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Abstract 

The design of combustion devices is very important to society today.  They need to be 

highly efficient, while reducing emissions in order to meet strict environmental standards.  These 

devices, however, are currently not being designed effectively.  The most common method of 

improving them is through parametric studies, where the design parameters are altered one at a 

time to try and find the best operating point.  While this method does work, it is not very 

enlightening as it neglects the non-linear interactions between the design parameters, requires a 

large amount of time, and does not guarantee that the best operating point is found.  As the 

environmental standards continue to become stricter, a more robust method of optimizing 

combustion devices will be required. 

In this work a robust design optimization algorithm is presented that is capable of 

mathematically accounting for all of the interactions between the parameters and can find the 

best operating point of a combustion device.  The algorithm uses response surface modeling to 

model the objective function, thereby reducing computational expense and time as compared to 

traditional optimization algorithms. 

The algorithm is tested on three case studies, with the goal of improving the radiant 

efficiency of a two stage porous radiant burner.  The first case studied was one dimensional and 

involved adjusting the pore diameter of the second stage of the burner.  The second case, also 

one dimensional, involved altering the second stage porosity.  The third, and final, case study 

required that both of the above parameters be altered to improve the radiant efficiency.  All three 

case studies resulted in statistically significantly changes in the efficiency of the burner.  
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Chapter 1            

Introduction 

1.1 Motivation 

In industrial combustion, the porous radiant burner is a very important development.  It 

allows combustion of fuels with lower heating values compared to other burner types, and also 

has lower pollutant emissions and higher thermal efficiency.  The combustion zone in these 

burners is located inside a porous, chemically inert, solid matrix.  Combustion products heat the 

solid matrix downstream of the flame zone.  Some of this heat is then conducted and radiated 

back upstream, which preheats the reactants, and enables stable operation at a higher thermal 

efficiency and lower temperature.  Over the past forty years, a large amount of research has been 

dedicated to further the understanding of porous burners as well as improving the numerical 

models.  As the technology matured, benefits were seen in the use of a two-stage porous ceramic 

burner.  The upstream stage contains smaller pores and acts as a flame arrester, thereby 

anchoring the flame at the interface of the two porous sections, which further extends the stable 

range over that obtained from a single-stage porous burner.   

To date, attempts at design optimization of these burners have been limited to univariate 

parametric studies that show how varying one aspect of the burner design affects its overall 

performance.  While somewhat enlightening, a parametric study generally ignores nonlinear 

interactions between the parameters, and thus the optimal operating point can be missed.  A more 

comprehensive way of looking for the best operating point is to implement design optimization 
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methodologies.  These methods transform the design problem into a mathematical minimization 

problem by defining a vector of design variables and an objective function, which quantifies the 

design performance.  The minimum of the objective function, representing the optimal design 

outcome, is then found using a gradient based solver, which repeatedly adjusts the design 

variables based on the local topography of the objective function.  Despite the benefits, however, 

application of design optimization to industrial combustion has been quite limited to date.   

This thesis presents the development of a generic optimization algorithm for use by the 

combustion community, with the porous radiant burner as a test case.  This algorithm will be 

capable of dealing with the stiffness associated with the governing equations of combustion 

problems and is capable of finding solutions in a timely manner.  The algorithm is a new 

approach to optimizing these kinds of problems. 

The main contributions of this thesis are as follows.  A comprehensive model for 

combustion in porous media, combining all of the most recent correlations and property data will 

be presented first.  Then, an optimization algorithm capable of solving stiff, noisy problems 

accurately will be given.  Finally, the algorithm is demonstrated by carrying out one and two 

dimensional optimizations involving a porous radiant burner. 

1.2 Scope of Problem 

The present study is limited to the optimization of a porous radiant burner.  While 

modelling the porous radiant burner, the best available data and correlations available were used, 

and improving this model was beyond the scope of this research. Optimization is limited to 

problems of one and two design variables and a single objective, although extensions to a larger 

number of design variables and more complex objective functions are straightforward. 
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1.3 Outline of Thesis 

This thesis is divided into five main sections; a literature review, a description of the 

combustion model used, a description of the optimization algorithm used, the implementation of 

the optimization algorithm and results, and the summary and recommendations for future work. 

Chapter 2 presents a review of the literature in two fields: first the development of the 

porous radiant burner and its model; and second a review of design optimization algorithms 

found in the literature. 

Chapter 3 presents the combustion model used in this research.  This includes the 

governing equations, the boundary and initial conditions, property values and correlations, and 

concludes with a validation of the model. 

The derivation of the optimization algorithm is presented in Chapter 4.  Here the basic 

principles of optimization are laid out followed by a description of Newton’s method and 

Response Surface Modelling.  The chapter concludes with a validation of the optimization 

algorithm on a standard minimization test problem. 

Chapter 5 contains three case studies of the optimization algorithm being used on a 

porous radiant burner.  Here the results are given along with physical justifications that explain 

why the solutions make physical as well as numerical sense. 

Finally, Chapter 6 summarises the results obtained in Chapter 5, as well as the benefits of 

the optimization algorithm.  Recommendations for future work involving the developed 

optimization algorithm are also presented. 
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Chapter 2                

Literature Review 

2.1 Introduction 

This chapter presents the literature relevant to the current research.  The review is divided 

into two major sections: experimental studies and numerical modeling of porous media; and the 

development of design optimization for industrial combustion. 

In the porous media section, the history of the porous ceramic burner will be discussed, 

starting with the development of the physical burner and attempts to model the physics.  Next, 

improvements made to both the physical and model burner will be reviewed.  Emission studies 

will be discussed third, followed by a review on research about the physical properties of the 

burner materials and the effect of those properties on performance. 

As the practice of design optimization techniques is well established, the optimization 

section will be limited to the application of design optimization to industrial combustion. 

2.2 Porous Media Studies 

Research into porous media combustion was initially motivated by the goal of creating an 

excess enthalpy flame (Weinberg 1971).  Weinberg used thermodynamic arguments to 

hypothesize that peak temperatures in excess of the adiabatic flame temperature could be 

achieved by recirculating heat from the combustion products to the reactants.  Hardesty and 

Weinberg (1974) then postulated that the excess enthalpy flame would allow stable combustion 

of fuels having low energy content, but NOx concentrations may increase because the peak 
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temperature of the burner exceeds the adiabatic flame temperature.  To validate the claim they 

constructed a burner, shown schematically in Figure 2.1, containing a counter-flow heat 

exchanger to provide the incoming reactants with the heat from the products.  Measurements on 

the burner clearly demonstrated that the peak temperature exceeded the adiabatic flame 

temperature. 

 
 

Figure 2.1 - Hardesty and Weinberg (1974) Burner 

 

The main drawback of the Hardesty and Weinberg counter-flow burner was its 

complexity.  Takeno and Sato (1979) hypothesized that heat could be transferred from the 

products to the reactants in a simpler fashion by placing a highly conductive solid into the flame 

to conduct the enthalpy of combustion upstream to the reactants.  They modelled the problem as 

a laminar flame interacting with an isothermal solid.  Their results demonstrated that increasing 

the flow rate would also increase the peak temperature as the reaction zone thinned, and unlike 

the Hardesty and Weinberg burner, the high peak temperature would actually have little effect on 

NOx due to short residence times of the gases in the high temperature zone.  This model was 

used for several years to study the fundamental attributes and characteristics of the burner, 

including the stability of the flame front (Buckmaster and Takeno 1981), the effect of the length 

of the solid and heat loss (Takeno and Hase 1983), and an experimental study on the stability and 

location of the flame front (Kotani and Takeno 1982). 
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A few years later, Echigo et al. (1986) investigated the idea of using a porous media in 

place of a solid bar for heat recirculation.  They modelled the problem as one dimensional with 

spatially-dependant heat generation in place of detailed reaction kinetics, and scattering was 

excluded from the radiation equations.  They were able to show this simplified model adequately 

matched experimental data.  Experiments showed that low energy content fuels could be burned 

in this type of burner, and the lean limit of combustion could therefore be extended.  They also 

noted that the porous media was far more effective at transferring the enthalpy of combustion 

into radiant heat compared to an open flame, leading to improvements in radiation modeling in 

the burner.  Tong et al. (1987) modeled the radiation using absorption and anisotropic scattering, 

and solved the radiative transfer equation (RTE) using the P-11 spherical harmonics 

approximation.  They showed that radiant output could be increased by increasing the optical 

thickness of the porous medium, and also by using a strongly backscattering medium. 

The research focus then shifted to improving the combustion chemistry model.  Hsu and 

Matthews (1993) showed that a single step chemistry mechanism over-predicted the peak flame 

temperature by five to twenty percent and also over predicted the burning rate; based on this 

observation they concluded that detailed chemical kinetics should be used whenever possible, as 

it provides better numerical results as well as being a more realistic representation of the system.  

They also showed that for equivalence ratios greater than 0.8, the porous media burner ceases to 

be an excess enthalpy flame. 

The next major improvement to porous burner technology was the addition of a second 

stage of porous media (Hsu, Howell and Matthews 1993).  In this design, the upstage porous 

section has small pores to allow for greater preheating and to also act as a flame arrester, as the 
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small pore diameter is comparable to the quenching distance and thus prevents the flame from 

travelling upstream.  The second stage has larger pores to accommodate the submerged flame. 

Increasingly strict emissions regulations on industrial combustion devices promoted an 

increased focus on this aspect of porous ceramic burners.  Experimental studies were performed 

to determine the effect of flame speed and equivalence ratio on the emission levels of pollutants 

such as NOx and CO.  Khanna et al. (1994) experimented with pre-mixed methane and air and 

showed that the concentration of NOx increases with flame speed, due to the increase in peak 

temperature, while the concentration is relatively constant for a given equivalence ratio.  They 

also showed that CO increases with flame speed, as concentrations are dependent on flame 

location and at faster speeds the flame is located near the end of the burner and does not have 

time to oxidize the CO into CO2. 

Further improvements to the numerical model required better characterization of the 

porous ceramic properties.  Younis and Viskanta (1993) performed experiments on alumina 

having several different porosities and pore sizes to determine the effect these parameters have 

on the volumetric heat transfer coefficient.  They derived several correlations for the volumetric 

Nusselt number, Nuv, of the porous media having the form 

 Nuv=CRep
m (2.1) 

 

where C and m are constants determined by the pore diameter of the solid and Rep is pore based 

Reynolds number.  Research was also carried out to determine the values of the conduction and 

radiation properties.  Hsu and Howell (1992) showed through experimentation that thermal 

conductivity, λs, of partially stabilized zirconia (PSZ) was independent of temperature and could 

be represented as a linear correlation with the pore size, dp, having the form 
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 𝜆𝑠=0.18817.5𝑑𝑝  (2.2) 

 

They also presented two correlations for the extinction coefficient of the ceramic that were also 

independent of temperature.  The first correlation used geometric optics and was based on the 

pore size and the porosity, while the second was based on experimentation and was only a 

function of pore size.  Hendricks and Howell (1996) used experimentation and inverse analysis 

to determine the spectral absorption and scattering coefficients, as well as the accuracy of 

different scattering phase functions.  It was found that scattering is far more important than 

absorption in these materials, and that the scattering and absorption coefficients were relatively 

constant with wavelength.  They found the phase functions to be mostly isotropic, although at 

wavelengths above 2.4μm this was not the case. 

The objective of the above research was to develop an efficient porous radiant burner for 

industrial combustion applications, and to this end several studies were carried out to determine 

how these burners should be designed.  Barra et al. (2003) performed a parametric study to 

investigate the effect of equivalence ratio, solid conductivity, volumetric heat transfer 

coefficient, and extinction coefficient on the stable operating range of a two-stage porous 

ceramic burner.  Increasing the equivalence ratio caused the stable operating range to shift to 

faster velocities as well as widen the range.  The remainder of their tests were performed with an 

equivalence ratio of 0.65.  For the solid conductivity four different cases were run with different 

combinations of solid conductivities in the upstream and downstream section of the burner.  The 

best operating condition occurred when the second stage thermal conductivity was increased by a 

factor of ten which resulted in the stable range increasing by approximately a factor of two.  For 

the volumetric heat transfer coefficient, three cases were carried out by altering the pore diameter 

in the Nusselt number correlation.  The case where the pore diameter of the second stage was 
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decreased by a factor of two resulted in the greatest effect on the operating range.  The final set 

of tests was for the radiation extinction coefficient, which involved five cases.  Increasing the 

first stage extinction coefficient by a factor of six yielded the best stable operating range. 

More recently, Randrianalisoa et al. (2009) attempted to find the porous radiant burner 

design attributes that minimized pollutant emissions, such as CO and NOx, while maximizing 

radiant power.  For this study, a series of experiments were carried out to determine which 

material would be best in what situations.  Two experiments for each material were performed; 

one at the high and one at the low range of the operating conditions for the desired burner.  

While no rigorous mathematical optimization was performed, their results are still enlightening.  

In terms of lowering pollutants, metallic foams, such as FeCrAlY, were found to be best at both 

operating conditions.  In terms of radiant power, on the other hand, Mullite foam was best for the 

low operating condition, but second worse for the high end, where FeCrAlY was the best choice.  

No conclusion was made about which material is best overall. 

2.3 Optimization in Combustion Studies 

Although the studies of Barra et al. (2003) and Randrianalisoa et al. (2009) show the 

general trends of the porous burner performance with material properties, these univariate 

parametric studies generally ignore the non-linear interactions that the properties have with each 

other.  This is why design optimization is important; it considers all the variables and their 

interactions simultaneously, and identifies the combination of variables that provide the best 

possible solution.  As previously stated the use of design optimization is established with in other 

disciplines and will not be the focus of this literature review.  Instead this section will focus on 

the application of optimization to designing industrial combustion devices, which is rather 

limited. 
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One of the first studies using combustion and optimization was carried out by Smith et al. 

(1990), who used optimization to improve the design of coal gasification combustion while using 

a comprehensive model for the combustion.  The objective was to maximize the cold gas 

efficiency of the burner by changing the pressure, oxygen/coal ratio, and steam/coal ratio.  Two 

different injector designs were also considered: the first was a standard co-flow jet; while the 

second had swirl added to the coal stream.  Optimization was carried out using response surface 

modelling (RSM), which is discussed in detail in Section 4.4.  The optimal efficiencies were 

found to be 84.86% for the co-flow burner and 82.74% for the burner with swirl; however, 

experimental verification was still ongoing and not provided.  Smith et al. (1990) also considered 

performing optimization on the coal gasification burner to maximize burnout, while keeping the 

NOx in the flue gas below 200ppm.  The variables were the secondary swirl number, the variance 

of the particle size distribution, and the primary-to-secondary momentum ratio.  Using the same 

techniques as the previous cases a solution to the problem was found, located on the constraint 

due to the competing nature of NOx concentration and burnout. 

A variant of the RSM method presented in this thesis can also be used for operational 

optimization purposes of existing devices (Myers, Montgomery and Anderson-Cook 2009).   In 

this method the data is collected experimentally rather than be generated numerically.  This 

means that a physical device must exist for the experiment to be carried out on.  As a result the 

solution obtained does not have an immediately obvious physical explanation, as the governing 

physics are not used to generate the surfaces.  The method presented in this thesis, however, is 

derived from the equations, meaning that physical insight may be seen during the iterative 

process.  The main difference between these two methods is that the one presented in this thesis 
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can be used during the design phase of burner construction, while the other method is used to 

fine-tune and improve existing systems. 

Correa and Smith (1998) used design optimization to improve the operation of an 

ethylene furnace.  Their objective was to bring the twelve coil outlet temperatures of the furnace 

closer to a desired temperature, thus creating a more uniform temperature field.  The furnace was 

divided into two zones, with the coils in each zone receiving the same fuel flow rate, which were 

the design variables for this study.  The furnace was modelled using a steady state, turbulent, 

incompressible reacting flow code, while the optimization was carried out using a quasi-Newton 

algorithm.  A sixty percent improvement was made to the objective function.  The burner was 

then divided into four zones, splitting the existing zones in half, to try and improve the objective 

function further, however no significant improvement was made. 

Another study involving optimizing combustion devices was carried out on molten 

carbonate fuel cells (MCFC) (Gemmen 1998).    The study involved designing a burner that 

could combust the excess fuel in MCFC’s by injecting air into plug flow reactors (PFR).  The 

objective function was to minimize the amount of hydrogen and carbon monoxide leaving the 

combustor, while the design variables were the amount of air going into each stage of the 

purposed combustor.  The optimization, however, was carried out heuristically; the flow rate for 

one of the air injectors was perturbed slightly and then the other injector’s flow rates were 

changed to ensure that the same total amount of air was injected for each iterate design.  If the 

modified design was better than the current one then the modification becomes the new current 

design.  This process was carried out until no significant improvement could be made.  The final 

design reduced the amount of hydrogen and carbon monoxide to less than 1ppm at the burner 

exit.  Although this method did lead to a design improvement, it is not true optimization since 
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there is no guarantee of optimality; due to the heuristic nature, different answers can be reached 

depending on which iterates are selected, therefore the true minimum may not be found.  

Unfortunately, this procedure represents a very common type of “optimization” used today in 

industrial combustion.   

A more rigorous method for optimizing combustion devices are genetic algorithms, 

which are based on biological processes.  Several parent designs are selected from the design 

space and their objective value, or fitness, is calculated.  Based on the principle of survival-of-

the-fittest, the designs are then “bred” to produce new designs by mixing the attributes of the 

parents.  Mutation is also introduced during the “breeding” process by randomly perturbing a 

subset of variables.   This process continues until the best design is found.  In one study Büche et 

al. (2001) used a genetic algorithm to minimize the amount of NOx produced and the amount of 

pulsation in the burner.  The design variables were the fuel flow rates to eight different sections 

of the burner.  Due to the competing nature of the objectives no true minimum was found, but a 

Pareto front did form where all designs along the front have an equal minimum value for the 

objective function.  The design could then be chosen from this front based on the design needs of 

the engineer. 

Finally, Catalano et al. (2006) used progressive optimization to optimize the design of 

duct-burners.  In progressive optimization, optimization is carried out concurrently with the 

solution to the combustion problem, so that when the problem is in its early stages of solving the 

combustion problem the optimization can be quite coarse since the “exact” optimum solution is 

not needed, while the optimization tolerance is reduced as the solver converges, thus saving 

computational effort.  Catalano et al. (2006) performed two different optimizations: the first was 

to flatten the outlet temperature profile of the burner while changing the height of the slitform 
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gap and the crosswise dimension of the flame-holder; and the second was to reduce the near-wall 

temperatures while altering the same variables as the previous study.  Both tests were successful, 

and the combustion problem was only solved to convergence once, thereby causing a 

considerable time savings over regular optimization techniques. 

2.4 Summary 

The development of the porous radiant burner has taken place over the last forty years.  

The idea began as the insertion of a highly conductive solid into the flame and over time evolved 

into a multi-staged porous ceramic burner with a submerged flame.  Attempts to improve the 

design of these burners have been limited to parametric studies and trial and error, which ignores 

the non-linear coupling effects of the equations.  The performance of these burners could be 

improved through design optimization, which is emerging as a design technique in the industrial 

combustion industry.  The objective of this thesis is to develop a multivariable design 

optimization methodology for porous ceramic burners, which could be extended to other 

combustion devices.      
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Chapter 3                           

The Combustion Model 

3.1 Introduction 

This chapter presents the combustion model used in this research.  This chapter starts 

with an overview of the porous burner, followed by the governing equations and the necessary 

boundary and initial conditions.  Third, properties and correlations pertaining to the gas phase 

and solid porous ceramic phase are defined.  Forth, the numerical algorithm used to solve the 

governing equations will then be discussed.  Finally, the combustion model will be validated 

against the work of other researchers. 

3.2 Burner Specifications 

The burner examined in this study is the same one used by Barra et al. (2003) and 

Khanna et al. (1994), as well as several other researchers, and is shown schematically in Figure 

3.1. 

 

Figure 3.1 - Porous Burner Schematic 
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The burner is constructed of PSZ and consists of a 3.5cm upstream section and a 2.55cm 

downstream section; bringing the total length of the burner to 6.05cm.  The upstream section 

contains small pores to act as a flame arrester, while the downstream stage has a large pore 

diameter for the reasons discussed in Section 2.2.  The flame will be submerged within the solid 

phase and is expected to be located near the interface of the upstream and downstream porous 

segments. 

3.3 The Governing Equations 

The combustion model was based on the one presented by Barra et al. (2003), which is a 

one-dimensional reacting flow that interacts with the solid phase through a volumetric 

convection coefficient.  The model also includes solid and gas phase conduction, solid radiation, 

species diffusion, and detailed chemical kinetics.  Gas phase radiation is unimportant and is 

excluded from the model due to the small optical path lengths involved, while thermal diffusivity 

in the gas phase due to diffusion is neglected as it is considered to be negligible (Henneke 1998).  

Momentum conservation is also excluded from the model as the porous ceramic burner is 

assumed to be isobaric at one atmosphere.  Conservation of mass, gas energy, solid energy, and 

species, as well as the ideal gas law for a multicomponent mixture give rise to five coupled 

partial differential equations 

 ∂(ρ
g
ε)

∂t
+

∂(ρ
g
εu)

∂x
=0 (3.1) 

 
ρ

g
Cgε

∂Tg
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∂x

n

i=1

+ε ω ihiWi

n

i=1

ε
∂

∂x
 λg

∂Tg

∂x
 +hv TgTs =0 (3.2) 

 
ρ
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dq
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ρ

g
=

PW

RTg

 (3.5) 

 

where ρ is the density, ε is the porosity, u is the velocity, C is the specific heat, T is the 

temperature, n is the number of species, Y is the mass fraction, ω  is the species production rate, h 

is the enthalpy, W is the molecular weight, λ is the thermal conductivity, hv is the volumetric heat 

transfer coefficient, q is the radiative heat flux, V is the diffusion velocity, P is the pressure, R is 

the universal gas constant, and W is the mixture averaged molecular weight, calculated from 

 
W= WiXi

n

i=1

 (3.6) 

 

where X is the mole fraction.  Subscripts g, s, and i refer to the gas phase, solid phase and i
th

 

species respectively. 

The species production rate is calculated from 

 

ω i=Wi  υij
−υij

+ kj ×   cυij
+


1

KC

 cυij
−

productsreactants

 

nr

j=1

 (3.7) 

 

where nr is the number of reactions, kj is the reaction rate constant, Kc is the equilibrium constant, 

and c, 𝜐𝑖𝑗
+, and 𝜐𝑖𝑗

− are the molar concentrations, and the stoichiometric coefficients for the 

forward and backward direction of the reactant Ai in the j
th

 chemical reaction of the form 

 
 υij

+Ak   υij
−Ak

n

i=1

n

i=1

 (3.8) 

 

The reaction rate constant for the j
th

 reaction is calculated from the modified Arrhenius 

expression 
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kj=A0,jTg

βj
exp 

EA,j

RTg

  (3.9) 

 

where A0,j is the pre-exponential steric factor, βj is the temperature exponent, and EA,j is the 

activation energy for the j
th

 chemical reaction. 

The diffusion velocity, which represents the speed at which the species are diffusing in 

the gaseous mixture, is calculated from 

 
Vi=Dim

1

Xi

∂Xi

∂x
 (3.10) 

 

with 

 
Dim=

1Yi

 
Xj

Dij

 
(3.11) 

 

where Dim is the diffusion coefficient of the i
th

 species into the mixture and Dij are the binary 

diffusion coefficients. 

There are many methods available to estimate the radiant source term, which is the 

spatial derivative of the radiant heat flux found in Eqn. (3.3).  Due to the highly isotropic nature 

of the radiant intensity in porous ceramics the Schuster-Schwarzchild (S2) technique (Siegel and 

Howell 2002) was used.  The S2 method models the radiant intensity as isotropic in the forward 

and backward directions, and by multiplying by π we can easily convert the system of ODEs for 

intensity into 

 dq+

dx
=κ 2Ω q++κΩq+2κ(1Ω)σTs

4 (3.12) 

 


dq

dx
=κΩq+κ 2Ω q+2κ(1Ω)σTs

4 (3.13) 
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where q
+
 and q


 represent the radiant heat flux in the forward and backward direction, κ is the 

extinction coefficient, Ω is the scattering albedo, which is the ratio of the scattering coefficient to 

the extinction coefficient, and σ is the Stefan-Boltzmann constant.  Once the system is solved for 

q
+
 and q

 
the solutions can be used to find the radiant source term in the equation 

 dq

dx
=4κ(1Ω) σTs

4
q++q-

2
  (3.14) 

 

The S4 method (Siegel and Howell 2002), which assumes four directions of isotropic intensity, 

was tested as well but provided minimal improvement in accuracy compared to its increased 

computational expense. 

The ensemble of coupled partial differential equations in Eqns. (3.1)-(3.5) is stiff due to 

the high degree of coupling between the equations and the fact that the variables vary over 

substantially different time scales.  Coupling, caused by the presence of the same variables in 

multiple equations, can be seen in Eqns. (3.1)-(3.5) which represent the system, but can also be 

seen carrying over into Eqns. (3.6)-(3.14) which determine the properties.  Different time scales 

also exist, primarily due to the chemical reaction mechanisms, where reactions occur very 

quickly and at different rates.  As such the solver must proceed very slowly, and be spatially 

refined, in order to capture the details of the changing chemical species.  The time scale of the 

temperatures is determined by diffusion, therefore the temperature profiles change much slower 

than the species mass fractions.  If the solver were to run at the time scale of the temperatures 

then the solver would be inaccurate due to the missing detail of the chemical species.  However, 

if the solver is allowed to proceed at the time scale of the chemical reactions then round-off 

errors can be introduced into the system, due to large number of unnecessary steps being taken 
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for the slower changing variables.  A more detailed description of stiffness can be found in 

Garfinkel et al. (1977) and Section 4.3 of this thesis.  Due to the stiffness a special solver must be 

employed to solve the governing equations which will be discussed in Section 3.6. 

3.4 Boundary and Initial Conditions 

 The governing equations (Eqns. (3.1)-(3.4), (3.12), and (3.13)) require boundary 

conditions to close the system.  For conservation of mass, Eqn. (3.1), a fixed inlet velocity is 

selected as the inlet condition, which is constant at 0.45m/s for all cases studied.  Conservation 

of energy in the gas phase, Eqn. (3.2), requires two boundary conditions to close the problem.  

The first is a fixed inlet gas temperature, which is set to 300K for all calculations.  The second is 

a zero gradient exit gas temperature, which ensures that equilibrium is reached within the burner.  

Conservation of energy in the solid phase, Eqn. (3.3), also requires two boundary conditions, 

which are selected as zero gradient solid temperature at the inlet and the outlet of the burner.  A 

zero gradient boundary condition was selected as the solid stops at the burner inlet and outlet and 

cannot conduct heat any further.  Although in some studies a modified Robin boundary condition 

is used to account for radiant emission, this effect is instead accounted for through the S2 

equations, Eqns. (3.12) and (3.13).  Although the conservation of species equation, Eqn. (3.4), 

only requires one boundary condition per species, two were used instead.  The first boundary 

condition is set mass fractions for each species; in this case an equivalence ratio (φ) of 0.65 was 

used for all calculations, where air was assumed to have a composition of 21% oxygen, 78% 

nitrogen, and 1% argon; all other species had an inlet mass fraction of zero.  The second 

boundary condition was that all species mass fractions would have zero gradients at the burner 

exit, which is not necessary to solve the problem but ensures that equilibrium is reached within 

the burner.  The S2 equations, Eqns. (3.12) and (3.13), requires one boundary condition each, 
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which are selected as radiating to a blackbody at 300K from the inlet for Eqn. (3.12) and from 

the outlet for Eqn. (3.13).  Table 3.1 contains a summary of the boundary conditions listed 

above. 

Table 3.1 - Summary of Boundary Conditions 

Equation Inlet Condition Outlet Condition 

Conservation of Mass, (3.1) u=0.45m/s N/A 

Conservation of Energy, Gas, 

(3.2) 
Tg=300K 

dTg

dx
=0 

Conservation of Energy, Solid, 

(3.3) 

dT𝑠
dx

=0 
dT𝑠
dx

=0 

Conservation of Species, (3.4) 
Yi=Yi,0 

 where Yi,0 is determined from φ 

d𝑌𝑖
dx

=0 

S2 Equation, (3.12) q+=σTs
4 N/A 

S2 Equation, (3.13) N/A q=σTs
4 

 

 

Due to the pseudo-transient solution scheme, explained in Section 3.6, Eqns. (3.1)-(3.4) 

also require initial conditions.  For conservation of mass, Eqn. (3.1), a velocity profile was 

required.  The profile, shown in Figure 3.2, linearly increases from the known inlet value to 

another value at the burner exit, which is determined by solving the ideal gas law, Eqn. (3.5), for 

the density using the adiabatic flame temperature and then using conservation of mass to 

determine the velocity. 

Conservation of energy in the gas phase, Eqn. (3.2), requires an initial profile for the gas 

temperature.  This profile, shown in Figure 3.3, starts at the inlet value and remains at this 

temperature until just upstream of the burner interface, at which point it begins to linearly 

increase.  The profile stops increasing at a value of 2000K just downstream of the interface 

where it begins to linearly decrease to the adiabatic flame temperature at the burner exit.  The 
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reason for the large spike in temperature at the burner interface is to promote formation of the 

flame front close to where it will likely stabilize.  

 
Figure 3.2 - Velocity Initial Condition 

 

 
Figure 3.3 - Gas Temperature Initial Condition 

 

The initial condition for conservation of energy in the solid phase, Eqn. (3.3), a solid 
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source term is assumed to be zero and using the other initial conditions Eqn. (3.3) is solved to 

find the initial profile for the temperature of the solid.  Conservation of species, Eqn. (3.4), 

requires initial guesses for each of the chemical species.  These profiles start from their specified 

known inlet condition and linearly change to their equilibrium value at the burner interface, 

where they remain until the burner exit.  The oxygen profile is provided as an example in Figure 

3.4. 

 
Figure 3.4 – Oxygen (O2) Initial Condition 

 

3.5 Properties and Correlations 

This section will discuss the physical properties and correlations that pertain to the gas 

and solid porous ceramic phase. 

3.5.1 Gas Phase Transport Properties and Reaction Kinetics 

The transport properties of the gas are specified as part of the reaction mechanism and are 
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84 reactions (See Appendix A for a detailed listing of this mechanism).  DRM19 is a reduced 

mechanism based on GRI-Mech 1.2 (Frenklach, et al. 1994), and thus must use the 

thermodynamic and transport files associated with it as well (thermo12.dat and transport.dat 

respectively).  A reduced mechanism reduces the computational time of the solver compared to a 

more detailed mechanism like GRI-Mech 3.0 (Smith, et al. 1999) but provides better accuracy 

compared to a global mechanism.  A reduced mechanism also helps to reduce the stiffness of the 

system by reducing the extent of coupling between the equations and by reducing the number of 

different time scales, a result of having fewer variables.  To verify the validity of this reaction 

mechanism a comparison was made to GRI-Mech 3.0 (Smith, et al. 1999), which is currently 

considered the most complete and accurate methane combustion mechanism.  First, a solution 

was found using the GRI-Mech 3.0 mechanism, setting the grid refinement parameters to ensure 

an accurate solution and completion within a reasonable computational time.  Then, a second 

solution was found using the DRM19 mechanism, using the same grid refinement parameters.  

Although this solution time was considerably faster, the solution did not match that of GRI-Mech 

3.0.  The refinement parameters were then increased, which increased the computational time of 

DRM19 but still kept it below that required by the GRI3.0 solution.  This resulted in a much 

better agreement between the two reaction mechanisms, seen in the gas temperature profiles in 

Figure 3.5.  The two profiles are a very close match, and deviate by a maximum of 5% at the 

peak temperature, where DRM19 under predicts the GRI-Mech 3.0 results by about 25K.  As the 

peak temperatures are around 1850K and moreover the location of the peak temperature is 

consistent between the two models DRM19 can be considered a suitable mechanism for use in 

this study. 
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Figure 3.5 – Gas Temperature Profile Comparison using DRM19 and GRI 3.0 

 

3.5.2 Solid Phase Properties 

The nominal properties for the solid phase are given in Table 3.2 and come from the 

research of Khanna et al. (1994) and Barra et al. (2003).  These properties are for the reference 

case used for validation, and also as the initial point during the optimization phase of the 

research. 

Table 3.2 - Burner Property Data 

Property Upstream Downstream 

Pore Density 25.6ppc 3.9ppc 

Pore Diameter, dp 0.029cm 0.152cm 

Porosity, ε 0.835 0.87 

Scattering Albedo, Ω 0.8 0.8 

Density, ρs 510kg/m
3
 510kg/m

3
 

Specific Heat, Cs 824J/kgK 824J/kgK 
 

 

To avoid any numerical difficulties, the pore diameter and the porosity are linearly 

blended over a 4mm span surrounding the burner interface, which prevents any discontinuities 

that could lead to failures in the numerical algorithm. 
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3.5.3 Solid Phase Correlations 

The first solid phase correlation to be discussed is for calculating the volumetric Nusselt 

number, which provides the volumetric heat transfer coefficient linking the gas and solid 

conservation of energy equations.  The correlation was proposed by Younis and Viskanta (1993) 

and has the form 

 Nuv=CRep
m (2.1) 

 

This correlation was determined by carrying out experiments on alumina foams, but is used here 

as no data exists for PSZ foams and is used by other researchers for studies involving PSZ, e.g. 

Barra et al. (2003).  As the Nusselt number is entirely dependent upon the gaseous properties and 

the pore structure, and is independent of the solid properties, we are justified in using the 

correlation regardless of the solid phase material.  In their experiment, Younis and Viskanta 

(1993) placed a porous ceramic at a specified uniform temperature into a stream of gas at a 

different temperature.  The transient variation in ceramic temperature, gas temperature and 

velocity was monitored; this data in turn was used to solve for the volumetric heat transfer 

coefficient which was then expressed in dimensionless form as the Nusselt number.  A least 

squares fit of the data was used to form Eqn. (2.1), the results of which can be found in Table 

3.3. 

Table 3.3 - C and m values from Younis and Viskanta (1993) 

Pore Diameter (mm) C m 

0.29 0.638 0.42 

0.42 0.485 0.55 

0.76 0.456 0.70 

0.94 0.139 0.92 

1.52 0.146 0.96 
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Since the optimization study will adapt the pore diameter in a continuous manner. we 

must develop correlations that can be applied over a wide range of dp.  In fact, Younis and 

Viskanta (1993) developed their correlations with optimization studies in mind.  A linear fit with 

the pore diameter in meters was selected, and resulted in 

 C=400𝑑𝑝+0.687 (3.15) 

 m=443.7𝑑𝑝+0.361 (3.16) 

 

The inset of Figure 3.6 shows that linear fits are reasonable for the values of C and m.  To 

validate these correlations for combustion purposes two tests were performed.  We first plot the 

volumetric heat transfer coefficient versus the pore diameter, shown in Figure 3.6, to see if the 

correct trends were observed.  The volumetric heat transfer coefficient decreases with increasing 

pore size, which makes physical sense as an increase in pore size would decrease the number of 

pores per millimetre, thereby decreasing the surface area per unit volume and leading to a 

decrease in the amount of convective heat transfer. 

The second test of Eqns. (3.15) and (3.16) was to compare the results of two combustion 

simulations; the first simulation used the values from Table 3.3 that corresponded to each section 

of the porous media; while the second simulation was run using Eqns. (3.15) and (3.16).  Figure 

3.7 shows the gas temperature profile found by each simulation. 

  It can be seen that the two solutions are very similar, being within 5% at all times 

outside of the region contained within the horizontal bars.  Inside this region the solutions differ 

by as much as 25%Due to the steep temperature gradient at the flame front, however, this much 

error is not unexpected.  Overall the temperatures between these two cases agree very well, so 

Eqns. (3.15) and (3.16) are acceptable for the purposes of optimization. 
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Figure 3.6 - Volumetric Heat Transfer Coefficient Using Correlated Values of C and m 

 

 
Figure 3.7 – Gas Temperature Comparison using Fixed and Correlated Values for 

C and m 

 

0

1

2

3

4

5

6

0 0.0004 0.0008 0.0012 0.0016

h
v
 

1
0

5
(W

/m
3
K

)

dp (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.0008 0.0016

C
dp (m)

C, Younis & 

Viskanta (1994)

C Correlation

0

0.2

0.4

0.6

0.8

1

1.2

m

m, Younis & 

Viskanta (1994)

m Correlation

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.01 0.02 0.03 0.04 0.05 0.06

G
a
s 

T
em

p
er

a
tu

re
 (

K
)

Burner Location (m)

Fixed C&m

Correlation C&m



   

 

28 

 

Two other correlations were used, both proposed by Hsu and Howell (1992).  The first is 

a correlation is for the thermal conductivity, 

 𝜆𝑠=0.18817.5𝑑𝑝  (2.2) 

 

which is a linear fit to experimental data based on the pore diameter in metres.  In their 

experiment several pieces of ceramic foams with a variety of pore diameters and a few different 

porosities were heated on one face using a hot plate and cooled on the other.  Using Fourier’s 

law, the thermal conductivity of the specimen could be estimated by replacing the derivative in 

the law with the difference in the temperatures of the faces divided by the length of the burner.   

A least squares regression was then used to fit a curve to the data for different pore diameters.  A 

trend was somewhat evident with porosity as well, with the thermal conductivity decreasing with 

increasing porosity, which is expected since the solid phase has a higher thermal conductivity 

than the gas phase.  Nevertheless, due to the narrow range of porosities tested this was not 

considered in their conclusions.  A correlation of thermal conductivity in terms of the porosity by 

Nait-Ali et al. (2007)was also considered, but their experiments were carried out on ceramics 

having porosities between 50-75%, well below the porosities of the ceramic burner examined in 

this study.  Extrapolating this correlation to the porosities of interest, the correlation of Nait-Ali 

et al. (2007) greatly under-predicts the value reported by Hsu and Howell (1992) as well as being 

very flat for porosities that are of interest to this study.  Howell, Hall, and Ellzey (1996) as well 

as Vafai (2005) cite the correlation proposed by Hsu and Howell (1992) as the one to use when 

calculating the thermal conductivity of a porous ceramic, meaning the scientific community has 

accepted that the thermal conductivity is independent of porosity in the region of interest.  To 

further prove the validity of the correlation used by Hsu and Howell (1992) a sensitivity analysis 

was carried out to ensure that the porosity had minimal effect on the objective function when 
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acting through the thermal conductivity.  This analysis, found in Appendix B, shows that the 

objective function is not sensitive to the porosity, so the use of the correlation is valid.  

Accordingly the correlation of Hsu and Howell (1992) is used in this research as it was obtained 

based on material properties similar to those used in this research as well as being highly 

recommended by the scientific community. 

The second correlation is for the radiative extinction coefficient 

 
κ=

3

𝑑𝑝
(1ε) (3.17) 

 

where κ is the extinction coefficient, ε is the porosity, and dp is the pore diameter in millimetres.  

Equation (3.17), which is based on geometric optics, was validated for use by Hsu and Howell 

(1992) for calculating the extinction coefficient for pore diameters larger than 0.6mm; however 

we extrapolate it to the smaller pore diameters used here, as others have done when modelling 

porous ceramics under the same operating conditions (Barra et al., 2003).  The dominant source 

of extinction in a porous ceramic is scattering, hence the relatively large value of 0.8 for the 

scattering albedo.  This scattering is caused by the change in index of refraction as the radiation 

propagates across grain boundaries and different pore structures.   

To test the validity of the geometrics optics model we must know whether the porous 

ceramic solid is an independent or dependent scattering medium, which is done by examining the 

map of the scattering regimes, shown in Figure 3.8.  If a medium is in the dependent scattering 

region then the participating particles are close enough together that constructive and 

deconstructive interference can occur to the emitted radiation from each particle, meaning that 

geometric optics do not apply.  Independent scattering, however, means that the participating 
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particles are separated enough that they can be treated as isolated radiating bodies, as no 

interference occurs with radiation from other particles.  Using the web spacing for the scattering 

particle diameter, which is assumed to be the same size as the pore diameter based on visual 

observation (Hsu and Howell 1992), the particle size parameter is on the order of magnitude of 

10
3
.  The particle volume fraction, equal to one minus the porosity, is about 10

1
.  Using Figure 

3.8 we see that we are well within the independent scattering region, so geometric optics can be 

applied.  We also see that any reasonable variation to pore diameter will still result in being 

within the independent scattering region. 

 
Figure 3.8 - Independent and dependent scattering regimes (Siegel and Howell 2002) 
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The above properties and correlations completely define the system of coupled 

differential equations, boundary conditions, and initial conditions, which must be solved 

numerically. 

3.6 Solution Method 

The software package Cantera (Goodwin 2003) was used to perform the combustion 

simulations in this research.  Cantera is an open-source chemical kinetics program with a built-in 

one dimensional, reacting flow solver.  As the solver was written for a free flame, the source 

code had to be adapted to account for the solid phase.  The modified files can be found in 

Appendix C, while the code for interfacing with Cantera, as well as instruction for compiling and 

using Cantera, can be found in Appendix D.  For these simulations the solver was used to 

simulate combustion at steady state, which it does in a semi-transient manner as described below 

and shown in Figure 3.9. 

The first step in the solution procedure is creating the mesh.  As noted in Section 3.3, the 

physical phenomena occur over a wide range of length scales: the characteristic length for the 

transport phenomena (heat and mass transfer) is the pore diameter; while the combustion 

reactions occur over a much smaller distance/time.  Accordingly, for reasons of numerical 

stability and computational expediency, it is necessary to use an adaptive mesh that concentrates 

grid points where they are needed.  The initial mesh contains 300 nodes, 200 of which are tightly 

clustered around the burner interface, as this is near where the flame is expected to be located 

and where the highest degree of refinement is required.  The four adaption parameters: ratio, 

slope, curve, and prune are also set.  These values were determined empirically to create an 

accurate yet computationally inexpensive solution.  The ratio parameter, which is set to four, 

ensures that the ratio of the distances between two consecutive nodes and the next consecutive 
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nodes never exceeds this value by inserting a new node between the two existing nodes to reduce 

the ratio as necessary.  The slope parameter, set to 0.4, ensures that value of a variable at a node 

and the next node never differs by more than the set percentage, again by adding a new point 

between the existing nodes as necessary.  The curve parameter, set to 0.4, operates similar to the 

slope parameter, but it ensures that the slope never differs by more than the set percentage.  

Lastly, prune, set to 0.001, removes nodes from the mesh if the percent change in value or slope 

at a node goes below this value, ensuring that the mesh does not become cluttered with unneeded 

nodes.  These adaption parameters are summarized in Table 3.4. 

Table 3.4 - Grid Refinement Parameters 

Parameter Value 

Ratio 4 

Slope 0.4 

Curve 0.4 

Prune 0.001 
 

 

The solution proceeds in two stages.  In the initial stage grid adaption is not used and the 

energy equations, Eqns. (3.2) and (3.3), are not solved.  Instead, the gas and solid temperatures 

are held at the initial guess values while the velocity and species mass fractions are allowed to 

change.  This step creates a more realistic initial condition for velocity and species mass fractions 

for the chemical kinetics equations rather than relying solely on the guess profiles in Section 3.4.  

The solver attempts to solve the equations at steady state by minimizing the residual norm 

through Newton-minimizations.  (A detailed description of Newton’s method can be found in 

Section 4.3.)  This process is repeated to reduce the residuals of the governing equations until 

one of two things happens: the solution is found where the residuals meet the tolerances of the 

solver; or the solution begins to diverge.  If a solution is found the solver proceeds to the second 

step of the process.   
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Figure 3.9 - Combustion Solver Flow Chart 
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On the other hand, if the solution appears to be diverging, Cantera switches from trying 

to solve the steady state problem to a transient problem.  Physically, by switching to a transient 

solution the profiles will be allowed to temporally evolve, allowing for the profiles to approach 

the true steady state solution.  Mathematically, including transient terms increases the diagonal 

dominance of the matrix and mitigates the stiffness of the governing equations.  At first the 

solver only takes one step forward in time and then it reverts to solving the steady state problem, 

the reason being that transient calculations are comparatively slow and should be avoided as 

much as possible.  If the steady state calculation fails again, then two transient steps are made.  

After a third failure, five transient steps are taken followed by ten steps after a fourth failure.  

Finally, if the steady state solution fails a fifth time, then ten transient steps are made, which is 

the maximum number of transient steps that can be taken before attempting another steady state 

solution.  This process of attempting to solve the steady state problem, followed by ten transient 

steps, is repeated until the steady state solution is found, and the solver proceeds to the second 

stage. By taking the transient steps the solver operates on the time scale of the chemical 

reactions.  By only taking a few steps at a time, the chances of errors being introduced into the 

system are reduced.  By switching to steady state, the solver is operating at the time scale of the 

temperature profiles and thus can proceed faster.  Since the solution at steady state can only be 

found when close to the steady state answer, the chemical reaction data is not lost by taking 

larger steps.   

For the second stage of the solution process all of the governing equations, Eqns. (3.1)-

(3.5), are solved, and grid refinement is activated.  The algorithm begins by solving conservation 

of energy in the solid phase, Eqn. (3.3), using the previous solution to the gas temperature profile 

and assuming the radiant source term is zero.  Next, the S2 equations, Eqns. (3.12)-(3.14), are 
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solved for the radiant source term using the solid temperature profile that was just found.  The 

algorithm then returns to Eqn. (3.3), now using the newly calculated radiant source term.  This 

process continues until the solid temperature profile converges.  The solver then tries to solve the 

remaining governing equations, Eqns. (3.1)-(3.2) and (3.4)-(3.5), at steady state.  As is done in 

the first stage, if the solver fails then transient steps are taken to improve the solution.  Before 

each transient step the solid temperature profile is updated with the new gas temperature profile.  

Once again, the solver alternates between trying to solve the steady state problem and taking 

transient steps in order to approach the steady state solution.  In this stage, however, when the 

steady state solver is successful the grid is refined by sweeping through all of the nodes and 

checking the four refinement parameters.  If new nodes are inserted into the domain then the 

second stage begins anew, the solution to the steady state problem is attempted followed by 

transient steps if the method fails.    This process of adding nodes and resolving the problem 

continues until no new nodes are needed.  When this occurs then the problem has been fully and 

accurately solved at steady state and the solver stops. 

3.7 Verification of the Combustion Model 

The solver is validated by comparison to the experimental work of Khanna et al. (1994) 

and the numerical work of Barra et al. (2003), carried out under similar conditions. 

The objective of Khanna et al. (1994) was to determine the effect of flame speed and 

equivalence ratio on the emissions released from a porous ceramic burner and the exit 

temperature.  Since the current research was to focus on a single equivalence ratio, 0.65, only the 

data pertaining to this ratio from Khanna et al. (1994) is used in the comparison.  The first 

comparison made was the exit temperature shown in Figure 3.10. 
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Figure 3.10 – Comparison to Experimental Data for Burner Exit Temperature 

 

Khanna et al. (1994) do not specify whether the exit temperature shown is for the gas phase, the 

solid phase, or a combination of both.  As the Figure 3.10 shows, the numerical temperature 

profiles have a very good agreement with the experimental profile, with both the solid and the 

gas temperatures being within 10% of the published data at all times.  If the data from Khanna et 

al. (1994) represents an average of the gas and solid phase temperatures, then agreement between 

their data and that of the present study is within 3%.  The next area for comparison was the CO 

emission from the burner, shown in Figure 3.11.  Once again, a very good comparison can be 

seen between the two sets of data, differing by a maximum of 3ppm at the fastest flame speed.  

Khanna et al. (1994) believed the first data point to be the result of low temperatures, resulting in 

less oxidation, however, we did not observe this in the current model and therefore believe it is 

the result of experimental error and treat it as an outlier.   
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Figure 3.11 – Comparison to Experimental Data for CO Concentration at the Burner Exit 
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Figure 3.12 – Comparison to Experimental Data for NOx Concentration at the Burner Exit 
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burner face, a phenomenon that is difficult to simulate and is excluded from the numerical 

definition of flash-back.  Therefore, our model can still be considered accurate for the parameters 

of interest to this study, due to agreement with the stable range upper limit result the work of 

Khanna et al. (1994) and the explanation for the lower limit provided by Barra et al. (2003). 

Barra et al. (2003) performed twelve additional tests to investigate the effects of changing 

certain parameters on the stable operating range, however, only two are reported here for the 

sake of validation.  For the first comparison, the thermal conductivity of both sections was 

decreased by a factor of ten.  Barra et al. (2003) observed a significant decrease in the flash-back 

limit and only a slight decrease in the blow-off limit, resulting in an increase in the stable 

operating range.  The same trends were observed from the current simulation; the flash-back 

limit dropped to 34cm/s and the blow-off limit dropped to 44cm/s resulting in a larger operating 

range of 10cm/s.    The second comparison was made with the thermal conductivity of both 

sections of porous media being increased by a factor of ten.  Barra et al. (2003) observed a 

significant increase in both the flash-back and blow-off limits; however the overall stability 

range decreased.  The current model had the same trends, with the flash-back limit increasing to 

70cm/s, the blow-off limit increasing to 73 cm/s, and the stable range decreasing to 3cm/s 

As a final validation, we compare the calculated temperature and species profiles with 

those of Barra et al. (2003) to see if they followed similar trends and make physical sense.  

Although the profiles obtained from the current research are quite different in shape, peak 

temperature, and flame location compared to those in Barra et al. (2003) as a result of the 

different burning rates, the overall trends are in agreement and make physical sense.  The first 

profiles observed were those of the gas and solid temperature, seen in Figure 3.13. 
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Figure 3.13 - Gas and Solid Temperature Profiles for the Reference Case 

 

The flame front is located right at the burner interface as we would expect.  Secondly, the solid 

temperature is higher than the gas temperature upstream of the flame front, allowing for the pre-

heating of the gas.  A pre-heat zone is also observed leading up to the flame front.  After the 

flame front the general expectations are also met; the gas temperature peaks to be hotter than the 

solid matrix and is then cooled by it.  We also examine the major species of the reaction, seen in 

the magnified view of the flame front in Figure 3.14. 

 
Figure 3.14 - Major Species Profiles in Flame Front for the Reference Case 
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All of the species profiles shown are similar to that of Barra et al. (2003) and follow the 

expected trends.  Figure 3.14 shows the flame front occurring at the burner interface, as 

previously stated when discussing the temperature profiles.  The reactants stay at their initial 

values until they are close to the flame front where they begin to change.  As the reference case 

is for a lean flame, we see all of the methane being consumed and some oxygen being left over 

as expected.  The products begin to form and rise to their expected values within in the flame 

front.  The CO profile also follows the expected trend, forming quickly in the flame front and 

then being consumed by the excess oxygen in the reaction. 

As the burner model reproduces both the experimental data gathered by Khanna et al. 

(1994) and the trends observed by Barra et al. (2003) the model can be considered verified and 

validated and can be used to accurately model the combustion of methane within a porous 

ceramic burner. 
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Chapter 4               

Optimization Method 

4.1 Introduction 

This chapter presents the optimization algorithm used in the present research.  First, some 

principles of optimization will be laid out, followed by a description of Newton’s method.  

Response Surface Modelling (RSM) will be discussed next as a way of improving the 

functionality of Newton’s method for stiff sets of equations.  These two methods together will be 

used in the current research so a validation of the optimization algorithm is also included. 

4.2 Optimization Principles 

Optimization is the process that finds the minimum value of a given function, known as 

the objective function, which mathematically quantifies the quality of the design.  The variables 

on which the objective function is based, known as the design variables, represent system 

parameters that we are able to change and control.  By using mathematical algorithms to identify 

the minimum of the objective function we are really finding the best possible operating point for 

that system, and the design variables that produce that minimum are the conditions that the 

system should be run at to produce the optimal performance.  The optimization problem is stated 

mathematically as 

 x*=argmin F(x)  (4.1) 

 

where x is the vector of design variables, x* are the design variables resulting in the minimum 

value of the objective function, F(x).  Optimization is far more rigorous than a trial-and-error 
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approach for several reasons.  First, as the problem is represented mathematically, all of the 

interactions between the design variables will be accounted for in the model, unlike a parametric 

study where the variables are generally changed independently of each other.   Second, the 

objective function is continuous, rather than a set of discrete points as in trial-and-error 

approaches, which means that sensitivities to the design variables can be found.  Using these 

sensitivities changes to the design variables can be found that may result in improvements to the 

objective function.  The design variables are changed by 

 xk+1=xk+αkdk (4.2) 

 

where x
k+1

 is the new set of variables, x
k
 is the current set of variables, α

k
 is a scalar called the 

step length, and d
k
 is the search direction.  To create an improvement in the objective function, 

d
k
 must be a descent step, meaning 

 g ∙ dk>0 (4.3) 

 

where g is the gradient of the objective function containing the first order objective function 

sensitivities with respect to the unknowns in x such that g
p
= ∂F xk ∂xp

k .  There are several 

strategies for choosing d
k
 and α

k
, but for this research, we will use a modified Newton’s method. 

4.3 Modified Newton’s Method 

Newton’s method is powerful yet simple method for optimizing functions (Nocedal and 

Wright 2006).  The method is derived by finding the vector d
k
 at the k

th
 iteration that, when 

added to x
k
, will produce the largest possible drop in objective function.  

 xk+1 = xk+dk (4.4) 
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Assuming the function is at least second-order differentiable, we perform a Taylor series 

expansion of the objective function about the new set of variables, x
k+1

, to obtain 

 
F xk+1 =F xk+dk  = F xk +dkT

g+
1

2
dkT

Hdk+H.O.T. (4.5) 

 

where H is the Hessian of the objective function containing the second-order sensitivities such 

that Hpq= ∂
2
F xk ∂xp

k∂xq
k , and H.O.T. are the higher order terms.  Knowing that an extreme 

point of a function, which may be the minimum, occurs when the gradient is equal to zero, we 

now take the gradient of Eqn. (4.5) with respect to x
k
 to get 

 ∇F xk+dk  = g+Hdk+H.O.D. (4.6) 

 

where H.O.D. stands for higher order derivatives.  Setting the gradient equal to zero and treating 

the higher order derivatives as an error, followed by some rearranging, Eqn. (4.6) becomes 

 dk = H1g (4.7) 

 

Equation (4.7) is known as the Newton equation and is used to find the search direction 

for Newton’s method.  At this point a few observations about Newton’s method should be made.  

First, even though the search direction is derived to go straight to an extreme point, due to the 

error term it will not reach the minimum in a single step unless the objective function is 

quadratic, which necessitates iteration for most objective function.  Fortunately, most functions 

can be modelled accurately as quadratic when sufficiently close to the minimum, so within the 

region of the minimum Newton’s method guarantees rapid convergence, and is generally 

regarded as the most efficient minimization algorithm for problems where F(x) is continuous and 

unimodal.  It is important to note, however, that by setting the derivative equal to zero, Newton’s 

method only searches for extreme points, which are not necessarily local minima.  If a maximum 
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point or a saddle point is close to the current point, Newton’s method will step towards these 

points, thereby increasing the objective function value.  To correct for this, Newton’s method 

needs to be improved. 

The modification begins with a test for descent.  If Eqn. (4.3) does not hold, then the step 

determined by Newton’s method is an ascent step and should not be used.  Instead, we revert to 

the steepest descent step (Nocedal and Wright 2006), defined as 

 dk = g (4.8) 

 

where g is the gradient of the objective function, which by definition points in the direction of 

steepest ascent.  Therefore by adding a negative sign we now point in the opposite direction.  By 

taking the steepest descent step, we are guaranteed that the objective function will be improved.  

However, as no other information is accounted for, the steepest descent method converges very 

slowly and always requires the calculation of the step length parameter in Eqn. (4.2), which will 

be discussed in Section 4.4.1.  Fortunately, the algorithm only uses steepest descent steps to get 

within the vicinity of a local minimum at which point Newton’s method will be able to find 

descent steps with a much higher rate of convergence. 

Equations (4.7) and (4.8) show that most non-linear programming algorithms require first 

and second order derivatives to calculate the search direction, d
k
, and occasionally the step 

length, α
k
.  For a known function these values can often be determined analytically, but for an 

unknown function, which is the case in this research, these values need to be determined 

numerically.  This is usually done through finite differencing, where a first and second order 

derivative are approximated as 
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∇F(x)≈

F x+∆x F(x)

∆x
 (4.9) 

 
∇2F x ≈

F x+∆x 2F x +F(x∆x)

∆x
2

 (4.10) 

 

respectively, where  Δx is a small value usually on the order of magnitude of the square root of 

machine precision, which is the accuracy of a floating point system before round-off becomes 

significant.  Since three function evaluations per variable per search direction are required, with 

the possibility of the function being expensive to evaluate and having many variables, this can 

become very time consuming.  Furthermore, if the governing system of equations is stiff, as is 

the case in this problem, the objective function evaluations will be contaminated with noise, 

which is amplified when dividing by Δx and can dominate the finite difference estimates of the 

gradient and Hessian.  As these two problems with the modified Newton’s method are quite 

serious, and pertain to the problem at hand, a different approach to the derivative calculations 

must be used. 

4.4 Response Surface Modelling 

Response surface modelling (RSM) (Myers, Montgomery and Anderson-Cook 2009) is a 

method for optimizing objective functions that are expensive or difficult to evaluate.  It was 

developed for use in optimizing physical experiments in a stochastic way.  Rather than 

determining the true objective function, several points in the design space are selected.  A low 

order polynomial interpolating function is then fit to these points, usually using a least squares 

regression, and this model function that is optimized instead of the true objective function.  RSM 

has many benefits over a regular Newton’s method approach, including: fewer function 

evaluations; reduced computational time; noise reduction; and finally both the gradient and 

Hessian are analytically tractable.  This section will describe the RSM method used in this 
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research for selecting the points, fitting and optimizing the surface, and using these surfaces to 

optimize the objective function.  Although we describe RSM for minimizing an objective 

function having two variables, it can be extended to minimize functions having many more 

variables. 

4.4.1 Point Selection and Surface Generation 

The points are selected using the Face Centered Central Composite (FCC) design method 

(NIST/SEMATECH 2010).  In principle, only six interpolating points are required to generate a 

quadratic function in two dimensions.  In this case, however, since the objective function 

contains numerical noise induced by the stiffness of the governing equations, an additional three 

points, for a total of nine interpolating points, are required.  This mitigates the noise in F(x) while 

still keeping the total number of points low to limit the computational effort required to construct 

the objective function.  The nine points are selected in an organized fashion, shown in Figure 4.1.  

Of the nine points, eight of them are newly selected and centered about the current and ninth 

point, x
k
, in a rectangular arrangement.  The points are spaced at a distance of γ1 in the x1 

direction and a distance of γ2 in the x2 direction away from the current point, giving the rectangle 

the dimensions of 2γ1×2γ2.  The values of γ1 and γ2 are selected empirically to ensure efficiency 

and stability; if they are too large the response surface model will poorly approximate F(x), while 

if these values are too small the method will take a very long time to reach x
k
. 

The function value is now calculated at each of the model points, followed by a quadratic 

function being fit to the nine points using a least squares regression. As the derivatives of any 

polynomial function can be calculated analytically, no approximations have to be used in Eqns. 

(4.7) and (4.8).  This corrects one of the major problems with a regular Newton approach given 
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in Section 4.3 and is one of the ways that RSM accounts for the stiffness in the governing 

equations.  As the derivatives are easy to calculate for any polynomial, one may intuitively 

conclude that a high order polynomial would be desirable to ensure a better fit to the data.  

However, higher order polynomials require more interpolating points.  For example, a cubic fit 

requires fifteen points.  This would substantially increase the computational time if the function 

evaluation was expensive to calculate, which it is for the combustion problem.  Therefore, a 

quadratic model helps to minimize the number of required function evaluations.  Lower order 

polynomials also act to smooth out the objective function, thus removing any noise that may be 

contaminating the data 

 
Figure 4.1 - FCC Point Selection Schematic 
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we must constrain the problem within the model region.  This means that Eqn. (4.2) must be used 

and a step length must be calculated.  Fortunately, there are only three possible cases for 

determining the value of α
k
: 

 Case 1: If the extreme point is inside the model region and Newton’s method calculates a 

descent direction then the step length parameter is equal to one and the full Newton step 

is taken to the minimum of the model region. 

 Case 2: If the extreme point is outside the model region and Newton’s method calculates 

a descent direction then the step length parameter is equal to the distance to the edge of 

the model region in the direction of the Newton’s step. 

 Case 3: If the extreme point is in an ascent direction then the step length parameter is 

equal to the distance to the edge of the model region in the steepest descent direction. 

Once the value of αk has been selected, Eqn. (4.2) can be used to find the new current 

point and its objective value.  At this point, the stopping criteria, of which there are two, are 

checked to see if the optimal solution has been found.  The first criterion is when the norm of the 

difference between the new and current point is less than a certain tolerance, selected as 

empirically as 10
-4

 for this research.  This can be represented mathematically as 

  xk+1xk <104 (4.11) 

 

The second stopping criterion is when the new function value is greater than the old function 

value, or an ascent step was taken for the actual function.  As the minimization is carried out on a 

model function, it is possible that the descent step that it calculates is actually an ascent step for 

the objective function.  The only way that this would occur is if the amount of numerical noise in 

the objective function, caused by the stiffness of the problem, overwhelms the unperturbed 
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objective function.  In this situation further optimization would be wasted computational effort 

since any reductions in the objective function would be dominated by errors.  Therefore, the 

solver does not take the calculated step and the optimization procedure terminates.  If neither of 

the stopping criteria are met, then the solver continues by selecting new points.   

When selecting new points, there are two scenarios to be considered: whether the new 

point is on the model region’s boundary, or within the interior.  If the new location is on the edge 

of the model region, then the values of γ1 and γ2 remain the same and new points are selected.  

This effectively shifts the model region from being centered about the old point to being centered 

about the new one.  If the new point is inside the model region, on the other hand, then there is a 

good chance that the objective function minimum is located within the existing region.  

Therefore, to obtain a more accurate model, and therefore a more accurate answer, the model 

region is shrunk by decreasing γ1 and γ2 by a factor of two before selecting new interpolating 

points. 

4.4.2 Constrained Optimization 

If the optimization problem of interest is constrained, then several alterations need to be 

made to the RSM algorithm detailed above.  These changes pertain to point selection, model 

region size, and boundary optimization. 

4.4.2.1 Point Selection 

During constrained optimization, if the current point is closer to the edge of the 

constrained region than γ1 or γ2 the points need to be selected in a different manner.  The points 

that would otherwise be out of the constrained region are moved so that they are on the edge of 
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the region, as shown in Figure 4.2.  This ensures that all function evaluations are performed at 

feasible locations and that any step calculated will also be within the feasible region. 

 
Figure 4.2 - Change to Model Region Near a Constraint 

 

Another change to consider is if the current point is on the constraint itself.  Rather than 

using only half of the model region, which is what the above change would recommend, the 

model region is shifted so that the current point is on the edge of the model region rather than 

being at its center, as shown in Figure 4.3.  This ensures that all points are feasible as well as 

ensuring that the model region is not shrunk prematurely. 

 
Figure 4.3 - Change to Model Region on a Constraint 
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4.4.2.2 Model Region Sizing 

If the calculated step goes from being within the feasible region to being on the boundary 

of the feasible region, the size of the model region must be reconsidered.  Normally, if a point is 

selected on the edge of the model region the region is shifted rather than being shrunk.  

However, if the edge of the model region and the constrained region are the same then the model 

region is shrunk.  Being on the constraint generally means that the objective function minimum 

lies outside of the constrained region, however, as we are using an approximation to the 

objective function it is possible that the model is too large to capture the detail of the objective 

function near the constraint.  By shrinking the model region and calculating a new search 

direction and step length we allow the solver to step back into the feasible region if necessary. 

4.4.2.3  Boundary Optimization 

If the search direction leads to an infeasible point, i.e. one that lies outside of the feasible 

region, the dimensionality of the problem is decreased by one by treating the inequality 

constraint of the boundary as an equality constraint using a method called the generalized 

reduced gradient method (Gill, Murray and Wright 1986).  Further improvements can now be 

found by searching along the boundary of the feasible region.  Once a minimum is found, the 

algorithm reverts back to its original dimensionality, shrinks the model region and calculates a 

new search direction.  This process of optimizing along the boundary continues until either of the 

stopping criteria is met or the search direction points back into the feasible region. 
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4.4.3 Error Estimation 

As RSM is a stochastic method, an estimate of the error in the function value is desirable 

upon the completion of the algorithm.  We start by calculating the mean square error of the 

surface by 

 

𝑠 =   
 y

i
y 

i
 

2

np

n

i=1

 (4.12) 

 

where n is the number of points used to make the surface, p is the number of regressor variables, 

and yi and y 
i
 are the true objective function value and model function value of the i

th
 point 

respectively.  This calculation also reflects why more interpolating points are used rather than the 

minimum required when making the response surface.  If the minimum number of points were 

used then the amount of error in the surface would be reported as zero, as the model would be 

exact at the interpolating points.  With the addition of more points, not only is the surface more 

accurately represented but the error is as well.  Next, we calculate the estimated standard error of 

the minimum of the surface by 

 
sy (x)=s x(m)T

 XTX 
1

x(m) (4.13) 

 

where x
(m)

 is a vector, based on the minimum location of the function, of the form 

 x(m)= 1,x1,x2,x1
2,x2

2,x1x2 
T
 (4.14) 

 

and X is a matrix whose rows are the x(m)T
 vectors for each of the points that made up the model 

surface.  Finally, the error can be calculated for constructing confidence intervals by 
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 e = tα 2 ,npsy (x) (4.15) 

 

where tα/2,n-p represents the value from the Student’s-t distribution for a 100(1α)% confidence 

interval.  Here a 90% confidence interval was desired (α=0.1) which led to tα/2,n-p being equal to 

2.919986.  What this confidence interval means is that if the error in the data is assumed to be 

random noise, 90% of the time the minimum function value will be the calculated value plus or 

minus the error term, e. 

4.5 Verification of RSM Algorithm 

The purpose of this section is to verify the validity of the RSM algorithm for optimizing 

functions, the code for which can be found in Appendix D.  A test case will be carried out on 

Rosenbrock’s function, which is a common test case for optimization algorithm (Gill, Murray 

and Wright 1986), and can be represented mathematically as 

 F x =100 x2x1
2 

2
+ 1x1 

2 (4.16) 

 

This function has a strong global minimum at (1,1)
T
 with a function value of zero.  

Finding this minimum numerically can be quite challenging, however, since it is surrounded by a 

shallow valley having steep sides, as seen in Figure 4.4.  The steep sides can lead to errors when 

calculating the gradients numerically, due to the rapidly changing function values, and the flat 

valley can cause the algorithm to stall, due to the fact that the Hessian becomes nearly singular.  

Therefore, if the RSM algorithm is capable of finding the minimum of Rosenbrock’s function we 

can consider it a viable method for optimization and use it to optimize combustion devices.  It 

should be noted that ascent steps were allowed in this example.  To start the RSM algorithm an 

initial point is selected as (0,0)
T
 while γ1 and γ2 are both set equal to unity.  Figure 4.5 shows the 
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contours of the first response surface, with superimposed contours of Rosenbrock’s function and 

the + representing the current point. 

 
Figure 4.4 - Rosenbrock's Function 

 

 
Figure 4.5 - 1

st
 Surface of Rosenbrock's Function 
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As a minimum clearly exists within the model region the algorithm will take a step to this 

value, followed by the model region being decreased in size.  New points are now selected to 

form a new surface to approximate the objective function, shown in Figure 4.6 with the square 

representing the new model region. 

 
Figure 4.6 - 2

nd
 Surface of Rosenbrock’s Function 
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Figure 4.7 - 3

rd
 Surface of Rosenbrock's Function 

 

Once again, the extreme point is a saddle point; however, it is also in an ascent direction.  

Therefore, the RSM algorithm takes the steepest descent step to the edge of the model region.  

When the algorithm continues, shifting and shrinking the model region and taking the steepest 

descent step when necessary, it converges to the point (0.9959,0.9920)
T
 with a function value of 

1.6588×10
-5

 ± 0.0033 in 35 iterations, requiring 0.035 seconds.  Several of the remaining 

surfaces can be seen in Figure 4.8, while the path taken to the minimum is shown in Figure 4.9. 
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difficult problem to optimize, within a reasonable tolerance the RSM algorithm is considered 

verified and is validated for use in optimizing combustion problems. 

 
a)  4

th
 Surface of Rosenbrock’s Function 

 

 
b)  15

th
 Surface of Rosenbrock’s Function 

 
c)  25

th
 Surface of Rosenbrock’s Function 

 
d)  Final (35

th
) Surface of Rosenbrock’s Function 

 

Figure 4.8 - Intermediate Surfaces of Rosenbrock's Function 
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Figure 4.9 - Path to Minimum of Rosenbrock's Function 
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Chapter 5       

Implementation and Results 

5.1 Introduction 

Using the combustion model and optimization algorithm presented in Chapter 3 and 4 

respectively, we now consider the design optimization of the porous radiant burner.  This chapter 

contains two one-dimensional studies and a two-dimensional study to try and improve the 

performance of a porous radiant burner.  The objective of these studies is to maximize the radiant 

efficiency, expressed mathematically as 

 
x*=argmin F(x) =argmin  

Ts,out(x)
4

Tad
4
  (5.1) 

 

where x is the vector of design variables and Tad is the adiabatic flame temperature, which is the 

temperature achieved for complete combustion of an open flame without any additional energy 

being transferred into or out of the system.  As the optimization algorithm is for minimizing 

functions, and we wish to maximize the radiant efficiency, the negative sign was added to 

convert the problem from maximization into minimization.  The code for optimizing the 

efficiency can be found in Appendix D. 

5.2 One Dimensional Studies 

Two one-dimensional optimization studies are performed on the porous radiant burner: 

first on the second stage pore diameter; and then on the second stage porosity.  This section 

details the two optimizations performed, starting with selecting the initial point and point spacing 
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parameter, providing the maximum function value with justification, and discussing the path to 

the maximum. 

5.2.1 Stage Two Pore Diameter 

The first optimization was carried out on the second stage pore diameter.  This parameter 

was chosen as many of the correlations used in the combustion model rely on the pore diameter 

of the solid.  As such, this would help to highlight the non-linear interactions of the combustion 

model.  We focus on the pore diameter in the second stage as this is the reacting zone in which 

most of the heat transfer is taking place.  The initial value for the pore diameter was selected as 

the nominal value of 1.52mm, and a grid spacing parameter of 0.0375mm was chosen.  Table 5.1 

provides a summary of the starting point for this optimization, as well as the function value for 

the reference case. 

Table 5.1 - Initial Parameters for dp,2 Optimization 

Parameter Value 

x
0
 1.52mm 

γ 0.0375mm 

F(x
0
) 27.29% 

 

 

Rather than having the initial set of RSM points surround the initial point, they were all 

located at smaller values, or to the left, of x
0
.  The first response surface, and function values at 

the desired points, seen in Figure 5.1, is a concave surface, or convex when the negative is 

applied.  Therefore, a Newton step can be taken to the edge of the model region and a new 

surface can be constructed about this new point.  The algorithm continues building surfaces and 

finding the minimum, as described in Chapter 4, until it reaches the tenth surface, shown in 

Figure 5.2. 
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Figure 5.1 - First Response Surface for dp,2 Optimization 

 

 
Figure 5.2 - Tenth Response Surface for dp,2 Optimization 
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function being less than the maximum of the current point.  Therefore, one of the stopping 

criteria has been met and the optimization terminates after 9.1 hours.  The algorithm gives the 
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maximum efficiency as 33.91% ± 2.75% with the second stage pore diameter being equal to 

0.77mm.  This is a statistically significant improvement as the total change in efficiency is 

6.62%, which is larger than the amount of error in the final answer.  Therefore, even in the worst 

case scenario for the error, an improvement has still been found in the performance of the porous 

radiant burner.   

This answer also makes physical sense.  As previously shown in Figure 3.6, decreasing 

the pore diameter increases the volumetric heat transfer coefficient, and therefore the amount of 

convective heat transfer.  This means that for the optimal case more heat will be transferred from 

the gas to the solid in the second stage of the burner, thus leading to an increase in the solid exit 

temperature and the radiant efficiency.  This is confirmed in  

Figure 5.3 where the temperature profiles for the reference case are compared to the 

optimal solution.  For the optimal solution, the gas temperature decreases much more rapidly 

after the flame front before levelling off.  The solid temperature on the other hand rises much 

higher for the optimal case and remains higher all the way to the burner exit, leading to the 

greater efficiency.  We would also expect that decreasing the pore diameter too much would be 

detrimental to the efficiency.  As Eqns. (2.2) and (3.17) show, a decrease in the pore diameter 

will lead to an increase in the thermal conductivity and extinction coefficient respectively.  This 

means that conduction and radiation in the burner are also becoming more dominant.  Eventually 

these two methods of heat transfer would become the dominant forms of heat transfer causing 

more energy to be moved upstream, resulting in a drop in exit temperature, and thus efficiency 

regardless of the extra energy being convected into the solid.  All of the response surfaces 

leading to the maximum value, as well as all the actual function values, can be seen in  
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Figure 5.4. 

 

 
a) Gas Temperature Profile Comparison 

 
b) Solid Temperature Profile Comparison 

 

Figure 5.3 - Reference vs. Optimal Temperature Profile for dp,2 Optimization 

 

a) Response Surface b) Function Values 

 

Figure 5.4 - Response Surfaces and Function Values for dp,2 Optimization 
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At first the objective function is quite smooth and has a clearly defined maximum where 

the algorithm suggested it was located.  It is interesting to note that as the solver approaches the 

maximum value for the radiant efficiency the amount of noise in the objective function also 

increases.  This suggests that near the maximum value the equations have become even more 

stiff, leading to noise being introduced into the objective function.  This is most likely caused by 

the production rates also increasing leading to enhanced coupling in the governing equations.  

Equation (3.9) shows that as the temperature of the gas increases, as  

Figure 5.3 shows it does for the optimal solution, the reaction rate constants will also 

increase.  These increases in reaction rate will in turn lead to an increase in the species 

production and consumption rates, as seen in Eqn. (3.7).  This means that the chemical aspect of 

the model will become more important, thus leading to the speculated enhanced coupling as well 

as an increase in the stiffness through the chemical time scales becoming more important. 

Figure 5.5 shows the efficiency parameter versus the iteration number.  The efficiency 

initially improves relatively linearly with iteration number, since the RSM iterations constantly 

stop at the edge of the model region.  A large change is observed in objective function for the 

first iteration as a result of the starting point being on the edge of the model region, as opposed to 

in the center like everywhere else, allowing for a larger step to be taken and therefore more 

improvement to be made.  As the algorithm approaches the maximum value, the solver can be 

seen to make larger improvements, which is caused by the proximity to the maximum.  On the 

tenth iteration the function value can be seen to decrease, which is why the solver stopped and 

the maximum of the previous iteration is reported. 
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As the efficiency was improved by the statistically significant amount of 6.62% and the 

changes in the efficiency and temperature profiles are physically justifiable, changing the second 

stage pore diameter to 0.77mm will improve the performance of the porous radiant burner of 

study. 

 
Figure 5.5 - Change in Efficiency with Iteration Number for dp,2 Optimization 
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initial value for the porosity was selected as the reference value given in Table 3.2, 0.87, and a 

grid spacing parameter was set to 0.005.  Table 5.2 provides a summary of the starting point for 

this optimization, the function value for the reference case, and the constraints. 

Table 5.2 - Initial Parameters for ε2 Optimization 

Parameter Value 

x
0
 0.87 

γ 0.005 

F(x
0
) 27.29% 

Lower Bound 0.865 

Upper Bound 0.95 
 

 

As the reference value was close to one of the constraints, the initial point could not be in 

the center of the model region.  Therefore, one point was selected to be smaller than the initial 

point, and therefore on the constraint, while the remaining points were selected for larger 

porosities.  The first response surface, and function values at the desired points, seen in Figure 

5.6, is a concave surface, or convex when the negative is applied.  Therefore, a Newton step can 

be taken to the edge of the model region and then a new surface can be made centered about this 

new point. 

 
Figure 5.6 - First and Eighth Response Surface for ε2 Optimization 
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The algorithm continues building surfaces and finding the minimum, as described in 

Chapter 4, until it reaches the eighth surface, also seen in shown in Figure 5.6.  Here the 

maximum of the response surface is located on the boundary of the feasible region.  Therefore 

the value of γ is decreased and a new response surface is generated, shown in Figure 5.7. 

 
Figure 5.7 - Ninth Response Surface for ε2 Optimization 
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that the amount of radiative heat transfer is decreasing (if the coefficient is zero there is no 

scattering or absorption, hence no radiation).  With a decrease in the amount of radiative heat 

transfer, conduction will become the dominant method of heat transfer within the solid, resulting 

in the temperature profile becoming more linear, and increasing the exit temperature value, 

resulting in an increase in efficiency.  This is confirmed in  

Figure 5.8 where the temperature profiles for the reference case are compared to the 

optimal solution.  For the optimal solution the solid temperature profile linearly decreases to the 

exit value as one would expect for a conduction dominated problem.  One would expect a true 

maximum to exist, even though one was not observed here due to the constraint.  As Eqn. (3.2) 

shows, as the porosity increases the other forms of energy transfer in the gas phase become more 

important.  Therefore, we would expect at some point the other forms of energy transfer would 

become more dominant than the convective heat transfer term, resulting in less energy being 

transferred into the solid causing the efficiency to start to drop. 

 
a) Gas Temperature Profile Comparison 

 
b) Solid Temperature Profile Comparison 

 

Figure 5.8 - Reference vs. Optimal Temperature Profile for ε2 Optimization 
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All of the response surfaces leading to the maximum value, as well as all the actual 

function values, can be seen in  

Figure 5.9. 

a) Response Surface b) Function Values 

 

Figure 5.9 - Response Surfaces and Function Values for ε2 Optimization 
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objective function is seen at first due to a larger step being possible, as the initial point was not 

located at the center of the model region.  For the final iteration, no change was observed 

because the solver wanted to leave the feasible region but was constrained from doing so, 

stopping in the same location and ending the algorithm. 

 
Figure 5.10 - Change in Efficiency with Iteration Number for ε2 Optimization 
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effect that they have on the radiant efficiency.  As before, the problem is constrained between 

porosities of 0.865 and 0.95 but now the pore diameters are constrained between 0.69mm and 

1.52mm because the flame front was found to be outside of the stable range for diameters below 

0.69mm, which is beyond the scope of this study, and Eqns. (3.15) and (3.16) were derived for 

pore diameters less than 1.52mm, hence the top constraint.  The initial values for the pore 

diameter and porosity were selected as 1.445mm and 0.88, and grid spacing parameters of 0.075 

and 0.01 were chosen.  Different values were chosen from the reference values as having the 

code start so close to the corner of the feasible region was undesirable.  However, when 

considering improvements to the objective function, the reference values are used for 

comparison.  Table 5.3 provides a summary of the starting point for this optimization, the 

function value for the reference case, and the constraints. 

Table 5.3 - Initial Parameters for 2-D Optimization 

Parameter Value 

x
0
 (1.445mm,0.88)

T
 

γ1 0.075 

γ2 0.01 

F(x
0
) 27.29% 

Lower Bound for dp,2 0.69mm 

Upper Bound for dp,2 1.52mm 

Lower Bound for ε2 0.865 

Upper Bound for ε2 0.95 
 

 

The first response surface, seen in Figure 5.11, contains a saddle point; since it lies in a 

direction that will increase the efficiency of the burner a Newton step is taken to the edge of the 

model region and then a new surface can be made centered about this new point.  The algorithm 

continues building surfaces and finding the minimum, as described in Chapter 4, until it reaches 

the thirteenth surface, shown in Figure 5.12. 
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Figure 5.11 - First Response Surface for 2-D Optimization 

 

 
Figure 5.12 - Thirteenth Response Surface for 2-D Optimization 

 

Here, after finding the minimum of the previous iteration to be on the edge of the feasible region 

and shrinking the model region size, the response surface contains a maximum value so the 
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steepest descent step is desired.  However, this causes the solver to stop once again in the same 

place, meaning the generalized reduced gradient (GRG) method must now be used.  Using the 

current point as the initial point for the one dimensional solver, and selecting the grid spacing 

parameter as half of the current value, the surface shown in Figure 5.13 is generated. 

 
Figure 5.13 – First GRG Method Response Surface for 2-D Optimization, ε2=0.95 

 

This surface has a maximum value within the model region so the Newton’s step is taken and the 

problem reverts to being a 2-D problem.  The solver continues shrinking the model region, and 

alternating between two and one dimensions until the fourteenth surface, shown in Figure 5.14, 

is made.  Here the minimum of the surface is within the model region; however it results in a 

decrease in efficiency.  Therefore, one of the stopping criteria of the algorithm has been met and 

the solver stops after 27.5 hours of computation.   
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Figure 5.14 - Fifteenth Response Surface for 2-D Optimization 

 

The algorithm gives the maximum efficiency as 35.56% ± 0.19% with the second stage 

pore diameter and porosity being equal to 1.21mm and 0.95 respectively.  Once again this is a 

statistically significant improvement as the total change in efficiency is 8.27%, which is larger 

than the estimated amount of error in the final answer.  Therefore, even in the worst case 

scenario for the error, an improvement has still been found in the performance of the porous 

radiant burner.  This answer also makes physical sense for the same reasons explained in 

Sections 5.2.1 and 5.2.2.  This is confirmed in  

Figure 5.15 where the temperature profiles for the reference case are compared to the optimal 

solution.  For the optimal solution the solid temperature profile linearly decreases to the exit 

value as one would expect for a conduction dominated problem and is very similar to the 

porosity solution. 
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a) Gas Temperature Profile Comparison 

 
b) Solid Temperature Profile Comparison 

 

Figure 5.15 - Reference vs. Optimal Temperature Profile for 2-D Optimization 

 

All of the response surfaces leading to the maximum value are included in Appendix E.    

Once the algorithm has decreased the size of the model region, it can be seen that some noise has 

been introduced into the objective function, resulting from the stiffness of the equation set.  

Similar to the pore diameter optimization, when the algorithm was close to the minimum value 

more noise was observed in the system of equations, leading to the belief that the stiffness 

increases when near an extreme point.   

Plotting the change in objective function versus the iteration number, shown in Figure 

5.16, shows that the objective function reduces quadratically throughout the optimization 

procedure, which we would expect from a second-order solver.  This figure only contains the 

change in objective function between the two dimensional surfaces, ignoring the fact that a one 

dimensional optimization occurred between the twelfth and thirteenth iteration and two one 

dimensional steps were required between the thirteenth and fourteenth.  Once again a larger 

change in objective function is seen at first due to a larger step being possible, as the reference 
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point was not located at the center of the model region.  For the final iterations minimal changes 

were observed because the solver was close to the minimum value and the solution was located 

on the constraint and the algorithm was fine tuning along it.  Figure 5.16 also shows the 

objective function value getting worse for the final iteration; hence the solver stopped and 

reported the previous iterations maximum as the answer. 

 
Figure 5.16 - Change in Efficiency with Iteration Number for 2-D Optimization 

 

As the radiant efficiency was improved by the statistically significant amount of 8.27% 

and the changes in the efficiency and temperature profiles are physically justifiable, changing the 

second stage pore diameter to 1.21mm and the porosity to 0.95 will improve the performance of 

the porous radiant burner of study.  This result also highlights the non-linear relationship 

between the design variables.  For the one-dimensional optimization involving the pore diameter 

of the second stage, the algorithm recommended reducing it to a value of 0.77mm, when here it 

says to stop at a value of 1.21mm.  Even though the algorithm has stopped on a constraint the 

GRG method also says to leave the pore diameter at a value of 1.21mm, as reducing it further 

would serve to make the objective function worse.  Physically, since increasing the porosity and 
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decreasing the pore diameter both cause the extinction coefficient to decrease, a larger pore 

diameter than the one dimensional case is required to prevent the radiation term from becoming 

so small that the efficiency worsens.  This difference in pore diameter values for the one and 

two-dimensional optimizations is the result of the non-linear interaction of the pore diameter 

with the porosity. 



   

 

79 

 

Chapter 6             

Conclusions 

6.1 Summary of Results 

The goal of this thesis was to design an optimization algorithm for use on combustion 

devices and apply it to a porous radiant burner design.  Three optimizations were carried out in 

attempts to improve the radiant efficiency of a porous radiant burner.  From the nominal case a 

univariate optimization on the second stage pore diameter, dp,2, showed an improvement of 

6.62% ± 2.75% when the pore diameter was changed from 1.52mm to 0.77mm.  A second 

univariate optimization was performed on the second stage porosity, ε2, which showed an 

improvement of 8.03% ± 0.68% when the porosity was changed from 0.87 to 0.95.  Lastly, a two 

dimensional optimization was carried out, allowing both of these parameters to change.  An 

improvement of 8.27% ± 0.19% was observed when the pore diameter and porosity were 

changed to 1.21mm and 0.95 respectively.  A summary of these results can be found in Table 

6.1. 

Table 6.1 - Summary of Optimizations 
 dp,2 ε2 2-D 

x
0
 1.52mm 0.87 (1.52mm,0.87)

T
 

F(x
0
) 27.29% 27.29% 27.29% 

x
*
 0.77mm 0.95 (1.21mm,0.95)

T
 

F(x
*
) 33.91% 35.32% 35.56% 

Error 2.75% 0.68% 0.19% 
 

 

All optimizations performed led to statistically significant improvements, meaning that 

the improvement, F(x
0
) – F(x

*
), was greater than the error estimate in F(x

*
). 
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6.2 Benefits of Proposed Method 

The optimization algorithm laid out in this thesis has many benefits over other 

optimization techniques.  Trial-and-error methods, as well as parameter studies, ignore the non-

linear interactions between the design variables, which were demonstrated to be important in this 

problem.  The standard Newton’s method struggles with calculation of the gradient and Hessian 

of the objective function, which are necessary to be able to find the minimum.  The proposed 

method, however, is capable of correcting these problems.  First, by using RSM, the difficulties 

with the stiffness of the governing equations are greatly reduced.  RSM also presents analytically 

tractable estimates of the gradient vector and Hessian matrix to be solved analytically, removing 

the need to estimate those using finite differences, which is both problematic for stiff systems 

and also computationally expensive.  When the stiffness of the system causes the objective 

function to become noisy, RSM smoothes the function, as it uses a model rather than the real 

function.   

Using a quadratic fit to the data for generating the surfaces also has its benefits.  When a 

modified Newton’s method is applied to the function a single step can be taken towards the 

minimum.  This avoids costly iterations, greatly reducing the computational time.  A quadratic fit 

also requires less data than higher order polynomials, meaning that less function evaluations are 

required. 

The use of the GRG method is another major benefit of the proposed algorithm.  Here it 

provided minimal changes to the objective function as the solution on the boundary was already 

close to the minimal value.  However, it is not difficult to imagine a problem where the optimal 

solution is far from where the iterate solution lands on the boundary.  The GRG method allows 
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for these changes to be made, reporting the best answer for a problem rather than the solution 

where a constraint was met. 

All of these benefits together lead to a robust algorithm for stiff systems, which is also 

computationally inexpensive compared to other methods.  Moreover, this algorithm is generic 

enough that it can easily be applied to many types of combustion design problems, not just the 

porous radiant burner examined here. 

6.3 Recommendations for Future Work 

While the optimizations performed were successful and the algorithm can be used to 

optimize combustion devices there is still further research that can be carried out concerning the 

algorithm.  This section will detail these extensions and describe why they are significant. 

6.3.1 Relation between Pore Diameter and Porosity 

In this research, it was assumed that the pore diameter and porosity were independent 

variables, as there was no discussion in the literature to suggest otherwise, but this seems like a 

counterintuitive result.  Obviously, if the porosity is very large we cannot have large pores as 

well and if the porosity is small we cannot have small pores while maintaining a path through the 

solid.  This means that a relationship must exist between these two variables.  As it is possible 

for a single porosity to have a range of pore diameters however, this relationship will not be a 

simple function.  This relationship would result in constraints for the one dimensional 

optimization cases, and would define the shape of the feasible region for the two dimensional 

case.  This means that entirely different solutions could be observed due to the different 

constraints on the objective function.  If a relationship between pore diameter and porosity were 
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to be researched and found, then the accuracy and feasibility of the optimization algorithm would 

greatly improve. 

6.3.2 Other Design Variables 

While good improvement was found using the second stage pore diameter and porosity, 

other design variables can be considered.  Qiu and Hayden (2010) showed that the radiant 

efficiency of a porous radiant burner is a function of the equivalence ratio; therefore it could be 

used as a future design parameter in this algorithm.  Other design parameters that could be used 

include the pore diameter and porosity of the first stage, the scattering albedo, the specific heat 

and density of the solid, and the lengths of each burner section.  Each of these parameters should 

affect the efficiency of the burner.  The pore diameter and porosity would alter the convection 

and radiation in the first stage of the burner for the reasons described in Section 5.2, leading to 

different preheating.  Changing the scattering albedo, specific heat, and density will change the 

way that the solid conducts and radiates heat, while altering the lengths of the burner sections 

will lead to different flames being able to stabilize within the burner.  All of these parameters are 

viable options that could lead to even greater improvements in the porous radiant burner design. 

Another recommendation is to use more design variables.  While this thesis only 

provided one and two dimensional optimizations, the algorithm is easily extendable to higher 

order problems.  The non-linear interactions between the variables will be better accounted for 

by using more design variables.  This means that the more design variables that are considered 

the better the system will be represented.  This can lead to even greater improvements being 

made to the efficiency as the algorithm will have more that it can change to improve the 

performance. 
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6.3.3 Multi-Objective Optimizations 

For this thesis the only objective considered was to maximize the radiant efficiency; 

however there are other objectives that can be considered.  As emissions control is becoming of 

greater importance in industrial combustion, objectives such as minimizing NOx or CO would be 

useful.  Another objective could be to maximize the turn down ratio of the burner, which would 

make a single burner more desirable to the industry as it could be operated under more 

conditions.  The algorithm could even be extended to deal with multi-objective problems.  This 

could be done by altering the code to become a genetic algorithm, as used by Büche et al. (2001) 

or by using a weighted objective function.  For a weighted objective function, each objective is 

assigned a weight based on its importance to the design engineer.  This method results in a single 

solution, unlike the genetic algorithms in which a Pareto front is formed from many candidate 

solutions.  Using a multi-objective approach, burners could be designed that would maximize 

radiant efficiency while minimizing pollutants, although with the current state of NOx modelling 

this will still be difficult.  Using multi-objective optimization would be very useful to the 

industrial combustion community as they could design the best burners for their process without 

compromising the environment. 

6.3.4 Proximity to Optimum 

In this research it was noted that close to the optimum, the noisiness of the objective 

function increased as a result of the stiffness.  It is unknown whether this result was coincidental 

or a property of the stiffness, and determining so was beyond the scope of the research.  

Researching this would be very beneficial to the performance of the optimization algorithm.  If it 
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is true, that when close to the optimum the stiffness increases, the algorithm could be adjusted to 

compensate for this stiffness, thus reducing the noise, leading to more accurate solutions. 

6.3.5 Parallel Processing 

Parallel processing is another recommendation that could greatly improve upon the 

algorithm presented in this thesis.  In this study, the optimizations and calculations were carried 

out on a single processor.  The response surface method is particularly amenable to speed up by 

parallelization, since each objective function evaluation used to construct the response surface 

can be carried out independently.  This would reduce the computational time by approximately a 

factor of five for the one dimensional case and a factor of nine for the two dimensional case.  

Reducing the computational effort required to carry out the minimization means that more 

resources could be allocated towards more detailed chemical mechanisms and a higher degree of 

refinement, bringing the computational time back up to its current value.  Both of these 

improvements would allow for more realistic and accurate representations of the system, 

meaning better results could be found. 

6.3.6 Other Combustion Devices 

The intention of this thesis was to present an optimization algorithm that would not only 

improve the design of a porous radiant burner, but could also be adapted for use on other 

combustion devices.  Therefore, as a final recommendation this code should be used on other 

devices.  Any combustion device could benefit from an optimization algorithm being used on its 

parameters to find its best operating point.  By improving these burners we can get more useful 

energy output, save money, or reduce the impact combustion has on the planet, by reducing 

pollutants. 
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Appendix A:  DRM19 

Reaction Mechanism 
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The DRM19 reaction mechanism is presented below in CHEMKIN format.  The reaction 

is presented on the left while the values for the pre-exponential steric factor, A0, the Arhenius 

temperature exponent, β, and the activation energy, EA (in cal/mol), from Eqn. (3.9) are 

presented on the right.  For three body reactions and other special reactions, the efficiencies and 

other information is presented below the relevant reaction. 

!<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><!      

!  Reduced version of GRI-MECH 1.2. 19 species ( + N2, AR); 84 reactions. !      

!                                 PennState Dec, 1994                     !      

!<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><!      

ELEMENTS                                                                         

O  H  C  N  AR                                                                   

END                                                                              

SPECIES                                                                          

H2      H       O       O2      OH      H2O     HO2                              

CH2     CH2(S)  CH3     CH4     CO      CO2     HCO                              

CH2O    CH3O    C2H4    C2H5    C2H6                                             

N2      AR                                                                       

END                                                                              

REACTIONS                                                                        

O+H+M<=>OH+M                             5.000E+17   -1.000      0.00            

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/              

O+H2<=>H+OH                              5.000E+04    2.670   6290.00            

O+HO2<=>OH+O2                            2.000E+13    0.000      0.00            

O+CH2<=>H+HCO                            8.000E+13    0.000      0.00            

O+CH2(S)<=>H+HCO                         1.500E+13    0.000      0.00            

O+CH3<=>H+CH2O                           8.430E+13    0.000      0.00            

O+CH4<=>OH+CH3                           1.020E+09    1.500   8600.00            

O+CO+M<=>CO2+M                           6.020E+14    0.000   3000.00            

H2/2.00/ O2/6.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/3.50/ C2H6/3.00/ AR/0.50/     

O+HCO<=>OH+CO                            3.000E+13    0.000      0.00            

O+HCO<=>H+CO2                            3.000E+13    0.000      0.00            

O+CH2O<=>OH+HCO                          3.900E+13    0.000   3540.00            

O+C2H4<=>CH3+HCO                         1.920E+07    1.830    220.00            

O+C2H5<=>CH3+CH2O                        1.320E+14    0.000      0.00            

O+C2H6<=>OH+C2H5                         8.980E+07    1.920   5690.00            

O2+CO<=>O+CO2                            2.500E+12    0.000  47800.00            

O2+CH2O<=>HO2+HCO                        1.000E+14    0.000  40000.00            

H+O2+M<=>HO2+M                           2.800E+18   -0.860      0.00            

O2/0.00/ H2O/0.00/ CO/0.75/ CO2/1.50/ C2H6/1.50/ N2/0.00/ AR/0.00/               

H+2O2<=>HO2+O2                           3.000E+20   -1.720      0.00            

H+O2+H2O<=>HO2+H2O                       9.380E+18   -0.760      0.00            

H+O2+N2<=>HO2+N2                         3.750E+20   -1.720      0.00            

H+O2+AR<=>HO2+AR                         7.000E+17   -0.800      0.00            

H+O2<=>O+OH                              8.300E+13    0.000  14413.00            

2H+M<=>H2+M                              1.000E+18   -1.000      0.00            

H2/0.00/ H2O/0.00/ CH4/2.00/ CO2/0.00/ C2H6/3.00/ AR/0.63/                       

2H+H2<=>2H2                              9.000E+16   -0.600      0.00            

2H+H2O<=>H2+H2O                          6.000E+19   -1.250      0.00            

2H+CO2<=>H2+CO2                          5.500E+20   -2.000      0.00            
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H+OH+M<=>H2O+M                           2.200E+22   -2.000      0.00            

H2/0.73/ H2O/3.65/ CH4/2.00/ C2H6/3.00/ AR/0.38/                                 

H+HO2<=>O2+H2                            2.800E+13    0.000   1068.00            

H+HO2<=>2OH                              1.340E+14    0.000    635.00            

H+CH2(+M)<=>CH3(+M)                      2.500E+16   -0.800      0.00            

     LOW  /  3.200E+27   -3.140   1230.00/                                       

     TROE/  0.6800   78.00  1995.00  5590.00 /                                   

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/              

H+CH3(+M)<=>CH4(+M)                      1.270E+16   -0.630    383.00            

     LOW  /  2.477E+33   -4.760   2440.00/                                       

     TROE/  0.7830   74.00  2941.00  6964.00 /                                   

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/              

H+CH4<=>CH3+H2                           6.600E+08    1.620  10840.00            

H+HCO(+M)<=>CH2O(+M)                     1.090E+12    0.480   -260.00            

     LOW  /  1.350E+24   -2.570   1425.00/                                       

     TROE/  0.7824  271.00  2755.00  6570.00 /                                   

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/              

H+HCO<=>H2+CO                            7.340E+13    0.000      0.00            

H+CH2O(+M)<=>CH3O(+M)                    5.400E+11    0.454   2600.00            

     LOW  /  2.200E+30   -4.800   5560.00/                                       

     TROE/  0.7580   94.00  1555.00  4200.00 /                                   

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/                       

H+CH2O<=>HCO+H2                          2.300E+10    1.050   3275.00            

H+CH3O<=>OH+CH3                          3.200E+13    0.000      0.00            

H+C2H4(+M)<=>C2H5(+M)                    1.080E+12    0.454   1820.00            

     LOW  /  1.200E+42   -7.620   6970.00/                                       

     TROE/  0.9753  210.00   984.00  4374.00 /                                   

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/              

H+C2H5(+M)<=>C2H6(+M)                    5.210E+17   -0.990   1580.00            

     LOW  /  1.990E+41   -7.080   6685.00/                                       

     TROE/  0.8422  125.00  2219.00  6882.00 /                                   

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/              

H+C2H6<=>C2H5+H2                         1.150E+08    1.900   7530.00            

H2+CO(+M)<=>CH2O(+M)                     4.300E+07    1.500  79600.00            

     LOW  /  5.070E+27   -3.420  84350.00/                                       

     TROE/  0.9320  197.00  1540.00 10300.00 /                                   

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/              

OH+H2<=>H+H2O                            2.160E+08    1.510   3430.00            

2OH<=>O+H2O                              3.570E+04    2.400  -2110.00            

OH+HO2<=>O2+H2O                          2.900E+13    0.000   -500.00            

OH+CH2<=>H+CH2O                          2.000E+13    0.000      0.00            

OH+CH2(S)<=>H+CH2O                       3.000E+13    0.000      0.00            

OH+CH3<=>CH2+H2O                         5.600E+07    1.600   5420.00            

OH+CH3<=>CH2(S)+H2O                      2.501E+13    0.000      0.00            

OH+CH4<=>CH3+H2O                         1.000E+08    1.600   3120.00            

OH+CO<=>H+CO2                            4.760E+07    1.228     70.00            

OH+HCO<=>H2O+CO                          5.000E+13    0.000      0.00            

OH+CH2O<=>HCO+H2O                        3.430E+09    1.180   -447.00            

OH+C2H6<=>C2H5+H2O                       3.540E+06    2.120    870.00            

HO2+CH2<=>OH+CH2O                        2.000E+13    0.000      0.00            

HO2+CH3<=>O2+CH4                         1.000E+12    0.000      0.00            

HO2+CH3<=>OH+CH3O                        2.000E+13    0.000      0.00            

HO2+CO<=>OH+CO2                          1.500E+14    0.000  23600.00            

CH2+O2<=>OH+HCO                          1.320E+13    0.000   1500.00            

CH2+H2<=>H+CH3                           5.000E+05    2.000   7230.00            

CH2+CH3<=>H+C2H4                         4.000E+13    0.000      0.00            

CH2+CH4<=>2CH3                           2.460E+06    2.000   8270.00            
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CH2(S)+N2<=>CH2+N2                       1.500E+13    0.000    600.00            

CH2(S)+AR<=>CH2+AR                       9.000E+12    0.000    600.00            

CH2(S)+O2<=>H+OH+CO                      2.800E+13    0.000      0.00            

CH2(S)+O2<=>CO+H2O                       1.200E+13    0.000      0.00            

CH2(S)+H2<=>CH3+H                        7.000E+13    0.000      0.00            

CH2(S)+H2O<=>CH2+H2O                     3.000E+13    0.000      0.00            

CH2(S)+CH3<=>H+C2H4                      1.200E+13    0.000   -570.00            

CH2(S)+CH4<=>2CH3                        1.600E+13    0.000   -570.00            

CH2(S)+CO<=>CH2+CO                       9.000E+12    0.000      0.00            

CH2(S)+CO2<=>CH2+CO2                     7.000E+12    0.000      0.00            

CH2(S)+CO2<=>CO+CH2O                     1.400E+13    0.000      0.00            

CH3+O2<=>O+CH3O                          2.675E+13    0.000  28800.00            

CH3+O2<=>OH+CH2O                         3.600E+10    0.000   8940.00            

2CH3(+M)<=>C2H6(+M)                      2.120E+16   -0.970    620.00            

     LOW  /  1.770E+50   -9.670   6220.00/                                       

     TROE/  0.5325  151.00  1038.00  4970.00 /                                   

H2/2.00/ H2O/6.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/ AR/0.70/              

2CH3<=>H+C2H5                            4.990E+12    0.100  10600.00            

CH3+HCO<=>CH4+CO                         2.648E+13    0.000      0.00            

CH3+CH2O<=>HCO+CH4                       3.320E+03    2.810   5860.00            

CH3+C2H6<=>C2H5+CH4                      6.140E+06    1.740  10450.00            

HCO+H2O<=>H+CO+H2O                       2.244E+18   -1.000  17000.00            

HCO+M<=>H+CO+M                           1.870E+17   -1.000  17000.00            

H2/2.00/ H2O/0.00/ CH4/2.00/ CO/1.50/ CO2/2.00/ C2H6/3.00/                       

HCO+O2<=>HO2+CO                          7.600E+12    0.000    400.00            

CH3O+O2<=>HO2+CH2O                       4.280E-13    7.600  -3530.00            

C2H5+O2<=>HO2+C2H4                       8.400E+11    0.000   3875.00            

END
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Appendix B:  Sensitivity 

Analysis 
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B.1  Introduction 

A sensitivity analysis was performed on the objective function for two reasons: first, to 

gain an insight into the importance of each of the correlated parameters and; second to justify 

neglecting the effect that porosity has on the thermal conductivity.  The sensitivity of a function 

to a variable is calculated by 

 
𝑥  

df

dx
  (B.1) 

 

where f and x are the function and variable of interest.  This measurement allows us to see how 

important an effect the variable x has on the function f.  If the sensitivity is small then x is 

negligible to the function output, and if x is large it dominates it. 

A major problem in estimating the sensitivities is that finite-difference estimates are 

inaccurate when the governing equations are stiff, as discussed in Section 4.3.  Instead we use a 

variation of the RSM method discussed in Section 4.4.  Eleven equally spaced points were 

sampled from the nominal value of the desired parameter to the optimal value, followed by 

fitting a surface to the data.  The slope of the surface was then used for the derivative calculation.  

For the case of the extinction coefficient, only five points were used as the combustion solver 

encountered stability issues, as a result of flash-back, for increased values of the extinction 

coefficient.  This stability issue does not occur during the optimization as the other parameters 

are allowed to change along with it, stabilizing the solution.   
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B.2  Objective Function Sensitivity to Thermal Conductivity, Extinction 

Coefficient, and Volumetric Heat Transfer Coefficient 

The first stage of the sensitivity analysis was to calculate the sensitivity thermal 

conductivity, radiative extinction coefficient, and the convection heat transfer coefficient.  

Figures B.1 – B.3 show the sampled points and fitted curves used for estimating the sensitivities 

of these three parameters. 

 
Figure B.1 – Thermal Conductivity Sensitivity Study 

 

 
Figure B.2 – Radiative Extinction Coefficient Sensitivity Study 
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Figure B.3 – Convection Heat Transfer Coefficient Sensitivity Study 

 

Using these curve fits and the nominal value for each parameter the sensitivity of the 

objective function to the thermal conductivity, the radiative extinction coefficient, and the 

convection heat transfer coefficient is found to be 0.0226, 0.0203, and 0.0209 respectively.  Here 

we see that the objective function is equally as sensitive to all of the parameters. 

B.3  Objective Function Sensitivity to Porosity 

The next stage of the sensitivity analysis is to determine the effect that porosity has on the 

objective function, when acting through the thermal conductivity.  If this value is small then we 

are justified in assuming that porosity is negligible in the thermal conductivity correlation.  We 

start by finding the sensitivity of the porosity on the thermal conductivity.  As the correlation 

presented by Hsu and Howell (1992) does not contain a porosity term we turn to the work of 

Nait-Ali et al. (2007) to estimate the slope of the curve in the region of interest, 80-100% 

porosity.  Using this slope and the nominal value of the porosity the sensitivity of the thermal 

conductivity to the porosity is calculated as 0.0457W/mK. 
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Now that we know the sensitivity of the thermal conductivity to the porosity we can 

calculate the objective function’s sensitivity to the porosity, when acting through the thermal 

conductivity.  This is done using the chain rule by 

 
𝜀  

dF

dλs

dλs

dε
  (B.2) 

 

resulting in a sensitivity of calculated as 0.0064.  The objective function is not very sensitive to 

the porosity, evidenced by the sensitivity being an order of magnitude less than the sensitivities 

of the correlated parameters.  As a result it is safe to use a correlation for thermal conductivity 

that does not contain a porosity effect, such as the one presented by Hsu and Howell (1992).
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Appendix C:  Alterations to 

Cantera Code 
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This section contains the Cantera files that were altered in order to add the solid phase to 

the existing combustion program.  Each of the four following sections contains one of the four 

altered files.  All additions and alterations are commented and bolded to stand out. 

C.1  OneDim.cpp 

#ifdef WIN32 

#pragma warning(disable:4786) 

#pragma warning(disable:4503) 

#endif 

 

#include "MultiJac.h" 

#include "MultiNewton.h" 

#include "OneDim.h" 

 

#include "../ctml.h" 

using namespace ctml; 

 

namespace Cantera { 

 int dosolid=0;  //variable added to tell algorithm when solid phase must be solved. 

     //0 for no 1 for yes 

 

    /** 

     * Default constructor. Create an empty object. 

     */ 

    OneDim::OneDim()  

        : m_tmin(1.0e-16), m_tmax(10.0), m_tfactor(0.5), 

          m_jac(0), m_newt(0),  

          m_rdt(0.0), m_jac_ok(false), 

          m_nd(0), m_bw(0), m_size(0), 

          m_init(false), 

          m_ss_jac_age(10), m_ts_jac_age(20), 

          m_nevals(0), m_evaltime(0.0) 

    { 

      //writelog("OneDim default constructor\n"); 

        m_newt = new MultiNewton(1); 

        //m_solve_time = 0.0; 

    } 

 

 

    /** 

     * Construct a OneDim container for the domains pointed at by the 

     * input vector of pointers. 

    */  

    OneDim::OneDim(vector<Domain1D*> domains) : 

        m_tmin(1.0e-16), m_tmax(10.0), m_tfactor(0.5), 

        m_jac(0), m_newt(0),  

 m_rdt(0.0), m_jac_ok(false), 

 m_nd(0), m_bw(0), m_size(0), 

 m_init(false), 

 m_ss_jac_age(10), m_ts_jac_age(20), 

 m_nevals(0), m_evaltime(0.0) 

    { 

      //writelog("OneDim constructor\n"); 

 

        // create a Newton iterator, and add each domain. 

        m_newt = new MultiNewton(1); 

        int nd = static_cast<int>(domains.size()); 

        int i; 

        for (i = 0; i < nd; i++) { 

            addDomain(domains[i]); 

        } 
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        init(); 

        resize(); 

    } 

 

    int OneDim::domainIndex(string name) { 

        for (int n = 0; n < m_nd; n++) { 

            if (domain(n).id() == name) return n; 

        } 

        throw CanteraError("OneDim::domainIndex","no domain named >>"+name+"<<"); 

    } 

 

 

    /** 

     * Domains are added left-to-right.  

     */ 

    void OneDim::addDomain(Domain1D* d) { 

 

        // if 'd' is not the first domain, link it to the last domain 

        // added (the rightmost one) 

        int n = static_cast<int>(m_dom.size()); 

        if (n > 0) m_dom.back()->append(d); 

 

        // every other domain is a connector 

        if (2*(n/2) == n) 

            m_connect.push_back(d); 

        else 

            m_bulk.push_back(d); 

 

        // add it also to the global domain list, and set its  

        // container and position 

        m_dom.push_back(d); 

        d->setContainer(this, m_nd); 

        m_nd++; 

        resize(); 

    } 

 

 

    OneDim::~OneDim() { 

        delete m_jac; 

        delete m_newt; 

    } 

 

    MultiJac& OneDim::jacobian() { return *m_jac; } 

    MultiNewton& OneDim::newton() { return *m_newt; } 

 

    void OneDim::writeStats() { 

        saveStats(); 

        char buf[100]; 

        sprintf(buf,"\nStatistics:\n\n Grid   Functions   Time      Jacobians   Time \n"); 

        writelog(buf); 

        int n = m_gridpts.size(); 

        for (int i = 0; i < n; i++) { 

            sprintf(buf,"%5i   %5i    %9.4f    %5i    %9.4f \n",  

                m_gridpts[i], m_funcEvals[i], m_funcElapsed[i],  

                m_jacEvals[i], m_jacElapsed[i]); 

            writelog(buf); 

        } 

    } 

 

 

    /** 

     * Save statistics on function and Jacobiab evaulation, and reset 

     * the counters. Statistics are saved only if the number of 

     * Jacobian evaluations is greater than zero. The statistics saved  

     * are  

     * 

     *    - number of grid points 

     *    - number of Jacobian evaluations 

     *    - CPU time spent evaluating Jacobians 

     *    - number of non-Jacobian function evaluations 

     *    - CPU time spent evaluating functions  
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     */ 

    void OneDim::saveStats() { 

        if (m_jac) { 

            int nev = m_jac->nEvals(); 

            if (nev > 0 && m_nevals > 0) { 

                m_gridpts.push_back(m_pts); 

                m_jacEvals.push_back(m_jac->nEvals()); 

                m_jacElapsed.push_back(m_jac->elapsedTime()); 

                m_funcEvals.push_back(m_nevals); 

                m_nevals = 0; 

                m_funcElapsed.push_back(m_evaltime); 

                m_evaltime = 0.0; 

            } 

        } 

    } 

 

 

    /** 

     * Call after one or more grids has been refined. 

     */ 

    void OneDim::resize() { 

        int i; 

        m_bw = 0; 

        vector_int nvars, loc; 

        int lc = 0; 

 

        // save the statistics for the last grid 

        saveStats(); 

        m_pts = 0; 

        for (i = 0; i < m_nd; i++) { 

            Domain1D* d = m_dom[i]; 

 

            int np = d->nPoints(); 

            int nv = d->nComponents(); 

            for (int n = 0; n < np; n++) { 

                nvars.push_back(nv); 

                loc.push_back(lc); 

                lc += nv; 

                m_pts++; 

            } 

 

            // update the Jacobian bandwidth 

            int bw1, bw2 = 0; 

 

            // bandwidth of the local block 

            bw1 = 2*d->nComponents() - 1; 

 

            // bandwidth of the block coupling the first point of this 

            // domain to the last point of the previous domain 

            if (i > 0) { 

                bw2 = d->nComponents() + m_dom[i-1]->nComponents() - 1; 

            } 

            if (bw1 > m_bw) m_bw = bw1; 

            if (bw2 > m_bw) m_bw = bw2; 

 

            m_size = d->loc() + d->size(); 

        } 

        m_nvars = nvars; 

        m_loc = loc; 

 

        m_newt->resize(size()); 

        m_mask.resize(size()); 

 

        // delete the current Jacobian evaluator and create a new one         

        delete m_jac; 

        m_jac = new MultiJac(*this); 

        m_jac_ok = false; 

 

        for (i = 0; i < m_nd; i++) 

            m_dom[i]->setJac(m_jac); 

    } 
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    int OneDim::solve(doublereal* x, doublereal* xnew, int loglevel) { 

  dosolid=1; 

        if (!m_jac_ok) { 

            eval(-1, x, xnew, 0.0, 0); 

            m_jac->eval(x, xnew, 0.0); 

            m_jac->updateTransient(m_rdt, DATA_PTR(m_mask)); 

            m_jac_ok = true; 

        } 

        int m = m_newt->solve(x, xnew, *this, *m_jac, loglevel); 

        return m; 

    } 

 

    void OneDim::evalSSJacobian(doublereal* x, doublereal* xnew) { 

        doublereal rdt_save = m_rdt; 

        m_jac_ok = false; 

        setSteadyMode(); 

        eval(-1, x, xnew, 0.0, 0); 

        m_jac->eval(x, xnew, 0.0); 

        m_rdt = rdt_save; 

    } 

 

    /** 

     * Return a pointer to the domain that contains component i of the 

     * global solution vector. The domains are scanned right-to-left, 

     * and the first one with starting location less or equal to i is 

     * returned. 

     * 

     * 8/26/02 changed '<' to '<='  DGG 

     * 

     */ 

    Domain1D* OneDim::pointDomain(int i) { 

        Domain1D* d = right(); 

        while (d) { 

            if (d->loc() <= i) return d; 

            d = d->left(); 

        } 

        return 0; 

    } 

  

 

    /** 

     * Evaluate the multi-domain residual function, and return the 

     * result in array r.   

     */ 

    void OneDim::eval(int j, double* x, double* r, doublereal rdt, int count) { 

        clock_t t0 = clock(); 

        fill(r, r + m_size, 0.0); 

        fill(m_mask.begin(), m_mask.end(), 0); 

        if (rdt < 0.0) rdt = m_rdt; 

        //        int nn; 

        vector<Domain1D*>::iterator d;  

 

        // iterate over the bulk domains first 

        for (d = m_bulk.begin(); d != m_bulk.end(); ++d) { 

            (*d)->eval(j, x, r, DATA_PTR(m_mask), rdt); 

        } 

 

        // then over the connector domains 

        for (d = m_connect.begin(); d != m_connect.end(); ++d) { 

            (*d)->eval(j, x, r, DATA_PTR(m_mask), rdt); 

        } 

 

        // increment counter and time 

        if (count) { 

            clock_t t1 = clock(); 

            m_evaltime += double(t1 - t0)/CLOCKS_PER_SEC; 

            m_nevals++; 

        } 

    } 
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    /** 

     * The 'infinity' (maximum magnitude) norm of the steady-state 

     * residual. Used only for diagnostic output. 

     */ 

    doublereal OneDim::ssnorm(doublereal* x, doublereal* r) { 

        eval(-1, x, r, 0.0, 0); 

        doublereal ss = 0.0; 

        for (int i = 0; i < m_size; i++) {  

            ss = fmaxx(fabs(r[i]),ss); 

        } 

        return ss; 

    } 

 

 

    /** 

     * Prepare for time stepping with timestep dt.  

     */ 

    void OneDim::initTimeInteg(doublereal dt, doublereal* x) { 

        doublereal rdt_old = m_rdt; 

        m_rdt = 1.0/dt; 

 

        // if the stepsize has changed, then update the transient 

        // part of the Jacobian 

        if (fabs(rdt_old - m_rdt) > Tiny) { 

            m_jac->updateTransient(m_rdt, DATA_PTR(m_mask)); 

        } 

 

        // iterate over all domains, preparing each one to begin 

        // time stepping 

        Domain1D* d = left(); 

        while (d) { 

            d->initTimeInteg(dt, x); 

            d = d->right(); 

        } 

    } 

     

 

    /** 

     * Prepare to solve the steady-state problem.  Set the reciprocal 

     * of the time step to zero, and, if it was previously non-zero, 

     * signal that a new Jacobian will be needed. 

     */ 

    void OneDim::setSteadyMode() { 

        m_rdt = 0.0; 

        m_jac->updateTransient(m_rdt, DATA_PTR(m_mask)); 

    } 

 

    /** 

     * Initialize all domains. On the first call, this methods calls 

     * the init method of each domain, proceeding from left to right. 

     * Subsequent calls do nothing. 

     */ 

    void OneDim::init() { 

        if (!m_init) { 

            Domain1D* d = left(); 

            while (d) { 

                d->init(); 

                d = d->right(); 

            } 

        } 

        m_init = true; 

    } 

 

 

    /** 

     * Signal that the current Jacobian is no longer valid. 

     */ 

    void Domain1D::needJacUpdate() {  

        if (m_container) { 
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            m_container->jacobian().setAge(10000); 

            m_container->saveStats(); 

        } 

    } 

 

    /** 

     * Take time steps using Backward Euler. 

     * 

     *  nsteps   -- number of steps 

     *  dt       -- initial step size 

     *  loglevel -- controls amount of printed diagnostics 

     */ 

     doublereal OneDim::timeStep(int nsteps, doublereal dt, doublereal* x,  

         doublereal* r, int loglevel) { 

 

         // set the Jacobian age parameter to the transient value 

         newton().setOptions(m_ts_jac_age); 

                 

         if (loglevel > 0) { 

             //writelog("Begin time stepping.\n\n"); 

             writelog("\n\n step    size (s)    log10(ss) \n"); 

             writelog("===============================\n"); 

         } 

 

         int n = 0, m; 

         doublereal ss; 

         char str[80]; 

   while (n < nsteps) { 

    dosolid=1;  //solid phase must be solved before next gas phase iteration 

    if (loglevel > 0) { 

                 ss = ssnorm(x, r); 

                 sprintf(str, " %4d  %10.4g  %10.4g" , n,dt,log10(ss)); 

                 writelog(str); 

             } 

 

             // set up for time stepping with stepsize dt 

             initTimeInteg(dt,x); 

 

             // solve the transient problem 

             m = solve(x, r, loglevel-1); 

 

             // successful time step. Copy the new solution in r to  

             // the current solution in x. 

             if (m >= 0) { 

                 n += 1; 

                 if (loglevel > 0) writelog("\n"); 

                 copy(r, r + m_size, x); 

                 if (m == 100) { 

                     dt *= 1.5; 

                 } 

                 //                 else dt /= 1.5; 

                 if (dt > m_tmax) dt = m_tmax; 

             } 

 

             // No solution could be found with this time step.  

             // Decrease the stepsize and try again. 

             else { 

                 if (loglevel > 0) writelog("...failure.\n"); 

                 dt *= m_tfactor; 

                 if (dt < m_tmin) 

                     throw CanteraError("OneDim::timeStep", 

                         "Time integration failed."); 

             } 

         } 

 

         // Prepare to solve the steady problem. 

         setSteadyMode(); 

         newton().setOptions(m_ss_jac_age);      

 

         // return the value of the last stepsize, which may be smaller 

         // than the initial stepsize    
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         return dt; 

     } 

 

 

    void OneDim::save(string fname, string id, string desc, doublereal* sol) { 

 

        struct tm *newtime; 

        time_t aclock; 

        ::time( &aclock );              /* Get time in seconds */ 

        newtime = localtime( &aclock ); /* Convert time to struct tm form */ 

 

        XML_Node root("doc"); 

        ifstream fin(fname.c_str()); 

        XML_Node* ct; 

        if (fin) { 

            root.build(fin); 

            const XML_Node* same_ID = root.findID(id); 

            int jid = 1; 

            string idnew = id; 

            while (same_ID != 0) { 

                idnew = id + "_" + int2str(jid); 

                jid++; 

                same_ID = root.findID(idnew); 

            } 

            id = idnew; 

            fin.close(); 

            ct = &root.child("ctml"); 

        } 

        else { 

            ct = &root.addChild("ctml"); 

        } 

        XML_Node& sim = (XML_Node&)ct->addChild("simulation"); 

        sim.addAttribute("id",id); 

        addString(sim,"timestamp",asctime(newtime)); 

        if (desc != "") addString(sim,"description",desc); 

         

        Domain1D* d = left(); 

        while (d) { 

            d->save(sim, sol); 

            d = d->right(); 

        } 

        ofstream s(fname.c_str()); 

        if (!s)  

            throw CanteraError("save","could not open file "+fname); 

        ct->write(s); 

        s.close(); 

        writelog("Solution saved to file "+fname+" as solution "+id+".\n"); 

    } 

 

 

    void Domain1D::setGrid(int n, const doublereal* z) { 

        m_z.resize(n); 

        m_points = n; 

        int j; 

        for (j = 0; j < m_points; j++) m_z[j] = z[j]; 

    } 

 

} 
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C.2  refine.cpp 

// turn off warnings under Windows 

#ifdef WIN32 

#pragma warning(disable:4786) 

#pragma warning(disable:4503) 

#endif 

 

 

#include <map> 

#include <algorithm> 

#include "Domain1D.h" 

 

#include "refine.h" 

#include "Stflow.cpp" 

 

using namespace std; 

 

namespace Cantera { 

 

    template<class M> 

    bool has_key(const M& m, int j) { 

        if (m.find(j) != m.end()) return true; 

        return false; 

    } 

 

    static void r_drawline() { 

        string s(78,'#'); 

        s += '\n'; 

        writelog(s.c_str()); 

    } 

 

    /** 

     * Return the square root of machine precision. 

     */ 

    static doublereal eps() { 

        doublereal e = 1.0; 

        while (1.0 + e != 1.0) e *= 0.5; 

        return sqrt(e); 

    } 

 

     

    Refiner::Refiner(Domain1D& domain) : 

        m_ratio(10.0), m_slope(0.8), m_curve(0.8), m_prune(-0.001),  

        m_min_range(0.01), m_domain(&domain), m_npmax(3000) 

    { 

        m_nv = m_domain->nComponents(); 

        m_active.resize(m_nv, true); 

        m_thresh = eps(); 

    } 

             

 

    int Refiner::analyze(int n, const doublereal* z,  

        const doublereal* x) { 

 

        if (n >= m_npmax) { 

            writelog("max number of grid points reached ("+int2str(m_npmax)+".\n"); 

            return -2; 

        } 

 

        if (m_domain->nPoints() <= 1) { 

            //writelog("can't refine a domain with 1 point: "+m_domain->id()+"\n"); 

            return 0; 

        } 

 

        m_loc.clear(); 

        m_c.clear(); 

        m_keep.clear(); 
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        m_keep[0] = 1; 

        m_keep[n-1] = 1; 

 

        m_nv = m_domain->nComponents(); 

 

        // check consistency 

        if (n != m_domain->nPoints())  

            throw CanteraError("analyze","inconsistent"); 

 

 

        /** 

         * find locations where cell size ratio is too large. 

         */ 

        int j; 

        vector_fp dz(n-1, 0.0); 

        string name; 

        doublereal vmin, vmax, smin, smax, aa, ss; 

        doublereal dmax, r; 

        vector_fp v(n), s(n-1); 

 

        for (int i = 0; i < m_nv; i++) { 

            if (m_active[i]) { 

                name = m_domain->componentName(i); 

                //writelog("refine: examining "+name+"\n"); 

                // get component i at all points 

                for (j = 0; j < n; j++) v[j] = value(x, i, j);  

 

                // slope of component i 

                for (j = 0; j < n-1; j++) 

                    s[j] = (value(x, i, j+1) - value(x, i, j))/ 

                           (z[j+1] - z[j]); 

 

                // find the range of values and slopes 

             

                vmin = *min_element(v.begin(), v.end()); 

                vmax = *max_element(v.begin(), v.end()); 

                smin = *min_element(s.begin(), s.end()); 

                smax = *max_element(s.begin(), s.end()); 

 

                // max absolute values of v and s 

                aa = fmaxx(fabs(vmax), fabs(vmin)); 

                ss = fmaxx(fabs(smax), fabs(smin)); 

 

                // refine based on component i only if the range of v is 

                // greater than a fraction 'min_range' of max |v|. This 

                // eliminates components that consist of small fluctuations 

                // on a constant background. 

 

                if ((vmax - vmin) > m_min_range*aa) { 

 

                    // maximum allowable difference in value between 

                    // adjacent points. 

                 

                    dmax = m_slope*(vmax - vmin) + m_thresh; 

                    for (j = 0; j < n-1; j++) { 

                        r = fabs(v[j+1] - v[j])/dmax; 

                        if (r > 1.0) { 

                            m_loc[j] = 1; 

                            m_c[name] = 1; 

                            //if (int(m_loc.size()) + n > m_npmax) goto done; 

                        } 

                        if (r >= m_prune) { 

                            m_keep[j] = 1; 

                            m_keep[j+1] = 1; 

                        } 

                        else { 

                            //writelog(string("r = ")+fp2str(r)+"\n"); 

                            if (m_keep[j] == 0) { 

                                //if (m_keep[j-1] > -1 && m_keep[j+1] > -1)  

                                m_keep[j] = -1; 

                            } 
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                            //if (m_keep[j+1] == 0) m_keep[j+1] = -1; 

                        } 

                    } 

                } 

 

                         

                // refine based on the slope of component i only if the 

                // range of s is greater than a fraction 'min_range' of max 

                // |s|. This eliminates components that consist of small 

                // fluctuations on a constant slope background. 

             

                if ((smax - smin) > m_min_range*ss) { 

 

                    // maximum allowable difference in slope between 

                    // adjacent points. 

                    dmax = m_curve*(smax - smin) + m_thresh; // + 0.5*m_curve*(smax + smin); 

                    for (j = 0; j < n-2; j++) { 

                        r = fabs(s[j+1] - s[j]) /dmax; 

                        if (r > 1.0) { 

                            m_c[name] = 1; 

                            m_loc[j] = 1; 

                            m_loc[j+1] = 1; 

                            //if (int(m_loc.size()) + n > m_npmax) goto done; 

                        } 

                        if (r >= m_prune) { 

                            m_keep[j+1] = 1; 

                        } 

                        else { 

                            //writelog(string("r slope = ")+fp2str(r)+"\n"); 

                            if (m_keep[j+1] == 0) { 

                                //if (m_keep[j] > -1 && m_keep[j+2] > -1)  

                                m_keep[j+1] = -1; 

                            } 

                        } 

                    } 

                } 

            } 

        } 

  //Section added so that Ts effects refinement process. 

  name='Ts'; 

  for (j = 0; j < n; j++) v[j] = Tw[j];  

  for (j = 0; j < n-1; j++) 

   s[j] = (Tw[j+1] - Tw[j])/ 

    (z[j+1] - z[j]); 

  // find the range of values and slopes 

             

  vmin = *min_element(v.begin(), v.end()); 

  vmax = *max_element(v.begin(), v.end()); 

  smin = *min_element(s.begin(), s.end()); 

  smax = *max_element(s.begin(), s.end()); 

 

  // max absolute values of v and s 

  aa = fmaxx(fabs(vmax), fabs(vmin)); 

  ss = fmaxx(fabs(smax), fabs(smin)); 

  // refine based on component i only if the range of v is 

  // greater than a fraction 'min_range' of max |v|. This 

  // eliminates components that consist of small fluctuations 

  // on a constant background. 

 

  if ((vmax - vmin) > m_min_range*aa) { 

 

   // maximum allowable difference in value between 

   // adjacent points. 

                 

   dmax = m_slope*(vmax - vmin) + m_thresh; 

   for (j = 0; j < n-1; j++) { 

    r = fabs(v[j+1] - v[j])/dmax; 

    if (r > 1.0) { 

     m_loc[j] = 1; 

     m_c[name] = 1; 

     //if (int(m_loc.size()) + n > m_npmax) goto done; 
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    } 

    if (r >= m_prune) { 

     m_keep[j] = 1; 

     m_keep[j+1] = 1; 

    } 

    else { 

     //writelog(string("r = ")+fp2str(r)+"\n"); 

     if (m_keep[j] == 0) { 

      //if (m_keep[j-1] > -1 && m_keep[j+1] > -1)  

      m_keep[j] = -1; 

     } 

     //if (m_keep[j+1] == 0) m_keep[j+1] = -1; 

    } 

   } 

  } 

 

                         

  // refine based on the slope of component i only if the 

  // range of s is greater than a fraction 'min_range' of max 

  // |s|. This eliminates components that consist of small 

  // fluctuations on a constant slope background. 

          

  if ((smax - smin) > m_min_range*ss) { 

 

   // maximum allowable difference in slope between 

   // adjacent points. 

   dmax = m_curve*(smax - smin) + m_thresh; // + 0.5*m_curve*(smax + smin); 

   for (j = 0; j < n-2; j++) { 

    r = fabs(s[j+1] - s[j]) /dmax; 

    if (r > 1.0) { 

     m_c[name] = 1; 

     m_loc[j] = 1; 

     m_loc[j+1] = 1; 

     //if (int(m_loc.size()) + n > m_npmax) goto done; 

    } 

    if (r >= m_prune) { 

                    m_keep[j+1] = 1; 

    } 

    else { 

     //writelog(string("r slope = ")+fp2str(r)+"\n"); 

     if (m_keep[j+1] == 0) { 

      //if (m_keep[j] > -1 && m_keep[j+2] > -1)  

      m_keep[j+1] = -1; 

     } 

    } 

   } 

  } 

  //End of new section 

     

        dz[0] = z[1] - z[0]; 

        for (j = 1; j < n-1; j++) { 

            dz[j] = z[j+1] - z[j]; 

            if (dz[j] > m_ratio*dz[j-1]) { 

                m_loc[j] = 1; 

                m_c["point "+int2str(j)] = 1; 

            } 

            if (dz[j] < dz[j-1]/m_ratio) { 

                m_loc[j-1] = 1; 

                m_c["point "+int2str(j-1)] = 1;                 

            } 

            //if (m_loc.size() + n > m_npmax) goto done; 

        } 

 

        //done: 

        //m_did_analysis = true; 

        return static_cast<int>(m_loc.size()); 

    } 

 

    double Refiner::value(const double* x, int i, int j) { 

        return x[m_domain->index(i,j)]; 

    } 
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    void Refiner::show() { 

        int nnew = static_cast<int>(m_loc.size()); 

        if (nnew > 0) { 

            r_drawline(); 

            writelog(string("Refining grid in ") +  

                m_domain->id()+".\n" 

                +"    New points inserted after grid points "); 

            map<int, int>::const_iterator b = m_loc.begin(); 

            for (; b != m_loc.end(); ++b) { 

                writelog(int2str(b->first)+" "); 

            } 

            writelog("\n"); 

            writelog("    to resolve "); 

            map<string, int>::const_iterator bb = m_c.begin(); 

            for (; bb != m_c.end(); ++bb) { 

                writelog(string(bb->first)+" "); 

            } 

            writelog("\n"); 

        } 

        else if (m_domain->nPoints() > 1) { 

            writelog("no new points needed in "+m_domain->id()+"\n"); 

            //writelog("curve = "+fp2str(m_curve)+"\n"); 

            //writelog("slope = "+fp2str(m_slope)+"\n"); 

            //writelog("prune = "+fp2str(m_prune)+"\n"); 

        } 

    } 

 

 

    int Refiner::getNewGrid(int n, const doublereal* z,  

        int nn, doublereal* zn) { 

        int j; 

        int nnew = static_cast<int>(m_loc.size()); 

        if (nnew + n > nn) { 

            throw CanteraError("Refine::getNewGrid", 

                "array size too small."); 

            return -1; 

        } 

 

        int jn = 0; 

        if (m_loc.size() == 0) { 

            copy(z, z + n,  zn); 

            return 0; 

        } 

 

        for (j = 0; j < n - 1; j++) { 

            zn[jn] = z[j]; 

            jn++; 

            if (has_key(m_loc, j)) { 

                zn[jn] = 0.5*(z[j] + z[j+1]); 

                jn++; 

            } 

        } 

        zn[jn] = z[n-1]; 

        return 0; 

    }     

} 
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C.3  Stflow.h 

/** 

 * @file StFlow.h 

 * 

 */ 

 

/* 

 * $Author: hkmoffa $ 

 * $Revision: 1.13 $ 

 * $Date: 2006/03/07 20:52:16 $ 

 */ 

 

// Copyright 2001  California Institute of Technology 

 

#ifndef CT_STFLOW_H 

#define CT_STFLOW_H 

 

#include "../transport/TransportBase.h" 

#include "Domain1D.h" 

#include "../Array.h" 

#include "../IdealGasPhase.h" 

#include "../Kinetics.h" 

#include "../funcs.h" 

//#include "../flowBoundaries.h" 

 

namespace Cantera { 

      

    typedef IdealGasPhase igthermo_t; 

   

    class MultiJac; 

     

     

    //------------------------------------------ 

    //   constants 

    //------------------------------------------ 

     

    // Offsets of solution components in the solution array. 

    const unsigned int c_offset_U = 0;    // axial velocity 

    const unsigned int c_offset_V = 1;    // strain rate 

    const unsigned int c_offset_T = 2;    // temperature 

    const unsigned int c_offset_L = 3;    // (1/r)dP/dr 

    const unsigned int c_offset_Y = 4;    // mass fractions 

 

    // Transport option flags 

    const int c_Mixav_Transport = 0; 

    const int c_Multi_Transport = 1; 

    const int c_Soret = 2; 

 

     

     

    //----------------------------------------------------------- 

    //  Class StFlow 

    //----------------------------------------------------------- 

 

 

    /** 

     *  This class represents 1D flow domains that satisfy the 

     *  one-dimensional similarity solution for chemically-reacting, 

     *  axisymmetric, flows.  

     */ 

    class StFlow : public Domain1D { 

 

    public: 

 

        //-------------------------------- 

        // construction and destruction 

        //-------------------------------- 
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        /// Constructor. Create a new flow domain. 

        /// @param gas Object representing the gas phase. This object 

        /// will be used to evaluate all thermodynamic, kinetic, and transport 

        /// properties. 

        /// @param nsp Number of species.  

        StFlow(igthermo_t* ph = 0, int nsp = 1, int points = 1); 

 

        /// Destructor. 

        virtual ~StFlow(){} 

 

        /** 

         * @name Problem Specification 

         */ 

        //@{ 

 

        virtual void setupGrid(int n, const doublereal* z); 

 

        thermo_t& phase() { return *m_thermo; } 

        kinetics_t& kinetics() { return *m_kin; } 

 

        virtual void init(){ 

  } 

   

  /** 

         * Set the thermo manager. Note that the flow equations assume 

         * the ideal gas equation. 

         */ 

        void setThermo(igthermo_t& th) { m_thermo = &th; } 

 

  //initialize the solid solver  as well as the radiant flux vector 

  virtual void solid(doublereal* x, vector<double>& hconv, vector<double>& scond, 

vector<double>& RK, vector<double>& Omega, double & srho, double & sCp, double rdt); 

  vector<double> dq; 

  //initialize the solid properties 

  double pore1; 

  double pore2; 

  double diam1; 

  double diam2; 

  double Omega1; 

  double Omega2; 

  double srho;  

  double sCp; 

 

  /// Set the kinetics manager. The kinetics manager must  

        void setKinetics(kinetics_t& kin) { m_kin = &kin; } 

 

        /// set the transport manager 

        void setTransport(Transport& trans, bool withSoret = false); 

 

        /// Set the pressure. Since the flow equations are for the limit of 

        /// small Mach number, the pressure is very nearly constant 

        /// throughout the flow. 

        void setPressure(doublereal p) { m_press = p; } 

 

         

        /// @todo remove? may be unused 

        virtual void setState(int point, const doublereal* state, 

                              doublereal *x) { 

            setTemperature(point, state[2]); 

            int k; 

            for (k = 0; k < m_nsp; k++) { 

                setMassFraction(point, k, state[4+k]); 

            } 

        } 

 

         

        /// Write the initial solution estimate into 

        /// array x.  

        virtual void _getInitialSoln(doublereal* x) { 

            int k, j; 

            for (j = 0; j < m_points; j++) { 
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                x[index(2,j)] = T_fixed(j); 

                for (k = 0; k < m_nsp; k++) { 

                    x[index(4+k,j)] = Y_fixed(k,j); 

                } 

            } 

        }    

 

        virtual void _finalize(const doublereal* x); 

 

         

        /// Sometimes it is desired to carry out the simulation 

        /// using a specified temperature profile, rather than 

        /// computing it by solving the energy equation. This 

        /// method specifies this profile. 

        void setFixedTempProfile(vector_fp& zfixed, vector_fp& tfixed) { 

            m_zfix = zfixed; 

            m_tfix = tfixed; 

        } 

 

        /** 

         * Set the temperature fixed point at grid point j, and 

         * disable the energy equation so that the solution will be 

         * held to this value. 

         */ 

        void setTemperature(int j, doublereal t) { 

            m_fixedtemp[j] = t; 

            m_do_energy[j] = false; 

        } 

 

        /** 

         * Set the mass fraction fixed point for species k at grid 

         * point j, and disable the species equation so that the 

         * solution will be held to this value. 

         * note: in practice, the species are hardly ever held fixed. 

         */ 

        void setMassFraction(int j, int k, doublereal y) { 

            m_fixedy(k,j) = y; 

            m_do_species[k] = true; // false; 

        } 

         

         

         /// The fixed temperature value at point j. 

        doublereal T_fixed(int j) const {return m_fixedtemp[j];} 

         

         

        /// The fixed mass fraction value of species k at point j. 

        doublereal Y_fixed(int k, int j) const {return m_fixedy(k,j);} 

 

 

        virtual string componentName(int n) const; 

      

        //added by Karl Meredith 

        int componentIndex(string name) const; 

 

 

        virtual void showSolution(const doublereal* x); 

 

        virtual void save(XML_Node& o, doublereal* sol); 

 

        virtual void restore(const XML_Node& dom, doublereal* soln); 

 

        // overloaded in subclasses 

        virtual string flowType() { return "<none>"; } 

 

        void solveEnergyEqn(int j=-1) { 

            if (j < 0) 

                for (int i = 0; i < m_points; i++) 

                    m_do_energy[i] = true; 

            else  

                m_do_energy[j] = true; 

            m_refiner->setActive(0, true); 
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            m_refiner->setActive(1, true); 

            m_refiner->setActive(2, true); 

            needJacUpdate(); 

        } 

 

        void fixTemperature(int j=-1) { 

            if (j < 0) 

                for (int i = 0; i < m_points; i++) { 

                    m_do_energy[i] = false; 

                } 

            else m_do_energy[j] = false; 

            m_refiner->setActive(0, false); 

            m_refiner->setActive(1, false); 

            m_refiner->setActive(2, false); 

            needJacUpdate(); 

        } 

 

        bool doSpecies(int k) { return m_do_species[k]; } 

        bool doEnergy(int j) { return m_do_energy[j]; } 

 

        void solveSpecies(int k=-1) { 

            if (k == -1) { 

                for (int i = 0; i < m_nsp; i++)  

                    m_do_species[i] = true; 

            } 

            else m_do_species[k] = true; 

            needJacUpdate(); 

        } 

 

        void fixSpecies(int k=-1) { 

            if (k == -1) { 

                for (int i = 0; i < m_nsp; i++)  

                    m_do_species[i] = false; 

            } 

            else m_do_species[k] = false; 

            needJacUpdate(); 

        } 

 

        void integrateChem(doublereal* x,doublereal dt); 

 

        void resize(int components, int points); 

 

        virtual void setFixedPoint(int j0, doublereal t0){} 

 

 

        void setJac(MultiJac* jac); 

        void setGas(const doublereal* x,int j); 

        void setGasAtMidpoint(const doublereal* x,int j); 

 

        //Karl Meredith 

        //        doublereal density_unprotected(int j) const { 

        //    return m_rho[j]; 

        // } 

        doublereal density(int j) const { 

            return m_rho[j]; 

        } 

 

        virtual bool fixed_mdot() { return true; } 

        void setViscosityFlag(bool dovisc) { m_dovisc = dovisc; } 

 

    protected: 

 

        doublereal component(const doublereal* x, int i, int j) const { 

            doublereal xx = x[index(i,j)]; 

            return xx; 

        } 

 

        doublereal conc(const doublereal* x,int k,int j) const { 

            return Y(x,k,j)*density(j)/m_wt[k]; 

        } 
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        doublereal cbar(const doublereal* x,int k, int j) const { 

            return sqrt(8.0*GasConstant * T(x,j) / (Pi * m_wt[k])); 

        } 

 

        doublereal wdot(int k, int j) const {return m_wdot(k,j);} 

 

        /// write the net production rates at point j into array m_wdot 

        void getWdot(doublereal* x,int j) {  

            setGas(x,j); 

            m_kin->getNetProductionRates(&m_wdot(0,j)); 

        } 

 

        /** 

         * update the thermodynamic properties from point 

         * j0 to point j1 (inclusive), based on solution x. 

         */ 

        void updateThermo(const doublereal* x, int j0, int j1) { 

            int j; 

            for (j = j0; j <= j1; j++) { 

                setGas(x,j); 

                m_rho[j] = m_thermo->density(); 

                m_wtm[j] = m_thermo->meanMolecularWeight(); 

                m_cp[j]  = m_thermo->cp_mass(); 

            } 

        } 

 

 

        //-------------------------------- 

        // central-differenced derivatives 

        //-------------------------------- 

 

        doublereal cdif2(const doublereal* x, int n, int j,  

            const doublereal* f) const { 

            doublereal c1 = (f[j] + f[j-1])*(x[index(n,j)] - x[index(n,j-1)]); 

            doublereal c2 = (f[j+1] + f[j])*(x[index(n,j+1)] - x[index(n,j)]); 

            return (c2/(z(j+1) - z(j)) - c1/(z(j) - z(j-1)))/(z(j+1) - z(j-1)); 

        } 

 

 

        //-------------------------------- 

        //      solution components 

        //-------------------------------- 

 

 

        doublereal T(const doublereal* x,int j) const { 

            return x[index(c_offset_T, j)]; 

        } 

        doublereal& T(doublereal* x,int j) {return x[index(c_offset_T, j)];} 

        doublereal T_prev(int j) const {return prevSoln(c_offset_T, j);}  

 

        doublereal rho_u(const doublereal* x,int j) const { 

            return m_rho[j]*x[index(c_offset_U, j)];}  

 

        doublereal u(const doublereal* x,int j) const { 

            return x[index(c_offset_U, j)];}  

 

        doublereal V(const doublereal* x,int j) const { 

            return x[index(c_offset_V, j)];} 

        doublereal V_prev(int j) const { 

            return prevSoln(c_offset_V, j);}  

 

        doublereal lambda(const doublereal* x,int j) const { 

            return x[index(c_offset_L, j)]; 

        } 

 

        doublereal Y(const doublereal* x,int k, int j) const { 

            return x[index(c_offset_Y + k, j)]; 

        } 

 

        doublereal& Y(doublereal* x,int k, int j) { 

            return x[index(c_offset_Y + k, j)]; 
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        } 

 

        doublereal Y_prev(int k, int j) const { 

            return prevSoln(c_offset_Y + k, j); 

        } 

 

        doublereal X(const doublereal* x,int k, int j) const { 

            return m_wtm[j]*Y(x,k,j)/m_wt[k]; 

        } 

 

        doublereal flux(int k, int j) const { 

            return m_flux(k, j); 

        } 

 

 

        // convective spatial derivatives. These use upwind 

        // differencing, assuming u(z) is negative 

 

        doublereal dVdz(const doublereal* x,int j) const { 

            int jloc = (u(x,j) > 0.0 ? j : j + 1); 

            return (V(x,jloc) - V(x,jloc-1))/m_dz[jloc-1]; 

        }  

 

        doublereal dYdz(const doublereal* x,int k, int j) const { 

            int jloc = (u(x,j) > 0.0 ? j : j + 1); 

            return (Y(x,k,jloc) - Y(x,k,jloc-1))/m_dz[jloc-1];  

        }  

 

        doublereal dTdz(const doublereal* x,int j) const { 

            int jloc = (u(x,j) > 0.0 ? j : j + 1); 

            return (T(x,jloc) - T(x,jloc-1))/m_dz[jloc-1]; 

        } 

         

        doublereal shear(const doublereal* x,int j) const { 

            doublereal c1 = m_visc[j-1]*(V(x,j) - V(x,j-1)); 

            doublereal c2 = m_visc[j]*(V(x,j+1) - V(x,j)); 

            return 2.0*(c2/(z(j+1) - z(j)) - c1/(z(j) - z(j-1)))/(z(j+1) - z(j-1)); 

        } 

 

        doublereal divHeatFlux(const doublereal* x, int j) const { 

            doublereal c1 = m_tcon[j-1]*(T(x,j) - T(x,j-1)); 

            doublereal c2 = m_tcon[j]*(T(x,j+1) - T(x,j)); 

            return -2.0*(c2/(z(j+1) - z(j)) - c1/(z(j) - z(j-1)))/(z(j+1) - z(j-1)); 

        } 

 

        int mindex(int k, int j, int m) { 

            return m*m_nsp*m_nsp + m_nsp*j + k; 

        } 

 

        void updateDiffFluxes(const doublereal* x, int j0, int j1); 

 

 

        //--------------------------------------------------------- 

        // 

        //             member data 

        // 

        //--------------------------------------------------------- 

 

        // inlet 

        doublereal m_inlet_u; 

        doublereal m_inlet_V; 

        doublereal m_inlet_T; 

        doublereal m_rho_inlet; 

        vector_fp m_yin; 

   

 

        // surface 

        doublereal m_surface_T; 

 

        doublereal m_press;        // pressure 
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        // grid parameters 

        vector_fp m_dz; 

        //vector_fp m_z; 

 

        // mixture thermo properties 

        vector_fp m_rho; 

        vector_fp m_wtm; 

 

        // species thermo properties 

        vector_fp m_wt; 

        vector_fp m_cp; 

        vector_fp m_enth; 

   

        // transport properties 

        vector_fp m_visc; 

        vector_fp m_tcon; 

        vector_fp m_diff; 

        vector_fp m_multidiff; 

        Array2D m_dthermal; 

        Array2D m_flux; 

 

        // production rates 

        Array2D m_wdot; 

        vector_fp m_surfdot; 

 

        int m_nsp; 

 

        igthermo_t*     m_thermo; 

        kinetics_t*     m_kin; 

        Transport*      m_trans; 

 

        MultiJac*       m_jac; 

 

        bool m_ok; 

 

        // flags 

        vector<bool> m_do_energy; 

        bool m_do_soret; 

        vector<bool> m_do_species; 

        int m_transport_option; 

 

        // solution estimate 

        //vector_fp m_zest; 

        //Array2D   m_yest; 

 

        // fixed T and Y values 

        Array2D   m_fixedy; 

        vector_fp m_fixedtemp; 

        vector_fp m_zfix; 

        vector_fp m_tfix; 

 

        doublereal m_efctr; 

        bool m_dovisc; 

        void updateTransport(doublereal* x,int j0, int j1); 

 

    private: 

        vector_fp m_ybar; 

 

    }; 

 

 

    /** 

     * A class for axisymmetric stagnation flows. 

     */ 

    class AxiStagnFlow : public StFlow { 

 friend class OneDim; 

    public: 

        AxiStagnFlow(igthermo_t* ph = 0, int nsp = 1, int points = 1) : 

            StFlow(ph, nsp, points) { m_dovisc = true; } 

        virtual ~AxiStagnFlow() {} 

        virtual void eval(int j, doublereal* x, doublereal* r,  
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            integer* mask, doublereal rdt); 

  virtual string flowType() { return "Axisymmetric Stagnation"; } 

 

 

    }; 

 

    /** 

     * A class for freely-propagating premixed flames.  

     */ 

    class FreeFlame : public StFlow { 

    public: 

        FreeFlame(igthermo_t* ph = 0, int nsp = 1, int points = 1) : 

            StFlow(ph, nsp, points) { m_dovisc = false; } 

        virtual ~FreeFlame() {} 

        virtual void eval(int j, doublereal* x, doublereal* r,  

            integer* mask, doublereal rdt); 

        virtual string flowType() { return "Free Flame"; } 

        virtual bool fixed_mdot() { return false; } 

    }; 

 

 

    /* 

    class OneDFlow : public StFlow { 

    public: 

        OneDFlow(igthermo_t* ph = 0, int nsp = 1, int points = 1) : 

            StFlow(ph, nsp, points) { 

        } 

        virtual ~OneDFlow() {} 

        virtual void eval(int j, doublereal* x, doublereal* r,  

            integer* mask, doublereal rdt); 

        virtual string flowType() { return "OneDFlow"; } 

        doublereal mdot(doublereal* x, int j) { 

            return x[index(c_offset_L,j)]; 

        } 

 

    private: 

        void updateTransport(doublereal* x,int j0, int j1); 

    }; 

    */ 

 

    void importSolution(doublereal* oldSoln, igthermo_t& oldmech, 

        doublereal* newSoln, igthermo_t& newmech); 

 

} 

 

#endif 
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C.4  Stflow.cpp 

/** 

 * @file StFlow.cpp 

 */ 

 

/* 

 * $Author: dggoodwin $ 

 * $Revision: 1.29 $ 

 * $Date: 2006/04/28 17:22:23 $ 

 */ 

 

// Copyright 2002  California Institute of Technology 

 

 

// turn off warnings under Windows 

#ifdef WIN32 

#pragma warning(disable:4786) 

#pragma warning(disable:4503) 

#pragma warning(disable:4267) 

#endif 

 

#include <stdlib.h> 

#include <time.h> 

#include <vector> 

#include <fstream> 

 

#include "StFlow.h" 

#include "../ArrayViewer.h" 

#include "../ctml.h" 

#include "MultiJac.h" 

#include "OneDim.cpp" 

 

using namespace ctml; 

using namespace std; 

 

namespace Cantera { 

 //initialize solid temperature vector, the previous temperature profile, the previous 

mesh, 

 //the heat transfer coefficient, and no adaption 

 vector<double> Tw; 

 vector<double> Twprev; 

 vector<double> Twprev1; 

 vector<double> zprev; 

 vector<double> hconv; 

 int adapt=0; 

  

 

    //-------------------  importSolution ------------------------ 

 

    /** 

     * Import a previous solution to use as an initial estimate. The 

     * previous solution may have been computed using a different 

     * reaction mechanism. Species in the old and new mechanisms are 

     * matched by name, and any species in the new mechanism that were 

     * not in the old one are set to zero. The new solution is created 

     * with the same number of grid points as in the old solution. 

     */  

    void importSolution(int points,   

        doublereal* oldSoln, igthermo_t& oldmech, 

        int size_new, doublereal* newSoln, igthermo_t& newmech) { 

         

        // Number of components in old and new solutions 

        int nv_old = oldmech.nSpecies() + 4; 

        int nv_new = newmech.nSpecies() + 4; 

 

        if (size_new < nv_new*points) { 

            throw CanteraError("importSolution", 

                "new solution array must have length "+ 
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                int2str(nv_new*points)); 

        } 

 

        int n, j, knew; 

        string nm; 

 

        // copy u,V,T,lambda 

        for (j = 0; j < points; j++)  

            for (n = 0; n < 4; n++)  

                newSoln[nv_new*j + n] = oldSoln[nv_old*j + n]; 

 

        // copy mass fractions         

        int nsp0 = oldmech.nSpecies(); 

        //int nsp1 = newmech.nSpecies(); 

 

        // loop over the species in the old mechanism 

        for (int k = 0; k < nsp0; k++) { 

            nm = oldmech.speciesName(k);      // name 

 

            // location of this species in the new mechanism. 

            // If < 0, then the species is not in the new mechanism. 

            knew = newmech.speciesIndex(nm);  

 

            // copy this species from the old to the new solution vectors 

            if (knew >= 0) { 

                for (j = 0; j < points; j++) { 

                    newSoln[nv_new*j + 4 + knew] = oldSoln[nv_old*j + 4 + k]; 

                } 

            } 

        } 

 

 

        // normalize mass fractions 

        for (j = 0; j < points; j++) { 

            newmech.setMassFractions(&newSoln[nv_new*j + 4]); 

            newmech.getMassFractions(&newSoln[nv_new*j + 4]); 

        } 

    } 

 

 

        static void st_drawline() { 

        writelog("\n-------------------------------------" 

            "------------------------------------------"); 

    } 

 

    StFlow::StFlow(igthermo_t* ph, int nsp, int points) :  

        Domain1D(nsp+4, points), 

        m_inlet_u(0.0), 

        m_inlet_V(0.0), 

 m_inlet_T(-1.0), 

        m_surface_T(-1.0), 

 m_press(-1.0), 

 m_nsp(nsp), 

        m_thermo(0), 

        m_kin(0), 

 m_trans(0), 

        m_jac(0), 

 m_ok(false), 

 m_do_soret(false), 

 m_transport_option(-1), 

 m_efctr(0.0) 

    { 

        m_type = cFlowType; 

 

        m_points = points; 

        m_thermo = ph; 

 

        if (ph == 0) return; // used to create a dummy object 

 

        int nsp2 = m_thermo->nSpecies(); 

        if (nsp2 != m_nsp) { 
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            m_nsp = nsp2; 

            Domain1D::resize(m_nsp+4, points); 

        } 

 

 

        // make a local copy of the species molecular weight vector 

        m_wt = m_thermo->molecularWeights(); 

 

        // the species mass fractions are the last components in the solution 

        // vector, so the total number of components is the number of species 

        // plus the offset of the first mass fraction. 

        m_nv = c_offset_Y + m_nsp;  

 

        // enable all species equations by default 

        m_do_species.resize(m_nsp, true); 

 

        // but turn off the energy equation at all points 

        m_do_energy.resize(m_points,false); 

 

        m_diff.resize(m_nsp*m_points); 

        m_multidiff.resize(m_nsp*m_nsp*m_points); 

        m_flux.resize(m_nsp,m_points); 

        m_wdot.resize(m_nsp,m_points, 0.0); 

        m_surfdot.resize(m_nsp, 0.0); 

        m_ybar.resize(m_nsp); 

 

 

        //-------------- default solution bounds -------------------- 

 

        vector_fp vmin(m_nv), vmax(m_nv); 

         

        // no bounds on u 

        vmin[0] = -1.e20; 

        vmax[0] = 1.e20; 

 

        // V 

        vmin[1] = -1.e20; 

        vmax[1] = 1.e20; 

 

        // temperature bounds 

        vmin[2] = 200.0; 

        vmax[2]= 1.e9; 

 

        // lamda should be negative 

        vmin[3] = -1.e20; 

        vmax[3] = 1.e20; 

 

        // mass fraction bounds 

        int k; 

        for (k = 0; k < m_nsp; k++) { 

            vmin[4+k] = -1.0e-5; 

            vmax[4+k] = 1.0e5; 

        } 

        setBounds(vmin.size(), DATA_PTR(vmin), vmax.size(), DATA_PTR(vmax)); 

 

 

        //-------------------- default error tolerances ---------------- 

        vector_fp rtol(m_nv, 1.0e-8); 

        vector_fp atol(m_nv, 1.0e-15); 

        setTolerances(rtol.size(), DATA_PTR(rtol), atol.size(), DATA_PTR(atol),false); 

        setTolerances(rtol.size(), DATA_PTR(rtol), atol.size(), DATA_PTR(atol),true); 

 

        //-------------------- grid refinement ------------------------- 

        m_refiner->setActive(0, false); 

        m_refiner->setActive(1, false); 

        m_refiner->setActive(2, false); 

        m_refiner->setActive(3, false); 

 

        vector_fp gr; 

        for (int ng = 0; ng < m_points; ng++) gr.push_back(1.0*ng/m_points); 

        setupGrid(m_points, DATA_PTR(gr)); 
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        setID("stagnation flow"); 

 

  ifstream in("Properties2.txt"); //Read in the solid properties 

  double proper; 

  in>>proper; 

  pore1=proper; 

  in>>proper; 

  pore2=proper; 

  in>>proper; 

  diam1=proper; 

  in>>proper; 

  diam2=proper; 

  in>>proper; 

  Omega1=proper; 

  in>>proper; 

  Omega2=proper; 

  in>>proper; 

  srho=proper; 

  in>>proper; 

  sCp=proper; 

  in.close(); 

 

    } 

 

 

    /** 

     * Change the grid size. Called after grid refinement. 

     */ 

    void StFlow::resize(int ncomponents, int points) { 

        Domain1D::resize(ncomponents, points); 

        m_rho.resize(m_points, 0.0); 

        m_wtm.resize(m_points, 0.0); 

        m_cp.resize(m_points, 0.0); 

        m_enth.resize(m_points, 0.0); 

        m_visc.resize(m_points, 0.0); 

        m_tcon.resize(m_points, 0.0); 

 

        if (m_transport_option ==  c_Mixav_Transport) { 

            m_diff.resize(m_nsp*m_points); 

        } 

        else { 

            m_multidiff.resize(m_nsp*m_nsp*m_points); 

            m_diff.resize(m_nsp*m_points); 

        } 

        m_flux.resize(m_nsp,m_points); 

        m_wdot.resize(m_nsp,m_points, 0.0); 

        m_do_energy.resize(m_points,false); 

 

        m_fixedy.resize(m_nsp, m_points); 

        m_fixedtemp.resize(m_points);         

 

        m_dz.resize(m_points-1); 

        m_z.resize(m_points); 

    }         

         

 

    void StFlow::setupGrid(int n, const doublereal* z) { 

        resize(m_nv, n); 

        int j; 

 

        m_z[0] = z[0]; 

        for (j = 1; j < m_points; j++) { 

            m_z[j] = z[j]; 

            m_dz[j-1] = m_z[j] - m_z[j-1]; 

        } 

    } 

 

 

    /** 

     * Install a transport manager. 

     */ 
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    void StFlow::setTransport(Transport& trans, bool withSoret) { 

        m_trans = &trans; 

        m_do_soret = withSoret; 

 

        if (m_trans->model() == cMulticomponent) { 

            m_transport_option = c_Multi_Transport; 

            m_multidiff.resize(m_nsp*m_nsp*m_points); 

            m_diff.resize(m_nsp*m_points); 

            m_dthermal.resize(m_nsp, m_points, 0.0); 

        } 

        else if (m_trans->model() == cMixtureAveraged) { 

            m_transport_option = c_Mixav_Transport; 

            m_diff.resize(m_nsp*m_points); 

            if (withSoret)  

                throw CanteraError("setTransport", 

                    "Thermal diffusion (the Soret effect) " 

                    "requires using a multicomponent transport model."); 

        } 

        else  

            throw CanteraError("setTransport","unknown transport model."); 

    } 

 

 

    /** 

     * Set the gas object state to be consistent with the solution at 

     * point j. 

     */ 

    void StFlow::setGas(const doublereal* x,int j) { 

        m_thermo->setTemperature(T(x,j)); 

        const doublereal* yy = x + m_nv*j + c_offset_Y; 

        m_thermo->setMassFractions_NoNorm(yy); 

        m_thermo->setPressure(m_press); 

    } 

 

 

    /** 

     * Set the gas state to be consistent with the solution at the 

     * midpoint between j and j + 1. 

     */ 

    void StFlow::setGasAtMidpoint(const doublereal* x,int j) { 

        m_thermo->setTemperature(0.5*(T(x,j)+T(x,j+1))); 

        const doublereal* yyj = x + m_nv*j + c_offset_Y; 

        const doublereal* yyjp = x + m_nv*(j+1) + c_offset_Y; 

        for (int k = 0; k < m_nsp; k++) 

            m_ybar[k] = 0.5*(yyj[k] + yyjp[k]); 

        m_thermo->setMassFractions_NoNorm(DATA_PTR(m_ybar)); 

        m_thermo->setPressure(m_press); 

    } 

 

 

    void StFlow::_finalize(const doublereal* x) { 

        int k, j; 

        doublereal zz, tt; 

        int nz = m_zfix.size(); 

        bool e = m_do_energy[0]; 

        for (j = 0; j < m_points; j++) { 

            if (e || nz == 0)  

                setTemperature(j, T(x, j)); 

            else { 

                zz = (z(j) - z(0))/(z(m_points - 1) - z(0)); 

                tt = linearInterp(zz, m_zfix, m_tfix); 

                setTemperature(j, tt); 

            }    

            for (k = 0; k < m_nsp; k++) { 

                setMassFraction(j, k, Y(x, k, j)); 

            } 

        } 

        if (e) solveEnergyEqn(); 

    } 
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    //------------------------------------------------------ 

 

    /** 

     *  Evaluate the residual function for axisymmetric stagnation 

     *  flow. If jpt is less than zero, the residual function is 

     *  evaluated at all grid points. If jpt >= 0, then the residual 

     *  function is only evaluated at grid points jpt-1, jpt, and 

     *  jpt+1. This option is used to efficiently evaluate the 

     *  Jacobian numerically. 

     * 

     */ 

 

    void AxiStagnFlow::eval(int jg, doublereal* xg,  

        doublereal* rg, integer* diagg, doublereal rdt) { 

 

        // if evaluating a Jacobian, and the global point is outside 

        // the domain of influence for this domain, then skip 

        // evaluating the residual 

        if (jg >=0 && (jg < firstPoint() - 1 || jg > lastPoint() + 1)) return; 

 

        // if evaluating a Jacobian, compute the steady-state residual 

        if (jg >= 0) rdt = 0.0; 

 

        // start of local part of global arrays 

        doublereal* x = xg + loc(); 

        doublereal* rsd = rg + loc(); 

        integer* diag = diagg + loc(); 

         

        int jmin, jmax, jpt; 

        jpt = jg - firstPoint(); 

 

        if (jg < 0) {      // evaluate all points 

            jmin = 0; 

            jmax = m_points - 1; 

        } 

        else {            // evaluate points for Jacobian 

            jmin = max(jpt-1, 0); 

            jmax = min(jpt+1,m_points-1); 

        } 

 

        // properties are computed for grid points from j0 to j1 

        int j0 = max(jmin-1,0); 

        int j1 = min(jmax+1,m_points-1); 

 

 

        int j, k; 

 

 

        //-----------------------------------------------------  

        //              update properties 

        //----------------------------------------------------- 

 

        // update thermodynamic properties only if a Jacobian is not 

        // being evaluated 

        if (jpt < 0) { //if (jpt < 0 || (m_transport_option == c_Multi_Transport)) { 

            updateThermo(x, j0, j1); 

 

            // update transport properties only if a Jacobian is not being 

            // evaluated  

            updateTransport(x, j0, j1); 

        } 

 

        // update the species diffusive mass fluxes whether or not a 

        // Jacobian is being evaluated 

        updateDiffFluxes(x, j0, j1); 

 

 

        //---------------------------------------------------- 

        // evaluate the residual equations at all required 

        // grid points 

        //---------------------------------------------------- 
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        doublereal sum, sum2, dtdzj; 

 

  doublereal lam, visc, Re;   //Defining new variables. 

  double length=m_points;   // 

  hconv.resize(length); // 

 

  //initialize property vectors 

  vector<double> pore(length); 

  vector<double> diam(length); 

  vector<double> scond(length); 

  vector<double> Omega(length); 

  vector<double> Cmult(length); 

  vector<double> mpow(length); 

  vector<double> RK(length); 

 

  //populate property vectors 

  for (int i=0; i<=length-1;i++)   

  {          

   if (z(i)<0.033) 

   { 

    pore[i]=pore1; 

    diam[i]=diam1; 

   } 

   else if (z(i)>0.037) 

   { 

    pore[i]=pore2; 

    diam[i]=diam2; 

   } 

   else 

   { 

    pore[i]=(((pore2-pore1)/(.037-.033))*(z(i)-0.033))+pore1; 

    diam[i]=(((diam2-diam1)/(.037-.033))*(z(i)-0.033))+diam1; 

   } 

   RK[i]=(3*(1-pore[i])/diam[i]); 

   Cmult[i]=-400*diam[i]+0.687; 

   mpow[i]=443.7*diam[i]+0.361; 

   scond[i]=0.188-17.5*diam[i]; 

  } 

  for (int i=0; i<=length-1;i++) 

  { 

   if (z(i)<0.035) 

   { 

    Omega[i]=Omega1; 

   } 

   else 

   { 

    Omega[i]=Omega2; 

   } 

  } 

    

  int solidenergy=0; 

  //loop over gas energy vecotr.  If it is going to be solved then find hv 

  for(j=jmin;j<=jmax;j++) 

  { 

   solidenergy+=m_do_energy[j]; 

  } 

  solidenergy=1; 

   

  if (solidenergy!=0) 

  { 

  for (j = jmin; j <= jmax; j++) 

  { 

   lam=m_tcon[j]; 

   visc=m_visc[j]; 

   Re=(rho_u(x,j)*pore[j]*diam[j])/visc; 

   hconv[j]=((lam*Cmult[j]*pow(Re,mpow[j]))/pow(diam[j],2)); 

  } 

  //Solve for the solid profile if required 

  if (dosolid==1) 

  { 
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   solid(x,hconv,scond,RK,Omega,srho,sCp,rdt); 

   dosolid=0; 

  } 

  } 

 

        for (j = jmin; j <= jmax; j++) { 

 

            //---------------------------------------------- 

            //         left boundary 

            //---------------------------------------------- 

 

            if (j == 0) { 

 

                // these may be modified by a boundary object 

 

 

                // Continuity. This propagates information right-to-left, 

                // since rho_u at point 0 is dependent on rho_u at point 1, 

                // but not on mdot from the inlet.   

                 rsd[index(c_offset_U,0)] =  

                     -(rho_u(x,1) - rho_u(x,0))/m_dz[0] 

                     -(density(1)*V(x,1) + density(0)*V(x,0)); 

 

                 // the inlet (or other) object connected to this one  

                 // will modify these equations by subtracting its values 

                 // for V, T, and mdot. As a result, these residual equations  

                 // will force the solution variables to the values for  

                 // the boundary object 

                 rsd[index(c_offset_V,0)] = V(x,0); 

                 rsd[index(c_offset_T,0)] = T(x,0); 

                 rsd[index(c_offset_L,0)] = -rho_u(x,0); 

 

                 // The default boundary condition for species is zero 

                 // flux. However, the boundary object may modify 

                 // this. 

                 sum = 0.0; 

                 for (k = 0; k < m_nsp; k++) { 

                     sum += Y(x,k,0); 

                     rsd[index(c_offset_Y + k, 0)] =   

                         -(m_flux(k,0) + rho_u(x,0)* Y(x,k,0)); 

                 } 

                 rsd[index(c_offset_Y, 0)] = 1.0 - sum;  

            } 

 

 

            //---------------------------------------------- 

            // 

            //         right boundary 

            // 

            //---------------------------------------------- 

 

            else if (j == m_points - 1) { 

 

                 // the boundary object connected to the right of this 

                 // one may modify or replace these equations. The 

                 // default boundary conditions are zero u, V, and T, 

                 // and zero diffusive flux for all species. 

 

                rsd[index(0,j)] = rho_u(x,j); 

                rsd[index(1,j)] = V(x,j); 

                rsd[index(2,j)] = T(x,j); 

                rsd[index(c_offset_L, j)] = lambda(x,j) - lambda(x,j-1); 

                diag[index(c_offset_L, j)] = 0; 

                doublereal sum = 0.0; 

                for (k = 0; k < m_nsp; k++) { 

                    sum += Y(x,k,j); 

                    rsd[index(k+4,j)] = m_flux(k,j-1) + rho_u(x,j)*Y(x,k,j); 

                } 

                rsd[index(4,j)] = 1.0 - sum; 

                diag[index(4,j)] = 0; 
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            } 

 

 

            //------------------------------------------ 

            //     interior points                  

            //------------------------------------------ 

             

            else { 

 

                //---------------------------------------------- 

                //    Continuity equation 

                //  

                //    Note that this propagates the mass flow rate 

                //    information to the left (j+1 -> j) from the 

                //    value specified at the right boundary. The 

                //    lambda information propagates in the opposite 

                //    direction. 

                // 

                //    d(\rho u)/dz + 2\rho V = 0 

                // 

                //------------------------------------------------ 

 

                rsd[index(c_offset_U,j)] =  

                    -(rho_u(x,j+1)*pore[j+1] - rho_u(x,j)*pore[j])/m_dz[j]  //added porosity 

                    -(density(j+1)*V(x,j+1) + density(j)*V(x,j)); 

 

                //algebraic constraint 

                diag[index(c_offset_U, j)] = 0; 

 

 

                //------------------------------------------------              

                //    Radial momentum equation 

                // 

                //    \rho u dV/dz + \rho V^2 = d(\mu dV/dz)/dz - lambda 

                // 

                //------------------------------------------------- 

                rsd[index(c_offset_V,j)] 

                    = (shear(x,j) - lambda(x,j) - rho_u(x,j)*dVdz(x,j)  

                        - m_rho[j]*V(x,j)*V(x,j))/m_rho[j] 

                    - rdt*(V(x,j) - V_prev(j)); 

                diag[index(c_offset_V, j)] = 1; 

 

 

                //------------------------------------------------- 

                //    Species equations 

                //                 

                //   \rho u dY_k/dz + dJ_k/dz + M_k\omega_k 

                // 

                //------------------------------------------------- 

                getWdot(x,j); 

 

                doublereal convec, diffus; 

                for (k = 0; k < m_nsp; k++) { 

                    convec = rho_u(x,j)*dYdz(x,k,j)*pore[j]; //added porosity 

                    diffus = 2.0*(m_flux(k,j)*pore[j] - m_flux(k,j-1)*pore[j-1]) //added 

porosity 

                             /(z(j+1) - z(j-1)); 

                    rsd[index(c_offset_Y + k, j)]    

                        = (m_wt[k]*(wdot(k,j)*pore[j] )  //added porosity  

                            - convec - diffus)/(m_rho[j]*pore[j])  //added porosity 

                        - rdt*(Y(x,k,j) - Y_prev(k,j)); 

                    diag[index(c_offset_Y + k, j)] = 1; 

                } 

 

 

                //----------------------------------------------- 

                //    energy equation 

                //----------------------------------------------- 

 

                if (m_do_energy[j]) { 
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                    setGas(x,j); 

 

                    // heat release term 

                    const vector_fp& h_RT = m_thermo->enthalpy_RT_ref(); 

                    const vector_fp& cp_R = m_thermo->cp_R_ref(); 

 

                    sum = 0.0; 

                    sum2 = 0.0; 

                    doublereal flxk; 

                    for (k = 0; k < m_nsp; k++) { 

                        flxk = 0.5*(m_flux(k,j-1) + m_flux(k,j)); 

                        sum += wdot(k,j)*h_RT[k]; 

                        sum2 += flxk*cp_R[k]/m_wt[k]; 

                    } 

                    sum *= GasConstant * T(x,j); 

                    dtdzj = dTdz(x,j); 

                    sum2 *= GasConstant * dtdzj; 

 

                    rsd[index(c_offset_T, j)]   =  

                        - m_cp[j]*rho_u(x,j)*dtdzj  

                        - divHeatFlux(x,j) - sum - sum2; 

      

     rsd[index(c_offset_T, j)]   =     

      //adding of convective term 

      rsd[index(c_offset_T, j)] - (hconv[j]*(T(x,j)-

Tw[j]))/pore[j]; // 

 

                    rsd[index(c_offset_T, j)] /= (m_rho[j]*m_cp[j]); 

 

                    rsd[index(c_offset_T, j)] =  

                        rsd[index(c_offset_T, j)] + m_efctr*(T_fixed(j) - T(x,j)); 

                     

                    rsd[index(c_offset_T, j)] -= rdt*(T(x,j) - T_prev(j)); 

                    diag[index(c_offset_T, j)] = 1; 

                } 

 

                // residual equations if the energy equation is disabled 

 

                if (!m_do_energy[j]) { 

                    rsd[index(c_offset_T, j)] = T(x,j) - T_fixed(j); 

                    diag[index(c_offset_T, j)] = 0; 

                } 

 

                rsd[index(c_offset_L, j)] = lambda(x,j) - lambda(x,j-1); 

                diag[index(c_offset_L, j)] = 0; 

            } 

        } 

    } 

 

 //Solid solver 

 void StFlow::solid(doublereal* x, vector<double> &hconv, vector<double>& scond, 

vector<double>& RK, vector<double>&Omega,double & srho,double & sCp, double rdt) { 

 writelog("Computing Solid Temperature Field..."); 

 

  double length=m_points;   // 

  Tw.resize(length); 

  Twprev.resize(length); 

  dq.resize(length); 

 

  if (adapt==1) 

  { 

  int j=0; 

  //Ensures solid profile has the correct number of points after an adaption 

  for (int i=0;i<=length-1;i++) 

  { 

   if (z(i)==zprev[j]) //same point 

   { 

    Twprev[i]=Twprev1[j]; 

    j++; 

   } 

   else if (z(i)>zprev[j]) //deleted point 
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   { 

    i--; 

    j++; 

   } 

   else if (z(i)<zprev[j])  //added point 

   { 

    if (i==1) 

    { 

     Twprev[i]=Twprev[i-1]; 

    } 

    else 

    { 

     Twprev[i]=Twprev[i-1]+(Twprev[i-1]-Twprev[i-2])*((z(i)-z(i-

1))/(z(i-1)-z(i-2))); 

    } 

   } 

  } 

  } 

  adapt=1; 

  zprev.resize(length); 

  Twprev1.resize(length); 

   

  //Start of Conduction Radiation Stuff 

  // 

  //Vector Iinitialization 

  vector<double> edia(length); 

  vector<double> fdia(length); 

  vector<double> gdia(length); 

  vector<double> rhs(length); 

  vector<double> dqnew(length); 

  double sigma=0.0000000567; 

  double change1=1; 

   

  //Vector Population 

  for(int i=0;i<=length-1;i++) 

  { 

   dq[i]=0; 

  } 

  double T0=300; 

  double T1=300; 

  int count1=0; 

  int fail1=0; 

  while (change1>0.000001) 

  { 

   count1=count1+1; 

   for(int i=0;i<=length-1;i++) 

   { 

    if (i==0) 

    { 

     edia[i]=0; 

     fdia[i]=1; 

     gdia[i]=-1; 

     rhs[i]=0; 

    } 

    else if (i==length-1) 

    { 

     edia[i]=-1; 

     fdia[i]=1; 

     gdia[i]=0; 

     rhs[i]=0; 

    } 

    else 

    { 

     edia[i]=(2*scond[i])/((z(i)-z(i-1))*(z(i+1)-z(i-1))); 

     fdia[i]=-(2*scond[i])/((z(i+1)-z(i))*(z(i+1)-z(i-1)))-

(2*scond[i])/((z(i)-z(i-1))*(z(i+1)-z(i-1)))-hconv[i]-srho*sCp*rdt; 

     gdia[i]=(2*scond[i])/((z(i+1)-z(i))*(z(i+1)-z(i-1))); 

     rhs[i]=-hconv[i]*T(x,i)+dq[i]-srho*sCp*rdt*Twprev[i]; 

    } 

   } 
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   //Decomposition 

   for(int i=1;i<=length-1;i++) 

   { 

    edia[i]=edia[i]/fdia[i-1]; 

    fdia[i]=fdia[i]-edia[i]*gdia[i-1]; 

   } 

 

   //Forward Substitution 

   for(int i=1;i<=length-1;i++) 

   { 

    rhs[i]=rhs[i]-edia[i]*rhs[i-1]; 

   } 

 

   //Back Substitution 

   Tw[length-1]=rhs[length-1]/fdia[length-1]; 

   for(int i=length-2;i>=0;i--) 

   { 

    Tw[i]=(rhs[i]-gdia[i]*Tw[i+1])/fdia[i]; 

   } 

   T0=Tw[0]; 

   T1=Tw[length-1]; 

   //Radiation Time 

   //Vector Initialization 

   vector<double> qplus(length); 

   vector<double> qpnew(length); 

   vector<double> qminus(length); 

   vector<double> qmnew(length); 

   double change2=1; 

    

   //Vector Population 

   for(int i=0;i<=length-1;i++) 

   { 

    double temp=T(x,i); 

    double temp2; 

    if (i==0) 

    { 

     qplus[i]=sigma*pow(temp,4); 

     qpnew[i]=sigma*pow(temp,4); 

     qminus[i]=0; 

     qmnew[i]=0; 

     temp2=temp; 

    } 

    else if (i==length-1) 

    { 

     qplus[i]=0; 

     qpnew[i]=0; 

     qminus[i]=sigma*pow(temp2,4); 

     qmnew[i]=sigma*pow(temp2,4); 

    } 

    else 

    { 

     qplus[i]=0; 

     qpnew[i]=0; 

     qminus[i]=0; 

     qmnew[i]=0; 

    } 

   } 

   int count=0; 

   int fail=0; 

   S2 method 

   while (change2>0.000001) 

   { 

    count=count+1; 

    for(int i=1;i<=length-1;i++) 

    { 

     double temp=Tw[i]; 

     qpnew[i]=(qpnew[i-1]+RK[i]*(z(i)-z(i-

1))*Omega[i]*qminus[i]+2*RK[i]*(z(i)-z(i-1))*(1-Omega[i])*sigma*pow(temp,4))/(1+(z(i)-z(i-

1))*RK[i]*(2-Omega[i])); 

    } 

    for(int i=length-2;i>=0;i--) 
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    { 

     double temp=Tw[i]; 

     qmnew[i]=(qmnew[i+1]+RK[i]*(z(i+1)-

z(i))*Omega[i]*qpnew[i]+2*RK[i]*(z(i+1)-z(i))*(1-Omega[i])*sigma*pow(temp,4))/(1+(z(i+1)-

z(i))*RK[i]*(2-Omega[i])); 

    } 

    double norm1=0; 

    double norm2=0; 

    for(int i=0;i<=length-1;i++) 

    { 

     norm1+=(qpnew[i]-qplus[i])*(qpnew[i]-qplus[i]); 

     norm2+=(qmnew[i]-qminus[i])*(qmnew[i]-qminus[i]); 

     qplus[i]=qpnew[i]; 

     qminus[i]=qmnew[i]; 

    } 

    norm1=sqrt(norm1); 

    norm2=sqrt(norm2); 

    if (count>100) 

    { 

     change2=0; 

     fail=1; 

    } 

    else 

    { 

     change2=max(norm1,norm2); 

    } 

   } 

   if (fail==1) 

   { 

    for(int i=0;i<=length-1;i++) 

    { 

     dqnew[i]=dq[i]; 

    } 

    writelog("Rad Stall"); 

   } 

   else 

   { 

    for(int i=0;i<=length-1;i++) 

    { 

     double temp=Tw[i]; 

     dqnew[i]=4*RK[i]*(1-Omega[i])*(sigma*pow(temp,4)-

0.5*qplus[i]-0.5*qminus[i]); 

    } 

   } 

   double norm=0; 

   double a=0.1; 

   for (int i=0;i<=length-1;i++) 

   { 

    norm+=(dqnew[i]-dq[i])*(dqnew[i]-dq[i]); 

    dq[i]=a*dqnew[i]+(1-a)*dq[i]; 

   } 

   if (count1>400) 

   { 

    fail1=1; 

    change1=0; 

   } 

   else 

   { 

    change1=sqrt(norm); 

   } 

  } 

  if (fail1==1) 

  { 

   for (int i=0;i<=length-1;i++) 

   { 

    Tw[i]=Twprev1[i]; 

   } 

   writelog("Rad not Converged"); 

  } 

  for (int i=0;i<=length-1;i++) 

  { 
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   Twprev1[i]=Tw[i]; 

   zprev[i]=z(i); 

  } 

  writelog("Success\n"); 

  // 

  //End of Newly Added Conduction Radiation Stuff 

 } 

 

 

    /** 

     * Update the transport properties at grid points in the range 

     * from j0 to j1, based on solution x. 

     */ 

    void StFlow::updateTransport(doublereal* x,int j0, int j1) { 

        int j,k,m; 

 

        if (m_transport_option == c_Mixav_Transport) { 

            for (j = j0; j < j1; j++) { 

                setGasAtMidpoint(x,j); 

                m_visc[j] = m_trans->viscosity(); 

                m_trans->getMixDiffCoeffs(DATA_PTR(m_diff) + j*m_nsp); 

                m_tcon[j] = m_trans->thermalConductivity(); 

            } 

        } 

        else if (m_transport_option == c_Multi_Transport) { 

            doublereal sum, sumx, wtm, dz; 

            doublereal eps = 1.0e-12; 

            for (m = j0; m < j1; m++) { 

                setGasAtMidpoint(x,m); 

                dz = m_z[m+1] - m_z[m]; 

                wtm = m_thermo->meanMolecularWeight(); 

 

                m_visc[j] = m_trans->viscosity(); 

 

                m_trans->getMultiDiffCoeffs(m_nsp,  

                    DATA_PTR(m_multidiff) + mindex(0,0,m)); 

 

                for (k = 0; k < m_nsp; k++) { 

                    sum = 0.0; 

                    sumx = 0.0; 

                    for (j = 0; j < m_nsp; j++) { 

                        if (j != k) { 

                            sum += m_wt[j]*m_multidiff[mindex(k,j,m)]* 

                                   ((X(x,j,m+1) - X(x,j,m))/dz + eps); 

                            sumx += (X(x,j,m+1) - X(x,j,m))/dz; 

                        } 

                    } 

                    m_diff[k + m*m_nsp] = sum/(wtm*(sumx+eps)); 

                } 

 

                m_tcon[m] = m_trans->thermalConductivity(); 

                if (m_do_soret) { 

                    m_trans->getThermalDiffCoeffs(m_dthermal.ptrColumn(0) + m*m_nsp); 

                } 

            } 

        } 

    } 

 

 

    //------------------------------------------------------ 

 

    /** 

     *  Evaluate the residual function for axisymmetric stagnation 

     *  flow. If jpt is less than zero, the residual function is 

     *  evaluated at all grid points. If jpt >= 0, then the residual 

     *  function is only evaluated at grid points jpt-1, jpt, and 

     *  jpt+1. This option is used to efficiently evaluate the 

     *  Jacobian numerically. 

     * 

     */ 
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    void FreeFlame::eval(int jg, doublereal* xg,  

        doublereal* rg, integer* diagg, doublereal rdt) { 

 

        // if evaluating a Jacobian, and the global point is outside 

        // the domain of influence for this domain, then skip 

        // evaluating the residual 

        if (jg >=0 && (jg < firstPoint() - 1 || jg > lastPoint() + 1)) return; 

 

        // if evaluating a Jacobian, compute the steady-state residual 

        if (jg >= 0) rdt = 0.0; 

 

        // start of local part of global arrays 

        doublereal* x = xg + loc(); 

        doublereal* rsd = rg + loc(); 

        integer* diag = diagg + loc(); 

         

        int jmin, jmax, jpt; 

        jpt = jg - firstPoint(); 

 

        if (jg < 0) {      // evaluate all points 

            jmin = 0; 

            jmax = m_points - 1; 

        } 

        else {            // evaluate points for Jacobian 

            jmin = max(jpt-1, 0); 

            jmax = min(jpt+1,m_points-1); 

        } 

 

        // properties are computed for grid points from j0 to j1 

        int j0 = max(jmin-1,0); 

        int j1 = min(jmax+1,m_points-1); 

 

 

        int j, k; 

 

 

        //-----------------------------------------------------  

        //              update properties 

        //----------------------------------------------------- 

 

        // update thermodynamic properties only if a Jacobian is not 

        // being evaluated 

        if (jpt < 0) { 

            updateThermo(x, j0, j1); 

            updateTransport(x, j0, j1); 

        } 

 

        // update the species diffusive mass fluxes whether or not a 

        // Jacobian is being evaluated 

        updateDiffFluxes(x, j0, j1); 

 

 

        //---------------------------------------------------- 

        // evaluate the residual equations at all required 

        // grid points 

        //---------------------------------------------------- 

 

        doublereal sum, sum2, dtdzj; 

 

        for (j = jmin; j <= jmax; j++) { 

 

 

            //---------------------------------------------- 

            //         left boundary 

            //---------------------------------------------- 

 

            if (j == 0) { 

 

                // these may be modified by a boundary object 

 

                // Continuity. This propagates information right-to-left, 
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                // since rho_u at point 0 is dependent on rho_u at point 1, 

                // but not on mdot from the inlet.   

                 rsd[index(c_offset_U,0)] =  

                     -(rho_u(x,1) - rho_u(x,0))/m_dz[0] 

                     -(density(1)*V(x,1) + density(0)*V(x,0)); 

 

                 // the inlet (or other) object connected to this one  

                 // will modify these equations by subtracting its values 

                 // for V, T, and mdot. As a result, these residual equations  

                 // will force the solution variables to the values for  

                 // the boundary object 

                 rsd[index(c_offset_V,0)] = V(x,0); 

                 rsd[index(c_offset_T,0)] = T(x,0); 

                 rsd[index(c_offset_L,0)] = -rho_u(x,0); 

 

                 // The default boundary condition for species is zero 

                 // flux 

                 sum = 0.0; 

                 for (k = 0; k < m_nsp; k++) { 

                     sum += Y(x,k,0); 

                     rsd[index(c_offset_Y + k, 0)] =   

                         -(m_flux(k,0) + rho_u(x,0)* Y(x,k,0)); 

                 } 

                 rsd[index(c_offset_Y, 0)] = 1.0 - sum;  

            } 

 

 

            //---------------------------------------------- 

            // 

            //         right boundary 

            // 

            //---------------------------------------------- 

 

            else if (j == m_points - 1) { 

 

                 // the boundary object connected to the right of this 

                 // one may modify or replace these equations. The 

                 // default boundary conditions are zero u, V, and T, 

                 // and zero diffusive flux for all species. 

 

                // zero gradient 

                rsd[index(0,j)] = rho_u(x,j) - rho_u(x,j-1); 

                rsd[index(1,j)] = V(x,j); 

                rsd[index(2,j)] = T(x,j) - T(x,j-1); 

                doublereal sum = 0.0; 

                rsd[index(c_offset_L, j)] = lambda(x,j) - lambda(x,j-1); 

                diag[index(c_offset_L, j)] = 0; 

                for (k = 0; k < m_nsp; k++) { 

                    sum += Y(x,k,j); 

                    rsd[index(k+4,j)] = m_flux(k,j-1) + rho_u(x,j)*Y(x,k,j); 

                } 

                rsd[index(4,j)] = 1.0 - sum; 

                diag[index(4,j)] = 0; 

            } 

 

            //------------------------------------------ 

            //     interior points                  

            //------------------------------------------ 

             

            else { 

 

                //---------------------------------------------- 

                //    Continuity equation 

                //---------------------------------------------- 

 

                if (grid(j) > m_zfixed){ 

                    rsd[index(c_offset_U,j)] =  

                        - (rho_u(x,j) - rho_u(x,j-1))/m_dz[j-1] 

                        - (density(j-1)*V(x,j-1) + density(j)*V(x,j)); 

                } 
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                else if (grid(j) == m_zfixed){ 

                    if (m_do_energy[j]) { 

                        rsd[index(c_offset_U,j)] = (T(x,j) - m_tfixed); 

                    } 

                    else { 

                        rsd[index(c_offset_U,j)] = (rho_u(x,j)  

                            - m_rho[0]*0.3); 

                    } 

                } 

                else if(grid(j) < m_zfixed){ 

                    rsd[index(c_offset_U,j)] =  

                        - (rho_u(x,j+1) - rho_u(x,j))/m_dz[j] 

                        - (density(j+1)*V(x,j+1) + density(j)*V(x,j)); 

                } 

                //algebraic constraint 

                diag[index(c_offset_U, j)] = 0; 

 

                //------------------------------------------------              

                //    Radial momentum equation 

                // 

                //    \rho u dV/dz + \rho V^2 = d(\mu dV/dz)/dz - lambda 

                // 

                //------------------------------------------------- 

                rsd[index(c_offset_V,j)] 

                    = (shear(x,j) - lambda(x,j) - rho_u(x,j)*dVdz(x,j)  

                        - m_rho[j]*V(x,j)*V(x,j))/m_rho[j] 

                    - rdt*(V(x,j) - V_prev(j)); 

                diag[index(c_offset_V, j)] = 1; 

 

 

                //------------------------------------------------- 

                //    Species equations 

                //                 

                //   \rho u dY_k/dz + dJ_k/dz + M_k\omega_k 

                // 

                //------------------------------------------------- 

                getWdot(x,j); 

 

                doublereal convec, diffus; 

                for (k = 0; k < m_nsp; k++) { 

                    convec = rho_u(x,j)*dYdz(x,k,j); 

                    diffus = 2.0*(m_flux(k,j) - m_flux(k,j-1)) 

                             /(z(j+1) - z(j-1)); 

                    rsd[index(c_offset_Y + k, j)]    

                        = (m_wt[k]*(wdot(k,j) )  

                            - convec - diffus)/m_rho[j] 

                        - rdt*(Y(x,k,j) - Y_prev(k,j)); 

                    diag[index(c_offset_Y + k, j)] = 1; 

                } 

 

 

                //----------------------------------------------- 

                //    energy equation 

                //----------------------------------------------- 

 

                if (m_do_energy[j]) { 

 

                    setGas(x,j); 

 

                    // heat release term 

                    const vector_fp& h_RT = m_thermo->enthalpy_RT_ref(); 

                    const vector_fp& cp_R = m_thermo->cp_R_ref(); 

 

                    sum = 0.0; 

                    sum2 = 0.0; 

                    doublereal flxk; 

                    for (k = 0; k < m_nsp; k++) { 

                        flxk = 0.5*(m_flux(k,j-1) + m_flux(k,j)); 

                        sum += wdot(k,j)*h_RT[k]; 

                        sum2 += flxk*cp_R[k]/m_wt[k]; 

                    } 
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                    sum *= GasConstant * T(x,j); 

                    dtdzj = dTdz(x,j); 

                    sum2 *= GasConstant * dtdzj; 

 

                    rsd[index(c_offset_T, j)]   =  

                        - m_cp[j]*rho_u(x,j)*dtdzj  

                        - divHeatFlux(x,j) - sum - sum2; 

                    rsd[index(c_offset_T, j)] /= (m_rho[j]*m_cp[j]); 

 

                    rsd[index(c_offset_T, j)] =  

                        rsd[index(c_offset_T, j)] + m_efctr*(T_fixed(j) - T(x,j)); 

                     

                    rsd[index(c_offset_T, j)] -= rdt*(T(x,j) - T_prev(j)); 

                    diag[index(c_offset_T, j)] = 1; 

                } 

                // residual equations if the energy equation is disabled 

                else { 

                    rsd[index(c_offset_T, j)] = T(x,j) - T_fixed(j); 

                    diag[index(c_offset_T, j)] = 0; 

                } 

             

                rsd[index(c_offset_L, j)] = lambda(x,j) - lambda(x,j-1); 

                diag[index(c_offset_L, j)] = 0; 

            } 

        } 

    } 

 

 

    /** 

     * Print the solution. 

     */     

    void StFlow::showSolution(const doublereal* x) { 

        int nn = m_nv/5; 

        int i, j, n; 

        //char* buf = new char[100]; 

        char buf[100]; 

 

        // The mean molecular weight is needed to convert 

        updateThermo(x, 0, m_points-1); 

 

        sprintf(buf, "    Pressure:  %10.4g Pa \n", m_press); 

        writelog(buf); 

        for (i = 0; i < nn; i++) { 

            st_drawline(); 

            sprintf(buf, "\n        z   "); 

            writelog(buf); 

            for (n = 0; n < 5; n++) {  

                sprintf(buf, " %10s ",componentName(i*5 + n).c_str()); 

                writelog(buf); 

            } 

            st_drawline(); 

            for (j = 0; j < m_points; j++) { 

                sprintf(buf, "\n %10.4g ",m_z[j]); 

                writelog(buf); 

                for (n = 0; n < 5; n++) {  

                    sprintf(buf, " %10.4g ",component(x, i*5+n,j)); 

                    writelog(buf); 

                } 

            } 

            writelog("\n"); 

        } 

        int nrem = m_nv - 5*nn; 

        st_drawline(); 

        sprintf(buf, "\n        z   "); 

        writelog(buf); 

        for (n = 0; n < nrem; n++) { 

            sprintf(buf, " %10s ", componentName(nn*5 + n).c_str()); 

            writelog(buf); 

        } 

        st_drawline(); 

        for (j = 0; j < m_points; j++) { 
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            sprintf(buf, "\n %10.4g ",m_z[j]); 

            writelog(buf); 

            for (n = 0; n < nrem; n++) {  

                sprintf(buf, " %10.4g ",component(x, nn*5+n,j)); 

                writelog(buf); 

            } 

        } 

        writelog("\n"); 

    } 

 

 

    /** 

     * Update the diffusive mass fluxes. 

     */ 

    void StFlow::updateDiffFluxes(const doublereal* x, int j0, int j1) { 

        int j, k, m; 

        doublereal sum, wtm, rho, dz, gradlogT; 

 

        switch (m_transport_option) { 

 

        case c_Mixav_Transport: 

        case c_Multi_Transport: 

            for (j = j0; j < j1; j++) { 

                sum = 0.0; 

                wtm = m_wtm[j]; 

                rho = density(j); 

                dz = z(j+1) - z(j); 

                 

                for (k = 0; k < m_nsp; k++) { 

                    m_flux(k,j) = m_wt[k]*(rho*m_diff[k+m_nsp*j]/wtm); 

                    m_flux(k,j) *= (X(x,k,j) - X(x,k,j+1))/dz; 

                    sum -= m_flux(k,j); 

                } 

                // correction flux to insure that \sum_k Y_k V_k = 0. 

                for (k = 0; k < m_nsp; k++) m_flux(k,j) += sum*Y(x,k,j); 

            }  

            break; 

 

        default: 

            throw CanteraError("updateDiffFluxes","unknown transport model"); 

        } 

 

        if (m_do_soret) { 

            for (m = j0; m < j1; m++) { 

                gradlogT = 2.0*(T(x,m+1) - T(x,m))/(T(x,m+1) + T(x,m)); 

                for (k = 0; k < m_nsp; k++) { 

                    m_flux(k,m) -= m_dthermal(k,m)*gradlogT; 

                } 

            } 

        } 

    } 

 

 

    string StFlow::componentName(int n) const { 

        switch(n) { 

        case 0: return "u"; 

        case 1: return "V"; 

        case 2: return "T"; 

        case 3: return "lambda"; 

        default: 

            if (n >= (int) c_offset_Y && n < (int) (c_offset_Y + m_nsp)) { 

                    return m_thermo->speciesName(n - c_offset_Y); 

            } 

            else  

                return "<unknown>"; 

        } 

    } 

 

 

 //added by Karl Meredith 

    int StFlow::componentIndex(string name) const { 
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        if(name=="u") {return 0;} 

        else if (name=="V") {return 1;} 

        else if (name=="T") {return 2;} 

        else if (name=="lambda") {return 3;} 

        else { 

            for (int n=4;n<m_nsp+4;n++){ 

                if(componentName(n)==name){ 

                    return n; 

                }  

            } 

        } 

 

        return -1; 

    } 

 

 

    void StFlow::restore(const XML_Node& dom, doublereal* soln) { 

 

        vector<string> ignored; 

        int nsp = m_thermo->nSpecies(); 

        vector_int did_species(nsp, 0); 

 

        vector<XML_Node*> str; 

        dom.getChildren("string",str); 

        int nstr = static_cast<int>(str.size()); 

        for (int istr = 0; istr < nstr; istr++) { 

            const XML_Node& nd = *str[istr]; 

            writelog(nd["title"]+": "+nd.value()+"\n"); 

        } 

 

        //map<string, double> params; 

        double pp = -1.0; 

        pp = getFloat(dom, "pressure", "pressure"); 

        setPressure(pp); 

 

 

        vector<XML_Node*> d; 

        dom.child("grid_data").getChildren("floatArray",d); 

        int nd = static_cast<int>(d.size()); 

 

        vector_fp x; 

        int n, np = 0, j, ks, k; 

        string nm; 

        bool readgrid = false, wrote_header = false; 

        for (n = 0; n < nd; n++) { 

            const XML_Node& fa = *d[n]; 

            nm = fa["title"]; 

            if (nm == "z") { 

                getFloatArray(fa,x,false); 

                np = x.size(); 

                writelog("Grid contains "+int2str(np)+ 

                    " points.\n"); 

                readgrid = true; 

                setupGrid(np, DATA_PTR(x)); 

            } 

        } 

        if (!readgrid) { 

            throw CanteraError("StFlow::restore", 

                "domain contains no grid points."); 

        } 

 

        writelog("Importing datasets:\n"); 

        for (n = 0; n < nd; n++) { 

            const XML_Node& fa = *d[n]; 

            nm = fa["title"]; 

            getFloatArray(fa,x,false); 

            if (nm == "u") { 

                writelog("axial velocity   "); 

                if ((int) x.size() == np) { 



   

 

138 

 

                    for (j = 0; j < np; j++) { 

                        soln[index(0,j)] = x[j]; 

                    } 

                } 

                else { 

                    goto error; 

                } 

            } 

            else if (nm == "z") { 

                ;   // already read grid 

            } 

            else if (nm == "V") { 

                writelog("radial velocity   "); 

                if ((int) x.size() == np) { 

                    for (j = 0; j < np; j++) 

                        soln[index(1,j)] = x[j]; 

                } 

                else goto error; 

            } 

            else if (nm == "T") { 

                writelog("temperature   "); 

                if ((int) x.size() == np) { 

                    for (j = 0; j < np; j++) 

                        soln[index(2,j)] = x[j]; 

 

                    // For fixed-temperature simulations, use the 

                    // imported temperature profile by default.  If 

                    // this is not desired, call setFixedTempProfile 

                    // *after* restoring the solution. 

 

                    vector_fp zz(np); 

                    for (int jj = 0; jj < np; jj++)  

                        zz[jj] = (grid(jj) - zmin())/(zmax() - zmin()); 

                    setFixedTempProfile(zz, x); 

                } 

                else goto error; 

            } 

            else if (nm == "L") { 

                writelog("lambda   "); 

                if ((int) x.size() == np) { 

                    for (j = 0; j < np; j++) 

                        soln[index(3,j)] = x[j]; 

                } 

                else goto error; 

            } 

            else if (m_thermo->speciesIndex(nm) >= 0) { 

                writelog(nm+"   "); 

                if ((int) x.size() == np) { 

                    k = m_thermo->speciesIndex(nm); 

                    did_species[k] = 1; 

                    for (j = 0; j < np; j++)  

                        soln[index(k+4,j)] = x[j]; 

                } 

            } 

            else 

                ignored.push_back(nm); 

        } 

 

        if (ignored.size() != 0) { 

            writelog("\n\n"); 

            writelog("Ignoring datasets:\n"); 

            int nn = static_cast<int>(ignored.size()); 

            for (int n = 0; n < nn; n++) { 

                writelog(ignored[n]+"   "); 

            } 

        } 

 

        for (ks = 0; ks < nsp; ks++) { 

            if (did_species[ks] == 0) { 

                if (!wrote_header) { 

                    writelog("Missing data for species:\n"); 
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                    wrote_header = true; 

                } 

                writelog(m_thermo->speciesName(ks)+" "); 

            } 

        } 

 

        return; 

 error: 

        throw CanteraError("StFlow::restore","Data size error"); 

    } 

 

 

 

    void StFlow::save(XML_Node& o, doublereal* sol) { 

        int k; 

 

        ArrayViewer soln(m_nv, m_points, sol + loc()); 

 

  //Added to provide Tw as an output 

  ofstream f("Solid.txt"); 

  ofstream f2("Rad.txt"); 

  ofstream f3("Tout.txt"); 

  double length=Tw.size(); 

  for (int i=0;i<=length-1;i++) 

  { 

   f<<Tw[i]<<endl; 

   f2<<dq[i]<<endl; 

  } 

  f3<<Tw[length-1]<<endl; 

  f.close(); 

  f2.close(); 

  f3.close(); 

  // 

 

        XML_Node& flow = (XML_Node&)o.addChild("domain"); 

        flow.addAttribute("type",flowType()); 

        flow.addAttribute("id",m_id); 

        flow.addAttribute("points",m_points); 

        flow.addAttribute("components",m_nv); 

 

        if (m_desc != "") addString(flow,"description",m_desc); 

        XML_Node& gv = flow.addChild("grid_data"); 

        addFloat(flow, "pressure", m_press, "Pa", "pressure");  

        addFloatArray(gv,"z",m_z.size(),DATA_PTR(m_z), 

            "m","length"); 

  vector_fp x(static_cast<size_t>(soln.nColumns())); 

 

                soln.getRow(0,DATA_PTR(x)); 

                addFloatArray(gv,"u",x.size(),DATA_PTR(x),"m/s","velocity"); 

 

        soln.getRow(1,DATA_PTR(x)); 

        addFloatArray(gv,"V", 

            x.size(),DATA_PTR(x),"1/s","rate"); 

 

        soln.getRow(2,DATA_PTR(x)); 

        addFloatArray(gv,"T",x.size(),DATA_PTR(x),"K","temperature",0.0); 

 

        soln.getRow(3,DATA_PTR(x)); 

        addFloatArray(gv,"L",x.size(),DATA_PTR(x),"N/m^4"); 

 

        for (k = 0; k < m_nsp; k++) { 

            soln.getRow(4+k,DATA_PTR(x)); 

            addFloatArray(gv,m_thermo->speciesName(k), 

                x.size(),DATA_PTR(x),"","massFraction",0.0,1.0); 

        } 

    } 

    void StFlow::setJac(MultiJac* jac) { 

        m_jac = jac; 

    } 

 

}  // namespace
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This section will detail how to setup Cantera, starting from downloading the files up to 

compiling the code.  It will also include all of the code the author wrote, for interfacing with 

Cantera, the RSM algorithm, the GRG method algorithm, and any other functions that were 

useful to the problem. 

D.1  Using Cantera 

Here we will layout the process involved to setup Cantera.  First, Python version 2.4 or 

greater needs to be installed on your computer.  If you do not have it, it can be found at 

http://www.python.org/ftp/python/2.5/python-2.5.msi.  Once it is installed, you must download 

and add the nummarray add on, which can be found at http://sourceforge.net/projects/numpy.  Be 

sure to download the installer for numarray, not the newer numpy package, as Cantera does not 

support this new version.  Next, some environmental variables need to be set on your PC.  From 

the control panel select system, press the advanced tab, and press the environmental variables 

button.  Here we will create two new user variables called PYTHON_CMD and 

MATLAB_CMD with the value being set to the respective programs directory.  These variables 

allow Cantera to access the programs while compiling.  The last setup step is to configure 

MATLab.  To do this, open MATLab and type “mex –setep” at the prompt.  A window will pop-

up where you need to select Visual C++ from your list of compilers. 

Now that your system is properly configured you should download the latest version of 

Cantera from http://sourceforge.net/projects/cantera, which was 1.7.0 at the time of publication, 

and extract the files into a temporary location of your choosing.  You will also need to download 

the SUNDIALS package, which Cantera uses to solve equations, from 

www.llnl.gov/casc/sundials/.  Extract these files into the same temporary folder as Cantera, as 
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the Cantera compiler is setup to build SUNDIALS and itself simultaneously.  Open Visual C++ 

and open cantera.sln found in the cantera\win32\vc7 directory.  You may be prompted to convert 

the solution to a newer format, click finish to do so.  Open the file arith.h found under the 

f2c_libs->Header Files directory on the left side and change the line ending style to Unix when 

prompted.  Finally, change the configuration to Release and select Build Selection from the 

Build menu.  If your version of Python was not built with the same version of Visual C++ you 

will receive an error upon completion of the build.  Cantera will still work, however the Python 

component will not.  To ensure that MATLab can access Cantera the files clib.dll, from the 

directory cantera\build\lib\i686-pc-win32, and the file msvcr80.dll, found on your PC, must be 

copied into the directory cantera\Cantera\matlab\cantera.  For the final step change the name of 

the src file to kernel in the directory cantera\Cantera.  You are now ready to use Cantera. 

D.2  Interface and Optimization Code 

The author’s code to solve the optimization problem of maximizing the radiant efficiency 

of a two stage porous radiant burner is given below. 

#include <iostream> 

#include <vector> 

#include <fstream> 

#include <time.h> 

#include <Cantera.h> 

#include <onedim.h> 

#include <IdealGasMix.h> 

#include <equilibrium.h> 

#include <transport.h> 

 

using namespace std; 

using namespace Cantera; 

 

double Combust(vector<double> vars); 

int RSM(); 

int RSM2D(); 

double GRGM(vector<double> &x0, double f0, double alpha, double lcon, double rcon, int dim); 

double norm(vector<double> x); 

double inprod(vector<double>x, vector<double>y); 

vector<double> Mv(double **M,vector<double> v,double row, double col); 

double **MM(double **M1, double **M2,double a, double b, double c); 

vector<double> LUSolve(double **M,vector<double> v); 

double sum(vector<double> x); 

double newfun(vector<double> x, vector<double> b, double &g, double &H); 

double newfun2D(vector<double> x, vector<double> b, vector<double> &grad, double **&Hess); 
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double fun2(double x); 

double fun2D(double x,double y); 

double **MT(double **M,double n, double p); 

double max(double x, double y); 

double min(double x, double y); 

int sign(double x); 

double f; 

double fnew; 

vector<double> g; 

vector<double> gnew; 

vector<double> xnew; 

 

 

 

 

int main() 

{ 

 //Setup Timer 

 clock_t start; 

 clock_t end; 

 double duration; 

 start=clock(); 

 

 //int dude=RSM(); 

 int dude=RSM2D(); 

 

 

 //End Timer 

 end=clock(); 

 duration=((double) (end - start)) / CLOCKS_PER_SEC; 

 cout<<duration<<endl; 

 

 system("PAUSE"); 

 return(0); 

} 

 

double Combust(vector<double> vars) 

{ 

 //New Parameters to allow for correlations 

 //Define Material Properties 

 double pore1=0.835; 

 double pore2=vars[1]; 

 double dpore1=.00029; 

 double dpore2=vars[0]; 

 double Omega1=0.8; 

 double Omega2=0.8; 

 double srho=510; 

 double sCp=824; 

  

 //Export Proerties to fill 

 ofstream fid("Properties2.txt"); 

 fid<<pore1<<endl; 

 fid<<pore2<<endl; 

 fid<<dpore1<<endl; 

 fid<<dpore2<<endl; 

 fid<<Omega1<<endl; 

 fid<<Omega2<<endl; 

 fid<<srho<<endl; 

 fid<<sCp<<endl; 

 fid.close(); 

 

 //Define Fluid Properties 

 double P=OneAtm; 

 double Tburner=300; 

 double u0=0.45; 

 double phi=.65; 

 IdealGasMix gas("drm19.cti","drm19"); 

 int nsp=gas.nSpecies(); 

 vector_fp x; 

    x.resize(nsp); 

 for(int k=0;k<nsp;k++) 
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 { 

  if(k==gas.speciesIndex("CH4")) 

  { 

   x[k]=1.0; 

  } 

  else if(k==gas.speciesIndex("O2")) 

  { 

   x[k]=0.21/phi/.105; 

  } 

  else if(k==gas.speciesIndex("N2")) 

  { 

   x[k]=0.78/phi/.105; 

  } 

  else if(k==gas.speciesIndex("AR")) 

  { 

   x[k]=0.01/phi/.105; 

  } 

  else 

  { 

   x[k]=0.0; 

  } 

    } 

 gas.setState_TPX(Tburner,P,DATA_PTR(x)); 

 double rhoin=gas.density(); 

 double *yin=new double[nsp]; 

 gas.getMassFractions(yin); 

 equilibrate(gas,"HP"); 

 double rhoout=gas.density(); 

 double Tad=gas.temperature(); 

 double *yeq=new double[nsp]; 

 gas.getMassFractions(yeq); 

 

 //Create the grid 

 double *grid=new double[301]; 

 double dz1=0.0006; 

 double dz2=0.00005; 

 double dz3=0.00041; 

 for (int i=0;i<301;i++) 

 { 

  if (i<=50) 

  { 

   grid[i]=((double)i)*dz1; 

  } 

  else if (i<=250) 

  { 

   grid[i]=.03+((double)(i-50))*dz2; 

  } 

  else 

  { 

   grid[i]=.04+((double)(i-250))*dz3; 

  } 

 } 

 

 //Create the flow object 

 AxiStagnFlow flow(&gas); 

 flow.setupGrid(301,grid); 

 Transport* tr=newTransportMgr("Mix",&gas); 

 flow.setTransport(*tr); 

 flow.setKinetics(gas); 

 flow.setPressure(P); 

 

 //Create the inlet 

 Inlet1D inlet; 

 inlet.setMoleFractions(DATA_PTR(x)); 

 double mdot=u0*rhoin; 

 inlet.setMdot(mdot); 

 inlet.setTemperature(Tburner); 

 

 //Create the outlet 

 Outlet1D outlet; 
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 //Create the flame object 

 vector<Domain1D*> domains; 

 domains.push_back(&inlet); 

 domains.push_back(&flow); 

 domains.push_back(&outlet); 

 Sim1D flame(domains); 

 

 //Build initial guess 

 vector_fp locs; 

 vector_fp value; 

 double z1=0.55; 

 double z2=0.62; 

 double uout=inlet.mdot()/rhoout; 

 //Velocity Profile 

 locs.resize(2); 

 value.resize(2); 

 locs[0]=0; 

 locs[1]=1; 

 value[0]=u0; 

 value[1]=uout; 

 flame.setInitialGuess("u",locs,value); 

 //Species Profiles 

 locs.resize(3); 

 value.resize(3); 

 locs[0]=0; 

 locs[1]=z1; 

 locs[2]=1; 

 for (int i=0;i<nsp;i++) 

 { 

  value[0]=yin[i]; 

  value[1]=yeq[i]; 

  value[2]=yeq[i]; 

  flame.setInitialGuess(gas.speciesName(i),locs,value); 

 } 

 //Temperature Profile 

 locs.resize(4); 

 value.resize(4); 

 locs[0]=0; 

 locs[1]=z1; 

 locs[2]=z2; 

 locs[3]=1; 

 value[0]=Tburner; 

 value[1]=Tburner; 

 value[2]=2000; 

 value[3]=Tad; 

 flame.setInitialGuess("T",locs,value); 

 //Reset Inlet 

 inlet.setMoleFractions(DATA_PTR(x)); 

 inlet.setMdot(mdot); 

 inlet.setTemperature(Tburner); 

 

 //Set solver parameters 

 int loglevel=1; 

 bool refine_grid=false; 

 double rtolSS=1.0e-4; 

 double atolSS=1.0e-9; 

 double rtolTS=1.0e-4; 

 double atolTS=1.0e-9; 

 flow.setTolerancesSS(rtolSS,atolSS); 

 flow.setTolerancesTS(rtolTS,atolTS); 

 double SSJacAge=5; 

 double TSJacAge=10; 

 flame.setJacAge(SSJacAge,TSJacAge); 

 

 //Solve and Save 

 flame.solve(loglevel,refine_grid); 

 refine_grid=true; 

 int flowdomain=1; 

 double ratio=4; 

 double slope=0.4; 

 double curve=0.4; 
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 double prune=0.001; 

 flame.setRefineCriteria(flowdomain,ratio,slope,curve,prune); 

 flow.solveEnergyEqn(); 

 flame.solve(loglevel,refine_grid); 

 flame.save("gradienttest.xml","run","solution with energy equation"); 

 flame.writeStats(); 

 

 ifstream in("Tout.txt"); 

 double input; 

 in>>input; 

 double Tout=input; 

 double eff=pow(Tout,4)/pow(Tad,4); 

 return(eff); 

} 

 

int RSM() 

{ 

 vector<double> x0(1); 

 vector<double> xprev(1);  

 x0[0]=1.52; 

 xprev[0]=x0[0];  

 //Selecting starting points 

 vector<double> points(5); 

 points[0]=1.37; 

 points[1]=1.4075; 

 points[2]=1.445; 

 points[3]=1.4825; 

 points[4]=1.52; 

 double alpha=0.0375; 

 //Initialize quantities 

 double length=points.size(); 

 vector<double> f(length); 

 double diff1=10000000000000000000; 

 double diff2=10000000000000000000; 

 int minloc=0; 

 int maxloc=4; 

 double lcon=-100000000000000;  //Left Constraint 

 double rcon=1000000000000000;   //Right Constraint 

 int count=0;        //Added to control number of shrinks 

 double error; 

 f[0]=fun2(points[0]); 

 cout<<endl<<endl<<points[0]<<"   "<<f[0]<<endl<<endl; 

 //Loop until the model and function have same value or the model points solution is the 

same 

 while ((diff1>0.0001) & (diff2>0.0001)) 

 { 

  for (int i=1;i<length;i++) 

  { 

   f[i]=fun2(points[i]); 

   cout<<endl<<endl<<points[i]<<"   "<<f[i]<<endl<<endl; 

  } 

  //Perform Least Squares fit 

  double n=length; 

  int k=1; //This is equal to the number of variables; 

  double p=2*k+1;  //Number of regressor variable.  Need to change for higher order. 

 

  double **X; 

  X=new double* [n]; 

  for (int i=0;i<n;i++) 

  { 

   *(X+i)=new double[p]; 

  } 

 

  for (int i=0;i<n;i++) 

  { 

   for (int c=0;c<k;c++) 

   { 

    X[i][c]=1; 

    X[i][c+1]=points[i]; 

    X[i][c+k+1]=pow(points[i],2); 

   } 
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  } 

  double **Xt; 

  Xt=new double* [p]; 

  for (int i=0;i<p;i++) 

  { 

   *(Xt+i)=new double[n]; 

  } 

  Xt=MT(X,n,p); 

 

  double **A; 

  A=new double* [p]; 

  for (int i=0;i<p;i++) 

  { 

   *(A+i)=new double[p]; 

  } 

  A=MM(Xt,X,p,n,p); 

  vector<double> c(p); 

  c=Mv(Xt,f,p,n); 

 

  vector<double> b(p); 

  b=LUSolve(A,c); 

  //Perform Newtons Method 

  double g; 

  double H; 

  double fmin=newfun(x0,b,g,H); 

  if (H<0) 

  { 

   double g1; 

   double H1; 

   vector<double> p(1); 

   p[0]=points[minloc]; 

   double b1=newfun(p,b,g1,H1); 

   double g2; 

   double H2; 

   p[0]=points[maxloc]; 

   double b2=newfun(p,b,g2,H2); 

   if (b1<=b2) 

   { 

    fmin=b1; 

    x0[0]=points[minloc]; 

   } 

   else 

   { 

    fmin=b2; 

    x0[0]=points[maxloc]; 

   } 

  } 

  else 

  { 

   double d=-g/H; 

   double temp;  //Added to stop solver from going beyond model range. 

   temp=x0[0]+d; 

   if (temp<points[minloc]) 

   { 

    x0[0]=points[minloc]; 

   } 

   else if (temp>points[maxloc]) 

   { 

    x0[0]=points[maxloc]; 

   } 

   else 

   { 

    x0[0]=x0[0]+d; 

    if (count<3) 

    { 

     alpha=alpha/2;//Shrinks if convex and inside box 

     count=count+1; 

    } 

    else 

    { 

     xprev[0]=x0[0]; 
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    } 

   } 

   fmin=newfun(x0,b,g,H); 

  } 

  cout<<x0[0]<<endl<<endl; 

  double fnew=fun2(x0[0]); 

 

  int ignore=0; 

  if (fnew>f[0]) 

  { 

   x0[0]=points[0]; 

   fnew=f[0]; 

   xprev[0]=x0[0]; 

   ignore=1; 

  } 

 

   

  //Error Stuff 

  if (ignore==0) 

  { 

   vector<double> xm(p); 

   xm[0]=1; 

   xm[1]=x0[0]; 

   xm[2]=pow(x0[0],2); 

   vector<double> yhat(n); 

   yhat=Mv(X,b,n,p); 

   vector<double> fsurf(n); 

   for (int i=0;i<n;i++) 

   { 

    vector<double> node(1); 

    node[0]=points[0]; 

    fsurf[i]=pow((f[i]-yhat[i]),2)/(n-p); 

   } 

   double temp=sum(fsurf); 

   double s=sqrt(temp); 

   vector<double> error1(p); 

   error1=LUSolve(A,xm); 

   error=inprod(xm,error1); 

   error=s*2.919986*sqrt(error);  //The number is for 90% confidence from 

students t 

  } 

 

  cout<<endl<<endl<<x0[0]<<"   "<<fnew<<endl<<endl; 

  //Update loop ending parameters 

  diff1=sqrt(pow((fnew-fmin)/fnew,2)); 

  vector<double> xtemp(1);   

  xtemp[0]=x0[0]-xprev[0];   

  xprev[0]=x0[0];   

  diff2=norm(xtemp);   

  cout<<diff1<<"   "<<diff2<<endl; 

   

  f[0]=fnew; 

  //Update points 

  points[0]=x0[0]; 

  if (x0[0]<(lcon+2*alpha)) 

  { 

   if (x0[0]<=(lcon+alpha)) 

   { 

    if (x0[0]<=lcon) 

    { 

     if (count<3) 

     { 

      alpha=alpha/2;//Shrink if on min edge 

      count=count+1; 

     } 

     points[0]=lcon; 

     points[1]=points[0]+alpha; 

     points[2]=points[1]+alpha; 

     points[3]=points[2]+alpha; 

     points[4]=points[3]+alpha; 

     minloc=0; 
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     maxloc=4; 

    } 

    else 

    { 

     points[1]=lcon; 

     points[2]=points[0]+alpha; 

     points[3]=points[2]+alpha; 

     points[4]=points[3]+alpha; 

     minloc=1; 

     maxloc=4; 

    } 

   } 

   else 

   { 

    points[1]=lcon; 

    points[2]=points[0]-alpha; 

    points[3]=points[0]+alpha; 

    points[4]=points[3]+alpha; 

    minloc=1; 

    maxloc=4; 

   }    

  } 

  else if (x0[0]>(rcon-2*alpha)) 

  { 

   if (x0[0]>=(rcon-alpha)) 

   { 

    if (x0[0]>=rcon) 

    { 

     if (count<3) 

     { 

      alpha=alpha/2;//Shrink if on max edge 

      count=count+1; 

     } 

     points[0]=rcon; 

     points[1]=points[0]-alpha; 

     points[2]=points[1]-alpha; 

     points[3]=points[2]-alpha; 

     points[4]=points[3]-alpha; 

     minloc=4; 

     maxloc=0; 

    } 

    else 

    { 

     points[1]=rcon; 

     points[2]=points[0]-alpha; 

     points[3]=points[2]-alpha; 

     points[4]=points[3]-alpha; 

     minloc=4; 

     maxloc=1; 

    } 

   } 

   else 

   { 

    points[1]=rcon; 

    points[2]=points[0]+alpha; 

    points[3]=points[0]-alpha; 

    points[4]=points[3]-alpha; 

    minloc=4; 

    maxloc=1; 

   } 

  } 

  else 

  { 

   points[1]=points[0]-alpha; 

   points[2]=points[1]-alpha; 

   points[3]=points[0]+alpha; 

   points[4]=points[3]+alpha; 

   minloc=2; 

   maxloc=4; 

  } 

 } 
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 cout<<"x*="<<x0[0]<<" with fmax="<<f[0]<<"+/-"<<error<<endl; 

 return(0); 

} 

 

int RSM2D() 

{ 

 vector<double> x0(2); 

 vector<double> xprev(2); 

 x0[0]=1.445; 

 x0[1]=0.88; 

 xprev[0]=x0[0]; 

 xprev[1]-x0[1]; 

 //Selecting starting points 

 double **points; 

 points=new double* [9]; 

 for (int i=0;i<9;i++) 

 { 

  *(points+i)=new double[2]; 

 } 

 points[0][0]=1.37; 

 points[1][0]=1.37; 

 points[2][0]=1.37; 

 points[3][0]=1.445; 

 points[4][0]=1.445; 

 points[5][0]=1.445; 

 points[6][0]=1.52; 

 points[7][0]=1.52; 

 points[8][0]=1.52; 

 

 points[0][1]=.87; 

 points[1][1]=.88; 

 points[2][1]=.89; 

 points[3][1]=.87; 

 points[4][1]=.88; 

 points[5][1]=.89; 

 points[6][1]=.87; 

 points[7][1]=.88; 

 points[8][1]=.89;  

 

 double alpha1=0.075; 

 double alpha2=0.01; 

   

 //Initialize quantities 

 double length=9; 

 vector<double> f(length); 

 double diff1=10000000000000000000; 

 double diff2=10000000000000000000; 

 double lcon=0.69; 

 double rcon=1.52; 

 double bcon=0.865; 

 double tcon=0.95; 

 double error; 

 int flagl=0; 

 int flagr=0; 

 int flagb=0; 

 int flagt=0; 

 int count1=0; 

 int count2=0; 

 int nshrinks=4; 

 int noshrinkh=0; 

 int noshrinkv=0; 

 int start=0; 

 f[0]=fun2D(points[0][0],points[0][1]); 

 //Loop until the model points solution is the same 

 while (diff2>0.0001) 

 { 

  for (int i=1;i<length;i++) 

  { 

   f[i]=fun2D(points[i][0],points[i][1]); 

  } 

  //Perform Least Squares fit 
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  double n=length; 

  int k=2; 

  double p=2*k+2; 

 

  double **X; 

  X=new double* [n]; 

  for (int i=0;i<n;i++) 

  { 

   *(X+i)=new double[p]; 

  } 

 

  for (int i=0;i<n;i++) 

  { 

   X[i][0]=1; 

   for (int c=0;c<k;c++) 

   { 

    X[i][c+1]=points[i][c]; 

    X[i][c+k+1]=pow(points[i][c],2); 

   } 

   for (int c=0;c<k-1;c++) 

   { 

    for (int j=c;j<k;j++) 

    { 

     X[i][c+2*k+1]=points[i][c]*points[i][j]; 

    } 

   } 

  } 

 

  double **Xt; 

  Xt=new double* [p]; 

  for (int i=0;i<p;i++) 

  { 

   *(Xt+i)=new double[n]; 

  } 

  Xt=MT(X,n,p); 

 

  double **A; 

  A=new double* [p]; 

  for (int i=0;i<p;i++) 

  { 

   *(A+i)=new double[p]; 

  } 

  A=MM(Xt,X,p,n,p); 

  vector<double> c(p); 

  c=Mv(Xt,f,p,n); 

 

  vector<double> b(p); 

  b=LUSolve(A,c); 

  //Perform Newtons Method 

  vector<double> grad(2); 

  double **Hess; 

  Hess=new double* [2]; 

  for (int i=0;i<2;i++) 

  { 

   *(Hess+i)=new double[2]; 

  } 

  double fmin=newfun2D(x0,b,grad,Hess); 

  vector<double> d(2); 

  vector<double> gneg(2); 

  gneg[0]=-grad[0]; 

  gneg[1]=-grad[1]; 

  double **Hes; 

  Hes=new double* [2]; 

  for (int i=0;i<2;i++) 

  { 

   *(Hes+i)=new double[2]; 

  } 

  Hes[0][0]=Hess[0][0]; 

  Hes[0][1]=Hess[0][1]; 

  Hes[1][0]=Hess[1][0]; 

  Hes[1][1]=Hess[1][1]; 
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  d=LUSolve(Hes,gneg); 

 

  //New code added to deal with indefinite Hessians.  Gaurentees descent. 

  double LS=inprod(gneg,d); 

  if (LS<0) 

  { 

   vector<double> dprime(2); 

   dprime[0]=sqrt(pow(gneg[0],2)); 

   dprime[1]=sqrt(pow(gneg[1],2)); 

   double alpha1prime=min(alpha1,min(rcon-x0[0],x0[0]-lcon)); 

   double alpha2prime=min(alpha2,min(tcon-x0[1],x0[1]-bcon)); 

 

   if ((alpha1prime==rcon-x0[0])&(sign(gneg[0])==-1))    

   { 

    alpha1prime=alpha1; 

   } 

   else if ((alpha1prime==x0[0]-lcon)&(sign(gneg[0])==1)) 

   { 

    alpha1prime=alpha1; 

   } 

   if ((alpha2prime==tcon-x0[1])&(sign(gneg[1])==-1)) 

   { 

    alpha2prime=alpha2; 

   } 

   else if ((alpha2prime==x0[1]-bcon)&(sign(gneg[1])==1)) 

   { 

    alpha2prime=alpha2; 

   } 

 

   vector<double> dnew(2); 

   double gamma1=atan(alpha2prime/alpha1prime); 

   double gamma2=atan(dprime[1]/dprime[0]); 

   if (gamma2>=gamma1) 

   { 

    dnew[0]=dprime[0]*alpha2prime/dprime[1]; 

    dnew[1]=alpha2prime; 

    d[0]=sign(gneg[0])*dnew[0]; 

    d[1]=sign(gneg[1])*dnew[1]; 

   } 

   else 

   { 

    dnew[0]=alpha1prime; 

    dnew[1]=dprime[1]*alpha1prime/dprime[0]; 

    d[0]=sign(gneg[0])*dnew[0]; 

    d[1]=sign(gneg[1])*dnew[1]; 

   } 

  } 

  else 

  { 

   vector<double> dprime(2); 

   dprime[0]=sqrt(pow(d[0],2)); 

   dprime[1]=sqrt(pow(d[1],2)); 

   double alpha1prime=min(alpha1,min(rcon-x0[0],x0[0]-lcon)); 

   double alpha2prime=min(alpha2,min(tcon-x0[1],x0[1]-bcon)); 

    

   if ((alpha1prime==rcon-x0[0])&(sign(d[0])==-1)) 

   { 

    alpha1prime=alpha1; 

   } 

   else if ((alpha1prime==x0[0]-lcon)&(sign(d[0])==1)) 

   { 

    alpha1prime=alpha1; 

   } 

   if ((alpha2prime==tcon-x0[1])&(sign(d[1])==-1)) 

   { 

    alpha2prime=alpha2; 

   } 

   else if ((alpha2prime==x0[1]-bcon)&(sign(d[1])==1)) 

   { 

    alpha2prime=alpha2; 

   } 
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   vector<double> dnew(2); 

   if ((dprime[0]>alpha1prime)|(dprime[1]>alpha2prime)) 

   { 

    double gamma1=atan(alpha2prime/alpha1prime); 

    double gamma2=atan(dprime[1]/dprime[0]); 

    if (gamma2>=gamma1) 

    { 

     dnew[0]=dprime[0]*alpha2prime/dprime[1]; 

     dnew[1]=alpha2prime; 

     d[0]=sign(d[0])*dnew[0]; 

     d[1]=sign(d[1])*dnew[1]; 

    } 

    else 

    { 

     dnew[0]=alpha1prime; 

     dnew[1]=dprime[1]*alpha1prime/dprime[0]; 

     d[0]=sign(d[0])*dnew[0]; 

     d[1]=sign(d[1])*dnew[1]; 

    } 

   } 

   else 

   { 

    if (count1<nshrinks) 

    { 

     if (count2<nshrinks) 

     { 

      alpha1=alpha1/2; 

      alpha2=alpha2/2; 

      count1=count1+1; 

      count2=count2+1; 

     } 

     else 

     { 

      alpha1=alpha1/2; 

      count1=count1+1; 

     } 

    } 

    else if (count2<nshrinks) 

    { 

     alpha2/alpha2/2; 

     count2=count2+1; 

    } 

    else 

    { 

     xprev[0]=x0[0]; 

     xprev[1]=x0[1]; 

    } 

   } 

  } 

  //Update point 

  x0[0]=x0[0]+d[0]; 

  x0[1]=x0[1]+d[1]; 

  fmin=newfun2D(x0,b,grad,Hess); 

  double fnew=fun2D(x0[0],x0[1]); 

  cout<<endl<<endl<<x0[0]<<"   "<<x0[1]<<"   "<<fnew<<endl<<endl; 

 

  //If new point is worse than previous stop 

  int ignore=0; 

  if (fnew>f[0]) 

  { 

   if (start==1) 

   { 

    x0[0]=points[0][0]; 

    x0[1]=points[0][1]; 

    fnew=f[0]; 

    flagt=0; 

    flagb=0; 

    flagl=0; 

    flagr=0; 

    xprev[0]=x0[0]; 
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    xprev[1]=x0[1]; 

    diff2=0; 

    ignore=1; 

   } 

   else 

   { 

    start=1; 

   } 

  } 

 

  //Error Calc 

  if (ignore==0) 

  { 

   vector<double> xm(p); 

   xm[0]=1; 

   xm[1]=x0[0]; 

   xm[2]=x0[1]; 

   xm[3]=pow(x0[0],2); 

   xm[4]=pow(x0[1],2); 

   xm[5]=x0[0]*x0[1]; 

   vector<double> yhat(n); 

   yhat=Mv(X,b,n,p); 

   vector<double> fsurf(n); 

   for (int i=0;i<n;i++) 

   { 

    fsurf[i]=pow((f[i]-yhat[i]),2)/(n-p); 

   } 

   double temp=sum(fsurf); 

   double s=sqrt(temp); 

   vector<double> error1(p); 

   error1=LUSolve(A,xm); 

   error=inprod(xm,error1); 

   error=s*2.919986*sqrt(error);  //The number is for 90% confidence from 

students t 

  } 

 

  //Update loop ending parameters 

  diff1=sqrt(pow((fnew-fmin)/fnew,2)); 

  vector<double> xtemp(2);   

  xtemp[0]=x0[0]-xprev[0];   

  xtemp[1]=x0[1]-xprev[1]; 

  xprev[0]=x0[0];  

  xprev[1]=x0[1]; 

  diff2=norm(xtemp);   

  cout<<diff1<<"   "<<diff2<<endl; 

 

  //Check if GRGM needs to be used 

  if (diff2<0.0001) 

  { 

   if ((flagl==1)|(flagr==1)) 

   { 

    fnew=GRGM(x0,fnew,alpha2,bcon,tcon,1); 

    if (count2<nshrinks) 

    { 

     count2=count2+1; 

     alpha2=alpha2/2; 

     if (noshrinkh==0) 

     { 

      alpha1=alpha1*2; 

      noshrinkh=1; 

     } 

    } 

    else 

    { 

     xprev[0]=x0[0]; 

     xprev[1]=x0[1]; 

    } 

   } 

   else if ((flagb==1)|(flagt==1)) 

   { 

    fnew=GRGM(x0,fnew,alpha1,lcon,rcon,0); 
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    if (count1<nshrinks) 

    { 

     count1=count1+1; 

     alpha1=alpha1/2; 

     if (noshrinkv==0) 

     { 

      alpha2=alpha2*2; 

      noshrinkv=1; 

     } 

    } 

    else 

    { 

     xprev[0]=x0[0]; 

     xprev[1]=x0[1]; 

    } 

   } 

   xtemp[0]=x0[0]-xprev[0];   

   xtemp[1]=x0[1]-xprev[1]; 

   xprev[0]=x0[0];  

   xprev[1]=x0[1]; 

   diff2=norm(xtemp);   

   cout<<diff1<<"   "<<diff2<<endl; 

   //system("PAUSE"); 

  } 

 

  f[0]=fnew; 

  //Update points 

  points[0][0]=x0[0]; 

  points[0][1]=x0[1]; 

 

  if (x0[0]<(lcon+alpha1)) 

  { 

   if (x0[0]<=lcon) 

   { 

    if (count1<nshrinks) 

    { 

     alpha1=alpha1/2;//Shrink if on left edge. 

     count1=count1+1; 

     flagl=1; 

    } 

    else 

    { 

     flagl=0; 

    } 

    points[0][0]=lcon; 

    points[1][0]=lcon; 

    points[2][0]=lcon; 

    points[3][0]=points[0][0]+alpha1; 

    points[4][0]=points[0][0]+alpha1; 

    points[5][0]=points[0][0]+alpha1; 

    points[6][0]=points[3][0]+alpha1; 

    points[7][0]=points[3][0]+alpha1; 

    points[8][0]=points[3][0]+alpha1; 

    flagr=0; 

    flagb=0; 

    flagt=0; 

   } 

   else 

   { 

    points[1][0]=points[0][0]; 

    points[2][0]=points[0][0]; 

    points[3][0]=lcon; 

    points[4][0]=lcon; 

    points[5][0]=lcon; 

    points[6][0]=points[0][0]+alpha1; 

    points[7][0]=points[0][0]+alpha1; 

    points[8][0]=points[0][0]+alpha1; 

    flagl=0; 

    flagr=0; 

    flagb=0; 

    flagt=0; 
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    noshrinkh=0; 

   } 

  }    

  else if (x0[0]>(rcon-alpha1)) 

  { 

   if (x0[0]>=rcon) 

   { 

    if (count1<nshrinks) 

    { 

     alpha1=alpha1/2;//Shrink if on right edge. 

     count1=count1+1; 

     flagr=1; 

    } 

    else 

    { 

     flagr=0; 

    } 

    points[0][0]=rcon; 

    points[1][0]=rcon; 

    points[2][0]=rcon; 

    points[3][0]=points[0][0]-alpha1; 

    points[4][0]=points[0][0]-alpha1; 

    points[5][0]=points[0][0]-alpha1; 

    points[6][0]=points[3][0]-alpha1; 

    points[7][0]=points[3][0]-alpha1; 

    points[8][0]=points[3][0]-alpha1; 

    flagl=0; 

    flagb=0; 

    flagt=0; 

   } 

   else 

   { 

    points[1][0]=points[0][0]; 

    points[2][0]=points[0][0]; 

    points[3][0]=rcon; 

    points[4][0]=rcon; 

    points[5][0]=rcon; 

    points[6][0]=points[0][0]-alpha1; 

    points[7][0]=points[0][0]-alpha1; 

    points[8][0]=points[0][0]-alpha1; 

    flagl=0; 

    flagr=0; 

    flagb=0; 

    flagt=0; 

    noshrinkh=0; 

   } 

  } 

  else 

  { 

   points[1][0]=points[0][0]; 

   points[2][0]=points[0][0]; 

   points[3][0]=points[0][0]+alpha1; 

   points[4][0]=points[0][0]+alpha1; 

   points[5][0]=points[0][0]+alpha1; 

   points[6][0]=points[0][0]-alpha1; 

   points[7][0]=points[0][0]-alpha1; 

   points[8][0]=points[0][0]-alpha1; 

   flagl=0; 

   flagr=0; 

   flagb=0; 

   flagt=0; 

   noshrinkh=0; 

  } 

 

  if (x0[1]<(bcon+alpha2)) 

  { 

   if (x0[1]<=bcon) 

   { 

    if (count2<nshrinks) 

    { 

     alpha2=alpha2/2;//Shrink if on bottom edge. 
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     count2=count2+1; 

     flagb=1; 

    } 

    else 

    { 

     flagb=0; 

    } 

    points[0][1]=bcon; 

    points[1][1]=points[0][1]+alpha2; 

    points[2][1]=points[1][1]+alpha2; 

    points[3][1]=bcon; 

    points[4][1]=points[0][1]+alpha2; 

    points[5][1]=points[1][1]+alpha2; 

    points[6][1]=bcon; 

    points[7][1]=points[0][1]+alpha2; 

    points[8][1]=points[1][1]+alpha2; 

    flagl=0; 

    flagr=0; 

    flagt=0; 

   } 

   else 

   { 

    points[1][1]=points[0][1]+alpha2; 

    points[2][1]=bcon; 

    points[3][1]=points[0][1]; 

    points[4][1]=points[0][1]+alpha2; 

    points[5][1]=bcon; 

    points[6][1]=points[0][1]; 

    points[7][1]=points[0][1]+alpha2; 

    points[8][1]=bcon; 

    flagl=0; 

    flagr=0; 

    flagb=0; 

    flagt=0; 

    noshrinkv=0; 

   } 

  }    

  else if (x0[1]>(tcon-alpha2)) 

  { 

   if (x0[1]>=tcon) 

   { 

    if (count2<nshrinks) 

    { 

     alpha2=alpha2/2;//Shrink if on top edge. 

     count2=count2+1; 

     flagt=1; 

    } 

    else 

    { 

     flagt=0; 

    } 

    points[0][1]=tcon; 

    points[1][1]=points[0][1]-alpha2; 

    points[2][1]=points[1][1]-alpha2; 

    points[3][1]=tcon; 

    points[4][1]=points[0][1]-alpha2; 

    points[5][1]=points[1][1]-alpha2; 

    points[6][1]=tcon; 

    points[7][1]=points[0][1]-alpha2; 

    points[8][1]=points[1][1]-alpha2; 

    flagl=0; 

    flagr=0; 

    flagb=0; 

   } 

   else 

   { 

    points[1][1]=points[0][1]-alpha2; 

    points[2][1]=tcon; 

    points[3][1]=points[0][1]; 

    points[4][1]=points[0][1]-alpha2; 

    points[5][1]=tcon; 
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    points[6][1]=points[0][1]; 

    points[7][1]=points[0][1]-alpha2; 

    points[8][1]=tcon; 

    flagl=0; 

    flagr=0; 

    flagb=0; 

    flagt=0; 

    noshrinkv=0; 

   } 

  } 

  else 

  { 

   points[1][1]=points[0][1]+alpha2; 

   points[2][1]=points[0][1]-alpha2; 

   points[3][1]=points[0][1]; 

   points[4][1]=points[0][1]+alpha2; 

   points[5][1]=points[0][1]-alpha2; 

   points[6][1]=points[0][1]; 

   points[7][1]=points[0][1]+alpha2; 

   points[8][1]=points[0][1]-alpha2; 

   flagl=0; 

   flagr=0; 

   flagb=0; 

   flagt=0; 

   noshrinkv=0; 

  } 

 } 

 cout<<"x*=("<<x0[0]<<","<<x0[1]<<") with fmax="<<f[0]<<"+/-"<<error<<endl; 

 return(0); 

} 

 

double GRGM(vector<double> &x0, double f0, double alpha, double lcon, double rcon, int dim) 

{ 

 //Selecting starting points 

 alpha=alpha/2; 

 int stop=0; 

 double minloc; 

 double maxloc; 

 int adim; 

 if (dim==1) 

 { 

  adim=0; 

 } 

 else 

 { 

  adim=1; 

 } 

 vector<double> points(5); 

 points[0]=x0[dim]; 

 

 //checks which piece of the x vector we are altering and then chooses points 

 if (x0[dim]<(lcon+2*alpha)) 

 { 

  if (x0[dim]<=(lcon+alpha)) 

  { 

   if (x0[dim]<=lcon) 

   { 

    stop=1; 

   } 

   else 

   { 

    points[1]=lcon; 

    points[2]=points[0]+alpha; 

    points[3]=points[2]+alpha; 

    points[4]=points[3]+alpha; 

    minloc=1; 

    maxloc=4; 

   } 

  } 

  else 

  { 
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   points[1]=lcon; 

   points[2]=points[0]-alpha; 

   points[3]=points[0]+alpha; 

   points[4]=points[3]+alpha; 

   minloc=1; 

   maxloc=4; 

  }    

 } 

 else if (x0[dim]>(rcon-2*alpha)) 

 { 

  if (x0[dim]>=(rcon-alpha)) 

  { 

   if (x0[dim]>=rcon) 

   { 

    stop=1; 

   } 

   else 

   { 

    points[1]=rcon; 

    points[2]=points[0]-alpha; 

    points[3]=points[2]-alpha; 

    points[4]=points[3]-alpha; 

    minloc=4; 

    maxloc=1; 

   } 

  } 

  else 

  { 

   points[1]=rcon; 

   points[2]=points[0]+alpha; 

   points[3]=points[0]-alpha; 

   points[4]=points[3]-alpha; 

   minloc=4; 

   maxloc=1; 

  } 

 } 

 else 

 { 

  points[1]=points[0]-alpha; 

  points[2]=points[1]-alpha; 

  points[3]=points[0]+alpha; 

  points[4]=points[3]+alpha; 

  minloc=2; 

  maxloc=4; 

 } 

 

 //Initialize quantities 

 double length=points.size(); 

 double fnew; 

 vector<double> f(length); 

 f[0]=f0; 

 //Loop until the model and function have same value or the model points solution is the 

same 

 while (stop==0) 

 { 

  for (int i=1;i<length;i++) 

  { 

   if (adim==0) 

   { 

    f[i]=fun2D(x0[adim],points[i]); 

   } 

   else 

   { 

    f[i]=fun2D(points[i],x0[adim]); 

   } 

  } 

  //Perform Least Squares fit 

  double n=length; 

  int k=1; //This is equal to the number of variables; 

  double p=2*k+1;  //Number of regressor variable.  Need to change for higher order. 
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  double **X; 

  X=new double* [n]; 

  for (int i=0;i<n;i++) 

  { 

   *(X+i)=new double[p]; 

  } 

 

  for (int i=0;i<n;i++) 

  { 

   //Need to add here for higher dimensions 

   for (int c=0;c<k;c++) 

   { 

    X[i][c]=1; 

    X[i][c+1]=points[i]; 

    X[i][c+k+1]=pow(points[i],2); 

   } 

  } 

  double **Xt; 

  Xt=new double* [p]; 

  for (int i=0;i<p;i++) 

  { 

   *(Xt+i)=new double[n]; 

  } 

  Xt=MT(X,n,p); 

 

  double **A; 

  A=new double* [p]; 

  for (int i=0;i<p;i++) 

  { 

   *(A+i)=new double[p]; 

  } 

  A=MM(Xt,X,p,n,p); 

  vector<double> c(p); 

  c=Mv(Xt,f,p,n); 

 

  vector<double> b(p); 

  b=LUSolve(A,c); 

  //Perform Newtons Method 

  double g; 

  double H; 

  double fmin=newfun(x0,b,g,H); 

  if (H<0) 

  { 

   double g1; 

   double H1; 

   vector<double> p(1); 

   p[0]=points[minloc]; 

   double b1=newfun(p,b,g1,H1); 

   double g2; 

   double H2; 

   p[0]=points[maxloc]; 

   double b2=newfun(p,b,g2,H2); 

   if (b1<=b2) 

   { 

    fmin=b1; 

    x0[dim]=points[minloc]; 

   } 

   else 

   { 

    fmin=b2; 

    x0[dim]=points[maxloc]; 

   } 

  } 

  else 

  { 

   double d=-g/H; 

   double temp;  //Added to stop solver from going beyond model range. 

   temp=x0[dim]+d; 

   if (temp<points[minloc]) 

   { 

    x0[dim]=points[minloc]; 
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   } 

   else if (temp>points[maxloc]) 

   { 

    x0[dim]=points[maxloc]; 

   } 

   else 

   { 

    x0[dim]=x0[dim]+d; 

    stop=1; 

   } 

  } 

  if (adim==0) 

  { 

   fnew=fun2D(x0[adim],x0[dim]); 

  } 

  else 

  { 

   fnew=fun2D(x0[dim],x0[adim]); 

  } 

  cout<<endl<<endl<<x0[dim]<<"   "<<fnew<<endl<<endl; 

  //system("PAUSE"); 

  if (fnew>f[0]) 

  { 

   x0[dim]=points[0]; 

   fnew=f[0]; 

   stop=1; 

  } 

 

  f[0]=fnew; 

  //Update points 

  points[0]=x0[dim]; 

  //Added consraints back in and generalized April 14, 2010 

  if (x0[dim]<(lcon+2*alpha)) 

  { 

   if (x0[dim]<=(lcon+alpha)) 

   { 

    if (x0[dim]<=lcon) 

    { 

     stop=1; 

    } 

    else 

    { 

     points[1]=lcon; 

     points[2]=points[0]+alpha; 

     points[3]=points[2]+alpha; 

     points[4]=points[3]+alpha; 

     minloc=1; 

     maxloc=4; 

    } 

   } 

   else 

   { 

    points[1]=lcon; 

    points[2]=points[0]-alpha; 

    points[3]=points[0]+alpha; 

    points[4]=points[3]+alpha; 

    minloc=1; 

    maxloc=4; 

   }    

  } 

  else if (x0[dim]>(rcon-2*alpha)) 

  { 

   if (x0[dim]>=(rcon-alpha)) 

   { 

    if (x0[dim]>=rcon) 

    { 

     stop=1; 

    } 

    else 

    { 

     points[1]=rcon; 
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     points[2]=points[0]-alpha; 

     points[3]=points[2]-alpha; 

     points[4]=points[3]-alpha; 

     minloc=4; 

     maxloc=1; 

    } 

   } 

   else 

   { 

    points[1]=rcon; 

    points[2]=points[0]+alpha; 

    points[3]=points[0]-alpha; 

    points[4]=points[3]-alpha; 

    minloc=4; 

    maxloc=1; 

   } 

  } 

  else 

  { 

   points[1]=points[0]-alpha; 

   points[2]=points[1]-alpha; 

   points[3]=points[0]+alpha; 

   points[4]=points[3]+alpha; 

   minloc=2; 

   maxloc=4; 

  } 

 } 

 return(fnew); 

} 

double norm(vector<double> x) 

//finds norms of vectors 

{ 

 double length=x.size(); 

 double sum=0; 

 for (int i=0;i<length;i++) 

 { 

  sum+=x[i]*x[i]; 

 } 

 double norm=sqrt(sum); 

 return(norm); 

} 

 

double inprod(vector<double>x, vector<double>y) 

//inner product of vectors 

{ 

 double length=x.size(); 

 double ans=0; 

 for(int i=0;i<length;i++) 

 { 

  ans+=x[i]*y[i]; 

 } 

 return(ans); 

} 

 

vector<double> Mv(double **M,vector<double> v,double row, double col) 

//matrix times a vector 

{ 

 vector<double> ans(row,0); 

 for(int i=0;i<row;i++) 

 { 

  for(int j=0;j<col;j++) 

  { 

   ans[i]=ans[i]+M[i][j]*v[j]; 

  } 

 } 

 return(ans); 

} 

 

double **MM(double **M1, double **M2,double a, double b, double c) 

//matrix times matrix 

{ 
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 double **ans; 

 ans=new double* [a]; 

 for(int i=0;i<a;i++) 

 { 

  *(ans+i)=new double[c]; 

 } 

 for(int i=0;i<a;i++) 

 { 

  for(int j=0;j<c;j++) 

  { 

   ans[i][j]=0; 

  } 

 } 

 for(int k=0;k<a;k++) 

 { 

  for(int i=0;i<c;i++) 

  { 

   for(int j=0;j<b;j++) 

   { 

    ans[k][i]=ans[k][i]+M1[k][j]*M2[j][i]; 

   } 

  } 

 } 

 return(ans); 

} 

 

vector<double> LUSolve(double **M,vector<double> v) 

//LU decomposion solver 

{ 

 int length=v.size(); 

 for(int i=0;i<length-1;i++) 

 { 

  for(int j=i+1;j<length;j++) 

  { 

   double m=M[j][i]/M[i][i]; 

   M[j][i]=0; 

   for(int k=i+1;k<length;k++) 

   { 

    M[j][k]=M[j][k]-m*M[i][k]; 

   } 

   M[j][i]=m; 

  } 

 } 

 for(int i=1;i<length;i++) 

 { 

  for (int j=0;j<i;j++) 

  { 

   v[i]=v[i]-M[i][j]*v[j]; 

  } 

 } 

 v[length-1]=v[length-1]/M[length-1][length-1]; 

 for (int i=0;i<length-1;i++)  

 { 

  for (int j=length-1-i;j<length;j++) 

  { 

   v[length-2-i]=v[length-2-i]-M[length-2-i][j]*v[j]; 

  } 

  v[length-2-i]=v[length-2-i]/M[length-2-i][length-2-i]; 

 } 

 return(v); 

} 

double sum(vector<double> x) 

//add vector components 

{ 

 double add=0; 

 double length=x.size(); 

 for (int i=0;i<length;i++) 

 { 

  add+=x[i]; 

 } 

 return (add); 
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} 

double newfun(vector<double> x, vector<double> b, double &g, double &H) 

//1-D model function 

{ 

 double val=b[0]+b[1]*x[0]+b[2]*pow(x[0],2); 

 g=b[1]+2*b[2]*x[0]; 

 H=2*b[2]; 

 return(val); 

} 

double newfun2D(vector<double> x, vector<double> b, vector<double> &grad, double **&Hess) 

//2-D model function 

{ 

 double val=b[0]+b[1]*x[0]+b[2]*x[1]+b[3]*pow(x[0],2)+b[4]*pow(x[1],2)+b[5]*x[0]*x[1]; 

 grad[0]=b[1]+2*b[3]*x[0]+b[5]*x[1]; 

 grad[1]=b[2]+2*b[4]*x[1]+b[5]*x[0]; 

 Hess[0][0]=2*b[3]; 

 Hess[0][1]=b[5]; 

 Hess[1][0]=b[5]; 

 Hess[1][1]=2*b[4]; 

 return(val); 

} 

double fun2(double x) 

//combustion function evaluation for 1-D case 

{ 

 vector<double> vars(1); 

 vars[0]=x/1000;          //Divide by 1000 for pore diameter 

 double eff=-Combust(vars); //Added negative for maximization. 

 return(eff); 

} 

double fun2D(double x, double y) 

//combustion function evaluation for 2-D case 

{ 

 //double eff=100*pow((y-pow(x,2)),2)+pow((1-x),2);  //Rosenbrock 

 vector<double> vars(2); 

 vars[0]=x/1000; 

 vars[1]=y; 

 double eff=-Combust(vars); 

 return(eff); 

} 

double **MT(double **M,double n, double p) 

//matrix times its transpose 

{ 

 double **ans; 

 ans=new double* [p]; 

 for(int i=0;i<p;i++) 

 { 

  *(ans+i)=new double[n]; 

 } 

 for (int i=0;i<p;i++) 

 { 

  for (int j=0;j<n;j++) 

  { 

   ans[i][j]=M[j][i]; 

  } 

 } 

 return(ans); 

} 

double max(double x, double y) 

//max of two numbers 

{ 

 double temp1=sqrt(pow(x,2)); 

 double temp2=sqrt(pow(y,2)); 

 double ans; 

 if (temp1>=temp2) 

 { 

  ans=temp1; 

 } 

 else 

 { 

  ans=temp2; 

 } 
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 return(ans); 

} 

double min(double x, double y) 

//min of two numbers 

{ 

 double temp1=sqrt(pow(x,2)); 

 double temp2=sqrt(pow(y,2)); 

 double ans; 

 if (temp1<=temp2) 

 { 

  ans=temp1; 

 } 

 else 

 { 

  ans=temp2; 

 } 

 return(ans); 

} 

int sign(double x) 

//sign of a number 

{ 

 int ans; 

 if (x>=0) 

 { 

  ans=1; 

 } 

 else 

 { 

  ans=-1; 

 } 

 return(ans); 

}
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This section contains all of the response surfaces for the two dimensional case study.  

They are presented here to allow for a better understanding of the solution path of the algorithm. 

 
Figure E.1 – First Response Surface for the 2-D Case 

 

 
Figure E.2 – Second Response Surface for the 2-D Case 
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Figure E.3 – Third Response Surface for the 2-D Case 

 

 
Figure E.4 – Fourth Response Surface for the 2-D Case 
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Figure E.5 – Fifth Response Surface for the 2-D Case 

 

 
Figure E.6 – Sixth Response Surface for the 2-D Case 
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Figure E.7 – Seventh Response Surface for the 2-D Case 

 

 
Figure E.8 – Eighth Response Surface for the 2-D Case 
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Figure E.9 – Ninth Response Surface for the 2-D Case 

 

 
Figure E.10 – Tenth Response Surface for the 2-D Case 
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Figure E.11 – Eleventh Response Surface for the 2-D Case 

 

 
Figure E.12 – Twelfth Response Surface for the 2-D Case 
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Figure E.13 – Thirteenth Response Surface for the 2-D Case 

 

At this point the algorithm has stopped in the same location twice on a boundary, so the 

GRG method is used until a maximum is reached.  

 
Figure E.14 – First GRG Method Surface for the 2-D Case, ε2=0.95 
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The first surface generated contains a maximum so only one iteration of the GRG method 

is needed.  The solver then reverts back to a 2-D method and continues to try and optimize the 

burner further.  Once again, however, the algorithm has lands in the same spot on the boundary 

so the GRG method is needed, resulting in the following response surfaces. 

 
Figure E.15 – Fourteenth Response Surface for the 2-D Case 

 

 
Figure E.16 – Second GRG Method Surface for the 2-D Case, ε2=0.95 
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Figure E.17 – Third GRG Method Surface for the 2-D Case, ε2=0.95 

 

The third GRG method surface contains a maximum value so the algorithm reverts back 

to a two dimensional problem.  Here, however, the maximum of the response surface results in 

the objective function worsening, as a result of noise being introduced due to the small size of 

the surface.  Therefore the solver stops and reports the maximum of the previous surface, the 

third GRG method surface, as the optimal value. 

 
Figure E.18 – Fifteenth Response Surface for the 2-D Case 
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