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Abstract 

 

With the great progress of microelectronics and other relating information technologies, 

together with the still broadening applications of computers in a vast range of businesses and 

industries, large databases containing mixed-mode data are becoming quite commonplace. 

Today, large databases contain various modes of collected data related to different 

components of a complex real world system. Their use is not necessarily confined to 

classifications. Many of them may not have clearly-defined class labels, or even any explicit 

class information at all. Indeed, there are many different reasons  to determine or discover 

all patterns, to achieve any comprehensive analysis and understanding of the information 

within the data spaces. In the past, data mining or pattern discovery has by and large been 

developed fundamentally for categorical databases. All of the classification rules have been 

found from pre-labeled data samples. When mixed-mode data are processed, engineers 

naturally work on the class-dependence relationship to discretize the real data. Where class 

information is lacking, there is no suitable way to discover patterns within these mixed-type 

databases. Consequently, most important pattern analysis jobs - such as pattern clustering, or 

even pattern summarization - being developed for categorical data will not be easily applied 

to a mixed-mode database. To break this impasse is the objective of this thesis. We have 

attempted to develop some pattern discovery methods for mixed-mode databases where 

classes or features are  unavailable. Analyzing these mixed-modes of databases and 

providing researchers with helpful knowledge is a challenging task. Developing new ways to 

turn the raw data into useful knowledge is now a long-term challenge in the data mining 

community.   

For a large mixed-mode database, how to discretize its continuous data into interval 

events is still a practical approach. If there are no class labels for the database, we have 

nohelpful correlation references to such task Actually a large relational database may contain 

various correlated attribute clusters. To handle these kinds of problems, we first have to 
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partition the databases into sub-groups of attributes  containing some sort of correlated 

relationship. This process has become known as attribute clustering, and it is an important 

way to reduce our search in looking for or discovering patterns Furthermore, once correlated 

attribute groups are obtained, from each of them,  we could find the most representative 

attribute with the strongest interdependence with all  other attributes in that cluster, and use 

it as a candidate like a  a class label of that group. That will set up a correlation attribute to 

drive the discretization of the other continuous data in each attribute cluster. This thesis 

provides the theoretical framework, the methodology and the computational system to 

achieve that goal.   

In validating the premises proposed in the dissertation, extensive experiments using 

synthetic data and UCI Expository Data of various types were performed to verify each of the 

fine points conceived. To demonstrate the usefulness for solving real world problems, the 

developed methodology is applied to two large databases from the real world: one is from 

meteorological surface stations, while the other is from the delay coking unit in a 

petrochemical refinery. The pattern discovery results of the weather stations reflect the 

regional and global characteristics of the correlated meteorological parameters and render a 

much more precise assessment of the weather monitoring system. The pattern discovery and 

attribute grouping experiments with the delay coking data yield the most important 

relationships among the sensors and controllers of the coking facilities, including the 

identification of the most significant control factor with global influence over the entire 

process, together with its interactive patterns with other factors, and with the relations 

discovered in the critical safety mechanism designed for a pressure-temperature-mixed 

processing facility, for activating emergency release response. Such findings show the 

usefulness and effectiveness of the proposed method in revealing subtle operation patterns for 

system monitoring, control and optimization.  

In brief, the results of the dissertation research open the door for more precise system 

behavior analysis and modeling using large mixed-mode databases. It is fulfilling the vision 

that through pattern discovery on large mixed-mode databases, we are one step closer to 

meeting the challenge: “from data to model to knowledge” in this petabyte age.   
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Chapter 1 

 

Introduction 

 

 

In the past decade, with the development of semiconductors, microelectronics, cloud 

processors, magnetic storage media and other information acquisition  methods, together 

with the continually broadening applications of computers in a wide range of businesses 

and industries, large databases have become quite a commonplace. The volumes of these 

databases have been growing from megabytes to gigabytes, and  to terabytes and even to 

petabyte. The types of database they contain also vary: some of them could be numeric, 

others  could be categorical and the most common ones are a mixture of both. These are 

referred to as “mixed-mode databases”.  

Today we are facing large relational databases with mixed-mode attributes. Many of 

those have either no class labels, or no defined class information. They may contain 

different modes of correlated data, related to different attributes of a complex system. Their 

uses are not confined to classification. Nevertheless, there is a great need for discovering 

patterns among them for comprehensive analysis, interpretation and understanding the 

patterns or relatoins inherent in the data . Analyzing these kinds of mixed-mode databases, 

and thus supplying decision-makers with useful knowledge, is very challenging. 

Developing new measurements to transfer data into knowledge bases is now a paramount 

problem in data mining research community. The objective of this thesis is to develop 

methods for discovering patterns in mixed-mode data where class information is 

non-existing or unavailable.    

In the past decades, data mining and pattern discovery have been developed only for 

categorical data. Also, inductive learning technologies have been applied widely within 

data mining to get classification information from a group of given data samples. 
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Classification rules and/or models are built, based on these pre-labeled data samples. In the 

early years, almost all classification tasks in data mining can only be applied  to 

categorical data. Actually, all of these methods may not effectively handle data with 

continuous attributes directly.  

In real practical applications, however, a large proportion of real databases may 

consist of not only continuous but also mixed-mode databases (continuous, discrete, ordinal 

as well as nominal). To make a learning system operate with these mixed types of database, 

these continuous attributes need first to be discretized. Furthermore, engineers have found 

that even if some learning systems are explicitly designed for continuous attributes, they 

can also maintain a relatively higher accuracy when the database can be transformed into 

one with  appropriate discrete values. Finally, if the continuous data of the mixed-mode 

data attributes could be discretized appropriately, the limitations of most inductive learning 

algorithms may be solved by feeding the database into the current learning systems. In fact, 

with regards to pattern discovery and machine intelligence development today, most of the 

ideas available for classification in mixed-mode database require the existence of 

pre-labeled  classes. Without that important condition, class-dependent discretization of 

the continuous data space will not work well,  prohibtting the application of contemporary 

datamining methods on mixed-mode data.     

Data discretization is a pre-process stage involving partitioning the value space of a 

continuous attribute into a finite number of intervals, and attaching a nominal value to each 

of them. Each interval range could then be measured as an event in the discrete data space. 

After discretization, we can uniformly treat both of continuous and discrete data space as 

events in a defined discrete event space [22].  

In the mid-90s, a new class-dependent system for discretizing the value of continuous 

attributes was proposed [9]. It opened the way to tackling continuous data spaces for 

machine learning systems. It is based on a measurement of the mutual information to reflect 

the strength of  interdependence between the continuous attributes and the class attribute. 

relationship.More recently, several class-dependent discretization algorithms have been 

developed. Most of them now can automatically determine the numbers and ranges of 

discretizing intervals and the discretizing interval boundaries [15], although some troubles 
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still exist. Normally, neither the class-dependent objective functions are not effectively  

utilizing the class information,  nor lacking an effective  optimization algorithms to 

partition the continuous data space. .  

In 2004, Liu et al [12] proposed a very effective optimization algorithm for 

class-dependent discretization of continuous data. It partitions the range space of a 

continuous random attribute into a number of ordered adjacent disjoint discrete intervals 

with a certain probability distribution. The expected mutual information between the class 

label and each of the other attributes, found by measuring the mutual information between 

the class and that attribute, is treated as the objective function for discretization [12]. It uses 

the fractional programming idea (iterative dynamic programming) to define, in a global 

optimum way,  the expected mutual information to achieve the optimal data partitioning. 

Furthermore, the algorithm could efficiently partition continuous data, which was a 

challenging problem that had not been well solved in other ways. Bimodal and multi-modal 

data refer to data whose distribution measurements have respectively two or more separate 

and distinct peaks, each of which may correspond to a high concentration of data points in 

the proxmity [12]. 

Two important issues that have to be discussed for partitioning continuous data are the 

number of intervals and the ranges of the relative intervals. These two problems must be 

solved, either by the discretization algorithm itself or by  designation by the engineers [17]. 

Most partition algorithms require the provision of the suitable number of data intervals by 

the engineers. The widths of the intervals can be defined too, through the boundaries of the 

discretized data intervals. A good algorithm for this purpose should usually require only a 

few input parameters from the operators. As a specific real-world classification problem, 

the available class information could provide crucial support to the discretization process. 

The rest of the remaining problem consists of how to partition a continuous database with 

continuous attributes in a mixed-mode data set [12]. 

  

1.1.  The problems 

For a classical machine learning system, data samples for training a typical inductive 
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learning system are generally set up using  data derived from a set of attributes. Some of 

these  attributes characterizing an event space may be categorical, symbolic, or even with 

discrete values, while others may be real or continuous data attributes. Many 

currently-existing learning machine systems have been carefully built for processing 

categorical attributes values only. In the area of machine learning or data mining these 

inductive learning problems are usually designed to discover classificatory patterns, or just 

rules, based on a set of data samples [25]. Classification rulers and/or patterns are created 

for those pre-labeled data samples with certain prior information set up by domain experts 

in those areas. Thus, many traditional classification algorithms in inductive learning use 

carefully designed categorical data spaces. They actually cannot effectively handle 

continuous attributes directly. To apply inductive learning systems with these kinds of 

mixed-mode data space, the continuous variables must first be discretized. However, for a 

mixed-mode database there is still nogood solution to the unsupervised learning task, or to 

clustering  Very large mixed-mode databases have even greater challenges [17].  

The general objective of this dissertation is  to meet this challenge. It attempts to 

solve the most fundamental problems, first of partitioning very large mixed-mode databases 

into smaller coherent ones, and then discretizing any continuous data  without relying on 

explicit class labels. Once this is solved, we could extend the pattern discovery, pattern 

clustering, summarization, and visualization tasks to very large relational mixed-mode 

databases.  

 

1.2 The Motivation 

We are entering into a petabyte era , with massive distributive databases acquired from 

various data sources in the real world. There is a great need to get comprehensive 

information based on them for even better understanding and insight, such that they could 

be well structured and applied to analysis, classification, natural interpretation, deeper 

understanding, effective organization, and comprehensive summarization of the 

mixed-mode database. The objective of this thesis is motivated by such practical needs 

from the real world. Since most of the data are from a diverse sources, many of them may 
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not be have  explicit class information. Then we need pattern discovery methods which 

may not necessarily relying on class information. Once such methods are developed, they 

could be applied to data clustering, pattern discovery, pattern clustering, and any other 

pattern post-processing jobs for large mixed-mode data sets.  

Any pattern could be described as instances of the relationships n attributes in the 

feature space (problem domain) - the variable level patterns - or by the direct relationships 

or associations among variable values - the event level patterns [7]. At the variable level, a 

pattern could be a mathematical relationship among attributes, usually called a model; but 

for the event level, a pattern may be just a subset of variable values, some maybe 

considered as the direct description of the collections that reflect the statistical relationship 

of the events in the database [9]. The proposed research here will focus on event-level 

patterns only, and the formal definition of pattern will be discussed in a later section. For 

now, an event can be just treated as a pattern of a sub database of events or measurements 

within mixed –mode.   

With databases increasing in number and sizes,  greater capacity is require to collect 

and analyzing data on our everyday activities in business, science, society and production. 

Ever-larger commercial, scientific, and industrial databases have been significantly 

outpacing our natural abilities to interpret and digest them [4]. Facing overwhelming data 

growth, the existing classical methods of data processing cannot offer us useful analysis to 

derive important new information and helpful knowledge. The the past, pattern discovery 

has been used  to gain classification knowledge  for classification and predication 

application. Lately,  it attempts to  discover patterns to uncover the underlying principles 

and behaviors of systems or phenomena in the real world  from data acquired  in order to 

reason, infer and even predict the behaviors  in the same sectors. The challenges are 

enumerated below: 

1) With respect to the structures of mixed-mode data space, they are becoming more 

complicated than ever before. The data values could be mixed-mode, consisting of both 

categorical data and continuous data. At the same time, the data dimensionality could be 

huge. Data could have been gathered systematically over a long period, and be piled up 

more-or-less randomly. 
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2) With respect to the quality of the mixed-mode data space, undoubtedly there are 

many reasons and causes in the real world for data to be collected affected by many kinds 

of noise. Here, probabilistic approaches must be implemented in real-world databases, 

instead of deterministic approaches 

3) With respect to applying useful patterns discovered in real production processes, a 

certain kind of measurement for pattern confidence and support should be implemented to 

render reliable data pattern analysis results and assist in the decision-making process. 

4) With respect to a priori real domain knowledge, in most situations it is difficult or 

even impossible to collect adequate domain knowledge for effective decision-making. This 

is definitely the truth for investigations in some new application fields. Some of special 

domain experts, who can support some observations and measurements to set up a domain 

database, but will expect to get some suggestions or evidences for data analysis results for 

realizing and even formulating theoretical or operational ideas. Although some domain 

experts who are able to set up a domain databases via meticulous observations and 

measurements, they still desire to get in depth suggestions and evidences from the analysis 

results to foster and reinforce the theoretical formulation and operation practice.  

All  issues mentioned above represent some open challenging problems being faced, 

currently investigated deeply and researched carefully by the data mining community in the 

recent years and naturally are taken as the very essential research motivations for this 

dissertation. 

1.3  Rationale 

Since this thesis is dealing with a new problem which has not been dealt with seriously 

in the past, we would like to clearly state the rationale behind the research. We would like 

first to identify the pending problems, and state why such problems have been at a critical 

impasse, slowing down the development of pattern discovery and data mining in the 

mixed-mode data environment.  

1.3.1 Problems encountered in mixed-mode database 

1.3.1.1 Problem in discretizing continuous data with no class reference 

Currently, most classification algorithms in machine learning can only be applied to 
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nominal or categorical databases. They cannot effectively be applied to deal with 

continuous attributes directly. In order to adopt existing inductive learning systems with 

mixed-mode databases, the continuous variables must first be discretizedfirst. 

Discretization of continuous datamay enhance classification accuracy in some ways. Today, 

discretization of continuous variables in pattern discovery is driven by class attribute. For 

those databases with no class labels, there is no easy and effective way to discretize them 

[21]. This limitation applies to most inductive learning algorithms for both mixed-mode and continuous 

data.  Generally, any local discretization method starts its search of the interval boundaries 

at a coarse and local level at the beginning, and then refines the boundaries step-by-step 

later, which results in locally optimal partitions [12]. On the other hand, global 

discretization methods could produce a good partition result over the entire continuous 

instance space. 

In the machine learning community, supervised and unsupervised methods are two 

common methods. The unsupervised (class-independent) methods simply apply a 

prescribed scheme to cluster the continuous data without any use of the attribute class 

information, whereas supervised (class-dependent) methods do take into account such class 

information. For discretization, theoretically, because they are directed by class information, 

the supervised methods could automatically get the best number of intervals for each given 

continuous attribute for classification purposes [21]. 

As a static method, it carries out one discretization pass for data for each feature 

separately, once the maximum number of intervals has been found. This kind of static 

algorithm could have also been taken as a process of merging N adjacent intervals at the 

same time until a certain threshold is reached. In fact, almost all the discretization methods 

discussed above are static ones [26]. Finally, static discretization methods could potentially 

demolish the entire complex interactions among multiple attributes. 

For discretization of continuous data without class labels in an attribute group, we 

decide to implement the OCDD (Optimal Class-Dependent Discretization) method through 

replacing the class label by the mode or the governing attribute (both will be defined later) 

of that group. Here, the mode of an attribute group is that governing attribute for which the 

sum of normalized redundancy with other attributes is the highest. Thus, the data 
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discretization process is finally formulated as an optimization problem [18]. Once the mode 

of an attribute group is found, we take the normalized mutual information between the 

mode and the variable to be discretized as the objective function, and find its maximum 

using fractional programming (iterative dynamic programming). Unlike the majority of 

class-dependent discretization methods which only find the local optimum of the objective 

functions, OCDD finds the global optimum. 

 

1.3.1.2 Possible existence of unknown attribute-interdependent groups 

For a large database with a large number of mixed-mode attributes, it is possible that 

several strongly attribute-correlated groups may exist within one data space. They could 

finally be found if we have an attribute clustering algorithm to do the job. In classical 

pattern recognition and data mining procedures, clustering is an important issue. Given a 

relational table, any of the conventional clustering algorithms will cluster tuples into 

several groups, each of which is characterized by a set of attribute values based on 

similarity [16]. Intuitively, tuples in a cluster are more similar to each other within the same 

cluster than those belonging to different clusters.  

It has been shown that clustering is very helpful in many data mining tasks. In the past 

clustering methods are mostly developed to group samples. However, a majority of the 

pending problems is the data set has too many attributes which might not even be correlated. 

To perform pattern discovery on a large mixed-mode database, this dissertation presents a 

new methodology to group mixed-mode attributes that are interdependent and/or correlated 

to each other instead. We refer to such a process as “attribute clustering”. In this sense, 

attributes in the same cluster are more correlated to each other, whereas attributes in 

different clusters are less correlated. While conventional clustering subdivides a relational 

table into horizontal partitions (i.e., subsets of tuples), attribute clustering subdivides it into 

vertical partitions (i.e., subsets of attributes) [31]. Attribute clustering is able to reduce the 

search dimensionality of a data mining task by allowing the algorithm to search for 

interesting relationships from correlated attribute subsets. It helps to build pattern models 

within an attribute’s subspace rather than on the entire attribute space. After attributes are 

clustered, one can select a smaller number of more representative attributes in each 
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attribute cluster for further analysis [29]. We refer to the process of selecting representative 

attributes from each attribute cluster as the “attribute repooling process”. 

 

1.3.1.3 Attribute clustering before discretization of continuous data 

Following the observation in the last paragraph, this dissertation will present an 

attribute clustering method which is able to group mixed-mode attributes within the 

database automatically, based on their interdependence, so that meaningful patterns can be 

discovered later. The partitioning of a relation database into attribute subgroups produces a 

small number of attributes, within and then across the groups, to be defined for data mining 

tasks. After attribute clustering, the search dimensionality of each datasetfor a data mining 

algorithm is reduced significantly [35]. The reduction of search dimensionality is especially 

important for data mining in very large mixed-mode databases, particularly in databases 

consisting of a huge number of attributes and a small number of samples. The situation 

could become even worse when the number of attributes overwhelms the number of tuples. 

In such cases, the patterns discovered that are actually random becomes rather higher than 

the usual situation. It is for the abovementioned reasons that attribute grouping is an 

important pre-processing stage for many data mining algorithms, to ensure effectiveness 

when applied to a very large  database [32].  

This dissertation has defined the problem of attribute clustering and introduces a new 

method for solving it. The proposed method will cluster all of the interdependent attributes 

into small clusters through optimizing a criterion function, taken from an information 

measure that directly reflects the interdependence between attributes [34]. By applying this 

algorithm to a mixed-mode database, all of the meaningful clusters of attributes within the 

mixed-mode database will be discovered. The grouping of attributes based on attribute 

interdependence relationship within a group will help directly to capture different aspects 

of relation patterns within each group [36].  

Another important process in extracting representative attributes across a large 

mixed-mode attribute group is known as repooling [12]. After a large attribute group has 

been clustered into smaller correlated groups in the preprocessing stage, more 

representative governing attributes (based on their multiple statistical dependence with 
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other attributes) in each group could be pooled together to form a new group, and the new 

group will therefore contain more representative information across the entire mixed-mode 

data space, as it is not biased towards a few governing attributes.  

  

1.3.1.4 The necessity of identifying a governing attribute in each group to drive 

discretization 

The rationale behind identifying a governing attribute is to find a representative 

attribute in a subgroup of the attributes, based on the mutual information calculation among 

the attributes. When the mode of an associated attribute group is identifiedfirst, it could be 

implemented to drive the data discretizationdiscretization of the continuous attributes in the 

subgroup, which would be similar to the use of the class label attribute to drive data 

discretization in supervised learning situations. An alternative candidate to drive the data 

discretization procedure is that attribute which, when assumed to be the class label, gives 

the highest classification rate on its categorical or discretized outcomes. We refer to the 

latter candidate as the “intrinsic class attribute” and the role will be evaluated in the later 

experiments. Both the mode and the intrinsic class attribute could be considered as the 

representative or the governing attribute. Both provide a good representation for that 

attribute group. 

 

1.4 Special Objectives 

Here, we shall outline the specific objectives of this dissertation.  

1) To partition a large database into sub-databases containing attributes with 

greater interdependence with each other.   

For a very large mixed-mode database, different subgroups of the attributes may 

be governed by different underlying factors. Each of the cohesive attribute groups with 

the mixed-mode databases could represent a certain aspect of the real world system. 

Whether the data discretization process of the continuous data is driven by the mode, 

by some implicit class attributes or by governing attributes, the mixed-mode database 

must first be partitioned into some coherent subgroups with strong intra-group 
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interdependency measurements. ThusThus attribute clustering based on the 

mixed-mode database must first be calculated, for repooling to attribute subgroups 

with optimal cluster configuration. 

2) To discretize continuous variables in each attribute cluster 

Once the mixed-mode database is partitioned into coherent attribute subgroups 

(clusters), the data discretization of continuous variables in each subgroup will be 

processed based on the concept of mode-driven discretization. The mode of an 

attribute group is formally defined as that attribute which has the highest sum of 

interdependence value with others in the same group; it could be considered the 

governing attribute within the group. ThusThus the class-dependent discretization 

algorithm could be applied to achieve the task, if the mode is considered to be the only 

“governing attribute” or the “implicit class attribute”.  

3) To apply pattern discovery on mixed-mode Databases 

After the continuous data discretization is done within each sub-database, those 

data can be treated as databases containing only categorical data. Any algorithm for 

pattern discovery can then be introduced to each sub-database, or even to the entire 

database platform after they are linked or joined together. The patterns discovered here 

may be in the general form of a subset of categorical data, interval data or even a 

combination of categorical and interval data. Converting mixed-mode database into an 

events space, the pattern algorithm is also able to process missing, noisy, outlying, 

and/or distorted data, or even incomplete data, more effectively.  

  

1.5 Research Outline 

In this section, we would like to outline the research carried out in furtherance of this 
dissertation.  

 

1.5.1 Development of interdependence measures at different phases                           

For analyzing mixed-mode data effectively, it will be necessary to calculate the 

interdependence value between mixed-mode attributes within the database. In order to set 

up a unified framework for this purpose, we use the normalized mutual information 
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measure R [22, 35] to account for the interdependence relationship between: a) two 

continuous attributes, b) two discrete attributes, and then c) one discrete attribute and one 

continuous attribute. 

There are two logical process phases to using normalized mutual information in the 

proposed system: 1) to direct the attribute clustering of mixed-mode data space, and 2) to 

discretize continuous data space within each mixed-mode attribute cluster. In both phases, 

the discretization approach discussed above has been adopted. In the first phase, we set up 

as many bins as the rule of thumb allowed us, to gain accuracy in estimating the mutual 

information between two continuous attributes within the same subcluster. 2) In the second 

phase, since the final process goal of the data discretization is pattern discovery, the number 

of discretized intervals must be equal in the same order of the number of discrete attribute 

values within the attribute group. ThusWe will therefore implement the OCDD (Optimal 

Class-Dependent Discretization) method [37] to obtain R between a discrete-valued 

attribute and a continuous-valued attribute, such that the number of intervals will also be in 

the same order of the governing attributes or the majority of the discrete attributes. Here, 

we should proceed first to define the normalized mutual information between categorical 

data. We then will outline the data discretization process during conversion of the 

continuous random variables into discrete random ones for various tasks in Phase I and 

Phase II in a more specific manner [35]. The special algorithms developed for computing 

various R are listed as below:  

a) Computation module of  R between continuous random variables  

Here accuracy and bin size will be emphasized. 

b) Computation module of  R between a continuous attribute and a discrete  

    attribute  

Here, an Optimum Class Dependence Discretization Algorithm (OCDD) [37] will 

be used to first discretize the outcome values of the continuous random variable by 

assuming that the discrete random variable is the class label. Once the continuous 

random variable is discretized successfully, we could take the pair of attributes as 

discrete random ones in deriving their R measure calculation [37]. 
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c) Computation module of R between two discrete attributes 

As for R between two discrete attributes, generally, we could use their 

corresponding alphabet size to compute R.   

 

1.5.2. Identification of mode in an attribute group 

In order to investigate the interdependency relationship of an attribute with all the 

other ones within a subgroup, the concepts of significant multiple interdependency, and of 

implementation of an algorithm to identify the mode which has the highest significant 

multiple interdependency value with all other attributes in the same group, will be 

introduced here [29]. Within all the Rs between mixed-mode attributes being calculated, 

both of the modes within any attribute group and the R measures between attributes could 

be used in the k-mode attribute clustering algorithm to cluster the attributes in a large 

mixed-mode database into smaller ones. The plan for developing the attribute clustering 

algorithm will be presented in the subsequent subsections. 

 

1.5.3. Attribute clustering 

In this dissertation, we will present a methodology to group mixed-mode attributes 

that will be interdependent or correlated with each other. We refer to such a process as 

attribute clustering. Within this situation, all of the attributes in one cluster should be more 

strongly correlated with each other, whereas the other attributes in different groups should 

be less strongly correlated [39]. As mentioned before, attribute clustering will be able to 

significantly reduce the search dimensionality of any data mining algorithm, because it is 

able to perform searches for interesting relationships or for construction of models in a 

tightly correlated subset of attributes, rather than in the entire mixed-mode attribute space. 

After attributes are clustered, one can select a smaller number for further analysis later. 

Regarding the categorical data space, a k-mode Attribute Clustering Algorithm (ACA) 

has been developed. However, because of the difficulties of turning a database with 

mixed-mode data into one which contains only categorical data, we still have noeffective 
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attribute clustering algorithm for a mixed-mode database [35]. One of the important 

challenges to this dissertation research is to develop an effective method for this purpose. 

We could combine some of these computation modules of R as described in the previous 

section into the k-mode attribute algorithm, and then build a new algorithm for clustering 

the attributes of the mixed-mode data. We refer to this as m-ACA which stands for 

Mixed-Mode Attribute Clustering Algorithm [39]. To our best knowledge, this is the first 

attempt which has successfully clustered attributes of mixed-mode data. Before this, there 

has been no published work which reports being able to achieve this task. This has left a 

technological gap in pattern discovery for solving such a problem with a large mixed-mode 

database where no class information is available for process.  

1.5.4. The use of mode or “intrinsic class attribute” in an attribute group  

To effectively investigate the governing attributes in an attribute subgroup, the use of 

the mode is important. In general, as its formal definition, the mode within a subgroup is 

considered to be the most representative attributes in the group. In a situation where no 

class information is available to us, since it is the most representative attribute in the 

subgroup, it becomes the only ideal candidate to drive data discretization for other 

continuous attributes [41]. In fact, it becomes the best way to provide insight to the 

subgroup, through its statistical dependence feature with other attributes in the same group.     

For a problem of a classificational nature, there is  another candidate to conduct data 

discretization. For instance, if we intend to find an attribute which most resembles a class 

attribute for a subgroup if it is considered to play the role of a class label, we could find a 

good one which will give the highest classification rate as its outcomes among all of the 

other attributes in the subgroup. Here, we would likely refer to such an attribute as an 

“intrinsic class attribute” [40]. 

In this dissertation, we intend to explore the characteristics and the role of these two 

attributes from a subgroup. It could be anticipated that the mode will result the average 

interdependence relationship among the entire group, and whereas the intrinsic class labels 

can be biased to support a certain supportive subgroup of the attributes which have the 
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highest interdependence with this one [39]. The objective of this task is to decide which 

candidate will perform better as an objective one. 

1.5.5. Governing attribute directed discretization 

One of the major impediments to the application of pattern discovery for mixed-mode 

databases is that there has been no easy way (prior to this dissertation) to achieve 

discretization of continuous data in a database setting, when class information is absent or 

unavailable. This dissertation proposes a method to solve this challenging problem.  

In solving discretization problems, two issues have been raised. The first one is that if a 

governing (or most representative) attribute really exists, we could use it to drive the 

discretization of all continuous attributes. The second one is regarding the state of the 

interdependence relationship among the attributes in the subgroup. For a very large 

mixed-mode database, unless a class label is given or assumed in advance, there is no 

reason to believe that the entire database is made up of a single correlated group, or that it 

is governed by a single attribute. In fact, there could be several correlated attribute groups 

co-existing inherently in the data set, each may share more correlated information among 

themselves than with others; thus it is not meaningful to use the mode of the entire data set 

to drive the discretization. In view of this, a more reasonable approach is to first find out 

whether the database could be optimally partitioned into several coherent attribute groups 

or not, before discretization is applied to the entire group or to each of the clustered groups. 

This is an important notion to be explored by this thesis.   

1.5.6. Pattern discovery of mixed-mode data 

After the mixed-mode database partitioning and discretization problems are solved as 

discussed above, a large mixed-mode database can be transformed into several smaller 

databases, all of which may have discrete valued data, or back into a large mixed-mode 

database by combining various sub-databases with discrete-valued databases. We then 

could apply conventional pattern discovery algorithms, or data mining methodologies 

which are applicable to categorical data, to this set of transformed mixed-mode data space. 

As a result, all of the pattern-clustering algorithms and data-grouping algorithms which 

have been developed for categorical data can now be applied to mixed-mode data space 
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without the need for any class information [12]. Thus this dissertation presents a 

fundamental framework toward intelligent pattern discovery on large amounts of 

mixed-mode data without relying on prior knowledge, which in many real-world situations 

is not available. By discovering patterns from data sets based on such an objective 

measurement, the nature of the problem domain will be revealed. The patterns can then be 

applied to solve specific problems as being interpreted or inferred with.  

1.6. Organization of the Thesis 

This thesis is composed of five chapters. In the first chapter, we have already 

introduced the problems to be solved in this dissertation. The motivation and goal of the 

thesis are briefly described at the same time. We have explained the general method for 

pattern discovery and data analysis within mixed-mode data space, that is, first dividing the 

large mixed-mode data space into subspaces by attribute clustering, and then converting the 

mixed-mode data space into a categorical data space by mode-directed categorization, and 

finally, conducting pattern analysis through synthesis.  

In the second chapter, a comprehensive survey of pattern discovery and data analysis 

for mixed-mode data space, including some existing discretization methods which are 

suitable for all inductive learning systems, will be introduced and reviewed; also, the 

advantages and disadvantages of these methods are compared and discussed in detail. 

In the third chapter, we present our new pattern discovery algorithms and the 

framework for the mixed-mode data space, which overcomes some of the problems 

mentioned in the second chapter. The mathematical and theoretical foundation of this 

newly-developed method is presented and discussed in detail at the same time. Some 

information measurements, such as mutual information and interdependency redundancy 

rate, will take important roles in our discretization method (OCDD, Optimal 

Class-Dependent Discretization). In this chapter, for the best result in discretizing the 

continuous attributes among the mixed-data space, it has been also emphasized how to use 

dynamic programming methods to solve our objective functions step-by-step.  

The fourth chapter gives a brief overview of the experiments in pattern discovery, 

based on pattern discovery for a very large mixed-mode database. Various databases, 
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including synthetic, bi-model, and real-world databases, have been used to test this 

proposed method, and the performance of our method compared with other existing 

methods is presented. Since identical discretization preprocessing algorithms can be applied 

to some of the same databases we have used, it is possible for us to fairly compare the 

performance of the different learning systems for continuous-value learning jobs. 

In the last chapter, the conclusions drawn from the experiments in the chapters above 

are presented. All of the advantages and disadvantages of the algorithms are discussed in 

detail. In addition, some possible future work and improvements in this area are pointed out 

and discussed, as well as additional tasks that can be done in this area. 
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Chapter 2 
 

Review of Related Works 
 

2.1 Overview 

    By “large mixed-mode database”, we mean a database containing data with both 

continuous and categorical values. In a broader coverage, the data items in the database 

could be a) of an ordered nature, such as a real or an integer value, or rankings which could 

be represented as integers, or b) of an unordered discrete nature, such as categorical items 

made up of symbols, terms, and/or intervals. Since it is not possible to convert unordered 

discrete data into continuous data, in most practical applications, continuous data unusually 

will be converted into interval data, so that all the data items in a mixed-mode data could be 

processed as discrete events, to render a uniform framework for event pattern, association, 

and rule discovery tasks. For historical reasons, most of the classification algorithms in the 

machine learning area can only be used for categorical or nominal databases. Most of these 

classical classification algorithms are directly able to handleneither databases including 

continuous values [3, 14] nor mixed-mode databases directly and effectively. However, in 

the real world, a large portion of data actually does contain both continuous and categorical 

values, or what we refer to  as “mixed-mode” values. Having the current existing 

inductive learning systems been easily applied to these kinds of mixed-mode databases 

from the real world and all of the continuous values within the mixed-mode databases 

should be needed to be discretized first before any kind of pattern discovery analysis tasks 

have been conducted on them. Recently, some researchers also have found that even if 

some learning systems are explicitly designed and built for continuous attributes or 

databases, these systems still could attain a higher accuracy than unprocessed databases if 

continuous data are appropriately discretized. As a logical result, the limitations of most 

inductive learning algorithms will be overcome by discretizing all continuous attributes 

appropriately, before feeding those datasets into the existing learning systems [3, 6, 7, 12, 

23]. 
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     Actually, any discretization could be thought of as a pre-process by which we 

partition the value space of a continuous attribute into a finite number of intervals, and at 

the same time, assign a nominal value to each of them [7]. Each interval can then be 

considered as a discrete event or sample, for pattern discovery at the event level. After the 

discretization process, all the continuous values have been converted to the discrete event 

space, and thus the mixed-mode database is transformed into a categorical database, much 

more suitable for the subsequent conventional data mining and pattern discovery tasks.  

In this thesis, the researcher has described a totally new method for discretizing the 

values of continuous attributes within a mixed-mode database, which is entirely based on 

an information measurement that exactly reflects the interdependence relationship between 

the continuous attributes and the class attributes [6]. 

     Traditionally, two important factors should be taken into consideration in the 

pre-processing phase of partitioning a continuous data space — the number of intervals, 

and the width of each interval. These could either be determined by the discretization 

algorithm itself, or provided by the system designers or operators [2]. Many existing 

partition algorithms for learning systems require the input of the appropriate number of 

discrete intervals by the system users. Alternately, the widths or boundaries of the intervals 

can be calculated by the boundaries of the discretized intervals during the partitioning 

preprocess. Naturally, the widths of intervals for discretization are determined by their 

boundaries. As a good algorithm, it should normally require as few inputs from the users as 

possible. In a specific classification task, any available class information, from the real 

world or domain experts, can be of crucial importance in the discretization process [3]. 

    Some class-dependent discretization methods have been proposed [4, 29, 22, 20, 17], 

and most of them can automatically calculate and give the number of intervals and the 

interval boundaries which will be needed in the later process. Nevertheless, some 

challenging problems still exist with these: some class-dependent objective functions do not 

effectively utilize the class information within the mixed-mode database, and currently 

there are no effective global optimization algorithms reported for the more complex 

objective functions encountered in real-world situations [29]. 

    Regarding the algorithm of OCCD, the discretization process has been viewed as the 
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partitioning process for the data value space of a continuous random attribute into a number 

of ordered, adjacent, disjoint, discrete intervals with a certain probability distribution rate. 

The expected mutual information I(C: A) between the class (C) and the attribute (A), which 

measures the interdependence relationship between the class and that attribute, is the 

definite objective function for the discretization process. Fractional programming (iterative 

dynamic programming) currently is adopted to calculate a global optimum value of the 

expected mutual information among the data in the mixed-mode database. In addition to all 

of the global optimization algorithms, the other important advantage of the OCCD 

algorithm is that OCCD can efficiently partition bimodal or even multi-modal continuous 

data, which is a challenging problem that has not been solved well by other partitioning 

methods. Usually, bimodal and multi-modal databases refer to databases whose 

distributions have, respectively, two or more separate and distinct peaks, each of which 

could correspond to a high-frequency sub-class [7]. 

 

2.2 Class-Dependent Discretization of Continuous Data 

    Discretization, which is an important process for transforming a continuous random 

attribute into an ordered discrete attribute, is a very common practice in data mining and 

pattern analysis tasks. Regarding the partitioning of a continuous database, two important 

decisions must be made before the task can be completed [8]. First, the number of discrete 

intervals must be determined - but the selection of the optimal number of intervals is rarely 

discussed in the existing literature [10]. In most situations, the system users decide to 

define an appropriate number of intervals at the beginning of the task. Second, the width of 

each interval for the discretization process must be determined. In other words, the 

boundaries of the intervals need to be determined before the task can proceed. Any rules or 

criteria for determining these interval boundaries do not usually result in a 

universally-applicable method. In this section, a very critical review of related works on the 

discretization of continuous data is presented in great detail [9]. 

    Existing discretization schemes can be divided into two major groups. The first group, 

which is based on the probability density function calculation, will transform a continuous 
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random attribute into a discrete attribute with an associated set of intervals as its discrete 

outputs [28]. The second group will attempt to partition or quantize [36] data into some 

intervals --- being similar to the first group except that the probability density function of 

the random attribute is unknown, and only a small set of observations on the outputs of that 

attribute is available. The second group is based on learning from data samples of the 

mixed-mode databases. This dissertation will focus on how to discretize the database from 

a continuous attribute which is based on observed data instances. It could be asserted that 

most existing algorithms, including OCCD [7], could be extended to handle the data of 

continuous attributes with a known probability density function distribution rate. 

With most of the learning algorithms focused on nominal discrete data space, finding 

suitable discretization methods which can transform the data space of a continuous attribute 

to a finite alphabet data space will significantly improve the processing speed of the 

inductive learning procedure, and also will avoid over-fitting the data space. Since 

traditional discretization methods have been applied in clustering and classifying 

continuous and mixed-mode data space as early as the late 80s and even 70s, the literature 

on discretization topics is rich enough [42,38,41]. These are mainly divided into four 

groups: 1) Global versus Local, 2) Supervised versus Unsupervised, 3) Static versus 

Dynamic [8], and finally 4) Mulitivariate versus Univariate [2, 3]. 

The following sections will discuss all four groups. 

Global versus Local Discretization Methods 

Generally, a local method will calculate out the necessary intervals through 

partitioning data in one subspace or in one dimension of the instance attribute, and it will 

make the partition decision based on that partial information. For example, Hierarchical 

Maximum Entropy [6], C4.5 decision trees [29], and VQ (Vector Quantization) [17]: all of 

these classical discretization methods are local methods. VQ tries to divide an 

N-dimensional continuous data space into a discrete space, and then to represent the set of 

points in each interval region by the region into which the points fall [8]. The C4.5 

algorithm is also a well-known example of adopting this approach, and could thus be used 

as a discretizer for normal discretization. This classical algorithm applies the local 

discretization information on the subsets of samples relative to the nodes of the decision 
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tree during tree construction procedure. Consequently the same attribute could be 

discretized again by the subset of samples being available to it as the decision tree is 

constructed, and the final decision tree may include different partition schemes for the same 

attribute [29].  

Since the local discretization algorithms implement many different partition methods 

for different portions of the sample data space, logically, one could expect them to be 

superior to the global methods, in producing better classification trees with generally higher 

accuracy. However this improved accuracy is achieved at a high cost of computational 

resources , as the discretization process may be repeated many times during the building of 

the decision tree. 

Any local discretization method will start the search procedure of the interval 

boundaries at a coarse and raw parameter for the local level, and then gradually refine the 

boundaries later through a step-by-step process. Most of the local discretization methods 

will take advantages of heuristics to achieve an optimal solution. The final partitioning 

results are usually only locally optimal. Global discretization procedures, on the other hand, 

[16] are easily applied to the entire data space once, and thatfor all of the data space. For 

any of the given continuous attributes, they will be discretized first, before the mixed-mode 

data is fed into any machine learning algorithms. In general, global discretization methods 

will produce a partition result across the entire data space of a continuous attribute. Two 

typical examples of global discretization are the Chi-Merge [14] and 1R (One Rule 

Discretizer) [12] discretization methods. The Chi-Merge method is a typical 

statistically-justified heuristic algorithm. It initially defines an interval to each observed 

value and then applies the χ2 test to determine if the adjacent two intervals should be 

merged together. The threshold of χ2 manages the extent and the steps of the subsequent 

merging process [15]. The 1R method is a very simple classifier for discretization, which 

will produce a single rule known as the One-Rule. The 1R algorithm can reach reasonably 

accurate results on many discretization processing tasks, through simply looking down at 

any attribute one at a time. This classical algorithm also attempts to reach a partitioning 

result such that a majority of the data space in these partitions tries to belong to only one 

class, that will be logical subject to a more constraint of minimal being acceptable interval 
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widths. Holte [12] has suggested applying the 1R method for any data space which does not 

contain complex relationships among the attributes within it. The 1R method may not be a 

good discretization method in most situations, because its objective function is too simple 

to represent adequate relationships within the data space, and may well miss some 

important relationship when applied to real problems with more complex attribute 

interaction space[7]. There are many other global algorithms such as equal-width, 

equal-frequency, et cetera. Our discretization method is also a global one. 

 Supervised versus Unsupervised Discretization Methods 

Supervised and unsupervised discretization methods are two very popular algorithms 

for discretization in the pattern discovery community. Unsupervised (also known as 

class-blind, or class-independent) methods will simply partition the continuous data space 

without any use of the attribute-class information in the data space, while supervised (also 

known  as class-aware or class-dependent) methods will take advantage of the class 

information in the data space [9]. Theoretically, by using the class information within data 

space, the supervised methods should automatically get the optimal number of the discrete 

intervals for a single continuous attribute, achieving the best classification rate. 

Unsupervised Methods 

The simplest and most popularly-used unsupervised discretization method is to split 

the entire range of a continuous variable into equal-frequency [6] intervals. That can be 

described in the following way: given m instances and a user-defined number of intervals k, 

the equal frequency method here will calculate the values of a continuous attribute into the 

k bins (intervals). Each bin will contain ideally m/k attribute values [6]. 

The equal-width methods instead divide the range of a continuous variable into k 

equal-width intervals. The range is bounded by the minimum and maximum observed 

attribute values. The obvious weakness of the above procedures is that a large amount of 

important information could be lost after the discretization, where the values of a 

continuous variable are not distributed evenly. 

To reduce the amount of lost data, a better method, based on the concept of maximum 

marginal entropy, has been proposed [44]. This will partition the data samples from a 

continuous attribute by implementing a good criterion that will maximize Shannon’s 
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information entropy, and thus try to minimize the loss of data information [23, 44]. The 

best number of intervals is determined by implementing a rule of thumb based on the fact 

that more intervals generally will lead to less information loss than fewer would. However, 

the method does rely on the estimation of probability distribution of the database being fed 

into, which is affected naturally by the sample volume or size. Furthermore, the first upper 

bound of the number of intervals should be limited by the second-order statistics as 

requiring probability estimation. Since the entire procedure of finding global maximum 

entropy is a highly time-consuming task, a heuristic approximation method has been 

developed to discretize continuous attributes, for object recognition as well as for clustering 

applications [44]. 

The algorithm of K-means is also another unsupervised method [36]. This algorithm 

will put each data point into k intervals according to its distance to each interval center 

point. This is a recursive process which finally achieves local optimization [36]. A common 

problem of this method is that is difficult to define which number of intervals would lead to 

the best decision for a specific attribute. Generally, the best or start number of the intervals 

must be determined by domain knowledge or by experts. In real practice, some kind of 

heuristics has to be employed to find the number of intervals [36]. 

Given that unsupervised methods will not utilize class information in calculating 

interval boundaries for discretization, it is more likely that some important information for 

classification will be lost, and as a result, values that are strongly associated with different 

classes might be wrongly assignedto the same interval. This could let an effective 

classification be much more difficult. The important advantages of these methods are that it 

will likely be applied to all kinds of real applications, and be put into any existing mining 

systems, not just restricting to classification only [33]. As a logical result, this will be taken 

as a significant drawback for supervised learning tasks. In addition, none of these methods 

have addressed the issue of the determination of the best number of intervals adequately. 

Too large a number of intervals is not always a good choice, because the performance of 

many inductive learners will deteriorate dramatically with large numbers of discrete 

intervals [36]. The reason for discretization is to reduce the number of possible values of an 

attribute, while still retaining original information from the data space as much as possible. 
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Despite their limitations in some situations, they are both reasonably effective, with certain 

specific or restrictive conditions, for most inductive leaning tasks [33]. 

Supervised Methods 

Supervised methods utilize the class information, which in the end will place them in a 

leading position ahead of the existing discretization algorithms. These methods can get 

better partition results  when compared to their unsupervised counterparts using entropy 

maximization method [5]. The typical methods in this group include CADD 

(Class-Attribute Dependent Discretization)[5], Zeta [11], Lambda [23], the 

Patterson-Niblett algorithm [26], Chi-Merge [21,35], Chi[13], CAIM(Class-Attribute 

Independent Maximum) [18], IR[47] and OCDD[24], among others. To be a good 

supervised discretization algorithm, it should be able to define a minimal number of 

discrete intervals, while retaining the interdependency relationship between attributes and 

the class labels as much as possible [5].  

CADD will discretize a continuous data space by heuristically maximizing the 

interdependence relationship between the class attributes and the continuous-valued 

attributes [5]. The mutual information relationship between the class and the attribute 

which will maximally capture the interdependence is the objective function to be 

maximized here. Theoretically, this kind of objective function can cover the information 

relationship well. However it is only a heuristic search method here, which cannot 

guarantee an optimal solution for any situation [5]. 

Lambda as a supervised method is widely applied to measure association strength 

level between nominal attributes or variables [23]. The association strength here will be 

indicated by a proportionate reduction in prediction error value, that can be collected by 

using one attribute to predict another one by using a modal value prediction strategy among 

all of the applications. Lambda is an ineffective algorithm in some situations, where the 

dependency measurements between two attributes are not good enough to generate 

different modal predictions that will result in Lambda equal to zero [23]. To overcome the 

limitation of Lambda, Zeta, a closely related measurement, has been proposed [11]; it 

measures association strength level between two discretizated attributes according to the 

minimization of the error rate. Here, each interval value of the independent variable would 



 

26 

predict a different interval value of the dependent variable [11]. The important and basic 

difference between the Lambda algorithm and the Zeta algorithm is that the latter one is not 

based on a modal-value-based prediction strategy, but rather on the prior assumption that 

each value of the independent attribute could predict a different value of a dependent one 

[12]. This algorithm may be generalized to the situation that one k-valued variable may be 

used to predict the values of another one which has at least k values. While the computation 

cost of the algorithm is reserved, its disadvantage is that it has the ability to handle only 

those kinds of attributes with a small number of values [12]. 

Another supervised discretization algorithm, CAIM, is similar to CADD in most ways 

[18]. The only different point between those two algorithms is that CAIM will use a 

different objective function, to not only capture the interdependency relationship between 

the class attribute and the continuous-valued attribute, but also to consider minimizing the 

number value of intervals at the same time [18]. 

On the whole, while all of these supervised discretization techniques might lead to 

more accurate classification results than expected, since they use the class information in 

their objective functions,  they may not efficiently reach the global optimum for the 

objective functions. They have to  rely on heuristic methods to attain local optima – 

usually with a heavy computational burden [18]. For this reason, one could expect that 

most unsupervised methods, though not as accurate as the superones, are considerably 

faster, because they will involve little heuristic search other than direct sorting of the data 

space-- an operation that is very common to all of the discretization methods. In the end, 

though, they will not achieve an optimal interdependence relationship between a class 

attribute and a continuous attribute [18]. 

Van de Merckt [6] has developed two effective algorithms to reduce or even remove 

the differences between supervised discretization methods and unsupervised discretization 

methods. The first method from Van de Merckt [6] is a typical unsupervised clustering 

algorithm that tries to find a method for generating the partition boundaries that will 

“produce the greatest contrast” by a given contrast measurement. The second method from 

Van de Merckt [6], also referred to as the mixed supervised and unsupervised methods, 

simply redefines the objective measurement that will be maximized by normalizing the 
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contrast function based on the entropy of a partition result. Because calculating the 

information entropy for a candidate partition needs some class information, this method 

should be considered as a supervised one instead [6]. Chmielewski took a very similar 

approach through a cluster-based method to look for some candidate intervals as well as 

boundaries, and then evaluating the partition results based on an entropy-based consistency 

function [18]. By comparison with the other unsupervised methods, all of the supervised 

methods have their significant advantage in reaching a better partition result, because they 

do take advantage of using the class information. All of the supervised methods discussed 

here always try to have optimal interdependence information between class and attributes 

from the data space [6, 18]. 

Static versus Dynamic Discretization Methods 

Regarding a static method [32], it will carry out a single discretization process  for 

each feature separately  once the maximum number of intervals is specified. This kind of 

discretization algorithms can be thought as a process to merge N adjacent intervals  when 

a certain  threshold value is found [32]. Almost all the discretization methods mentioned 

above are static ones, and as static discretization methods, these algorithms have not 

utilized the complex interactions among multiple attributes within a data space. 

All of the dynamic methods [8] will search all possible numbers for the interval 

calculations, based on the information being collected from all of the features 

simultaneously. In other words, these kinds of dynamic discretization methods will 

determine the thresholds for a decision tree. Here, any of the dynamic methods above will 

discretize one attribute based not only on the information of this attribute, but also on its 

interaction with other attributes in the same one data space, that will explore high order 

relationships among the data in the space. Naturally, this will produce better partitioning 

results. Bay [25] has proposed a discretization method which discretizes one attribute by 

considering the effects of all other attributes in the database. Here, two attribute intervals 

should be merged together as one if the sampledata points fall into them having similar 

distributions. The advantage of Bay’s algorithm is that all of the hidden complex patterns 

inside will not be destroyed by the initial discretization process [25]. 

In the domain of data mining, a dynamic discretization method generally is better than 
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a static one. The reason is that a dynamic method itself will be of great interest to a data 

mining analyst, who may like to develop it to achieve better thresholds during the 

discretization pre-process. For this method, each routine procedure being crossed over the 

observed values of the data space could find a new partition result among the continuous 

data space that is based on the data intervals already being identified up to the point [27]. 

The method we used has adapted OCDD, which could be treated as a dynamic algorithm. It 

will search the entire data space for the best partition planning from all possible settings for 

each repeat routine [27]. 

The research tasks within the dissertation are highly motivated by the search for an 

ideal discretization method to transform continuous attributes to ordered discrete attributes, 

so that inductive learning and data mining techniques are able to deal with data with real 

values among any mixed-mode data space. 

 Mulitivariate versus Univariate Discretization Methods 

The literature on discretization methods is abundant, but most of them are regarded as 

univariate method. Univariate methods consider each of the features independently (or only 

jointly with a class attribute). Generally, the interactions of the discretized attributes with 

other attributes are not considered in this way [18]. The algorithms mentioned in the above 

sections actually are all univariate ones. As a multivariate discretization [19], a single 

variable will be considered at the same time (sometimes in conjunction with the class 

attribute). 

In fact, most of the existing discretization methods are the univariate algorithms 

defined by the meaning above. They only use the information being contained in a single 

attribute, or at most of a class label. Usually, they ignore the probable interactions of the 

examined attribute with other attributes [19]. However, as a multivariate discretization, it is 

going to become a main direction in data discretization for pattern analysis. 

Dirkant and A. Grawal [34] have proposed another approach that attempts to avoid 

this significant limiting condition. They finely and carefully divided each of the attributes 

into n basic intervals, and then considered all of the possible combinations of these basic 

initial intervals. Their algorithm also encounters two challenging problems: long 

computation-time and too many discovered patterns for later analysis. The result of the 
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combinatorial nature of the algorithm will be difficult to understand in later analysis 

procedures. Since it is almost O(n2) combination of intervals for each attribute, the 

computationalcomplexity will be high, especially when it takes the information interactions 

within other attributes from the same data space. The difficult problem of too-many-rules 

for understanding is also a logical result of the number of the attribute combinations. If an 

interval has the minimum support requirement, any range containing the interval will too.  

  

Bay [42, 43] has significantly improved the algorithm developed by Dirkant and A. 

Grawal [23], and has also proposed a different multivariate discretization algorithm for 

continuous attributes. First, all continuous attributes will be partitioned into n basic 

intervals through a very simple discretization method, such as equal-width or even 

equal-frequency measurements [42]. Second, it begins to merge two adjacent intervals 

together that make a minimum combination support and then a very similar multivariate 

distribution being across all of the variables within the data space [43]. Based on 

comparison with those univariate discretization methods, we have found that there is a 

significant advantage through utilizing the interaction information among the attributes 

within the data space. It will have success by relying on finding a better measurement to 

determine how to merge the two adjacent intervals [43]. From the other viewpoints, its 

computation cost in time resources may be incomparable [56] with some of the existing 

univariate algorithms.  

 

2.3 Attribute Clustering 

        During the early years when machine learning first started to be introduced , all 

of the researchers focused on a relatively small set of attributes in a database. With the size 

of real-world databases increasing and the attributes diversifying, supervised and 

unsupaervised learning as well as attribute clustering have begun to encounter challenging 

problems regarding the classification and predictive analysis. In supervised learning areas, 

most of the problems in this sector have been partly solved by feature selection. Even in 

unsupervised learning and feature clustering, the database partitioning process also was 
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investigated as a partial solution to the problems [13]. Later, as data mining and pattern 

discovery have begun to come into play, the dimensionality questions have become a little 

relaxed, yet the ultimate problems of high dimensionality still prevail. Even now, almost all 

classical data clustering algorithms have to face the challenges regarding the nature of a 

large mixed-mode database with a large number of attributes [13]. Being diverse 

characteristics, a large scale mixed-mode database will often influence operational 

performance of any conventional clustering algorithms.  

As we admitted that the problems from classification and clustering are still two major 

challenges for the large scale mixed-mode data analysis. While the classification mainly 

concern the assignment of the memberships to data instances from the discovered patterns,  

clustering  works on finding more new implicit “class” features and keeping on refining 

existing ones [48]. To better cluster and then recognize patterns discovered in the 

large-scale mixed-mode data, the challenging problems  dimensionality reduction mustt be 

solved. Usually, a large scale mixed-mode database has a vast number of attributes. Many 

of the classical data mining algorithms (such as association rule mining [10], [11], [16], 

[53], classification [12], [13], pattern discovery [58], [59], context-sensitive fuzzy clustering 

[26], and linguistic summaries [30]) have been developed and even optimized to  

overcome these kinds of difficulty, both with respect to the number of instances, and to 

handling a large number of attributes from a mixed-mode data space. 

   Following the general idea of the large database partitioning, this dissertation first 

works on how to cluster attributes into subgroups and then discretizing continuous 

attributes in each sub-group. A new methodology, called attribute clustering for 

mixed-mode databases, is introduced here, by sub-grouping the attributes which are more  

correlated with each other attributes within groups. Then all of the attributes within a sub 

cluster will be more correlated to each othersubgroup, while  those in different 

sub-clusters are less correlated.. Here, an attribute clustering algorithm will help to solve  

the dimensionality problem by breaking down  the original mixed-mode database into 

subgroups of lower dimensions. By further selecting representative attributes in each 

subgroup and pooled them together into a single one, pattern disocvry and data mining 

process are more more revealing and effective [11], [16], [53].  
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The proposed attribute clustering algorithm evolves from sample clustering. Even 

up-to-date, , the sampling clustering  is still an important research issue in machine 

learning research.. Given a relational data table, a conventional clustering algorithm will 

group the data samples into some sub-clusters based on their similarity relationship [28]. 

Intuitively, data samples from a cluster will be more similar to others within the same 

cluster than they will be to those ones belonging to the other sub-clusters. However, 

clustering attributes is a more recent venture. It has been proven that attribute clustering is  

very useful in many real-world data mining application tasks (e.g., [23], [19], [47]). 

Let us consider that a typical large mixed-mode database is represented by a data table, 

T = {wij | i = 1, …, p, j = 1, …, n}, where wij ∈ ℜ is the data value of the data sample gi 

from the attribute sj. Here each of the rows in this data table T = {wij | i = 1, …, p, j = 1, …, 

n}, will correspond to one specific data sample and each column will be an attribute in this 

table. While such a data table should be typically composed from a large number of the 

attributes, often the  number of its samples might be relatively small.  Hence, to handle  

a large scale mixed-mode database effectively, we should cluster the  attributes and  

samples into smaller datasets [29], [19]. Talking about all those of the conventional 

attribute clustering algorithms, the attributes with similar expression patterns discovered to 

be identified [29] are acceptable and on the other hand, the similar data samples under a 

common data subspace of the specific attributes will be clustered together finally. Generally, 

both Euclidean distance and Pearson’s correlation coefficient are usually adopted as the 

distance measurements for clustering tasks for continuous data[29], Since relation between 

attributes is reflected by their correlation, Euclidean distance generally used in clustering 

data samples is not  an effective measure.  Hence it is not effective to cluster attributes in  

a mixed-mode data space [28]. Then, Pearson’s correlation coefficient is logically 

developed later. However, an essential study [25] has shown  that Pearson’s correlation 

coefficient is less robust for  outliers and data in the presence of noise. This dissertation 

introduces  a new technology (referred to as ACA) adapted from the k-modes Attribute 

Clustering Algorithm [22] for clustering attributes within a relational mixed-mode database.  

It adopts an effective similarity measurement between various types of attributes pairs from 

a mixed-mode data space. While the algorithm reported in [22] applies only to categorical 
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data, the new ACA is able to be applied to mixed-mode data by implementing new  

information measures to evaluate the interdependence relationship between varius types of 

attribes in the  mixed-mode data space.  These mutual information measures will direct 

the grouping of the attributes into sub-clusters. While  the ACA algorithm has been 

applied only to categorical data space in the past, the  contribution of this dissertation is to 

extend ACA’s capability  to deal with a mixed-mode data space. A search of the literature 

reveals no indication that this challenging problem has ever been properly addressed or 

fully discussed before [23]. By implementing ACA algorithm on a large mixed-mode data 

space, the subgroups of the attributes based on their mutual correlation rates can be 

discovered and analyzed. Also, we can then still select a small part of the top-ranked 

attributes in each subcluster for later analysis tasks. These important attributes are generally 

referred to, in this dissertation, as the governing attributes of a specific sub-cluster. 

Choosing such a small number of the most promising attributes for model building and then 

pattern discovery [48] will greatly help to improve the processing speed, and should create 

more meaningful and reliable pattern results too. 

To select significant attributes in a group , the t-value method is widely implemented 

[48]. We should note that the t-value can only be implemented on the data samples already 

pre-classified. If no class label information comes with the database, it  cannot be applied 

to the following important attribute selection tasks. In this dissertation, we have introduced 

a multiple interdependence measure (SMI) [52], [16]) to select some of the attributes with 

the highest correlation rates with the other attributes within an attribute subgroup.  

Various different algorithms for this important attribute clustering task  have been 

proposed. These well-known algorithms include: k-means algorithms [49], [17]; Kohonen’s 

self-organizing maps (SOM) [25]; and various hierarchical clustering methods [14], [21]. In 

the case of similarity measurements, both the Euclidean distance and Pearson’s correlation 

coefficient rate have been widely adopted to cluster large numbers of attributes in a large 

mixed-mode data space [29].  

Given two attributes Ai and Aj, i, j ∈ {1, …, p}, i ≠ j, the Euclidean distance between 

Ai and Aj is given by: 
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where w ∈ ℜ is the measured expression level. 

Here, dE directly gives the measurement for the difference in the individual values of 

each attribute. Two attributes which might be similar by measuring Euclidean distance, 

may be dissimilar for this expression. Let us consider, for example, two attributes here, 

which have the same trend but differ only slightly from one another by terms of the scaling 

factor. Their Euclidean distance should be large, while they have the same trend by the 

overall trends of attributes being of basic interest in certain situations  [29] - although 

Euclidean distance now may not be able to function as a good similarity measurement of 

attributes. 

The Pearson’s correlation coefficient between genes Ai and Aj is defined as below: 
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here iw  and jw  are the means of wik and wjk, k = 1, …, n, respectively. has been 

considered that each of the attributes being as a random one with n observations and has 

measured the similarity rates between the two relative attributes by calculating the linear 

relationship among the distributions of the two corresponding random attributes. A good 

study [25] has presented that Pearson’s correlation coefficient is good enough to data noise 

and it could assign a higher similarity It score to a pair of dissimilar attributes within the 

same sub cluster. 

Besides using the Euclidean distance, Pearson’s correlation coefficient,  most of the 

current attribute clustering methods are not as effective as the ACA even on continuous 

data such as gene expression data [Waiho’s paper], not to mention on categorical and 

mixed-mode data. Hence,  we adopt the ACA approach for our purpose. Thus we have to 

formulate the mutual information measures between various types of attributes in a 

mixed-mode databasesThe advantages of this information measure once implemented and 

validated, they can be used to direct attribute clustering, determining the mode for each 
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cluster and eventually drive the discritization of continuous attributes. In comparison to the 

Euclidean distance and Pearson’s correlation measures, our mutual information measures is 

ableto reflect both positive and negative correlational relationships among the attributes in 

a large mixed-mode database. The details of the information measurement and its 

significant features in large scale mixed-mode database correlational relationships will be 

discussed in the following chapters. 

Feature selection is another important issue, valuable in further narrowing down the 

attribute number prior to pattern analysis tasks. A large number of these kinds of algorithms 

have been presented in the past (e.g., [44], [43]). To select the feature based on the 

attributes, the t-value is widely implemented within the literature [47]. Assume that there 

are two classes of data samples in a large mixed-mode database, the t-value t(Ai) for 

attribute Ai is defined below: 
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where the µr and σr represent the mean and the standard deviation of the attribute 

value of the attribute Ai for the class r, respectively. The nr here is the number of samples in 

the class r as r = 1, 2. The top attributes ranked by the t-value then are selected [47]. If 

there are multiple classes, the t-value will be typically calculated for one class instead of all 

the other classes. 

The only disadvantage to using the t-value to cluster attributes is the redundancy issue 

among the selected attributes [18]. To avoid this problem, methods that can solve both 

attribute-class relevance and attribute-attribute redundancy have been developed (e.g., 

[18],[62], [60],). These different methods mainly apply a certain metric to get the 

attribute-class relevance relationship (e.g., information gain, symmetrical uncertainty [61], 

mutual information, the F-test value [18], et c.) and then use the same or maybe a different 

metric to measure the attribute-attribute redundancy level (e.g., mutual information, 

Pearson’s correlation coefficient, the L1 distance [18], et c.). To define a subset of relevant 

instead of non-redundant attributes, we normally implement a new methodology called 

redundant cover to reduce redundant features based on a selected subgroup of the attributes, 

according to measurements of the attribute-class relevance level, and then the 
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attribute-attribute redundancy value (see, e.g., [62], [60]). The best way to find a subgroup 

with relevant relationships instead of non-redundant attributes is the combination of the 

measures of both the attribute-class relevance and attribute-attribute redundancy as a single 

objective function, and then the grouping of the attributes that will maximize the function 

[18]. 

It has been noted that both the t-value, and the methods that process both the 

attribute-class relevance level and the attribute-attribute redundancy level, will only be 

adopted for the selection of the attributes from a mixed-mode space, as the data samples are 

pre-labeled before that. In this dissertation, a more general and helpful multiple 

interdependence measurement for attributes selecting is proposed to obtain one with the 

highest correlation with others. 

 

2.4 Pattern and Association Discovery 

A. Pattern Discovery  

Pattern discovery, as one of the powerful intelligent decision support platforms, is 

being increasingly applied to large-scale complicated systems and domains even in 

mixed-mode space [23]. It hs been shown that it has thecapacity to extract useful 

knowledge from a large data space and present to the  decision makers. It is growing 

gradually and becomes more important with the quick development of computer 

technologies with increasing capacity to collect massive amounts of valuable data for 

pattern analysis. Extracting relevant information and useful knowledge from large 

mixed-mode data spaces is still complicated by several challenging issues: the limitations 

of data storage formats; a lack of expert prior knowledge for real-world databases; the 

difficulty of  visualizing the data using inefficient data mining tools. Data mining is a 

series of steps in the knowledge discovery process, consisting of the use of particular 

algorithms for producing patterns, as required by the real world. Useful information being 

extracted from real-world data using traditional data mining tools may be made better by 

the prior perception of a domain knowledge  base or expert experience. One could use the 

classical data mining tools [32] to get supporting data to confirm or refute existing personal 
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perception, but one also cannot be assured that there are no better-fitting explanations for 

the discovered patterns, or even that no important information has been missed in the entire 

data mining process. For a relatively complex real problem with a large data space, all 

traditional knowledge acquisition and data mining tools would become obviously 

inefficient, even helpless in some ways.  

In decision-support,it is very easy to be biased by the subjectivities of the domain 

experts, or even by pre-assumptions used in data mining and the algorithmic procedures 

thereof. While most of the current approaches are trying to combine decision trees, neural 

network technologies, and  the like, for pattern discovery and decision support, the 

rationale is to have  a systematic solution providing decision-making procedure or 

predictive rules derived from the patterns inherent in the data space. Regarding most of the 

existing data mining systems, some of the accessory processes like pre-processing, data 

cleansing, filtering, attribute reduction are proposed [27] in order to remove data noise by 

bringing out more relevant information from the data space, and to reduce the search space 

and time, and thus cost, for that procedure.  

All of the approaches discussed above make researchers investigate patterns and then 

verify the classification by domain experts, who often depend on their prior knowledge - 

including the parameters of the predetermined systematic classification framework. In that 

situation, they may be biased, and usually have to make long iterative search activities with 

personal examination and re-examination routine procedures. Due to the limited personal 

abilities to explore new patterns and knowledge, it is often difficult to set up a more 

objective base for decision-making. For a larger mixed-mode database with more 

unanticipated variations than normal ones, even the domain experts would find it difficult 

to reach useful results [27]. Furthermore, in the real world, three other important topics 

must be faced by the decision-makers, these being: 1) flexibility and versatility of the 

pattern discovery procedure; 2)  transparency to get at supporting evidence; and finally 3) 

the processing cost and  computation speed.  

In conclusion, if the tools for pattern discovery could be easily implemented by the 

real world users, those tools should have the following basic characteristics: 
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1. Discover multiple patterns from a data space without relying on  prior knowledge 

as supporting evidence; 

2. Collaborate with flexible decision objectives and situations; 

3. Provide significant discovered patterns for the following analysis;  

4. Render a reconstruction framework with high speed of computation at low cost.  

To satisfy these important and basic needs, a new pattern discovery approach has to be 

developed [22], which should be a primarily data-driven one. To discover an unbiased and 

statistically significant event automatically and exhaustively is now feasible. From 

theidiscovered patterns, classification modules for categorization and prediction can now be 

realized.  At least one unique feature of the potential system is the  ability to discover 

multiple significant patterns of high order at very fast speed, and then to list them according 

to their statistical confidence levels, so that a better understanding of the pattern and rules 

can be achieved [22].  

Based on this theoretical and systematic framework design, a software platform has 

been developed along with several new feature modules  including attribute clustering 

[17], class-dependent discretization [55];  classification and forecasting [43]. In this 

dissertation, the main emphasis has been on overcoming the difficulties in handling 

mixed-mode data in  the new theoretical framework, and on  demonstrating the 

performance of the new platform, especially when  applying to large databases from 

real-world problems.   

Those very initial research activities began in the early seventies by Wong [15] who 

first attempted  to explore for quantitative information measurements and statistical 

patterns in English text [22], and then in digital image databases [24]. With the strong belief 

that information in bio-molecular data sequences is coded for bio-molecular structures, he 

has made a great effort to calculate quantitative information measurements and statistical 

patterns discovered in the bio-molecules database. It has been proved that statistical 

patterns discovered, which present the underlying biochemical and taxonomical features, 

can be identified and then analysed later. Following up this line of thought, information on 

quantitative measurements of how the data deviated from equal-probability and also 
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independence models has been set up for English texts analysis [27] and images 

understanding [26]. These important discoveries finally formed the early basis of today’s 

pattern discovery approach, as discussed in this thesis. Pattern recognition algorithms for 

discrete continuous data space were well developed later for other real applications [28].  

More recent research has noted that if the dimensionality of a real mixed-mode 

database is very large, this will make the definition of patterns discovered within the 

traditional pattern discovery framework much less meaningful [29]. Although various 

pattern discovery methods have been developed [44], they all depend on the 

interdependency of attributes with the consideration of attributes as the random variables.  

In fact, all of the higher order pattern discovery platforms have been developed [45] 

only for discrete databases. Within those discovery frameworks, patterns have been defined 

as statistically significant associations of two or more primary events from different 

attributes in the analysis data space. For exploring patterns in databases in the presence of 

data noise, we have developed the adjusted residual analysis approach, which guarantees 

that the discovered patterns are not resulting from random association, with a fixed 

confidence level. All of the high-order patterns discovered can then be applied to support 

application tasks such as classification or pattern clustering. At the same time, the entire 

high-order pattern discovered within the continuous database was also advanced. Events 

here for the continuous data space are defined as Borel sets [45] and thus the pattern 

discovery is transferred into  an optimization problem of finding the hypercells such that 

the frequency of data p oints if contains deviate statistically significantly from the default 

space-wise uniformity model. Analysis tasks, including classification and probability 

density estimation, will be easily performed based on the patterns discovered, as well as the 

significant analysis results on both artificial and real-world databases have been completed. 

These automatic pattern discovery algorithms become a good and helpful platform to 

support different types of decision-making tasks in the real world. As  reported in [45]. 

while good solution to discover patterns and construct non-parametric probability density in 

continuous data space with  scale invariant properties has been developed, the scalability 

for this approach is questionable because the hypercells for defining g high order 

significant statistical events is built on the genetic algorithm.  
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In this dissertation, pattern discovery theories and methodologies will be broadened to 

make a new framework for mixed-mode data space, which, in comparison with the 

approach proposed in [45], will have much more viable and scalable factors such as: 1) fast 

speed in discovery of significant patterns at an event level and 2) good interpretation and 

inference of patterns discovered in the first step. 

B. Existing Methods in Association Discovery 

Related to pattern discovery in the data mining community is Association Discovery. 

Ever since Agrawal et al. [49] defined association rules (can be considered as a special case 

of patterns in pattern discovery) and developed the Apriori algorithm [49], Apriori 

association has been widely applied to discover frequent event associations and rules in a 

data space for data interpretation, analysis, and understanding, by searching for interesting 

associations within event space by finding event associations. In this section, we will 

review event associations from the perspectives of data analysis. More general 

introductions, and surveys regarding the event association in more detail can be found in 

[49]. 

So far as data analysis is interesting, apriori association presents two major advantages: 

first, it can produce clearly interpretable results with the associations being readily 

expressed as English text or as a query task such as SQL, and this makes the mining results 

easily understood [47]; secondly, it works fairly well in unsupervised data mining in the 

case of no pre-information on this database. As the result, the approach of apriori 

association provides a very good starting point for the following exploration of the data 

space.  

Many studies on this issue have been done to face the problems of having too many 

association patterns. Some researchers have suggested that additional specifications from 

the real world could be applied to help the selection of useful patterns. In [55], Silberschatz 

and Tuzhilin have argued that interesting patterns should be those ones unfamiliar to the 

end users.  They then proposed a revised method that lets the end users specify their 

existing patterns (knowledge), and then explore only the unexpected patterns. Srikant et al. 

[57] also used item constraint conditions being specified by the end users to find interesting 

patterns. Basically, the item constraint conditions define the events which should appear in 
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the patterns discovered. Klemetinen et al. [58] also implemented the general templates, to 

make the end users specify what patterns they never know or more like. All of these 

methods require that the end users clearly describe or define what kind of patterns they 

know or need. 

Besides asking for more additional specifications from the end users, some researchers 

have also tried deleting uninteresting patterns based on certain criteria. Bayardo et al. [59] 

proposed to apply minimum improvement in confidence rate to reduce uninteresting 

patterns or associations, by comparing the confidence level between a pattern discovered 

and any of its simplifications, and those approaches that still do not satisfy the minimum 

requirement in the pattern improvement are removed. Toivonen et al. [63] also have 

developed a method to build up a subset of patterns that could exist across the entire data 

space. Other pruning methods, including pessimistic error rate [64], chi-square test [63], 

and minimum description length [67], have been proposed in the past. 

Because the total number of patterns after removing may be still very large, how to 

group the discovered patterns is very useful. Toivonen et al. [68] group those ideas by 

applying a non-parametric density estimation algorithm. Liu et al. [54] also choose a 

special subgroup of patterns to build up a summary of the discovered associations. The rest 

of the patterns discovered are pooled together according to the summary result. Pattern 

pruning and grouping can be used together to further limit the total number of discovered 

patterns. 

    

2.5  Pattern Clustering and Data Grouping 

In response to the issue of having too many patterns and rules being discovered, one of 

the most significant development in pattern discovery and datamining in recent years is 

pattern clustering and data grouping [2] followed by pattern summarization [1]. However, 

the development of these methodology up-to-date applies only to categorical data. The 

importance of the research in this dissertation is to enable pattern clustering and data 

grouping to be applied to mixed-mode databases, a very significant advancement of data 

mining in solving the real world problems. Here a brief description of pattern clustering and 
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data grouping will be given.  

During a traditional procedure for pattern recongition, patterns  are usually referred 

to as the pattern vectors. As databases from the real world are becoming more complex and 

diverse, however,, interesting information and patterns might be scattered in various data 

subspaces associated with different models. For this reason it is more reasonable to define 

the patterns in the realworld as statistically significant high-order associations of data items 

(events) instead of the  pattern vectors in the entire feature space. After effectively 

discovering statistically significant patterns at a high order event level, in order to 

understand the way the discovered patterns are related and organized, it is beneficial to l 

group them first into pattern clusters, and then investigate the probabilistic variations 

ofeach cluster from the data group induced by the patterns in the cluster. This process is 

known as simultaneous pattern clustering and data grouping. Once all of these steps are 

finished, we could understand how those patterns relate locally to each other, and how 

pattern sub-groups are scattered within data subspaces. 

 Challenges to Existing Methods in Cluster Analysis 

From the view point of data characterization, grouping or clustering can be 

implemented to discover the overall entire distribution patterns of the data space, by 

detecting correlational relationships among data attributes, by observing the characteristics 

of each cluster, or even by focusing on a particular cluster of entire clusters for subsequent 

analysis. As with the review of pattern associations, this section will discuss clustering and 

grouping from the perspective of the data space; more comprehensive reviews, with very 

detailed looks at pattern clustering, can be found in [76]. 

Although the conventional pattern clustering approach could be helpful for many real 

applications, it is still inadequate for data analysis such as interpretation and summary. If 

the overlapping pattern groups still exist in the database, partitioning of the data space 

again may divide some of the pattern groups, and destroy some very important inherent 

data structures. Some researchers have suggested replacing the crisp partition with a fuzzy 

partition approach [68]. Bezdek [69] has proposed a fuzzy k-means clustering algorithm 

that applies fuzzy pseudo-partitions instead of a crisp partition algorithm, while Tamura et 

al. [77] also have proposed a clustering method by which the users could adaptively 
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determine the exact number of clusters. Other fuzzy approaches, including fuzzy learning 

vector quantization [78], self-organizing maps [76], and fuzzy adaptive resonance theory 

[69], have also been proposed during the past decade. As opposed to grouping data samples, 

the other approaches like attribute clustering [65] and co-clustering [66] methods will 

group attributes within the data space. Obviously this would help to get the best result in 

inevitably splitting overlapping attributes across groups. Both database partitioning [67] 

and bi-clustering ([69], [68]) will put data samples and attributes together, while most 

bi-clustering algorithms simultaneously cluster instances and attributes, as do some other 

algorithms such as two-way clustering [70],which will give the clusters on both separately 

and then combine again to get the results by obtaining bi-clusters. 

The big challenges of dealing with a large scale database mainly come from the 

existence of irreverent attributes, and from high dimensionality across the data space. 

Classical approaches trying to deal with high-dimensional data spaces will include both 

feature transformation [83] and feature selection [87] as basic tools. Principle component 

analysis [85] and singular value decomposition [81] are two typical cases of feature 

transformation tool kits in which we do not delete irrelevant dimensions within the data 

space; as a result, the difficult problem of irrelevant attributes remains. The processing 

results after transformation are also hard to interpret for the real applications. Talking about 

the feature selection instead of having only those relevant attributes, to improve 

performance of those methods, all of heuristic methods like random searching [74] have 

often been implemented. Another helpful and useful method which should be mentioned 

here for clustering high dimensional data is subspace clustering [76], [79] by which we can 

search for clusters in different subspaces of database, and after this process, the clusters 

derived from different subspaces can be overlapped across one another. 
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Chapter 3 

 

The Theoretical Framework for Pattern Discovery in 

Mixed-Mode Data 

 

3.1 An Overview with Terminology and Definition 

Let us begin with some of the conventions, terminologies and definitions before we 

introduce the theoretical framework for pattern discovery for a large mixed-mode data 

space. All of the terminologies and definitions provided in this chapter will be used within 

the entire dissertation. 

As expressed in the literature review in the chapter above, patterns represented by the 

underlying statistically significant associations of events in data are more fundamental than 

others. The important advantage of pattern discovery is that it takes in only statistically 

significant associations up to a specified order and then, in principle, most of the statistical 

noise (independent events) is blocked from entering.. However, when the data space is very 

large, the number of discovered associations and rules may become enormous, which can 

make it difficult to have a comprehensive grasp of the associations at the event level 

inherent in the data space. Problems become more difficult to find solutions for, if 

information and significant events’ associations might be scattered over various data 

subspaces. In this situation, we do need new approaches which can get into the data space 

to analyze, synthesize and organize local information, and also to zoom out, to extract, 

regroup, and organize scattered  yet interrelated information or associations on a broader 

base. 

As discussed in the literature review above, instead of considering patterns as entire 

vectors over the attribute space, we first define patterns as statistically significant 

high-order associations at the event level, in  feature subspaces. For this reason, we should 

develop new methods to discover statistically significant local patterns (event level) 

effectively. In order to understand well how discovered patterns are organized within data 
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space, it is important to find out how they are clustered via their  probabilistic associations 

and variations in the data space. From the data induced by the patterns in the pattern cluater, 

we could know how the patterns are related, and how pattern groups are realized in the data 

subspaces. 

Given a data set D that contains N tuples of mixed-mode data. Every sample is 

described by N attributes. Some of the attributes have been assigned discrete values from 

their own finite subset of discrete alphabet or outcomes, and some have been assigned 

continuous values between an upper bound N and a lower bound M+1 [12].  

Let X = { X1 , … , XN } represent this attribute cluster from a mixed-mode data space. 

For convenience, we permute the attributes (without influencing the later analysis) such 

that the first M attributes { Xi | 1 ≤ i ≤ M } are discrete-valued attributes, and the remaining 

ones {Xi’ | M+1 ≤ i’ ≤ N } are continuous-valued attributes. For each discrete valued 

attribute Xi, 1 ≤ i ≤ M can be a discrete random variable getting its values from its alphabet 

{ }im
iii ααα ,...,1= , and mi is the cardinality of the alphabet of the ith attribute [17]. Each 

continuous-valued attribute will be represented by Xi, M +1 ≤ i ≤ N. Thus, all of  the 

realization of X will be denoted by xk = { x1k , … xik … xMk, x(M+1)k , … xi’k … xNk  } and 

where { xik | 1 ≤ i ≤ M } can assign any of the values in iα  and { xi’k | M+1 ≤ i’  ≤ N} can 

assign any of the values in { Mi’k  ≤ ℜ ≤ Ni’k},and here ℜ is a real number. Under this 

definition, each tuple from the data space will be a realization of X set.  

During a petabyte era, it will be a natural situation that people will encounter in the 

applications of real world problems involving a massive amount of various mixed-mode 

types of data, which means more than ever before, the data we collect will come with the 

mixed-mode nature, that is, they are made up of a mixture style with discrete-valued 

(categorical, unordered, nominal) as well as continuous-valued (ordered, ordinal) data [22]. 

In the past, in both machine learning and pattern recognition researches, most of the 

databases gathered were just for classification purposes, or just for clustering by similarity 

groups according to a correlated factor from its attributes. If two subgroups of attributes are 

independent of each other, their usage in classification or in clustering will not be at all 

meaningful. This problem has been observed by Wong [11, 10, 7] in the late 70s. To resolve 



 

45 

such a problem he has introduced the concept known as “database partitioning”, by which a 

database will be clustered into interdependent attribute groups first, and data clustering will 

then be applied to each attribute group which contains interdependent attributes only. In 

other words, it will be without any meaningful clusters of attributes, if those attributes have 

been found to be totally independent of one another. Such a measurement is also necessary 

for the attribute grouping with little or no interdependency with each other one [7]. In short, 

we will refer to the first partitioning step as “vertical partitioning” and to the ones which 

follow for each attribute clusters as the second step, “horizontal partitioning”. Currently, as 

databases grow larger and have been used to register unnecessary data for a simple 

classification problem, in the case where it contains diverse data of various types, this 

challenging problem now becomes more important. Later attribute clustering has been 

developed, for clustering attributes and then optimizing the intra-group attribute 

interdependency across the data space. Thus, to apply the pattern discovery approach to a 

large mixed-mode database, this challenging problem should be taken into serious 

consideration, and the final solution should be found.  

Another important problem which must be faced when applying pattern discovery or 

data mining with mixed-mode data space, is how to discretize the continuous data in the 

mixed-mode data space [11]. This problem will be more deeply addressed, in more detail, 

in the following sections of this thesis.  

 

3.2 The problems encountered and the solution proposed 

As mentioned in the previous sections, the two major challenging problems 

encountered in current pattern discovery algorithms on large mixed-mode databases are: 1) 

the large attribute size; and 2) the discretization of the continuous data. In fact, these two 

key problems are inter-related in some ways.  

As we have stated in the data discretization sections above, for an effective 

discretization approach, it necessarily implements the class-dependence concepts. With this 

viewpoint, a good discretization algorithm should maximize the interdependency between 

the interval values gotten from the discretization of the continuous attributes and the class 
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labels given [17, 15]. By this reasoning, we could even apply a more effective 

global-optimal-class-dependent algorithm [67] for a class-dependent discretization of the 

continuous data space. Actually, in general in data mining and pattern discovery situations, 

the specific class labels may not be given, or may not be available, and then the concept of 

maximizing attribute-class dependence usually will not be easily applied for discretizing 

the continuous data space.  

In this dissertation, we have proposed a new approach to tackle the discretization 

problem where class labels are not available in a database. Here we have to address two 

problems: 1) whether the data set contains attributes which characterize different subgroups 

within the attribute set; 2) whether the data set contains various attribute subsets, each of 

which contain subgroups characterized by their attributes [15]. Here the first problem is a 

sub-problem of the second problem..   

First, we argue that for a data set containing interdependent relationships among its 

attributes (features), even though class labels are absent, there could still exist certain 

governing attribute(s) which may reflect such relationships, just as a class label reflects its 

dependence with other features [15]. If the ultimate objective of discretization is to reflect 

such interdependent relationships among the data, the resultant partition of a continuous 

attribute should have the highest dependence with the governing attribute as though it were 

a class label. In view of this, we could use the attribute with greatest interdependence with 

all other attributes in the group to drive the discretization of the continuous data in the 

group, just as in the case of using the class label to drive the discretization process [17]. 

The second problem arises in a more general setting, where we have no reason to 

believe that there is only one coherent group of attributes governed by a single governing 

attribute. There could be various coherent attribute groups which might even not be that 

interdependent with other groups. Thus to force all the continuous value data in the entire 

database to be discretized basing on the dependence on one governing attribute is not very 

reasonable [15]. Thus, before we proceed to discretization of the continuous data and 

subsequently to apply pattern discovery to the database, we might have to partition the 

databases vertically, maximizing the interdependence of the attributes within each group 

first. In view of this, attribute clustering should be first applied to the large database so as to 
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group attributes together to form more coherent subgroups maximizing interdependence 

among attributes within the group. Once the database is clustered according to its attributes, 

we could treat each cluster as a coherent attribute group. Then we could proceed with the 

discretization of continuous data for each of them as stated in the solution of the first 

problem. We could either apply pattern discovery to each group, or to the data set, after the 

attribute groups are combined into one [7]. The second notion is useful for capturing some 

patterns across attribute clusters, even though the interdependence between attributes they 

span may be weak.  

3.3 Interdependence between attributes 

3.3.1 Use of interdependence measures at different phases                           

The major focus of this dissertation, different from other works in data mining and/or 

pattern discovery, is dealing with attributes which could take on categorical (discrete) 

and/or continuous values, that is, a mixed-mode space. Based on this viewpoint, the very 

basic elements required to find the interdependence among mixed-mode attributes, and all 

those analyses which will follow, need to take this issue into consideration. In order to use 

them under a unified framework, we use the normalized mutual information measurement 

[23, 35] to account for the interdependency between: a) discrete attributes; b) continuous 

attributes; and finally, c) discrete and continuous attributes. 

There are two phases of using normalized mutual information. In the first phase we use it to 
direct the attribute clustering of mixed mode data. In the second phase, we use it to 
discretize continuous data within each mixed-mode attribute cluster. In both cases, we 
adopt the discretization approach on the continuous data. In the first phase, for more 
accurate approximation, we could use as many bins as we could as long as each cell 
resulted from the two dimensional bins contain a number of data points designated by a rule 
of thumbs (say two or three data points per cell). In the second phase, since the final goal of 
discretization is for discovering high order patterns in the mixed-mode data, there is a 
desirable guideline to confine the number of discretized values for each attribute cluster so 
that we could optimize the “intrinsic group interdependence” which will be defined later. 
In that case we have a unified way in defining mutual information though their implication 
for an attribute pair of different data mode at the different phases of the process could be 
different. Since all the processes of computing the normalized mutual information R 
become  computing that between dsicretized data or categorical data, using the 
conventions outlined in Section 3.1, we proceed first to define the normailized mutual 
information between categorical data. We then outline the discretization process in 
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converting the continuous random variables into discrete random variable for various tasks 
in Phase I and Phase II in a more specific manner 

3.3.2 Normalized Mutual Information between Discrete-Valued Attributes.  

Definition 3-1 The interdependence redundancy measure between two discrete –valued 

attributes, Ai and Aj, here, i, j ∈ {1, …, M}, i ≠ j, is defined below [56]: 
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and H(Ai, Aj) is the joint entropy of Ai and Aj and is calculated by [57]: 

∑∑
= =

=∧==∧=−=
i jm

k

m

l
jljikijljikiji vAvAvAvAAAH

1 1

)Pr(log)Pr() ,( .      (3-3) 

I(Ai : Aj) measures the average reduction in uncertainty about Ai that results from 

learning the value of Aj [36]. If I(Ai : Aj) > I(Ai : Ah), h ∈ {1, …, p}, h ≠ i ≠ j, the 

dependence of Ai on Aj is greater than the dependence of Ai on Ah [57].  

As more accurately stated here, R(Ai : Aj) reflects the degree of deviation from 

independence between Ai and Aj [57, 15]. If R(Ai : Aj) = 1, Ai and Aj are strictly dependent 

on each other. If R(Ai : Aj) = 0, that means statistically independent from each other. Also, if 

0 < R(Ai : Aj) < 1, that means Ai and Aj are partially dependent on each other [57]. The 

definition of the interdependence redundancy measurement shows that it is the 

independency of the composition of the two attributes Ai and Aj. This means that the 

number of attribute values will not affect the interdependence relationship and values 

between the two attributes Ai and Aj. The properties of the interdependence redundancy 

measurement clearly render an ideal candidate for measuring the dependence among 

different attributes within a same attribute cluster [57]. 

If two attributes within the same attribute cluster are dependent on one another, they 

will be more correlated with one another when compared to two independent attributes [33]. 

The interdependence redundancy measure between two attributes can evaluate the 

interdependence or correlation of those two attributes. If R(Ai : Aj) > R(Ai : Ah), h ∈ {1, …, 
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p}, h ≠ i ≠ j, the dependence measurement between two attributes Ai and Aj is greater than 

the value between two attributes Ai and Ah. During an attribute clustering procedure, the R 

(Ai : Aj) is used to measure the interdependence between attributes Ai and Aj [57]. 

3.3.3 The mode of an attribute group 

In order to investigate the interdependency of an attribute with all the other attributes 

within the same cluster, the concept of significant multiple interdependency will be defined 

below [15]. 

Definition 3-2 The multiple interdependence redundancy measure [15], [57] of an attribute 

Ai within an attribute group or cluster, C = {Aj | j = 1, …, p}, is defined as: 

∑
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) :()( ,                 (3-4) 

where R(Ai : Aj) is the interdependence redundancy measure between two attributes of Ai 

and Aj.  

Based on the definition of MR(Ai), we define the concept of the “mode” which is a 

specific attribute with the highest multiple interdependence redundancy within an attribute 

cluster or group [15]. 

Definition 3-3 The mode [57] of an attribute cluster or group C = { Aj | j = 1, …, p}, 

denoted by η(C), is an attribute, say Ai, in the cluster or group such that  

MR(Ai) ≥ MR(Aj) for all j ∈ {1, …, p}. 

 

3.3.4 Computation of normalized mutual information for mixed-mode data  

Currently, there are two stages for the implementation of normalized mutual 

information. In Phase I, it is applied to drive attribute clustering of mixed mode data. In 

Phase II, it is applied to direct the discretization of continuous data within each attribute 

sub-cluster for pattern discovery. In both stages, the discretization approach is adopted by 

applying the same formulas as those outlined in the Sections above [15,57]. However, there 

is a small difference from the computation details for those formulas. Here we will outline 

the computational procedures in detail for the different computations of R, for various 

processes in both Phase I and Phase II. 
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A. Computing R between continuous random variables  

In phase I, to get a more accurate approximation, as many bins as possible have been 

used, as long as each cell results from the two dimensional bins which contain a number of 

data points that are designated by a rule of thumb (say at least two or three data points per 

cell); then it is estimated from the size of the samples to the size of the bin set [15].  

Here, if S is the sample size and m is the number of bins, then the number of data 

points per cell could be set at S/(m*m) [15]. When α is defined as the parameter value in the 

rule of thumb (2 or 3) then [15] 

α  =  S/(m * m) 

and therefore 

m  <=  SQR(S/α) 

Thus, if L is the number of bins, then each cell in the data table will have α points. 

Once mi’  is defined for all i’ among the continuous attributes, each of them could be a 

discrete attribute, i.e., a random variable will have its value from its alphabet 

{ }im
iii ααα ,...,1= , where mi gets its value based on the cardinality of the alphabet, if I, H and 

R could be calculated between continuous attributes from equations presented above 

respectively [57]. 

               

B. Computing R between a continuous attribute and a discrete attribute  

Regarding the R between a discrete attribute and a continuous attribute, an Optimum 

Class Dependence Discretization Algorithm (OCDD) [37] will be applied to first discretize 

the output values of the continuous random attributes, assigning the discrete random 

attribute as a class label for this sub-cluster. Once the continuous random attribute has been 

discretized, the pair of attributes could be taken as discrete random attributes in driving 

their R measure calculation [37]. 

C. Computing R between two discrete attributes 

The calculation for R between two discrete attributes Xi and Xj, and their 

corresponding alphabet size mi and mj, will be used for the computation of I and H from the 

equations mentioned above respectively [37].   
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3.4 Attribute Clustering of Mixed-Mode Data 

During the attribute clustering procedure, a relational data table with columns for 

different attributes and rows for data samples is vertically divided into attribute sub-groups, 

which will allow a smaller number of attributes, within and/or across the subgroups, to be 

chosen for data or pattern analysis [15]. Through the process to cluster attributes into 

smaller attribute sub-groups, the search dimensionalities of a data mining algorithm for a 

mixed-mode are significantly reduced to a workable number. This reduction of search 

dimensionalities is especially critical for data mining and pattern discovery in a large 

mixed-mode data space, because such a database typically consists of a huge number of 

attributes with various data in mixed-mode types. Data mining algorithms have been 

typically designed and then optimized to scale to the numbers of tuples, instead of o the 

numbers of attributes [33]. This will become difficult to justify when the number of 

attributes is sufficiently larger than the number of tuples.  In such a situation, the 

likelihood of reporting patterns that are actually irrelevant yet their occurrences are due to 

chances becomes rather high. It is for the aforementioned reasons that attribute grouping 

and selection are important preprocessing steps for many data mining algorithms to be 

effective when applied to large scale mixed-mode database [57]. for many data mining 

algorithms will be applied to large scale mixed-mode database [57]. This thesis has 

presented an attribute clustering method for mixed-mode data which, to our knowledge, has 

not been addressed before. The approach  presented here will group interdependent 

attributes into sub clusters by optimizing a criterion function derived from an information 

measure that reflects the interdependence between two attributes . Although such an 

approach has been proposed for categorical data [44], its applications to mixed-mode data 

space need special preprocessing.  

Another important point of the attribute clustering is that the clustering procedure has 

captured different aspects of association patterns discovered in various attribute sub-groups. 

The attribute grouping process provides a broader coverage of various 

attribute-interdependent sub-groups. The significant attributes being chosen from each 

attribute group will include  information which have a broader representation of the entire 
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database   rather than information biased towards dominating group of attributes in the 

database[44]. 

 

Definition 3-4 Attribute clustering is a process which finds c disjoint clusters, C1, …, Cc, of 

correlated attributes by assigning each attribute in {A1, …, AN} to one of these clusters. 

Formally, attribute clustering will be defined as a process that ∀ Ai, i ∈ {1, …, N}, Ai will 

be devoted to a Cr, r ∈ {1, …, c}, where Cr ∩ Cs = ∅ for all s ∈ {1, …, c} – { r} [44]. 

To create some meaningful clusters, the attribute clustering process is made so that 

attributes within a sub-cluster will have higher interdependency with each other attribute, 

whereas the other attributes in different clusters are less correlated, or more independent, 

than the others [57]. Most of the conventional clustering approaches apply to cluster  

samples. They usually use a certain distance to measure dissimilarity  between two objects 

like data samples whereas, for this dissertation, we will implement the clustering process to 

cluster interdependent attributes instead within a mixed-mode data space. To achieve such 

task, the k-mode approach reported in [45] has been adopted with the introduction of the 

new normalized interdependence information measure between a) two continuous attributes, 

b) discrete attribute and continuous attributes and c) two discrete attributes. With this new 

set of interdependence measures among the mixed-mode attributes, it is possible to 

complete [45] the attribute clustering algorithm for a large mixed-mode database.  

To group attributes of mixed-mode data into clusters, we extend the k-modes 

algorithm developed for categorical data to mixed-mode data. By assigning an integer k, the 

k-mode clustering algorithm will obtain k clusters optimizing the intra-group attribute 

interdependence. To find the best choice for k, we use the sum of the multiple significant 

interdependence redundancy measure obtained for each cluster configuration by the k-mode 

algorithm. We then choose the k that maximizes that normalized sum of redundancy 

measure of the k-cluster configuration over all the other cluster configurations.  

 

ACA Algorithm :[45]  

the k-Mode Attributed Clustering Algorithm for Mixed-Mode Data  
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1. Initialization. Set the number of clusters as k where k is an integer greater than or 

equal to 2. Of the p attributes, we randomly select k attributes, each of which 

represents a candidate of the mode ηr for Cr, r ∈ {1, …, k}. Formally, let  ηr = Ai, r 

∈ {1, …, k}, i ∈ {1, …, p}, to be the mode of Cr and ηr ≠ ηs for all s ∈ {1, …, k} – 

{ r}. 

2. Assignment of every attribute to one of the clusters. For every attribute, Ai, i ∈ 

{1, …, p}, and each cluster mode, ηr, r ∈ {1, …, k}, the interdependence 

redundancy measurement between Ai and ηr , R(Ai : ηr)  is calculated.  Assign Ai 

to Cr if R(Ai : ηr) ≥ R(Ai : ηs) for all s ∈ {1, …, k} – { r}. 

3. Computation of mode for every attribute cluster. For every cluster, Cr, r ∈ {1, …, 

k}, ηr = Ai if MR(Ai) ≥ MR(Aj) for all Ai, Aj ∈ Cr, i ≠ j. 

4. Termination. Steps 2 and 3 are repeated until the mode ηr for each of the clusters 

does not change. Alternatively, ACA also terminates when the pre-specified number 

of iterations is reached. 

It is important that the number of clusters, k, is input to the ACA algorithmWe then 

propose a method to choose the number k to render the best cluster configuration, that is 

one with  k clusters [44]. To find the best value for number k, the sum of the multiple 

significant interdependence redundancy measure∑ ∑
= ∈

k

r CA
ri
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) :( η  is used. . For every 

cluster configuration obtained by ACA (say with k clusters) , the overall  intra-group 

interdependence will be evaluated by  the normalized multiple interdependence 

redundancy measure45]. With this measure, the ACA algorithm will be run  for all k ∈ 

{2, …, p}.The value k that maximizes the normalized multiple interdependence redundancy 

measure over all the cluster configurations will be taken as one rendering  the best cluster 

configuration [44]. When reached, the k-cluster configuration will be taken as the local 

optimal configuration. That is, the value of k will be selected such that [45] 
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To discuss the complexity of the ACA algorithm, we set up a relational table, which 

include n samples such that each data sample is characterized by p attributes. The k-modes 
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algorithm will require O(np) operations to assign each attribute to a cluster (Step 2) and 

then it has O(np2) operations to find the mode for each cluster (Step 3) [45]. Let t represent 

the number of iterations, the computational complexity of the k-modes algorithm is defined 

by [44]: 
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The ACA computation task can be completed in a reasonable amount of time by any 

modern computing machine. Furthermore, the k-modes ACA algorithm could easily be 

parallelized to run on a platform of clustered multi-processors, because the calculation of 

the interdependence redundancy measure can be performed as an independent task [45]. 

  

3.5 Mode-Driven Discretization of Continuous Data within 

Attribute Groups  

For finding an efficient algorithm such that its partitioning result will be better for 

most inductive learning systems, a global optimum algorithm has been proposed in this 

section, which will apply the class-attribute dependency information as the criterion for 

final optimal discretization [23]. The discretization process could be taken as the 

partitioning of the value of the outputs of a continuous attribute into a number of discrete 

intervals, each of which can be considered as an event, and thus the attribute can be treated 

as an attribute with ordered discrete values. The term “global optimum” is used in the sense 

that the optimal partitioning of the outcome space of the continuous variable is not obtained 

via local perturbation but rather by applying optimization over the entire space. Actually, 

with only a sample of observed outputs of a continuous attribute available, the 

discretization process is equivalent to the reduction of the number of states of an ordered 

discrete random attribute by combining some of its values together [35]. Here, our 

approach will usea inter-dependency measure related to  mutual information as a criterion 

function for finding the best partition intervals. 

 

3.5.1 Class-Attribute Dependency Measurement  
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Before describing the discretization method, it is necessary to introduce some basic 

concepts for better presenting the proposed ideas. As mentioned earlier, we might know 

that certain information measure can be derived from data to reveal if the interdependency 

between attributes  departs significantly from independent models. In intormation theory, 

mutual information plays a central role in measuring interdependence between random 

variables. In this dissertation, we make use of the interdependence redundancy as the 

objective function to drive the discretization of  the continuous data into discrete interval 

events that maximinzing the interdependence between the discretized events and the class 

labels. The rationale behind is that if classification is the objective of the classificatory 

analysis, the partition of the continuous data optimizing the classification rate should be the 

best choice as observed in [23].  

However, in  pattern or rule discovery setting, the best classification results could be 

based on a subset of very strong rules or patterns. They may not necessarily represent the 

highest interdependence between the class labels (or the intrinsic “governing attribute” to 

be defined later) and the continuous attributes for the discretization of the continuous 

attributes. Hence, in this dissertation, we will study both options: 1) discretization driven by 

the mode in the sub-set and 2) decretization driven by the attribute which has the best 

classification rate if it is considered as the class label. Of course, of practical concerns are 

the size and the distribution of the intervals of the selected governing attributes.  For 

instance, among the discrete attributes, should we choose the binary one or the multi-value 

one even if the former has highest SR(i) measure or highest classification rate [39]. In a 

practical setting, domain requirement might have to be considered. As for this dissertation 

we will confine our study to the exploration of these two criteria so as to gain some insight 

to the very nature of complex pattern discovery problems. As stated in the previous section, 

the mutual information I (C, A) between class and an attribute can be treated as a test of the 

null hypothesis of deviation from independence. Though our proposed pattern discovery do 

not require class labels, the proposed methodology is motivated by class-attribute 

discretization except that the traditional class label in the data is replaced by an attribute 

which have similar governing effects over other attributes resembling what a class attribute 

would. Hence the problem formulation still resembles supervised learning and global 
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optimization except that the learning and optimization process is driven by a hypothetical 

“governing attribute” resembling the class label attributes [55]. Before then, we will set up 

the classification framework to formulate the discretization scheme driven by the 

“governing attribute”.  

 

Given a classification problem, suppose that there are M’  samples for training, each of 

which has been pre-classified into one of the K classes ck (k =1, 2,…, K). Let Ck denote the 

set of samples with a class label ck. It is assumed that each one of the training samples is 

represented by L attributes Al, l= 1, 2,…, L [57]. In general, it is assumed that all of the 

attributes Al, l= 1, 2,…,L are continuous attributes. For any one of the attributes Al, there is 

a range of possible values defined within the domain {Al=vlk|(k= 1, 2,…, K)}, where vlk 

could be continuous, categorical, or both. We first define that the interval [al, bl] is the value 

domain for the attribute Al (1≤ l ≤ L). For the purpose of notational simplicity, we decide to 

use A to represent any attribute Al and [a, b] for its value domain (here a can be negative 

infinity and b can be positive infinity, in such situation, the domain could be denoted by (a, 

b)). Let AΨR represent a partition sample for the attribute A with R intervals where the 

superscript ΨR is a natural sequence (e0, e1, …, eR-1,eR) such that a= e0<e1<…<eR =b. All of 

those data sets are the boundaries of the R intervals respectively [57].  

 In general, discretization is a specific process of transforming the range of the 

continuous attribute A into a discrete partition AΨR which will have R intervals [60]. After 

the discretization process, a continuous attribute cluster can be processed as a discrete 

random attribute. The class label for each sample will be also processed as an output of the 

random attribute with class labels. We can then get a two dimensional contingency matrix 

[60].   

As mentioned in the section above for the inductive learning systems, a training sample 

should consist of M data samples. Each one of the objects has been pre-classified into a 

specific class from a set of K possible classes. A specific continuous-valued attribute A can 

assign a value within a range of values. Based on the observed joint-outputs of the classes 

and the uniquely ordered attribute values, a 2-dimensional contingency table (Table 3-1) 

could be constructed.  
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Table 3-1 A Contingency Table between the Classes & Discretization Intervals [55] 

Class 

Interval marked by its upper bound re  

1e       2e     …   re    …   Re  Total 

1c  

. 

. kc  

. 

Kc  

11q      12q    …   rq1   …  Rq1  

 

1kq      2kq    …   krq   …  kRq  

 

1Kq     2Kq    …   Krq   …  KRq  

+1q  

. 

. +rq  

. 

+Kq  

Total 1+q     2+q    …  rq +   … Rq +  'M  

 

In the table above,  element qkr denotes the total number of the observed samples 

belonging to class ck, where the attribute value is in the interval between er-1 and er. From 

this  table, the joint probability Pkr for  a sample  belonging to class ck can be calculated 

with attribute value in the interval demarcated by the boundary pair (er-1, er). Let x denote 

an instance of data set and xc denote its class label and xA the attribute value of feature A. 

Then the following equation can be obtained [55],  
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Here, M’ presents the entirety of data samples observed.  

The estimated marginal probabilities of class ck can be found in the same way, and the 

estimated marginal probabilities of interval R of attribute A are respectively as follows [55], 
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where qk+ = ΣR/r=1 qkr and q+r  = ΣR/k=1 qkr . With all of these notations above, the 

following terms can be defined logically. (For detailed exposition, please refer to [38]). 

 



 

58 

The class-attribute (CA) mutual information between the class label C and the attribute 

A (with intervals as outcomes) is defined as  
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log):(        (3-10) 

        

I (C : A) is a measure of interdependence (or more precisely, a measurement of the 

expected deviation from independence) between the class label C and the attribute A. I (C : 

A) is asymptotically x2 distribute. i.e.  
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with (R-1)(K-1) degrees of freedom. By using I (C : A), we can test if C and A are 

statistically interdependent later via its normalized measure [38]. 

         

3.5.1.1 Class-Attribute Interdependency Redundancy Measure 

  Similar to the definitions in the section above, given that C and A are both considered 

random attributes, and the joint entropy between the class labels and the attribute variables 

is H(C,A), then the CA mutual information I(C:A) can be normalized by following [57] .    
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Here, RCA is being used as the class-attribute interdependence redundancy 

measurement, by which an attribute has the characteristics of normalized information rate. 

Clearly, we can say that RCA ≥ 0 since I(C:A) ≥ 0 and it can easily be shown that  H(C,A) > 

0. Actually, it is well known that Shannon’s entropy is bounded by the values of 0 and +∞. 

Therefore, the equation (3.14) below is equal to 0 when I(C:A) = 0, which is the basic 

condition for total independence between C and A [55]. It can be asserted that the 

interdependence redundancy level between the class label and an attribute variable is equal 

to 0, if the attribute does not provide any helpful relevant value for classification 

information.  

After all of the discussions above, we can reach the conclusion that 0 ≤ RCA ≤ 1.  If C 

and A are totally dependent on each other, then RCA = 1. RCA = 0 if C and A are totally 
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independent from each other. More formally, the definition is set up below [57].  

Definition 3-5 The interdependence redundancy measure R between classes C and attribute 

A is defined by the following equation [57], 
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Note that both I (C : A) and H (C, A) are non-negative. Hence, the value of R (C : A) is 

non-negative as well. The values above not only depend on the number of class labels and 

the attribute outcomes, but also on the mutual information measure between the class label 

and the attribute. According to [38], R (C : A) represents the degree of deviation from 

independence between the two attributes C and A, and when R (C : A) = 1, the attribute and 

the class label are strictly dependent on each other. When R (C : A) = 0, they are 

statistically independent from each other. When 0 < R (C : A) < 1, then class label C and 

attribute A are partially dependent on each other. The definition for R presents that it is 

independent of the composition from both the attribute and class variable. This tells us that 

the number of attribute values can be reduced by keeping the interdependence relationship 

between the class outputs and the attribute values [38]. Thus, the discretization process 

could be thought of as a normal process to reduce the redundancy brought by too many 

possible attribute values. At the same time, the discretization process should minimize the 

loss of correlation between the class labels and the attribute. The properties of the 

interdependence redundancy measurement clearly render an ideal candidate for a 

class-dependent discretization criterion which can serve in the discretization method as the 

optimization criterion [38]. In view of this, the discretization issue could be formalized as 

finding the partition of attribute A such that the class-attribute interdependence redundancy 

measurement R (C : A) is maximized.  

3.5.1.2 Iterative Dynamic Programming 

For the real applications, we frequently need to solve an optimization problem which is 

a computational problem in which the objective is to find the best of all possible solutions.. 

More formally, we do need to find the best solution in the feasible region that has the 

minimum or the maximum values of the objective functions, such as the issues being 

described in this thesis [66]. Actually, there are many total different algorithms being 
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applied to solve the optimization problems such as: greedy algorithm, simulated annealing 

and enumeration, among others. Most of these approaches cannot guarantee reaching a 

global optimum result, and usually achieve only a suboptimal or locally optimal solution. 

The reason we decided to implement iterative dynamic programming for this optimization 

problem is to satisfy all of the special conditions. Iterative dynamic programming is a 

programming technique by which an optimization problem is solved by catching 

sub-problem solutions, rather than recomputing them. It is a branch of nonlinear 

optimization for problems involving ratio functions. The problem can be described 

formally as follows [66], 

Consider a set of solutions Z = {z}. 

Let 
)(

)(
)(

zw

zv
zr =

 
where both of the v and w are the two real-world functions among a 

certain set Z and w(z) > 0, ∀z ∈Z.  

Then the problem is to maximize c where [66]. 
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Let Z* denote the choice set of optimal solutions for the problem. We first assume that 

the set Z* is not empty, and the problem can be solved as a parametric problem formulated 

as below [57]:  

Let  
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then the optimization problem is expressed as a function of λ below, 
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where λ ∈ ℜ, and ℜ is a real space. 

Let Z*(λ) denote the set of optimal solutions with the value given by λ, and also 

assume that the problem has at least one optimal solution. The problem can be solved by 

using Dinkelbach’s algorithm described by the following steps [37]: 

1. Set k=1 at the start, then select some z∈ Z,  

2. Let z(1) = z, and λ(1) = r (z(1)) respectively; 
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3. Solve the problem α(λ(k)) then select a certain z∈ Z*(λ(k)); 

4. if α(λ(k)) = 0, then set z’= z and λ‘=  r(z’) = v(z’) / w(z’),  

5. Stop and output z’ as the optimal solution; 

6. Otherwise, set z(k+1) = z and λ(k+1) = r(z(k+1)). 

7. Increase k= k + 1 and go to step 2. 

 With the theoretical background above, we propose a new globally optimal algorithm 

for class-dependent discretization on continuous attributes. 

 The algorithm of OCDD has two important points [67]. One is that it attempts to get 

the maximum value of a parametric objective function by dynamic programming, and the 

other one is its iterative process, which takes the first component to drive towards the final 

globally optimum solution for the class-dependent discretization objective. 

One of the most important advantages of the iterative dynamic programming approach 

is that it applies a process called memorization [24]. In practical operations, the problem 

has particular efficiency if the feasible solutions are just subsets or subsequences of the data 

space.  

 

3.5.2 Global Optimal Class-Dependent Discretization 

 After introducing the basic class-attribute mutual information and iterative dynamic 

programming in detail, we can now present our globally optimal class-dependent 

discretization algorithm [23]. The objective function is a specific function associated with 

an optimization objective which can determine the quality of a problem solution. Within 

this proposed class-dependent discretization algorithm, we choose R(C: A) = I (C: A) / H(C, 

A) as the objective function, and the goal of this objective function is to maximize the 

mutual information between an attribute,to be discretized and the class attribute. The 

following iterative algorithm is adapted from [23]. 
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ALGORITHM 3-2 [OCDD] [23] 

1. Let us assume an arbitrary partition ψ of an attribute A first, This can be 

represented by a quanta matrix based upon the value of qk+, q+r , M’ and pkr. 

2. Initialize  u= I(C: Aψ) / H (C, Aψ); 

3. Given u, calculate a new partition ψ’  such that I (C: Aψ’) – uH(C, Aψ’) is 

maximized (This step is a key component in our algorithm); 

4. Obtain a new value for u’ by u’ = I(C: Aψ’) / H(C: Aψ’); 

5. Compare u and u’. If u = u’, then ψ’  is the optimal partition.  

6. Otherwise let u = u’ and repeat step 2, 3 and 4. 

As of now, we have introduced the algorithm which has super-linearly converges to the 

optimal solution. Theoretically, this approach should reach an optimal partitioning; 

practically, there are a number of issues or problems we need to address in real-world 

applications [23]. In the following section, we will discuss these problems and their impacts 

on the algorithm’s performance.    

3.5.3 Methods to Reduce the Number of Intervals 

Real-world data comes with noise and outliers, and is never clean. The data noise, for 

example, being caused by measurement errors often produces some small intervals in the 

discretization process. Thish is an inherent drawback to this proposed class-dependent 

discretization approach [46]. Because the objective function directly relates to the 

dependence between classes and attributes, sometimes the total number of the partitioned 

intervals produced for high dependence is far too large. Thus, the proposed method alone 

cannot handle the high-frequency data noise, and as a results, it will output too many 

intervals in the discretization results.  

To minimize the noise influence in the discretization process, we should consider 

certain data noise suppression techniques, such as binning, clustering, and regression; to 

handle noisy data. We first need to sort the database, and partition it into many small bins, 

then finally the database will be smoothed by bin means, by bin median, or by bin 
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boundaries, and then the smoothed database can be discretized by the proposed method 

[46]. 

    In this dissertation, we have proposed the following algorithm to handle the data noise, 

as well as the problem of having too-many-intervals. We have already discussed this 

discretization issue in previous chapters. 

In the discretization algorithm below, we adopt an iterative dynamic programming 

module; it discards inferior building blocks following every single step [54]. This approach 

is also known as pruning and is carried out by its pruning function. While enumerating 

2-way joint plans, for example, one of the nice advantages of dynamic programming is that 

its query optimizers, built using dynamic programming, can be extended [5]. 

Based on the above theory and methodology, it is known that the necessary condition 

for dynamic programming and the application range of this algorithm has been proved [5]. 

Here the the details of the procedure for solving the proposed problem is presented. 

  

3.5.4 Smoothing the Raw Data before Partitioning  

Data collected from the real world are seldom clean. They could contain various types 

of noise for various reasons. Usually, the discretization result could be affected by noise. To 

get better performance and tolerance of the algorithm, certain methods for smoothing the 

original data will be adopted before discretization [5]. In fact, how to implement a 

smoothing algorithm to decrease the impact of data noise while keeping as much 

information as possible is a problem to be solved, although there are many methods to 

choose from for data smoothing. It is a natural solution to perform a pre-processing of the 

originally collected database to filter out the noise before discretization [5]. The general 

method used to filter the data noise is to find data which satisfy some criteria conditions for 

noise removal. The following smoothing technique (Algorithm Noise Filtering) is proposed 

to filter the data noise. 

ALGORITHM 3-3  Noisy Data Filtering [5] 

1. Given two parameters (1,w) as the threshold (t > 1 and width w).  
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2. For the value xi for any attribute, a segment si centered at xi is defined with 

radius w, i.e. si = {xi-w,…,xi+w}. 

3. Find the class label Cmax, within the segment si., which occurs most frequently. 

Then let fmax denote the occurrence frequency of Cmax.  Calculate the 

occurrence frequency of the class label of data xi with the segment si, and denote 

it by fi . 

4. Change the class label of xi into Cmax if the ratio between fmax and fi is greater 

than the threshold t. 

In practice, the smoothing result from this method for is sorted, and the sorting result is 

very sensitive to the value settings of threshold t and the width w. In general, the smaller 

the threshold givn, the more the data would be treated as data noise to be smoothed out. 

This might mean that some of the important class information may be lost. Also, it has been 

noted that the larger the width w is set, the more data will be deemed to be data noise and 

would be filtered out [5]. After the smoothing process, the number of data intervals could 

be much smaller than the resultant ones obtainable from the original database before 

applying the smoothing algorithm.  

Theoretically, the value of width w should be related to the number of attribute classes. 

This means that the larger the number of attribute classes, the greater the value of w. To 

retain the statistical significance, the value of the width w cannot be too small for the 

smoothing process [5]. The value selections for the threshold t and width w are very 

sensitive for the smoothing algorithm ddescribed above, as they will directly affect the data 

smoothing and the attribute partitioning result. The above issues should be carefully 

considered in the algorithm as the number of class labels is generally unknown in most 

cases in real world problems.  

While we can choose the values of these two parameters t and w based on our own 

experiences with good domain knowledge, we could equally well choose t by using some 

probabilistic technique [15].  Given the width w and the number of the classes K, if the 

probability that Fmax/fi > t is very small (say less than five), then the class label of xi could 
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be regarded as noise. 

For the interval merging result, the value of parameter width w is very subtle and 

cannot be set up easily. . Let us discuss the case for an attribute with too much noise and 

likely to be discretized into many intervals if no merging or preprocessing is carried out. 

Generally, the larger the w is, the fewer intervals we will get. But sometimes, this rule need 

not be too strict. If w is bigger (say more than 10% of the total number of attribute values), 

we might get more intervals than a small w. Conversely, for some attributes with not much 

noise, it is hard to determine the best w for them. [19]. In some specific cases, if we set the 

value of width w at a small value (say 2) or at a large constant value (say more than 10% of 

the number of attribute values), the smoothing algorithm might create more intervals than 

those cases without smoothing technique process. In the other cases, the value of width w 

may have little impact on the discretization processes [19].  

In fact, there is also a trade-off decision in setting the value of width w. After the value 

of width w has been set, and the attribute has been discretized, we may have fewer intervals 

as a good result, but indeed we may lose certain important class-attribute information 

contained in the original database. Based on many experiments we have done, setting w to 

5 is a good default value for most databases, at which better results can be expected without 

losing too much class-attribute information for post-processing [5].  

  

3.6 Pattern Discovery for Mixed-Mode Data 

The proposed approach for pattern discovery in this dissertation is to discretize the 

continuous attributes into values of discrete attributes; thus all random attributes will be 

treated as discrete attributes. In the following, all the definitions regarding events, event 

associations and patterns will be based on discrete attributes within a unified system [12].  

Definition 3-5 A primary event of a random attribute Ai  (1 ≤ i ≤ M) is a realization of 

Ai that gets a value from iα  [12] . 

The pth (1 ≤ p ≤ mi) primary event of Ai is denoted by [ Ai = p
iα ], or simply p

ix . It is 

assumed that two primary events, pix  and q
ix , of the same attribute Ai are mutually 
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exclusive if p ≠ q [12] . 

Let c be a subset of integers {1 , … , M } containing k elements (k ≤ M) and Ac be a 

subset of A such that Ac = {Ai | i ∈ c }. Then we let xc represent the realization of Ac [12] . 

 

Definition 3-6 A compound event associated with the attribute set Ac is a set of primary 

events instantiated by a realization xc. The order of the compound event is |c|. A 

sub-compound event of s
jx  is a compound event 's

jx  ∀ c’ ⊂ c and c’ ≠ ∅ [12] . 

A one-compound event is a primary event in the database. A k-compound event is made 

up of k primary events among k distinctive attributes. Every data tuple in the database is an 

N-compound event [12] .. 

 

Definition 3-7 Let T be a statistical significance examination. If the occurrence of a 

compound event s
jx  is significantly different from its expectation based on a default 

probabilistic model, it is said that s
jx  is a significant association pattern, or simply an 

association, or a pattern of order | c |, and that the primary events of sjx  have a statistically 

significant association according to T, or simply they are associated [12] . 

  In the following context, the terms “pattern”, “significant association”, and event 

“association” will be used interchangeably. While pattern discovery [18] is able to discover 

both positive and negative patterns, our presentation and experiments will only focus on 

positive patterns [12]. Naturally, the occurrences of negative patterns in some databases 

will be discussed too, where the any of inherent patterns are definitive or deterministic 

sometimes.   

 

3.7 Summary  

   Based on the systematic discussion in detail above, we could summarize our entire 

process framework for pattern discovery in a large mixed-mode data space by the following 

chart. 
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Chapter 4 

Experiments and Results 

4.1. The Design of Experiments 

Since this dissertation proposes a novel approach to tackle the discovery of patterns for 

mixed-mode data, we must design appropriate experiments to verify the premises and 

reveal how realistic the proposed approach when applied to various types of mixed-mode 

data. In this section we attempt first to design a set of experiments with selected data of 

various types to test our premises. Next we will apply our proposed methodologies to two 

large sets of real world databases which are complex, do not contain class labels but are 

backed by adequate domain knowledge for affirmation of the analytical results. 

First we will design a comprehensive synthetic experiment with stochastically data 

generated to test each of the premises we proposed. We then compare and analyze the 

results to see whether or not our findings comply with the patterns we implanted into the 

synthetic data stochastically while barring out all information from the system prior to the 

analysis.  

Next we will use various sets of UCI data with various types of data characteristics to test 

our proposed method. Most of the data selected are familiar in the data mining community. 

Since most of the data sets we choose contain class labels, they could be used as the ground 

truth, though not absolute, for examining the performance of the proposed method to see 

whether or not our method could perform its task as we anticipated and could render 

reasonable results even when the class labels are excluded in the analysis.  

Thirdly, which is the most important task, is to apply our proposed method to two set of 

large real world data of mixed-mode nature. The first is a meteorology data taken from six 

stations located over a wide area for a relatively long span of time. The second large 

database is related to the processing of coke and gasoline from a delay coking plant. The 

database consists of a set mixed-mode data collected from in site sensors, regulators and 

controllers. The data was collected by the candidates with the help of domain experts. In 
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the meantime, additional domain knowledge was acquired to see whether or not the subtle 

operational patterns could be discovered by the proposed system without relying on prior 

knowledge before the analysis. 

In the design of the experiments, several questions we would like to address. 

a) Are we able to optimally cluster a large mixed-mode database containing data of 

categorical and continuous numeric or ordered values?   

b) Would the premises that certain attributes within a correlated/coherent dataset 

exist that reflect the characteristic of the group or could behave as one that governs 

the other attributes within the group like the class labels do ?  

c) If there are, could the proposed method of a) mode finding and b) identifying of 

the attribute which plays the most representative role just like a class label be able 

to obtain such attributes? What are the characteristics of these governing attributes 

in the real world situations when the class labels are absent and how they could be 

related to the existing class labels? (i.e. when the class labels are put back to the 

data set). 

d) If the governing attribute is identified within a correlated group of data, how 

effective is the discretization of the continuous data driven by such attribute,( i.e. 

optimizing the interdependence between the governing attributes and the continuous 

attributes). 

e) After converting all the data in a mixed-mode database into discrete valued 

events, how effective is the pattern discovery and data mining methods when 

applying to a mixed-mode database?  

f) How useful is the proposed method when applying to large real world 

mixed-mode database in revealing the inherent domain knowledge and the 

operation practice of the real world systems and how the discovery helps the 

domain experts in decision support and machine intelligence augmented operations?  

g) What are the pending problems which should be solved to further enhance our 

method; 
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It is upon answering the above issues, the following experiments are designed. We hope 

that these experiments will shed new light to those difficult and not yet unsolved or 

properly solved problems. 

4.2. Experiment on a Synthetic Mixed-Mode Data Set 

This experiment is designed to verify the applicability of the proposed discretization 

method to mixed-mode data sets. It attempts to answer questions (a) to (e). It tries to 

demonstrate the role of the governing attributes in attribute clusters and attribute clustering 

and in inducing discretization of the continuous data just like the class attribute would even 

in the situation where the class label is absent. 

Table 4.2.1  Data description of the synthetic data 

Data Description     

Data Set Attribute Characteristics No. of Samples No. of Attributes No. of Classes 

Synthetic Data Mixed-Mode Data 300 20 5 

 

  
 Figure 4.2.1. Imposition of intrinsic classes by adjusting the attribute values of certain 

attributes. In this experiment, values of attribute A1 and A13 in the tuples are devised to 

reflect class information in the synthetic data set. 
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Table 4.2.1 gives a brief description of the synthetic data set with attributes made up of 

mixed-mode data. The synthetic data set is composed of 20 attributes in which 5 of them 

are discrete attributes and 15 of them are continuous attributes. Each tuple is pre-classified 

into one of the five classes: C1, C2, C3, C4 and C5 by imposing the values of A1 and A13 

among the tuples as shown in figure 4.2.1. Let us denote the attributes as A1, …, A20. A1 and 

A2 are discrete attributes which can take on a value from alphabets {“T”, “ F”}. A3, A4 and 

A5 are discrete attributes which can take on a value from alphabets {“X”, “ Y”, “ Z”}. A6, …, 

A20 are continuous attributes which can take on values in {0 ≤ ℜ  ≤ 1} where ℜ is a real 

number. As in our designed experiment, attribute values A1 and A13 of each tuple are able to 

determine the class membership. For values of other attributes including A2, …, A12 and 

A14, …, A20, they are generated randomly in the following manner: 

• A2: “T” if the value of A13 < 0.5; “F”, otherwise. 

• A3: “X” if the value of A13 < 0.5; “Y” if 0.5 ≤ the value of A13 < 0.75; “Z”, otherwise. 

• A4: “X” if the value of A1 < 0.3; “Y” if 0.3 ≤ the value of A1 < 0.6; “Z”, otherwise. 

• A5: “Y” if the value of A1 < 0.3; “Z” if 0.3 ≤ the value of A1 < 0.6; “X”, otherwise. 

• A6-A7: uniformly distributed within an interval between [0, 0.5] if the value of A1 = 

“T”; uniformly distributed within an interval between (0.5, 1], otherwise. 

• A8-A12: uniformly distributed within an interval between [0, 0.5] if the value of A1 = 

“F”; uniformly distributed within an interval between (0.5, 1], otherwise. 

• A14-A17: uniformly distributed within an interval between [0, 0.3) if the value of A13 

< 0.3; uniformly distributed within an interval between [0.3, 0.6) if 0.3 ≤ the value 

of A13 < 0.6; uniformly distributed within an interval between [0.6, 1], otherwise. 

• A18-A20: uniformly distributed within an interval between [0.3, 0.6) if the value of 

A13 < 0.3; uniformly distributed within an interval between [0.6, 1] if 0.3 ≤ the value 

of A13 < 0.6; uniformly distributed within an interval between [0, 0.3), otherwise. 

Using this scheme to generate the synthetic data set, it is clear that A1 and A13 are two 

governing attributes correlating with the attribute groups of {A4-A12} and {A2, A3, A14-A20} 

respectively. Regardless of the class membership of each tuple, if such correlation can be 

revealed, one should seek the most discriminative/representative attribute of each attribute 
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group to drive the discretization of the continuous attributes. In our experiment, we 

generated 300 tuples where each class contains 50 tuples in the synthetic data set. Noises 

are then added noises there by replacing 25 percent of the tuples with a random real number 

between 0 and 1 in the continuous attributes, with a random alphabet of “T” or “F” in A1 

and A2 and, with a random alphabet of “X”, “ Y” or “Z” in A4-A6. 

Table 4.2.1 gives a brief description of the synthetic data set with attributes made up of 

mixed-mode data. The synthetic data set is composed of 20 attributes in which 5 of them 

are discrete attributes and 15 of them are continuous attributes. Each tuple is pre-classified 

into one of the five classes: C1, C2, C3, C4 and C5 by imposing the values of A1 and A13 

among the tuples as shown in figure 4.2.1. Let us denote the attributes as A1, …, A20. A1 and 

A2 are discrete attributes which can take on a value from alphabets {“T”, “ F”}. A3, A4 and 

A5 are discrete attributes which can take on a value from alphabets {“X”, “ Y”, “ Z”}. A6, …, 

A20 are continuous attributes which can take on values in {0 ≤ ℜ  ≤ 1} where ℜ is a real 

number. As in our designed experiment, attribute values A1 and A13 of each tuple are able to 

determine the class membership. For values of other attributes including A2, …, A12 and 

A14, …, A20, they are generated randomly in the following manner: 

• A2: “T” if the value of A13 < 0.5; “F”, otherwise. 

• A3: “X” if the value of A13 < 0.5; “Y” if 0.5 ≤ the value of A13 < 0.75; “Z”, otherwise. 

• A4: “X” if the value of A13 < 0.3; “Y” if 0.3 ≤ the value of A13 < 0.6; “Z”, otherwise. 

• A5: “Y” if the value of A13 < 0.3; “Z” if 0.3 ≤ the value of A13 < 0.6; “X”, otherwise. 

• A6-A7: uniformly distributed within an interval between [0, 0.5] if the value of A1 = 

“T”; uniformly distributed within an interval between (0.5, 1], otherwise. 

• A8-A12: uniformly distributed within an interval between [0, 0.5] if the value of A1 = 

“F”; uniformly distributed within an interval between (0.5, 1], otherwise. 

• A14-A17: uniformly distributed within an interval between [0, 0.3) if the value of A13 

< 0.3; uniformly distributed within an interval between [0.3, 0.6) if 0.3 ≤ the value 

of A13 < 0.6; uniformly distributed within an interval between [0.6, 1], otherwise. 

• A18-A20: uniformly distributed within an interval between [0.3, 0.6) if the value of 

A13 < 0.3; uniformly distributed within an interval between [0.6, 1] if 0.3 ≤ the value 

of A13 < 0.6; uniformly distributed within an interval between [0, 0.3), otherwise. 
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Using this scheme to generate the synthetic data set, it is clear that A1 and A13 are two 

governing attributes correlating with the attribute groups of {A6-A12} and {A2-A5, A14-A20} 

respectively. Regardless of the class membership of each tuple, if such correlation can be 

revealed, one should seek the most discriminative/representative attribute of each attribute 

group to drive the discretization of the continuous attributes. In our experiment, we 

generated 300 tuples where each class contains 50 tuples in the synthetic data set. Noises 

are then added noises there by replacing 25 percent of the tuples with a random real number 

between 0 and 1 in the continuous attributes, with a random alphabet of “T” or “F” in A1 

and A2 and, with a random alphabet of “X”, “ Y” or “Z” in A3-A5. 

The normalized mutual information measure as defined in Table 4.2.1 between pairs of 

discrete attributes, pairs of continuous attributes and pairs of discrete and continuous 

attributes are calculated as shown in Table 4.2.2.  

 

Table 4.2.2 Normalized Mutual Information between Mixed-Mode Attributes  

of the Synthetic Data 

 

 

As shown in Figure 4.2.2, the optimal attribute cluster configuration (no. of attribute 

clusters) obtained by ACA is two (k =2). ACA identifies two attribute clusters: {A1, A6, …, 

A12} and {A2-A5, A13, …, A20}.  It shows that the proposed discretization algorithm is able 
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to correctly compute the mutual information between a pair of continuous attributes, and 

between a discrete attribute and a continuous attribute for ACA to reveal the correlation 

between the mixed-mode attributes embedded in the synthetic data set. It was found that A1 

is the mode of the first cluster whereas A13 is the mode of the second cluster, indicating that 

the attributes with the most of the intrinsic governing or classificatory characteristics are 

found as the mode.  

 

 

Figure 4.2.2 The Total Interdependence Redundancy Measure across the Clusters Found in 

the Synthetic Data Set. 

 

To evaluate the effectiveness of the generated discretization schemes on the performance of 

the classification algorithm, we used the discretized synthetic data set with 25% noise to 

train C5.0. 30% of samples are randomly selected from the data set as the training data to 

build a decision tree and the rest of samples are treated as the testing data. The comparison 

results in Table 4.2.3 show that the proposed method reached highest classification 

accuracy. It is worth noting that the discretization scheme generated by the proposed 

method can improve classification accuracy even when the class label is excluded. As 

regards to the number of generated rules/nodes, the proposed method also achieves the best 

performance while C5.0 produced significantly more nodes when using the discretization 

scheme of OCDD which makes use of class label (Table 4.2.3). 
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Table 4.2.3. The Comparison of Discretization Schemes on Synthetic Data Set 

 

Discretization Method Classification Accuracy Leaf Nodes Non Leaf Nodes 

OCDD (Discretized by Class 

Label) 
74% 17 leaf nodes 10 non leaf nodes 

Proposed Approach 

(Class Label Excluded) 
83.67% 13 leaf nodes 10 non leaf nodes 

 

4.3. Experiment on UCI Data Sets 

4.3.1 Iris Plants Database 

The objective of this experiment is to show how the proposed method is able to be applied 

to continuous data where the class labels are missing and how the experimental results are 

related to the ground truth provided by the removed class labels. This experiment attempts 

to answer questions: (b) to (e). Because of the transparency characteristics of pattern 

discovery, new light could be shed to reveal how the governing attributes are related to the 

correlated aspects of the attributes and also with the class labels.  

 

The IRIS data set was created by R.A. Fisher, donated by Michael Marshall, dated July, 

1988 widely used by many and is perhaps the best known database to be found in the pattern 

recognition literature.  The data set contains 3 classes of 50 instances each, where each class 

refers to a type of iris plant.  One class is linearly separable from the other two; the latter are 
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not linearly separable from each other. The number of instances is 150 (50 in each of the 

three classes). It contains 4 numeric attributes: 

             1) sepal length in cm; 2) sepal width in cm; 

3) petal length in cm; 4) petal width in cm.  

with a class label containing three classes: 

1) Iris Setosa; 2) Iris Versicolour; 3) Iris Virginica. 

 The class correlation of the last two is high. 

 

We first use the class attribute to discretize the rest of the attributes and obtain the 

classification rate by discover*e. The classification rate for the class labels from the data set 

with labels retained is shown as below: 

 

   

 

We then remove the class labels from the data set and assume that each of the remaining 

four as the class attributes (governing attributes) in turn to drive the discretization of all the 

continuous data and conduct the classification afterward. The classification rate obtained by 

considering each of the attribute as the governing ones is given below. 

 

Sepal length 

 

 

Sepal width 
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Petal length* 

 

 

Petal width* 

 

From the results obtained, it is clear that the last two attributes could be considered as the 

governing attributes as they both yield the highest classification rate even without the class 

labels. To our surprise the discretization results driven by the last attribute is identical to 

those driven by the class labels as shown below.  

 

  

(a)                              (b) 

Fig  4.3.1.1   Discretization results of the four attributes: (a) driven by the class label 

and b) driven by the last attribute when the class labels are taken from the dataset.  
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Table  4.3.1.1 Examples of Pattern Discovered after the Discretization of the Continuous 

Data 

 

 

Summary: From the experimental results it is obvious that all the questions from (b) to (e) 

are well answered. In this case the discretization results driven by the governing attributes 

are identical to those driven by the class labels if they are present.  

 

4.3.2  Mushrooms Data Set  (Nominal data) 

The mushroom data is a data set consisting of only nominal data. It contains 8214 samples 

with 23 attributes all of the nominal types (Table 4.3.2.1). There are two classes given 
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(edibility e and poisonous p). Since the data set contains of 23 attributes but only two 

classes, it is used to explore the possibility of the existence of attribute subgroups each of 

which may govern a certain aspects of the characteristics of the mushrooms. Thus the 

questions we attempt to answer are related to questions (a), (b), (c) and (e)  

 

Table 4.3.2.1   A Brief Description of the Mushroom Data Set 

Attribute 

Characteristics 
No. of Samples 

No. of 

Attributes 
No. of Classes 

Mixed-Mode 

Data 
8214 23 2 

 

The Mushroom Database is drawn from The Audubon Society Field Guide to North 

American Mushrooms (1981) by G. H. Lincoff (Pres.), New York: Alfred A. Knopf; Donor: 

Jeff Schlimmer (Jeffrey.Schlimmer@a.gp.cs.cmu.edu) Date: 27 April 1987. It has been used 

for concept acquisition by Schlimmer, J.S. (1987). Concept Acquisition Through 

Representational Adjustment (Technical Report 87-19). Doctoral Dissertation, Department 

of Information and Computer Science, University of California, Irvine. and extraction of 

logical rules by Duch W, Adamczak R, Grabczewski K (1996) Extraction of logical rules 

from training data using back propagation networks, in:  

Proc. of the 1st Online Workshop on Soft Computing, 19-30.Aug.1996, pp. 25-30, available 

on-line at: http://www.bioele.nuee.nagoya-u.ac.jp/wsc1/] 

 

This data set includes descriptions of hypothetical samples corresponding to 23 species of 

gilled mushrooms in the Agaricus and Lepiota Family (pp. 500-525).  Each species is 

identified as definitely edible, definitely poisonous, or of unknown edibility and not 

recommended.  This latter class was combined with the poisonous one. The Guide clearly 

states that there is no simple rule for determining the edibility of a mushroom; no rule like 

``leaflets three, let it be'' for Poisonous Oak and Ivy.  There are 8124 instances and 22 

attributes, all nominally valued. 
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More specifically, the objectives of this experiment are :  a) to explore the ranking of the 

attributes according to their normalized SR2 in the data set with class label included; b) to 

compare the ranking of the attributes in the data set with class label excluded with the 

ranking listed in (a); c) to compare the attributes with highest normalized SR2 with the class 

attributes;  d) to show that in a normal setting the attribute with highest normalized SR2 

values is also the attribute that render high classification rate if it is considered as a class 

label instead; e) to show the classificatory characteristics of various attributes; e) to show 

that significant attribute subgroups exist which  can be found by the ACA algorithm; f) to 

find the mode of each subgroup and compare it with the class attributes to see how 

representative it is with other attributes in the group. Here we shall report the experimental 

results 

 

Table 4.3.2.2 shows the ranking of the attributes in the dataset where the class label 

attribute is included.  Here we observe that the ring-type is the mode. Surprisingly, the 

class attribute is ranked 9th based on the normalized sum of dependence redundancy SR2. 

This implies that some of the attributes chosen are not necessarily closely related to the 

class attribute proposed by the biologists. 

 

Table 4.3.2.3 shows the ranking of the attributes according to normalized SR2 from 

mushroom data after the class label is excluded. Note that the top one remains the same as 

that in the ranking when class label is included. The second one “stalk root” in Table 

4.3.2.3 is ranked fourth in Table 4.3.2.2.  The top eight ones in Table 4.3.2.2 remain the 

same as those in Table 4.3.2.1 indicating the consistence of the governing attributes in 

relation with the class label attribute.   

 

We next conduct a series of experimental runs treating each of the attribute as the 

governing one in turn and obtain the classification rate (CR) accordingly. We then rank the 

attributes according to the classification rates and compare the ranking results with the 

those ranked according to the normalized SR2 values obtained for the attributes in that 
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group (Table 4.3.2.4).    

 

 

 

 

Table 4.3.2.2   Attributes from  mushroom data (with class label included) ranked 

according to normalized SR2. Note that the class label is not ranked top. 

Ranking Attributes R1 

 Normalized  

SR2 

1 ring-type 0.3389 0.136 

2 Odor 0.2683 0.1325 

3 spore-print-color 0.305 0.124 

4 stalk-root 0.2149 0.1198 

5 gill-color 0.1547 0.1035 

6 stalk-color-above-ring 0.389 0.1034 

7 stalk-color-below-ring 0.376 0.1003 

8 Population 0.225 0.0857 

9 Classes 0.0009 0.0845 

10 Habitat 0.1897 0.0839 

11 stalk-surface-below-ring 0.3004 0.0838 

12 stalk-surface-above-ring 0.3893 0.0816 

13 Bruises 0.0207 0.0726 

14 cap-color 0.2444 0.0644 

15 gill-size 0.1077 0.0613 

16 veil-color 0.9019 0.0561 

17 gill-attachment 0.8269 0.0552 

18 stalk-shape 0.0131 0.0526 

19 gill-spacing 0.3621 0.0425 

20 ring-number 0.7346 0.0351 
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21 cap-surface 0.2123 0.0316 

22 cap-shape 0.3606 0.03 

23 veil-type 1 0 

 

 

Table 4.3.2.3   Ranking of attributes in mushroom data when the class labels are 

excluded. 

Ranking Attributes R1 Normalized SR2 

1 ring-type 0.3389 0.1357 

2 stalk-root 0.2149 0.1231 

3 spore-print-color 0.305 0.1215 

4 Odor 0.2683 0.1209 

5 stalk-color-above-ring 0.389 0.1039 

6 gill-color 0.1547 0.1029 

7 stalk-color-below-ring 0.376 0.1009 

8 Population 0.225 0.0863 

9 Habitat 0.1897 0.0855 

10 stalk-surface-below-ring 0.3004 0.0817 

11 stalk-surface-above-ring 0.3893 0.0784 

12 Bruises 0.0207 0.0709 

13 cap-color 0.2444 0.067 

14 veil-color 0.9019 0.0578 

15 gill-size 0.1077 0.0576 

16 gill-attachment 0.8269 0.0572 

17 stalk-shape 0.0131 0.0549 

18 gill-spacing 0.3621 0.0414 

19 ring-number 0.7346 0.0354 

20 cap-surface 0.2123 0.0326 

21 cap-shape 0.3606 0.0305 
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22 veil-type 1 0 

 

 

 

 

Table 4.3.2.4 Comparison of Classification Rate (CR) and Normalized SR Ranking of Attributes 

in Mushroom Data 

CR 

Ranking 

SR 

Ranking 
Attributes Interval # Distribution CR (DT) CR (PD) 

Normalized 

SR2 

1 1 ring-type 5 uneven 100 98.15 0.1357 

2 2 stalk-root 5 Even 100 85.28 0.1231 

3 12 Bruises 2 Even 100 100 0.0709 

4 15 gill-size 2 Skew 100 98.38 0.0576 

5 17 stalk-shape 2 Even 100 98.38 0.0549 

6 19 ring-number 3 Biased 100 92.17 0.0354 

7 16 gill-attachment 2 Biased 99.78 97.54 0.0572 

8 14 veil-color 4 Biased 98.92 97.54 0.0578 

9 18 gill-spacing 2 Skew 98.82 97.42 0.0414 

10 4 Odor 9 uneven 80.9 67.26 0.1209 

11 10 stalk-surface-below-ring 4 normal 80.8 74.35 0.0817 

12 11 stalk-surface-above-ring 4 Even 80.8 79.22 0.0784 

13 3 spore-print-color 5 uneven 74.59 61.88 0.1215 

14 9 Habitat 6 uneven 66.96 51.65 0.0855 

15 8 Population 6 uneven 63.76 55.15 0.0863 

16 5 stalk-color-above-ring 9 uneven 63.37 58.2 0.1039 

17 7 stalk-color-below-ring 9 uneven 63.17 57.21 0.1009 

18 20 cap-surface 4 uneven 55.29 52.72 0.0326 

19 21 cap-shape 6 uneven 45.49 31.02 0.0305 

20 6 gill-color 12 uneven 45.42 26.98 0.1029 
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21 13 cap-color 10 uneven 44.26 39.03 0.067 

22 22 veil-type NA NA NA NA 0 

 

First we observe in Table 4.3.2.2 that in the SR2 ranking, the two attributes, the ring-type 

and stalk-root top all other attributes. They are ranked first and fourth in Table 4.3.2.1 

when the class labels are present. That the ranking of the Class Attribute is not ranked top 

according to SR2 indicates that its interdependence w with all the other attributes in the 

group may not be the highest.  Rather, the two other attributes, the ring-type and 

stalk-root are more governing in the sense that they have higher interdependence with 

other attributes in the group.  

 

We then conduct classification experiments on these two sets of data. We first conduct 

supervised classification of the data according to the class labels given and obtain 100% 

rate of correct classification (Figure 4.3.2.1(a)).  We then move on to classify the same set 

of data with the class label removed. In the first classification run, we assume that the 

ring-type would serve as the governing attribute, i.e. it is treated as the class label in the 

supervised classification run, and again a 100% of the classification rate is obtained 

(Figure 4.3.2.1(b)). We next take “stalk root” as the governing attribute and again obtain 

100% classification rate (Figure 4.3.2.1 (c)). Though the two sets of the classification 

details may not be exactly the same, their strong correlation with rest of attributes indicates 

they both have some governing characteristics as reflected by their high classification (i.e. 

feature-class dependence) rate.  

 

To address the issues that the class label is not ranked top according to its normalized SR2, 

we make the following observations. As pointed in the reference source, the Guide clearly 

states that there is no simple rule for determining the edibility of a mushroom. Furthermore, 

the biologists also place the last two classes of unknown edibility and not recommended 

into the poisonous category. This means that there could be more subtle attributes that 

govern the intrinsic classes. To explore the characteristic of the proposed classification 
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scheme, we will conduct the ACA on the set of 23 attributes and see whether or not they 

might be better grouped into subgroups each of which might characterize certain aspects of 

the mushroom characteristics.  

 

In our attribute clustering experiments, we will apply ACA first to the data set with class 

label and then with that without class labels. We will compare the results so as to gain 

insight into the class labels and the intrinsic governing attribute issues.  

 

Table 4.3.2.4 gives the attribute groups discovered in the first experiments. This is the result 

of the local optimal solution. In the first cluster we observe that the class labels are more 

closely related to the odor, gill-size, cap-color and the ring-number of mushrooms. Note 

that apart from odor which is ranked 4th, the SR2 ranking of the rest of the three attributes 

in the group are not too high (cap-color ranked 13th, gill size 15th and ring-number 19th). It 

shows that as far as the “edibility” and “poisonous” properties are concern, these four 

attributes are most relevant. The others may have various interdependence characteristics to 

pull them together into more correlated groups. This is an important aspect we should 

seriously consider if there is no obvious class labels are available. Unless we have full 

knowledge ahead of time, for a given of data we should explore its internal association 

before a meaningful analysis could be sorted out. This is also an important objective for the 

proposed methodology, especially designed for situations when class information is 

lacking.  

 

(a) Classification rate of Class Labels 

 

(b) Classification rate of Ring-Type  
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( c ) Classification rate of Stalk-Root   

Figure 4.3.2.1    Classification rate of the induced intervals of the governing attributes 

using method of decision tree C.40. 

(a) Classification rate of mushroom data based on the given class label.  

(b) Classification rate of an assumed “governing attribute” ring-type from mushroom data 

after the class label is excluded;  

(c) Classification rate of another assumed “governing attribute” stalk-root from the 

mushroom data after the class label is excluded.  

From the comparison results tabulated in Table 4.3.2.4, and Figure 4.3.2.1 (b) and (c),  it 

seems that as far as the distribution of the categorical values is concerned, stalk-root has a 

more even distribution in charactering the data without class label.  

Table 4.3.2.5 shows the results of attribute clustering of the data set without class labels by 

ACA. Note that the optimal attribute cluster configuration consists of two clusters, one 

headed by the mode ring-type and the other by the mode stalk-root. When we look into the 

characteristics of these two governing attributes, we observe in Table 4.3.2.4 that although 

the SR2 value for ring-type is a little higher, yet the distribution of the categories it 

encompassed is less even when comparing the classification rate of their categories from 

Figure 4.3.2.1 (b) and (c) . Thus as far as the representative characteristic of these two 

attribute in the attribute groups is concerned, the latter seems to offer a better candidate. 

This will be explored by our future research. 

 

A close look at the attributes forming these two correlated groups, we note that all the 

attributes associated with the class label (Table 4.3.2.5) reside in the second group headed 

by the mode of stalk-root. That means that this group should provide better correlated 

attributes with the classes of edibility and poisonous. This kind of insights for the analysis 

and the understanding of a large database with no or little class information could be 

effectively provided by 1) our ACA, 2) our mode finding algorithm and 3) our governing 
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attribute driven discretization and classification procedure presented in this dissertation.  

 

 

 

 

 

 

 

Table  4.3.2.5   Attribute Clusters of Mushroom Data with class label included. Three 

cluster configurations are the optimal. They are tabulated with the attributes in each 

cluster ranked according to the normalized value of the attribute of the group. 

 

Attributes R1  Normalized SR2 

Odor 0.2683 0.1823 

Classes 0.0009 0.1381 

gill-size 0.1077 0.0993 

cap-color 0.2444 0.0571 

ring-number 0.7346 0.0356 

 

Attributes R1  Normalized SR2 

ring-type 0.3389 0.2157 

spore-print-color 0.305 0.1596 

stalk-color-above-ring 0.389 0.1417 

stalk-surface-above-ring 0.3893 0.1407 

stalk-surface-below-ring 0.3004 0.1406 

stalk-color-below-ring 0.376 0.1382 

gill-color 0.1547 0.1284 

Bruises 0.0207 0.1184 

stalk-shape 0.0131 0.0758 

 

Attributes R1  Normalized SR2 

stalk-root 0.2149 0.1359 

population 0.225 0.1265 



 

88 

Habitat 0.1897 0.1086 

gill-spacing 0.3621 0.0667 

cap-surface 0.2123 0.05 

cap-shape 0.3606 0.0422 

 

 

Table  4.3.2.6   Attribute Clusters of Mushroom Data with class label excluded. Two 

cluster configuration is the optimal. They are tabulated with the attributes in each cluster 

ranked according to the normalized value of the attribute of the group. 

 

Attributes R1  Normalized SR2 

ring-type 0.3389 0.2157 

spore-print-color 0.305 0.1596 

stalk-color-above-ring 0.389 0.1417 

stalk-surface-above-ring 0.3893 0.1407 

stalk-surface-below-ring 0.3004 0.1406 

stalk-color-below-ring 0.376 0.1382 

gill-color 0.1547 0.1284 

Bruises 0.0207 0.1184 

stalk-shape 0.0131 0.0758 

 

Attributes R1  Normalized SR2 

stalk-root 0.2149 0.1352 

Odor 0.2683 0.1113 

population 0.225 0.1087 

Habitat 0.1897 0.1007 

cap-color 0.2444 0.0695 

gill-size 0.1077 0.067 

gill-spacing 0.3621 0.0527 

cap-surface 0.2123 0.0395 
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cap-shape 0.3606 0.0382 

ring-number 0.7346 0.0377 

.   

 

 

Summary:  The experimental results show that in order to have an in-depth understanding 

of a large dataset, it is beneficial to go through the attribute clustering process. The attribute 

clustering and the identification of modes (or other top governing attributes) in the original 

data set and also the clustered attribute groups render considerable insights into the inherent 

makeup of the data and the problems they reflect. In the situation when no class label is 

available, the mode in the dataset and in each of the attribute cluster can be 

considered as the most representative or the governing one.  

 

4.3.3  Adult Data Set (Mixed Mode Data) 

This database was extracted from the census bureau database found at (Table 4.3.3.1) by  

http://www.census.gov/ ftp/pub/DES/www/welcome.html. It contains 48842 instances of 

mix of continuous and discrete data with 14 attributes (Table 4.3.3.2). It has been used for 

predictive whether a person makes over 50k a year or not. We use this mixed-mode data set 

to answer the questions (a) to (e). More specifically, the experiment is used: 1) to 

demonstrate the existence of attribute subgroups in the mixed-mode data set; 2) to illustrate 

the attainment of attribute cluster configuration and the grouping of cluster items in 

situations with or without class label; 3) to show the classification characteristics of various 

attributes in different attribute groups found by ACA; 4) to show that the attribute with 

highest normalized SR, or simply the mode, in the attribute group is usually with high 

classification rate if it is assumed to take the role of a class label. The experiment results 

show that the mode in each attribute group/cluster can be considered as the most 

discriminative/representative or governing attribute to drive the discretization of continuous 

attributes in the attribute group/cluster. 

 



 

90 

In this experiment, the proposed method is used to calculate the normalized mutual 

information, R, among the attributes. Their values are tabulated in Table 4.3.3.3 for the data 

set with class label excluded and in Table 4.3.3. 4 with class label included. 

Based on the R values, our ACA found the optimal cluster configuration in the given data 

set. Table 4.3.3.3, Table 4.3.3.4 and Table 4.3.3.5 reports the value of the sum of significant 

MR calculated during the clustering process. It is obvious that 3 attribute clusters and 5 

attribute clusters are local optimal for the data with the class label excluded and those with 

the class label included respectively. In this regards, we compare the attribute items and the 

modes in each of the attribute clusters in Table 4.3.3.6 

 

Table 4.3.3.1   A Brief Description of Adult Data Set 

Data Description     

Data Set Attribute Characteristics No. of Samples No. of Attributes No. of Classes 

Adult Mixed-Mode Data 48842 14 2 

 

Table 4.3.3.2 The Attributes of Adult Data Set 

Attribute Name Characteristics 

A1 Work class 

Discrete 

A2 Education 

A3 marital-status 

A4 Occupation 

A5 Relationship 

A6 Race 

A7 Sex 

A8 native-country 

A9 Age 

Continuous A10 Fnlwgt 

A11 education-num 
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A12 capital-gain 

A13 capital-loss 

A14 hours-per-week 

Class Income Discrete 

 

Table 4.3.3.3 Normalized Mutual Information between Attributes of Adult Data Set with Class 

 

 

 

 

Table 4.3.3.5 Normalized Mutual Information between Attributes of Adult Data Set  

with Class Label included 

 

 

 

In our proposed method, no class information is required; nevertheless, the results reported 
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in Table 4.3.3.9 shows that even without class information, our proposed method and ACA 

are able to group interdependent attributes together. This demonstrates the effectiveness of 

our method to extract the same intrinsic information inherent in the classes. 

 

Table 4.3.3.6 The Sum of Significant MR obtained for each k of the k-Mode ACA 

No. of Attribute Cluster, k 

Excluded Class Label 

Sum of Significant MR 

Included Class Label 

Sum of Significant MR 

2 0.993065 1.559977 

3 *1.546628 1.599815 

4 1.536047 1.597278 

5 1.478268 *1.685009 

6 1.452389 1.603821 

7 1.498127 1.504654 

8 1.53544 1.522862 

9 0.708419 1.032613 

10 1.366747 1.393317 

11 0.553327 0.914691 

12 0.452937 0.553327 

13 0.355844 0.452937 

14 0 0.763257 

15 - 0 

* Highest Sum of Significant MR Implies Optimal k =3 for Data Set Dropped Class Label 

and Optimal k = 5 for Data Set Included Class Label. 

Table 4.3.3.7. The Plot of the Sum of Significant MR (with class label dropped) 
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* Highest Sum of Significant MR Implies Optimal k =3. 

Table 4.3.3.8 The Plot of the Sum of Significant MR (with class label included) 

 

* Highest Sum of Significant MR Implies Optimal k =5. 

Table 4.3.3.9. The Attribute Clusters and their Mode Obtained by ACA 

Attribute Cluster Items 

Attribute 

Group 

Dropped Class Label Included Class Label 

1 *native-country, race, fnlwgt *native-country, race, fnlwgt 

2 *education, workclass, occupation, 

education-num 

*education-num, education 
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3 *relationship, marital-status, sex, age, 

capital-gain, capital-loss, hours-per-week 

*relationship, marital-status, sex, age 

4 - *workclass, occupation 

5 - *income (class), capital-gain, 

capital-loss, hours-per-week 

* The attribute marked with “*” is the mode of the attribute group. A mode is with the highest 

normalized mutual information in the attribute group. 

To further investigate the attributes resided in each attribute group, we study the 

classificatory aspect of them to show that in a normal setting the mode is also the attribute 

that renders good enough classification rate if it is regarded as a class label. The attribute 

clusters, normalized SR values and their classification performance are tabulated in Table 

4.3.3.9. 

Table 4.3.3.9 Attribute Clusters of Adult Data with Class Label Excluded with their 

Normalized SR Values and their Classification Accuracy by PD with a 95% Confidence 

Interval. 

Attribute Characteristics Normalized SR Classification Accuracy (%) 

* native-country Discrete 0.0952 89.59 

race Continuous 0.0898 84.43 

fnlwgt Continuous 0.0083 5.41 

* The attribute marked with “*” is the mode of the attribute group. A mode is with the highest 

normalized mutual information in the attribute group. 

Attribute Characteristics Normalized SR Classification Accuracy (%) 

* education Discrete 0.8263 71.09 

workclass Discrete 0.8218 57.69 

occupation Discrete 0.2051 20.94 

education-num Continuous 0.1173 - 

* The attribute marked with “*” is the mode of the attribute group. A mode is with the highest 
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normalized mutual information in the attribute group. 

Attribute Characteristics Normalized SR Classification Accuracy (%) 

* relationship Discrete 0.6251 72 

# marital-status Discrete 0.5525 74.78 

sex Discrete 0.2465 68.95 

age Continuous 0.2229 - 

^ capital-gain Continuous 0.1100 99.51 

^ capital-loss Continuous 0.0495 95.33 

hours-per-week Continuous 0.0313 14.54 

* The attribute marked with “*” is the mode of the attribute group. A mode is with the highest 

normalized mutual information in the attribute group.  ^ The attribute marked with “^” implies the data 

is sparse. # The attribute marked with “#” holds the highest classification accuracy, even higher than the 

mode. 

 

Table 4.3.3.10 Pattern Discovered 
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4.3.4  Colon Cancer Data Set (Continuous Data) 

The colon-cancer dataset consists of 62 samples and 2,000 genes, which is represented by a  

2,000 × 62 expression table. The samples are composed of tumor biopsies collected from 

tumors and normal biopsies collected from healthy part of the colons of the same patient. 

Each sample has been pre-classified into one of the two classes: normal and cancer.  This 

set of data is less explicit and difficult to explain. It is large in the sense that it contains 

2,000 genes which can be treated as attributes with the gene expression of continuous 

values as their outcomes (Table 4.3.4.1). In [21], the researchers treated the data as 

categorical data by first discretizing the continuous values into intervals based on the class 

labels (cancerous and normal patients) given. The fundamental problems of mode finding 

and attribute clustering notions have not been  solved. In this dissertation, we have 

developed an algorithm which solves both the mode finding and the attribute clustering for 

mixed-mode data. In this experiment, we apply our algorithm on the original continuous 

data to see whether or not we could achieve the same goal even without the knowledge of 

the class labels. It then gives us a solid base of comparison and further affirms the validity 

of our approach. Using the same set of original data with class labels excluded, we try to 

answer questions (a) – (e). We are particularly interested to find out how effective are the 

discrete intervals obtained for all the gene expressions based on the governing genes in 

classifying the cancer and normal genes.   

 

Table 4.3.4.1. Colon Cancer Data Set 

Data Description     

Data Set Attribute Characteristics No. of Samples No. of Attributes No. of Classes 

Colon Cancer Continuous Data 62 2000 2 

 

For demonstrative purpose, we select top 5 attributes of 2 clusters of colon cancer data 
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(Table 4.3.4.2) as found and reported in [21]. First we used the numerical method to 

compute the normalized mutual information (R) between continuous attributes. The R 

results for all the gene pairs are tabulated in Table 4.3.4.3.  Based on the R values, our 

ACA algorithm is able to find that the two attribute clusters as the optimal cluster 

configuration corresponding to the result found in [21] which assumes that class labels are 

given in their attribute clustering. Table 4.3.4.4. displays the value of the sum of significant 

MR calculated during the clustering process. Two clusters configuration is obviously the 

optimal local solution. In the work reported in this thesis, no class label information is 

taken into account. The two attribute clusters obtained are given in Table 4.3.4.5. This 

demonstrates the effectiveness of our method in getting the same intrinsic class information 

and gene grouping information inherent in the data.  

In response to question (e), we explore how well the performance of our discretization 

results is when the partitioned intervals are used as associative events in the classification. 

We now take all the seven attribute clusters found in [21] and discretize all the continuous 

attributes by the governing attributes (modes) found in each of the clusters. We then pooled 

5 discretized attributes from each of the 7 found attribute clusters together to obtain a data 

set of 35 attributes. We refer this set as a “selected attribute pool of most representative 

attributes”. We then apply classification of the gene tissue class using the discretized 

intervals obtained without relying on class labels.  

 

Table 4.3.4.2. The Selected Top Five Attributes of the Two Clusters Found in the Colon 

Cancer Data Set reported in [21]. 

 

Attribute 

Clusters 

Ra

nk 

Attrib

ute 

 Accession 

Number 

1 

1 A1 H05814 

2 A2 X02874 

3 A3 U33429 

4 A4 H22579 
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5 A5 H25940 

2 

1 A6 T73092 

2 A7 R26146 

3 A8 T90851 

4 A9 R93337 

5 A10 T69446 

 

 

 

 

 

Table 4.3.4.3. Normalized Mutual Information between Attributes of the Selected 10 

Continuous Attributes 

R A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

A1 0 0.2202 0.2011 0.3521 0.2905 0.0946 0.1072 0.1147 0.0809 0.1038 

A2 0.2202 0 0.1425 0.2073 0.1821 0.123 0.0902 0.1058 0.076 0.1466 

A3 0.2011 0.1425 0 0.17 0.1715 0.0733 0.0467 0.0339 0.0738 0.0669 

A4 0.3521 0.2073 0.17 0 0.2426 0.0856 0.1398 0.1053 0.0816 0.1138 

A5 0.2905 0.1821 0.1715 0.2426 0 0.119 0.0752 0.0848 0.1045 0.1065 

A6 0.0946 0.123 0.0733 0.0856 0.119 0 0.2248 0.1445 0.1635 0.4401 

A7 0.1072 0.0902 0.0467 0.1398 0.0752 0.2248 0 0.1391 0.2095 0.2269 

A8 0.1147 0.1058 0.0339 0.1053 0.0848 0.1445 0.1391 0 0.177 0.1285 

A9 0.0809 0.076 0.0738 0.0816 0.1045 0.1635 0.2095 0.177 0 0.1439 

A10 0.1038 0.1466 0.0669 0.1138 0.1065 0.4401 0.2269 0.1285 0.1439 0 

 

Table 4.3.4.4 The Plot of the Sum of Significant MR obtained for each k of the k-Mode ACA 

Algorithm. 

No. of Attribute Clusters, k Sum of Significant MR 

*2 2.0368 
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3 1.9079 

4 1.7309 

5 1.3972 

6 1.0883 

7 1.0124 

8 0.7922 

9 0.3521 

10 0 

* Highest Sum of Significant MR Implies Optimal k =2. 

 

Table 4.3.4.6   The Attribute Clusters and their Mode Obtained by ACA. 

Cluster Mode Significant MR Item 

1 A1 1.0639 A1, A4, A5, A2, A3 

2 A6 0.9729 A6, A10, A7, A9, A8 

* The found cluster items and modes are the same as [21] 

Since the class label for the Colon Cancer data set is known, we can make use of this 

ground truth to devise an evaluation scheme in accessing the performance of different 

discretization methods. First, we apply different discretization techniques on the selected 

attribute pool. We then run classification experiments on the discretized selected attribute 

pool to obtain classification results. To compare our proposed discretization with others, the 

benchmark results reported by [21] are given. In the classification performance evaluation 

process, the Leave-One-Out Cross Validation (LOOCV) which is the same validation 

method employed by [21] is adopted. Applying LOOCV in the Colon Cancer data set, the 

1st sample is selected as the testing set and the remaining 61 samples are selected as the 

training test. This procedure repeats from 1st sample to 62nd sample. The classification 

accuracy is computed as the overall number of correct classification from the 62 iterations, 

divided by the total number of samples in the data, which in this set is 62. 

From the experiment results shown in table 4.3.4.7, it is interesting to remark that the 

classification result of the colon cancer data discretized by the proposed discretization is 
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close to those discretized by OCDD which makes use of class information.  

In the classification experiment, it demonstrates that our proposed discretization approach 

enables an inductive learning algorithm to build an accurate classifier which achieves 

competitive classification result to one using class label information in the discretization of 

the continuous attributes in the database.   

 

 

 

 

 

 

 

Table 4.3.4.7. The Classification Performance of C5.0 on the Attribute Pools Selected by 

Different Attribute Clustering Techniques and Discretized by Different Discretization 

Techniques in the Colon Cancer Data Set 

 

Classification 

Performance 

The Proposed 

Discretization 
OCDD 

ACA ACA t-value k-means SOM Biclustering MRMR 

Classification 

Accuracy (%) 
88.71 91.9 74.2 71.0 43.5 75.8 83.9 

 

Summary:  In the colon cancer experiment, we show that our ACA could cluster 

attributes as effective as one which has taken class labels into account. It also shows that 

both the attribute clustering and repooling process work for the set of discretized data 

effectively by our proposed method. More surprisingly is that the use of the discretized 

results obtained based on our discovered governing gene will produce discretized intervals 

that enable our classificatory system to achieve high classification rate of cancerous and 

normal patients equivalent to systems using class labels. The results of this experiment 

implies that our governing attribute driven discretization scheme does effectively use some 

of the class information inherent in the data to achieve high classification rate.    
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4.4. Experiments on Meteorological (MET) Database  

The meteorological (MET) database is a large database consisting of 44 attributes and 8784 

samples.  The MET data was taken from 5 different surface stations over a one-year-long 

period (8760 recorders) in the great urban region of Guangzhou City, Guangdong province, 

China, within about WE-200km and NS-300km (Figure 4.4.1). The types of the 

meteorological parameters (attributes) collected from the surface stations include 6 discrete 

attributes and 25 continuous attributes. The five surface stations denoted by the alphabets S 

=A, B, C, D, E are stations as listed below. 

Station A =Guangzhou Metropolis;  
Station B =Foshan City;  Station C =Shenzhen City;  
Station D = Dongguan City; Station E =Zhongshan City; 

 

Figure 4.4.1 Guangzhou Urban Region (GGA) 

Table 4.4.1 gives a brief description of the MET Data. In the MET database, there are 

totally 43 attributes where 18 of them are categorical attributes and 25 are continuous 

attributes. They are listed in Table M- Ii as shown below with the value types given inside 

the respective brackets.  
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Table 4.4.1.  MET Data Description 

Data Description 

Data Set 
Attribute 

Characteristics 

No. of 

Samples 

No. of 

Attributes 

No. of 

Classes 

MET DATA 

(GGA) 

Mixed-Mode 

Data 
8784 

44 

D19 & C25 
Unknown 

 

 

 

 

Table 4.4.2  Attributes and attribute values in the MET database. 

 

Attr. name D/C mode Notes 

MM Month Discrete Month 

DD Day Discrete Day 

HH Hour Discrete Hour 

S1 TC Discrete Total Cloudiness 

S2 LC Discrete Lower Cloudiness 

S3 DBT Continuous Dry Bulb Temperature 

S4 DPT Continuous 
Dew Point 

Temperature 

S5 RH Continuous Relative Humidity 

S6 SP Continuous Site Pressure 

S7 WD Discrete Wind Direction 

S8 WS Continuous Wind Speed 

 

This database is selected for our experiment because  

1) It is taken from the real world  

2) It is relatively large 
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3) It is of mixed-mode nature 

4) All those parameters have their internal relationship based on the geographic 

location of the surface stations and might be governed by local terrain and land use 

5) Some of the parameters are within geographical regions and some are 

meteorologically related.   

Table 4.4.4 gives the list of parameters and a few examples of the data collected for each 

station.  

 

We then applied ACA on this set of data. The Sum of Significant MR of the clustering 

process for various attribute cluster configurations are plotted on Table M-III. From the 

Sum of Significant MR values, it is obvious that a local optimal cluster configuration 

would consist of 5 clusters of parameters.  

Table 4.4.4 MET Parameters and examples of their values 

MET Surface Station A (Guangzhou) MET Surface Station B (Shenzhen) 

A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B4 B5 B6 B7 B8 

J J 10 9999 22 1021 23 3 A A 11.2 9999 30 1024 17 5 

J J 9.6 9999 19 1021 24 3.8 A A 10.8 9999 27 1024 6 4.5 

J J 9.3 9999 20 1021 20 3.4 A A 10.2 9999 26 1024 9 3.6 

 

MET Surface Station C (Dongguan) MET Surface Station D (Dongguan) 

C1 C2 C3 C4 C5 C6 C7 C8 D1 D2 D3 D4 D5 D6 D7 D8 

D D 10.2 9999 35 1024 0 
1.

7 
J J 10.9 9999 31 1025 35 2.9 

D D 9.7 9999 32 1022 6 
1.

8 
J J 10.4 9999 30 1025 43 3 

D D 9.5 9999 29 1021 2 
2.

4 
J J 10.2 9999 31 1025 31 3.3 
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MET Surface Station E (Zhongshan) 

E1 E2 E3 E4 E5 E6 E7 E8 

A A 8.8 9999 28 1022 17 2.5 

A A 8.4 9999 28 1022 23 2.8 

 

 

 

 

 

 

 

Table 4.4.5 ACA Run showing the value k for the local optimal cluster configuration. 

No. of Attribute Cluster 
Sum of Significant 

MR 

Number of 

Attribute 

Clusters 

Sum of Significant MR 

 K SMR  K SMR 

2 11.42685035 18 9.23378 

3 12.97939612 19 8.79266 

4 13.44936898 20 6.62485 

*5 13.65281846 21 6.37775 

6 11.98427219 22 6.58989 

7 12.968216 23 6.05627 

8 10.88940451 24 5.57822 

9 11.50901881 25 4.22368 

10 9.732935672 26 5.16222 

11 11.8511256 27 3.99171 

12 10.28084331 28 3.44625 

13 12.0651708 29 1.83837 

14 9.275470445 30 2.00887 
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15 7.77188342 31 1.8107 

16 8.214801827 32 0.5296 

17 9.642968239 33 1 

18 9.23378089 34 0 

* Highest Sum of Significant MR Implies Optimal k =5. 

Table 4.4.6 show the grouping of the parameters in each of the parameter cluster.  

 

The meaningful sub-grouping ---the attribute clusters obtained from ACA  

    By the highest value of SMR listed in Table 4.4.2, the mixed-mode meteorological 

database with 43 attributes has been clustered into 5 sub-groups. The first 4 of 5 clusters are 

grouped based on the interdependence among the similar characteristics (types) of the 

attributes within each cluster formed. This implies that those attributes within cluster are 

highly dependent upon each other or they are very “close” to each other or one “followed” 

by the others. We then study the mode and the characteristics of each of the clustered 

parameter groups. 

 

Table 4.4.6   Attributes in the attribute clusters of the optimal cluster configuration 

Attribute Group  Attribute Cluster Items 

1 C *B5, A5, C5, D5, E5   -- RH (Relative Humidity) 

2 C *C7, A7, B7, D7, E7  --WD (Wind Direction) 

3 D *C1, A1, B1, D1, E1 -- TC (Total Cloudiness) 

4 C *A6, B6, D6, E6, MM -- AP (Site Pressure) 

5 M 
*A3, A4, C6, B3, C3, D3, E3, A8, B8, C8, D8, E8, DD, HH 

(Dry Bulb Temperature & Wind Speed) 

* The attribute marked with “*” is the mode of the attribute group. 

 

The meaningfulness of the MODE attribute discovered for each cluster 

     One of our objectives of this study is to find out whether or not the mode discovered 

for each group can be considered as a meaningful governing attribute within the group. 
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This objective can be assessed by the following observation and analysis.  

1)  The reference parameter for the regional meteorological observation 

    For the first four clusters, the associated modes are the representative of each attribute 

type of the meteorological parameters in the region. In another  words, the attribute 

selected by our algorithm as the MODE for each cluster is actually the most representative 

one within the cluster and thus be considered as the reference parameter among the set in 

those regions. That means that the reference parameters should have the most 

interdependence relations with others in the group. Thus the MODE for each group can be 

used as the reference parameter of the entire region.   

2) The representative station for the regional meteorological observation  

    Within the five attributes (B5, C7, C1, A6, A3) being found as the MODE attributes 

for their respective clusters, we notice that attributes from stations of D and E are not there. 

This tells us that the two stations D and E are not very important for the weather 

observation in this area. From the practical  operation view, if we just have adequate 

budget to operate two surface stations, we should set up A and C stations instead of B, D 

and E.  Otherwise, if we just have good enough budget to operate two surface stations, we 

should set up A and C stations instead of B even D, E. 

 

Observation of the role of regional parameters and the local parameters in the 

clusters 

It has been observed that clusters 1,2,3,4 have the same type of the met parameters within 

respectively but cluster 5 has more than two types of the met parameters. From the clusters 

1,2,3,4 we know that the attributes within each of them are regional meteorological 

parameters which have strong influence on each other in a large scale (tens or even 

hundreds kilometers). However, from cluster 5 we know that most of the attributes within 

this cluster are local met parameters and have less impact on each other in a small scale (a 

few kilometers).  

 

By the P3 (Dry Bulb temperature) and P8 (Wind Speed) being fallen into one cluster, we 

could conjecture that they strongly influenced by the geographical factor LULC (land use 



 

107 

and land coverage) or the surface roughness (geo-texture) which are not included in the 

database and thus not present in our clusters. It should be noted that the wind speed here is 

the surface wind speed instead of the up air wind speed. If the up air wind speed was 

collected and put into the database for clustering, it would likely induce a standalone cluster 

as the cluster 1,2,3,4 because the up air wind speed is also a typical regional parameter.  

Summary: From the patterns discovered by our method, significant features within the 

data collected from the surface stations have been found which comply with the domain 

knowledge. Attributes in each of the first 4 clusters reflect the regional (global) 

characteristics of the correlated meteorological parameters. The mode found in each group 

has been treated as the reference parameters for those of the same type taken from the five 

stations. Regarding the last cluster group, all of the attributes therein reflect local 

characteristics significantly influenced by the local geographical feature such as land use 

and land coverage. The discovered modes in these clusters cover only 3 stations indicating 

that the remaining two are in very weak position for the weather condition analysis.  

4.5. Experiment on Delay Coking Database 

This is a very large set of data. The data is taken from the delay coking unit (DCU) of the 

Sinopec SJZ Petro-Chemical refinery for about 5-month-long period. It was acquired 

directly from the ABB DCS sensors by which the temperatures, the levels, the flow rates 

and the pressures as well as the control actions of PLCs were collected. 

Delayed coking is a semi-continuous thermal cracking process in which a heavy 

hydrocarbon feedstock is converted to lighter and more valuable products and coke. The 

mechanism of coking can be broken down to three distinct stages. 

        The feed undergoes partial vaporization and mild cracking as it passes through a 

specially designed coking furnace.  
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Figure 4.5.. The Schematic of Delay Coking Unit. 

 

The vapours undergo cracking as they pass through the coke drum to fractionation facilities 

downstream where products of gas, naphtha, jet fuel and gas oil are separated. The 

petroleum coke remains in the drum.  

 

The heavy hydrocarbon liquid trapped in the coke drum is subjected to successive cracking 

and polymerization until it is converted to vapour and coke.  

 

The residuum (fresh feed) from the Hydrocracker Fractionation Unit enters the bottom 

section of the fractionator where material lighter than the desired cut point of the coke gas 

oil is flashed off and the remaining material combines with the recycle material condensed 

in the bottom of the fractionator to form the combined feed. 

 

This combined feed is then routed to the charge furnace where the liquid is heated to its 

incipient coking temperature to produce vapourization and mild cracking. Steam is injected 

into the furnace feed line to prevent coke deposition in the furnace coils, increase tube 
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velocity and reduce hydrocarbon partial pressure. 

 

The vapour/liquid mixture then enters the bottom of the coke drum where the vapour 

experiences further cracking and the liquid experiences successive cracking and 

polymerization until it is completely converted to vapour and coke. The coke drum effluent 

vapour enters the fractionator where the hot vapour are quenched with wash oil. The 

condensed portion then forms the recycle stream and is recycled to the furnace for another 

pass through the coke drum. The condensed vapour is fractionated into gas, naphtha, jet 

fuel and gas oil. Gas oil and jet fuel are removed as side cuts and routed to the Gas Oil  

 

Hydrotreater and the Naphtha/Jet Hydrotreater. 

Typically, a DCU could consist of three main processing sections: the heating units 

(furnace), the coking drums and the fractionator (tower) (Figure 4.5.1).  

The raw fresh material flow (also called residual oil) has been filled into and then be heated 

by the heating unit (by which the flow rate of the residual oil must be controlled carefully 

to keep flowing to avoid the residual oil becoming coke inside the heated pipe lines, 

blocking the heating unit) and then be pumped into the following delay coking units (Coke 

Drum) to produce the coke. 

 For the two coking units, the pressure has been carefully controlled to avoid the 

conversion of the mixed oil-gas flow into coke totally and more oil vapour will be expected 

to get out from the top of the drums for producing more “light” products. At the same time, 

the mixed oil-gas vapour flow arises at the top of a delay coking unit will be introduced 

into the fractionator tower to produce the different oil products like gasoline, diesel, 

naphtha and etc. according their different “cutting” temperatures respectively, inside which 

the temperature should be carefully controlled to “cut out” the product distribution 

expected for different market purposes. 

 

Table 4.5.1 gives a brief description of the Delay Coking Database. It consists of 22,096 

samples and 47 attributes out of which 11 of them are discrete valued data and 36 are 

continuous valued data. Since this is a set of very complex data taken directly from the 
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delay cooking plant, there is no specific class information.  It is relatively a large database. 

Since we have a certain degree of partial domain knowledge concerning this system, this 

set of data will be ideal to challenge the usefulness and effectiveness of the proposed 

system.  

 

Table 4.5.1 Data Description of the Large Database obtained from a Delay Coking Unit 

Data Description 

Data Set 
Attribute 

Characteristics 
No. of Samples 

No. of 

Attributes 

No. of 

Classes 

Coking Data Mixed-Mode Data 22096 
47 

D11 & C36 
Unknown 

 

We first apply ACA to cluster the database into sub-database containing subgroups of 

attributes. Table C-II show the Sum of the Significant MR values for different attribute 

cluster configurations.  It is found that k=5 would render a local optimal configuration. 

Figure 4.5.2 gives the k-SSMR plots taken from our ACA Algorithm.  

 

We next proceed to discretize the continuous data for each cluster based on the mode 

discovered for that cluster. We then display the results of each cluster and conduct the 

in-depth analysis to derive the meaning from the patterns and rules discovered for each set 

of mixed mode sub-database. For the sake of exposition, we refer each cluster formed by 

the feature characteristics of the cluster. Here, we shall proceed with the in-depth analysis 

of each attribute cluster in the light of the partial domain knowledge available.  

 

The Cluster Group 1 (Table 4.5.4) associated with flow-oriented control of main oil flow 

for Raw Materials (Residual Oil) with its governing attribute PLC-i has supportive 

evidence from the system characteristics of the operating plant that the attribute PLC-i is 

actually acting as the global control factor for the entire processing system. In reality, the 

Cluster Group 1 containing parameters pertaining to a flow-oriented control group in which 
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the flow controller PLC-i plays a definitely role in governing the values of all of the other 

parameters within this group. This means that any changes from the MODE attribute PLC-i 

will influence the settings or readings of the others within this group whose members 

distributes almost everywhere in the entire coking plant.  

 

The Cluster Group 2 associated with the flow-oriented control of the feedback oil flow 

(also known as slurry recycle ratio) with its governing attribute FRC-002 turns out to be a 

very important subsystem for delay coking system. This subsystem, referred to as the 

Slurry Recycle subsystem, is the subsystem by which a significant parameter (Slurry 

Recycle Ratio) has been used as a decision and monitoring factor. Actually, the Cluster 

Group 2 represents a local flow-oriented control group for a coking system by which the 

Recycle Ratio is working closely together with other elements within the group. If the 

operation director wishes to shift the coking facility to work on another recycle ratio, he 

will adjust the governing attribute FRC-002, monitor the other parameters in the subsequent 

operations to ensure that the current adjustment will    complete successfully. Thus any 

changes from the MODE attribute FRC-002 will locally influence the settings or readings 

of the other parameters within this local group of which the components are installed 

around the feedback pipe system. 

 

Cluster Group 3 (Table 4.5.5) associated with temperature-oriented control of the product 

distribution for oil vapor and petro-coke with its governing attribute PLC-h represents 

another very important subsystem for the delay coking plant. This system can be 

considered as the Fractionator subsystem by which the oil vapor flow has been guided into 

the tower and produces different products based on the required product distribution. 

Actually, the Cluster Group 3 is a local temperature-oriented control group for the coking 

system by which the expected final product distribution has been made by carefully 

building up the “cutting temperature” of the Fractionator through the controller PLC-h. The 

values of the other parameters will follow up the changing of the PLC-h reading to reach 

their new values. 
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Table 4.5.2 Sum of the Significant MR values for different attribute cluster configurations. 

No. of Attribute 

Cluster 

Sum of Significant 

MR 

No. of Attribute 

Cluster 

Sum of Significant  

MR 

K SMR K SMR 

2 22.2426 24 14.8637 

3 21.8947 25 12.7643 

4 22.628 26 13.4253 

*5 22.9081 27 12.9122 

6 21.9604 28 9.55878 

7 17.9875 29 10.5888 

8 17.3895 30 10.8342 

9 21.7116 31 11.7177 

10 21.3002 32 10.2624 

11 15.7158 33 7.24438 
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12 18.5434 34 10.3341 

13 18.4806 35 9.95252 

14 17.395 36 9.03594 

15 13.0992 37 7.10925 

16 16.7974 38 5.63904 

17 16.2262 39 5.09977 

18 12.1681 40 4.83713 

19 16.6476 41 4.84365 

20 16.5275 42 2.59895 

21 11.0865 43 2.63305 

22 16.0462 44 2.58523 

23 15.5782 45 1.53357 

24 14.8637 46 0.95916 

25 12.7643 47 0 

* Highest Sum of Significant MR Implies Optimal k =5. 

 

* Highest Sum of Significant MR Implies Optimal k =5. 

Figure 4.5.2 Plot of Sum of Significant MR values against k, the number of attribute 

clusters.  

 

Table 4.5.3  Cluster 1: Flow-Oriented Control of Main Oil Flow for Raw Materials (Residual 

Oil).  
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Here, the attribute PLC-i marked with “*” is the mode of the attribute group. A mode is 

with the highest normalized mutual information in the attribute group. 
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Table 4.5.4   Cluster 2: Flow Oriented Control Feedback Oil Flow Recycle Ratio) 

 

Attribute Characteristics 

* FRC-002 Discrete 

LRC-5 Continuous 

FIQ-004 Continuous 

FIQ-20 Continuous 

FIQ-22 Continuous 

* The attribute FRC-002 marked with “*” is the mode of the attribute group. A mode is 

with the highest normalized mutual information in the attribute group. 

 

Table 4.5.5   Cluster 3: Temperature-Oriented Control of Production Distribution for Oil 

Vapor and petro-coke. 

 

Attribute Characteristics 

* PLC-h Discrete 

PLC-f Discrete 

TR-15A-17 Continuous 

TR-15A-19 Continuous 

    * The attribute PLC-h marked with “*” is the mode of the attribute group. A mode is  

 

with the highest normalized mutual information in the attribute group.  

The Cluster Group 4 (Table 4.5.6) is associated with pressure-oriented control of 

production distribution for light-heavy products from oil vapor. Its governing attribute 

PLC-k is a very important parameter in the Coke Drum of the delay coking system. The 

heated residual flow is filled into the drums and it will mainly be divided into two parts, 

one is petro-coke and the other is oil vapor. Actually, the Cluster Group 4 represents a local 

pressure-oriented control group for a coking system by which the setting of the temperature 

will determine the coke production ratio or distribution. Thus, the MODE attribute PLC-k 
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in this cluster will locally influence the coke-vapor distribution of the drums. 

 

Table 4.5.6   Cluster 4: Pressure-Oriented Control of Production Distribution for 

Light-Heavy Products from Oil Vapor. 

Attribute Characteristics 

* PLC-k Discrete 

FIQ-21 Continuous 

PRC-8 Continuous 

* The attribute PLC-k marked with “*” is the mode of the attribute group. A mode is with 

the highest normalized mutual information in the attribute group. 

 

Table 4.5.7  Cluster 5: Temperature-Oriented Control of Emergency Response Action 

(Safety Release). 

 

Attribute Characteristics  

* PLC-g Discrete 

TR-15A-18 Continuous 

* The attribute PLC-g marked with “*” is the mode of the attribute group. A mode is with 

the highest normalized mutual information in the attribute group. 

 

The Cluster Group 5 (Table 4.5.7) is associated with temperature-oriented control for 

emergency response actions. Its governing attribute PLC-g is acted as an emergency control 

unit which responds to the overheated condition of the heating unit (furnace). It helps to 

ensure that the entire delay coking system would work under a safety situation. Its major 

function is to control the heating unit.  

 

Summary: Based on the five clusters from our developed method for the patterns, the most 

important relationships with the sensors and controllers of the coking facilities have been 

found: including the temperature-oriented groups, pressure-oriented groups and 
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flow-oriented groups. The attribute number and distribution of the largest group indicates 

that its mode acts as a control factor for the entire processing system and has globally 

influenced almost all of the process parameters for the facility. 

 

From the parameter grouping, the discovered results indicate that the other two groups 

control the output distributions of the two internal units like coke drum and fractionators. 

They are very important groups for the local performances of the processing usually 

referred to as performance factor. 

 

The last group discovered is exactly associated with the critical safety mechanism designed 

for this pressure-temperature-mixed processing facility. Its mode is actually controls the 

temperature condition as a trigging factor to activate the emergency release response.  

All of the five cluster groups with the patterns and mode attributes discovered provided us 

the stronger analysis evidence for the whole industry system’s control principal.  

 

 

  



 

118 

Chapter 5 

Conclusion and Future Research 

 

 

The research presented in this dissertation was motivated by the challenges we are 

confronting today: (1) an increasingly huge amount of raw mixed-mode data today  

require effective pattern discovery methods to unveil inherent subtle information for better 

understanding; (2) the pressing need to develop intelligent systems which are able to 

support knowledge discovery and decision support from overwhelming volume of 

discovered patterns; (3) the increasing demand of applications of  discovered patterns in 

scientific, business and industry; and (4) the application limitation of most existing systems 

which are not general enough to solve problems on mixed-mode databases with numerous 

real-world applications. 

The research works presented in this thesis have provided an integrated, flexible and 

generic framework for pattern discovery and analysis of large mixed-mode databases. Its 

applications cover databases with continuous, categorical and mixed- mode data. Based on 

the well defined problems and research objectives stated in Chapter 1, the developed 

research methods presented in Chapter 3, and the broad applications on real world and 

industrial problems presented in Chapter 4, the contribution of the thesis research in 

theoretical and methodological perspectives as well as in real world applications have been 

conveyed. The validity and the effectiveness of the proposed methods has been backed by a 

number of successful experimental results. Their usefulness in real world applications has 

been demonstrated by the intriguing and revealing results obtained when applying to two 

large mixed-mode databases --- one consists of a large set of meteorological data taken 

from a geographic area in Southern China and another is a set of massive multi-senor data 

taken from a delay coking plant.   
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5.1 Summary of Contributions 

 

5.1.1 Theoretical Contributions 

With the defined research work and proposed methods completed, the  theoretical 

contribution can be outlined as below. 

1) Development of a theoretical framework for pattern discovery for mixed-mode data 

at event level. 

A theoretical framework has been developed for discovery of high order patterns for 

mixed-mode data (which include continuous data, categorical data and a combination of the 

two) at event level. By converting continuous data into interval events under a general 

problem setting, it shifts the basic data representation units into events. It thus provides a 

unified framework to define association patterns as event associations. It thus generalizes 

the pattern discovery and data mining methodologies to cover the important mixed-mode 

data under a unified event based framework. Allowing probabilistic variations and 

statistical justification, it brings forth a unified system for pattern discovery, data mining 

and machine learning. The experimental results obtained show that once the patterns are 

organized at the event level, they can be interpreted and understood much more easily. A 

unique characteristic of this theoretical framework is its natural accommodation of local 

organization of event associations in various event subspaces of lower dimension.  

2) Demonstration of the necessity of attributes clustering in large databases and the 

provision of an attribute clustering algorithm for mixed-mode data.  

From the experimental results on certain UCI data sets as well as on the two large 

databases of the real world problems, the thesis furnishes significant evidences that strong 

correlation attribute groups exist in large databases and their discovery might shed light to 

the how features are associated within the databases and how the discovered association 

patterns may impact class definition and the attribute group interactive activities. The 

contribution of this thesis is not only stating the problem but providing an algorithmic 

solution to partition the databases accordingly. It also reveals the feature relationship and 

association characteristics of each of the clustered groups.  
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5.1.2 Methodological Contributions 

1) The provision of algorithmic procedure to obtain normalized mutual information 

between mixed-mode attributes.  

For mixed-mode data, one of the major hurdle in assessing interdependence 

between heterogeneous attributes (i.e. between discrete and discrete, discrete and 

continuous and between continuous and continuous attributes) is the lack of a 

implementable measure to account for the interdependence between attributes of mixed 

types. In this dissertation, the normalized mutual information between these three pair 

of attribute types have been defined, implemented and tested over large sets of data. 

They have been used in the finding of the mode, the governing attributes, the intrinsic 

class attributes and in the k-mode attribute clustering algorithm. 

2) Discovery of mode and governing attributes for a mixed-mode data set. 

With the normalized mutual information computed between all attribute pairs for 

an attribute set, the mode can be obtained as the attribute with the highest sum of 

normalized statistical significant mutual information with all other attributes in a 

mixed-mode data set. The identified mode has been used in the k-mode attribute 

clustering algorithm as well as in driving the discretization of continuous data in the 

data set. 

3) Discretization of continuous data in a mixed-mode data set.  

One of the major impediments blocking the application of pattern discovery for 

mixed-mode data is that there has been no easy way prior to this dissertation for 

discretizing the continuous data in a database setting when class information is absent 

or unavailable. The contribution of this thesis is that normalized mutual information 

measures between different types of attributes have been implemented for two separate 

stages of the pattern analysis --- the attribute clustering phase and the continuous data 

discretization phase.   

In solving the discretization problems, two issues have been raised and later 

justified by enormous experimental evidences. The first is the idea of the possible 

existence of a governing or most representative attributes. One may refer it as an 

intrinsic class attribute or a governing attribute for a correlated data set. Such an 
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attribute, if found and justified, can be used to drive the discretization of the continuous 

attributes. However, how strong this attribute depends on the strength of its summed 

interdependencies with others in the attribute group. Once a reasonable one is identified 

it could be used to drive the discretization of the continuous data in the group just like 

the class attribute does. The second is related to the necessity of attribute clustering. For 

a very large database, unless a class label is given or assumed, with the absence of class 

information, there is no reason to believe that the entire database is governed by a 

single attribute. There could be several correlated attribute groups existing inherently in 

the data set. Each may share more correlated information among themselves than with 

other groups. Thus it is not meaningful to use the mode of a large data set to drive the 

discretization. A more reasonable approach is that we should first find out whether the 

database could be optimally partitioned into several coherent attribute groups before 

discretization be applied to each group like we have observed in the application on the 

colon cancer data. Once found, we could apply discretization of continuous data to each 

attribute group. A contribution of thesis is that it has provided evidences to demonstrate 

this happened and the proposed solutions work. 

 

5.1.3 Application Contributions 

1) Automatic grouping, repooling and discretization of gene expressions for 

analyzing and classifying genes without relying on class information.  

That the proposed methods are able to show that both the gene clustering and the 

re-pooling process work for continuous gene expression data as effectively as in the 

cases when class information is provided represents a huge advancement of  gene 

expression analysis. This capability not only speeds up the diagnostic process but also 

reveal the gene interactive patterns for various types of gene tissues at various 

histological or pathological stages objectively. That the use of the discretized gene 

expression intervals to achieve high classification rate of cancer and normal cells 

equivalent to systems using class labels implies that not only the concept of governing 

attribute works for discretization but also could be used to reveal the interactive role of 

the governing genes with others. .     
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2) Discovery and grouping of meteorological patterns from surface stations over a 

large area rendering subtle information for regional weather monitoring. 

The discovery and grouping of meteorological measurement patterns from data taken 

from various surface stations in a wide area reflect the regional and global  

characteristics of the correlated meteorological parameters. The consistency and the 

representative characteristics of each of the meteorological modes discovered suggest 

that certain modes could serve as reference parameters as they renders much more 

precise assessment of the weather monitoring system. Other subtle patterns may reveal 

the impact of land use and land coverage. Its significance requires further analysis.  

3) The discovery and grouping of parameter patterns in delay coking process 

revealing system function and operational characteristics.    

The pattern discovery and grouping experiment on a large set of sensed and control data 

set taken from a delay coking plant yields most important relationships among sensors 

and controllers of the coking facilities. From the attribute number and distribution of 

the largest correlated group, the most significant control factor which has global 

influence over almost all of the process parameters in the facility is located and its 

interactive patterns with others have been discovered. From the parameter grouping, the 

discovered results indicate that the other two groups control the output distributions of 

the two internal units like coke drum and fractionators. It is surprising to find that a two 

parameter group discovered is associated exactly with the critical safety mechanism 

designed for this pressure-temperature-mixed processing facility. Its mode is actually 

controls the temperature condition and serves as a trigging factor to activate the 

emergency release response. Such findings show the usefulness and effectiveness of the 

proposed method in revealing subtle operation patterns for system monitoring, control 

and optimization.  

 

In summary, the results of the dissertation research open the door for more precise 

system behavior analysis and modeling. It is fulfilling the vision that: “ through pattern 

discovery on large mixed-mode databases, we are one step closer to meeting the 

challenge: “ from data to model to knowledge” in the petabyte age”.   
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 5.2 Suggested Future Research 

This dissertation has developed a basic framework for discovering patterns for 

mixed-mode data. It is expected that there will be considerable refinement of the system to 

arrive at an integrated prototype for researchers and general users. Here we will list some of 

the suggested future research. 

1) Refining the pattern discovery framework for large mixed-mode databases will be 

continued.  

2) Special attention will be devoted to explore the characteristics of the governing 

attributes including exploring of its patterns and pattern clusters with other 

attributes.  

3) With the class labels removed and discretization problem solved, the technology 

developed for pattern clustering on categorical data only can now be applied to 

continuous and mixed-mode data. Thus, a natural extension of this research is to 

integrate the system with pattern clustering, summarization and visualization for 

mixed-mode data. 

4) Since the proposed system is able to produce insightful patterns and solutions to 

two of the difficult real world problems with large databases, extensive effort to 

apply this new technology to other large mixed-mode data is planned. By relating 

both the subgroup and the entire group patterns to the application domain, 

means to generate models and knowledge will be explored.  

5) Development of an integrated system for pattern discovery, pattern clustering, 

summarization and visualization system for mixed-mode data with or without 

class information --- a worth achieving goal of pattern discovery.  
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