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Abstract

Fair division is the problem of dividing one or several goods among a set of agents in a
way that satisfies a suitable fairness criterion. Traditionally studied in economics, philos-
ophy, and political science, fair division has drawn a lot of attention from the multiagent
systems community, since this field is strongly concerned about how a surplus (or a cost)
should be divided among a group of agents.

Arguably, the Shapley value is the single most important contribution to the problem
of fair division. It assigns to each agent a share of the resource equal to the expected
marginal contribution of that agent. Thus, it is implicitly assumed that individual marginal
contributions can be objectively computed. In this thesis, we propose a game-theoretic
model for sharing a joint reward when the quality of individual contributions is subjective.

In detail, we consider scenarios where a group has been formed and has accomplished
a task for which it is granted a reward, which must be shared among the group mem-
bers. After observing the contribution of the peers in accomplishing the task, each agent
is asked to provide evaluations for the others. Mainly to facilitate the sharing process,
agents can also be requested to provide predictions about how their peers are evaluated.
These subjective opinions are elicited and aggregated by a central, trusted entity, called
the mechanism, which is also responsible for sharing the reward based exclusively on the
received opinions.

Besides the formal game-theoretic model for sharing rewards based on subjective opin-
ions, we propose three different mechanisms in this thesis. Our first mechanism, the peer-
evaluation mechanism, divides the reward proportionally to the evaluations received by the
agents. We show that this mechanism is fair, budget-balanced, individually rational, and
strategy-proof, but that it can be collusion-prone.

Our second mechanism, the peer-prediction mechanism, shares the reward by consider-
ing two aspects: the evaluations received by the agents and their truth-telling scores. To
compute these scores, this mechanism uses a strictly proper scoring rule. Under the as-
sumption that agents are Bayesian decision-makers, we show that this mechanism is weakly
budget-balanced, individually rational, and incentive-compatible. Further, we present ap-
proaches that guarantee the mechanism to be collusion-resistant and fair.

Our last mechanism, the BTS mechanism, is the only one to elicit both evaluations
and predictions from the agents. It considers the evaluations received by the agents and
their truth-telling scores when sharing the reward. For computing the scores, it uses the
Bayesian truth serum method, a powerful scoring method based on the surprisingly com-
mon criterion. Under the assumptions that agents are Bayesian decision-makers, and that
the population of agents is sufficiently large so that a single evaluation cannot significantly
affect the empirical distribution of evaluations, we show that this mechanism is incentive-
compatible, budget-balanced, individually rational, and fair.
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Chapter 1

Introduction

Fair division is the problem of dividing one or several resources among a set of agents in
a way that satisfies a suitable fairness criterion. The first step toward a formal definition
of fair division was perhaps given by Aristotle, more than 2000 years ago:

“Equals should be treated equally, and unequals unequally, in proportion to
relevant similarities and differences” (Nicomachean Ethics).

Traditionally studied in economics, philosophy, and political science, fair division has
drawn a lot of attention from the multiagent systems community, since this field is strongly
concerned about how a surplus (or a cost) should be divided among a group of agents [42].
The modern philosophical treatment of fair division involves four basic principles [30, 15, 8]:

• Exogenous Right: Certain principles guiding the allocation of the resources are
external to the consumption of the same and to the responsibility of the consumers
in their production;

• Compensation: Agents who most need the resources are privileged with greater
shares of them;

• Reward: The distribution of the resources is based on individual contributions for
producing the same;

• Fitness: Resources must go to whomever makes the best use of them.

The idea of collective welfare, from the modern microeconomic thinking, yields a sys-
tematic interpretation of fitness and compensation by means of Pareto optimality and
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collective utility functions. In the last seventy years, microeconomic theory has made sig-
nificant progress toward understanding the reward principle [30]. Arguably, its single most
important discovery is the concept known as Shapley value [41], which gives an interpre-
tation of the reward principle in the context of production.

The Shapley value is a systematic formula used to divide a joint cost (or surplus) among
a group of agents, where the share assigned to each member is its average marginal cost
(or surplus). Thus, the Shapley value is computed directly from the cost or production
function, and it implicitly assumes that the marginal contribution of each agent can be
objectively obtained. However, there exist settings where the quality of such contributions
is subjective, or cannot be objectively obtained. For example, employees of cooperatives
may share the profit from successfully completing some project. While employees who con-
tributed most to the success of the project should receive a greater share of the profit, it may
be difficult to pin-point what the key contributions were from each employee. Similarly,
when a professor wants to share a collective grade among a group of students, individual
contributions to the success of the group may be subjective and difficult to separate.

Focusing on these settings where the quality of the contributions of each group member
is subjective, we propose in this thesis a game-theoretic model for sharing a joint reward
based on the idea of subjective opinions. In detail, we consider scenarios where a group
has been formed and has accomplished a task for which it is granted a reward, which must
be shared among the group members. After observing the contribution of the peers in
accomplishing the task, each agent is asked to provide evaluations for the others. Mainly to
facilitate the sharing process, agents can also be requested to provide predictions about how
their peers are evaluated. Thus, we consider two kinds of subjective opinions: evaluations
and predictions. These opinions are elicited and aggregated by a central, trusted entity,
called the mechanism, which is also responsible for sharing the reward based exclusively
on the received opinions.

Every agent is assumed to want more of the reward. Therefore, we can identify an
agent’s share with its welfare. In terms of the general fair division principles, the focus
of this thesis is almost exclusively on the reward principle, and, more specifically, on the
interpretation of “individual contributions”.

Since individual contributions are derived from subjective opinions, we propose a fair-
ness criterion more appropriate to our model. It essentially means that if an agent unani-
mously receives better evaluations than a peer, then this agent should also receive a greater
share of the reward than that peer.

A major concern that arises when eliciting and aggregating subjective opinions from
rational agents is to guarantee honest reporting. For example, an agent may deliberately lie
and give all other agents a low evaluation so that, in comparison, it looks good and receives
a greater share of the reward. Further, agents can deliberately lie in their evaluations
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looking for side-payments from the beneficiaries. Thus, an important issue in our work is
to ensure that each agent is better off telling the truth than lying.

1.1 Contributions

Besides the game-theoretic model for sharing a reward based on subjective opinions, we
propose in this thesis three different mechanisms to elicit and aggregate opinions, as well
as for determining agents’ shares, keeping the issues of truthfulness and fairness in mind.

Our first mechanism, the peer-evaluation mechanism, divides the reward proportionally
to the evaluations received by the agents. We show that this mechanism is fair, budget-
balanced, individually rational, and strategy-proof, but that it can be collusion-prone.

Our second mechanism, the peer-prediction mechanism, shares the reward by consid-
ering two aspects: the evaluations received by the agents and their truth-telling scores.
To compute these scores, this mechanism uses a strictly proper scoring rule [47]. Under
the assumption that agents are Bayesian decision-makers, we show that this mechanism
is weakly budget-balanced, individually rational, and incentive-compatible. Further, we
present approaches that guarantee the mechanism to be collusion-resistant and fair.

Finally, our last mechanism, called the BTS mechanism, is the only one to elicit both
evaluations and predictions from agents. It considers the evaluations received by the agents
and their truth-telling scores when sharing the reward. For computing the scores, it uses
the Bayesian truth serum method [32], a powerful scoring method based on the surpris-
ingly common criterion. Under the assumptions that agents are Bayesian decision-makers,
and that the population of agents is sufficiently large so that a single evaluation cannot
significantly affect the empirical distribution of evaluations, we show that our mechanism
is incentive-compatible, budget-balanced, individually rational, and fair.

1.2 Thesis Organization

Besides this introductory chapter, the rest of this thesis is organized as follows:

In Chapter 2, we present our basic model, mathematical notation, and concepts used
throughout this thesis.

In Chapter 3, we present the peer-evaluation mechanism, our first mechanism for shar-
ing rewards using subjective opinions. It takes the stand-alone evaluations received by
the agents and divides the reward proportionally to them. We show that this simple, yet
powerful, mechanism is fair, budget-balanced, individually rational, and strategy-proof,
but that it can be collusion-prone.
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In Chapter 4, we present the peer-prediction mechanism. The main difference in relation
to our previous mechanism is that now we explicitly incentivise truth-telling by using
scoring rules. In detail, each evaluation submitted by an agent can be seen as a bet on
the average of the others’ evaluations. Under mild assumptions, we show that the best bet
of an agent, in an expected sense, is to truthfully report its evaluations. Also, we show
that this mechanism is weakly budget-balanced, individually rational, and we discuss the
trade-off that exists between fairness and collusion-resistance.

In Chapter 5, we present our last mechanism, the BTS mechanism. It is based on the
theory that a knowledgeable agent is not only informed about its truthful evaluation for
a peer, but it may also know the likely distribution of the evaluations received by that
peer. This allows us to use the Bayesian truth serum method to incentivise truthfulness.
Under the assumptions that agents are Bayesian decision-makers and that the population of
agents is sufficiently large so that a single evaluation cannot significantly affect the empirical
distribution of evaluations, we show that the BTS mechanism is incentive-compatible and
budget-balanced, and we present strategies to guarantee that this mechanism will always
be individually rational and fair.

In Chapter 6, we empirically investigate the influence of the mechanisms’ parameters
on agents’ shares. We study the consequences of using different values for the top possible
evaluation that an agent can give or receive, and for the parameter that fine-tunes the
weight given to the truth-telling scores. Also, we investigate how the proposed mechanisms
behave when dealing with populations of different sizes.

In Chapter 7, we review the literature related to our work, pointing out the differ-
ences and similarities to our model and mechanisms. In detail, we review similar ideas
from economics, multiagent systems, game theory, cake-cutting, and mechanism design
literature.

In Chapter 8, we conclude our work by highlighting its main contributions. We also
suggest future work to expand our proposed model and mechanisms.
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Chapter 2

Background

In this chapter, we present our basic model, mathematical notation, and concepts used
throughout this thesis.

2.1 Model

A set of agents N = {1, . . . , n}, for n ≥ 3, has accomplished a task for which it is granted
a reward V ∈ <+. Every agent is assumed to want more of the reward. Therefore, we can
identify an agent’s share with its welfare. We are interested in settings where the share of
V that an agent receives depends, in a meaningful way, on the subjective opinions of its
peers concerning that agent’s contribution to the group.

Each agent privately observes n−1 signals, each one related to a peer. These signals are
direct assessments of the peers’ performance in accomplishing the task. Given a positive
integer parameter 1 ≤ M ≤ V , the signals observed by an agent i ∈ N are formally rep-
resented by the vector ti = (t1i , . . . , t

i−1
i , ti+1

i , . . . , tni ), where tji ∈ {1, . . . ,M} represents the
signal observed by agent i about agent j’s performance. We call ti the truthful evaluations
made by agent i. Agents are requested to report the observed signals. Thus, the parameter
M represents the top possible evaluation that an agent can give or receive.

Based on their truthful evaluations, agents can also be requested to predict how their
peers are evaluated. The predictions made by an agent i ∈ N are formally represented

by the vector ri = (r1
i , . . . , r

i−1
i , ri+1

i , . . . , rni ), where rji = (rj
1

i , . . . , r
jM

i ) ∈ ∆M , i.e., an
element from the unit simplex in <M , representing agent i’s prediction about the empirical

distribution of evaluations received by agent j, i.e., 0 ≤ rj
k

i ≤ 1, for 1 ≤ k ≤ M , and∑M
k=1 r

jk

i = 1. The vector ri is the result of a private function Fi(ti), indicating that
if agent i observes the signal tji , then it will make the prediction rji . Thus, we expect

5



agents to come up with predictions based on some experience-related reasoning process
(e.g., false-consensus [26]).

In this way, we consider two kinds of subjective opinions in this thesis: evaluations and
predictions. For avoiding a biased self-judgment, we assume that an agent neither observes
a signal about its performance nor predicts its received evaluations. In order to illustrate
the notation defined above, consider the following example.

Example 1. Consider four agents that want to share $1000 using a “five-star” evaluation
scheme. Thus, we have N = {1, 2, 3, 4}, V = 1000, and M = 5. Suppose that agent 1
observed that agent 2 did an excellent job, agent 3 was above average, and agent 4 did
not contribute too much to the group. Thus, agent 1’s truthful evaluations can be t21 = 5,
t31 = 4, t41 = 1, and, consequently, t1 = (5, 4, 1). Further, assume that agent 1 believes that
the other agents think that agent 2 did not contribute too much to the group. Thus, agent
1’s prediction about the truthful evaluations received by agent 2 can be r21

1 = r22

1 = r24

1 = 0,
r23

1 = 0.67, and r25

1 = 0.33, consequently, r2
1 = (0, 0, 0.67, 0, 0.33).

We make the following assumptions about our model:

Assumption 1 (Independent signals). The observed signals are independent.

Assumption 2 (Self-interestedness). Agents act to maximize their expected shares.

Assumption 1 means that an agent’s truthful evaluation for a peer does not influence
its truthful evaluation for another peer. This is a reasonable assumption since agents are
expected to come up with subjective opinions based solely on their individual perceptions,
and it is intuitively appealing since it takes the autonomy of the individual for granted.
Assumption 2 implies that agents are risk neutral. This assumption is traditional in both
game-theoretic [31] and multiagent systems [42] literature.

A consequence of this last assumption is that agents may deliberately lie when reporting
their evaluations and/or predictions. For example, an agent may intentionally give all other
agents a low evaluation so that, in comparison, it looks good and receives a greater share
of V . Therefore, we distinguish between the truthful evaluations made by every agent
i ∈ N , ti, and the evaluations that it reports, xi = (x1

i , . . . , x
i−1
i , xi+1

i , . . . , xni ). Similarly,
we distinguish between the truthful predictions made by every agent i ∈ N , ri, and the
predictions that it reports, yi = (y1

i , . . . , y
i−1
i , yi+1

i , . . . , yni ).

We define the strategy of an agent i ∈ N to be its reported opinions, representing it
by si. Depending on how opinions are elicited, strategies can be of two kinds: si = xi,
when only evaluations are elicited, and si = (xi,yi) when both evaluations and predictions
are elicited. We overload the notation by always using si to denote the opinions reported
by agent i, but we make clear its meaning when necessary. Si is the set of strategies
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available to agent i, and S = S1 × . . .× Sn. Each vector s = (s1, . . . , sn) ∈ S is a strategy
profile. As customary, let the subscript “−i” denote a vector without agent i’s component,
e.g., s−i = (s1, . . . , si−1, si+1, . . . , sn). If the opinions reported by agent i are equal to its
truthful opinions, i.e., xi = ti for evaluations and yi = ri for predictions, we say that
agent i’s strategy is truthful. We explicitly represent a single truthful opinion or a vector
with truthful opinions by using the superscript ‘∗’, e.g.,

∗
xji and

∗
si. Similarly, we explicitly

represent a false opinion or a vector with false opinions by using the superscript ‘ˆ’, e.g.,
x̂ji and ŝi. We say that a strategy profile is collectively truthful if all the reported strategies
are truthful.

Opinions are elicited and aggregated by a central, trusted entity, called the mechanism,
which is also responsible for sharing the reward among agents. This entity relies only
on the reported opinions when determining agents’ shares, and so it has no additional
information. Formally:

Definition 1 (Mechanism). A mechanism is a pair (S,Γ), where:

• S = S1 × . . .× Sn, where Si is the set of strategies available to agent i ∈ N ;

• Γ : S → <n is a sharing function that maps each strategy profile to a vector of shares.

It is important to note that we do not include the parameter M in Definition 1. We
assume that its value is common knowledge. Thus, mechanisms differ based on how they
share the reward and based on the opinions that they elicit from the agents. We denote
the share of V given to agent i, when all the reported opinions are s, by Γi(s). We use Γi
when s is either irrelevant or clear from the context.

Throughout this thesis, we use the solution concepts called dominant-strategy equilib-
rium and Bayes-Nash equilibrium.

Definition 2 (Dominant-strategy equilibrium). We say that (s1, . . . , sn) is a dominant-
strategy equilibrium if for each agent i ∈ N , strategy s′i 6= si ∈ Si, and every strategy profile
σ−i ∈ S−i, we have that Γi(si, σ−i) ≥ Γi(s

′
i, σ−i).

In words, each agent follows a strategy that returns the greatest possible share, no
matter how its opponents may play.

Definition 3 (Bayes-Nash equilibrium). We say that σ = (s1, . . . , sn) is a Bayes-Nash
equilibrium if for each agent i ∈ N , and strategy s′i 6= si ∈ Si, E [Γi(si, σ−i)|

∗
si] ≥

E [Γi(s
′
i, σ−i)|

∗
si].
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In words, for each agent i ∈ N , si is the best response, in an expected sense, that i
has to σ−i, given that its truthful strategy is

∗
si. Since the expectation may be taken with

respect to different distributions, we elucidate this point when necessary.

When the inequalities in Definition 2 and 3 hold strictly (with “>” instead of “≥”), then
the strategy profile is classified, respectively, as strictly dominant-strategy equilibrium and
strictly Bayes-Nash equilibrium. Otherwise, if the definitions hold with equality for at least
one agent, then the strategy profile is classified, respectively, as weakly dominant-strategy
equilibrium and weakly Bayes-Nash equilibrium.

A simple idea that ensures all possible strategy profiles to be weakly dominant-strategy
equilibria is to employ dictatorial mechanisms, i.e., mechanisms that throw away agents’
opinions and assign shares in a fixed way. This happens because no matter what the
agents report, they end up with the same share. An example of a dictatorial mechanism
is the egalitarian mechanism, i.e., a mechanism that equally shares the reward among
the agents. Formally, ∀i ∈ N,∀s ∈ S,Γi(s) = V/n. Intuitively, dictatorial mechanisms
are unfair because the share assigned to each agent does not reflect the reported opinions
about that agent. Formalizing, we define a fairness criterion appropriate to our model.

Definition 4 (Fairness). Consider a strategy profile s ∈ S in which the reported evaluation
of every agent z for agent i is paired up with agent z’s reported evaluation for agent j, for
i 6= j 6= z ∈ N , so that xiz > xjz. Further, the evaluations of agent i and agent j for each
other are paired up, so that xij > xji . Then, we say that a mechanism is fair if Γi(s) > Γj(s).

In words, if an agent unanimously receives better evaluations than a peer, then this
agent should also receive a greater share than that peer.

2.2 Properties

Besides fairness, there are several other key properties we wish the mechanisms to have.
In this section, we define such properties.

Definition 5 (Budget Balance). We say that the mechanism is budget-balanced if ∀s ∈
S,
∑n

i=1 Γi(s) = V .

In words, a budget-balanced mechanism allocates the entire reward V back to the
agents. As stated, this is a strong definition because we do not put constraints on s, e.g.,
we do not require s to be an equilibrium strategy profile. When the mechanism makes a
profit, i.e.,

∑n
i=1 Γi(s) < V , for at least one s ∈ S, we say that it is weakly budget-balanced.

Definition 6 (Individual Rationality). A mechanism is individually rational if ∀i ∈ N,∀s ∈
S,Γi(s) ≥ 0.

8



This condition requires the share received by each agent to be greater than or equal to
zero. In other words, all agents are weakly better off participating in the mechanism than
not participating at all.

Definition 7 (Incentive Compatibility). A mechanism is incentive-compatible iff collective
truth-telling is an equilibrium strategy profile.

A mechanism in which a strategy profile s ∈ S is both collectively truthful and a
dominant-strategy equilibrium is called strategy-proof. Intuitively, the best that each agent
can do when the mechanism is strategy-proof is to truthfully report its opinions, no matter
what the others are reporting. The incentive compatibility concept is weaker when the
collectively truthful strategy profile is a Bayes-Nash equilibrium. In this case, it is best, in
an expected sense, for each agent to tell the truth provided that the others are also doing
so.

Definition 8 (Collusion-Resistance). A mechanism is collusion-resistant if agents have no
incentive to enter into a priori agreements (private contracts) in order to undermine the
mechanism.

In the following section, we extend our discussion on collusions. By no means we argue
that the properties defined here are exhaustive. However, we believe that they are among
the most desirable ones in real applications.

2.3 Collusion

In this thesis, we consider the collusion model in which a single agent can deliberately lie
about its evaluation for a specific peer, aiming to increase that peer’s share. Because of
the self-interestedness assumption, the liar agent looks forward to receiving a side-payment
from the beneficiary greater than the expected loss caused by the lie. Formally:

Definition 9 (Collusion). Given a strategy profile s ∈ S, a collusion between agents i and
j occurs when agent i changes its truthful evaluation for agent j, resulting in the report
ŝi 6=

∗
si, where x̂ji >

∗
xji , and for doing this it receives a side-payment p from agent j so that:

E [Γi(ŝi, s−i) + p] > E [Γi(
∗
si, s−i)]

and

E [Γj(ŝi, s−i)− p] > E [Γj(
∗
si, s−i)]

9



In words, a collusion occurs when, in exchange for misreporting its evaluation, which
could lead to a lower share for itself, the liar agent receives a side-payment from the agent
who benefits from the misreporting so that both agents end up with a greater expected
share than if no collusion had occurred.

While this collusion model may seem narrow, because it is defined considering only
two agents, we note that it can be successfully used to model larger collusions provided
that they can be decomposed into a union of independent collusions between two agents (a
liar and a beneficiary). Thus, this model discards more complex collusions, e.g., when an
agent lies about its opinions for a group of peers considering only the joint side-payments.
However, we believe that the model is still useful, given the complexity that might arise in
coordinating a large group of colluders [19].

We say that a mechanism is collusion-resistant when, for all pair of agents i, j, and
strategies ŝi 6=

∗
si ∈ Si, such that x̂ji >

∗
xji , the following inequality holds:

E [Γi(ŝi, s−i) + Γj(ŝi, s−i)] ≤ E [Γi(
∗
si, s−i) + Γj(

∗
si, s−i)] (2.1)

A point useful to discuss is the relationship between our collusion model and the group
strategy-proofness concept from the mechanism design literature (e.g., [29]). In our setting,
a mechanism is group strategy-proof if it is always in the best interest of all subsets of agents
to reveal their opinions truthfully. While both concepts deal with a group of colluders,
group strategy-proofness is stronger in a sense that it prevents any coalition of agents to
gain by lying, but weaker because it does not explicitly capture the idea of side-payments.
Further, group strategy-proofness is not well-defined in Bayesian settings, which would
severely limit our analysis on the collusion-resistance aspect of the proposed mechanisms.

2.4 Scoring Rules

Later in this thesis, a concept used by a mechanism to incentivise truthfulness is called
scoring rules [47]. Consider an uncertain quantity with possible outcomes o1, . . . , oz and
a probability vector p = (p1, . . . , pz). A scoring rule R(p, e) is a function that provides a
score for the assessment p upon observing the event oe.

A scoring rule is called strictly proper when an agent receives its maximal expected score
if and only if its stated assessment p corresponds to its true assessment q = (q1, . . . , qz)
[47, 38]. The expected score of p at q for a real value scoring rule R(p, e) is:

C(p|q) =
z∑
e=1

qeR(p, e), (2.2)
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and the expected score loss is defined by the equation:

L(p|q) = C(q|q)− C(p|q). (2.3)

The literature contains a number of strictly proper scoring rules. The best known and
their scoring ranges are [39]:

logarithmic: R(p, i) = log pi (−∞, 0]

quadratic: R(p, i) = 2pi −
z∑
e=1

p2
e [−1, 1]

spherical: R(p, i) =
pi

(
∑z

e=1 p
2
e)

1/2
[0, 1]

For proving an equilibrium result later in this thesis, we use the following properties of
strictly proper scoring rules.

Lemma 1. If R(φ, e) is a strictly proper scoring rule, then a positive affine transformation
of R, i.e., αR(φ, e) + β, for α > 0 and β ∈ <, is also strictly proper.

Proof. Given that p is the assessment that maximizes the expected score in αR(φ, e) +
β, and q is the assessment that maximizes the expected score in R(φ, e), i.e., the true
assessment, then we have that:

p = arg max
φ

z∑
e=1

(αqeR(φ, e) + β)

= arg max
φ

z∑
e=1

qeR(φ, e)

= q

where the second equality follows from the facts that α and β are constants, and α > 0.

Lemma 2. Let D = (d1, . . . ,dw) be a vector of independent assessments, where dj =
(p1, . . . , pz), for 1 ≤ j ≤ w, is a probability distribution over the outcomes o1, . . . , oz. Also,
let E = (e1, . . . , ew) be a vector of independently observed events. Consider the scoring
function H(D,E) = 1

w

∑w
j=1Rj(dj, ej), where R1, . . . , Rw are strictly proper scoring rules.

Then, H(D,E) is also strictly proper.
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Proof. Consider the vector of assessments that maximizes the expected score in H(D,E):

arg max
(d1,...,dw)

E

[
1

w

w∑
j=1

Rj(dj, ej)

]
= arg max

(d1,...,dw)

E

[
w∑
j=1

Rj(dj, ej)

]
= (arg max

d1

E [R1(d1, e1)] , . . . , arg max
dw

E [Rw(dw, ew)]).

This last equality follows from the fact that the scores given for each assessment are
independent among themselves. Then, given that R1, . . . , Rw are strictly proper scoring
rules, we can conclude that the vector D that maximizes the expected value of H(D,E) is
composed by true assessments. Thus, the scoring function H(D,E) is strictly proper.

Throughout this thesis, we use the following strictly proper scoring rule:

R(p, e) = 1 + 2pe −
∑
j

p2
j . (2.4)

This scoring rule is a positive affine transformation of the quadratic scoring rule, and
its scoring range is [0, 2]. Selten [39] shows the proof that the quadratic scoring rule is
indeed strictly proper, and some of its interesting properties.

2.5 The Bayesian Truth Serum Method

Another method used later in this thesis to incentivise truthfulness is the Bayesian Truth
Serum method (BTS) [32]. Working on a single multiple-choice question with a finite
number of alternatives, this method requires each agent to endorse the answer most likely
to be true and to predict the empirical distribution of the endorsed answers.

Agents are evaluated by the accuracy of their predictions (how well they matched the
empirical frequencies) as well as how surprisingly common are their personal answers in
relation to the empirical predictions, e.g., an answer endorsed by 50% of the population
against a predicted frequency of 25% is surprisingly common and should receive a high
score. Alternatively, this answer would be surprisingly uncommon if predictions averaged
75% and, consequently, it would receive a lower score. This relatively simple scoring
criterion removes all the necessity of biasing answers toward the likely consensus.

To have a concrete problem in mind, suppose that a question is asking for evaluations
for an agent j ∈ N . Using the notation previously defined, let h(xji , k) be a zero-one
indicator function, i.e.,

12



h(xji , k) =

{
1 if xji = k
0 otherwise

The score provided by the BTS method to agent i, given its reported answer (evaluation)
xji and prediction yji , is calculated as follows:

M∑
k=1

h(xji , k) log
x̄k
ȳk

+ β
M∑
k=1

x̄k log
yj

k

i

x̄k
, (2.5)

where x̄k is the average frequency of the evaluation k, and ȳk is the geometric average of
the predicted frequencies for the evaluation k,

x̄k =
1

n− 1

∑
q 6=j

h(xjq, k),

ȳk = exp

(
1

n− 1

∑
q 6=j

log yj
k

q

)
.

Since agent j does not evaluate itself, the denominators of the above averages are equal
to n−1. The BTS method has two major components. The first part, called the information
score, selects the evaluation endorsed by an agent i, and multiplies it by the log-ratio of the
actual-to-predicted frequency of evaluations. Here, an evaluation scores high to the extent
that it is more common than collectively predicted. The second part, called the prediction
score, is a penalty proportional to the relative entropy (or the Kullback-Leibler divergence
[9]) between the empirical distribution of evaluations and agent i’s prediction about that
distribution. The constant β > 0 fine-tunes the weight given to the prediction score. In
this thesis, we are always considering β = 1. There are four assumptions required for the
perfect operation of the BTS method:

Assumption 3 (Common prior). There exists a common prior over the answers of the
members of the population. In our model, this means that for each agent j ∈ N , there
exists a common prior p(ωj) over the truthful evaluations for agent j.

Assumption 4 (Rationality). Every agent forms a posterior over the population distribu-
tion of answers. In our model, this means that every agent i ∈ N , with truthful evaluation
tji , forms a posterior by applying Bayes’ rule to the common prior p(ωj), i.e., p(ωj|tji ).

Assumption 5 (Stochastic relevance). Different answers imply different posterior distri-
butions. In our model, this means that ∀i, q, p(ωj|tji ) = p(ωj|tjq) if and only if tji = tjq.
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Assumption 6 (Large population). The population of agents must be sufficiently large so
that a single answer cannot significantly affect the empirical distribution of answers.

Under these four assumptions, and using Equation 2.5 to compute agents’ scores, the
following theorems hold [32]:

Theorem 1. Collective truth-telling is a strictly Bayes-Nash equilibrium.

Theorem 2. The expected information score in any Bayes-Nash equilibrium is non-negative.

Theorem 3. The expected information score is (weakly) greater in the collectively truthful
strategy profile than in any other Bayes-Nash equilibrium.

Theorem 4. If the constant β = 1, then the Bayesian truth serum method is zero-sum.

Theorem 1 says that the best response for an agent, in an expected sense, when everyone
else is telling the truth is also to tell the truth. Theorem 2 and 3 mean that the expected
value of the left part of Equation 2.5 is greater than or equal to zero in any Bayes-Nash
equilibrium, and that it is weakly maximized in the collectively truthful strategy profile
than in any other Bayes-Nash equilibrium. Theorem 4 states that if we set β = 1, then
the sum of the scores received by the responders is equal to zero. In these theorems, the
expectations are taken with respect to the posterior distribution.

For proving an equilibrium result later in this thesis, we use the following lemmas
related to the BTS method. In what follows, consider n− 1 independent questions, where
each question asks for an evaluation for a specific agent different than agent i. Let σji =
(xji ,y

j
i ), i.e., a vector with both the answer given by agent i to the question about agent j’s

evaluation and the prediction made by agent i about the empirical distribution of answers
to the same question. Also, let σj−{ij} be a vector with all agents’ answers and predictions
to that question, except those from agent i and j. Finally, consider that a score for agent
i is computed by using the following scoring scheme:

gi =
∑
j 6=i

G
(
σji , σ

j
−{i,j}

)
, (2.6)

where G(·, ·) is computed using the BTS method (Equation 2.5).

Lemma 3. The scoring scheme gi is incentive-compatible.

Proof. Suppose that every peer of agent i always reports its answers and predictions truth-
fully. Consider the vector σi = (σ1

i , . . . , σ
i−1
i , σi+1

i , . . . , σni ), with the answers and predic-
tions that maximize the expected score of agent i, i.e.,
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σi = arg max
(σ1
i ,...,σ

i−1
i ,σi+1

i ,...,σni )

(
E

[∑
j 6=i

G
(
σji , σ

j
−{i,j}

)])
= (arg max

σ1
i

(
E
[
G
(
σ1
i , σ

1
−{i,1}

)])
, . . . , arg max

σi−1
i

(
E
[
G
(
σi−1
i , σi−1

−{i,i−1}

)])
,

arg max
σi+1
i

(
E
[
G
(
σi+1
i , σi+1

−{i,i+1}

)])
, . . . , arg max

σni

(
E
[
G
(
σni , σ

n
−{i,n}

)])
).

The second equality follows from the fact that the n − 1 questions are independent.
According to Theorem 1, each expectation inside this last vector is strictly maximized
when agent i tells the truth, because, by assumption, everyone else is telling the truth.
Thus, collective truth-telling is a strictly Bayes-Nash equilibrium, and the scoring scheme
gi is incentive-compatible.

Lemma 4. A positive affine transformation of the scoring scheme gi is incentive-compatible.

Proof. Suppose that every peer of agent i always reports its answers and predictions truth-
fully. Consider the vector σi = (σ1

i , . . . , σ
i−1
i , σi+1

i , . . . , σni ), with the answers and pre-
dictions that maximize the expected score received by agent i from the scoring scheme
g′i = κ gi + λ, for κ > 0 and λ ∈ <, i.e.,:

σi = arg max
(σ1
i ,...,σ

i−1
i ,σi+1

i ,...,σni )

(
E

[
κ

(∑
j 6=i

G
(
σji , σ

j
−{i,j}

))
+ λ

])

= arg max
(σ1
i ,...,σ

i−1
i ,σi+1

i ,...,σni )

(
κE

[∑
j 6=i

G
(
σji , σ

j
−{i,j}

)]
+ λ

)

= arg max
(σ1
i ,...,σ

i−1
i ,σi+1

i ,...,σni )

(
E

[∑
j 6=i

G
(
σji , σ

j
−{i,j}

)])
.

The third equality follows from the facts that κ and λ are constant, and that κ > 0.
Thus, we reduce this lemma to Lemma 3, completing the proof.
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Chapter 3

The Peer-Evaluation Mechanism

In this chapter, we present the peer-evaluation mechanism, our first mechanism for sharing
rewards using subjective opinions. It works by taking the stand-alone evaluations received
by the agents and dividing the reward proportionally to them. We show that this mecha-
nism is fair, budget-balanced, individually rational, and strategy-proof, but that it can be
collusion-prone.

3.1 The Mechanism

The mechanism starts by requesting evaluations from the agents, i.e., ∀i ∈ N, si =
xi. For each vector with evaluations, xi, the mechanism creates a second vector, χi =
(χ1

i , . . . , χ
i−1
i , χi+1

i , . . . , χni ), by scaling the elements of the first one to sum up to V . Math-
ematically,

∀i, j, χji = xji

(
V∑
q 6=i x

q
i

)
.

This simple adjustment in the agents’ evaluations ensures that the sum of the final
shares is not orders of magnitude lower than the reward V . The mechanism aggregates the
evaluations received by each agent i ∈ N by summing the scaled evaluations received by
it. The share of each agent i ∈ N is then equal to this aggregated value divided by n, i.e.,

Γi =

∑
j 6=i χ

i
j

n
. (3.1)
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The intuition behind the peer-evaluation mechanism is that the share received by each
agent is directly proportional to its received evaluations. It is important to note that the
peer-evaluation mechanism computes an agent’s share by summing the scaled evaluations
received by that agent and dividing the result by n, differently from the arithmetic mean
that would use n − 1 in the denominator. This is useful to ensure important proper-
ties for the mechanism. Algorithm 1 presents the sharing function of the peer-evaluation
mechanism from an algorithmic perspective.

Algorithm 1 The Peer-Evaluation Mechanism

1: for i = 1 to n do
2: for j 6= i do

3: χij = xij

(
V∑
q 6=j x

q
j

)
4: end for
5: Γi =

∑
j 6=i χ

i
j

n

6: end for

To illustrate the peer-evaluation mechanism, consider the following example:

Example 2. Suppose that four agents A, B, C, and D, want to share the reward V = 1000
using the peer-evaluation mechanism. Let M = 10, and the reported evaluations shown
in Table 3.1. Each numeric cell beneath the label “Evaluation” can be interpreted as the
evaluation given by the agent in the row to the agent in the column, e.g, xAB = 7. Each cell
beneath the label “Share” represents the resulting share of the agent in the row.

Table 3.1: Example of the peer-evaluation mechanism.
Evaluation

Share
A B C D

A - 5 3 3 231.15
B 7 - 6 5 345.78
C 2 3 - 2 214.02
D 1 2 1 - 209.05

For illustration, the share received by agent A is:

ΓA =
xAB

(
V

xAB+xCB+xDB

)
+ xAC

(
V

xAC+xBC+xDC

)
+ xAD

(
V

xAD+xBD+xCD

)
n

=
7
(

1000
7+6+5

)
+ 2

(
1000

2+3+2

)
+ 1

(
1000

1+2+1

)
4

≈ 231.15.
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3.2 Properties

This simple, yet powerful, mechanism has very interesting properties. First, because the
reported evaluations are always greater than zero, an agent cannot receive a negative
share. Consequently, the peer-evaluation mechanism is individually rational. Since the
share received by an agent does not depend on its strategy, the mechanism is also non-
consensual, i.e., an agent will not increase its share by following a group consensus. Further,
the mechanism is budget-balanced, as proved in the following proposition.

Proposition 1. The peer-evaluation mechanism is budget-balanced.

Proof. The sum of the shares received by the agents is:

n∑
i=1

(∑
j 6=i χ

i
j

n

)
=

n∑
j=1

(∑
i 6=j χ

i
j

n

)

= n

(
V

n

)
= V.

where the second equality follows from the fact that the scaled evaluations sum up to
V .

The following theorems state our main results concerning the properties of the peer-
evaluation mechanism.

Theorem 5. The peer-evaluation mechanism is strategy-proof.

Proof. The share received by an agent does not depend on its reported evaluations. Con-
sequently, an agent i ∈ N cannot improve its own share by reporting a vector of strategies
ŝi 6=

∗
si. Then, the collectively truthful strategy profile is trivially a weakly dominant-

strategy equilibrium.

Theorem 6. If M <
√
n− 1, then the peer-evaluation mechanism is fair.

Proof. Consider a pair of different agents i, j ∈ N and a strategy profile s ∈ S where
xij > xji and, for every other agent z 6= i, j, xiz > xjz. The mechanism must satisfy the
following inequality to be considered fair:
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Γi > Γj ⇒∑
z 6=i,j x

i
z

(
V∑
q 6=z x

q
z

)
+ xij

(
V∑
q 6=j x

q
j

)
n

>

∑
z 6=i,j x

j
z

(
V∑
q 6=z x

q
z

)
+ xji

(
V∑
q 6=i x

q
i

)
n

.

After doing some algebraic manipulations we have:

∑
z 6=i,j

(
xiz − xjz∑
q 6=z x

q
z

)
+

xij∑
q 6=j x

q
j

− xji∑
q 6=i x

q
i

> 0.

In what follows, we restrict ourselves to the worst-case scenario. Since ∀i, j, xji ∈
{1, . . . ,M}, and ∀z 6= i, j, xiz > xjz, we have:

n− 2

(n− 1)M
+

1

(n− 1)M
− M

(n− 1)
> 0.

The result follows after simple algebraic manipulations.

Related to the collusion-resistance property, the peer-evaluation mechanism is not
collusion-resistant. To illustrate this point, consider the following example:

Example 3. Consider the same scenario of Example 3, and assume that the evaluations
in Table 3.1 are truthful. As can be seen from Table 3.1, agents C and D receive the
smallest shares among the four agents when they report their truthful evaluations. Now,
instead of telling the truth, suppose that agents C and D make an a priori agreement. In
detail, assume that agent C agrees to increase its evaluation for agent D from xDC = 2 to
xDC = 10 in exchange for a side-payment of $50.00. The resulting evaluations and shares,
after discounting the side-payment, can be seen in Table 3.2. After colluding, agents C and
D are able to increase their shares by, respectively, $50.00 and $45.24.

Table 3.2: Shares after a collusion between agents C and D.
Evaluation

Share
A B C D

A - 5 3 3 193.06
B 7 - 6 5 288.64
C 2 3 - 10 264.02
D 1 2 1 - 254.29
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In the following proposition, we provide a bound on the maximum value that an agent
can receive due exclusively to a collusive behavior.

Proposition 2. The maximum value that an agent can receive due to a collusive behavior
is V (M−1)

(n−1)n
.

Proof. Consider that agent i is lying to increase the share received by agent j by reporting
x̂ji >

∗
xji . The maximum value that agent j can receive due exclusively to this collusive

behavior is:

x̂ji

(
V

(
∑
z 6=i,j x

z
i )+x̂ji

)
− ∗
xji

(
V

(
∑
z 6=i,j x

z
i )+

∗
xji

)
n

<

x̂ji

(
V

(
∑
z 6=i,j x

z
i )+

∗
xji

)
− ∗
xji

(
V

(
∑
z 6=i,j x

z
i )+

∗
xji

)
n

=

V

(
x̂ji−

∗
xji

(
∑
z 6=i,j x

z
i )+

∗
xji

)
n

≤ V (M − 1)

(n− 1)n

The first inequality follows from the fact that x̂ji >
∗
xji . The second inequality follows

from the fact that ∀i, j, xji ∈ {1, . . . ,M}.

3.3 Concluding Remarks

In this chapter, we presented our first mechanism for sharing rewards using subjective
opinions. The share received by each agent from the peer-evaluation mechanism is directly
proportional to its received evaluations. Arguably, the most salient property of this mecha-
nism is its simplicity. In actual applications, the mathematics behind the sharing function
can be easily taught to the agents. We showed that the peer-evaluation mechanism is
budget-balanced, individually rational, and strategy-proof. Further, if M <

√
n− 1, then

it is also guaranteed to be fair.

The main drawback of the peer-evaluation mechanism is that, although agents do not
have direct incentives for misreporting evaluations, they also do not have strong incentives
for telling the truth. This makes the mechanism extremely susceptible to collusions. Ex-
ample 3 illustrated that, although agents are unable to unilaterally improve their shares,
by colluding with other agents in the group, they can undermine the peer-evaluation mech-
anism and significantly improve their shares.
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Chapter 4

The Peer-Prediction Mechanism

In this chapter, we propose our second mechanism for sharing rewards based on subjective
opinions, the peer-prediction mechanism. It encourages truthfulness by using scoring rules.
The share received by each agent from this mechanism has two major components. The
first one is the average of the received evaluations, and the second one is a truth-telling
score. These scores are computed by considering each evaluation submitted by an agent as
a bet on the average of the others’ evaluations. Under mild assumptions, we show that the
peer-prediction mechanism is weakly budget-balanced, individually rational, and incentive-
compatible, and we discuss a trade-off that exists between fairness and truthfulness.

4.1 The Mechanism

The mechanism starts by requesting evaluations from agents, i.e., ∀i ∈ N, si = xi. Besides
the basic assumptions of the model, i.e., independent signals and self-interestedness (see
Section 2.1), we make the following extra assumptions:

Assumption 7. For each agent j ∈ N , there exists a common, Dirichlet prior p(ωj) over
the truthful evaluations for agent j, and this prior is common knowledge.

Assumption 8. Every agent i ∈ N , with truthful evaluation tji , forms a posterior by
applying Bayes’ rule to the Dirichlet prior p(ωj), i.e., p(ωj|tji ).

A Dirichlet distribution D(θ,Θ) ∝
∏

k θ
Θk−1
k over a simplex (multinomial) θ is parame-

terized by positive numbers Θk such that Θk−1 can be interpreted as the number of times
that the θk-probability event has been observed [18, 14]. Here, we assume that Θk = 1,
for 1 ≤ k ≤ M . Intuitively, this means that the initial belief of every agent about the
truthful evaluations for a peer is uninformative, i.e., that the expected distribution, E [ωj],
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is uniform over the set {1, . . . ,M}. Assumption 8 means that, after observing the signal
from a peer, the belief of each agent i ∈ N is updated so that the posterior predictive
distribution will be:

E
[
ωj = k|tji

]
=

{
2

M+1
if tji = k

1
M+1

otherwise.

Implicitly, this assumption means that each agent’s relevant information consists ex-
clusively of its observed signals. Consequently, the updated belief of each agent indicates
that the observed signal from a peer is the evaluation most likely to be deserved by that
peer. We highlight the reasons for these assumptions throughout this chapter.

The share received by each agent i ∈ N from the peer-prediction mechanism has two
major components. The first one, µi, is the average of the evaluations received by agent i:

µi =

∑
j 6=i x

i
j

n− 1
. (4.1)

The second major component of agent i’s share is a truth-telling score. The key idea
is that such scores are maximized, in an expected sense, when the agents truthfully report

their evaluations. To calculate the scores, let Φj
i = (Φj1

i , . . . ,Φ
jM

i ) be the element from the
unit simplex in <M where:

Φjk

i =

{
2

M+1
if xji = k

1
M+1

otherwise

for 1 ≤ k ≤ M . When computing Φj
i , the peer-prediction mechanism is essentially esti-

mating agent i’s posterior predictive distribution about the truthful evaluations for agent
j from agent i’s reported evaluation, xji . The score of agent i is then:

ζi =

∑
j 6=iR

(
Φj
i , nint

(∑
z 6=i,j x

j
z

n−2

))
n− 1

, (4.2)

where R is the strictly proper scoring rule in Equation 2.4, and nint is the nearest integer
function. Thus, agent i’s score is the arithmetic mean of the results provided by that scoring
rule, where these results are obtained by using agent i’s estimated posterior predictive
distributions as assessments. Scoring rules require an outcome, or a “reality”, to score
an assessment. If the mechanism knew a priori each agent’s truthful opinions, it could
compare them to the reported ones and reward agreement. However, due to the subjective
nature of the opinions, we are facing a situation where the objective truth is unknowable.
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Our solution to this issue is to score Φj
i against the average evaluation received by

agent j, disregarding agent i’s opinion from this last value. Since ∀i, j, xji ∈ {1, . . . ,M},
the function nint in Equation 4.2 rounds the average evaluation to an integer number inside
the set {1, . . . ,M}. Intuitively, we are treating the evaluations submitted by an agent as
bets on the average of the others’ evaluations.

Finally, we linearly combine the average evaluation received by agent i, µi, and its
truth-telling score, ζi:

µi + α ζi,

where the constant α > 0 fine-tunes the weight given to the truth-telling score ζi. We
observe that ∀i ∈ N, µi and ζi are, respectively, in the ranges [1, M ] and [0, 2], because
∀i, j, xji ∈ {1, . . . ,M}, and a result of Equation 2.4 is in the range [0, 2]. Consequently,
the above value can be orders of magnitude lower than V . To overcome this problem, we
multiply the above value by the constant V

(M+2α)n
. The reason for using this value will

be clear in the next section. Thus, the share of agent i returned by the peer-prediction
mechanism is:

Γi = (µi + α ζi)
V

(M + 2α)n
(4.3)

The intuition behind this sharing function is that agents receive greater shares when
they are well-evaluated and when they tell the truth. Algorithm 2 presents this sharing
function from an algorithmic perspective.

Algorithm 2 The Peer-Prediction Mechanism

1: for i = 1 to n do
2: µi =

∑
j 6=i x

i
j

n−1

3: ζi =

∑
j 6=iR

(
Φji , nint

(∑
z 6=i,j x

j
z

n−2

))
n−1

4: Γi = (µi + α ζi)
V

(M+2α)n

5: end for

To illustrate the peer-prediction mechanism, consider the following example:

Example 4. Suppose that four agents A, B, C, and D, want to share the reward V = 1000
using the peer-prediction mechanism. Let M = 5, α = 0.5, and the reported evaluations
shown in Table 4.1. Each numeric cell beneath the label “Evaluation” can be interpreted
as the evaluation given by the agent in the row to the agent in the column, e.g, xAB = 5.
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Table 4.1: Example of the peer-prediction mechanism: reported evaluations.
Evaluation

A B C D
A - 4 2 1
B 5 - 5 5
C 3 5 - 1
D 3 5 2 -

Using these evaluations, the mechanism returns the shares presented in the last column
of Table 4.2. For illustration, consider the share received by agent D. The first component
of ΓD is the arithmetic mean of the evaluations received by agent D, which is:

µD =
1 + 5 + 1

3
≈ 2.33.

The second component of ΓD is the arithmetic mean of the results provided by the scoring
rule in Equation 2.4, where each result is related to an evaluation submitted by agent D:

ζD =
R
(

ΦA
D, nint

(
xAB+xAC

2

))
+R

(
ΦB
D, nint

(
xBA+xBC

2

))
+R

(
ΦC
D, nint

(
xCA+xCB

2

))
3

≈ 1.11 + 1.44 + 1.11

3
≈ 1.22

Finally, the share of agent D is a linear combination of µD and ζD, times the constant
V

(M+2α)n
,

ΓD = (µD + αζD)
V

(M + 2α)n

≈ (2.33 + 0.5× 1.22)
1000

(5 + 2× 0.5)4
≈ 122.50.
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Table 4.2: Example of the peer-prediction mechanism: resulting shares.
µi ζi Γi

A 3.67 1.11 175.93
B 4.67 1.11 217.59
C 3.00 1.22 150.46
D 2.33 1.22 122.50

4.2 Properties

In this section, we show the properties of the peer-prediction mechanism. We start by
observing that ∀i ∈ N, µi and ζi are, respectively, in the ranges [1, M ] and [0, 2], because
∀i, j, xji ∈ {1, . . . ,M}, and a result of Equation 2.4 is always in the range [0, 2]. Since
α > 0, the agents’ shares are greater than zero, and, consequently, the peer-prediction
mechanism is individually rational.

Proposition 3. The peer-prediction mechanism is weakly budget-balanced.

Proof. Mathematically, this proposition says:

V ≤
n∑
i=1

Γi

=
n∑
i=1

(µi + α ζi)
V

(M + 2α)n

Since ∀i ∈ N, µi and ζi are, respectively, in the ranges [1, M ] and [0, 2], we have:

V

(M + 2α)
≤

n∑
i=1

Γi ≤ V, (4.4)

completing the proof.

We note that Equation 4.4 provides a bound on the profit that the mechanism can
make, i.e., a value at most V − V

(M+2α)
. By using the constant V

(M+2α)n
to scale agents’

shares, we guarantee that the mechanism never takes a loss. Now, we are ready to show
our main results concerning the properties of the peer-prediction mechanism.

Theorem 7. The peer-prediction mechanism is incentive-compatible.
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Proof. Suppose that every peer of an agent i ∈ N truthfully reports its evaluations. We
prove that the strict best response for agent i, in an expected sense, is also to tell the truth.
We start by observing that the share received by agent i (Equation 4.3) can be written as:

Γi = µi
V

(M + 2α)n
+ α

V

(M + 2α)n
ζi

= C1 + C2ζi

where C1 and C2 are positive constants, from agent i’s point of view, because they do
not depend on the evaluations reported by agent i. Focusing on agent i’s score, ζi, from
Lemma 2 (Section 2.4) we know that the scoring function,

ζi =

∑
j 6=iR

(
Φj
i , nint

(∑
z 6=i,j x

j
z

n−2

))
n− 1

is strictly proper, where the expectation is taken with respect to agent i’s posterior pre-
dictive distributions. Consequently, it is maximized when Φj

i is equal to E
[
p(ωj|tji )

]
, i.e.,

when xji = tji . Finally, we conclude by observing that agent i’s share, Γi, can be seen as a
positive affine transformation of a strictly proper scoring rule. Then, according to Lemma
1, the expected share of agent i is strictly maximized when it tells the truth. Conse-
quently, the collectively truthful strategy profile is a strictly Bayes-Nash equilibrium, and
the peer-prediction mechanism is incentive-compatible.

Another way to interpret the above result is to imagine that each agent is betting on
the average evaluation received by each peer. Since the only information available to an
agent are its observed signals, then its best strategy is to bet on these observed signals, i.e.,
to bet on its truthful evaluations. In the following proposition, we illustrate an approach
to avoid collusions by fine-tuning the weight given to the truth-telling scores.

Proposition 4. If α ≥ (M−1)(M+1)2

2
, then the peer-prediction mechanism is collusion-

resistant.

Proof. For this proof, consider the following notation. Let
∗
ζi and

∗
µj be, respectively,

agent i’s score and the average evaluation for agent j when agent i reports its truthful
evaluations, i.e., when si =

∗
si. Also, let ζ̂i and µ̂j be, respectively, agent i’s score and the

average evaluation for agent j when agent i lies in its evaluation for increasing agent j’s
share, i.e., when si = ŝi, such that x̂ji >

∗
xji .
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We start the proof by noting that if agent i lies in its evaluation for agent j, neither µi
nor ζj changes, since they do not depend on xji . We prove that Equation 2.1 holds when
the agents’ shares are computed using the peer-prediction mechanism with specific values
for α. Mathematically,

E
[
µi + α ζ̂i + µ̂j + α ζj

] V

(M + 2α)n
≤ E

[
µi + α

∗
ζi +

∗
µj + α ζj

] V

(M + 2α)n
.

After doing some algebraic manipulations, we have:

α ≥ E [µ̂j −
∗
µj]

E
[ ∗
ζi − ζ̂i

] .
The above inequality implies that we can set a value for α so that the peer-prediction

mechanism will be collusion-resistant. While it is not possible to set α precisely, because
the mechanism does not know agent i’s truthful evaluations, it is possible to set up an
upper-bound on:

E [µ̂j −
∗
µj]

E
[ ∗
ζi − ζ̂i

] , (4.5)

and, then, we can set up the parameter α to a value greater than or equal to that upper-
bound. Starting by the numerator of (4.5), we have:

E [µ̂j −
∗
µj] = E

[
x̂ji −

∗
xji

n− 1

]
(4.6)

≤ M − 1

n− 1

The equality follows from our collusion model, where agent i is the only one misreporting
its evaluation for agent j. The inequality follows from the fact that xji ∈ {1, . . . ,M}. Now,
proceeding with the denominator of (4.5), we observe that:

E
[ ∗
ζi − ζ̂i

]
=
L
(

(ωj|xji )
∣∣∣(ωj|tji ))

n− 1
,

29



where L(· |· ) is the expected scoring loss when agent i misreports its evaluation to ben-
efit agent j (Equation 2.3). The expectation is taken with respect to agent i’s posterior
predictive distributions. From Equation 2.4, we have:

L
(

(ωj|xji )
∣∣∣(ωj|tji )) =

M∑
k=1

(
p(ωkj |t

j
i )− p(ωkj |x

j
i )
)2
.

Since the distribution ωj is uniform, we have that ∀k, p(ωkj |x
j
i ) and p(ωkj |t

j
i ) ∈ { 1

M+1
, 2
M+1
}.

Thus, for tji 6= xji , we have:

L
(

(ωj|xji )
∣∣∣(ωj|tji )) =

2

(M + 1)2 .

In this way,

E
[ ∗
ζi − ζ̂i

]
=

2
(M+1)2

n− 1
. (4.7)

Combining (4.6) and (4.7), we have that if α ≥ (M−1)(M+1)2

2
, then the peer-prediction

mechanism is collusion-resistant.

Intuitively speaking, this proposition means that if the truth-telling scores have a high
weight in the agents’ shares, then these agents will not have strong incentives to collude. In
the following theorem, we show a quite similar approach that guarantees the peer-prediction
mechanism to be always fair.

Theorem 8. If α < 1
2
, then the peer-prediction mechanism is fair.

Proof. Consider a pair of different agents i, j ∈ N and a strategy profile s ∈ S where
xij > xji , and, for every other agent z 6= i, j, xiz > xjz. In this proof, we need to show that
the peer-prediction mechanism satisfies the following inequality:

Γi(s) > Γj(s)⇒

(µi + α ζi)
V

(M + 2α)n
> (µj + α ζj)

V

(M + 2α)n

After doing some algebraic manipulations, we have:
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α <
µi − µj
ζj − ζi

. (4.8)

In what follows, we provide a lower-bound for the fraction in (4.8). Thereafter, we set
α to be less than that lower-bound. Starting by the numerator, we have:

µi − µj =

∑
q 6=i x

i
q −

∑
q 6=j x

j
q

n− 1
(4.9)

≥
∑

q 6=i,j(x
i
q + 1− xjq) + xij − x

j
i

n− 1
≥ 1

The first inequality follows from the facts that ∀q 6= i, j, xiq > xjq, and ∀i, j, xji ∈
{1, . . . ,M}. Thus, we have a lower-bound for the numerator of (4.8). Turning now to
its denominator, we note that ζj − ζi ≤ 2, because truth-telling scores are in the range
[0, 2] (see Equation 2.4). Consequently, if we set α < 1

2
, then we guarantee that the

peer-prediction mechanism is always fair.

Intuitively speaking, this theorem means that we can guarantee that the peer-prediction
mechanism will always be fair by putting a low weight on the truth-telling scores, so that
the resulting shares will depend almost entirely on the received evaluations.

4.3 Concluding Remarks

In this chapter, we presented our second mechanism for sharing rewards using subjective
opinions. The peer-prediction mechanism explicitly incentivises truthfulness by consider-
ing each evaluation reported by an agent as a bet on the average of the others’ evaluations.
This idea shares similarities with the work done by Miller et al [28]. They propose a mech-
anism to induce honest rating feedback. Their scheme uses one agent’s report to update
a probability distribution for the report of someone else (called a reference rater). The
first agent is then scored not on the agreement between the ratings, but on a comparison
between the probabilities assigned to the reference rater’s possible ratings and the reference
rater’s actual rating. Differently from our mechanism, the key idea in that work is that
the correlation in agents’ private information can be used to induce truthful reporting.

Under mild assumptions, we showed that the peer-prediction mechanism is individ-
ually rational, weakly budget-balanced and incentive-compatible. Further, we presented
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approaches that guarantee the mechanism to be collusion-resistant and fair. There are
some drawbacks associated with the peer-prediction mechanism. We start by noting that
the greatest possible share that each agent can receive is V/n (see Equation 4.3). This im-
plies that the mechanism might make a very high profit. We return to this issue in Chapter
6. The second drawback is that the peer-prediction mechanism is not guaranteed to be fair
and collusion-resistant at the same time. There exists a fairly intuitive trade-off here: If
the mechanism overly incentivises truthfulness, it can avoid collusions, but, consequently,
it makes the received evaluations be less representative inside the shares. Alternatively, if
the mechanism does not adequately incentivise truthfulness, agents may have incentives
to collude, but the received evaluations will be more representative inside the shares. We
argue that the underlying application may help the mechanism’ administrator to choose
the most desirable property between fairness and collusion-resistance, and thus to set the
parameter α accordingly.
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Chapter 5

The BTS Mechanism

In this chapter, we propose our last mechanism for sharing rewards using subjective opin-
ions, the BTS mechanism. It is based on the principle of metaknowledge, i.e., knowledge
about knowledge. In detail, we use the theory that a knowledgeable agent (or expert)
is not only informed about the answer to a specific problem, but it may also know how
the other agents respond to that problem. In our model, this means that an agent is not
only informed about its truthful evaluation for a peer, but it may also know the likely
distribution of the evaluations received by that peer.

In our previous mechanism, we used scoring rules to promote truthfulness. An evident
problem with our approach is that agents may bias their evaluations toward the average
evaluations, instead of telling the truth, since scoring rules does not account for variations
in the quality of opinions. Hence, trying to take into account the information quality in the
reported opinions, we use the BTS method (Section 2.5) to incentivise truthfulness in our
new mechanism. This method is particularly suited to scenarios where minority opinions
possess a greater likelihood of truth than indicated by their relative popularity.

Under the assumptions that agents are Bayesian decision-makers and that the popu-
lation of agents is sufficiently large so that a single evaluation cannot significantly affect
the empirical distribution of evaluations, we show that the BTS mechanism is incentive-
compatible and budget-balanced, and we present strategies to guarantee that the mecha-
nism will always be individually rational and fair.

5.1 The Mechanism

The mechanism starts by requesting both evaluations and predictions from agents, i.e., ∀i ∈
N, si = (xi,yi). Besides the basic assumptions required by the model, i.e., independent
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signals and self-interestedness (Section 2.1), we hold the four extra assumptions stated in
Section 2.5 to be possible to use the BTS method. These assumptions essentially mean that
agents are Bayesian decision-makers and that the population of agents is sufficiently large so
that a single evaluation cannot significantly affect the empirical distribution of evaluations.
We discuss the implications of these extra assumptions throughout this chapter. We note
that even though the BTS mechanism requires a common prior over the truthful evaluations
for each peer, these priors do not need to be uniformly distributed, differently from the
peer-prediction mechanism.

For each vector with evaluations, xi, the BTS mechanism creates a second vector,
χi = (χ1

i , . . . , χ
i−1
i , χi+1

i , . . . , χni ), by scaling the elements of the first one to sum up to V .
Mathematically,

∀i, j, χji = xji

(
V∑
q 6=i x

q
i

)
.

This simple adjustment in agents’ evaluations assures that the sum of the final shares
is not orders of magnitude lower than the reward V . Similarly to the peer-prediction
mechanism, the share received by each agent i ∈ N has two major components. The first
one, χ̄i, reflects the aggregation of the evaluations received by agent i. It is calculated by
summing the scaled evaluations received by agent i, and dividing the result by n, i.e.,

χ̄i =

∑
j 6=i χ

i
j

n
.

The fact that we are dividing by n instead of taking the arithmetic mean, i.e., dividing
by n−1, assures important properties for the mechanism. The second component of agent
i’s share is a score that explicitly incentivises truthfulness. The main idea here is that
agents have their scores maximized, in an expected sense, when they truthfully report
their evaluations and predictions. The score of agent i is calculated as follows:

ζi =

∑
j 6=i serum(i, j)

n− 1
,

where serum(i, j) is a value received by agent i from the BTS method when agent i reports
xji and yji . Thus, the score of agent i is the arithmetic mean of the results provided by the
Bayesian truth serum method, where each result is directly related to an evaluation and
a prediction submitted by agent i. It is important to note that we use a slightly different
version of the BTS method than the original one presented in Section 2.5 (Equation 2.5).
In detail, we use a recalibration coefficient, 0 < ε < 1, to adjust predictions and averages
away from 0/1 extremes. Formally,
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serum(i, j) =
M∑
k=1

h(xji , k) log
x̄k
ȳk

+
M∑
k=1

x̄k log

(
(1− ε)yj

k

i + ε
M

x̄k

)
, (5.1)

where x̄k and ȳk are now:

x̄k = (1− ε)

(
1

n− 1

∑
q 6=j

h(xjq, k)

)
+

ε

M
,

ȳk = exp

(
1

n− 1

∑
q 6=j

log
(

(1− ε)yjkq +
ε

M

))
.

where h(xji , k) is a zero-one indicator function. Such a change prevents problems related
to values for log(0) and log(0/0). We argue that it does not have influence on the original
properties of the BTS method, i.e., Theorem 1 to 4 still hold, since we are essentially
reducing the range of predictions and averages. Now, we have that:

0 <
ε

M
< x̄k, ȳk < 1− ε+

ε

M
< 1 (5.2)

We can see the computation of each agent’s score as if it is answering multiple inde-
pendent questions and receiving multiple independent scores for its answers, where each
question asks for both an evaluation for a peer and a prediction for the empirical distri-
bution of evaluations received by that peer. At the end, a final score is calculated as the
arithmetic mean of those multiple independent scores. In this way, the function serum(i, j)
represents the score given to agent i when it answers the question about the evaluation
and prediction for agent j.

Finally, the share of agent i is a linear combination of the scaled evaluations received
by it, χ̄i, and agent i’s score, ζi, i.e.,

Γi = χ̄i + α ζi, (5.3)

where the constant α > 0 fine-tunes the weight given to the score ζi. It is useful to note
that despite the assumptions of the prior and posterior distributions required to use the
BTS method, they are neither known nor requested by the mechanism, only evaluations
and predictions are elicited from agents. Algorithm 3 presents the sharing function of
the BTS mechanism from an algorithmic perspective. To illustrate the BTS mechanism,
consider the following example:
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Algorithm 3 The BTS Mechanism

1: for i = 1 to n do
2: for j 6= i do

3: χji = xji

(
V∑
q 6=i x

q
i

)
4: end for
5: end for
6: for i = 1 to n do
7: χ̄i =

∑
j 6=i χ

i
j

n

8: ζi =
∑
j 6=i serum(i,j)

n−1

9: Γi = χ̄i + α ζi
10: end for

Example 5. Suppose that six agents A,B,C,D,E and F , want to share a reward V = 1000
using the BTS mechanism and a “positive/negative” scheme, i.e., M = 2. The reported
evaluations and predictions can be seen, respectively, in the left part of Table 5.1 and in
Table 5.2.

In Table 5.1, each numeric cell beneath the label “Evaluation” can be interpreted as the
evaluation given by the agent in the row to the agent in the column. Each numeric cell
beneath the label “Scaled Evaluation” has the same meaning, but this time the evaluations
reported by each agent are scaled to sum up to V .

Table 5.1: Example of the BTS mechanism: reported evaluations.
Evaluation Scaled Evaluation

A B C D E F A B C D E F
A - 2 2 1 1 1 - 285.71 285.71 142.86 142.86 142.86
B 1 - 2 2 1 2 125.00 - 250.00 250.00 125.00 250.00
C 1 2 - 1 1 2 142.86 285.71 - 142.86 142.86 285.71
D 1 2 2 - 1 2 125.00 250.00 250.00 - 125.00 250.00
E 2 2 1 2 - 2 222.22 222.22 111.11 222.22 - 222.22
F 2 2 1 2 1 - 250.00 250.00 125.00 250.00 125.00 -

In Table 5.2, each numeric cell can be interpreted as the prediction made by the agent in
the row about the percentage of agents that submit the evaluation in the second row (“1”
or “2”) to the agent in the column. For example, the emphasized value 0.8, below the
label “A” and on the right of the label “B”, means that agent B predicts that 80% of the
population give the evaluation “1” to agent A. Using these evaluations and predictions,
and setting the mechanism’s parameters α = 100 and ε = 0.01, the mechanism returns the
shares presented in the last column of Table 5.3.
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Table 5.2: Example of the BTS mechanism: reported predictions.
A B C D E F

“1” “2” “1” “2” “1” “2” “1” “2” “1” “2” “1” “2”
A - - 0 1 0.4 0.6 0.2 0.8 1 0 0.2 0.8
B 0.8 0.2 - - 0.2 0.8 0.2 0.8 1 0 0.4 0.6
C 0.8 0.2 0 1 - - 0.4 0.6 1 0 0.4 0.6
D 0.8 0.2 0.2 0.8 0.6 0.4 - - 0.8 0.2 0.4 0.6
E 0.8 0.2 0 1 0.6 0.4 0.4 0.6 - - 0.4 0.6
F 0.8 0.2 0.8 0.2 0.6 0.4 0.4 0.6 0.8 0.2 - -

Table 5.3: Example of the BTS mechanism: resulting shares.
χ̄i ζi Γi

A 144.18 0.05 149.39
B 215.61 -0.06 209.73
C 170.30 0.09 179.80
D 167.99 -0.02 166.03
E 110.12 0.16 125.76
F 191.80 -0.21 170.80

For illustration’s sake, consider the share received by agent F . The first component of
ΓF is the aggregation of the scaled evaluations received by agent F , that is:

χ̄F =
142.86 + 250.00 + 285.71 + 250.00 + 222.22

6
≈ 191.80.

The second component of ΓF is the arithmetic mean of the results provided by the BTS
method (Equation 5.1), each one related to an evaluation and a prediction reported by agent
F :

ζF =
serum(F,A) + serum(F,B) + serum(F,C) + serum(F,D) + serum(F,E)

5

≈ 0.58− 1.19− 0.18− 0.11− 0.11

5
≈ −0.21.

Finally, the share of agent F is a linear combination of χ̄F and ζF .
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ΓF = χ̄F + α ζF

≈ 191.80 + 100× (−0.21)

≈ 170.80.

5.2 Properties

In this section, we show the properties concerning the BTS mechanism.

Proposition 5. The BTS mechanism is budget-balanced.

Proof. The sum of the shares received by the agents is equal to:

n∑
i=1

(
χ̄i + α ζi

)
=

n∑
i=1

χ̄i + α
n∑
i=1

ζi

=
n∑
i=1

(∑
j 6=i χ

i
j

n

)
+ α

n∑
i=1

(∑
j 6=i serum(i, j)

n− 1

)

=
n∑
j=1

(∑
i 6=j χ

i
j

n

)
+ α

n∑
j=1

(∑
i 6=j serum(i, j)

n− 1

)

= n

(
V

n

)
+

α

n− 1

(
n∑
j=1

∑
i 6=j

serum(i, j)

)
.

The left part of this last equation follows from the fact that the scaled evaluations
sum up to V . From Theorem 4, we know that if the BTS’s parameter β = 1, then∑

i 6=j serum(i, j) = 0. Then, the right part of this last equation is equal to zero, completing
the proof.

Proposition 6. If α ≤ V

2Mn log(Mε )
, then the BTS mechanism is individually rational.

Proof. We start the proof by observing that ∀i ∈ N, χ̄i ≥ 0. Thus, whenever the scores of
the agents are positive, their shares will also be positive because α > 0. So, we focus on
the case where the scores are negative. In what follows, we set a value for α so that we
guarantee that the share of every agent i ∈ N is greater than or equal to zero, even when
ζi ≤ 0. Formally, we assure that the following inequality is still valid when ζi ≤ 0:
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χ̄i

−ζi
≥ α.

For doing this, we compute a lower-bound for the above fraction. Thereafter, we set α
to be less than or equal to that lower-bound. Starting by the numerator, we have:

χ̄i =

∑
j 6=i x

i
j

(
V∑
q 6=j x

q
j

)
n

(5.4)

≥

∑
j 6=i x

i
j

(
V

M (n−1)

)
n

≥ V (n− 1)

M n(n− 1)

=
V

M n

The inequalities follow from the fact ∀i, j, xji ∈ {1, . . . ,M}. Now, we compute the
smallest negative value that ζi can have. Since ζi is the average of n − 1 results from
the BTS method, we can restrict ourselves to find the smallest negative value that can
be returned by the BTS method (Equation 5.1). For simplicity’s sake, consider the value
returned by serum(i, j). Focusing on the left part of Equation 5.1, we have:

M∑
k=1

h(xji , k) log
x̄k
ȳk
≥

M∑
k=1

h(xji , k) log x̄k (5.5)

≥ log
( ε

M

)
The first inequality follows from 0 < ȳk < 1. The second inequality follows from

ε
M
< x̄k < 1− ε+ ε

M
. Moving to the right part of Equation 5.1, we have:

M∑
k=1

x̄k log

(
(1− ε)yj

k

i + ε
M

x̄k

)
≥

M∑
k=1

x̄k log
( ε

M

)
(5.6)

=
(

1− ε+
ε

M

)
log
( ε

M

)
≥ log

( ε

M

)

39



The first inequality follows from the facts that 0 < x̄k < 1 and (1−ε)yj
k

i ≥ 0. The second
inequality follows from the facts that log(ε/M) < 0, and

(
1− ε+ ε

M

)
< 1. Joining 5.5

and 5.6, we have:

serum(i, j) ≥ 2 log
( ε

M

)
(5.7)

Finally, joining 5.4 and 5.7, we conclude that:

α ≤ V

M n
(
−2 log

(
ε
M

)) ⇒
α ≤ V

2Mn log
(
M
ε

)
Since agents’ scores can be negative, the above proposition says that we can guarantee

that the shares will always be positive by putting a low weight on scores. For illustration’s
sake, if α ≤ 7.87, then the shares returned by the BTS mechanism, in the scenario of
Example 5, are greater than zero, regardless the evaluations and predictions reported by
the agents.

Theorem 9. The BTS mechanism is incentive-compatible.

Proof. Suppose that every peer of an agent i ∈ N truthfully reports its strategy. We prove
that the best response of agent i, in an expected sense, is also to tell the truth. Consider
the share received by agent i from the mechanism:

Γi = χ̄i + α ζi

=

∑
j 6=i χ

i
j

n
+ α

(∑
j 6=i serum(i, j)

n− 1

)
= C1 + C2

∑
j 6=i

serum(i, j),

where C1 and C2 are positive constants, from agent i’s point of view, because they do not
depend on the strategy reported by agent i. We note that

∑
j 6=i serum(i, j) is similar to

the function gi(Z), defined in Equation 2.6. Consequently, agent i’s share can be seen as
a positive affine transformation of the scoring function g, and, according to Lemma 4, it
is maximized, in an expected sense, when agent i tells the truth, where the expectation
in taken with respect to agent i posterior beliefs. So, the BTS mechanism is incentive-
compatible and the collectively truthful strategy profile is a Bayes-Nash equilibrium.
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Theorem 10. If M ≤
√
n− 2 and α ≤ V

3Mn2 log(Mε )
, then the BTS mechanism is fair.

Proof. Consider a pair of different agents i, j ∈ N and a strategy profile s ∈ S where
xij > xji , and, for every other agent z 6= i, j, xiz > xjz. In this proof, we show that, with
appropriated values for α, the BTS mechanism always satisfies the following inequality:

Γi(s) > Γj(s)⇒
χ̄i + α ζi > χ̄j + α ζj

After doing some algebraic manipulations, we have:

α <
χ̄i − χ̄j

ζj − ζi
. (5.8)

In what follows, we provide a lower-bound for the above fraction. Thereafter, we set α
to be less than that lower-bound. Starting by its numerator, we have:

χ̄i − χ̄j =

∑
z 6=i,j (xiz − xjz)

(
V∑
q 6=z x

q
z

)
+ xij

(
V∑
q 6=j x

q
j

)
− xji

(
V∑
q 6=i x

q
i

)
n

(5.9)

≥ V

n

(
n− 2

(n− 1)M
+

1

(n− 1)M
− M

(n− 1)

)
=

V

n

(
n− 2 + 1−M2

(n− 1)M

)
≥ V

n(n− 1)M

≥ V

n2M
.

The first inequality follows from the facts that for every agent z 6= i, j, xiz > xjz,
and that ∀i, j, xji ∈ {1, . . . ,M}. The second inequality follows from the assumption that
M ≤

√
n− 2. Moving to the denominator of 5.8, since each score is the arithmetic mean

of the results from the BTS method (Equation 5.1), and that scores can be negative,
we can restrict ourselves to compute the largest positive and the smallest negative value
that the function serum(i, j) can return. In the proof of Proposition 6, we found that
serum(i, j) ≥ 2 log ε

M
. To compute the largest positive value, we start by focusing on the

left part of Equation 5.1:
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M∑
k=1

h(xji , k) log
x̄k
ȳk
≤

M∑
k=1

h(xji , k) log
1

ȳk
(5.10)

≤ log

(
1
ε
M

)
= log

(
M

ε

)

The first inequality follows from 0 < x̄k < 1. The second inequality follows from
ε
M
< ȳk < 1− ε + ε

M
. Moving to the right part of Equation 5.1, we note that it is always

less than or equal to zero, because it can be seen as the negative of the Kullback-Leibler
divergence, which is always greater than or equal to zero [9]. Thus, we have:

serum(i, j) ≤ log

(
M

ε

)
(5.11)

Joining 5.7 and 5.11, we have:

ζj − ζi ≤ log

(
M

ε

)
− 2 log

( ε

M

)
(5.12)

Finally, joining 5.9 and 5.12, we conclude that:

α ≤ V

Mn2
(
log
(
M
ε

)
− 2 log

(
ε
M

)) =
V

3Mn2 log
(
M
ε

)

Since the bound for α in Theorem 10 is less than the bound in Proposition 6, we
conclude that whenever the BTS mechanism is guaranteed to be fair, if M ≤

√
n− 2, then

the mechanism will also be guaranteed to be individually rational. Related to the collusion-
resistance property, we briefly note that for making the BTS mechanism collusion-resistant,
the following inequality must hold:

α ≥
E
[
ˆ̄χj − ∗

χ̄j
]

E
[ ∗
ζi − ζ̂i

] , (5.13)
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where
∗
ζi and

∗
χ̄j are, respectively, agent i’s score and the aggregated scaled evaluation for

agent j when agent i reports its truthful evaluations, i.e., when si =
∗
si. Oppositely, ζ̂i and

ˆ̄χj are, respectively, agent i’s score and the aggregated scaled evaluation for agent j when
agent i lies in its evaluation for increasing agent j’s share, i.e., when si = ŝi, such that
x̂ji >

∗
xji .

There exist two problems with the denominator of the above fraction. First, we ob-
serve that this expectation can be derived from the proofs of Theorem 1 and 4 [32], but
the resulting value depends on probability distributions that directly use the common prior
distribution (see Assumption 3, in Section 2.5). Further, there is no guarantee that this
expected value is either positive or negative, or even zero. Another way to visualize this
fact is by noting that, according to Theorem 2, the expected information score (left part of
Equation 5.1) is non-negative, and that the expected prediction score (right part of Equa-
tion 5.1) is non-positive, since it is a penalty proportional to the relative entropy. Conse-
quently, we cannot make the BTS mechanism collusion-resistant by fine-tuning the weight
given to scores. Further investigation on schemes for guaranteeing collusion-resistance is
left as future research work.

Since a beneficiary does not have its score increased when an agent lies to increase
its share, the maximum value that an agent can receive from the BTS mechanism due
exclusively to a collusive behavior is equal to the similar value from the peer-evaluation
mechanism. Thus, Proposition 2 also holds here, i.e., the maximum value that an agent
can receive due to a collusive behavior is less than V (M−1)

(n−1)n
.

5.3 Concluding Remarks

In this chapter, we presented our last mechanism for sharing rewards using subjective
opinions. The BTS mechanism is based on the principle of metaknowledge, where a
knowledgeable agent knows both its evaluation for a peer and the likely distribution of
the reported evaluations for that peer. The mechanism incentivises truthfulness by using
the BTS method on the reported evaluations and predictions.

Under the assumptions that agents are Bayesian decision-makers and that the popu-
lation of agents is sufficiently large so that a single evaluation cannot significantly affect
the empirical distribution of evaluations, we showed that the BTS mechanism is incentive-
compatible and budget-balanced, and we presented strategies to guarantee that the mech-
anism will always be individually rational and fair.

Another property of our mechanism worthwhile to discuss is the non-consensuality.
An agent does not necessarily increase its share by biasing its evaluations toward the
likely group consensus. First, its aggregated scaled evaluations do not depend on its
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reported evaluations. Second, its score does not necessarily increase due to the surprisingly
common criterion used by the Bayesian truth serum method. For illustration, suppose that
a particular evaluation is highly predicted for a peer and endorsed by the majority, but less
than the predicted number of agents. Such evaluation is a surprisingly uncommon answer,
hence it receives a low score. Then, agents who believe that their evaluations represent
a minority view do better in not biasing their evaluations toward the consensus, because,
even as a minority, their evaluations can still be surprisingly common and, consequently,
receive a higher score. This is, arguably, the main difference between the BTS mechanism
and the peer-prediction mechanism, i.e., the former takes into account the information
quality in the reported opinions when computing scores.

Finally, despite the fact that we were unable to show a strategy to avoid collusions, we
argue that in practical applications it may not be easy for the agents to undermine the BTS
mechanism through collusions. In some way, the colluders must develop a sophisticated
theory on how the other agents are evaluating and predicting, since a liar agent may have
its score substantially decreased if its untruthful evaluation turns out to be surprisingly
uncommon.

Related to the four extra assumptions made (see Section 2.5), we note that the only
reason for holding them is to make the mathematics behind the BTS method work. The
first three mean that agents are Bayesian decision-makers. Despite the fact that there is
little evidence that they are realistic, these assumptions are traditional in Bayesian game-
theoretic work [31, 21]. By far, the most stringent of our assumptions is the requirement
of a large population. However, we note that some works have successfully used the
BTS method with small populations. For example, Weiss used the BTS method to asses
chess expertise in two different populations: the experts, which have 15 members, and
the novices, with 13 members [46]. Prelec and Seung successfully used the BTS method
with two distinct populations having sizes, respectively, 51 and 32 [33]. Finally, Prelec and
Weaver empirically showed that the BTS method encourages and rewards truthfulness [34].
They used 4 populations, all with size 33. We observe that more important than having a
very large population of agents is a guarantee that each empirical distribution of received
evaluations is balanced, i.e., that there exists a significant number of endorsements for
each possible evaluation. In this way, the influence of a single agent on the empirical
distributions of evaluations is reduced. A good rule of thumb is to use a value for the
parameter M less than or equal to

√
n− 2 because it only allows a small number of

possible evaluations in relation to the number of agents, and, with appropriate values for
α, this value also assures fairness.
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Chapter 6

Numerical Experiments

In this chapter, we empirically investigate the influence of the mechanisms’ parameters on
agents’ shares. We start by studying the consequences of using different values for the
parameter M , the top possible evaluation that an agent can give or receive, when the
truthful evaluations are either uniformly distributed or normally distributed.

Thereafter, we analyze the behavior of the mechanisms with different values for α,
the parameter that fine-tunes the weight given to the truth-telling scores. In detail, we
empirically investigate when fairness, individual rationality and collusion-resistance hold,
considering that the truthful evaluations are either uniformly distributed or normally dis-
tributed. Finally, we analyze how the mechanisms behave when dealing with populations
of different sizes.

6.1 Parameter M

The parameter M defines the range of possible evaluations that an agent can give or
receive. A natural question to ask is which value of M should be used. We start by noting
that M has a great influence on two aspects of the mechanisms. First, as M increases,
then the evaluations can be more fine-grained, in that small differences between agents can
be recognized and specified by their peers. However, this increased expressivity can also
make the evaluation process more challenging, since agents will have more possibilities to
evaluate their peers. On the other hand, lower values of M make the evaluation step of
the agents simpler, since they do not need to differentiate between their peers as much.
However, this may increase the sense of unfairness among the agents, since they cannot be
properly differentiated and, thus, they may end up with similar shares.

To better understand the influence of different values of M on agents’ shares, we propose
the following experiment. For each proposed mechanism, we share the reward V = 10000
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among 100 agents using the following values for M : 2, 5, 7, 10, 25, 50, 75 and 100. We
deliberately choose a fairly large population to make the results statistically significant.
For the peer-prediction mechanism, we use the fixed parameter α = 0.5, and, for the BTS
mechanism, we use the parameters α = 10 and ε = 0.01. In this experiment, agents always
report their observed signals. Firstly, these signals are drawn from a uniform distribution.
For generating random predictions, we use the algorithm proposed by Stafford [43]. This
algorithm creates random, uniformly distributed vectors with fixed sum. We observe the
mean, the standard deviation and the range of the resulting shares. Table 6.1 shows these
values. Figure 6.1, 6.2 and 6.3 visually show the same results.

Table 6.1: Results of the proposed mechanisms with different values for M . The other
parameters are fixed: n = 100, V = 10000, α = 0.5 (peer-prediction), α = 10 (BTS),
ε = 0.01. Truthful evaluations are uniformly distributed.

Peer-Evaluation Peer-Prediction BTS
M Avg. Std. Range Avg. Std. Range Avg. Std. Range
2 100.00 2.85 11.75 73.61 1.50 7.41 100.00 2.82 11.91
5 100.00 4.73 28.31 59.57 2.32 13.64 100.00 4.72 27.55
7 100.00 5.00 24.05 57.48 2.54 12.25 100.01 4.92 23.12
10 100.00 5.47 28.66 55.32 2.74 14.57 100.01 5.48 29.42
25 100.00 5.75 28.37 51.99 2.87 14.02 100.03 5.79 28.43
50 100.00 4.80 23.37 50.79 2.38 11.23 100.09 4.89 23.77
75 100.00 6.16 28.33 50.28 3.07 14.43 100.15 6.30 29.92
100 100.00 5.78 30.90 50.78 2.90 15.78 100.21 5.74 31.17

Figure 6.1: Results of the peer-evaluation mechanism with different values for M when
truthful evaluations are uniformly distributed. The averages of the shares are represented
by the black squares, and the standard deviations by the gray lines. The dotted line is
used to facilitate visualization. The parameters are: n = 100, V = 10000.
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Figure 6.2: Results of the peer-prediction mechanism with different values for M when
truthful evaluations are uniformly distributed. The averages of the shares are represented
by the black squares, and the standard deviations by the gray lines. The dotted line is
used to facilitate visualization. The parameters are: n = 100, V = 10000, α = 0.5.

Figure 6.3: Results of the BTS mechanism with different values for M when truthful
evaluations are uniformly distributed. The averages of the shares are represented by the
black squares, and the standard deviations by the gray lines. The dotted line is used to
facilitate visualization. The parameters are: n = 100, V = 10000, α = 10, ε = 0.01.
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From the results of this first experiment, the influence of M on the standard deviation
and range of agents’ shares seems to be negligible. Intuitively, since the evaluations received
by each agent are uniformly distributed, it is very difficult (in a probabilistic sense) that an
agent receives a lot of extremely positive or negative evaluations. In other words, almost
all agents end up with similar aggregated evaluations.

Alternatively, as M increases, the average share returned by the peer-prediction mech-
anism decreases, i.e., the mechanism makes a larger profit. This was already expected
because agents’ shares are scaled by using the constant V

(M+2α)n
, which has the parame-

ter M in its denominator (Equation 4.3). Consequently, the higher the value of M , the
lower the average of the resulting shares. A similar situation does not occur with the
other mechanisms because they are budget-balanced, i.e., the average share stays (approx-
imately) constant.

Trying to understand the influence of M on the proposed mechanisms in a (arguably)
more realistic scenario, we repeat the experiment, but this time assuming that agents’
truthful evaluations follow a normal distribution. In detail, for each agent in the population,
we uniformly select a value inside the set {1, . . . ,M}, and use it as the mean of a normal
distribution, which is employed to generate the truthful evaluations for that agent. We use
a not so large variance with value M/8. This scenario implies that the agents observe fairly
similar signals from a specific peer. If a random evaluation is less than 1 or greater than
M , we reset this value to, respectively, 1 and M . We use the same values for the other
parameters as before, i.e., V = 10000, n = 100, M ∈ {2, 5, 7, 10, 25, 50, 75, 100}, α = 0.5
for the peer-prediction mechanism, α = 10 for the BTS mechanism, and ε = 0.01. Agents
report their observed signals and predictions are generated by using Stafford’s algorithm
[43]. Table 6.1 shows the mean, the standard deviation and the range of the resulting
shares in this new scenario. Figure 6.4, 6.5 and 6.6 visually show similar results.

Table 6.2: Results of the proposed mechanisms with different values for M . The other
parameters are fixed: n = 100, V = 10000, α = 0.5 (peer-prediction), α = 10 (BTS),
ε = 0.01. Truthful evaluations are normally distributed.

Peer-Evaluation Peer-Prediction BTS
M Avg. Std. Range Avg. Std. Range Avg. Std. Range
2 100.00 13.77 34.17 85.29 8.07 20.99 100.09 13.82 34.23
5 100.00 35.08 101.31 68.34 20.23 58.42 100.21 35.01 102.35
7 100.00 41.12 127.07 61.05 22.02 68.20 100.25 41.29 125.79
10 100.00 47.88 142.13 58.31 25.42 75.42 100.30 48.05 141.31
25 100.00 47.95 158.89 57.58 26.63 88.26 100.42 47.96 158.73
50 100.00 50.16 170.39 54.87 27.02 91.80 100.50 50.40 172.30
75 100.00 53.84 188.44 49.99 26.56 92.93 100.53 53.95 188.98
100 100.00 55.55 183.23 52.60 28.94 95.46 100.57 55.52 184.35
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Figure 6.4: Results of the peer-evaluation mechanism with different values for M when
truthful evaluations are normally distributed. The averages of the shares are represented
by the black squares, and the standard deviations by the gray lines. The dotted line is
used to facilitate visualization. The parameters are: n = 100, V = 10000.

Figure 6.5: Results of the peer-prediction mechanism with different values for M when
truthful evaluations are normally distributed. The averages of the shares are represented
by the black squares, and the standard deviations by the gray lines. The dotted line is
used to facilitate visualization. The parameters are: n = 100, V = 10000, α = 0.5.
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Figure 6.6: Results of the BTS mechanism with different values for M when truthful
evaluations are normally distributed. The averages of the shares are represented by the
black squares, and the standard deviations by the gray lines. The dotted line is used to
facilitate visualization. The parameters are: n = 100, V = 10000, α = 10, ε = 0.01.

From the results of this second experiment, we observe that asM increases, the standard
deviation and range of the resulting shares often significantly increase. Intuitively, the
differences between agents are better recognized and specified by the peers, resulting in fine-
grained differences in the final shares. Another way to explain these results is by noting that
it is not so rare, in a probabilistic sense, that an agent receives a lot of extremely positive
or negative evaluations, when these evaluations are normally distributed with a large or a
small mean. Thus, differently from the previous experiment, the resulting evaluations and,
consequently, shares are not very similar. Also, as M increases, the average share returned
by the peer-prediction mechanism decreases, similarly to what happened in the previous
experiment, and according to what is expected from the theory.

A point interesting to note is that the results, in both experiments, related to the peer-
evaluation mechanism and the BTS mechanism are very similar. This happens because
we deliberately choose a fairly small value for α, the constant that fine-tunes the weight
given to the truth-telling scores. Consequently, the sharing functions of these mechanisms
become very similar (see Equation 3.1 and Equation 5.3). The reason for doing this is
that we explicitly program the agents to tell the truth. Consequently, it is not necessary
to incentivise truthfulness. Another interesting point in both experiments is that when M
comes closer to n, the budget-balance property of the BTS mechanism seems to dissolve
since the average share is greater than V/n. We return to this point in Section 6.3.

We end this section by noting that while it might by theoretically interesting to use a
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small value for M , since this may guarantee fairness (see Theorem 6, 8, 10) and a lower
profit for the peer-prediction mechanism (see Equation 4.3), this may also result in a more
egalitarian assignment of the shares, since it will be more difficult for the agents to express
differences between themselves. We argue that the underlying application may help to
determine appropriate settings for M .

6.2 Parameter α

The shares returned by the peer-prediction and BTS mechanisms have two major compo-
nents. While the first one reflects the evaluations received by the agents, the second one
is a truth-telling score with the complementary role of incentivising truthfulness. We need
to balance these components for creating meaningful results.

Our solution is to use a constant, α, which fine-tunes the weight given to the truth-
telling scores. This parameter has an important role in ensuring desirable properties for
the mechanisms (see Chapter 4 and 5). In this section, we investigate this role from an
empirical perspective. In detail, we look at how different values of α influence collusion-
resistance, individual rationality and fairness properties.

We start by making the following experiment. For each proposed mechanism, we share
the reward V = 10000 among 30 agents using the parameter M = 5 and the following
values for α: 0.1, 1, 5, 10, 25, 50, 100, 500. We use the recalibration coefficient ε = 0.01 for
the BTS mechanism. Even though the peer-evaluation mechanism does not use truth-
telling scores and, consequently, it does not use the parameter α, we include it in this
experiment for completeness’ sake. The truthful evaluations are drawn from a uniform
distribution. Predictions are randomly generated according to the algorithm proposed by
Stafford [43]. We run this experiment 100 times and, for each value of α, we observe three
points. First, we notice the difference between the average joint share of two fixed agents
when both of them truthfully report their opinions and when they are colluding, i.e., when
one of them lies trying to increase the share of the other. The liar agent always reports the
top possible evaluation for its collusion partner, and its truthful evaluations for the others.
Everyone else in the population reports its observed signals. Thus, we are empirically
looking at values of α that can prevent such collusions, i.e., values where the expected
joint share when both agents tell the truth is greater than when they are colluding.

Second, for each value of α, we compute the number of unfair shares returned by each
mechanism throughout the experiment. In detail, for each simulation step, we make a
pairwise comparison of the shares returned by a mechanism (when all agents truthfully
report their opinions) determining whether they are fair or not (see Definition 4).

Finally, we compute the number of negative shares returned by each mechanism through-
out the experiment when all agents truthfully report their opinions. Table 6.3, 6.4, and
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6.5 show, respectively, the results of this experiment for the peer-evaluation, the peer-
prediction and the BTS mechanisms. Figure 6.7, 6.8, and 6.9 visually show the results
related to the collusion-resistance property.

To show the statistical significance of the results obtained for the collusion-resistance
property, we perform the directional t-test. Our null hypothesis is that the average joint
share when the fixed agents are telling the truth is equal to the average joint share when
they are colluding. Our alternative hypothesis is that the average joint share when both
agents are telling the truth is greater than the average joint share when they are colluding.
Since each agent that is not colluding is always reporting its observed signals, then the
average joint share when the fixed agents are telling the truth and the average joint share
when they are colluding are correlated. Thus, we use the t-test for correlated samples
(also known as paired t-test). This test allows us to remove irrelevant and extraneous
information from the analyzed shares. The resulting p-values can be seen in Table 6.6.

Focusing first on the results related to the collusion-resistance property, from Table
6.3 we observe that the average joint share returned by the peer-evaluation mechanism
when the fixed agents are colluding is always greater than when they are telling the truth.
Further, these values do not change with different values for α. These points were already
expected since this mechanism does not use truth-telling scores and, consequently, it does
not use α.

Moving to the results for the peer-prediction mechanism, we first note that according

to the theory (Proposition 4, Section 4.2), if α > (M−1)(M+1)2

2
, then the mechanism is

guaranteed to be collusion-resistant. In our experiment, this means that α must be greater
than 72. The results in Table 6.4 show that even using lower values for α, e.g. 50, the
average joint share can be greater when the fixed agents are telling the truth than when
they are colluding. However, we note that when α = 50, this result is not statistically
significant for a confidence level greater than 92%. On the other hand, for α ≥ 100, the
results are statistically significant with a confidence level of 99%. An interesting point here
is that when the value of α increases, the mechanism becomes stronger against collusions,
i.e., the loss by lying increases. This value seems to converge to 0.

Finally, looking at the results for the BTS mechanism, we notice that high values for
α result in lower gains by colluding. Empirically, it seems that this mechanism can be
collusion-resistant by using a very high value for α. For lower values of α, the results for
the BTS mechanism are very similar to the results for the peer-evaluation mechanism. This
happens because when α is small, then the sharing functions of these mechanisms become
very similar (see Equation 3.1 and Equation 5.3).
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Table 6.3: Results of the peer-evaluation mechanism with different values for α. The
other parameters are fixed: n = 30, V = 10000, M = 5. 100 simulations are used.
Truthful evaluations are uniformly distributed. “Avg. 1” and “Std. 1” are, respectively,
the average and the standard deviation of the joint share of two fixed agents when they
truthfully report their opinions. “Avg. 2” and “Std. 2” are, respectively, the average
and the standard deviation of the joint share of two fixed agents when they are colluding.
“Unfair shares” and “Negative shares” are, respectively, the total number of unfair shares
and the total number of negative shares that occurred throughout the simulation.

α Avg. 1 Std. 1 Avg. 2 Std. 2 Unfair shares Negative shares
0.1 667.72 43.74 675.38 42.44 0 0
1 667.72 43.74 675.38 42.44 0 0
5 667.72 43.74 675.38 42.44 0 0
10 667.72 43.74 675.38 42.44 0 0
25 667.72 43.74 675.38 42.44 0 0
50 667.72 43.74 675.38 42.44 0 0
100 667.72 43.74 675.38 42.44 0 0
500 667.72 43.74 675.38 42.44 0 0

Table 6.4: Results of the peer-prediction mechanism with different values for α. The
other parameters are fixed: n = 30, V = 10000, M = 5. 100 simulations are used.
Truthful evaluations are uniformly distributed. “Avg. 1” and “Std. 1” are, respectively,
the average and the standard deviation of the joint share of two fixed agents when they
truthfully report their opinions. “Avg. 2” and “Std. 2” are, respectively, the average
and the standard deviation of the joint share of two fixed agents when they are colluding.
“Unfair shares” and “Negative shares” are, respectively, the total number of unfair shares
and the total number of negative shares that occurred throughout the simulation.

α Avg. 1 Std. 1 Avg. 2 Std. 2 Unfair shares Negative shares
0.1 399.84 25.46 404.42 24.64 0 0
1 398.04 19.03 401.36 18.45 0 0
5 395.28 9.80 396.64 9.63 0 0
10 394.31 7.28 394.99 7.26 0 0
25 393.52 6.10 393.64 6.16 0 0
50 393.21 5.98 393.11 6.05 0 0
100 393.04 6.01 392.82 6.08 0 0
500 392.90 6.08 392.58 6.15 0 0
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Table 6.5: Results of the BTS mechanism with different values for α. The other parameters
are fixed: n = 30, V = 10000, M = 5, ε = 0.01. 100 simulations are used. Truthful
evaluations are uniformly distributed. “Avg. 1” and “Std. 1” are, respectively, the average
and the standard deviation of the joint share of two fixed agents when they truthfully report
their opinions. “Avg. 2” and “Std. 2” are, respectively, the average and the standard
deviation of the joint share of two fixed agents when they are colluding. “Unfair shares”
and “Negative shares” are, respectively, the total number of unfair shares and the total
number of negative shares that occurred throughout the simulation.

α Avg. 1 Std. 1 Avg. 2 Std. 2 Unfair shares Negative shares
0.1 667.72 43.74 675.38 42.44 0 0
1 667.71 43.73 675.36 42.43 0 0
5 667.65 43.66 675.30 42.39 0 0
10 667.59 43.59 675.22 42.35 0 0
25 667.38 43.46 674.98 42.30 0 0
50 667.04 43.46 674.59 42.46 0 0
100 666.36 44.33 673.80 43.65 0 0
500 660.89 78.92 667.46 79.75 0 0

Figure 6.7: Results of the peer-evaluation mechanism with different values for α when
truthful evaluations are uniformly distributed. The other parameters are fixed: n = 30,
V = 10000, M = 5. 100 simulations are used. In the x-axis, there are different values for
α. The y-axis contains the difference between the average joint share of two fixed agents
when they are truthfully reporting their opinions and when they are colluding. The dotted
line is used to facilitate visualization.
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Figure 6.8: Results of the peer-prediction mechanism with different values for α when
truthful evaluations are uniformly distributed. The other parameters are fixed: n = 30,
V = 10000, M = 5. 100 simulations are used. In the x-axis, there are different values for
α. The y-axis contains the difference between the average joint share of two fixed agents
when they are truthfully reporting their opinions and when they are colluding. The dotted
line is used to facilitate visualization.

Figure 6.9: Results of the BTS mechanism with different values for α when truthful eval-
uations are uniformly distributed. The other parameters are fixed: n = 30, V = 10000,
M = 5, ε = 0.01. 100 simulations are used. In the x-axis, there are different values for
α. The y-axis contains the difference between the average joint share of two fixed agents
when they are truthfully reporting their opinions and when they are colluding. The dotted
line is used to facilitate visualization.
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Table 6.6: The resulting p-values for the directional t-test. Our null hypothesis is that the
average joint share when the fixed agents are telling the truth is equal to the average joint
share when they are colluding. Our alternative hypothesis is that the average joint share
when both agents are telling the truth is greater than the average joint share when they
are colluding. Truthful evaluations are uniformly distributed.

α Peer-Evaluation Peer-Prediction BTS
0.1 1 1 1
1 1 1 1
5 1 1 1
10 1 1 1
25 1 0.95 1
50 1 0.08 1
100 1 0.0016 1
500 1 < 0.0001 1

Moving to the results related to the fairness property, we start by noting that according
to the theory we need to have M < 5.38 to guarantee that the peer-evaluation mechanism
will always be fair (Theorem 6). Consequently, the peer-evaluation mechanism cannot
return unfair shares in our experiment, because we use M = 5. The results shown in
Table 6.3 are in agreement with the theory. For the other mechanisms, we need to have
α < 0.5 to guarantee that the peer-prediction mechanism will always be fair (Theorem
8), and we need both M < 5.38 and α < 0.12 (Theorem 10) to guarantee that the BTS
mechanism will always be fair. We observe that, even using much higher values for α
than the ones recommended by the theory, none of these two mechanisms returned a single
unfair share. Intuitively, the reason for this fact is that it is very unlikely, in a probabilistic
sense, that an agent unanimously receives better evaluations than a peer when both the
received evaluations are drawn from a uniform distribution and the underlying population
of agents is fairly large, which is the setting of our experiment. Consequently, the fairness
property holds (almost) trivially.

Analyzing the results related to the individual rationality property, we note that both
the peer-evaluation mechanism and the peer-prediction mechanism are always individually
rational, but we need to have α < 5.36 to guarantee that the shares returned by the BTS
mechanism will always be greater than zero (Proposition 6). From Table 6.5, we observe
that even with much higher values for α, all the shares returned by the BTS mechanism
in this experiment are greater than zero. Intuitively, the reason for this fact is that when
the truthful evaluations are drawn from a uniform distribution, the resulting scores from
the BTS method are in a relatively small range, since those evaluations are hardly very
surprisingly common or very surprisingly uncommon. Thus, there exists negative truth-
telling scores, but they are not large enough to create negative shares.
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Trying to understand the influence of α on the proposed mechanisms in a (arguably)
more realistic scenario, we repeat the experiment, but this time assuming that agents’
truthful evaluations follow a normal distribution. In detail, for each agent in the population,
we uniformly select a value inside the set {1, . . . ,M}, and use it as the mean of a normal
distribution, which is employed to generate the truthful evaluations for that agent. We use
a small variance, 0.625, and the same values for the other parameters as before: V = 10000,
n = 30, M = 5, α ∈ {0.1, 1, 5, 10, 25, 50, 100, 500}, and ε = 0.01. We run this experiment
100 times. As before, we observe how different values of α influence the collusion-resistance,
individual rationality and fairness properties of the proposed mechanisms. Table 6.7, 6.8,
and 6.9 show the results of this new experiment. Figure 6.10, 6.11, and 6.12 visually show
the results related to the collusion-resistance property. To show the statistical significance
of the results obtained for the collusion-resistance property in this new scenario, we perform
the directional t-test for correlated samples. Our null hypothesis is that the average joint
share when the fixed agents are telling the truth is equal to the average joint share when
they are colluding. Our alternative hypothesis is that the average joint share when both
agents are telling the truth is greater than the average joint share when they are colluding.
The resulting p-values can be seen in Table 6.10.

Focusing first on the results related to the collusion-resistance property, from Table 6.7
we observe that the average joint share returned by the peer-evaluation mechanism when
the fixed agents are colluding is always greater than when they are telling the truth. This
is quite obvious because this mechanism does use truth-telling scores.

Table 6.7: Results of the peer-evaluation mechanism with different values for α. The other
parameters are fixed: n = 30, V = 10000, M = 5. 100 simulations are used. Truthful
evaluations are normally distributed. “Avg. 1” and “Std. 1” are, respectively, the average
and the standard deviation of the joint share of two fixed agents when they truthfully
report their opinions. “Avg. 2” and “Std. 2” are, respectively, the average and the
standard deviation of the joint share of two fixed agents when they are colluding. “Unfair
shares” and “Negative shares” are, respectively, the total number of unfair shares and the
total number of negative shares that occurred throughout the simulation.

α Avg. 1 Std. 1 Avg. 2 Std. 2 Unfair shares Negative shares
0.1 677.97 171.95 682.68 169.21 0 0
1 677.97 171.95 682.68 169.21 0 0
5 677.97 171.95 682.68 169.21 0 0
10 677.97 171.95 682.68 169.21 0 0
25 677.97 171.95 682.68 169.21 0 0
50 677.97 171.95 682.68 169.21 0 0
100 677.97 171.95 682.68 169.21 0 0
500 677.97 171.95 682.68 169.21 0 0
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Table 6.8: Results of the peer-prediction mechanism with different values for α. The other
parameters are fixed: n = 30, V = 10000, M = 5. 100 simulations are used. Truthful
evaluations are normally distributed. “Avg. 1” and “Std. 1” are, respectively, the average
and the standard deviation of the joint share of two fixed agents when they truthfully
report their opinions. “Avg. 2” and “Std. 2” are, respectively, the average and the
standard deviation of the joint share of two fixed agents when they are colluding. “Unfair
shares” and “Negative shares” are, respectively, the total number of unfair shares and the
total number of negative shares that occurred throughout the simulation.

α Avg. 1 Std. 1 Avg. 2 Std. 2 Unfair shares Negative shares
0.1 453.16 108.67 456.32 106.71 0 0
1 446.41 80.96 448.62 79.56 0 0
5 436.00 38.59 436.76 38.06 0 0
10 432.36 24.19 432.61 23.96 0 0
25 429.39 13.43 429.22 13.44 26 0
50 428.20 10.17 427.87 10.24 660 0
100 427.57 9.03 427.15 9.10 2114 0
500 427.04 8.60 426.54 8.64 3843 0

Table 6.9: Results of the BTS mechanism with different values for α. The other parameters
are fixed: n = 30, V = 10000, M = 5, ε = 0.01. 100 simulations are used. Truthful
evaluations are normally distributed. “Avg. 1” and “Std. 1” are, respectively, the average
and the standard deviation of the joint share of two fixed agents when they truthfully
report their opinions. “Avg. 2” and “Std. 2” are, respectively, the average and the
standard deviation of the joint share of two fixed agents when they are colluding. “Unfair
shares” and “Negative shares” are, respectively, the total number of unfair shares and the
total number of negative shares that occurred throughout the simulation.

α Avg. 1 Std. 1 Avg. 2 Std. 2 Unfair shares Negative shares
0.1 677.97 171.95 682.68 169.21 0 0
1 678.02 171.95 682.70 169.24 0 0
5 678.23 171.95 682.79 169.33 0 0
10 678.49 171.97 682.90 169.47 0 0
25 679.28 172.09 683.22 169.95 0 0
50 680.59 172.57 683.76 171.04 0 0
100 683.22 174.51 684.84 174.23 0 0
500 704.23 228.76 693.50 237.67 172 25
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Figure 6.10: Results of the peer-evaluation mechanism with different values for α when
truthful evaluations are normally distributed. The other parameters are fixed: n = 30,
V = 10000, M = 5. 100 simulations are used. In the x-axis, there are different values for
α. The y-axis contains the difference between the average joint share of two fixed agents
when they are truthfully reporting their opinions and when they are colluding. The dotted
line is used to facilitate visualization.

Figure 6.11: Results of the peer-prediction mechanism with different values for α when
truthful evaluations are normally distributed. The other parameters are fixed: n = 30,
V = 10000, M = 5. 100 simulations are used. In the x-axis, there are different values for
α. The y-axis contains the difference between the average joint share of two fixed agents
when they are truthfully reporting their opinions and when they are colluding. The dotted
line is used to facilitate visualization.
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Figure 6.12: Results of the BTS mechanism with different values for α when truthful
evaluations are normally distributed. The other parameters are fixed: n = 30, V = 10000,
M = 5, ε = 0.01. 100 simulations are used. In the x-axis, there are different values for
α. The y-axis contains the difference between the average joint share of two fixed agents
when they are truthfully reporting their opinions and when they are colluding. The dotted
line is used to facilitate visualization.

Table 6.10: The resulting p-values for the directional t-test. Our null hypothesis is that
the average joint share when the fixed agents are telling the truth is equal to the average
joint share when they are colluding. Our alternative hypothesis is that the average joint
share when both agents are telling the truth is greater than the average joint share when
they are colluding. Truthful evaluations are normally distributed.

α Peer-Evaluation Peer-Prediction BTS
0.1 1 1 1
1 1 1 1
5 1 1 1
10 1 0.9955 1
25 1 0.0362 1
50 1 0.0004 1
100 1 < 0.0001 1
500 1 < 0.0001 < 0.0001

Moving to the results for the peer-prediction mechanism, Table 6.8 reinforces that by
using lower values for α than the ones recommended by the theory, it is still possible to
obtain collusion-resistance. For example, when α = 25 this fact occurs, and it is statistically
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significant with a confidence level of 96%. For α ≥ 50, this happens again and the results
are statistically significant even with a confidence level of 99.9%. These results are a way
better than the results when truthful evaluations are uniformly distributed. Intuitively,
the reason for that is because when evaluations are normally distributed, if the mean
of the distribution of the evaluations received by an agent is small, then a liar agent will
probably not receive a high score when it lies by increasing its evaluation to the top possible
one. Moreover, when the value of α increases, the mechanism becomes stronger against
collusions, i.e., the loss by lying increases. This value seems to converge to 0.5.

Finally, looking at the results from the BTS mechanism, we remember that in our
previous experiment high values for α resulted in lower gains by colluding. This is not
only true now, but a very high value for α can actually make the BTS collusion-resistant.
For example, when α = 500 this happens and this result is statistically significant with a
confidence level of 99.99%. Thus, the evidence supporting the hypothesis that a high value
of α can help prevent collusion in the BTS mechanism is strong.

Analyzing the results related to the fairness property, the trade-off between fairness
and collusion-resistance is visible. When α increases, the peer-prediction and the BTS
mechanisms become stronger against collusions, but the number of unfair shares also in-
creases. Intuitively, this happens because these mechanisms are putting more weight on
the truth-telling scores rather than on the aggregated evaluations. The peer-evaluation
mechanism cannot return any unfair share since M < 5.38 (see Theorem 6).

A similar trade-off also exists between the collusion-resistance and the individually
rationality properties for the BTS mechanism. Since the scores returned by the BTS
method can be negative, the resulting shares from the BTS mechanism can be negative
when α increases, as shown in Table 6.9. We note that according to the theory, α must be
less than 5.36 to mathematically ensure that the BTS mechanism is individually rational
(Theorem 10). However, this experiment shows that in practice we can use much higher
values for α, and the mechanism still does not return negative shares. The peer-evaluation
and the peer-prediction mechanisms are always individually-rational.

Summarizing, the results of the experiments presented in this section show that in
practice we can use values for α different than the ones recommended by the theory and
still get desirable properties. This was already expected because most of the propositions
and theorems are proved with the worst-case scenario in mind. Also, we show that practice
agrees with theory. We empirically demonstrate that collusions can be successfully avoided
by fine-tuning α, and that when the value of this parameter increases, the number of unfair
shares returned by the peer-prediction and BTS mechanisms also increases, as well as the
number of negative shares returned by the BTS mechanism.
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6.3 Parameter n

Our last experiment investigates how the mechanisms behave when dealing with popu-
lations of different sizes. In detail, we study how the size of the population affects the
budget of the mechanisms. From the theory, the peer-prediction mechanism is weakly
budget-balanced. Here, we empirically study what happens to the profit of this mecha-
nism when the population grows. Further, the BTS mechanism is budget-balanced under
some extra assumptions. One of these assumptions is that the underlying population is
sufficiently large so that a single evaluation cannot significantly affect the empirical distri-
bution of evaluations. In Chapter 5, we argued that more important than having a very
large population of agents is a guarantee that each empirical distribution of received eval-
uations is balanced, i.e., that there exists a significant number of endorsements for each
available evaluation. In this section, we empirically verify this claim. Despite the fact that
the peer-evaluation mechanism is budget-balanced without extra assumptions, we include
it in our experiment for completeness’ sake.

For each proposed mechanism, we share the reward V = 10000 using the parameter
M = 10, and populations with sizes 5, 7, 10, 25, 50, 100. We deliberately choose high values
for α to make the resulting shares more diverse. For the peer-prediction mechanism, we
set α = 10, and for the BTS mechanism we set α = 100. We use the recalibration factor
ε = 0.01. In this experiment, agents always report their observed signals. These signals
are drawn from a uniform distribution. For generating random predictions, we use the
algorithm proposed by Stafford [43]. We execute this experiment 100 times. In each
execution, we compute the sum of the returned shares. At the end of the experiment, we
compute the average and the standard deviation of these sums. Table 6.11 shows these
results. Figure 6.13, 6.14 and 6.15 visually present the same results. To find out whether
the sum of the resulting shares from each mechanism have a common mean, we perform
the statistical test ANOVA. Table 6.12 shows the resulting p-values.

Analyzing the results of this experiment, we note that, as expected, the size of the pop-
ulation does not influence the budget-balancedness property of the peer-evaluation mech-
anism. Surprisingly, it also does not significantly affect the profit of the peer-prediction
mechanism. Intuitively, a mechanism should spend more when there are a lot of agents
than when there are only few of them. However, the shares returned by the peer-prediction
mechanism are scaled by using the constant V

(M+2α)n
(Equation 4.3), which means that the

greater the value of n, the smaller the share of the agents. In this way, this constant
seems to nullify any effect caused by a large population. The interesting point here is that
the standard deviation of the sum of agents’ shares appears to converge to zero when the
population size increases.

The most interesting result comes from the BTS mechanism. As n comes closer to
M = 10, the loss made by this mechanism gradually increases. However, for n greater
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than M , this loss gradually reduces, and it seems to converge to zero for a very large
population, which agrees with the theory. When n < M , the resulting truth-telling scores
are high. Since there are few agents to endorse a larger number of possible evaluations,
the reported evaluations are very often surprisingly common. On the other hand, when
n > M , the scores of the agents are more balanced, since there are more agents to endorse
fewer evaluations, and, consequently, a reported evaluation is less likely to be surprisingly
common. The standard deviation of the sum of the shares also decreases when n increases,
thus supporting our claim that the scores are more balanced. Finally, the result of the
ANOVA test shows, with a confidence level of 99.99%, that the sums of the shares do not
have a common mean, thus suggesting that n indeed influences the resulting shares.

Summarizing, different population sizes have a negligible impact on the budget of the
peer-evaluation and the peer-prediction mechanisms when truthful evaluations are nor-
mally distributed. On the other hand, the BTS mechanism works much better with large
populations, since it may make a loss when dealing with small populations. Our rule of
thumb presented in chapter 5, i.e., to set M ≤

√
n− 2, has a strong empirical support here,

since at this point the population seems to be large enough, in relation to the number of
available evaluations, so that a possible loss made by the mechanism is negligible. Clearly,
this is not a sufficient condition, since a balanced distribution of the empirical evaluations
is also important.

Table 6.11: Results of the proposed mechanisms with different values for n. Truthful
evaluations are uniformly distributed. The other parameters are fixed: V = 10000, M =
10. 100 simulations are used. “Average” and “Std” are, respectively, the average and the
standard deviation of the sums of the returned shares.

Peer-Evaluation Peer-Prediction BTS
n Average Std. Average Std. Average Std.
5 10000 0 5510.74 213.22 10019.00 1.42
7 10000 0 5471.22 143.77 10020.64 1.50
10 10000 0 5474.86 100.67 10021.48 1.76
25 10000 0 5476.56 39.40 10015.78 1.64
50 10000 0 5475.80 20.73 10010.92 1.11
100 10000 0 5473.03 10.15 10009.61 0.52

Table 6.12: The resulting p-values from the ANOVA test.
Peer-Evaluation Peer-Prediction BTS

1 0.13 < 0.0001
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Figure 6.13: Results of the peer-evaluation mechanism with different values for n. The
other parameters are fixed: V = 10000, M = 10. 100 simulations are used. The averages
of the sums of the returned shares are represented by the black squares and the standard
deviations by the gray lines. The dotted line is used to facilitate visualization.

Figure 6.14: Results of the peer-prediction mechanism with different values for n. The
other parameters are fixed: V = 10000, M = 10, α = 10. 100 simulations are used. The
averages of the sums of the returned shares are represented by the black squares and the
standard deviations by the gray lines. The dotted line is used to facilitate visualization.
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Figure 6.15: Results of the BTS mechanism with different values for n. The other param-
eters are fixed: V = 10000, M = 10, α = 100, ε = 0.01. 100 simulations are used. The
averages of the sums of the returned shares are represented by the black squares and the
standard deviations by the gray lines. The dotted line is used to facilitate visualization.

6.4 Concluding Remarks

In this section, we studied the influence of the mechanisms’ parameters on the agents’
shares. Firstly, we observed that the top possible evaluation that an agent can give or
receive, M , does not seem to affect the range and standard deviation of the resulting
shares from all mechanisms when truthful evaluations are uniformly distributed. However,
when the truthful evaluations for a peer are normally distributed, the range and standard
deviation of the shares returned by the peer-prediction and BTS mechanisms significantly
increase as M increases. In this last scenario, the difference between agents are better
recognized and specified by their peers, resulting in fine-grained differences in the final
shares.

Related to the parameter α, which fine-tunes the weight given to the truth-telling scores,
our experiments agreed with what was expected from the theory. For the peer-prediction
and BTS mechanisms, we observed the trade-off between fairness and collusion-resistance,
i.e., high values for α make the mechanism collusion-resistant, but this also increases the
number of unfair shares. Our experiments also showed that in practice we can use values
for α different than the ones recommended by the theory and still get desirable properties.
This happens because most of our theorems and propositions are proved based on the
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worst-case scenario, which is very unlikely to happen in real applications.

Finally, we studied how the size of the population affects the budget of the mechanisms.
When truthful evaluations are uniformly distributed, our experiments showed that the
population size does not affect the profit of the peer-prediction mechanism. For the BTS
mechanism, small populations implied losses for this mechanism. Our rule of thumb, to
set M ≤

√
n− 2, had strong empirical support here, since at this point the population

seemed to be large enough, in relation to the number of available evaluations, so that a
possible loss made by the mechanism was negligible.

We end this chapter by noting that all the random evaluations used in our experiments
were either normally or uniformly distributed, and that the random predictions were always
uniformly distributed [43]. Other interesting experiments to pursue, that are left as future
work, are to understand the influence of the mechanisms’ parameters on the agents’ shares
when both evaluations and predictions are normally distributed, and when both have a
U-shape, since these scenarios are arguably closer to real ones.
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Chapter 7

Related Work

Understanding how agents can work together in order to achieve some common goal is a
central topic in the field of multiagent systems [42]. Questions that are typically analyzed
include how and which groups of agents should form [36], how agents should coordinate
their actions once they have agreed to work together [19], how to ensure that the group,
once formed, does not disintegrate [7], and how any joint rewards (or costs) should be
divided among the group members [30]. It is this last question that we addressed in this
thesis. Commonly called fair division, the problem of dividing one or several goods among
a set of agents, in a way that satisfies a suitable fairness criterion, has been studied in
several literatures.

In economics, the collective welfare approach is perhaps the most influential application
of the economic analysis to fair division. It uses the concepts of collective utility functions,
in its cardinal version, and of social welfare orderings, in its ordinal version, for deciding
what makes a reasonable allocation. Moulin [30] examines the contribution of this modern
microeconomic thinking to fair division. In detail, he compares normative arguments of
fair division and their relation to efficiency and collective welfare from economics.

In computer science, the fair division problem is usually studied in settings where the
underlying agents not only have preferences over alternative allocations of goods, but also
actively participate in computing an allocation. Chevalyere et al. [5] gives an overview of
allocation procedures for indivisible goods, applications, preference languages, and com-
plexity results related to those settings.

In this chapter, we review the literature most closely related to our work, pointing out
the differences and similarities to our model and mechanisms. In detail, we review similar
ideas from cooperative game theory, cake-cutting, and mechanism design literature.
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7.1 Cooperative Game Theory

Cooperative game theory, also known as coalitional game theory, deals with the question of
how self-interested agents can combine to form effective teams [31]. The canonical model
of coalitional games with transferable utility assumes that there exists a characteristic
function mapping each subset of agents to a payoff, which can be freely distributed among
the coalition’s members. The main difference between our model and the canonical model
of coalitional games with transferable utility is that we do not use a characteristic function.
In detail, we assume that the grand coalition, i.e., the coalition of all the agents in N , is
always formed, and its payoff is equal to V , i.e., the reward to be shared.

The Shapley value [41] is a key concept used in cooperative game theory to distribute
a joint surplus (or cost) among a set of agents in the context of production. Roughly
speaking, the Shapley value assigns a share to each agent equal to its expected marginal
contribution with respect to a uniform distribution over the set of all permutations on the
set of agents. The Shapley value is remarkable not only for its attractive and intuitive
definition, but also for its unique characterization by a set of reasonable axioms.

We note that a sharing scheme where the fairness criterion is based on marginal con-
tributions, like the Shapley value, is not appropriate in our setting. The idea of marginal
contributions is not objectively defined in our model, since the only way to determine
individual contributions is through subjective opinions.

7.2 Cake-Cutting

Cake-cutting is a common metaphor for the sharing of a heterogeneous divisible resource.
A cake is usually represented by the interval [0, 1]. Each agent has an additive utility
function that assigns a value to every given piece of cake. The goal is to find a partition
of the cake among the agents that satisfies some fairness criteria. The two most famous
fairness criteria are proportional allocation and envy-freeness [3].

In a proportional allocation, the value that each agent has for its own piece of cake is
at least 1/n of the value that it assigns to the entire cake. In an envy-free allocation, the
value that each agent assigns to its own piece of cake is at least as high as the value that
it assigns to any other agent’s piece of cake. There is a vast body of literature on fairly
cutting a cake according to these two criteria. Solid explanations of them are given by
Brams and Taylor [3].

While most of the work in artificial intelligence and theoretical computer science has
focused on the allocation of indivisible resources (e.g., combinatorial auctions), recent
years have seen an increasing interest among computers scientists in the allocation of
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heterogeneous divisible resources. Questions that are typically analyzed include cake-
cutting algorithms that approximate fairness [16], and bounds on the number of cuts
required to fairly divide the cake [17, 35]. A compilation of cake-cutting algorithms is
given by Robertson and Webb [37].

There are many points in which our work diverges from the cake-cutting literature.
First, we are not dealing with a heterogeneous resource. In our model, every agent is
assumed to want more of the reward. The same is not true in the canonical cake-cutting
model, since there may exist piece of cakes that are not desired by some agent. Further,
both the proportional allocation and the envy-free fairness criteria are pointless in the
scenario studied here. There will always be an envious agent when at least two shares
are different. Further, whenever all agents receive at least 1/n of the reward, then either
the underlying mechanism is not budget-balanced or it is an egalitarian mechanism (see
definition in Section 2.1). We believe that both properties are very often undesirable.

We end this section by noting that a new trend in the cake-cutting field is to design
sharing schemes that are both fair and truthful. A cake-cutting algorithm is truthful if
when an agent lies, then it is allocated a piece of cake that is worth, according to its real
valuation, no more than the piece of cake that would be allocated if that agent had told the
truth [1, 2, 44, 4]. Differently from our work, a trade-off between fairness and truthfulness
does not seem to exist in such sharing schemes.

7.3 Mechanism Design

Roughly speaking, a mechanism is a protocol with specific rules to ensure that truth-telling
produces a desirable outcome for the agents [27]. Seminal results from the mechanism de-
sign literature show that it is generally possible to use transfer payments to extract agents’
private information. A classical example is the Vickrey-Clarke-Grove (VCG) mechanism,
where each agent maximizes its expected utility by truthfully reporting its private infor-
mation [45, 6, 20].

Similar to the approach used by the peer-prediction mechanism to incentivise truth-
fulness, some work has suggested transfer payments based on proper scoring rules. For
example, Johnson et al. [23] show how to construct transfer payments, using proper scor-
ing rules, that exploit correlation in agents’ private information. Johnson et al. [22] extend
those results to the case of multidimensional, continuous private information.

With the advent of the Internet, an increasing number of applications of mechanism
design emerged to extract knowledge from groups of agents. For example, Jurca and Falt-
ings [25] propose a class of mechanisms to incentivise agents to truthfully report their
experience-related information in online feedback forums. In a quite different scenario, Ju-
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rca and Falting [24] propose a mechanism that extracts accurate information from rational
agents in online opinion polls.

The main difference between our work and the aforementioned works is that our pri-
mary objective is to share a joint reward among a set of agents, and not to incentivise
truthfulness. We note that if agents always reported their opinions truthfully, then it
would not be necessary to incentivise truth-telling in our setting. The similarities between
our work and the mechanism design field, as a whole, only show up when we consider that
agents are strategic, i.e., when they are able to manipulate their opinions for increasing
their shares of the reward.
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Chapter 8

Conclusion and Future Work

In this thesis, we studied how to share a joint reward among a set of agents when the
individual contributions are subjective. To the best of our knowledge, this was the first at-
tempt to formalize this relatively common scenario. In our proposed game-theoretic model,
agents are asked to provide opinions about the performance of their peers in accomplishing
a task, for which it is granted a reward. These opinions are elicited and aggregated by a
mechanism, which is also responsible for sharing the reward. We considered two kinds of
opinions: evaluations and predictions

Since the most prominent fairness criteria are not suitable for our setting, e.g., marginal
contribution, proportional allocation and envy-freeness, we proposed a more appropriate
fairness criterion, which essentially means that if an agent unanimously receives better
evaluations than a peer, then this agent should also receive a greater share of the reward
than that peer. We also proposed a collusion model in which a liar agent agrees to misre-
port its evaluations in exchange for a side-payment from the agent who benefits from the
misreporting so that both agents end up with a greater expected share than if no collusion
had occurred.

Besides the game-theoretic model for sharing a reward based on subjective opinions, the
new fairness criterion and the collusion model, we proposed three different mechanisms to
elicit and aggregate opinions, as well as for determining agents’ shares, keeping the issues
of truthfulness and fairness in mind. Our first mechanism, the peer-evaluation mechanism,
divides the reward proportionally to the evaluations received by the agents. We showed
that this mechanism is fair, budget-balanced, individually rational, and strategy-proof, but
that it can be collusion-prone.

Our second mechanism, the peer-prediction mechanism, shares the reward by con-
sidering the evaluations received by the agents and their truth-telling scores, which are
computed by using a proper scoring rule. Under the assumption that agents are Bayesian
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decision-makers, we showed that this mechanism is weakly budget-balanced, individually
rational, and incentive-compatible. Further, we presented approaches that guarantee this
mechanism to be always collusion-resistant and fair.

Our last mechanism, the BTS mechanism, elicits both evaluations and predictions from
agents. It considers the evaluations received by the agents and their truth-telling scores
when sharing the reward. For computing the scores, it uses the Bayesian truth serum
method. Under the assumptions that agents are Bayesian decision-makers, and that the
population of agents is sufficiently large so that a single evaluation cannot significantly
affect the empirical distribution of evaluations, we showed that this mechanism is incentive-
compatible and budget-balanced. Further, we presented approaches that guarantee this
mechanism to be always individually rational and fair.

A natural question to ask is when each mechanism should be used. A general rule of
thumb here is to only use the peer-evaluation mechanism when there is a guarantee that
the underlying agents will always tell the truth, e.g., when they are softwares specifically
programmed to do that. The peer-prediction mechanism should be used when the budget-
balance property is not strongly desired. Finally, the BTS mechanism should be used when
the underlying population is relatively large in comparison to the top possible evaluation
that an agent can give or receive, i.e., when M ≤

√
n− 2, and when providing predictions

is not a too heavy burden for the agents.

8.1 Future Work

This work opens up new exciting directions for future work. In this section, we outline
some of them.

8.1.1 Improving The BTS Mechanism

Prelec and Seung [33] propose a very promising algorithm in which scores from the BTS
method are used to find the truthful answer to a question, even when subjective opinions
remain the only source of evidence and there is a possibility that most agents are providing
wrong answers. The algorithm essentially works by finding agents with more accurate
metaknowledge. Under some assumptions, the answer provided by those agents converges
to the truthful answer. The less informed agents, in a metaknowledge sense, do not disturb
the outcome, but subsidize those who are more informed.

A similar idea can be directly applied to extend the BTS mechanism. Originally, this
mechanism uses the BTS method exclusively to incentivise truthfulness. However, if the
evaluations of the agents with more accurate metaknowledge have greater influence on the
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sharing process, we can then find the “truthful shares”, even if most agents are providing
“wrong evaluations”. In other words, we can adjust the BTS mechanism for the fact that
some agents are better informed than others. We note that the idea of using metaknowledge
as an indicative of domain expertise is purely theoretical. To the best of our knowledge,
the role of metaknowledge has not been thoroughly discussed in the expertise literature.
We redirect the interested reader to Shanteau’s work [40] for further discussion.

8.1.2 Collusion Model

Our collusion model is fairly narrow because it is defined considering only two agents, a
liar and a beneficiary. Another interesting research direction is to model different kinds
of collusions, and to propose new schemes for making our mechanisms collusion-resistant
under these new models.

8.1.3 Exploiting Correlation

In some practical applications, we expect the truthful evaluations for a specific agent to
be correlated or, more formally, stochastically relevant [22]. A very promising direction
for future work is to design a mechanism that considers that the observed signals are
dependent. To promote truthfulness in this scenario, we can use seminal results from the
mechanism design literature that show that it is generally possible to exploit correlation
in agents’ private information to induce truthful reporting [12, 13, 10, 11, 28].

8.1.4 Real Applications

It would be interesting, for future work, to experimentally validate our model and mech-
anisms. There are several possible scenarios in which we can apply the ideas proposed in
this thesis, for example cooperative organizations and academic group work.
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