
Reputation-based Trust Management
in Peer-to-Peer File Sharing Systems

by

Loubna Mekouar

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2010

c© Loubna Mekouar 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Trust is required in file sharing peer-to-peer (P2P) systems to achieve better cooperation
among peers and reduce malicious uploads. In reputation-based P2P systems, reputation
is used to build trust among peers based on their past transactions and feedbacks from
other peers. In these systems, reputable peers will usually be selected to upload requested
files, decreasing significantly malicious uploads in the system.

This thesis surveys different reputation management systems with a focus on reputation
based P2P systems. We breakdown a typical reputation system into functional components.
We discuss each component and present proposed solutions from the literature. Different
reputation-based systems are described and analyzed. Each proposed scheme presents a
particular perspective in addressing peers’ reputation.

This thesis also presents a novel trust management framework and associated schemes
for partially decentralized file sharing P2P systems. We address trust according to three
identified dimensions: Authentic Behavior, Credibility Behavior and Contribution Behav-
ior. Within our trust management framework, we proposed several algorithms for repu-
tation management. In particular, we proposed algorithms to detect malicious peers that
send inauthentic files, and liar peers that send wrong feedbacks.

Reputable peers need to be motivated to upload authentic files by increasing the benefits
received from the system. In addition, free riders need to contribute positively to the
system. These peers are consuming resources without uploading to others. To provide the
right incentives for peers, we develop a novel service differentiation scheme based on peers’
contribution rather than peers’ reputation. The proposed scheme protects the system
against free-riders and malicious peers and reduces the service provided to them.

In this thesis, we also propose a novel recommender framework for partially decentral-
ized file sharing P2P systems. We take advantage from the partial search process used
in these systems to explore the relationships between peers. The proposed recommender
system does not require any additional effort from the users since implicit rating is used.
The recommender system also does not suffer from the problems that affect traditional
collaborative filtering schemes like the Cold start, the Data sparseness and the Popularity
effect.

Over all, our unified approach to trust management and recommendations allows for
better system health and increased user satisfaction.

iii

Acknowledgements

First of all, I thank Allah. Allah is the Almighty, Creator and Sustainer of the universe,
who is similar to nothing and nothing is comparable to Him.

I present my sincere gratitude to my supervisor Professor Raouf Boutaba.

I also present my gratitude to Professor Ashraf Aboulnaga, Professor Ihab Ilyas and
Professor Ahmed Karmouch.

I express my deepest gratitude to Professor Youssef Iraqi.

I would like to thank the faculty, staff and students at David R. Cheriton School of
Computer Science. A special thank you for Margaret Towell and Jessica Miranda.

iv

Dedication

I would like to dedicate my thesis to:

My father Driss, my mother Houriya, my grandmother Zineb, my sisters Aicha, Amal,
Amina, Khadija and my brother Mohammed,

My husband Youssef and my daughters Imane, Ihsane and Nour,

My grandfather Alamine, my aunt Saadia and my uncle Mohammed,

My family and friends.

v

Contents

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Trust Management Framework . 2

1.2 Recommender Framework . 3

1.3 Thesis Organization . 4

2 Reputation-based Trust Management: Taxonomy and Anatomy 6

2.1 Introduction and Motivation . 6

2.2 Traditional Systems vs Reputation based Systems 8

2.3 Trust & Reputation . 9

2.3.1 Trust Definition . 9

2.3.2 Reputation Definition . 10

2.3.3 Trust Properties . 10

2.4 System Model . 11

2.4.1 Modeling The Network . 11

2.4.2 Modeling The Nodes . 12

2.4.3 Modeling The Reputation Management Infrastructure 15

2.5 The Anatomy of Reputation Systems . 16

2.6 The Local Trust . 18

vi

2.6.1 What kind of trust information is gathered? 18

2.6.2 Where to store trust information? 20

2.6.3 Is the local trust information sufficient? 21

2.7 The Reputation Query . 21

2.7.1 To whom the requester peer sends a reputation query? 22

2.7.2 How many peers should the requester peer contact? 23

2.7.3 What kind of information is sent to the requester peer? 23

2.8 Reputation Computation . 25

2.8.1 How to deal with liar recommender peers? 26

2.8.2 How to deal with fraudulent recommender peers? 27

2.8.3 How to compute the reputation? 28

2.9 The Use of Reputation . 30

2.9.1 How to choose a peer based on the reputation value? 30

2.9.2 How to evaluate a transaction after downloading a file? 31

2.10 Credibility Assessment . 32

2.11 Incentives, Rewards and Punishment . 32

2.12 Centralized Reputation Systems . 33

2.12.1 e-Commerce Applications . 33

2.12.2 P2P Systems . 36

2.13 Decentralized Reputation Systems . 39

2.13.1 The Distributed Trust Model: DistributedTrust 39

2.13.2 The Binary Distributed Trust Model: BinaryTrust 40

2.13.3 Reputation Management: P2PBasic and P2PEnhanced 40

2.13.4 Reputation Management by the XRep Protocol: XRep 41

2.13.5 Reputation Management using EigenTrust 42

2.13.6 Limited Reputation Sharing: LimitedReputation 43

2.13.7 Trust and Credibility Records: CredibilityRecords 44

2.13.8 Reputation Management using CCCI: MDNT 44

2.13.9 Cooperative Peer Groups in Nice 44

vii

2.13.10BitTorrent . 45

2.14 Partially Decentralized Systems . 48

2.15 Design Requirements . 48

2.16 Concluding Remarks . 49

3 Trust Management: Authentic Behavior 50

3.1 Trust Management Framework . 50

3.2 Partially Decentralized Systems . 51

3.3 Reputation Management System . 53

3.3.1 Notations and Assumptions . 53

3.3.2 The Reputation Management Scheme 54

3.3.3 The Number Based Appreciation 55

3.3.4 The Size Based Appreciation . 56

3.4 The Selection Advisor . 57

3.4.1 The Difference Based Algorithm . 58

3.4.2 The Inauthentic Detector Algorithm (IDA) 58

3.5 Mathematical Analysis of Size-based IDA 59

3.6 Performance Evaluation . 61

3.7 Concluding Remarks . 67

4 Trust Management: Credibility Behavior 68

4.1 Peer Behavior Understanding . 68

4.1.1 Peer Behavior Categorization . 69

4.1.2 Effect On Reputation . 69

4.2 Detecting Malicious Peers . 70

4.2.1 Reputation-based Approach . 71

4.2.2 Malicious Detector Algorithm (MDA) 71

4.3 Mathematical Analysis of MDA . 73

4.3.1 Case 1: Same Liar Behavior . 74

4.3.2 Case 2: Different Liar Behavior . 75

4.4 Performance Evaluation . 77

4.5 Concluding Remarks . 82

viii

5 Trust Management: Contribution Behavior 83

5.1 Motivation . 83

5.2 Contribution Behavior . 84

5.2.1 Contribution Components . 85

5.2.2 Peer Availability . 86

5.2.3 Peer Involvement . 87

5.2.4 Peer Contribution . 88

5.3 Trust Management Framework Components 88

5.3.1 The Use of Trust Components . 88

5.3.2 Reputation Data . 90

5.4 Service Differentiation . 91

5.4.1 New Comers Policy . 92

5.4.2 White-washing Policy . 92

5.5 Rational Behavior . 92

5.6 Performance Evaluation . 95

5.6.1 Simulation Parameters . 95

5.6.2 Static Behavior . 96

5.6.3 Rational Behavior . 101

5.7 Concluding Remarks . 106

6 Personalized Recommendations 108

6.1 Introduction . 108

6.2 Recommender Systems in e-Commerce . 109

6.2.1 Content-based versus Collaborative Filtering 109

6.2.2 User-based Collaborative Filtering 110

6.2.3 Using The Pearson Correlation . 111

6.2.4 Using The Cosine Measure . 111

6.2.5 Computing The Predicted Rating 112

6.2.6 Challenges of Collaborative Filtering Algorithms 112

ix

6.3 Recommender Schemes in P2P Systems . 113

6.3.1 Related Works . 113

6.3.2 Advantages of Recommender Systems 113

6.3.3 Evaluation of Recommender Systems 114

6.4 The proposed Recommender Framework 114

6.4.1 Implicit Rating versus Explicit Rating 115

6.4.2 User-based versus Item-based Collaborative Filtering 115

6.5 The Similarity Metrics . 117

6.5.1 Formal Notations . 117

6.5.2 Files’ Popularity Based Recommendation (FP) 118

6.5.3 Asymmetric Peers Similarity Based Recommendation (AS) 118

6.5.4 Symmetric Peers’ Similarity Based Recommendation (SS) 120

6.5.5 Similarity Metrics and Binary Ratings 121

6.6 Performance Evaluation . 123

6.6.1 Simulated Schemes . 123

6.6.2 Simulation Parameters . 124

6.6.3 Simulation Results . 125

6.6.4 Analysis of Recommender Schemes 133

6.7 Concluding Remarks . 136

7 Conclusion and Future Work 137

7.1 Contributions . 137

7.1.1 Trust Management Framework . 137

7.1.2 Recommender Framework . 138

7.2 Future Work . 139

7.2.1 Simulation Parameters . 139

7.2.2 Security Threats . 140

7.2.3 Incorporating Trust in Network Virtualization 140

7.2.4 Trust in Web Services . 142

7.3 Concluding Remarks . 144

Bibliography 145

x

List of Tables

2.1 Reputation Management Systems . 46

2.2 Reputation Management Systems (cond.) 47

3.1 Simulated Algorithms . 61

4.1 Peer Behavior . 69

4.2 Peer Behavior and Distribution . 77

5.1 Peers’ Behavior and Distribution . 96

6.1 Similarity Metrics with Negative Co-occurrence 122

6.2 Similarity Metrics without Negative Co-occurrence 123

6.3 Summary of Peers’ Satisfaction . 132

6.4 Summary of Peers’ Satisfaction (cond.) . 132

6.5 Summary of Percentage of Recommended Files 135

6.6 Summary of Percentage of Recommended Files (cond.) 135

xi

List of Figures

2.1 (a) Life Cycle in a Traditional P2P System, (b) Life Cycle in a Reputation-
based P2P System . 8

3.1 The Three Dimensions of Trust . 51

3.2 Reputation Update Steps . 55

3.3 Peer Satisfaction . 63

3.4 The Percentage of Malicious Uploads . 64

3.5 Peer Load Share for RW . 64

3.6 Peer Load Share for KB . 65

3.7 Peer Load Share for IDA . 66

3.8 Peer Load Share for DB . 67

4.1 A Typical File Request-Download Procedure 70

4.2 Authentic and Credibility Probabilities . 74

4.3 Authentic Behavior with IDA (with no liar peers) 78

4.4 Authentic Behavior with IDA (with liar peers) 79

4.5 Credibility Behavior . 79

4.6 Peer Satisfaction . 80

4.7 Percentage of Malicious Uploads . 81

4.8 Percentage of Malicious Uploads for MDA and IDA 81

5.1 Peer Trust and Behavior Analysis . 89

5.2 A Typical Exchange between Peers . 90

5.3 Peer Load Share for NOSD . 97

xii

5.4 Peers Reputation in RBSD . 98

5.5 Peers Contribution Behavior in CBSD . 99

5.6 Percentage of Successful Requests for RBSD 100

5.7 Percentage of Successful Requests for CBSD 100

5.8 Peer Involvement . 101

5.9 Peer Availability . 102

5.10 Percentage of Performed Requests with Contribution Behavior based on
Availability and Involvement . 103

5.11 Percentage of Performed Requests with Contribution Behavior based only
on Involvement . 104

5.12 Peer Load Share with Contribution Behavior based on Availability and In-
volvement . 105

5.13 Peer Load Share with Contribution Behavior based only on Involvement . 106

6.1 Recommendation Transaction Life Cycle 116

6.2 The Proposed Recommender Framework 117

6.3 a, b, c and d . 122

6.4 Peers Satisfaction (first scenario) . 125

6.5 Peers Satisfaction (second scenario) . 127

6.6 Peers Satisfaction (third scenario) . 128

6.7 Peers Satisfaction (fourth scenario) . 128

6.8 Peers Satisfaction (fifth scenario) . 130

6.9 Peers Satisfaction (sixth scenario) . 130

6.10 Peers Satisfaction of the Russel Rao . 131

7.1 (a) First Approach, (b) Second Approach 141

7.2 Trust Framework for Web Services Communities 143

xiii

Chapter 1

Introduction

The most important challenge of online environments is to assure satisfactory transactions.
People will usually back up from dealing with strangers. Therefore, people minimize their
interactions and tend to remain in their comfort zone. Peer-to-Peer file sharing systems
provide a large collection of files available for download. In traditional systems, little
information is given to the user to help in the peer-selection and/or file-selection processes.
For example, if a user wants to download a file, the user is given a list of peers that have
the requested file. The process of selecting the right peer with no a priori information is
frustrating and risky. To foster positive interactions and reduce the risk involved in P2P
file sharing systems, peers need to reason about trust, and reputation systems are used
to this end. Reputation systems are based on collecting information about peers’ past
transactions and computing a reputation value for these peers. The reputation values will
be the basis for identifying trustworthy peers [1].

P2P file sharing systems can be centralized, completely decentralized or partially de-
centralized systems. Centralized P2P file sharing systems use a centralized directory for
searching files, while downloading a file is achieved directly between peers. In completely
decentralized P2P systems, all peers have equal role and responsibilities. Partially de-
centralized P2P systems occupy the middle ground between centralized and completely
decentralized systems. In these systems, supernodes or superpeers are peers that have
extra capabilities and assume more responsibilities than regular peers. A supernode act as
a centralized server for the peers connected to it.

While centralized P2P systems suffer from the single point of failure, completely decen-
tralized systems such as Gnutella are characterized by expensive search. As an example,
for one query sent from the requester peer, more than 6 billion messages may be generated
[2]. The high amount of traffic generated from sending a query and getting back results
causes inefficiency in using network resources. Moreover, peers in completely decentralized
systems have the same role although these peers have different capabilities in terms of

1

processing power, bandwidth, memory and storage capacity, in addition to peers’ uptime.
Peers that have less capabilities and short uptime should not assume the same role, at least
not at the same level. In contrast, the communication protocol used in partially decen-
tralized systems reduces significantly the number of messages exchanged during the search
phase. The supernode architecture offers an intermediate design, minimizes the weaknesses
of both centralized and completely decentralized systems and combines the advantages of
these systems.

Several reputation-based systems have been proposed for completely decentralized sys-
tems. However, all proposed research works in this field have completely focused on these
systems. Almost no attention was directed toward partially decentralized systems.

Reputation is the most valuable information that helps reduce the offensive and de-
ceptive behavior of online users. Reputation systems will motivate users to exhibit good
behavior, identify malicious peers, increase users’ confidence and satisfaction, and preserve
network resources. However, reputable peers may be easily overwhelmed by download
requests from other peers. Reputable peers need to be motivated to continue to display
good behavior. Service differentiation is needed to grant services to peers that contribute
positively to the system and reduce the service provided to free riders and malicious peers.

In this thesis, we propose a novel trust management framework and associated repu-
tation management schemes for partially decentralized P2P file sharing systems. We also
propose a complementary recommender system to help users in files’ selection processes.

1.1 Trust Management Framework

The survey of reputation systems revealed the lack of clarity and fuzziness in the concept of
reputation. The measurement and/or the computation of this important concept in some
research works was not adequate. For example, the reputation of a peer in terms of sending
authentic files has been used to measure its credibility and also for service differentiation
which raises fairness issues. Our goal is to manage trust according to specific dimensions
and clarify this ambiguity. In this thesis, we design a trust management framework and
related algorithms for partially decentralized P2P systems. We propose to address trust
according to the following dimensions: 1) Authentic Behavior, 2) Credibility Behavior, and
3) Contribution Behavior.

• Authentic Behavior : represents peer’s reputation in sending authentic files in terms of
accuracy and technical quality [3]. The Inauthentic Detector Algorithm is proposed
to identify malicious peers and isolate them. As a result, malicious uploads are
reduced.

2

• Credibility Behavior : represents peers’ credibility in sending honest feedbacks [3].
The Malicious Detector Algorithm is proposed to distinguish between honest and
liar peers in addition to good and malicious peers. As a result, the impact of liar
peers is reduced.

• Contribution Behavior : represents peers’ contribution to the system [4]. A contribu-
tion based service differentiation scheme is proposed to differentiate between peers
that contribute positively to the system, and free riders and malicious peers.

Initially, we used the Authentic Behavior to capture the maliciousness of peers in terms
of sending inauthentic files. However, liar peers had an impact on the reputation system
and hence, there was a need to measure the Credibility Behavior in terms of sending honest
feedbacks. Also, to differentiate among peers, a service differentiation scheme is required.
To provide the right incentives for peers to exhibit good behavior, the Contribution Be-
havior dimension is used to measure the positive contribution of the peers to the system.
The three dimensions are required to minimize the risk involved in the transactions and to
maximize users’ satisfaction.

In this thesis, we take advantage from the use of supernodes in the partially decentral-
ized architecture. Since supernodes are already used to handle search requests on behalf of
the peers connected to them, we use supernodes to handle trust data and compute peers’
reputation. Supernodes are also used to compute peers’ credibility and enforce service
differentiation.

1.2 Recommender Framework

In P2P file sharing systems, peers have to choose the files of interest from a large col-
lection of files. Peers spend a significant amount of time looking for relevant files. To
alleviate the peers from this task, recommender systems can be used to make personalized
recommendations to the peers according to their profile.

While reputation systems are used to rate peers in P2P systems, recommender systems
are used to rate files. In reputation systems, peers are rated based on the accuracy and
the technical quality of files, while in recommender systems, files are rated based on the
content.

In this thesis, we propose a novel recommender framework for partially decentralized
P2P file sharing systems [5]. Based on peers’ profile, the proposed recommender system
will suggest files that peers will most probably like. While these peers are downloading
these files, they will upload files to others increasing their contribution. We investigate
different similarity metrics that were proposed in information retrieval, exploratory data

3

analysis and other fields and adapt them to our context. We analyze the effect of sim-
ilarity metrics on the performance of the recommender system. Both weighted and non
weighted approaches are studied. Weighted approaches achieve higher recommendation
accuracy. Within the weighted approaches, similarity metrics that do not consider neg-
ative co-occurrence lead to better recommendation accuracy. To overcome the problems
of traditional collaborative filtering recommender systems, an implicit rating approach is
used.

1.3 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2: Reputation-based Management: Taxonomy and Anatomy
Section 2.1 presents an introduction to peer-to-peer systems. Section 2.2 describes tradi-
tional P2P systems versus reputation-based P2P systems. Section 2.3 provides a definition
of trust, reputation and their properties. An analysis of the system model is presented in
Section 2.4. In Section 2.5, an anatomy of reputation systems in file sharing environment
is presented. A breakdown into functional components is realized and each component
is described based on the proposed mechanisms from the literature. Section 2.6 explains
the local trust, followed by the reputation query in Section 2.7 and reputation computa-
tion in Section 2.8. Section 2.9 describes the use of reputation. Credibility assessment is
explained in Section 2.10 while Section 2.11 focuses on the incentives, rewards and pun-
ishment. Section 2.12 presents a survey of centralized reputation systems followed by a
survey of completely decentralized reputation systems in Section 2.13. Section 2.14 high-
lights reputation schemes in partially decentralized systems. Section 2.15 presents the
design requirements of reputation systems. Finally, Section 2.16 provides concluding re-
marks.

Chapter 3: Trust Management: Authentic Behavior
Section 3.1 describes the proposed trust management framework and explains each trust
component. Section 3.2 presents the motivation behind the proposed solution. Section
3.3 presents the proposed reputation management scheme namely the Inauthentic Detec-
tor Algorithm followed by two Selection Advisor Algorithms that are described in Section
3.4. Section 3.5 presents a mathematical analysis of the Inauthentic Detector Algorithm.
Section 3.6 presents the performance evaluation of the proposed schemes followed by con-
cluding remarks in Section 3.7.

4

Chapter 4: Trust Management: Credibility Behavior
Chapter 4 describes the second dimension of trust. Section 4.1 presents an analysis of
peers’ behavior. Section 4.2 discusses the proposed approaches to detect malicious peers
and introduces the concept of Suspicious Transactions in addition to the Malicious De-
tector Algorithm. Section 4.3 presents a mathematical analysis of the Malicious Detector
Algorithm. Finally, performance evaluation is presented followed by a conclusion.

Chapter 5: Trust Management: Contribution Behavior
Chapter 5 describes the third dimension of trust. Section 5.1 presents the motivation be-
hind this work. Section 5.2 presents the Contribution Behavior and describes how peers’
contribution is computed. Section 5.3 explains the use of trust components in the trust
management framework. Section 5.4 presents a service differentiation scheme based on
peers’ contribution. Section 5.5 presents the rational behavior adopted by peers. Section
5.6 shows the performance evaluation of the proposed scheme followed by a conclusion in
Section 5.7.

Chapter 6: Personalized Recommendations
Section 6.2 discusses content-based versus collaborative filtering techniques and describes
the user-based collaborative filtering technique. This section also highlights important
recommender schemes used in e-Commerce and presents the challenges faced by the col-
laborative filtering algorithms. Section 6.3 discusses related works in P2P systems. This
section also presents the goals that recommender systems strive to achieve and the features
used for recommender system evaluation. Section 6.4 explains the proposed recommender
framework. Section 6.5 describes the proposed Popularity Based Recommendation and
Asymmetric Peers’ Similarity Based Recommendation with File Popularity metrics. This
section also presents the similarity metrics adopted in this work. Section 6.6 describes the
performance evaluation conducted and presents an analysis of the achieved recommenda-
tion accuracy by the different similarity metrics. Finally, Section 6.7 concludes the chapter.

Chapter 7: Conclusion and Future Work
Section 7.1 highlights our contribution in this thesis including the proposed trust manage-
ment framework and the recommender framework. Section 7.2 describes possible future
research directions and finally, Section 7.3 presents concluding remarks.

5

Chapter 2

Reputation-based Trust
Management: Taxonomy and
Anatomy

In this chapter, we will survey reputation-based P2P systems. We will also breakdown a
typical reputation system into functional components. For each component, we identify
the important solutions proposed in the literature. We will describe the proposed schemes
from the literature and show how they address peers’ reputation.

2.1 Introduction and Motivation

In a P2P system, peers communicate directly with each other to exchange information and
share files. P2P systems can be divided into several categories. Centralized P2P systems
(e.g., Napster [6]), use a centralized control server to manage the system while downloading
a file is achieved directly between peers. These systems suffer from the single point of fail-
ure, scalability and censorship problems. Decentralized unstructured P2P systems try to
distribute the control over several peers. They can be divided into completely-decentralized
and partially-decentralized systems. Completely-decentralized systems (e.g., Gnutella [7])
have no hierarchical structure between the peers and all peers have equal role and respon-
sibilities. Partially-decentralized P2P systems (e.g., Skype [8], KaZaA [9], Morpheus [10],
and Gnutella2 [11]) occupy the middle ground between centralized and completely decen-
tralized systems. These systems have been proposed to reduce the control overhead needed
to run the P2P system by the use of “superpeers” or “supernodes”. Supernodes are peers
that have extra capabilities and assume more responsibilities than regular peers. A supern-
ode act as a centralized server for the peers connected to it. Decentralized structured P2P

6

systems like CAN [12] and CHORD [13] are based on Distributed Hash Tables (DHT) in
that they use a hash function to deterministically map keys such as file names into points
in a logical coordinate space. Peers are responsible for storing (key, value) pairs that are
hashed into a point that is located within their region. Most P2P systems deployed on the
Internet are unstructured.

In an open P2P system, peers often have to interact with unknown peers and need to
manage the risks involved in these interactions. For example, if a user wants to download
a file, the user is given a list of peers that can provide the requested file. The user has then
to choose one peer from which the download will be performed. This process is frustrating
to the user as no help is given on how to choose the right peer. After the download has
finished, the user has to check the received file for malicious content and that it actually
corresponds to the requested file (i.e., the requested content). If the file is corrupted,
the user has to start the process again. In traditional P2P systems, little information is
given to the user to help in the selection process. To solve this problem, peers need to be
able to reason about trust in order to avoid untrustworthy peers and reduce risks. Trust
management [14] is any mechanism that allows to establish mutual trust which allows peers
to cooperate, and obtain in the long term an increased utility for the participating peers.

In [15], the authors classify trust management systems into three categories:

• Credential-based trust management systems: in these systems, service providers and
the provided services are trusted, but service requesters are not. Service providers
use credentials to evaluate the trustworthiness of service requesters and services may
be granted or not.

• Reputation-based trust management systems: in these systems, service providers and
provided services are not trusted. Service requesters select service providers based
on their reputation values. Reputable service providers are selected to provide the
service.

• Social network-based trust management systems: these systems are based on social
networks. Reputation is computed based on social relationships.

The focus in this work is on reputation-based trust management in P2P file sharing
systems. Reputation-based P2P systems [14, 16, 17, 18, 19, 20, 21, 22, 23] were introduced
to build trust among peers. These systems try to evaluate the transactions performed by
the peers and associate a reputation value to each peer. The reputation values will be used
as selection criteria among peers.

In this chapter, we will investigate the existing research work proposed to address
reputation in P2P systems. We will present existing reputation management schemes
in centralized, completely decentralized and partially decentralized P2P systems. We will

7

File is good?

S en d a r eq u est f or a f ile

R ec eiv e a list of p eer s t h a t h a v e t h e f ile

S elec t a p eer f r om t h e list

D ow n loa d t h e f ile

N o Y es File is good?

S en d a r eq u est f or a f ile

R ec eiv e a list of p eer s t h a t h a v e t h e f ile

S elec t a p eer b a sed on a r ep u t a t ion m et r ic

D ow n loa d t h e f ile

N o Update
R epu tati o n

D ata

Update
R epu tati o n

D ata

Y es

(a) (b)

Figure 2.1: (a) Life Cycle in a Traditional P2P System, (b) Life Cycle in a Reputation-
based P2P System

describe these schemes and identify key properties for each reputation system to summarize
the efforts of researchers in addressing peers’ reputation.

2.2 Traditional Systems vs Reputation based Systems

The following is the life cycle of a transaction in a traditional P2P system (figure 2.1.a):

1. Send a file request (either to the supernode or to other peers depending on the P2P
system)

2. Receive a list of peers that have the requested file

3. Select a peer

4. Download the file

The following is the life cycle in a reputation-based P2P system (figure 2.1.b):

1. Send a file request

2. Receive a list of peers that have the requested file

3. Select a peer or a set of peers, based on a reputation metric

8

4. Download the file

5. Send feedback and update the reputation data

Most reputation management schemes try to achieve the following goals:

1. Make informed decisions about transaction partners and choose appropriate peers to
download files

2. Isolate malicious peers from the network by downloading files only from reputable
peers, hence reducing malicious uploads

3. Increase users’ confidence and satisfaction

4. Help in the bootstrapping process to select peers to connect to in the overlay network.

5. Motivate peers to exhibit good behavior

6. Use the network resources more efficiently

2.3 Trust & Reputation

2.3.1 Trust Definition

Trust is as old as the existence of human beings. People were grouped in tribes and within
the same tribe, they trusted each other. The concept of trust has a significant role in the
surviving of human beings. We experience and rely on trust on daily basis. However, trust
is difficult to define clearly and precisely.

Researchers from different fields such as psychology, sociology, philosophy, history, law,
business and economics have tackled the concept of trust from different views. According to
the Oxford dictionary [24], trust is a firm belief in the reliability, truth, ability, or strength
of someone or something.

In 1973, Deutsch [25] has specified that trust is the confidence that an individual will
find what is desired from another, rather than what is feared.

In 1990, Diego Gambetta [26] defined trust as follows: Trust (or, symmetrically, dis-
trust) is a particular level of the subjective probability with which an agent will perform a
particular action, both before we can monitor such action (or independently of his capacity
of ever to be able to monitor it) and in a context in which it affects our own action.

9

In 1996, McKnight and Chervany defined trust as Trust is the extent to which one party
is willing to depend on something or somebody in a given situation with a feeling of relative
security even though negative consequences are possible.

In 2000, Grandison and Sloman [27] defined trust as The firm belief in the competence
of an entity to act dependably, securely and reliably within a specified context.

In this chapter, we adopt the following definition proposed in 2006 by Chang et al. [28].
Trust is defined as The belief the trusting agent has in the trusted agent’s willingness and
capability to deliver a mutually agreed service in a given context and in a given time slot.

Based on our experience in the physical world, we extract the necessary information
that can help us build trust in the virtual world to increase users’ confidence and reduce
the risk. Marsh [29] is one of the first researchers to give a formal model of trust that can
be used in computer science. This model is based on social properties of trust taken from
sociology.

2.3.2 Reputation Definition

Reputation has been widely used in different disciplines such as psychology, sociology,
business and economics. From the Oxford dictionary, reputation is the beliefs or opinions
that are generally held about someone or something. Abdul Rahman et al. [30] define
reputation as “an expectation about an agent’s behavior based on information about its past
behavior”. Sabater et al. [31] define it as an “opinion or view of one about something”.
Mui et al. [32] define it as “the perception that an agent creates through past actions
about its intentions and norms”. In service-oriented environments, Chang et al. [28]
define reputation as “an aggregation of the recommendations from all of the third-party
recommendations agents and their first, second and third hand opinions as well as the
trustworthiness of the recommendation agent in giving correct recommendations to the
trusting agent about the quality of the trusted agent”.

2.3.3 Trust Properties

Trust is personal, subjective and it is based on various factors. Trust is fuzzy since trust
is imprecise and vague. Trust is dynamic since it is not stable and it changes as time goes
by. Trust is also complex since different ways are possible for determining trust [28].

The trust relationship is usually asymmetric. The transaction between the trusting peer
and the trusted peer results in a trust value assigned by the trusting peer to the trusted
peer. This value shows the strength of the trust relationship. The trust relationship can
be transitive.

10

2.4 System Model

2.4.1 Modeling The Network

Centralized P2P systems use a centralized index for the files shared by each peer. It sim-
plifies the direct exchange and the sharing of files between peers. However, it represents
a single point of failure which reduces the reliability of the system. In completely decen-
tralized P2P systems, a central authority for storing data and handling all the queries is
not available. Interconnected peers are able to participate in transactions by interacting
with each other and make local autonomous decisions to achieve their objectives. Peers are
responsible for storing, sharing information and handling the queries. Peers act as clients
and request services from other peers as well as servers and provide services to other peers.
These systems provide improved robustness and enhanced scalability compared to central-
ized systems. In [15], the authors indicate the interplay between the degree of autonomy
and the requirement of trust. In these systems, peers are autonomous which leads to loos-
ing control over peers. Since no global view of the system is available, peers will get a
partial and limited perspective of the system by receiving information from other peers.
Trust is more needed to facilitate the interaction among peers. In partially decentralized
P2P systems, some peers (named “superpeers” or “supernodes”) act as local central in-
dexes for files shared by local peers. These systems provide lower discovery time as the
discovery process involves only the supernodes.

In P2P systems, the following terms are used:

• Peers, users, nodes, agents: peers issue queries and reply to them

• Files, resources, items: the requested items from requester peers.

• Transactions: interactions and experiences between peers. In P2P systems, these
interactions can be sharing a file, CPU cycles, or disk storage. A transaction in a
P2P system involves:

– The requester peer: the peer that requests the service.

– The provider peer: the peer that has the requested service and is available to
provide it to the requester peer.

– Intermediary peer: the peer that is involved in a transaction. This peer partic-
ipates to accomplish the transaction and to fulfill the request (e.g., forwarding
messages). The intermediary peer is also referred to as a third party peer or a
mediator or a queried peer.

11

– Recommender peer: peer that sends a feedback to the requester peer.

– Feedback, opinion, rating, experience, appreciation: a peer sends a feedback
as a result of a transaction. A rating is one trust value, while an opinion is
considered as an aggregation of all trust values based on previous transactions
with a provider peer.

2.4.2 Modeling The Nodes

In a P2P file sharing system, peers are expected to exhibit good behavior. Ideally, peers
are expected to be trusted, that they will share good quality files, that they will upload
requested files, and that they will send honest feedbacks. Unfortunately, real life P2P
systems have proved that a mechanism is needed to measure explicitly trust in order to
deal only with trustworthy peers.
There are two types of users’ behavior: Good peers and malicious peers.

Good Peers

Those are the well-behaved peers that will usually send an authentic file. The following is
the expected behavior from good peers:

• Availability: available to share a file, to forward a query, to reply to a query.

• Contribution: a peer contributes positively to the system by uploading authentic
files.

• Credibility/Honesty: Upon receiving a reputation query, a recommender peer sends
an honest feedback.

Malicious Peers

Peers that misbehave to impact badly the system. The adversary is another term to refer
to malicious peers as used in [33]. The maliciousness of peers can appear in different ways
and malicious peers can act individually or by forming collectives. Malicious peers can be
one or more of the following:

• Senders of inauthentic data: these peers upload inauthentic and corrupted data and
send spurious information to pollute the system.

• Liar peers: these peers lie in their feedbacks.

12

• Free riders: take advantage from the system without contributing to it. Although
these peers do not harm other peers, they do have an impact on the performance of
the system. In the literature, they are also referred to as selfish peers, free-loaders
[18] or rogue peers [34].

• Traitors: peers that induce the milking phenomenon. These peers provide authentic
files for a while to get a high reputation value before starting uploading inauthentic
files.

• Colluding Peers: these peers know each other and work together to form a malicious
collective. These malicious peers can upload inauthentic files, decrease the reputation
of good peers (i.e., defaming), or increase the reputation of other malicious peers (i.e.,
flattering).

• Whitewashers: these peers join the system, act maliciously or misbehave then leave
and re-join with new identities to get a new reputation value and eliminate the bad
reputation received previously. In general, it is difficult to trace these peers and
prevent the system from considering them as regular new comers. Systems with
weak identities are vulnerable to whitewashing. Examples of these systems include
KaZaA, Gnutella, and EigenTrust.

• Sybil Attacks: the malicious attacker creates multiple identities allowing the attacker
to control a whole portion of the network.

• Denial of Service (DoS) attackers: these peers consume large amount of resources
from the system to subvert the whole system and bring it down. In P2P systems,
detection, management, and the prevention from these attacks is still an open prob-
lem.

• Unreliable: they can promise availability of specific services and do not deliver them.

• Imposter: they can pose as other peers.

Malicious peers act maliciously for different reasons, including personal characteristics,
psychological, social, and economic factors. For example, movie and music industry pol-
lutes P2P networks to minimize the use of these systems and to push users to buy their
products rather than sharing them for free using P2P file sharing applications. Polluting
these systems is achieved by distributing files with legitimate titles but with silence or
random noise.

13

Peer Identity

To distinguish between peers, identity is required. Each peer in the system is identified by
its identity that must be kept the same during its lifetime. As an example, users in Nice
choose a PGP style identifier. The identifier includes a plain text identification string and
a public key. Desirable characteristics of peers’ identity related to trust include:

• Longevity: peers need to keep the same identifiers during their lifetime [35]. It should
be difficult for peers to change their identity easily (i.e., whitewashing) and start over
by obliterating their past behavior.

• Anonymity: according to the application used, peers’ identity can belong to different
levels of anonymity. Most P2P applications use a simple, user-generated pseudonyms.
In some applications (e.g., freenet), onion routing is used to provide the anonymity
of peers. However, since the peer identity is protected, it will be difficult to track
the actions done by this peer. In general, there is a tradeoff between anonymity and
trust.

• Unforgeability: Unforgeable identities are generated by a central trusted entity or
a set of trusted entities and are given to new comers when they join the system.
Each user is given only one identity. In TrustMe, for example, users are assigned
unforgeable identities. Unforgeable identity is used to protect from whitewashing
(i.e., change of identity to eliminate peer’s history) and sybil attacks (i.e., the use of
multiple identities).

• Spoof-resistance: to prevent malicious peers from impersonating other peers identi-
ties.

• Sybil-attack resistance: peers identity should be resistant to sybil attacks. Some
mechanisms have been proposed to slow the creation of new identities such as im-
posing an entry cost or a registration fee (e.g., Nice), requiring from users to solve a
puzzle that can not be done by a computer, or read some text from a JPEG file.

New Comers Policy

When new comers join the system, these peers do not possess any local information re-
garding other peers in the system. In addition, all the peers in the system do not know
yet the reputation of these new comers. Since new comers to the system are strangers and
their behavior is not known yet, two policies can be adopted:

• The optimistic approach: new comers are trusted. However, other peers may be
disappointed.

14

• The pessimistic approach: new comers are not trusted. However, in this case, new
comers may not be able to build their reputation.

Reputation systems should welcome new comers and give them a chance to increase
their reputation gradually. At the same time, these systems should protect peers from a
new comer in case it turned out to be malicious.

New comers have to assume their responsibility in establishing trust with other peers
by uploading authentic files. They should build and maintain good reputation to become
reputable peers.

2.4.3 Modeling The Reputation Management Infrastructure

In centralized P2P systems, there is a central entity where information regarding peers’
actions can be gathered and accumulated. Peers are controlled and malicious peers can
be identified somewhat easily. Peers can be protected against malicious actions performed
by malicious peers. For these systems, reputation management is also centralized since
the central entity can handle the trust information in addition to the lookup mechanism.
The use of a centralized reputation management infrastructure simplifies significantly the
management of trust information.

In completely decentralized systems, malicious peers have more freedom to act mali-
ciously and perform variety of attacks and it is more difficult to gather all the actions
performed by the peers. In these systems, peers should protect themselves from malicious
peers since they can not be identified easily and hence isolated from the system. Peers are
required to gather information to assess the reliability of peers in providing the requested
service. In these systems, a centralized reputation management entity is possible. [18] is
an example where the Reputation Computation Agent RCA is used to collect reputation
information and compute peers’ reputation. However, the use of a centralized entity will
exhibit a single point of failure and will be easy to attack. A natural possibility is to use
a decentralized reputation management infrastructure to improve the robustness and the
scalability of the system.

The followings are advantages and drawbacks of different types of trust and reputation
management infrastructures:

• Centralized systems: use a trusted centralized server for managing reputation infor-
mation. This server will handle and manage all the reputation data

– Advantages:

1. Easy to use and manage

15

2. Simplifies the mechanism design

3. Offers efficiency since all the reputation data is available locally

4. Helps keeping the data consistent and coherent

– Drawbacks:

1. Difficult to achieve in case not all the peers can trust one entity.

2. Represents a single point of failure and a bottleneck since millions of peers
can send queries to this entity.

3. Represents a single point of attacks by misbehaving peers such as DoS
attacks, sabotage and subversion

4. Expensive to achieve high performance and robustness

5. Not scalable

• Completely decentralized systems: information regarding peers’ reputation is stored
at the peer’s level and this information is scattered throughout the network.

– Advantages:

1. No single point of failure

2. No need for a globally trusted entity

3. Provides robustness and scalability

– Drawbacks

1. Message overhead as many messages are generated in order to maintain and
manage reputation data

2. Flooding is required to get the required information from peers in order to
aggregate different local trust values

3. The topology changes frequently due to the transient nature of peers that
can join or leave the system at any time. Some reputation data may be lost
or inaccessible.

4. Reputation data is more vulnerable to tampering with.

2.5 The Anatomy of Reputation Systems

Sharing experiences between peers will ultimately lead to identifying good peers and iso-
lating malicious ones. Reputation-based P2P systems create the appropriate environment
for peers to rely on each other for downloading authentic files. Since we can not predict
future peers actions, peers’ past actions are used to measure their reputations.

Open systems need robust reputation management. A good reputation system should
[36]:

16

• Identify malicious peers in order not to be selected as transactions partners: this is
a precaution measure before starting the transaction.

• Spread information regarding a malicious peer in case that a negative transaction
occurred: this is a retaliation measure after ending a transaction to help other peers
in future interactions.

The survey of different reputation systems reveals the important mechanisms used to
achieve good reputation management. The peer looking for a file is the requester peer,
and peers that have the requested file are the provider peers. The components and issues
involved in finding a file and downloading it in the case of a reputation-based P2P file
sharing application are the followings:

1. The Local Trust: Here important issues include:

(a) What kind of trust information is gathered?

(b) Where to store trust information?

(c) Is the local trust information sufficient?

2. The Reputation Query: The requester peer sends a reputation query regarding the
potential provider peers. Related issues include:

(a) To whom the requester peer sends a reputation query?

(b) How many peers, should the requester peer contact?

(c) What kind of information is sent to the requester peer?

3. The Reputation Computation

(a) How to deal with liar recommender peers?

(b) How to deal with fraudulent recommender peers?

(c) How to compute the reputation?

4. The Use of Reputation

(a) How to choose a peer based on the reputation value?

(b) How to evaluate a transaction after downloading a file?

5. Credibility Assessment

6. Incentives, Rewards and Punishment

17

The following is a list of most important and representative reputation systems that
have been proposed in the literature and will be used throughout the chapter: eBay [37],
DistributedTrust [38], BinaryTrust [14], P2PBasic and P2PEnhanced [16], EigenTrust [17],
Nice [39], DCRC and CORC [18], Travos [40], XRep [41], Regret [42], MDNT [28], MLE
[21], LimitedReputation [19], CredibilityRecords [43], FGTrust [23], and PowerTrust [44].

2.6 The Local Trust

The requester peer sends a file search query and gets a search reply from the system
containing a list of peers. The requester peer may or may not have previously interacted
with some of the peers in the list. If the requester peer is not a new comer, and has already
downloaded files from other peers, local trust information based on previous transactions
can be used. The requester peer may:

• Eliminate from the list malicious peers that it has already interacted with.

• Accept to deal with good peers that have already provided him a good service.

• May not have any trust information for some of the peers if it did not interact with
them in the past.

2.6.1 What kind of trust information is gathered?

. Some reputation management schemes use the number of negative and positive down-
loads (e.g., EigenTrust), other schemes use the negative downloads only (e.g., complaints
in Binarytrust). For other schemes the size of the download is more important than the
number of uploads. In debit-credit reputation computation DCRC and credit-only repu-
tation computation CORC [18], peers’ contribution is tracked and is considered as their
reputation.

For each transaction, the following information can be gathered for each peer:

1. The type of trust information:

• A qualitative value: positive, negative or both (e.g., satisfied and unsatisfied
transactions in EigenTrust, complaints for negative transactions in Binary-
Trust).

• A quantitative value: the size of the files downloaded counted as positive for
authentic files and negative otherwise.

18

Relying only on positive transactions will lead to dealing with malicious peers that
conducted few successful transactions. While relying only on negative transactions
may eliminate good peers. A combined approach is more efficient in identifying the
real behavior of the peers.

2. A trustworthiness value which represents the outcome of the interaction. This value
can be a binary value 0 or 1 (e.g., XREP, Travos, CredibilityRecords) which means
that a requester peer is satisfied from the transaction or not, the provider peer is
trusted or not trusted. The trustworthiness value can also be a discrete value (e.g.,
Excellent, Good, Fair and, Poor) as in Amazon and DistributedTrust, a scaled integer
(e.g., 1 to 5) (e.g., MDNT) or a real value on a continuous scale from [0,1] (e.g., Nice,
PeerTrust), a probability value (for EigenTrust and PowerTrust). While a binary
value does not allow partial trust, a continuous value expresses better how much
trust is given. However, assigning {0,1} is much easier. The trustworthiness value
can be the result of a transaction (e.g., a cookie which is a signed receipt of successful
transactions in Nice) or computed based on either a qualitative or quantitative value
or a combined approach. In some reputation systems, a value of 0 from [0,1] does
not make a distinction between a malicious peer and a new comer to the system.

3. The time of the interaction: this can be used when computing reputation values (e.g.,
FuzzyTrust, Regret, MDNT, FGTrust).

4. The context of the interaction: this can differ from an application to another. An
application may have different contexts. In file sharing applications, the focus is on
one context which is providing authentic files.

Peers may keep track of all the records with every trusted peer (e.g., eBay) or only one
record that summarizes all the transactions (e.g., TrustModel). Adopting this approach
will reduce the storage cost. Keeping track of trust data will allow to benefit from the
followings [28]:

• Recency: giving more weight to the recent values of the trust values. In this case,
the use of time of interaction is important.

• Trend: it is preferable to know not only the trust value at a specific time slot but also
the trend line over the last few time slots. Understanding the trend is important.

• Cyclical poor performance: keeping history of trust values according to their time
slots may help in detecting such behavior.

• Variability in trustworthiness: it is important to know the variance value to detect
the variability of the service provided.

19

It is important to note that the focus is more on the trustworthiness of peers rather than
files since malicious peers can generate a large number of inauthentic files. Thus, identifying
and isolating malicious peers will improve significantly the quality of the shared files. In
[41], a reputation scheme is proposed for both peers and resources (e.g., files) to overcome
the limitations of reputation schemes that tackle only the problem of peers’ reputation.
In the XRep protocol, each peer maintains two experiences repositories to keep track of
authentic and inauthentic resources in addition to good and malicious peers, the peer had
direct transactions with. Credence is another reputation scheme for identifying content that
is not authentic (e.g., damaged, corrupt, missing contents, dangerous content, misleading
metadata designed to confound user searches). However, computing reputations for files is
usually time consuming when dealing with a large collection of files.

2.6.2 Where to store trust information?

While in centralized P2P systems, the central entity will be used to store trust informa-
tion (e.g., eBay, amazon), in completely decentralized P2P systems, the trust information
regarding a trusted peer can be stored at:

• The trusting peer’s level: in this case, it is necessary to contact all the trusting peers
that have interacted with the trusted peer to compute the trusted peer’s reputation
(e.g., CredibilityRecords). This task is very challenging in completely decentralized
systems where trust information is scattered throughout the network.

• The trusted peer’s level: in this case, trust information is gathered at the trusted
peer’s level (e.g., EigenTrust). This makes the reputation computation process easier,
however, malicious peers may manipulate this information. In DCRC and CORC,
each peer is responsible of storing its own reputation for fast retrieval. To prevent
malicious peers from thwarting the reputation system, reputation scores are signed
by the RCA private key. To avoid that trusting peers drop negative reputation scores
resulting from downloading files, the RCA keeps the negative scores until these peers
send credits for contributing to the system.

• Both the trusting peer’s and the trusted peer’s levels: since negative transactions may
be deleted from the trusted peers records, the trusting peers keep this information
(e.g., Nice).

• Third-Party peers: trust data is stored at another peer instead of the trusting or
the trusted peers. If the trusted peer is responsible to store its reputation data, it
can easily manipulate it. To prevent against such threat, another peer is selected to
be responsible for storing this data. Another problem that may occur is that this

20

intermediary peer may report false trust information. To solve this issue, a set of
peers is responsible to store trust information of each peer. This way, minimizing the
impact of false trust reports. As an example, in secure EigenTrust, a distributed hash
table is used to assign to each peer, score managers that are responsible to store and
compute peers’ global trust values. Also in BinaryTrust, the storage of the output
of negative transactions is realized by other peers.

Since the local trust information stored at each peer’s level in completely decentralized
P2P systems is proportional to the size of the network, the storage cost increases linearly
as the number of peers increases. Trust management schemes should be able to minimize
the storage cost.

When storing reputation data at peer’s level, reputation-based P2P systems need to
provide mechanisms to ensure that reputation data is stored securely to prevent malicious
peers from thwarting the reputation system and also to ensure the availability of trust
information even with the transient nature of peers in P2P systems.

2.6.3 Is the local trust information sufficient?

At this stage, it is important to know if it is sufficient to choose the trusted peer according
to local personal trust information or maybe it is necessary to get feedbacks form other
peers in the system. In case where a few well-behaved peers know each other and always
exchange files between them, local trust information is sufficient for making decisions. In
systems where millions of peers are available to share files, local trust information is very
limited. Therefore, relying on external advice from other peers is imperative. Reputation
systems help in predicting peers’ future behavior based on their past behavior. Since
reputation is based on peers’ opinions, the credibility of the peers must also be assessed.

2.7 The Reputation Query

To gather more information regarding peers that have the requested file, the requester
peer needs to ask other peers about their opinions. The requester peer queries about the
requested peers’ reputations in a specific recommendation context.

In centralized reputation systems, there is no need to gather reputation data from
other peers since the information is already collected and stored at the central entity. In
[18], the RCA facilitates the collection of trust data and the computation of reputation
scores. While in completely decentralized reputation systems, on demand processing of
peers’ reputation is needed by querying peers and collecting reputation data to compute
peers’ reputation.

21

In reputation-based systems, the reputation scheme collects, distributes and aggregates
feedbacks about peers’ past behavior. This scheme helps peers to identify trustworthy
peers and decide whom to trust. However, for reputation systems to operate effectively is
very challenging. These challenges will be detailed in the following sections.

2.7.1 To whom the requester peer sends a reputation query?

In the physical world, when recommendations are needed for a person for example, it is
not practical to send a query to any person. It is preferable to target the people who know
better this person and ask for their feedbacks (e.g., co-workers, friends). The same process
can be applied to the virtual world, however, in completely decentralized P2P systems, it
is difficult to find the peers who interacted previously with the provider peer.

The followings can be the receivers of the reputation query:

1. The neighbors of the requesting peer: the requester peer can use its neighbors in
the overlay network to get reputation information. For example, in the basic polling
(P2PBasic) and the enhanced polling (P2PEnhanced) algorithms, the requester peer
broadcasts a reputation query, asking for the reputation of the provider peers. In
LimitedReputation, the requester peer sends a reputation query to its neighbors
(Neighbor-voting).

2. The peers that have already interacted with the requester peer and that are trust-
worthy. Another alternative in this approach is to ask the trustworthy peers to ask
the trustworthy peers that they have interacted with (e.g., EigenTrust). Using the
transitive trust, the requester peer gets more recommendations. In FuzzyTrust, rec-
ommender peers are chosen based on their number of performed transactions and
local trust values. In LimitedReputation, the requester peer can also select rec-
ommender peers from its friends (Friend-voting), where friends are peers who have
proved to be reputable.

3. The peers that have already provided the requester peer with accurate recommen-
dations in previous queries (e.g., MDNT): the requester peer keeps track of past
recommendations and uses metrics to identify good recommender peers. These rec-
ommender peers are knowledgeable peers and their opinions/ratings are accurate.

4. Specific selection of peers: as an example of social-based trust systems, Regret groups
peers according to their relationships with the trusted agent. The most representative
agent is selected as a recommender peer based on fuzzy rules.

5. Random selection of peers: the requester peer chooses a random set of peers as
receivers of the reputation query.

22

2.7.2 How many peers should the requester peer contact?

The requester peer can send a reputation query asking for recommendations to the follow-
ings:

• A small number of peers: for example, a Time To Live (TTL) can be used to reduce
the generated communication overhead. The forwarding of the query continues until
the TTL is exhausted. However, with the TTL, the requester peer will not get a
wide view of the peers’ reputation, but the communication overhead will be reduced
significantly. In case of Nice, a query is forwarded to only 5 users instead of following
all the paths from the requester peer.

• A large number of peers: the more information is gathered, the more precise is the
reputation of the provider peers. However, this approach incurs additional com-
munication overhead. Each forwarded message consumes bandwidth and processing
at each peer it visits. This approach may impact badly the performance and the
scalability of the system.

In general, there is a tradeoff between accuracy and communication overhead. The
larger the number of feedbacks received from recommender peers, the more accurate is
peer’s reputation. The number of recommender peers is determined according to the
requirements of the P2P application. In addition, if providing a feedback is manually
performed and a rewarding mechanism is not provided, the system may not be able to
collect a sufficient number of feedbacks to compute reputation scores accurately.

The feedbacks sent to the requester peer include information regarding previous inter-
actions with some of the provider peers. It is important to know what kind of information
is conveyed in feedbacks. The content of feedbacks is needed for both credibility analysis
and reputation computation.

2.7.3 What kind of information is sent to the requester peer?

For each provider peer, local trust information stored at the recommender’s level can be
sent to the requester peer in addition to the following information:

1. A confidence value: this value confirms how confident the recommender peer is in
the trust value.

2. the time of recommendation: this time is provided when the feedback is generated
(e.g., eBay, Nice, MDNT, EigenTrust, Travos, Regret).

23

The confidence value is usually based on the number of interactions that occurred be-
tween a recommender peer and a provider peer. A small number of interactions indicates
uncertainty and does not reflect the real peer’s trust value, while a large number of inter-
actions increases the accuracy of the provided trust information. The confidence value can
also be a subjective value given by the recommender peer based on its own experience.
The concept of the confidence value is similar to reviewing a submitted paper and getting a
feedback from a reviewer who indicates explicitly its expertise in the field. This represents
how confident is the reviewer in the review. In Travos, the confidence value is a metric
that represents the accuracy of the trust value based on the number of transactions. If
the requester peer has a low confidence value in its assessment of trust for a provider peer,
then seeking recommendations is necessary. In fact, it could be that the recommendations
will add more misleading information than giving more accuracy to the peer’s reputation.

At the queried peers, the trust information is filtered and only transactions correspond-
ing to the context of recommendation are chosen to be sent to the requester peer. In case
that recommendations pass through intermediary peers (e.g., PeerTrust, Nice, Binary-
Trust, MLE) [45], additional information regarding these peers may be added to ensure
the transparency of this process. In case of TrustModel, each intermediary peer adds some
comments on the credibility of the recommendation received.

The identity of recommender peers can be revealed or not. In P2PBasic, the identity
of these peers is not required. In P2PEnhanced, the identity is included in the feedbacks.
This way, the requester peer is able to identify the peer sending the feedback and gives a
weight to its feedback according to the credibility of this peer.

In some of the proposed reputation systems, the history of all trust transactions for a
specific context are sent to the requester peer. In other systems (e.g., EigenTrust), only an
aggregated trust value is sent to reduce the communication overhead and provide better
scalability, but it lacks transparency. Aggregating feedbacks is a difficult task. The reputa-
tion score must represent the real behavior of a peer. The aggregation method of the trust
values is not clearly described in most reputation systems. In Nice and TrustModel for ex-
ample, any aggregation method can be used by each peer according to its requirements or
by all the peers in the system to ensure homogeneity and avoid conflict of interests. Differ-
ent approaches have been proposed for the feedback aggregation: in Regret, the weighted
average of ratings is computed with the use of recency while in EigenTrust the difference
between positive and negative transactions is normalized. In Travos, the feedback is an
aggregation of the number of successful transactions and unsuccessful ones. The feedbacks
received from recommender peers must provide sufficient information for credibility assess-
ment. Incentive mechanisms are required to encourage peers to send recommendations.

24

2.8 Reputation Computation

Eliciting feedbacks from the peers that received the reputation query, and had already
interacted with some of the provider peers, rises several issues. These peers may:

• Reply to the query honestly: sending the right feedback is the expected behavior
from a well behaved recommender peer.

• Reply to the query dishonestly by lying: sending the wrong feedback in order to
defame competitors or flatter conspirators. Reputation management schemes should
be able to minimize the impact of this threat.

• Ignore the query: a free rider will ignore the need of the requester peer and will
not take into account the reputation query. Ignoring the query by peers that have
already interacted with the provider peers is an act of unreliability.

According to the reputation management scheme, the intermediary peers may trans-
mit or not the feedback to other peers. Upon reception of feedbacks from other peers to
be transmitted to the requester peer, the intermediary peers could omit the feedbacks or
maliciously manipulate the content. Some security mechanisms are required to make sure
that feedbacks are received intact by the requester peer. As an example, the recommender
peer’s digital signature can be added to ensure the recommendation integrity. Reputa-
tion management systems should provide mechanisms to enforce good contribution and
cooperation from the peers that receive the reputation query.

The requester peer receives feedbacks from recommender peers that can be one-hop or
multi-hop from the trusted peer or even all the peers in the system. Different types of
opinions may result:

• First hand opinion: is a direct opinion from the queried peer to a provider peer. The
queried peer has already interacted directly with the trusted peer.

• Second hand opinion: is an indirect opinion from a peer, that has been contacted by
the queried peer, about a provider peer.

• Third hand opinion: is a public opinion

Different weights can be given to the received feedbacks according to their type. Typ-
ically, a first hand opinion is more trustworthy and then more important than the other
ones.

25

This is one of the most important issues in reputation management systems and unfor-
tunately, only few research works have focused on solving this problem. If the feedbacks
received are not credible, the reputation can not be computed accurately. The major-
ity of reputation schemes assume that peers are well-behaved, honest and do not provide
any mechanism to check the accuracy of the gathered opinions which will reduce signif-
icantly the reliability of the reputation system. This problem is also referred to as mis-
representation. In eBay, for example, the credibility mechanism is left to members who
can go through all the ratings and decide if a specific member is credible or not. Recently,
the credibility assessment becomes an important issue since in e-commerce transactions
where money plays an essential factor, accurate reputations are necessary in making the
right decisions.

It is imperative to distinguish between two important issues when dealing with liar and
fraudulent recommender peers:

• Liar recommender peers: the recommender peer had actually a transaction with the
provider peer. The recommender peer may reply negatively even if the output of the
transaction was positive. The recommender peer may lie and provide a dishonest
feedback for different reasons (e.g., to increase the reputation of a colluding peer).

• Fraudulent recommender peers: the recommender peer did not interact with the
provider peer before and provides the requester peer with a feedback. The feedback
can be positive if the provider peer is a colluding peer or negative if the provider peer
is a competitor (i.e., a good contributor peer).

Detecting malicious recommender peers is essential to the accuracy of the reputations
and hence, the reliability of the reputation system. A credibility analysis is required to
filter out recommendations, eliminate the suspicious feedbacks and select the accurate ones.

2.8.1 How to deal with liar recommender peers?

According to [36], there are two basic approaches that have been proposed: Endogenous
and Exogenous methods. In Endogenous methods, the statistical properties of the reported
feedbacks are used to detect unreliable feedbacks. In these methods, most of the proposed
mechanisms assume that liar peers are the minority among peers and so the ratings that
are different from the majority of peers are inaccurate. Exogenous methods rely on other
information such as the reputation of the recommender or its feedback accuracy given its
past recommendations or its relationship with the provider peer.

26

The followings are some mechanisms that have been proposed to minimize the impact
of liar recommender peers:

• Keeping track of past recommendations (e.g., number of accurate and inaccurate
recommendations) and weight the feedbacks according to the credibility of the rec-
ommender peers (e.g., MDNT, Travos, MLE, CredibilityRecords).

• The multivariate outlier detection technique: this technique is used to detect liar
peers in FGTrust [23]. Outlier detection is an important task in data analysis. The
outliers describe the abnormal data behavior which means data that is deviating
from the natural data variability.

• The use of trust and reputation values as credibility metrics for the recommender
peers (e.g., EigenTrust, Nice, FuzzyTrust). Trustworthy peers are considered as
credible while untrustworthy peers are not. This is based on the fact that if peers
are behaving correctly by sending authentic files, these peers will most probably be
honest in their recommendations. In Regret, social relationships are also taken into
account.

• Redundancy: the use of different score managers to compute the trust value and
use a majority vote to eliminate the false reports by malicious score managers (e.g.,
EigenTrust)

• The use of Beta distribution based on previous recommendations as in Travos

• To let only one rating count from any single IP address

• Enforcing policies: in eBay, when a seller receives multiple feedbacks from the same
buyer within the same week, the net effect on that seller’s feedback score is based on
the number of negatives, neutrals and positives received [37].

2.8.2 How to deal with fraudulent recommender peers?

The followings are some mechanisms that have been proposed to minimize the impact of
fraudulent recommender peers:

• Only peers who were actually involved in a transaction are permitted to provide
ratings (e.g., eBay).

• The use of proof of interactions: in TrustMe for example, both entities participating
in a transaction sign a transaction certificate. This proof is needed to report the
output of the interaction.

27

• The use of proof of processing: in DCRC and CORC, the RCA sends proof of process-
ing for peers contribution to the system by processing, forwarding queries, staying on-
line and serving files. To prevent malicious peers from getting credits without actually
participating, the RCA maintains a transaction state where the credit processed list
contains the list of peers who have already received the credit. The RCA ensures
that a peer will collect credit only once for the same upload.

It is important to indicate that even with the presence of proof of transactions in
some reputation management systems, it is difficult to prove that effectively there was a
transaction between the two parties. In case of a file transfer for example, it is needed
to prove that the file transfer has actually occurred. This proof must also indicate all
information regarding the file transferred (e.g., size), the peer uploading the file, the peer
downloading it and the time of interaction.

2.8.3 How to compute the reputation?

After filtering the feedbacks and getting rid of dishonest reports and fraudulent ones, the
gathered data from different recommender peers is used for reputation computation in
addition to the local trust data available at the requester peer.

Some of the proposed reputation schemes assign more importance to:

• Bad transactions versus good transactions: in some reputation schemes, it is proposed
that the negative impact of bad behavior on reputation should outweigh the positive
impact of good behavior.

• Local trust data versus the reputation information gathered from other peers: since
the local trust data is more credible than the data collected from other peers. How-
ever, in P2P systems with millions of users, local trust data may not be very helpful
in making decisions.

• Recent transactions versus old ones: to take into account the recency of interactions,
the time of interaction is needed. This will help in identifying the traitors. In some
reputation systems, old transactions are deleted and the focus is more on the recent
transactions. In DCRC, a time stamp is used each time the RCA sends the reputation
scores to peers, while, CORC time-stamps the reputation scores for expiration.

In some proposed reputation systems, a peer’s reputation is equivalent to the group
of peers it belongs to. A group’s reputation can be, for example, the average of all the
members reputations within this group. If the group has a high reputation, all its members

28

are reputable. A peer can be rejected from the group in case it turned out to be acting
maliciously.

Reputation systems should be exigent in terms of accuracy of the computed reputation
according to the risk involved in the transactions. However, several factors affect the
accuracy of reputation values such as: network overheads, congestion and loss of trust data
during peers’ communication. In some circumstances, this inaccuracy may be acceptable
since the goal from reputation systems is to provide an approximation of the real peer’s
behavior.

Different approaches have been proposed to aggregate trust values received from rec-
ommender peers and synthesize them to generate a reputation value for a provider peer
[28, 36]:

1. Deterministic approach: In this approach, peers’ reputation is based on a simple
summation or average of collected ratings. Even in the most popular e-Commerce
applications that involve huge amounts of money, simple operations are used to com-
pute reputation values. The reputation scheme used in eBay, for example, is based
on the sum of the number of positive and negative ratings, while in amazon the
reputation is computed based on the average of all the ratings. A weighted average
of all the ratings is also possible based on different factors such as the credibility of
recommender peers. This approach is easy to use and can be easily understood by
users. Many proposed reputation systems use this approach for reputation compu-
tation. In MDNT, the reputation value is computed based on the weighting factor
for the first, second and third opinions of third-party agents, the reputation opinion
given by a recommender agent, the credibility of the recommender agent, and the
time weighing factor that represents the importance of the opinion depending on
the time of the last interaction between the recommender agent and the provider
agent. In PeerTrust [46], different factors are taken into account such as transaction
and community factors. In DCRC, reputation scores are computed based on Query-
response Credit, the Upload Credit, the Download Debit and the Sharing Credit. In
BinaryTrust, reputation is computed based on the number of negative complaints.

2. Probabilistic approach:

(a) Bayesian Networks: The Bayesian approach uses a probabilistic approach to the
determination of the reputation. It is based on the Bayes formula. Bayesian
systems take binary ratings as input, and are based on computing reputation
scores by statistical updating of beta probability density functions (PDF). Sev-
eral works have used this approach including [32], [47], and [44]. In Travos,
reputation is computed based on Beta Probability Distribution. However, the
Bayesian approach suffers from strong assumptions of independence that are
made.

29

(b) Maximum Likelihood Estimation: MLE [21] uses a probabilistic approach to
compute the reputation value based on the probability of recommender peers
to provide inaccurate information. In MLE, the reputation value is the proba-
bility of a peer to cooperate and it is chosen to maximize the probability of the
available ratings.

3. Fuzzy logic: Trust and reputation can be represented as linguistically fuzzy con-
cepts. The information received from recommender peers is characterized by being
imprecise and not accurately quantified. Fuzzy systems are used to deal with such
situations by providing rules for reasoning with fuzzy measures. Different factors
(e.g., the credibility of recommender peers) can be represented by fuzzy sets and
membership functions are used. Several works have been proposed to compute rep-
utation scores based on fuzzy logic systems including [42, 48]. Regret considers the
following dimensions in reputation computation: the individual dimension which is
the direct trust obtained by previous transactions, the social dimension which refers
to a trust of an agent in relation with a group and finally the ontological dimension
that includes the particularity of each agent. In FuzzyTrust, fuzzy inference is used
to produce local trust values and aggregate them to global reputation values.

4. Flow models: Systems that compute trust or reputation based on transitive iteration
through looped or arbitrarily long chains. As an example, EigenTrust, and FGTrust.

2.9 The Use of Reputation

2.9.1 How to choose a peer based on the reputation value?

After computing the reputation value, the following approaches can be used:

• The ranked-based approach: peers are ranked according to how reliable they are
likely to be. The more reliable they are, the more trusted they are, the more the
requester peer expects to get the required file. In this approach, the peer with the
highest reputation value will be selected to upload the file. Highly reputable peers will
handle almost all the uploads, yielding to an increase in their reputation. However,
these peers will be overwhelmed by download requests. This approach suffers from
unbalanced load share among peers. This approach has been adopted by EigenTrust
and Travos.

• The threshold-based approach: The computed reputation scores may be compared
against a trust threshold value. A random peer from the provider peers whose repu-
tation values are greater than this trust threshold is selected. This approach spreads

30

the load between these peers. This approach has been adopted by Nice, MDNT,
MLE, and BinaryTrust.

• The Probabilistic-based approach: chooses the peer that will upload the file proba-
bilistically based on its trust value. This probability is proportional to its normalized
trust value and with a probability of p% selects a new comer (e.g., 10% for Eigen-
Trust). This approach distributes better the load share among reputable peers, giving
them a chance to increase their reputation in addition to increasing the reputation
of new comers.

Once the requester peer finds a provider peer and it is willing to download from it the
requested file, the requester peer becomes the trusting peer and the provider peer becomes
the trusted peer. Both the trusting and the trusted peers will participate in a transaction.

2.9.2 How to evaluate a transaction after downloading a file?

It is important at this stage that a peer is able to ascertain when a transaction is successful.
In case of failure, it could be due to network congestion or network failure, and sometimes
it is due to the maliciousness of the transaction partner. Assigning a trust value based on
the quality of the transaction is subjective. The subjectivity of trust values is inherent in
most trust systems.

According to a detailed study on eBay, recommender peers may not send negative
feedbacks by fear of reprisals or may also tend to reciprocate in both a positive and a
negative way. To deal with the problem of reprisals, some reputation systems provide
mechanisms such as:

• A peer can have an identity as a regular peer and another identity as a recommender
peer. Recommender peers will not be easily recognized.

• Recommender peers can remain anonymous as in BinaryTrust. Recommender peers
fill complaints and their identity is not provided. In this case, keeping records for
assessing the credibility of recommender peers may not be possible. However, the
identity of the mediators storing the recommendations are known.

• The privacy of recommender peers is protected by using symmetric-key cryptographic
functions as in FGTrust.

31

2.10 Credibility Assessment

After assessing the transaction output, it is imperative to update the credibility of rec-
ommender peers. In MDNT, the credibility of the recommender peer is computed based
on the distance between the transaction result and the trust value provided by this rec-
ommender peer. Updating the credibility of recommender peers will be beneficial for the
assessment of feedbacks in future transactions. In Travos, the credibility of recommender
peers in terms of accuracy of the provided recommendation is updated according to the
transaction output.

In completely decentralized P2P systems, credibility values could be stored at the
trusting peer’s level for easy access in case this information is needed.

2.11 Incentives, Rewards and Punishment

In P2P systems, if all peers receive the same service regardless of their behavior, peers will
not be motivated to strive for high reputation values since they will be always asked to up-
load files without receiving any special benefit or reward. This is why service differentiation
is needed.

The system may reward reputable peers with increased connectivity to other peers,
greater bandwidth, and/or higher priority/probability of performed requests. Peers can
also be rewarded for providing feedbacks and sharing trust data with other peers. While
good peers are rewarded for exhibiting a good behavior, malicious peers can be punished
by sending them lists of peers with low reputation values to download from them. Several
incentive mechanisms have been proposed to motivate peers to contribute to the system
[49, 50, 51, 52, 53, 54, 55].

In [54], the authors introduce a reputation-based mechanism that assigns better service
to higher performing peers. The reputation-based policies are classified into two dimen-
sions: Provider Selection and Contention Resolution. In Provider Selection policies, a peer
among peers providing a service is chosen to provide the service. Three schemes have
been proposed for Provider Selection: Highest Reputation where peer with the highest
reputation is selected, Comparable Reputation where peers can request services only from
peers with reputation values comparable to their reputation and Black List where peers
with low reputation are not providing any service. However, Comparable Reputation policy
uses the concept of “Layered Communities” and provides the requesting peer with a list
of peers having similar reputation values. This approach will incur an important increase
of malicious uploads. Indeed, if a peer receives a service from a lower reputable peer, it
will most probably receive a bad service (e.g., malicious file) and hence does not help the

32

peer in providing good service to others. Contention Resolution policies help in selecting
a peer among all peers requesting a service from the same provider peer. Two policies
are presented: Highest Reputation policy where the peer with the highest reputation is
selected to get the service and Probabilistically Fair w.r.t Reputation policy where a peer
is selected with a probability according to its reputation.

In [53], the authors analyze the effectiveness of different incentives mechanisms to mo-
tivate peers to share files. The authors present a reputation-based peer-approved scheme.
The scheme uses a reputation mechanism based on rating peers according to the number
of files they are advertising. Peers are allowed to download files only from peers with
lower or equal rating. The results show that the scheme can be used to counter the selfish
behavior. However, this scheme will allow malicious peers to advertise a high number of
corrupted files. According to this scheme, these peers will still receive good service. Even
non malicious peers may advertise a large number of non popular or useless files and still
benefit from the system.

In [55], the authors propose a reputation scheme that combines trust and incentive
mechanisms. The proposed scheme uses explicit and implicit evaluations such as files’ vote
and retention time, download volume and users’ rank to construct direct trust relationships.
Based on the reputations, service differentiation is used to motivate users to share, vote
on files, rank users and remove fake files. However, performance evaluation is needed to
assess the performance of the proposed scheme.

In [56], the authors propose a service differentiation based on the services each node has
provided to a P2P community. A resource distribution mechanism is proposed to increase
the utility of the whole network and provide incentive for nodes to share information.
A generalized mechanism that provides incentives for nodes having heterogeneous utility
functions is also described.

The next sections survey centralized and decentralized reputation management systems.

2.12 Centralized Reputation Systems

2.12.1 e-Commerce Applications

The Internet opened up new opportunities for millions of people to interact with each other
through applications such as electronic markets. However, in e-Commerce sites, customers
do not have enough information about the sellers and the products/services offered. Trust
systems create a platform between different parties to help each other and build trust
[35, 57].

33

eBay [37] uses the feedback profile for rating sellers and computing the sellers’ repu-
tation. Buyers rate their transaction partners with a positive or negative feedback, and
explain why. The reputation is computed by assigning 1 point for each positive comment
and -1 point for each negative comment. The reputation score for a seller is the sum of
the received ratings.

The reputation system used in eBay has contributed significantly to increase eBay’s
revenues. eBay recognizes that the collected ratings to compute their members’ reputations
are one of the company’s main assets. eBay relies on a central trusted server to maintain the
reputation system that has been improved recently. For members identity, eBay members
use pseudonyms and personal information is used to identify members and kept confidential
by the system. No special benefits are given to new users to increase their reputation.

The eBay feedback system suffers from the following issues:

• Easy to attack

• A seller may have a good reputation value by satisfying many small transactions even
if he did not satisfy a large transaction.

• No mechanism is used to detect liar members that send wrong feedbacks. This task
is left to users to detect such behavior.

eBay’s reputation concept has been widely used to increase the trust level of online
users. Similar reputation systems have been proposed in e-Commerce applications [28]:

• BizRate.com: is a shopping search engine which lists stores and products. It has an
index of over 30 million products provided by more than 40,000 stores. BizRate.com
claims that they use feedbacks collected from more than one million online users
each month. BizRate.com uses ShopRank which is a proprietary shopping search
and rating algorithm. This algorithm weights up price, popularity and availability
of products against the reputation of the sellers. BizRate.com provides:

– Rating of products: a rating scale of 1-5 stars (awful, poor, average, very good,
excellent). In addition a breakdown of the overall product rating is also available
(e.g., ease of use, portability, sound quality) and the reviews provided by users.
Based on this information, a user can decide to buy or not the product.

– Rating of merchants: for each product, a list of stores that sell the product,
along with the price, the availability of the product and the rating of the store.
This rating is based on a smiley scale (poor, satisfactory, good, outstanding) in
addition to a “Customer Certified” logo for stores that satisfy specific criteria.
This logo increases the users’ trust in these stores. Only collected data during
the last 90 days is considered for computing the merchants’ reputation.

34

• Amazon.com: started as online bookstore and expended to sell different kind of
products. Amazon.com uses ratings for products and for merchants. In merchant
rating, sellers are rated based on the quality of the service provided on a scale from
1 to 5 stars in addition to comments left by buyers. In addition, the “Safe Buying
Guarantee” increases the buyers confidence and encourage them to trust the sellers.
Products in Amazon.com are also rated by users. Electronic products are only rated
while other products are rated and reviews are provided. Users check reviews and
vote whether the reviews are helpful or not.

• MoneyControl.com: is used to track the stock market. People can read different
posted opinions and rate them. These opinions inform the users about the stock
market and help them to make informed decisions regarding the stock they want
to invest in. Opinions given by users are rated on a five stars scale. The average
of all the ratings provided by users for a specific opinion is its overall rating and is
expressed by a number between 0 and 5. Rating of reviewers is also available. A user
can track the users who always provide good opinions. These users form the trusted
agents network. A reviewer’s reputation is based on the number of the trusted agents
who track this reviewer.

• Yahoo.com: provides a variety of products to customers. Both rating of products and
merchants are available. In product rating, users can rate the products in addition to
ratings provided by experts. Customers prefer more this latter rating since the expert
rating is more trusted. Merchants are also rated based on the feedbacks collected
from customers. Customers who made the purchase and rated the merchant are given
more weight than other users.

• CNET.com: provides an up-to-date information regarding technology products. Rat-
ings of products is realized by editors. These editors are experts and their opinion
is more trusted by customers. Editors use the products and rate them according to
different criteria (e.g., set up, design, features, performance, service and support) ac-
cording to the type of the product (e.g., camera, computer). To compute the quality
of a product, a specific weight is given to each criterion. The rating generated is a
numerical score between 1 (Abysmal) and 10 (Perfect). Users can also provide their
opinion regarding a specific product to exchange information between each other.
Ratings for merchants is also provided based on four criteria: site functionality, store
standards, order fulfillment, and customer feedback.

The feedbacks received from online users represent a rich set of collected information
(e.g., ratings, comments, opinions, feedbacks) that help the business managers in discov-
ering and identifying the needs of customers and improving the services provided to them
and hence, increasing the customers’ trust in the business. As a consequence, the profit

35

generated is increased in addition to the business reputation and value. The feedbacks
received strengthen the relationship between customers and the business. In addition,
they provide to online users the information needed to reduce the risk involved in virtual
environments. While in physical environments, customers can check the products before
buying them, exchanging information by sending feedbacks allows customers to make in-
formed decisions.

2.12.2 P2P Systems

Although P2P systems use a distributed overlay for search and control messages, a cen-
tralized reputation system is used.

Reputation Management using DCRC and CORC

In [18, 22], the reputation system uses objective criteria to track peers’ contribution to the
system. Each peer stores the reputation value locally for a fast retrieval. Two mechanisms
are proposed to compute the reputation:

• The Debit Credit Reputation Computation (DCRC)

• The Credit Only Reputation Computation (CORC)

By using a Reputation Computation Agent (RCA), peers’ reputations are updated
periodically in a secure and distributed manner. The DCRC mechanism credits peers for
serving content and debits for downloading. The second mechanism (CORC) credits peers
for serving content with no debits for downloading. The two mechanisms credit peers
for query processing, query forwarding and for staying online. RCA is responsible for
computing peers’ reputation and certain amount of accuracy is lost due to the periodic
update of reputation scores and the loss of data during the communication with RCA. Peers
can be differentiated according to their behaviors and their capabilities. The behavior of
a peer depends on its contribution to forwarding, processing requests and uploading files.
The capability of a peer depends on the processing power, memory, bandwidth and storage
capacity.

In DCRC, a peer’s reputation score is computed using the following components:

• Query-Response Credit: peers are credited for being online and processing query-
response messages.

• Upload Credit: each peer uploading a file gets a credit for serving the file and con-
tributing to the good functioning of the system.

36

• Download Debit: each peer downloading a file, will get a debit.

• Sharing Credit: a peer gets credit for sharing hard-to-find files.

The CORC mechanism is similar to the previous scheme except that the download will
not be debited. In order to prevent peers from acting maliciously once they get a high
CORC score, CORC time stamps the reputation scores for expiration.

Drawbacks:

• RCA is contacted periodically by peers for updating peers’ reputation scores. This
is potentially a central point of failure.

• RCA needs to be replicated to ensure system robustness. However, no replication
schemes have been proposed.

• Malicious downloads are not taken into consideration in peers’ reputation.

In [22], two methods for tracking reputation are proposed: Strong Reputations and
Weak Reputations. In Strong Reputations, the RCA is expected to have a copy of all
the content served by peers to ensure content reliability. In addition, the RCA crawls
periodically the P2P topology to maintain snapshots of the topology. This assumption is
not practical in real P2P systems even with the fact that RCA is not required to serve the
content. This proposed scheme for reputation tracking incurs higher overhead compared
to Weak Reputations.

In [49], a Service Differentiation Protocol (SDP) for service differentiation in completely
decentralized unstructured P2P networks is proposed. This protocol works as follows:

• During the search phase, a peer sends its reputation score along with the Query
message. Each peer that receives this query extracts the reputation score and maps
this value to a Level of Service (LoS). This peer will provide this LoS to the requester
peer.

• During the content download phase, the peer requesting the file sends its reputation
score to the peer uploading the requested file. This peer will send the file with a rate
of transfer according to the reputation score of the requester peer.

37

A Fine-Grained Reputation System: FGTrust

In [23], the authors propose a reputation system built upon the multivariate Bayesian
inference theory. [23] defines the reputation of a server (i.e., file provider, peer) as the
probability that it is expected to demonstrate a certain behavior, as assessed by a client
based on self experiences (i.e., the output of direct transactions) and users’ feedbacks.

For reputation management, a centralized server is used as:

1. Account Manager: crediting/rewarding users and maintaining social groups.

2. Query Processor: for reputation queries

3. Feedback Collector: collects feedbacks

4. Reputation Engine: computing reputation scores

FGTrust has the following characteristics:

• Reputation data: After each transaction with a server, the user will increment the
corresponding Quality of Service (QoS) level by one. This way, each user keeps only
one vector for each server he interacted with.

• Reputation data storage: QoS information is stored across system users either in a
random fashion or through a distributed hash table. In this latter case, the central
server let λ users store the reputation feedback to improve system tolerance in case
users are not available. Higher values of λ leads to higher fault tolerance, larger
communication overhead and storage cost.

• Reputation computation: Users keep QoS experiences with servers after each transac-
tion. They return QoS experiences after receiving a query from the centralized server.
Users may inquire the centralized server about servers’ reputations. Collecting all
QoS information by the centralized server simplifies significantly the computation of
peers’ reputations. Old experiences are not as important as recent ones.

Drawbacks:
The centralized server is a single point of failure and is easy to attack (cf. Section 2.4.3).

38

2.13 Decentralized Reputation Systems

Since decentralized P2P applications are characterized by the absence of a central authority
that coordinates the reputation management. Peers store information about past expe-
riences with other peers and may be required to get other peers’ opinions for reputation
computation. Several decentralized reputation management schemes have been proposed
for completely decentralized systems [14, 16, 17, 19, 20, 21].

2.13.1 The Distributed Trust Model: DistributedTrust

Abdul-Rahman et al. [38] proposed a model for trust based on distributed recommenda-
tions. This work is one of the first works on distributed trust models and that can be used
in P2P systems. The proposed approach is based on four goals:

• Decentralization: each agent is responsible for managing trust information.

• Generalization of the notion of trust by using trust categories and trust values for
different levels of trust in each category.

• The use of explicit trust statements in order to reduce ambiguity.

• Recommendations are used to get trust information regarding other agents in the
system.

In this trust model, a trust relationship is between two entities, is non symmetrical and is
conditionally transitive. The model has two types of trust relationships:

• Direct trust relationship: when an agent has trust in another agent.

• Recommender trust relationship: when an agent trust another agent to give recom-
mendations about another agent’s trustworthiness.

In this approach, each agent stores its trust data regarding other agents. Key-based
encryption is used to protect recommendation messages from malicious agents. Network
traffic is generated only for recommendations in case that the agent has not a direct trust
value for another agent in the system.

Drawbacks:

• Each agent needs to store all history of past experiences and received recommenda-
tions. Storing this information will provide for the user a kind of global view of the
whole network, however, a large storage capacity is needed.

39

• Updating this information can be time consuming and difficult.

• Increase of network traffic due to message exchange between agents in order to get
reputation information.

2.13.2 The Binary Distributed Trust Model: BinaryTrust

In [14], the trust model is based on binary trust. An agent can be trustworthy or not. Each
transaction between two agents can be either performed correctly or not. When an agent
cheats, this agent becomes untrustworthy and a complaint is sent to other peers. In [14],
only dishonest transactions are considered, based on the fact that malicious behavior is the
exception. Reputation of a peer is based on the global knowledge of the complaints. PGrid
that is a data storage, is used to store complaints. This trust model works as follows:

• A peer files a complaint about another peer by sending the complaint to other peers
using insert messages

• When a peer wants to inquire about the trustworthiness of another peer, it will search
for the complaints on that peer. In order to avoid additional traffic overhead, once
this peer receives similar trust information from a certain number of peers, there is
no need for further search.

Drawbacks:

• Some peers may receive complaints about themselves. Conflict of interest may occur
and peers can delete this information to drop the complaints.

• No mechanism is provided to prevent from inserting arbitrary complaints about peers

• Maintenance of PGrid is required.

2.13.3 Reputation Management: P2PBasic and P2PEnhanced

In [16], the distributed polling algorithm P2PRep is used to allow a servant p (i.e., the
resource requester) looking for a resource to ask about the reputation of offerers (i.e resource
providers) by polling peers. After receiving a response from all the resource providers
available to provide peer p with the requested resource, peer p selects a set of peers from
the offerers and broadcasts a message asking other peers to give their opinion about the
reputation of the offerers. Two variants of the algorithm are provided: in the basic polling,
peers send their opinion and peer p uses the vote to determine the best offerer. In the

40

enhanced polling, the peers provide their own opinion about the reputation of the offerers
in addition to their identities. This latter will be used by peer p to weight the vote received.

Credibility Management is considered in the enhanced polling algorithm. Trust data of
the peers sending their opinion to the resource requester will be considered in computing
the reputation of the resource providers. Credible peers are given more weights in the
reputation computation. In the basic polling algorithm, credibility of peers is not taken
into consideration.

Drawbacks:

• The proposed schemes incur considerable overhead by polling peers for their votes.
The basic polling algorithm checks whether the voters have provided the vote by
sending TrueVote and TrueVoteReply. In the enhanced polling algorithm, AreYou
and AreYouReply messages are used to check the identity of the voters. This will
further increase the network overhead.

2.13.4 Reputation Management by the XRep Protocol: XRep

In this paper [41], the authors propose an approach that uses combined reputations of
servents and resources. The authors describe the XRep protocol used for maintaining
and exchanging reputations and its advantages against security attacks in P2P systems.
In XRep, each servent maintains information based on its own experience with resources
and servents and can share this information with other peers. Each peer maintains two
experience repositories:

• A resource repository: for storing resources’ identifiers and a binary value to describe
each resource if it is good or bad

• A servent repository: for storing the servent’s identifier for each peer it interacted
with, in addition to the number of successful and unsuccessful downloads.

The XRep protocol has the following phases:

• Resource searching phase: searches for the peers that have the requested resource.

• Resource selection and Vote polling phase: selects the resource from the received list.
The requester peer broadcasts Poll messages to enquire about the reputation of the
resource and the peers providing this resource.

41

• Vote evaluation phase: evaluates the reputation of the requested resource based on
the received votes.

• Best servent check phase: checks that the best servent provides really this resource
and that the resource digest is in fact reliable.

• Resource downloading phase: decides from which servent to download the resource
and contact this servent directly for the download operation.

Drawbacks:

• Inquiring about the reputation of resources and the resource providers incurs consid-
erable traffic overhead.

• No performance results are provided to prove that the reputation management based
on both the resources and the servents outperforms the schemes that are based only
on the reputation of the servents.

2.13.5 Reputation Management using EigenTrust

In [17], the EigenTrust algorithm assigns to each peer in the system a global trust value
based on peer’s history of uploads. This trust value reflects the experiences of all peers
with the peer. The authors propose a distributed and secure method to compute global
trust value based on power iteration.

EigenTrust has the following characteristics:

• Reputation data: local trust values that represents the number of both satisfied and
unsatisfied transactions. Local trust values are normalized and are between 0 and 1.

• Reputation computation: EigenTrust is based on transitive trust. The global repu-
tation of a peer i is given by the local trust values assigned to peer i by other peers,
weighted by the global reputations of the assigning peers. The use of transitive trust
leads to a system where global trust values correspond to the left principal eigen-
vector of a matrix of normalized local trust values. Since each peer i computes and
reports its own trust value, malicious peers can easily report false trust values. In
secure EigenTrust, a distributed hash table is used to assign score managers that
are responsible to compute global trust values. Each score manager is responsible
for a set of peers. For each peer, the score manager learns about the peers that
downloaded files from this peer and gets trust assessments from them.

42

• Credibility mechanism: different score managers are used to compute the global trust
value for a peer. A majority vote is used on the trust values to reduce the impact of
malicious score managers that report false trust values.

• Malicious peers policy: EigenTrust is robust to malicious collectives of peers who
know each other and try collectively to subvert the system. In secure EigenTrust,
using the one-way hash function, it is not possible for a score manager to know
from whom the global trust value is computed. Malicious peers can not increase the
reputation of each other. In addition, peers can not know their location in the hash
space, thus, peers are unable to manipulate their own trust value. The system breaks
up malicious collectives through the presence of pre-trusted peers.

Drawbacks:

• Normalizing local trust values will not make the distinction between peers who the
requester peer did not interact with and peers that performed more unsatisfied trans-
actions than satisfied ones.

• The scheme requires reputations for each provider peer to be computed on-demand
which requires cooperation and collaboration from a large number of peers in per-
forming computations.

• The scheme introduces additional latency and requires long periods of time to collect
data and compute a global trust value for each provider peer.

• The use of a distributed hash table and score managers for each peer in the system
in order to collect trust local information and compute global trust values increases
significantly the communication overhead.

2.13.6 Limited Reputation Sharing: LimitedReputation

In [19], the proposed algorithms use only limited reputation sharing between peers. Each
peer records statistics and ratings regarding other peers. As the peer receives and verifies
files from peers, it updates the stored data. In the proposed voting reputation system, a
requester peer receives ratings from other peers and weights them according to the ratings
that the requester peer has for these peers. The peers can be selected from the neighbor
list (Neighbor-voting) or from the friend list (Friend-voting). In the latter case, friends are
chosen from peers who have proved to be reputable. Note that a peer can be reputable,
but not credible. No mechanism is given to detect liar peers.

43

2.13.7 Trust and Credibility Records: CredibilityRecords

In [43], a reputation-based distributed trust system is proposed. In this system, the out-
comes of past transactions are stored in trust vectors. These vectors are maintained by
peers that perform the downloads. Trust vectors are constant length, binary vectors of m
bits. Each bit represents the result of a transaction: 1 if successful, 0 if not. A number is
associated with each vector to indicate the number of significant bits. When the requester
peer receives a list of provider peers, the peer will compute the reputation values for these
peers based on local information. If this information is not available, a trust query is issued
in order to inquire about the reputation of the provider peers. The responses are weighted
by the credibility ratings of recommender peers. The credibility vectors are similar to the
trust vectors. Each bit represents the result of a previous judgment: 1 if the judgment was
right, 0 if not.

2.13.8 Reputation Management using CCCI: MDNT

In [28], the authors presented a conceptual framework for measurement of quality and trust.
They presented quality assessment through CCCI metrics (Correlation of delivered quality
against defined quality, quality Commitment to each of the defined Quality Assessment
Criteria, Clarity of each criterion from both parties’ views and Influence of each criterion
on the overall quality assessment).

The CCCI methodology for a trustworthiness measure provides four metrics, and defines
the maximum possible correlation value for a business service interaction, Corrqualities and
the maximum possible values of Commitcriterionc, Clearcriterionc, Infcriterionc. Using these
metrics, the trustworthiness value is computed.

2.13.9 Cooperative Peer Groups in Nice

Nice system is a platform for implementing cooperative applications over the Internet. A
cooperative application allocates a subset of its resources (e.g., processing, bandwidth and
storage) to be used by peers. In Nice, the resource provider is trusted. To access a remote
resource, the trustworthiness of the resource requester is inferred. A trust value represents
how likely a user considers another user to be cooperative.

In a successful transaction between two users Alice and Bob where Alice consumes a
set of resources from Bob, Alice signs a cookie. This cookie states that she has successfully
completed a transaction with Bob. A cookie can be stored by Bob to prove his trustwor-
thiness to others. However a negative cookie may be destroyed by Bob. In this case, Alice
may store it.

44

In Nice, each user stores a set of signed cookies. In case Alice wants to get resources
from Bob, there are two possibilities:

• Alice has cookies from Bob: Alice gives these cookies to Bob and Bob computes a
trust value for Alice

• Alice has no cookies from Bob: Alice uses the cookies that she has. The users
who signed these cookies are contacted to check if they have cookies from Bob. For
example, Alice has a cookie from Carol, and Carol has a cookie from Bob. Alice gets
a copy of the cookie that Carol has and presents the two cookies to Bob. This means
that Bob trusts Carol who trusts Alice. Based on these cookies, Bob infers a trust
value for Alice. Based on this trust value, the requested resource will be granted or
not to Alice.

2.13.10 BitTorrent

BitTorrent, is a widely used second generation P2P protocol. In BitTorrent, files are
split up into chunks (e.g., 256 Kbytes) and the tit-for-tat strategy is adopted. Using this
strategy, peers are able to optimize their download and upload rates. Peers typically upload
to the k peers that recently provided it with the best downloading rate. The process of
temporarily refusing to upload to some peers is called choking. BitTorrent also include
a mechanism called optimistic unchoking by letting peers to upload chunks of files to
randomly selected peers. This gives the new comers a chance to download pieces of data.
Recent studies [58, 59, 60] have shown that the tit-for-tat strategy does not effectively
reward good peers and punish free riders. Selfish peers can get more bandwidth while
honest peers can receive low download rates. In [34], trust has been incorporated to the
BitTorrent protocol, however, in that work trust is defined in terms of uploads compared
to the downloads not in terms of maliciousness of the provider peer.

Tables 2.1 and 2.2 present a summary of some of the proposed reputation management
systems according to the anatomy presented in Section 2.5.

45

D
C

R
C

C
O

R
C

F
G

T
ru

st
D

is
tr

ib
u
te

d
T
ru

st
B

in
ar

y
T
ru

st
P

2P
B

as
ic

R
ep

u
ta

ti
on

m
an

ag
e-

m
en

t
ce

n
tr

al
iz

ed
ce

n
tr

al
iz

ed
ce

n
tr

al
iz

ed
d
ec

en
tr

al
iz

ed
d
ec

en
tr

al
iz

ed
d
ec

en
tr

al
iz

ed

T
ru

st
in

fo
rm

at
io

n
p
ee

r
co

n
tr

ib
u
-

ti
on

is
b
as

ed
on

u
p
lo

ad
s,

d
ow

n
lo

ad
s,

p
ro

-
ce

ss
in

g
re

q
u
es

ts
an

d
sh

ar
in

g
h
ar

d
to

fi
n
d

fi
le

s

p
ee

r
co

n
-

tr
ib

u
ti

on
is

b
as

ed
on

u
p
lo

ad
s,

p
ro

ce
ss

in
g

re
q
u
es

ts
an

d
h
ar

d
to

fi
n
d

fi
le

s

Q
oS

ex
p
e-

ri
en

ce
s

d
iv

id
ed

in
to

tr
u
st

ca
t-

eg
or

ie
s

an
d

tr
u
st

va
l-

u
es

fo
r

d
iff

er
en

t
le

ve
ls

of
tr

u
st

in
ea

ch
ca

te
-

go
ry

n
eg

at
iv

e
tr

an
s-

ac
ti

on
:

co
m

-
p
la

in
t

su
cc

es
sf

u
l,

u
n
su

cc
es

sf
u
l

d
ow

n
lo

ad
s

T
ru

st
in

fo
rm

at
io

n
st

or
ag

e
tr

u
st

ed
p
ee

r
tr

u
st

ed
p
ee

r
d
iff

er
en

t
p
ee

rs
tr

u
st

in
g

p
ee

r
d
iff

er
en

t
p
ee

rs
tr

u
st

in
g

p
ee

r

S
en

d
in

g
a

re
p
u
ta

ti
on

q
u
er

y
n
o

n
o

n
o

ye
s

ye
s

ye
s

N
u
m

b
er

of
re

co
m

-
m

en
d
er

p
ee

rs
-

-
-

la
rg

e
fe

w
la

rg
e

C
h
ec

k
in

g
re

co
m

-
m

en
d
er

p
ee

rs
cr

ed
ib

il
-

it
y

re
ce

ip
t

of
th

e
tr

an
sa

ct
io

n
re

ce
ip

t
of

th
e

tr
an

s-
ac

ti
on

th
e

u
se

of
so

ci
al

gr
ou

p
s

th
e

u
se

of
tr

u
st

ed
re

c-
om

m
en

d
er

p
ee

rs
n
o

m
ec

h
an

is
m

n
o

m
ec

h
an

is
m

In
fo

rm
at

io
n

u
se

d
to

co
m

p
u
te

re
p
u
ta

ti
on

cr
ed

it
fo

r
u
p
-

lo
ad

in
g,

d
eb

it
fo

r
d
ow

n
lo

ad
in

g,
cr

ed
it

fo
r

q
u
er

y
p
ro

ce
ss

in
g

an
d

sh
ar

in
g

h
ar

d
to

fi
n
d

fi
le

s

cr
ed

it
fo

r
u
p
lo

ad
-

in
g,

cr
ed

it
fo

r
q
u
er

y
p
ro

ce
ss

in
g

an
d

sh
ar

-
in

g
h
ar

d
to

fi
n
d

fi
le

s

ou
tp

u
t

of
d
ir

ec
t

tr
an

sa
c-

ti
on

s
an

d
re

ce
iv

ed
fe

ed
b
ac

k
s

p
as

t
tr

an
sa

ct
io

n
s

an
d

re
ce

iv
ed

re
co

m
m

en
d
a-

ti
on

s

n
u
m

b
er

of
co

m
-

p
la

in
ts

th
e

d
iff

er
en

ce
b
et

w
ee

n
p
os

it
iv

e
an

d
n
eg

at
iv

e
vo

te
s

T
ab

le
2.

1:
R

ep
u
ta

ti
on

M
an

ag
em

en
t

S
y
st

em
s

46

C
om

p
on

en
ts

P
2P

E
n
h
an

ce
d

X
R

ep
E

ig
en

T
ru

st
L
im

it
ed

R
ep

u
ta

ti
on

C
re

d
ib

il
it
y
R

ec
or

d
s

R
ep

u
ta

ti
on

m
an

ag
e-

m
en

t
d
ec

en
tr

al
iz

ed
d
ec

en
tr

al
iz

ed
d
ec

en
tr

al
iz

ed
d
ec

en
tr

al
iz

ed
d
ec

en
tr

al
iz

ed

T
ru

st
in

fo
rm

at
io

n
su

cc
es

sf
u
l,

u
n
su

cc
es

sf
u
l

d
ow

n
lo

ad
s

re
so

u
rc

e
re

p
os

i-
to

ry
:

go
o
d

or
b
ad

,
p
ee

r
re

p
os

-
it

or
y
:

th
e

n
u
m

-
b
er

of
su

cc
es

sf
u
l

an
d

u
n
su

cc
es

sf
u
l

tr
an

sa
ct

io
n
s

sa
ti

sf
ac

to
ry

an
d

u
n
sa

ti
sf

ac
to

ry
tr

an
sa

ct
io

n
s

n
u
m

b
er

of
au

th
en

ti
c

fi
le

s
h
on

es
t

an
d

d
is

h
on

es
t

tr
an

sa
ct

io
n
s

T
ru

st
in

fo
rm

at
io

n
st

or
ag

e
tr

u
st

in
g

p
ee

r
tr

u
st

in
g

p
ee

r
sc

or
e

m
an

ag
er

s
tr

u
st

in
g

p
ee

r
tr

u
st

in
g

p
ee

r

S
en

d
in

g
a

re
p
u
ta

ti
on

q
u
er

y
ye

s
ye

s
ye

s
ye

s
ye

s

N
u
m

b
er

of
re

co
m

-
m

en
d
er

p
ee

rs
la

rg
e

la
rg

e
la

rg
e

n
ei

gh
b
or

s,
fr

ie
n
d
s

fe
w

C
h
ec

k
in

g
re

co
m

-
m

en
d
er

p
ee

rs
cr

ed
ib

il
-

it
y

th
e

n
u
m

b
er

of
ag

re
em

en
ts

an
d

d
is

ag
re

em
en

ts

n
o

m
ec

h
an

is
m

re
p
u
ta

ti
on

of
p
ee

rs
re

p
u
ta

ti
on

of
re

co
m

-
m

en
d
er

p
ee

rs
th

e
n
u
m

b
er

of
ri

gh
t

an
d

w
ro

n
g

ju
d
gm

en
ts

In
fo

rm
at

io
n

u
se

d
to

co
m

p
u
te

re
p
u
ta

ti
on

tr
u
st

in
fo

rm
a-

ti
on

w
ei

gh
te

d
b
y

th
e

cr
ed

ib
il
it
y

of
re

co
m

m
en

d
er

p
ee

rs

re
ce

iv
ed

vo
te

s
lo

ca
l

tr
u
st

va
l-

u
es

w
ei

gh
te

d
b
y

th
e

gl
ob

al
re

p
-

u
ta

ti
on

s
of

th
e

p
ee

rs

re
ce

iv
ed

ra
ti

n
gs

w
ei

gh
te

d
b
y

th
e

re
p
u
ta

ti
on

of
th

e
re

co
m

m
en

d
er

p
ee

rs

re
co

m
m

en
d
at

io
n
s

w
ei

gh
te

d
b
y

th
e

cr
ed

i-
b
il
it
y

of
re

co
m

m
en

d
er

p
ee

rs

T
ab

le
2.

2:
R

ep
u
ta

ti
on

M
an

ag
em

en
t

S
y
st

em
s

(c
on

d
.)

47

2.14 Partially Decentralized Systems

KaZaA Media Desktop (KMD) a proprietary partially-decentralized P2P system has intro-
duced Participation Level for rating files and peers. This participation level is considered
as peers’ reputation in the literature. Priority is given to peers with high participation level,
however the exact process of how this priority is given is not known. In KaZaA, malicious
peers will still have a high value of participation level even if their participation is affecting
badly other peers if they are uploading corrupted content. KaZaA has no mechanism to
detect malicious peers.

In [61], the authors propose SupP2PRep which is a protocol for reputation management
via polling in P2P networks with superpeers. In [61], when a servent is looking for a
resource, it broadcasts a Query message and receives a list of provider peers. The requester
peer polls its peers by broadcasting a message PollRequest requesting their opinion about
the selected provider peers. These peers reply with a PollReply. The superpeers collect the
PollReply messages into one message CumulativePollReply and then send it to the requester
peer. This protocol incurs additional messages overhead for direct communication between
peers. No performance evaluation is presented.

2.15 Design Requirements

Reputation systems should have minimal overhead in terms of infrastructure, computation,
storage and message complexity. The design of reputation management schemes must
consider the followings issues [36]:

• Enforcing Local Control: as trust data can be stored by peers in the system, it is
important not to allow these peers to arbitrarily manipulate trust data. Local control
mechanisms are needed to protect trust data.

• Minimizing Storage Cost: this can be achieved by minimizing the trust data that
need to be stored at peers level.

• Minimizing Bandwidth Cost: this can be realized by minimizing the messages ex-
changed between peers.

• Fault Tolerance: the topology of P2P networks is changing frequently due to the
transient nature of peers that join and leave at any time. Leaving the system without
any notice, may result in unavailability of trust information stored at peers level.
Trust information need to be replicated to assure having the required information
when needed.

48

• Scalability: the ability of the reputation scheme to scale with an increase in the
number of peers. Peers will need to handle more trust data by collecting, storing,
generating more computations and replying to queries. To investigate the scalability
of a reputation system, it is needed to address the load placed on peers, especially
on highly reputable ones, due to high demand for upload transactions and on the
network as a result of exchanging messages between peers.

• Reliability: reputation systems should provide mechanisms to protect peers from
malicious threats. Based on peers’ reputation, peers can be identified as good or
malicious. Peers need to rely on reputation systems to efficiently identify malicious
peers and isolate them from the system. The more reliable reputation systems are,
the more trust is given by peers to these systems.

2.16 Concluding Remarks

Reputation is used to build trust among peers, minimize the risk involved in the trans-
actions, and increase users’ confidence and satisfaction. In this chapter, we surveyed
reputation-based trust management in P2P systems. We investigated research works pro-
posed to handle peers’ reputation. To understand better the reputation systems, we identi-
fied typical components. A description of the role of each component and their relationships
is presented.

Several reputation management systems have been proposed for centralized and com-
pletely decentralized systems. While centralized systems suffer from the single point of
failure, the major challenge in completely decentralized systems is the expensive search.
Partially decentralized P2P systems overcome the weaknesses of centralized and completely
decentralized systems. Partially decentralized P2P systems require efficient reputation
management systems.

The next chapter introduces the trust management framework. We describe the first di-
mension of trust, named the Authentic Behavior, and the proposed reputation management
schemes.

49

Chapter 3

Trust Management: Authentic
Behavior

3.1 Trust Management Framework

We propose to address trust in a peer-to-peer system according to the following dimensions:
1) Authentic Behavior, 2) Credibility Behavior, and 3) Contribution Behavior

Authentic Behavior (AB): this is the reliability of a peer in providing accurate and
good quality files. This value represents the reputation of a peer. It allows to differentiate
between good and malicious peers.

Credibility Behavior (CB): this represents the sincerity of a peer in providing a honest
feedback. The Credibility Behavior is an important indicator that allows to identify liar
peers and reduce their effect on the reputation system.

Contribution Behavior (CTB): this represents the participation of a peer in terms of
sharing files and positively contributing to the system. This value allows to distinguish
between peers that contribute positively1 to the system (i.e., altruistic) and the free riders
(i.e., egoistic).

The trust given to a peer is based on its behavior in terms of Authentic Behavior
(sending authentic or inauthentic files), Credibility Behavior (lying or not in the feedback)
and Contribution Behavior (availability and involvement) (cf. figure 3.1). The trust given
to peer Pi is characterized by the triplet (ABi, CBi, CTBi). Peers with a good behavior are
peers that send authentic files, honest feedback, and are available to share files in addition
of being effectively involved in uploading files. Good peers will have high values along the
three defined dimensions.

1We do not consider uploading malicious content as a contribution.

50

Authentic Behavior (AB)

Credibility Behavior (CB)

Contribution Behavior (CTB)
Liar

Not liar

Egoistic Altruistic

Malicious

Not malicious

Figure 3.1: The Three Dimensions of Trust

In this chapter, we focus on the first dimension of the proposed trust management
framework. In all other works, what researchers call reputation is in fact the Authentic
Behavior of the peer which represents only one dimension of the trust associated with the
peer.

3.2 Partially Decentralized Systems

In partially decentralized P2P file sharing systems, powerful computers are selected to
become supernodes and act as a proxy for peers that are connected to them. Supernodes
are involved only during the search process, while in the download process, peers are
connected directly to each other. Partially decentralized P2P systems have been proposed
to reduce the control overhead needed to run the P2P system. FastTrack-based systems
have grown very quickly with no slowdowns that characterized Napster and Gnutella in
their growth [62].

Several reputation management systems have been proposed in the literature. However,
they have focused on completely decentralized P2P systems. The proposed reputation
management schemes for completely decentralized P2P systems are not compatible with
partially decentralized systems. These systems rely on supernodes for control message
exchange which means there is no direct management messages that are allowed among
peers.

51

In completely decentralized P2P systems, each peer may record information on past
experiences with all peers it has interacted with and may use a voting system to request
peers’ opinions regarding the peers that have the requested file. Our goal is to take ad-
vantage of the use of supernodes in partially decentralized P2P systems for reputation
management. In addition to being used for control message exchange, a supernode will
also be used to store reputation data for peers it serves, update this data, and provide
it to other supernodes. Since each peer interacts only with one supernode at a time (an
assumption that can be justified by the use of FastTrack protocol), the proposed approach
achieves more accuracy and reduces message overhead significantly. Once a supernode
sends a search request on behalf of a peer, the supernode will get a list of peers that have
the requested file and their reputations from their corresponding supernodes. In this case,
no voting system is needed since the reputation data will represent all past experiences
from all the peers that had interacted with these peers. A supernode may be also used to
provide service differentiation based on reputation data of the peers it is responsible for.

We presented the advantages and drawbacks of centralized and completely decentral-
ized reputation management systems in Section 2.4.3, we propose partially decentralized
reputation management system that collect reputation data and compute reputation values
at supernodes level:

• Advantages:

1. Efficient search for reputation data of the provider peers compared to completely
decentralized systems

2. Lower discovery time for reputation data

3. Easier to manage

4. Scalable

5. Small number of supernodes to manage reputation data

6. Easy access to reputation data by other supernodes

7. Alleviating the peer from the burden of replying to unnecessary queries as it is
the case in completely decentralized P2P systems. Peers are contacted by their
supernodes only if they have the requested file.

8. Efficient enforcement of service differentiation (as we will see in chapter 5)

• Possible issues:

1. Supernodes should be trusted to handle reputation data

2. Additional load for supernodes

3. Affected by supernodes join and leave

52

In addition of selecting peers based on their uptime and their capabilities (e.g CPU
power, storage capacity, memory, bandwidth) to become supernodes, reputation should
also be used. Highly reputable peers will be selected for this task to handle search requests
on behalf of other peers.

In this chapter, we propose a reputation management system for partially decentralized
P2P systems. This reputation system allows more clear sighted management of peers and
files. Good reputation is obtained by having consistent good behavior through several
transactions. This reputation management system detects malicious peers that are sending
inauthentic files and isolates them from the system.

3.3 Reputation Management System

In this section, we describe the proposed reputation management system. The following
notations will be used.

3.3.1 Notations and Assumptions

• Let Pi denotes peer i

• Let Di,j be the units of downloads performed by peer Pi from peer Pj

• Let Di,∗ denotes the units of downloads performed by peer Pi

• Let D∗,j denotes the units of uploads by peer Pj

• Let AF
i,j be the appreciation2 of peer Pi after downloading the file F from peer Pj.

• Let Sup(i) denotes the supernode of peer i

We assume that supernodes are selected from a set of trusted peers. This means that
supernodes are trusted to manipulate the reputation data. This trust is derived from the
trust given to these supernodes for control messages exchange.

2appreciation and feedback will be used interchangeably

53

3.3.2 The Reputation Management Scheme

After downloading a file F from peer Pj, peer Pi will evaluate this download. If the file
received corresponds to the requested file, then we set AF

i,j = 1. If not, we set AF
i,j = −1.

In this case, either the file has the same title as the requested file but different content,
or that its quality is not acceptable. Note that if we want to support different levels of
appreciations, we can set the appreciation to a real number between −1 and 1. Note also
that a null appreciation can be used, for example, if a faulty communication occurred
during the file transfer.

Each peer Pi in the system has four values, called reputation data (REPPi
), stored by

its supernode Sup(i):

1. D+
i,∗: Satisfactory downloads of peer Pi from other peers,

2. D−
i,∗: Unsatisfactory downloads of peer Pi from other peers,

3. D+
∗,i: Satisfactory uploads from peer Pi to other peers,

4. D−
∗,i: Unsatisfactory uploads from peer Pi to other peers

D+
i,∗ and D−

i,∗ provide an idea about the health of the system (i.e., satisfaction of peers)
while D+

∗,i and D−
∗,i provide an idea about the amount and quality of uploads provided by

peer Pi. They can, for example, help detect free riders. Keeping track of D−
∗,i will also

help detecting malicious peers (i.e., those peers who are providing corrupted files and/or
misleading filenames). Note that we have the following relationships:

D+
i,∗ + D−

i,∗ = Di,∗ ∀i
D+
∗,i + D−

∗,i = D∗,i ∀i (3.1)

Keeping track of these values is important. They will be used as an indication of the
reputation and the satisfaction of peers.

Figure 3.2 depicts the steps performed after receiving a file. When receiving the appre-
ciation (i.e., AF

i,j) of peer Pi, its supernode Sup(i) will update D+
i,∗ and D−

i,∗ values. The
appreciation is then sent to the supernode of peer Pj to update D+

∗,j and D−
∗,j values. The

way these values are updated is explained in the following sections 3.3.3 and 3.3.4.

When peer Pi joins the system for the first time, all values of its reputation data REPPi

are initialized to zero3. Based on peer’s transactions of uploads and downloads, these values
are updated. The supernode of peer Pi sends (REPPi

) periodically to the peer. This period
of time is not too long to preserve accuracy and not too short to avoid extra overhead.

3This is a neutral reputation value.

54

Pi Sup(i) Sup(j) Pj

F

AF
ij

Update
D+

*,j , D-
*,j

Update
D+

i,* , D-
i,*

AF
ij

Figure 3.2: Reputation Update Steps

The peer will keep a copy of (REPPi
) to be used the next time it joins the system or if

its supernode changes. To keep this data protected, guaranteed to be authentic and since
peers are not trusted, the supernode digitally signs (REPPi

).

3.3.3 The Number Based Appreciation

In this first scheme, we use the number of downloads as an indication of the amount
downloaded. This means that D∗,j indicates the number of downloads from peer Pj (i.e.,
the number of uploads by peer Pj).

In this case, after each download transaction by peer Pi from peer Pj, algorithm 1 is
executed.

This scheme allows to rate peers according to the number of transactions performed.
However, since it does not take into consideration the size of the downloads, this scheme
makes no difference between peers who are uploading large files and those who are up-
loading small files. This may rise a fairness issue among peers as uploading large files
necessitates the dedication of more resources. Also, some malicious peers may artificially
increase their reputation by uploading a large number of small authentic files.

55

Algorithm 1: The Number-based Appreciation Scheme

Sup(i) performs the following operation:
if AF

i,j = 1 then
D+

i,∗ = D+
i,∗ + 1

else
D−

i,∗ = D−
i,∗ + 1

end if
Sup(j) performs the following operation:
if AF

i,j = 1 then
D+
∗,j = D+

∗,j + 1
else

D−
∗,j = D−

∗,j + 1
end if

3.3.4 The Size Based Appreciation

A better approach may be to take into consideration the size of the download. Once
the peer sends its appreciation, the size of the download Size(F) (the amount of bytes
downloaded by peer Pi from peer Pj) is also sent. The reputation data of Pi and Pj will
be updated based on the amount of data downloaded.

In this case, after each download transaction by peer Pi from peer Pj, algorithm 2 is
executed.

Algorithm 2: The Size-based Appreciation Scheme

Sup(i) performs the following operation:
if AF

i,j = 1 then
D+

i,∗ = D+
i,∗ + Size(F)

else
D−

i,∗ = D−
i,∗ + Size(F)

end if
Sup(j) performs the following operation:
if AF

i,j = 1 then
D+
∗,j = D+

∗,j + Size(F)
else

D−
∗,j = D−

∗,j + Size(F)
end if

If we want to include the type of content of files in the rating scheme, it is possible

56

to attribute a coefficient for each file. For example, in the case that the file is rare, the
uploading peer could be rewarded by increasing its satisfied uploads with more than just
the size of the file. Eventually, instead of using the size of the download, we can use
the amount of resources dedicated by the uploading peer to this upload operation (i.e.,
processing, bandwidth, time, etc.).

3.4 The Selection Advisor

In this section, we assume that peer Pi has received a list of peers Pj that have the
requested file and their corresponding reputation values. These values are computed at
their corresponding supernodes and sent to the supernode of the peer requesting the file
(i.e., Pi). Peer Pi has to use the reputation value as a selection criterion among these peers
and choose the right peer to download from. Note that the four values of the reputation
data are not sent to Pi. Only one reputation value for each peer that has the requested
file will be received. Note also that the selection operation can be performed at the level
of the supernode, i.e., the supernode can, for example, filter malicious peers from the list
given to peer Pi.

The following is the life cycle of a transaction of peer Pi in the proposed reputation-
based P2P system:

1. Send a request for a file F to the supernode Sup(i)

2. Receive a list of candidate peers that have the requested file

3. Select a peer or a set of peers Pj based on a reputation metric (the reputation
algorithms are presented in the following sections: 3.4.1 and 3.4.2).

4. Download the file F

5. Send feedback AF
i,j. Sup(i) and Sup(j) will update the reputation data REPPi

and
REPPj

respectively.

The following subsections describe two proposed selection algorithms. Each of these
algorithms can be based on one of the appreciation schemes presented in Section 3.3.3 and
3.3.4. Note that only the satisfactory and unsatisfactory units of uploads (i.e., D+

∗,j, D−
∗,j)

are considered for computing the reputation of a peer. The satisfactory and unsatisfactory
units of downloads (i.e., D+

i,∗, D−
i,∗) will be taken into consideration for service differentiation

as it will be presented in chapter 5.

57

3.4.1 The Difference Based Algorithm

In this scheme, we compute the Difference-based (DB) behavior of a peer Pj as:

DBj = D+
∗,j −D−

∗,j (3.2)

This value gives an idea about the aggregate behavior of the peer. Note that the reputation
as defined in equation 3.2 can be negative. This reputation value gives preference to peers
who performed more good uploads than bad ones.

3.4.2 The Inauthentic Detector Algorithm (IDA)

In the previous scheme, only the difference between D+
∗,j and D−

∗,j is considered. This may
not give a real idea about the behavior of the peers as shown in the following example. If
peer P1 and peer P2 have the reputation data such as D+

∗,1 = 40, D−
∗,1 = 20, D+

∗,2 = 20, and
D−
∗,2 = 0 and assume we are using the Size Based Appreciation scheme, then according to

the Difference-based algorithm (i.e., equation 3.2) we have DB1 = 40 − 20 = 20 MB and
DB2 = 20− 0 = 20 MB. In this case, both peers have the same reputation. However, from
the user’s perspective, peer P2 is more preferable than peer P1. Indeed, peer P2 has not
uploaded any malicious files.

To solve this problem, we propose to take into consideration not only the difference
between D+

∗,j and D−
∗,j but also the sum of these values. In this scheme, we compute the

Authentic Behavior of a peer Pj as:

ABj =
D+
∗,j−D−∗,j

D+
∗,j+D−∗,j

=
D+
∗,j−D−∗,j

D∗,j
if D∗,j 6= 0

ABj = 0 otherwise
(3.3)

Note that the reputation as defined in equation 3.3 is a real number between−1 (if D+
∗,j = 0)

and 1 (if D−
∗,j = 0).

If we go back to the previous example, then we have AB1 = (40 − 20)/60 = 1/3 and
AB2 = (20− 0)/20 = 1. The Inauthentic Detector scheme will choose peer P2.

When using this reputation scheme, the peer can do one of the following:

1. Choose peer Pj with the maximum value of ABj, or

2. Choose the set of peers Pj such that ABj ≥ ABthreshold, where ABthreshold is a
parameter set by the peer Pi or by the system. The latter case can be used if the P2P
system supports swarmed retrieval (i.e., the system is able to download several pieces
of the file simultaneously from different peers.) Note that our proposed schemes can

58

be adapted to systems with swarmed retrieval. In this case, each peer participating
in the upload operation, will see its reputation data updated according to the amount
it uploaded.

In the case where there are several peers with a maximum reputation value, one peer
can be selected randomly or other parameters can be used to distinguish among peers.
One can use the amount of available resources as a selection criterion.

3.5 Mathematical Analysis of Size-based IDA

Let’s assume that a peer Pi downloads a file F from a peer Pj. We focus on the Authentic
Behavior (sending authentic or inauthentic files) of peer Pj since it is sending the file.
The goal is to assess if the Authentic Behavior can capture the probability of Pj sending
inauthentic files.

• let Xj
n be the value of D+

∗,j after the nth upload of peer Pj

• let Y j
n be the value of D−

∗,j after the nth upload of peer Pj

• let Fn be the size of the file sent during the nth upload of peer Pj

• let ABn
j be the Authentic Behavior value after the nth upload of peer Pj

This means that:

ABn
j = Xj

n−Y j
n

Xj
n+Y j

n
(3.4)

The values of Xj
n and Y j

n will be updated according to the authenticity of the file sent
by peer Pj.

We assume that peers do not lie and send the appropriate feedback:

• Peer Pj will send an inauthentic file with probability pj

• The value of Y j
n will increase by the size of the uploaded file Fn with probability pj

• The value of Xj
n will increase by the size of the uploaded file Fn with probability

(1− pj)

59

The new values of Xj
n and Y j

n are:

Xj
n+1 = Xj

n + (1− pj)Fn+1

Y j
n+1 = Y j

n + pjFn+1

Let’s find a closed formula for Xj
n.

Xj
n = Xj

n−1 + (1− pj)Fn

Xj
n−1 = Xj

n−2 + (1− pj)Fn−1

...

Xj
2 = Xj

1 + (1− pj)F2

Xj
1 = Xj

0 + (1− pj)F1

Xj
0 = 0

This means that we have:

Xj
n = (1− pj)

∑k=n
k=1 Fk

Using the same approach we have:

Y j
n = pj

∑k=n
k=1 Fk

The Authentic Behavior value of peer Pj is:

ABj = Xj
n−Y j

n

Xj
n+Y j

n

=
[(1−pj)

∑k=n

k=1
Fk]−[pj

∑k=n

k=1
Fk]

[(1−pj)
∑k=n

k=1
Fk]+[pj

∑k=n

k=1
Fk]

=
(1−pj−pj)

∑k=n

k=1
Fk

(1−pj+pj)
∑k=n

k=1
Fk

= 1− 2pj

(3.5)

The reputation of peer Pj depends only on its probability of sending inauthentic files.
The closest this probability to zero, the higher the reputation is. If pj = 0, ABj equals 1.
Otherwise, if pj = 1, ABj will be equal to −1

It is important to note that our reputation computing technique is more general and
can capture more elaborated Pj behaviors. We consider that the behavior of Pj is totally
captured by the probability pj independently from other factors. However, a Pj may have
different probabilities of uploading the file depending on the file’s size. In this case, we
consider the behavior of Pj to be captured by a probability distribution. The proposed
reputation computing technique can also capture this.

60

Algorithm Acronym
Difference-based algorithm DB
Inauthentic Detector algorithm IDA
KaZaA-based algorithm KB
Random Way algorithm RW

Table 3.1: Simulated Algorithms

3.6 Performance Evaluation

In this set of simulations, we evaluate the two selection advisor algorithms (cf. Sections
3.4.1 and 3.4.2) namely, the Difference-based (DB) Algorithm and the Inauthentic Detec-
tor Algorithm (IDA). Both schemes use the Size-Based Appreciation Scheme proposed in
Section 3.3.4. We will compare the performance of these two algorithms with the following
two schemes.

In KaZaA [9], the peer participation level is computed as follows:
(uploaded/downloaded)× 100, i.e., using our notation (cf. Section 3.3.1) the participation
level is (D∗,j/Dj,∗)×100. We will consider the scheme where each peer uses the participation
level of other peers as selection criteria and we will refer to it as the KaZaA-based algorithm
(KB).

We will also simulate a system without reputation management. This means that the
selection is done in a random way. We will refer to this algorithm as the Random Way
algorithm (RW). Table 3.1 presents the list of considered algorithms.

Simulation Parameters

We use the following simulation parameters:

• We simulate a system with 1000 peers.

• The number of files is 1000.

• File sizes are uniformly distributed between 10 MB and 150 MB.

• As observed by [63], each peer can ask for a file with a Zipf distribution over all the
files that the peer does not already have. Initially, we have simulated the proposed
schemes with a random selection of files. However, we wanted to incorporate a
realistic parameter in our simulations. As discussed in [63], the file distribution
follows Zipf with a parameter close to 1. We have chosen this parameter to be equal
to 0.9.

61

• The percentage of malicious peers is 50%. Our goal is to assess the performance of the
proposed selection algorithms even with the presence of a high percentage of malicious
peers. Studies show that KaZaA suffers from a high percentage of inauthentic files4.

• The probability of a malicious peer to upload an inauthentic file is 0.8.

• We simulate 30,000 requests. This means that each peer performs an average of 30
requests. For this reason we did not specify a storage capacity limit.

The simulations were repeated several times over which the results are averaged.

Performance Metrics

In this set of simulations we will mainly focus on the following performance metrics:

• The peer satisfaction: computed as the difference of non-malicious downloads and
malicious ones over the sum of all the downloads performed by the peer. The peer
satisfaction is averaged over all peers.

• The percentage of malicious uploads: computed as the sum of the size of all malicious
uploads performed by all peers during the simulation over the total size of all uploads.

• Peer load share: we would like to know the impact of the Selection Advisor Algo-
rithm on the load distribution among peers. The peer load share is computed as the
normalized load supported by the peer. This is computed as the sum of all uploads
performed by the peer over all uploads in the system.

Simulation Results

Figure 3.3 depicts the peer satisfaction achieved by the four considered schemes. The X
axis represents the number of requests while the Y axis represents the peer satisfaction.
Note that the maximum peer satisfaction that can be achieved is 1. Note also that the
peer satisfaction can be negative. According to the figure, it is clear that the DB and
IDA schemes outperform the RW and KB schemes in terms of peer satisfaction. The
bad performance of KB can be explained by the fact that it does not distinguish between
malicious and non-malicious peers. As long as the peer has the highest participation level,
it is chosen regardless of its behavior. Our schemes (DB and IDA) make the distinction and
do not choose a peer if it is detected as malicious. The RW scheme chooses peers randomly

4Simulations with lower percentages of malicious peers have been contacted and have led to similar
results.

62

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Request Number

P
ee

r
S

at
is

fa
ct

io
n

KB

RW

IDA

DB

Figure 3.3: Peer Satisfaction

and hence the results observed from the simulations (i.e., 0.2 satisfaction) can be explained
as follows; With 50% malicious peers and 0.8 probability to upload an inauthentic file, we
can expect to have 60% of authentic uploads and 40% inauthentic uploads in average.
As the peer satisfaction is computed as the difference of non-malicious downloads and
malicious ones over the sum of all the downloads performed by the peer, we can expect a
peer satisfaction of (60− 40)/(60 + 40) = 0.2.

Figure 3.4 shows the percentage of malicious uploads (i.e., the percentage of inauthentic
file uploads). As in RW scheme peers are chosen randomly, we can expect to see a steady
increase of the size of malicious uploads and a fixed percentage of malicious uploads.
On the other hand, our proposed schemes DB and IDA can quickly detect malicious
peers and avoid choosing them for uploads. This isolates malicious peers and controls
the size of malicious uploads. This, of course, results in using the network bandwidth more
efficiently and higher peer satisfaction as shown in figure 3.3. In KB scheme, the peer with
the highest participation level is chosen. The chosen peer will see its participation level
increases according to the amount of the requested upload. This will further increase the
probability of being chosen again in the future. If the chosen peer happens to be malicious,
the size of malicious uploads will increase dramatically as malicious peers are chosen again
and again. This is reflected in figure 3.4 where KB has worse results than RW.

To investigate the distribution of loads among peers for the considered schemes, we
plotted the normalized load supported by each peer during one simulation run. Figures

63

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Request Number

P
er

ce
nt

ag
e

of
 M

al
ic

io
us

 U
pl

oa
ds

KB

RW

DB
IDA

Figure 3.4: The Percentage of Malicious Uploads

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Peer

P
ee

r
lo

ad
 s

ha
re

RW

Figure 3.5: Peer Load Share for RW

64

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Peer

P
ee

r
lo

ad
 s

ha
re

KB

Figure 3.6: Peer Load Share for KB

3.5, 3.6, 3.7 and 3.8 depict the results. Note that we organized the peers into two cat-
egories, malicious peers from 1 to 500 and non malicious peers from 501 to 1000. As
expected, the RW scheme distributes the load uniformly among the peers (malicious and
non malicious)(see figure 3.5). The KB scheme does not distribute the load uniformly.
Instead, few peers are always chosen to upload the requested files. In addition, the KB
scheme cannot distinguish between malicious and non malicious peers, and in this case,
the malicious peer number 180 has been chosen to perform most of the requested uploads
(see figure 3.6).

In figures 3.7 and 3.8, the results for the proposed schemes IDA and DB are presented.
We can note that in both schemes malicious peers are isolated from the system by not being
requested to perform uploads. This explains the fact that the normalized loads of malicious
peers (peers from 1 to 500) is very small. This also explains why the load supported by
non malicious peers is higher than the one in the RW and KB scenarios. Indeed, since
no malicious peer is involved in uploading the requested files5, almost all the load (of the
30,000 requests) is supported by the non malicious peers.

According to figures 3.7 and 3.8, we can observe that even if the two proposed schemes
DB and IDA are able to detect malicious peers and isolate them from the system, they do
not distribute the load among non malicious peers in the same manner. Indeed the IDA

5after that these malicious peers are detected by the proposed schemes

65

0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

Peer

P
ee

r
lo

ad
 s

ha
re

IDA

Figure 3.7: Peer Load Share for IDA

scheme distributes the load more uniformly among the non malicious peers than the DB
scheme (see figure 3.7). The DB scheme tends to concentrate the load on a small number
of peers (see figure 3.8). This can be explained by the way each scheme computes the
reputation of peers. As explained in sections 3.4.1 and 3.4.2, the DB scheme computes the
reputation of peer Pj as shown in equation 3.2 based on a difference between non malicious
uploads and malicious ones. The IDA scheme, on the other hand, computes a ratio as
shown in equation 3.3. The fact that DB is based on a difference, makes it choose the
peer with the highest difference. This in turn will make this peer more likely to be chosen
again in the future. This is why, in figure 3.8, the load achieved by DB is not distributed
uniformly.

The IDA scheme, focuses on the ratio of the difference between non malicious uploads
and malicious ones over the sum of all uploads performed by the peer (cf. eq. 3.3). This
does not give any preference to peers with higher difference. Since in our simulations we
did not consider any free riders, we can expect to have a uniform load distribution among
peers as depicted by figure 3.7. If free riders are considered, reputation mechanisms will
not be affected since reputation data is based on the uploads of peers. Obviously, the load
distribution will be different.

We opt to use IDA rather than DB scheme since most of the peers get a chance to
upload files and build their reputation. In the DB scheme, only a small number of peers
are involved in uploading files to others.

66

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Peer

P
ee

r
lo

ad
 s

ha
re

DB

Figure 3.8: Peer Load Share for DB

3.7 Concluding Remarks

In this chapter, we proposed a trust management framework for partially decentralized
peer-to-peer systems. Reputation data is stored at the supernode level to take advantage
of the use of supernodes. Two selection advisor algorithms were proposed for assisting
peers in selecting the most trustworthy peers to download from.

In the next chapter, Credibility Behavior is introduced as another dimension of trust.
We propose Malicious Detector Algorithm to detect liar peers and the concept of Suspicious
Transactions introduced to detect these peers.

67

Chapter 4

Trust Management: Credibility
Behavior

In this chapter, we focus on the Credibility Behavior which is the second dimension in
the proposed trust management framework. We propose a novel scheme, that in addition
to detecting peers that send inauthentic files, detects liar peers. This scheme reduces
considerably the amount of malicious uploads.

4.1 Peer Behavior Understanding

In a P2P system, peers can lie in their feedbacks. Such liar peers can subvert the reputation
system by affecting badly the reputation of other peers (increase the reputation of malicious
peers, and/or decrease the reputation of good peers). These malicious peers may not be
detected if they are not sending inauthentic files and, hence, their reputation can be high
and they will be wrongfully trusted by the system.

In all proposed feedback-based reputation management schemes for P2P systems, the
emphasize was more on detecting peers who are sending inauthentic files than detecting
liar peers. Some of the proposed feedback-based reputation schemes (e.g., EigenTrust,
fuzzyTrust) rely on peers’ reputation for their peer-selection process. These schemes use
the reputation value for a recommender peer as a credibility value which is not appro-
priate. Indeed some peers may behave well while sending authentic files and provide at
the same time inaccurate recommendations. However, it is not practical to collect feed-
backs regarding the credibility of the recommender peers as suggested in some works (e.g.,
P2PEnhanced). Not only broadcasting is used to receive the reputation of the provider
peers, but also, to get the credibility of peers that have replied. This approach will incur

68

Type Peer Authentic Credibility
Behavior Behavior

T1 Good High High
T2 Malicious: Inauthentic Low High
T3 Malicious: Liar High Low
T4 Malicious: Inauthentic and Liar Low Low

Table 4.1: Peer Behavior

a significant amount of overhead and waste of network resources.

4.1.1 Peer Behavior Categorization

In a P2P system, good peers are those that send authentic files and do not lie in their
feedbacks (Type T1 in Table 4.1). Malicious peers can be divided into three categories: 1)
peers that send inauthentic files and do not lie in their feedbacks (Type T2), 2) peers that
send authentic files and lie in their feedbacks (Type T3), and 3) peers that send inauthentic
files and lie in their feedbacks (Type T4).

A liar peer is one that after receiving an authentic file, instead of giving an appreciation
equal to 1, the peer sends an appreciation equal to −1 to decrease the reputation of the
peer uploading the file. Or, if the peer receives an inauthentic file, it sends a positive
appreciation to increase the reputation of other malicious peers. Note that we consider
the consistent behavior of peers. This means that most of the time a peer behavior is
consistent with the category it belongs to (i.e., T1, T2, T3, or T4). For example, a good
peer can sometimes send inauthentic files by mistake. Note also that peers can change
their behavior over time and hence can jump from one category to another.

4.1.2 Effect On Reputation

Peers can have positive or negative reputations. A good peer usually has a positive reputa-
tion since he is behaving well, but since malicious peers can lie, his reputation can decrease
and even get negative. In contrast, malicious peers will have negative reputation values
since they are sending inauthentic files. However, their reputation values can increase and
even get positive if some other malicious peers send positive appreciations even if they
receive inauthentic files. This happens in systems where liar peers are not detected nor
punished.

69

P � Sup(i) Sup(j) P �

A � � � A � � �Credibility
Behavior of P �

Authentic
Behavior of P �

Req � �

Req � �

Res � �Res � �

Req � �
j

F

Figure 4.1: A Typical File Request-Download Procedure

4.2 Detecting Malicious Peers

Let’s assume that peer Pi downloads file F from peer Pj. We focus on the Authentic
Behavior (sending authentic or inauthentic files) of peer Pj since it is sending the file, and
the Credibility Behavior (lying or not in the feedback) of peer Pi since it is sending the
appreciation that will affect the reputation of peer Pj. If we want to take the appropriate
actions after this transaction, we have to detect if peer Pj belongs to any of the categories
T2 and T4, and if peer Pi belongs to any of the categories T3 and T4.

Figure 4.1 shows a typical file request-download procedure involving the requester and
provider peers and their supernodes. Peer Pi requests a search service ReqF

i from its
supernode Sup(i). When peer Pi receives the result of the search request ResF

i , peer Pi

will choose peer Pj according to the Authentic Behavior of Pj. Peer Pi sends a request
ReqF

ij to download file F from peer Pj. After downloading this file, peer Pi sends feedback
AF

i,j. The Credibility Behavior of peer Pi will have a significant impact on the Authentic
Behavior of peer Pj.

IDA (section 3.4.2) allows us to detect peers sending inauthentic files. The goal now
is to detect peers that send wrong feedbacks and diminish their impact on the reputation-
based system.

70

4.2.1 Reputation-based Approach

One approach is to say that malicious peers have a low reputation than good peers. One
way of reducing the impact of peers having a low reputation is to take this later into
account when updating the reputation of other peers.

We can then change the operations in Section 3.3.4, to:

If AF
i,j = 1 then D+

∗,j = D+
∗,j + 1+ABi

2
Size(F)

else D−
∗,j = D−

∗,j + 1+ABi

2
Size(F)

(4.1)

Using this approach1, the impact of peer Pi on the Authentic Behavior of peer Pj is
related to the Authentic Behavior of peer Pi (i.e., ABi). If peer Pi has a good reputation
(usually above zero), it is trusted more and it will impact the reputation of peer Pj, but,
if its reputation is low, only a small fraction of the file size is considered hence reducing
the impact on the reputation of peer Pj.

In case peer Pi is new, his reputation is null and since we do not know yet if it is a good
or a malicious peer, only half of the size of the uploaded file F is affecting the reputation
of the peer uploading the file (i.e., peer Pj).

The problem with this approach appears in the following example. Assume that some
peers belong to category T3. Those peers always send authentic files, but send also wrong
appreciations. Most of the time, and according to operation 4.1, those peers will have a high
reputation since they always send authentic files and hence will receive good feedbacks2.
Those peers will be trusted by the system and will affect badly the reputations of other
peers and may eventually subvert the system. The performance evaluation section assesses
the effect of liar peers on the reputation of other peers.

4.2.2 Malicious Detector Algorithm (MDA)

A better approach to detect peers that lie in their feedbacks is to detect suspicious trans-
actions. We define a suspicious transaction as one in which the appreciation is different
from the one expected knowing the reputation of the sender. In other words, if AF

i,j = 1
and ABj < 0 or if AF

i,j = −1 and ABj > 0 then we consider this transaction as suspicious.

To detect peers that lie in their feedbacks, the supernode Sup(i) keeps track of the
following values for each peer Pi:

1In operation (4.1), 1+ABi

2 can be replaced by any function of ABi that is strictly increasing from 0 to
1.

2We assume that the percentage of malicious peers, in a P2P system, is lower than the percentage of
good peers [36]. This assumption is realistic since this is the basis on which peer-to-peer systems can work.

71

1. Ni: The total number of downloads performed by peer Pi

2. N∗
i : The number of downloads by peer Pi where the sign of the appreciation sent by

peer Pi is different from the sign of the sender’s reputation, i.e., AF
i,j ×ABj < 0 (i.e.,

during a suspicious transaction)

3. TFi: The total size of all the files uploaded by Pi.

Note that N∗
i ≤ Ni ∀i

When receiving the appreciation (i.e., AF
i,j) of peer Pi, its supernode Sup(i) will update

the values of Ni and N∗
i as follows:

Ni = Ni + 1
if (AF

i,j × ABj) < 0 then N∗
i = N∗

i + 1
(4.2)

Let αi be the ratio of N∗
i and Ni:

αi =
N∗

i

Ni

(4.3)

Note that 0 ≤ αi ≤ 1 ∀i
αi is the ratio of the number of suspicious feedbacks3 sent by peer Pi over the total

number of feedbacks sent by peer Pi. αi is a good indicator of the liar behavior of peer Pi.
Indeed, if peer Pi lies in its feedbacks, the number of times AF

i,j and the sender’s reputation
having different signs, is high and hence the value of N∗

i . Liar peers will tend to have
values of αi near 1. Good peers will tend to have values of αi near zero.

To minimize the effect of liar peers, we propose to use the following update strategy
for the sender’s appreciation; After receiving the appreciation AF

i,j, the sender’s supernode
Sup(j) performs algorithm 3.

Algorithm 3: The Update Strategy

if AF
i,j = 1 then

D+
∗,j = D+

∗,j + (1− αi)Size(F)
else

D−
∗,j = D−

∗,j + (1− αi)Size(F)
end if
TFj = TFj + Size(F)

3A suspicious feedback is the feedback sent during a suspicious transaction

72

Since liar peers (in categories T3 and T4) will have a high value of αi, their effect on
the reputation of the peer sending the file is minimized. On the other hand, good peers
will have a lower value of αi and hence will keep having an impact on the reputation of
other peers.

In this approach, the Authentic Behavior is computed as follows:

ABj =
D+
∗,j−D−∗,j

TFj
if TFj 6= 0

ABj = 0 otherwise
(4.4)

This equation is more general. Indeed if all peers are honest (αi = 0), equation 4.4
becomes equation 3.3. Note that ABj is updated after each upload of peer Pj (equation
4.4) and αi is updated after each download of peer Pi. This means that liar peers will be
detected even if they did not upload any file and inauthentic peers will be detected even if
they did not perform any download.

If peer Pi changes its behavior, αi will also change, and hence its impact on the repu-
tation of other peers. For example, if peer Pi changes its behavior from category T3 to T1
(cf. table 4.1), the number of suspicious transactions N∗

i involving this peer (in comparison
to the total number of transactions Ni) will be less and hence the value of αi will decrease,
making the impact of this peer more considerable.

We define the Credibility Behavior of peer Pi to be: CBi = 1− αi.

In this case, the reputation of peer Pi is the couple (ABi, CBi) which characterizes the
behavior of peer Pi in terms of Authentic Behavior (sending authentic or inauthentic files)
and Credibility Behavior (lying or not in the feedback). Note that a peer can still download
a file from a peer with low value of CBi as long as the value of ABi is high. This means
that the system can still take advantage of a peer that provides authentic files but lies in
its feedbacks.

4.3 Mathematical Analysis of MDA

In this section, we provide a mathematical analysis for computing peers’ reputation with
the existence of liar peers.

Let’s assume that a peer Pi downloads a file F from a peer Pj. We focus on the
Authentic Behavior (sending authentic or inauthentic files) of peer Pj since he is sending
the file, and the Credibility Behavior (lying or not in the feedback) of peer Pi since he is
sending the appreciation that will affect the reputation of peer Pj.

Let’s assume that peer Pi and peer Pj are characterized by the following probabilities:

73

Pj

p

1-p

Inauthentic

File

q

1-q

q

1-q

Positive
Feedback

Authentic

File

Negative
Feedback

Positive
Feedback

Figure 4.2: Authentic and Credibility Probabilities

• Pi: (pi, qi)

• Pj: (pj, qj)

Where p and q represent the probabilities of sending inauthentic files and wrong feed-
backs respectively. We use the notations introduced in Section 3.5.

We have ABn
j = Xj

n−Y j
n

Xj
n+Y j

n
(cf. eq. 3.4)

The values of Xj
n and Y j

n will be updated according to the authenticity of the file sent
by peer Pj and the credibility of peer Pi.

4.3.1 Case 1: Same Liar Behavior

Let’s consider a scenario where all peers send wrong feedbacks with the same probability.
All peers have the same value of q.

According to figure 4.2, we have the following:

74

• Y j
n will increase by the size of the uploaded file Fn with probability Q = (1− pj)q +

pj(1− q)

• The value of Xj
n will increase by the size of the uploaded file Fn with probability

(1−Q)

Using the same approach as in Section 3.5, we obtain:

ABj = 1− 2Q
= 1− 2[(1− pj)q + pj(1− q)]
= 1− 2(q − qpj + pj − qpj)
= 1− 2q + 4qpj − 2pj

= 1− 2pj − 2q(1− 2pj)
= (1− 2pj)(1− 2q)

(4.5)

This means that the reputation of peer ABj depends on the probability of sending
inauthentic files pj and the probability of lying in the feedback (i.e., q) of all peers that
downloaded a file from peer Pj.

In case that the probability of sending inauthentic files of peer Pj is almost null, its
reputation has to be close to 1. However, due to the lying behavior of peers who downloaded
files from peer Pj, its reputation can become −1 if q is close to 1.

4.3.2 Case 2: Different Liar Behavior

In the following case, let’s consider that peers have different values of q. Let qn be the
probability of lying for the peer Pn who downloaded the file Fn from peer Pj at the nth

upload of peer Pj.

Since peer Pj will send an inauthentic file with probability pj, we obtain the followings:

• The value of Y j
n will increase by the size of the uploaded file Fn with probability

(pj(1− qn) + (1− pj)qn)

• The value of Xj
n will increase by the size of the uploaded file Fn with probability

((1− pj)(1− qn) + pjqn)

According to figure 4.2, the new values of Xj
n and Y j

n are:

Xj
n = Xj

n−1 + ((1− pj)(1− qn) + pjqn)Fn

Xj
n−1 = Xj

n−2 + ((1− pj)(1− qn−1) + pjqn−1)Fn−1

75

...

Xj
2 = Xj

1 + ((1− pj)(1− q2) + pjq2)F2

Xj
1 = Xj

0 + ((1− pj)(1− q1) + pjq1)F1

Xj
0 = 0

This means that we have:

Xj
n = (1− pj)

∑k=n
k=1 (1− qk)Fk + pj

∑k=n
k=1 qkFk

Using the same approach, we obtain:

Y j
n = (1− pj)

∑k=n
k=1 qkFk + pj

∑k=n
k=1 (1− qk)Fk

To compute the reputation of peer Pj using equation 3.3, we get:

ABn
j = Xj

n−Y j
n

Xj
n+Y j

n

=
(1−pj)

∑k=n

k=1
(1−qk)Fk+pj

∑k=n

k=1
qkFk−(1−pj)

∑k=n

k=1
qkFk−pj

∑k=n

k=1
(1−qk)Fk

(1−pj)
∑k=n

k=1
(1−qk)Fk+pj

∑k=n

k=1
qkFk+(1−pj)

∑k=n

k=1
qkFk+pj

∑k=n

k=1
(1−qk)Fk

=
∑k=n

k=1
Fk[(1−pj)(1−qk)+pjqk]−[(1−pj)qk+pj(1−qk)]∑k=n

k=1
Fk[(1−pj)(1−qk)+pjqk]+[(1−pj)qk+pj(1−qk)]

=
∑k=n

k=1
Fk[1−qk−pj+pjqk+pjqk−qk+pjqk−pj+pjqk]∑k=n

k=1
Fk[1−qk−pj+pjqk+pjqk+qk−pjqk+pj−pjqk]

=
∑k=n

k=1
Fk[1−2qk−2pj+4pjqk]∑k=n

k=1
Fk

=
∑k=n

k=1
Fk[1−2qk−2pj(1−2qk)]∑k=n

k=1
Fk

=
∑k=n

k=1
Fk[(1−2qk)(1−2pj)]∑k=n

k=1
Fk

= (1− 2pj)
∑k=n

k=1
(1−2qk)Fk∑k=n

k=1
Fk

= (1− 2pj)
∑k=n

k=1
Fk−2

∑k=n

k=1
qkFk∑k=n

k=1
Fk

= (1− 2pj)(1− 2
∑k=n

k=1
qkFk∑k=n

k=1
Fk

)

(4.6)

In this case, the reputation of peer Pj depends also on the probability qk of all peers
Pk that downloaded files from Pj. In case that the probability of lying is the same for all
peers, we obtain equation 4.5 by replacing qk in eq. 4.6 by q.

We have:

76

Category Percentage Probability of sending Probability of sending
of peers inauthentic files wrong feedback

T1 40% 0.01 0.01
T4.1 30% 0.5 0.5
T4.2 30% 0.9 0.9

Table 4.2: Peer Behavior and Distribution

ABj = (1− 2pj)(1− 2
∑k=n

k=1
qFk∑k=n

k=1
Fk

)

= (1− 2pj)(1− 2q
∑k=n

k=1
Fk∑k=n

k=1
Fk

)

= (1− 2pj)(1− 2q)

(4.7)

4.4 Performance Evaluation

In these simulations, we simulate the Inauthentic Detector (IDA) and the Malicious De-
tector (MDA) algorithms. Their performance will be compared to the KaZaA-based (KB)
and the Random Way (RW) algorithms. In these simulations, liar peers will be considered.

Simulation Parameters

We use the same simulation parameters as in Section 3.6 with the following modifications:

• At the beginning of the simulation, each peer has 30 randomly chosen files and each
file has at least one owner.

• Peers behavior and distribution are as depicted in Table 4.2.

Table 4.2 presents the peers distribution and their probabilities of sending inauthentic
files and wrong feedbacks. Taking into consideration this table, peers with index from
1 to 300 belong to category T4.2, peers with index from 301 to 600 belong to category
T4.1 and peers with index from 601 to 1000 belong to category T1. We have considered a
situation where we have a high percentage of malicious peers to show the effectiveness of
our proposed scheme.

Performance Metrics

In this set of simulations, we focus on the following performance metrics:

77

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Peer

A
ut

he
nt

ic
 B

eh
av

io
r

Figure 4.3: Authentic Behavior with IDA (with no liar peers)

• The peer satisfaction: computed as the difference of non-malicious downloads and
malicious ones over the sum of all the downloads performed by the peer. The peer
satisfaction is averaged over all peers.

• The percentage of malicious uploads: computed as the sum of the size of all malicious
uploads performed by all peers during the simulation over the total size of all uploads.

Simulation Results

Figures 4.3 and 4.4 show the Authentic Behavior values for peers when using IDA. Figure
4.3 presents the results in a situation where no peer lies in its feedbacks, while figure
4.4 shows the results where there are liar peers in the system. The distribution of peers’
behavior in the case where no liar peers exist is the same as in table 4.2 with the fourth
column set to zero in all categories.

It is clear from figure 4.3 that IDA is able to differentiate among peers and detect
those that send inauthentic files. Good peers (with index from 601 to 1000) have high AB
values while malicious peers (from 1 to 600) have low AB values (most of peers with index
between 1 and 300 have a value of -1). However, if liar peers exist, those peers affect badly

78

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Peer

A
ut

he
nt

ic
 B

eh
av

io
r

Figure 4.4: Authentic Behavior with IDA (with liar peers)

0 100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Peer

C
re

di
bi

lit
y

B
eh

av
io

r

Figure 4.5: Credibility Behavior

79

0 0.5 1 1.5 2 2.5 3

x 10
4

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Request Number

P
ee

r
S

at
is

fa
ct

io
n

KB

RW

MDA

IDA

Figure 4.6: Peer Satisfaction

the system and makes it difficult to differentiate among peers (cf. figure 4.4). This affects
greatly the performance of the system as will be shown in figure 4.8.

Figure 4.5 depicts the Credibility Behavior of peers when using MDA. The figure shows
that CB is a very good indicator of the liar behavior of peers. Indeed, good peers (with
index from 601 to 1000) have a very high value of credibility while liar peers (from 1 to 600)
have lower values. This indicator is also able to differentiate among degrees of liar behavior;
peers with lower probability of lying (index from 301 to 600) have higher credibility than
those with higher probability of lying (index 1 to 300).

Figure 4.6 depicts the peer satisfaction achieved by the four considered schemes. The
X axis represents the number of requests while the Y axis represents the peer satisfaction.
According to the figure, it is clear that the MDA and IDA schemes outperform the RW and
KB schemes in terms of peer satisfaction. The bad performance of KB can be explained
by the fact that it does not distinguish between malicious and non-malicious peers. The
RW scheme chooses peers randomly and hence the results observed from the simulations
(i.e., 0.15 satisfaction) can be explained as follows; With the values of table 4.2, we can
expect to have (0.99 × 40% + 0.5 × 30% + 0.1 × 30% =) 57.6% of authentic uploads
and (0.01× 40% +0.5× 30%+ 0.9× 30% =) 42.4% inauthentic uploads in average. As the
peer satisfaction is computed as the difference of non-malicious downloads and malicious
ones over the sum of all the downloads performed by the peer. We can expect a peer
satisfaction of (57.6− 42.4)/(57.6 + 42.4) = 0.15.

80

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Request Number

P
er

ce
nt

ag
e

of
 M

al
ic

io
us

 U
pl

oa
ds

RW

KB

MDA

IDA

Figure 4.7: Percentage of Malicious Uploads

0 0.5 1 1.5 2 2.5 3

x 10
4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Request Number

P
er

ce
nt

ag
e

of
 M

al
ic

io
us

 U
pl

oa
ds

MDA

IDA

Figure 4.8: Percentage of Malicious Uploads for MDA and IDA

81

Our schemes (MDA and IDA) make the distinction and do not choose a peer if it is
detected as malicious. Since MDA is able to detect liar peers, it can protect the system
from them and hence is able to take the right decision when choosing a peer to download
from. In IDA, liar peers affect the Authentic Behavior values of other peers and hence,
lower the achieved peer satisfaction.

Figure 4.7 shows the percentage of inauthentic file uploads. KB has the worst results
compared to other schemes as explained earlier. IDA can quickly detect inauthentic peers
and avoid choosing them for uploads. This isolates the inauthentic peers and controls the
size of malicious uploads. However, since IDA does not detect liar peers, the reputation of
peers is affected as shown in figure 4.4. This will sometimes result in bad decisions. MDA
on the other hand takes into consideration liar behavior and thanks to the Credibility
Behavior parameter, is able to reduce the effect of liar peers on the system. This allows
the system to take more clearsighted decisions. This, of course, results in using the network
bandwidth more efficiently and higher peer satisfaction as shown in figure 4.6. Figure 4.8
shows that the new scheme achieves about 40% improvement in comparison to IDA. This
gain will continue to increase with the number of requests as MDA makes more and more
good decisions.

Note that our scheme achieves good performance even if we have a high number of
malicious peers. As stated earlier, without any reputation management scheme we can
expect 42.4% of inauthentic uploads. After the 30000 requests considered, our scheme
reduces this to about 6% with a peer satisfaction of almost 88%.

4.5 Concluding Remarks

In this chapter, we introduced the Credibility Behavior as the second dimension of the
trust management framework. We proposed the Malicious Detector Algorithm that is able
to detect liar peers. The new concept of suspicious transactions is introduced to detect
these liar peers. Performance evaluations show that the proposed scheme is able to detect
and isolate malicious peers from the system, hence, providing higher peer satisfaction and
better network resource utilization.

In the next chapter, the Contribution Behavior, the third dimension of trust is intro-
duced. Peers’ contribution is used as a guideline for service differentiation.

82

Chapter 5

Trust Management: Contribution
Behavior

In chapter 3 and chapter 4, we introduced the Authentic Behavior and the Credibility
Behavior of peers respectively. In this chapter, we introduce another important trust
dimension which is the Contribution Behavior. We propose a new service differentiation
scheme based on peers’ contribution.

5.1 Motivation

Although most reputation management schemes try to achieve the goals described in Sec-
tion 2.2, mechanisms for providing incentives and service differentiation are needed to
achieve the following goals:

1. Motivate peers to share files and contribute to the system.

2. Reward the reputable peers by providing them with better service, and punish ma-
licious peers.

Peers need to be motivated to display good behavior because it will have an impact
on their future interactions. Political scientist Robert Axelrod refers to this phenomenon
as the shadow of the future [64]. For example, in the case of the eBay reputation system,
members have interest to get a high reputation value and maintain a good history of
transactions as members with high reputation values are more trusted and selected for
commercial transactions. The higher is the reputation of a seller, the higher is the chance
that buyers will trust to deal with him.

83

In a P2P file sharing system, the situation is different. What is the benefit that a peer
can gain from having a high reputation value? This peer will be more and more requested
for uploads which is not a gain for this peer, but more for the peers that download from
it (cf. figure 3.7). In P2P systems, if all peers receive the same service regardless of their
behavior, peers will not be motivated to strive for high reputation values since they will be
always asked to upload files without receiving any special benefit or reward. This is why
service differentiation is needed.

Some of the proposed reputation-based P2P systems use peers’ reputation as a guideline
for service differentiation. This means that a peer with a high reputation, will receive better
service than a peer with a lower reputation. This however does not address the problem
of free riders. For example, a free rider may upload few authentic files and get a high
reputation. Then, the free rider starts taking advantage of the system thanks to its high
reputation. This is called the milking phenomenon.

For these reasons, we argue that a good scheme for service differentiation should be
able to detect free riders and malicious peers and lower the service provided to them.
For example, the system may reject search requests generated from free riders. A more
elaborated discussion will be presented in Section 5.4. This will have a double effect. On
one hand, this will encourage free riders and malicious peers to change their behavior if
they want to receive a better service. And, on the other hand, good peers will receive a
better service and will be motivated to continue providing good service.

5.2 Contribution Behavior

In this chapter, we propose a contribution management scheme. Peers will have to con-
tribute to the system to receive services. The shadow of the future is maintained because
peers are forced to contribute to be served. The higher the contribution value, the greater
the services available to the peer. The contribution of peers rather than their reputation
is used as a guideline for service differentiation.

The proposed scheme will allow to achieve the following objectives:

• Stopping the egoistical behavior of free riders that want only to take advantage of the
system. This is achieved by providing the right incentives for free riders to change
their behavior from free riding to positively contributing to the system and punishing
them otherwise.

• Creating a competitive environment that will push peers to continuously being avail-
able to upload files.

84

• Allowing new comers or formerly free riders to build their reputation and increase
their contribution.

The proposed contribution system along with the reputation and the credibility man-
agement systems already proposed in chapters 3 and 4 form a coherent and complete
framework that addresses major issues related to peers behavior in partially decentralized
P2P systems.

5.2.1 Contribution Components

In a reputation-based system with millions of users, the competition to upload requested
files is very high. Peers with higher reputation values are always chosen. If we consider that
the Contribution Behavior of a peer is computed based only on its uploads and downloads,
highly reputable peers will have higher contribution values and will receive better services.
New comers and peers that are still in the process of building their reputation will not
be selected to perform the upload. These peers will receive lower services and may have
no or not enough files to upload to other peers. They will not be able to increase their
contribution and reputation values. This may lead to peers’ starvation. Therefore, we
need to recognize peers that are available to upload files and reward them. With the
recognition of peers’ availability, peers will have a chance to receive services, and build
their reputation. These peers will, slowly, but surely, have their requests handled by the
system. They will be able to download files, have more chances to share with others, and
increase their reputation and contribution values gradually.

The Contribution Behavior of a peer represents its participation in terms of sharing
files and positively contributing to the system. The Contribution Behavior should be based
on:

• Peer’s Availability : being available for uploading requested files.

• Peer’s Involvement : non-malicious uploads performed versus downloads received by
a peer.

Several other features may be taken into consideration to assess peers’ contribution in
addition to the Availability and Involvement. These features could be peer’s upload rate,
peer’s uptime, the diversity of files that a peer is providing, or sharing rare and hard to
find files, etc. However, in our opinion the most important concepts that prove the peer’s
contribution to the system are its Availability in terms of being available and ready to
upload the requested files and its Involvement in terms of what the peer has positively
uploaded to the system compared to what it has downloaded from it.

85

5.2.2 Peer Availability

When a peer requests a file and receives a list of peers providing this file, all these peers
are available for an eventual upload. These peers can be considered as contributor peers
since they are willing to upload the requested file. Since only after an upload is actually
performed that it can be assessed as good or malicious, all these peers have to be rewarded
for being available irrespective of being good or malicious.

Let the value of Availablei, be the number of times, the peer Pi was available for an
upload. This value is incremented by the supernode of Pi each time peer Pi is available to
provide a requested file after a search request is received.

The availability of peer Pi (Availabilityi) is computed as the ratio between Availablei

and the average Availablek for all peers Pk attached to the same supernode. The average
of Availablek can be computed easily by each supernode since Availablek is stored at the
supernode level for each peer Pk that is connected to this supernode. Availabilityi is com-
puted as follows:

Averagesup =
∑

k
Availablek

NbrPeerssup

if Averagesup > 0 then
Availabilityi = Min(Availablei

Averagesup
, 1)

end if

Where NbrPeerssup is the number of peers attached to the supernode Sup(i). Note
that Availabilityi of peer Pi is computed based on the average availability of all peers
attached to the same supernode. In case that Availabilityi ≥ 1, Availabilityi is set to
1 which means that the peer is available more than the average availability of all peers
that belong to its supernode. The Availabilityi value for peer Pi will be high if Pi is
a contributor peer, otherwise, this value will be low. This is because the Averagesup

value is continuously increased by contributor peers. The goal is to create a competitive
environment that will push peers to continuously being available for providing files. The
value of Averagesup could also be the average value among several supernodes. This value
can be easily exchanged between supernodes.

If a peer Pi is available yet never solicited, this peer will not be deprived from benefiting
from the system since its Availabilityi value will not be null. This peer will get a chance
to receive service. It is important to note that the supernode Sup(i) updates the value
Availabilityj for all its peers periodically. The frequency of this update should not be
high (e.g., after each search request) to avoid extra overhead and not too low to preserve
accuracy.

In [65], it has been found that most of the shared content in Gnutella is provided by
only 30% of peers which means that 70% of peers are free riders. Assuming that peers

86

are uniformly distributed among supernodes. We can expect to have almost the same
distribution for each supernode. This means that 70% of peers connected to a supernode
are free riders and only 30% are contributor peers. Because of the high availability of
contributor peers, free riders will have to be available in order to receive services from
this supernode. A peer can achieve a high Availability value by accepting to share files
with others, and being available for uploads during long periods of time. The greater the
number of popular files this peer is offering, the greater its Availability value will be.

5.2.3 Peer Involvement

The Involvementi of peer Pi is defined as:

if (D+
i,∗ + D−

i,∗ 6= 0) then

Involvementi =
D+
∗,i−D−∗,i

D+
i,∗+D−i,∗

else
Involvementi = D+

∗,i −D−
∗,i

end if
Involvementi = Min(Involvementi, 1)

While the reputation value is based only on the uploads of a peer to reflect its Authentic
Behavior, the involvement should be based on both the uploads and the downloads of the
peer to express how much the peer gave to the system compared to how much the peer
took from the system. The Involvementi of peer Pi is the ratio between what the peer
has positively uploaded to the system and what it has downloaded from it. The term
(D+

∗,i −D−
∗,i) means that the Involvementi value is sensitive to peer’s maliciousness. This

term affects both free riders and malicious peers since it will be very low for free riders and
may be negative for malicious peers. Peers that download much more than they upload to
other peers will get a low Involvement value. Thus, peers have to continuously upload files
if they want to receive files from others. In case that Involvementi ≥ 1, Involvementi
is set to 1 which means that the peer is contributing to the system more than what it is
downloading from it.

Ideally, a peer should be charged only for its authentic downloads since it is not respon-
sible for the malicious content that it received from other peers. However, some malicious
peers may rate all their downloads as inauthentic so that these downloads will not be
counted in the Involvement value. To avoid this situation, the total downloads is used for
computing the Involvement value. This will also motivate peers to deal only with highly
reputable peers.

87

5.2.4 Peer Contribution

The Contribution Behavior CTBi of peer Pi is computed using algorithm 4.

Algorithm 4: Peer Contribution Algorithm

a = Availabilityi

if Involvementi < 0 then
b = −1

else
b = Involvementi

end if
c = Max(αa + βb, 0)
CTBi = Min(c, 1)

The value of CTBi is computed based on a weighted sum of a and b: CTBi = αa+βb,
(with α ≥ 0 and β ≥ 0). α and β are application dependent and represent the weights
given to Availability and Involvement of peer Pi. The value of CTBi is based on the
maximum between αa + βb and 0 and the minimum between the obtained result and 1.
This guarantees that CTBi value will be between 0 and 1. An in depth analysis can
be conducted for parameter settings to achieve the best performance for the system. In
general, more weight can be given to β compared to α since Involvement is more important
than Availability.

The use of Credibility Behavior in computing peers’ Involvement will reduce signifi-
cantly the impact of colluding peers that report fake transactions among themselves to
increase their Contribution Behavior value (cf. equation. 4.4).

5.3 Trust Management Framework Components

5.3.1 The Use of Trust Components

Figure 5.1 shows the three dimensions of trust along with different aspects of behavior
that they characterize. The Authentic Behavior allows to distinguish between good peers
that send authentic files, and malicious peers. The Credibility Behavior makes possible
to distinguish between liar and honest peers while the Contribution Behavior allows to
distinguish between good contributor peers, and free riders and malicious peers.

Figure 5.2 shows a typical file request-download procedure involving the sender and
receiver peers and their supernodes. The figure shows steps affected by the values of trust

88

Peer

Authentic
Behavior

Contribution
Behavior

Credibility
Behavior

Availability Involvement

Malicious

Contributor

Free Rider No or Negative
Involvement

Positive
Involvement

Credible Liar
Free Rider &

Malicious
Contributor

Good
Contributor

Characterized by

Used to distinguish

Good

Figure 5.1: Peer Trust and Behavior Analysis

triplet. When peer Pi is requesting a search service ReqF
i from its supernode Sup(i), this

latter will perform the request only after considering the Contribution Behavior of peer Pi.
According to peer’s Availability and Involvement, the request can be processed or rejected.
When peer Pi is given a list of peers providing the requested file ResF

i which represents
the result of the search request, peer Pi will choose peer Pj according to the Authentic
Behavior of Pj. Peer Pi is not interested to know other characteristics of peer Pj since
the most important issue for peer Pi is to receive the exact requested file. Peer Pi sends a
request ReqF

ij to download file F from peer Pj. After downloading this file, peer Pi sends
feedback AF

i,j. The credibility of peer Pi will have a significant impact on the feedback and
the reputation of peer Pj. Indeed, if peer Pi has a low credibility, this peer may send a
wrong feedback and hence, affects the reputation of peer Pj. Hence, a peer may decide
not to upload a file to a peer with a low credibility value (along the Credibility Behavior
dimension), since the latter peer may wrongfully send negative feedback and affect badly
the reputation of the peer performing the upload.

89

P � Sup(i) Sup(j) P �

A � � � A � � �Credibility
Behavior of P �

Authentic
Behavior of P �

Req � �

Req � �

Res � �Res � �

Req � �
j

Contribution
Behavior of P �

F

Figure 5.2: A Typical Exchange between Peers

5.3.2 Reputation Data

Each peer Pi in the system has Reputation data (REPPi
), stored by its supernode Sup(i)

that includes the following:

1. D+
i,∗: satisfactory downloads of peer Pi from other peers,

2. D−
i,∗: unsatisfactory downloads of peer Pi from other peers,

3. D+
∗,i: satisfactory uploads from peer Pi to other peers,

4. D−
∗,i: unsatisfactory uploads from peer Pi to other peers

5. Ni: The total number of downloads performed by peer Pi

6. N∗
i : The number of suspicious transactions

7. TFi: The total size of all the files uploaded by Pi

8. Availablei: The number of times Pi was available to share files

When peer Pi joins the system for the first time, all values of its Reputation data REPPi

are initialized to zero. Protecting the integrity of peers’ Reputation data is imperative
to prevent malicious peers from increasing their Authentic Behavior and Contribution
Behavior values and take advantage from the system.

90

5.4 Service Differentiation

We divide service differentiation into two categories: implicit and explicit service differen-
tiation.

Implicit service differentiation, is the service differentiation that results from the normal
evolution of the system. For example, when a peer has a low reputation (e.g., its Authentic
Behavior value), this peer will have a low probability of being selected for uploads, which
will not allow it to increase its contribution value.

Explicit service differentiation, is the one that results from the explicit decision of
system entities. For example, a supernode may decide to enforce service differentiation
policies on the peers it manages. Explicit service differentiation can also be enforced at
the level of peers. For example, a peer may decide not to upload to a peer with a low
contribution value (along the Contribution Behavior dimension), since the peer requesting
the upload may be a free rider.

In the proposed contribution management system, we focus on enforcing service differ-
entiation policies at the supernode level. When a peer Pi sends a request to its supernode
Sup(i), this latter will associate to the request a probability probi according to the con-
tribution level of peer Pi. This is the probability of performing the requested service by
Sup(i). The higher the contribution value is, the more chances the supernode will execute
the requests for this peer1.

When supernode Sup(i) receives a request for searching a file on behalf of peer Pi,
Sup(i) will compute the probability probi for peer Pi, and will execute the request accord-
ing to this probability as follows:

if (D+
i,∗ + D−

i,∗) ≤ MinDownload then
probi = 1

else
probi = CTBi

end if

The greater CTBi value is, the more likely peer Pi will receive service from the system.
Even if a peer did not get a chance to upload a file, it can still have its requests handled
by the system based on its Availabilityi. If peer Pi is contributing negatively by uploading
malicious files, this peer will get a negative Involvementi value which will reduce its
contribution value, and hence its probability to benefit from the system although this peer

1To prevent peers from repeatedly sending the same request to the supernode over and over until
the request is handled, a minimum time period can be enforced between consecutive requests. This will
motivate peers to contribute if they want their requests to be processed by the system.

91

may have a high Availabilityi value. The proposed mechanism allows to reduce significantly
services provided to malicious peers that harm the system.

5.4.1 New Comers Policy

New comers to the system are entitled to download up to a maximum amount set to
MinDownload. The probability probi, used by the supernode in this case, is equal to 1
to allow new comers (i.e., with no involvement) to download files. After exceeding this
maximum amount of downloads, the probability used by the supernode will be computed
according to the Contribution Behavior CTBi.

5.4.2 White-washing Policy

White-washing is the situation when a peer changes its identity and rejoins the network
with a new one. This may be beneficial for malicious peers. Indeed, once these peers are
identified as malicious, they will not be able to upload inauthentic files. To start over
again, malicious peers can rejoin the system with a new identity and their past history will
simply be forgotten. However, a new comer has a null Authentic Behavior value (AB);
hence, it has a neutral trust. To be able (to be chosen by others) to upload, this peer has
to increase its AB. This peer will need to contribute positively by uploading authentic files
before being able to upload inauthentic ones. This will not be very attractive to malicious
peers whom their main goal is to harm the system as quickly as possible.

White-washing may also be beneficial for free riders. These peers could take advantage
from the MinDownload value to download files without uploading to others. The value
of MinDownload should be carefully chosen not to encourage peers to change identities
and benefit from free downloads. A small MinDownload value will not allow newcomers
to quickly benefit from the system. On the other hand, a high MinDownload value may
encourage white-washing.

5.5 Rational Behavior

Rational Behavior for peers has been introduced for completely decentralized P2P systems
in [54]. The algorithm makes rational peers change their behavior according to the output
of their actions. This algorithm assumes a periodical update of peer behavior in terms of
probability of sharing files (ProbShare). After each evaluation period, a peer will decide
if a change in its behavior is needed or not.

92

In this chapter, we improved this algorithm to fit partially decentralized P2P systems.
The following values are stored by each peer Pi:

1. SuccessfulRequest: Number of requests successfully performed by Supi for Pi during
the current evaluation period.

2. Request: Number of requests sent to supernode Supi by peer Pi during current
evaluation period (i.e., period of time),

3. ProbShare: The probability of peer Pi to share files with other peers during current
evaluation period. Typically, free riders will have lower values of ProbShare than
contributor peers,

4. increment: Represents the unit of increasing or decreasing ProbShare,

5. OldBenefit: Benefit obtained during previous evaluation period,

6. LastAction: The action performed on ProbShare during previous evaluation period.
The value of ProbShare will increase or decrease and the value of LastAction will
be 1 or −1 respectively.

The algorithm has been modified from its original version to become Algorithm 5.

Rational behavior involves comparing benefits before and after the evaluation period.
If the new strategy (the new value of ProbShare) is better than the old strategy, the same
action as in LastAction will be performed. Otherwise, the opposite of LastAction will be
executed.

In our algorithm, if the old benefit and the new one have low values (almost null),
the peer will increase its probability of sharing files ProbShare. In the original version,
this case was not addressed and peers cannot receive any benefits when their ProbShare
is equal to zero. The original version leads to a deadlock and peers cannot change their
behavior to receive better services. Moreover, in our algorithm, peers can evaluate their
benefits from the system at different periods of time instead of making this evaluation in
a synchronous way as it is the case in [54].

The majority of peers in the network are selfish (e.g., free riders) and they want to
maximize their own utility. According to the proposed algorithm, this utility is the number
of requests sent by a peer and handled successfully by its supernode. For free riders, the
only way to achieve this goal is by increasing the probability of sharing files. As a result, the
availability of these peers will increase and also their involvement. Thus, their contribution
value will also increase. For malicious peers, they will have to upload authentic files. As a
result, their involvement will become positive, increasing their contribution.

93

Algorithm 5: Adapted Rational Behavior Algorithm

At the end of each evaluation period, do
if Request ≥ 0 then

NewBenefit = SuccessfulRequest/Request
if NewBenefit > OldBenefit then

if LastAction == 1 then
ProbShare = ProbShare + increment
ProbShare = min(ProbShare, 1)

else
ProbShare = ProbShare− increment
ProbShare = max(ProbShare, 0)

end if
end if
if OldBenefit > NewBenefit then

if LastAction == −1 then
ProbShare = ProbShare + increment
ProbShare = min(ProbShare, 1)
LastAction = 1

else
ProbShare = ProbShare− increment
ProbShare = max(ProbShare, 0)
LastAction = −1

end if
end if
if (OldBenefit == NewBenefit) & (NewBenefit <= 0.1) then

ProbShare = ProbShare + increment
ProbShare = min(ProbShare, 1)
LastAction = 1

end if
OldBenefit = NewBenefit
SuccessfulRequest = 0
Request = 0

end if

94

5.6 Performance Evaluation

In this section, we simulate a system under two scenarios: service differentiation with static
peer behavior and service differentiation with rational peer behavior. The goal from these
simulations is to show that:

• Service differentiation is important

• Service differentiation based on Contribution Behavior instead of peers’ reputation
identifies better free riders and reduces the services provided to these peers

• Service differentiation based on Contribution Behavior will motivate free riders to
change their behavior from free riding to contributing to the system.

5.6.1 Simulation Parameters

We use the following simulation parameters:

• We simulate a system with 500 peers and 500 files. We have chosen 500 peers since
a supernode typically supports between 300 to 500 peers, depending on availability
of resources [11].

• At the beginning of the simulation, each peer has at most 15 randomly chosen files
and each file has at least one owner.

• Each peer can ask for a file with a Zipf distribution over all the files that the peer
does not already have. The Zipf distribution parameter is chosen close to 1

• Peers are divided into two categories: Contributors and Free Riders. Free riders
constitute 70% of the peers. From each category, 30% of peers are malicious peers
that send inauthentic content. Peers’ behavior and distribution are summarized in
table 5.1.

• MinDownload is set to the average file size.

• We simulate 150, 000 requests.

We do not consider liar peers. This issue was already addressed in chapter 4.

Table 5.1 presents peers’ distribution and their corresponding probability of sending
inauthentic files. Following this table, peers with index from 1 to 350 belong to the category
of free riders (FR), peers with index from 351 to 500 belong to the category of contributor

95

Probability to send inauthentic files
Category Percentage Malicious (30%) Not malicious (70%)

Contributors 30% 0.9 0.01
Free Riders 70% 0.9 0.01

Table 5.1: Peers’ Behavior and Distribution

peers (CP). Accordingly, peers with index from 1 to 245 are good free riders (GFR) and
peers with index from 246 to 350 are malicious peers in addition of being free riders
(MFR). Peers with index from 351 to 395 are malicious contributor peers (MCP) that
provide malicious content but still participate in uploading files to other peers. Peers with
index from 396 to 500 are good contributor peers (GCP). We have considered a situation
where we have a high percentage of free riders as observed by [65] to show the effectiveness
of our proposed scheme in identifying and handling free riders both good and malicious.

5.6.2 Static Behavior

In this first set of simulations, we consider static peer behavior. This means that peers do
not change their behavior over time. We will compare the following schemes:

1. The reputation management scheme with no service differentiation (NOSD). This
is to show the importance of service differentiation among the peers.

2. The reputation management scheme with the reputation value as a guideline for
service differentiation. We call this scheme the Reputation-Based Service Differenti-
ation (RBSD). Since the reputation values (i.e., ABi) are between −1 and 1, in this
scheme, the probability probi is computed as follows: probi = (1 + ABi)/2.

3. The reputation management scheme with the Contribution Behavior as a guideline
for service differentiation. We will call this scheme the Contribution-Based Service
Differentiation (CBSD).

Free riders share files with a probability of 5%. In addition, 100 of the non malicious
free rider peers will accept uploading the first file to get a high reputation.

In these simulations, we will focus on the following performance metrics:

• Percentage of successful requests: computed as the total number of requests that
have been performed for the peer during the simulation over the total number of all
submitted requests by this peer.

96

0 50 100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Peer

P
ee

r
Lo

ad
 S

ha
re

 fo
r

N
O

S
D

Figure 5.3: Peer Load Share for NOSD

• Peer contribution level: shows the contribution behavior of each peer.

• Peer load share: this parameter is computed as the normalized load supported by
the peer. This is computed as the sum of the uploads performed by the peer over
the total uploads in the system.

No Service Differentiation case

In case that there is no service differentiation, all peers categories (i.e, GCP, MCP, GFR,
and MFR) will receive the same level of service. Obviously, it is unfair that free riders
(GFR and MFR) and malicious contributor peers (MGP) benefit from the system even if
they are not supporting the same load as good contributor peers (GCP) do.

Figure 5.3 depicts the normalized load supported by different peers after 150, 000 re-
quests sent to the system in the case of the NOSD scheme. The X axis represents peers’
id while the Y axis represents the normalized peer load share. From the figure, it is clear
that the proposed reputation management scheme (Authentic Behavior) is able to detect,
identify and isolate malicious peers (i.e., peer id 246 to 395), as they are not requested to
upload files, preventing the peers from receiving malicious content. Since the probability of
sharing for GCP is equal to 1, all the load is almost supported by non malicious contributor
peers (i.e., peer id 396 to 500). Free riders do not contribute significantly to the system
since they do not share any files as their probability of sharing is only 0.05. Good free

97

0 50 100 150 200 250 300 350 400 450 500
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Peer

P
ee

r
R

ep
ut

at
io

n

Figure 5.4: Peers Reputation in RBSD

riders that are using the milking strategy (i.e., peer id 1 to 100) have been participating
in uploading some files to get a high reputation value.

Since there is no service differentiation, all the requests sent to the supernode will be
performed regardless of the contribution of the peers. This is obviously unfair to the peers
that contribute significantly to the system.

Service Differentiation case

Figure 5.4 depicts the reputation values of the peers (i.e., the Authentic Behavior) in the
case of the Reputation Based Service Differentiation (RBSD) scheme. It is clear that the
scheme is able to identify malicious peers. However, the scheme is not able to differentiate
between free riders and contributor peers. Reputation is not a good indicator of the
contribution of the peer as we can see from comparing figure 5.3 and figure 5.4.

Figure 5.5 depicts the Contribution Behavior value in the case of the Contribution
Based Service Differentiation (CBSD) scheme. Comparing this figure with figure 5.3, the
Contribution Behavior value is a good indicator of the peer load share. In other words,
a peer with a high contribution level is supporting more load than a peer with a low
contribution level. Note that the Contribution Behavior values of malicious peers (i.e.,
peer id 246 to 395) are null. This is because malicious peers are harming the system by
uploading malicious files. This means that the Contribution Behavior value can be used

98

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Peer

P
ee

r
C

on
tr

ib
ut

io
n

B
eh

av
io

r

Figure 5.5: Peers Contribution Behavior in CBSD

for service differentiation which will effectively reward good peers and punish both free
riders and malicious peers.

Figures 5.6 and 5.7 show the percentage of successful requests for RBSD and CBSD
respectively (i.e., accepted requests by the supernode). From figure 5.6, we can notice that
free riders have about 50% chance to have their request processed by the supernode. Free
riders with high reputation values (i.e., peer id 1 to 100) have almost the same percentage
of successful requests as non malicious contributor peers. However, free riders did not
contribute at the same level. In figure 5.7, free riders with id from 1 to 100, have a
lower percentage of successful requests since they uploaded only few files compared to
non malicious contributor peers GCP. The latter peers are rewarded with a high level of
service since they have supported almost all the load. They contributed significantly and
positively to the system. The supernode processed their requests with a high probability.
Some of the malicious peers uploaded more malicious content than good one, hence their
percentage of successful requests is very low. This is because their contribution is null as
shown in figure 5.5. Also, free riders with id from 101 to 350 receive a very low level of
service since their contribution values are very low. Indeed, these peers did not upload
files nor were they available to share files, and hence, their Availability and Involvement
values are very low.

Note that in these simulations, we assumed a static peer behavior. This is to assess
the capability of the proposed scheme in detecting malicious and free rider peers and

99

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Peer

P
er

ce
nt

ag
e

of
 S

uc
ce

ss
fu

l R
eq

ue
st

s

Figure 5.6: Percentage of Successful Requests for RBSD

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Peer

P
er

ce
nt

ag
e

of
 S

uc
ce

ss
fu

l R
eq

ue
st

s

Figure 5.7: Percentage of Successful Requests for CBSD

100

0 5 10 15

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Request Number

P
ee

r
In

vo
lv

em
en

t

GCP

GFR

MFR

MCP

Figure 5.8: Peer Involvement

preventing them from obtaining good service. In real life, however, peers will tend to
change their behavior. Free rider peers with a rational behavior will change from free
riding to contributing to the system.

5.6.3 Rational Behavior

In the following set of simulations, we assume that peers use rational behavior as presented
in Section 5.5. The goal is to show that under the rational behavior assumption, free riders
will change their behavior from free riding to sharing and uploading files. As in real life,
peers will tend to change their behavior to maximize the benefit obtained from the system.

Initially, free riders share files with a null probability and contributor peers with a
probability equal to 1. The probability of sharing (ProbShare) is increased or decreased
by a parameter set to 0.2.

Figure 5.8 shows the average peer involvement for different categories of peers. The
X axis represents the number of requests while the Y axis represents the average peer
involvement. At the beginning of the simulation, the involvement of free riders is very low
since they are not sharing any files. As their probability of sharing increases, good free
riders (GFR) get more involved in the system by uploading files until they reach a similar
value as good contributor peers (GCP). The average peer involvement for good contributor

101

0 5 10 15

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

Request Number

A
va

ila
bi

lit
y

GCP

MCP

GFR

MFR

Figure 5.9: Peer Availability

peers decreases gradually since they are uploading less than before due to the fact that
good free riders are becoming more involved in the system. As a consequence, GCP are
relieved from supporting a high load, reducing the amount of resources dedicated by those
peers to the system. This is considered an additional benefit received by GCP in addition
to receiving higher services as will be shown in figure 5.10. However, malicious peers (both
MFR and MCP) have negative involvement values since they are uploading more malicious
content.

Figure 5.9 shows the average peer availability for different categories of peers. At the
beginning of the simulations, the availability of free riders is null since their probability of
sharing files is null. As this probability increases for good free riders, their availability also
increases. Hence, their contribution increases and also the amount of received services.
During the beginning of the simulation, the availability of good contributor peers (GCP)
increases as they are the only ones available to upload files. However, the availability
of malicious contributor peers (MCP) decreases. Using the contribution behavior as a
guideline for service differentiation, these peers get less services, hence they will not be
able to download as many files as good contributor peers.

102

0 5 10 15

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Request Number

P
er

ce
nt

ag
e

of
 P

er
fo

rm
ed

 R
eq

ue
st

s

GCP

GFR

MCP

MFR

Figure 5.10: Percentage of Performed Requests with Contribution Behavior based on Avail-
ability and Involvement

Impact of Availability

We want to investigate the impact of Availability on the percentage of performed requests
(i.e., accepted requests by the supernode) for free riders and contributor peers. Figure 5.10
shows the results obtained in the case where the Contribution Behavior is based on both
peers’ Availability and Involvement. Figure 5.11 shows the results in the case where the
Contribution Behavior is computed based on peers’ Involvement only.

Figure 5.10 shows that at the beginning of the simulation, only 30% of free riders’
requests are performed by the system. This is thanks to the minimum amount of down-
loads MinDownload they are authorized to have. This percentage will decrease gradually
until free riders do not receive any significant benefit from the system due to their low
contribution as explained earlier. This will push these peers to change their behavior and
start sharing files with others. As GFR probability of sharing increases, so does the benefit
they receive from the system. Malicious contributor peers (MCP) and malicious free riders
(MFR) have a very low percentage since their involvement is negative. Good contributor
peers (GCP) get a high percentage of accepted requests since they have a high contribution
value due to their high availability and high positive involvement.

Figure 5.11 shows the results in the case where the Contribution Behavior is computed
based on peers’ Involvement only. This figure shows that good free riders (GFR) receive a

103

0 5 10 15

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Request Number

P
er

ce
nt

ag
e

of
 P

er
fo

rm
ed

 R
eq

ue
st

s

GCP

GFR

MCP MFR

Figure 5.11: Percentage of Performed Requests with Contribution Behavior based only on
Involvement

lower level of service compared to the previous case (see figure 5.10). Also, good contributor
peers (GCP) receive a lower percentage of performed requests in figure 5.11 compared to the
percentage received by these peers in figure 5.10. Using peers Availability and Involvement
to compute the contribution behavior will reward better GCP and GFR. Note that in this
case, both MCP and MFR also receive a slightly better service as shown in figure 5.10.
Although, these peers do not deserve any benefit from the system, our new scheme provides
them with an opportunity to receive services and change their behavior. Using the new
scheme, these peers can slowly download good quality files and be able to upload them
increasing their contribution and hence, their reputation.

We also want to investigate the impact of Availability on the normalized load supported
by different categories of peers. Figure 5.12 shows the normalized load in the case where
the Contribution Behavior is computed based on both peers Availability and Involvement.
Figure 5.13 shows the load in the case where the Contribution Behavior is computed using
only peers Involvement.

Figure 5.12 shows that at the beginning of the simulation, since the probability of
sharing for free riders is null, they were not participating in uploading files and all the
load was exclusively supported by good contributor peers (GCP). Note that malicious
contributor peers (MCP) are detected very quickly by the system and are isolated (i.e.,
not requested for uploads). Using our proposed scheme for service differentiation and

104

0 5 10 15

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Request Number

P
ee

r
Lo

ad
 S

ha
re

GCP

GFR

MCP MFR

Figure 5.12: Peer Load Share with Contribution Behavior based on Availability and In-
volvement

with rational behavior, good free riders (GFR) are forced to share and upload files to get
high level of service. Good contributor peers (GCP) are rewarded by the reduction of the
supported load since good free riders are now uploading files. As to malicious peers (both
MFR and MCP), they are not participating in uploading files since our proposed scheme
is able to identify and isolate them.

As shown in figure 5.13, using the Contribution Behavior based only on peers Involve-
ment does not motivate free riders to share files in the same manner as shown in figure
5.12. In figure 5.13, GFR will need more time (150, 000 requests) to support equally the
load with GCP. In figure 5.12, GFR will start supporting the load equally with GCP only
after 60, 000 requests.

In summary, using service differentiation free riders change their behavior and start
participating positively to the system. The new scheme provides the right incentives to
motivate free riders to start sharing. Free riders and malicious peers are punished. The
new scheme successfully achieves the objectives described in Section 5.1.

105

0 5 10 15

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Request Number

P
ee

r
Lo

ad
 S

ha
re

GCP

GFR

MCP MFR

Figure 5.13: Peer Load Share with Contribution Behavior based only on Involvement

5.7 Concluding Remarks

In this chapter, we introduced the Contribution Behavior which is the third dimension
of trust. The Contribution Behavior of a peer represents its participation in terms of
sharing files and positively contributing to the system. This value is computed based
on peer’s Availability and its Involvement. Availability shows if a peer is available for
uploading requested files, while its Involvement shows non-malicious uploads performed
versus received downloads.

We also introduced a novel service differentiation scheme for partially decentralized P2P
systems. The Contribution Behavior is used as a guideline for service differentiation rather
than peer’s Authentic Behavior. While, peer’s Authentic Behavior reflects the authenticity
of the files this peer is uploading, the peer’s Contribution Behavior reflects its availability
to sharing files taking into account its uploads compared to its downloads. The proposed
scheme provides the right incentives for free riders to share files. Performance evaluations
confirm the ability of the proposed scheme to effectively identify both free riders and
malicious peers and reduce the level of service provided to them. On the other hand, good
peers receive better service. Assuming a rational behavior, free riders tend to increase
their contribution to get better service and indirectly reducing the load supported by good
contributor peers. Moreover, the proposed scheme generates a competitive environment
where peers are forced to continuously participate to benefit from the system, this way,

106

reducing significantly the milking phenomenon.

In P2P file sharing systems, peers have to choose the files of interest from a large
collection of files. This task is difficult and time consuming. To alleviate the peers from
the burden of manually looking for relevant files, recommender systems are used to make
personalized recommendations. In the next chapter, we propose a novel recommender
system.

107

Chapter 6

Personalized Recommendations

6.1 Introduction

While reputation systems are used to enforce appropriate behavior by rating users as
explained in chapter 3, recommender systems are used to allow satisfactory transactions
by rating the quality of items (e.g., products, services).

In P2P file sharing systems, users are overwhelmed by a large collection of files available
for download. Unfortunately, finding files of interest is time consuming. Recommender
systems suggest to users files based on their profile. These users will be motivated to
download the recommended files and hence, will remain active members. While they are
downloading the files, they will upload files to others increasing their contribution to the
system (cf. Section 5.2).

Recommender systems are widely used in e-Commerce applications (e.g., amazon.com,
BizRate.com, Epinions.com, Yahoo.com) [66, 67, 68]. Recommender systems take advan-
tage of the collected data that represents customers’ experiences to predict their future
needs. These systems suggest products and services that most likely will be of inter-
est to the customers. The collaborative filtering recommender techniques are achieving
widespread success on the web [67, 69, 68].

Although, e-Commerce applications have been using recommender systems for at least
a decade, this research field is still a fertile area in P2P systems. Only few research works
have addressed recommender schemes in P2P systems [70, 71, 72].

In P2P file sharing systems, peers spend a significant amount of time looking for relevant
and interesting files. However, the files available for download represent on one hand a rich
collection for different needs and preferences and on the other hand a struggle for the peers
to find files that they like. The search process in partially decentralized P2P file sharing
systems can be divided into the following steps:

108

1. Providing keywords.

2. Sending the request to the supernode.

3. The supernode will search for the file by contacting local peers if the file is available
locally or sending a request to other supernodes.

In this chapter, we propose a novel recommender framework for partially decentralized
file sharing P2P systems. This recommender framework will help peers in the first step by
finding relevant filenames for files of interest based on peers’ profile. The profile reflects
their past choices, experiences and preferences. The proposed recommender system is
based on collaborative filtering. Peers collaborate to filter out irrelevant files and find
interesting ones. Relationships between peers are explored by taking advantage from the
partial search process used in partially decentralized systems. In order to make personalized
recommendations, the implicit rating approach is used and hence, no additional effort is
required from the users. In addition, the implicit rating helps in overcoming the problems
that traditional collaborative filtering schemes suffer from like the Cold start, the Data
sparseness and the Popularity effect.

Similarity has been used in many fields like natural and social sciences as well as
engineering and statistics. Several metrics have been proposed to compute similarity. In
this chapter, we investigate several similarity metrics in the context of P2P recommender
systems. We adapt these metrics to the context of recommender systems and particularly
to file sharing P2P systems. We also propose a new similarity metric. We investigate these
similarity metrics in both the weighted and non weighted techniques. The impact of each
similarity metric on the accuracy of the recommendations is analyzed.

6.2 Recommender Systems in e-Commerce

6.2.1 Content-based versus Collaborative Filtering

Most recommender systems in e-commerce [67, 69, 68] are based on one of the two following
techniques: content-based and collaborative filtering.

In the content-based approach, items are described in terms of their characteristics
and recommendations are based on items already selected by the active user (i.e., the user
to whom a recommendation is made). This approach is time consuming and expensive
for subjective files such as songs and movies. It is not recommended for highly dynamic
environments with millions of users and files [69].

Collaborative filtering is the most widely used technique for recommender systems.
This approach is based on collecting users’ ratings. It suggests items based on similarities

109

between the active user’s profile and other users or similarities between items. In this
approach, it is required that a large number of users rate items to ensure recommendation
accuracy [69]. This technique has proved to be one of the most successful techniques in
recommender systems in recent years.

Collaborative filtering can be divided into two main categories:

• User-based collaborative filtering algorithms: relationships between users are ex-
plored first to find similar users to the active user. These users are like-minded as
the active user and based on their ratings of the item in question, a rating value is
predicted. This value represents an estimation of the likeliness of the item in question
by the active user.

• Item-based collaborative filtering algorithms: relationships are explored between
items first rather than users. Items that are similar to the item in question are
identified. Based on this similarity, a predicted rating is provided. The item-to-item
recommender scheme used in amazon.com is an example of this approach.

6.2.2 User-based Collaborative Filtering

User-based collaborative filtering has the following steps:

• Consider the user-item matrix where each row represents the profile of a user and
each column represents the users that have the item (e.g., purchased, rented, ...etc).

• Compute the similarity metric: the similarity metric is computed for each pair of
users. This is used to predict the ratings for the active user A. Similar peers have
almost similar tastes and preferences, and so, they will have similar ratings for the
same items. For N users, a user similarity matrix (N ×N) is computed.

• Choose the k most similar users to the active user A. These users are called neighbors
of user A.

• Compute the predicted rating for the active user A for items i. These items are not
yet purchased by the active user A.

• Recommend the items that have a high predicted rating value to the active user A.

The similarity matrix is usually computed using the Pearson correlation or the Cosine
measure [67, 69, 68].

110

6.2.3 Using The Pearson Correlation

To compute the similarity of peers, the most used technique is Pearson correlation coeffi-
cient (PC) [67, 69, 68, 71]:

PCA,B =

∑m
l=1(RAl − R̄A)(RBl − R̄B)√∑m

l=1(RAl − R̄A)2
∑m

l=1(RBl − R̄B)2
(6.1)

Where:

• A is the active user for whom a recommendation will be proposed.

• B is a user.

• R̄B is the average rating by the user B.

• R̄A is the average rating by the user A.

• m is the number of items that they both rated.

• RAl is the rating given by the user A to the item l.

• RBl is the rating given by the user B to the item l.

The Pearson Correlation coefficient is significant if users share two or more ratings.
Positive correlation shows similarities between users, while a negative value shows that
these users are not similar and their interests are different.

In the similarity matrix, each row represents the similarity between a user and other
users in terms of ratings. This matrix is used to predict the ratings for the current user.
This is based on the assumption that if two users have similar preferences and interests,
they will have similar ratings.

6.2.4 Using The Cosine Measure

Another way to compute similarity between users is to use the cosine measure [67, 68].
The active user A and a user B are represented by two vectors and the similarity between
them is measured by computing the cosine of the angle between the two vectors.

cos(
−→
A,
−→
B) =

−→
A · −→B

‖ −→A ‖2 × ‖ −→B ‖2

=

∑n
l=1 RAlRBl√∑n

l=1 R2
Al

∑n
l=1 R2

Bl

(6.2)

111

−→
A ·−→B denotes the dot product between the vectors

−→
A and

−→
B , ‖ −→A ‖2, ‖ −→B ‖2 represent

the Euclidean norm for the two vectors and RAl, RBl represent their respective ratings for
the n items.

6.2.5 Computing The Predicted Rating

The predicted rating value measures the likeliness of the active user A for an item l. The
predicted rating value is computed as follows [67, 69, 68]:

PRA,l = R̄a +

∑k
j=1 PCA,j(Rjl − R̄j)∑k

j=1 PCA,j

(6.3)

k is the number of users that are the neighbors of the active user A. These users are
the most similar to the active user A.

Another alternative for computing the predicted rating is to use the cosine measure
instead of the Pearson Correlation coefficient PCA,B.

The items that have a high value of PRA,l are recommended to the active user A.

6.2.6 Challenges of Collaborative Filtering Algorithms

The main known problems of collaborative filtering are the followings [67, 69, 68]:

• Cold start : This problem occurs for a new user or at the start of the system. It is
difficult to make recommendations for a new user based on users’ similarities since
no rating is provided yet or the user’s profile is not known yet.

• Popularity effect : This problem occurs when the given recommendations are obvious
and evident from the user’s point of view.

• Data sparseness : This problem occurs when only few users have rated few items. It
is difficult to predict the user’s interests and make accurate recommendations.

• Trust : This problem occurs when untrustworthy users provide false ratings. The
system should be able to choose only highly reputable users while making recom-
mendations. This will reduce the impact of untrustworthy users that influence badly
the recommendation accuracy and hence, will increase the trust given by the peers
to the recommender system.

112

6.3 Recommender Schemes in P2P Systems

6.3.1 Related Works

In [70], the authors propose a decentralized recommendation system that takes advantage
of the high clustering coefficient of Preference Networks. The nodes of these networks are
users of a file sharing system and the links are connections between pairs of nodes that
share one or more identical files. The authors experimentally prove that the preference
networks are small worlds. They propose a recommendation scheme based on the fact that
nodes can be naturally gathered together on the basis of common interests. The top-N
ranked items are recommended to the user and the location information in the buddy
tables can be used to locate the recommended items.

In [71], the authors propose a distributed collaborative filtering method that is self-
organizing and operates in a distributed way. Similarity ranks between items are computed
and are stored locally in buddy tables. To perform a recommendation for a given user, the
buddy tables for all the items in user’s profile are downloaded and the relevance ranks are
computed based on a user-content relevance model. Based on this work, the authors in [72],
introduce personalization on Tribbler, a P2P television system. In this work, buddyCast
which is a distributed profile exchanger, generates a semantic overlay by clustering peers
into social networks according to their profile. Periodically, a user connects either to one of
his buddies to exchange social networks and current profile list (exploitation) or to a new
randomly chosen user from the random cache to exchange this information (exploration).
A ranked list is created based on the similarity of their profile with the profile of the active
user. The buddy list of the selected user is merged and the top-N best ranked users are
kept.

These recommender schemes are suitable for decentralized P2P systems but not for
partially decentralized systems. In addition, theses schemes generate a significant amount
of overhead to make files’ recommendations. As an example, in [72], it is required to
maintain the following lists by each peer in the system: the top-N most similar users, the
top-N most fresh random IP addresses and the K most recently visited users. The periodic
exchange and update of information between peers is costly.

6.3.2 Advantages of Recommender Systems

In P2P file sharing systems, the goal from using a recommender system is to achieve the
following advantages:

• Attract more users by making the search process easier, and more efficient.

113

• Increase peers’ satisfaction by informing them about files of interest.

• Increase peers’ contribution as presented in Section 5.2, since peers will be motivated
to stay connected to download the recommended files and upload files to other peers.
Free riders may be motivated to share their files to get a profile that reflects their
preferences in order to receive accurate recommendations.

• Preserve network resources since peers will not have to download a large number of
files that they do not like and will just discard.

6.3.3 Evaluation of Recommender Systems

Several features can be taken into consideration for recommender schemes evaluation [67,
68]:

• The additional effort that users are required to make: Explicit rating requires users to
participate by providing ratings. However, there is no guarantee that users will make
such commitment. Therefore, taking information implicitly from users’ behavior is
more preferable.

• Ease of understanding by users: when the recommender scheme is not understood
by the users, they will not trust the recommendations. Users need to understand
how recommendations are made. The simplicity of the recommender scheme plays
an important role for its success.

• The accuracy of the recommendations: providing accurate recommendations will
increase peers’ satisfaction.

• Ease of designing and maintaining the proposed system.

• Performance issues: the scheme should not suffer from scalability, Cold start and
Data sparseness as it is the case in traditional collaborative filtering schemes.

6.4 The proposed Recommender Framework

In e-Commerce applications, the collaborative filtering technique is based on the ratings
of the products provided by the customers. In P2P file sharing systems, the collaborative
filtering technique can be used based on the ratings of the files provided by the users.

114

6.4.1 Implicit Rating versus Explicit Rating

After downloading a file, two rating approaches can be considered: explicit rating and
implicit rating. In the explicit rating approach, the user has to explicitly provide a rating
for each file she/he downloads according to its content (i.e., matches the user’s preferences
or not). This approach necessitates an additional effort from the users. A rating scheme
from 1 (not interesting at all) to 5 (very interesting) can be useful to assure recommendation
accuracy. Users have to provide their ratings for different files to enrich the system with
different opinions and experiences. Since explicit rating solicits an additional effort from
users, it is difficult to enforce, especially in systems where 70% of peers are free riders [65].
This approach will likely suffer from the Cold start and Data sparseness. Also, explicit
rating provides malicious peers with a way to influence the rating system which may lead
to the Trust issue described in Section 6.2.6.

The implicit rating approach does not require the users to rate the files. It assigns
ratings implicitly. The fact that ratings are generated automatically without involving
users, alleviate them from the burden of explicitly providing ratings for each file they have
downloaded. We propose to assign a rating of 1 (I like it) to the files owned by the user.
All other files are assigned a rating of 0 (I do not know). Note that a rating of 0 does not
mean that the user does not like the file.

We adopt the implicit rating approach in the proposed framework since it solves the
problems of collaborative filtering in e-Commerce. The implicit rating approach has the
following advantages:

• It solves the Cold start problem: Indeed, even at the start of the system or when a
new user joins the P2P system, a ratings of 0 or 1 is always automatically available
for every file.

• It avoids the Data sparseness problem as ratings are available.

• The subjective rating of files opens the door to malicious peers to manipulate files’
recommendation. The implicit rating approach avoids tampering with the ratings of
the files by malicious peers. This reduces their impact on the recommender system
and thereby minimizing the Trust problem.

6.4.2 User-based versus Item-based Collaborative Filtering

Figure 6.1 depicts the steps required in the proposed framework to make recommendations
to the peers. During the life cycle of a transaction in a P2P system, the following steps
are performed:

115

Send a request for a file

Receive a list of peers that have the file

Select peers based on a reputation metric

Use similarity metric to choose most similar peers

Choose most appropriate files for recommendations
(weighted or non weighted files popularity)

Figure 6.1: Recommendation Transaction Life Cycle

1. Send a file request

2. Receive a list of peers that have the requested file

3. Use similarity metric to choose most similar peers to the peer requesting the file (the
active peer)

4. Use the weighted or non weighted files’ popularity to choose most appropriate files
for recommendations. The non weighted file popularity approach selects the most
popular files among the selected similar peers independently from how similar the
peers are to the active peer. The weighted approach uses the similarity metric to
compute a weighted file popularity before suggesting files for recommendation.

The similarity metrics considered in this work are used during step 3, and the weighted
and non weighted approaches have been enforced in step 4.

Figure 6.2 depicts an example of the information flow between the peer P1 requesting
a file and its supernode. After receiving a request from peer P1, and assuming the file is
not found locally, its supernode sends a request to other supernodes. These supernodes
will send back the search result which is a list of peers that have the requested file and the
files that these peers are sharing. Based on this information, the supernode of P1 will use
the proposed recommender scheme to generate a list of recommended files.

116

Peer

Control
Messages

P3

P4

Supernode

� � � � � � � �
� � � � � � � �
� � � � � � � �

P1

P2

� � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �

List of files shared by the peers that
have the requested file

� � � � � List of recommended files

Figure 6.2: The Proposed Recommender Framework

Since recommendations are given to peers in real time, it is preferable to explore re-
lationships between peers rather than between files. We take advantage from the partial
search process used in partially decentralized systems. The partial search performed by
supernodes limits the number of peers in the search result. This number is much less than
the number of files shared by all the peers in the system. In addition, finding relationships
between all files is time consuming and is usually done offline. For these reasons, adopting
user-based collaborative filtering in P2P systems is more practical than using item-based
collaborative filtering algorithms.

6.5 The Similarity Metrics

6.5.1 Formal Notations

In the remaining of the chapter, we will use the following formal notations:

Let P be the set of all peers in the system.

Let F be the set of all files shared by the peers.

117

Let pi be the requester peer looking for a file fx. pi is the user to whom the recommen-
dation will be made.

Let Pfx be the set of peers that possess the file fx.

Let FPfx
be the set of files that these peers possess in addition to fx. This is the set of

files that these peers are sharing.

Let f : P → Ω(F), such that f(pj) is the set of files held by peer pj for every j and
Ω(F) is the power set of F . Then we have:

FPfx
=

⋃

pk∈Pfx

f(pk)

6.5.2 Files’ Popularity Based Recommendation (FP)

This technique will allow a peer to discover the files that are more popular within the peers
that have the requested file.

Let Gpi
= FPfx

− f(pi)−{fx} be the set of files that pi does not have from the set FPfx

not including the file fx. These are all the files owned by the peers in Pfx that the peer pi

does not have.

For every file fk ∈ Gpi
, we define its popularity as:

Pop(fk) =
|Pfk

∩ Pfx |
|Pfx | (6.4)

where |P | is the cardinality of the set P .

The value of Pop(fk) is a numerical score that shows the popularity of the file fk among
the peers in Pfx .

In this technique, files fk that are more popular will be recommended such that
Pop(fk) ≥ t1, where t1 is a threshold. This recommendation list is sorted according to
the popularity of the files Pop(fk) with the files that are most popular at the top of the
list. The supernode of peer pi may keep track of these files for future recommendations.
This technique will accelerate significantly the spread of popular files which will increase
peers’ satisfaction.

6.5.3 Asymmetric Peers Similarity Based Recommendation (AS)

Peers’ similarity is an important factor in this technique. To be able to make accurate
recommendations, we compare the active user’s files against those of other users. The goal

118

of this process is to find peers with similar preferences as the active peer pi and make
recommendations based on the files that they have. In fact, we apply the files’ popularity
approach within these peers.

For every pj in Pfx we define the similarity relationship as:

ASimpi
(pj) = |f(pi)∩ f(pj)|

|f(pi)| (6.5)

We assume that |f(pi)| is not null, which means that the peer pi owns at least one
file. If the peer does not own any file, the FP scheme is used. The value of ASimpi

(pj)
is a numerical score that shows how similar the peer pj is to the peer pi. Note that this
similarity relationship is not symmetric, i.e., ASimpi

(pj) may not be equal to ASimpj
(pi)

This scheme will choose only peers that have ASimpi
(pj) ≥ t2. Where t2 is a threshold.

Let St2
pi

= {pj, pj ∈ Pfx and ASimpi
(pj) ≥ t2}

Asymmetric Peers’ Similarity with File Popularity (ASFP)

We apply the FP within the set St2
pi

of peers most similar to peer pi. For every file, we
compute:

PopASim(fk) =
|Pfk

∩ Pfx∩ S
t2
pi
|

|Pfx∩ S
t2
pi
| (6.6)

Note that if t2 = 0 then PopASim(fk) = Pop(fk).

This scheme will recommend only files fk such that PopASim(fk) ≥ t1, where t1 is
a threshold. This recommendation list is sorted according to the popularity of the files
PopASim(fk) with the files that are most popular at the top of the list. Both t1 and t2 are
application dependent values.

Asymmetric Peers’ Similarity with Weighted File Popularity (ASWFP)

We apply the Weighted File Popularity technique within the set St2
pi

of peers most similar
to peer pi.

In this technique, we weight the files owned by the peers within the set St2
pi

of peers most
similar to peer pi according to peers’ similarity. For every file, we add the similarity value
for each peer Pj that owns this file and then we divide by the sum of all peers’ similarities
for peers that belong to the set St2

pi
.

For every file, we compute:

119

WPopASim(fk) =

∑
Pj∈S

t2
pi
∩ Pfk

ASimpi (pj)

∑
Pj∈S

t2
pi

ASimpi (pj)
(6.7)

The recommendation list is sorted according to the weighted popularity of the files
WPopASim(fk) with the files that have a higher weight at the top of the list.

6.5.4 Symmetric Peers’ Similarity Based Recommendation (SS)

Here, we define another similarity metric. For every peer pj in Pfx we define the similarity
relationship as:

SSimpi
(pj) = |f(pi)∩f(pj)|

|f(pi)∪f(pj)| (6.8)

Note that the denominator |f(pi) ∪ f(pj)| can not be null.

The value of SSimpi
(pj) is a numerical score that shows how similar the peer pj is to the

peer pi. Note that this similarity relationship is symmetric, i.e., SSimpi
(pj) = SSimpj

(pi)

This scheme will choose only peers that have SSimpi
(pj) ≥ t3. Where t3 is a threshold.

Let SSt3
pi

= {pj, pj ∈ Pfx and SSimpi
(pj) ≥ t3}.

Symmetric Peers’ Similarity with File Popularity (SSFP)

We apply the FP scheme within the set SSt3
pi

of peers most similar to peer pi. For every
file, we compute:

PopSSim(fk) =
|Pfk

∩ Pfx∩ SS
t3
pi
|

|Pfx∩ SS
t3
pi
| (6.9)

Note that if t3 = 0 then PopSSim(fk) = Pop(fk).

This scheme will recommend only files fk such that PopSSim(fk) ≥ t1, where t1 is
a threshold. This recommendation list is sorted according to the popularity of the files
PopSSim(fk) with the files that are most popular at the top of the list.

120

Symmetric Peers’ Similarity with Weighted File Popularity (SSWFP)

We apply the Weighted File Popularity technique within the set SSt3
pi

of peers most similar
to peer pi. For every file, we compute:

WPopSSim(fk) =

∑
Pj∈SS

t3
pi
∩Pfk

SSimpi (pj)

∑
Pj∈SS

t3
pi

SSimpi (pj)
(6.10)

The recommendation list is sorted according to the weighted popularity of the files
WPopSSim(fk) with the files that have a higher weight at the top of the list.

6.5.5 Similarity Metrics and Binary Ratings

Similarity has been used in data mining, pattern recognition, information retrieval, infor-
mation theory, data clustering and artificial intelligence.

The most used similarity techniques for recommender systems are the Pearson correla-
tion and the Cosine measure [67, 69, 68]. However, a thorough investigation of similarity
metrics based on binary ratings reveals the existence of a number of other potentially better
similarity metrics.

Adopting an implicit rating approach, implicates a binary value (i.e., 1 if the peer has
the file, 0 otherwise) and hence promotes the use of similarity measures for binary data.

Over the last century, similarity metrics were proposed and applied to various fields
such as biology, ethnology, taxonomy, image retrieval, geology, chemistry and biometrics.
Several similarity metrics have been used in exploratory data analysis [73], and in genetics
and molecular biology [74]. [75] provides an extensive survey on these measures.

We adopt the following notations:

Let pi be the active peer (i.e., the peer requesting the file).

Let pj be the peer for which we want to compute the similarity with the active peer pi.

For a particular file f , let C be the observation that the active peer pi has the file f .
And let D be the observation that a peer pj has this file.

Let a, b, c, and d as follows:

• a: number of times C = 1 and D = 1. This represents the number of files common
to both pi and pj.

• b: number of times C = 1 and D = 0. This represents the number of files owned by
pi but not pj.

121

Files owned by pi

b c

d

a

Files owned by pj

Figure 6.3: a, b, c and d

Similarity metric Equation Scheme number

Rogers and Tanimoto [77] a+d
a+d+2(b+c)

4

Simple Matching [78] a+d
a+b+c+d

5

Ochiai II [79] ad√
(a+b)(a+c)(d+b)(d+c)

6

Sokal and Sneath [80] 2(a+d)
2(a+d)+b+c

7

Russel and Rao [81] a
a+b+c+d

11

Table 6.1: Similarity Metrics with Negative Co-occurrence

• c: number of times C = 0 and D = 1. This represents the number of files owned by
pj but not pi.

• d: number of times C = 0 and D = 0. This represents the number of files neither
owned by pi nor pj.

Figure 6.3 depicts a graphical representation of the considered notations.

The similarity metrics may be grouped into two classes according to how they deal
with the negative co-occurrence (i.e., d value)[73]. These are the metrics that use the d
value in their equation. Table 6.1 shows the similarity metrics that consider the negative
co-occurrence, while table 6.2 shows the similarity metrics that do not consider this co-
occurrence. In [76], the similarity metrics in the former table are named type 2 similarity
metrics, while those in the latter table are named type 1 similarity metrics.

Each similarity metric has its own characteristics and properties. In this chapter, we
explore all these similarity metrics by applying them to find the most similar peers in order
to make appropriate recommendations. We also investigate both the weighted approach
and the non-weighted approach in computing the recommendations. We want to analyze

122

Similarity metric Equation Scheme number

Ochiai I [79] a√
(a+b)(a+c)

1

Jaccard [82] a
a+b+c

2

Anderberg [83] a
a+2(b+c)

8

CzekanowskySorensen-Dice [84] 2a
2a+b+c

9

Kulczynski II [85] a
2
(1

a+b
+ 1

a+c
) 10

Table 6.2: Similarity Metrics without Negative Co-occurrence

the impact of the similarity metrics on the recommender system. Furthermore, we study
these similarity metrics under different scenarios to evaluate their performance and their
ability to make accurate recommendations.

It is important to note that since implicit rating is used for files’ recommendations, the
use of Pearson correlation is not applicable since the average rating given by a peer p to
its files is always 1. In this case, the Pearson correlation measure is not well defined.

6.6 Performance Evaluation

6.6.1 Simulated Schemes

In this chapter, we simulate the following techniques using the non weighted and weighted
rating approaches:

• Scheme 3: Asymmetric Peers’ Similarity with File Popularity (ASFP). As stated in
equation 6.5, this metric uses the following equation: a

a+b

• and the following schemes: Ochiai I (OcI), Jaccard (Jac), Simple Matching (SM),
Rogers and Tanimoto (RT), Ochiai II (OcII), Sokal and Sneath (SS), Anderberg
(And), CzekanowskySorensen-Dice (CSD), Kulczynski II (KII) and Russel Rao (RR)
presented in tables 6.1 and 6.2.

In the Cosine measure technique, the active peer and any other peer are represented by
two vectors (generated from the list of files they own) and the similarity between them is
measured by computing the cosine of the angle between the two vectors. In Binary rating,
the Cosine measure and Ochiai I are equivalent. We simulate Ochiai I.

The Jaccard similarity metric is also equivalent to the previously proposed Symmetric
Peers’ Similarity. We simulate the Jaccard metric.

The goal from these simulations is to compare the performance of the presented schemes
in terms of providing accurate files’ recommendations.

123

6.6.2 Simulation Parameters

The simulation parameters are the following:

• We simulate a system with 1,000 peers and 1,000 files.

• At the beginning of the simulation, each peer has several files and each file has at
least one owner.

• Peers are divided into four interest categories (C1: Action, C2: Romance, C3: Drama
and, C4: Comedy) and files are also divided into the same four categories.

• The percentage of peers in each category is 25% and the percentage of files in each
category is 25%.

• Each peer belongs to one category. Peers prefer to have most of the files from
their category and only few files from other categories. We investigate the different
schemes using different probabilities termed Initial Profile (0.5, 0.6, 0.7, 0.8, 0.9, and
1) leading to 6 scenarios. In the case of 0.9 for example, initially, each peer will have
files from the category that she/he prefers with a probability of 0.9 and files from
other categories with a probability of 0.1.

• If no file is recommended, file requests follow the real life distribution observed in
[63].

• The threshold for each similarity metric is set to 0.1. This means that the similarity
of a peer should be greater than 10% for the peer to be considered.

• We simulate 50,000 requests for each simulation.

Our simulations were implemented using the peer-to-peer simulator PeerSim [86]. The
simulations were repeated several times for each scheme and for each Initial Profile proba-
bility. The results presented are the average values. Each scheme has been simulated using
the weighted and non weighted rating techniques.

The performance metrics used in the literature are called Recall and Precision. While
Precision represents the probability that a recommended item is relevant, Recall represents
the probability that a relevant item will be recommended. In [87], Recall is measured by
taking into account the number of hits. A hit is considered when an item from the top N
recommended files is in the test set. Usually, N = 10 is the number of items returned to
users. The greater is N , the greater is the value of Recall.

In some research works [88], both the Recall and the average reciprocal hit-rank (ARHR)
are computed to assess the performance of the recommender systems. The Recall treats all

124

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Initial Profile = 1

Scheme Number

P
ee

rs
 S

at
is

fa
ct

io
n

 non weighted
 weighted

Figure 6.4: Peers Satisfaction (first scenario)

the hits equally regardless of their position in the top N recommended items. In contrast,
the ARHR takes into account the position of the hits by giving more weight to the hits
that occur in the first positions.

In these simulations, we limit the N value to only 1 item. This will make it hard to
get a hit. For each scheme, we compute the Peers Satisfaction. This value is computed for
all peers’ categories and it represents the average value of the ratio between the number of
recommended files that match peer’s category over all the files recommended to the peer.
Our goal is to assess accurately the effectiveness of the proposed recommender system and
the used similarity metrics.

6.6.3 Simulation Results

We simulated all the schemes under the same conditions and we compared the performance
of these schemes. The simulations were conducted in six different scenarios based on the
Initial Profile probability.

125

First Scenario

At the beginning of the simulations, peers get files from the category that they prefer with
a probability of 1 and no file from other categories is selected. Figure 6.4 depicts the peers’
satisfaction for all the schemes with the non weighted and weighted rating approaches. By
comparing the results obtained, there is no significant difference between these approaches.
Peers’ satisfaction almost reaches 100% for the following schemes: Ochiai I (1), Jaccard
(2), ASFP (3), Ochiai II (6), CzekanowskySorensen-Dice (9) and Kulczynski II (10). For
the Anderberg (8) scheme, peers’ satisfaction is relatively lower (95%). However, this
value decreases significantly for the following schemes: Rogers and Tanimoto (4), Simple
Matching (5), Sokal and Sneath (7). This peers’ satisfaction is settling around 23%. In
these schemes, 98% of files that have been downloaded by the peers were recommended
to them. The bad performance of these schemes can be explained by the fact that their
corresponding similarity metrics take into account the negative co-occurrence as explained
in table 6.1. However, the fact that two peers do not have a specific file, does not mean
that they do not like it. Also, it does not mean that they have the same interests.

Second Scenario

In this scenario, peers get files from the category that they prefer with a probability of
0.9 and only a probability of 0.1 for files from other categories. Figure 6.5 depicts the
peers’ satisfaction for all the schemes. The results are similar for both the weighted and
non weighted approaches. The files that are recommended to peers match the peers’
preferences for the following schemes: Ochiai I (1), Jaccard (2), ASFP (3), Ochiai II (6),
CzekanowskySorensen-Dice (9) and Kulczynski II (10). Peers’ satisfaction reaches 98%. A
slightly decrease in peers’ satisfaction is noticed for the Anderberg (8) scheme (92%). In
this scheme, an average of 84% of files downloaded by peers, were recommended to them.

Decreasing the value of Initial Profile probability will necessarily decrease peers’ sat-
isfaction. This can be explained by the fact that peers have files from several categories,
recommender schemes can not easily identify peer’s category and recommend files that
match its interests.

Third Scenario

Peers start with files that match their preferences with a probability of 0.8 and a probability
of 0.2 for files from other categories. Figure 6.6 shows the results obtained for all the
schemes. In this scenario, peers’ satisfaction is almost 98% for the following schemes:
Ochiai I (1), Jaccard (2), ASFP (3), Ochiai II (6), CzekanowskySorensen-Dice (9) and
Kulczynski II (10). Most of the files that are recommended to peers are of interest to

126

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Initial Profile = 0.9

Scheme Number

P
ee

rs
 S

at
is

fa
ct

io
n

 non weighted
 weighted

Figure 6.5: Peers Satisfaction (second scenario)

them. The Anderberg scheme (8) is less accurate in making recommendations. In this
scheme, peers’ satisfaction is 88%. The achieved performance of the other schemes is
lower, settling around 23%.

Fourth Scenario

To show the effectiveness of the proposed schemes, we performed another set of simulations.
In this scenario, peers start with files that match their category with an Initial Profile
probability equals to 0.7. Figure 6.7 presents the results. Peers satisfaction is still higher
for the following schemes: Ochiai I (1), ASFP (3), Ochiai II (6), CzekanowskySorensen-
Dice (9) and Kulczynski II (10) compared to other schemes. Peers’ satisfaction is decreased
when using the Jaccard scheme (2) to achieve only 91% in the non weighted rating. A
significant decrease in the performance of the Anderberg scheme (8) is also noticed in this
scenario. The peers’ satisfaction is only 82% in the non weighted rating approach which is
slightly higher than the weighted rating approach. As mentioned in the previous scenarios,
the following schemes: Rogers and Tanimoto (4), Simple Matching (5), Sokal and Sneath
(7) do not provide good recommendations to the peers.

A decrease of the Initial Profile value to 0.7 will not lead to a significant decrease in
Peers Satisfaction while using the weighted and non weighted rating approaches.

127

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Initial Profile = 0.8

Scheme Number

P
ee

rs
 S

at
is

fa
ct

io
n

 non weighted
 weighted

Figure 6.6: Peers Satisfaction (third scenario)

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Initial Profile = 0.7

Scheme Number

P
ee

rs
 S

at
is

fa
ct

io
n

 non weighted
 weighted

Figure 6.7: Peers Satisfaction (fourth scenario)

128

Fifth Scenario

Decreasing the value of Initial Profile allows to distinguish among the schemes that provide
better recommendations to the peers. Figure 6.8 depicts the peers’ satisfaction for all the
schemes. The results are not as good as in the previous set of simulations. Peers’ satisfac-
tion is approximatively 70% by using the non weighted rating for the following schemes:
Ochiai I (1), Jaccard (2), ASFP (3), CzekanowskySorensen-Dice (9) and Kulczynski II
(10). However, despite of the low value of Initial Profile probability, the peers’ satisfaction
value is still acceptable. The recommender scheme Ochiai II (6) shows a significant in-
crease in peers’ satisfaction compared to the previously mentioned schemes. In the Ochiai
II (6) scheme, peers satisfaction achieves a high score equals to 79%. The performance of
this scheme in this scenario surpasses all other schemes. The Anderberg scheme (8) is less
accurate in making recommendations. As discussed in the previous scenario, the following
schemes: Rogers and Tanimoto (4), Simple Matching (5), Sokal and Sneath (7), are the
worst schemes in making recommendations.

Figure 6.8 shows the good performance of the following recommender schemes using
the weighted rating approach: Ochiai I (1), ASFP (3), CzekanowskySorensen-Dice (9) and
Kulczynski II (10). These schemes surpass the other schemes in providing appropriate
and accurate recommendations. Although the value of Initial Profile probability is rel-
atively lower, the use of the weighted rating technique allows these schemes to make a
good distinction between files’ categories and recommend the appropriate files based on
peers’ profiles. Peers’ satisfaction reaches 87% in contrast to 79% in the non weighted
approaches. In general, the weighted rating techniques provide better recommendations’
accuracy compared to the non weighted rating techniques.

Sixth Scenario

Figure 6.9 shows the results for the Initial Profile probability of 0.5. In this case, all schemes
achieved lower results than in the other two scenarios. Again, the weighted approaches
outperformed the non weighted ones.

The Russel Rao Scenario

Using the Russel Rao metric under the same conditions does not provide any recommenda-
tions. This similarity metric is different from the other ones. The Russel and Rao similarity
metric presents results different from the other similarity metrics because it excludes the
negative co-occurrences in the numerator and includes it in the denominator. To show the
performance of this metric, we conducted a new set of simulations using the same param-
eters as presented in Section 6.6.2 with the threshold t2 = 0. This means that we consider

129

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Initial Profile = 0.6

Scheme Number

P
ee

rs
 S

at
is

fa
ct

io
n

 non weighted
 weighted

Figure 6.8: Peers Satisfaction (fifth scenario)

1 2 3 4 5 6 7 8 9 10
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38
Initial Profile = 0.5

Scheme Number

P
ee

rs
 S

at
is

fa
ct

io
n

 non weighted
 weighted

Figure 6.9: Peers Satisfaction (sixth scenario)

130

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 Russel Rao

Initial Profile

P
ee

rs
 S

at
is

fa
ct

io
n

 non weighted
 weighted

Figure 6.10: Peers Satisfaction of the Russel Rao

all the peers that have the requested file as neighbors. However, the degree of similarity
between the active peer and the peers from the neighborhood set can be different from
one peer to another. We repeated the simulations 10 times for each of the following Initial
Profile probability: 0.5, 0.6, 0.7, 0.8, 0.9, 1.

Figure 6.10 presents the obtained results. The X axis represents the Initial Profile
probability while the Y axis represents the peers’ satisfaction using the non weighted and
the weighted approaches. In the former approach, peers satisfaction achieves a low score
(23%). In the second approach, peers satisfaction increases according to the value of Initial
Profile. For example, an Initial Profile value of 0.8 will lead to 79% of peers satisfaction.
The more precise is the Initial Profile, the higher is the peers’ satisfaction.

131

P
ro

b
ab

il
it
y

O
c

I
O

c
I

W
J
ac

ca
rd

J
ac

ca
rd

W
A

S
F
P

A
S
W

F
P

R
T

R
T

W
S
M

S
M

W
1

98
.3

4
98

.5
0

98
.4

9
98

.5
3

98
.3

7
98

.4
2

23
.3

0
23

.4
6

23
.3

0
23

.3
0

0.
9

98
.2

2
98

.2
2

98
.1

8
98

.2
5

98
.2

1
98

.2
5

23
.1

3
23

.3
8

23
.1

3
23

.5
3

0.
8

97
.8

1
97

.8
8

96
.7

7
96

.7
7

97
.6

9
97

.7
2

23
.2

8
23

.6
0

23
.2

8
23

.5
3

0.
7

96
.0

8
96

.8
1

91
.5

4
90

.2
5

95
.7

2
96

.6
9

23
.0

5
23

.8
0

23
.0

5
23

.5
6

0.
6

69
.3

0
86

.3
6

72
.3

3
73

.5
9

70
.6

1
86

.6
6

23
.2

2
23

.6
0

23
.2

2
23

.6
6

0.
5

27
.3

5
36

.3
2

27
.4

5
31

.3
1

26
.7

4
34

.5
8

23
.6

5
23

.7
2

23
.6

5
23

.8
2

T
ab

le
6.

3:
S
u
m

m
ar

y
of

P
ee

rs
’
S
at

is
fa

ct
io

n

P
ro

b
ab

il
it
y

O
c

II
O

c
II

W
S
S

S
S

W
A

n
d

A
n
d

W
C

S
D

C
S
D

W
K

II
K

II
W

1
98

.4
6

98
.4

4
23

.3
0

23
.5

8
95

.0
3

95
.1

6
98

.3
4

98
.5

0
98

.3
4

98
.4

8
0.

9
98

.0
8

98
.1

3
23

.1
3

23
.5

4
91

.8
7

91
.4

4
98

.2
2

98
.2

1
98

.2
2

98
.2

4
0.

8
97

.9
0

97
.9

6
23

.2
8

23
.7

1
88

.6
0

87
.3

1
97

.8
1

97
.8

9
97

.8
1

97
.9

0
0.

7
96

.3
3

96
.8

4
23

.0
5

24
.1

9
82

.8
4

79
.1

9
96

.0
9

96
.8

2
96

.1
5

96
.8

1
0.

6
78

.7
2

86
.9

7
23

.2
2

23
.4

4
63

.2
2

62
.1

3
69

.3
5

86
.0

8
69

.4
2

86
.2

8
0.

5
27

.5
9

35
.1

5
23

.6
5

23
.5

6
31

.5
5

34
.2

7
27

.4
1

36
.7

9
27

.2
6

36
.7

7

T
ab

le
6.

4:
S
u
m

m
ar

y
of

P
ee

rs
’
S
at

is
fa

ct
io

n
(c

on
d
.)

132

6.6.4 Analysis of Recommender Schemes

Similarity metrics aim at quantifying the extent to which objects resemble each other [76].
Similarity metrics make possible to determine if the compared peers can be assigned to the
same class or not.

Similarity metrics express the proportion of matches between two peers in a different
way. While Anderberg and Rogers and Tanimoto similarity metrics give twice weight
to disagreement, the similarity metrics Sokal and Sneath and CzekanowskySorensen-Dice
give more weight to agreement. Also, the Sokal and Sneath metric is similar to the Simple
Matching metric but gives double weight to matches. Similarly, CzekanowskySorensen-Dice
metric is similar to the Jaccard similarity metric but gives twice the weight to matches.
In table 6.2, most of the similarity metrics are increasing functions of a and decreasing
functions of b and c. Similarity is higher when the compared peers share more common files
and have few distinctive files. While, similarity metrics in table 6.1 take into consideration
the intersection, the differences and also the intersection of the complementary sets of
the compared peers. For these metrics, the common files and the absence of same files
have the same role. In addition to the common files, the absence of same files increases the
similarity between the compared peers. However, the Russel and Rao metric is more severe
in attesting the resemblance between peers, since the absence of same files is added only
in the denominator. In this metric, similarity is based only on the common files owned by
the compared peers over all the files.

In many applications such as image retrieval, the user is interested in the list of objects
most similar to its request (ordered-based approach) rather than the values of the similarity
scores (value-based approach) [76]. The similarity scores are not as important as the order
of similar objects. However, in the performed simulations, we were interested to know the
order of similar peers to the requester peer (i.e., to whom the recommendation is made) in
addition to the similarity scores. The similarity of a peer should be greater than 10% to
be considered. We considered both the ordered-based and the value-based comparisons in
the simulations to assess the performance of the similarity metrics.

Tables 6.3 and 6.4 present a summary of the results of the simulations. By compar-
ing all the schemes using the weighted and non weighted rating techniques in terms of
peers’ satisfaction, we found that the following schemes: Ochiai I (1), ASFP (3), Ochiai
II (6), CzekanowskySorensen-Dice (9) and Kulczynski II (10), provide better performance
in terms of recommendations’ accuracy. The Jaccard (2) and the Anderberg (8) schemes
are less accurate. However, a low performance in providing appropriate recommendations
is observed for the following schemes: Rogers and Tanimoto (4), Simple Matching (5),
and Sokal and Sneath (7). From the tables 6.3 and 6.4, it is also clear that as the initial
distribution of files becomes fuzzy, the schemes are not able to clearly find the exact peers’
profile and hence will lead to poor peers’ satisfaction. Moreover, the weighted rating tech-

133

nique improves the performance of the schemes since the weight of similarity measures is
taken into account while computing peers recommendations compared to the non weighted
approach. The low performance of the schemes: Rogers and Tanimoto (4), Simple Match-
ing (5), Sokal and Sneath (7) can be explained by the fact that these schemes take into
consideration negative co-occurrence as explained in table 6.1. If two peers do not have
a file, a rating of 0 is assigned to this file. Considering that these two peers are similar
if there are files that they both do not have, does not make them necessarily similar. It
does not mean that they have the same interests. Indeed, the negative co-occurrence does
not mean necessarily any resemblance or similarity in our context. However, an acceptable
performance of the OchiaiII (6) scheme has been shown in the simulations although this
scheme belongs to this category. On the other hand, similarity coefficients with no nega-
tive co-occurrence as described in table 6.2, lead to better recommendations’ accuracy and
higher peers’ satisfaction.

134

P
ro

b
ab

il
it
y

O
c

I
O

c
I

W
J
ac

ca
rd

J
ac

ca
rd

W
A

S
F
P

A
S
W

F
P

R
T

R
T

W
S
M

S
M

W
1

97
.6

1
97

.6
1

97
.4

2
97

.4
2

97
.6

1
97

.6
1

98
98

98
98

0.
9

97
.7

2
97

.7
1

97
.1

7
97

.1
6

97
.7

2
97

.7
1

98
98

98
98

0.
8

97
.7

5
97

.7
5

96
.2

0
96

.2
2

97
.7

5
97

.7
2

98
98

98
98

0.
7

97
.7

5
97

.7
5

93
.9

3
93

.9
1

97
.7

5
97

.7
5

98
98

98
98

0.
6

97
.7

2
97

.7
2

91
.2

6
91

.1
9

97
.7

3
97

.7
3

98
98

98
98

0.
5

97
.6

8
97

.6
8

89
.5

1
89

.3
9

97
.7

0
97

.7
1

98
98

98
98

T
ab

le
6.

5:
S
u
m

m
ar

y
of

P
er

ce
n
ta

ge
of

R
ec

om
m

en
d
ed

F
il
es

P
ro

b
ab

il
it
y

O
c

II
O

c
II

W
S
S

S
S

W
A

n
d

A
n
d

W
C

S
D

C
S
D

W
K

II
K

II
W

1
97

.6
1

97
.6

1
98

98
90

.4
0

90
.4

2
97

.6
1

97
.6

1
97

.6
1

97
.6

1
0.

9
97

.7
1

97
.7

1
98

98
84

.2
1

84
.1

1
97

.7
2

97
.7

1
97

.7
2

97
.7

1
0.

8
97

.7
1

97
.7

2
98

98
78

.8
9

78
.7

7
97

.7
5

97
.7

5
97

.7
5

97
.7

5
0.

7
97

.6
1

97
.6

1
98

98
74

.3
4

74
.2

7
97

.7
5

97
.7

5
97

.7
5

97
.7

5
0.

6
97

.4
1

97
.4

2
98

98
70

.8
8

70
.7

0
97

.7
2

97
.7

2
97

.7
2

97
.7

2
0.

5
97

.1
4

97
.1

4
98

98
68

.8
8

68
.7

8
97

.6
8

97
.6

8
97

.6
8

97
.6

8

T
ab

le
6.

6:
S
u
m

m
ar

y
of

P
er

ce
n
ta

ge
of

R
ec

om
m

en
d
ed

F
il
es

(c
on

d
.)

135

In the performed simulations, we want to investigate other important issues as the
Cold start and the Data sparseness as discussed in Section 6.2.6. In the ASFP scheme
with weighted rating approach and with Initial Profile probability equals to 0.8, 97.72% of
files downloaded by the peers were recommended. This means that the ASFP scheme does
not suffer from the Cold start and the Data sparseness as explained in Section 6.5 since
recommendations are made to the users. Simulations results also show that the recommen-
dations are provided to the peers as soon as the system starts. Although no explicit rating
was provided, the scheme is able to make recommendations and more precisely accurate
ones. Tables 6.5 and 6.6 present a summary of the results of the simulations. By com-
paring all the schemes using the weighted and non weighted rating techniques in terms of
percentage of recommended files, we found that the following schemes: Ochiai I (1), ASFP
(3), Rogers and Tanimoto (4), Simple Matching (5), Sokal and Sneath (7), Ochiai II (6),
CzekanowskySorensen-Dice (9) and Kulczynski II (10), provide recommendations with a
higher percentage value compared to the Jaccard (2) and the Anderberg (8) schemes.

Another important issue to discuss is the Trust problem. Malicious peers that send
inauthentic files may also share useless files or provide high ratings for irrelevant files to
impact badly files’ recommendations. To solve this problem, we suggest to make recom-
mendations based on files shared by the reputable peers. The recommender system can
choose files only from trustworthy provider peers that have the requested file. These peers
may be selected based on a reputation value (e.g., Authentic Behavior in Section 3.4.2).
This will reduce the impact of malicious peers on the recommendations.

6.7 Concluding Remarks

In this chapter, we proposed a novel recommender framework for partially decentralized
file sharing P2P systems. We investigated similarity metrics, that were proposed in other
fields, and adapted them to file sharing P2P systems. We analyzed the impact of each sim-
ilarity metric on the accuracy of the recommendations. Both weighted and non weighted
approaches were investigated. In general, the weighted approaches achieve higher rec-
ommendation accuracy. Within the weighted approaches, similarity metrics that do not
consider negative co-occurrence lead to better recommendation performance. Files’ recom-
mendations will, on one hand, increase users’ satisfaction since they will receive recommen-
dations on files that they prefer. On the other hand, they will help peers stay connected to
the system to serve other peers in addition to increasing the peers’ loyalty to the system.

In the next chapter, a summary of the proposed trust management and recommender
frameworks is presented along with future research directions.

136

Chapter 7

Conclusion and Future Work

In this chapter, we conclude our thesis by highlighting our contributions. We also propose
future research directions to extend our work.

7.1 Contributions

The thesis addresses the complementing issues of trust management and recommender
systems.

7.1.1 Trust Management Framework

The thesis starts with a survey of reputation-based trust management in P2P systems. We
investigated research works proposed to deal with peers’ reputation. To understand better
the reputation systems, we identified their typical components. A description of the role
of each component and their relationships was presented.

The survey of reputation systems revealed the lack of clarity and fuzziness among the
concepts of reputation, credibility and contribution. The measurement and/or the compu-
tation of these important aspects in some research works was not adequate. For example,
the reputation of a peer in terms of sending authentic files has been used to measure its
credibility and also for service differentiation which raises fairness issues. Peers belong to
users and hence, may exhibit complex human-like behavior. In this context, trust is com-
plex and multi dimensional. Our goal was to manage trust according to specific dimensions
and clarify this ambiguity. We collected from each transaction the relevant information
about the peers involved (i.e., the peer requesting the file and the peer uploading it) without

137

overwhelming the system with unnecessary overhead. We have captured the peer’s behav-
ior according to three dimensions and designed a trust management framework around
them. Trust is addressed according to the following dimensions: 1) Authentic Behavior, 2)
Credibility Behavior, and 3) Contribution Behavior.

The Authentic Behavior of a peer represents the peer’s reliability in sending authentic
files. To measure the Authentic Behavior, two schemes were proposed. In the Number
Based Appreciation scheme, the number of satisfactory and unsatisfactory uploads is con-
sidered, while in the Size Based Appreciation scheme, the size of the upload is used. Two
selection advisor schemes were proposed: The Difference Based Algorithm and the Inau-
thentic Detector Algorithm. Performance evaluation confirmed that the Authentic Behavior
captures peer’s reliability in sending authentic files. Also, the proposed scheme handles
the fact that malicious peers could cheat on large files’ downloads and not on small ones.

The Credibility Behavior of a peer represents the peer’s sincerity in providing honest
feedbacks. Since peers can send authentic files and send wrong feedbacks, the concept of
Suspicious Transactions was proposed to compute the credibility of a peer. To handle liar
peers and minimize their impact, peers’ reputation is computed taking into account the
credibility of peers downloading the requested files. The Malicious Detector Algorithm was
proposed to achieve this goal.

The Contribution Behavior of a peer represents the peer’s contribution to the system.
A peer’s contribution is based on its Availability in sharing files and its Involvement in
uploading authentic files. Performance evaluation confirmed that using the Contribution
Behavior as a guideline for service differentiation provides better service to peers that
contribute positively, and reduces the level of service provided to free riders and malicious
peers.

We designed the proposed trust management framework for partially decentralized sys-
tems. These systems combine the advantages of centralized and completely decentralized
systems. We proposed to take advantage of the use of supernodes for trust management.
In addition to being used for control message exchange, a supernode is used to collect rel-
evant information and compute peers’ reputation. The reputation computation takes into
account the three aspects of sending authentic files, sending honest feedbacks, and being
involved in terms of sharing and uploading files. However, the concepts of our proposed
trust management framework can be adapted to a wide variety of similar problems in
centralized systems (e.g., e-Commerce applications) and completely decentralized systems.

7.1.2 Recommender Framework

In addition to the proposed trust management system that we developed to enforce ap-
propriate behavior by rating peers, we proposed a novel recommender system to rate files’

138

content.

The proposed recommender system is based on user-based collaborative filtering. We
took advantage from the partial search process used in partially decentralized systems to
explore the relationships between peers. No additional effort is required from the users since
implicit rating is used. The recommender system also does not suffer from the problems of
traditional collaborative filtering schemes like the Cold start, the Data sparseness and the
Popularity effect. To measure the similarity between peers, we proposed Files’ Popularity
Based Recommendation (FP) and Asymmetric Peers’ Similarity Based Recommendation
with File Popularity (ASFP). We also investigated other similarity metrics, that were
proposed in other fields, and adapted them to our context. We analyzed the effect of
similarity metrics on the performance of the recommender system. Both weighted and non
weighted approaches were investigated.

The analysis of different similarity metrics gives new insights in the context of recom-
mendations. Our proposed recommender system fits perfectly within our trust management
framework.

7.2 Future Work

7.2.1 Simulation Parameters

As a future work, we propose to evaluate different parameters used in our simulations. We
propose an in depth study of the followings:

• The distribution of behavior (free riders, malicious, liar) among peers.

• The weight of both Availability and Involvement in peer’s contribution computation.

• The MinDownload value: as stated in Section 5.4.2, this value should be carefully
chosen not to encourage white-washing and at the same time to allow new comers to
benefit from the system.

• The Initial Profile value in the recommender framework.

• The fact that users may have multiple interests instead of a single interest defined in
terms of file category. This scenario is more expected in practice.

• Other malicious behaviors like collusion, sybil attacks.

139

In addition, combining the trust management and the recommender frameworks in one
unified simulator environment, will help to investigate the role of trust in recommendations’
accuracy.

Another issue to consider is moving beyond binary ratings to accept explicit rating in
different ranges for both the trust management and the recommender systems. Instead of
considering a binary value feedback and a binary rating for recommendations, a rating scale
can be used to express better these values. Making appropriate modifications is required
in the trust management and the recommender frameworks.

7.2.2 Security Threats

In the proposed trust management framework, we take advantage of the use of supernodes.
Supernodes are assumed to be trusted to manipulate reputation data.

Two issues that need to be addressed are the followings:

1. making sure to receive a feedback for each transfer.

2. making sure not to receive a feedback for a non-occurring transfer.

For the first issue, our goal is to make sure that the supernodes involved in a trans-
action are aware of this transfer since updating the reputation data will be based on the
transaction. Let Pi be the peer requesting the file and Pj the peer uploading it. Sup(i)
and Sup(j) are their corresponding supernodes. Two approaches are possible.

Figure 7.1 shows the required steps to make sure that the supernodes know about the
transfer. Figure 7.1.a presents a first approach. Peer Pi sends a request ReqF

ij to download
file F from peer Pj. Pj sends the file encrypted. After finishing from uploading the file,
peer Pj sends the key to its supernode. Then, Sup(j) sends the key to Sup(i). Once the
file is downloaded, Pi requests the key from its supernode and gets it. Figure 7.1.b presents
a second approach. Once the file is downloaded, Pi requests the key from its supernode.
Sup(i) sends the request to Sup(j). After receiving the key, Sup(i) sends it to Pi.

Handling the second issue is much more challenging. In this case, some mechanism
has to be set to protect from peers that report a feedback although no file download has
occurred. Colluding peers may use the proposed schemes to increase their reputation. As
a future work, security threats will be investigated.

7.2.3 Incorporating Trust in Network Virtualization

Network virtualization is the technology that allows the simultaneous operation of multi-
ple logical networks on a single common physical platform. By using this technology, dis-

140

P � Sup(i) Sup(j) P �

Req � � �

F encrypted

Key
KeyKey Request

Key

P � Sup(i) Sup(j) P �

Req � � �

F encrypted

Key

Key

Key Request

Key

Key Request

(a) (b)

Figure 7.1: (a) First Approach, (b) Second Approach

tributed participants are able to create their own network with application-specific naming,
routing, and resource management mechanisms. A virtual network (VN) in the network
virtualization environment is managed by one service provider that may require physical
resources from many infrastructure providers. A VN is composed of virtual nodes con-
nected by a set of virtual links. Distinct VNs coexist within a common physical network
[89].

Recently, network virtualization has received tremendous attention since it is expected
to be one of the major paradigms for the future Internet as adopted by numerous interna-
tional projects on future networks [90]: 4WARD [91], CABO [92], GENI [93], UCLP [94],
Clean Slate [95], Trilogy [96], VINI [97], AKARI [98] and PlanetLab [99].

In the different network virtualization projects, trust if addressed, is always addressed
from the security and privacy point of view only. Authentication, authorization, access
control, ensuring integrity of information and protecting the source of information are
used to provide a secure virtual network. However, there are other trust aspects that
need to be taken into consideration. For example, we should be able to trust that an
infrastructure provider will fulfill its part of a Service Level Agreement.

In virtual network embedding works [100, 101, 102, 103], the location and the CPU of
the nodes, and the bandwidth of the links were taking into consideration. In addition to
these factors, we propose to take into account the reputation of the infrastructure providers
in embedding a VN request. Service providers are dealing with several infrastructure
providers for VN mapping requests. The goal is to distinguish among the infrastructure
providers based on their past transactions and feedbacks received from service providers.

141

In the believe that the proposed trust management framework can be successfully ap-
plied to other environments, we propose to tailor the proposed trust management frame-
work and incorporate trust in network virtualization environments [104]. We assume that a
service provider can assess the quality of service of an infrastructure provider involved in a
virtual network in terms of availability of resources, reliability, confidentiality and integrity,
and adaptability to network conditions. We define the concept of Degree of Involvement of
an infrastructure provider in terms of nodes and links. The Degree of Involvement repre-
sents the contribution of an infrastructure provider in the mapping of the virtual network.
The reputation of an infrastructure provider is based on its Degree of Involvement and the
lifetime of the virtual network.

Incorporating these aspects of trust in the context of network virtualization environ-
ments is novel and relevant. This will increase the service providers’ satisfaction by reducing
the selection of infrastructure providers that do not fulfill their Service Level Agreement.

7.2.4 Trust in Web Services

A Web service (WS) is a self-describing software application that can be advertised, located
and used across the Web using a set of standards (WSDL, UDDI and SOAP) [105]. Service
consumers are facing the challenge to select the most appropriate Web services among those
offering the same functionality. Web services may provide low quality, time-consuming,
unreliable and/or expensive services. Recent research papers on Web services emphasize
on the importance of integrating trust in the WS environments. There is a need for
trust management systems since service consumers are interested to know in advance the
expected service that they will get and hence, select the appropriate Web services to fulfill
their requests [106].

We adapt our trust management framework to the context of Web services. We propose
to address the reputation of a WS in terms of fulfillment of the required service as adver-
tised. Several QoS metrics can be used to capture the behavior of the WS and evaluate the
received functionality. The quality of a Web service refers to its performance (e.g., pro-
cessing time), dependability (e.g., availability, reliability), security (e.g., authentication,
confidentiality) and other application-specific metrics (e.g., metrics related to a specific
domain) [107].

Feedbacks are collected from users and trust data is managed by a trust management
service called Trust Service. A user may send a reputation query to the Trust Service
regarding potential Web services. The Trust Service is used as a feedback collector rather
than a monitor of the services provided to users. Monitoring increases the burden of the
centralized entity by checking on a regular basis the performance of the web services.
Moreover, this approach will not reflect the experience as perceived by the users.

142

WS1WS1
WS2WS2

WSnWSn
WS2WS2

WS1WS1
WS2WS2

WSmWSm
WSkWSk

WS1WS1

Service

Consumers

SPlSPl
SP2SP2

SP1SP1

WSC1 WSCfWSC2

CMfCMf
CM2CM2

CM1CM1

Trust
Service

Ta Tc TdTb

Fa, Fb, Fc, Fd

SP: Service Provider

WS: Web Service

WSC: WS
Community

CM : Community
Manager

T: Transaction

F: Feedback

Reputation
Query

Reputation
Query

Figure 7.2: Trust Framework for Web Services Communities

Web services communities are virtual clusters that agglomerate Web services with the
same functionality [108]. In [108], the authors argued that selecting the best community
to deal with is challenging for both the service providers and the users.

Our proposed work can be adapted to rate the communities to facilitate the selection
process for both the service providers and service consumers. Integrating trust in these
communities may be achieved as follows:

• A service provider may choose to publish its WS within the community that has a
high reputation value.

• A service consumer selects a highly reputable community first and then invokes a
Web service within this community.

• A WS community manager will use the trust data to decide the integration of a WS
in the community or its dismissal from it due to its unsatisfactory performance.

We propose to compute a WS community reputation (WSC) as follows:

WSC =
∑

i
ni×Ri∑
i
ni

(7.1)

143

Where Ri represents the reputation of a WSi that belongs to the community WSC
and ni represents the number of times WSi was invoked.

Figure 7.2 presents the proposed trust framework for Web services communities. A
service provider may publish its WS within different communities. After conducting a
transaction with a WS community, a service consumer sends a feedback to the Trust
Service. The feedbacks received are based on the quality of service as perceived by the
users and based on the agreement with the WS communities. The collected feedbacks will
be used to update the reputation of Web services and WS communities. Reputation queries
to inquire about an entity’s reputation are sent to the Trust Service.

As a future work, we plan to investigate the other dimensions of trust in Web services
environments.

7.3 Concluding Remarks

Trust management is a challenging task especially in P2P file sharing systems where hu-
mans are in control of the peers’ behavior.

In this thesis, we have identified three important dimensions of trust in a uniform
framework making a step forward into understanding and making use of trust in open
environments. We have also addressed the complementary problem of recommendations,
one of the challenging problems in collaborative environments. We believe that a unified
approach in addressing these problems leads to better system performance and increased
users’satisfaction.

144

Bibliography

[1] L. Mekouar, Y. Iraqi, and R. Boutaba, Handbook of Peer-to-Peer Networking, chap-
ter Reputation Management in Peer-to-Peer Systems: Taxonomy and Anatomy,
Springer, 2009. 1

[2] P. Garbacki, “Applying the Super-Peer Concept to Existing Peer-to-Peer Networks,”
Tech. Rep. PDS-2003-010, Delft University of Technology, Netherlands, 2003. 1

[3] L. Mekouar, Y. Iraqi, and R. Boutaba, “Peer-to-Peer Most Wanted: Malicious
Peers,” Computer Networks Journal, Special Issue on Management in Peer-to-Peer
Systems: Trust, Reputation and Security, vol. 50, no. 4, pp. 545–562, 2006. 2, 3

[4] L. Mekouar, Y. Iraqi, and R. Boutaba, “A Contribution-Based Service Differen-
tiation Scheme for Peer-to-Peer Systems,” International Journal on Peer-to-Peer
Networking and Applications, vol. 2, no. 2, pp. 146–163, 2009. 3

[5] L. Mekouar, Y. Iraqi, and R. Boutaba, “Impact of Peers’ Similarity on Recom-
mendations in P2P Systems,” in IEEE International Conference on Computer and
Information Technology, 2010. 3

[6] A.Oram, Peer-to-Peer: Harnessing the Power of Disruptive Technologies, pp. 21–37,
O’Reilly Books, 2001. 6

[7] “Gnutella Protocol Specification v0.4,” http://www9.limewire.com/. 6

[8] “Skype,” http://www.skype.com/. 6

[9] “KaZaA,” http://www.kazaa.com/. 6, 61

[10] “Morpheus,” http://www.morphus.com/. 6

[11] “Gnutella2 Specification,” http://www.gnutella2.com/. 6, 95

[12] S. Ratnasamy, A Scalable Content-Addressable Network, Ph.D. thesis, University of
California, Berkeley, 2002. 7

145

[13] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan, “Chord:
A Scalable Peer-to-peer Lookup Service for Internet Applications,” in SIGCOMM,
2001, pp. 149–160. 7

[14] K. Aberer and Z. Despotovic, “Managing Trust in a Peer-2-Peer Information Sys-
tem,” in International Conference on Information and Knowledge Management,
2001, pp. 310–317. 7, 18, 39, 40

[15] G. Suryanarayana and R. N. Taylor, “A Survey of Trust Management and Resource
Discovery Technologies in Peer-to-Peer Applications,” Tech. Rep., ISR, 2004. 7, 11

[16] F. Cornelli, E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati,
“Choosing Reputable Servents in a P2P Network,” in International Conference on
World Wide Web, 2002, pp. 376–386. 7, 18, 39, 40

[17] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The EigenTrust Algorithm
for Reputation Management in P2P Networks,” in International Conference on
World Wide Web, 2003, pp. 640–651. 7, 18, 39, 42

[18] M. Gupta, P. Judge, and M. Ammar, “A Reputation System for Peer-to-Peer Net-
works,” in ACM International Workshop on Network and Operating Systems Support
for Digital Audio and Video, 2003, pp. 144–152. 7, 13, 15, 18, 21, 36

[19] S. Marti and H. Garcia-Molina, “Limited Reputation Sharing in P2P Systems,” in
ACM Conference on Electronic Commerce, 2004, pp. 91–101. 7, 18, 39, 43

[20] T. G. Papaioannou and G. D. Stamoulis, “Effective Use of Reputation in Peer-to-
Peer Environments,” in IEEE/ACM CCGrid: International Symposium on Cluster
Computing and the Grid, 2004, pp. 259–268. 7, 39

[21] Z. Despotovic and K. Aberer, “P2P Reputation Management: Probabilistic Estima-
tion vs. Social Networks,” Computer Networks, vol. 50, no. 4, pp. 485–500, 2006. 7,
18, 30, 39

[22] M. Gupta, M.H. Ammar, and M. Ahamad, “Trade-offs between Reliability and
Overheads in Peer-to-Peer Reputation Tracking,” Computer Networks, vol. 50, no.
4, pp. 501–522, 2006. 7, 36, 37

[23] Y. Zhang and Y. Fang, “A Fine-Grained Reputation System for Reliable service
Selection in Peer-to-Peer Networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 18, no. 8, pp. 1134–1145, 2007. 7, 18, 27, 38

[24] “Oxford Dictionary,” http://www.askoxford.com/. 9

146

[25] M. Deutsh, “The resolution of Conflict:Constructive and Destructive,” Tech. Rep.,
New Haven, Yale University Press, 1973. 9

[26] D. Gambetta, “Can We Trust Trust?,” in Trust: Making and Breaking Cooperative
Relations, chapter 13, pp. 213–237. Published Online, 2000. 9

[27] T. Grandisan and M. Sloman, “A survey of Trust in Internet Applications,” vol. 3,
no. 4, pp. 2–16, 2000. 10

[28] E. Chang, T. Dillon, and F. K. Hussain, Trust and Reputation for Service-Oriented
Environments, Wiley, 2006. 10, 18, 19, 29, 34, 44

[29] S. Marsh, Formalising Trust as a Computational Concept, Ph.D. thesis, University
of Stirling, UK, 1994. 10

[30] A. Abdul-Rahman and S. Hailes, “Supporting Trust in Virtual Communities,” in
International Conference on System Sciences, 2000, pp. 6007–6007. 10

[31] J. Sabater and C. Sierra, “REGRET: Reputation in Gregarious Societies,” in Inter-
national Conference on Autonomous Agents, 2001, pp. 194–195. 10

[32] L. Mui, M. Mohtashemi, and A. Halberstadt, “A Computational Model of Trust and
Reputation for E-businesses,” in International Conference on System Sciences, 2002,
pp. 2431–2439. 10, 29

[33] S. Marti and H. Garcia-Molina, “Taxonomy of trust: categorizing P2P reputation
systems,” Computer Networks Journal, Special Issue on Management in Peer-to-
Peer Systems: Trust, Reputation and Security, vol. 50, no. 4, pp. 472–484, 2006.
12

[34] P. Shah and J.F. Paris, “Incorporating Trust in the BitTorrent Protocol,” in Interna-
tional Symposium on Performance Evaluation of Computer and Telecommunication
Systems, 2007, pp. 586–593. 13, 45

[35] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman, “Reputation Systems,”
ACM Communications, vol. 43, no. 12, pp. 45–48, 2000. 14, 33

[36] A. Josang, R. Ismail, and C. Boyd, “A Survey of Trust and Reputation Systems for
Online Service Provision,” Decision Support Systems, vol. 43, no. 2, pp. 618–644,
2007. 16, 26, 29, 48, 71

[37] “ebay,” http://www.ebay.com/. 18, 27, 34

[38] A. Abdul-Rahman and S. Hailes, “A distributed trust model,” in Workshop on New
security paradigms, 1997, pp. 48–60. 18, 39

147

[39] S. Lee, R. Sherwood, and B. Bhattacharjee, “Cooperative Peer Groups in NICE,”
in IEEE Conference on Computer Communications, 2003, pp. 1272–1282. 18

[40] W. T. Teacy, Jigar Patel, Nicholas R. Jennings, and Michael Luck, “TRAVOS: Trust
and Reputation in the Context of Inaccurate Information Sources,” Autonomous
Agents and Multi-Agent Systems, vol. 12, no. 2, pp. 183–198, 2006. 18

[41] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, and F. Vi-
olante, “A reputation-based approach for choosing reliable resources in peer-to-peer
networks,” in ACM conference on Computer and communications security, 2002, pp.
207–216. 18, 20, 41

[42] J. Sabater and C. Sierra, “Reputation and Social Network Analysis in Multi-agent
Systems,” in International Conference on Autonomous Agents and Multi-agent Sys-
tems, 2002, pp. 475–482. 18, 30

[43] A.A. Selcuk, E. Uzun, and M.R. Pariente, “A Reputation-based Trust Management
System for P2P Networks,” in IEEE International Symposium on Cluster Computing
and the Grid, 2004, pp. 251–258. 18, 44

[44] R. Zhou and K. Hwang, “PowerTrust: A Robust and Scalable Reputation System
for Trusted Peer-to-Peer Computing,” IEEE Transactions on Parallel Distributed
Systems, vol. 18, no. 4, pp. 460–473, 2007. 18, 29

[45] S. Ruohomaa and L. Kutvonen and E. Koutrouli, “Reputation Management Survey,”
in International Conference on Availability, Reliability and Security, 2007, pp. 103–
111. 24

[46] L. Xiong and L. Liu, “PeerTrust: Supporting Reputation-Based Trust for Peer-to-
Peer Electronic Communities,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 16, no. 7, pp. 843–857, 2004. 29

[47] Y. Wang and J. Vassileva, “Trust and Reputation Model in Peer-to-Peer Networks,”
in International Conference on Peer-to-Peer Computing, 2003, pp. 150–150. 29

[48] S. Song, K. Hwang, R. Zhou, and Y. Kwok, “Trusted P2P Transactions with Fuzzy
Reputation Aggregation,” IEEE Internet Computing, vol. 9, no. 6, pp. 24–34, 2005.
30

[49] M. Gupta and M. Ammar, “Service Differentiation in Peer-to-Peer Networks Utilizing
Reputations,” in ACM International Workshop on Networked Group Communica-
tions, 2003, pp. 70–82. 32, 37

148

[50] K. Ranganathan, M. Ripeanu, A. Sarin, and I. Foster, “To Share or not to Share: An
Analysis of Incentives to Contribute in File Sharing Environments,” in International
Workshop on Economics of Peer-to-Peer Systems, 2003. 32

[51] M. Feldman, K. Lai, I. Stoica, and J. Chuang, “Robust Incentive Techniques for Peer-
to-Peer Networks,” in ACM conference on Electronic commerce, 2004, pp. 102–111.
32

[52] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, “Free-riding and white-
washing in Peer-to-Peer systems,” in ACM SIGCOMM workshop on Practice and
theory of incentives in networked systems, 2004, pp. 228–236. 32

[53] K. Ranganathan, M. Ripeanu, A. Sarin, and I. Foster, “Incentive Mechanisms for
Large Collaborative Resource Sharing,” in International Symposium on Cluster Com-
puting and the Grid, 2004, pp. 1–8. 32, 33

[54] T. G. Papaioannou and G. D. Stamoulis, “Reputation-based Policies that Provide
the Right Incentives in Peer-to-Peer Environments,” Computer Networks Journal:
Special Issue on Management in Peer-to-Peer Systems: Trust, Reputation and Secu-
rity, pp. 563–578, 2006. 32, 92, 93

[55] M. Yang, Q. Feng, Y. Dai, and Z. Zhang, “A Multi-dimensional Reputation System
Combined with Trust and Incentive Mechanisms in P2P File Sharing Systems,” in
Distributed Computing Systems Workshops, 2007, pp. 29–29. 32, 33

[56] R. T. B. Ma, S. C. M. Lee, J. C. S. Lui, and D. K. Y. Yau, “Incentive and Ser-
vice Differentiation in P2P Networks: a Game Theoretic Approach,” IEEE/ACM
Transactions on Networking, vol. 14, no. 5, pp. 978–991, 2006. 33

[57] C. Dellarocas, “The Digitization of Word of Mouth: Promise and Challenges of
Online Feedback Mechanisms,” Management Science, vol. 49, no. 10, pp. 1407–1424,
2003. 33

[58] S. Jun and M. Ahamad, “Incentives in BitTorrent Induce Free Riding,” in Workshop
on Economics of Peer-to-Peer Systems, 2005, pp. 116–121. 45

[59] R. Thommes and M. J. Coates, “BitTorrent Faireness: Analysis and Improvements,”
in Workshop of the Internet Telecommunications and signal Processing, 2005. 45

[60] C. Herley A. Bharambe and V. Padmanabhan, “Analyzing and Improving a Bit-
Torrent Network’s Performance Mechanisms,” in IEEE Conference on Computer
Communications, 2006, pp. 1–12. 45

149

[61] S. Chhabra, E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Sama-
rati, “A Protocol for Reputation Management in Super-Peer Networks.,” in DEXA
Workshops, 2004, pp. 979–983. 48

[62] “N. Minar,” http://www.openp2p.com/pub/a/p2p/2002/01/08/p2p-topologies-
t2.html/. 51

[63] K. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan,
“Measurement, Modeling, and analysis of a Peer-to-Peer File Sharing Workload,” in
ACM Symposium on Operating Systems Principles, 2003, pp. 314–329. 61, 124

[64] R. Axelrod, The Evolution of Cooperation, Basic Books, 1984. 83

[65] E. Adar and B.A. Huberman, “Free Riding on Gnutella,” Tech. Rep., HP, 2000. 86,
96, 115

[66] G. Linden, B. Smith, and J. York, “Amazon.com Recommendations: Item-to-Item
Collaborative Filtering,” in IEEE Internet Computing, 2003, pp. 76–80. 108

[67] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Analysis of Recommendation
Algorithms for E-commerce,” in EC, 2000, pp. 158–167. 108, 109, 110, 111, 112,
114, 121

[68] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Item-Based Collaborative Filtering
Recommendation Algorithms,” in International Conference on World Wide Web,
2001, pp. 285–295. 108, 109, 110, 111, 112, 114, 121

[69] P. Massa and P. avesani, “Trust-aware Collaborative Filtering for Recommender
Systems,” in International Conference on Cooperative Information Systems, 2004.
108, 109, 110, 111, 112, 121

[70] G. Ruffo, R. Schifanella, and E. Ghiringhello, “A Decentralized Recommendation
System based on Self-Organizing Partnerships,” in IFIP Networking, 2006, pp. 618–
629. 108, 113

[71] J. Wang, J. Pouwelse, R. L. Lagendijk, and M. J. T. Reinders, “Distributive Col-
laborative Filtering for Peer-to-Peer File Sharing Systems,” in ACM Symposium on
Applied Computing, 2006, pp. 1026–1030. 108, 111, 113

[72] J. Wang, J.A.Pouwelse, J.E. Fokker, A.P. de Vries, and M.J.T. Reinders, “Person-
alization on a Peer-to-Peer Television System,” Multimedia Tools and Applications,
vol. 36, pp. 89–113, 2008. 108, 113

150

[73] F. Lourenço, V. Lobo, and F. Baçao, “Binary-based Similarity Measures for Cat-
egorical Data and their Application in Self-Organizing Maps,” in JOCLAD, 2004.
121, 122

[74] J.M. Duarte, J.B. dos Santos, and L.C. Melo, “Comparison of similarity coefficients
based on RAPD markers in the common bean,” Genetics and Molecular Biology,
vol. 22, no. 3, pp. 427–432, 1999. 121

[75] S. Choi, S. Cha, and C.C. Tappert, “A Survey of Binary Similarity and Distance
Measures,” Journal of Systemics, Cybernetics and Informatics, vol. 8, no. 1, pp.
43–48, 2010. 121

[76] M.J Lesot, M. Rifqi, and H.Benhadda, “Similarity Measures for Binary Numerical
Data: a Survey,” International Journal on Knowledge Engineering and Soft Data
Paradigms, vol. 1, no. 1, pp. 63–84, 2009. 122, 133

[77] J.S. Rogers and T.T. Tanimoto, “A Computer Program for Classifying Plants,”
Science, vol. 132, pp. 1115–1118, 1960. 122

[78] R.R. Sokal and C.D. Michener, “A statistical Method for Evaluating Systematic
Relationships,” Bulletin of the Society of University of Kansas, vol. 38, pp. 1409–
1438, 1958. 122

[79] A. Ochiai, “Zoogeographic Studies on the Soleoid Fishes found in Japan and its
Neighbouring Regions,” Bulletin of the Japanese Society for Fish Science, vol. 22,
pp. 526–530, 1957. 122, 123

[80] R.R. Sokal and P.H. Sneath, “Principles of Numeric Taxonomy,” W.H. Freeman,
1963. 122

[81] P.F. Russel and T.R. Rao, “On Habitat and Association of Species of Anopheline
larvae in South-Eastern Madras,” vol. 3, pp. 153–178, 1940. 122

[82] P. Jaccard, “Etude Comparative de la Distribuition Florale dans une Portion des
Alpes et de Jura,” Bulletin de la Societe Voudoise des Sciences Naturelles, vol. 37,
pp. 547–579, 1901. 123

[83] M. Anderberg, “Cluster Analysis for Applications,” Academic Press, 1973. 123

[84] L.R. Dice, “Measures of the Amount of Ecological Association between Species,”
Ecology, vol. 26, pp. 297–302, 1945. 123

[85] S. Kulczynski, “Classe des Sciences Mathmatiques et Naturelles,” Bulletin Inter-
national de l’Acadamie Polonaise des Sciences et des Lettres Srie B (Sciences Na-
turelles), vol. Supplement II, pp. 57–203, 1927. 123

151

[86] “PeerSim,” http://peersim.sourceforge.net/. 124

[87] G. Karypis, “Evaluation of Item-Based Top-N Recommendation Algorithms,” in
International Conference on Information and knowledge Management, 2001, pp. 247–
254. 124

[88] M. Deshpande and G. Karypis, “Item-based top-N recommendation algorithms,”
ACM Transactions on Information Systems, vol. 22, no. 1, pp. 143–177, 2004. 124

[89] M. Chowdhury and R. Boutaba, “Network Virtualization: State of the Art and
Research Challenges,” IEEE Communications Magazine, vol. 47, no. 7, pp. 20–26,
2009. 141

[90] “Future-internet,” http://www.future-internet.eu/activities/fp7-projects.html/. 141

[91] “4ward,” http://www.4ward-project.eu/. 141

[92] “Cabo,” www.cs.princeton.edu/jrex/virtual.html/. 141

[93] “Geni,” http://www.geni.net/. 141

[94] “Uclp,” http://www.uclp.ca/. 141

[95] “Cleanslate,” http://cleanslate.stanford.edu/. 141

[96] “Trilogy,” http://www.trilogy-project.org/. 141

[97] “Vini,” http://www.vini-veritas.net/. 141

[98] “Akari,” http://akari-project.nict.go.jp/. 141

[99] “PlanetLab: An Open Platform for Developing, Deploying, and Accessing Planetary-
scale Services,” http://www.planet-lab.org/. 141

[100] Y. Zhu and M. Ammar, “Algorithms for Assigning Substrate Network Resources to
Virtual Network Components,” in IEEE Conference on Computer Communications,
2006, pp. 1–12. 141

[101] J. Lu and J. Turner, “Efficient Mapping of Virtual Networks onto a Shared Sub-
strate,” Tech. Rep., Washington University, USA, 2006. 141

[102] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking Virtual Network Embedding:
Substrate support for Path Splitting and Migration,” ACM SIGCOMM Computer
Communications Review, vol. 38, no. 2, pp. 17–29, 2008. 141

152

[103] M. Chowdhury, M.R. Rahman, and R. Boutaba, “Virtual Network Embedding with
Coordinated Node and Link Mapping,” in IEEE Conference on Computer Commu-
nications, 2009, pp. 783–791. 141

[104] L. Mekouar, Y. Iraqi, and R. Boutaba, “Incorporating Trust in Network Virtu-
alization,” in IEEE International Symposium on Trust, Security and Privacy for
Emerging Applications, 2010. 142

[105] Z. Malik and A. Bouguettaya, “RATEWeb: Reputation Assessment for Trust Es-
tablishment among Web Services,” VLDB Journal, vol. 18, no. 4, pp. 885–911, 2009.
142

[106] N. Limam and R. Boutaba, “Assessing Software Service Quality and Trustworthi-
ness at Selection Time,” IEEE Transactions on Software Engineering, vol. 99, no.
PrePrints, 2010. 142

[107] Y. Wang and J. Vassileva, “Toward Trust and Reputation Based Web Service Se-
lection: A Survey,” International Transactions on Systems Science and Applications
Journal, Special Issue on New tendencies on Web Services and Multi-agent Systems,
vol. 3, no. 2, pp. 118–132, 2007. 142

[108] H. Yahyaoui, Z. Maamar, J. Bentahar, N. Sahli, S. Elnaffar, and P. Thiran, “On the
Reputation of Communities of Web Services,” in International Conference on New
Technologies in Distributed Systems, 2008, pp. 1–8. 143

153

	List of Tables
	List of Figures
	Introduction
	Trust Management Framework
	Recommender Framework
	Thesis Organization

	Reputation-based Trust Management: Taxonomy and Anatomy
	Introduction and Motivation
	Traditional Systems vs Reputation based Systems
	Trust & Reputation
	Trust Definition
	Reputation Definition
	Trust Properties

	System Model
	Modeling The Network
	Modeling The Nodes
	Modeling The Reputation Management Infrastructure

	The Anatomy of Reputation Systems
	The Local Trust
	What kind of trust information is gathered?
	Where to store trust information?
	Is the local trust information sufficient?

	The Reputation Query
	To whom the requester peer sends a reputation query?
	How many peers should the requester peer contact?
	What kind of information is sent to the requester peer?

	Reputation Computation
	How to deal with liar recommender peers?
	How to deal with fraudulent recommender peers?
	How to compute the reputation?

	The Use of Reputation
	How to choose a peer based on the reputation value?
	How to evaluate a transaction after downloading a file?

	Credibility Assessment
	Incentives, Rewards and Punishment
	Centralized Reputation Systems
	e-Commerce Applications
	P2P Systems

	Decentralized Reputation Systems
	The Distributed Trust Model: DistributedTrust
	The Binary Distributed Trust Model: BinaryTrust
	Reputation Management: P2PBasic and P2PEnhanced
	Reputation Management by the XRep Protocol: XRep
	Reputation Management using EigenTrust
	Limited Reputation Sharing: LimitedReputation
	Trust and Credibility Records: CredibilityRecords
	Reputation Management using CCCI: MDNT
	Cooperative Peer Groups in Nice
	BitTorrent

	Partially Decentralized Systems
	Design Requirements
	Concluding Remarks

	Trust Management: Authentic Behavior
	Trust Management Framework
	Partially Decentralized Systems
	Reputation Management System
	Notations and Assumptions
	The Reputation Management Scheme
	The Number Based Appreciation
	The Size Based Appreciation

	The Selection Advisor
	The Difference Based Algorithm
	The Inauthentic Detector Algorithm (IDA)

	Mathematical Analysis of Size-based IDA
	Performance Evaluation
	Concluding Remarks

	Trust Management: Credibility Behavior
	Peer Behavior Understanding
	Peer Behavior Categorization
	Effect On Reputation

	Detecting Malicious Peers
	Reputation-based Approach
	Malicious Detector Algorithm (MDA)

	Mathematical Analysis of MDA
	Case 1: Same Liar Behavior
	Case 2: Different Liar Behavior

	Performance Evaluation
	Concluding Remarks

	Trust Management: Contribution Behavior
	Motivation
	Contribution Behavior
	Contribution Components
	Peer Availability
	Peer Involvement
	Peer Contribution

	Trust Management Framework Components
	The Use of Trust Components
	Reputation Data

	Service Differentiation
	New Comers Policy
	White-washing Policy

	Rational Behavior
	Performance Evaluation
	Simulation Parameters
	Static Behavior
	Rational Behavior

	Concluding Remarks

	Personalized Recommendations
	Introduction
	Recommender Systems in e-Commerce
	Content-based versus Collaborative Filtering
	User-based Collaborative Filtering
	Using The Pearson Correlation
	Using The Cosine Measure
	Computing The Predicted Rating
	Challenges of Collaborative Filtering Algorithms

	Recommender Schemes in P2P Systems
	Related Works
	Advantages of Recommender Systems
	Evaluation of Recommender Systems

	The proposed Recommender Framework
	Implicit Rating versus Explicit Rating
	User-based versus Item-based Collaborative Filtering

	The Similarity Metrics
	Formal Notations
	Files' Popularity Based Recommendation (FP)
	Asymmetric Peers Similarity Based Recommendation (AS)
	Symmetric Peers' Similarity Based Recommendation (SS)
	Similarity Metrics and Binary Ratings

	Performance Evaluation
	Simulated Schemes
	Simulation Parameters
	Simulation Results
	Analysis of Recommender Schemes

	Concluding Remarks

	Conclusion and Future Work
	Contributions
	Trust Management Framework
	Recommender Framework

	Future Work
	Simulation Parameters
	Security Threats
	Incorporating Trust in Network Virtualization
	Trust in Web Services

	Concluding Remarks

	Bibliography

