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Abstract

Web servers that generate dynamic content are widely used in the development

of Internet applications. With the Internet highly connected to people’s lifestyles,

the service requirements of Internet applications have increased significantly. This

increasing trend intensifies the need to improve server performance in dynamic

content generation.

In this thesis, we describe the opportunity to improve server performance by co-

locating the web server and the application server on the same machine. We identify

related work and discuss their respective advantages and deficiencies. We then in-

troduce and explain our technique that passes the client socket’s file descriptor from

the web server process to the application server. This allows the application server

to reply to the client directly, reducing the amount of data copied and improving

server performance. Experiments were designed to evaluate the performance of this

technique and provide a detailed analysis of processor time and data copying dur-

ing response delivery. A performance comparison against alternative approaches

has been performed. We analyze the results to understand factors in data copy-

ing efficiency and determine that cache misses are an important factor in server

performance.

There are four major contributions in this thesis. First, we show that in mul-

tiprocessor environments, co-locating web servers and application servers can take

advantage of faster communication. Second, we introduce a new technique that

reduces the amount of data copied by two-thirds. This technique requires no mod-

ifications to the application server code (other existing techniques do), and it is

also applicable in a variety of systems, allowing easy adoption in production envi-

ronments. Third, we provide a performance comparison against other approaches

and raise questions regarding data copying efficiency. Our technique attains an

average peak throughput of 1.27 times the FastCGI with Unix domain sockets in

both uniprocessor and multiprocessor environments. Finally, our analysis on the

effect of cache misses on server performance provides valuable insights into why

these benefits are obtained.
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Chapter 1

Introduction and Motivation

1.1 Thesis Statement

This thesis explores techniques to improve the performance of web servers that are

serving dynamic content. In particular, we evaluate a technique that can be used

when the web server and the application server are co-located on the same machine

(e.g., in a multiprocessor or multi-core environment). Our technique passes the

client file descriptor from the web server to the application server permitting the

application server to reply directly to the client. As a result, data does not have to

be sent through the web server.

1.2 Motivation

Internet technologies have advanced rapidly in the last decade. These technologies

have enabled us to incorporate the Internet into our daily lives. As the accessibility

of the Internet increases, Internet content has also grown larger and become more

complex. As a result, server performance has become an important area of study

as it directly affects the cost of content delivery. Many companies currently use

replication and load-balancing techniques to handle the increasing performance

demand.

While there has been a fair amount of research on static content delivery, until

recently, very few studies have examined the performance of dynamic content gen-

eration architectures. Also, very few have examined the performance of dynamic

content generation in multiprocessor environments. Suzumura et al. [39] recently
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studied this problem in a uniprocessor setting and noticed a significant amount of

processor time is spent on data copying.

Web servers and application servers were originally designed to be located on

different machines and to communicate through Internet sockets. With advances

in multiprocessor and multi-core architectures, we believe there are performance

advantages to be gained by co-locating the web server and the application server on

the same machine. Additionally, this co-location provides an opportunity to further

reduce communication overhead with Unix domain sockets and shared memory. In

this thesis, we propose a technique that passes the client socket descriptor from

the web server to the application server. This technique allows the application

server to bypass the web server by sending the response directly to the client. This

approach in turn reduces the amount of data copied during response delivery, and

improves server throughput. We then evaluate the performance of dynamic content

generation architectures in both uniprocessor and multiprocessor environments.

Finally, we conduct a detailed analysis of data copying operations to understand

factors affecting server performance.

1.3 Contributions

Our work explains the advantages of co-locating the web servers and the application

servers on the same machine in multiprocessor environments, which provides op-

portunities to improve web server performance. We present a technique to improve

the performance of web servers that are serving dynamic content. We compare the

performance of our technique against a technique that shares memory between the

web server and the application server, and also against the original socket com-

munication architecture in both uniprocessor and microprocessor environments. In

our analysis, we carefully examine copying costs and processor cache statistics to

gain a better understanding of the factors affecting server performance.

This thesis makes the following contributions:

• We show that in multiprocessor environments, co-locating web servers and

application servers can take advantage of faster communication.

• We present a new technique that passes the client socket’s file descriptor from

the web server process to the application server. This technique allows the

application server to send replies directly to the client, thereby bypassing the
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web server, reducing the amount of data copied and decreasing the load on the

web server. Our solution requires only minor modifications to the web server

and FastCGI library. No changes to the application server or application

server code are required. This solution can be applied in different operating

systems, web servers, and application servers. When compared to the original

FastCGI architecture, this technique reduces the amount of data copied by

two-thirds.

• Our experiments in both uniprocessor and multiprocessor environments show

that our technique and the approach that shares memory between the web

server and the application server attain an average peak throughput of 1.27

times and 1.14 times the average peak throughput of the original architecture,

respectively.

• In comparing our approach of passing the client socket’s file descriptor from

the web server to the application server against the approach of sharing mem-

ory between the web server and the application server, we notice that these

techniques reduce the same amount of data copied, but our approach produce

better performance. With further analysis, we determine that processor cache

pressure is a major factor affecting data copying efficiency.

1.4 Outline

Chapter 2 provides background related to dynamic content generation and intro-

duces the FastCGI architecture. Then, it discusses the benefits of co-locating the

web server and the application server on the same machine in a multiprocessor

environment and describes related work. Chapter 3 describes the opportunity to

reduce the amount of data copied during response delivery in the FastCGI architec-

ture. We present our solution that passes the client socket descriptor from the web

server to the application server allowing the application server to reply directly to

the client. Then, we explain how our technique is integrated within the FastCGI

architecture and discuss the advantages and implementation details of our tech-

nique. Finally, we describe how our solution can be applied in different operating

systems, web servers and application servers. Chapter 4 describes the experimental

goals and setup, server architectures and workload used for performance evalua-

tion. Chapter 5 compares the performance of both our technique and an approach

that shares memory between the web server and the application server against the

3



performance of the original socket communicating FastCGI architecture. We then

further investigate data copying costs in uniprocessor and multiprocessor environ-

ments using processor cache statistics to answer several questions that arise in our

performance analysis. Chapter 6 summarizes our work and discusses directions for

future work.
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Chapter 2

Background and Related Work

Web applications have grown rapidly since the days of static HTML. In the early

days, the World Wide Web (Web) was an interlinked collection of documents and

images. It started as a platform to share data and information with uni-directional

information retrieval being the main usage pattern. Soon, the development of the

e-commerce industry introduced interaction into the Web. This increased level

of interaction has driven the need for dynamic content generation. Over the last

decade, the growing use of the Web has driven a multitude of performance studies

aimed at improving the response time of dynamic content generation.

2.1 Generating Dynamic Responses

To understand the early dynamic response generation architectures, we need to

understand the functions of web servers. Web servers were initially designed to

handle the retrieval of static documents. The generation of dynamic responses is

typically not built into the web server but instead developed as a separate process or

application, called an application server. Upon receiving a client’s request (Figure

2.1, Step 1), the web server forwards the request to an application server (Step 2).

The application server then performs computations and dynamically generates a

response (Step 3), which is sent back to the web server (Step 4). Finally, the web

server sends it to the client (Step 5). The request size is usually much smaller than

the response size. We emphasize this visually in Figure 2.1. Steps 1 and 2 show a

small request size and Steps 4 and 5 show a large response size.

Since the application server is separate from the web server, they need to ex-

change information through a communication mechanism such as, the Common

5
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Response

Web Server

Response

2) Request

4) Dynamic

1) Receive client request

5) Respond to client

Large Response Size

Small Request Size

App
Server

Figure 2.1: Dynamic Response Architecture

Gateway Interface (CGI).

2.1.1 The Common Gateway Interface

The Common Gateway Interface (CGI) [33] is a standard interface for information

servers to execute external applications in real-time. With CGI, web servers can

start an application server (as a separate process) in real-time and on demand to

compute a dynamic response (Figure 2.2).

Response

4) Generate

request 3) CGI request

2) CGI creates application

Web Server

1) Receive client 

to client

7) Respond 5) CGI response

terminates

6) Application

Server
App

Figure 2.2: Common Gateway Interface

CGI provides a well-defined interface for dynamic web application development.

It achieves language independence by defining a language-independent communi-

cation protocol; thereby, allowing applications to be developed in different pro-

gramming languages. Process isolation in CGI eliminates the chance of buggy

applications affecting the operation of the web server.

However, there are significant drawbacks to CGI. Since the application is de-

veloped as a separate process, each dynamic request requires the web server to ask

the operating system to create an application server process (Figure 2.2, Step 2).
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After the application server has completed sending its response to the web server,

the application server terminates and the operating system reclaims its resources

(Figure 2.2, Step 6). The operating system overhead in application server creation

and termination is often significant compared to the actual computation by the

application server [26]. The FastCGI architecture was proposed to eliminate these

overheads [26, 12].

2.1.2 FastCGI

FastCGI [26, 12] was designed to address performance problems in CGI while re-

taining its benefits. It is supported by commonly available web servers such as

recent versions of the IBM HTTP Server [14], Apache HTTP Server [9], Microsoft

Internet Information Services (IIS) [43] and the Sun Java System Web Server [44].

It is also supported by many application servers including the IBM WebSphere Ap-

plication Server [11], ESXX [23] and other application servers written in popular

scripting languages such as Perl, PHP and Python.

To address the operating system overhead in CGI, rather than creating one

application server per client request, the web server creates a pool of persistent

FastCGI application servers at start up (Figure 2.3, Step 0). These application

servers utilize a FastCGI library to communicate with the web server over a socket

using the FastCGI protocol (Figure 2.3, Steps 2 and 4). Upon completion of a

request, the FastCGI application server waits for a new request from the web server

rather than terminating. FastCGI improves server performance by eliminating the

operating system overheads of application server creation and termination.

0) Application servers

created at start up

3) Generate

Response

request

Web Server

1) Receive client 

to client

2) FastCGI request
App

Server

4) FastCGI response5) Forward response

Figure 2.3: FastCGI

FastCGI uses a socket to facilitate communication between the web server and

the application server. Using a socket provides the flexibility to run applications

on a separate machine from the web server in order to distribute load [26]. How-

ever, with increases in processor performance, availability of multi-core processors
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and large amounts of memory in current server machines, it is possible to co-locate

the web server and the application server on the same machine. Server machines

can now process data at very high rates, so distributing application servers re-

quires a great investment in network switches and network cards to maintain good

performance. Co-locating the web server and the application servers on the same

machine is economical and provides good performance. Inter-process communica-

tion is much faster than network communication since it does not experience any

network delay. Additionally, co-location allows for better utilization of processor

resources. As described above, the web server is responsible for handling client

requests and the application server is responsible for content generation. So the

loads on these two components are seldom equal and CPU resources are often not

fully utilized on one of the two systems. Putting them on the same machine allows

processor resources to be better load-balanced. Therefore, we believe it is beneficial

to host the FastCGI architecture on the same machine to take advantage of faster

communication and improve server utilization.

Nonetheless, overhead is incurred when the web server and the application server

are hosted on a single system. Since the web server and the application server are

separate processes, one notable overhead is redundant data copying during inter-

process communications. We further explain redundant data copying in Section

3.1.1.

In the following section, we describe related work that improves the performance

of the communication between the web server and the application server within the

context of the FastCGI architecture. In Chapter 3, we focus on the problem of

data copying redundancy during response delivery. First, we formulate the prob-

lem in detail. Then, we describe our solution to reduce data copying and explain

the improvements and benefits of our method. For the remainder of the thesis,

our further discussion of the FastCGI architecture, related work and our proposed

solution assumes the web servers and the application servers are co-located on the

same machine.

2.2 Related Work

In the previous section, we covered the general architectures of dynamic content

generation. We also noted some of the benefits of, and problems with, these ar-

chitectures. In this section, we discuss work related to improving the performance

of communication between the web server and the application server within the

8



context of the FastCGI architecture.

2.2.1 User Space vs Kernel Space Servers

The high performance TUX [32] kernel space web server was introduced to improve

the performance of static content delivery by avoiding overhead in context-switching

and event notification. When the web server is implemented as a user process, each

response is copied between user and kernel space at least once. TUX is a kernel

space web server that eliminates such copying, thereby improving performance by

reducing redundant data copying [19].

With the increasing demand of dynamic content generation, Shukla et al. [36]

compared the performance of a kernel space web server to the performance of a

user space web server in the context of dynamic content generation. Their results

showed that as the proportion of dynamic requests increases, the performance gap

between user space and kernel space servers diminishes. The authors believe dy-

namic content generation is processor-intensive; therefore, optimizations in TUX do

not provide significant performance increases when compared to the performance

increases obtained for static content delivery.

Given the lack of performance improvement for dynamic content delivery in

TUX, its security and availability problems overshadow its benefits. Kernel space

web servers run with unlimited privileges. Therefore, if the web server is compro-

mised, the machine can be taken control of. Secondly, one can quickly restart a

user space web server process when it crashes without affecting other web server

processes on the same machine. But kernel space server crashes render the machine

unusable and require a machine restart, thereby decreasing availability.

2.2.2 Data Copying Redundancy in Dynamic Content

Suzumura et al. [39] recently studied redundant data copying in their FastCGI

implementation. Under the SPECweb2005 [5] e-commerce and support workloads,

they reported that data copying constitutes 15.7% and 12.4% of processor time,

respectively. Since dynamic content generation is often processor-bound, reducing

the processor demand due to data copying should benefit overall performance.

They propose an optimization to reduce data copying, which can be described

in three parts. First, they introduce a new type of character string object in PHP,

called a file-type character string (FTCS) object to encapsulate the contents of a

9



file. Second, the optimization makes use of a special header in the FastCGI response

to pass the FTCS objects to the web server. Finally, the web server extracts the

FTCS objects from the FastCGI response and sends the content using sendfile()

[41, 27] with HTTP chunked transfer encoding.

Unlike the usual character string objects, which hold the entire contents of the

file, an FTCS object holds only the file name. They modify the file get contents()

function in the PHP runtime library to return an FTCS object instead of a string

object with the file content. Figure 2.4 shows an example of PHP code in the appli-

cation server. Two FTCS objects are returned by the file get contents() function in

Lines 3 and 5. These FTCS objects are handled specially in the FastCGI response

message to reduce data copying.

1: <?php

2: echo hello;

3: echo file_get_contents(/tmp/A.htm); // FTCS

4: echo world;

5: echo file_get_contents(/tmp/B.htm); // FTCS

6: echo bye;

7: ?>

Figure 2.4: Suzumura [39] Zero-Copy Code Example

1: X-ZeroCopy:5/10:21/10

2: hello/tmp/A.htmworld/tmp/B.htmbye

Figure 2.5: Suzumura [39] Zero-Copy FastCGI Response Example

To encapsulate the FTCS objects in the FastCGI response, they introduce a

new header in the FastCGI response protocol. In the FastCGI response message

to the web server, the file name in an FTCS object is put in the message instead

of the file content, thus reducing the amount of data sent between the application

server and the web server. Figure 2.5 shows the FastCGI response generated by

the example code in Figure 2.4. A new X-ZeroCopy header (Figure 2.5, Line 1) is

included in the message to specify the locations of all the FTCS objects within the

FastCGI response message.

To demonstrate the encapsulation of FTCS objects in the FastCGI response,

we show the corresponding FastCGI response message for Figure 2.4, Lines 2 and

10



3. Output of any non-FTCS object (Figure 2.4, Line 2) remains the same, so the

string content of the object is appended to the FastCGI response message (first 5

characters in Figure 2.5, Line 2). However, output of an FTCS object (Figure 2.4,

Line 3) places its file name in the FastCGI response message and updates the X-

ZeroCopy header with the location in the byte stream and length of the file name.

For example, the file name “/tmp/A.htm” is appended to the FastCGI response

message in Line 2 of Figure 2.5. Then, “5/10” is appended in Line 1 of Figure 2.5,

indicating that the file name begins at index 5 of the FastCGI response message

(Figure 2.5, Line 2) with a length of 10 characters. Since the file name is usually

much shorter than the file contents, the size of the FastCGI response message is

much smaller. Therefore, the amount of data being copied is greatly reduced which

in turn reduces the processor usage required to perform the data copying.

After receiving the FastCGI response message, the web server parses the X-

ZeroCopy header information to extract the file names of all FTCS objects. It then

sends the response in chunks using HTTP chunked transfer encoding. Figure 2.6

shows the chunks from this example and the method used to send each chunk of

the content.

Chunk Method Parameter
1 send hello
2 sendfile /tmp/A.htm
3 send world
4 sendfile /tmp/B.htm
5 send bye

Figure 2.6: Suzumura [39] HTTP Chunked Encoding Response from Web Server

For all FTCS objects, the web server sends the file using the sendfile() system

call (Chunks 2 and 4). Otherwise, the content is sent using a regular send() (Chunks

1, 3 and 5). The sendfile() system call copies data from one file descriptor to another

within the kernel. It therefore does not incur any data copying between user and

kernel space, permitting highly efficient file transfers.

To understand the performance of Suzumura’s technique, let us consider two

scenarios. Figure 2.7a shows the data copied when a majority of the response is

static and FTCS objects are used. With the modified FastCGI protocol, only the file

names of the FTCS objects are sent through the FastCGI socket, resulting in a small

FastCGI response and significantly reducing the amount of data copied in C1 and

C2 (Figure 2.7a, Stage 1). In Figure 2.7a, Stage 2, the web server sends each non-
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FTCS object using send() and each FTCS object using sendfile(). Since sendfile()

does not copy data between user and kernel space, only non-FTCS objects incur

copying overhead C3, significantly reducing the total amount of data copied between

user and kernel space when the response is sent to the client. Unfortunately, their

technique does not reduce the amount of data copied for any dynamically generated

response. Figure 2.7b shows the data copied when the response contains only

dynamically generated data. The amount of data copied remains the same as when

compared to the original FastCGI architecture.

This technique using FTCS objects significantly reduces the amount of data

copied between user and kernel space during response delivery when a large amount

of static content is encapsulated within FTCS objects. Although this approach

leverages the web server implementation of zero-copy data transfer, it requires

changes to the programming language runtime library (PHP runtime library) as well

as modifications to the application code (i.e., extract static content into files), which

becomes a barrier to adoption. More importantly, this technique only provides

performance improvements when the content being returned is stored in separate

files and is included using file get contents() function. We believe that although

this may be a technique used in SPECweb2005 to generate dynamic content, it is

an artifact of the simple benchmark rather than a mechanism that is frequently

used in dynamic content generation in real applications.

In Chapter 3, we describe our solution which eliminates two-thirds of the data

copies required during response delivery. Our solution does not require modification

to the application server programming language. In addition, it does not require

manual encapsulation of content (such as FTCS objects and the file get contents()

function) to improve performance. As a result it reduces data copying for all dy-

namically generated content.

2.2.3 FastCGI with Shared Memory

An implementation of FastCGI with shared memory reduces the amount of data

copied when the application server replies with dynamic content to the client. Fig-

ure 2.8 shows the different stages of the request-response cycle using FastCGI with

shared memory.

The web server allocates a large shared memory region during creation of ap-

plication server pool (Figure 2.8, Step 0). For each request, the web server sends a

slightly modified FastCGI request to the application server. The modified FastCGI
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Figure 2.7: Data Copying in Suzumura’s Zero-Copy Technique
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Figure 2.8: FastCGI with Shared Memory

request has two parts. First, it indicates the shared memory location that the

FastCGI library should write to. Then, it is followed by the regular FastCGI re-

quest (Figure 2.8, Step 2). Instead of using a socket to send the response back

to the web server, the application generates the response directly into the shared

memory region (Figure 2.8, Step 3) and sends an empty FastCGI response to the

web server to notify it that the response is available in the shared memory location

(Figure 2.8, Step 4). Then, the web server sends the response to the client from

the shared memory region (Figure 2.8, Step 5). This approach avoids copying data

from the user space of an application server to a kernel buffer (which occurs during

a socket write on the application server) and the copying of the data from a kernel

buffer to the web server (which occurs during a socket read on the web server).

Using shared memory to transfer dynamic responses eliminates two copy opera-

tions between user and kernel space. Figure 2.9a shows the data copying operation

with the original FastCGI architecture, and Figure 2.9b shows the data copying op-

eration using FastCGI with shared memory. With FastCGI using shared memory,

C1 and C2 are eliminated as the content is generated in a shared memory region.

The only messages sent through the socket is the FastCGI message used to signal

the web server that the response is available in the shared memory. This message

size is insignificant compared to the size of the dynamic response. The only data

copy happens when the web server sends the response to the client (C3) where data

is copied from the shared memory buffer to the kernel. Therefore, the amount of

data copied during response delivery is reduced to one-third of the amount required

in the original FastCGI architecture. This technique does not reduce data copy-

ing as significantly as Suzumura’s zero-copy technique when the response contains

large static portions. However, if the response contains only dynamically generated

content, the amount of data copied with this technique is reduced to only one-third
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Figure 2.9: Data Copying During Response Delivery

of the amount required by Suzumura’s technique.

Normally, data in an HTTP response is delivered in one piece, with content

length specified in the HTTP header. In order to determine the content length, the

current proof-of-concept implementation allocates a large shared memory region

that is big enough to hold the whole application server’s response. The content

length of the whole response can then be determined and the response is sent to

the client in one piece. To improve scalability in a production environment, a

smaller memory footprint may be desired. To reduce the size of the shared memory

region, one could use HTTP chunked transfer encoding. Chunked transfer encoding

allows data to be broken up into a series of blocks of data, and it allows the web

server to transmit blocks of data to the client without knowing the content length

of the entire response.

15



Once the application response fills up the shared memory region, the web server

could use chunked transfer encoding to send the current block of data in shared

memory to the client. Once the data is transferred, it would notify the application

that it should resume its response, by writing again to the beginning of the shared

memory region. The web server can repeat this process until the whole application

response is sent.

It is possible to further reduce the amount of data copied in FastCGI with

shared memory by utilizing sendfile() and using mmap() [2, 31] to map to a file.

However, this enhancement is not used in our performance analysis of FastCGI with

shared memory in Chapter 5 due to the lack of proper support in Linux (detailed

shortly). First, the web server uses mmap() on a file, causing the operating system

to allocate a buffer in the file cache (which resides in the kernel) and maps the

buffer into the web server’s address space. Then, the web server shares its memory

region with the application server as described above.

When the application server generates a response into the shared memory, the

response is directly written into the buffer in the file cache without any data copying

between user and kernel space (Figure 2.10, Step 1). Then, the web server can

use sendfile() to send the response back to the client (Figure 2.10, Step 2). This

enhancement completely eliminates data copying between user and kernel space

during response delivery. In Linux, there is currently no way to determine when

the data has been sent and therefore when the buffer can be safely reused. In the

future we hope to examine FreeBSD’s sendfile() which may provide better support

for such an operation.

response

cache
file

Web Server App Server

User Space

Kernel SpaceClient
sendfile()

1) generate
response

2) send the response

Figure 2.10: FastCGI with Shared Memory (with sendfile() and mmap() enhance-
ments)
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Therefore, FastCGI with shared memory has significant reductions in data copy-

ing during response delivery. Unlike Suzumura et al. [39], this optimization does

not require modifications to the application server nor to the application runtime

libraries. It only requires modifications to the FastCGI library and the web server.

We evaluate the performance of the FastCGI with shared memory architecture in

Chapter 5 and compare its performance against the original FastCGI architecture

and against our new approach, as described in the next chapter.
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Chapter 3

Problem, Solution and

Implementation

In the previous chapter, we describe the initial development of dynamic content

generation architectures, CGI and FastCGI. FastCGI was developed to improve

server performance by reducing the process creation overhead of CGI. We also

identified several performance problems with FastCGI and outline work related to

these problems.

In this chapter, we focus on the redundant copying problem when delivering

responses with FastCGI. First, we provide a detailed description of the problem.

Second, we propose a technique that reduces copying by passing the client socket’s

file descriptor from the web server to the application server in order to permit the

application server to respond directly to the client, thus bypassing the web server

and reducing the amount of data copying. Third, we discuss the potential benefits of

this technique and describe the implementation of the proposed technique. Finally,

we explain how this technique can be applied to other similar systems.

3.1 Problem

In the FastCGI architecture, the response delivery phase performs two data ex-

changes using socket communication. When the web server and the application

server are co-located on the same machine, we observe redundant data copying in

the data flow. Therefore, to understand the optimization opportunity in detail, we

explain when and why data copying occurs between user and kernel space when a

socket is used for inter-process communication.
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3.1.1 Data Copying in Socket Communication

Let us consider data copying in two steps as shown in Figure 3.1: sending to a socket

and receiving from a socket. Figure 3.1a shows the socket communication when both

the sender and the receiver are on different machines. First, the sender process sends

data to a socket by invoking the send() system call. The data is copied from the

sender’s address space into the kernel socket buffer by the operating system (Figure

3.1a, label C1). Then, the data is sent to the destination machine by the kernel.

Finally, when the receiver reads from the socket with the recv() system call, the data

is copied from the kernel socket buffer to the receiver’s address space (Figure 3.1a,

label C2). Figure 3.1b shows the socket communication when the processes are on

the same machine. The steps are the same as with socket communication between

different machines except there is no network transfer. Both socket communications

require two system calls and two data copies between user and kernel space.

data

data

socket buffer

data

socket buffer

data

Network

Transfer

Receiver

recv()

User Space

Kernel Space

C2

Sender

send()

C1

(a) Different Machines

data data

data

User Space

Kernel Spacesocket buffer

Receiver Sender

send()recv()

C2 C1

(b) Same Machine

Figure 3.1: Socket IPC Data Copying

3.1.2 Data Copying in the FastCGI Architecture

The FastCGI architecture utilizes two sockets in the response cycle, the client socket

and the FastCGI socket. The client socket facilitates communication between the

client and the web server. The FastCGI socket facilitates communication between

the web server and the application server. We focus on data copying during response

delivery, because the response size can be quite large while the request size is

typically very small (e.g., a few hundred bytes).

Figure 3.2a shows the response delivery when the web server and the application

server are on different machines. Sending the response from the application server
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to the web server follows the same steps as socket communication between different

machines (Figure 3.1a) and requires two data copies between user and kernel space

(Figure 3.2a, labels C1 and C2). Then, the web server sends the response back

to the client through the client socket causing a third copy (Figure 3.2a, label

C3). Figure 3.2b shows the response delivery when the servers are on the same

machine. The steps are the same as response delivery when the web server and the

application server are on different machines, except there is no network transfer.

Response delivery consists of three data copies between user and kernel space in

both cases.
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response
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Figure 3.2: Data Copying in FastCGI Response Delivery

Notice that the web server simply acts as a proxy and does not perform any

modification of the dynamic content, so the same data is copied between user and

kernel space three times. As mentioned in the beginning of this chapter, dynamic

response computation may be processor intensive. Similarly, data copying between

user and kernel space in response delivery is also processor intensive. By reducing
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the number of copies, additional processor time is freed up. This processor time

can then be used to spend more time computing responses, improving overall server

performance.

3.1.3 Reducing Data Copying in the FastCGI Architecture

In Section 2.1.2, we described the economic and performance benefits of co-locating

the web server and the application server on the same machine. In order to fully

understand and maximize these benefits, we analyze data copying in the FastCGI

architecture with the web server and the application server co-located on the same

machine.

Several data copying reduction techniques take advantage of the server co-

location properties. Suzumura’s technique (Section 2.2.2) takes advantage of the

fact that the web server and the application server share the same file system. The

FastCGI with shared memory technique designed by our research group (Section

2.2.3) utilizes server co-location on the same operating system in order to share

memory regions.

Our solution also utilizes the characteristics of server co-location on the same

operating system. Below, we introduce our solution that passes the client socket

descriptor from the web server to the application server allowing the application

server to send the response directly to the client. This bypasses the web server

and requires only one data copy operation between user and kernel space during

response delivery.

3.2 Solution

In the problem section, we illustrated three data copies between user and kernel

space in the original FastCGI architecture. In this section, we propose a technique

that passes the client socket descriptor from the web server to the application server

in order to reduce the number of copies during response delivery to one. Then, we

describe the implementation details of our technique in the FastCGI architecture.

Finally, we describe how our technique can be applied to other operating systems

and web servers.
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3.2.1 Passing a File Descriptor to Another Process

A file descriptor is a reference to an open file or socket. To perform actions on the

file or socket, the process invokes an operating system call on the file descriptor.

Then, the operating system performs operations on the file or socket on behalf of

the process. Furthermore, each process has its own list of file descriptors to enforce

security.

One of the ways in Linux and FreeBSD to pass an opened file descriptor to

another existing process is by sending an ancillary message on a Unix domain

socket. First, the two processes set up a Unix domain socket for communication

(Figure 3.3a). Then, the sending process creates an ancillary message with type

SCM RIGHTS and sends the file descriptor through the socket. The kernel appends

the underlying file or socket object pointer to the socket buffer (Figure 3.3b). When

the receiving process receives this from the socket, the kernel reads from the socket

buffer and decodes the pointer. Then, the kernel associates this pointer with an

unused file descriptor in the receiving process (Figure 3.3c). Once this is completed,

the new file descriptor is returned to the receiving process. The receiving process

can now perform operations on the opened file through the new file descriptor, while

the sending process can still perform operations with the original file descriptor.

Since both of the file descriptors refer to the same kernel object, they share the

same offset and status flags. If the file offset is modified using read(), write() or

lseek() on one of the descriptors, the file offset is also changed for the other file

descriptor. However, file descriptor flags are not shared among the descriptors.

Reference counting is applied to objects, and an object resource is freed when

close() is called on the last reference to it. For example, suppose there are two

file descriptors referring to the same TCP socket. When close() is called on one

of the file descriptors, the reference count of the socket is decremented. However,

this call does not initiate the TCP termination sequence since the reference count

is greater than zero. The TCP termination sequence is initiated when the other file

descriptor (the last reference to the TCP socket) is closed.

Several researchers utilized this technique to improve server performance. In

Park and Pai [29], the authors use “Connection Conditioning”, which decouples

server-independent functions into general-purpose user-level filters to keep server

design simple and increase security. Each filter passes the client’s socket descriptor

to the next filter. This allows filters to send data directly to the client, thus reduc-

ing the latency compared to a proxy-based solution. Ruan and Pai [34, 35] study

blocking in the main server process due to lock contention in file system operations
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Figure 3.3: Passing a File Descriptor to Another Process

between the web server process and its worker processes. By passing file descrip-

tors between the main server process and the worker processes, they offload work

required by file system operations to the worker processes, reducing lock contention

induced blocking. They implement this technique in both the Flash Web Server

[42] and the Apache HTTP Server [9], increasing the throughput of the Flash Web

Server by 34% and the throughput of the Apache HTTP Server by 13%.

3.2.2 FastCGI with PASSFD

In Section 3.1.2, we explained that traditional response delivery requires three data

copies between user and kernel space. If the application server has a communication

channel to the client, it can deliver the response to the client directly without

passing the data to the web server, thus eliminating the copying done in the steps

labeled C2 and C3 in Figure 3.2b. We can pass the client socket descriptor from the
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web server to the application server to establish a communication channel between

the application and the client. We call this technique of passing the client socket

descriptor from the web server to the application server, PASSFD.

Recall that the application server communicates with the web server using the

FastCGI library, and that communication is encapsulated within the library. By

passing the client file descriptor from the web server to the FastCGI library, a direct

communication channel to the client is established and is encapsulated within the

library. Since the web server does not perform any operations on the response, the

FastCGI library can send the data directly to the client, bypassing the web server

(Figure 3.4).
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Figure 3.4: FastCGI with PASSFD

Here is the order of events in our proposed solution. First, the web server

receives a request from the client (Step 1). Then, the web server passes the client

request to the application server (Step 2), at the same time it sends the client socket

file descriptor along (Step 3) to the FastCGI library. The FastCGI library passes

the request to the application server but maintains the client’s socket descriptor.

In addition, the application server code uses the FCGX PutStr() function from the

FastCGI library to send the response. This encapsulation allows the application

server code to be completely oblivious of the receiver to whom the response is

sent, and thus avoids modifying the application server code in any way. When

the application finishes generating its response, the library prepares the HTTP

header (portions of which is also obtained from the web server along with the client

file descriptor) and sends the header and response directly to the client (Step 5).

Afterwards, the FastCGI library sends a FastCGI response with an empty data

payload to the web server to complete the response delivery (Step 6). The web
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server receives the FastCGI response, skips the sending of the response to the client

and instead waits for another request from the client.

We call this solution FastCGI with PASSFD. Figure 3.5 shows the data copied

between user and kernel space during response delivery with this technique. The

response bypasses the web server and is sent directly to the client. Therefore, there

is only one data copy (Figure 3.5, C1). When compared with the original FastCGI

architecture using Unix domain sockets, this technique reduces the amount of data

copied by two-thirds, which is the same amount of data copy required by FastCGI

with shared memory.
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Web Server App Server

User Space

Kernel Spaceresponse

C1

send()

response

Figure 3.5: Data Copying During Response Delivery with FastCGI and PASSFD

We conduct experiments in Chapter 5 to understand how the reduced copying

translates to extra server throughput, and we compare the performance of our

solution to the original FastCGI architecture using Internet sockets, the original

FastCGI architecture with Unix domain sockets and FastCGI with shared memory.

3.3 Implementation Details

The implementation of the PASSFD technique in the FastCGI architecture requires

modification to the web server and the FastCGI library. As explained above, this

solution avoids modifying either the application server or the runtime language

library. Furthermore, this technique reduces the amount of data copied even for

dynamic content, unlike Suzumura’s technique. Next, we describe the changes

required in server initialization, request handling, response handling and error con-

ditions.
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3.3.1 Changes to Server Initialization

To avoid any possibility of introducing errors into the regular FastCGI protocol, in

our prototype implementation we create an extra Unix domain socket dedicated to

passing file descriptors from the web server to the application server. To distinguish

among the different sockets, we call this the PASSFD socket. We call the original

socket used for FastCGI communications between the web server and the appli-

cation server the FCGI socket. In a production environment, all communications

between the web server and application servers could use the same socket. Finally,

we call the socket between the web server and the client, the client socket.

During server initialization, after the application servers are created, the web

server first sends a FastCGI control message over the FCGI socket, so the FastCGI

library knows to use the PASSFD mode. Then, the FastCGI library creates the

PASSFD socket and waits for the web server to connect to it. This initialization

happens before the web server receives any requests. Regular initialization contin-

ues once the PASSFD socket connection is established.

3.3.2 Changes to Request Delivery

In regular FastCGI request delivery, the web server sends the client request to the

application. In FastCGI with PASSFD, after the web server sends the FastCGI

request using the FCGI socket, it passes the client socket file descriptor to the

FastCGI library through the PASSFD socket. The FastCGI library first reads the

client request off the FCGI socket. Then, it performs an extra receive on the

PASSFD socket to retrieve the client socket file descriptor. Once the client socket

is received, the FastCGI library uses it to deliver the request to the application.

3.3.3 Changes to Response Delivery

Application servers use the FCGX PutStr() function to pass the response to the

FastCGI library. The FastCGI library uses a response buffer to hold the dynami-

cally generated response. In the original FastCGI architecture, the FastCGI library

sends partial responses back to the web server when this buffer is full. The web

server is responsible for buffering the partial responses and sending them to the

client when the response generation is complete.

However, in our solution, the FastCGI library sends the response back to the

client directly without the web server acting as an intermediate buffer. To handle
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partial responses when the FastCGI response buffer is full, we implement HTTP

standard chunked encoding transfers [8] in the FastCGI library. HTTP chunked

encoding transfers allow HTTP responses to be sent in chunks without specifying

the full response length in the HTTP header. The end of the response is indicated

with a zero sized chunk. So, when the response buffer is full, the FastCGI library

sends the chunk to the client. The client then assembles these chunks together to

form a complete response.

When the full response has been sent to the client, the FastCGI library first

closes the client socket. Then, it replies to the web server with a FastCGI response

message with an empty data payload. The web server recognizes an empty data

payload and either terminates the client connection or waits for the next client

request according to whether or not the client is using a persistent connection. Even

though the FastCGI library closes the client socket, due to reference counting in

the kernel, the client connection remains connected until the web server terminates

the client connection.

Since the application server sends the response to the client directly, it also pre-

pares and sends the HTTP header. In our experimental prototype, the application

server sends a header with the response code 200 and HTTP chunked encoding

transfer enabled. In production environments, we need to determine if all HTTP

header options can be prepared by the application server. If there are specific HTTP

headers that must be sent by the web server, the web server can set TCP CORK

[13, 21] in Linux or TCP NOPUSH [30] in FreeBSD on the client socket and send

the HTTP headers. TCP then delays sending any data until the response is sent

by the application server.

3.3.4 Handling Error Conditions

If the client terminates prematurely (e.g., in the case of timeout), the FastCGI

library receives an error when it sends the response to the client. The library then

stops sending data to the client. The application server proceeds normally until

the end of the response has been generated. No special handling is required as the

error condition is detected by the web server when it performs further actions on

the client connection (i.e., closing or reading from the connection). Unfortunately,

no special action can be taken to indicate to the application server that it does not

need to continue generating a response without modifying the application code, so

there can be extra effort wasted on timed out clients.
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3.4 Applying PASSFD to Other Systems

In this chapter, we describe our solution and discuss its implementation using the

Linux operating system interface and FastCGI architecture as a proof-of-concept.

PASSFD is applicable to a variety of operating systems and server architectures. It

only requires an operating system that supports passing of the client socket, along

with a web server and an application server that supports FastCGI.

3.4.1 Operating Systems that Can Pass File Descriptors

Similar to our implementation in Linux, we can implement PASSFD in FreeBSD,

OpenBSD and OSX by sending and receiving an ancillary message with

SCM RIGHTS over a Unix domain socket connecting the sender and the receiver.

In Solaris, we can implement PASSFD by calling ioctl() on a named stream pipe

[38]. On Windows, the WSADuplicateSocket() function in the Winsock library

facilitates file descriptor passing between processes [15, 18].

3.4.2 Modifications to the Web Server

Any web server that implements the FastCGI protocol can be modified to imple-

ment PASSFD. As described in Section 3.3, we modify the server initialization to

create the new PASSFD socket. Then, we modify request delivery to pass the client

socket to the FastCGI library. Lastly, we change the response delivery stage to skip

writing the response to the client. The number of lines of code changed in our

web server is less than 500, and these modifications apply to both event-driven web

servers as well as thread-based web servers.

3.4.3 Modifications to the FastCGI Library

Modifications to the FastCGI library are similar to the modifications to the web

server. We modify library initialization to create the new PASSFD socket. Then,

we modify the receive request code to receive the client socket from the PASSFD

socket. We also modify the library to send the response over the CLIENT socket

when the response buffer is full or when the response generation is complete. In

total, we have modified around 300 lines of the library code, which includes the

new code added to use HTTP chunked encoding transfers. Note that these are one
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time changes that can be utilized in conjunction with any web server that has been

modified to support these new features. Most importantly, no changes are required

to the application server code.

Our solution can be implemented on the Microsoft Windows operating system

with the Apache HTTP server, FastCGI library and IBM WebSphere Application

server using the WSADuplicateSocket() function to implement PASSFD. In general,

PASSFD can be adapted to servers that delegate tasks to other processes using

inter-process communication when the response can bypass the delegator.
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Chapter 4

Experimental Setup

In Chapter 3, we describe opportunities to reduce the amount of data copied in the

FastCGI architecture when the web server and the application server are co-located

on the same machine. This reduction can be accomplished by either sharing memory

between the application server and the web server, or implementing PASSFD in the

FastCGI library and the web server.

Our next goal is to evaluate the performance of these techniques as well as

to understand the amount of time the processor spends on copying data. The

experiments we developed to achieve these goals are described in this section.

First, we describe the design of our micro-benchmark workload and discuss im-

portant decisions made in choosing the workload. Then, we describe the hardware

and operating system configurations. Finally, we describe the four FastCGI archi-

tectures of interest in this study, develop the experimental plan, and discuss the

performance measures.

4.1 Experimental Workload

One of the goals of our performance analysis is to understand the overhead incurred

due to data copying during response delivery. The experimental workload is de-

signed specifically to generate significant data copying overhead and allow us to

determine the amount of time the processor spends copying data.
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4.1.1 Response Size

Inter-process communication includes a static overhead that is independent of the

size of the data being communicated, such as the system call overhead. It also

includes an overhead that is proportional to the amount of data transferred. As

Web 2.0 technologies expand the variety of Internet applications, response size

varies under different workloads. For example, the average response size of the

e-commerce scenario in SPECWeb2009 is 143.9 KB [6], whereas the file size of a

500-word MP3 audio file generated by the iSpeech [16] text-to-speech service is

1 MB. To achieve a thorough understanding of the data copying overheads and

to analyze the performance of the architectures under workloads with different

response sizes, we construct workloads with different response sizes. The response

sizes are 32 KB, 64 KB, 128 KB, 256 KB, 512 KB, 1 MB, 2 MB, and 4 MB with

each workload using one response size.

To stress the computational capacity of the server, we have the clients issue a

single request which reads the content of a file and performs some simple transfor-

mations on the file content. These are identical to those done in the SPECWeb99

benchmark [4]. The entire file easily fits in memory and requires no disk I/O.

4.1.2 Client Timeout

A client timeout is defined as the amount of time a client waits for a server response

before terminating its HTTP connection or the amount of time the browser software

waits before closing the connection. Any responses sent by the server after the

client times out are ignored by the client. Since we would like to compare the

amount of processor resources used in data copying, we would need to account for

failed responses, quantify the amount of CPU wasted and normalize the amount

of processor resources used in data copying for fair comparisons. This accounting

task would be complex and very likely inaccurate. To understand the effect of client

timeouts, consider an experiment using a small client timeout value. Suppose the

server is busy and a connection times out after the request has been passed to the

application server. In this scenario, subsequent computation by the application

server and communication overhead are wasted.

Instead, we avoid this situation by eliminating client timeouts. Without client

timeouts, the workload generator does not generate overload conditions because

it only sends a new request after the server has replied to its previous request.

Research has shown [1] that the lack of connection timeout causes the client’s
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request rate to be throttled by the reply rate of the server. Therefore, the rate of

client requests cannot exceed the peak service rate of the server. This behaviour

prevents the system from experiencing overload conditions. Hence, we did not

analyze system dynamics after the server saturates. Rather, we focus our data

copying bottleneck analysis on loads up to the point of server saturation.

4.2 Experimental Environment

Our experimental environment consists of four client machines and one server ma-

chine. We have two network setups for our experimental traffic. One utilizes four,

1 Gbps subnets, and the other utilizes eight, 1 Gbps subnets. Both networks use

an additional 100 Mbps subnet to send control commands.

4.2.1 Client Machine Setup

Each client machine contains two hyper-threaded Intel(R) Xeon(TM) 2.40 GHz

processors, 1 GB of RAM, 1 GB of swap space and four Intel(R) 1 Gbps ethernet

cards. They are all running version 2.4.20-8 of the Linux kernel with SMP enabled.

We use httperf version 0.8.4 [25] with minor local modifications to drive the

workload. httperf is an event-driven workload generator that avoids thread man-

agement overhead [25]. We increase the maximum limit on the number of open

files per process from 1024 to 65535 to prevent httperf from running out of file

descriptors.

4.2.2 Server Machine Setup

The server has four Intel(R) Itanium 2(TM) 1.50 GHz processors, 8 GB of physical

memory and eight Intel(R) e1000 1 Gbps ethernet cards. It runs a 2.6.9 Linux

kernel. We use the µserver web server [3, 28], version 2.4.0 of the FastCGI library

and an application server written in C. The application server is ported from an

implementation in the SPECweb99 distribution [4]. It reads the contents of the file

requested, performs some simple transformations on the contents that simulates

advertisement rotations, and sends them to the client. This environment mimics

web servers using dynamic scripts to generate content for advertisement on web
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pages in real time, so that the advertisement space can be sold to different cus-

tomers. For FastCGI with shared memory and FastCGI with PASSFD, we use the

userver and FastCGI library with modifications specific to each technique.

4.2.3 Network Setup

We use two different network setups in our experiments. The first one uses four x

1 Gbps subnets and the second uses eight x 1 Gbps subnets. Figure 4.1a shows the

first network setup and demonstrates the separation of workload traffic and control

commands. We partition the clients’ gigabit network interfaces into 4 different sub-

nets. Client machines 1 and 2 connect to subnets A and B, whereas client machines

3 and 4 connect to subnets C and D. The web server listens to requests coming

from the four x 1 Gbps subnets (A, B, C, D). All of the machines are connected

to an administration subnet J with a 100 Mbps network interface to isolate control

commands from consuming bandwidth of the four subnets that perform the actual

work. Figure 4.1b shows the second setup. It is very similar to the first setup,

except we have eight x 1 Gbps subnets and each of the 4 clients connects to two of

the 8 subnets.

Measuring the TCP network bandwidth with the Iperf bandwidth measure-

ment tool [40], each subnet has a network bandwidth of around 940 Mbps. With

both the first setup and the second setup, we can conduct experiments with net-

work throughput of up to 3760 Mbps and 7520 Mbps respectively without reaching

any network bottlenecks. All machines are connected via 24-port full duplex non-

blocking gigabit switches.

4.3 Server Architectures and Configurations

In this section, we briefly review the four FastCGI architectures used in this study

(Table 4.1). Then, we describe the four server configurations that we use with each

of the FastCGI architectures.

The first two FastCGI architectures (fcgi inet and base uds) are the original

FastCGI architectures. They differ in the type of socket used between the web

server and the application. FastCGI with Internet (fcgi inet) sockets uses Internet

sockets (which are required between two different machines), and FastCGI with

Unix domain sockets (base uds) uses Unix domain sockets (which can be used

between processes on the same machine). We include FastCGI with Internet sockets
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Figure 4.1: Network Setup

to understand the performance difference between the two types of sockets and to

motivate the use of Unix domain sockets when the web server and application
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Name FastCGI Architecture
fcgi inet FastCGI with Internet sockets (AF INET)
base uds FastCGI with Unix domain sockets (AF UNIX)

sharedmem FastCGI with shared memory
passfd FastCGI with PASSFD

Table 4.1: FastCGI Architectures

servers are co-located on the same machine.

FastCGI with shared memory and our solution, FastCGI with PASSFD, both

perform one data copy between user and kernel space in response delivery. We

would like to compare their performance and understand the factors that may

cause performance differences between them.

Finally, we would like to compare the performance of FastCGI with Unix domain

sockets against both FastCGI with shared memory and FastCGI with PASSFD to

understand the performance impact of reducing data copying in dynamic response

delivery.

For each of the above architectures, we conduct experiments with the following

configurations (shown in Table 4.2). Each column of the table lists a configura-

tion parameter and each row represents a server configuration. To understand the

change in performance when we increase the number of processors, we keep the

same number of web servers and application servers while increasing the number

of processors. Configurations 1 CPU 2U and 2 CPU 2U both have two web servers

and 160 application servers, and we increase the number of processors from one (in

Configuration 1 CPU 2U) to two (in Configuration 2 CPU 2U). We have a similar

setup for Configurations 2 CPU 4U and 4 CPU 4U. Both of them have 4 web servers

and 320 application servers, and we increase the number of processors from two (in

Configuration 2 CPU 4U) to four (in Configuration 4 CPU 4U). By comparing the

performance between Configurations 1 CPU 2U and 2 CPU 2U, and between Con-

figurations 2 CPU 4U and 4 CPU 4U, we can understand the change in performance

of each architecture with respect to an increase in the number of processors. The

number of web servers and the number of application servers are chosen from basic

tunings to ensure the processors are fully utilized and performance is not limited

by the availability of application servers.

Configurations 1 CPU 2U, 2 CPU 2U and 2 CPU 4U use network setup 1

(shown in Figure 4.1a) and Configuration 4 CPU 4U uses network setup 2 (shown

in Figure 4.1b). We would like to understand the performance of each architecture
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under different server configurations, in particular, different number of processors.

Configuration Number
of CPU

NICs
per
CPU

Number
of Web
Servers

Applications
per Web
Server

Total
Number of
Applications

Network
Setup

1 CPU 2U 1 4 2 80 160 1
2 CPU 2U 2 2 2 80 160 1
2 CPU 4U 2 2 4 80 320 1
4 CPU 4U 4 2 4 80 320 2

Table 4.2: Experimental Server Configuration

To promote effective processor cache usage, we improve processor affinity by

pinning the web server, its associated applications and its associated network in-

terfaces to the same processor. For example, in Figure 4.2, we show a visualization

of the 2 CPU 2U configuration. One web server is pinned to one of the processors

(CPU0) with its 80 application servers and two network interrupt handlers (INT0

and INT1), while the other web server is pinned to the other processor (CPU1)

with its application servers and network interrupt handlers (INT2 and INT3).

AAAA A

web

server

INT 3INT 2

NIC 3NIC 2

CPU0 CPU1

A

web

server

INT 1INT 0

NIC 0 NIC 1

. . . . . . . . . . . .

80 app servers 80 app servers

Figure 4.2: Processor Pinning in Configuration 2 CPU 2U
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4.4 Experimental Methodology

We use two sets of experiments to evaluate the performance of all architectures while

keeping the number of experiment runs reasonable. The first set of experiments

uses the 2 CPU 2U configuration in Table 4.2 and varies the response size of the

workload to evaluate peak server throughput across different response sizes.

In Section 5.1.1, the experimental results show that the performance of FastCGI

with PASSFD and FastCGI with shared memory relative to that of the base case is

fairly stable across different response sizes greater than 128 KB. Since performance

is fairly stable across different response sizes greater than 128 KB, we do not need

to consider all response sizes in the second set of experiments. The second set of

experiments uses a workload with 1 MB response size and varies the server config-

urations to evaluate peak server throughput under different server configurations.

4.5 Performance Measurement

When initial requests arrive at an empty system, performance is likely different

from a system in its steady state. To ensure capturing accurate results, we enforce

a minimum experiment duration of 300 seconds to allow the system to reach steady

state before collecting measurements. httperf uses an HTTP trace file to generate

the experimental workload. If an HTTP trace takes less than 300 seconds to com-

plete, the clients repeat the trace from the beginning until the minimum duration

is satisfied.

We run vmstat and mpstat to sample statistics on the server every 5 seconds.

Since they only sample every 5 seconds, they do not consume significant resources.

Additionally, to capture processor time, we use OProfile 0.8.1 [17, 10]. OProfile

is a low overhead system-wide profiler that leverages hardware performance coun-

ters in the processor to allow profiling all code including interrupt handlers, kernel

functions, shared libraries and application code. In our analysis, we use OProfile to

capture the percentage of processor time spent in each function and later the num-

ber of cache misses of each function. Then, we use our own scripts to organize and

analyze the results. We perform experiments to determine the effects of OProfile

overhead on the peak throughput. Table 4.3 shows the peak throughput with-

out profiling relative to the peak throughput with profiling turned on. The peak

throughput is 1.2% to 2.3% higher with OProfile turned off. We believe this to be

small enough that all experiments are conducted with OProfile turned on, which
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eliminates the need to repeat experiments in order to perform detailed analysis of

the results.

Configuration Architecture Response
Size

Relative
Performance

2 CPU 2U base uds 512 KB 1.023
2 CPU 2U base uds 1 MB 1.023
2 CPU 2U passfd 512 KB 1.012
2 CPU 2U passfd 1 MB 1.017
4 CPU 4U base uds 1 MB 1.018

Table 4.3: Oprofile Overhead
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Chapter 5

Performance Analysis

In this chapter, we conduct a performance analysis of the previously described

FastCGI architectures to understand the cost of data copying redundancy dur-

ing response delivery. Our analysis focuses on two performance measures: peak

throughput and copying overhead.

First, we compare the peak throughput achieved using each of the architectures

to present an overview of the performance differences among the architectures.

Then, we examine copying costs.We analyze these performance measures just prior

to server saturation, that is at their peak throughput.

Later in the chapter, we look at processor cache hit statistics to investigate

the performance differences between FastCGI with shared memory and FastCGI

with PASSFD, as well as to understand how and why copying costs increase near

saturation. Finally, we discuss the performance of our solution under a realistic

workload with reference to the performance study by Suzumura et al. [39].

5.1 Peak Throughput

In this section, we compare the peak throughput of the various architectures using

FastCGI with Unix domain sockets as the base case. Peak throughput is measured

as the maximum data throughput achieved for that particular architecture under

a workload of the specified response size and server configuration.
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5.1.1 Peak Throughput with Different Response Sizes

This set of experiments evaluates the peak throughput of all architectures under

workloads with different response sizes. As mentioned in Section 4.4, this set of ex-

periments is run with two processors, two web servers and a total of 160 application

servers (Configuration 2 CPU 2U in Table 4.2). We discuss the peak throughput

of the other configurations in Section 5.1.2.

Figure 5.1 shows the peak throughput of all architectures as the response size

changes. The y-axis shows the peak data throughput in Mbps. Each cluster of

bars shows the peak throughput of the architectures under a workload with the

labeled response size. FastCGI with PASSFD has the highest peak throughput

over all the response sizes, FastCGI with shared memory has the second highest

peak throughput followed by FastCGI with Unix domain sockets and FastCGI with

Internet sockets.

Table 5.1 lists the peak throughput and performance relative to FastCGI with

Unix domain sockets. The first column lists the FastCGI architecture, and the

second column lists the response size used in the workload. The third column and

the fourth column list the peak throughput and the performance relative to the

base case, respectively. The performance relative to FastCGI with Unix domain

sockets (the base case) is calculated as the peak throughput of the architecture

divided by the peak throughput of FastCGI with Unix domain sockets.

With response sizes greater than 128 KB, the performance of FastCGI with

PASSFD is 1.26 to 1.31 times that of the base case, and the performance of FastCGI

with shared memory is 1.13 to 1.16 times that of the base case. FastCGI with

Internet sockets has a performance of 0.88 to 0.98 times that of the base case (i.e.,

it has a lower peak throughput). In each architecture, the performance relative to

the base case is fairly stable across larger response sizes (above 128 KB).

With a response size of 32 KB, FastCGI with PASSFD has a peak throughput

of 1.06 times that of the base case, but FastCGI with shared memory does not show

performance improvement. With a response size of 64 KB, FastCGI with PASSFD

has a peak throughput of 1.15 times that of the base case. FastCGI with shared

memory has a peak throughput of 1.11 times that of the base case. This small

difference is due to less copying overhead when the response size is small. Since

our approach is designed to reduce copying overheads, we focus on larger response

sizes (above 128 KB), where copying cost becomes significant.

As is shown in Figure 5.1 and Table 5.1, FastCGI with Internet sockets performs
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Architecture Response Size Peak Through-
put (Mbps)

Performance Relative to
Base Case

fcgi inet 32 KB 1964.4 0.92
fcgi inet 64 KB 2481.6 0.96
fcgi inet 128 KB 2420.8 0.92
fcgi inet 256 KB 2521.6 0.92
fcgi inet 512 KB 2519.2 0.98
fcgi inet 1 MB 2476.0 0.92
fcgi inet 2 MB 2206.4 0.88
fcgi inet 4 MB 2182.3 0.93

base uds 32 KB 2140.8 1.00
base uds 64 KB 2587.3 1.00
base uds 128 KB 2631.2 1.00
base uds 256 KB 2731.2 1.00
base uds 512 KB 2574.5 1.00
base uds 1 MB 2685.6 1.00
base uds 2 MB 2517.4 1.00
base uds 4 MB 2350.2 1.00

sharedmem 32 KB 2207.2 1.03
sharedmem 64 KB 2877.6 1.11
sharedmem 128 KB 3052.0 1.16
sharedmem 256 KB 3151.2 1.15
sharedmem 512 KB 2938.7 1.14
sharedmem 1 MB 3102.7 1.16
sharedmem 2 MB 2856.1 1.13
sharedmem 4 MB 2706.0 1.15

passfd 32 KB 2260.8 1.06
passfd 64 KB 2984.0 1.15
passfd 128 KB 3367.7 1.28
passfd 256 KB 3571.0 1.31
passfd 512 KB 3358.4 1.30
passfd 1 MB 3523.2 1.31
passfd 2 MB 3161.7 1.26
passfd 4 MB 3011.4 1.28

Table 5.1: Peak Throughput with Varying Response Size
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Figure 5.1: Peak Throughput with Different Response Sizes

worse than FastCGI with Unix domain sockets. Therefore, we believe FastCGI

with Unix domain sockets should be used when the web server and the application

server are co-located in the same machine. Since FastCGI with shared memory

and FastCGI with PASSFD have quite consistent performance improvements over

FastCGI with Unix domain sockets across all sizes above 128 KB, there is no need

to consider all response sizes in the next sections and we focus on a 1 MB response

size.
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5.1.2 Peak Throughput under Different Server Configura-

tions

This set of experiments investigates the performance of FastCGI architectures under

different server configurations.

Table 5.2 and Figure 5.2 show the peak throughput of all architectures and the

associated improvement with respect to FastCGI with Unix domain sockets under

the same server configuration. The first and second columns of Table 5.2 list the

server configuration and the FastCGI architecture used to conduct the experiment.

The third column is the peak throughput captured for the server configuration and

architecture pair. The last column shows the peak performance of an architecture

relative to the peak performance of the base case under the same configuration.

For example, in the 1 CPU 2U configuration, FastCGI with PASSFD has a peak

throughput of 2305.3 Mbps and FastCGI with Unix domain sockets has a peak

throughput of 1848.1 Mbps. So FastCGI with PASSFD has a peak throughput of

1.25 times the peak throughput of FastCGI with Unix domain socket.

Configuration Architecture Peak Through-
put (Mbps)

Performance Relative to
Base Case

1 CPU 2U fcgi inet 1635.6 0.89
1 CPU 2U base uds 1848.1 1.00
1 CPU 2U sharedmem 2116.1 1.15
1 CPU 2U passfd 2305.3 1.25
2 CPU 2U fcgi inet 2476.0 0.92
2 CPU 2U base uds 2685.6 1.00
2 CPU 2U sharedmem 3102.7 1.16
2 CPU 2U passfd 3523.2 1.31
2 CPU 4U fcgi inet 2517.6 0.95
2 CPU 4U base uds 2643.9 1.00
2 CPU 4U sharedmem 3027.1 1.14
2 CPU 4U passfd 3398.4 1.29
4 CPU 4U fcgi inet 3441.1 0.98
4 CPU 4U base uds 3525.1 1.00
4 CPU 4U sharedmem 3980.1 1.13
4 CPU 4U passfd 4363.6 1.24

Table 5.2: Peak Throughput

The performance of FastCGI with Internet sockets is worse than FastCGI with

Unix domain sockets over all the configurations. The difference is greatest in the
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Architecture Average Performance
Relative to Base Case

fcgi inet 0.93
base uds 1.00
sharedmem 1.14
passfd 1.27

Table 5.3: Average Performance Relative to Base Case Over All Server Configura-
tions
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Figure 5.2: Peak Throughput

configuration with one processor, as the peak throughput of FastCGI with Internet

sockets is 0.89 times that of the base case (Table 5.2, Configuration 1 CPU 2U).

Therefore, FastCGI with Unix domain sockets is preferred when web servers and

44



application servers are co-located on the same machine. Compared to FastCGI

with Internet sockets, FastCGI with Unix domain sockets has better performance

because there is no TCP processing overhead on data sent between the web server

and the application server. On the other hand, the performance difference decreases

as the number of CPU increases. We observe that a lower percentage of CPU time

is spent in TCP processing as the number of CPU increases, and we believe this is

because TCP processing is shared by the additional processors.

Table 5.3 shows the average performance relative to the base case over all server

configurations. The first column of Table 5.3 lists the FastCGI architecture and

the second column shows the average performance of the respective FastCGI ar-

chitecture relative to the base case over all server configurations. We can see that

FastCGI with shared memory has on average 1.14 times the throughput of the base

case over all configurations. FastCGI with PASSFD has on average 1.27 times the

throughput of the base case. In the server configuration with 4 CPUs (4 CPU 4U),

its peak throughput reaches 4363.6 Mbps.

Figure 5.2 shows a graphical view of peak throughput of our experiments. The

y-axis shows peak throughput in Mbps, and the x-axis shows the different server

architectures clustered by server configuration. For example, the first cluster shows

peak throughput of the four FastCGI architectures under the 1 CPU 2U configura-

tion. This figure illustrates that FastCGI with shared memory and FastCGI with

PASSFD have significant performance improvements over the FastCGI with Unix

domain sockets base case.

These experiments show the significant performance gains that can be obtained

by using FastCGI with shared memory and FastCGI with PASSFD when the web

server and the application server are co-located on the same machine. As shown in

the next section, this is due to the reduction in copying overheads. However, what

is surprising and interesting is that FastCGI with PASSFD produces significantly

greater peak throughput than FastCGI with shared memory. In the next section,

we measure copying costs and compare the different architectures in order to better

understand the performance differences.

5.2 Copying Cost Comparison

The previous section uses a black-box approach to look at the peak throughput

performance improvement of the two FastCGI enhancements. Since our goal is to
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reduce the amount of data copied in the FastCGI architecture during response de-

livery, we need to take a white-box approach to understand the copying costs. These

further insights direct us to focus on specific system dynamics in later sections.

As previously mentioned, response delivery in FastCGI architectures uti-

lizes socket communication. During a socket send() or recv() system call, the

copy user() routine copies data across the user and kernel boundary (from and to

user space). As this operation is performed by the processor, a higher percentage of

CPU time spent in the routine implies higher copying cost. Therefore, we compare

the cost of data copying by observing the percentage of CPU time spent in the

copy user() routine in each of the experiments.

Because FastCGI with shared memory and FastCGI with PASSFD both aim to

reduce copying redundancy, we anticipate the percentage of CPU time spent in the

copy user() routine to be lower than in FastCGI with Unix domain sockets.

Although we expect lower copying costs in both the shared memory and PASSFD

optimizations, we also consider the efficiency of these implementations as server uti-

lization increases. We therefore examine the ratio of the percentage of CPU time

spent in the copy user() routine across all processors over the data throughput

(called copying cost), resulting in a measure which is the percentage of CPU time

spent copying data per Gbps of data throughput (%/Gbps). In multiprocessor se-

tups, the percentage of CPU time spent in the copy user() routine is the average

of percentage of CPU times each processor spent in the copy user() routine.

5.2.1 Copying Costs at Fixed Server Throughputs

In Section 4.1.2, we explained there are no client timeouts so no overload conditions

can occur. Hence, our performance analysis focuses on conditions before saturation.

To compare memory copying costs among architectures, we examine their respective

copying costs at comparable throughput rates.

Figures 5.3 and 5.4 show that the copying costs of FastCGI with Internet sock-

ets are very similar to copying costs of FastCGI with Unix domain sockets. This

demonstrates that the performance difference we see in Section 5.1 between these

two architectures does not result from copying costs differences. In the uniproces-

sor configuration (Figure 5.3a) at 1008 Mbps, FastCGI with Internet sockets and

FastCGI with Unix domain sockets have very similar copying overheads which is

around 21.6 %/Gbps. FastCGI with shared memory has lower copying costs of 15

%/Gbps. FastCGI with PASSFD has the lowest copying costs of 10 %/Gbps. The
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(b) Copying Cost 2 CPU 2U

Figure 5.3: Copying Costs in Configurations 1 CPU 2U and 2 CPU 2U

same pattern holds in Configurations 2 CPU 2U, 2 CPU 4U and 4 CPU 4U (Fig-

ures 5.3b, 5.4a, 5.4b) in which FastCGI with Internet sockets and FastCGI with

Unix domain sockets have the highest and most similar copying costs. FastCGI

with shared memory has lower copying costs and FastCGI with PASSFD has the

lowest copying costs. When compared to the base case, both FastCGI with shared

memory and FastCGI with PASSFD incur significantly less copying overhead.

Notice that in Figures 5.3a, 5.3b, 5.4a and 5.4b, as the number of processors

increases, the differences in copying costs between the base case and both FastCGI

with shared memory and FastCGI with PASSFD decrease. For example, in the
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(b) Copying Cost 4 CPU 4U

Figure 5.4: Copying Costs in Configurations 2 CPU 4U and 4 CPU 4U

uniprocessor configuration (Figure 5.3a) at 1008 Mbps, the difference in copying

costs between the base case and FastCGI with shared memory is 6.6 %/Gbps. Then,

in Configuration 2 CPU 2U (Figure 5.3b) at 1008 Mbps, the base case has a copying

cost of 11.6 %/Gbps and FastCGI with shared memory has a copying cost of 7.6

%/Gbps. The difference in copying costs between the base case and FastCGI with

shared memory decreases to 4 %/Gbps. The differences in copying costs between

the base case and FastCGI with shared memory decrease further in Configuration

4 CPU 4U. Similarly, the differences in copying costs between the base case and

FastCGI with PASSFD decrease as the number of processors increases.
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Although the differences in copying costs between the base case and both

FastCGI with shared memory and FastCGI with PASSFD decrease as the num-

ber of processors increases, the ratios of the copying costs remains the same as

the number of processors increases. We examine the ratios of the copying cost of

FastCGI with shared memory over the copying cost of the base case at comparable

throughput rates (at 1008 Mbps, 1260 Mbps and 1511 Mbps) before copying costs

increase near saturation. In Configuration 1 CPU 2U (Figure 5.3a) at 1008 Mbps,

FastCGI with shared memory has a copying cost of 15.0 %/Gbps and FastCGI

with Unix domain sockets has a copying cost of 21.6 %/Gbps. The ratio of these

copying costs (15.0 / 21.6) is 0.69. The ratios remain similar at 1260 and 1511

Mbps in Configuration 1 CPU 2U. In Configuration 2 CPU 2U (Figure 5.3b) at

1008 Mbps, FastCGI with shared memory has a copying cost of 7.6 %/Gbps and

the base case has a copying cost of 11.6 %/Gbps. The ratio (7.6 / 11.6) is 0.66.

The ratios remain similar at 1260 and 1511 Mbps in Configuration 2 CPU 2U.

In the four configurations, the copying costs of FastCGI with shared memory

are around 0.7 times those of the base case. We also examine the same ratios of the

copying costs of FastCGI with PASSFD over those of the base case, and they are

around 0.4 in all configurations. Since the ratios of copying costs remain consistent

as the number of processors increases, the relative performance improvements of

FastCGI with shared memory and FastCGI with PASSFD remain the same as the

number of processors increases.

In Configurations 2 CPU 2U, 2 CPU 4U and 4 CPU 4U, we notice that the

copying costs increase as the server approaches saturation. For example, in Con-

figuration 2 CPU 2U (Figure 5.3b), FastCGI with shared memory has a copying

cost of 7.6 %/Gbps at the throughput rate of 2015 Mbps. The copying costs slowly

increase as the throughput increases beyond 2015 Mbps to around 10.3 %/Gbps at

around 3000 Mbps. Other curves in Configuration 2 CPU 2U also follow a simi-

lar pattern. Copying costs in Configurations 2 CPU 4U and 4 CPU 4U (Figures

5.4a and 5.4b) also have a gradual increase near saturation. However, we do not

see this pattern in Configuration 1 CPU 2U. In Figure 5.3a, FastCGI with Unix

domain sockets has a copying cost of 21.5 %/Gbps at 1511 Mbps. At 1638 Mbps,

its copying cost increases to 23.8 %/Gbps, but beyond 1638 Mbps the copying

costs gradually decrease. Copying costs of FastCGI with shared memory and those

of FastCGI with PASSFD also show an increase, followed by a gradual decrease.

From our OProfile statistics, we realize that the percentage of CPU time spent

in network processing functions increases significantly near saturation. Therefore,

copying costs in Configuration 1 CPU 2U do not increase as the server approaches
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saturation.

On top of the above copying costs comparisons, there are two additional obser-

vations that lead to further questions. In Chapter 2 and Chapter 3, we explained

that both FastCGI with shared memory and FastCGI with PASSFD reduce the

amount of data copied by two-thirds. Initially, we expected the two techniques to

have similar performance. However, Section 5.1 shows that FastCGI with PASSFD

has a significantly higher peak throughput than FastCGI with shared memory. We

also notice that FastCGI with PASSFD has a significantly lower copying costs com-

pared to copying costs of FastCGI with shared memory. Although both techniques

show significant performance improvements when compared to FastCGI with Unix

domain sockets, we are interested in identifying the additional factors that differen-

tiate their performance. Secondly, we seek to understand factors that cause copying

costs to increase as the server approaches saturation. In Section 5.3, we perform

further analysis to determine the answers to the above questions.

5.3 Cache Analysis

In Section 5.2, we identify two questions that require further understanding of

system behaviour to explain. First, even though both FastCGI with shared mem-

ory and FastCGI with PASSFD reduce the amount of data copied by two-thirds,

we need to understand why FastCGI with PASSFD has significantly higher peak

throughputs and lower copying costs. Second, it is important to understand fac-

tors causing copying costs to increase near server saturation in the multiprocessor

configurations.

In this section, we examine the processor cache hierarchy, which aims to improve

data access speed by exploiting spacial and temporal locality characteristics in

program execution.

The Itanium 2 processor memory subsystems (Figure 5.5a) uses a three-level

cache hierarchy. Our version of the Itanium 2 processor contains one core per

processor. Each core consists of a first-level instruction cache (16 KB), a separate

first-level data cache (16 KB), unified second-level cache (256 KB) and unified third-

level cache (6 MB). Figure 5.5b shows the processor setup of our server. Each of the

processors has its own three-level cache hierarchy but accesses the same memory.

We focus our analysis on data cache misses as we expect the shared code seg-

ments are unlikely to be subjected to cache pressure. In Section 5.1.2, FastCGI with
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shared memory and FastCGI with PASSFD both show consistent performance im-

provements across all four configurations when compared to the base case. Then,

in Section 5.2, FastCGI with shared memory and FastCGI with PASSFD have con-

sistent copying costs relative to the base case across all configurations. Therefore,

we only analyze results captured in Configuration 2 CPU 2U.
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1 cycle
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Itanium 2 Processor

(a) Itanium 2 Processor Cache Hierarchy
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(b) Processor Setup in Our Server

Figure 5.5: Itanium 2 Memory Subsystem

We use OProfile [17, 10] to capture the three cache miss events. They are

L1D READ MISSES, L2 MISSES and L3 MISSES. L1D READ MISSES is incremented

when a data read does not reside in first-level data cache. L2 MISSES and L3 MISSES
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are incremented when there is a read or write cache miss in the respective cache.

Since L2 and L3 are both unified caches, there are no separate events to distinguish

data misses from instruction fetch misses. Our results show there are very few first

level instruction cache misses, so we believe that most L2 and L3 misses are data

fetch misses. Profiling cache misses allows us to understand cache behaviour of the

different FastCGI architectures at different data rates.

5.3.1 Shared Memory vs PASSFD

Because both FastCGI with shared memory and FastCGI with PASSFD require

only one data copy between user and kernel space during response delivery, we

expect them to have similar throughput and copying costs. However, as seen in

Section 5.1 and 5.2 FastCGI with PASSFD has significantly higher peak throughput

(Figure 5.2) as well as lower copying costs (Figure 5.3 and 5.4).

In Figures 5.6 and 5.7, we plot the data rates on the x-axis and the number of

cache misses on the y-axis, and we examine the number of cache misses at each

level as the server throughput increases. In all L1 Data, L2 and L3 caches and for

all data rates, FastCGI with shared memory incurs a higher number of cache misses

than FastCGI with PASSFD.

Let us revisit the difference between the two optimizations. In FastCGI with

shared memory, the application server (let us call it APP 1) puts the response into

shared memory and then notifies the web server that the response is ready. Since

APP 1 has completed its task, the operating system switches to another process

that is ready to run. However, this process may be another application server (let

us call it APP 2). When APP 2 runs, it reuses the cache and may invalidate APP

1’s response. Later, when the web server sends APP 1’s response, the response may

not be in the cache.

On the other hand, FastCGI with PASSFD delivers the response directly from

the application server before notifying the web server. Because there is usually no

process switch, the response is likely to be in the cache when it is sent to the client,

resulting in fewer cache misses.

A higher number of cache misses translates to more CPU cycles spent per data

access operation. Consequently, more CPU cycles spent at a constant data rate

results in a higher copying cost. Therefore, the copying costs and cache misses

are correlated and that the fewer cache misses for FastCGI with PASSFD are what

provide it with significantly better performance than FastCGI with shared memory.
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(b) L2 Misses

Figure 5.6: Cache Misses in Configuration 2 CPU 2U, L1 and L2 Caches

5.3.2 Copying Costs Increase Near Saturation

In Section 5.2, we notice an increase in copying cost as the server reaches saturation.

Since our experiments use a closed system to avoid wasting CPU resources from

early client termination, we cannot analyze copying cost after server saturation.

However, if we extrapolate the copying costs trend, we would notice copying costs

increase very rapidly near saturation and in saturation. Therefore, we look at pro-
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(a) L3 Misses

Figure 5.7: Cache Misses in Configuration 2 CPU 2U, L3 Cache

cessor cache statistics to formulate a potential cause for such phenomena, which is

useful for future research in designing more efficient response delivery mechanisms.

Since we observe a similar increase in copying costs in Configurations 2 CPU 2U, 2

CPU 4U and 4 CPU 4U, we only analyze results captured in Configuration 2 CPU

2U.
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Figure 5.8: Cache Miss Ratio in Configuration 2 CPU 2U, L3 Cache

We examine the cache miss ratio in the copy user() function across all proces-
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sors. It is measured as the total number of cache misses in copy user() divided by

the total number of cache references in copy user(). Since our version of OPro-

file is only able to capture the number of references to the L3 cache (with the

L3 REFERENCES event), we examine the cache miss ratio of the L3 cache. Figure

5.8 plots the data rates on the x-axis and the L3 cache miss ratio on the y-axis.

FastCGI with PASSFD has a flat cache miss ratio curve in the beginning, but

it increases slightly as the server approaches saturation, which is very similar to its

copying costs trend. Cache miss ratio curves of the other architectures also follow

a similar pattern. They all have a fairly flat beginning and increase slightly as the

server approaches saturation.

Notice that the cache miss ratio curve of FastCGI with Unix domain sockets is

lower than the cache miss ratio curve of FastCGI with shared memory. This does

not mean FastCGI with shared memory has lower performance, because in Section

5.2 we showed that FastCGI with Unix domain socket has higher copying costs

than FastCGI with shared memory in all server configurations.

In addition, we observe from our server logs that the average number of busy

application servers (i.e., the average number of application servers servicing a dy-

namic request) follows a similar trend as the cache miss ratio curves in Figure 5.8.

For example, at lower data rates, there are on average 16 application servers han-

dling requests at the same time. The average number of busy application servers

increases to 160 as the server is close to saturation. The IA-64 Linux kernel uses

an address space number as part of the search key in the translation lookaside

buffer (TLB) lookup, so processor caches do not need to be flushed during process

switches [24]; therefore, the higher cache miss ratios near server saturation are not

caused by the flushing of processor caches. We believe the higher cache miss ratios

are caused by a larger working set size from a higher number of busy application

servers near server saturation. The increase in the cache miss ratio (Figure 5.8)

implies a higher number of cache misses at high data rates, which increases the

frequency of memory access, resulting in an increase in copying costs near server

saturation.

5.4 Performance with a Representative Workload

Suzumura et al. [39] analyzed the average data size in SPECweb2005 [5]. For

the banking scenario, the average response size is 34.8 KB. For the e-commerce

scenario and the support scenario, the average response sizes are 143.9 KB and
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78.5 KB respectively. They showed that in the e-commerce scenario, their base

server spent 15.7% of the total CPU time on memory copying. This represents a

significant opportunity to improve performance by reducing the amount of data

copied.

They then showed their zero-copy static content optimization reduces CPU

usage of memory copying from 15.6% to 3.4% and from 12.4% to 4.4% in the e-

commerce and the support scenario. This translates to a 22.2% and 44.4% peak

throughput improvement over their base server. However, there is not much im-

provement in the banking scenario.

In Section 5.1.1, we see that the performance of FastCGI with PASSFD is on

average 1.29 times the performance of FastCGI with Unix domain sockets under

workloads with different response sizes. In Section 5.1.2, we see that FastCGI with

PASSFD also shows a performance improvement of 1.27 times on average when

compared to FastCGI with Unix domain sockets under different server configu-

rations. From Section 5.2, the copying costs of FastCGI with PASSFD are 0.4

times that of FastCGI with Unix domain sockets. Similar to Suzumura’s tech-

nique, FastCGI with PASSFD shows significant performance improvements across

different response sizes. It also shows reductions in CPU usage of memory copying

across both uniprocessor and multiprocessor environments.

In Section 5.1.1, we explained that FastCGI with PASSFD provides little perfor-

mance improvement with a response size of 32 KB, which is similar to Suzumura’s

results in the banking scenario. With a response size of 64 KB, FastCGI with

PASSFD has a peak throughput of 1.15 times that of the base case. Although

it is lower than the average improvement, we believe it will provide performance

improvement in the SPECweb2009 support scenario, which has a similar average

response size.

We conjecture that FastCGI with PASSFD will provide good performance im-

provements in the e-commerce and support scenario in SPECweb2005 and SPECweb2009.

Furthermore, FastCGI with PASSFD reduces data copying for dynamically gener-

ated data, which is something that Suzumura’s zero-copy optimization does not

do. This reduction can translate to further performance improvement in workloads

with more dynamic content.
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5.5 Summary

In this chapter, we have compared the peak performance of each FastCGI archi-

tecture under workloads with different response sizes and under different server

configurations. FastCGI with PASSFD obtains peak throughputs of 1.26 to 1.31

times that obtained with FastCGI with Unix domain sockets under workloads with

different response sizes above 128 KB. FastCGI with PASSFD also performs the

best under different server configurations, obtaining an average peak throughput of

1.27 times that obtain with FastCGI with Unix domain sockets.

We examine the percentage of CPU time consumed in copying data between

user and kernel space per unit of data throughput. The copying costs of FastCGI

with PASSFD are reduced to 0.4 times that of the base case, and the copying

costs of FastCGI with shared memory are 0.7 times that of the base base. This

is particularly interesting because these two approaches require the same number

of data copies. We also notice a significant increase in copying costs as the server

approaches saturation.

Using hardware performance counters to understand cache performance, we

show that FastCGI with PASSFD has a lower number of cache misses than FastCGI

with shared memory. The number of cache misses is significantly lower for FastCGI

with PASSFD because the response is sent to the client by the application server,

so the response is likely to remain in the cache when the response is sent, resulting

a lower CPU usage.

In the cache miss ratio analysis, we show that cache miss ratios increase near

server saturation, similar to the way copying costs increase near server saturation.

We believe that the increase in the average number of busy application servers near

server saturation causes the cache miss ratio to increase, which increases copying

costs near server saturation.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we explore the opportunity to improve the performance of web servers

that handle dynamic content when the web server and the application server are

co-located on the same machine. We examine the benefits of using Unix domain

sockets and of reducing the amount of data copied during response delivery. We

propose and implement a technique that passes the client socket descriptor from

the web server to the application server (called FastCGI with PASSFD), permitting

the application server to reply directly to the client, thereby reducing the amount

of data copied by two-thirds. This technique requires modifications only to the

web server and the FastCGI library, making it cost-effective, easy to implement,

and easy to deploy in a variety of operating systems, web servers and application

servers.

We compare the performance of FastCGI with PASSFD and the performance

of FastCGI with shared memory against FastCGI with Unix domain sockets under

both uniprocessor and multiprocessor environments. The shared memory approach

has an average peak throughput of 1.14 times that of FastCGI with Unix domain

sockets. FastCGI with PASSFD has the best average peak throughput of 1.27 times

that of FastCGI with Unix domain sockets across all four server configurations.

Copying costs of FastCGI with PASSFD are reduced to 0.4 times that of FastCGI

with Unix domain sockets, and FastCGI with shared memory has copying costs of

0.7 times that of FastCGI with Unix domain sockets.

Interestingly, we find that although FastCGI with PASSFD and FastCGI with

shared memory require the same amount of data copying, FastCGI with PASSFD
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has a better average peak throughput and lower copying costs. With further investi-

gation, we find that FastCGI with shared memory has a significantly higher number

of cache misses than FastCGI with PASSFD. Since FastCGI with PASSFD sends

the response directly to the client from the application server, it has a higher time

locality, and the response is more likely to be in the cache than when the response is

sent from the web server (as in FastCGI with shared memory). A higher number of

cache misses translates to more CPU cycles spent per data access operation, which

in turn results in higher copying costs.

We also examine the L3 cache miss ratio of all architectures and notice an in-

crease in the L3 cache miss ratio similar to the increase in copying costs near server

saturation. We identify a similar increase in the average number of busy applica-

tion servers near server saturation, which leads us to believe that cache contention

caused by the higher number of busy application servers causes higher cache miss

ratios, which increases copying costs when the server is close to saturation.

6.2 Future Work

6.2.1 Zero-Copy FastCGI with PASSFD

In the future, we plan to further reduce the amount of data copied by utilizing

sendfile() with our PASSFD technique. FastCGI with PASSFD sends the response

from the FastCGI library, reducing the amount of data copied to one-third and the

copying costs to 0.4 times that of FastCGI with Unix domain sockets. The only

remaining redundant data copy occurs when the FastCGI library sends the response

to the client. The data is copied from the user space of the FastCGI library to the

kernel space before it is sent by the network device. It may be possible to avoid

this data copy by using the mmap() and sendfile() system calls. First, the FastCGI

library would use mmap() to map its content buffer to a temporary file. Then,

since the temporary file would be cached in the kernel memory, we could use the

sendfile() system call on the temporary file to send the contents directly to the

network device, bypassing the data copy from the user space to the kernel space

[37]. In Linux there is currently no way to determine when the data has been sent

and therefore when the buffer can can be reused. However, FreeBSD’s sendfile()

may provide support for such an operation.
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6.2.2 Automatic System Tuning

With increasing accessibility in the last few years, the Internet has evolved from

an information source to a participation platform. Social networks and multimedia

services like Facebook [7] and YouTube [45] have become very popular. With differ-

ent types of media content and different types of Internet applications, workloads

have become increasingly heterogeneous and variable.

Until now, system tuning has been done manually by system administrators

following tuning principles and accumulated experience. These tunings tend to

be static and time consuming and can sometimes under perform as the workload

changes. One example of a workload change is called the Slashdot effect, when

a massive increase in traffic to a website is caused by a link from a popular site.

These workload changes often cause the server to under perform and can sometimes

cause websites or services to become inaccessible.

By exploring different system parameters, such as the number of web servers, the

number of application servers, the number of available connections and how requests

are queued for application servers to handle, we can formulate auto tuning agents

using statistical methods or artificial intelligence techniques to perform automated

system tuning. This research direction would be valuable as Internet applications

continue to evolve and become more complex.

6.2.3 Reducing Data Copying with Splice and Tee

Three new system calls have been introduced in version 2.6.17 of the Linux kernel.

They allow an application to move data between file descriptors without copying

the data between user and kernel space by utilizing a pipe as an in-kernel data

buffer. The splice() system call [20] moves data between a file descriptor and a

pipe, the tee() system call [20] copies data between two pipes and the vmsplice()

system call [22] maps user memory segments into a pipe’s data buffer. It would be

interesting to explore how these calls might be used to reduce copying and improve

performance
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