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Abstract 

The heat shock response is a cellular homeostatic mechanism that is activated in response 

to stressful stimuli (e.g. heat shock, heavy metals, disease states etc.), which causes an increase 

in unfolded protein, which triggers the expression of heat shock protein (hsp) genes. HSPs are 

molecular chaperones that assist in protein synthesis, folding and degradation and prevent stress-

induced protein aggregation. Since stressor-induced tissue damage is associated with different 

disease states, indirect evidence suggested that HSP inducers may be therapeutically beneficial 

for certain diseases. Curcumin, a phenolic compound found in the Indian spice, Curcuma longa 

(Turmeric), was shown to have anti-inflammatory, anti-tumor and anti-amyloid properties. In the 

present study, it was determined that curcumin inhibited the ubiquitin-proteasome system (UPS) 

activity and induced the accumulation of HSPs in the frog model system, Xenopus laevis. 

Treatment of A6 kidney epithelial cells with curcumin enhanced ubiquitinated protein levels and 

inhibited chymotrypsin-like activity. Furthermore, HSP30 and HSP70 accumulation was 

observed in cells exposed to 10 - 50 μM curcumin for 24 h in a concentration-dependent manner 

with maximal levels of HSP30 and HSP70 in cells treated with 30 μM curcumin. Time-

dependent increases in HSP30 and HSP70 accumulation were also observed in cells treated with 

30 μM curcumin for 2 to 24 h. The accumulation of HSP30 and HSP70 in cells recovering from 

curcumin exposure increased up to 24 h after treatment. The simultaneous treatment of A6 cells 

with 10 μM curcumin and mild heat shock (30 ºC) for 6 h resulted in an enhanced accumulation 

of HSP30 and HSP70, which was greater than with each stressor alone. This pattern of combined 

stressor-induced HSP30 and HSP70 accumulation increased from 2 to 6 h, after which it 

decreased from 10 to 24 h. The activation of HSF1 may be involved in curcumin-induced hsp 

gene expression in A6 cells since KNK437, a heat shock factor-1 inhibitor, inhibited the 
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accumulation of HSP30 and HSP70. Immunocytochemical analysis employing the use of laser 

scanning confocal microscopy (LSCM) revealed that curcumin-induced HSP30 was detectable 

primarily in the cytoplasm in a punctate pattern with minimal detrimental effects on the actin 

cytoskeleton. Elevation of the incubation temperature from 22 to 30 °C greatly enhanced the 

curcumin-induced cytoplasmic accumulation of HSP30 in a granular pattern. Lastly, curcumin 

treatment also conferred a state of thermotolerance in A6 cells such that they were able to 

maintain proper actin cytoskeleton in subsequent thermal challenges. This phenomenon was 

controlled at the transcriptional level since pretreatment of cells with KNK437, repressed HSP30 

accumulation and cytoprotection. These findings are of importance given the interest in 

identifying agents that can upregulate HSP levels with minimal effects on cell structure or 

function as a therapeutic treatment of certain protein folding diseases. 
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1. Introduction 

Organisms are constantly challenged by conditions that cause chronic and acute stress 

and have evolved networks of responses that identify, monitor and respond to these stressful 

stimuli (Morimoto, 2008). At the molecular level, biochemical properties responsible for protein 

function and stability are disrupted as a result of exposure to stressful stimuli, both 

environmental and physiological, causing the proteins to unfold into unstable conformations 

(Morimoto, 1998; Balch et al., 2008). Polypeptides with abnormal folding are prone to cytotoxic 

aggregation, which can result in aberrant cellular processes and/or disease (Morimoto, 2008). As 

a result, cells have evolved two main mechanisms to protect themselves against cytotoxic 

aggregation: the heat shock response and ubiquitin-proteasome degradation pathway.  

 

1.1. Heat Shock Response 

The heat shock response is a universal cellular homeostatic mechanism, well 

characterized in prokaryotes and eukaryotes. It was first discovered by Ferrucio Ritossa in the 

salivary glands of Drosophila in 1962 (Jolly and Morimoto, 2000; Katschinski, 2004). It is 

activated in response to stressful stimuli including elevated temperatures, heavy metals or 

disease states (Fig. 1; Morimoto, 2008). These stresses can induce an accumulation of unfolded 

protein, which can interfere with regular cellular processes. Accumulation of unfolded protein 

triggers the up-regulation of heat shock protein (hsp) genes through the activation of heat shock 

factor 1(HSF1) (Morimoto, 1998; 2008).  
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Figure 1. The heat shock response. Induction of the heat shock response (HSR) in cells is a 

result of a variety of factors which in turn upregulate the production of heat shock proteins 

(HSPs) (Adapted from Morimoto, 2008). 
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1.2. Heat Shock Proteins 

1.2.1. Function of HSPs 

Heat shock proteins (HSPs) are a large group of molecular chaperones that are involved 

in many cellular processes including protein synthesis, folding/assembly, membrane 

translocation and degradation in normally growing cells. HSPs also bind to denatured proteins 

and assist in refolding proteins to their native state or target them for degradation in order to 

prevent stress-induced protein aggregation. HSPs have been well documented in a wide variety 

of organisms from bacteria to man (Katschinski, 2004). There are 6 different HSP gene families 

that have been characterized to date and are grouped based on size and include small HSPs 

(sHSPs), HSP40, HSP60, HSP70, HSP90 and HSP100 (Katschinski, 2004; Morimoto, 2008). 

They can be constitutively expressed, strictly stress inducible or both inducible and constitutively 

regulated (Morimoto, 2008). HSP expression patterns vary between organisms, tissues types, and 

developmental stages (Lindquist, 1986; Heikkila et al., 1997; Heikkila, 2010). 

 

1.2.2. Small heat shock proteins 

The small heat shock protein (sHSP) family is made up of HSPs ranging in size from 16 

to 42 kDa and includes the lens protein α-crystallin. Unlike other HSP families, sHSPs are an 

evolutionarily divergent family of proteins with the exception of 80 - 100 amino acid conserved 

α-crystallin domain (MacRae, 2000; Van Montfort et al., 2001). The number, size and sequence 

of the family members vary from species to species (Arrigo and Landry, 1994; Stromer et al., 

2003). Despite the lack of conservation, most sHSPs have either two or three functional domains. 

These regions include the conserved α-crystallin domain, an amino-terminal extension and a 

carboxy-terminal extension. The secondary structure of the α-crystallin domain primarily 
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consists of β-strands organized into β-sheets required for dimer formation, the basic functional 

units of sHSPs (Buchner et al., 1998; MacRae, 2000). The N-terminal extension is poorly 

conserved except for the Trp-Asp-Pro-Phe (WDPF) sequence, which makes a α-helix and may 

play a role in oligomer formation (Lambert et al., 1999; Ganea, 2001). The C-terminal extension, 

which is poorly conserved and variable in length, has been shown to be essential for stabilization 

of the quaternary structure as well as chaperone activity (MacRae, 2000; Fernando and Heikkila, 

2000). Research has found that in many organisms, with the exception of the nematode, the 

amino-terminal end has little effect on chaperone function whereas deletion of amino acids from 

the carboxy-terminal end of sHSPs results in a dramatic reduction in chaperone activity 

(Takemoto et al., 1993; Fernando and Heikkila, 2000; Abdulle et al., 2002). 

SHSPs are some of the most strongly induced HSPs when compared to other HSPs 

(Arrigo and Landry, 1994; Haslbeck, 2002). SHSPs accumulate in different organs and tissues 

and levels vary in a tissue-, developmental stage- and stress-specific manner (Ciocca et al., 

1993). For example, HSP25 is most abundant in lens, heart, stomach, colon, lung and bladder in 

rodents (Klemenz et al., 1993), whereas HSP27 is detected in muscle, nervous, connective tissue 

and female reproductive tract in humans (Ciocca et al., 1993). Developmental or tissue-specific 

controls in gene expression may be regulated at the level of chromatin structure or organization 

(Heikkila, 2003). Intracellular localization of sHSPs changes according to the physiological state 

of the cells and to the type and intensity of the stressor (Adhikari et al., 2004; Gellalchew and 

Heikkila, 2005). 

SHSPs form highly polymeric structures (Freeman and Yamamoto, 2002), which are 9 to 

30 subunits in size and are necessary for their chaperone function in vivo (Ohan et al., 1998; 

Heikkila, 2003). This organization is conserved in a number of organisms including yeast, 
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insects, crustaceans, mammals and amphibians. As a result sHSPs are competent at binding 

partially denatured proteins in an energy-independent manner, keeping them in a folding 

competent state so they may be refolded by other ATP-dependent chaperones such as HSP70. 

Like other HSPs, the sHSP family has both constitutive and inducible members in many animal 

development systems including Drosophila, mouse, rat, shrimp and nematode (Heikkila, 2003). 

It has also been shown that following heat or chemical stress, p38 mitogen-activated protein 

kinase (MAPK) has a role in phosphorylating sHSPs, including HSP30C in Xenopus laevis 

(Fernando et al., 2003). In the case of HSP30C, phosphorylation inactivates it as a molecular 

chaperone and causes the release of its substrate (Fernando et al., 2003).  

Various functions that have been suggested for sHSPs include resistance against 

apoptosis, acquisition of thermotolerance, actin capping/decapping activity, modulation of redox 

parameters, and cellular differentiation (Arrigo, 1998; MacRae, 2000; Van Montfort et al., 2001; 

Heikkila, 2004). As a result, the role of sHSPs in several medical conditions such as multiple 

sclerosis, oncogenesis and neurodegenerative diseases are being investigated (Birnabaum and 

Kotilinek, 1997; Jolly and Morimoto, 2000; Westerheide and Morimoto, 2005). 

 

1.2.3. Heat shock protein 70 

HSP70 is a large family of conserved molecular chaperones that has been detected in all 

organisms with multiple family members (Katschinski, 2004; Daugaard et al., 2007). Members 

of the HSP70 family are responsible for regulating the folding of proteins under normal and 

stressful conditions. It is one of the most comprehensively studied gene families and contains 

several functional members including cytoplasmic stress-inducible HSP70, cytoplasmic 

constitutively expressed heat shock cognate 70 (HSC70), mitochondrial p75 and ER-resident 
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immunoglobulin binding protein (BiP) (Morimoto, 1998). Its members interact with exposed 

hydrophobic surfaces of unfolded or partially folded proteins and refold them in an ATP-

dependent manner (Katschinski, 2004). In addition to possessing a chaperone function, HSP70 

also inhibits apoptosis by recruiting and deactivating caspases (Beere et al., 2000; Daugaard et 

al., 2007).  

HSP70 contains a highly conserved ATPase domain, a peptide binding domain and a G/C 

rich domain required for binding with various other co-chaperones (Beere et al., 2000; Daugaard 

et al., 2007). The N-terminal ATPase domain is involved in binding and release of non-native 

proteins. Additionally, a Glu-Glu-Val-Asp (EEVD) motif is present in the C-terminal region and 

allows HSP70 to interact with other HSPs and co-chaperones such as HSP40 (Katschinski, 2004; 

Daugaard et al., 2007). Binding at this motif maybe also be responsible for HSP70 function and 

target protein specificity. 

HSP70 family members have been shown to assist in protein folding, translocation of 

proteins across cell membranes and degradation of denatured and misfolded proteins 

(Katschinski, 2004; Daugaard et al., 2007). Even though some HSP70 family members are 

expressed in a stress-dependent manner, human cytosolic HSP70 is expressed in a tissue-specific 

and cell-cycle dependent manner during normal steady-state conditions as well (Daugaard et al., 

2007). Upregulation of hsp70 gene expression has been reported in cells encountering stressful 

conditions including elevated temperature and chemical exposure. During these periods of stress, 

HSP70 protects the cell from aggregation of unfolded protein and also directs the refolding of 

these proteins (Boorstein et al., 1994). HSP70 has also been shown to play an inhibitory role in 

stress kinase pathways (Sreedhar and Csermely, 2004) and prevention of apoptosis (Mosser et 

al., 2000; Beere, 2001). 
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1.3. Stress-induced regulation of hsp gene expression 

Stress inducible hsp genes are regulated primarily at the transcriptional level via the 

interaction of the heat shock transcription factor (HSF) with the cis-acting heat shock element  

(HSE). The HSE consists of multiple inverted repeats of the pentamer sequence 5’-nGAAn-3’, 

which are generally present in the 5’ promoter of most hsp genes (Morimoto, 1998; Katschinski, 

2004; Voellmy, 2004).  

 

1.3.1. Heat shock transcription factor 

Drosophila melanogaster, Sacchromyces cervisiae and Caenorhabditis elegans express a 

single type of HSF that mediates the induction of the HSR, while vertebrate animals and plants 

express multiple HSFs with specialized functions (Morimoto and Santoro, 1998; Voellmy, 

2004). Thus far, four HSFs have been identified and characterized in vertebrates (HSF1 – 4). 

While HSF1, HSF2 and HSF4 are expressed in mammals, HSF3 appears to be an avian specific-

transcription factor (Voellmy, 2004; Yamamoto et al., 2009). HSF1 is considered the primary 

eukaryotic transcription factor responsible for the stress-induced expression of hsp genes and is 

functionally equivalent to the HSF found in Drosophila and yeast (Morimoto, 1998; Heikkila, 

2004). Detectable levels of HSF2 have only been observed in embryonic tissues and specifically 

contribute to the developmental regulation of hsp gene expression (Rallu et al., 1997; Voellmy, 

2004). Recent data collected using chromatin immunoprecipitation (ChIP) showed that both 

HSF1 and HSF2 are recruited to the hsp70 promoter in response to heat shock and hemin 

treatment (Ostling et al., 2007). In addition, evidence acquired using RT-PCR suggested that in 

the presence of HSF1, HSF2 contributes to the transcriptional regulation of multiple hsp genes 
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including mouse hsp25, hsp40, hsp70, and hsp110 in response to heat shock and proteasome 

inhibition (Ostling et al., 2007). HSF3 is required for stress-induced hsp gene expression in birds 

and the combined functional roles of avian HSF1 and HSF3 seem to be equivalent to mammalian 

HSF1 activity (Nakai, 1999; Voellmy, 2004). Finally, HSF4 has two isoforms; HSF4a and 

HSF4b and is expressed in a tissue-specific manner. HSF4a appears to function as a repressor of 

hsp gene expression while, HSF4b appears to activate transcription (Tanabe et al., 1999; 

Pirkkala, 2001). 

 

1.3.2. HSF1 structure 

As mentioned previously, HSF1 is the stress-responsive member of the HSF family and is 

responsible for the activation of the HSR in higher organisms (Heikkila, 2004; Voellmy, 2004). 

The structure of HSF1 is highly conserved, consisting of 100 amino acids in a helix-turn-helix 

DNA binding motif, as well as a carboxy-terminal transcriptional transactivation domain and an 

oligomerization domain consisting of a hydrophobic repeat sequence (HR-A/B) essential for 

trimer formation (Fig. 2; Morimoto, 1998; Voellmy, 2004). An additional hydrophobic repeat 

sequence (HR-C) absent in yeast HSF and mammalian HSF4 is located adjacent to the 

transcription activation domain. Under normal conditions interactions between HR-A/B and HR-

C contribute to the suppression of HSF1 trimerization, while a conserved sequence located 

between HR-A/B and HR-C is thought to negatively regulate DNA-binding and transcriptional 

activation. 
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Figure 2. General structure of HSF1. Schematic representation of HSF1 structural motifs that 

correspond to the helix-turn-helix DNA binding domain, hydrophobic repeat sequences (HR-A/B 

and HR-C), the carboxy terminal transcription activation domain, and regulatory domains 

associated  with the suppression of  HSF1 activity (adapted from Voellmy, 2004). 
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1.3.3. Transcriptional regulation of hsp genes via HSF1 

Normally HSF1 is bound to HSP70 and/or HSP90 and exists as an inactive monomer in 

the cytoplasm and/or nucleus (Voellmy, 2004). In response to an increase in the intracellular 

levels of denatured proteins, HSP90 and HSP70 are recruited to aid in protein folding and 

prevent their aggregation, thereby allowing HSF1 monomers to trimerize (Fig. 3; Voellmy, 

2004). This trimerization results in the activation of the HSF1 and subsequent localization to the 

nucleus to initiate transcription of hsp genes by RNA polymerase II (Feige et al., 1996). 

Activated HSF1 is further modified post-translationally by phosphorylation, sumoylation and/or 

aceytlation at conserved amino acid residues. Phosphorylation can regulate the activation and 

inactivation of HSF1. Although the mechanism is not completely understood, it appears that 

constitutively phosphorylated serine residues suppress HSF1 activation, while inducible 

phosphorylated serine residues promote HSF1 activity (Holmberg et al., 2002; Voellmy, 2004). 

Sumoylation, the post-translational process by which a small ubiquitin-like modifier (SUMO) is 

added to proteins, occurs in a phosphorylation-dependent manner at conserved lysine residues in 

response to stress. It plays a role in regulating DNA binding activity and transcriptional 

activation of HSF1 (Hong et al., 2001; Anckar et al., 2006). Recently, an inhibitor of HSF1-HSE 

binding activity, N-formyl-3, 4-methylenedioxy-benzylidene-γ-butyrolactam, more commonly 

known as KNK437, was found to inhibit induction of various HSPs including HSP105, HSP70 

and HSP40 in human colon cancer cells (Yokota et al., 2000). In mammals, KNK437 was shown 

to inhibit heat shock induced HSF1 activation or the interaction between HSF1 and HSE 

(Ohnishi et al., 2004). Finally, it was demonstrated in our laboratory that KNK437 inhibited hsp 

gene expression induced by heat shock as well as sodium arsenite, cadmium chloride, 

herbimycin A and proteasome inhibitors, MG132 and celastrol, in Xenopus laevis A6 cells 
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Figure 3. Stress-induced regulation of heat shock response. (1,2) External stressful stimuli 

cause native proteins in the cell to unfold. (3) HSP70 and HSP90 are bound to HSF-1 under 

normal conditions in the cell. (4) HSP70 and HSP90 are recruited to prevent aggregation of 

unfolded proteins. (5) This allows HSF-1 monomers to trimerize and translocate to the nucleus. 

(6) The HSF-1 trimer then binds to the heat shock element at the 5’ promoter of hsp genes. (7) 

HSF-1 binding to the HSE results in the transcription of stress-induced HSPs. 
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(Manwell and Heikkila, 2007; Voyer and Heikkila, 2008; Woolfson and Heikkila, 2009; Walcott 

and Heikkila, 2010;Young and Heikkila, 2010). 

 

1.4. Xenopus laevis as a model organism 

The South African clawed frog, Xenopus laevis has been used extensively as a model 

system for amphibian development. As aquatic animals they have a high tolerance for dynamic 

environmental conditions and possess physiological traits that are common to most vertebrates 

thus ensuring that data collected through these systems is applicable to mammals (Burggren and 

Warburton, 2007). There are 18 species within the Xenopus genus, and 7 subspecies of Xenopus 

laevis. Xenopus generally prefer stagnant pools and gulp air for respiration. Xenopus is relatively 

inexpensive to rear and produces eggs that are large, approximately 1 mm in diameter and 

suitable for microinjection (Etkin, 1982; Sive et al., 2000; Heikkila et al., 2007). Furthermore X. 

laevis eggs are externally fertilized and the embryos develop rapidly at room temperature. Many 

X. laevis genes have been isolated and characterized and the findings obtained from studies using 

X. laevis are generally applicable to humans. 

Xenopus continuous cell lines are useful tools for in vitro molecular analyses. A number 

of Xenopus cell lines have been developed over the years including A6, B3.2, KR, XF, XL2, 

XL110, XL-177 and XTC-2 (Smith and Tata, 1991). The most popular cell line used today is the 

A6 somatic cell line, which was also used in the present study. The X. laevis A6 kidney epithelial 

cell line was isolated from the renal tubules of the adult Xenopus by Rafferty (1969). It is easy to 

maintain and has a quick doubling time, making it an ideal tool for cellular and molecular 

biology research. Unlike other untransformed Xenopus cell lines, A6 cells continue to divide 

after reaching confluency. The A6 kidney epithelial cell line has been used widely in diverse 
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areas of research, from genetic profiling under zero gravity to the function of Cystic Fibrosis 

transmembrane conductance regulator channels, and the role of renal epithelial sodium channels 

in hypertension (Guerra et al., 2004; Ikuzawa et al., 2007; Wang et al., 2009). Finally, the 

induction of the heat shock response following exposure to environmental stressors such as heat 

shock, sodium arsenite, hydrogen peroxide, cadmium chloride and herbimycin A has been well 

characterized in X. laevis A6 kidney epithelial cells (Briant et al., 1997; Ohan et al., 1998; Phang 

et al., 1999; Muller et. al, 2004; Gellalchew and Heikkila, 2005; Woolfson and Heikkila, 2009; 

Heikkila, 2010). 

 

1.5. Xenopus laevis HSP30 

HSP30 is a member of the sHSP superfamily of proteins. There have been 5 X. laevis 

gene family members in two gene clusters identified to date. All of the hsp30 genes are 

intronless and share a conserved -crystallin domain. They are denoted A – E. The first gene 

cluster containing hsp30A and hsp30B genes was first identified by Bienz (1984). Hsp30A 

contains a 21 base pair insertion in the coding region that includes a translational termination 

signal which results in the production of a 10 kDa protein. The hsp30B gene contains a 

frameshift mutation and was considered a pseudogene. The second gene cluster, which contains 

hsp30C and hsp30D, was isolated and completely sequenced by Krone et al. (1992) and found to 

encode 24 kDa fully functional HSP30 proteins (Krone et al., 1992; Heikkila, 2003). Only the 

promoter and the N-terminal coding region of hsp30E were isolated from this gene cluster. 

Hsp30C, the most extensively studied hsp30 gene in Xenopus, contains 2 TATA boxes, 3 HSEs 

and a CCAAT box within its 5’ promoter regions while the 3’ UTR is AT-rich and contain both 

polyadenylation element and an mRNA instability region (Heikkila, 2003). 
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During Xenopus development, hsp30C was first heat-inducable at the late neurula/early 

taildbud stage, while hsp30D was not inducible until midtailbud (Heikkila, 2003). Whole mount 

in situ hybridization and immunocytochemical analysis of heat shock-treated midtailbud 

embryos revealed a preferential accumulation of hsp30 mRNA and protein in the cement gland, 

lens placode, somites and proctodeum (Lang et al., 1999). It was also determined that both 

HSP30C and HSP30D were capable of molecular chaperone activity by inhibiting heat-induced 

target protein aggregation and maintaining heat- or chemically-denatured luciferase in a folding 

competent state (Fernando and Heikkila, 2000; Fernando et al., 2002; Abdulle et al., 2002). 

Various cellular stresses including heat shock, sodium arsenite, herbimycin A, cadmium 

chloride and hydrogen peroxide have all been shown to induce hsp30 gene expression in X. 

laevis A6 cells and/or embryos (Briant et al., 1997; Ohan et al., 1998; Phang et al., 1999; Muller 

et. al, 2004; Woolfson and Heikkila, 2009; Young et al., 2009; Heikkila, 2010). Upon stressful 

conditions, such as heat stress at 33 °C or treatment with 30 – 50 μM sodium arsenite, HSP30 

accumulation in A6 cells is primarily cytoplasmic in a granular or punctuate pattern, but is also 

localized in the perinuclear region as determined by immunocytochemistry and laser scanning 

confocal microscopy (Gellalchew and Heikkila, 2005; Manwell and Heikkila, 2007).  

 

1.6. Xenopus laevis HSP70 

The members of the Xenopus HSP70 family analyzed to date consist of constitutively 

expressed heat shock cognate 70 (HSC70), stress-inducible HSP70 and immunoglobulin binding 

protein (BiP) also known as glucose-regulated protein 78 (Grp78). HSC70 and HSP70 are 

expressed in the cytoplasm, while BiP is found in the endoplasmic reticulum. To date, four 

members of the stress-inducible Xenopus hsp70 genes (hsp70A, hsp70B, hsp70C and hsp70D) 
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have been isolated by Bienz (1984). Coding regions of hsc70.I, hsc70.II and BiP have been 

isolated and characterized by our laboratory (Ali et al., 1996a; 1996b; Miskovic et al., 1997).  

During development hsp70 mRNA is first heat inducible after the midblastula transition 

(MBT), which marks the activation of the zygotic genome even though HSF was detectable and 

heat activatable in cleavage stage embryos (Krone and Heikkila, 1988; Ovsenek and Heikkila, 

1990). Whole mount in situ hybridization revealed that while hsp70 mRNA was not readily 

detectable during normal development, heat shock induced hsp70 mRNA was enriched in a 

tissue-specific manner (Lang et al., 2000). For example, heat shock-treated early tailbud embryos 

demonstrated hsp70 mRNA accumulation in the lens placode, cement gland, heart, somites, 

spinal cord and proctoderm. Previously in our laboratory, it was also shown that HSP70 was 

induced in A6 cells by a variety of stressors including heat shock, sodium arsenite, herbimycin 

A, hydrogen peroxide, ethanol and cadmium (Darasch et al., 1988; Briant et al., 1997; Heikkila, 

2004; Muller et al., 2004; Woolfson and Heikkila, 2009; Young et al., 2009). 

 

1.7. Association of HSP with cancer and neurodegenerative diseases 

Overexpression or deregulation of cytoprotective HSPs such as HSP27 and HSP70 have 

been implicated in a variety of human cancers including breast, lung and prostate cancer 

(Malusecka et al., 2001; Melendez et al., 2006; So et al., 2007). It is believed that HSPs protect 

cancer cells from cell death and that higher levels likely contribute to acquisition of 

chemoresistance in certain types of cancers (Brodsky and Chiosis, 2006; So et al., 2007). In 

recent studies, inhibition of HSP70 and HSP90 by antisense RNAs inhibited growth and induced 

apoptosis in transformed cells (Whitesell et al., 1994; Nylandsted et al., 2000; Westerheide and 

Morimoto, 2005). This approach may provide a novel therapeutic modality for cancer. 
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Numerous neurodegenerative diseases have also been linked to HSP and proteasome 

dysfunction that are pathologically defined by abnormal deposition of misfolded polypeptides, 

which subsequently form cytotoxic aggregates (Westerheide et al., 2004; Zhang and Sarge, 

2007). These diseases include polyglutamine diseases such as Huntington’s disease along with 

amyotrophic lateral sclerosis (ALS), Alzheimer’s and Parkinson’s disease to name a few. Thus, it 

seems possible that therapeutic approaches may involve the use of HSPs to suppress the amount 

of unfolded proteins, which in turn will reduce the level of toxic aggregates in neuronal cells. In 

fact, previous studies suggest that chaperone activity provided by overexpression of HSPs can 

inhibit aggregate formation in HeLa cells (Zhang and Sarge, 2007). Given this finding, there has 

been a great amount of interest in the characterization of various inducers of the HSR for 

therapeutic purposes. 

 

1.8. Protein Degradation 

Eukaryotic cells employ two main protein degradation pathways to maintain protein 

homeostasis: the lysosomal degradation pathway and the ubiquitin-proteasome system (UPS). 

The lysosomal degradation pathway plays a minor role in the non-specific degradation of cellular 

proteins and is primarily responsible for hydrolysis of extracellular proteins (Lee and Goldberg, 

1998a). Although lysosomal degradation is important, it is in fact the ATP-dependent ubiquitin-

proteasome system (UPS) which is responsible for the majority (80 – 90 %) of protein hydrolysis 

in the cell (Lee and Goldberg, 1998a). 
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1.8.1. Ubiquitin-proteasome pathway 

The ubiquitin-proteasome pathway is the principle mechanism used by all cells to 

degrade proteins and maintain protein homeostasis in the cell. It is essential for many 

fundamental processes in the cell including cellular differentiation, cell cycle progression, 

proliferation and apoptosis (Mani and Gelmann, 2005; Landis-Piwowar et al., 2006). The 

pathway is broken down into two successive steps: addition of ubiquitin molecules onto the 

protein targeted for degradation and the subsequent degradation of the ubiquitinated proteins by 

the 26S proteasome (Yang et al., 2008).  

 

1.8.2. Protein Ubiquitination 

Eukaryotic cells initially ubiquitinate proteins that are targeted for degradation through 

the UPS. Ubiquitin is a 76 amino acid protein that serves as a marker for proteasome degradation 

when it is attached to lysine residues. The process of ubiquitination is controlled by a set of 

ubiquitin-activating and conjugating enzymes (E1 – E4) (Yang et al., 2008; Lehman, 2009). 

Firstly, ubiquitin-activating enzyme (E1) activates ubiquitin in an ATP-dependent manner 

through the adenylation and formation of a thiol-ester bond at its C-terminus. Subsequently, 

ubiquitin is transferred to a cysteine residue within one of several distinct ubiquitin-conjugating 

enzymes (E2). With the aid of a third enzyme, an E3 ubiquitin ligase, ubiquitin is transferred to a 

lysine residue of a substrate protein. This mechanism continues until the substrate protein is 

polyubiquitinated (Hershko and Ciechanover, 1998). E4 enzymes facilitate the formation of 

these polyubiquitin chains (Koegl et al., 1999). Following, ubiquitination, the substrate protein is 

then delivered by ubiquitin receptor proteins to the proteasome.  
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1.8.3. The Proteasome 

The 26S proteasome is a complex of multiple protein subunits containing the 20S 

proteolytic core and the 19S and 11S regulatory subunits. The 20S subunit is capable of 

hydrolyzing most unfolded proteins and is composed of two catalytic β rings surrounded by two 

non-catalytic -rings. The catalytic β rings contains multiple peptidase activities including the 

chymotrypsin-like (CT-like), trypsin-like (T-like) and peptidyl-glutamyl peptide hydrolyzing-

like (PGPH-like) (Groll et al., 1997; Ciechanover, 1998). The 19S and 11S regulatory 

subcomplexes bind to either end of the 20S core and serve to control which proteins will be 

degraded by identifying ubiquitinated proteins and then subsequently deubiquitinating them and 

passing them onto the 20S catalytic core for degradation. The 20S core degrades proteins into 

oligopeptides and ubiquitin is released and recycled. 

 

1.8.4. Proteasomal Inhibition 

Inhibition of the ubiquitin-proteasome pathway has been associated with a variety of 

neurological and protein-misfolding diseases including Alzheimer’s, Parkinson’s and 

Huntington’s Disease (Masliah et al., 2000; Ross and Pickart, 2004). Recently in Xenopus and 

other eukaryotic organisms, inhibition of the proteasome has also been associated with an 

increase in hsp gene expression (Bush et al., 1997; Young and Heikkila, 2010). Carbobenzoxy-

leucyl-L-leucyl-L-leucinal (MG132), lactacystin, and celastrol are proteasome inhibitors that 

primarily inhibit chymotrypsin-like activity of the 20S proteasome. These proteasomal inhibitors 

have been shown to induce the accumulation of HSP30 and HSP70 in Xenopus laevis A6 cells 

(Walcott and Heikkila, 2010; Young and Heikkila, 2010). 
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1.9. Curcumin 

Curcumin is an active ingredient in the Indian spice, Turmeric, which is obtained from 

the rhizome of the plant Curcuma longa (Fig. 4). Turmeric has been widely used in Ayurvedic 

Indian Medicine as an herbal remedy to treat common eye infections, mosquito bites, burns, 

fever and various other skin diseases (Ammon and Wahl, 1991). Curcumin has also been shown 

to possess various beneficial properties including anti-inflammatory, antioxidant, 

chemopreventative, and chemotherapeutic activities (Aggarwal et al., 2003; Duvoix et al., 2003; 

Campbell and Collett, 2005; Shishodia et al., 2005). In vitro studies have shown that curcumin 

inhibits the production of pro-inflammatory macrophage-derived cytokines in blood monocytes 

and alveolar macrophages thereby inhibiting inflammation (Abe et al., 1999). In vivo studies 

involving rat models also demonstrated that curcumin inhibited inflammation caused by 

cyclophosphamide-induced acute lung injury (Venkatesan and Chandrakasan, 1995). Also 

several animal studies found that curcumin has a dose-dependent chemopreventive effect in 

colon, duodenal, stomach and oral carcinogenesis (Maheshwari et al., 2006). In addition to its 

role as a chemotherapeutic agent, curcumin also functions as a chemosensitizer and enhances the 

activity of other anti-carcinogenic agents (Garg et al., 2005). Combined treatment of curcumin 

and TRAIL (TNF-related apoptosis inducing ligand) at low concentrations induced tumor cell 

death, while individually neither compounds induced apoptosis (Deeb et al., 2005). Curcumin 

treatment also led to decreased expression of anti-apoptotic members of the Bcl-2 family such as 

Inhibitor of Apoptosis (IAP), thus leading to the induction of programmed cell death (Shishodia 

et al., 2005). 
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Figure 4. The chemical structure of curcumin. 
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Recently, it was shown that human leukemia K562 cells treated with 30 – 80 μM 

curcumin underwent apoptosis (Teiten et al., 2009). Curcumin-induced suppression of 

carcinogenesis is thought to be due to the inhibition of nuclear factor-κB (NF- κB), which is 

controlled by the proteasome-mediated proteolytic degradation pathway (Cohen et al., 2006). 

Moreover, curcumin was found to increase the relative levels of ubiquitinated proteins and 

inhibit the chymotrypsin-like activity of the 26S proteasome in SW480 and HCT-116 human 

colon cancer cells (Milacic et al., 2008). Additionally, curcumin was reported to induce anti-

metastatic properties in lung adenocarcinoma cells through the induction of hsp genes identified 

by means of microarray analysis (Chen et al., 2001; Chen et al., 2004). Curcumin was also 

implicated in the induction of hsp70 gene expression in human colorectal carcinoma cells and 

human leukemia K562 cells (Chen et al., 2001; Teiten et al., 2009). 

 

1.10. Research Objectives 

Thus far, the effects of curcumin on hsp gene expression have been minimally 

characterized in mammalian systems. Given the potential health benefits of curcumin, the 

primary goal of this thesis was to examine the effect of curcumin on proteasome activity and the 

pattern of HSP accumulation in Xenopus laevis A6 kidney epithelial cells. More specifically, the 

objectives of this research are as follows: 

a) To examine the effect of curcumin on proteasome activity in A6 cells. 

b) To determine the effect of curcumin and heat shock, by itself and in combination, on the 

patterns of hsp30 and hsp70 gene expression. 

c) To examine the effects of recovery from curcumin exposure on the accumulation of 

HSP30 and HSP70 protein via immunoblot analysis. 
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d) To determine if curcumin-induced HSP30 and HSP70 accumulation is mediated by HSF1 

activation. 

e) To monitor curcumin-induced accumulation and intracellular localization of HSP30 and 

to determine whether curcumin can induce thermolerance in X. laevis A6 cells using 

immunocytochemistry and laser scanning confocal microscopy. 
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2. Materials and Methods 

2.1. Maintenance and treatment of Xenopus laevis A6 kidney epithelial cells 

X. laevis A6 cells were obtained from the American Type Culture Collection (ATCC, 

Rockville, MD) and were grown in 55 % Leibovitz L-15 Media containing 10 % (v/v) fetal 

bovine serum and 1 % penicillin (100 U/ml) and streptomycin (100 g/ml; all purchased through 

Sigma-Aldrich, Oakville, ON) at 22 °C in T75 cm2 BD falcon culture flasks (BD Biosciences, 

Mississauga, ON). Upon confluency, cells were washed with 1 ml of versene [0.02 % (w/v) KCl, 

0.8 % (w/v) NaCl, 0.02 % (w/v) KH2PO4, 0.115 % (w/v) Na2HPO4, 0.02 % (w/v) sodium 

ethylenediaminetetraacetic acid (Na2 EDTA)], followed by a 1 min incubation with 2 ml of fresh 

versene. Then 1 ml of 1X trypsin (Sigma-Aldrich) diluted in 100 % Hank’s Balanced Salt 

Solution (HBSS; Sigma-Aldrich) was added until cells began to detach from the flask. Ten ml of 

fresh L-15 media was then added to the detached cells. The cell suspension was then divided 

evenly into additional flasks. Cell treatments were performed 2 days after cell splitting to allow 

the cells to reach 90-100 % confluence. 

Flasks of A6 cells subjected to heat stress were immersed in temperature-regulated water 

baths at 30 °C or 33 °C for 2 or 6 h. It took 20 min for the media to reach the given temperature. 

A6 cells used for protein analysis were placed at 22 °C for 2 h after heat shock treatments prior 

to harvest. Curcumin (Sigma-Aldrich) treatments of A6 cells were performed at 22 °C or 30 °C 

using dilutions from a 100 mM curcumin stock solution dissolved in dimethyl sulfoxide (DMSO; 

Sigma-Aldrich) and stored at -20 °C. A6 cells were also treated with 30 M MG132 (Sigma-

Aldrich; stock solution of 21 mM was dissolved in DMSO and stored at -20 °C). Also, some A6 

cells were pre-treated with 100 μM KNK437 (Calbiochem, Gibbstown, NJ; stock solution of 5 

mg/ml was dissolved in DMSO) for 6 h before curcumin treatments. KNK437 was left in these 
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flasks during the curcumin treatments. Cells were rinsed using 65 % HBSS and removed via 

scraping in 1 ml of 100 % HBSS. Cells were centrifuged at 21,920 x g for 1 min and the 

resulting pellets were stored at -80 °C until protein isolation. 

 

2.2. Protein isolation, quantification and immunoblot analysis 

2.2.1. Protein isolation and quantification 

Protein was isolated from A6 cells using a lysis buffer solution at pH 7.4 containing 200 

mM sucrose, 2 mM EDTA, 40 mM NaCl, 30 mM HEPES, 1% (w/v) SDS and 1 % protease 

inhibitor cocktail (Promega, Madison, WI). It should be noted here that the lysis buffer used for 

samples in preparation for Western blotting with mouse anti-ubiquitin antibody contained 10 

mM N-ethylmaleimide (Sigma-Aldrich) to inhibit ubiquitin conjugating enzymes. The cells were 

homogenized in the lysis buffer by sonication (output 4.5, 60% duty cycle) on ice for 15 bursts 

using a Fisher Scientific Sonic Dismembrator 100 (Fisher Scientific, Ottawa, ON) and 

subsequently centrifuged at 21, 920 x g for 30 min at 4 °C. The supernatant containing the 

protein sample was removed.  

Protein was quantified using a bicinchoninic acid (BCA) Protein Assay Kit (Pierce, 

Rockford, IL). A bovine serum albumin (BSA; BioShop, Burlington, ON) protein standard was 

created by diluting BSA in distilled water at concentrations ranging from 0 to 2 mg/ml. Protein 

samples were diluted to a concentration of 1:2 in distilled water. Ten μL of BSA standards and 

protein samples were transferred in triplicate into a 96 well clear polystyrene plate. Then 80 μL 

of BCA reagent A and B (Pierce) at a ratio 50:1 were added to the BSA and protein samples. The 

plate was incubated at 37 °C for 30 min and then read at 562 nm using a Versamax Tunable 

microplate reader (Molecular Devices, Sunnyvale, CA). A standard curve was created using the 
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concentrations of the BSA protein standards which was used to determine the concentration of 

the protein samples. Protein samples were stored at -20 °C until further use. 

 

2.2.2. Immunoblot analysis 

Immunoblot analysis was performed using 20 or 60 µg of protein (the higher amount was 

used for the analysis of ubiquitinated protein) and sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE). Separating gels [10-12% (v/v) acrylamide, 0.32% (v/v) n’n’-bis 

methylene acrylamide, 0.375 M Tris (pH 8.8), 1% (w/v) SDS, 0.2% (w/v) ammonium persulfate 

(APS), 0.14% (v/v) tetramethylethylenediamine (TEMED)] were prepared, poured and allowed 

to polymerize for 25 min with 100% ethanol layered on top. Ethanol was poured off and the 

stacking gel [4% (v/v) acrylamide, 0.11% (v/v) n’n’-bis methylene acrylamide, 0.125 M Tris (pH 

6.8), 1% (w/v) SDS, 0.4% (w/v) APS, 0.21 % (v/v) TEMED] was prepared, poured and allowed 

to polymerize for 25 min. A6 cell protein samples were aliquoted in loading buffer [0.0625M 

Tris (pH 6.8), 10% (v/v) glycerol, 2% (w/v) SDS, 5% (v/v) β-mercaptoethanol, 0.00125% (w/v) 

bromophenol blue] was added, to a final concentration of 1X. Samples and molecular weight 

markers (BioRad, Mississauga, ON) were denatured via boiling for 10 min, cooled on ice for 5 

min and pulse-centrifuged prior to loading. Polyacrylamide gels were electrophoresed on a 

BioRad Mini Protean III gel system (BioRad) with 1X running buffer [25mM Tris, 0.2M 

glycine, 1 mM SDS] at 90 V until samples reached the separating gel, at which time the voltage 

was turned up to 160 V until the dye front reached the bottom of the gel.  

Pure nitrocellulose transfer blot membranes (BioRad) and filter paper (BioRad) were cut 

to 5.5 cm x 8.5 cm, and membranes were incubated for 30 min in transfer buffer [25 mM Tris, 

192 mM glycine, 20% (v/v) methanol]. After electrophoresis, the stacking gel was cut away and 
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the remainder of the gel was soaked in transfer buffer for 15 min. Protein was transferred to a 

nitrocellulose membrane with a Trans-Blot Semi-Dry Transfer Cell (BioRad) at 25 volts for 20 

min. Blots were then stained with Ponceau S stain [0.19% (w/v) Ponceau S (Sigma-Aldrich), 5% 

(v/v) acetic acid] for 10 min to determine transfer efficiency. The membrane was destained with 

MilliQ water and then photographed. The membrane was subsequently blocked in 5 % blocking 

solution [20 mM Tris (pH 7.5), 0.1% Tween 20 (Sigma-Aldrich), 300 mM NaCl, 5% (w/v) 

Nestle® Carnation skim milk powder] for 1 h to prevent non-specific binding. Immunodetection 

was carried out via either the use of polyclonal rabbit anti-Xenopus HSP30 antibody (Fernando 

and Heikkila, 2000); 1:1000 dilution, the polyclonal rabbit anti-Xenopus HSP70 antibody 

(Gauley et al., 2008); 1:350 dilution, the polyclonal rabbit anti-actin antibody (Sigma-Aldrich); 

1:200 dilution or the polyclonal mouse anti-ubiquitin antibody (Zymed, San Francisco, CA); 

1:150 dilution (Table 1). Excess unbound antibody was removed by rinsing the membrane (2 x 

10 seconds) with 1X TBS-T [20 mM Tris, 300 mM NaCl, (pH 7.5), 0.1% (v/v) Tween 20]. The 

membrane was washed with fresh TBS-T for 15 min, followed by two 10 min washes. The 

membrane was then incubated for 1 h with blocking solution containing the secondary antibody 

(alkaline phosphatase-conjugated goat-anti-rabbit or mouse (BioRad)). The secondary antibody 

dilution was dependent on the primary antibody employed, which is outlined in Table 1. For 

detection, the membrane was incubated in alkaline phosphatase detection buffer [alkaline 

phosphatase buffer (100 mM Tris base, 100 mM NaCl, 50 mM MgCl2 (pH 9.5)), 0.3% 4-nitro 

blue tetrazolium (NBT; Roche, Indianapolis, IN), 0.17% 5-bromo-4-chloro-3-indolyl phosphate, 

toluidine salt (BCIP; Roche)] until the bands were visible. 
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Table 1. Dilution specifications for antibodies used in Western blot analysis 

Primary Antibody Secondary Antibody 
Comments 

Name Dilution Name Dilution 
Rabbit anti-
Xenopus HSP30 

1:1000 
Goat anti-rabbit IgG 
AP-conjugate 

1:2000 
1° antibody prepared 
by Heikkila lab 

Rabbit anti-
Xenopus HSP70 

1:350 
Goat anti-rabbit IgG 
AP-conjugate 

1:3000 
1° antibody prepared 
by Abgent (San 
Diego, CA) 

Rabbit anti-actin  1:200 
Goat anti-rabbit IgG 
AP-conjugate 

1:3000 
1 ° antibody obtained 
from Sigma-Aldrich 

Mouse anti-
ubiquitin 

1:150 
Goat anti-mouse IgG 
AP-conjugate 

1:1000 
1° antibody obtained 
from Zymed 

 

2.3. Densitometry and statistical analysis 

Densitometric analyses within the range of linearity were performed using ImageJ 

(1.42q) software on all blots examining the effect of curcumin as described previously (Walcott 

and Heikkila, 2010). Briefly, experiments were repeated in triplicate, and the average 

densitometric values were expressed as a percentage of the maximum hybridization band or as a 

percent inhibition for KNK437 experiments. The data were graphed with standard error of the 

mean represented as vertical error bars. Statistical analysis through one way analysis of variance 

(ANOVA) followed by Tukey’s Multiple comparison post-test were performed with this data to 

determine if statistically significant differences existed between samples. Confidence levels used 

were 90% (p < 0.1; Δ) and 95% (p < 0.05; *). 

 

2.4. Immunocytochemistry and laser scanning confocal microscopy 

Cells were prepared for imaging by laser scanning confocal microscopy (LSCM) on 22 x 

22 mm glass coverslips in sterile petri dishes. In order to clean the glass coverslips, they were 

placed in small Coplin jars to ensure full contact with the base solution [49.5% (v/v) ethanol, 

0.22M NaOH] for 30 min with periodic shaking at room temperature. The coverslips were then 
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rinsed under running distilled water for 3 h and dried on Whatman paper. A6 cells were grown 

on flame sterilized cover slips for 24 h at 22 °C. A6 cells were incubated at 30 °C or 33 °C for 2 

h followed by a 2 h recovery period at 22 °C. A6 cells were also treated with 10 µM or 30 µM 

curcumin at 22 °C. Following the treatments, the cells were rinsed with phosphate buffered 

saline [PBS; 1.37 M NaCl, 67 mM Na2HPO4, 26 mM KCl, 14.7 mM KH2PO4, 1 mM CaCl2, 0.5 

mM MgCl2, pH 7.4] and fixed using 3.7% (w/v) paraformaldehyde (pH 7.4 in PBS; BDH, 

Toronto, ON) for 15 min. A6 cells were rinsed 3 times with PBS for 5 min each and 

permeabilized using 0.3% Triton X-100 (Sigma-Aldrich) for 10 min. A6 cells were then rinsed 3 

times with PBS and incubated in 3.7 % (w/v) bovine serum albumin fraction V (BSA; Fischer 

Scientific) for 1 h or overnight on the shaker at 4 °C. The BSA fraction V was filter-sterilized 

using a 0.45 μm filter (Pall Filtration Corp., St. Laurent, QC) to remove debris that might 

negatively affect the imaging. The following day cells were incubated with affinity-purified 

rabbit anti-Xenopus HSP30 antibody (1:500) in 3.7 % BSA for 1h. Following three washes with 

PBS, indirect labeling of A6 cells was performed using fluorescent-conjugated secondary 

antibody, goat anti-rabbit Alexa Fluor 488 (Invitrogen Molecular Probes, Carlsbad, CA) at 

1:2000 in 3.7 % BSA for 30 min in the dark. To visualize the actin cytoskeleton, A6 cells were 

incubated with rhodamine-tetramethylrhodamine-5-isothiocyanate phalloidin (TRITC; 

Invitrogen Molecular Probes) for 15 min at 1:60 in 3.7 % BSA in the dark. The cover slips were 

dried and mounted on glass slides with Vectashield mounting medium containing 4, 6-

diamidino-2-phenylindole (DAPI; Vector Laboratories Inc., Burlingame, CA) to stain nuclei. 

Coverslips were permanently attached to glass slides by using clear nail polish and examined by 

laser scanning confocal microscopy by using a Zeiss Axiovert 200 microscope and LSM 510 

META software (Carl Zeiss Canada Ltd., Mississauga, ON). 
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2.5. Cell-Based Proteasome Assay 

To evaluate the effect of curcumin on proteasomal activity in A6 cells, The Proteasome-

Glo Chymotrypsin-Like cell based luminescent assay kit was obtained from Promega (Promega, 

Madison, WI). Proteasome-Glo Cell-Based Reagents each contain a specific luminogenic 

proteasome substrate (Suc- Leu-Leu-Val-Tyr-Glo substrate for chymotrypsin-like activity) in a 

buffer optimized for cell permeabilization, proteasome activity and luciferase activity. The 

proteasome cleavage generates an aminoluciferin substrate that is consumed by luciferase to 

produce a luminescent signal at a rate proportional to proteasome activity. Proteasome-Glo™ 

Cell-Based Buffer and Luciferin Detection Reagent were equilibriated to room temperature in 

the dark and mixed with the Suc-Leu-Leu-Val-Tyr-aminoluciferin (Suc-LLVY-aminoluciferin) 

substrate to produce the Proteasome-Glo™ Reagent, which was used to detect the chymotrypsin-

like activity. Flasks of A6 cells were treated with 10 µM or 30 µM curcumin at 22 °C for 24 h. A 

30 µM MG132 treatment was used as a positive control. After treatments, cells were washed 

with 2 ml of versene and then with 1 ml of 1X trypsin until the cells began to detach from the 

T75 cm2 BD falcon culture flask. Nine ml of fresh L-15 media was then added to the flask and 

the media was pipetted up and down to rinse the flask surface and allow for even distribution. 

The cell suspension was then removed from the flask and placed into a 15 ml falcon tube. Cells 

were pelleted at 4 °C by gentle centrifugation at 2,400 x g for 5 min. Following centrifugation 

excess media was removed and pellets were washed in 5 ml of fresh L-15 media and then 

centrifuged again at 2,400 x g for 5 min at 4 °C. A6 cells were then resuspended in 5 ml of fresh 

L-15 media. For each sample, the total number of cells per ml was determined using a Bright-

Line haemocytometer (Hausser Scientific, Horsham, PA). 
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Approximately 15,000 cells per well were added to white-walled 96 well plates along 

with an L-15 blank. Proteasome-Glo™ Reagent was allowed to reach room temperature before 

being added to the 96-well plate in a 1:1 ratio (100 µL sample: 100 µL reagent). The contents of 

the plate were then mixed for 2 min on the shaker and allowed to incubate at room temperature 

for 45 min before detection of luminescence. The luminescence of each sample was measured 

using the Victor3 luminometer (Perkin Elmer Inc., Waltham, MA) containing a filter set at 

340/480 nm. Values were then compared to a blank control (Proteasome-Glo cell-based reagent 

+ L-15 media) and a no-treatment control (Proteasome-Glo cell-based reagent + L-15 containing 

DMSO). Measurements were repeated 3 times and statistical analysis was performed through 

analysis of variance (ANOVA) followed by Tukey’s Multiple comparison post-test. 
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3. Results 

3.1. Curcumin-induced increase in ubiquitinated protein in A6 cells 

Previous studies showed that curcumin inhibited proteasome activity in human colon 

cancer cells (Milacic et al., 2008). One method to assess proteasome inhibition in A6 cells 

treated with curucmin is to determine if there is an increase in the relative level of ubiquitinated 

protein. Previously in our laboratory, the proteasomal inhibitors, MG132 and lactacystin induced 

an increase in the accumulation of ubiquitinated proteins in A6 cells (Young and Heikkila, 

2010). In the present study, the relative levels of ubiquitinated proteins in cells treated with 30 

μM curcumin for 14 or 24 h at 22 °C were higher than observed in control cells (Fig. 5A). 

Densitometric analysis determined that there was a 3.7- and 4.7-fold increase in the 

accumulation of ubiquitinated protein in cells treated with 30 μM curcumin for 14 and 24 h, 

respectively, when compared to control (Fig. 5B). Densitometric analysis also revealed that a 10-

fold increase in ubiquitinated protein was observed in cells treated with the proteasome inhibitor, 

MG132 for 24 h, when compared to control.  

 

3.2. Effect of curcumin on chymotrypsin-like activity of A6 cells 

An additional method to evaluate the effect of curcumin on proteasomal activity in A6 

cells was to measure chymotrypsin (CT)-like activity using a cell-based assay. As shown in 

Figure 6, cells treated with 30 μM curcumin at 22 °C for 14 or 24 h showed a 24 % and 76 % 

decrease, respectively, in CT-like activity when compared to the control cells maintained at 22 

°C. Curcumin-mediated proteasome inhibition was also compared to the effects of MG132, 

which acts a substrate analog of CT-like activity in the 20S proteasome. An 85 % reduction in 

chymotrypsin-like activity occurred in cells treated with 30 µM MG132 for 24 h.  
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Figure 5. Effect of curcumin and MG132 on ubiquitinated protein levels in A6 cells. [A] 

Cells were maintained at either 22 °C (C), treated with 30 μM curcumin (Cur) for 14 or 24 h, or 

treated with 30 μM MG132 for 24 h at 22 °C. Protein was transferred to nitrocellulose membrane 

from SDS polyacrylamide gels and probed with a mouse anti-ubiquitin monoclonal antibody as 

described in Materials and methods. The positions of molecular mass standards in kDa are 

shown in the first lane (M). A section of a representative Ponceau S stained membrane that 

brackets a 42-kDa band (asterisk) is included to demonstrate efficient protein transfer. [B] Image 

J software was used to perform densitometric analysis of the signal intensity for ubiquitinated 

protein bands of western blot images. The data are expressed as a percentage of the maximum 

band (30 μM MG132) while the standard error is represented by vertical error bars. The level of 

significance of the differences between samples was calculated by one-way ANOVA with a 

Tukey's post-test. Significant differences between the control and other samples are indicated as 

* (p < 0.05). These data are representative of three separate experiments. 
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Figure 6. Effect of curcumin and MG132 on chymotrypsin-like activity of A6 cells. Cells 

were either maintained at 22 °C (Control), treated with 30 μM curcumin (Cur) for 14 or 24 h, or 

treated with 30 μM MG132 for 24 h (MG132) at 22 °C. Cells were suspended in L-15 media and 

15,000 cells per well were placed in a 96-well plate. A cell-based chymotrypsin (CT)-like assay 

was used to monitor the proteolytic activity. The level of significance of the differences between 

samples and maximum (control) was calculated by one-way ANOVA with a Tukey's post-test 

and indicated as * (p < 0.05). These data are representative of three separate experiments. 
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3.3. Analysis of heat shock induced HSP30 and HSP70 accumulation in Xenopus cultured 

cells 

A number of studies previously conducted in our laboratory using X. laevis A6 cells have 

shown that both HSP30 and HSP70 accumulated in response to elevated temperatures (Ohan et 

al., 1998; Phang et al., 1999; Fernando and Heikkila, 2000; Gellalchew and Heikkila, 2004; 

Young et al., 2009). As shown in Figure 7, enhanced levels of HSP30 and HSP70 but not actin 

were detected in cells subjected to heat shock at 33 °C for 2 h followed by a 2 h recovery at 22 

°C. It should be noted that the anti-HSP30 antibody utilized in this study, which was prepared 

against the entire coding sequence of HSP30C, detected multiple members of the HSP30 family 

in immunoblot analysis (Fernando and Heikkila, 2000). 

 

3.4. Curcumin-induced HSP accumulation in A6 cells occurs in a concentration and time-

dependent manner 

In the next phase of the study, A6 cells were treated with different concentrations of 

curcumin to examine their effects on the relative level of HSP30 and HSP70 accumulation. 

Western blot analysis revealed that the relative levels of HSP30 and HSP70 increased in cells 

treated with increasing concentrations of curcumin from 5 to 30 μM for 24 h (Fig. 8A). 

Densitometric analysis revealed that in comparison to cells incubated with 5 µM curcumin for 24 

h, HSP30 and HSP70 accumulation increased approximately 20-fold in cells that were treated 

with 30 µM curcumin (Fig. 8B). Upon treatment with 50 μM curcumin, cells exhibited abnormal 

morphology with elongated cellular projections and a loss of intercellular connections. This was 

accompanied by a 72 and 67 % decrease in HSP30 and HSP70 levels, respectively, compared to 
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Figure 7. HSP30, HSP70 and actin accumulation in A6 cells subjected to heat shock. Cells 

were maintained at 22 °C or treated at 33 °C for 2 h followed by a 2 h recovery at 22 °C. After 

treatment, cells were harvested and total protein was isolated. Twenty μg of protein was then 

resolved on a 12% SDS-polyacrylamide gel. Protein was transferred to nitrocellulose membranes 

and probed with anti-HSP30, anti-HSP70 or anti-actin polyclonal antibodies as described in 

Material and methods. These data are representative of three separate experiments. 

 

 

  



42 

 

 

 

 

 

 



43 

 

 

 

 

 

Figure 8. Curcumin-induced HSP30 and HSP70 accumulation in Xenopus laevis A6 cells. 

[A] Cells were maintained at 22 °C (C) or curcumin (Cur)-treated (5, 10, 20, 30 or 50 μM) for 24 

h. After treatment, cells were harvested and total protein was isolated. Twenty μg of protein was 

then resolved on a 12% SDS-polyacrylamide gel. Protein was transferred to nitrocellulose 

membranes and probed with anti-HSP30, anti-HSP70 or anti-actin polyclonal antibodies as 

described in Material and methods. [B] Image J software was used to perform densitometric 

analysis of the signal intensity for HSP30 (white) and HSP70 (black) protein bands of western 

blot images. The data are expressed as a percentage of the maximum band (30 μM curcumin for 

HSP70 and HSP30) while the standard error is represented by vertical error bars. The level of 

significance of the differences between samples was calculated by one-way ANOVA with a 

Tukey's post-test. Significant differences between the control and other concentrations of 

curcumin are indicated as * (p < 0.05) or Δ (p < 0.1). These data are representative of three 

separate experiments. 
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cells treated with 30 µM curcumin. In all of these treatments actin levels remained relatively 

unchanged. 

In time course studies, HSP30 and HSP70 accumulation was first observed in cells 

treated with 30 μM curcumin at 22 °C for 10 h (Fig. 9A). HSP30 levels increased over time with 

optimal accumulation between 18 and 24 h. Densitometric analysis revealed that in comparison 

to cells treated with curcumin for 10 h, an 8-fold increase in HSP30 accumulation occurred in 

cells treated for 18 h (Fig. 9B). Similar to HSP30 levels, HSP70 accumulation increased as the 

length of curcumin exposure increased from 10 to 24 h (Fig. 9A). Densitometric analysis 

demonstrated that in comparison to cells treated with curcumin for 10 h, a 2.5-fold increase in 

HSP70 accumulation occurred in cells treated for 24 h (Fig. 9B). Actin levels remained relatively 

unchanged throughout the course of treatments. 

 

3.5. HSP30 and HSP70 levels in A6 cells recovering from curcumin treatments 

In recovery experiments, A6 cells were treated with 30 μM curcumin for 14 h at 22 °C 

and were then allowed to recover in fresh L-15 media at 22 °C for different time periods ranging 

from 0 to 48 h. Western blot analysis revealed that HSP30 and HSP70 accumulation increased up 

to the 24 h recovery period, after which the relative levels of these HSPs decreased (Fig. 10A). 

Also, the relative levels of actin remained unchanged throughout the course of these treatments. 

Subsequent densitometric analysis revealed that HSP30 levels increased 3-fold in cells 

recovering from curcumin for 2 and 8 h when compared to cells exposed to curcumin with no 

recovery period. There was a 10-fold increase observed in cells when the recovery time was 

increased up to 24 h. Similarly, densitometric analysis exhibited that HSP70 levels increased 2-  
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Figure 9. Time course of curcumin-induced HSP30 and HSP70 accumulation in A6 cells.  

[A] Cells were maintained at 22 °C (C) or exposed to 30 μM curcumin for time intervals ranging 

from 2 to 24 h. Cells were harvested and total protein was isolated. Twenty μg of protein were 

then analyzed by Western blot analysis using anti-HSP30, anti-HSP70 or anti-actin polyclonal 

antibodies as described in Material and methods. [B] Image J software was used to perform 

densitometric analysis of the signal intensity for HSP30 (white) and HSP70 (black) protein bands 

of western blot images. The data are expressed as a percentage of the maximum band (30 μM 

curcumin for 24 and 18 h for HSP70 and HSP30 respectively) while the standard error is 

represented by vertical error bars. The level of significance of the differences between samples 

compared to control was calculated by one-way ANOVA with a Tukey's post-test. Significant 

differences between the control and time intervals are indicated as * (p < 0.05) or Δ (p < 0.1). 

These data are representative of three separate experiments. 
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Figure 10. HSP30 and HSP70 accumulation in A6 cells recovering from curcumin 

treatment. [A] Cells were maintained at 22 °C, or exposed to 30 μM curcumin for 14 h. 

Curcumin-treated cells were allowed to recover in fresh L-15 media at 22 °C for different time 

intervals ranging from 2 to 48 h. Cells were harvested and total protein was isolated and 

analyzed by immunoblotting using anti-HSP30, anti-HSP70 or anti-actin polyclonal antibodies 

as described in Material and methods. [B] Image J software was used to perform densitometric 

analysis of the signal intensity for HSP30 (white) and HSP70 (black) protein bands of western 

blot images. The data are expressed as a percentage of the maximum band (30 μM curcumin for 

14 h with 24 h recovery for HSP30 and HSP70) while the standard error is represented by 

vertical error bars. The level of significance of the differences between samples was calculated 

by one-way ANOVA with a Tukey's post-test. Significant differences between the control and 

other treatments are indicated as * (p < 0.05). These results are representative of 3 separate 

experiments. 
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and 3-fold in cells recovering for curcumin for 8 and 24 h when compared to curcumin-treated 

cells with no recovery time. 

 

3.6. Involvement of HSF activation in the accumulation of HSP30 and HSP70 in curcumin 

treated A6 cells treated 

A HSF1 inhibitor, KNK437, was employed to determine if curcumin-induced 

accumulation of HSP30 and HSP70 in A6 cells involved HSE-HSF1 binding activity. 

Previously, our laboratory demonstrated that KNK437 pretreatment inhibited both heat shock 

and chemical stress-induced hsp gene expression in Xenopus laevis A6 cells (Manwell and 

Heikkila, 2007; Voyer and Heikkila, 2008). As shown in Figure 11, when cells were pretreated 

with KNK437 prior to a curcumin treatment, there was a complete inhibition of HSP30 and 

HSP70 accumulation (Fig. 11A). Actin levels remained relatively unchanged throughout the 

course of the treatments. Subsequent densitometric analysis demonstrated that KNK437 caused 

inhibition of curcumin-induced HSP30 and HSP70 accumulation by 100 % and 94.8 %, 

respectively (Fig. 11C). 

 

3.7. Effect of mild heat shock on curcumin-induced HSP accumulation 

In the present study, I characterized the effect of treating A6 cells simultaneously with 

curcumin and mild heat shock on HSP30 and HSP70 accumulation. Cells were exposed to 10 

μM curcumin alone or in combination with a mild heat shock of 30 °C for 6 h followed by a 2 h 

recovery at 22 °C. Neither a 6 h 30 °C heat shock nor a 6 h 10 μM curcumin treatment alone 

resulted in any detectable accumulation of HSP30 protein, whereas the simultaneous treatment 

with the two stressors resulted in an enhanced accumulation of HSP30 (Fig. 12A). While 

relatively low levels of HSP70 accumulation were observed in cells treated with a 30 °C heat 
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Figure 11. Effect of KNK437 on curcumin-induced HSP30 and HSP70 accumulation in A6 

cells. [A] Cells were maintained at 22 °C, or exposed to 30 μM curcumin for 14 or 24 h with (+) 

or without (-) a 6 h pre-treatment with 100 μM KNK437 (KNK). KNK was present during the 

stress treatments. Cells were harvested and total protein was isolated and analyzed by 

immunoblotting using anti-HSP30, anti-HSP70 or anti-actin polyclonal antibodies as described 

in Material and methods. [B] Image J software was used to perform densitometric analysis of the 

signal intensity for HSP30 (white) and HSP70 (black) protein bands of western blot images. The 

data are expressed as a percentage of the maximum band (30 μM curcumin for 24 h without pre-

treatment with KNK for HSP30 and HSP70) while the standard error is represented by vertical 

error bars. The level of significance of the differences between samples was calculated by one-

way ANOVA with a Tukey's post-test. Significant differences between the control and other 

treatments are indicated as * (p < 0.05). These results are representative of 3 separate 

experiments. [C] The ability of KNK437 to inhibit HSP30 and HSP70 protein accumulation at 

each time point is graphed as % inhibition while the standard error is represented by vertical 

error bars. These results are representative of 3 separate experiments. 
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Figure 12. Analysis of HSP30 and HSP70 accumulation in A6 cells treated simultaneously 

with curcumin plus mild heat shock. [A] Cells were maintained at 22 °C, or exposed to 10 μM 

curcumin either singly or in combination with a 30 °C for 6 h followed by a 2 h recovery period 

at 22 °C. Cells were harvested and total protein was isolated and analyzed by immunoblotting 

using anti-HSP30, anti-HSP70 or anti-actin polyclonal antibodies as described in Material and 

methods. [B] Image J software was used to perform densitometric analysis of the signal intensity 

for HSP30 (white) and HSP70 (black) protein bands of western blot images. The data are 

expressed as a percentage of the maximum band (simultaneous treatment of 10 μM curcumin 

plus 30 °C for 6 h for HSP30 and HSP70) while the standard error is represented by vertical 

error bars. The level of significance of the differences between samples was calculated by one-

way ANOVA with a Tukey's post-test. Significant differences between the maximum signal and 

other treatments are indicated as * (p < 0.05). These results are representative of 3 separate 

experiments. 
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shock for 6 h or a 10 μM curcumin treatment for 6 h, a combination of the two stressors resulted 

in a higher accumulation of HSP70. Actin levels remained relatively unchanged for all the 

treatments. Densitometric analysis revealed that in comparison to cells treated with curcumin for 

6 h by itself, a 20-fold increase in HSP30 accumulation occurred in cells treated simultaneously 

with curcumin and a mild heat shock (Fig. 12B). Similarly, HSP70 increased 42.7-fold in cells 

treated simultaneously with curcumin and mild heat shock when compared to curcumin treated 

cells. 

A time course of HSP30 and HSP70 accumulation in A6 cells exposed to concurrent 

curcumin plus elevated temperature is shown in Figure 13. A6 cells were treated simultaneously 

with 10 μM curcumin plus a 30 ºC heat shock for time periods ranging from 2 to 24 h (Fig. 13A). 

In cells treated with concurrent curcumin and elevated temperature the accumulation of HSP30 

and HSP70 gradually increased from 2 to 6 h of treatment, after which there was a decrease in 

accumulation up to 24 h. Densitometric analysis demonstrated a 2.5 fold increase in HSP30 

levels from 2 to 6 h of concurrent curcumin and mild temperature treatment of cells.  

 

3.8. Localization of HSP30 in heat shock and curcumin-treated A6 cells 

The effect of heat shock and curcumin on the localization of HSP30 in A6 cells was 

determined by immunocytochemistry and laser scanning confocal microscopy (LSCM). HSP70 

was not investigated using this methodology since the affinity-purified, polyclonal anti-HSP70 

antibody, which was utilized successfully in western blot analysis, was unable to specifically 

detect HSP70 by immunocytochemistry (Gauley et al., 2008). As shown in Figure 14, heat shock 

treatment of cells resulted in the localization of HSP30 in the cytoplasm in a granular or 

punctuate pattern. HSP30 was not detectable in control cells maintained at 22 °C. Relatively low 
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Figure 13. Time course of HSP30 and HSP70 accumulation in A6 cells treated with 

concurrent curcumin and mild heat shock. [A] Cells were maintained at 22 °C, or exposed to 

10 μM curcumin in combination with a 30 °C for 2, 6, 10, 14, 18 or 24 h followed by a 2 h 

recovery period at 22 °C in fresh L-15 media. Cells were harvested and total protein was isolated 

and analyzed by immunoblotting using anti-HSP30, anti-HSP70 or anti-actin polyclonal 

antibodies as described in Material and methods. [B] Image J software was used to perform 

densitometric analysis of the signal intensity for HSP30 (white) and HSP70 (black) protein bands 

of western blot images. The data are expressed as a percentage of the maximum band 

(simultaneous treatment of 10 μM curcumin plus 30 °C for 6 h for HSP30 and HSP70) while the 

standard error is represented by vertical error bars. The level of significance of the differences 

between samples was calculated by one-way ANOVA with a Tukey's post-test. Significant 

differences between the control and other treatments are indicated as * (p < 0.05) or Δ (p < 0.1). 

These results are representative of 3 separate experiments. 
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Figure 14. Immunocytochemical detection of intracellular HSP30 accumulation in A6 cells 

exposed to two different heat shock temperatures. Cells were grown on glass coverslips in L-

15 media and were either maintained at 22 °C or heat shocked at 30 °C for 6 h or 33 °C for 2 h, 

followed by a 2 h recovery period at 22 °C. Actin and nuclei were stained directly with 

phalloidin conjugated to TRITC (red) and DAPI (blue), respectively. HSP30 was detected 

indirectly using an anti-HSP30 antibody and Alexa-488 secondary antibody conjugate (green). 

From left to right the columns display fluorescence detection channels for actin, HSP30 and 

merger of actin, DAPI and HSP30. The 20-μm white scale bar bars are indicated at the bottom 

right section of each panel. These results are representative of 3 different experiments. 
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amounts of HSP30 accumulation were detected in 30 % of cells incubated at 30 °C for 6 h (Fig. 

14). However, HSP30 did accumulate in 90 % of the cells exposed to a 33 °C heat shock. 

When A6 cells were treated with curcumin, HSP30 was localized primarily in the 

cytoplasm in a punctuate pattern. Curcumin-induced HSP30 accumulation was detected in 

approximately 10 % and 75 % of total cells treated for 14 h with 10 μM and 30 μM curcumin, 

respectively (Fig. 15). An increase in curcumin concentration up to 30 μM curcumin had no 

visible effects on the actin cytoskeleton. 

Combined treatment of cells with 10 μM curcumin and mild heat shock at 30 °C for 2 h, 

followed by a 2 h recovery at 22 °C resulted in an increase in HSP30 accumulation in 40 % of 

the cells with no visible effects on the actin cytoskeleton as indicated by the presence of control-

like stress fibers (Fig. 16). A 1.5 and 2-fold increase in HSP30 accumulating cells was observed 

for 4 and 6 h treatments, respectively, with no detrimental effect on the actin cytoskeleton (Fig. 

17). 

 

3.9. The effect of curcumin and mild heat shock on the acquisition of thermotolerance in 

A6 cells 

In a previous study, it was established that pre-treatment of A6 cells with a 33 ºC heat 

shock resulted in the accumulation of HSPs and an acquired state of thermotolerance (Manwell 

and Heikkila, 2007). In the present study, A6 cells were pretreated with curcumin prior to a 

thermal challenge at 37 ºC to assess whether this agent can produce thermotolerance. Shifting the 

incubation temperature of cells from 22 °C directly to a 37 °C thermal challenge for 1 h resulted 

in the collapse of the actin cytoskeleton (Fig. 18A). However, 80 % of cells pretreated with a 33  
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Figure 15. Intracellular localization of curcumin-induced HSP30 accumulation. Cells were 

grown on glass coverslips and were maintained at 22 °C (Control) or treated with 10 or 30 μM 

curcumin for 2 or 14 h at 22 °C. Actin and nuclei were stained directly with phalloidin 

conjugated to TRITC (red) and DAPI (blue), respectively. HSP30 was indirectly detected with 

an anti-HSP30 antibody and a secondary antibody conjugated to Alexa-488 (green). From left to 

right the columns display fluorescence detection channels for actin, HSP30 and merger of actin, 

DAPI and HSP30. The 20-μm white scale bars are indicated at the bottom right section of each 

panel. These results are representative of 3 different experiments. 
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Figure 16. Localization of HSP30 accumulation in A6 cells treated singularly or 

simultaneously with a mild heat shock plus curcumin. Cells were grown on glass coverslips 

in L-15 media at 22 °C. Cells were maintained at 22 °C (Control), treated with 10 M curcumin 

(Cur) or a 30 °C heat shock for 2 h individually or in combination, followed by a 2 h recovery at 

22 °C. Actin and nuclei were stained directly with phalloidin conjugated to TRITC (red) and 

DAPI (blue), respectively. HSP30 was indirectly detected with an anti-HSP30 antibody and 

Alexa-488 secondary antibody conjugate (green). From left to right the columns display 

fluorescence detection channels for actin, HSP30 and merger of actin, DAPI and HSP30. The 20 

μm white scale bar is indicated at the bottom right corner of each panel. These results are 

representative of 3 different experiments.  
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Figure 17. Time course of intracellular HSP30 accumulation in A6 cells treated with a mild 

heat shock plus curcumin treatment. Cells were grown on glass coverslips in L-15 media at 22 

°C. Cells were maintained at 22 °C (Control) or simultaneously treated with a 30 °C heat shock 

and 10 μM curcumin treatment for 2, 4 or 6 h followed by a 2 h recovery at 22 °C. Actin and 

nuclei were stained directly with phalloidin conjugated to TRITC (red) and DAPI (blue), 

respectively. HSP30 was indirectly detected with an anti-HSP30 antibody and Alexa-488 

secondary antibody conjugate (green). From left to right the columns display fluorescence 

detection channels for actin, HSP30 and merger of actin, DAPI and HSP30. The 20 μm white 

scale bar is indicated at the bottom right corner of each panel. These results are representative of 

3 different experiments. 

 

  



67 

  



68 

 

 

 

 

 

Figure 18. Cytoprotective effects of pre-treating A6 cells with heat shock prior to a 37 ºC 

thermal challenge. Cells were grown on glass coverslips and were maintained at 22 ºC, 

subjected to a 37 ºC thermal challenge or heat shocked at 33 ºC prior to a 37 ºC thermal 

challenge for 1 h. A6 cells were also pretreated with 100 μM KNK437 for 6 h before exposure to 

a 33 ºC heat shock and subsequent thermal challenge. Heat shocks at 33 ºC and thermal 

challenges at 37 ºC were followed by either a 2 h recovery period or 6 h recovery period at 22 

ºC, respectively. Actin and nuclei were stained directly with TRITC (red) and DAPI (blue), 

respectively. HSP30 was indirectly detected with an anti-HSP30 antibody and a secondary 

antibody conjugated to Alexa-488 (green). From left to right the columns display fluorescence 

detection channels for actin, HSP30 and merger of actin, DAPI and HSP30. The 20 μm white 

scale bar is indicated at the bottom right corner of each panel. These results are representative of 

3 different experiments.  
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ºC heat shock prior to the thermal challenge exhibited a normal actin cytoskeleton with intact 

stress fibers (Fig. 18A).  

As noted previously, cells treated with 30 M curcumin for 24 h had an optimal level of 

HSP30 accumulation. Therefore these conditions were employed in the present thermotolerance 

studies. As shown in Figure 19A, 90 % of the cells pretreated with 30 M curcumin for 24 h 

prior to a thermal challenge did not have a collapsed actin cytoskeleton and displayed control-

like stress fibers. Thus, curcumin was effective in conferring thermotolerance in A6 cells. The 

accumulation of HSPs in A6 cells may be responsible for this acquired state of thermotolerance 

by curcumin since KNK437 pre-treatment, which inhibited the accumulation of HSP30 and 

HSP70, also resulted in cytoskeletal collapse (Fig. 19A, last row). Relatively large circular 

HSP30 staining structures were observed in the cytoplasm of 25% of cells pretreated with 

curcumin prior to a thermal challenge (Fig. 19B).  

Finally, I examined whether simultaneous exposure to curcumin and heat shock, which 

induced the accumulation of HSP30 and HSP70, could also acquire thermotolerance. Cells 

treated singly with a 30 °C heat shock or 10 M curcumin prior to the 37 °C thermal challenge 

for 1 h displayed a cytoskeletal collapse. However, pre-treatment with curcumin plus mild heat 

shock before the thermal challenge resulted in 90% of cells displaying intact stress fibers and no 

cytoskeletal collapse (Fig 20). Thus, curcumin plus mild heat shock pre-treatment was effective 

at conferring thermotolerance in A6 cells. 
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Figure 19. Cytoprotective effects of pre-treating A6 cells with curcumin prior to a 37 ºC 

thermal challenge. [A] Cells were grown on glass coverslips and were maintained at 22 ºC, 

subjected to a 37 ºC thermal challenge or exposed to 30 μM curcumin (Cur) for 24 h prior to a 37 

ºC thermal challenge for 1 h. A6 cells were also pretreated with 100 μM KNK437 for 6 h before 

exposure to 30 μM Cur for 24 h and subsequent thermal challenge. Thermal challenges at 37 ºC 

were followed by 6 h recovery period at 22 ºC. Actin and nuclei were stained directly with 

TRITC (red) and DAPI (blue), respectively. HSP30 was indirectly detected with an anti-HSP30 

antibody and a secondary antibody conjugated to Alexa-488 (green). From left to right the 

columns display fluorescence detection channels for actin, HSP30 and merger of actin, DAPI 

and HSP30. The 20 μm white scale bar is indicated at the bottom right corner of each panel. 

These results are representative of 3 different experiments. [B] Enlargements of the HSP30 

localization patterns observed in A6 cells treated with 30 μM Cur for 24 h prior to a 37 ºC 

thermal challenge for 1 h. The bottom image is magnification of the area within the red box. The 

white arrow indicates large circular cytoplasmic foci of HSP30 accumulation. Actin and nuclei 

were stained directly with TRITC (red) and DAPI (blue), respectively. HSP30 was indirectly 

detected with an anti-HSP30 antibody and a secondary antibody conjugated to Alexa-488 

(green). 
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Figure 20. Cytoprotective effects of pre-treating A6 cells simultaneously with a mild heat 

shock plus curcumin prior to a 37 ºC thermal challenge. Cells were grown on glass coverslips 

and were maintained at 22 ºC, subjected to a 30 ºC heat shock or 10 μM curcumin (Cur) for 4 h 

treatment individually or in combination, prior to a 37 ºC thermal challenge for 1 h. Heat shocks, 

curcumin treatments and thermal challenges were followed by a 2 h recovery period. Actin and 

nuclei were stained directly with TRITC (red) and DAPI (blue), respectively. HSP30 was 

indirectly detected with an anti-HSP30 antibody and a secondary antibody conjugated to Alexa-

488 (green). From left to right the columns display fluorescence detection channels for actin, 

HSP30 and merger of actin, DAPI and HSP30. The 20 μm white scale bar is indicated at the 

bottom right corner of each panel. These results are representative of 3 different experiments. 
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4. Discussion 

The present study has shown that curcumin inhibited the chymotrypsin-like activity of the 

26S proteasome, enhanced accumulation of ubiquitinated protein and induced hsp30 and hsp70 

gene expression in Xenopus laevis A6 kidney epithelial cells. Initial studies demonstrated that 

exposure of A6 cells to curcumin enhanced the relative levels of ubiquitinated protein. These 

results were comparable to MG132-induced ubiquitinated protein accumulation presented in this 

study and previously in our laboratory (Young and Heikkila, 2010). Moreover, A6 cells treated 

with 30 M curcumin for 14 or 24 h exhibited a 24 and 76 % decrease, respectively, in 

chymotrypsin (CT)-like activity when compared to control cells. It has been shown in previous 

studies that MG132, a known proteasome inhibitor, and celastrol inhibited CT-like activity in A6 

cells (Walcott and Heikkila, 2010). Taken together, the curcumin-induced increase in the 

accumulation of ubiquitinated proteins and the decrease in CT-like activity was suggestive of 

curcumin-induced proteasomal inhibition. Similar findings have been described in mammalian 

cells. For example, curcumin inhibited proteasome activity and increased protein ubiquitination 

in HCT-116 and SW480 human colon cancer cell lines in vitro and in vivo (Milacic et al., 2008). 

Additionally, curcumin treated human keratinocytes had a 46 % decrease in chymotrypsin-like 

activity when compared to untreated cells (Ali and Rattan, 2006).  

In Xenopus laevis A6 cells, like other eukaryotic systems, the ubiquitin-proteasome 

system (UPS) is the primary degradation pathway for misfolded or damaged proteins (Lee and 

Goldberg, 1998b; Malik et al., 2001). Previous studies have demonstrated that proteasome 

inhibition results in the accumulation of ubiquitinated cellular protein targeted for degradation 

within the cytosol (Bush et al., 1997; Lee and Goldberg, 1998b; Malik et al., 2001; Liao et al., 

2006). Since these misfolded proteins possess exposed hydrophobic amino acid residues, 
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increased cellular concentrations of these non-native proteins by means of proteasomal inhibition 

can result in aggregate formation, which is detrimental to cell function (Hartl, 1996; Lee and 

Goldberg, 1998b; Hartl and Hayer-Hartl, 2009).  

As previously mentioned, this study has shown, for the first time in amphibians, that 

treatment of A6 cells with curcumin resulted in the accumulation of HSP30 and HSP70 protein. 

In these experiments, curcumin had no detectable effect on actin accumulation. The curcumin 

concentrations (10 to 30 M) employed in the present study were similar to those employed in 

mammalian cell line studies that induced hsp gene expression (Kato et al., 1998; Chen et al., 

2001; Dunsmore et al., 2001; Ali and Rattan, 2006; Kanitkar and Bhonde, 2008; Teiten et al.,. 

2009). For example, 10 to 30 µM curcumin stimulated heat- and stress-induced HSP27, HSP70 

and B crystallin accumulation in C6 rat glioma cells (Kato et al., 1998). Also, Dunsmore et al. 

(2001) demonstrated that up to 20 M curcumin-induced HSP70 accumulation in HeLa cells in a 

time and dose-dependent manner. Additionally, Ali and Rattan (2006) showed significantly 

increased HSP90 and HSP70 accumulation in human keratinocytes treated with 10 µM curcumin 

in comparison to untreated cells. Finally, 20 M curcumin also induced hsp70 gene expression in 

human colorectal cancer cells and human leukemia K562 cells (Chen et al., 2001; Teiten et al., 

2009). 

In Xenopus, the stress-induced expression of hsp genes is mediated by HSF1-HSE 

binding activity (Heikkila, 2003; Voellmy, 2004). Although, the mechanism by which HSF1 is 

activated is unknown, it is thought that this process is triggered by the accumulation of misfolded 

or damaged proteins in the cytosol (Morimoto and Santoro, 1998; Voellmy, 2004; Morimoto, 

2008). The current study determined that pretreatment of A6 cells with the HSF1 inhibitor, 

KNK437, prior to the application of curcumin repressed the accumulation of both HSP30 and 
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HSP70. This suggested that curcumin-induced hsp gene expression in Xenopus A6 cells was 

likely controlled, at least in part, at the level of transcription through the activation of the HSE-

binding activity of HSF1. Previous studies have also investigated the effect of curcumin on 

HSF1 activity in rat and human cells (Kato et al., 1998; Dunsmore et al., 2001; Teiten et al., 

2009). For example, Kato et al. (1998) demonstrated using gel mobility shift assays that 

curcumin prolonged the stress-induced activation of the HSE-binding activity of the HSF1 in C6 

rat glioma cells. Additionally, studies using electromobility shift assays demonstrated that 

curcumin induced activation of HSF1 in HeLa cells (Dunsmore et al., 2001). Recently, Teiten et 

al. (2009) also demonstrated that curcumin induced nuclear translocation of HSF-1 and increased 

its binding ability to HSE present on the hsp70 promoter. Lastly, these results are in agreement 

with previous studies in Xenopus, illustrating that pretreatment with KNK437, inhibited heat 

shock, chemical stress, MG132 and celastrol-induced hsp gene expression (Manwell and 

Heikkila, 2007; Voyer and Heikkila, 2008; Walcott and Heikkila, 2010; Young and Heikkila, 

2010). The molecular and cellular mechanisms that lead to stress-inducible hsp gene expression 

as a result of proteasomal inhibition are unclear. Since the proteasome degrades approximately 

90% of all proteins, inhibition of this process results in a substantial increase in the concentration 

of total cellular protein including misfolded or damaged proteins that would normally get 

degraded by the proteasome (Lee and Goldberg, 1998b). The accumulation of unfolded cellular 

protein by proteasomal inhibition may therefore trigger the activation of HSF1. This possibility 

is supported by previous studies in our laboratory, which demonstrated that proteasome 

inhibition by MG132, lactacystin and celastrol induced hsp30 and hsp70 gene expression in A6 

cells (Walcott and Heikkila, 2010; Young and Heikkila, 2010).  
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In time course studies HSP30 and HSP70 were first detectable in A6 cells after 10 h of 30 

M curcumin treatment. HSP30 levels increased over time with maximal accumulation between 

18 and 24 h. Similarly, HSP70 levels increased as the length of curcumin exposure was increased 

from 10 to 24 h. In contrast, continuous exposure of A6 cells to heat shock induced detectable 

levels of HSP30 and HSP70 after 1 h and maximal levels of HSP accumulation were observed 

after 2 h (Darasch et al., 1988). Reasons for the different temporal patterns of HSP accumulation 

in A6 cells subjected to heat shock and curcumin are not completely understood. It is possible 

that the delay in maximal HSP accumulation in A6 cells treated with curcumin may be due to the 

time required for curcumin to enter the cells and to increase the level of non-native protein by 

proteasomal inhibition in order to activate HSE-HSF1 binding activity. In support of this 

possibility a delayed accumulation of HSPs compared to heat shock was observed in A6 cells 

subjected to sodium arsenite, cadmium chloride, MG132, or celastrol (Gauley and Heikkila, 

2006; Woolfson and Heikkila, 2009; Walcott and Heikkila, 2010; Young and Heikkila, 2010). 

For example, A6 cells exposed to 2.5 µM celastrol displayed detectable levels of HSP70 and 

HSP30 initially after 2 and 6 h of treatment, respectively, with maximal levels occurring after 18 

h (Walcott and Heikkila, 2010). Also, MG132-treated A6 cells displayed enhanced levels of 

HSP70 and HSP30 after 4 and 8 h, respectively, with maximal HSP accumulation occurring after 

24 h (Young and Heikkila, 2010).  

The present study also investigated the pattern of HSP accumulation in X. laevis A6 cells 

recovering from curcumin treatment. Cells treated with 30 μM curcumin for 14 h had a relatively 

low accumulation of HSP30 and HSP70, which increased significantly for up to 24 h after the 

removal of curcumin. At 36 and 48 h post-treatment, the relative levels of HSPs decreased 

substantially. These findings were similar to results described in A6 cells recovering from 
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MG132 or celastrol, in which the relative levels of HSP30 and HSP70 remained elevated for up 

to 24 h (Walcott and Heikkila, 2010; Young and Heikkila, 2010). Additionally, a prolonged 

accumulation of HSPs was reported in rat neonatal cardiomyocytes recovering from proteasomal 

inhibition (Stangl et al., 2002). It is possible that elevated levels of HSPs are beneficial to 

curcumin-treated cells since relatively high concentrations of ubiquitinated cellular proteins that 

accumulate within the cytosol as a result of proteasomal inhibition may require an extended 

amount of time to re-establish protein homeostasis by degradation (Bush et al., 1997; Lee and 

Goldberg, 1998b; Liao et al., 2006).  

In X. laevis A6 cells, concurrent treatment with mild heat shock and low concentrations 

of curcumin induced elevated levels of HSP30 and HSP70 accumulation. In fact, the relative 

levels of HSP30 and HSP70 in cells treated with both stressors were greater than the sum of the 

values found with each stressor individually. This result is supported by the finding that 

curcumin acted as a potent stimulator of heat shock-induced accumulation of HSP27 and B 

crystallin in C6 rat glioma cells, BRL-3A rat liver cells and Swiss 3T3 mouse fibroblasts (Kato 

et al., 1998). Similarly, increased levels of HSP30 were observed in A6 cells treated concurrently 

with mild heat shock and relatively low concentrations of celastrol (Walcott and Heikkila, 2010). 

Moreover, increased levels of HSP30 and HSP70 accumulation were observed in Xenopus A6 

cells treated concurrently with MG132 and mild heat shock temperatures (Young and Heikkila, 

2010). Additionally, our laboratory also reported increases in hsp gene expression in A6 cells 

when a mild heat shock was combined with low concentrations of cadmium chloride, sodium 

arsenite, herbimycin A or hydrogen peroxide (Heikkila et al., 1987; Briant et al., 1997; Muller et 

al., 2004; Woolfson and Heikkila, 2009). The mechanism responsible for increased levels of 

HSP30 and HSP70 in A6 cells concurrently exposed to curcumin and mild heat shock is not 
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known. As mentioned previously, curcumin can induce an increase in the relative levels of 

ubiquitinated protein destined for degradation by proteasomal inhibition. Additionally, heat 

shock can induce a generalized unfolding of intracellular proteins. Thus, it is possible in A6 

cells, that a combined mild heat shock and curcumin treatment will elevate the total level of non-

native protein to a threshold level required for HSF1 activation. Evidence supporting the 

existence of a threshold level for HSF1 activation has been described in a number of systems 

including mouse T-lymphocytes and testis, intertidal mussels, HeLa cells and Xenopus (Sarge, 

1995; Lee et al., 1995; Ali et al., 1997; Buckley et al., 2001; Gothard et al., 2003). 

Immunocytochemistry and LSCM was employed to determine the localization of HSP30 

in A6 cells exposed to heat shock or curcumin. Cells exposed to these stressors displayed HSP30 

accumulation primarily in the cytoplasm in a granular or punctate pattern with a lesser amount in 

the nucleus. The punctate pattern of HSP30 accumulation may represent the stress-induced 

formation of HSP30 multimeric structures that are required for sHSP function (Ohan et al., 1998; 

MacRae, 2000; Van Montfort et al., 2001). Curcumin-induced HSP30 protein accumulation 

increased in a concentration- and time-dependent manner with no visible effects on the actin 

cytoskeleton, which has been used as an indicator of cellular viability and health (Wiegant et al., 

1987; Ohtsuka et al., 1993). This was in contrast to treatment of A6 cells with celastrol, which 

resulted in a disruption of the actin cytoskeleton with most cells displaying a rounder 

morphology compared to control cells (Walcott and Heikkila, 2010).  

Immunocytochemistry and LSCM revealed an enhanced accumulation of HSP30 in A6 

cells treated concurrently with low curcumin concentrations and a mild heat shock compared to 

the stresses individually. HSP30 was readily detected in the cytoplasm in a granular pattern in 

cells treated with 10 M curcumin at 30 °C for 2 h with a 2 h recovery with no visible effects on 
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the actin cytoskeleton. This pattern of enhanced accumulation of HSP30 in response to a 

combined stress increased over time with no detrimental effects on the actin cytoskeleton. These 

results are in agreement with previous studies in Xenopus, which illustrated that concurrent 

treatments with low concentrations of sodium arsenite (5 – 10 M)  and mild heat shock at 30 °C 

resulted in enhanced accumulation of HSP30 in the cytoplasm in a granular pattern (Young et al., 

2009). 

Some A6 cells pretreated with curcumin for 24 h displayed relatively large cytoplasmic 

foci containing HSP30 accumulation. Similar structures were reported in A6 cells exposed to 

cadmium chloride, sodium arsenite, MG132 or celastrol (Voyer and Heikkila, 2008; Woolfson 

and Heikkila, 2009; Walcott and Heikkila, 2010; Young and Heikkila, 2010). Although the 

identity of these large structures is currently unknown, it has been suggested that they are 

inclusion bodies containing HSP30 bound to unfolded proteins and may be associated with the 

molecular chaperone function of HSP30 (Fernando and Heikkila, 2000; Heikkila, 2004; 

Heikkila, 2010; Young and Heikkila, 2010). In support of this concept, previous studies 

determined that proteasome inhibition significantly increased the formation of cytosolic 

aggresomes that are composed of smaller protein aggregates also known as inclusion bodies 

(Garcia-Mata et al., 1999). Previous studies with A6 cells determined that these foci also 

occurred in response to high concentrations of MG132 or celastrol (Walcott and Heikkila, 2010; 

Young and Heikkila, 2010). 

The present study also determined for the first time that cells acquire a state of 

thermotolerance when treated with curcumin. In the present study, curcumin-induced hsp gene 

expression was required for this state of thermotolerance since it was repressed by KNK437. In 

previous studies in A6 cells, our laboratory reported that a 33 ºC heat shock resulted in HSP-
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mediated acquisition of thermotolerance as determined by cytoprotection of the actin 

cytoskeleton (Manwell and Heikkila, 2007). Together these findings suggest that heat shock and 

curcumin-induced HSP accumulation can protect cells from injury or other stresses based on the 

preservation of the cytoskeletal actin filaments and cellular morphology. It can be hypothesized 

that the accumulation of HSPs as a result of curcumin treatment increases the overall level of 

molecular chaperones in cells such that they can protect vital cellular proteins including those 

associated with the maintenance of the cytoskeleton. Additionally, this study determined that 

treatment of A6 cells with concurrent low concentrations of curcumin plus mild heat shock 

induced the accumulation of HSPs and conferred a state of thermotolerance. This result, which 

was not observed when the cells were treated with the stresses individually, was repressed by 

KNK437 (data not shown). The ability of A6 cells to respond to two relatively mild stresses and 

produce an enhanced accumulation of HSPs and a state of stress resistance is advantageous for 

survival since these chaperones can prevent or ameliorate the deleterious effects of stress-

induced misfolded, damaged or aggregated protein. Additionally, the concept of using two 

relatively mild stressors to induce an enhanced level of hsp gene expression may be a strategic 

method to elevate HSP levels with minimal cellular damage. This is of importance given that 

upregulation of cellular HSPs has been proposed as a possible therapeutic strategy for protein 

conformational diseases (Westerheide and Morimoto, 2005). 

In summary, the present study has shown for the first time in an amphibian system, that 

curcumin inhibited chymotrypsin-like activity of the proteasome, induced enhanced 

accumulation of ubiquitinated proteins and induced HSP30 and HSP70 accumulation in A6 cells 

with no detrimental effect on the actin cytoskeleton. Understanding the effect that curcumin has 

on Xenopus hsp gene expression is of importance given the potential therapeutic role for HSPs in 
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various human neurological disorders. Therefore, further analysis on the relationship between 

curcumin-induced proteasome inhibition and the accumulation of HSPs is required. Future 

studies should compare the effects of chronic versus acute stress imposed on A6 cells through 

curcumin treatments. Since many mammalian studies have suggested that proteasome inhibition 

may have an impact on molecular chaperones in the endoplasmic reticulum and HSP90 (Bush et 

al., 1997; Banerji, 2009); another avenue of future research is to investigate the effect of 

curcumin on other Xenopus hsp genes such as BiP, hsp47, hsp90 and hsp110. Also the effect of 

proteasome inhibition on hsp gene expression during animal development has not been 

investigated. Given the advantages of the Xenopus embryonic system including microinjections 

and transgenic methodology, future experiments should examine the effects of curcumin on hsp 

gene expression during early development. Recently, curcumin has also been shown to induce 

apoptosis in human leukemia K562 cells at high concentrations of 80 – 100 M (Teiten et al., 

2009). Therefore, the potential induction of apoptosis in curcumin-treated Xenopus A6 cells and 

embryos should also be investigated. For example, the use of apoptotic cell based assays or 

utilizing Hoechst 33258 with immunocytochemistry and LSCM would help to determine if A6 

cells are undergoing apoptosis in response to higher concentrations of curcumin. 
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