ψ〉 =| 0〉e⊗ | ψ′〉 we say that edge e is

“turned off” meaning that space is absent at this edge. On the other hand, if we can write

| ψ〉 =| s〉e⊗ | ψ′〉 where | s〉s ∈ Oe, we say that edge e is “turned on” and that space is

present at that edge. In the low energy effective limit, the hope is that typical states will be

of the form | ψ(t)〉 = (
⊗

e∈on(t) | s(t)〉e) ⊗ (
⊗

e∈off(t) | 0〉e), in such a case, the space graph

S(t) is the subgraph of KN whose set of edges is on(t) and whose set of vertices are the

vertices at the end of the edges of on(t). The expectation is then that S(t) will be manifold-

like. At high energies, the graph S(t) is not well defined in general, but a general state can

be decomposed into a superposition of terms which will individually have a well defined

space graph (simply by decomposing the states along a basis of | 0〉 and a basis of O).

But even then, in general, the space graph of a particular term of a particular state will in
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general be a random graph of KN looking nothing like a smooth spatial manifold, we will

call such a space graph (as well as, more generally, the superposition of such graphs) “pre-

space”. The question is then to probe how space emerges from pre-space. This of course

depends on the dynamics. In what follows, we will specialise to the particular model

investigated in [64]. We setHV = C and so we can ignore the Hilbert spaces at the vertices,

and on the edges we put two spin-1
2s: HE = C2 ⊗C2 =| 0, 0〉⊕ | 1,−1〉⊕ | 1, 0〉⊕ | 1, 1〉 and

we will interpret the edge as being on if the total spin is one and as being off if the total

spin is zero, so | 0〉 =| 0, 0〉 and O =| 1,−1〉⊕ | 1, 0〉⊕ | 1, 1〉 and when the edge is on, there

is matter of spin-1 occupying the space.

2.1.2 Dynamics, Thermodynamics and Cosmology

The Hamiltonian is split into five terms:

H = Hlinks +Hvertices +Hloops +Hhop +HLQG. (2.1)

The links term is a local term acting on edges which are on, the vertices term acts on the

space of all edges arriving at one vertex, the loops term creates and destroys loops on “on

edges”, the hop term permits the interaction of the spin-1 degrees of freedom between

adjacent edges and the LQG term allows changes in geometry of the space graph. In [64],

the following terms are used:

Hvertices = V
∑
a∈V

(
v0 −

∑
b∈V

J2
<ab>

)2

, (2.2)
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where < ab >∈ E is the edge of the fundamental graph linking vertex a to vertex b and

J2
<ab> is total spin squared operator normalised in such a way that it is equal to one when

the total spin is one. This operator is non-negative and equal to zero if and only if there

are exactly v0 on edges arriving at vertex a.

Hlinks = C
∑
aV

(∑
b∈V

Sz<ab>

)2

+D
∑
e∈E

(Sze )2, (2.3)

where Sze is the spin-z operator acting on HeE The term is again non-negative. In the first

line, the C term vanishes if and only if the m values of spins at each vertex add up to zero.

The D term is zero if and only if m = 0 and will act as a tension term for the loops created

by Hloops.

Hloops = −
∑

minimal loops

1

L!
B(L)

L∏
i=1

M±i , (2.4)

where M± ∝ Sx ± iSy are the raising and lowering operators. The sum is over minimal

loops. These are defined to be loops that cannot be factored into the product of two loops

of “on” edges that contain some of the same edges. The products are defined over a closed

sequence of edges as follows

L∏
i=1

M±i = M+
<ab>M

−
<bc> . . . M+

<yz>M
−
<za>. (2.5)
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a,b,c, . . . , z are the vertices along the minimal loop. L is the length of the loop. The coupling

B(L) is assumed to take the form

B(L) = B0B
L (2.6)

whereB0 is a positive coupling constant andB is dimensionless. The separation ofB from

B0 is useful because B can be now associated with each instance of M in the loop product

(2.5). We note then that the overall coefficient of a loop term is proportional to BL/L!. It

is thus small at very low and at very high L, but has a maximum value at some particular

L∗,

BL∗

L∗!
>
BL′

L′!
∀L′ 6= L∗. (2.7)

We call L∗ the preferred loop length.

In comparison with Hlinks, Hloops has an overall minus sign. Note also that Hloops is

identically zero on off edges. Note the competition between the loop term and Hlinks for

an edge to have m = 0 or m 6= 0.

For what follows we disregard the other terms in the Hamiltonian and put them to

zero.

Research in [63] leads us to believe that if the loops term is chosen appropriately, in

the low energy limit, the space graph will crystalise in a regular lattice, the shape and

dimension of which is determined by the loops and vertices term of the Hamiltonian. Thus

if we choose V to be large enough and v0 = 6, so that in the low energy limit we are
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projected down to the subspace where the space graphs have valence 6, and the loops

term is such as to impose the minimal loops to be squares of four edges, then in the low

energy limit, we are projected to the subspace where the space graph is the 3D square

lattice.

In this phase, the V and C terms in the Hamiltonian are constant and we may ignore

them. The non-vanishing terms then consist of the D term and loop operators with exactly

four edges,

HlowT ∼ D
∑
ab

M2
ab −

1

4!
B0B

4
∑
a

∏
i=1

M±i , (2.8)

where we define Mab = Szab. Since the lattice is regular, the sum over loops can be thought

of as a sum over plaquettes. We define a plaquette operator Wa′ anchored at a point a′ as

Wa′ = M+
<a′b>M

−
<bc>M

+
<cd>M

−
<da′>. (2.9)

The points a′, . . . d are now fixed by a convention of labelling plaquettes given their base

point and an orientation on the lattice, there is no summation over repeated indices. With

this operator, the Hamiltonian can be written as

HlowT ∼ D
∑
ab

M2
ab −

1

3!
B0B

4
∑
a′

(Wa′ + h.c.) (2.10)

where h.c. stands for the Hermitian conjugate of Wa′ , i.e. a loop operator with M+ and

M− interchanged on each link. The sum in the second term is over plaquettes.

This is the Kogut-Susskind Hamiltonian [62] for a gauge field on a cubic lattice in three
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spatial dimensions and correspond to U(1) gauge theory in axial A0 = 0 gauge. It is very

similar to Wen’s emerging theory of light[108], the difference being that Wen has quantum

rotors on each edge as opposed to spin-1 degrees of freedom. However, in the low energy

limit, quantum rotors can be approximated by spins of spin-1.

Thus non-relativistic pre-space condenses into Minkowski space with emergent light!

Cosmologically, the idea of Graphity is that in the early universe, all the energy is in

the “geometric” degrees of freedom and thus there is a highly non-trivial pre-space. As

the universe evolves, matter degrees of freedom are created and this cools the geometric

degrees of freedom, slowly crystalising pre-space into a manifold-like spacetime. This

picture solves the horizon problem in cosmology without the need for inflation, because in

the pre-space phase, everything was in contact with everything else and interactions were

highly non-local. Indeed if the space graph is close to being fully connected, then any pair

of edges will meet at a vertex and will be acted upon by a low energy loop term which will

propagate information between the two edges.

2.1.3 Lieb-Robinson bound

Of course there are still many issues to be sorted out. It is still not exactly clear how the

crystallisation occurs. Also, so far, General Relativity has not been recovered. This is

where the Lieb-Robinson bound can be of use. The Lieb-Robinson bound gives a bound

on the maximal speed of propagation of signals in quantum systems living on graphs, like

Graphity. If we manage to make the bound tight enough so as to have a good idea of the

propagation speed of signals with respect to the graph distance in a particular phase of

the quantum system, we could deduce the effective light-cone structure and the geometry
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induced on the graph by assuming that the signals of maximal speed travel at a constant

speed (we will say more on this in section 3.1). Furthermore, if we wish to investigate the

phase transition from pre-space to emergent space as a quantum phase transition, we must

be able to investigate the effect of varying the relative interaction strengths in the Hamil-

tonian. Since many collective properties can be probed with the Lieb-Robinson bound,

if we had a bound which depended on the relative interaction strengths we would have

powerful tools at our disposal to probe this transition. In Part II we will improve the Lieb-

Robinson bound by making it dependent on the relative interaction strengths, not only

will this be useful for quantum phase transitions, but this will also improve the tightness

of the bound, thus give us better accuracy on the maximal speed of signal propagation.

Also we will generalise the bound to a class of systems containing unbounded operators

allowing for some infinite dimensional local Hilbert spaces.

2.2 Loop Quantum Gravity and Simplified Models

Loop Quantum Gravity is probably the most conservative approach to quantum gravity: it

is the direct canonical (non-perturbative) quantisation of General Relativity using the stan-

dard procedure prescribed in Dirac’s book [29]. Roughly speaking, the technique consists

of five steps. First, a kinematical Hilbert space is obtained by naively quantising the classi-

cal configuration space variables. Typically one replaces the classical configuration space

by square integrable functions over the configuration space and imposes the canonical

commutation relations [qα, pβ] = i~δ(α, β) between the configuration space variables and
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their canonical conjugate momentum. Second2, operators corresponding to the constraints

are defined in this kinematical representation. Third, one checks to see if the constraints

form a closed algebra; if they don’t, one adds secondary constraints until they do. Fourth,

one forms the physical Hilbert space by projecting down onto the kernel of the constraints.

Last, observable quantities are quantised, they should form an algebra and commute with

the constraints. The inner product on the physical Hilbert space is in general not the same

as the inner product on the Kinematical Hilbert space. So one must find an inner product

compatible with the quantised observables, that is, such that the observable operators are

Hermitian operators. Depending on the system, these steps can be easy, or very hard. In

the case for gravity it is very difficult because there are only Hamiltonian constraints and

there is no “absolute” or “external” time. This absence is one way to formulate the “prob-

lem of time”. The following short review of Loop Quantum Gravity is strongly inspired

by a review by Sahlmann [99].

2.2.1 Quantisation

Loop quantum gravity starts with the following action, called the Holst-Action:

S[e, ω] =

∫
εIJKLeI ∧ eJ ∧ FIJ(ω) +

1

γ
eI ∧ eJ ∧ FIJ(ω), (2.11)

where ω is an sl(2,C)connection (i.e. a Lorentz group connection as SL(2,C)is the dou-

ble cover of the Lorentz group) and F its curvature, e is a tetrad and γ is the Immirzi

parameter. The indices I, J,K,L label a basis of sl(2,C)and a raise and lowered with the

2The first and second step are sometimes interchanged, depending on what is easier to do with the given
theory at hand. However, these two steps need not commute and so interchanging them might result in a
different quantum theory altogether.
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Minkowski metric ηIJ . Taking γ = −i yields the self-dual Ashtekar canonical formalism

for ω, while a real γ leads ω to be the SU(2) Barbero connection. The first term in the action

is simply the Palatini action of General Relativity. The second term, called the Holst term,

vanishes identically on shell and thus is of no physical consequence classically3. Varying

this action with respect to e gives Einstein’s equations of motion: F Iµ = F IJµν e
ν
J = 0 where

F Iµ is the Ricci tensor due to the equation of motion for ω which imposes that ω is the spin

connection for e (∇µeIν = ∂eIν
∂xµ + ωIJµe

J
ν = 0). Thus, the Holst action is classically equivalent

to the more common Hilbert-Einstein action S[gµν ] =
∫
d4x
√
−det gµνR where R is the

Ricci scalar.

In order to canonically quantise, we need to go over to the Hamiltonian picture. As-

suming the spacetime to be globally hyperbolic we may fix a foliation of spacetime of the

form M = R×Σ where M is the 4D spacetime, Σ is the manifold of spacelike slices and R

is the time direction. For a fixed foliation, we can split the field into spatial and temporal

components. After a partial gauge fixing to get rid of second class constraints, we obtain a

canonical pair consisting of an SU(2) connectionAIa and a conjugate canonical momentum

EbJ ,

{AIa(x), EbJ(y)} = 8πGγ δbaδ
I
Jδ(x, y). (2.12)

These fields take values on the spatial slices Σ of the manifold of the chosen foliation.

3Actually this not exactly true, in the case where we could be considering fermion fields in addition to pure
gravity, the second term would not vanish classically. It is the Nieh-Yang term, instead of the Holst term that
should be added if we wanted the statement to be entirely true. We thank Andy Randono for giving a talk on
this issue and explaining this subtlety at the Perimeter Institute.
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EbJ is interpreted physically as densitised triad on the spacial slices:

det qqab = EaIE
b
Jδ

IJ , (2.13)

where q is the induced 3-metric on the spacial slices and AIa is interpreted as

AIa = ΓIa + γKI
a , (2.14)

where ΓIa is the spin connection related to EbJ and KI
a is the extrinsic curvature of Σ in M

so that we have the extrinsic curvature K as a function of phase space variables A and E.

There are several constraints on these variables. As previously mentioned, due to dif-

feomorphism invariance the Hamiltonian is itself just a linear combination of constraints.

The constraints are the following:

GI = DaE
a
I (2.15)

Ca = EbIF
I
ab (2.16)

H =
1

2
εIJK

EaIE
b
J√

detE
FKab − (1 + γ2)

EaIE
b
J√

detE
KI

[aK
J
b] (2.17)

where D is the covariant derivative induced by A, F is its curvature of A and K is the

extrinsic curvature of Σ in M . The constraints each have their own geometric interpreta-

tion: GI , the Gauss constraint, generates gauge transformations on the phase space. Ca,

the diffeomorphism constraint, generates the transformations induced in phase space un-

der diffeomorphisms of Σ. H , the Hamiltonian constraint, generates the transformations
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induced in phase space under deformations of (the embedding of) the hypersurface Σ in a

timelike direction in space-time, in other words one can see it as generating “translations in

time” hence the term “Hamiltonian” for it as it “evolves” the spacial slices. The quotation

marks in the last sentence are there because seeing as it is a constraint, it is not a Hamil-

tonian in the true sense of the word and evolution in this case has a more complicated

interpretation.

We now wish to quantise this theory. Our configuration space is the space of SU(2)

connections A on Σ. The typical quantisation scheme then tells us to look at “square inte-

grable” functionals of A, f : A 7→ C. However, we know that in step four of our quanti-

sation scheme we will need to project down on the kernel of the constraints, so it would

be to our advantage right now to construct functionals which are invariant under as many

of the constraints as possible. Given a connection, in the end we need to associate to it

a complex number. We can obtain complex numbers from the connection by integrating

the connection, in a representation of SU(2) over certain paths in Σ. However, if we wish

the Gauss constraint to vanish on our functionals of A, they must be gauge invariant. One

way to do this is to integrate the connection over a closed loop and then take the trace.

f [A] = Trhα[A] = TrP exp

∫
α
A, (2.18)

Initially, this was what was done in Loop Quantum Gravity and this is where Loop Quan-

tum Gravity got its name. However, more generally one can integrate along edges of an

embedded closed graph in Σ, each edge with its own representation of SU(2) as long

as at the vertices we contract together all the indices of the group elements representing
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parallel transportation along different paths and in different representations in an SU(2)-

invariant way [97]. The objects we use to this end are called intertwiners, they project a

tensor product of spins into a spin-0 subspace. Alternatively, one can view intertwiners as

being SU(2) homomorphisms mapping the tensor product of the spins on the incoming

edges to the tensor product of the spins on the outgoing edges (the previous definition

corresponding to the special care when all the edges are seen incoming):

Iv :
⊗

e incoming

πj(e) −→
⊗

e outgoing

πj(e), Ivπ incoming(g) = π outgoing(g)Iv. (2.19)

To recap, we can represent a gauge-invariant functional of the connection A as an em-

bedded graph in Σ where each edge is labelled by an irreducible SU(2) representation (a

number j such that 2j ∈ N) and the vertices are labelled by SU(2) intertwiners (in the case

of a trivalent vertex, there is only one intertwiner so we need not worry about the label). A

functional so represented then prescribes that given a connection A, we should integrate

it along every edge e in the representation je which labels the edge and then contract the

group elements obtain at the vertices using the intertwiner labelling the vertex.

With such a prescription we have functionals, or states in the kernel of GI however

these states are still not in the kernel of Ca or H . We can “easily” project them in the

kernel of the Ca by smearing them over spatial diffeomorphisms of Σ. After we have

done this, the spin-and-intertwiner-labelled-graph becomes independent of the particular

embedding in Σ, and were it not for the possibility of topologically distinct embeddings,

it would be an abstract labelled graph called a spin-network. Thus we have projected

down to the kernel of both G and C and the only constraint we have not imposed is the
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Hamiltonian constraint, which we use to evolve the states in time. The spin-networks or

the functions they represent, which we call cylindrical functions, are then the basis states

of Loop Quantum Gravity.

The connection was a 1-form so we had to integrate it along a path to get a number

out of it, its conjugate momentum,E, which will act as a derivative on A is a 2-form, so we

must integrate it over a surface:

E[S, f ] =

∫
S
∗EIf I (2.20)

where f is a function taking values in su(2)∗ and *E is the two-form Eaεabcdxb ∧ dxc.

Using this, we get the following algebraic relations on a Hilbert space:

f1 · f2[A] = f1[A]f2[A]

[f,ES,r] = 8πγl2PXS,r[f ]

[f, [ES1,r1 , ES2,r2 ]] = (8πγl2P )2[XS1,r1 , XS2,r2 ][f ]

. . .

(ES,r)
∗ = ES,r, (f [A])∗ = f [A],

(2.21)

whereX is a derivative operator on the space of cylindrical functions which takes the func-

tional derivative of cylindrical function with respect the the connection at the point where

the graph of the cylindrical function intersects the surface of the smeared E in the direction

that the E field takes at that point. So for a surface S that is intersected transversely by a

path e, splitting it into a part e1 incoming to, and a part e2 outgoing from the surface we
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get

XS,rπ(he)j =
∑
i

ri(p)πj(he1τihe2). (2.22)

2.2.2 Kinematics

Now that we have done all this work, it would be nice to understand the physical meaning

of the quantum states we have derived.

The canonical momentumE has a direct geometric interpretation: It encodes the spatial

geometry:

|det q|qab = EaIE
b
Jδ

IJ (2.23)

where qab is the metric induced on Σ by the space-time metric onM . ThusE is a densitised

triad field for q. The interpretation of A is a combination of the spin connection and the

exterior curvature:

AIa = ΓIa + γKI
a (2.24)

where Γ is the spin connection related to E.

Armed with this knowledge, let us try to calculate the area of a surface S in Σ. When

the field E is pulled back to Σ one obtains a vector valued two-form. The norm of this

two-form is directly related to the area [96]:

AS =

∫
S
|E(σ)| =

∫
S
d2σ
√
EaIE

b
Jδ

IJna(σ)nb(σ), (2.25)
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where na(σ) = εabc
dXb

dσ1
dXc

dσ2 is the normal to the surface. Regularising in terms of fluxes

in the form of (2.20), substituting operators, and taking the regulator away leads to a well

defined, simple operator ÂS . Its action on states with just a single edge is especially simple:

If edge and surface do not intersect, the state is annihilated. If they do intersect once, one

obtains

ÂS Tr[πj(hα[A])] = 8πγl2P
√
j(j + 1) Tr[πj(hα[A])]. (2.26)

Thus these states are eigenstates of area, with the eigenvalue given as the square root of

the eigenvalue of the SU(2)-Casimir in the representation given on the edge.

Similarly (though much more complicated), one finds that quanta of volume are lo-

cated at vertices with valence greater than or equal to four[96]. The spectrum of the volume

however, is much more complex.

We can thus visualise states of Loop Quantum Gravity as spin-networks with each edge

labelled by j representing a quanta of area ∝ jl2P and each vertex representing a quanta of

(possibly zero) volume.

2.2.3 Dynamics

Since we have already projected into the kernel of the other constraints, all the only re-

maining dynamics are left in the Hamiltonian constraint:

H =
1

2
εIJK

EaIE
b
J√

detE
FabK︸ ︷︷ ︸

HE

−(1 + γ2)
EaIE

b
J√

detE
KI

[aK
J
b]. (2.27)
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Chapter 2. Two Models for Quantum Gravity

The Hamiltonian constraint evolves the spin networks by changing the graph and its

labels [97]. In the most well known version of the Hamiltonian constraint, the graph is

evolved by creating a new edge linking to old edges which meet at a vertex. The dynamics

however are still relatively poorly understood.

2.2.4 Simplifications

Because the full theory of Loop Quantum gravity is so difficult to solve in full, we will at-

tempt to make some simplifications to it in order to try to extract from it some meaningful

phenomenology. One way to simplify the theory is instead of considering all graphs of

spin-networks, one considers only one graph, a highly symmetric lattice (which allows us

to do dimensional reduction at the same time). Then we evolve the theory classically us-

ing Poisson brackets instead of commutators. This technique has already been used quite

successfully in order to obtain Loop Quantum Cosmology, a Loop Quantum Gravity in-

spired cosmology (see for example [6] for an overview and introduction to Loop Quantum

Cosmology), and in part III of this thesis we will use it to obtain black hole solutions.
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Chapter 3
Introduction to the Lieb-Robinson Bound

3.1 General Remarks

The principle of locality is at the heart of the foundations of all modern physics. In quan-

tum field theory, the principle of causality is enforced by an exact light cone. Whenever

two (bosonic) observables are space-like separated they have to commute, so that nei-

ther can have any causal influence on the other. On the other hand, in ordinary quantum

mechanics, it is, in principle, possible to signal between arbitrarily far apart points in an

arbitrarily short time.

Nevertheless, a simple perturbation analysis shows that such an influence must de-

cay exponentially with the distance between the observables. The seminal work by Lieb

and Robinson [68] made the above statement rigourous for non relativistic spin systems.

In essence, it states that a quantum system whose Hilbert space is composed of a tensor

product of local, finite dimensional, Hilbert spaces and whose Hamiltonian is the sum of

local operators will have an approximately maximum speed of signals. Here local just
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means that every operator has as a support the tensor product of only a few “nearby” local

Hilbert spaces. The approximation consists in the fact that outside the effective light cone,

the amount of information that can be sent is exponentially suppressed. For some systems

like quantum random walks, the maximal speed of signal has been calculated exactly [59],

here we will expose a framework for getting a good approximation of that speed in general

circumstances.

This discovery provides a mechanism for models of quantum gravity, like Quantum

Graphity, which at the fundamental level have a preferred time slicing exhibit the emer-

gence of local Lorentz symmetry in the infrared limit like is the case for the well-tested

theory of General Relativity. Heuristically1, the argument for the previous statement goes

as follows.

As will be explained latter in section 3.2, in the continuum limit, the Lieb-Robinson

bound becomes sharp and no signals, even suppressed, can travel faster than the finite

speed given by the bound. Because special relativity is implied by isotropy, homogeneity

and “the First Postulate” [35], speeds in a homogeneous and isotropic system must trans-

form either according to Galilean transformation or Lorentz transformations. The First

Postulate can be stated as that the transformation rules for speed depend only on the rela-

tive speeds and that they are consistent, where by consistent we mean that the speed of a

particle X with respect to a reference frame R is inferred to have the same magnitude by

observers in any two other reference frames R’ and R”. If we start with a quantum system

living on a homogeneous and isotropic flat2 lattice which is evolved by a homogeneous

1A more detailed version will come out in a future article [95].
2By flat we mean that if we assign the length value a to each edge of the graph and embed the graph in

Rn (for n sufficiently large) such that each edge is mapped to a straight segment of length a and take the limit
a → 0, the resulting submanifold of Rn has vanishing intrinsic curvature.
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and isotropic Hamiltonian such that some excitations propagate with a constant speed

with respect to the underlying graph distance (providing inertial reference frames), then,

if distances in all reference frames are defined to be the graph distance, the system satisfies

the three conditions of isotropy, homogeneity and First Postulate. The transformation rules

of speeds will be Galilean, a special case of Special Relativity when the parameter of the

transformations, c (usually identified with the speed of light), is infinite. Now suppose that

we are in such a system but that the conditions for the existence of a Lieb-Robinson Bound

are satisfied. Then there will be a constant (due to homogeneity and isotropy) maximum

speed of propagation of information vmax. In such a system, we can, if we so desire, con-

tinue to use the graph distance as the metric in all reference frames, in which case speeds

will continue to transform according to Galilean transformations (Lorentz transformations

with c = ∞) but the maximum speed at which one can send signals will be reference

frame and direction dependent. Alternatively, in the infrared limit when the lattice is no

longer detectable, one should define a different metric, operationally defined with what

is accessible at that energy scale. Due to homogeneity and isotropy, we have that speeds

must transform according to Lorentzian transformations with speed of light c (where the

transformation is Galilean if c = ∞). In the lattice reference frame, the maximum speed

observed is vmax, so to ensure that we can pass from the original lattice reference frame

to the reference from of any signal we must have c ∈ [vmac,∞]. Because we do not have

access to the lattice and thus to the preferred lattice reference frame and the metric that

comes with it, any choice of c ≥ vmax is acceptable, however the choice c = vmax is clearly

favoured since it is the only choice for which physics is identical in all reference frames

(other choices will see different maximal speeds for different reference frames and differ-
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ent directions). This choice, however, implies that in reference frames other then the lattice

reference frame, we are now using a different metric than the lattice distance; in fact, since

we do not see the lattice, we are using the metric obtained operationally assuming vmax to

equal c in all reference frames and then using “light” clocks (probably more appropriately

name maximal speed signal clocks) to measure time and bouncing maximal speed signals

between objects to determine distances. Absent an observable lattice, it is the only way

we can measure distances anyway. Thus special relativity is recovered3. Such a situation

occurs in Wen’s string net condensate model of emergent light[108] which we discuss in

section 4.1.6. If we define distances using the maximal speed of signals, we will always

have at least local isotropy. Thus if homogeneity is lost, global Lorentz transformations

are substituted for local Lorentz transformations and we can view the system (in the con-

tinuous limit) as relativistic quantum fields on a manifold R × S where S corresponds to

the static spacial slices with static metrics. If we then allow for the graph to be dynamic,

as in Loop Quantum Gravity and Quantum Graphity, or if we allow the Hamiltonian to

be time dependent (which will change the maximum speeds with respect to the graph,

and thus the distances as calculated using the maximal speed of signals which is assumed

constant) we obtain a quantum field theory on curved spacetime with a dynamical metric.

It is then possible to recover General Relativity if the correct relationships are imposed be-

tween local energy densities and the dynamical metric. This last part, however, is far from

3One potential problem that can arise at this level when there are many excitation types is if, in the reference
frame of the graph, the limiting speed vL for one type of excitation is less than vmax. In such situation, a frame
with speed v > vL would see these excitations as being unable to propagate in some directions, this implies
a preferred reference frame. We thank Niayesh Afshordi for pointing this out. This is an important problem
which will not be dealt with here. Let us however indicate briefly a possible solution. So that they can be seen,
it must be possible for the slow excitations to interact with the fast ones, this means that in the infrared limit,
they might be dressed-up in clouds of virtual fast excitations which would allow them to go much faster.
Afshordi suggests a different resolution: the fast excitations might not be stable in the infrared limit, they
might emit Cherenkov radiation in the form of the slow excitations
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straightforward.

It is important to note here that for all the calculations to be performed in this thesis,

we only consider the graph-distance metric and the speed as defined in this metric. This is

because we are working with the “fundamental” theories/models and at the “fundamental

scale” calculations are most easily performed in the preferred rest frame at rest with respect

to the graph.

Lieb-Robinson bounds (LRB) however have mostly been used in the fields of theoret-

ical condensed matter and quantum information theory [24, 28, 27, 60, 84, 45, 32, 101, 33,

92, 82, 85, 86, 83]. In particular, the LRB has been used to prove that a non-vanishing

spectral gap implies an exponential clustering in the ground state [45, 84, 101]. Further

developments can be found in [82], where the LRB is used also to argue about the ex-

istence of dynamics. The LRB has also been instrumental in the recent extension of the

Lieb-Schultz-Mattis theorem to higher dimensions [43, 85]. In [32], it has been shown how

the Lieb-Robinson bounds can be exploited to find general scaling laws for entanglement.

In [24] these techniques have been exploited to characterise the creation of topological or-

der. The locality of dynamics has important consequences on the simulability of quantum

spin systems. In [88, 89] it has been shown that one dimensional gapped spin systems

can be efficiently simulated. A review of some of the most relevant aspects of the local-

ity of dynamics for quantum spins systems can be found in [86]. Other developments of

significant interest include [33, 92] which show that it is possible to entangle macroscopi-

cally separated nano-electromechanical oscillators of oscillator chain and that the resulting

entanglement is robust to decoherence. Such a system is of great interest for its possible

application as a quantum channel and as a tool to investigate the boundary between the
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classical and quantum world.

3.2 The Lieb-Robinson bound

In its simplest form, the Lieb-Robinson bound can be derived in the following way. We

suppose that the total Hilbert space is the tensor product of local Hilbert spaces:

H =
⊗
x

Hx. (3.1)

Each local Hilbert spaceHx is associated to an edge or to a vertex of a graphGwith vertices

having a maximum valency ν. The total graph is thus associated to the total Hilbert space.

On this Hilbert space we have a local Hamiltonian which defines the evolution:

Hlocal =
∑
X⊂G

ΦX , (3.2)

where the operators ΦX are R-local. We define an operator to be R-local if it has support

on a Hilbert space with an associated subgraph X of G such that the diameter of X (the

maximal distance between any two point of X) in graph distance is less than R and such

thatX∩Y = ∅ ⇒ [ΦX ,ΦY ] = 0. The norm of these local operators is also assumed to be less

than some positive number K. The Lieb-Robinson bound is a bound on the commutator

of two local observables separated by a distance d at a time t such as

f(t) := [OP (t), OQ(0)], (3.3)

30



Chapter 3. Introduction to the Lieb-Robinson Bound

where the operators OP and OQ have support on the Hilbert spaces associated with the

subgraphs P and Q which are separated by a graph distance d. Taking the derivative with

respect to t and rearranging using the Jacobi identity, we have that

f ′(t) = −i
∑
X∈ZP

([f(t),ΦX(t)] + [OP (t), [ΦX(t), OQ(0)]]) (3.4)

where ZP contains subgraphs of diameter at most R which have a non-empty intersection

with P . Taking the norm and integrating we obtain

‖[OP (t), OQ(0)]‖ ≤ ‖[OP (0), OQ](0)‖+ 2‖OP ‖
∑
X∈ZP

∫ |t|
0

ds‖[ΦX(s), OQ(0)]‖. (3.5)

This last equation can then be iterated to give

‖[OP (t), OQ(0)]‖ ≤ ‖OP ‖‖OQ‖
∞∑
n=0

(2|t|)n

n!
an (3.6)

where

an :=
∑

X2∈ZX1

. . .
∑

Xn+1∈ZXn

n∏
j=1

‖ΦXj‖δ
Xn
Q ≤ Knlneλ(nR−d) (3.7)

for some positive number λ and where we’ve set X1 := P . We define δXY = 1 if X ∩ Y 6= ∅

and δXY = 0 otherwise. We also define l := maxX |Z(X)| < ∞ for diameter(X) ≤ R. A

bound on an is obtained by bounding ‖ΦXj‖ by K and by noticing that there are at most

l terms in each sum such that δXnQ = 0 and nR < d. Using this bound for an we obtain a
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form of the Lieb-Robinson bound

‖[OP (t), OQ(0)]‖ ≤ ‖OP ‖‖OQ‖ exp (−λ(d− v|t|)) , (3.8)

where v ≤ (2KeλR)/λ. This last inequality implies that the “speed of signals” in the system

is effectively less than v. Anything travelling faster than this speed will be exponentially

suppressed.

From the above derivation of the Lieb-Robinson bound, two limitations immediately

surface. First, passing from Eq.(3.4) to Eq.(3.5), the norm of the local operators is used;

hence it is necessary that the local operators composing the Hamiltonian be bounded. Sec-

ond, it is evident from using ‖ΦXj‖ ≤ K in Eq.(3.7) that in obtaining the Lieb-Robinson

bound, one has ignored the interplay between different types of operators (different types

of interactions) weakening the bound in the case where not all of the local operators have

norm K. The purpose of chapter 4 will be to resolve this second limitation. In chapter 5,

we will partially resolve the first limitation by allowing unbounded operators as long as

their commutators remain bounded. Finally in 6 we will put these two results together

and give the final result.

Before we proceed however, we would like to point out a stunning implication of the

existence of the Lieb-Robinson bound: a relativistic light-cone structure emerges in the

continuum limit of certain local (non-relativistic) quantum systems. More precisely, the

continuum limit of any quantum system, for which the Lieb-Robinson bound is applicable,

will exhibit a sharp emergent light-cone structure with a finite signaling speed. A heuristic

argument can be given by replacing graph distances with metric distances in some units.
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For instance, let ∆ be the unit graph distance in some standard unit such as metres or

centimetres. If we now re-write the Lieb-Robinson bound using this standard unit instead

of the graph distance we get

‖[OP (t), OQ(0)]‖ ≤ M̃ exp
( λ

∆

(
vLR | t | −d(P,Q)

))
, (3.9)

where the Lieb-Robinson speed, vLR, is measured in the standard units of length per unit

time, the distance d(P,Q) is measured in the same units of distance. It is now clear that if

we take the continuum limit of the theory, ∆→ 0, Eq.(3.9) will be exactly zero if d(P,Q) >

vLR | t |. A complete analysis of the emergence of a strict light cone in the continuum limit

has been shown in [28] for general harmonic quantum systems.

The Lieb-Robinson bound will allow us to conclude that any discrete R-local quantum

theory with a Hamiltonian consisting of uniformly bounded or commutator-bounded op-

erators will have an exact emerging light-cone structure in the continuum limit, a finite

speed of sound. If in the low energy limit the underlying limit cannot be detected and

thus one cannot observe a preferred reference frame of the medium then operationally

defined measurements will yield an emergent Lorentz symmetry. As mentioned in sec-

tion 3.1, since many theories of quantum gravity are built from discrete structures such as

graphs, the Lieb-Robinson bound could provide a natural mechanism for the emergence

of relativity in those theories without requiring local Lorentz invariance a priori.

33



Chapter 3. Introduction to the Lieb-Robinson Bound

3.3 Maximal Speed of Signals from the Lieb-Robinson Bound

To show how the Lieb-Robinson bound implies a limiting speed to the propagation of

information, we will follow, in this section, the treatment of [24] where this implication

was shown, to our knowledge, for the first time. Let us consider two observers: Alice

and Bob. Alice, who wants to send a message to Bob, acts on a bounded subgraph Q

with a set of unitary operators: {OkQ}, where k labels the particular message she wishes

to send with the particular choice O0
Q = 1. Bob, at distance d (in graph distance) away

makes a measurement with observable OP on a bounded subgraph P . If we define the

global evolution of the system for a time t to be given by U(t) = exp(tH) so that OP (t) :=

U(t)OPU(t)†, then, from the Lieb-Robinson bound we have that

‖[OP (t), OkQ(0)]‖ ≤M‖OP ‖‖OkQ‖ exp
(1

ξ

(
vLR | t | −d

))
, (3.10)

where M is a constant. If we now suppose that the global initial state is given by ρ0, we

have that the input state of the quantum channel over which Alice communicates with Bob

is

ρk(0) = OkQρ0(OkQ)†. (3.11)

Designating Γ to be the global system and Γ/P to be the whole system except for the local

system where Bob makes his measurement, we have that the output state available to Bob
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at time t is

σkP (t) = TrΓ/P

[
U(t)OkQρ0(OkQ)†U(t)†

]
. (3.12)

We can now look at what effect Alice’s signaling has on Bob’s observation by looking at

the difference in what Bob observes if Alice signals a message or does nothing:

|TrP
{
OP (σ0

Q(t)− σkQ(t))
}
| = |TrP

{
ρ0(OkQ)†[OkQ, OP (t)]

}
|

≤ ‖[OP (t), OkQ]‖ ≤ ‖OP ‖ε, (3.13)

where ε = M exp
(
−1
ξ (d−vLR | t |)

)
is given by Eq.(3.10). This implies that for any k, σkP (t)

and σ0
P (t) are ε-close in the trace norm:

∀k, ‖σkP (t)− σ0
P (t)‖1 ≤ ε. (3.14)

Supposing then that in the particular language used by Alice to communicate, the proba-

bility for her to implement the unitary operator OkQ is pk, then we have that the amount of

information she can transmit to Bob with each message is given by the Holevo capacity:

Cχ = S
(∑

k

pkσ
k
P (t)

)
−
∑
k

pkS
(
σkP (t)

)
, (3.15)

where S(ρ) = −Tr
(
ρ log2(ρ)

)
is the von Neumann entropy. If nP is the dimension of the

Hilbert space associated with the subgraph P , then Fannes’ inequality asserts that given
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two density operators ρ1
P and ρ2

P on the Hilbert space we have that

|S(ρ1
P )− S(ρ2

P )| ≤ ‖ρ1
P − ρ2

P ‖1 log2

(
nP

‖ρ1
P − ρ2

P ‖1

)
. (3.16)

Thus, combining Eq.(??) we obtain:

Cχ =
∑
k

pk

S(∑
j

pjσ
j
P (t)

)
− S

(
σkP (t)

)
≤
∑
k

pk

|S(∑
j

pjσ
j
P (t)

)
− S

(
σ0
P (t)

)
|+ |S

(
σ0
P (t)

)
− S

(
σkP (t)

)
|


≤
∑
k

pk

‖∑
j

pj(σ
j
P (t)− σ0

P (t))‖1 log2(nP /‖
∑
j

pj(σ
j
P (t)− σ0

P (t))‖1) + ε log2(np/ε)


≤
∑
k

pk

(∑
j

pj‖σjP (t)− σ0
P (t)‖1 log2

nP /{∑
j

pj‖σjP (t)− σ0
P (t)‖1}

)+ ε log2(np/ε)


≤ 2ε log2(nP /ε) (3.17)

which shows that the capacity of the quantum channel is exponentially suppressed as

exp[−(d− vLR|t|)/ξ].
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Chapter 4
Interaction-Strength-Dependent Bound

In previous derivations of the Lieb-Robinson bound, the focus was on proving its existence

not on providing a tight bound. One of the most significant places where tightness was

sacrificed in favour of generality is the strength of the interactions: the complex interplay

between non-commuting local operators of the Hamiltonian was ignored by approximat-

ing the norm of all operators by the largest norm. In this chapter, modified from [94], we

show how some of the interaction type and strength dependence can be accounted for.

4.1 Theories of Two Interactions

Before taking into account the subtle interplay between a finite number of interaction types

in the Hamiltonian, we will derive the Lieb-Robinson bound for a Hamiltonian with two

interactions. This will give us the intuition needed to derive the bound for a system with

more than two interactions. We will consider R-Local quantum systems with Hamiltoni-

ans composed of bounded operators containing only two interactions. We will begin by

defining precisely what an R-Local quantum system is.
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4.1.1 R-Local Quantum Systems

We consider quantum systems of the following kind. Let G be a graph (finite or infinite)

having a maximum valence ζ1 such that to every edge e we associate a Hilbert space He

and to every vertex v we associate a Hilbert spaceHv. The total Hilbert space of the system

is then defined to be

Htot ≡
⊗

e an edge of G
He ⊗

⊗
v a vertex of G

Hv. (4.1)

We then take the evolution of the system to be R-local for R a natural number. By this

we mean that the evolution is governed by a Hamiltonian composed of a sum of operators

each having support on a Hilbert space which is associated with a subgraph of G having

a diameter less than R (i.e. the graph distance between any two points of the subgraph on

which the operator acts is at most R). By association, we will also refer to the diameter of

an operator as the diameter of its associated subgraph. Also, we use the notation that if Φ is

an operator and it does not have an explicit time dependence then it is considered to be an

operator evaluated at time t = 0, i.e. Φ = Φ(0); furthermore, we have Φ(t) ≡ eitHΦe−itH .

4.1.2 General Hamiltonians With Two Bounded Interactions

A common type of Hamiltonian is one with two coupling constants and two different types

of operators. We say a Hamiltonian is a general Hamiltonian with two coupling constants

1This ensures that the continuum limit of G be locally compact. The requirement will be needed so that the
sum

∑∞
n=0 cn

wn

n!
, which we will encounter later, converges for all real w.
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if it is of the following type

H ≡
∑
i∈S0

h0Φi
0 +

∑
j∈S1

h1Φj
1, (4.2)

with the properties that for a ∈ Z2 = {0, 1} and (i, j) ∈ Sa × Sa we have [Φi
a,Φ

j
a] = 0 and

‖Φi
a‖ = ‖Φj

a‖ = 1. In other words the operators are normalised and operators of the same

type at different locations on the graph commute. Here, the set Sa is the set of labels of the

subgraphs of G for which the operators of type a have support.

Let Γ(q,m) be the subgraph associated with the operator Φm
q and let (a, b) ∈ Z2

2. We

define the function

Ki j
a b(t) ≡ [Φi

a(t),Φ
j
b], (4.3)

in analogy with Eq. (3.3). We will generalise the Lieb-Robinson bound as calculated in

[42] to R-local Hamiltonians of bounded operators having two interactions by deriving a

bound for Ki j
a b(t). Note that since we are dealing with bounded operators, it is possible

to absorb the norm of the operators into the coupling constants and we may thus assume

‖Φk
c‖ = 1. In the following, we will show that if P and Q are two separate regions of the

graph which are small, as compared to the typical size of the total graph and OP and OQ

are bounded local operators acting on the subgraphs P and Q respectively, then

‖[OP (t), OQ(0)]‖ ≤ C̃ exp

(
ξ
(
2
γ

ξ
e
√
h0h1t− d(P,Q)

))
, (4.4)

where C̃ is a positive constant depending on P ,Q,‖OP ‖, ‖OQ‖ and H . Here γ and ξ are
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positive constants depending on the graph structure, and d(P,Q) is the graph distance

between P and Q. As shown in section 3.3 this implies that information cannot propagate

at speeds greater than vLR = 2γξ e
√
h0h1 without suffering exponential suppression of the

bandwidth as a function of distance. We will call this limit on the speed of information

propagation the Lieb-Robinson speed. Note that if one of h1 or h0 equals zero the speed

is zero and no information can propagate. This is indeed true for any system having a

Hamiltonian composed of local operators which all commute with each other: imagine

for example for example an Ising Model on a spin chain with no transverse field having

for Hamiltonian H =
∑

i S
z
i S

z
i+1, no matter how one decides to flip or change the spin

at site i, no discernable effect will ever observed at site j 6= i no matter how long one

waits. This is reminiscent of electromagnetism, information cannot propagate using only

the electrostatic interaction or only the magnetostatic interaction, both are needed to send

a signal and indeed, the quantised electric field and magnetic field do not commute. We

obtain Eq.(4.4) through recursion as described below.

Taking the derivative of Eq.(4.3) with respect to t we get

(Ki1 j
a b (t))′ = −i[[Φi1

a (t), H(t)],Φj
b],

= −iha+1

∑
i2∈Zi1

[[Φi1
a (t),Φi2

a+1(t)],Φj
b], (4.5)

= −iha+1

∑
i2∈Zi1

[[Φi1
a (t),Φj

b],Φ
i2
a+1(t)] + [Φi1

a (t), [Φi2
a+1(t),Φj

b]],

= [Ki1 j
a b (t),

(
− iha+1

∑
i2∈Zi1

Φi2
a+1(t)

)
] + (−iha+1)

∑
i2∈Zi1

[Φi1
a (t), [Φi2

a+1(t),Φj
b]],

(4.6)
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where the Jacobi identity was used to obtain the third equality and for i ∈ Sq with q ∈ Z2,

we define Zi to be the set of k ∈ Sq+1 such that Γ(q, i) ∩ Γ(q + 1, k) 6= ∅. Note that if a ∈ Z2

and a = 1 then a+ 1 = 0. Thus integrating Eq.(4.6) we get

Ki1 j
a b (t) = T2(t)Ki1 j

a b (0)− iha+1

∫ t

0
ds

∑
i2∈Zi1

[Φi1
a (s), [Φi2

a+1(s),Φj
b]], (4.7)

where T2(t) is a unitary evolution given by the unitary matrixU2(t) = exp
(
−iha+1

∑
i2∈Zi1

Φi2
a+1(t)

)
with T2(t)O ≡ U2(t)†OU2(t) for any operator O. Taking the norm of Eq.(4.7) we obtain

‖Ki1 j
a b (t)‖ ≤ ‖Ki1 j

a b (0)‖+ 2ha+1

∫ t

0
ds

∑
i2∈Zi1

‖Φi1
a (s)‖‖[Φi2

a+1(s),Φj
b]‖, (4.8)

= ‖[Φi1
a (0),Φj

b(0)]‖+ 2ha+1‖Φi1
a (0)‖

∫ t

0
ds

∑
i2∈Zi1

‖[Φi2
a+1(s),Φj

b]‖,

≤ 2δi1j + 2ha+1

∫ t

0
ds

∑
i2∈Zi1

‖[Φi2
a+1(s),Φj

b]‖,

= 2δi1j + 2ha+1

∫ t

0
ds

∑
i2∈Zi1

‖Ki2 j
a+1 b(s)‖, (4.9)

where we define

δki =


1 if Γ(ai, i) ∩ Γ(ak, k) 6= ∅,

0 otherwise,
(4.10)

and where the last inequality is obtained by realizing that ‖[Φk
c ,Φ

l
d]‖ ≤ 2 and is necessarily

zero if Γ(c, k) and Γ(d, l) have an empty intersection. Applying Eq.(4.9) to itself, we get by
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induction that

‖Ki1 j
a b (t)‖ ≤M

∞∑
n=0

(2 | t |
√
haha+1)n

n!

( ∑
i2∈Zi1

. . .
∑

in+1∈Zin

δinj

)
︸ ︷︷ ︸

cn

, (4.11)

where M = max
{√

h1
h0
,
√

h0
h1

}
. Note that cn counts the number of chains associated to

n local operators (and thus n subgraphs Γ(c, k)) starting with Γ(a, i1) and ending with

Γ(b, j). In all such chains a Γ(0, k) is followed by a Γ(1, l) where Γ(0, k) ∩ Γ(1, l) 6= ∅ and

vice versa. If we repeat exactly the same procedure, but this time with OP (t) instead of

Φi1
a (t) and OQ(0) instead of Φj

b where OP , OQ are operators defined on some regions P , Q

we get

‖[OP (t), OQ(0)]‖ ≤ N‖OP ‖‖OQ‖M ×
∞∑
n=0

(2 | t |
√
haha+1)n

n!

( ∑
i2∈Zi1

. . .
∑

in+1∈Zin

δinQ

)
︸ ︷︷ ︸

cn

,

(4.12)

where M is defined as above and N is the (finite) number of local operators of the Hamil-

tonian intersecting P . Here, cn counts the number of chains associated to n local operators

(and thus n subgraphs Γ(c, k)) starting with Γ(a, i1) which must intersect P and ending

with Γ(b, in) which must intersect Q. Furthermore, we can always find a bound of the

following type for cn

cn ≤ M̃γne
λ(n

ξ
−d)

, (4.13)

42



Chapter 4. Interaction-Strength-Dependent Bound

where λ is an arbitrary positive real number. This is because the Γ(a, i)’s have a diameter

ofR or less. Hence, if the distance, d, between P andQ is greater than nR then there are no

possible chains of n local operators linking P andQ. Since there is always less than ν other

local operators intersecting Γ(a, i) (ν must be finite because all vertices have a valence of

not more than ζ), there is a maximum of νn possible chains of n local operators starting

from any given position. Thus, like before, we certainly have that

cn ≤ νneλ(Rn−d). (4.14)

Using Eq.(4.13) in Eq.(4.12) we obtain

‖[OP (t), OQ(0)]‖ ≤ ˜̃M expλ
(

2
√
h0h1

γ

λ
e
λ
ξ t− d

)
, (4.15)

where ˜̃M = MM̃N‖OP ‖‖OQ‖. This gives us an upper bound on the speed information

can travel

vLR = 2
√
h0h1

γ

λ
e
λ
ξ , (4.16)

which can be minimised by choosing λ = ξ. We thus get the following upper bound on

the speed information can travel

vLR = 2
γ

ξ
e
√
h0h1. (4.17)
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4.1.3 Lieb-Robinson Bound on a Lattice

In the case where the graph is a regular lattice, it is possible to give a bound of the form

given in Eq.(4.13) as a function of the lattice and the Hamiltonian. We will show here how

this can be done.

For the Hamiltonian given in Eq.(4.2) on a regular lattice we have the following prop-

erties (in addition to the properties on a general graph): by passing from a Φ0 to a Φ1 in

an operator chain, one always moves along the lattice by a lattice distance of D1 and by

passing from a Φ1 to a Φ0 in an operator chain, one invariably moves along the lattice by

a lattice distance of D0. In addition, for a given i the finite number na→b of j’s such that

Γ(a, i) and Γ(b, j) have a non-empty intersection is independent of i and j and depends

only on a and b, i.e. the interaction types. Since the chains must alternate between opera-

tors of type 0 and operators of type 1, the number of operator chains of length n starting

at a specified point on the lattice, but with an unconstrained endpoint, is at most

cn ≤ max

{√
n0→1

n1→0
,

√
n1→0

n0→1

}
√
n0→1n1→0

n. (4.18)

where the max prefactor takes care of both even and odd chains. In this case, for d(P,Q) >

n+1
2 (D0 +D1), there cannot be any chains of n operators linking the initial and final point.

This means that for λ > 0, eλ
(
n+1
2

(D0+D1)−d(P,Q)
)

is necessarily greater than 1 if there exists

at least one operator chain of length n linking P and Q. Thus, instead of Eq.(4.18) we can

write

cn ≤ M̃
√
n0→1n1→0

neλ
(
n
2

(D0+D1)−d(P,Q)
)
, (4.19)
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where M̃ = max
{√

n0→1
n1→0

,
√

n1→0
n0→1

}
e
λ
2

(D0+D1). Referring back to Eq.(4.13) we obtain:

γ =
√
n0→1n1→0, (4.20)

ξ =
2

D0 +D1
. (4.21)

Combining these results with Eq.(4.17) gives

vLR = e
√
n0→1n1→0h0h1(D0 +D1). (4.22)

Of course, the restriction to lattices is a significant one; however, as we shall see next, it

is possible to obtain an equivalent bound on cn for more general graphs.

4.1.4 Lieb-Robinson Bound on a Homogeneous and Isotropic Graph

Let us now suppose that we have a general graph, and not necessarily a lattice. In this case,

the D’s of Section 4.1.3 gain a dependence on the specific local operators Φi and Φj , i.e.

instead of simplyD0 andD1 we haveDi→j
0 andDj→k

1 . Similarly, the n’s gain a dependence

on i: instead of simply n0→1 and n1→0 we have ni0→1 and nj1→0. For a given operator chain

of n operators {φi1a , φ
i2
a+1, . . . , φ

in−1

b , φinb+1} the end points of the chain can be separated by

at most a graph distance of
∑n−1

k=1 D
ik→ik+1
ak . Hence if d(P,Q) >

∑n−1
k=1 D

ik→ik+1
ak the chain

cannot link P to Q.

Let us consider chains of n operators starting at i1. Let ik and jk be different chains
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such that i1 = j1. Then if we have

1

n

n−1∑
chain i k=1

D
ik→ik+1
ak ≈ 1

n

n−1∑
chain j k=1

D
jk→jk+1
ak and, (4.23)

n

√√√√ n−1∏
chain i k=1

nikak→ak+1 ≈ n

√√√√√ n−1∏
chain j k=1

njkak→ak+1, (4.24)

then the Lieb-Robinson speed will be the same in all directions. By ≈ we mean that the

quantities converge for large n and are thus independent of the path the chain makes on

the lattice. Moreover, if the quantities in Eqs. (4.23) and (4.24) depend on in then the Lieb-

Robinson speed will vary in different regions of the graph. Finally, if the quantities in Eqs.

(4.23) and (4.24) depend on n, then the speed will depend on the distance d.

We say a graph is homogeneous if the quantities in Eqs. (4.23) and (4.24) do not depend

on n. Furthermore, we say a graph is isotropic at i1 if Eqs. (4.23) and (4.24) do not depend

on in, in which case the Lieb-Robinson speed will be the same in all directions. If these

conditions are satisfied, the Lieb-Robinson speed will be constant in all directions and

areas of the graph (or subgraph) considered.

It follows that in the case of a homogeneous and isotropic graph, we can define

n = n

√√√√ n−1∏
chain i k=1

nikak→ak+1, (4.25)

D =
1

n

n−1∑
chain i k=1

D
ik→ik+1
ak , (4.26)

for some chain of length n where n is large. By definition these quantities will not depend

on the particular chain chosen. We then have that nn is equal to the number of chains of n
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operators starting at a given point and ending anywhere. Note that for d(P,Q) > nD there

cannot be any chains of n operators linking the initial and final point. This means that for

λ > 0, eλ
(
nD−d(P,Q)

)
is necessarily greater than 1 if there exists at least one operator chain

of length n linking P and Q. Thus, we can write the analogue of Eq.(4.19) by

cn ≤ nne

(
λ
(
nD−d(P,Q)

))
, (4.27)

which gives

γ = n, (4.28)

ξ =
1

D
. (4.29)

Combining these results with Eq.(4.17) gives us

vLR = 2eDn
√
h0h1. (4.30)

As in Sections 4.1.3, we require a bound for the coefficient cn in order to provide a Lieb-

Robinson speed in terms of the parameters of the system. Let

n =


√
n0→1n1→0, lattice,

n

√∏n−1

chain i k=1
nikak→ak+1, h&i graph,

D =


1
2(D0 +D1), lattice,

1
n

∑n
chain i k=1

D
ik→ik+1
ak , h&i graph,

(4.31)
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where “h&i” stands for homogeneous and isotropic. Using the definitions of Eq.(4.31) we

have that Eq.(4.30) is the general equation for the Lieb-Robinson speed for both lattice

systems and homogeneous and isotropic systems.

4.1.5 Example: The Ising Model

The quantum Ising model describes a spin network with a preferred alignment that is sub-

jected to a magnetic field transverse to this preferred direction. In 1-dimension, the model

is exactly solvable and is known to exhibit a second order phase transition at zero tem-

perature [98]. The quantum Ising chain has a wide range of applications from condensed

matter physics [104] to quantum gravity [17].

The quantum Ising chain is an example of a bounded system on a lattice having a

Hamiltonian with two coupling constants. Accordingly, we can use the framework devel-

oped above to calculate the Lieb-Robinson bound.

The Hamiltonian for the quantum Ising chain is given by

H = −J
∑
i

(
gσxi + σzi σ

z
i+1

)
, (4.32)

where σx and σz are Pauli matrices. At zero temperature the Ising chain exhibits two

phases: paramagnetic (g > 1) and ferromagnetic (g < 1) with a quantum critical point at

g = 1. By varying g, i.e. the transverse magnetic field, the system can undergo a quan-

tum phase transition from the paramagnetic phase (disordered) to the ferromagnetic phase

(ordered) or vice versa.

In order to calculate the Lieb-Robinson speed we need an upper bound on the coef-
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ficients cn defined in Eq.(4.13). The cn coefficients represent the number operator chains

of length n consisting of alternating σxi and σzi σ
z
i+1 operators such that the subgraphs cor-

responding to the operators intersect (in this case only nearest neighbours). Since we are

dealing with a lattice we can use Eq.(4.20) and Eq.(4.21). There are 2 possible steps from a

vertex to an edge and 2 possible steps from an edge to a vertex. Thus by Eq.(4.20), in this

case, γ =
√

2× 2 = 2. Furthermore, by passing from a vertex to an edge, and vice versa,

we move by half of a lattice spacing, thus by virtue of Eq.(4.21), ξ = 2.

It follows, from Eq. (4.17) that the Lieb-Robinson bound for the speed of propagation

in the quantum Ising model is found to be

vLR = 2e
√
gJ. (4.33)

Close to the quantum phase transition (which happens at g = 1), at small deviations

from criticality, |g − 1| � 1, it is possible to take the continuum limit which gives a rela-

tivistic Majorana fermion field theory in one dimension with a speed of light of c = J and

a mass of m = (g− 1)J [37]. This means at up to a constant of order 1, 2e, which we expect

due to the approximations made, the Lieb-Robinson gives the right value for the speed of

information propagation, at least near the phase transition where it can be checked.

4.1.6 Example: String Net Condensate Model of Emerging Light

The principle of locality is one of the most fundamental ideas of modern physics. It states

that every physical system can be influenced only by those in its neighbourhood. The
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concept of field is the outcome of taking this principle seriously: if objectA causes a change

on object B, there must be changes involving the points in between. The field is exactly

what changes. In addition, if something is “happening” at all the intermediate points,

then the interaction between the objects must propagate with a finite speed. Relativistic

quantum mechanics is built by taking the locality principle as a central feature.

In this section, we will give a concrete example of a Galilean quantum system on a

lattice which becomes Special Relativistic in the continuum limit because of a finite speed

of information propagation that can be predicted by the Lieb-Robinson bound. This is an

example of the general situation described in section 3.1. In the model under study, we

can take the continuum limit exactly to find what the true maximum speed of interactions

is and compare it with the Lieb-Robinson speed we derived in the previous section. This

will give us an idea on how tight an upper bound on the maximum speed of information

propagation we can expect the Lieb Robinson speed to be. Also, we will see explicitly how

the theory in the continuum limit is Special Relativistic as we concluded should be the case

in section 3.1. In fact the theory we are considering is a theory of emergent light, and so

in this particular case, the Lorentz transformation parameter c will indeed correspond to a

speed of light.

The concept of topological order, on which the emergent light model is based is one

of the most productive recent ideas in condensed matter theory [106]. It provides expla-

nations for phases of matter (for example, fractional quantum Hall liquids) that cannot be

described by the paradigm of local order parameters and symmetry breaking. If local or-

der parameters cannot describe such phenomena, then their order could be topological in

nature [106]. Topological order gives rise to a ground state degeneracy that depends on the
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topology of the system and is robust against any local perturbations [107]. Because of this

property, topologically ordered systems appear to be good candidates for robust quantum

memory and fault-tolerant quantum computation [60].

Not only can topological order explain exotic phases of matter, but it offers a whole

new perspective to the problem of elementary particles. Currently, there are particles that

we regard as fundamental, like photons and fermions, and other particles that can be in-

terpreted as collective modes of a crystal. For example, we can describe phonons in this

way because of the symmetry of the crystal. The understanding of the phases of matter

provides an explanation for the phonon and other gapless excitations. However, one can

also ask whether photons, electrons, or gravitons are emergent phenomena too, not ele-

mentary particles. Let us consider the case of light. Photons are U(1) gauge bosons and

they cannot correspond to the breaking of any local symmetry [108]. Nevertheless, they

can be collective modes of a different kind of order, and this is the case of topological order.

Indeed models with topological order can feature photons, fermions and even gravitons

as emerging collective phenomena [106, 39].

Light emerges from topological order as the effective low-energy theory of a quantum

spin system. The quantum spin system is built as a local bosonic model, namely a system in

which the principle of locality is enforced by the fact that the Hilbert space decomposes

in a direct product of local Hilbert spaces and all the observables have to commute when

far apart. Moreover, the Hamiltonian must be a sum of local operators. In the low-energy

sector, and in the continuum limit, the effective theory can be described by the Lagrangian

of electromagnetism. Therefore low-energy excitations behave like photons. Maybe this

is what photons really are, collective excitations of a spin system on a lattice with Planck-
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scale distance. But then, why do we not see signals that are faster than light? There could

be all sorts of interactions that can propagate as fast as permitted by the coupling constants

of the underlying spin model. A theory of light as an emergent phenomenon needs to

explain why we do not see signals faster than light.

Topological Order and Artificial Light.— If we want to impose the principle of locality

in a strong sense, we must consider local bosonic models [108]. Fermionic models are not

really local because fermionic operators do not generally commute even at distance. A

local bosonic model is a theory where the total Hilbert space is the tensor product of local

Hilbert spaces, local physical operators are finite products acting on nearby local Hilbert

spaces, and the Hamiltonian is a sum of local physical operators. Thus local physical

operators must commute when they are far apart. If we restrict ourselves to the case of

a discrete number of degrees of freedom and finite-dimensional local Hilbert spaces, we

have a quantum spin model. A quantum spin model can be therefore defined as follows.

To every vertex x in a graph G we associate a finite dimensional Hilbert space Hx. The

total Hilbert space of the theory is H = ⊗x∈GHx. To every finite subset of vertices X ⊂ G,

we associate the local physical operators with support in X as the algebra B(HX) of the

bounded linear operators over the Hilbert space HX = ⊗x∈XHx. The Hamiltonian will

have the form Hlocal =
∑

X⊂G ΦX , where to every finite subset X ⊂ G we associate an

hermitian operator ΦX with support in X . An example of local bosonic model is given by

a spin 1/2 system on a lattice. To every vertex x in the lattice we associate a local Hilbert

spaceHx ∼= C2. Local physical operators are finite tensor products of the Pauli matrices at

every vertex.

The bosonic model we consider is a lattice of quantum rotors. Its low-energy effective
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Figure 4.1: (Colour online) A 2D−dimensional rotor lattice. To every plaquette p is associated a
rotor operator Wp as a function of the variables θij . The graph G is the one drawn in thin black
lines. The graph G′ is the graph with black and blue (lighter, bigger) dots as vertices and blue thin
lines as edges. The red dashed line shows a path of length n = 22 from the point P to the point Q
which are at a distance 2d(P,Q) = 8 on G′ or d(P,Q) = 4 on G. These paths contain alternating
link and plaquette operators.
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theory is a U(1) lattice gauge theory whose deconfined phase contains emergent light.

Consider a square lattice whose vertices are labeled by i, with angular variable θ̂ij and

angular momentum Szij on its links. The Hamiltonian for the quantum rotor model is

given by

Hrotor = U
∑
i

(∑
α

Szi,α

)2

+ J
∑
i,α

(Szi,α)2

+
∑

i,{α1,α2}
s.t. α1·α2=0

(
t<α1α2>e

i(θi+α1−θi+α2) + h.c.
)
, (4.34)

where α = ±1/2(1, 0),±1/2(0, 1) are the vectors of length 1/2 pointing towards the lattice

axes [108] and the t’s are coupling constants. In the limit t, J � U , the first term of the

Hamiltonian Hrotor behaves like a local constraint and makes the model a local gauge

theory. Defining g := 2/U(t12t−1−2 + t2−1t−21), the effective low-energy theory becomes

the spin Hamiltonian

Heff = J
∑
<ij>

(Szij)
2 − g

∑
p

Wp + h.c.

2
(4.35)

where now θij = Szij andWp = S+
12S
−
23S

+
34S
−
41 is the operator that creates a string around the

plaquette p (see Fig. 4.1). The smaller S, the smaller is the energy at which emergent light

emerges [108]. In the following we assume S = 1. Although a lattice gauge theory is not a

local bosonic model, this does not violate locality because Heff is just an effective theory.

The fundamental theory is local andHeff is still a sum of local terms. In the large g/J limit,

54



Chapter 4. Interaction-Strength-Dependent Bound

the continuum theory for the Hamiltonian Heff is the Lagrangian of electromagnetism

L =

∫
d2x

(
1

4J
E2 − g

2
B2

)
,

with speed of light given by c =
√

2gJ .

Lieb-Robinson Bound for the emergent U(1) model.— What do the Lieb-Robinson bounds

tell us about the model Heff with emergent light? Is the maximum speed of the interac-

tions something like the speed of the emergent light or something completely different?

As we have seen, this is of great importance if we want to take seriously the theory of light

as an emergent phenomenon.

Using Eq.(4.22), and noticing that plaquettes are adjacent to four edges (nplaq→edg = 4),

edges are adjacent to two plaquettes (nedg→plaq = 2) and that moving from the centre

of the plaquette to an adjacent edge and vice versa one travels a graph distance of one

half (D = 1
2 ) we get that the Lieb-Robinson speed for the effective Hamiltonian is vLR =

2e
√

2gJ = 2e × c, where c =
√

2gJ is the exact speed of the emerging light in the model.

Again, as for the Ising model, we obtain the correct speed up to a constant of order 1

which, as mentioned previously, we would expect due to the approximations made. What

is important though is that the functional dependence on the interaction strength is exact

as this is very important information. Interestingly, in this case, the Lieb-Robinson speed

is larger than the actual speed of information propagation by a factor of 2e, the same factor

that was obtained in the case of the Ising model. We do not know the reason for this, if

any.

This calculation was done using the effective infrared Hamiltonian and so gives the
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speed and a bound on the speed in that limit only. Probing energies of order U we could

still find faster signals.

4.2 Theories of Finitely Many Interactions

Now that we have established in detail how to calculate the Lieb-Robinson bound for two

interactions, we will apply the intuition we gained to derive a bound for any finite number

of interactions. The essential intuition which we gained for two interactions was that, in

an operator chain, because one type of interaction commutes with interactions of the same

type, each operator in a chain must be of a different type than the preceding one. In the

case of only two types of interaction, this requirement uniquely defines the interaction

type of each operator in the chain, i.e. they must alternate. However, in the case of m-

interactions, the situation is more complicated because we have a choice of as many as

m − 1 interaction types for each operator along the chain. The way we will deal with this

added complication is by considering periodic chains of operators. Since the bound for an

arbitrary chain will be the geometric mean of the bounds for such periodic chains, a bound

on any chain can be derived from the bounds on the periodic chains.

Let us now consider general Hamiltonians possessing m types of interactions. We de-

fine a type of interaction to be a subset of the the local operators making up the Hamil-

tonian such that all the operators commute with each other and such that they appear

with the same coupling constant in the Hamiltonian. Intuitively we think of all the op-

erators of a single type as performing the same action at different locations on the graph.

For example, in the quantum Ising model, the set of local operators {σxi }i∈Z implementing
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the transverse magnetic field is considered to be one type of interaction. We will derive

the Lieb-Robinson bound for such a Hamiltonian and provide the specific dependence of

the Lieb-Robinson speed on the strength of the interactions. For simplicity, we will restrict

ourselves to the case of bounded operators on a lattice. Generalisations to the commutator-

bounded case and to homogeneous and isotropic graphs are straightforward applications

of the methods shown in the previous sections, the results for which we will state at the

end of this section.

We consider a Hamiltonian of the following type:

H ≡
m∑
l=1

∑
il∈Sl

hlΦ
il
l , (4.36)

where l labels the interaction type. We assume that all the terms in the sum are non-zero

and that for all l ∈ {1, . . . ,m} and ∀(i, j) ∈ S2
l we have [Φi

l,Φ
j
l ] = 0 and ‖Φi

l‖ = ‖Φj
l ‖ = 1.

Note that the normalisation of the operators can be imposed without any loss of generality

in the case of bounded interactions. Further, we assume that for all (l1, l2) ∈ {1, . . . ,m}2

and i ∈ Sl1 , there are exactly nl1→l2 j’s such that j ∈ Sl2 and Γ(l1, i) ∩ Γ(l2, j) 6= ∅ where

nl1→l2 depends only on l1 and l2. In addition, the graph distance traveled along the graph

by passing from Γ(l1, i) to one such Γ(l2, j) is Dl1→l2
l1

which also depends only on l1 and l2.

The last two properties arise from the fact that we are supposing the graph to be a lattice.

4.2.1 Lieb-Robinson Bound

For Hamiltonians with two interaction types it was easy to calculate the Lieb-Robinson

bound. This is because in order for a signal to propagate the two types of interactions
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had to alternate in the operator chains which showed up in the bound. Therefore, we

knew that half the operators were of one type of interaction while the other half were of

the other type. For m types of interactions, different chains could have many different

combinations of each type of operator, the only requirement being that each operator in

the chain implements a different interaction than the previous operator. The intuition is

then to consider all possible chains which are periodic in the interaction type and then

bound all chains by the periodic sequence of operators which has the maximal norm. This

will work because even if a chain is not periodic, it can be subdivided into components

which are subchains of periodic chains.

Everything up to Eq.(4.11) does not depend on the number of interaction types. In the

case of m interactions, Eq.(4.11) becomes

‖Ki1 j
a b (t)‖ ≤M

∞∑
n=0

| t |n

n!

( ∑
i2∈Zi1

2h(i2) . . .
∑

in+1∈Zin

2h(in+1)δinj

)
, (4.37)

where h(ik) ∈ {h1, h2, . . . , hm} and of course h(ik) 6= h(ik+1). This situation is now more

complicated than for two interactions because there is not necessarily the same number

of each coupling constant in each term. The power of a particular coupling constant in

a particular term depends on the operator chain and can range from anywhere from 0 to

dn/2e.

In Eq.(4.37) the end points of the chain are separated by at most a graph distance of∑n−1
k=1 D

a(ik)→a(ik+1)
a(ik) , where a(ik) ∈ {1, 2, . . . ,m} labels the operator type of ik. Hence if

d(P,Q) >
∑n−1

k=1 D
a(ik)→a(ik+1)
a(ik) the chain cannot link P to Q. As we did previously, we can

bound ‖Ki1 j
a b (t)‖ by multiplying every term in Eq.(4.37) by exp

(
λ
(∑n−1

k=1 D
a(ik)→a(ik+1)
a(ik) −
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d(P,Q)
))

which takes care of the endpoint condition (i.e. the δinj factor in Eq.(4.37)). By

doing this, it can be shown (see Appendix A for details) that the Lieb-Robinson bound

takes the form

‖[OP (t), OQ(0)]‖ ≤ M̃(λ) exp
(
λ
(2(m− 1)L(λ)

λ
| t | −d(P,Q)

))
, (4.38)

where λ is again an arbitrary positive number, M̃ <∞ for finite λ and

L(λ) ≡ max
2≤r≤m(m−1)

max
(a1,a2,...,ar)∈{1,...,m}r

{
ka1...are

λξa1...ar |1 ≤ p < q ≤ r, (ap, ap+1) 6= (aq, aq+1)

}
,

(4.39)

where

ka1a2...aq ≡ q

√√√√ q∏
l=1

halnal→al+1
,

ξa1a2...aq ≡
∑q

l=1D
al→al+1
al

q
, (4.40)

and where we assume ar+1 ≡ a1. This implies a Lieb-Robinson speed of

vLR = inf
λ>0

2(m− 1)L(λ)

λ
. (4.41)

We can generalise this result to homogeneous and isotropic graphs using the same

methods used in the previous sections. All that is needed is to redefine the k’s and ξ’s

in Eq.(4.40). By the definition of a homogeneous and isotropic graph, the result of taking

the arithmetic mean of the D’s and the geometric mean of the n’s over a chain will not
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depend on the chain taken. In other words, if we let Ch(P, x, l1, l2, . . . , lr) be the set of

operator chains of x operators whose first operator’s support intersects P and is of type l1

and whose qth operator is of type lg where g = [(q − 1) mod r] + 1; we may define:

nl1l2...lr = |Ch(P,x,l1,l2,...,lr)|

√√√√ ∏
i∈Ch(P,x,l1,l2,...,lr)

r∏
k=1

n
ifr+k
lk→lk+1

Dl1l2...lr =
1

|Ch(P, x, l1, l2, . . . , lr)|
∑

i∈Ch(P,x,l1,l2,...,lr)

r∑
k=1

D
ifr+k→ifr+k+1

lk→lk+1
. (4.42)

We will now summarise our results for the Lieb-Robinson bound for a system of m inter-

actions on a lattice or a homogeneous and isotropic (h&i) graph. The derivation was for

bounded operators but we also state the result for commutator bounded systems which

are discussed in [93]. To state all results concisely we define a constant C and state the

forms of kl1...lr and ξl1...lr for the different possible systems:

C =

{
2(m− 1) (4.43)

kl1...lr =


r

√∏r
i=1 hlinli→li+1

lattice,

r
√∏r

i=1 hlinl1l2...lr h&i graph,

(4.44)

ξl1...lr =


∑r
i=1D

li→li+1

r lattice,

Dl1...lr h&i graph.

(4.45)

With these redefinitions, the general version of the Lieb-Robinson bound and speed are

‖[OP (t), OQ(0)]‖ ≤ M̃(λ) exp
(
λ
(CL(λ)

λ
| t | −d(P,Q)

))
, (4.46)

60



Chapter 4. Interaction-Strength-Dependent Bound

giving that

vLR = inf
λ>0

CL(λ)

λ
. (4.47)

4.2.2 Calculating the Lieb-Robinson Speed

Using Eqs. (4.44), (4.45), and (4.47) we will calculate the Lieb-Robinson speed for a system

of m interactions. If there are only two interactions labeled by 0 and 1 then the max is over

a set containing only one element so we have

vLR = C inf
λ>0

{
k01

λ
eξ01λ

}
= Cek01ξ01, (4.48)

which agrees with our previous result for systems with two interactions. For more than

two interactions the max is taken over a set containing more than one element which

brings about a qualitative difference: One obtains a different functional dependence on

the strengths of the interactions (the h’s) as well as the structure of the graph (the n’s and

D’s) as compared to the algebraic dependence in the case of two interactions.

To calculate vLR for more than two interactions we must take the maximum of a set of

functions of the form ki1...ire
ξi1...irλ. Since the maximal element of this set can change for

different values of λ some care must be taken. In view of Eq.(4.47) we will divide these

elements by λ since it won’t change which element is maximal and we will call this set A.

That is
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A =

{
ki1...ire

ξi1...irλ

λ

}
, (4.49)

for the different possible subchain labellings i1 . . . ir as given in Eq.(4.39). Further, we will

define a function Amax(λ) = maxA. Therefore

vLR = C inf
λ>0

Amax(λ). (4.50)

The element of A which has the largest value of k will be maximal for λ → 0. The value

of λ at which two elements of A intersect is given by kl1...lr e
ξl1...lr

λ

λ =
kj1...jse

ξj1...js
λ

λ and

corresponds to the value

λ
(l1...lt)

(j1...js)
=

ln(kl1...lt)− ln(kj1...js)

ξj1...js − ξl1...lt
. (4.51)

Notice that for λ(l1...lt)

(j1...js)
to be positive we must have ξj1...js > ξl1...lt which is also the con-

dition for the two curves to intersect. Now suppose that ki1...ir is the largest value of k of

the elements inA and that λ(j1...js)
(i1...ir)

is the smallest intersection point involving this element.

Next suppose that λ(l1...lt)

(j1...js)
is the smallest intersection point greater than λ(j1...js)

(i1...ir)
involving

the element labeled by j1 . . . js. Continuing in this way the function Amax(λ) will be given

by
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Amax(λ) =



ki1...ir e
ξi1...ir

λ

λ , 0 < λ ≤ λ(j1...js)

(i1...ir)
,

kj1...jse
ξj1...js

λ

λ , λ
(j1...js)

(i1...ir)
≤ λ ≤ λ(l1...lt)

(j1...js)
,

...

(4.52)

Since the function kj1...jse
ξj1...js

λ

λ has only one minimum at λ = 1/ξj1...js it follows that if

λ
(j1...js)

(i1...ir)
≤ 1/ξj1...js ≤ λ

(l1...lt)

(j1...js)
for any one of the intervals then the infimum of Amax(λ)

is given by A(1/ξj1...js). Otherwise, the infimum of Amax(λ) will be at one of the points

λ
(l1...lt)

(j1...js)
. This completes the algorithm for finding the Lieb-Robinson speed vLR for any

finite number of interactions.

For concreteness we will work out some general scenarios for the case of three interac-

tions. We will label the interactions by 1,2, and 3 in which case

A =

{
k12e

ξ12λ

λ
,
k23e

ξ23λ

λ
,
k31e

ξ31λ

λ
,
k123e

ξ123λ

λ
,
k132e

ξ132λ

λ
,

k2131e
ξ2131λ

λ
,
k1232e

ξ1232λ

λ
,
k1323e

ξ1323λ

λ
,
k123132e

ξ123132λ

λ

}
. (4.53)

Note that we have only considered distinct elements of the set. For example, we did not

consider k231eξ231λ

λ because k231eξ231λ

λ = k123eξ123λ

λ .

There are two possible scenarios. The first is that one of the k’s and its associated ξ are

greater than all the other k’s and ξ’s. In that case, one element of A will be greater than

all the others regardless of the value of λ and the Lieb-Robinson speed will be given by
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minimising that particular element of A. If, for example k132 is greater or equal to all the

other k’s while simultaneously ξ132 is greater or equal to all the other ξ’s, then k132eξ132λ

λ

will be the maximum element irrespective of λ and so we will have

vLR = C inf
λ>0

k132e
ξ132λ

λ
,

= Cek132ξ132. (4.54)

For a bounded system on a lattice C = 2(m− 1) and

k123 = 3
√
h1h2h3

3
√
n1→3n3→2n2→1, (4.55)

ξ123 =
D1→3 +D3→2 +D2→1

3
, (4.56)

which allows us to solve for the Lieb-Robinson speed explicitly in terms of the coupling

constants and lattice distances as

vLR =
4e

3
3
√
h1h2h3

3
√
n1→3n3→2n2→1(D1→3 +D3→2 +D2→1).

(4.57)

In the second scenario, no single element ofA is greater than all the others for all values

of λ. Let us suppose, in that case, that we have k12 > k23 > k123 > k31 > k132 > k1232 >

k123132 > k2131 > k1323 and ξ123 > ξ23 > ξ12 > ξ1323 > ξ2131 > ξ123132 > ξ1232 > ξ31 > ξ132.
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inc. or
dec.: ↘ ↘ ↘ ↘ ↗ ↗ ↗

max k12eξ12λ

λ
k23eξ23λ

λ
k123eξ123λ

λ
term:

λ : 0 λ(23)

(12) ξ−1
123 λ(123)

(12) λ(123)

(23) ξ−1
23 ξ−1

12

Table 4.1: This table shows that the minimal point of the function Amax(λ) is located at λ = λ(123)

(23) .
The top row indicates whether the function Amax(λ) is increasing or decreasing in the intervals of
λ determined by the various critical points. The middle row indicates the maximal element of the
set A while the bottom row is a scale for λ beginning at λ = 0. Also shown are ξ−112 , ξ−123 , and ξ−1123

which are the minima of their respective elements in A. In this case they are not minima of Amax(λ)
because they do not lie in the intervals for which their corresponding element of A is maximal.

With these assumptions one finds that

Amax(λ) =



k12eξ12λ

λ , 0 < λ ≤ λ(23)

(12) ,

k23eξ23λ

λ , λ(23)

(12) ≤ λ ≤ λ
(123)

(23) ,

k123eξ123λ

λ , λ(123)

(23) ≤ λ ≤ . . .,

...

(4.58)

and also that ξ−1
12 , ξ−1

23 , and ξ−1
123 do not lie in the intervals of λ for which their corresponding

element in A is maximal, i.e. none of these are the minimal point of Amax(λ).

In Table 4.1 we state the maximal element of A in the different relevant intervals of λ.

We also indicate whether the function Amax(λ) is increasing or decreasing in each interval.

From the table we see that the function Amax(λ) is minimised for λ = λ(123)

(23) .
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Thus we have

vLR = C
k23e

ξ23λ
(123)
(23)

λ(123)

(23)

. (4.59)

For a bounded system on a lattice we have C = 2(m− 1) and

k23 =
√
h2h3

√
n2→3n3→2, (4.60)

ξ23 =
D2→3 +D3→2

2
, (4.61)

which allows us to solve for the Lieb-Robinson speed explicitly in terms of the coupling

constants and lattice distances as

vLR = 2(m− 1)
(ξ123 − ξ23)

ln(k23)− ln(k123)
k

ξ123
ξ123−ξ23
23 k

ξ23
ξ23−ξ123
123 (4.62)

= 4
[h2+h3

2 − h1+h2+h3
3 ] + [n2→3+n3→2

2 − n1→2+n2→3+n3→1
3 ]

D1→2+D2→3+D3→1

3 − D2→3+D3→2

2

×
√
h2h3n2→3n3→2

D1→2+D2→3+D3→1

3
D1→2+D2→3+D3→1

3 −D
2→3+D3→2

2

× 3
√
h1h2h3n1→2n2→3n3→1

D2→3+D3→2

2
D2→3+D3→2

2 −D
1→2+D2→3+D3→1

3 . (4.63)

In general, when the minimum ofAmax is attained at a minimum of one of the elements

in A the Lieb-Robinson speed will be of the form of Eq.(4.54). When the minimum of Amax

occurs at the point where two elements of A are equal, the Lieb-Robinson speed will be of
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the form of Eq.(4.62). Thus the Lieb-Robinson speed will always be of one of the two forms

vsLR(k, ξ) = 2ce(m− 1)kξ (4.64)

or

vdLR(k1, k2, ξ1, ξ2) = 2c(m− 1)
(ξ1 − ξ2)k

ξ2
ξ2−ξ1
1 k

ξ1
ξ1−ξ2
2

ln(k2)− ln(k1)
, (4.65)

where c = 1 for bounded systems and c =
√

2 for commutator-bounded systems. This

is true also for any m ≥ 3 since adding more interactions merely increases the number of

elements of A. Now that we have seen how to calculate the Lieb-Robinson speed for any

number of interactions, let us consider a physical example.

4.2.3 Example: XY-Model

We investigate the anisotropic quantum XY-model on a 2-dimensional square lattice. This

model is well understood and is studied mainly in connection with quantum phase tran-

sitions. This model is also of practical interest for example in understanding the isolator-

superconductor phase transition in cuprate type II superconductors [100]. At zero tem-

perature the system exhibits two phases, one with an energy gap and another which is

gapless.

The Hamiltonian for the quantum XY-model is given by

H = J
∑
〈n,m〉

(SxnS
x
m + SynS

y
m) +D

∑
n

(Szn)2, (4.66)
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where 〈n,m〉 represents the sum over nearest neighbours on the sites, n, of a square lattice.

Note that the gapless and gapped phases are determined by δ < δc and δ > δc respectively

where δ = D
2J and where δc has been estimated to be approximately 3.6 [91]. For δ >

δc the correlation length of the system approaches a finite value leading to a quantum

paramagnetic ground state with no long range order. We label the SxSx, SySy and Sz

operator types by X, Y, and Z respectively2.

Since the k’s and ξ’s are symmetric under cyclic permutations as well as the interchange

of X and Y the set A will have only four distinct elements

A =

{
kXY e

λξXY

λ
,
kXZe

λξXZ

λ
,
kXY Ze

λξXY Z

λ
,
kXY ZY e

λξXY ZY

λ

}
. (4.67)

Note that XZY Z = XZ and XY ZXZY = XY Z by breaking the larger chains in two and

using the symmetries.

The operators X and Y are located on edges of the graph whereas the operators of

type Z are located on the plaquettes. Moving from a plaquette to an edge corresponds

to moving a lattice distance of 1/2 while moving from a plaquette to another plaquette

corresponds to moving a lattice distance of 1. Therefore

2Note that even though SxnS
x
m and SynS

y
m have the same coupling constant, we must nevertheless consider

them as two separate interactions because otherwise the conditions laid out in between Eq.(4.2) and Eq.(4.3)
would not be satisfied.
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DX→Z = DY→Z = 1/2, (4.68)

DX→Y = 1. (4.69)

Note that these distances are symmetric. Furthermore, from an edge one can move to one

of two plaquettes or one of 7 other edges (including the one currently on). From a plaquette

one can move to one of four edges. Therefore,

nX→Z = nY→Z = 2, (4.70)

nZ→X = nZ→Y = 4, (4.71)

nX→Y = nY→X = 7. (4.72)

Using this information and the coupling constants hX = J , hY = J , and hZ = D in Eqs.

(4.44) and (4.45) we get

kXY = 7JS, ξXY = 1,

kXZ =
√

8JDS, ξXZ =
1

2
,

kXY Z =
3
√

7 · 8J2DS, ξXY Z =
2

3
,

kXY ZY =
4
√

72 · 8J3DS, ξXY ZY =
3

4
, (4.73)
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where S is a half integer giving us the type of spins on the lattice. From Eq.(4.51), we

obtain

λ(XY )

(XZ) = λ(XY )

(XY Z) = λ(XY )

(XY ZY ) = λ(XY Z)

(XZ) = λ(XY ZY )

(XZ) = λ(XY ZY )

(XY Z) = 2 ln(4/7) + ln

(
D

2J

)
.

(4.74)

This implies that all of the elements of A intersect at the same value of λ. First note that

this value is negative for D/2J < (7/4)2 and thus the curves do not intersect. In this case,

kXY e
λξXY

λ is maximal for all λ and so the Lieb-Robinson speed is

vLR = 2e(m− 1)kXY ξXY ,

= 28eJS. (4.75)

For D/2J > (7/4)2 we have

Amax(λ) =


kXY e

ξXY λ

λ , 0 < λ ≤ λ(XZ)

(XY ) ,

kXZe
ξXZλ

λ , λ(XZ)

(XY ) ≤ λ ≤ ∞.

(4.76)

First let us consider the cases when the minima occur within the intervals. The minimum

occurs in the first interval when 0 < ξ−1
XY ≤ λ(XZ)

(XY ) which corresponds to (7/4)2 < D/2J <

e(7/4)2 and gives the same speed as for D/2J < (7/4)2. The second interval contains the

minimum when λ(XZ)

(XY ) < ξ−1
XZ ≤ ∞ which occurs for D/2J > e2(7/4)2. In this case the
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minimum value is Amax(ξ−1
XZ) and gives a Lieb-Robinson speed of

vLR = 2e(m− 1)kXZξXZ ,

= 4e
√

2JDS. (4.77)

Finally, in the region e(7/4)2 < D/2J < e2(7/4)2 the minimum occurs for λ = λ(XZ)

(XY ) and so

vLR = 2(m− 1)
kXY e

ξXY λ
(XZ)
(XY )

λ(XZ)

(XY )

,

=
32

7

DS

2 ln(4/7) + ln(D/2J)
. (4.78)

The results and the various conditions are summarised in Table (4.2). The first column

gives the Lieb-Robinson speed in the region of phase space defined by the inequalities of

the third column. By phase space we simply mean the space R2
+ of all possible values

of the coupling constants J and D. The different values of the Lieb-Robinson speed in

the different regions of the phase space are plotted in Fig. 4.2. In general, the number of

functional forms for the Lieb-Robinson speed could be as many as twice the number of

distinct intersection points obtained in Eq.(4.74) plus one, i.e. the minimum could occur at

each intersection point or in each interval.

Also plotted in Fig. 4.2 is the critical line for the quantum phase transition (dotted

line) which occurs for D
2J ≈ 3.6. It is important to remember that the regions of phase

space with different Lieb-Robinson speeds do not correspond to different quantum phases.
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vLR Conditions Simplified Cond.

vsLR(kXZ , ξXZ) λ(XY )

(XZ) ≥ ξ−1
XZ

D
2J ≥

(
7
4

)2
e2

= 4e
√

2JDS λ(XY Z)

(XZ) ≥ ξ−1
XZ

λ(XY ZY )

(XZ) ≥ ξ−1
XZ

vdLR(kXZ , kXY , ξ−1
XY ≤ λ

(XY )

(XZ)

(
7
4

)2
e ≤ D

2J ≤
(

7
4

)2
e2

ξXZ , ξXY ) λ(XY )

(XZ) ≤ ξ−1
XZ

λ(XY )

(XY ZY )≤ λ
(XY )

(XZ)

= 32
7

DS
2 ln( 4

7
)+ln( D2J )

λ(XY )

(XY Z) ≤ λ
(XY )

(XZ)

vsLR(kXY , ξXY ) λ(XY )

(XY Z) ≤ ξ−1
XY

D
2J ≤

(
7
4

)2
e

= 28eJS λ(XY )

(XZ) ≤ ξ−1
XY

λ(XY )

(XY ZY ) ≤ ξ−1
XY

Table 4.2: The Lieb-Robinson speed for the XY-model. The first column gives the functional form of
the Lieb-Robinson speed in terms of the interaction strengths. The second column gives the region
of applicability of each of the six functional forms of the Lieb-Robinson speed in terms of the λ’s
and ξ’s. The last column gives the regions in terms conditions of the interaction strengths. The
results of this table are depicted graphically in Fig. 4.2.

Quantum phases occur in the ground state at a particular point of the phase space whereas

the Lieb-Robinson speed is the maximum speed of any signals in any state and not just

small excitations over the ground state.
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Figure 4.2: The (D,J)-plane of the XY-Model and the three different formulas for the Lieb-Robinson
speed: if D

2J ≥
(
7
4

)2
e2 then the Lieb-Robinson speed is 4e

√
2JDS, if

(
7
4

)2
e ≤ D

2J ≤
(
7
4

)2
e2 then

the Lieb-Robinson speed is 32
7

DS

2 ln( 4
7 )+ln( D

2J )
and finally if D

2J ≤
(
7
4

)2
e the Lieb-Robinson speed is

28eJS. The dotted line indicates the critical line for the phase transition which runs along the line
D
2J = 3.6
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Chapter 5
Lieb-Robinson Bound for Unbounded

Operators

In this chapter, which is a modified version [93], we will show how one can find a bound to

the maximum speed of interactions in the case of a class of unbounded spin Hamiltonians.

Here we want to show that one can derive a Lieb-Robinson bound if the Hamiltonian is

the sum of local operators, whose commutators are bounded. Therefore, there is no necessity

for even the non-local terms to be bounded, as long as their commutators are.

More specifically, we suppose the following: The Hilbert space of the quantum system

is the tensor product of local Hilbert spaces associated to vertices and edges of a graph. The

Hamiltonian is the sum of local operators Φi, each with a support on a region of the graph

with diameter less then a fixed number R. Each of the local operators Φi of the Hamil-

tonian is non-commuting with less than ν other local operator terms of the Hamiltonian

Φj . For any two of these operators we have ‖[Φi,Φj ]‖ < K and for any three operators

‖[Φi, [Φj ,Φk]]‖ < Q for two positive numbers K and Q.

74



Chapter 5. Lieb-Robinson Bound for Unbounded Operators

Supposing all this we then have that for any two local operators Φi and Φj which are

terms in the Hamiltonian and whose support is separated by a graph distance d, that

‖[Φi(t),Φj(0)]‖ ≤ ˜̃M exp
(
λ (vLRt− d)

)
, (5.1)

where ˜̃M is a constant and vLR, the limit on the speed of propagation of information, de-

pends only on local operators of the Hamiltonian as it is they who effect the propagation.

This bound can be generalised to any local observables OP and OQ with supports P and

Q respectively, that satisfy the following local observable operator conditions: i) the graph

distance d separating P and Q is greater than R ii) the number of terms Φi of the Hamilto-

nian whose support has non-empty intersection with P is nP <∞ iii) there exists FP and

FQ such that for all terms Φi and Φj of the Hamiltonian the inequalities ‖[OP ,Φi]‖ < FPK,

‖[OQ,Φi]‖ < FQK and ‖[OQ, [Φi,Φj ]]‖ < FQQ are satisfied. The generalised bound is then:

‖[OP (t), OQ(0)]‖ ≤ ˜̃MFPFQnP (nP + 1) exp
(
λ (vLRt− d)

)
. (5.2)

To motivate our discussion let us start by the most trivial example: Consider the case

of a Hamiltonian H =
∑
hi which is composed of a sum of local terms hi which are

commuting, such as the quantum Ising model without transverse field. In such a case

there is simply no propagation of signals: indeed, for any local operator OA we have:

OA(t) = eitHOAe
−iHt = eitHAOAe

−iHAt where HA =
∑

i:[hi,OA] 6=0 hi, since there is a finite

number of hi inHA, and they are of finite range,OA(t) is also strictly local for arbitrary long

times t, and irrespective of the norm of the hi operators. This suggests that it is desirable to
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find Lieb-Robinson bounds in terms of the norm of the commutators rather than the norm

of the local terms hi.

Let us outline a simple example of a commutator bounded system satisfying the con-

ditions we just outlined. Consider a system of parallel quantum wires. We place fermions

on the wires. These are usually described by what are called one dimensional Luttinger

liquids, and have approximately a linear dispersion relation. We place a density-density

interaction between the wires. Labeling the wires by the index j, Luttinger liquids are

described by the following Hamiltonian:

Hwires =
∑
j

(
−i ∂
∂xj

+ V (xj − xj+1)

)
, (5.3)

which is commutator bounded in the sense of this chapter as long as both |∂xjV | and

|∂xi∂xjV | are bounded. Another example involves a generalised Dicke model, describing

an array of spins interacting with a boson field via

H =
∑

hn ; hn = σzn(b†n + bn + ib†n+1 − ibn+1) (5.4)

where bn are boson creation operators and σzn is the nth spin. It is easy to check that

in this case the commutator [hn, hn+1] = −2iσznσ
z
n+1 is bounded. (In fact, this particular

hamiltonian can also be written as a sum of commuting terms h̃n = bn(σzn − iσzn−1) + h.c.)

We consider Hamiltonians that are the sum of two different types of operators Φ0 and
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Φ1 :

H ≡
∑
i∈S0

h0Φi
0 +

∑
j∈S1

h1Φj
1. (5.5)

Here S0, S1 are two sets of labels and h0 and h1 are two coupling constants and [Φi
0,Φ

j
0] =

[Φi
1,Φ

j
1] = 0 for every i, j. As an example, consider the Ising model. Then Φi

0 = σxi σ
x
i+1 and

Φi
1 = σzi . We call the subgraph which is the support of the operator Φm

q , Γ(q,m) and for

(a, b) ∈ {0, 1}2, we define

Ki j
a b(t) ≡ [Φi

a(t),Φ
j
b]. (5.6)

We consider what we will refer to as commutator bounded R-local quantum systems.

For such systems the commutators and the commutators of commutators of operators

of the Hamiltonian are uniformly bounded while the operators themselves may be un-

bounded and the operators of the Hamiltonian have support on subgraphs of size less than

R, for R an arbitrary natural number. Explicitly, the diameter of all Γ(q,m) is less than R

and for any three operators Φi
a, Φj

b and Φk
cappearing in the Hamiltonian with the coupling

constants ha, hb and hc we have that hahb‖[Φi
a,Φ

j
b]‖ < K and hahbhc‖[[Φi

a,Φ
j
b],Φ

k
c ]‖ < Q

whereK andQ are positive real numbers. Note that a bounded system which is uniformly

bounded by K̃ must satisfy K ≤ 2K̃2 as well as Q ≤ 4K̃3 and thus boundedness implies

commutator-boundedness.

Taking the derivative of Eq.(5.6) with respect to twe obtain (Ki1 j
a b (t))′ = [[−iH(t),Φi

a(t)],Φ
j
b],

after keep only the terms inH(t) which do not commute with Φi
a(t) and after some algebra,

77



Chapter 5. Lieb-Robinson Bound for Unbounded Operators

we get (here and in the following by a+ 1 we mean a+ 1 mod(2))

(Ki1 j
a b (t))′ = [Ki1 j

a b (t),
(
− iha+1

∑
i2∈Zi1

Φi2
a+1(t)

)
] + (−iha+1)

∑
i2∈Zi1

[Φi1
a (t), [Φi2

a+1(t),Φj
b]],(5.7)

where if i ∈ S0, then Zi is the finite subset of S1 such that j ∈ Zi ⇔ Γ(0, i)
⋂

Γ(1, j) 6= ∅

and vise-versa for i ∈ S1.

Taking the second derivative, and using the fact that [Φi
a(t),Φ

j
a(t)] = 0 we obtain, after

some algebraic manipulation,

Ki1 j
a b

′′
(t) = −i[Ki1 j

a b

′
(t),

∑
j2∈Zi1

ha+1Φj2
a+1(t) +

∑
i3∈Zi2

haΦ
i3
a (t)]

−h2
a+1

∑
j2∈Zi1

∑
i2∈Zi1

[[Φi1
a (t),Φi2

a+1(t)], [Φj2
a+1(t),Φj

b]]

−haha+1

∑
i2∈Zi1

∑
i3∈Zi2

[[Φi1
a (t),Φi2

a+1(t)], [Φi3
a (t),Φj

b]]. (5.8)

Defining the following unitary operator U2+3(t) ≡ e
−it
(∑

j2∈Zi1
ha+1Φ

j2
a+1(t)+

∑
i3∈Zi2

haΦ
i3
a (t)

)

and its associated unitary evolution T2+3(t)O ≡ U2+3(t)†OU2+3(t), integrating Eq.(5.8) and

taking the norm we obtain, after some manipulations:

‖Ki1 j
a b

′
(t)‖ ≤ ha+1

∑
i2∈Zi1

‖[[Φi1
a ,Φ

i2
a+1],Φj

b]‖

+

∫ t

0
ds

2h2
a+1K

∑
j2∈Zi1

∑
i2∈Zi1

‖[Φj2
a+1(s),Φj

b]‖ + 2haha+1K
∑
i2∈Zi1

∑
i3∈Zi2

‖[Φi3
a (s),Φj

b]‖

 ,(5.9)
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where we used the fact that ‖[Φi
a(t),Φ

j
a+1(t)]‖ ≤ K. By integrating Eq.(5.9) we get

‖Ki1j
ab (t)‖ ≤ ‖[Φi1

a ,Φ
j
b]‖+ ha+1

∑
i2∈Zi1

‖[[Φi1
a ,Φ

i2
a+1],Φj

b]‖t

+

∫ t

0
ds

∫ s

0
dl

2h2
a+1K

∑
i2∈Zi1

∑
j2∈Zi1

‖Kj2j
a+1b(l)‖+ 2haha+1K

∑
i2∈Zi1

∑
i3∈Zi2

‖Ki3j
ab (l)‖

 .

(5.10)

Since the commutators are bounded we have ‖[Φi1
a ,Φ

j
b]‖ ≤ K and ‖[[Φi1

a ,Φ
i2
a+1],Φj

b]‖ ≤ Q

for some K,Q > 0. Noting that ‖[Φi1
a ,Φ

j
b]‖ = 0 if Γ(a, i1) and Γ(b, j) do not overlap and

‖[[Φi1
a ,Φ

i2
a+1],Φj

b]‖ = 0 if Γ(b, j) does not overlap with either Γ(a, i1) or Γ(a + 1, i2) we see

that Eq.(5.10) implies

‖Ki1j
ab (t)‖ ≤ Kδji1 +

∑
i2∈Zi1

ha+1Qδ
j
i1∪i2t+

∫ t

0
ds

∫ s

0
dl

2h2
a+1

∑
j2∈Zi1

∑
i2∈Zi1

‖Kj2j
a+1b(l)‖+ 2haha+1

∑
i2∈Zi1

∑
i3∈Zi2

‖Ki3j
ab (l)‖

 ,

(5.11)

where we have used the following symbol

δki :=


1 if Γ(ai, i) ∩ Γ(ak, k) 6= ∅,

0 otherwise,
(5.12)
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Solving for ‖Ki1j
ab (t)‖, we find

‖Ki1j
ab (t)‖ ≤ Kδji1 +

∑
i2∈Zi1

Qha+1δ
j
i1∪i2t+

∑
j2∈Zi1

∑
i2∈Zi1

2h2
a+1Kδ

j
j2

t2

2!

+
∑
i2∈Zi1

∑
i3∈Zi2

2haha+1Kδ
j
i3

t2

2!

+
∑
j2∈Zi1

∑
i2∈Zi1

∑
i3∈Zj2

2h2
a+1haKQδ

j
j2∪i3

t3

3!

+
∑
i2∈Zi1

∑
i3∈Zi2

∑
i4∈Zi3

2ha+1h
2
aKQδ

j
i3∪i4

t3

3!

+

∫ t

0
dv

∫ v

0
du

∫ u

0
ds

∫ s

0
dl

(
(2ha+1ha)

2K2
∑
i2∈Zi1

∑
j2∈Zi1

∑
i3∈Zj2

∑
j3∈Zj2

‖Kj3j
ab (l)‖

+ (2h2
a+1)(2ha+1ha)K

2
∑
i2∈Zi1

∑
j2∈Zi1

∑
i3∈Zj2

∑
i4∈Zi4

‖Kj4j
a+1b(l)‖

+ (2ha+1ha)
2K2

∑
i2∈Zi1

∑
i2∈Zi1

∑
i3∈Zi2

∑
i4∈Zi3

‖Ki4j
a+1b(l)‖

+ (2h2
a)(2ha+1ha)K

2
∑
i2∈Zi1

∑
i3∈Zi2

∑
i3∈Z12

∑
j3∈Zi2

‖Kj3j
ab (l)‖

 . (5.13)

Iterating this procedure we obtain by induction

‖Ki1j
ab (t)‖ ≤M

∞∑
n=0

√
2h0h1K

n | t |n

n!
cn, (5.14)

where M =
√

2 max{h0h1 ,
h1
h0
} ×max{ 1

K , 1} ×max{
√
K
Q , 1} and where cn is a combinatorial

factor counting the number of linking operator chains of n operators between Γ(a, i1) and

Γ(b, j). What we call an operator chain is heuristically a sequence of intersecting oper-

ators linking the initial and final operators. The process of constructing the sequence of

operators forming the chain is as follows: the 2jth operator in the chain has to be non-
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commuting with the (2j − 1)th one. This imposes that the two consecutive operators of a

chain have to: 1) be of a different interaction type and 2) have overlapping support. For the

odd-numbered operators there is an extra choice: the (2k + 1)th operator can be an opera-

tor that does not commute with the 2kth operator (as for the even case) or an operator that

does not commute with the (2k − 1)th operator. That is, even operators in the sequence

must be non-commuting with the previous operator in the sequence and odd operators

in the sequence must be non-commuting with either of the two previous operators in the

sequence. From the recursive Eq.(5.11) we see that if we start with an operator i1 of type

a, the next operator in the chain must be an operator i2 ∈ Zi1 of the other type (a+ 1). The

fact that it is in Zi1 means that its support overlaps with i1’s, which is similar to what was

found in the bounded case. However if we look at the operator that comes after i2, we see

that we have two distinct possibilities. The first (second double sum under the integrals

of Eq.(5.11)) is that it can be i3 ∈ Zi2 an operator of type a (different than a + 1) whose

support overlaps with i2’s. If this were the only possibility, we would have exactly the

same situation as we had for bounded systems. However, the first double sum under the

integrals of Eq.(5.11) adds another possibility. That second possibility (first double sum) is

choosing an operator j2 ∈ Zi1 after the operator i2. j2 is, like i2, an operator of type a + 1

which (by virtue of being in Zi1) has a support that overlaps i1’s support. To find the next

operator after that, we reiterate Eq.(5.11). Hence, like the first operator after i1 we need

to choose an operator which is of a different type than the last one (be it j2 or i3), and has

overlapping support with the last one; thus, at this point, we can not “change our mind”.

We can thus see the process of building the chain as every two choices we must choose an

operator that links with the previous one, but for every other choice we can also choose an
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operator that links to the penultimate one instead.

Because for every two choices in building up the chain we must choose an operator

of a different type than the previous one, in the end, the chain contains the same number

of operators of type 0 as of type 1 (plus or minus one). This means that there will be the

same number of factors of h1 as of h0 in every term. Hence we can pull them out of the

sums over chains and simply write an overall factor of
√
h0h1 in front while passing from

Eq.(5.13) to Eq.(5.14).

Furthermore, as mentioned previously, we can always find a bound of the following

type for cn

cn ≤ M̃γne
λ(n

ξ
−d)

, (5.15)

where λ is an arbitrary positive real number. This is because the Γ(a, i)’s have a diameter

ofR or less. Hence, if the distance d, between the initial and final points, is greater thanRn,

then there are no possible linking operator chains of n local operators between the initial

and final point. Furthermore, since at every odd step along the chain there is a choice of

at most ν local operators to choose from for the next operator in the chain and at every

even step there is at maximum 2ν operators to choose from, there is a maximum of (
√

2ν)n

possible local operator chains of n operators starting from any given position. Thus, we

certainly have that

cn ≤
√

2
n
νneλ(Rn−d), (5.16)
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where λ is arbitrary. Using Eq.(5.15) with Eq.(5.14), we obtain the Lieb-Robinson bound

Eq.(5.1):

‖[Φi
a(t),Φ

j
b(0)]‖ ≤ ˜̃M expλ

(
2
√
h0h1K

γ

λ
e
λ
ξ t− d

)
(5.17)

where ˜̃M = M̃M . To obtain the generalisation to local operators OP and OQ satisfying the

local observable operator conditions enounced in the introduction, we introduce K̃i1
a (t) ≡

[Φi
a(t), OQ(0)]. Using exactly the same procedure used to obtain Eq.(5.9), we get

‖[OP (t), OQ(0)]′(t)‖ ≤∫ t

0
ds

2hbhaKFP
∑
j2∈ZP

∑
i2∈ZP

‖K̃j2
b (s)‖

+ 2haha+1KFP
∑
i2∈ZP

∑
i3∈Zi2

‖K̃i3
a (s)‖


≤ 2 max{h2

0, h
2
1}nP (nP + 1)

∫ t

0
ds‖K̃k

a (s)‖, (5.18)

where ZP is the set of of labels of the terms of the Hamiltonian which do not commute

with OP (‖ZP ‖ = nP ), where k is such that
∫ t

0 ds‖K̃
k
a (s)‖ = maxi∈ZP

∫ t
0 ds‖K̃

i
a(s)‖ and

where unlike in Eq.(5.9), the terms containing no integrals do not appear here because of

the condition that d > R. ‖K̃k
a (s)‖ can then be treated in exactly the same way as ‖Ki1j

ab (s)‖

was, with the only exception that while bounding the final commutators (i.e. when we

place the δ of Eq.(5.12)), we will need an extra factor of FQ. Thus we obtain Eq.(5.2):

‖[OP (t), OQ(0)]‖ ≤ FPFQnP (nP + 1) ˜̃M expλ
(

2
√
h0h1K

γ

λ
e
λ
ξ t− d

)
. (5.19)
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Optimising for λ, the Lieb-Robinson speed is thus:

vLR = 2
γ

ξ
e
√
h0h1K. (5.20)

We can compare Eq.(5.19) this with the bound obtained for Hamiltonians composed of

bounded local operators and for bounded local observable OP and OQ which is [42]:

‖[OP (t), OQ(0)]‖ ≤ ‖OP ‖‖OQ‖nP ˜̃M expλ
(

2
√
h0h1

γ

λ
e
λ
ξ t− d

)
. (5.21)

Thus, we have shown that a Lieb-Robinson bound exists for those Hamiltonians that

are the sum of local operators whose commutator is bounded. This allows to treat a class

of systems with unbounded operators.
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Now that we have generalised the Lieb-Robinson bound to a class of commutator-bounded

systems with two interactions, we see that we can easily generalise the bound to the case of

multiple interactions by a slight modification of Eq.(4.43,4.44,4.45). Thus, our final results

are the following:

Take an R-Local quantum system withm interaction types such that each local operator

Φl
i of the Hamiltonian is non-commuting with less than a finite integer ν other local oper-

ators of the Hamiltonian. We suppose that the local operators of the Hamiltonian satisfy

one of the following criteria:

• Uniform boundedness: ∃K > 0 such that for all local operators of the Hamiltonian

we have ‖Φl
i‖ < K

or

• Commutator boundedness: ∃K > 0 and Q > 0 such that for all triples of local

operators Φa
i ,Φ

b
j ,Φ

c
k we have ‖[Φa

i ,Φ
b
j ]‖ < K and ‖[Φa

i , [Φ
b
j ,Φ

c
k]]‖ < Q.

Take any two observable operators OP and OQ such that OP has support on a finite
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subgraph P intersecting at most nP < ∞ local operators of the Hamiltonian and OQ has

support on subgraph Q such that the graph distance between P and Q is d > R. Suppose

further that one of the following is satisfied:

• ‖OP ‖ <∞ and ‖OQ‖ <∞ in the uniform boundedness case,

or

• there exists FP and FQ such that for all terms Φa
i and Φb

j of the Hamiltonian the

inequalities ‖[OP ,Φa
i ]‖ < FPK, ‖[OQ,Φa

i ]‖ < FQK and ‖[OQ, [Φa
i ,Φ

b
j ]]‖ < FQQ are

satisfied in the commutator boundedness case.

Consider

L(λ) ≡ max
2≤r≤m(m−1)

max
(a1,a2,...,ar)∈{1,...,m}r

{
ka1...are

λξa1...ar |1 ≤ p < q ≤ r, (ap, ap+1) 6= (aq, aq+1)

}
,

(6.1)
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where

C =


2(m− 1) bounded,

√
8(m− 1) commutator-bounded,

(6.2)

kl1...lr =



r

√∏r
i=1 hlinli→li+1

bounded, lattice,

r
√∏r

i=1 hlinl1l2...lr bounded, h&i graph,

r

√∏r
i=1 hliKlili+1

nli→li+1
commutator-bounded, lattice,

r
√∏r

i=1 hlinl1l2...lr commutator-bounded, h&i graph,

(6.3)

ξl1...lr =


∑r
i=1D

li→li+1

r lattice,

Dl1...lr h&i graph,

(6.4)

M(λ) =


‖OP ‖‖OQ‖nP eλξ(λ) bounded,

FPFQnP (nP + 1)eλξ(λ) commutator-bounded,

(6.5)

(6.6)

where for commutator bounded systems we define Klili+1
= ‖[Φli ,Φli+1

]‖ for (li, li+1) ∈

{1, . . . ,m}2 and where ξ(λ) = ξa1...ar where a1 . . . ar maximises Eq.(6.1). Then, with these

redefinitions, the general version of the Lieb-Robinson bound for both bounded and com-

mutator bounded cases cases is:

‖[OP (t), OQ(0)]‖ ≤M(λ) exp
(
λ
(CL(λ)

λ
| t | −d(P,Q)

))
. (6.7)
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Hence we deduce a Lieb-Robinson speed in the general case to be

vLR = inf
λ>0
{CL(λ)

λ
}, (6.8)

where L(λ) is defined by Eq. (6.1,6.2,6.3,6.4). Explicit calculations of Eq.(6.8) then proceed

exactly as shown in sections 4.2.2 and 4.2.3.

In summary, in this part, we derived a bound which was sensitive to the relative in-

teraction strengths and which was applicable not only systems where local operators are

bounded but also to those where they are commutator bounded. We observed that for

m ≥ 3 interactions, the space of coupling constants was subdivided into a finite num-

ber of regions, each of which produced a different functional form for the Lieb-Robinson

speed. Interestingly, the dependence of the speed on the coupling is not necessarily alge-

braic anymore for three or more interactions as it was for two interactions; it was found

that the logarithm of the coupling constants could appear in the speed.

It is also important, especially for applications in such domains as quantum gravity,

that we be able to calculate the bound not only for a system on a lattice but also for general

graphs. We derived explicit equations for the Lieb-Robinson bound and speed in the case

of homogeneous and isotropic graphs. This is the best we can hope to have since if the

graph is not homogeneous and isotropic, the speed will not be constant. It was important,

particulary when thinking of applications to Quantum Graphity to derive as tight a bound

as possible so that the actual maximal speed of information can be closely estimated and

the relativistic metric of Quantum Graphity deduced from assuming, as mentioned in sec-

tion 3.1 that the maximal speed is constant and that it is the metric which changes. Also,
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if the transition from pre-geometric to geometric phase is a quantum phase transition in

Quantum Graphity, we can gain more information on it from an interaction-strength de-

pendent Lieb-Robinson speed.
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Chapter 7
The Loop Quantum Black Hole

Introduction

Quantum gravity is the theory attempting to reconcile general relativity and quantum me-

chanics. In general relativity the space-time is dynamical and so it is not possible to study

other interactions on a fixed background because the background itself is a dynamical

field. “Loop quantum gravity” (LQG) [97] [26] [75] is a major contestant amongst the the-

ories aiming at unifying gravity and quantum mechanics. It is one of the non perturbative

and background independent approaches to quantum gravity. Since LQG is a quantum

geometric fundamental theory that reconciles general relativity and quantum mechanics

at the Planck scale, we expect that this theory could resolve the classical singularity prob-

lems of general relativity. Much progress has been made in this direction in the last years.

In particular, the application of LQG technology to the early universe in the context of

minisuperspace models have resolved the initial singularity problem [19], [10].

Black holes are another interesting place for testing the validity of LQG. In the past

years applications of LQG ideas to the Kantowski-Sachs space-time [56] [66] lead to some
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interesting results. In particular, it has been shown [72] [8] that it is possible to solve the

black hole singularity problem by using tools and ideas developed in the full LQG. Other

remarkable results have been obtained in the non homogeneous case [36]. We think the res-

olution of the black hole singularity problem is a crucial first step to solve the information

loss problem [54].

There is also work of a semiclassical nature which tries to solve the black hole singular-

ity problem [73],[18]. In these papers the authors use an effective Hamiltonian constraint

obtained by replacing the Ashtekar connection A of Eq.(2.14) with the holonomy h(A) and

they solve the classical Hamilton equations of motion exactly or numerically.

In what follows, we review a modification to the holonomic version of the Hamiltonian

constraint. The main result is that the minimum area [96] of full LQG is the fundamental

ingredient to solve the black hole space-time singularity problem at r = 0. The S2 sphere

bounces on the minimum area Amin ≡ 8πa0 of LQG and the singularity disappears. We

show that the Kretschmann invariant is regular in all of space-time and the position of

the maximum is independent of the mass and of the polymeric parameter introduced to

define the holonomic version of the scalar constraint. The radial position of the curvature

maximum depends only on GN and ~.

Part III is organised as follows. In this chapter, modified from the first part of [76], we

start by reviewing the singularity free semiclassical black hole solution obtained in [74] by

Modesto. We also recall the causal space-time structure and the Carter-Penrose diagram

for the maximal space-time extension. Then, in section 7.2 show the self-duality property

of the metric which we derived in [76]. In chapter 8, we discuss the thermodynamical

properties of the Loop Quantum black hole. In chapter 9, we take special notice of ultra-
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light black holes which differ qualitatively from Schwarzschild black holes even outside

the horizon. We show that their horizons are hidden behind a wormhole of Planck diam-

eter. In chapter 10 we study the formation of a black hole and its subsequent evaporation.

Using the static solution, we examine the more realistic dynamical case by generalising the

static case with help of the Vaidya metric [105]. We track the formation and evolution of

trapped surfaces during collapse and evaporation and examine the buildup of quantum

gravitationally caused stress-energy preventing the formation of a singularity. In chapter

11 we study the phenomenology of LQBHs (Loop Quantum black holes), we examine the

possibility that they could make up a significant portion of dark matter. We study the pro-

duction rate of black holes in the early universe and using Stefan’s law we calculate the

black hole mass today. In chapter 12 we pursue the phenomenological line of investigation

initiated in chapter 11 and we estimate the production of ultra-high-energy-cosmic-rays

(UHECR) by the ULBH portion of the dark matter. We show the production of UHECR is

compatible with observation. The ultra light black holes could be the missing source for

the UHECRs.

7.1 A regular Black Hole from LQG

In this section we recall the classical Schwarzschild solution inside the event horizon r 6

2m [74], [72] [8]. Because we are inside the event horizon the radial coordinate is time-like

and the temporal coordinate is space-like. For this reason the space-time for r 6 2m is

the homogeneous Kantowski-Sachs space-time of spatial topology R × S2. The Ashtekar
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variables [5] of Eq. (2.14,2.13) are

A = c̃τ3dx+ b̃τ2dθ − b̃τ1 sin θdφ+ τ3 cos θdφ,

E = p̃cτ3 sin θ
∂

∂x
+ p̃bτ2 sin θ

∂

∂θ
− p̃bτ1

∂

∂φ
, (7.1)

where A is an su(2) connection of mass dimension 0 and E, its canonical conjugate is

a densitised triad of mass dimension −2. The component variables in the phase space

have length dimension: [c̃] = L−1, [p̃c] = L2, [b̃] = L0, [p̃b] = L. Using the general

relation Eai E
b
jδ
ij = det(q)qab (qab is the metric on the spatial section) we obtain qab =

(p̃2
b/|p̃c|, |p̃c|, |p̃c| sin

2 θ). In the Hamiltonian constraint and in the symplectic structure we

restrict integration over x to a finite interval L0 and we rescale the variables as follows:

b = b̃, c = L0c̃, pb = L0p̃b, pc = p̃c. The length dimensions of the new phase space variables

are: [c] = L0, [pc] = L2, [b] = L0, [pb] = L2. From the symmetry reduced connection and

density triad we can read the component variables in the phase space: (b, pb), (c, pc), with

Poisson algebra {c, pc} = 2γGN , {b, pb} = γGN . The Hamiltonian constraint in terms of

the rescaled phase space variables and the holonomies is

CH =−N
κ

{
2

sin δcc

δc

sin ∆bb

δb

√
|pc|+

sin2 ∆bb+ γ2δ2
b√

|pc|δ2
b

pb

}
,

where κ = 2GNγ
2; δb, δc are the polymeric parameters introduced to define the lengths

of the paths along which we integrate the connection to define the holonomies and by

definition ∆b = δb/
√

1 + γ2δ2
b [74]. The reason sin’s appear in the above expression for the

Hamiltonian constraint is that holonomies appear in the curvature and the sin’s and cos’s
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appear in the parallel transport group elements. For example, let U(x) be the SU(2) group

element performing the parallel transport along a path of length x in the direction ∂/∂x.

Then U satisfies the equation for parallel transport:

∂U(x)

∂x
+A(x)[∂/∂x]U(x) = 0. (7.2)

Using Eq.(7.1)this becomes

∂U(x)

∂x
= −c̃τ3U(x)

⇒ U(δc) = exp(−δc̃c̃τ3) = −
[

cos(δc̃c̃)1 + sin(δc̃c̃)τ3

]
. (7.3)

So, multiplying such parallel transports together to form a holonomy, dividing by the area

of the loop (∝ δ2) we get the curvature. Then taking the appropriate traces we obtain

Eq.(7.2).

The Gauss-constraint and the Diff-constraints are identically zero because of the ho-

mogeneity. Using the gauge N = (γ
√
|pc|sgn(pc)δb)/(sin ∆bb), we can solve the Hamil-

ton equation of motion and the Hamiltonian constraint (see [74] for details): CH(qi) = 0,

q̇i = {qi, CH}; where qi = (c, pc, b, pb) obtaining a solution on the four dimensional phase

space: (c(t), pc(t), b(t), pb(t)). The relations between the Ashtekar and metric variables is

explicit in the following line element:

ds2 = −N2dt
2

t2
+

p2
b

|pc|L2
0

dx2 + |pc|(sin2 θdφ2 + dθ2). (7.4)

In [74], the solution inside the event horizon (r < 2m) was calculated and because of the
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regularity of the solution ∀ r, the solution was have analytically extended to 0 < r < +∞.

In particular the Kretschmann invariant (K = RµνρσRµνρσ) is regular ∀r and it is possible to

extend analytically the solution beyond the horizons (because as will be recounted below,

the new metric has an inner event horizon). In [74] regular coordinates were found in any

patch where the metric has a coordinate singularity showing explicitly that the metric is

regular everywhere and can be extended to all of space-time.

Because of the regularity of the metric, we can use the usual Schwarzschild coordinates

where r is space-like and t is time-like outside the event horizon. The semiclassical metric

is

ds2 = −(r − r+)(r − r−)(r + r?)
2

r4 + a2
0

dt2

+
dr2

(r−r+)(r−r−)r4

(r+r?)2(r4+a20)

+
(a2

0

r2
+ r2

)
dΩ(2), (7.5)

where r+ = 2m, r− = 2mP(δb)
2, r? = 2mP(δb), a0 = AMin/8π and AMin is the minimum

area of LQG. r+ is the location of the outer horizon while r− is the location of the inner

horizon. r∗, geometric mean of the coordinates of the two horizons is in between the two

horizons. P(δb) is a function of the polymeric parameter δb,

P(δb) =

√
1 + γ2δ2

b − 1√
1 + γ2δ2

b + 1
. (7.6)

The area operator in LQG has a discrete spectrum. Irreducible units of area in LQG —

associated to an edge on a spin-network — have area A(j) = 8πγ
√
j(j + 1)l2P where γ

is the Immirzi parameter believed to be γ = 0.2375 [71]. j is a half-integer labelling an
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irreducible representation of SU(2) and lP is the Planck length. Looking at this, it is natural

to assume that the minimum area in LQG isAMin = A(1/2) = 4πγ
√

3l2P ≈ 5l2P . One should

however not take this exact value too seriously for various reasons. First, the value of γ is

not necessarily definite and the consensus on its value has changed a few times already.

Second there are other Casimirs possible besides
√
j(j + 1). Third, we are looking for a

minimum area for a closed surface so, the spin-network being most likely a closed graph,

it is probable that least two edges cross the surface, in which case the minimum area is

at least twice the previously given value. In addition, if we consider a surface enclosing a

non-zero volume, LQG stipulates that at least one 4-valent vertex must be present, in which

case we might have four edges intersecting the surface making AMin be four times the

aforementioned value. We will parameterise our ignorance with a parameter β and define

AMin = βA(1/2) = 4πγβ
√

3 l2P ≈ 5βl2P , and so a0 = AMin/(8π) = γβ
√

3 l2P /2 ≈ 0.2βl2P

where the expectation is that β is not many orders of magnitude bigger or smaller than 1.

In what follows we mostly consider β ≈ 1 or β = 4 when more precision is needed, but in

the end the precise choice of β does not change much.

There is also another argument we can make to justify the analytic extension of the metric

to all of space-time. We can interpret the black hole solution (7.5) as having been gener-

ated by an effective matter fluid that simulates the loop quantum gravity corrections (in

analogy with [21]). The effective gravity-matter system satisfies by definition the Einstein

equations G = 8π T , where T is the effective energy tensor. In this case T 6= 0 in con-

trast to the classical Schwarzschild solution. The stress energy tensor for a perfect fluid

compatible with the space-time symmetries is Tµν = (−ρ, Pr, Pθ, Pθ) and in terms of the

Einstein tensor the components are ρ = −Gtt/8πGN , Pr = Grr/8πGN and Pθ = Gθθ/8πGN .
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The semiclassical metric to zeroth order in δb and a0 is the classical Schwarzschild solution

(gCµν) that satisfies Gµν (gC) ≡ 0. When we calculate explicitly the energy density and pres-

sure we obtain that those quantities are spatially homogeneous inside the event horizon and

static outside. Using this property of the energy tensor we can repeat the argument used

to extend the classical Schwarzschild solution to all of space-time. The crucial difference

is that in our case Tµν 6= 0 but the logic is identical. In particular Tµν is static or spatially

homogeneous depending on the nature of the surfaces
√
|pc| = const. and we can repeat the

analysis given at the end of [46]. The analytic form of the energy density is,

ρ = 4r4[a4
0m(1 + P)2 + 2m2P(1 + P)2r7 +

−a2
0r

2(2mP + r)(12m2P2 −m(7 + P(2 + 7P))r

+3r2)]/[8πGN (2mP + r)3(a2
0 + r4)3]. (7.7)

The regular properties of the metric are summarised in the following table,

Properties of gµν

limr→+∞ gµν(r) = ηµν

limr→0 gµν(r) = ηµν

limm,a0→0 gµν(r) = ηµν

K(g) <∞ ∀r

rMax(K(g)) ∝ lP

where rMax(K(g)) is the radial position where the Kretschmann invariant achieves its max-

imum value. Fig.7.3 is a graph of K. It is regular in all of space-time and its large r

behaviour is asymptotically identical to the classical scalar RµνρσRµνρσ ∼= 48m2/r6. The
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Figure 7.1: Effective energy density for m = 10 and a0 = 0.01.

Figure 7.2: Effective energy density as function of r and m. In the upper plot on the left m ∈ [0, 2]
and r ∈ [0, 0.045], in the upper plot on the right m ∈ [1, 3] and r ∈ [0, 0.045] and in the lower plot
m ∈ [0, 2 108] and r ∈ [0, 0.045]. The plots show that the energy density is localised around the
Planck scale for any value of the mass and decrees rapidly for r & lP .
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Figure 7.3: Plot of the Kretschmann scalar invariant RµνρσRµνρσ for m = 10, p0b = 1/10 and
γδb = log(4)/π, ∀t > 0; the large t behaviour is 1/t6. The dotted line is the value the Kretschmann
scalar would take in the Schwarzschild case.

resolution of the singularity of K is a non perturbative result, in fact for small values of

the radial coordinate r, K ≈ 3145728π4r6/A4
Minγ

8δ8
bm

2 diverges for AMin → 0 or δb → 0.

A crucial difference with the classical Schwarzschild solution is that the 2-sphere S2 has a

minimum for rmin =
√
a0 and the minimum square radius is pc(rmin) = 2a0. The solution

has a spacetime structure very similar to the Reissner-Nordström metric because of the in-

ner horizon in r− = 2mP(δb)
2. For δb → 0, r− ≈ mγ4δ4

b/8. We observe that the position of

the inside horizon is r− 6= 2m ∀γ ∈ R (we recall that γ is the Barbero-Immirzi parameter).

The metric (7.5) for δb, a0 = 0 is exactly the Schwarzschild metric.

The metric (7.5) has an asymptotic Schwarzschild core near r ≈ 0. To show this prop-

erty we develop the metric very close to the point r ≈ 0 and we consider the coordinate

changingR = a0/r. In the new coordinate the point r = 0 is mapped in the pointR = +∞.
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The metric in the new coordinates is

ds2 = −
(

1− 2m1

R

)
dt2 +

dR2

1− 2m2
R

+R2dΩ(2), (7.8)

where m1 and m2 are functions of m,AMin, δb, γ,

m1 =
AMin

8πmγ2δ2
bP(δb)

, m2 =
AMin(1 + γ2δ2

b )

8πmγ2δ2
bP(δb)

. (7.9)

For small δb we obtain m1 ≈ m2 and (7.8) converges to a Schwarzschild metric of mass

M ≈ AMin/2mπγ
4δ4
b . We can conclude the space-time near the point r ≈ 0 is described by

an effective Schwarzschild metric of massM ∝ AMin/m in the large distance limitR�M .

An observer in the asymptotic region r = 0 experiences a Schwarzschild metric of mass

M ∝ a0/m because such an observer sees the same metric that an observer at assymptotic

infinity of a Schwarzschild metric with mass M sees.

Now we are going to show that a massive particle cannot reach r = 0 in a finite proper

time. We consider the radial geodesic equation for a massive point particle

(−gtt grr)ṙ2 = E2
n + gtt, (7.10)

where “ ˙ ” is the proper time derivative and En is the point particle energy. If the particle

falls from infinity with zero initial radial velocity the energy is En = 1. We can write (7.10)
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Figure 7.4: Plot of Veff (r). On the left there is a zoom of Veff for r ≈ 0.

in a more familiar form

(−gtt grr)︸ ︷︷ ︸
>0 ∀r

ṙ2 + Veff︸︷︷︸
−gtt≥0

(r) = E︸︷︷︸
E2
n

, (7.11)

Veff is plotted in Fig.7.4. For r = 0, Veff (r = 0) = 1024m4π2P(δb)
4/A2

Min then a particle

with E < Veff (0) can never reach r = 0. If the particle energy is E > Veff (0), the geodesic

equation for r ≈ 0 is ṙ2 ∝ r4 which gives τ ∝ 1/r − 1/r0 or ∆τ ≡ τ(0) − τ(r0) → +∞

for the proper time to reach r = 0. The space-time structure of the semiclassical solution is

given in Fig.7.5.

7.2 Selfduality

In this section, taken from [76] where it was first shown, we explicitly show that the black

hole solution obtained in LQG is selfdual in the sense the metric is invariant under the trans-

formation r → a0/r. The self-dual transformation will transform the relevant quantities as
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Figure 7.5: The upper picture on the left represents the Carter-Penrose diagram in the region
outside r− and the upper picture on the right represents the diagram for r− 6 r 6 0. The lower
pictures represent the maximal space-time extension Reissner-Nordström black hole on the left and
maximal space-time extension of the LQBH on the right.
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shown in the following table:

Self − duality

r → R = a0
r

r+ → R− = a0
r+

= a0
2m

r− → R+ = a0
r−

= a0
2mP(δb)2

r? → R? = a0
r?

= a0
2mP(δb)

(note thatR+ > R− ∀δb because P(δb) < 1). If we apply to this transformation to the metric

(7.5), we obtain

ds2 = −(R−R+)(R−R−)(R+R?)
2

R4 + a2
0

dt2

+
dR2

(R−R+)(R−R−)R4

(R+R?)2(R4+a20)

+
( a2

0

R2
+R2

)
dΩ(2), (7.12)

where we have complemented the transformation r → a0/r with a rescaling of the time

coordinate t → P(δb)(r
3/2
+ r

1/2
− /a0) t. It is evident from the explicit form (7.12) that the

metric is selfdual. We can define the selfdual radius identifying R = a0/r, rsd =
√
a0. The

existence of a selfdual radius implies a selfdual mass because we have

R− = r− , R+ = r+ , R? = r? → msd =

√
a0

2P(δb)
. (7.13)

In the global extension of the space-time any black hole with mass m < msd is equivalent

to a black hole of mass m > msd by the selfdual symmetry.
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In this chapter, modified from an analogous section in [76], we review the thermodynamics

found in [21] [3]: temperature, entropy and evaporation.

The form of the metric calculated in the previous section has the general form, ds2 =

−g(r)dt2 + dr2/f(r) + h2(r)(dθ2 + sin2 θdφ2), where the functions f(r), g(r) and h(r)

depend on the mass parameter m and are the components of the metric (7.5). We can

introduce the null coordinate v to express the metric above in the Bardeen form. The

null coordinate v is defined by the relation v = t + r∗, where r∗ =
∫ r
dr/
√
f(r)g(r)

and the differential is dv = dt + dr/
√
f(r)g(r). In the new coordinate the metric is,

ds2 = −g(r)dv2 + 2
√
g(r)/f(r) drdv + h2(r)dΩ(2).

8.1 Temperature

In this paragraph we calculate the temperature for the quantum black hole solution and an-

alyze the evaporation process. The Bekenstein-Hawking temperature is given in terms of

the surface gravity κ by T = κ/2π, the surface gravity is defined by κ2 = −gµνgρσ∇µχρ∇νχσ/2 =
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Figure 8.1: Plot of the temperature T (m) on the left and of the heat capacity Cs = dm
dT on the

right. The continuous plots represent the LQBH quantities, the dashed lines represent the classical
quantities.

−gµνgρσΓρµ0Γσν0/2, where χµ = (1, 0, 0, 0) is a timelike Killing vector and Γµνρ is the connec-

tion compatible with the metric gµν . Using the semiclassical metric (7.5)we can calculate

the surface gravity in r = 2m

κ2 = −g00g11 (∂g00/∂r)
2 /4 =

(
16m/64m2 + γ2δ2

)2
. (8.1)

From this we obtain the temperature,

T (m) =
128πσ(δb)

√
Ω(δb)m

3

1024π2m4 +A2
Min

, (8.2)

where Ω(δb) = 16(1 + γ2δ2
b )

2/(1 +
√

1 + γ2δ2
b )

4. The temperature (8.2) coincides with the

Hawking temperature in the large mass limit. In Fig.8.1 we have a plot of the temperature

as a function of the black hole mass m. The dashed trajectory corresponds to the Hawk-

ing temperature and the continuum trajectory corresponds to the semiclassical one. There

is a substantial difference for small values of the mass, in fact the semiclassical temper-

106



Chapter 8. Thermodynamics

ature tends to zero and does not diverge for m → 0. The temperature is maximum for

m∗ = 31/4
√
AMin/

√
32π and T ∗ = 33/4σ(δb)

√
Ω(δb)/

√
32πAMin. Also this result, as for the

curvature invariant, is a quantum gravity effect, in fact m∗ depends only on the Planck

area AMin. The transition from negative heat capacity for large classical black holes to pos-

itive heat capacity at or close to the Planck mass (herem∗) had already been anticipated on

general grounds in [55]. In fact, when one compares the graph for the heat capacity in [55]

to Fig. 8.1 one sees that although the two graphs differ in zero, they are strikingly similar

everywhere else, and most importantly around the transition point which as predicted in

[55] is of second order.

8.2 Entropy

In this section we calculate the entropy for the LQBH metric. By definition the entropy as a

function of the ADM energy is SBH =
∫
dm/T (m). Calculating this integral for the LQBH

we find

S =
1024π2m4 −A2

Min

256πm2σ(δb)
√

Ω(δb)
+ const.. (8.3)

We can express the entropy in terms of the event horizon area. The event horizon area (at

r = 2m) is

A =

∫
dφdθ sin θ pc(r)

∣∣∣
r=2m

= 16πm2 +
A2

Min

64πm2
. (8.4)
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Inverting (8.4) for m = m(A) and introducing the roots in (8.3) we obtain

S = ±

√
A2 −A2

Min

4σ(δb)
√

Ω(δb)
, (8.5)

where S is positive for m >
√
a0/2, and negative otherwise. We are not sure how to

interpret the negative entropy for black holes lighter than the Planck mass, however we

hypothesise that it might relate to the conditional quantum entropy of the black hole being

negative due to entanglement [52]. In a simple example to show how quantum entropy

might be negative let us consider a system made up of two spin-1
2s constrained to be in the

total spin-0 state. The total state has a total entropy of 0, but if we have access to only one

of those spins, we have access to one q-bit of information, thus the other q-bit we cannot

access must have −1 q-bit of information. A plot of the entropy is given in Fig.8.2. The

first plot represents entropy as a function of the event horizon area A. The second plot

in Fig.8.2 represents the event horizon area as function of m. The semiclassical area has a

minimum value in A = AMin for m =
√
AMin/32π.

We want to underline that the parameter δb does not appear in the quantities T (m), T ∗,

m∗ and so it does not play any regularisation role for those observable quantities. Because

of this, in the evaporation process that we will study in the following section, δb does not

play a significant role and we can take to 0. We obtain finite quantities taking the limit

δb → 0, because limδb→0 σ(δb)
√

Ω(δb) = 1.
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Figure 8.2: In the first plot we have the entropy for the LQBH as function of the event horizon area
(dashed line represents the classical area low Scl = A/4). In the second plot we represent the event
horizon area as a function of the mass (dashed line represents the classical area Acl = 16πm2).
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8.3 Evaporation

In this section we focus our attention on the evaporation process of the black hole mass

and in particular in the energy flux from the hole.

The form of the metric of the LQBH has the general form, ds2 = −g(r)dt2 + dr2/f(r) +

h2(r)(dθ2 +sin2 θdφ2), where the functions f(r), g(r) and h(r) depend on the mass parame-

ter m and are the components of the metric (7.5). We can introduce the null coordinate v to

express the metric above in the Bardeen form. The null coordinate v is defined by the rela-

tion v = t+r∗, where r∗ =
∫ r
dr/
√
f(r)g(r) and the differential is dv = dt+dr/

√
f(r)g(r).

In the new coordinate the metric is, ds2 = −g(r)dv2 + 2
√
g(r)/f(r) drdv + h2(r)dΩ(2).

The luminosity can be estimated using the Stefan-Boltzmann law and it is given by

L(m) = αA(m)T 4
BH(m), where (for a single massless field with two degree of freedom)

α = π2/60, A(m) is the event horizon area and T (m) is the temperature calculated in the

previous section. At the first order in the luminosity the metric above that incorporates the

decreasing mass is obtained by replacing the mass m with m(v). Introducing the results

(8.2) and (8.4) of the previous paragraphs in the luminosity L(m) we obtain

L(m) =
4194304m10π3ασ4Ω2

(A2
Min + 1024m4π2)3

. (8.6)

Using (8.6) we can solve the first order differential equation

− dm(v)

dv
= L[m(v)] (8.7)

to obtain the mass function m(v). The result of integration with initial condition m(v =
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0) = m0 is

−
n1A

6
Min + n2A

4
Minm

4π2 + n3A
2
Minm

8π4 − n4m
12π6

n5m9π3ασ(δb)4Ω(δb)2

+
n1A

6
Min + n2A

4
Minm

4
0π

2 + n3A
2
Minm

8
0π

4 − n4m
12
0 π

6

n5m9
0π

3ασ(δb)4Ω(δb)2

= −v, (8.8)

where n1 = 5, n2 = 27648, n3 = 141557760, n4 = 16106127360, n5 = 188743680. From

the solution (8.8) we see that the mass evaporates in an infinite time because in the limit

m ≈ 0 Eq.(8.8) becomes v = k1(1/m9 − 1) + k2) with k1 > 0 and k2 two constants so

m = 0 corresponds to v =∞. Also in (8.8) we can take the limit δb → 0 obtaining a regular

quantity independent from δb. In the limit m→ 0 equation (8.8) becomes

n1A
6
Min

n5π3ασ(δb)4Ω(δb)2m9
= v. (8.9)

In the limit δb → 0, we obtain n1A
6
Min/n5π

3αm9 ≈ v. Inverting this equation for small m

we obtain: m ≈ (A6
Min/α v)1/9.
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Ultra Light Black Hole

Outside the exterior horizon, the LQBH metric (7.5) differs from the Schwarzschild metric

only by Planck size corrections. As such, the exterior of heavy LQBHs (where by “heavy”

we mean significantly heavier than the Plank mass which is of the order of 20µg) is not

qualitatively different than that of a Schwarzschild black hole of the same mass. This is

shown in Fig.9.1 where the embedding diagrams of the LQG and Schwarzschild black

holes of 50 Planck masses are compared just outside the horizon.

In order to see a qualitative departure from the Schwarzschild black hole outside the

horizon we must consider the “sub-Planckian” regime, when the mass of the black hole is

less than the Planck mass, as that is when quantum effects will become significant. In this

chapter, modified from part of [76], we investigate ultra light quantum black hole, where

by ultra light we mean that m <
√
a0/ ≈ mP .

Due to Planck scale corrections the radius of the 2-sphere is not r, as is the case for the
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Chapter 9. Ultra Light Black Hole

Figure 9.1: Embedding diagram of a spatial slice just outside the horizon of a 50 Planck mass
(≈ 1mg) black hole. In (a) we have the LQBH with metric (7.5); in (b) is the Schwarzschild black
hole. In both cases the foliation is done with respect to the time-like Killing vector and the scales
are in Planck units. The lowermost points in each diagram correspond to the horizon (the outer
horizon in the LQG case).

Schwarzschild metric, but looking at (7.5) we see that the radius of the 2-sphere is

ρ =

√
r2 +

a2
0

r2
. (9.1)

We see that ρ has a “bounce” at r =
√
a0 which comes from LQG having a discrete area

spectrum and thus a minimal area (here 8πa0). If the bounce happens before the outer

horizon is reached, the outer horizon will be hidden behind the Planck-sized (space-like)

“wormhole” created where the bounce takes place (see Fig. 9.2 and 9.3). As a consequence

of this, even if the horizon is quite large (which it will be if m << mP ) it will be invisible

to observers who are at r >
√
a0 and who cannot probe the Planck scale because these

observers would need to see the other side of the wormhole which has a diameter of the

order of the Planck length. From this we conclude that to have this new phenomenon

of a hidden horizon we must have 2m = r+ <
√
a0, or m <

√
a0/2. We illustrate this

phenomenon with the embedding diagrams of a LQBH of massm = 4π
√
a0/100 in Fig.9.2a
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Figure 9.2: Embedding diagram of a spatial slice just outside the horizon of a 0.005 Planck mass
(≈ 100ng) black hole. In (a) we have the LQBH with metric (7.5); in (b) is the Schwarzschild black
hole. In both cases the foliation is done with respect to the time-like Killing vector and the scales
are in Planck units. The lowermost points in each diagram correspond to the horizon (the outer
horizon in the LQG case).

and Fig.9.3 which can be contrasted with the embedding diagram of the Schwarzschild

black hole of the same mass in Fig.9.2b.

The formation of such ultra-light LQBHs is also of interest. For the Schwarzschild black

hole, black hole formation occurs once a critical density is reached, i.e. a massm is localised

inside a sphere of area 4π(2m)2. The “heavy” LQBH is analogous: to create it we must

achieve a critical density, putting a mass m ≥ √a0/2 inside a sphere of area 4π[(2m)2 +

a2
0/(2m)2]. The requirement for the formation of an ultra-light LQBH is something else

altogether because of the worm-hole behind which it hides: we must localise mass/energy

(a particle or a few particles), irrespective of mass as long as the total mass satisfies m <

√
a0/2) inside a sphere of area 8πa0 as this ensures that the mass will be inside the mouth

of the wormhole. Because AMin ≥ 5l2P for any natural β at the currently accepted value

of the Immirzi parameter, there is no theoretical semi-classical impediment to localizing

matter in such a radius and thereby creating ultra-light black holes.
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Figure 9.3: (a) Embedding diagram of a spatial slice just outside the throat of a 0.005 Planck mass
LQBH. (b) zoom on the upper part of the throat of the same black hole. In both cases the foliation
is done with respect to the time-like Killing vector and the scales are in Planck units.
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Collapse and Evaporation

Non-singular black holes were considered already by Bardeen in the late 60s and have a

long history [15, 40, 41, 13, 11, 30, 69, 22, 12, 70, 48, 79, 2, 103, 81, 80]. We will here use a

procedure similar to that in [48]. This chapter, modified from [53], is organised as follows.

We start in the next section by recalling the regular static metric we will be using. In section

10.2 we generalise it to a collapse scenario and discuss its properties. In section 10.3 we

summarise the thermodynamic properties and, in section 10.4, add the evaporation pro-

cess and construct the complete causal diagram. The signature of the metric is (−,+,+,+)

and we use the unit convention ~ = c = GN = 1.

We will use a 4-dimensional model based on the static solution derived in [74] and

generalise it to a dynamical case which then allows us to examine the causal structure. This

generalisation holds to good accuracy in all realistic scenarios. This approach should be

understood not as an exact solution to a problem that requires knowledge of a full theory

of quantum gravity, but as a plausible model based on preliminary studies that allows us

to investigate the general features of such regular black hole solutions.
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10.1 The Static Black Hole metric

This quantum gravitationally corrected Schwarzschild metric Eq.(7.5) can be expressed in

the form

ds2 = −G(r)dt2 +
dr2

F (r)
+H(r)dΩ , (10.1)

with dΩ = dθ2 + sin2 θdφ2 and

G(r) =
(r − r+)(r − r−)(r + r∗)

2

r4 + a2
0

,

F (r) =
(r − r+)(r − r−)r4

(r + r∗)2(r4 + a2
0)

,

H(r) = r2 +
a2

0

r2
. (10.2)

Here, r+ = 2m and r− = 2mP 2 are the two horizons, and r∗ =
√
r+r− = 2mP . P is the

polymeric function

P = (
√

1 + ε2 − 1)/(
√

1 + ε2 + 1), (10.3)

with ε := γδ � 1 the product of the Immirzi parameter (γ) and the polymeric parameter

(δ). With this, it is also P � 1, such that r−/(2m) and r∗/(2m) are very close to 0. The area

a0 is equal to Amin/8π, Amin being the minimum area gap of LQG.

Note that in the above metric, r is only asymptotically the usual radial coordinate since

gθθ is not just r2. This choice of coordinates however has the advantage of easily revealing

the properties of this metric as we will see. Most importantly, in the limit r → ∞ the
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deviations from the Schwarzschild-solution are of order ε4 and so can be neglected and m

may be identified as the usual ADM-mass:

G(r) → 1− 2m

r
(1 +O(ε4)) ,

F (r) → 1− 2m

r
(1 +O(ε4)) ,

H(r) → r2. (10.4)

The ADM mass is the mass inferred by an observer at flat asymptotic infinity; it is deter-

mined solely by the metric at asymptotic infinity.

If one now makes the coordinate transformation R = a0/r with the rescaling t̃ =

t r2
∗/a0, and simultaneously substitutes R± = a0/r∓, R∗ = a0/r∗ one finds that the metric

in the new coordinates has the same form as in the old coordinates and thus exhibits a

very compelling type of self-duality with dual radius r =
√
a0. Looking at the angular

part of the metric, one sees that this dual radius corresponds to a minimal possible surface

element. It is then also clear that in the limit r → 0, corresponding to R → ∞, the solu-

tion does not have a singularity, but instead has another asymptotically flat Schwarzschild

region.

The causal diagram for this metric, shown in Fig 10.1, then has two horizons and two

pairs of asymptotically flat regions, A,A′ and B,B′, as opposed to one such pair in the

standard case. In the region enclosed by the horizons, space- and timelikeness is inter-

changed. The horizon at r+ is a future horizon for observers in the asymptotically flat

B,B′ region and a past horizon for observers inside the two horizons. Similarly, the r−

horizon is a future horizon for observers inside the two horizons but a past horizon for
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Figure 10.1: Penrose diagram of the regular static black hole solution with two asymptotically flat
regions. The horizons, located at r+ and r−, are marked in blue and red respectively.

observes in A,A′. As we saw previously, if one computes the time it takes for a particle to

reach r = 0, one finds that it takes infinitely long. The diagram shown in Fig. 10.1 is not

analytically complete, but should be read as being continued on the dotted horizons at the

bottom and top.

The metric in Eq.(10.2) is a solution of a quantum gravitationally corrected set of equa-

tions which, in the absence of quantum corrections ε, a0 → 0, reproduce Einstein’s field

equations. However, due to these quantum corrections, the above metric is no longer

a vacuum-solution to Einstein’s field equations. Instead, if one computes the Einstein-
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tensor and sets it equal to a source term Gµν = 8πT̃µν , one obtains an effective quantum

gravitational stress-energy-tensor T̃µν . The exact expressions for the components of T̃ are

somewhat unsightly and can be found in appendix B. For our purposes, it is here sufficient

to note that for the static metric of LQBH Eq.(7.5), the entries are not positive definite and

violate the positive energy condition which is one of the assumptions for the singularity

theorems.

10.2 Collapse

We will proceed by combining the static metric with a radially ingoing null-dust, such

that we obtain a dynamical space-time for a black hole formed from such dust. Usually

described by the Vaidya metric [105], we will in this scenario have corrections to the Vaidya

metric that are negligible in the asymptotic region, but avoid the formation of a singularity

in the strong-curvature region.

Explicitly, we will do the following. We take the static LQBH metric Eq.(7.5) but now

we allow for m to be dependent on the ingoing null coordinate v: m → m(v). Calculating

the effective energy momentum tensor we see that we gain a component Grv which we

identify with the energy momentum T rv of the incoming null dust. The choosing a quantity

of incoming dust by choosing the value of T rv will fix the value of ∂m/∂v on which Grv

depends.

The metric constructed this way in the following is not a strict solution of the mi-

nusuperspace LQC equations. However, as long as the null-dust does not already display

strong quantum gravitational effects by its mass profile, this solution should hold to good
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accuracy1.

We start by making a coordinate transformation and rewrite the static space-time in

terms of the ingoing null-coordinate v. It is defined by the relation dv = dt+dr/
√
F (r)G(r),

which can be solved to obtain an explicit expression for v. The metric then takes the form

ds2 = −G(r)dv2 + 2

√
G(r)

F (r)
drdv +H(r)dΩ . (10.5)

Now we allow the mass m in the static solution to depend on the advanced time, m →

m(v). Thereby, we will assume the mass is zero before an initial value va and that the mass

stops increasing at vb. We can then, as before, use the Einstein equationsG = 8πT̃ to obtain

the effective quantum gravitational stress-energy tensor T̃ . T̃ vv and T̃ rr do not gain any new

terms through the dependence of m on v. The transverse pressure T̃ θθ = T̃ φφ however has

an additional term

T̃ θθ(m(v)) = T̃ θθ(m)− Pr2m′(v)

2π(r + 2m(v)P )4
, (10.6)

where m′ = dm/dv. Remember that P here is given by Eq.(10.3) and in the limit where

the polymeric parameter goes to zero, so does P and so the transverse pressure goes to

zero. Because of the ingoing radiation, the stress-energy-tensor now also has an additional

non-zero component, T̃ rv, which describes radially ingoing energy flux

Grv =
2(1 + P )2r4(r4 − a2

0)(r − r∗(v))m′(v)

(a2
0 + r4)2(r + r∗(v))3

. (10.7)

1It has been claimed in [14] that, counterintuitively, quantum gravitational effects could become important
already at the horizon when the collapse proceeds slowly. However, since we are considering null-dust, the
collapse is as fast as can possibly be and these considerations do not apply.

121



Chapter 10. Collapse and Evaporation

0 2 4 6 8

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

r

G
vr @

m
,rD

,m
' >

0

Figure 10.2: Grv as a function of r for radially ingoing radiation and m′(v) = 1. The solid line
depicts the classical case for ε, a0 → 0. The long dashed line is for m(v) = 20, (r∗ >

√
a0) and the

short dashed line is for m(v) = 5, (r∗ <
√
a0). All quantities are in Planck units.

Notice that also in the dynamical case, trapping horizons still occur where grr = F (r, v)

vanishes [47, 9], so we can continue to use the notation from the static case just that r±(v)

and r∗(v) are now functions of v. The r-dependence of this component is depicted in Fig

10.2.

This metric reduces to the Vaidya solutions at large radius, or for ε→ 0, a0 → 0. How-

ever, in the usual Vaidya solutions, the ingoing radiation creates a central singularity. But

as we see here, with the quantum gravitational correction, the center remains regular.

We note that the ingoing energy flux has two zeros, one at r = r∗(v) and one at r =
√
a0,

and is negative between these. What happens is that the quantum gravitational correction

works against the ingoing flux by making a negative contribution until the effective flux

has dropped to zero at whatever is larger, the horizon’s geometric mean r∗ or the location
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of the dual radius r =
√
a0. The flux then remains dominated by the quantum gravitational

effects, avoiding a collapse, until it has passed r∗ and the dual radius where it quickly ap-

proaches what looks like an outgoing energy flux to the observer in the second asymptotic

region.

Since in the second asymptotic region A,A′ the mass assigned to the white hole is in-

versely proportional to the ADM mass at r =∞, the white hole’s mass must be decreasing,

consistent with the outgoing (or rather throughfalling) energy flux. In this process, the past

horizon will move towards smaller R or larger r, respectively.

10.3 Initial Conditions and Thermodynamics

Particle creation, from Hawking radiation, can take place at the horizons r+ and r− where

there is high blueshift when tracing back lightrays. However, referring to Fig. 10.1, if the

vacuum at I− in the black hole’s asymptotic region B,B′ is empty of particles as usual,

then there will be no flux from particle creation at r− to I+ in the second asymptotic region

A,A′. This is a consequence of causality and energy conservation, which we can see as

follows.

Suppose there were particle creation at r− resulting in a flux of Hawking radiation

towards R = ∞. This is the time-reversed situation of the usual black hole radiation, and

would mean a decrease of the white hole’s mass for the observer atR =∞. However, since

our metric is geodesically complete, the particles emitted at the white hole’s horizon r− can

be traced back all the way to I− in the black hole’s asymptotic region B,B′. We recall that

the white hole’s mass for the observer in the A,A′ region is inversely proportional to the
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black hole’s mass and see that this particle creation at r− would contribute to an increase of

the black hole’s mass corresponding to the decrease of the white hole’s mass. Since there is

particle emission also at the other horizon r+, we would have to add both fluxes to obtain

the net mass change.

However, we do as usual have a choice for the initial vacuum state at I− and we will

assume as normally that the vacuum in the black hole’s asymptotic past is empty. From

the above explanation we see now that this can only be the case if there is no particle flux

from r− to the white hole’s asymptotic region I+. To achieve this, we have to chose the

vacuum at I− in the white hole’s asymptotic region A,A′ such that it contains a constant

flux into the white hole with the effect that there is no outgoing particle flux created at

r−. This is the time-reversed situation of an evaporating black hole with an empty ingoing

vacuum. This situation is mathematically consistent because particle production in the

curved background only tells us the relation between the ingoing and outgoing vacuum

states, but not the vacuum states themselves. We thus chose the vacuum state at I− in the

white hole’s asymptotic region A,A′ such that at r− there is no additional outgoing flux

created 2.

Thus, the evaporation proceeds through the Hawking emission at r+, and the black

hole’s Bekenstein-Hawking temperature, given in terms of the surface gravity κ by TBH =

κ/2π, yields Eq.(8.2)

TBH(m) =
(2m)3(1− P 2)

4π[(2m)4 + a2
0]
. (10.8)

2Alternatively, we could demand the vacuum at past infinity in the second asymptotic region to be free of
particles, but then the vacuum in the black hole region’s past infinity would have to contain particles. We will
not further consider this possibility here.
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This temperature coincides with the Hawking temperature in the limit of large masses but

goes to zero for m→ 0.

The luminosity can be estimated by use of the Stefan-Boltzmann lawL(m) = αAH(m)T 4
BH(m),

where (for a single massless field with two degrees of freedom) α = π2/60, and AH(m) =

4π[(2m)2 + a2
0/(2m)2] is the surface area of the horizon. Inserting the temperature, we

obtain

L(m) =
16m10α (1− P 2)4

π3(a2
0 + 16m4)3

. (10.9)

The mass loss of the black hole is given by −L(m),

dm(v)

dv
= −L[m(v)] (10.10)

and we can integrate its inverse to obtain the mass function m(v). The result of this inte-

gration with initial condition m(v = 0) = m0 is

v =
5a6

0 + 432a4
0m

4 + 34560a2
0m

8 − 61440m12)π3

720m9(1− P 2)4α

−5a6
0 + 432a4

0m
4
0 + 34560a2

0m
8
0 − 61440m12

0 )π3

720m9
0(1− P 2)4α

. (10.11)

In the limit m → 0 this expression becomes v ≈ a6
0π

3/(144m9(1 − P 2)4α), and one thus

concludes that the black hole needs an infinite amount of time to completely evaporate.
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10.4 Collapse and Evaporation

We are now well prepared to combine formation and evaporation of the black hole. As

in section 10.2, we divide space-time into regions of advanced time. We start with empty

space before va, let the mass increase from va to vb, and stop the increase thereafter. Hawk-

ing radiation will set in, but for astrophysical black holes this evaporation will proceed

very slowly, such that we have a long time span during which the black hole is quasi-stable

and m remains constant to good accuracy at m0. Then, at some later time, vc, Hawking ra-

diation becomes relevant and m decreases until it reaches zero again. As we have seen in

the previous section, it will reach zero only in the limit v →∞.

We thus have the partition −∞ < va < vb < vc <∞with

∀v ∈ (−∞, va) :m(v) = 0, [Region B1 in Fig. 10.3] (10.12)

∀v ∈ (va, vb) :d/dv m(v) > 0, [Regions B2,C2 and A’2 in Fig. 10.3] (10.13)

∀v ∈ (vb, vc) :m(v) = m0, [Regions B3, C3 and A’3 in Fig. 10.3] (10.14)

∀v ∈ (vc,+∞) :d/dv m(v) < 0, [Regions B4, B5, C4 and A’4 in Fig. 10.3] (10.15)

for v → +∞ :m(v)→ 0. (10.16)

Strictly speaking the mass would immediately start dropping without incoming energy

flux and thus va = vb, but stretching this region out will be more illuminating to clearly

depict the long time during which the hole is quasistable.

To describe the Hawking-radiation we will consider the creation of (massless) particles

on the horizon such that locally energy is conserved. We then have an ingoing radiation
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with negative energy balanced by outgoing radiation of positive energy. Both fluxes orig-

inate at the horizon and have the same mass profile which is given by the Hawking tem-

perature. The area with ingoing negative density is again described by an ingoing Vaidya

solution, while the one with outgoing positive density is described by an outgoing Vaidya

solution.

The outgoing Vaidya solution has a mass-profile that depends on the retarded time u

instead of v and the mass decreases instead of increases. The retarded time is defined by

du = dt− dr/
√
F (r)G(r). After a coordinate transformation, the metric reads

ds2 = −G(r, u)du2 − 2

√
G(r, u)

F (r, u)
dudr +H(r)dΩ , (10.17)

where F (r, u) and G(r, u) have the same form as in the static case (10.2), but with where

m is replaced by a function m(u). We fix the zero point of the retarded time u so that

r = r+ corresponds to uc = vc. Then there is a static region with total mass m0 for v > vc,

u < uc. Note that since the spacetime described here has neither a singularity nor an event

horizon, we can consider pair creation to happen directly at the trapping horizon instead

of at a different timelike hypersurface outside the horizon, as done in [50]. We have in this

way further partitioned spacetime in regions, broken down by retarded time:

∀u < uc : m(u) = m0 , (10.18)

∀u > uc : d/du m(u) < 0 . (10.19)

Now that we have all parts together, let us explain the complete dynamics as depicted
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B1
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A’2

A’3

A’4

Figure 10.3: Penrose diagram for the formation and evaporation of the regular black hole metric.
The red and dark blue solid lines depict the two trapping horizons r− and r+. The brown, dotted
line is the curve of r =

√
a0 and the black, short dashed one is r∗. The light blue arrows represent

positive energy flux, the magenta arrows negative energy flux. The letter number combinations (B2
for example) label the different regions of the Penrose diagram. The letters are chosen to correspond
with the letters in Fig. 10.1 so that all the B regions are outside the outer horizon, the C regions are
all in between the two horizons and the A’ regions are all on the other side of the white hole. The
numbers refer to an interval of v (except for B5 which is in the same interval as 4). So for example,
B2, C2 and A’2 are all inside the same interval of v. The initial conditions at − in region A’2 are
given per section 10.3, different initial conditions would give a cross-flow arriving at + of B5.
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in the resulting causal diagram Fig.10.3.

In the region v < va we have a flat and empty region, described by a piece of Minkowski-

space. For all times v > va, the inner and outer trapping horizons are present. These

horizons join smoothly at r = 0 in an infinite time and enclose a non-compact region of

trapped surfaces.

A black hole begins to form at v = va from null dust which has collapsed completely

at v = vb to a static state with mass m0. It begins to evaporate at v = vc, and the complete

evaporation takes an infinite amount of time. The observer at I+ sees particle emission set

in at some retarded time uc which corresponds to the lightlike surface where the horizon

has lingered for a long time. The region with v > vc is then divided into a static region for

u < uc, and the dynamic Vaidya region for u > uc, which is further subdivided into an

ingoing and an outgoing part.

As previously mentioned, the radially ingoing flux (light blue arrows) in the collapse

region is not positive everywhere due to the quantum gravitational contribution. It has a

flipped sign in the area between r∗ (black short dashed curve) and r =
√
a0 (brown dotted

curve) which is grey shaded in the figure. Likewise, the ingoing negative flux during evap-

oration (magenta arrows) has another such region with flipped sign. It is in this region,

between the two horizons’ geometric mean value r∗ and the dual radius corresponding to

the minimal area, that the quantum gravitational corrections noticeably modify the classi-

cal and semi-classical case, first by preventing the formation of a singularity, and then by

decreasing the black hole’s temperature towards zero.
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In this chapter, modified from the corresponding section in [76], we investigate the possi-

bility of having ultra-light quantum black holes as a major component of dark matter.

It is interesting to consider how the ultra-light LQBHs might manifest themselves if

they do exist in nature. Because they are not charged, and are extremely light and have a

Planck-sized cross-section (due to their Planck-sized wormhole mouth), and they interact

only via their Hawking radiation and the particles they absorb, they will be very weakly

interacting and hard to detect unless they are hot enough or unless we can prob the Planck

scale. This is especially true as they need not be hot like a light Schwarzschild black hole,

but they can be cold as can be seen in Fig.8.1. It is thus possible, if they exist, that ultra-light

LQBHs are a component of the dark matter. In fact, due to (8.2), one would expect that all

light enough black holes would radiate until their temperature cools to that of the CMB,

at which point they would be in thermal equilibrium with the CMB and would be almost
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impossible to detect. Rewriting (8.2) for small P(δb) we get

T (m) =
(2m)3[1− P(δb)

2]

4π[(2m)4 + a2
0]
≈ (2m)3

4π[(2m)4 + a2
0]
. (11.1)

We thus see emerge a new phenomenon that was not present with Schwarzschild black

holes: it is possible to have a black hole in a stable thermal equilibrium with the CMB ra-

diation. In the Schwarzschild scenario, it is of course possible for a black hole to be in

equilibrium with the CMB radiation, this happens for a black hole mass of 4.50 × 1022 kg

(roughly 60% of the lunar mass). This equilibrium is however not a stable one because

for a Schwarzschild black hole the temperature always increases as mass decreases (it has

negative heat capacity) and vice versa (see the dashed line in Fig.8.1) and so if the black

hole is a bit lighter than the equilibrium mass it will be a bit hotter than TCMB , the temper-

ature of the CMB radiation, and will emit more energy than it gains thus becoming lighter

and lighter. Similarly, if the black hole has mass slightly larger to the equilibrium mass, it

will be colder than TCMB and thus absorb more energy than it emits, perpetually gaining

mass. For the LQBH however, when m is smaller than the critical mass
√
a0/2 of the order

of the Planck mass, the black hole has positive heat capacity and the temperature increase

monotonically with the mass, this allows for a stable thermal equilibrium in this region as

is shown in Fig.11.1. However, for black holes even one order of magnitude heavier than

mstable, it would take many times the age of the universe (on average) for a black hole to

reach equilibrium due to extremely weak Hawking radiation. In fact, on time scales of the

age of the universe, black holes with a mass only one or two orders of magnitude smaller

than the Planck mass can be treated as being stable. The values of the black hole mass in
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Figure 11.1: Log-log graph of (11.1) in units of Kelvin and Planck masses. The constant line denotes
the temperature of the CMB radiation; above this line the black hole is hotter than the CMB and so
it will lose more energy than it gains, below this line the black hole is colder than the CMB and so
it will absorb more CMB radiation than it will emit radiation, thereby gaining mass. The arrows on
the temperature curve denote in which direction the black hole will evolve through thermal contact
with the CMB. At the two points where the temperature curve intersects the constant TCMB curve,
the black hole is in thermal equilibrium.

the two equilibrium positions in the LQG case are thus

munstable = 4.50× 1022 kg,

mstable ≈ 10−19 kg, (11.2)

where we have used γ = 0.2375329... [71] for the Immirzi parameter and assumed β ≈ 1.

The unstable mass is essentially the same as in the Schwarzschild case while the stable

mass, though it formally depends on the value of δb, it is quite insensitive to its exact value

as long as δb is at most of the order of unity in which case mstable (which is of the order of

magnitude of the mass of the flu virus) is accurate to at least two decimal places.

The following picture thus emerges in LQG: black holes with a mass smaller than mstable
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grow by absorbing CMB radiation, black holes with a mass larger than mstable but smaller

than munstable evaporate towards mstable and finally black holes with a mass greater than

munstable grow by absorbing the CMB radiation.

11.0.1 LQBHs Production in the Early Universe

We can estimate the number of ultra-light LQBHs created as well as the extent of their

subsequent evaporation. As exposed in [57], number density of black holes per Planck

volume (where it assumed that there is order of unity degrees of freedom per Planck size)

at local equilibrium coming from thermodynamic fluctuations is exp(−∆F/T ), where ∆F

is the change in the Helmholtz free energy and T is the temperature of the universe. From

(8.3) and (11.1) the free energy of a LQBH of mass m is

FBH = m− TBHSBH = m− 1

2
m

[
16m4 − a2

0

16m4 + a2
0

]
, (11.3)

where TBH and SBH are the temperature and entropy of the black hole respectively. The

free energy for radiation inside the space where the black hole would form is

FR = −π
2κ

45
T 4V, (11.4)

where V is the volume inside the 2-sphere which will undergo significant change (i.e.

significant departure from the original flatness) in the event of a black hole forming. In the

case of a black hole of massm ≥ √a0/2, this is naturally the horizon. Since the horizon has

an area of 4π[(2m)2 + a2
0/(2m)2], we have that the volume of the flat radiation-filled space

in which will undergo the transition to a black hole is V = (4π/3)[(2m)2 + a2
0/(2m)2]3/2.
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However, as we saw earlier, for example in Fig.7.3 and 9.2, if m ≤ √a0/2, a throat of a

wormhole forms at r =
√
a0 and a large departure from flat space is observed. Since the

mouth of the wormhole as area AMin = 8πa0 we have that the volume of flat space which

will be perturbed to create the black hole is V = (4π/3)(2a0)3/2. In (11.4) κ depends on the

number of particles that can be radiated where κ = 1 if only electromagnetic radiation is

emitted and κ = 36.5 if all the particles of the Standard Model (including the Higgs) can

be radiated. Hence, if we define

∆F = FBH − FR (11.5)

to be the difference between the black hole free energy and the radiation free energy inside

the volume which is to be transformed, we have, in Planck units, that the density of black

holes of mass m coming from fluctuations is of the order of

ρ(m) ≈ 1

π3
exp(−∆F/T ), (11.6)

where ρ is here expressed in number density per Planck volume. Plotting ρ as a function of

T , (see for example Fig.11.2) we see that ρ peaks at a given temperature which is of order

TP for a black hole mass of order mP . If we imagine that the universe started in a hot

Big Bang and gradually cooled, looking at Fig.11.2, we see that at very high temperatures

the amount of black holes of a given mass created from fluctuations is relatively small.

Then as the universe starts to cool, the number of black holes increases until it reaches a

maximum value at TMax(m) (see Fig.11.3) at which point, when the universe cools further,
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Figure 11.2: ρ(T ), the LQBHs density created due to fluctuations for m = 1, and a0 = 0.5 in Planck
units (the value 0.5 here is chosen to amplify the difference with the classical Schwarzschild black
hole). The dashed line represents the classical density for a0 = 0.

no more black holes of mass m are created and the existing black holes start to evaporate.

By varying Eq.(11.6) with respect to T , we find that TMax(m) the temperature for which

the maximum amount of black holes are formed is

TMax(m)=


√

351/4(m(3a20+16m4))
1/4

29/8(a03/2(a20+16m4)κ)
1/4

π3/4
if m ≤ √a0/2,

√
3m51/4(3a20+16m4)

1/4

(a20+16m4)
5/8

κ1/4π3/4
if m ≥ √a0/2.

(11.7)

Combining Eq.(11.6) and Eq.(11.7), we can obtain the maximal primordial density of black

holes ρmax. Fig.11.4 is a graph of this quantity in Planck units and for β = 4. One more

subtlety however must be considered before the number of black holes produced can be

calculated. Formula Eq.(11.6) is only valid if the universe can reach local equilibrium. If

the time scale for the expansion of the universe is much shorter than the time scale for
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Figure 11.3: The temperature TMax (Eq.(11.7)) at which the density of black holes created through
fluctuations is maximised as a function of the mass of the black holes in Planck units. Observe that
the temperature is of the order of the Planck temperature TP in the given mass range. Here we
used β = 4.
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Figure 11.4: The maximal value of ρ(m,T ) ≈ exp(−∆F/T )/π3 as a function of the mass m. The
value of the temperature T at which the maximal value of ρ is attained is plotted in Fig.11.3. Both
the mass m and the temperature are in Planck units. Here we used β = 4.
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collisions between the particles, the universe expands before equilibrium can take place

and so Eq.(11.6), which requires equilibrium, is not valid. It can be shown [77], that local

equilibrium is reached for temperatures

T � 1015GeV − 1017GeV. (11.8)

This comes from equating the reaction time of matter tc ≈ 1/σnv with the typical expan-

sion time of the universe tH ≈ 1/T 2 in the radiation dominated era, where σ ≈ α2/T 2 is

the effective crossection, n ≈ T 3 is the number density for ultrarelativistic species, v ≈ 1

is the typical speed of the particles and α is the dimensionless running coupling constant.

This means that before the universe cooled down to temperatures below 1015GeV, the uni-

verse expanded too quickly to have time to create black holes from fluctuations in the

matter density. The fact that the universe must first cool down to below 1015GeV before

black holes can be created means that black holes of mass m will not be created at temper-

ature TMax(m) of Eq.(11.7) but rather at temperature Tcr(m) = min{TMax(m), Teq} where

Teq . 1015GeV is the temperature below which local equilibrium can be achieved and thus

black holes can be created. As can be seen in Fig.11.5, this means that for a significant range

of black hole masses, from about 10−17mP to 108mP the maximal density will be created

when the universe reaches temperature Teq. As it turns out, this range will encompass the

quasi-totality of black holes responsible for dark matter or any other physical phenomenon

considered in what follows. The fact that black holes are created only once the universe
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Figure 11.5: The temperature Tcr at which the density of black holes created through fluctuations
is maximised as a function of the mass of the black holes in Planck units where we take into con-
sideration the fact that for temperature higher than Teq . 1015GeV black holes do not have time to
form because of the rapid expansion. Here we used β = 4 and Teq = 13%× 1015GeV. We note that
for the physically relevant range 10−17mP ≤ m ≤ 108mP , Tcr(m) = Teq ; this is the case for all Teq
between 1% and 100 % of 1015GeV.
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Figure 11.6: The initial density of primordial black holes as given by Eq.(11.9) as a function of the
initial mass of the black hole. Both the mass m and the temperature are in Planck units. Here we
used β = 4 and Teq = 13% × 1015GeV. The choice of Teq is significant here because the density is
very sensitive to Teq .

has cooled down to Teq entails that the initial density of black holes is

ρi(m) ≈ 1

π3
exp(−∆F (m)/Tcr(m)), (11.9)

(where the dependencies on the black hole mass m are explicitly written) and not of the

density plotted in Fig.11.4. Graphing Eq.(11.9), we see in Fig.11.6 that only black holes

with an initial mass of less then 10−2mP are created in any significant numbers.

We are thus presented with the following picture: as the temperature cools from the Big

Bang, and the expansion of the universe starts to slow down, fluctuations of the matter

start producing Ultra-light black holes of a hundreth of a Planck mass and less, as can

be seen from Fig.11.6. Once this initial density of black holes is formed and the universe
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starts cooling further, these primordial black holes will start to evaporate since they will

be hotter than the surrounding matter.

11.0.2 Evaporation of Ultra-light LQBHs

Once the black holes are formed, the only way they can disappear is through evapora-

tion. When the mass, m, of a black hole satisfies m ≥ √a0/2, the LQBHs evaporate like a

Schwarzschild black hole would:

dm

dt
=
π2

60
A(m)T 4 − π2

60
A(m)(TBH(m))4, (11.10)

where π2/60 is Stefan-Boltzmann’s constant in Planck units, A(m) is the area of the LQBH

horizon, T is the temperature of the radiation in the universe and TBH(m) is the temper-

ature of the LQBH. So the first term in the last equation represents the radiation absorbed

by the black hole while the second term is the radiation emitted by the black hole. Things

take on a new twist however when the mass falls below
√
a0/2, which will happen within

1000 years of the Big Bang for black holes created with an initial mass of less than 100mP .

As illustrated in Fig.9.2a the black hole horizon, as well as the space surrounding it, is sep-

arated from the rest of the universe by a wormhole of Planckian diameter. The wormhole

as well the chunk of space surrounding the horizon form very slowly and gradually as

can be seen from (8.8,8.9). So we can divide space in three parts: 1) the inside of the black

hole, 2) a relatively small (compared to the rest of the universe) bag of space in between the

black hole horizon and the mouth of the wormhole and 3) (infinite) flat space outside of the

mouth of the wormhole. Theoretically, these three subsystems could be at three different
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Figure 11.7: The black hole horizon and its accompanying patch of space are in thermal equilibrium
at temperature TBH . The rest of the universe has radiation in thermal equilibrium at temperature
T . The two can interact radiatively through a Planckian surface of area AMin.

temperatures. However, because the size of the horizon of the black hole is greater than

the size of the mouth of the worm-hole (4π(2m)2 +a2
0/(2m)2 > 4π(2a0)) and becomes ever

more so as the black hole gets smaller, the bag of space between the horizon and the mouth

of the wormhole will thermalise faster with the black hole than with flat space. Since the

bag also starts out with a very small volume and this volume changes only slowly, the

thermalisation of the bag with the black hole happens rather rapidly (on on Hubble time

scales). Hence, for cosmological purposes, we can suppose that the black hole and the bag

of radiation between the horizon and the mouth of the wormhole are in thermal equilib-

rium at the temperature of the black hole, TBH , and that the combined system interacts

via thermal radiation with the outside flat space through the Planck-sized mouth of the

wormhole which has area AMin. We shall label the temperature of the radiation in the flat

space (the CMB) T . This situation is illustrated in Fig.11.7. The volume of the bag of space
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between the horizon and the mouth of the wormhole is

Vbag =

∫ √a0
r=2m

4πgθθ
√
grrdr

≈
8a

3/2
0

√
a0 − 4

√
a0m

(
a0 + 2

√
a0m+ 6m2

)
π

15m3
, (11.11)

if δb is of the order of unity or less (which is the natural choice). This is an approximation,

the equation is precise up to a factor of 1 < χ(m) < 2
3
2 . As it turns out though, the worm-

hole radiation term is not at all significant for the value and precision considered here.

However, for completeness, we will include it. The energy density of thermal radiation at

temperature T is π2T 4/15. Thus the energy of the combined black hole and bag of space

in thermal equilibrium with it between the horizon and the mouth of the worm-hole is

m + π2 Vbag T
4
BH/15. Writing the conservation of energy considering that the two systems

(LQBH+ bag and flat space) interact via black body radiation through the mouth of the

worm-hole, we get:

d

dt

[
m+

(
Vbag(m)

π2

15
(TBH(m))4

)]
=
π2

60
AMinT (t)4 − π2κ

60
AMin(TBH(m))4, (11.12)

where possible curvature corrections have been neglected. We have used that the power

of the thermal radiation (in Planck units) emitted by a black body is of surface area A and

temperature T obeys the Stefan-Bolzmann law:

P =
π2κ

60
AT 4, (11.13)
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where κ depends on the number of particles that can be radiated. κ = 1 if only electromag-

netic radiation is emitted and κ = 36.5 if all the particles of the Standard Model (including

the Higgs) can be radiated. As we will be dealing with extremely hot temperatures at

which all the Standard Model particles are relativistic and thus all particles can be emitted,

we will be using κ = 36.5 in what follows though in fact it will make no difference whether

we use κ = 1 or κ = 36.5. Using (11.1, 11.11) and approximating T (t) ≈ TCMB(t0/t)
2/3,

where TCMB is the temperature of the cosmic microwave background today and t0 is the

age of the universe we obtain Eq.(11.14). We can make this simplification because this is the

equation for the temperature of radiation in a matter dominated universe, and the length of

time for which the universe was not matter dominated is negligible in standard cosmology

for our purposes. This allows us to calculate the masses of the ultra-light black holes today

numerically. We find that, all black holes that initially started with massmi = 0.001mP are

de facto stable: the difference between the initial mass mi and the mass of the black hole

today m0 satisfies

mi −m0

mi
≈ 10−14, (11.14)

where we have taken β = 4 (but the result is not sensitive to the exact value of β) and for

smaller initial masses the difference is even smaller. In Fig.11.8 are represented different

value of the mass m0 of a LQBH today as a function of it’s initial mass mi.

If, for example, we consider a LQBH of mass m0 = 0.000635mP , by Wien’s Law they
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Figure 11.8: The mass today m0 of a black hole created with mass mi during the Big Bang. Both
masses are in Planck units. m0 is obtained from mi through Eq.(11.12) (β = 4).

radiate with maximum intensity at

Eγ = 2πmP

(
ωb
lPTP

1

TBH(m)

)−1

≈ 1.46× 1019eV. (11.15)

Where ωb = 2.897768551 × 10−3 mK, mP is the Planck mass in eV’s and TP is the Planck

temperature in Kelvins. This means that the ultra-light black holes would not have had

time, in the life-time of the universe, to thermalise with the CMB. This does not stop them

from being very stable in any case as the calculated value of m0 above shows. The mass

m0 in eV is m0 ≈ 7.75× 1024 eV and the temperature in degrees Kelvin is T (m0) ≈ 3.44×

1022 K.

11.0.3 Number of e-folds Elapsed Since LQBHs

Creation to Account for Dark Matter

For all values of the initial black hole mass mi, we know, thanks to Eq.(11.12) what the

black hole’s current mass is. We also know what the initial concentration of each type of
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black hole was from Eq.(11.9). In addition, we know that the current matter density for

dark matter is approximately 0.22ρcrit. If we now suppose that currently all dark matter is

actually composed of ultra-light black holes, we have that

∫ ∞
0

(a(ti))
3m0(mi)ρmax(mi)

(a(t0))3
dmi = 0.22ρcrit, (11.16)

where a(t0) is the scale factor of the Universe at present (t0), a(ti) is the scale factor of

the universe when the primordial black holes were created (ti) and so (a(ti))
3ρi(mi)

(a(t0))3
is the

current number density of black holes of mass m0(mi). Since the scale factor does not

depend onmi, we can rearrange this equation to find out the number of e-foldsNe that the

universe is required to have expanded since the creation of the primordial black holes for

the light black holes to form the totality of dark matter:

Ne := ln
a(to)

a(ti)
=

1

3
ln

(∫∞
0 m0(mi)ρi(mi)dmi

0.22ρcrit

)
, (11.17)

and

ao
ai

:=
a(to)

a(ti)
=

(∫∞
0 m0(mi)ρi(mi)dmi

0.22ρcrit

) 1
3

. (11.18)

The integral in Eq.(11.17), is evaluated to give 1.58× 10−12mP l
−3
P . This implies a number

of e-folds between the creation of the black holes and the present day of

Ne ≈ 85 and
a0

ai
≈ 1037, (11.19)
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Figure 11.9: This graph shows the current mass density of black holes as a function of their initial
mass mi. ρ0(m0) is the current number density of black holes of mass m0, so ρ0 = ρi (a3i /a

3
0).

Because, for all practical purposes, m0 = mi, the area under the curve is the present matter density
due to LQBH. If that density is equal to 0.22ρcrit, the LQBH will account for all dark matter. From
this graph, we see that at present times, LQBH mass density is entirely dominated by black holes
which had an initial mass of about 10−5mP . In this graph we have used β = 4 (the graph is not
very sensitive to this choice) and Teq = 13%× 1015GeV (the numerical values of the graph vertical
axis are sensitive to this value but location of the peak and the general shape of the graph are not).

where we have used Teq = 1.3× 1014GeV and β = 4 though these last two results are very

robust under changes of Teq and β.

Thus, if we want all dark matter to be explained by ultra-light black holes, then the

universe must have expanded by a scale factor of 1037 between the creation of the black

holes and the present day to achieve an ultra-light black-hole mass density of approxi-

mately 0.22ρcrit, the estimated dark matter density. Since the end of inflation, the universe

has expanded by a scale factor of about 1026. This implies that the ultra-light black holes

have to be created towards the end of the period of inflation which means that inflation

should be going on when the universe is at temperature of the order of 1014GeV−1015GeV.
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This is indeed close to the range of temperatures at which inflation is predicted to happen

in the simplest models of inflation (1014GeV−1016GeV). But because this model requires

a radiation dominated universe, a double stage inflation would probably be needed. It is

also possible that inflaton fluctuation could provide the same results but as it is not known

what the inflaton is, it is more difficult to investigate.

So if black holes make up the majority of dark matter we have the following picture. Primordial

black holes were created during an inflationary period when the universe had a temper-

ature in the 1014GeV−1015GeV range. Since their creation the Universe has expanded by

85 e-folds. From Fig.11.9 we see that the majority of the black holes making up the dark

matter would have been created with an initial mass of around 10−5mP ; Eq.(11.12) then

implies that their mass has changed by less than 1 part in 10−14 since their creation making

these black holes very stable. That is the case (due to the Planck-sized area of the mouth

of the worm-hole) even though the radiation they emit is still very hot. From Wien’s law

we have that the maximum intensity of their radiation is for particles of energy of about

1013eV.
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As their Hawking radiation might be the only way for us to detect ultra-light LQBH, in this

chapter, which is a modification of the equivalent section in [76], we investigate whether

the Ultra High Energy Cosmic Rays (UHECR) might be the Hawking radiation of the ultra

light LQBH composing dark matter.

Hot ultra-light black holes are very interesting phenomenologically because there is

a chance we could detect their presence, through their radiation, if they are in sufficient

quantities. The mass of ultra-light LQBHs today is m0 ≈ 1024eV. Therefore, the black

holes forming the dark matter in our galaxy emit UHECR we could see. The question is:

how much is emitted?

In fact, Greisen Zatsepin and Kuzmin proved that cosmic rays which have travelled

over 50 Mpc will have an energy less than 6× 1019eV (called the GZK cutoff) because they

will have dissipated their energy by interacting with the cosmic microwave background

[38]. However, collaborations like HiRes or Auger [1] have observed cosmic rays with

energies higher than the GZK cutoff, ultra high energy cosmic rays (UHECR). The logi-
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cal conclusion is then that within a 50 Mpc radius from us, there is a source of UHECR.

The problem is that we do not see any sources for these UHECR within a 50 Mpc radius1.

The ultra-light LQBHs which we suggest could be dark matter do however emit UHECR.

Could it be that these black holes not only constitute dark matter but are also the source

for UHECR? This is not such a new idea, it has already been proposed that dark matter

could be the source for the observed UHECR [16].

Let us compare the predicted emissions of UHECR from LQBHs with the observed

quantity of UHECR. Detectors of UHECR, like Auger or HiRes, cover a certain surface area

AD and register events of UHECRs hitting their detector. Let us suppose that the source

for UHECR is indeed the dark matter. It is believed that dark matter forms an halo (a ball)

around the Milky Way of roughly the size of the Milky Way, let RMW be the radius of the

Milky Way. We suppose the dark matter is centred in the halo of the Milky Way. RMW is

then roughly 50000 ly (light-years). For the purpose of the following calculations, we can

suppose that the Earth is on the outer edge of the Milky Way (in fact it is 30000 ly from the

centre). If we then suppose that all the UHECRs we observe come from the matter halo

of the Milky Way, and if the production rate (in particle of UHECR per metre cubed per

second) of UHECR is σ ([σ] = particles s−1m−3), then the halo produces 4π
3 R

3
MWσ particles

of UHECR per second. Since the Milky Way is in equilibrium, that means that 4π
3 R

3
MWσ

particles of UHECR per second cross the 2-sphere of area 4πR2
MW enveloping the Milky

Way and its halo. Thus, with a detector of area AD on this 2-sphere, the detector should

1The Auger collaboration has found a correlation between the provenance of UHECR and nearby Active
Galactic Nuclei (AGN). However, it is not know how AGN could produce UHECR. On the other hand, AGN
are strongly correlated to dark matter distribution.
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have a rate of detection of UHECR events of

RE =
AD

4πR2
MW

4π

3
R3
MWσ =

ADRMWσ

3
. (12.1)

Therefore we should have that

σ =
3RE

ADRMW
. (12.2)

Let us use Auger’s data [1], for Auger we have that AD = 3000 km2 and RE = 3 events per

year. This gives us an observed σ of

σobs ≈ 10−37 UHECR particles
s m3

. (12.3)

We must compare this value with the predicted production of UHECR by LQBHs. Us-

ing Planck’s Law, Eq.(11.1) and the fact that the bag is in equilibrium with the black hole

and the pair radiates through the worm-hole mouth of area AMin = 8πa0 we have that (in

Planck units), the rate of emission of particles of energy ν by an ultra-light black hole is

RBH(ν,m0) =
2AMin

π

ν2

e
ν

TBH (m0) − 1
. (12.4)

This implies that the collective rate of emission of particles of energy ν by all primordial

ultra light black holes, on average in the universe, is

RBH(ν) =

∫ √a0/2
m0=0

ρ0(m0)
2AMin

π

ν2

e
ν

TBH (m0) − 1
dm0, (12.5)
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Figure 12.1: The average emission rate of particles by primordial ultra light black holes in the
universe given by Eq.(12.5) assuming β = 4 and Teq = 1.3× 1014GeV.

where ρ0(m0) = ρi(m0)(a3
i /a

3
0) is the present day number density of black holes of mass

m0. Eq.(12.5) is plotted in Fig.12.1. However, the local dark matter density is much larger

than the average dark matter density in the universe. Hence there should be more ra-

diation emitted in our local neighbourhood than on average in the universe. The dark

matter density of the Milky Way halo, determined by the rotation curves, is calculated to

be ρMWDM = 0.3 GeVcm−3[23]. If we suppose that the distribution of ultra-light black

holes in the Milky Way is the same as in the universe as a whole, we then have that

ρMWBH(m0) =
ρMWDM ρi(m0)∫∞
m=0 ρi(m)mdm

, (12.6)

where ρMWDM (m0) is the number density of black holes of mass m0 in the Milky Way at

present. In this case, analogously to Eq.(12.5), we have that locally, the collective rate of
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Figure 12.2: The local emission rate of particles by primordial ultra light black holes in the Milky
Way given by Eq.(12.7) assuming β = 4 and Teq = 1.3× 1014GeV.

emission of particles of energy ν by all local primordial ultra light black holes is

RLocalBH(ν) =

∫ √a0/2
m0=0

ρMWBH(m0)
2AMin

π

× ν2

e
ν

TBH (m0) − 1
dm0, (12.7)

which is plotted in Fig.12.2. This implies a theoretical production rate of UHECR photons

in the Milky Way of

σth =

∫ ∞
m0=0

∫ m0

6×1019 eV

2AMin ρMWBH(m0) ν2

π(e
ν

TBH (m0) − 1)
dν. (12.8)

As it turns out, the result of σth is very robust for parameters except for Teq on which

σth is very sensitive. In order to agree with Eq.(12.3), we must have Teq ≈ 13%× 1015GeV.
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This is in great accordance with Eq.(11.8). If Teq � 13% × 1015GeV, then ultra light black

holes cannot form the majority of dark matter, because if they did, they would emit much

more ultra high energy cosmic rays than we observe. If Teq � 13%×1015GeV, then it is still

possible that ultra light black holes form the majority of dark matter but they cannot be the

source of the ultra high energy cosmic rays that we observe because they will not radiate

enough. Only if Teq ≈ 13%×1015GeV is it possible that dark matter consist mostly of ultra

light black holes and that those black holes are simultaneously the source for the observed

ultra high energy cosmic rays. Interestingly, it turns out that Teq ≈ 13% × 1015GeV is

consistent with the theory [77]. Furthermore, seeing as, appart from their mass and the

fact that they radiate very slightly, the characteristics of the ultra-light LQBH are similar to

traditional WIMPS, their effect on star formation and fusion models should be similar to

WIMPS.
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Summary

In the previous chapters, we studied the new Reissner-Nordström-like metric obtained in

the paper [74]. We recall the LQBH metric

ds2 = −(r − r+)(r − r−)(r + r?)
2

r4 + a2
0

dt2

+
dr2

(r−r+)(r−r−)r4

(r+r?))2(r4+a20)

+
(a2

0

r2
+ r2

)
dΩ(2). (13.1)

The metric has two horizons that we have denoted r+ and r−; r+ is the Schwarzschild

event horizon and r− is an inner horizon tuned by the polymeric parameter δb. The so-

lution has many similarities with the Reissner-Nordström metric but without curvature

singularities anywhere. In particular the region r = 0 corresponds to another asymptoti-

cally flat region. No massive particle can reach this region in a finite proper time. A careful

analysis shows that the metric has a Schwarzschild core in r ≈ 0 of mass M ∝ a0/m. We

have studied the black hole thermodynamics : temperature, entropy and the evaporation

process. The main results are the following. The temperature T (m) goes to zero for m ≈ 0
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and reduces to the Bekenstein-Hawking temperature for large values of the mass. The

black hole entropy in terms of the event horizon area is S =
A2−A2

Min

4
√
|A2−A2

Min|
.

We have investigated a model for collapse and evaporation of a black hole that is en-

tirely singularity-free. The spacetime does not have an event horizon, but two trapping

horizons. By generalising the previously derived static metric to a dynamical one by use

of the Vaidya metric we found that the gravitational stress-energy tensor builds up a nega-

tive contribution that violates the positive energy condition and prevents the formation of

a singularity. We divided spacetime into six different regions described by different met-

rics, and constructed the causal diagram for the complete evaporation. The value of the

scenario studied here is that it provides a concrete, calculable, model for how quantum

gravitational effects alter the black hole spacetime.

The evaporation process needs an infinite time in our semiclassical analysis but the

difference with the classical result is evident only at the Planck scale. The fact that the

black holes can never fully evaporate provides a possible resolution of the information loss

paradox. Furthermore, we showed that because of the temperature profile of the LQBH,

the fact that the temperature decreases for very light black holes, a black hole in thermal

environment will never totally evaporate but will thermalise with the background. The

CMB is such a background that can stabilise the ultra-light black holes. Since the horizon

of an ultra-light LQBH is hidden behind a wormhole with a Planck size cross section,

cold and light black holes could act as very weakly interacting dark matter. However the

universe is not old enough for black holes created during the Big Bang to have cooled

down to 2.7 K; they would still be excessively hot.

We know that in the very early universe ultra-light black holes cannot be created be-
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cause the universe expands at rate which is much faster than the rate of collisions between

particles. Particles of the Standard Model start colliding together at a rate faster than ex-

pansion of the universe when the temperature has cooled lower than 1015GeV−1017GeV.

If we suppose that the temperature Teq at which local equilibrium of the matter is achieved

and thus black holes can be formed from fluctuations of the matter is 13% of 1015GeV then

ultra-light black holes can explain both dark matter and cosmic rays with energies above

the GZK cut off.

Once the universe has cooled to 1.3× 1014GeV, ultra-light black holes, the overwhelm-

ing majority of which have a mass inferior to 5 × 10−5mP , would be created from matter

fluctuations. These black holes are still very hot and radiate, but because they are hidden

behind a Planck-sized wormhole, they do so very slowly and on average would lose less

than 1 part in 1014 of their mass since their creation. For all practical purposes they are

stable. If the universe has expanded by a scale factor of 1037 since their creation the mass

of all these ultra-light black holes would exactly equal the mass of dark matter and they

could explain the entirety of dark matter.

Since the universe has expanded by a scale factor of about 1028 since the end of infla-

tion, and that it expanded by a scale factor of at least 1028 during inflation, the fact that uni-

verse has expanded by a scale factor of 1037 since the birth of the black holes would mean

that the black holes would have been created during inflation. This in turn would mean

that inflation would still be underway when the universe had temperature of 1.3×1014Gev.

This is very close to the simplest models of inflation which situates inflation at energy

scales of 1015GeV−1016GeV.

In turn, if the black holes were created when the universe was at a temperature of
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1.3 × 1014GeV, then the amount of cosmic rays with energies higher than the GZK cut off

that they would emit would correspond exactly to the amount of such radiation observed.

Because they interact with the CMB, cosmic rays cannot travel more than 50 Mpc before

seeing their energy fall below the GZK cut off: 6×1019eV. However we do see particles with

energies above the GZK cut off but we do not see any sources for such energetic particles

within 50 Mpc from us. These energetic particles, dubbed ultra high energy cosmic rays

are thus a mystery for the moment.

Hence in conclusion, ultra-light LQG black holes have the potential to resolve two out-

standing problems in physics: “what is dark matter and where do the ultra high energy

cosmic rays come from?” It is also noteworthy that much of these results do not actually

depend on exact details of the black holes. The essential feature is that the temperature of

the black holes goes to zero when their mass goes to zero, the results being very generic.

It is thus likely that the same effect could be observed with non-commutative black holes

and asymptotic safety gravity black holes [78] [21], both of which exhibit zero temperature

at zero mass or for a remnant mass. The same analysis we think could be applied to the

new Hořava-Lifshitz quantum gravity [51].
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Conclusion

14.1 Summary

In this thesis, after having reviewed Quantum Graphity, Loop Quantum Graphity, the

Lieb-Robinson bound and simplified models of Loop Quantum Gravity, we derived two

new Lieb-Robinson bounds, one that takes into the relative strengths of the interactions

which is important to understand the functional dependence of the speed of information

propagation on the interaction strengths and is important in order to get a tight bound.

The other extends the Lieb-Robinson bound to a larger class of systems where the local

operators of the Hamiltonian need not be bounded, only their commutators need be.

When then proceeded to investigate the phenomenology of Loop Quantum Black holes

and found that they had extremely interesting behaviour when they were lighter than the

Planck mass. First their horizons becomes hidden behind a Planck-sized wormhole. Their

heat capacity becomes positive, and they become quasi-stable, taking an infinite amount

of time to evaporate. We found that ultra light primordial black holes of typical mass
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≈ 10−5mP could be responsible for most of the dark matter. Furthermore, their emission

spectrum suggests that the black holes making up the dark matter halo of our galaxy could

be the source of ultra high energy, supra-GZK cutoff radiation.

14.2 Outlook

Now that we have developed powerful tools to investigate the emergence of gravity in

condensed-matter like systems, it is time to use them. We are already working on investi-

gating critical phases of the emergence in both Quantum Graphity and other systems.

Now that we have outlined some of the phenomenological consequences of the Loop

Quantum Black holes, it is time to make these predictions more precise in order to really

compare to experiment. We are currently calculating the exact proportions of each species

of ultra high energy particles emitted by the black hole in order to compare with Auger,

HiRes and other observatories to see how well our models compare to experiment. So far

the calculations look promising. We are also working on obtaining the Loop Quantum

black hole metric for spinning black holes.
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Appendix A
Multiple Interactions Calculations

In Eq.(4.37) the end points of the chain are separated by a graph distance of
∑n−1

k=1 D
a(ik)→a(ik+1)
a(ik) .

Hence if d(P,Q) >
∑n−1

k=1 D
a(ik)→a(ik+1)
a(ik) the chain cannot linkP toQ, where a(ik) ∈ {1, 2, . . . ,m}

labels the operator type of ik and h(ik) ∈ {h1, h2, . . . , hm} gives the coupling constant of

operator ik. We can thus legitimately multiply every term by exp
(
λ
(∑n−1

k=1 D
a(ik)→a(ik+1)
a(ik) −

d(P,Q)
))

and drop the endpoint condition. This gives us:

‖Ki1 j
a b (t)‖ ≤

M
∞∑
n=0

| t |n

n!

( ∑
i2∈Zi1

2h(i2) . . .
∑

in+1∈Zin

2h(in+1)
)

exp
(
λ
( n−1∑
k=1

D
a(ik)→a(ik+1)
a(ik) − d(P,Q)

))

= Me−λd(P,Q)
∞∑
n=0

| 2t |n

n!

( ∑
i2∈Zi1

h(i2)e
λD

a(i1)→a(i2)
a(i1) . . .

∑
in+1∈Zin

h(in+1)e
λD

a(in)→a(in+1)

a(in)

)
.

(A.1)
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The equivalent equation for commutator bounded systems is:

‖Ki1 j
a b (t)‖ ≤

M
∞∑
n=0

| t |n

n!

( ∑
i2∈Zi1

2h(i2)Ka(i1)a(i2) . . .
∑

in+1∈Zin

2Ka(in)a(in+1)h(in+1)
)

exp
(
λ
( n−1∑
k=1

D
a(ik)→a(ik+1)
a(ik) − d(P,Q)

))

= Me−λd(P,Q)
∞∑
n=0

| 2t |n

n!

( ∑
i2∈Zi1

Ka(i1)a(i2)h(i2)e
λD

a(i1)→a(i2)
a(i1) . . .

∑
in+1∈Zin

Ka(in)a(in+1)h(in+1)e
λD

a(in)→a(in+1)

a(in)

)
.

(A.2)

For (l1, l2) ∈ {1, . . . ,m}2, l1 6= l2 and λ > 0 we define

Nl1l2(λ) ≡ nl1→l2hl2e
λD

l1→l2
l1 for bounded systems

Nl1l2(λ) ≡ nl1→l2Kl1l2hl2e
λD

l1→l2
l1 for commutator-bounded systems

Nl1l1(λ) ≡ 0, (A.3)

We will proceed for bounded systems but note that the commutator bounded deriva-

tion is virtually identical. Now, from an operator of type 1, there are n1→l ways to choose

an operator of type l as the next in the chain and there are m − 1 possibilities for l ∈

{2, . . . ,m}, and similarly for the other operator types. So, if we consider the embedded

sums

∑
i2∈Zi1

h(i2)e
λD

a(i1)→a(i2)
a(i1) . . .

∑
in+1∈Zin

h(in+1)e
λD

a(in)→a(in+1)

a(in) , (A.4)
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we see that each of individual sum of the type

∑
ik+1∈Zik

h(ik+1)e
λD

a(ik)→a(ik+1)

a(ik) (A.5)

can be written as

∑
l 6=a(ik)

n
a(ik)→l
a(ik) hle

λD
a(ik)→l
a(ik) =

∑
l 6=a(ik)

Na(ik)→l(λ). (A.6)

This means for fixed n we can write

∑
i2∈Zi1

h(i2)e
λD

a(i1)→a(i2)
a(i1) . . .

∑
in+1∈Zin

h(in+1)e
λD

a(in)→a(in+1)

a(in)

=
∑

a2 6=a(i1)

Na(i1)a2(λ) . . .
∑

an+1 6=an

Nanan+1(λ). (A.7)

of Eq.(A.1) where the al’s represent interaction types. We thus have that Eq.(A.7) has (m−

1)n terms, each of which has the form

Na1a2(λ)Na2a3(λ)Na3a4(λ) . . . Nanan+1(λ). (A.8)

Let us call a linking sequence ofN ’s of length q a finite sequence ofNij(λ)’sNa1b1(λ),Na2b2(λ),. . .,

Naqbq+1(λ) such that al+1 = bl. Considering that there are onlym interactions, we have that

the set of transition factors {Nab(λ)|1 ≤ a ≤ m, 1 ≤ b ≤ m, a 6= b} contains m(m − 1) ele-

ments, thus any sequence of m(m− 1) + 1 N ’s will necessarily have at least one repetition.

Hence there are a finite number of linking sequences of N ’s such that all N ’s in the se-

quence are different, and they are of length q ≤ m(m − 1). Let us call a linking sequence
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of N ’s such that all N ’s in the sequence are different and such that a1 = bq+1 an elementary

cycle. To each elementary cycleNa1a2(λ), Na2a3(λ), . . . , Naqa1(λ) we associate two numbers:

ka1a2...aq ≡ q

√√√√ q∏
l=1

halnal→al+1

ξa1a2...aq ≡
∑q

l=1D
al→al+1
al

q
(A.9)

where we have made the identification a1 = aq+1. We then have that

Na1a2(λ)Na2a3(λ) . . . Naqa1(λ) = (ka1a2...aqe
λξa1a2...aq )q. (A.10)

Now Eq.(A.8) is the product of a linking sequence ofN ’s of length n. In the firstm(m−1)+1

N ’s of the product there must be, as previously mentioned, at least two identical N ’s, let

us call it Nb1b2 , now. Because we are dealing with the product of a linking sequence of

N ’s, the subsequence of N ’s starting with the first Nb1b2 and ending with N just before the

second Nb1b2 is an elementary cycle of the type Nb1b2 , Nb2b3 , . . . , Nbqb1 and if we remove it

from the full sequence, the remaining sequence is still a linking sequence of length n − q.

So we can now write Eq.(A.8) as

(kb1b2...bqe
λξb1b2...bq )qNc1c2(λ) . . . Ncn−qcn+1−q(λ), (A.11)

where Nc1c2 , . . . , Ncn−qcn+1−q(λ) is linking sequence of N ’s. This process can be reiterated

until at most m(m− 1) N ’s are left.

165



Appendix A. Multiple Interactions Calculations

N13N32N24N43︸ ︷︷ ︸
(k324eλξ324 )3

N32 N24N42︸ ︷︷ ︸
(k24eλξ24 )2

N24N43N32N21N13N34

=(k324e
λξ324)3(k24e

λξ24)2N13N32N24N43︸ ︷︷ ︸
(k324eλξ324 )3

N32N21N13N34

= (k324e
λξ324)6(k24e

λξ24)2N13N32N21︸ ︷︷ ︸
(k132eλξ132 )3

N13N34

= (k324e
λξ324)6(k24e

λξ24)2(k132e
λξ132)3N13N34.

(A.12)

Example of the rewriting of a term

of the form in Eq.(A.8) as a product

of the elementary cycles defined in

Eq.(A.9). The dependence on λ is

not written explicitly in the above

for simplicity.

So if we now define

L(λ) ≡ max
2≤r≤m(m−1)

max
(a1,a2,...,ar)∈{1,...,m}r

{
ka1...are

λξa1ar |1 ≤ p < q ≤ r, (ap, ap+1) 6= (aq, aq+1)

}
(A.13)

G(λ) ≡ max
(l1,l2,l3,l4)∈{1,...,m}4

{
Nl1l2(λ)

Nl3l4(λ)
|Nl3l4(λ) 6= 0

}
<∞ (A.14)
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we conclude from the previous argument that

Na1a2(λ)Na2a3(λ)Na3a4(λ) . . . Nanan+1(λ) ≤ G(λ)m(m−1)(L(λ))n. (A.15)

Since there are (m− 1)n such term in Eq.(A.7) this in turn gives us that

∑
i2∈Zi1

h(i2)e
λD

a(i1)→a(i2)
a(i1) . . .

∑
in+1∈Zin

h(in+1)e
λD

a(in)→a(in+1)

a(in) ≤ G(λ)m(m−1) ((m− 1)L(λ))n .

(A.16)

Inserting this last inequality in Eq.(A.1), we obtain

‖Ki1 j
a b (t)‖ ≤ M̃(λ)e−λd(P,Q)

∞∑
n=0

| 2t |n

n!

(
(m− 1)L(λ)

)n
= M̃(λ) exp

(
λ
(2(m− 1)L(λ)

λ
| t | −d(P,Q)

))
, (A.17)

where M̃(λ) = M(G(λ))M(m−1). This last inequality implies a Lieb-Robinson speed of

2(m−1)L(λ)
λ for any positive λ. To obtain the tightest bound we take the infimum over λ

vLR = inf
λ>0

2(m− 1)L(λ)

λ
. (A.18)
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Effective Energy Momentum Tensor

Here we give the Einstein tensor for the metric of the collapsing and evaporating black

hole of chapter 10.

The effective energy momentum tensor is defined by T̃µν = Gµν/8π. The components of

the Einstein tensor in coordinate (v, r, θ, ϕ) are:

Gvv =
r2

(a2
0 + r4)3(r + r∗)3

×

[2a2
0r

4(r + r∗)(6r
2 + 7r−r+ − 7r(r− + r+)− 2rr∗

−r2
∗)− a4

0(−r−r+r∗ + r3
∗ + 2r2(r− + r+ + 2r∗)

+3r(−r−r+ + r2
∗))− r8(−r−r+r∗ + r3

∗

+r(r−r+ + 2(r− + r+)r∗ + 3r2
∗))] ,
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Appendix B. Effective Energy Momentum Tensor

Grr = − r2

(a2
0 + r4)3(r + r∗)3

×

[2a2
0r

4(r + r∗)(−r−r+ + r2
∗ + r(r− + r+ + 2r∗))

+a4
0(4r3 − 2r2(r− + r+ − 2r∗)− r−r+r∗ + r3

∗

+r(r−r+ + 3r2
∗)) + r8(4r2r∗ + 3r−r+r∗ + r3

∗

+r(r−r+ − 2(r− + r+)r∗ + 3r2
∗))] ,

Gθθ =
r3

(a2
0 + r4)3(r + r∗)4

×

[r7(r2r−r+ + r(2r2 + 6r−r+ − 3r(r− + r+))r∗

+(r − 2r−)(r − 2r+)r2
∗) + 2a2

0r
4(r2(r− + r+)

+(r− + r+)r2
∗ + r(r− − r∗)(−r+ + r∗))

+a4
0(4r3 − 2r2(r− + r+ − 3r∗) + 2r−r+r∗

+r(r−r+ − 3(r− + r+)r∗ + r2
∗))] . (B.1)
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