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Abstract

With the great progress of microelectronics anetklating information technologies,
together with the still broadening applicationscofmputers in a vast range of businesses and
industries, large databases containing mixed-mada dre becoming quite commonplace.
Today, large databases contain various modes dectedl data related to different
components of a complex real world system. Thee iss not necessarily confined to
classifications. Many of them may not have cleadyined class labels, or even any explicit
class information at all. Indeed, there are marffeidint reasons to determine or discover
all patterns, to achieve any comprehensive anabsé understanding of the information
within the data spaces. In the past, data miningattern discovery has by and large been
developed fundamentally for categorical databa&#<f the classification rules have been
found from pre-labeled data samples. When mixedenddta are processed, engineers
naturally work on the class-dependence relationshigiscretize the real data. Where class
information is lacking, there is no suitable waydiscover patterns within these mixed-type
databases. Consequently, most important pattelgsasgobs - such as pattern clustering, or
even pattern summarization - being developed ftegmical data will not be easily applied
to a mixed-mode database. To break this impasseei®bjective of this thesis. We have
attempted to develop some pattern discovery metliodsnixed-mode databases where
classes or features are unavailable. Analyzingsethmixed-modes of databases and
providing researchers with helpful knowledge ishallenging task. Developing new ways to
turn the raw data into useful knowledge is now mglerm challenge in the data mining
community.

For a large mixed-mode database, how to discrétizeontinuous data into interval
events is still a practical approach. If there aceclass labels for the database, we have
nohelpful correlation references to such task Abtualarge relational database may contain

various correlated attribute clusters. To handkes¢hkinds of problems, we first have to



partition the databases into sub-groups of atteutcontaining some sort of correlated
relationship. This process has become known a®w#r clustering, and it is an important
way to reduce our search in looking for or discowgpatterns Furthermore, once correlated
attribute groups are obtained, from each of theme could find the most representative
attribute with the strongest interdependence wlith ather attributes in that cluster, and use
it as a candidate like a a class label of thatygrdhat will set up a correlation attribute to
drive the discretization of the other continuousada each attribute cluster. This thesis
provides the theoretical framework, the methodol@nd the computational system to
achieve that goal.

In validating the premises proposed in the distiertaextensive experiments using
synthetic data and UCI Expository Data of varioyses were performed to verify each of the
fine points conceived. To demonstrate the usefslrdes solving real world problems, the
developed methodology is applied to two large dagab from the real world: one is from
meteorological surface stations, while the otherfrem the delay coking unit in a
petrochemical refinery. The pattern discovery rsswf the weather stations reflect the
regional and global characteristics of the coreslaneteorological parameters and render a
much more precise assessment of the weather mogiteystem. The pattern discovery and
attribute grouping experiments with the delay cgkidata yield the most important
relationships among the sensors and controllerghef coking facilities, including the
identification of the most significant control factwith global influence over the entire
process, together with its interactive patternshwather factors, and with the relations
discovered in the critical safety mechanism desigfer a pressure-temperature-mixed
processing facility, for activating emergency rekearesponse. Such findings show the
usefulness and effectiveness of the proposed méth@eyealing subtle operation patterns for
system monitoring, control and optimization.

In brief, the results of the dissertation reseapbn the door for more precise system
behavior analysis and modeling using large mixediendatabases. It is fulfilling the vision
that through pattern discovery on large mixed-mddeabases, we are one step closer to

meeting the challengefrdm data to model to knowledget this petabyte age.
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Chapter 1

Introduction

In the past decade, with the development of serdiectors, microelectronics, cloud
processors, magnetic storage media and other iat@macquisition methods, together
with the continually broadening applications of quters in a wide range of businesses
and industries, large databases have become quienenonplace. The volumes of these
databases have been growing from megabytes toygambtand to terabytes and even to
petabyte. The types of database they contain asg gome of them could be numeric,
others could be categorical and the most commas ane a mixture of both. These are
referred to as “mixed-mode databases”.

Today we are facing large relational databases mitted-mode attributes. Many of
those have either no class labels, or no definedscinformation. They may contain
different modes of correlated data, related toed#ht attributes of a complex system. Their
uses are not confined to classification. Neverdggléhere is a great need for discovering
patterns among them for comprehensive analysigrprdtation and understanding the
patterns or relatoins inherent in the data . Anatyzhese kinds of mixed-mode databases,
and thus supplying decision-makers with useful keowe, is very challenging.
Developing new measurements to transfer data intaledge bases is now a paramount
problem in data mining research community. The @bje of this thesis is to develop
methods for discovering patterns in mixed-mode dafaere class information is
non-existing or unavailable.

In the past decades, data mining and pattern désgdwave been developed only for
categorical data. Also, inductive learning techgas have been applied widely within

data mining to get classification information froem group of given data samples.



Classification rules and/or models are built, basedhese pre-labeled data samples. In the
early years, almost all classification tasks inadatining can only be applied to
categorical data. Actually, all of these methodsy mat effectively handle data with
continuous attributes directly.

In real practical applications, however, a largeportion of real databases may
consist of not only continuous but also mixed-mdd&bases (continuous, discrete, ordinal
as well as nominal). To make a learning systemaipewith these mixed types of database,
these continuous attributes need first to be dizer@ Furthermore, engineers have found
that even if some learning systems are explicidgigned for continuous attributes, they
can also maintain a relatively higher accuracy wtiendatabase can be transformed into
one with appropriate discrete values. Finallythi# continuous data of the mixed-mode
data attributes could be discretized appropriatbly limitations of most inductive learning
algorithms may be solved by feeding the databasetlie current learning systems. In fact,
with regards to pattern discovery and machine ligezice development today, most of the
ideas available for classification in mixed-modetattase require the existence of
pre-labeled classes. Without that important camaljitclass-dependent discretization of
the continuous data space will not work well, pbting the application of contemporary
datamining methods on mixed-mode data.

Data discretization is a pre-process stage invghgartitioning the value space of a
continuous attribute into a finite number of in@s; and attaching a nominal value to each
of them. Each interval range could then be measaseh event in the discrete data space.
After discretization, we can uniformly treat bothamntinuous and discrete data space as
events in a defined discrete event space [22].

In the mid-90s, a new class-dependent system $oretizing the value of continuous
attributes was proposed [9]. It opened the wayattkling continuous data spaces for
machine learning systems. It is based on a measuteshthe mutual information to reflect
the strength of interdependence between the aanimattributes and the class attribute.
relationship.More recently, several class-dependksiretization algorithms have been
developed. Most of them now can automatically deiee the numbers and ranges of
discretizing intervals and the discretizing intérvaundaries [15], although some troubles
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still exist. Normally, neither the class-dependebjective functions are not effectively
utilizing the class information, nor lacking anfeetive optimization algorithms to
partition the continuous data space. .

In 2004, Liu et al [12] proposed a very effectivptimization algorithm for
class-dependent discretization of continuous détgpartitions the range space of a
continuous random attribute into a number of ordeadjacent disjoint discrete intervals
with a certain probability distribution. The expedtmutual information between the class
label and each of the other attributes, found bgsugng the mutual information between
the class and that attribute, is treated as thectbe function for discretization [12]. It uses
the fractional programming idea (iterative dynamrogramming) to define, in a global
optimum way, the expected mutual information thieege the optimal data partitioning.
Furthermore, the algorithm could efficiently padit continuous data, which was a
challenging problem that had not been well solvedther ways. Bimodal and multi-modal
data refer to data whose distribution measurentets respectively two or more separate
and distinct peaks, each of which may corresporal hagh concentration of data points in
the proxmity [12].

Two important issues that have to be discussegdditioning continuous data are the
number of intervals and the ranges of the relatitervals. These two problems must be
solved, either by the discretization algorithmlitee by designation by the engineers [17].
Most partition algorithms require the provisiontbé suitable number of data intervals by
the engineers. The widths of the intervals candiaed too, through the boundaries of the
discretized data intervals. A good algorithm fas thurpose should usually require only a
few input parameters from the operators. As a §ipe@al-world classification problem,
the available class information could provide caliciupport to the discretization process.
The rest of the remaining problem consists of howartition a continuous database with

continuous attributes in a mixed-mode data set [12]

1.1. The problems

For a classical machine learning system, data ssxipl training a typical inductive



learning system are generally set up using dataetbfrom a set of attributes. Some of
these attributes characterizing an event spaceb@aytegorical, symbolic, or even with
discrete values, while others may be real or cootis data attributes. Many
currently-existing learning machine systems havenbearefully built for processing
categorical attributes values only. In the areamaichine learning or data mining these
inductive learning problems are usually designediscover classificatory patterns, or just
rules, based on a set of data samples [25]. Clzestsifn rulers and/or patterns are created
for those pre-labeled data samples with certaior priformation set up by domain experts
in those areas. Thus, many traditional classificatlgorithms in inductive learning use
carefully designed categorical data spaces. Thdyaklyg cannot effectively handle
continuous attributes directly. To apply inductilearning systems with these kinds of
mixed-mode data space, the continuous variables finsisbe discretized. However, for a
mixed-mode database there is still nogood solutiothe unsupervised learning task, or to
clustering Very large mixed-mode databases haga greater challenges [17].

The general objective of this dissertation is teemthis challenge. It attempts to
solve the most fundamental problems, first of parting very large mixed-mode databases
into smaller coherent ones, and then discretizimg@ntinuous data without relying on
explicit class labels. Once this is solved, we doektend the pattern discovery, pattern
clustering, summarization, and visualization tasksvery large relational mixed-mode

databases.

1.2 The Motivation

We are entering into a petabyte era , with magdisteibutive databases acquired from
various data sources in the real world. There igreat need to get comprehensive
information based on them for even better undedstgnand insight, such that they could
be well structured and applied to analysis, clasgibn, natural interpretation, deeper
understanding, effective organization, and compisive summarization of the
mixed-mode database. The objective of this thesimativated by such practical needs

from the real world. Since most of the data arenfia diverse sources, many of them may



not be have explicit class information. Then wed@attern discovery methods which

may not necessarily relying on class informationc®such methods are developed, they
could be applied to data clustering, pattern discgvpattern clustering, and any other

pattern post-processing jobs for large mixed-mata dets.

Any pattern could be described as instances ofreéfaionships n attributes in the
feature space (problem domain) - the variable lpaterns - or by the direct relationships
or associations among variable values - the e Ipatterns [7]. At the variable level, a
pattern could be a mathematical relationship anmaitrgputes, usually called a model; but
for the event level, a pattern may be just a suledevariable values, some maybe
considered as the direct description of the cablestthat reflect the statistical relationship
of the events in the database [9]. The proposeearels here will focus on event-level
patterns only, and the formal definition of pattevii be discussed in a later section. For
now, an event can be just treated as a patterrsobalatabase of events or measurements
within mixed —mode.

With databases increasing in number and sizes,atagreapacity is require to collect
and analyzing data on our everyday activities isitess, science, society and production.
Ever-larger commercial, scientific, and industridhtabases have been significantly
outpacing our natural abilities to interpret andedit them [4]. Facing overwhelming data
growth, the existing classical methods of data @ssimg cannot offer us useful analysis to
derive important new information and helpful knodgde. The the past, pattern discovery
has been used to gain classification knowledger classification and predication
application. Lately, it attempts to discover pats to uncover the underlying principles
and behaviors of systems or phenomena in the reddw from data acquired in order to
reason, infer and even predict the behaviors @ gAme sectors. The challenges are
enumerated below:

1) With respect to the structures of mixed-modea dadace, they are becoming more
complicated than ever before. The data values cbalanixed-mode, consisting of both
categorical data and continuous data. At the same, the data dimensionality could be
huge. Data could have been gathered systematicedly a long period, and be piled up

more-or-less randomly.



2) With respect to the quality of the mixed-modeadspace, undoubtedly there are
many reasons and causes in the real world fortdae collected affected by many kinds
of noise. Here, probabilistic approaches must bpldmented in real-world databases,
instead of deterministic approaches

3) With respect to applying useful patterns disceglein real production processes, a
certain kind of measurement for pattern confidesuecé support should be implemented to
render reliable data pattern analysis results asstan the decision-making process.

4) With respect t@ priori real domain knowledge, in most situations it ificlilt or
even impossible to collect adequate domain knovdddg effective decision-making. This
is definitely the truth for investigations in somew application fields. Some of special
domain experts, who can support some observatiothsreeasurements to set up a domain
database, but will expect to get some suggestiorvidences for data analysis results for
realizing and even formulating theoretical or ofieral ideas. Although some domain
experts who are able to set up a domain databasesneticulous observations and
measurements, they still desire to get in deptlyesstipns and evidences from the analysis
results to foster and reinforce the theoreticahfaiation and operation practice.

All issues mentioned above represent some opdiengang problems being faced,
currently investigated deeply and researched dardfy the data mining community in the
recent years and naturally are taken as the vesgnéal research motivations for this

dissertation.

1.3 Rationale

Since this thesis is dealing with a new problemalvttias not been dealt with seriously
in the past, we would like to clearly state theorzle behind the research. We would like
first to identify the pending problems, and stateywsuch problems have been at a critical
impasse, slowing down the development of pattestaliery and data mining in the

mixed-mode data environment.
1.3.1 Problems encountered in mixed-mode database

1.3.1.1 Problem in discretizing continuous data with no class reference

Currently, most classification algorithms in machiearning can only be applied to



nominal or categorical databases. They cannot tefédg be applied to deal with
continuous attributes directly. In order to adogiseng inductive learning systems with
mixed-mode databases, the continuous variables nfirst be discretizedfirst.
Discretization of continuous datamay enhance dlaatibn accuracy in some ways. Today,
discretization of continuous variables in patteiscdvery is driven by class attribute. For
those databases with no class labels, there issw a&nd effective way to discretize them
[21]. This limitation applies to most inductive learnialgorithms for both mixed-mode and continuous
data. Generally, any local discretization method stagsearch of the interval boundaries
at a coarse and local level at the beginning, &ed tefines the boundaries step-by-step
later, which results in locally optimal partitiond2]. On the other hand, global
discretization methods could produce a good patitiesult over the entire continuous
instance space.

In the machine learning community, supervised angdupervised methods are two
common methods. The unsupervised (class-independmethods simply apply a
prescribed scheme to cluster the continuous datiaouti any use of the attribute class
information, whereas supervised (class-dependesifyads do take into account such class
information. For discretization, theoretically, bese they are directed by class information,
the supervised methods could automatically gebdst number of intervals for each given
continuous attribute for classification purposel [2

As a static method, it carries out one discretiragpass for data for each feature
separately, once the maximum number of intervak teen found. This kind of static
algorithm could have also been taken as a prodes®emingN adjacent intervals at the
same time until a certain threshold is reachedad¢h almost all the discretization methods
discussed above are static ones [26]. Finallyicstiigcretization methods could potentially
demolish the entire complex interactions among iplel&attributes.

For discretization of continuous data without cléssels in an attribute group, we
decide to implement the OCDD (Optimal Class-Depand@ascretization) method through
replacing the class label by theodeor thegoverning attributegboth will be defined later)
of that group. Here, the mode of an attribute grisujhat governing attribute for which the
sum of normalized redundancy with other attributesthe highest. Thus, the data

7



discretization process is finally formulated asogtimization problem [18]. Once the mode
of an attribute group is found, we take the noreeai mutual information between the
mode and the variable to be discretized as thectigefunction, and find its maximum
using fractional programming (iterative dynamic gmamming). Unlike the majority of
class-dependent discretization methods which anty the local optimum of the objective

functions, OCDD finds the global optimum.

1.3.1.2 Possible existence of unknown attribute-interdependent groups

For a large database with a large number of mixederattributes, it is possible that
several strongly attribute-correlated groups maigtewithin one data space. They could
finally be found if we have an attribute clusteriafgorithm to do the job. In classical
pattern recognition and data mining proceduressteting is an important issue. Given a
relational table, any of the conventional clustgrialgorithms will cluster tuples into
several groups, each of which is characterized bsewof attribute values based on
similarity [16]. Intuitively, tuples in a clustereamore similar to each other within the same
cluster than those belonging to different clusters.

It has been shown that clustering is very helpfuhiany data mining tasks. In the past
clustering methods are mostly developed to grouppses. However, a majority of the
pending problems is the data set has too manpuaits which might not even be correlated.
To perform pattern discovery on a large mixed-mdd&base, this dissertation presents a
new methodology to group mixed-mode attributes @natinterdependent and/or correlated
to each other instead. We refer to such a procesattibute clustering”. In this sense,
attributes in the same cluster are more correlédedach other, whereas attributes in
different clusters are less correlated. While cotiemal clustering subdivides a relational
table into horizontal partitions (i.e., subsetsugfles), attribute clustering subdivides it into
vertical partitions (i.e., subsets of attribute®}][ Attribute clustering is able to reduce the
search dimensionality of a data mining task by veilhg the algorithm to search for
interesting relationships from correlated attribstdsets. It helps to build pattern models
within an attribute’s subspace rather than on thiieesattribute space. After attributes are
clustered, one can select a smaller number of mepeesentative attributes in each

8



attribute cluster for further analysis [29]. Weeaefo the process of selecting representative

attributes from each attribute cluster as the itaite repooling process”.

1.3.1.3 Attribute clustering before discretization of continuous data

Following the observation in the last paragraphs ttissertation will present an
attribute clustering method which is able to gromixed-mode attributes within the
database automatically, based on their interdepmedeso that meaningful patterns can be
discovered later. The partitioning of a relationadi@se into attribute subgroups produces a
small number of attributes, within and then actbgsgroups, to be defined for data mining
tasks. After attribute clustering, the search disi@mality of each datasetfor a data mining
algorithm is reduced significantly [35]. The redootof search dimensionality is especially
important for data mining in very large mixed-mod&tabases, particularly in databases
consisting of a huge number of attributes and allsmember of samples. The situation
could become even worse when the number of atasbhoverwhelms the number of tuples.
In such cases, the patterns discovered that analgctandom becomes rather higher than
the usual situation. It is for the abovementionedsons that attribute grouping is an
important pre-processing stage for many data mimilggrithms, to ensure effectiveness
when applied to a very large database [32].

This dissertation has defined the problem of attalclustering and introduces a new
method for solving it. The proposed method willster all of the interdependent attributes
into small clusters through optimizing a criteriumction, taken from an information
measure that directly reflects the interdependé&eteeen attributes [34]. By applying this
algorithm to a mixed-mode database, all of the nmegl clusters of attributes within the
mixed-mode database will be discovered. The graumh attributes based on attribute
interdependence relationship within a group willphdirectly to capture different aspects
of relation patterns within each group [36].

Another important process in extracting represemaattributes across a large
mixed-mode attribute group is known as repooling].[After a large attribute group has
been clustered into smaller correlated groups ie freprocessing stage, more
representative governing attributes (based on theiltiple statistical dependence with

9



other attributes) in each group could be pooleéttogr to form a new group, and the new
group will therefore contain more representatiierimation across the entire mixed-mode

data space, as it is not biased towards a few gogattributes.

1.3.1.4 The necessity of identifying a governing attribute in each group to drive
discretization

The rationale behind identifying a governing atiti is to find a representative
attribute in a subgroup of the attributes, basethermutual information calculation among
the attributes. When the mode of an associateithattr group is identifiedfirst, it could be
implemented to drive the data discretizationdiszation of the continuous attributes in the
subgroup, which would be similar to the use of ttess label attribute to drive data
discretization in supervised learning situations. #ternative candidate to drive the data
discretization procedure is that attribute whiclew assumed to be the class label, gives
the highest classification rate on its categormabliscretized outcomes. We refer to the
latter candidate as the “intrinsic class attribuaet the role will be evaluated in the later
experiments. Both the mode and the intrinsic cktssbute could be considered as the
representative or the governing attribute. Bothvijg® a good representation for that

attribute group.

1.4 Special Objectives

Here, we shall outline the specific objectiveshi$ dissertation.
1) To partition a large database into sub-databases containing attributes with
greater interdependence with each other.

For a very large mixed-mode database, differengsuips of the attributes may
be governed by different underlying factors. Eatthe cohesive attribute groups with
the mixed-mode databases could represent a cespiect of the real world system.
Whether the data discretization process of theiootis data is driven by the mode,
by some implicit class attributes or by governitigilautes, the mixed-mode database

must first be partitioned into some coherent subygsowith strong intra-group
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interdependency measurements. ThusThus attributestecing based on the
mixed-mode database must first be calculated, épooling to attribute subgroups
with optimal cluster configuration.
2) To discretize continuous variables in each attribute cluster

Once the mixed-mode database is partitioned intem@mnt attribute subgroups
(clusters), the data discretization of continuoasiables in each subgroup will be
processed based on the concept of mode-drivenetliztion. The mode of an
attribute group is formally defined as that atttéowvhich has the highest sum of
interdependence value with others in the same grdupould be considered the
governing attribute within the group. ThusThus tHass-dependent discretization
algorithm could be applied to achieve the tasihef mode is considered to be the only
“governing attribute” or the “implicit class attribe”.
3) To apply pattern discovery on mixed-mode Databases

After the continuous data discretization is doné&imi each sub-database, those
data can be treated as databases containing algocecal data. Any algorithm for
pattern discovery can then be introduced to eabhdatabase, or even to the entire
database platform after they are linked or joiregether. The patterns discovered here
may be in the general form of a subset of categbdata, interval data or even a
combination of categorical and interval data. Coting mixed-mode database into an
events space, the pattern algorithm is also ableracess missing, noisy, outlying,

and/or distorted data, or even incomplete datagrafiectively.

1.5 Research Outline

In this section, we would like to outline the rasdacarried out in furtherance of this

dissertation.

1.5.1 Development of interdependence measures at different phases

For analyzing mixed-mode data effectively, it wile necessary to calculate the

interdependence value between mixed-mode attritwitkén the database. In order to set

up a unified framework for this purpose, we use tleemalized mutual information

11



measure R [22, 35] to account for the interdepecelerlationship between: a) two
continuous attributes, b) two discrete attributes] then c) one discrete attribute and one
continuous attribute.

There are two logical process phases to using redamutual information in the
proposed system: 1) to direct the attribute clusieof mixed-mode data space, and 2) to
discretize continuous data space within each mirede attribute cluster. In both phases,
the discretization approach discussed above hasdmmpted. In the first phase, we set up
as many bins as the rule of thumb allowed us, to gacuracy in estimating the mutual
information between two continuous attributes witthie same subcluster. 2) In the second
phase, since the final process goal of the dataatization is pattern discovery, the number
of discretized intervals must be equal in the sander of the number of discrete attribute
values within the attribute group. ThusWe will tbfere implement the OCDD (Optimal
Class-Dependent Discretization) method [37] to iobtR between a discrete-valued
attribute and a continuous-valued attribute, shal the number of intervals will also be in
the same order of the governing attributes or tlagority of the discrete attributes. Here,
we should proceed first to define the normalizedualinformation between categorical
data. We then will outline the data discretizatiprocess during conversion of the
continuous random variables into discrete randomsdor various tasks in Phase | and
Phase Il in a more specific manner [35]. The spedgorithms developed for computing
various R are listed as below:

a) Computation module of R between continuous random variables

Here accuracy and bin size will be emphasized.
b) Computation module of R between a continuous attribute and a discrete
attribute
Here, an Optimum Class Dependence Discretizatiggodthm (OCDD) [37] will
be used to first discretize the outcome valuehefcontinuous random variable by
assuming that the discrete random variable is hesdabel. Once the continuous
random variable is discretized successfully, welddake the pair of attributes as

discrete random ones in deriving thRimeasure calculation [37].
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c¢) Computation module of R between two discrete attributes

As for R between two discrete attributes, generally, we Iccouse their

corresponding alphabet size to compte

1.5.2. Identification of mode in an attribute group

In order to investigate the interdependency reatatigp of an attribute with all the
other ones within a subgroup, the conceptsigificant multiple interdependencand of
implementation of an algorithm to identify thmode which has the highest significant
multiple interdependency value with all other &tites in the same group, will be
introduced here [29]. Within all thRBs between mixed-mode attributes being calculated,
both of the modes within any attribute group arel Bhmeasures between attributes could
be used in the k-mode attribute clustering algaritto cluster the attributes in a large
mixed-mode database into smaller ones. The plarddéweloping the attribute clustering

algorithm will be presented in the subsequent sttlses.

1.5.3. Attribute clustering

In this dissertation, we will present a methodoldgygroup mixed-mode attributes
that will be interdependent or correlated with eather. We refer to such a process as
attribute clustering Within this situation, all of the attributes ime cluster should be more
strongly correlated with each other, whereas theroattributes in different groups should
be less strongly correlated [39]. As mentioned kfattribute clustering will be able to
significantly reduce the search dimensionality oy alata mining algorithm, because it is
able to perform searches for interesting relatigpssior for construction of models in a
tightly correlated subset of attributes, rathemtirmthe entire mixed-mode attribute space.
After attributes are clustered, one can selectalsmrmumber for further analysis later.

Regarding the categorical data space, a k-modéater Clustering Algorithm (ACA)
has been developed. However, because of the diffisuof turning a database with

mixed-mode data into one which contains only caiegbdata, we still have noeffective
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attribute clustering algorithm for a mixed-mode atmtse [35]. One of the important
challenges to this dissertation research is toldpvan effective method for this purpose.
We could combine some of these computation modofid® as described in the previous
section into the k-mode attribute algorithm, anenttbuild a new algorithm for clustering

the attributes of the mixed-mode data. We referthis as m-ACA which stands for

Mixed-Mode Attribute Clustering Algorithm [39]. Tour best knowledge, this is the first
attempt which has successfully clustered attribofemixed-mode data. Before this, there
has been no published work which reports being abkechieve this task. This has left a
technological gap in pattern discovery for solveugh a problem with a large mixed-mode

database where no class information is availalslprocess.

1.5.4. The use of mode or “intrinsic class attribute” in an attribute group

To effectively investigate the governing attributesan attribute subgroup, the use of
the mode is important. In general, as its formdinid@n, the mode within a subgroup is
considered to be the most representative attribntése group. In a situation where no
class information is available to us, since it he tmost representative attribute in the
subgroup, it becomes the only ideal candidate tweddata discretization for other
continuous attributes [41]. In fact, it becomes thest way to provide insight to the
subgroup, through its statistical dependence featith other attributes in the same group.

For a problem of a classificational nature, there another candidate to conduct data
discretization. For instance, if we intend to fiad attribute which most resembles a class
attribute for a subgroup if it is considered toyplae role of a class label, we could find a
good one which will give the highest classificati@ie as its outcomes among all of the
other attributes in the subgroup. Here, we woukelji refer to such an attribute as an

“intrinsic class attribute” [40].

In this dissertation, we intend to explore the ehkteristics and the role of these two
attributes from a subgroup. It could be anticipatieat the mode will result the average
interdependence relationship among the entire grang whereas the intrinsic class labels

can be biased to support a certain supportive supgof the attributes which have the
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highest interdependence with this one [39]. Theectbje of this task is to decide which

candidate will perform better as an objective one.

1.5.5. Governing attribute directed discretization

One of the major impediments to the applicatiopattern discovery for mixed-mode
databases is that there has been no easy way (orithis dissertation) to achieve
discretization of continuous data in a databastngetwhen class information is absent or
unavailable. This dissertation proposes a methaolice this challenging problem.

In solving discretization problems, two issues hiagen raised. The first one is that if a
governing (or most representative) attribute realkysts, we could use it to drive the
discretization of all continuous attributes. Them® one is regarding the state of the
interdependence relationship among the attributeshe subgroup. For a very large
mixed-mode database, unless a class label is giveassumed in advance, there is no
reason to believe that the entire database is mpag a single correlated group, or that it
is governed by a single attribute. In fact, thevald be several correlated attribute groups
co-existing inherently in the data set, each mayrestmore correlated information among
themselves than with others; thus it is not medning use the mode of the entire data set
to drive the discretization. In view of this, a rmaeasonable approach is to first find out
whether the database could be optimally partitioiméal several coherent attribute groups
or not, before discretization is applied to therergroup or to each of the clustered groups.

This is an important notion to be explored by thissis.
1.5.6. Pattern discovery of mixed-mode data

After the mixed-mode database partitioning andrdiszation problems are solved as
discussed above, a large mixed-mode database cararisformed into several smaller
databases, all of which may have discrete valued, ada back into a large mixed-mode
database by combining various sub-databases wstraie-valued databases. We then
could apply conventional pattern discovery alganish or data mining methodologies
which are applicable to categorical data, to tkisa$ transformed mixed-mode data space.
As a result, all of the pattern-clustering alganth and data-grouping algorithms which

have been developed for categorical data can noappéed to mixed-mode data space
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without the need for any class information [12]. u§hthis dissertation presents a
fundamental framework toward intelligent patternsodivery on large amounts of
mixed-mode data without relying on prior knowledgdich in many real-world situations
is not available. By discovering patterns from datts based on such an objective
measurement, the nature of the problem domainbgiltevealed. The patterns can then be

applied to solve specific problems as being intgat or inferred with.

1.6. Organization of the Thesis

This thesis is composed of five chapters. In thet fchapter, we have already
introduced the problems to be solved in this dissien. The motivation and goal of the
thesis are briefly described at the same time. e lrexplained the general method for
pattern discovery and data analysis within mixediendata space, that is, first dividing the
large mixed-mode data space into subspaces bguérclustering, and then converting the
mixed-mode data space into a categorical data dpaceode-directed categorization, and
finally, conducting pattern analysis through systke

In the second chapter, a comprehensive surveyttdrpadiscovery and data analysis
for mixed-mode data space, including some existiiggretization methods which are
suitable for all inductive learning systems, wik lntroduced and reviewed; also, the
advantages and disadvantages of these methodsmpaed and discussed in detail.

In the third chapter, we present our new patterscaliery algorithms and the
framework for the mixed-mode data space, which au@es some of the problems
mentioned in the second chapter. The mathematicdl theoretical foundation of this
newly-developed method is presented and discussedktail at the same time. Some
information measurements, such as mutual informagind interdependency redundancy
rate, will take important roles in our discretipsti method (OCDD, Optimal
Class-Dependent Discretization). In this chapter, the best result in discretizing the
continuous attributes among the mixed-data spatasi been also emphasized how to use
dynamic programming methods to solve our objediivmetions step-by-step.

The fourth chapter gives a brief overview of thgeriments in pattern discovery,

based on pattern discovery for a very large mixediendatabase. Various databases,
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including synthetic, bi-model, and real-world datsds, have been used to test this
proposed method, and the performance of our mettmdpared with other existing
methods is presented. Since identical discretizgireprocessing algorithms can be applied
to some of the same databases we have used, dssbfe for us to fairly compare the
performance of the different learning systems totmuous-value learning jobs.

In the last chapter, the conclusions drawn frometkygeriments in the chapters above
are presented. All of the advantages and disadgestaf the algorithms are discussed in
detail. In addition, some possible future work amg@rovements in this area are pointed out

and discussed, as well as additional tasks thabeatone in this area.
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Chapter 2

Review of Related Works

2.1 Overview

By “large mixed-mode database”, we mean a @aglcontaining data with both
continuous and categorical values. In a broadeerame, the data items in the database
could be a) of an ordered nature, such as a real orteger value, or rankings which could
be represented as integers, or b) of an unordesedete nature, such as categorical items
made up of symbols, terms, and/or intervals. Sihcenot possible to convert unordered
discrete data into continuous data, in most praképplications, continuous data unusually
will be converted into interval data, so that b# tlata items in a mixed-mode data could be
processed as discrete events, to render a unif@meivork for event pattern, association,
and rule discovery tasks. For historical reasorastrof the classification algorithms in the
machine learning area can only be used for categjasr nominal databases. Most of these
classical classification algorithms are directlyeabo handleneither databases including
continuous values [3, 14] nor mixed-mode databdgestly and effectively. However, in
the real world, a large portion of data actuallgslcontain both continuous and categorical
values, or what we refer to as “mixed-mode” valuelving the current existing
inductive learning systems been easily appliedhtsé kinds of mixed-mode databases
from the real world and all of the continuous valugithin the mixed-mode databases
should be needed to be discretized first beforekamy of pattern discovery analysis tasks
have been conducted on them. Recently, some résearalso have found that even if
some learning systems are explicitly designed auilt lbor continuous attributes or
databases, these systems still could attain a hagtwiracy than unprocessed databases if
continuous data are appropriately discretized. Asgical result, the limitations of most
inductive learning algorithms will be overcome bigaletizing all continuous attributes
appropriately, before feeding those datasets moeiisting learning systems [3, 6, 7, 12,
23].
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Actually, any discretization could be thougift as a pre-process by which we
partition the value space of a continuous attribote a finite number of intervals, and at
the same time, assign a nominal value to each ehtfi]. Each interval can then be
considered as a discrete event or sample, forrpatiscovery at the event level. After the
discretization process, all the continuous valumgehbeen converted to the discrete event
space, and thus the mixed-mode database is traresfiointo a categorical database, much
more suitable for the subsequent conventional miéténg and pattern discovery tasks.

In this thesis, the researcher has described Hytotew method for discretizing the
values of continuous attributes within a mixed-mad¢abase, which is entirely based on
an information measurement that exactly refleatsitiberdependence relationship between
the continuous attributes and the class attribjiéles

Traditionally, two important factors should khaken into consideration in the
pre-processing phase of partitioning a continucats gpace — the number of intervals,
and the width of each interval. These could eitherdetermined by the discretization
algorithm itself, or provided by the system designer operators [2]. Many existing
partition algorithms for learning systems requine input of the appropriate number of
discrete intervals by the system users. Alternatbly widths or boundaries of the intervals
can be calculated by the boundaries of the dige@tintervals during the partitioning
preprocess. Naturally, the widths of intervals &iscretization are determined by their
boundaries. As a good algorithm, it should normegiguire as few inputs from the users as
possible. In a specific classification task, angikable class information, from the real
world or domain experts, can be of crucial impocgam the discretization process [3].

Some class-dependent discretization methods bagn proposed [4, 29, 22, 20, 17],
and most of them can automatically calculate ang gihhe number of intervals and the
interval boundaries which will be needed in theedaprocess. Nevertheless, some
challenging problems still exist with these: sorf@ss-dependent objective functions do not
effectively utilize the class information withineghmixed-mode database, and currently
there are no effective global optimization alganth reported for the more complex
objective functions encountered in real-world dituas [29].

Regarding the algorithm of OCCD, the discrditwa process has been viewed as the
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partitioning process for the data value spacearrdinuous random attribute into a number
of ordered, adjacent, disjoint, discrete interwaith a certain probability distribution rate.
The expected mutual informatid(C: A) between the clas€) and the attributeX), which
measures the interdependence relationship betweerclass and that attribute, is the
definite objective function for the discretizatiprocess. Fractional programming (iterative
dynamic programming) currently is adopted to caltaila global optimum value of the
expected mutual information among the data in theedamode database. In addition to all
of the global optimization algorithms, the otherpwontant advantage of the OCCD
algorithm is that OCCD can efficiently partitionnmbdal or even multi-modal continuous
data, which is a challenging problem that has re@nbsolved well by other partitioning
methods. Usually, bimodal and multi-modal databaseter to databases whose
distributions have, respectively, two or more safmm@nd distinct peaks, each of which

could correspond to a high-frequency sub-class [7].

2.2 Class-Dependent Discretization of Continuous Data

Discretization, which is an important process transforming a continuous random
attribute into an ordered discrete attribute, ey common practice in data mining and
pattern analysis tasks. Regarding the partitiomihg continuous database, two important
decisions must be made before the task can be etedgi8]. First, the number of discrete
intervals must be determined - but the selectiothefoptimal number of intervals is rarely
discussed in the existing literature [10]. In megtations, the system users decide to
define an appropriate number of intervals at thgirmeng of the task. Second, the width of
each interval for the discretization process mustdetermined. In other words, the
boundaries of the intervals need to be determimddre the task can proceed. Any rules or
criteria for determining these interval boundariel® not usually result in a
universally-applicable method. In this sectiongeaycritical review of related works on the
discretization of continuous data is presented@agdetail [9].

Existing discretization schemes can be divithal two major groups. The first group,

which is based on the probability density functaaiculation, will transform a continuous
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random attribute into a discrete attribute withamsociated set of intervals as its discrete
outputs [28]. The second group will attempt to iart or quantize [36] data into some
intervals --- being similar to the first group eptehat the probability density function of
the random attribute is unknown, and only a snlio§ observations on the outputs of that
attribute is available. The second group is basedearning from data samples of the
mixed-mode databases. This dissertation will fomu$ow to discretize the database from
a continuous attribute which is based on obsenatd thstances. It could be asserted that
most existing algorithms, including OCCD [7], colle¢ extended to handle the data of
continuous attributes with a known probability dgnfunction distribution rate.

With most of the learning algorithms focused on mahdiscrete data space, finding
suitable discretization methods which can transftrendata space of a continuous attribute
to a finite alphabet data space will significantigprove the processing speed of the
inductive learning procedure, and also will avoidewfitting the data space. Since
traditional discretization methods have been agplia clustering and classifying
continuous and mixed-mode data space as earlyedatth 80s and even 70s, the literature
on discretization topics is rich enough [42,38,4These are mainly divided into four
groups: 1) Global versus Local, 2) Supervised \&rsmsupervised, 3) Static versus
Dynamic [8], and finally 4) Mulitivariate versus Wariate [2, 3].

The following sections will discuss all four groups

Global versus Local Discretization Methods

Generally, a local method will calculate out thecessary intervals through
partitioning data in one subspace or in one dinmnsi the instance attribute, and it will
make the partition decision based on that pantidrmation. For example, Hierarchical
Maximum Entropy [6], C4.5 decision trees [29], anQ (Vector Quantization) [17]: all of
these classical discretization methods are locathoas. VQ tries to divide an
N-dimensional continuous data space into a dis@p#ee, and then to represent the set of
points in each interval region by the region intbick the points fall [8]. The C4.5
algorithm is also a well-known example of adoptihg approach, and could thus be used
as a discretizer for normal discretization. Thisssical algorithm applies the local
discretization information on the subsets of saspidative to the nodes of the decision

21



tree during tree construction procedure. Consetuethie same attribute could be

discretized again by the subset of samples beirgiadle to it as the decision tree is
constructed, and the final decision tree may irelddferent partition schemes for the same
attribute [29].

Since the local discretization algorithms implemsrany different partition methods
for different portions of the sample data spacegjclally, one could expect them to be
superior to the global methods, in producing bettassification trees with generally higher
accuracy. However this improved accuracy is achlieata high cost of computational
resources , as the discretization process maypsated many times during the building of
the decision tree.

Any local discretization method will start the sgarprocedure of the interval
boundaries at a coarse and raw parameter for taé level, and then gradually refine the
boundaries later through a step-by-step processt Mothe local discretization methods
will take advantages of heuristics to achieve atinggd solution. The final partitioning
results are usually only locally optimal. Globadatietization procedures, on the other hand,
[16] are easily applied to the entire data spaapand thatfor all of the data space. For
any of the given continuous attributes, they waldiscretized first, before the mixed-mode
data is fed into any machine learning algorithmsgéneral, global discretization methods
will produce a partition result across the entiegadspace of a continuous attribute. Two
typical examples of global discretization are thhi-Merge [14] and1R (One Rule
Discretizer) [12] discretization methods. The Chefge method is a typical
statistically-justified heuristic algorithm. It timlly defines an interval to each observed
value and then applies th test to determine if the adjacent two intervalsusth be
merged together. The threshold @& manages the extent and the steps of the subsequent
merging process [15]. ThER method is a very simple classifier for discreii@at which
will produce a single rule known as the One-Rulee IR algorithm can reach reasonably
accurate results on many discretization processisks, through simply looking down at
any attribute one at a time. This classical alpamitalso attempts to reach a partitioning
result such that a majority of the data space @sehpartitions tries to belong to only one
class, that will be logical subject to a more caist of minimal being acceptable interval

22



widths. Holte [12] has suggested applying iiRemethod for any data space which does not
contain complex relationships among the attribuiglin it. The 1R method may not be a
good discretization method in most situations, beedts objective function is too simple
to represent adequate relationships within the daace, and may well miss some
important relationship when applied to real proldemvith more complex attribute
interaction space[7]. There are many other globgbrahms such as equal-width,
equal-frequency, et cetera. Our discretization wkik also a global one.

Supervised versus Unsupervised Discretization Methods

Supervised and unsupervised discretization methoelswo very popular algorithms
for discretization in the pattern discovery comntyniUnsupervised (also known as
class-blind, or class-independent) methods willptynpartition the continuous data space
without any use of the attribute-class informatiorthe data space, while supervised (also
known as class-aware or class-dependent) methdtdake advantage of the class
information in the data space [9]. Theoretically,using the class information within data
space, the supervised methods should automatigellyhe optimal number of the discrete
intervals for a single continuous attribute, achigwthe best classification rate.

Unsupervised Methods

The simplest and most popularly-used unsupervissdratization method is to split
the entire range of a continuous variable into eépeguency [6] intervals. That can be
described in the following way: given instances and a user-defined number of intetals
the equal frequency method here will calculatevlees of a continuous attribute into the
k bins (intervals). Each bin will contain idealtyk attribute values [6].

The equal-width methods instead divide the range abntinuous variable intk
equal-width intervals. The range is bounded by rigimum and maximum observed
attribute values. The obvious weakness of the alppgeedures is that a large amount of
important information could be lost after the deation, where the values of a
continuous variable are not distributed evenly.

To reduce the amount of lost data, a better methasked on the concept of maximum
marginal entropy, has been proposed [44]. This paitition the data samples from a
continuous attribute by implementing a good criterithat will maximize Shannon’s
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information entropy, and thus try to minimize tlwesd of data information [23, 44]. The

best number of intervals is determined by implemmgna rule of thumb based on the fact
that more intervals generally will lead to lessommfhation loss than fewer would. However,
the method does rely on the estimation of prohghdistribution of the database being fed
into, which is affected naturally by the samplewnt or size. Furthermore, the first upper
bound of the number of intervals should be limiteyl the second-order statistics as
requiring probability estimation. Since the entpecedure of finding global maximum

entropy is a highly time-consuming task, a heuwristpproximation method has been
developed to discretize continuous attributespfiect recognition as well as for clustering
applications [44].

The algorithm ofk-means is also another unsupervised method [36§ dlgorithm
will put each data point int& intervals according to its distance to each irgkoenter
point. This is a recursive process which finallyiages local optimization [36]. Acommon
problem of this method is that is difficult to dediwhich number of intervals would lead to
the best decision for a specific attribute. Gemgréhe best or start number of the intervals
must be determined by domain knowledge or by egpédnt real practice, some kind of
heuristics has to be employed to find the numbentefvals [36].

Given that unsupervised methods will not utilizassl information in calculating
interval boundaries for discretization, it is mdikely that some important information for
classification will be lost, and as a result, valtleat are strongly associated with different
classes might be wrongly assignedto the same mitefvhis could let an effective
classification be much more difficult. The importaualvantages of these methods are that it
will likely be applied to all kinds of real applitans, and be put into any existing mining
systems, not just restricting to classificationyoj@3]. As a logical result, this will be taken
as a significant drawback for supervised learnagks. In addition, none of these methods
have addressed the issue of the determinationeobést number of intervals adequately.
Too large a number of intervals is not always adgoboice, because the performance of
many inductive learners will deteriorate dramaticakith large numbers of discrete
intervals [36]. The reason for discretization is¢éduce the number of possible values of an
attribute, while still retaining original informatn from the data space as much as possible.
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Despite their limitations in some situations, tlaeg both reasonably effective, with certain
specific or restrictive conditions, for most induetleaning tasks [33].

Supervised Methods

Supervised methods utilize the class informatiamictvin the end will place them in a
leading position ahead of the existing discretmatalgorithms. These methods can get
better partition results when compared to thesupervised counterparts using entropy
maximization method [5]. The typical methods in sthigroup include CADD
(Class-Attribute  Dependent  Discretization)[5], Zet§ll], Lambda [23], the
Patterson-Niblett algorithm [26], Chi-Merge [21,35Chi[13], CAIM(Class-Attribute
Independent Maximum) [18], IR[47] and OCDDI[24], amgo others. To be a good
supervised discretization algorithm, it should H#eato define a minimal number of
discrete intervals, while retaining the interdepamey relationship between attributes and
the class labels as much as possible [5].

CADD will discretize a continuous data space by ristigally maximizing the
interdependence relationship between the classbwtds and the continuous-valued
attributes [5]. The mutual information relationsHygtween the class and the attribute
which will maximally capture the interdependence tie objective function to be
maximized here. Theoretically, this kind of objeetifunction can cover the information
relationship well. However it is only a heuristieasch method here, which cannot
guarantee an optimal solution for any situation [5]

Lambda as a supervised method is widely appliethéasure association strength
level between nominal attributes or variables [ZI3}e association strength here will be
indicated by a proportionate reduction in predictError value, that can be collected by
using one attribute to predict another one by uaingodal value prediction strategy among
all of the applications. Lambda is an ineffectitgoaithm in some situations, where the
dependency measurements between two attributesn@regood enough to generate
different modal predictions that will result in Laaa equal to zero [23]. To overcome the
limitation of Lambda, Zeta, a closely related meament, has been proposed [11]; it
measures association strength level between twaetiigated attributes according to the
minimization of the error rate. Here, each intemalue of the independent variable would
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predict a different interval value of the dependemtiable [11]. The important and basic
difference between the Lambda algorithm and the A&gorithm is that the latter one is not
based on a modal-value-based prediction stratagyrabher on the prior assumption that
each value of the independent attribute could pteidifferent value of a dependent one
[12]. This algorithm may be generalized to theadian that onék-valued variable may be
used to predict the values of another one whichahésask values. While the computation
cost of the algorithm is reserved, its disadvantagiat it has the ability to handle only
those kinds of attributes with a small number diiga [12].

Another supervised discretization algorithm, CAlislsimilar to CADD in most ways
[18]. The only different point between those twaalthms is that CAIM will use a
different objective function, to not only captutestinterdependency relationship between
the class attribute and the continuous-valuedbati] but also to consider minimizing the
number value of intervals at the same time [18].

On the whole, while all of these supervised disza¢ion techniques might lead to
more accurate classification results than expediedte they use the class information in
their objective functions, they may not efficigntleach the global optimum for the
objective functions. They have to rely on heuigtiethods to attain local optima —
usually with a heavy computational burden [18]. Bus reason, one could expect that
most unsupervised methods, though not as accusatbeasuperones, are considerably
faster, because they will involve little heurissiearch other than direct sorting of the data
space-- an operation that is very common to athefdiscretization methods. In the end,
though, they will not achieve an optimal interdegemce relationship between a class
attribute and a continuous attribute [18].

Van de Merckt [6] has developed two effective alhons to reduce or even remove
the differences between supervised discretizatiethods and unsupervised discretization
methods. The first method from Van de Merckt [6]aigypical unsupervised clustering
algorithm that tries to find a method for genemgtitne partition boundaries that will
“produce the greatest contrast” by a given contrasasurement. The second method from
Van de Merckt [6], also referred to as the mixegesvised and unsupervised methods,
simply redefines the objective measurement thalt lval maximized by normalizing the
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contrast function based on the entropy of a paritresult. Because calculating the
information entropy for a candidate partition neesdsne class information, this method
should be considered as a supervised one instdacCldnielewski took a very similar
approach through a cluster-based method to loolsdone candidate intervals as well as
boundaries, and then evaluating the partition tedidsed on an entropy-based consistency
function [18]. By comparison with the other unsypeed methods, all of the supervised
methods have their significant advantage in rearhifmetter partition result, because they
do take advantage of using the class informatidhofAthe supervised methods discussed
here always try to have optimal interdependencermétion between class and attributes
from the data space [6, 18].

Static versus Dynamic Discretization Methods

Regarding a static method [32], it will carry ousiagle discretization process for
each feature separately once the maximum numbiateo¥/als is specified. This kind of
discretization algorithms can be thought as a m®¢e mergéN adjacent intervals when
a certain threshold value is found [32]. Almodtthé discretization methods mentioned
above are static ones, and as static discretizatiethods, these algorithms have not
utilized the complex interactions among multiplegibtites within a data space.

All of the dynamic methods [8] will search all piids numbers for the interval
calculations, based on the information being ctdécfrom all of the features
simultaneously. In other words, these kinds of dyicadiscretization methods will
determine the thresholds for a decision tree. Hamg,of the dynamic methods above will
discretize one attribute based not only on therméion of this attribute, but also on its
interaction with other attributes in the same oagadspace, that will explore high order
relationships among the data in the space. Nayutthils will produce better partitioning
results. Bay [25] has proposed a discretizationhoetwhich discretizes one attribute by
considering the effects of all other attributeghie database. Here, two attribute intervals
should be merged together as one if the samplgutztdas fall into them having similar
distributions. The advantage of Bay’'s algorithnthat all of the hidden complex patterns
inside will not be destroyed by the initial disezation process [25].

In the domain of data mining, a dynamic discrettramethod generally is better than

27



a static one. The reason is that a dynamic mettsedf will be of great interest to a data
mining analyst, who may like to develop it to acleiebetter thresholds during the
discretization pre-process. For this method, eaciinme procedure being crossed over the
observed values of the data space could find a paatition result among the continuous
data space that is based on the data intervalsdgifeeing identified up to the point [27].
The method we used has adapted OCDD, which coulcebted as a dynamic algorithm. It
will search the entire data space for the besttjgar{planning from all possible settings for
each repeat routine [27].

The research tasks within the dissertation arelyigtotivated by the search for an
ideal discretization method to transform continuatisbutes to ordered discrete attributes,
so that inductive learning and data mining techesqare able to deal with data with real
values among any mixed-mode data space.

Mulitivariate versus Univariate Discretization Methods

The literature on discretization methods is abutidaut most of them are regarded as
univariate method. Univariate methods consider @di¢he features independently (or only
jointly with a class attribute). Generally, thedrdctions of the discretized attributes with
other attributes are not considered in this way.[T8e algorithms mentioned in the above
sections actually are all univariate ones. As atinarate discretization [19], a single
variable will be considered at the same time (somext in conjunction with the class
attribute).

In fact, most of the existing discretization methate the univariate algorithms
defined by the meaning above. They only use thermmdition being contained in a single
attribute, or at most of a class label. Usuallgytignore the probable interactions of the
examined attribute with other attributes [19]. Hoae as a multivariate discretization, it is
going to become a main direction in data discrétmefor pattern analysis.

Dirkant and A. Grawal [34] have proposed anothegsreach that attempts to avoid
this significant limiting condition. They finely dncarefully divided each of the attributes
into n basic intervals, and then considered all of thesjide combinations of these basic
initial intervals. Their algorithm also encounteta/o challenging problems: long
computation-time and too many discovered patteanddter analysis. The result of the
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combinatorial nature of the algorithm will be diffilt to understand in later analysis
procedures. Since it is almo§(r?) combination of intervals for each attribute, the
computationalcomplexity will be high, especially @vhit takes the information interactions
within other attributes from the same data spate difficult problem of too-many-rules

for understanding is also a logical result of thenber of the attribute combinations. If an

interval has the minimum support requirement, amge containing the interval will too.

Bay [42, 43] has significantly improved the algbnit developed by Dirkant and A.
Grawal [23], and has also proposed a different inariate discretization algorithm for
continuous attributes. First, all continuous atttés will be partitioned intan basic
intervals through a very simple discretization noethsuch as equal-width or even
equal-frequency measurements [42]. Second, it Beginmerge two adjacent intervals
together that make a minimum combination suppod #wen a very similar multivariate
distribution being across all of the variables witithe data space [43]. Based on
comparison with those univariate discretization hods, we have found that there is a
significant advantage through utilizing the intérac information among the attributes
within the data space. It will have success byimglyon finding a better measurement to
determine how to merge the two adjacent interva8].[From the other viewpoints, its
computation cost in time resources may be inconigargp6] with some of the existing

univariate algorithms.

2.3 Attribute Clustering

During the early years when machine leariirst started to be introduced , all
of the researchers focused on a relatively smalbfsattributes in a database. With the size
of real-world databases increasing and the ate#udliversifying, supervised and
unsupaervised learning as well as attribute cligjdrave begun to encounter challenging
problems regarding the classification and predictiwmalysis. In supervised learning areas,
most of the problems in this sector have beenypadlved by feature selection. Even in

unsupervised learning and feature clustering, #aldhse partitioning process also was
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investigated as a partial solution to the probléh®. Later, as data mining and pattern
discovery have begun to come into play, the dinmeradity questions have become a little
relaxed, yet the ultimate problems of high dimenaliy still prevail. Even now, almost all
classical data clustering algorithms have to fde dhallenges regarding the nature of a
large mixed-mode database with a large number bibates [13]. Being diverse
characteristics, a large scale mixed-mode datalefie often influence operational
performance of any conventional clustering algongh

As we admitted that the problems from classificatimd clustering are still two major
challenges for the large scale mixed-mode dataysisalWhile the classification mainly
concern the assignment of the memberships to datanices from the discovered patterns,
clustering works on finding more new implicit “skl’ features and keeping on refining
existing ones [48]. To better cluster and then gece patterns discovered in the
large-scale mixed-mode data, the challenging proble dimensionality reduction mustt be
solved. Usually, a large scale mixed-mode databasea vast number of attributes. Many
of the classical data mining algorithms (such ase@ation rule mining [10], [11], [16],
[53], classification [12], [13], pattern discovgBB], [59], context-sensitive fuzzy clustering
[26], and linguistic summaries [30]) have been deved and even optimized to
overcome these kinds of difficulty, both with respé&o the number of instances, and to
handling a large number of attributes from a mireatle data space.

Following the general idea of the large databpaditioning, this dissertation first
works on how to cluster attributes into subgroupsl d@hen discretizing continuous
attributes in each sub-group. A new methodologylledaattribute clustering for
mixed-mode databases, introduced here, by sub-grouping the attribwtbgch are more
correlated with each other attributes within groupisen all of the attributes within a sub
cluster will be more correlated to each othersubpgrowhile those in different
sub-clusters are less correlated.. Here, an atiériblustering algorithm will help to solve
the dimensionality problem by breaking down théioal mixed-mode database into
subgroups of lower dimensions. By further selectiegresentative attributes in each
subgroup and pooled them together into a single patern disocvry and data mining
process are more more revealing and effective [16], [53].
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The proposed attribute clustering algorithm evolfesn sample clustering. Even
up-to-date, , the sampling clustering is still mmportant research issue in machine
learning research.. Given a relational data tadlepnventional clustering algorithm will
group the data samples into some sub-clusters baseleir similarity relationship [28].
Intuitively, data samples from a cluster will be macsimilar to others within the same
cluster than they will be to those ones belongiogtite other sub-clusters. However,
clustering attributes is a more recent venturbak been proven that attribute clustering is
very useful in many real-world data mining applicattasks (e.g., [23], [19], [47]).

Let us consider that a typical large mixed-modelase is represented byata table
T={w; |i=1,..pj=1,..,n} wherew; O O is the data value of the data samgle
from the attributes. Here each of the rows in this data tabke {w; [i = 1, ...,p,] = 1, ...,

n}, will correspond to one specific data sample aadh column will be an attribute in this
table. While such a data table should be typicatiynposed from a large number of the
attributes, often the number of its samples mightrelatively small. Hence, to handle
a large scale mixed-mode database effectively, in@uld cluster the attributes and
samples into smaller datasets [29], [19]. Talkifgppwt all those of the conventional
attribute clustering algorithms, the attributeshagtmilar expression patterns discovered to
be identified [29] are acceptable and on the ottaard, the similar data samples under a
common data subspace of the specific attributds@itlustered together finally. Generally,
both Euclidean distance and Pearson’s correlatamificient are usually adopted as the
distance measurements for clustering tasks foliromiis data[29], Since relation between
attributes is reflected by their correlation, Edeln distance generally used in clustering
data samples is not an effective measure. Hensaot effective to cluster attributes in
a mixed-mode data space [28]. Then, Pearson’s latoe coefficient is logically
developed later. However, an essential study [25 $hown that Pearson’s correlation
coefficient is less robust for outliers and datahie presence of noise. This dissertation
introduces a new technology (referred to as AC#gmed from thek-modes_Attribute
Clustering Algorithm [22] for clustering attribut@sthin a relational mixed-mode database.
It adopts an effective similarity measurement betvearious types of attributes pairs from
a mixed-mode data space. While the algorithm reploirt [22] applies only to categorical
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data, the new ACA is able to be applied to mixeddenaata by implementing new
information measures to evaluate the interdeperedegiationship between varius types of
attribes in the mixed-mode data space. Theseahirformation measures will direct
the grouping of the attributes into sub-clustershild/ the ACA algorithm has been
applied only to categorical data space in the past, contribution of this dissertation is to
extend ACAs capability to deal with a mixed-modigta space. A search of the literature
reveals no indication that this challenging probleas ever been properly addressed or
fully discussed before [23]. By implementing ACAyafithm on a large mixed-mode data
space, the subgroups of the attributes based an ringual correlation rates can be
discovered and analyzed. Also, we can then stlécsea small part of the top-ranked
attributes in each subcluster for later analyskgaThese important attributes are generally
referred to, in this dissertation, as the governaitibutes of a specific sub-cluster.
Choosing such a small number of the most promiattrgputes for model building and then
pattern discovery [48] will greatly help to improtiee processing speed, and should create
more meaningful and reliable pattern results too.

To select significant attributes in a group , thalue method is widely implemented
[48]. We should note that thevalue can only be implemented on the data sanghteady
pre-classified. If no class label information cométh the database, it cannot be applied
to the following important attribute selection taskn this dissertation, we have introduced
a multiple interdependence measy&MlI) [52], [16]) to select some of the attributeih
the highest correlation rates with the other attab within an attribute subgroup.

Various different algorithms for this important rditite clustering task have been
proposed. These well-known algorithms inclukieans algorithms [49], [17]; Kohonen's
self-organizing map6SOM) [25]; and various hierarchical clusteringthwals [14], [21]. In
the case of similarity measurements, both the Heah distance and Pearson’s correlation
coefficient rate have been widely adopted to clustege numbers of attributes in a large
mixed-mode data space [29].

Given two attributeg\ andA;, i, j O {1, ..., p}, i #], the Euclidean distance between

A andA is given by:
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dE(A’Aj):],i_(\Nik _ij)z (2.3.1)

wherew 0 [J is the measured expression level.

Here, de directly gives the measurement for the differemc¢he individual values of
each attribute. Two attributes which might be samiby measuring Euclidean distance,
may be dissimilar for this expression. Let us coesifor example, two attributes here,
which have the same trend but differ only sliglitym one another by terms of the scaling
factor. Their Euclidean distance should be largkilenthey have the same trend by the
overall trends of attributes being of basic inteiescertain situations [29] - although
Euclidean distance now may not be able to funcéisra good similarity measurement of
attributes.

The Pearson’s correlation coefficient between génasdA is defined as below:

Z (Wi =W, ) (W —W))
de(ALA) = S (2.3.2)

\/Z(Wik _V_Vi)z\/Z(ij _V_VJ)Z
k=1 k=L

here w, and w; are the means ofix andwy, k = 1, ..., n, respectively. has been

considered that each of the attributes being andom one witm observations and has

measured the similarity rates between the two ivelattributes by calculating the linear
relationship among the distributions of the tworesponding random attributes. A good
study [25] has presented that Pearson’s correlabefficient is good enough to data noise
and it could assign a higher similarity It scoreat@air of dissimilar attributes within the

same sub cluster.

Besides using the Euclidean distance, Pearsonrglaton coefficient, most of the
current attribute clustering methods are not ascéffe as the ACA even on continuous
data such as gene expression data [Waiho's papet]fo mention on categorical and
mixed-mode data. Hence, we adopt the ACA apprdéachur purpose. Thus we have to
formulate the mutual information measures betweanous types of attributes in a
mixed-mode databasesThe advantages of this infmmateasure once implemented and

validated, they can be used to direct attributestelung, determining the mode for each
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cluster and eventually drive the discritizationcohtinuous attributes. In comparison to the
Euclidean distance and Pearson’s correlation measaur mutual information measures is
ableto reflect both positive and negative correfai relationships among the attributes in
a large mixed-mode database. The details of thernwdtion measurement and its
significant features in large scale mixed-mode lolada correlational relationships will be
discussed in the following chapters.

Feature selection is another important issue, Wéduan further narrowing down the
attribute number prior to pattern analysis taskiarge number of these kinds of algorithms
have been presented in the past (e.g., [44], [4B)}).select the feature based on the
attributes, the-value is widely implemented within the literaty#r]. Assume that there
are two classes of data samples in a large mixedknuatabase, thevalue t(A) for

attributeA is defined below:

My~ Hy
= 2.3.4
e \/le/n1+022/n2 ( :

where they and o; represent the mean and the standard deviatioheohttribute

value of the attributd for the class, respectively. The, here is the number of samples in
the class asr = 1, 2. The top attributes ranked by thealue then are selected [47]. If
there are multiple classes, thealue will be typically calculated for one classtead of all
the other classes.

The only disadvantage to using thealue to cluster attributes is the redundancyessu
among the selected attributes [18]. To avoid thisbjfgm, methods that can solve both
attribute-class relevancend attribute-attribute redundancyave been developed (e.g.,
[18],[62], [60],). These different methods mainlypply a certain metric to get the
attribute-class relevance relationship (e.g., mftion gainsymmetrical uncertaint}61],
mutual information, thé&-test value [18], et c.) and then use the sameaytbm a different
metric to measure the attribute-attribute redungatevel (e.g., mutual information,
Pearson’s correlation coefficient, the distance [18], et c.). To define a subset of rahev
instead of non-redundant attributes, we normallplément a new methodology called
redundant coveto reduce redundant features based on a seladbgdosip of the attributes,
according to measurements of the attribute-cladsvaace level, and then the
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attribute-attribute redundancy value (see, e.@], [60]). The best way to find a subgroup
with relevant relationships instead of non-redundattributes is the combination of the
measures of both the attribute-class relevanceatintute-attribute redundancy as a single
objective function, and then the grouping of thieilaites that will maximize the function
[18].

It has been noted that both thealue, and the methods that process both the
attribute-class relevance level and the attribtigbate redundancy level, will only be
adopted for the selection of the attributes fromiged-mode space, as the data samples are
pre-labeled before that. In this dissertation, aremgeneral and helpful multiple
interdependence measurement for attributes sejediproposed to obtain one with the

highest correlation with others.

2.4 Pattern and Association Discovery

A. Pattern Discovery

Pattern discovery, as one of the powerful intefligdecision support platforms, is
being increasingly applied to large-scale compéidasystems and domains even in
mixed-mode space [23]. It hs been shown that it theeapacity to extract useful
knowledge from a large data space and presenteto tlecision makers. It is growing
gradually and becomes more important with the quédvelopment of computer
technologies with increasing capacity to collectsgiae amounts of valuable data for
pattern analysis. Extracting relevant informationd auseful knowledge from large
mixed-mode data spaces is still complicated by re¢\@hallenging issues: the limitations
of data storage formats; a lack of expert priorvdeoge for real-world databases; the
difficulty of visualizing the data using ineffigie data mining tools. Data mining is a
series of steps in the knowledge discovery processsisting of the use of particular
algorithms for producing patterns, as requiredh®y real world. Useful information being
extracted from real-world data using traditionatadeining tools may be made better by
the prior perception of a domain knowledge basexpert experience. One could use the

classical data mining tools [32] to get supportiiaga to confirm or refute existing personal
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perception, but one also cannot be assured theg t#re no better-fitting explanations for
the discovered patterns, or even that no impomtdotmation has been missed in the entire
data mining process. For a relatively complex m@ablem with a large data space, all
traditional knowledge acquisition and data miningol$ would become obviously
inefficient, even helpless in some ways.

In decision-support,it is very easy to be biasedth® subjectivities of the domain
experts, or even by pre-assumptions used in datinghand the algorithmic procedures
thereof. While most of the current approaches iag to combine decision trees, neural
network technologies, and the like, for patterscdvery and decision support, the
rationale is to have a systematic solution prangdidecision-making procedure or
predictive rules derived from the patterns inherarthe data space. Regarding most of the
existing data mining systems, some of the accessmygesses like pre-processing, data
cleansing, filtering, attribute reduction are pre@d [27] in order to remove data noise by
bringing out more relevant information from thealapace, and to reduce the search space
and time, and thus cost, for that procedure.

All of the approaches discussed above make resmarativestigate patterns and then
verify the classification by domain experts, whoeafdepend on their prior knowledge -
including the parameters of the predetermined eyatie classification framework. In that
situation, they may be biased, and usually havaedke long iterative search activities with
personal examination and re-examination routinegutares. Due to the limited personal
abilities to explore new patterns and knowledgeis ibften difficult to set up a more
objective base for decision-making. For a largerxedimode database with more
unanticipated variations than normal ones, everdtreain experts would find it difficult
to reach useful results [27]. Furthermore, in thal world, three other important topics
must be faced by the decision-makers, these bdingtexibility and versatility of the
pattern discovery procedure; 2) transparency tagsupporting evidence; and finally 3)
the processing cost and computation speed.

In conclusion, if the tools for pattern discoveiquitd be easily implemented by the

real world users, those tools should have thewialig basic characteristics:
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1. Discover multiple patterns from a data spacé&auit relying on prior knowledge

as supporting evidence;
2. Collaborate with flexible decision objectivesiasituations;
3. Provide significant discovered patterns forftiilowing analysis;
4. Render a reconstruction framework with high spafecomputation at low cost.

To satisfy these important and basic needs, a at@rp discovery approach has to be
developed [22], which should be a primarily data«in one. To discover an unbiased and
statistically significant event automatically andhaustively is now feasible. From
theidiscovered patterns, classification modulesédegorization and prediction can now be
realized. At least one unique feature of the pmesystem is the ability to discover
multiple significant patterns of high order at véagt speed, and then to list them according
to their statistical confidence levels, so thate#tdr understanding of the pattern and rules
can be achieved [22].

Based on this theoretical and systematic framewlasign, a software platform has
been developed along with several new feature nesdulncluding attribute clustering
[17], class-dependent discretization [55]; clasatfon and forecasting [43]. In this
dissertation, the main emphasis has been on ovargothe difficulties in handling
mixed-mode data in the new theoretical framewoskd on demonstrating the
performance of the new platform, especially whempplging to large databases from
real-world problems.

Those very initial research activities began in ¢aely seventies by Wong [15] who
first attempted to explore for quantitative infation measurements and statistical
patterns in English text [22], and then in digitahge databases [24]. With the strong belief
that information in bio-molecular data sequencesoded for bio-molecular structures, he
has made a great effort to calculate quantitatifermation measurements and statistical
patterns discovered in the bio-molecules databdséas been proved that statistical
patterns discovered, which present the underlyimghemical and taxonomical features,
can be identified and then analysed later. Follgwip this line of thought, information on
guantitative measurements of how the data devi&tesh equal-probability and also
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independence models has been set up for Englists temalysis [27] and images
understanding [26]. These important discoveriealljinformed the early basis of today’s
pattern discovery approach, as discussed in tleisighPattern recognition algorithms for
discrete continuous data space were well devell@tedfor other real applications [28].

More recent research has noted that if the dimea$ty of a real mixed-mode
database is very large, this will make the defamtiof patterns discovered within the
traditional pattern discovery framework much lessamingful [29]. Although various
pattern discovery methods have been developed [##@y all depend on the
interdependency of attributes with the consideratibattributes as the random variables.

In fact, all of the higher order pattern discovetstforms have been developed [45]
only for discrete databases. Within those discoiameworks, patterns have been defined
as statistically significant associations of two more primary events from different
attributes in the analysis data space. For exggoetterns in databases in the presence of
data noise, we have developed the adjusted resahadysis approach, which guarantees
that the discovered patterns are not resulting frmmdom association, with a fixed
confidence level. All of the high-order patternsativered can then be applied to support
application tasks such as classification or pattdustering. At the same time, the entire
high-order pattern discovered within the continudasabase was also advanced. Events
here for the continuous data space are definedaasl Bets [45] and thus the pattern
discovery is transferred into an optimization peob of finding the hypercells such that
the frequency of data p oints if contains deviaatigtically significantly from the default
space-wise uniformity model. Analysis tasks, inahgd classification and probability
density estimation, will be easily performed basadhe patterns discovered, as well as the
significant analysis results on both artificial anedl-world databases have been completed.
These automatic pattern discovery algorithms becanmgood and helpful platform to
support different types of decision-making taskghe real world. As reported in [45].
while good solution to discover patterns and carestnon-parametric probability density in
continuous data space with scale invariant pragsettas been developed, the scalability
for this approach is questionable because the bgperfor defining g high order
significant statistical events is built on the giémalgorithm.
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In this dissertation, pattern discovery theoried arethodologies will be broadened to
make a new framework for mixed-mode data spacegchwhin comparison with the
approach proposed in [45], will have much more Mand scalable factors such as: 1) fast
speed in discovery of significant patterns at aenévevel and 2) good interpretation and
inference of patterns discovered in the first step.

B. Existing Methods in Association Discovery

Related to pattern discovery in the data mining roomity is Association Discovery.
Ever since Agrawal et al. [49] defined associatigies (can be considered as a special case
of patterns in pattern discovery) and developed Aeiori algorithm [49], Apriori
association has been widely applied to discoveyuigat event associations and rules in a
data space for data interpretation, analysis, awgrstanding, by searching for interesting
associations within event space by finding evermastions. In this section, we will
review event associations from the perspectives dafa analysis. More general
introductions, and surveys regarding the eventcsson in more detail can be found in
[49].

So far as data analysis is interesting, aprio@asion presents two major advantages:
first, it can produce clearly interpretable resultgh the associations being readily
expressed as English text or as a query task suiQa, and this makes the mining results
easily understood [47]; secondly, it works fairlelwin unsupervised data mining in the
case of no pre-information on this database. As rémult, the approach of apriori
association provides a very good starting pointtfar following exploration of the data
space.

Many studies on this issue have been done to fez@roblems of having too many
association patterns. Some researchers have sedgést additional specifications from
the real world could be applied to help the setectf useful patterns. In [55], Silberschatz
and Tuzhilin have argued that interesting pattestmsuld be those ones unfamiliar to the
end users. They then proposed a revised methddiefsathe end users specify their
existing patterns (knowledge), and then exploreg tim unexpected patterns. Srikant et al.
[57] also used item constraint conditions beingcge by the end users to find interesting
patterns. Basically, the item constraint conditide$ine the events which should appear in
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the patterns discovered. Klemetinen et al. [58) aisplemented the general templates, to
make the end users specify what patterns they nlevew or more like. All of these
methods require that the end users clearly desaonbdefine what kind of patterns they
know or need.

Besides asking for more additional specificatiansf the end users, some researchers
have also tried deleting uninteresting patterngtham certain criteria. Bayardo et al. [59]
proposed to apply minimum improvement in confidemaée to reduce uninteresting
patterns or associations, by comparing the confiedavel between a pattern discovered
and any of its simplifications, and those approadtmat still do not satisfy the minimum
requirement in the pattern improvement are removimivonen et al. [63] also have
developed a method to build up a subset of pattiatscould exist across the entire data
space. Other pruning methods, including pessimestior rate [64], chi-square test [63],
and minimum description length [67], have been psepl in the past.

Because the total number of patterns after remowiag be still very large, how to
group the discovered patterns is very useful. To&voet al. [68] group those ideas by
applying a non-parametric density estimation atham Liu et al. [54] also choose a
special subgroup of patterns to build up a sumroaihe discovered associations. The rest
of the patterns discovered are pooled togetherrdcgp to the summary result. Pattern
pruning and grouping can be used together to futthet the total number of discovered

patterns.

2.5 Pattern Clustering and Data Grouping

In response to the issue of having too many pattena rules being discovered, one of
the most significant development in pattern discpvend datamining in recent years is
pattern clustering and data grouping [2] followegddattern summarization [1]. However,
the development of these methodology up-to-datdieppnly to categorical data. The
importance of the research in this dissertatiortoinable pattern clustering and data
grouping to be applied to mixed-mode databasegrga significant advancement of data

mining in solving the real world problems. Herereebdescription of pattern clustering and
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data grouping will be given.

During a traditional procedure for pattern recaogit patterns are usually referred
to as the pattern vectors. As databases from #iewarld are becoming more complex and
diverse, however,, interesting information and gratt might be scattered in various data
subspaces associated with different models. Ferréd@son it is more reasonable to define
the patterns in the realworld as statistically gigant high-order associations of data items
(events) instead of the pattern vectors in thdreerfeature space. After effectively
discovering statistically significant patterns athagyh order event level, in order to
understand the way the discovered patterns artedetnd organized, it is beneficial to |
group them first into pattern clusters, and thewestigate the probabilistic variations
ofeach cluster from the data group induced by @ems in the cluster. This process is
known as simultaneous pattern clustering and dedapgng. Once all of these steps are
finished, we could understand how those patterteterdocally to each other, and how
pattern sub-groups are scattered within data sebspa

Challenges to Existing Methods in Cluster Analysis

From the view point of data characterization, giogpor clustering can be
implemented to discover the overall entire distiitou patterns of the data space, by
detecting correlational relationships among datidbates, by observing the characteristics
of each cluster, or even by focusing on a particcliaster of entire clusters for subsequent
analysis. As with the review of pattern associatjdhis section will discuss clustering and
grouping from the perspective of the data spacagmomprehensive reviews, with very
detailed looks at pattern clustering, can be foar{@6].

Although the conventional pattern clustering apphoeould be helpful for many real
applications, it is still inadequate for data asaysuch as interpretation and summary. If
the overlapping pattern groups still exist in thetathase, partitioning of the data space
again may divide some of the pattern groups, arsir@e some very important inherent
data structures. Some researchers have suggeptadimg the crisp partition with a fuzzy
partition approach [68]. Bezdek [69] has proposeddizzy k-means clustering algorithm
that applies fuzzy pseudo-partitions instead ofigpgpartition algorithm, while Tamura et
al. [77] also have proposed a clustering methodwijch the users could adaptively
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determine the exact number of clusters. Other fuggyroaches, including fuzzy learning
vector quantization [78], self-organizing maps [7&hd fuzzy adaptive resonance theory
[69], have also been proposed during the past @eéslopposed to grouping data samples,
the other approaches like attribute clustering [6BH co-clustering [66] methods will
group attributes within the data space. Obviouig would help to get the best result in
inevitably splitting overlapping attributes acrag®ups. Both database partitioning [67]
and bi-clustering ([69], [68]) will put data sampland attributes together, while most
bi-clustering algorithms simultaneously clustertamees and attributes, as do some other
algorithms such as two-way clustering [70],whicHl give the clusters on both separately
and then combine again to get the results by dbtaini-clusters.

The big challenges of dealing with a large scalalssse mainly come from the
existence of irreverent attributes, and from higmehsionality across the data space.
Classical approaches trying to deal with high-disiemal data spaces will include both
feature transformation [83] and feature selecti®n] [as basic tools. Principle component
analysis [85] and singular value decomposition [&t¢ two typical cases of feature
transformation tool kits in which we do not deléteelevant dimensions within the data
space; as a result, the difficult problem of iralet attributes remains. The processing
results after transformation are also hard to prtrfor the real applications. Talking about
the feature selection instead of having only thaostevant attributes, to improve
performance of those methods, all of heuristic méshlike random searching [74] have
often been implemented. Another helpful and usefathod which should be mentioned
here for clustering high dimensional data is subspdustering [76], [79] by which we can
search for clusters in different subspaces of @smband after this process, the clusters

derived from different subspaces can be overlappeass one another.
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Chapter 3

The Theoretical Framework for Pattern Discovery in
Mixed-Mode Data

3.1 An Overview with Terminology and Definition

Let us begin with some of the conventions, ternagms and definitions before we
introduce the theoretical framework for patterncdigery for a large mixed-mode data
space. All of the terminologies and definitions\pded in this chapter will be used within
the entire dissertation.

As expressed in the literature review in the chagb®ve, patterns represented by the
underlying statistically significant associatiorfsegents in data are more fundamental than
others. The important advantage of pattern disgoieithat it takes in only statistically
significant associations up to a specified ordet @nen, in principle, most of the statistical
noise (independent events) is blocked from enterlHgwever, when the data space is very
large, the number of discovered associations aled may become enormous, which can
make it difficult to have a comprehensive graspthd associations at the event level
inherent in the data space. Problems become mdfieutli to find solutions for, if
information and significant events’ associationsgimi be scattered over various data
subspaces. In this situation, we do need new appesawhich can get into the data space
to analyze, synthesize and organize local inforomatand also to zoom out, to extract,
regroup, and organize scattered yet interrelatéatration or associations on a broader
base.

As discussed in the literature review above, irtteiaconsidering patterns as entire
vectors over the attribute space, we first defiretgons as statistically significant
high-order associations at the event level, in tuieasubspaces. For this reason, we should
develop new methods to discover statistically $igant local patterns (event level)
effectively. In order to understand well how disemd patterns are organized within data
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space, it is important to find out how they arestdwed via their probabilistic associations

and variations in the data space. From the datzcediby the patterns in the pattern cluater,
we could know how the patterns are related, and pettern groups are realized in the data
subspaces.

Given a data seD that containsN tuples of mixed-mode data. Every sample is
described byN attributes. Some of the attributes have been @edigliscrete values from
their own finite subset of discrete alphabet orcoates, and some have been assigned
continuous values between an upper bavrahd a lower bounii+1 [12].

Let X = { Xq, ... , Xn} represent this attribute cluster from a mixed-mathta space.
For convenience, we permute the attributes (withofitiencing the later analysis) such
that the firstM attributes {Xi| 1<i <M } are discrete-valued attributes, and the remainin
ones Xi' | M+1 <" < N } are continuous-valued attributes. For each discvalued

attributeX;, 1<i <M can be a discrete random variable getting itsesaftom its alphabet

a ={ai1,...,ai”‘}, andm is the cardinality of the alphabet of tith attribute [17]. Each

continuous-valued attribute will be representedXgyM +1 <i < N. Thus, all of the

realization ofX will be denoted by = { X, ... Xk ... Xmk XM+1)ks --- Xk ... Xnk } and
where {xx| 1<i <M } can assign any of the values i, and {xx | M+1 <i’ <N} can

assign any of the values inMlik < O < Ni},and herel is a real number. Under this
definition, each tuple from the data space wilbbealization o set.

During a petabyte era, it will be a natural sitoatthat people will encounter in the
applications of real world problems involving a mi@e amount of various mixed-mode
types of data, which means more than ever befbeedata we collect will come with the
mixed-mode nature, that is, they are made up ofidune style with discrete-valued
(categorical, unordered, nominal) as well as catirs-valued (ordered, ordinal) data [22].
In the past, in both machine learning and patt&tognition researches, most of the
databases gathered were just for classificatiopga@s, or just for clustering by similarity
groups according to a correlated factor from itskattes. If two subgroups of attributes are
independent of each other, their usage in classifio or in clustering will not be at all

meaningful. This problem has been observed by Wbhgl0, 7] in the late 70s. To resolve
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such a problem he has introduced the concept kr@tdatabase partitioning”, by which a
database will be clustered into interdependenbatt groups first, and data clustering will
then be applied to each attribute group which doatanterdependent attributes only. In
other words, it will be without any meaningful deis of attributes, if those attributes have
been found to be totally independent of one anothech a measurement is also necessary
for the attribute grouping with little or no inteplendency with each other one [7]. In short,
we will refer to the first partitioning step as ftieal partitioning” and to the ones which
follow for each attribute clusters as the secoeg,sthorizontal partitioning”. Currently, as
databases grow larger and have been used to registeecessary data for a simple
classification problem, in the case where it corgailiverse data of various types, this
challenging problem now becomes more importantelLattribute clustering has been
developed, for clustering attributes and then ogimy the intra-group attribute
interdependency across the data space. Thus, tp ti@opattern discovery approach to a
large mixed-mode database, this challenging problrould be taken into serious
consideration, and the final solution should benfihu

Another important problem which must be faced wheplying pattern discovery or
data mining with mixed-mode data space, is howisardtize the continuous data in the
mixed-mode data space [11]. This problem will berendeeply addressed, in more detalil,

in the following sections of this thesis.

3.2 The problems encountered and the solution proposed

As mentioned in the previous sections, the two majballenging problems
encountered in current pattern discovery algoritioms$arge mixed-mode databases are: 1)
the large attribute size; and 2) the discretizatbthe continuous data. In fact, these two
key problems are inter-related in some ways.

As we have stated in the data discretization sestiabove, for an effective
discretization approach, it necessarily implemémsclass-dependence concepts. With this
viewpoint, a good discretization algorithm shouldximize the interdependency between

the interval values gotten from the discretizatidrihe continuous attributes and the class
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labels given [17, 15]. By this reasoning, we cowdden apply a more effective
global-optimal-class-dependent algorithm [67] foclass-dependent discretization of the
continuous data space. Actually, in general in daitéing and pattern discovery situations,
the specific class labels may not be given, or matybe available, and then the concept of
maximizing attribute-class dependence usually nit be easily applied for discretizing
the continuous data space.

In this dissertation, we have proposed a new appraa tackle the discretization
problem where class labels are not available imtalzhse. Here we have to address two
problems: 1) whether the data set contains ategwthich characterize different subgroups
within the attribute set; 2) whether the data settains various attribute subsets, each of
which contain subgroups characterized by theirbaiies [15]. Here the first problem is a
sub-problem of the second problem..

First, we argue that for a data set containingri@pendent relationships among its
attributes (features), even though class labelsahsent, there could still exist certain
governing attribute(s) which may reflect such ielahips, just as a class label reflects its
dependence with other features [15]. If the ultenabjective of discretization is to reflect
such interdependent relationships among the dagardgsultant partition of a continuous
attribute should have the highest dependence Wittybverning attribute as though it were
a class label. In view of this, we could use thahatte with greatest interdependence with
all other attributes in the group to drive the dé$ization of the continuous data in the
group, just as in the case of using the class kabeive the discretization process [17].

The second problem arises in a more general seitthgre we have no reason to
believe that there is only one coherent group wibattes governed by a single governing
attribute. There could be various coherent atteébytoups which might even not be that
interdependent with other groups. Thus to forcetedl continuous value data in the entire
database to be discretized basing on the dependencee governing attribute is not very
reasonable [15]. Thus, before we proceed to digeté&in of the continuous data and
subsequently to apply pattern discovery to the ldet@, we might have to partition the
databases vertically, maximizing the interdependeuwicthe attributes within each group
first. In view of this, attribute clustering shouié first applied to the large database so as to
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group attributes together to form more coherentgsups maximizing interdependence
among attributes within the group. Once the da®imslustered according to its attributes,
we could treat each cluster as a coherent attrigrgep. Then we could proceed with the
discretization of continuous data for each of thesnstated in the solution of the first
problem. We could either apply pattern discovergach group, or to the data set, after the
attribute groups are combined into one [7]. Theosdmotion is useful for capturing some
patterns across attribute clusters, even thouglinteedependence between attributes they

span may be weak.

3.3 Interdependence between attributes

3.3.1 Use of interdependence measures at different phases

The major focus of this dissertation, differentnfr@ther works in data mining and/or
pattern discovery, is dealing with attributes whiobuld take on categorical (discrete)
and/or continuous values, that is, a mixed-modeepBased on this viewpoint, the very
basic elements required to find the interdependanceng mixed-mode attributes, and all
those analyses which will follow, need to take is&ue into consideration. In order to use
them under a unified framework, we use the norradlimutual information measurement
[23, 35] to account for the interdependency betwegrdiscrete attributes; b) continuous

attributes; and finally, c) discrete and continuattsbutes.

There are two phases of using normalized mutuatmmétion. In the first phase we use it to
direct the attribute clustering of mixed mode ddta.the second phase, we use it to
discretize continuous data within each mixed-mottebate cluster. In both cases, we
adopt the discretization approach on the continudais. In the first phase, for more
accurate approximation, we could use as many bénsva could as long as each cell
resulted from the two dimensional bins contain enber of data points designated by a rule
of thumbs (say two or three data points per ckiljhe second phase, since the final goal of
discretization is for discovering high order paitern the mixed-mode data, there is a
desirable guideline to confine the number of diszeel values for each attribute cluster so
that we could optimize the“intrinsic group interdependence” which will be aefil later.

In that case we have a unified way in defining rmutoformation though their implication
for an attribute pair of different data mode at tlikerent phases of the process could be
different. Since all the processes of computing tleemalized mutual information R
become computing that between dsicretized datacaiegorical data, using the
conventions outlined in Section 3.1, we proceest fio define the normailized mutual
information between categorical data. We then woatlthe discretization process in
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converting the continuous random variables intcrei® random variable for various tasks
in Phase | and Phase Il in a more specific manner

3.3.2 Normalized Mutual Information between Discrete-Valued Attributes.
Definition 3-1 The interdependence redundancy meashetween two discrete —valued
attributes A; andA;, hereji, j O {1, ..., M}, i #], is defined below [56]:

I(AA
R(A:A) =% (3-1)

Wherel (A : A) is themutual informatiorbetweerd; andA;, which is given by:

mm Pr(A =v, OA =v,
[(A:A)= Pr(A =v, OA =v,)log L (3-2)
A A= 2 PIA = U OA =08 5 er =v,)
andH(A;, A) is thejoint entropyof A, andA; and is calculated by [57]:
m M
H(A,A)=- ZPr(A =V, OA; =v,)logPr(A =v, OA =v,;). (3-3)
k=1 1=

(A : Aj)) measures the average reduction in uncertaintyitafothat results from
learning the value ofy [36]. If I(Ai: A) >I(A: Ay), hDO{1, ..., p}, hzi#]j, the
dependence ok onA is greater than the dependencéobn A [57].

As more accurately stated hefA : A) reflects the degree of deviation from
independence betweéy andA; [57, 15]. IfR(A : Aj)) = 1, A andA are strictly dependent
on each other. IR(A : A) = 0, that means statistically independent frocheather. Also, if
0 <R(A : A) < 1, that mean#; andA are partially dependent on each other [57]. The
definition of the interdependence redundancy measent shows that it is the
independency of the composition of the two attiéisud, and A. This means that the
number of attribute values will not affect the mtependence relationship and values
between the two attribute& andA. The properties of the interdependence redundancy
measurement clearly render an ideal candidate feasmring the dependence among
different attributes within a same attribute clug&].

If two attributes within the same attribute cluséee dependent on one another, they
will be more correlated with one another when coreg@do two independent attributes [33].
The interdependence redundancy measure between tibutes can evaluate the

interdependence or correlation of those two attebulf R(A; : A) > R(A : Ay, hO {1, ...,
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p}, h#1i #j, the dependence measurement between two attribugeslA; is greater than
the value between two attributésandAy,. During an attribute clustering procedure, Bhe

(A : A)) is used to measure the interdependence betwedrutgsA; andA [57].
3.3.3 The mode of an attribute group

In order to investigate the interdependency of tiiibate with all the other attributes
within the same cluster, the concepssafnificant multiple interdependeneyll be defined

below [15].

Definition 3-2 Themultiple interdependence redundancy mea$usé, [57] of an attribute

A; within an attribute group or clust&,= {A |j = 1, ...,p}, is defined as:
p
MR(A) = R(A :A), (3-4)
j=1

whereR(A : A) is the interdependence redundancy measure betim@enttributes ofA;
andA,.

Based on the definition d/IR(A)), we define the concept of thenbde” which is a
specific attribute with the highest multiple integkndence redundanaythin an attribute
cluster or group [15].

Definition 3-3 The mode [57] of an attribute cluster or group={ A |j = 1, ...,p},
denoted by(C), is an attribute, sa&, in the cluster or group such that

MR(A) 2 MR(A) for allj O {1, ..., p}.

3.3.4 Computation of normalized mutual information for mixed-mode data

Currently, there are two stages for the implemématof normalized mutual
information. In Phase |, it is applied to driveriitite clustering of mixed mode data. In
Phase I, it is applied to direct the discretizataf continuous data within each attribute
sub-cluster for pattern discovery. In both stadgles,discretization approach is adopted by
applying the same formulas as those outlined irSinetions above [15,57]. However, there
is a small difference from the computation dettolsthose formulas. Here we will outline
the computational procedures in detail for theeddht computations oR, for various

processes in both Phase | and Phase II.
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A. Computing R between continuous random variables

In phase |, to get a more accurate approximatisrmany bins as possible have been
used, as long as each cell results from the twed#ional bins which contain a number of
data points that are designated by a rule of th(sab at least two or three data points per
cell); then it is estimated from the size of thenpées to the size of the bin set [15].

Here, if S is the sample size and is the number of bins, then the number of data
points per cell could be set@t(m*m)[15]. Whena is defined as the parameter value in the
rule of thumb (2 or 3) then [15]

o = S/(m*m)
and therefore
m <= SQR(S¥)

Thus, ifL is the number of bins, then each cell in the dabdet will havea points.

Oncem is defined for all’ among the continuous attributes, each of them coeld

discrete attribute, i.e., a random variable willvéaits value from its alphabet

a. ={ai1,...,ai”‘}, wherem gets its value based on the cardinality of théalet, ifl, H and

R could be calculated between continuous attribdtesn equations presented above

respectively [57].

B. Computing R between a continuous attribute and a discrete attipute
Regarding theR between a discrete attribute and a continuouiatty, an Optimum

Class Dependence Discretization Algorithm (OCDDJ][®ill be applied to first discretize
the output values of the continuous random atteébutassigning the discrete random
attribute as a class label for this sub-clustece&he continuous random attribute has been
discretized, the pair of attributes could be taksndiscrete random attributes in driving
their R measure calculation [37].
C. Computing R between two discrete attributes

The calculation forR between two discrete attributeXi and Xj, and their
corresponding alphabet sie® andm, will be used for the computation bandH from the

equations mentioned above respectively [37].
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3.4 Attribute Clustering of Mixed-Mode Data

During the attribute clustering procedure, a relsi data table with columns for
different attributes and rows for data samplesiieally divided into attribute sub-groups,
which will allow a smaller number of attributes,tiwin and/or across the subgroups, to be
chosen for data or pattern analysis [15]. Through process to cluster attributes into
smaller attribute sub-groups, the search dimenbimsaof a data mining algorithm for a
mixed-mode are significantly reduced to a workabienber. This reduction of search
dimensionalities is especially critical for datanmig and pattern discovery in a large
mixed-mode data space, because such a databasalliygionsists of a huge number of
attributes with various data in mixed-mode typestaDmining algorithms have been
typically designed and then optimizéd scaleto the numbers of tuples, instead of o the
numbers of attributes [33]. This will become diffit to justify when the number of
attributes is sufficiently larger than the numbdr toples. In such a situatiorithe
likelihood of reporting patterns that are actuathglevant yet their occurrences are due to
chances becomes rather high. It is for the aforéiomed reasons that attribute grouping
and selection are important preprocessing stepsn@mmy data mining algorithms to be
effective when applied to large scale mixed-modt&alise [57]for many data mining
algorithms will be applied to large scale mixed-raodatabase [57]. This thesis has
presented an attribute clustering method for mixextle data which, to our knowledge, has
not been addressed before. The approach preseetedwill group interdependent
attributes into sub clusters by optimizing a crgerfunction derived from an information
measure that reflects the interdependence betweenattributes . Although such an
approach has been proposed for categorical dajaifd4pplications to mixed-mode data
space need special preprocessing.

Another important point of the attribute clusterisghat the clustering procedure has
captured different aspects of association pattéistovered in various attribute sub-groups.
The attribute grouping process provides a broaderverage of various
attribute-interdependent sub-groups. The significatttibutes being chosen from each

attribute group will include information which heva broader representation of the entire
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database rather than information biased towaamsimhting group of attributes in the

database[44].

Definition 3-4 Attribute clusterings a process which findsdisjoint clustersCy, ..., C, of
correlated attributes by assigning each attribot¢A;, ..., A\} to one of these clusters.
Formally, attribute clustering will be defined apracess thall A;, i O {1, ..., N}, A will
be devoted to &,,r O {1, ..., ¢}, whereC, n Cs=0 forallsO {1, ..., c} — {r} [44].

To create some meaningful clusters, the attriblustering process is made so that
attributes within a sub-cluster will have highetemlependency with each other attribute,
whereas the other attributes in different clustees less correlated, or more independent,
than the others [57]. Most of the conventional t©tiag approaches apply to cluster
samples. They usually use a certain distance touneasssimilarity between two objects
like data samples whereas, for this dissertatianywll implement the clustering process to
cluster interdependent attributes instead withmiged-mode data space. To achieve such
task, the k-mode approach reported in [45] has laelpted with the introduction of the
new normalized interdependence information measet@een a) two continuous attributes,
b) discrete attribute and continuous attributes @ntivo discrete attributes. With this new
set of interdependence measures among the mixed-matidbutes, it is possible to
complete [45] the attribute clustering algorithm &large mixed-mode database.

To group attributes of mixed-mode datato clusters, we extend thk-modes
algorithm developed for categorical data to mixeadmdata. By assigning an integgethe
k-mode clustering algorithm will obtaift clusters optimizing the intra-group attribute
interdependence. To find the best choiceklowe use the sum of the multiple significant
interdependence redundancy measure obtained fbrobaster configuration by themode
algorithm. We then choose tHe that maximizes that normalized sum of redundancy

measure of thi-cluster configuration over all the other clustenfigurations.

ACA Algorithm :[45]
thek-Mode Attributed Clustering Algorithm for Mixed-MedData
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1. Initialization. Set the number of clusters lasvherek is an integer greater than or
equal to 2. Of the attributes, we randomly selektattributes, each of which
represents a candidate of the mgdéor C, r O {1, ..., K}. Formally, let # =A,r
0o{1, ...,k i O{1, ..., p}, to be the mode of; andy, # nsfor allsJ {1, ..., k} —
{r}.

2. Assignment of every attribute to one of the clusters. For every attributeA;, i O
{1, ..., p}, and each cluster modey, r O {1, ..., k}, the interdependence
redundancy measurement betwéerandy, , R(A : ) is calculated. AssigA;
toC if RAA i) 2R(A 1 5g) forallsO {1, ..., K} —{r}.

3. Computation of mode for every attribute cluster. For every clusterC,, r 00 {1, ...,

Kb ne = A if MR(A) > MR(A) for all A, A OC,, 1 #].

4. Termination. Steps 2 and 3 are repeated until the mgder each of the clusters
does not change. Alternatively, ACA also terminat&en the pre-specified number
of iterations is reached.

It is important that the number of clusteks,is input to the ACA algorithmWe then

propose a method to choose the nuntbar render the best cluster configuration, that is

one with k clusters [44]. To find the best value for numisethe sum of the multiple

k
significant interdependence redundancy mea@r{R(A :n7,) is used. . For every
r=1 A CC,

cluster configuration obtained by ACA (say wikhclusters) , the overall intra-group
interdependence will be evaluated by the normdlizaultiple interdependence
redundancy measure45]. With this measure, the Al@Arighm will be run for allk O
{2, ..., p}. The valuek that maximizes the normalized multiple interdepsra® redundancy
measure over all the cluster configurations willthleen as one rendering the best cluster
configuration [44]. When reached, thecluster configuration will be taken as the local
optimal configuration. That is, the valueloWvill be selected such that [45]

[

k=argmaxq, 5. > RA 7). (3-5)
r=L ALC,
To discuss the complexity of the ACA algorithm, &t up a relational table, which

includen samples such that each data sample is charactdryzeattributes. Th&k-modes
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algorithm will requireO(np) operations to assign each attribute to a cluSerp 2) and
then it hasO(np?) operations to find the mode for each cluster{SXe[45]. Lett represent
the number of iterations, the computational comipfexf the k-modes algorithm is defined
by [44]:
O(ACA) = Q(k(np+ np?)t)
= O(knp?t)

The ACA computation task can be completed in a mesle amount of time by any

(3-6)

modern computing machine. Furthermore, kKamodes ACA algorithm could easily be
parallelized to run on a platform of clustered rmaptbcessors, because the calculation of

the interdependence redundancy measure can bemeda@s an independent task [45].

3.5 Mode-Driven Discretization of Continuous Data within

Attribute Groups

For finding an efficient algorithm such that itsriigoning result will be better for
most inductive learning systems, a global optimugo@hm has been proposed in this
section, which will apply the class-attribute degemcy information as the criterion for
final optimal discretization [23]. The discretizatioprocess could be taken as the
partitioning of the value of the outputs of a canbtius attribute into a number of discrete
intervals, each of which can be considered as anteand thus the attribute can be treated
as an attribute with ordered discrete values. Thm tglobal optimum” is used in the sense
that the optimal partitioning of the outcome spatthe continuous variable is not obtained
via local perturbation but rather by applying opsiation over the entire space. Actually,
with only a sample of observed outputs of a comusu attribute available, the
discretization process is equivalent to the reduncbf the number of states of an ordered
discrete random attribute by combining some of vitdues together [35]. Here, our
approach will usea inter-dependency measure retateanutual information as a criterion

function for finding the best partition intervals.

3.5.1 Class-Attribute Dependency Measurement
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Before describing the discretization method, inecessary to introduce some basic
concepts for better presenting the proposed idekagnentioned earlier, we might know
that certain information measure can be derivethfdata to reveal if the interdependency
between attributes departs significantly from jmeledent models. In intormation theory,
mutual information plays a central role in measgrinterdependence between random
variables. In this dissertation, we make use of ititerdependence redundancy as the
objective function to drive the discretization ofhe continuous data into discrete interval
events that maximinzing the interdependence betwleemliscretized events and the class
labels. The rationale behind is that if classifioatis the objective of the classificatory
analysis, the partition of the continuous datarojzing the classification rate should be the
best choice as observed in [23].

However, in pattern or rule discovery setting, st classification results could be
based on a subset of very strong rules or pattdimsy may not necessarily represent the
highest interdependence between the class labethdadntrinsic “governing attribute” to
be defined later) and the continuous attributesthar discretization of the continuous
attributes. Hence, in this dissertation, we wilidst both options: 1) discretization driven by
the mode in the sub-set and 2) decretization drivgrihe attribute which has the best
classification rate if it is considered as the slkbel. Of course, of practical concerns are
the size and the distribution of the intervals lo¢ tselected governing attributes. For
instance, among the discrete attributes, shouldheese the binary one or the multi-value
one even if the former has high&¥R (i) measure or highest classification rate [39]. In a
practical setting, domain requirement might havédaconsidered. As for this dissertation
we will confine our study to the exploration of ieetwo criteria so as to gain some insight
to the very nature of complex pattern discovenbfems. As stated in the previous section,
the mutual informatiom (C, A) between class and an attribute can be treatedess af the
null hypothesis of deviation from independence. ddtoour proposed pattern discovery do
not require class labels, the proposed methodolsgymotivated by class-attribute
discretization except that the traditional cladselan the data is replaced by an attribute
which have similar governing effects over otherilatites resembling what a class attribute
would. Hence the problem formulation still resensblsupervised learning and global
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optimization except that the learning and optimaafprocess is driven by a hypothetical
“governing attribute” resembling the class labéfilatites [55]. Before then, we will set up
the classification framework to formulate the detzation scheme driven by the

“governing attribute”.

Given a classification problem, suppose that tlaeedI’ samples for training, each of
which has been pre-classified into one ofkhelassesx (k =1, 2,..., K. Let Cx denote the
set of samples with a class lalogl It is assumed that each one of the training sasisl
represented by attributesA, 1= 1, 2,..., L[57]. In general, it is assumed that all of the
attributesA, I= 1, 2,...,Lare continuous attributes. For any one of thebatkesA, there is
a range of possible values defined within the domr{&i=v\|(k= 1, 2,..., K}, where vj
could be continuous, categorical, or both. We fiefine that the interval [@] is the value
domain for the attributéy (1<| < L). For the purpose of notational simplicity, wecdle to
useA to represent any attribufg and p, [ for its value domain (hera can be negative
infinity and b can be positive infinity, in such situation, thenthin could be denoted bg, (
b)). Let A™® represent a partition sample for the attribAtevith R intervals where the
superscriptr is a natural sequencey(e, ..., &-1,6:) such thab= e<e;<...<er =b. All of
those data sets are the boundaries oRthervals respectively [57].

In general, discretization is a specific proce$stransforming the range of the
continuous attributé\ into a discrete partitioA”™ which will haveR intervals [60]. After
the discretization process, a continuous attrilmitester can be processed as a discrete
random attribute. The class label for each samplebeialso processed as an output of the
random attribute with class labels. We can thenageto dimensional contingency matrix
[60].

As mentioned in the section above for the induckaning systems, a training sample
should consist of M data samples. Each one of thects has been pre-classified into a
specific class from a set &f possible classes. A specific continuous-valuedbate A can
assign a value within a range of values. Basederobserved joint-outputs of the classes
and the uniquely ordered attribute values, a 2-dsimnal contingency table (Table 3-1)
could be constructed.
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Table 3-1 A Contingency Table between the Classes & Discretization Intervals [55]

Interval marked by its upper boun@,
Class € € .. 6 T Total
G Ch1 G - G - Gr G+
- Gy Ot Oz~ O - Ok - O
Cx Ok1 Oz O« - Okr Ok +
Total q+1 q+2 . gQ+r .. g+R M’

In the table above, elemeqt denotes the total number of the observed samples
belonging to classx, where the attribute value is in the interval betwe_; ande. From
this table, the joint probabilitl?,, for a sample belonging to clagscan be calculated
with attribute value in the interval demarcatedtiy boundary pairef;, ). Let x denote
an instance of data set arddenote its class label amgd the attribute value of feature

Then the following equation can be obtained [55],

Ry = PO{Kc =G &< X, S @) = @7)
Here, M’ presents the entirety of data samplesmwkse
The estimated marginal probabilities of claggan be found in the same way, and the

estimated marginal probabilities of inter/bf attributeA are respectively as follows [55],

R = P({xc =) =% (3-8)
P, =P{x, e _,e) = ‘,3/' (3-9)

whereg+ = ZR/r=1 g andg., = XR/k=1 g . With all of these notations above, the

following terms can be defined logically. (For digd exposition, please refer to [38]).
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The class-attribute (CA) mutual information betwélea class label C and the attribute
A (with intervals as outcomes) is defined as

i R, log— (3-10)
r I 3-10
= “TUR 4P,

K
[(C:A)=-
k=

I (C : A)is a measure of interdependence (or more pregiaefgeasurement of the
expected deviation from independence) betweenl#ss tabelC and the attributé. | (C :

A) is asymptoticallyk, distribute. i.e.
. ~ 1 2
1(C:A) = oM X(R-1)(k-1) (3-11)

with (R-1)(K-1) degrees of freedom. By using(C : A), we can test if C and A are

statistically interdependent later via its normatizneasure [38].

3.5.1.1 Class-Attribute Interdependency Redundancy Measure
Similar to the definitions in the section aboveyegi that C and A are both considered
random attributes, and the joint entropy betweenclhss labels and the attribute variables

is H(C,A), then the CA mutual information I(C:A)rcéde normalized by following [57] .

_1(C: A

Roa = H(C, A

(3-12)

Here, RCA is being used as the class-attribute rdefgendence redundancy
measurement, by which an attribute has the charstite of normalized information rate.
Clearly, we can say th&:a = 0 sincel(C:A) = 0 and it can easily be shown thaH(C,A) >
0. Actually, it is well known that Shannon’s entroisybounded by the values @fand+ c.
Therefore, the equation (3.14) below is equal tol@mi(C:A) = 0, which is the basic
condition for total independence betweénand A [55]. It can be asserted that the
interdependence redundancy level between the lelaesand an attribute variable is equal
to O, if the attribute does not provide any helpful velet value for classification
information.

After all of the discussions above, we can reaehcttinclusion thad <Rcp<1. If C

and A are totally dependent on each other, tRep = 1. Rea = 0 if C and A are totally
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independent from each other. More formally, thardibn is set up below [57].
Definition 3-5 Theinterdependence redundaneeasure Between classes C and attribute

A'is defined by the following equation [57],

1(C: A

moM:H@M

(3-13)

Note that botH (C : A) andH (C, A)are non-negative. Hence, the valueRofC : A)is
non-negative as well. The values above not onlyeddmn the number of class labels and
the attribute outcomes, but also on the mutualrmédion measure between the class label
and the attribute. According to [38R (C : A)represents the degree of deviation from
independence between the two attribi@eandA, and wherR (C : A)=1, the attribute and
the class label are strictly dependent on eachrothenR (C : A) = 0O, they are
statistically independent from each other. WlBen R (C : A)< 1, then class label and
attribute A are partially dependent on each other. The dedimifor R presents that it is
independent of the composition from both the atteband class variable. This tells us that
the number of attribute values can be reduced kypikg the interdependence relationship
between the class outputs and the attribute vdB®}s Thus, the discretization process
could be thought of as a normal process to redoeerddundancy brought by too many
possible attribute values. At the same time, tiserdiization process should minimize the
loss of correlation between the class labels ared dtiribute. The properties of the
interdependence redundancy measurement clearlyerend ideal candidate for a
class-dependent discretization criterion which sarve in the discretization method as the
optimization criterion [38]. In view of this, thesdretization issue could be formalized as
finding the partition of attribute A such that tblass-attribute interdependence redundancy
measuremerR (C : A)is maximized.
3.5.1.2 Iterative Dynamic Programming

For the real applications, we frequently need tgesan optimization problem which is
a computational problem in which the objectiveadind the best of all possible solutions..
More formally, we do need to find the best solutionthe feasible region that has the
minimum or the maximum values of the objective fiots, such as the issues being
described in this thesis [66]. Actually, there anany total different algorithms being
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applied to solve the optimization problems suchgasedy algorithm, simulated annealing
and enumeration, among others. Most of these appesacannot guarantee reaching a
global optimum result, and usually achieve onlyuhoptimal or locally optimal solution.
The reason we decided to implement iterative dyngmagramming for this optimization
problem is to satisfy all of the special conditiofigrative dynamic programming is a
programming technique by which an optimization feab is solved by catching
sub-problem solutions, rather than recomputing thémis a branch of nonlinear
optimization for problems involving ratio functiangdhe problem can be described
formally as follows [66],

Consider a set of solutions Z = {z}.

Let r(2) = % where both of the andw are the two real-world functions among a
w(z

certain seZ andw(z)> 0,0z 0Z.
Then the problem is to maximize ¢ where [66].

¢ = max r(z) (3-14)

Let Z* denote the choice set of optimal solutions forgheblem. We first assume that
the setZ* is not empty, and the problem can be solved awanpetric problem formulated
as below [57]:

Let
n(2) =2 - A.(2) (3-15)
then the optimization problem is expressed as etifum of A below,

a(d) = rg]ezlxrA(z) (3-16)

whereA [0 0, and is a real space.
Let Z*(A) denote the set of optimal solutions with the vadineen by A, and also
assume that the problem has at least one optinh#icso The problem can be solved by
using Dinkelbach’s algorithm described by the failog steps [37]:

1. Setk=1 at the start, then select soaiéZ,
2. LetZY =z andA® = r (z) respectively;
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3. Solve the problem(A®) then select a certait7 Z*(A%):;
4. if o(A9) =0, then set’= zandA'= 1(z’) = v(z') | w(z"),
5. Stop and output’ as the optimal solution;

6. Otherwise, set(k+1) = zandA®*V = r(z**D).

7. Increase&k=k + 1 and go to stef.

With the theoretical background above, we promsew globally optimal algorithm
for class-dependent discretization on continuotrgates.

The algorithm ofOCDD has two important points [67]. One is that it aips to get
the maximum value of a parametric objective funttiy dynamic programming, and the
other one is its iterative process, which takesfitlse component to drive towards the final
globally optimum solution for the class-dependastiettization objective.

One of the most important advantages of the itexadiynamic programming approach
is that it applies a process called memorizatiof].[Ih practical operations, the problem
has particular efficiency if the feasible soluti@re just subsets or subsequences of the data

space.

3.5.2 Global Optimal Class-Dependent Discretization

After introducing the basic class-attribute mutirdbrmation and iterative dynamic
programming in detail, we can now present our dlgbaptimal class-dependent
discretization algorithm [23]. The objective furgtiis a specific function associated with
an optimization objective which can determine theliy of a problem solution. Within
this proposed class-dependent discretization algoriwe choose R(C: A) =1 (C: A) / H(C,
A) as the objective function, and the goal of thigective function is to maximize the
mutual information between an attribute,to be diszed and the class attribute. The

following iterative algorithm is adapted from [23].
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ALGORITHM 3-2 [OCDD] [23]
1. Let us assume an arbitrary partitign of an attributeA first, This can be

represented by a quanta matrix based upon the valye, g.., M’ and ;.
2. Initialize u=I(C: A")/H (C, A);

3.  Given u, calculate a new partition’ such thatl (C: A”) — uH(C, K) is

maximized (This step is a key component in our rtigm);
4.  Obtain a new value far byu’'= I(C: AY) / H(C: AY);
5.  Compareuandu’. If u = u’, theny’ is the optimal partition.
6. Otherwise letl = U’ and repeat step, 3and4.

As of now, we have introduced the algorithm whias lsuper-linearly converges to the
optimal solution. Theoretically, this approach ddoweach an optimal partitioning;
practically, there are a number of issues or probleve need to address in real-world
applications [23]. In the following section, we ldiscuss these problems and their impacts
on the algorithm’s performance.

3.5.3 Methods to Reduce the Number of Intervals

Real-world data comes with noise and outliers, iangever clean. The data noise, for
example, being caused by measurement errors oftetuges some small intervals in the
discretization process. Thish is an inherent drakbt@ this proposed class-dependent
discretization approach [46]. Because the objecfivection directly relates to the
dependence between classes and attributes, soredtimeéotal number of the partitioned
intervals produced for high dependence is far &wgd. Thus, the proposed method alone
cannot handle the high-frequency data noise, and essults, it will output too many
intervals in the discretization results.

To minimize the noise influence in the discretiaatiprocess, we should consider
certain data noise suppression techniques, suddinasg, clustering, and regression; to
handle noisy data. We first need to sort the da@band partition it into many small bins,

then finally the database will be smoothed by bieams, by bin median, or by bin
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boundaries, and then the smoothed database caisdretided by the proposed method
[46].

In this dissertation, we have proposed thewalhg algorithm to handle the data noise,
as well as the problem of having too-many-intervaMe have already discussed this
discretization issue in previous chapters.

In the discretization algorithm below, we adopt igerative dynamic programming
module; it discards inferior building blocks follavg every single step [54]. This approach
is also known as pruning and is carried out bypitsning function. While enumerating
2-way joint plans, for example, one of the niceadages of dynamic programming is that
its query optimizers, built using dynamic programgjican be extended [5].

Based on the above theory and methodology, it @vknthat the necessary condition
for dynamic programming and the application ranfjehis algorithm has been proved [5].

Here the the details of the procedure for solvirgggroposed problem is presented.

3.5.4 Smoothing the Raw Data before Partitioning

Data collected from the real world are seldom clddrey could contain various types
of noise for various reasons. Usually, the diszatitbn result could be affected by noise. To
get better performance and tolerance of the alyaritcertain methods for smoothing the
original data will be adopted before discretizatifi}. In fact, how to implement a
smoothing algorithm to decrease the impact of datése while keeping as much
information as possible is a problem to be sohadthough there are many methods to
choose from for data smoothing. It is a naturalisoh to perform a pre-processing of the
originally collected database to filter out the seibefore discretization [5]. The general
method used to filter the data noise is to fincdadahich satisfy some criteria conditions for
noise removal. The following smoothing technigégbrithm Noise Filterinyis proposed
to filter the data noise.

ALGORITHM 3-3 Noisy Data Filtering [5]

1. Given two parameterd fn) as the threshold ¢ 1 and widthw).
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2. For the valuex; for any attribute, a segmest centered ak; is defined with

radiusw, i.e.S = {Xiw,..., X+w}-

3. Find the class lab&lna, within the segmend., which occurs most frequently.
Then let fhax denote the occurrence frequency Ghax  Calculate the
occurrence frequency of the class label of datédth the segmerd, and denote

it by fi.

4. Change the class label rfinto Cyax if the ratio betweertfina andf; is greater

than the threshold

In practice, the smoothing result from this methardis sorted, and the sorting result is
very sensitive to the value settings of threshodehd the widthw. In general, the smaller
the threshold givn, the more the data would beteceas data noise to be smoothed out.
This might mean that some of the important claBgmation may be lost. Also, it has been
noted that the larger the widtinis set, the more data will be deemed to be daserand
would be filtered out [5]. After the smoothing pess, the number of data intervals could
be much smaller than the resultant ones obtainfibla the original database before
applying the smoothing algorithm.

Theoretically, the value of widtv should be related to the number of attribute elsss
This means that the larger the number of attrilwlasses, the greater the valuewofTo
retain the statistical significance, the value loé widthw cannot be too small for the
smoothing process [5]. The value selections for ttivesholdt and widthw are very
sensitive for the smoothing algorithm ddescribedvab as they will directly affect the data
smoothing and the attribute partitioning result.eTabove issues should be carefully
considered in the algorithm as the number of clabsls is generally unknown in most
cases in real world problems.

While we can choose the values of these two passietindw based on our own
experiences with good domain knowledge, we coulshatyg well choosd by using some
probabilistic technique [15]. Given the widthand the number of the clasgesif the

probability thatF,x/fi > t is very small (say less than five), then the clabgl ofx could
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be regarded as noise.

For the interval merging result, the value of pasten widthw is very subtle and
cannot be set up easily. . Let us discuss the foaisEn attribute with too much noise and
likely to be discretized into many intervals if neerging or preprocessing is carried out.
Generally, the larger the is, the fewer intervals we will get. But sometimgss rule need
not be too strict. Ifv is bigger (say more than 10% of the total numbeatwofbute values),
we might get more intervals than a smallConversely, for some attributes with not much
noise, it is hard to determine the besfior them. [19]. In some specific cases, if wetbet
value of widthw at a small value (s&3) or at a large constant value (say more th@¥of
the number of attribute values), the smoothing ritlgm might create more intervals than
those cases without smoothing technique procedhelmther cases, the value of width
may have little impact on the discretization preess[19].

In fact, there is also a trade-off decision iniegtthe value of widtlw. After the value
of widthw has been set, and the attribute has been distetie may have fewer intervals
as a good result, but indeed we may lose certapoitant class-attribute information
contained in the original database. Based on mapgranents we have done, settiwgo
5is a good default value for most databases, attwibetter results can be expected without

losing too much class-attribute information for fppsocessing [5].

3.6 Pattern Discovery for Mixed-Mode Data

The proposed approach for pattern discovery in digsertation is to discretize the
continuous attributes into values of discrete lattes; thus all random attributes will be
treated as discrete attributes. In the followidgtre definitions regarding events, event
associations and patterns will be based on disat&ibutes within a unified system [12].

Definition 3-5 A primary evenbf a random attribute A(1 <i < M) is a realization of

A that gets a value fromz, [12].
The pth (1< p <m) primary event of\ is denoted by i\ = a], or simply x". It is

assumed that two primary events? and x, of the same attributéy are mutually
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exclusive ifp£q[12] .
Let ¢ be a subset of integers {1, ..M,} containingk elementsK < M) andA° be a

subset ofA such thaA°= {A;|i O c}. Then we let X represent the realization Af [12] .

Definition 3-6 A compound evenassociated with the attribute saf is a set of primary

events instantiated by a realizatiof. The order of the compound event igs|. A

sub-compound evewf X; is a compound evenxjs' Oc¢ Ocandc' #0 [12].

A one-compound event is a primary event in the lmga. Ak-compound event is made
up ofk primary events amonigdistinctive attributes. Every data tuple in théatb@ase is an

N-compound event [12] ..

Definition 3-7 Let T be a statistical significance examination. If thecarrence of a

compound evenix] is significantly different from its expectationsea on a default
probabilistic model, it is said thak; is a significant association pattgror simply an

associationor apatternof order |c |, and that the primary events of; have astatistically

significant association according todr,simply they ar@associatedl2] .

In the following context, the terms “pattern”, “sifjcant association”, and event
“association” will be used interchangeably. Whikgtprn discovery [18] is able to discover
both positive and negative patterns, our presemtaaind experiments will only focus on
positive patterns [12]. Naturally, the occurrencésegative patterns in some databases
will be discussed too, where the any of inhereritepas are definitive or deterministic

sometimes.

3.7 Summary

Based on the systematic discussion in detaiv@bwe could summarize our entire
process framework for pattern discovery in a largeed-mode data space by the following

chart.
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Large Mixed-Mode Database (Real World)

Real, Continuous Dataspace

Discrete, Symbolic, Nominal, Categorical.... Dataspace

Interdependence Redundancy Measure R

Between two attributes A; and A;

1(A:A)
RA:A)=—""1°
(A:A) H(A.A)
Continuous vs. Discrete Continuous vs. Continuous Discrete vs. Discrete

Significant Multiple Interdependence Redundancy Measure SMR
within an attribute group or cluster, C={A;|j=1, .., p},

MR(A) =Y R(A A)

Identification the MODE for an Attribute Group
The attribute A; as MODE with the highest MR in that group
MR(A;)) 2 MR(A)) for all j O {1, ..., p}

Attribute Clustering
(ACA)

Discretization of Continuous Data
(OCDD)

Pattern Discovery

Pattern post-processing

(Pattern Clustering and Pattern Summarization)

The general framework of Pattern Discoverv for Large Mixed-Mode Database
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Chapter 4

Experiments and Results

4.1. The Design of Experiments

Since this dissertation proposes a novel approadadkle the discovery of patterns for
mixed-mode data, we must design appropriate expgemsnto verify the premises and
reveal how realistic the proposed approach whetieappo various types of mixed-mode
data. In this section we attempt first to desigeet of experiments with selected data of
various types to test our premises. Next we wiplgmur proposed methodologies to two
large sets of real world databases which are comple not contain class labels but are

backed by adequate domain knowledge for affirmatitihe analytical results.

First we will design a comprehensive synthetic expent with stochastically data

generated to test each of the premises we propd¥edthen compare and analyze the
results to see whether or not our findings compih whe patterns we implanted into the
synthetic data stochastically while barring outialbrmation from the system prior to the

analysis.

Next we will use various sets of UCI data with wais types of data characteristics to test
our proposed method. Most of the data selectedaandiar in the data mining community.
Since most of the data sets we choose contain lelasts, they could be used as the ground
truth, though not absolute, for examining the penance of the proposed method to see
whether or not our method could perform its taskwas anticipated and could render

reasonable results even when the class labelxealgled in the analysis.

Thirdly, which is the most important task, is tgpBpour proposed method to two set of
large real world data of mixed-mode nature. Thst is a meteorology data taken from six
stations located over a wide area for a relatidelyg span of time. The second large
database is related to the processing of coke asdlige from a delay coking plant. The
database consists of a set mixed-mode data callécien in site sensors, regulators and

controllers. The data was collected by the candglatith the help of domain experts. In
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the meantime, additional domain knowledge was aeduio see whether or not the subtle
operational patterns could be discovered by th@gsed system without relying on prior

knowledge before the analysis.
In the design of the experiments, several questiang/ould like to address.

a) Are we able to optimally cluster a large mixedela database containing data of
categorical and continuous numeric or ordered &lue

b) Would the premises that certain attributes witai correlated/coherent dataset
exist that reflect the characteristic of the grangould behave as one that governs
the other attributes within the group like the sl&bels do ?

c) If there are, could the proposed method of ajleniinding and b) identifying of
the attribute which plays the most representatble just like a class label be able
to obtain such attributes? What are the charatteyisf these governing attributes
in the real world situations when the class lalbeésabsent and how they could be
related to the existing class labels? (i.e. whendlass labels are put back to the
data set).

d) If the governing attribute is identified within correlated group of data, how
effective is the discretization of the continuowgaddriven by such attribute,( i.e.
optimizing the interdependence between the govgraitributes and the continuous
attributes).

e) After converting all the data in a mixed-moddabtlase into discrete valued
events, how effective is the pattern discovery aata mining methods when
applying to a mixed-mode database?

f) How useful is the proposed method when applyiog large real world
mixed-mode database in revealing the inherent doniaiowledge and the
operation practice of the real world systems and hloe discovery helps the
domain experts in decision support and machindligg@ce augmented operations?
g) What are the pending problems which should teedoto further enhance our

method;
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It is upon answering the above issues, the follgnemperiments are designed. We hope
that these experiments will shed new light to thd#féicult and not yet unsolved or

properly solved problems.

4.2. Experiment on a Synthetic Mixed-Mode Data Set

This experiment is designed to verify the applibgbiof the proposed discretization
method to mixed-mode data sets. It attempts to angwestions (a) to (e). It tries to
demonstrate the role of the governing attributestinbute clusters and attribute clustering
and in inducing discretization of the continuoutadast like the class attribute would even

in the situation where the class label is absent.

Table 4.2.1 Data description of the synthetic data

Data Description

Data Set Attribute Characteristics No. of Sampleso. & Attributes No. of Classes

Synthetic Data Mixed-Mode Data 300 20 5

1.0
0.8
0.6

A

0.4

0.2

0.0

T 4 F
Figure 4.2.1. Imposition of intrinsic classes by adjusting the attribute values of certain
attributes. In this experiment, values of attribute A; and A3 in the tuples are devised to

reflect class information in the synthetic data set.
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Table 4.2.1 gives a brief description of the sytithdata set with attributes made up of
mixed-mode data. The synthetic data set is compok@@ attributes in which 5 of them
are discrete attributes and 15 of them are contiswadtributes. Each tuple is pre-classified
into one of the five classe€;, C,, Cs, C4 andCs by imposing the values &; and As3
among the tuples as shown in figure 4.2.1. Letarsote the attributes as, ..., Axo. A; and
A, are discrete attributes which can take on a valm alphabets {T”, “F"}. As, A, and
As are discrete attributes which can take on a veahra alphabets {X”, “Y”, “Z'}. A, ...,
Axo are continuous attributes which can take on vaingé < [1 <1} where [is a real
number. As in our designed experiment, attributeesA; andA;3 of each tuple are able to
determine the class membership. For values of atigbutes includingdy, ..., A» and
Aus, ..., Ago, they are generated randomly in the following neann
* Ay “T’if the value ofA;3 < 0.5; ‘F”, otherwise.
* Ag “X'if the value ofA13< 0.5; “Y” if 0.5 < the value 0fA;3 < 0.75; ‘Z’, otherwise.
o Ay “X'if the value ofA; < 0.3; “Y” if 0.3 <the value ofA; < 0.6; ‘Z", otherwise.
* As "Y' if the value ofA; < 0.3; “Z" if 0.3 < the value ofA; < 0.6; “X’, otherwise.
* As-Az: uniformly distributed within an interval betwe@® 0.5] if the value o =
“T7; uniformly distributed within an interval betwed.5, 1], otherwise.
» Ag-As: uniformly distributed within an interval betwefh 0.5] if the value of\; =
“F”; uniformly distributed within an interval betwe€.5, 1], otherwise.
*  Ais-Ai7: uniformly distributed within an interval betwe@ 0.3) if the value of\3
< 0.3; uniformly distributed within an interval beten [0.3, 0.6) if 0.3 the value
of A13 < 0.6; uniformly distributed within an interval tveeen [0.6, 1], otherwise.
*  Aig-Ao: uniformly distributed within an interval betwegd 3, 0.6) if the value of
A13 < 0.3; uniformly distributed within an interval teen [0.6, 1] if 0.3< the value

of A13 < 0.6; uniformly distributed within an intervaltineen [0, 0.3), otherwise.

Using this scheme to generate the synthetic ddtatse clear thatA; and A;3 are two
governing attributes correlating with the attribgt@ups of fs-A12} and {Az, As, Ais-Aco}
respectively. Regardless of the class membershgaol tuple, if such correlation can be

revealed, one should seek the most discriminagpeésentative attribute of each attribute
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group to drive the discretization of the continucatsributes. In our experiment, we
generated 300 tuples where each class containgpb€stin the synthetic data set. Noises
are then added noises there by replacing 25 peotémé tuples with a random real number
between 0 and 1 in the continuous attributes, witandom alphabet ofT" or “F” in A;
andA; and, with a random alphabet o™ “Y” or “Z” in As-As.
Table 4.2.1 gives a brief description of the syhthdata set with attributes made up of
mixed-mode data. The synthetic data set is compos@@ attributes in which 5 of them
are discrete attributes and 15 of them are contiswadtributes. Each tuple is pre-classified
into one of the five classe€;, C,, C;, C4 andCs by imposing the values &% and Ass
among the tuples as shown in figure 4.2.1. Letarsote the attributes as, ..., Axo. A; and
A, are discrete attributes which can take on a valm alphabets {T”, “F"}. Az, A, and
As are discrete attributes which can take on a veshra alphabets {X”, “Y”, “Z'}. A, ...,
Ay are continuous attributes which can take on vaingd < [l <1} where [ is a real
number. As in our designed experiment, attributees?; andA;3 of each tuple are able to
determine the class membership. For values of atgbutes includingd,, ..., A» and
A1s, ..., A, they are generated randomly in the following nmenn
o Ay “T"if the value ofA;3 < 0.5; ‘F", otherwise.
* Ag “X'if the value ofA13< 0.5; “Y” if 0.5 < the value 0fA;3< 0.75; ‘Z’, otherwise.
o Ay “X'if the value ofA;3< 0.3; “Y" if 0.3 <the value 0fA;3 < 0.6; ‘Z", otherwise.
e As “Y'if the value ofA13< 0.3; ‘Z" if 0.3 < the value o3 < 0.6; ‘X", otherwise.
* As-A7: uniformly distributed within an interval betwe@® 0.5] if the value ofA; =
“T7; uniformly distributed within an interval betwed.5, 1], otherwise.
* Ag-Asx: uniformly distributed within an interval betwe@ 0.5] if the value of\; =
“F”; uniformly distributed within an interval betwe€.5, 1], otherwise.
*  Ai4-Ai7: uniformly distributed within an interval betwe@ 0.3) if the value of\3
< 0.3; uniformly distributed within an interval begen [0.3, 0.6) if 0.3 the value
of A13 < 0.6; uniformly distributed within an interval teen [0.6, 1], otherwise.
*  Aig-Ao: uniformly distributed within an interval betwegd 3, 0.6) if the value of
A13 < 0.3; uniformly distributed within an interval taeeen [0.6, 1] if 0.3< the value
of A13 < 0.6; uniformly distributed within an interval taeeen [0, 0.3), otherwise.
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Using this scheme to generate the synthetic ddtatse clear thatA; and A;3 are two
governing attributes correlating with the attribgt®ups of fs-A12} and {Ax-As, A1s-Azo}
respectively. Regardless of the class membershgaoh tuple, if such correlation can be
revealed, one should seek the most discrimina@peésentative attribute of each attribute
group to drive the discretization of the continucatfributes. In our experiment, we
generated 300 tuples where each class containgpiéstin the synthetic data set. Noises
are then added noises there by replacing 25 peotéiné¢ tuples with a random real number
between 0 and 1 in the continuous attributes, witandom alphabet ofl™ or “F” in A;
andA; and, with a random alphabet of* “Y’ or “Z" in Az-As.

The normalized mutual information measure as defimedable 4.2.1 between pairs of
discrete attributes, pairs of continuous attribuéesl pairs of discrete and continuous

attributes are calculated as shown in Table 4.2.2.

Table 4.2.2 Normalized Mutual Information between Mixed-Mode Attributes
of the Synthetic Data

R A, Ay Ay Ay As Ag Ay Ay As Ay Ay Ayp A Aw Ay Ay Ay Ay Ay Ay
Ay 0  0.002 0000 0.176 0.133 0.251 0.294 0.290 0.319 0.303 0.272 0.245 0.011 0.012 0.012 0.011 0.005 0.002 0.008 0.005
A, [0.0021 0.000 0.189 0.002 0.001 0.006 0.007 0.009 0.008 0.012 0.005 0.010 0.310 0.159 0.162 0.137 0.154 0.186 0.202 0.165
A; |0.0002 0.189 0.000 0.002 0.001 0.016 0.009 0.010 0.014 0.010 0.014 0.014 0.320 0.145 0.139 0.098 0.085 0.205 0.171 0.159
A, [0.1762 0.002 0.002 0.000 0.289 0.315 0.162 0.109 0.170 0.088 0.064 0.097 0.016 0.016 0.015 0.009 0.006 0.003 0.008 0.009
As [0.1333 0.01 0.001 0.289 0.000 0.335 0.147 0.161 0.171 0.109 0.135 0.149 0.025 0.009 0.011 0.011 0.003 0.012 0.008 0.010
Ag | 02511 0.006 0.016 0.315 0.335 0.000 0.118 0.114 0.129 0.096 0.109 0.107 0.035 0.027 0.033 0.036 0.032 0.022 0.023 0.036
A; |0.2944 0.007 0.009 0.162 0.147 0.118 0.000 0.112 0.116 0.101 0.125 0.108 0.037 0.032 0.029 0.033 0.038 0.025 0.034 0.034
Ag [0.2899 0.009 0.010 0.109 0.161 0.114 0.112 0.000 0.100 0.101 0.114 0.124 0.033 0.027 0.028 0.027 0.029 0.026 0.030 0.030
As | 0319 0.08 0.014 0.170 0.171 0.129 0.116 0.100 0.000 0.114 0.112 0.099 0.033 0.033 0.053 0.029 0.030 0.027 0.037 0.040
Ay [ 03026 0.012 0.010 0.088 0.109 0.096 0.101 0.101 0.114 0.000 0.103 0.108 0.029 0.021 0.040 0.044 0.040 0.036 0.036 0.035
Ay | 0.2718 0.005 0.014 0.064 0.135 0.109 0.125 0.114 0.112 0.103 0.000 0.114 0.040 0.034 0.034 0.032 0.026 0.029 0.038 0.040
Ay, |0.2449 0.010 0.014 0.097 0.149 0.107 0.108 0.124 0.099 0.108 0.114 0.000 0.021 0.030 0.032 0.034 0.030 0.030 0.032 0.027
Aj; | 0011 0310 0320 0.016 0.025 0.035 0.037 0.033 0.033 0.029 0.040 0.021 0.000 0.171 0.175 0.191 0.182 0.182 0.193 0.189
Ay | 00122 0.159 0.145 0.016 0.009 0.027 0.032 0.027 0.033 0.021 0.034 0.030 0.171 0.000 0.184 0.166 0.166 0.142 0.160 0.172
Ay 100123 0.162 0.139 0.015 0.011 0.033 0.029 0.028 0.053 0.040 0.034 0.032 0.175 0.184 0.000 0.170 0.183 0.175 0.181 0.180
A [0.0106 0.137 0.098 0.009 0.011 0.036 0.033 0.027 0.029 0.044 0.032 0.034 0.191 0.166 0.170 0.000 0.177 0.156 0.157 0.195
Ay; 10.0053 0.154 0.085 0.006 0.003 0.032 0.038 0.029 0.030 0.040 0.026 0.030 0.182 0.166 0.183 0.177 0.000 0.157 0.160 0.169
Az [0.0019 0.186 0.205 0.003 0.012 0.022 0.025 0.026 0.027 0.036 0.029 0.030 0.182 0.142 0.175 0.156 0.157 0.000 0.167 0.181
Ay | 0008 0202 0.171 0.008 0.008 0.023 0.034 0.030 0.037 0.036 0.038 0.032 0.193 0.160 0.181 0.157 0.160 0.167 0.000 0.175
Ay | 0.0046 0.165 0.159 0.009 0.010 0.036 0.034 0.030 0.040 0.035 0.040 0.027 0.189 0.172 0.180 0.195 0.169 0.181 0.175 0.000

As shown in Figure 4.2.2, the optimal attribute tdusconfiguration (no. of attribute
clusters) obtained by ACA is twd £2). ACA identifies two attribute clustersa{, A, ...,
A1} and {Ax-As, Ars, ..., Aog}. It shows that the proposed discretization attpon is able
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to correctly compute the mutual information betweepair of continuous attributes, and
between a discrete attribute and a continuousatérifor ACA to reveal the correlation
between the mixed-mode attributes embedded in thbetyn data set. It was found thst

is the mode of the first cluster whereas is the mode of the second cluster, indicating that
the attributes with the most of the intrinsic ganiag or classificatory characteristics are

found as the mode.
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Figure 4.2.2 The Total Interdependence Redundancy Measure across the Clusters Found in

the Synthetic Data Set.

To evaluate the effectiveness of the generatededization schemes on the performance of
the classification algorithm, we used the discegtizynthetic data set with 25% noise to
train C5.0. 30% of samples are randomly selected ft@rdata set as the training data to
build a decision tree and the rest of samplesrasgdd as the testing data. The comparison
results in Table 4.2.3 show that the proposed ntetfeached highest classification
accuracy. It is worth noting that the discretizatischeme generated by the proposed
method can improve classification accuracy even wihenclass label is excluded. As
regards to the number of generated rules/nodegrtimmsed method also achieves the best
performance while C5.0 produced significantly mapgles when using the discretization
scheme of OCDD which makes use of class label (TABI8).
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Table 4.2.3. The Comparison of Discretization Schemes on Synthetic Data Set

Discretization Method Classification Accuracy ~ Léiddes 'Non Leaf Nodes

OCDD (Discretized by Class ‘
74% 17 leaf nodes 10 non leaf nodes
Label)

Proposed Approach i
83.67% 13 leaf nodes 10 Non leaf nodes
(Class Label Excluded)

4.3. Experiment on UCI Data Sets

4.3.1 Iris Plants Database

The objective of this experiment is to show how pheposed method is able to be applied
to continuous data where the class labels are mgissad how the experimental results are
related to the ground truth provided by the remosfeds labels. This experiment attempts
to answer questions: (b) to (e). Because of thesparency characteristics of pattern
discovery, new light could be shed to reveal hogrdgbverning attributes are related to the

correlated aspects of the attributes and alsothéfclass labels.

The IRIS data set was created by R.A. Fisher, @ahaly Michael Marshall, dated July,
1988 widely used by many and is perhaps the bestknlatabase to be found in the pattern
recognition literature. The data set containsa8s#s of 50 instances each, where each class

refers to a type of iris plant. One class is Iheseparable from the other two; the latter are
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not linearly separable from each other. The nunob@énstances is 150 (50 in each of the
three classes). It contains 4 numeric attributes:
1) sepal length in cm; 2) sepal wiidtlem;
3) petal length in cm; 4) petal width in cm.
with a class label containing three classes:
1) Iris Setosa; 2) Iris Versicolour; 3) Iris Virgoa.

The class correlation of the last two is high.

We first use the class attribute to discretize tbst of the attributes and obtain the
classification rate by discover*e. The classifioatrate for the class labels from the data set

with labels retained is shown as below:

ClassID = 1 Label = Iris-setosa Correct = 50 (100.00%) Incorrect = 0 (0.00%).
ClassID =2 Label = Iris-versicolor Correct =47 (94.00%) Incorrect = 3 (6.00%).
ClassID = 3 Label = Iris-virginica Correct =47 (94.00%) Incorrect = 3 (6.00%).
Totals - Correct= 144 (96.00%) Wrong = 6 (4.00%) Unclassified = 0 (0.00%).

We then remove the class labels from the data seassume that each of the remaining
four as the class attributes (governing attribuire$irn to drive the discretization of all the
continuous data and conduct the classificatiomaéted. The classification rate obtained by

considering each of the attribute as the goveromes is given below.

Sepal length

ClassID =1 Label = [4.35.6) Correct =47 (79.66%) Incorrect = 12 (20.34%).
ClassID =2 Label = [5.6 6.3) Correct =23 (57.50%) Incorrect = 17 (42.50%).
ClassID =3 Label = [6.3 7.9] Correct = 45 (88.24%) Incorrect =6 (11.76%).
Totals - Correct= 115 (76.67%) Wrong = 35 (23.33%) Unclassified = 0 (0.00%).

Sepal width

ClassID =1 Label = [2 3.1) Correct = 55 (66.27%) Incorrect = 28 (33.73%).
ClasslID =2 Label = [3.1 3.4) Correct= 12 (38.71%) Incorrect = 19 (61.29%).
ClassID =3 Label = [3.4 4.4] Correct = 30 (83.33%) Incorrect= 6 (16.67%).
Totals - Correct= 97 (64.67%) Wrong = 53 (35.33%) Unclassified = 0 (0.00%).
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Petal length*

ClassID =1 Label =[1 3) Correct = 50 (100.00%) Incorrect =0 (0.00%).
ClassID =2 Label = [34.9) Correct=44 (91.67%) Incorrect =4 (8.33%).
ClassID =3 Label = [4.9 6.9] Correct = 44 (86.27%) Incorrect =7 (13.73%).
Totals - Correct= 138 (92.00%) Wrong = 11 (7.33%) Unclassified = 1 (0.67%).

Petal width*

ClassID =1 Label = [0.1 1) Correct = 50 (100.00%) Incorrect = 0 (0.00%).
ClassID =2 Label = [11.7) Correct = 44 (86.27%) Incorrect = 7 (13.73%).
ClassID =3 Label = [1.72.5] Correct =44 (91.67%) Incorrect = 4 (8.33%).
Totals - Correct= 138 (92.00%) Wrong = 11 (7.33%) Unclassified = 1 (0.67%).

From the results obtained, it is clear that the tast attributes could be considered as the

governing attributes as they both yield the higluesssification rate even without the class

labels. To our surprise the discretization resditgen by the last attribute is identical to

those driven by the class labels as shown below.

v (Select All)
v [4.35.6)
v [5.6 6.3)
v [6.37.9]

v (Select All)
vi[23.1)

v [3.13.4)
v [3.44.4)

v (Select All)
vi[13)
vi(34.9)

v (4.9 6.9)

v (Select All)
vi(0.11)
vi(11.7)
vi[1.7 2.5
v (Blanks)

(@)

v (Select All)
v [4.35.6)
v (5.6 6.3)
v (6.37.9)
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vi[23.1)

v [3.134)
v [3.44.4)]

v (Select All)
vi[13)
vi[34.9)
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vi[1.7 2.5]

(b)

Fig 4.3.1.1 Discretization results of the four attributes: (a) driven by the class label

and b) driven by the last attribute when the class labels are taken from the dataset.



Table 4.3.1.1 Examples of Pattern Discovered after the Discretization of the Continuous

Data
Index | Residual | Probability | Order| petal width | sepal length | sepal width | petallength | Class
0 21.90830 0.3333333 3 [13) [011) lris-setosa
1 19.24619 0.3 3 [34.9) [11.7) Iris-versicolor
2 18.69314 0.3133333 3 [4.35.6) [13) lris-setosa
3 18.69314 0.3133333 3 [4.35.6) [011) lris-setosa
4 18.67314 0.2866666 3 [4.96.9] [1.7 25] Iris-virginica
5 15.14901 0.2466666 3 [6.37.9] [4.96.9] Iris-virginica
6 1469867 0.2 3 [3.44.4) [011) lris-setosa
7 1469867 0.2 3 [3.4 4.4] [13) Iris-setosa
8 1469590 0.2333333 3 [6.37.9] [1.725] Iris-virginica
9 1271655 02733333 3 [231) 11.7) Iris-versicolor
10 12.39617 0.26 3 [23.1) [34.9) Iris-versicolor
1 12.24744 03333333 2 [011) Iris-setosa
12 12.24744 03333333 2 [13) lris-setosa
13 11.78352 0.18 3 [4.35.6) [3.44.4) lris-setosa
14 11.16101 0.32 2 [11.7) Iris-versicolor
15 11.13915 0.3066666 2 [1.725] Iris-virginica
16 10.96908 0.3133333 2 [4.96.9] Iris-virginica
17 10.95624 0.3066666 2 [34.9) Iris-versicolor
18 10.70474 0.16 3 [5.66.3) [34.9) Iris-versicolor
19 10.30674 0.16 3 [5.66.3) [11.7) Iris-versicolor
20 9691651 0.3133333 2 [4.35.6) lris-setosa
21 8399194 0.1933333 3 [23.1) [1.725] lris-virginica
22 8396237 0.2 3 [23.1) [4.96.9] lris-virginica
23 7.312724 0.2466666 2 [6.37.9] Iris-virginica

Summary: From the experimental results it is obvious thathadl questions from (b) to (e)
are well answered. In this case the discretizatsunlts driven by the governing attributes

are identical to those driven by the class lalidlsely are present.

4.3.2 Mushrooms Data Set (Nominal data)
The mushroom data is a data set consistimgnbf nominal data. It contains 8214 samples

with 23 attributes all of the nominal types (Tabl@.2.1). There are two classes given
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(edibility e and poisonous p). Since the data settains of 23 attributes but only two
classes, it is used to explore the possibilityhef €xistence of attribute subgroups each of
which may govern a certain aspects of the chaiatitsr of the mushrooms. Thus the

guestions we attempt to answer are related to ignsfa), (b), (c) and (e)

Table 4.3.2.1 A Brief Description of the Mushroom Data Set

Attribute No. of
No. of Samples No. of Classes
Characteristics Attributes
Mixed-Mode
8214 23 2
Data

The Mushroom Database is drawn from The AudubonieBod-ield Guide to North
American Mushrooms (1981) by G. H. Lincoff (Predlgw York: Alfred A. Knopf; Donor:
Jeff Schlimmer (Jeffrey.Schlimmer@a.gp.cs.cmu.&ate: 27 April 1987. It has been used
for concept acquisition by Schlimmer, J.S. (198Qoncept Acquisition Through
Representational Adjustment (Technical Report 8)/-D@&ctoral Dissertation, Department
of Information and Computer Science, UniversityG#lifornia, Irvine. and extraction of
logical rules by Duch W, Adamczak R, Grabczewskj1®96) Extraction of logical rules
from training data using back propagation netwoirks,

Proc. of the 1st Online Workshop on Soft Computit:,30.Aug.1996, pp. 25-30, available

on-line at:_http://www.bioele.nuee.nagoya-u.ac.gu#/]

This data set includes descriptions of hypotheseahples corresponding to 23 species of
gilled mushrooms in the Agaricus and Lepiota Fanfgp. 500-525). Each species is
identified as definitely edible, definitely poisamg or of unknown edibility and not
recommended. This latter class was combined \wighpbisonous one. The Guide clearly
states that there is no simple rule for determintiregedibility of a mushroom; no rule like
“leaflets three, let it be" for Poisonous Oak &nd There are 8124 instances and 22

attributes, all nominally valued.
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More specifically, the objectives of this experirhame : a) to explore the ranking of the
attributes according to their normalized SR2 in dia¢ga set with class label included; b) to
compare the ranking of the attributes in the datavéth class label excluded with the
ranking listed in (a); c) to compare the attributeth highest normalized SR2 with the class
attributes; d) to show that in a normal setting #itribute with highest normalized SR2
values is also the attribute that render high diaaton rate if it is considered as a class
label instead; e) to show the classificatory chirstics of various attributes; e) to show
that significant attribute subgroups exist whichan e found by the ACA algorithm; f) to

find the mode of each subgroup and compare it whih class attributes to see how
representative it is with other attributes in theup. Here we shall report the experimental

results

Table 4.3.2.2 shows the ranking of the attributeshie dataset where the class label
attribute is included. Here we observe that ting-type is the mode. Surprisingly, the
class attribute is ranked"®ased on the normalized sum of dependence redeyn&R2.

This implies that some of the attributes chosenratenecessarily closely related to the

class attribute proposed by the biologists.

Table 4.3.2.3 shows the ranking of the attributesoeding to normalized SR2 from
mushroom data after the class label is excludetke Nt the top one remains the same as
that in the ranking when class label is includetle Becond one “stalk root” in Table
4.3.2.3 is ranked fourth in Table 4.3.2.2. The ¢gght ones in Table 4.3.2.2 remain the
same as those in Table 4.3.2.1 indicating the stersie of the governing attributes in

relation with the class label attribute.

We next conduct a series of experimental runs ibgat¢ach of the attribute as the
governing one in turn and obtain the classificatiai® (CR) accordingly. We then rank the
attributes according to the classification rated aompare the ranking results with the
those ranked according to the normalized SR2 vatiained for the attributes in that
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group (Table 4.3.2.4).

Table 4.3.2.2  Attributes from mushroom data (with class label included) ranked
according to normalized SR2. Note that the class label is not ranked top.
Normalized
Ranking | Attributes R1 SR2
1 ring-type 0.3389| 0.136
2 Odor 0.2683| 0.1325
3 spore-print-color 0.305| 0.124
4 stalk-root 0.2149| 0.1198
5 gill-color 0.1547 | 0.1035
6 stalk-color-above-ring 0.389| 0.1034
7 stalk-color-below-ring 0.376 | 0.1003
8 Population 0.225 | 0.0857
9 Classes 0.0009 0.0845
10 Habitat 0.1897| 0.0839
11 stalk-surface-below-ring0.3004 | 0.0838
12 stalk-surface-above-ring0.3893 | 0.0816
13 Bruises 0.0207, 0.0726
14 cap-color 0.2444 0.0644
15 gill-size 0.1077| 0.0613
16 veil-color 0.9019| 0.0561
17 gill-attachment 0.8269 0.0552
18 stalk-shape 0.0131 0.0526
19 gill-spacing 0.3621] 0.0425
20 ring-number 0.7346 0.0351
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21 cap-surface 0.2128 0.0316

22 cap-shape 0.3606 0.03

23 veil-type 1 0

Table 4.3.2.3  Ranking of attributes in mushroom data when the class labels are

excluded.

Ranking Attributes R1 Normalized SR2
1 ring-type 0.3389 0.1357
2 stalk-root 0.2149 0.1231
3 spore-print-color 0.305 0.1215
4 Odor 0.2683 0.1209
5 stalk-color-above-ring 0.389 0.1039
6 gill-color 0.1547 0.1029
7 stalk-color-below-ring 0.376 0.1009
8 Population 0.225 0.0863
9 Habitat 0.1897 0.0855
10 stalk-surface-below-ring| 0.3004 0.0817
11 stalk-surface-above-ring  0.3893 0.0784
12 Bruises 0.0207 0.0709
13 cap-color 0.2444 0.067
14 veil-color 0.9019 0.0578
15 gill-size 0.1077 0.0576
16 gill-attachment 0.8269 0.0572
17 stalk-shape 0.0131 0.0549
18 gill-spacing 0.3621 0.0414
19 ring-number 0.7346 0.0354
20 cap-surface 0.21283 0.0326
21 cap-shape 0.3606 0.0305
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veil-type

B

Table 4.3.2.4 Comparison of Classification Rate (CR) and Normalized SR Ranking of Attributes

in Mushroom Data

CR SR Normalized
Attributes Interval # | Distribution | CR (DT) | CR (PD)
Ranking | Ranking SR2

1 1 ring-type 5 uneven 100 98.15 0.1357
2 2 stalk-root 5 Even 100 85.28 0.1231
3 12 Bruises 2 Even 100 100 0.0709
4 15 gill-size 2 Skew 100 98.38 0.0576
5 17 stalk-shape 2 Even 100 98.38 0.0549
6 19 ring-number 3 Biased 100 92.17 0.0354
7 16 gill-attachment 2 Biased 99.78 97.54 0.0572
8 14 veil-color 4 Biased 98.92 97.54 0.0578
9 18 gill-spacing 2 Skew 98.82 97.42 0.0414
10 4 Odor 9 uneven 80.9 67.26 0.1209
11 10 stalk-surface-below-rin 4 normal 80.8 74.35 0.0817

12 11 stalk-surface-above-rin 4 Even 80.8 79.2p o7y

13 3 spore-print-color 5 uneven 74.59 61.88 0.1215
14 9 Habitat 6 uneven 66.96 51.65 0.0855
15 8 Population 6 uneven 63.76 55.15 0.0863
16 5 stalk-color-above-ring 9 uneven 63.37 58.2 0891

17 7 stalk-color-below-ring 9 uneven 63.17 57.21 1009

18 20 cap-surface 4 uneven 55.29 52.72 0.0326
19 21 cap-shape 6 uneven 45.49 31.02 0.0304
20 6 gill-color 12 uneven 45.42 26.98 0.1029
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21 13 cap-color 10 uneven 44.26 39.03 0.067

22 22 veil-type NA NA NA NA 0

First we observe in Table 4.3.2.2 that in the S&iing, the two attributes, the ring-type
and stalk-root top all other attributes. They aaaked first and fourth in Table 4.3.2.1
when the class labels are present. That the raritige Class Attribute is not ranked top
according to SR2 indicates that its interdependemceith all the other attributes in the
group may not be the highest. Rather, the two rotit&ributes, the ring-type and
stalk-root are more governing in the sense thay theve higher interdependence with

other attributes in the group.

We then conduct classification experiments on these sets of data. We first conduct
supervised classification of the data accordingh® class labels given and obtain 100%
rate of correct classification (Figure 4.3.2.1(a))Ve then move on to classify the same set
of data with the class label removed. In the fasissification run, we assume that the
ring-type would serve as the governing attribute, it is treated as the class label in the
supervised classification run, and again a 100%hef dlassification rate is obtained
(Figure 4.3.2.1(b)). We next take “stalk root” &e fgoverning attribute and again obtain
100% classification rate (Figure 4.3.2.1 (c)). THoube two sets of the classification
details may not be exactly the same, their stramgetation with rest of attributes indicates
they both have some governing characteristics feected by their high classification (i.e.

feature-class dependence) rate.

To address the issues that the class label isan&ed top according to its normalized SR2,
we make the following observations. As pointedha teference source, the Guide clearly
states that there is no simple rule for determitivegedibility of a mushroom. Furthermore,
the biologists also place the last two classesn&khawn edibility and not recommended
into the poisonous category. This means that tkerdd be more subtle attributes that

govern the intrinsic classes. To explore the charestic of the proposed classification

84



scheme, we will conduct the ACA on the set of 28aites and see whether or not they
might be better grouped into subgroups each of wimigiint characterize certain aspects of

the mushroom characteristics.

In our attribute clustering experiments, we will BpACA first to the data set with class
label and then with that without class labels. Wi gompare the results so as to gain

insight into the class labels and the intrinsicegoing attribute issues.

Table 4.3.2.4 gives the attribute groups discoverdle first experiments. This is the result
of the local optimal solution. In the first clustee observe that the class labels are more
closely related to the odor, gill-size, cap-coladahe ring-number of mushrooms. Note
that apart from odor which is rankell,24he SR2 ranking of the rest of the three attgbut
in the group are not too high (cap-color rankel], Il size 18" and ring-number 19. It
shows that as far as the “edibility” and “poisoriopsoperties are concern, these four
attributes are most relevant. The others may haneusinterdependence characteristics to
pull them together into more correlated groups.sTiki an important aspect we should
seriously consider if there is no obvious classlalare available. Unless we have full
knowledge ahead of time, for a given of data we kheuplore its internal association
before a meaningful analysis could be sorted ous iBralso an important objective for the
proposed methodology, especially designed for Sitna when class information is
lacking.

ClassID =1 Label = e Correct = 4208 (100.00%) Incorrect= 0 (0.00%).

ClassID =2 Label = p Correct=3916 (100.00%) Incorrect =0 (0.00%).

Totals - Correct= 8124 (100.00%) Wrong = 0 (0.00%) Unclassified = 0 (0.00%).

(a) Classification rate of Class Labels

ClassID =1 Label = e Correct=2776 (100.00%) Incorrect = 0 (0.00%).
ClassID =2 Label = f Correct = 48 (100.00%) Incorrect = 0 (0.00%).

ClassID = 3 Label = | Correct = 1296 (100.00%) Incorrect =0 (0.00%).

ClassID =4 Label = n Correct = 36 (100.00%) Incorrect = 0 (0.00%).

ClassID =5 Label = p Correct = 3968 (100.00%) Incorrect = 0 (0.00%).

Totals - Correct= 8124 (100.00%) Wrong = 0 (0.00%) Unclassified = 0 (0.00%).

(b) Classification rate of Ring-Type
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ClassID =1 Label = ? Correct = 2480 (100.00%) Incorrect = 0 (0.00%).

ClassID =2 Label = b Correct = 3776 (100.00%) Incorrect= 0 (0.00%).
ClassID =3 Label = ¢ Correct =556 (100.00%) Incorrect =0 (0.00%).

ClassID =4 Label = e Correct= 1120 (100.00%) Incorrect =0 (0.00%).
ClassID =5 Label =r Correct = 192 (100.00%) Incorrect = 0 (0.00%).

Totals - Correct= 8124 (100.00%) Wrong = 0 (0.00%) Unclassified = 0 (0.00%).

( ¢) Classification rate of Stalk-Root
Figure 4.3.2.1 Classification rate of the induced intervals of the governing attributes
using method of decision tree C.40.

(a) Classification rate of mushroom data based ogithen class label.
(b) Classification rate of an assumed “governirtghatte” ring-type from mushroom data

after the class label is excluded,
(c) Classification rate of another assumed “goveynattribute” stalk-root from the

mushroom data after the class label is excluded.
From the comparison results tabulated in Table 43&hd Figure 4.3.2.1 (b) and (c), it
seems that as far as the distribution of the caitegjoralues is concerned, stalk-root has a
more even distribution in charactering the datédaeuit class label.
Table 4.3.2.5 shows the results of attribute chirggeof the data set without class labels by
ACA. Note that the optimal attribute cluster configiion consists of two clusters, one
headed by the mode ring-type and the other by thdemstalk-root. When we look into the
characteristics of these two governing attributes,observe in Table 4.3.2.4 that although
the SR2 value for ring-type is a little higher, ybe distribution of the categories it
encompassed is less even when comparing the clasisificate of their categories from
Figure 4.3.2.1 (b) and (c) . Thus as far as theessmtative characteristic of these two
attribute in the attribute groups is concerned, ltter seems to offer a better candidate.

This will be explored by our future research.

A close look at the attributes forming these twarelated groups, we note that all the
attributes associated with the class label (Tat8e24b) reside in the second group headed
by the mode of stalk-root. That means that this grslpuld provide better correlated
attributes with the classes of edibility and pomas This kind of insights for the analysis
and the understanding of a large database with rnlittle class information could be
effectively provided by 1) our ACA, 2) our mode find algorithm and 3) our governing

86



attribute driven discretization and classificatmmocedure presented in this dissertation.

Table 4.3.2.5  Attribute Clusters of Mushroom Data with class label included. Three
cluster configurations are the optimal. They are tabulated with the attributes in each
cluster ranked according to the normalized value of the attribute of the group.

Attributes R1 Normalized SR2

Odor 0.2683 0.1823

Classes 0.0009 0.1381

gill-size 0.1077 0.0993

cap-color 0.2444 | 0.0571

ring-number | 0.7346 0.0356
Attributes R1 Normalized SR2
ring-type 0.3389 | 0.2157
spore-print-color 0.305 0.1596
stalk-color-above-ring 0.389 0.1417
stalk-surface-above-ring 0.3893  0.1407
stalk-surface-below-ring 0.3004| 0.1406
stalk-color-below-ring 0.376 0.1382
gill-color 0.1547 | 0.1284
Bruises 0.0207 0.1184
stalk-shape 0.0131| 0.0758

Attributes R1 Normalized SR2

stalk-root

0.2149

0.1359

population

0.225

0.1265
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Habitat 0.1897 0.1086

gill-spacing | 0.3621 0.0667

cap-surface | 0.2123 0.05

cap-shape 0.3606 0.0422

Table 4.3.2.6  Attribute Clusters of Mushroom Data with class label excluded. Two
cluster configuration is the optimal. They are tabulated with the attributes in each cluster
ranked according to the normalized value of the attribute of the group.

Attributes R1 Normalized SR2
ring-type 0.3389 0.2157
spore-print-color 0.305 0.1596
stalk-color-above-ring 0.389 0.1417
stalk-surface-above-ring  0.3893 0.1407
stalk-surface-below-ring 0.3004| 0.1406
stalk-color-below-ring 0.376 0.1382
gill-color 0.1547 0.1284

Bruises 0.0207 0.1184
stalk-shape 0.0131 0.0758
Attributes R1 Normalized SR2
stalk-root 0.2149 0.1352

Odor 0.2683 0.1113
population 0.225 0.1087

Habitat 0.1897 0.1007
cap-color 0.2444 0.0695

gill-size 0.1077 0.067
gill-spacing 0.3621 0.0527
cap-surface 0.2123 0.0395
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cap-shape 0.3606 0.0382

ring-number 0.7346 0.0377

Summary: The experimental results show that in order teehan in-depth understanding
of a large dataset, it is beneficial to go throtigh attribute clustering process. The attribute
clustering and the identification of modes (or otto® governing attributes) in the original
data set and also the clustered attribute groupereconsiderable insights into the inherent
makeup of the data and the problems they reflecthe situation when no class label is
available, the mode in the dataset and in each ohé attribute cluster can be

considered as the most representative or the goveng one.

4.3.3 Adult Data Set (Mixed Mode Data)

This database was extracted from the census bdetabase found at (Table 4.3.3.1) by
http://www.census.gov/ ftp/pub/DES/www/welcome.htihktontains 48842 instances of
mix of continuous and discrete data with 14 attelsyTable 4.3.3.2). It has been used for
predictive whether a person makes over 50k a yeaot We use this mixed-mode data set
to answer the questions (a) to (e). More specificlie experiment is used: 1) to
demonstrate the existence of attribute subgroufiseimixed-mode data set; 2) to illustrate
the attainment of attribute cluster configurationl ahe grouping of cluster items in
situations with or without class label; 3) to shiw classification characteristics of various
attributes in different attribute groups found b@4A; 4) to show that the attribute with
highest normalized SR, or simply the mode, in tiebaite group is usually with high
classification rate if it is assumed to take thie af a class label. The experiment results
show that the mode in each attribute group/clusdarbe considered as the most
discriminative/representative or governing attrébtd drive the discretization of continuous

attributes in the attribute group/cluster.
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In this experiment, the proposed method is usedaloulate the normalized mutual
information,R, among the attributes. Their values are tabulmidéble 4.3.3.3 for the data
set with class label excluded and in Table 4.3)\8itH class label included.

Based on th® values, our ACA found the optimal cluster confafion in the given data
set. Table 4.3.3.3, Table 4.3.3.4 and Table 4.36pbrts the value of the sum of significant
MR calculated during the clustering process. Ibliwious that 3 attribute clusters and 5
attribute clusters are local optimal for the datthuwhe class label excluded and those with
the class label included respectively. In this rdgawe compare the attribute items and the

modes in each of the attribute clusters in Tal#e346

Table 4.3.3.1 A Brief Description of Adult Data Set

Data Description
Data Set Attribute Characteristics No. of Samples o. & Attributes No. of Classes

Adult Mixed-Mode Data 48842 14 2

Table 4.3.3.2 The Attributes of Adult Data Set

Attribute Name Characteristics
Ay Work class
A, Education
Ag marital-status
A4 Occupation
Discrete
As Relationship
As Race
A; Sex
Ag native-country
Ag Age
Ao Fnlwgt Continuous
Aqr education-num
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As capital-gain

Aqz capital-loss
Aus hours-per-week
Class Income Discrete

Table 4.3.3.3 Normalized Mutual Information betwédmibutes of Adult Data Set with Class

R Ay A, As Ag As Ag A; Asg Asg Ao Ay A1 Az A
Ay 0.000 0.010 0.009 0.100 0.009 0.004 0.007 0.005 0.005 0.002 0.007 0.003 0.001 0.004
A, 0.010 0.000 0.007 0.053 0.011 0.004 0.002 0.021 0.030 0.001 0.763 0.008 0.004 0.010
As 0.009 0.007 0.000 0.015 0356 0.007 0.063 0.006 0.097 0.000 0006 0.012 0.007 0.017
A, 0.100 0.053 0.015 0.000 0.022 0.004 0.033 0.010 0.018 0.001 0.052 0.005 0.002 0.025
Asg 0.009 0.011 0356 0.022 0000 0.008 0.147 0.006 0.080 0.000 0.006 0.012 0.006 0.024
Ag 0.004 0.004 0.007 0.004 0.008 0.000 0.006 0.08 0.001 0.001 0.005 0.001 0.001 0.001
A, 0.007 0.002 0.063 0.033 0.147 0.006 0.000 0.02 0.006 0.01 0.002 0.004 0.004 0.023
Ag 0.005 0.021 0.006 0.010 0.006 0.088 0.02 0.000 0.003 0.007 0.038 0.003 0.002 0.002
A 0.005 0.030 0.097 0.018 0.080 0001 0.006 0.03 0.00 0.009 0.017 0.007 0.007 0.026
A 0.002 0.001 0.000 0.001 0.000 0.001 0.001 0.07 0.009 0.000 0.004 0.003 0.004 0.008
Ay 0.007 0.763 0.006 0.052 0.006 0.005 0.002 0.038 0.017 0.004 0.000 0.003 0.001 0.009
Ap 0.003 0.008 0.012 0.005 0.012 0.001 0.004 0.03 0.007 0.003 0.003 0.000 0.001 0.014
Ay 0.001 0.004 0.007 0.002 0006 0001 0.004 0.002 0.07 0.004 0.001 0.001 0.000 0.007
A 0.004 0.010 0.017 0.025 0.024 0001 0.023 0.002 0.026 0.008 0.009 0.014 0.007 0.000

Table 4.3.3.5 Normalized Mutual Information between Attributes of Adult Data Set
with Class Label included

R A, A, As A, Ag Ag A, Ag Ag Aqp Ay Ay Ay Ay Class
Ay 0.000 0.010 0.009 0.100 0.009 0.004 0.007 0005 0005 0.002 0007 0003 0001 0.004 0.009
A, 0.010 0.000 0.007 0.053 0.011 0.004 0.002 0.021 0.030 0.001 0.763 0.008 0.004 0.010 0.026
As 0.009 0.007 0.000 0.015 0356 0.007 0063 0006 0.097 0000 0006 0012 0.007 0.017 0.063
A, 0.100 0.053 0.015 0.000 0.022 0.004 0.033 0.010 0.018 0.001 0.052 0.005 0.002 0.025 0.022
Ag 0.009 0011 0356 0.022 0000 0.008 0.147 0006 0.080 0.000 0006 0012 0.006 0.024 0.059
Ag 0.004 0.004 0.007 0.004 0.008 0.000 0.006 0.088 0.001 0.001 0.005 0.001 0.001 0.001 0.005
A, 0.007 0.002 0.063 0.033 0.147 0006 0.000 0.002 0006 0001 0002 0004 0004 0.023 0.022
Ag 0.005 0.021 0.006 0.010 0.006 0.088 0.002 0.000 0.003 0.007 0.038 0.003 0.002 0.002 0.005
A, 0.005 0.030 0097 0018 0080 0001 0006 0003 0000 0009 0017 0.007 0.007 0.026 0.032
Ay 0.002 0.001 0.000 0.001 0000 0001 0001 0007 0009 0000 0.004 0.003 0.004 0.008 0.000
Ay 0.007 0.763 0.006 0.052 0.006 0005 0002 0038 0017 0.004 0000 0003 0001 0.009 0.037
A 0.003 0.008 0.012 0.005 0.012 0.001 0.004 0.003 0.007 0.003 0.003 0.000 0.001 0.014 0.085
A 0.001 0.004 0.007 0002 0006 0001 0004 0002 0007 0004 0001 0001 0000 0.007 0.032
A 0.004 0.010 0.017 0.025 0.024 0.001 0.023 0.002 0.026 0.008 0.009 0.014 0.007 0.000 0.025

Class 0.009 0.026 0063 0.022 0059 0.005 0022 0005 0.032 0000 0.037 0085 0032 0.025 0.000§

In our proposed method, no class information is meglkiinevertheless, the results reported
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in Table 4.3.3.9 shows that even without classrmédion, our proposed method and ACA
are able to group interdependent attributes togeiiies demonstrates the effectiveness of

our method to extract the same intrinsic infornrafitherent in the classes.

Table 4.3.3.6 The Sum of Significant MR obtained for each k of the k-Mode ACA

Excluded Class Label Included Class Label
No. of Attribute Cluster, k
Sum of Significant MR Sum of Significant MR

2 0.993065 1.559977
3 *1.546628 1.599815
4 1.536047 1.597278
5 1.478268 *1.685009
6 1.452389 1.603821
7 1.498127 1.504654
8 1.53544 1.522862
9 0.708419 1.032613
10 1.366747 1.393317
11 0.553327 0.914691
12 0.452937 0.553327
13 0.355844 0.452937
14 0 0.763257
15 - 0

* Highest Sum of Significant MR Implies Optimkl=3 for Data Set Dropped Class Label
and Optimak = 5 for Data Set Included Class Label.

Table 4.3.3.7. The Plot of the Sum of Significant MR (with class label dropped)
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Table 4.3.3.9. The Attribute Clusters and their Mode Obtained by ACA

Attribute Cluster ltems

Attribute Dropped Class Label Included Class Label
Group
1 *native-country, race, fnlwgt *native-country, radelwgt
2 *education, workclass, occupation, *education-num, education
education-num
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3 *relationship, marital-status, sex, age, *relationship, marital-status, sex, age

capital-gain, capital-loss, hours-per-week

4 - *workclass, occupation

5 - *income (class), capital-gain,

capital-loss, hours-per-week

* The attribute marked with “*" is the mode of thadtribute group. A mode is with the highest

normalized mutual information in the attribute goou

To further investigate the attributes resided ircheattribute group, we study the

classificatory aspect of them to show that in amairsetting the mode is also the attribute
that renders good enough classification rate i§ itegarded as a class label. The attribute
clusters, normalized SR values and their classifingperformance are tabulated in Table

4.3.3.9.

Table 4.3.3.9 Attribute Clusters of Adult Data with Class Label Excluded with their

Normalized SR Values and their Classification Accuracy by PD with a 95% Confidence

Interval.
Attribute Characteristics Normalized SR Classification Accuracy (%)
* native-country Discrete 0.0952 89.59
race Continuous 0.0898 84.43
fnlwgt Continuous 0.0083 5.41

* The attribute marked with “*" is the mode of thatribute group. A mode is with the highest

normalized mutual information in the attribute goou

Attribute Characteristics Normalized SR  Classification Accuracy (%)
* education Discrete 0.8263 71.09
workclass Discrete 0.8218 57.69
occupation Discrete 0.2051 20.94
education-num  Continuous 0.1173 -

* The attribute marked with “*" is the mode of thatribute group. A mode is with the highest
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normalized mutual information in the attribute goou

Attribute Characteristics Normalized SR Classification Accuracy (%)

* relationship Discrete 0.6251 72
# marital-status Discrete 0.5525 74.78
sex Discrete 0.2465 68.95

age Continuous 0.2229 -
A capital-gain Continuous 0.1100 99.51
N capital-loss Continuous 0.0495 95.33
hours-per-week  Continuous 0.0313 14.54

* The attribute marked with “*" is the mode of thadtribute group. A mode is with the highest
normalized mutual information in the attribute goou » The attribute marked with “*” implies the dat

is sparse. # The attribute marked with “#” holds kighest classification accuracy, even higher than

mode.
Table 4.3.3.10 Pattern Discovered

Index | Residual | Probabity | Order| workelass | education | maritak-status | occu| relationship | race |sex | native-country | age | friwat | education-num | capitalgain | capitatloss | hours-per-week | income |

164.223 0.2710604 3 HS-grad [910] <=50K
1 159968 01813212 3 Some-coll [1011) <=50K
2 139720 01816283 3 Married-civ-spouse Husband >50K
3 110534 01366972 3 Never-married QOwn-child <=50K
4 106.105 01817511 3 Husband Male >50K
5 998863 01994717 3 Married-civ-spouse [2890] >50K
6 951515 01823654 3 Married-civ-spouse Male >50K
7 923397 01774208 3 Husband [2890] 50K
8 87.0067 01854058 3 Married-civ-spouse [4099) >50K
9 84.4718 01634051 3 Husband [4099) >50K
10 80.2433 0.2055219 2 Married-civ-spouse >50K
1 786543 01874942 3 Married-civ-spouse White >50K
12 747187 01876785 3 Married-civ-spouse United-States >50K
13 724325 01667024 3 Husband  White 50K
14 72.3654 01817511 2 Husband 50K
15 71.4777 01836245 3 Married-civ-spouse (12285 323309] >50K
16 68.3561 0.1664875 3 Husband United-States >50K
17 67.4136 0.1673002 4 Married-civ-spouse United-States (12285 323309) >50K
18 651850 0.1626178 3 Husband (12285 323309) >50K
19 64.8992 00842418 3 Never-married [2328] <=50K
20 636505 0.1985504 3 Male (28 90] >50K
21 627339 01314455 3 N ied Not-in-famil <=50K
22 625666 0.3046589 3 Never-married [0914) <=50K
23 603117 02097234 3 [2890] [4099) >50K
24 591675 02232732 3 Married-civ-spouse Husband <=50K
25 57.4614 03130124 2 Never-married <=50K
2% 57.2385 0.3047203 3 Never-married [0213] <=50K
2 56.2935 01906882 3 Male [4099) 50K
28 537496 01438418 4 Married-civ-spouse ‘White [0914] 50K
29 52.7050 0.0840883 3 Never-married [831) <=50K
30 504195 00765633 3 Divorced Female <=50K
3 50.3724 02326402 2 (28 90] »50K
R 50.2685 0.2413316 3 Private Nevermarried <=50K
3 496615 01413040 3 Never-married Female <=50K
34 433150 02116028 3 ‘White [2890] 50K
35 48,8480 07286338 2 [0914) <=50K
3 46.6445 02808267 3 Never-married United-States <=50K
37 452298 01504867 3 Own-child [0914] <=50K
38 448158 02126470 3 United-States (28 30] »50K
3 443039 0.2844814 3 Female [0914] <=50K
40 430245 00833361 3 [2890] [1114) 50K
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4.3.4 Colon Cancer Data Set (Continuous Data)

The colon-cancerdataset consists of 62 samples and 2,000 genéd) is8lrepresented by a
2,000x 62 expression table. The samples are composeadrairtbiopsies collected from
tumors and normal biopsies collected from healthst pf the colons of the same patient.
Each sample has been pre-classified into one dfnbeclassesnormalandcancer This

set of data is less explicit and difficult to explalt is large in the sense that it contains
2,000 genes which can be treated as attributes théhgene expression of continuous
values as their outcomes (Table 4.3.4.1). In [2lig researchers treated the data as
categorical data by first discretizing the continsiovalues into intervals based on the class
labels (cancerous and normal patients) given. Thedmental problems of mode finding
and attribute clustering notions have not been vesbl In this dissertation, we have
developed an algorithm which solves both the manidirfg and the attribute clustering for
mixed-mode data. In this experiment, we apply dgordthm on the original continuous
data to see whether or not we could achieve thes ggral even without the knowledge of
the class labels. It then gives us a solid basmwiparison and further affirms the validity
of our approach. Using the same set of originah dath class labels excluded, we try to
answer questions (a) — (e). We are particularlgresgted to find out how effective are the
discrete intervals obtained for all the gene exgices based on the governing genes in

classifying the cancer and normal genes.

Table 4.3.4.1. Colon Cancer Data Set

Data Description
Data Set Attribute Characteristics No. of Sampleso. ™ Attributes  No. of Classes

Colon Cancer Continuous Data 62 2000 2

For demonstrative purpose, we select top 5 atebuf 2 clusters of colon cancer data
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(Table 4.3.4.2) as found and reported in [21]. tFike used the numerical method to
compute the normalized mutual information (R) be&weontinuous attributes. The R

results for all the gene pairs are tabulated inleTdh3.4.3. Based on the R values, our
ACA algorithm is able to find that the two attributlusters as the optimal cluster
configuration corresponding to the result found2t] which assumes that class labels are
given in their attribute clustering. Table 4.3.4d#&plays the value of the sum of significant
MR calculated during the clustering process. Twastgrs configuration is obviously the

optimal local solution. In the work reported inghhesis, no class label information is
taken into account. The two attribute clusters ioleth are given in Table 4.3.4.5. This

demonstrates the effectiveness of our method tingethe saméntrinsic class information

andgene grouping informatiomherent in the data.

In response to question (e), we explore how wedl performance of our discretization

results is when the partitioned intervals are wsedssociative events in the classification.
We now take all the seven attribute clusters founj®1] and discretize all the continuous

attributes by the governing attributes (modes) ébutmeach of the clusters. We then pooled
5 discretized attributes from each of the 7 foutidbaute clusters together to obtain a data
set of 35 attributes. We refer this set as a “setbattribute pool of most representative
attributes”. We then apply classification of thengetissue class using the discretized

intervals obtained without relying on class labels.

Table 4.3.4.2. The Selected Top Five Attributes of the Two Clusters Found in the Colon

Cancer Data Set reported in [21].

Attribute Ra  Attrib Accession
Clusters nk ute Number
1 A H05814
2 A X02874
. 3 Ag U33429
4 Ay H22579
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5 As H25940
1 As T73092
2 Ay R26146
2 3 Ag T90851
4 Ag R93337
5 Aio T69446

Table 4.3.4.3. Normalized Mutual Information between Attributes of the Selected 10

Continuous Attributes

R A A, As Aq As Ag Ay Ag Ag Ao

AL O 0.2202 0.2011 0.3521 0.2905 0.0946 0.1072 0.1147 0.0809 0.1038
A, 0.2202 O 0.1425 0.2073 0.1821 0.123 0.0902 0.1058 0.076 0.1466
A; 0.2011 0.1425 O 0.17 0.1715 0.0733 0.0467 0.0339 0.0738 0.0669
A, 0.3521 0.2073 0.17 0 0.2426 0.0856 0.1398 0.1053 0.0816 0.1138
As 0.2905 0.1821 0.1715 0.2426 O 0.119 0.0752 0.0848 0.1045 0.1065
As 0.0946 0.123 0.0733 0.0856 0.119 0 0.2248 0.1445 0.1635 0.4401
A; 0.1072 0.0902 0.0467 0.1398 0.0752 0.2248 O 0.1391 0.2095 0.2269
Ag 0.1147 0.1058 0.0339 0.1053 0.0848 0.1445 0.1391 O 0.177 0.1285
A; 0.0809 0.076 0.0738 0.0816 0.1045 0.1635 0.2095 0.177 0 0.1439

Ap 0.1038 0.1466 0.0669 0.1138 0.1065 0.4401 0.2269 0.1285 0.1439 O

Table 4.3.4.4 The Plot of the Sum of Significant MR obtained for each k of the k-Mode ACA

Algorithm.

No. of Attribute Clusters, k Sum of Significant MR

*2 2.0368
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3 1.9079

4 1.7309
5 1.3972
6 1.0883
7 1.0124
8 0.7922
9 0.3521
10 0

* Highest Sum of Significant MR Implies Optimak2.

Table 4.3.4.6  The Attribute Clusters and their Mode Obtained by ACA.

Cluster Mode Significant MR Item
1 A 1.0639 Ay, Ay As, Ay, Ag
2 Ag 0.9729 As, Aro, A7, Ag, Ag

* The found cluster items and modes are the sanfizlas

Since the class label for the Colon Cancer datasskhown, we can make use of this
ground truth to devise an evaluation scheme in ssicg the performance of different
discretization methods. First, we apply differeigcdetization techniques on the selected
attribute pool. We then run classification expemtseon the discretized selected attribute
pool to obtain classification results. To compaue groposed discretization with others, the
benchmark results reported by [21] are given. indlassification performance evaluation
process, the Leave-One-Out Cross Validation (LOO®@Wich is the same validation
method employed by [21] is adopted. Applying LOO@®Mhe Colon Cancer data set, the
1% sample is selected as the testing set and theimema1 samples are selected as the
training test. This procedure repeats frothshmple to 6%' sample. The classification
accuracy is computed as the overall number of coalassification from the 62 iterations,

divided by the total number of samples in the datsch in this set is 62.

From the experiment results shown in table 4.3.4.7%5 interesting to remark that the

classification result of the colon cancer data réiized by the proposed discretization is
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close to those discretized by OCDD which makesofiséass information.

In the classification experiment, it demonstratest bur proposed discretization approach
enables an inductive learning algorithm to build aocturate classifier which achieves
competitive classification result to one using sl&bel information in the discretization of

the continuous attributes in the database.

Table 4.3.4.7. The Classification Performance of C5.0 on the Attribute Pools Selected by
Different Attribute Clustering Techniques and Discretized by Different Discretization
Techniques in the Colon Cancer Data Set

The Proposed

Classification OCDD
Discretization

Performance

ACA ACA t-value | k-means| SOM | Biclustering|] MRMR
Classification

88.71 91.9 74.2 71.0 435 75.8 83.9
Accuracy (%)

Summary: In the colon cancer experiment, we show that A@A could cluster
attributes as effective as one which has takersdisels into account. It also shows that
both the attribute clustering and repooling processk for the set of discretized data
effectively by our proposed method. More surpriginig that the use of the discretized
results obtained based on our discovered govegeng will produce discretized intervals
that enable our classificatory system to achiegh hlassification rate of cancerous and
normal patients equivalent to systems using clabgl$. The results of this experiment
implies that our governing attribute driven disiz&tion scheme does effectively use some

of the class information inherent in the data tiee high classification rate.
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4.4. Experiments on Meteorological (MET) Database

The meteorological (MET) database is a large datbassisting of 44 attributes and 8784
samples. The MET data was taken from 5 differerfasa stations over a one-year-long
period (8760 recorders) in the great urban regioBuwangzhou City, Guangdong province,
China, within about WE-200km and NS-300km (Figure.®.4 The types of the
meteorological parameters (attributes) collectedhfthe surface stations include 6 discrete
attributes and 25 continuous attributes. The fiudage stations denoted by the alphabets S

=A, B, C, D, E are stations as listed below.

Station A =Guangzhou Metropolis;
Station B =Foshan City;  Station C =Shenzhen City;
Station D = Dongguan City;  Station E =Zhongshaiy,Cit

R, Ny
i

Figure 4.4.1 Guangzhou Urban Region (GGA)

Table 4.4.1 gives a brief description of the METt®dn the MET database, there are
totally 43 attributes where 18 of them are categdrattributes and 25 are continuous
attributes. They are listed in Table M- li as shdvatow with the value types given inside

the respective brackets.
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Table 4.4.1. MET Data Description

Data Description

Attribute No. of No. of No. of

Data Set
Characteristics Samples Attributes  Classes

\YI=amoZ\ VW Mixed-Mode 44

8784 Unknown
Data D19 & C25

Table 4.4.2 Attributes and attribute values in the MET database.

Attr. | name | D/C mode Notes
MM | Month | Discrete Month
DD | Day Discrete Day
HH | Hour Discrete Hour
S1 TC Discrete Total Cloudiness
S2 LC Discrete Lower Cloudiness

S3 | DBT | Continuous Dry Bulb Temperature

Dew Point
S4 DPT | Continuous

Temperature

S5 RH | Continuou$ Relative Humidity

S6 SP Continuoup Site Pressure

S7 WD Discrete Wind Direction

S8 WS | Continuoug Wind Speed

This database is selected for our experiment becaus
1) Itis taken from the real world

2) ltis relatively large
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3) Itis of mixed-mode nature
4) All those parameters have their internal relatigmsbased on the geographic
location of the surface stations and might be goeiby local terrain and land use

5) Some of the parameters are within geographical orsgiand some are

meteorologically related.

Table 4.4.4 gives the list of parameters and adgamples of the data collected for each

station.

We then applied ACA on this set of data. The SunSighificant MR of the clustering
process for various attribute cluster configurati@re plotted on Table M-IlIl. From the
Sum of Significant MR values, it is obvious thaticgal optimal cluster configuration

would consist of 5 clusters of parameters.

Table 4.4.4 MET Parameters and examples of their values

MET Surface Station A (Guangzhou) MET Surface 8taB (Shenzhen)

Al | A2 | A3| A4 | A5| A6 | A7| A8 | Bl1| B2| B3 B4 | BS B6 BY BS§

J J 10| 9999 22 1021 238 3 A A 1112 9999 B0 1024 |17 5

J J | 9.6] 9999 19 1021 24 38 A A 108 9999 |27 1024 | @é.5

J J | 93| 9999 20 1021 20 3.4 A A 102 9999 (26 1024 | 8.6

MET Surface Station C (Dongguan) MET Surface Stabo(Dongguan)

Cl| C2| C3 C4 | Ch C6| CYy Ccg D1 D2 DB D4 D5 Dp D7 P8
1.

D | D | 10.2| 9999| 35 1024 Q@ J J | 10.9| 9999 31 1025 3b 29
7
1.

D| D | 97 | 9999| 32| 1027 &6 J J | 10.4| 9999 30 1025 483 B
8
2.

D| D | 95| 9999| 29| 1021 2 J J | 10.2| 9999 31 1025 31 33
4
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MET Surface Station E (Zhongshan)

El| E2| E3 E4 ES E6 EY E
A | A |88 9999 28| 10220 17 2%
A | A |84 9999 | 28| 1022 23 2.

Table 4.4.5 ACA Run showing the value k for the local optimal cluster configuration.

Number of
Sum of Significant
No. of Attribute Cluster Attribute Sum of Significant MR
MR
Clusters
K SMR K SMR
2 11.42685035 18 9.23378
3 12.97939612 19 8.79266
4 13.44936898 20 6.62485
*5 13.65281846 21 6.37775
6 11.98427219 22 6.58989
7 12.968216 23 6.05627
8 10.88940451 24 5.57822
9 11.50901881 25 4.22368
10 9.732935672 26 5.16222
11 11.8511256 27 3.99171
12 10.28084331 28 3.44625
13 12.0651708 29 1.83837
14 9.275470445 30 2.00887
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15 7.77188342 31 1.8107

16 8.214801827 32 0.5296
17 9.642968239 33 1
18 9.23378089 34 0

* Highest Sum of Significant MR Implies Optimiak5.

Table 4.4.6 show the grouping of the parameteesagh of the parameter cluster.

The meaningful sub-grouping ---the attribute clustes obtained from ACA

By the highest value of SMR listed in Table.2,4he mixed-mode meteorological
database with 43 attributes has been clusterediatd-groups. The first 4 of 5 clusters are
grouped based on the interdependence among thé&arsichiaracteristics (types) of the
attributes within each cluster formed. This implteat those attributes within cluster are
highly dependent upon each other or they are velnsg” to each other or one “followed”
by the others. We then study the mode and the cteaistics of each of the clustered

parameter groups.

Table 4.4.6  Attributes in the attribute clusters of the optimal cluster configuration

Attribute Group | Attribute Cluster ltems

1C *B5, A5, C5, D5, E5  -- RH (Relative Humidity)
2C *C7,A7,B7,D7, E7 --WD (Wind Direction)
3D *C1, Al, B1, D1, E1 -- TC (Total Cloudiness)
4C *A6, B6, D6, E6, MM -- AP (Site Pressure)

*A3, A4, C6, B3, C3, D3, E3, A8, B8, C8, D8, E8, DBH
5M

(Dry Bulb Temperature & Wind Speed)

* The attribute marked with “*” is the mode of th#ribute group.

The meaningfulness of the MODE attribute discoveredor each cluster
One of our objectives of this study is to fimgt whether or not the mode discovered

for each group can be considered as a meaningfidrgimg attribute within the group.
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This objective can be assessed by the followingfagion and analysis.
1) The reference parameter for the regional metegical observation

For the first four clusters, the associated @esoare the representative of each attribute
type of the meteorological parameters in the regionanother words, the attribute
selected by our algorithm as the MODE for eachteluis actually the most representative
one within the cluster and thus be considered asdference parameter among the set in
those regions. That means that the reference p#&gmneshould have the most
interdependence relations with others in the grdinus the MODE for each group can be
used as the reference parameter of the entirerregio
2) The representative station for the regional ovelegical observation

Within the five attributes (B5, C7, C1, A6, ABging found as the MODE attributes
for their respective clusters, we notice that latities from stations of D and E are not there.
This tells us that the two stations D and E are verty important for the weather
observation in this area. From the practical opemaview, if we just have adequate
budget to operate two surface stations, we shatldig A and C stations instead of B, D
and E. Otherwise, if we just have good enough bttigoperate two surface stations, we

should set up A and C stations instead of B evela.D,

Observation of the role of regional parameters andthe local parameters in the
clusters

It has been observed that clusters 1,2,3,4 havedime type of the met parameters within
respectively but cluster 5 has more than two tygfeéhe met parameters. From the clusters
1,2,3,4 we know that the attributes within eachtldém are regional meteorological
parameters which have strong influence on eachr dthea large scale (tens or even
hundreds kilometers). However, from cluster 5 wevkrthat most of the attributes within
this cluster are local met parameters and haveirigsact on each other in a small scale (a

few kilometers).

By the P3 (Dry Bulb temperature) and P8 (Wind Spdxsing fallen into one cluster, we
could conjecture that they strongly influenced bg geographical factor LULC (land use
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and land coverage) or the surface roughness (gé¢aré¢ which are not included in the
database and thus not present in our clusterBoltld be noted that the wind speed here is
the surface wind speed instead of the up air wipekd. If the up air wind speed was
collected and put into the database for clusteitngould likely induce a standalone cluster
as the cluster 1,2,3,4 because the up air winddsigesdso a typical regional parameter.
Summary: From the patterns discovered by our method, samif features within the
data collected from the surface stations have lbeend which comply with the domain
knowledge. Attributes in each of the first 4 clustereflect the regional (global)
characteristics of the correlated meteorologicahpeeters. The mode found in each group
has been treated as the reference parameterofw i the same type taken from the five
stations. Regarding the last cluster group, alltlé attributes therein reflect local
characteristics significantly influenced by thedbgeographical feature such as land use
and land coverage. The discovered modes in thestecs cover only 3 stations indicating

that the remaining two are in very weak positiontfee weather condition analysis.

4.5. Experiment on Delay Coking Database

This is a very large set of data. The data is tdkem the delay coking unit (DCU) of the
Sinopec SJZ Petro-Chemical refinery for about 5-4mdong period. It was acquired
directly from the ABB DCS sensors by which the temgtures, the levels, the flow rates
and the pressures as well as the control actioR& 88 were collected.
Delayed coking is a semi-continuous thermal cragkprocess in which a heavy
hydrocarbon feedstock is converted to lighter amaervaluable products and coke. The
mechanism of coking can be broken dowthi®e distinct stages.

The feed undergoes partial vaporization miid cracking as it passes through a

specially designed coking furnace.
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Figure 4.5.. The Schematic of Delay Coking Unit.

The vapours undergo cracking as they pass thrdwghdke drum to fractionation facilities
downstream where products of gas, naphtha, jet émel gas oil are separated. The

petroleum coke remains in the drum.

The heavy hydrocarbon liquid trapped in the cokerdis subjected to successive cracking

and polymerization until it is converted to vapondaoke.

The residuum (fresh feed) from the Hydrocrackercttoaation Unit enters the bottom
section of the fractionator where material lighteart the desired cut point of the coke gas
oil is flashed off and the remaining material combimath the recycle material condensed

in the bottom of the fractionator to form the condd feed.

This combined feed is then routed to the chargeafterwhere the liquid is heated to its
incipient coking temperature to produce vapouraraind mild cracking. Steam is injected

into the furnace feed line to prevent coke depmsiin the furnace coils, increase tube
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velocity and reduce hydrocarbon partial pressure.

The vapour/liquid mixture then enters the bottomtlué coke drum where the vapour
experiences further cracking and the liquid expeds successive cracking and
polymerization until it is completely convertedwapour and coke. The coke drum effluent
vapour enters the fractionator where the hot vapmer quenched with wash oil. The
condensed portion then forms the recycle streamisaretycled to the furnace for another
pass through the coke drum. The condensed vapdumdsonated into gas, naphtha, jet

fuel and gas oil. Gas oil and jet fuel are remoasdide cuts and routed to the Gas Oil

Hydrotreater and the Naphtha/Jet Hydrotreater.

Typically, a DCU could consist of three main praieg sections: the heating units
(furnace), the coking drums and the fractionatowér) (Figure 4.5.1).

The raw fresh material flow (also called residu8l lsas been filled into and then be heated
by the heating unit (by which the flow rate of tlesidual oil must be controlled carefully
to keep flowing to avoid the residual oil becomiaogke inside the heated pipe lines,
blocking the heating unit) and then be pumped ih&following delay coking units (Coke
Drum) to produce the coke.

For the two coking units, the pressure has beeaefudly controlled to avoid the
conversion of the mixed oil-gas flow into coke tiytand more oil vapour will be expected
to get out from the top of the drums for produaingre “light” products. At the same time,
the mixed oil-gas vapour flow arises at the topaadelay coking unit will be introduced
into the fractionator tower to produce the diffareml products like gasoline, diesel,
naphtha and etc. according their different “cuttitemperatures respectively, inside which
the temperature should be carefully controlled twmt“out” the product distribution

expected for different market purposes.

Table 4.5.1 gives a brief description of the Deagking Database. It consists of 22,096
samples and 47 attributes out of which 11 of thee discrete valued data and 36 are
continuous valued data. Since this is a set of weryplex data taken directly from the
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delay cooking plant, there is no specific classrimfation. It is relatively a large database.
Since we have a certain degree of partial domaowledge concerning this system, this
set of data will be ideal to challenge the usefstnand effectiveness of the proposed

system.

Table 4.5.1 Data Description of the Large Database obtained from a Delay Coking Unit

Data Description

Attribute of No.

Data Set No. of Samples

No.

Characteristics Attributes Classes
47
Coking Data Mixed-Mode Data 22096 Unknown
D11 & C36

We first apply ACA to cluster the database into -dakabase containing subgroups of
attributes. Table C-ll show the Sum of the Sigmifit MR values for different attribute
cluster configurations. It is found that k=5 woulehder a local optimal configuration.

Figure 4.5.2 gives the k-SSMR plots taken fromAQA Algorithm.

We next proceed to discretize the continuous dataefch cluster based on the mode
discovered for that cluster. We then display theults of each cluster and conduct the
in-depth analysis to derive the meaning from thiéepas and rules discovered for each set
of mixed mode sub-database. For the sake of exposive refer each cluster formed by

the feature characteristics of the cluster. Hem stvall proceed with the in-depth analysis

of each attribute cluster in the light of the pairdomain knowledge available.

The Cluster Group 1 (Table 4.5.4) associated wdtv-oriented control of main oil flow
for Raw Materials (Residual Oil) with its governirgftribute PLC-i has supportive
evidence from the system characteristics of theatjpg plant that the attribute PLC-i is
actually acting as the global control factor foe tntire processing system. In reality, the

Cluster Group 1 containing parameters pertaining flow-oriented control group in which
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the flow controller PLC-i plays a definitely rola governing the values of all of the other
parameters within this group. This means that d&anges from the MODE attribute PLC-i
will influence the settings or readings of the othevithin this group whose members

distributes almost everywhere in the entire colatamt.

The Cluster Group 2 associated with the flow-oeentontrol of the feedback oil flow
(also known as slurry recycle ratio) with its gaviag attribute FRC-002 turns out to be a
very important subsystem for delay coking systerhis Tsubsystem, referred to as the
Slurry Recycle subsystem, is the subsystem by whickignificant parameter (Slurry
Recycle Ratio) has been used as a decision andtariagi factor. Actually, the Cluster
Group 2 represents a local flow-oriented contraugr for a coking system by which the
Recycle Ratio is working closely together with atlebements within the group. If the
operation director wishes to shift the coking fiégito work on another recycle ratio, he
will adjust the governing attribute FRC-002, monitioe other parameters in the subsequent
operations to ensure that the current adjustmelht wi complete successfully. Thus any
changes from the MODE attribute FRC-002 will logahfluence the settings or readings
of the other parameters within this local groupwdiich the components are installed

around the feedback pipe system.

Cluster Group 3 (Table 4.5.5) associated with teatpee-oriented control of the product
distribution for oil vapor and petro-coke with igoverning attribute PLC-h represents
another very important subsystem for the delay rapkplant. This system can be
considered as the Fractionator subsystem by whieloil vapor flow has been guided into
the tower and produces different products basedhenrequired product distribution.

Actually, the Cluster Group 3 is a local temperatariented control group for the coking
system by which the expected final product distithu has been made by carefully
building up the “cutting temperature” of the Fracttor through the controller PLC-h. The
values of the other parameters will follow up therging of the PLC-h reading to reach

their new values.

111



Table 4.5.2 Sum of the Significant MR values for different attribute cluster configurations.

No. of Attribute Sum of Significant No. of Attribute Sum of Significant
Cluster MR Cluster MR

K SMR K SMR

2 22.2426 24 14.8637
3 21.8947 25 12.7643
4 22.628 26 13.4253
*5 22.9081 27 12.9122
6 21.9604 28 9.55878
7 17.9875 29 10.5888
8 17.3895 30 10.8342
9 21.7116 31 11.7177
10 21.3002 32 10.2624
11 15.7158 33 7.24438
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13 18.4806 35 9.95252

15 13.0992 37 7.10925

17 16.2262 39 5.09977

19 16.6476 41 4.84365

21 11.0865 43 2.63305

23 15.5782 45 1.53357

25 12.7643 47 0

* Highest Sum of Significant MR Implies Optimiak5.
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* Highest Sum of Significant MR Implies Optimiak5.

Figure 4.5.2 Plot of Sum of Significant MR values against k, the number of attribute

clusters.

Table 4.5.3 Cluster 1: Flow-Oriented Control of Main Qil Flow for Raw Materials (Residual

oil).
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Attribute Characteristics
*PLC-i Discrete
PLC-a Discrete
PLC-b Discrete
PLC-c Discrete
PLC-d Discrete
PLC-e Discrete
PLC-j Discrete
LRC-1 Continuous
LRC-2 Continuous
LRC-3 Continuous
LRC-4 Continuous
LRC-9 Continuous
LRC-22 Continuous
LRC-25 Continuous
FIQ-003/2A Continuous
FIQ-051 Continuous
FIQ-15/2 Continuous
FIQ-17 Continuous
FlQ-28 Continuous
FIQ-25 Continuous
FIQ-26 Continuous
FIQ-35 Continuous
FIQ-38 Continuous
FIQ-50 Continuous
FIQ-052 Continuous
FRC-001 Continuous
FRC-4A Continuous
FRC-5A Continuous
TRC-1 Continuous
TRC-1A Continuous
TRC-2A Continuous
TRC-3 Continuous

Here, the attribute PLC-i marked with “*” is the dw® of the attribute group. A mode is

with the highest normalized mutual information in #igibute group.

114



Table 4.5.4  Cluster 2: Flow Oriented Control Feedback Oil Flow Recycle Ratio)

Attribute Characteristics

* FRC-002 Discrete

LRC-5 Continuous
FIQ-004 Continuous
FIQ-20 Continuous
FIQ-22 Continuous

* The attribute FRC-002 marked with “*” is the modé the attribute group. A mode is

with the highest normalized mutual information he attribute group.

Table 4.5.5  Cluster 3: Temperature-Oriented Control of Production Distribution for Qil

Vapor and petro-coke.

Attribute Characteristics
* PLC-h Discrete
PLC-f Discrete

TR-15A-17 Continuous

TR-15A-19 Continuous

* The attribute PLC-h marked with “*” is the me of the attribute group. A mode is

with the highest normalized mutual information lue tattribute group.

The Cluster Group 4 (Table 4.5.6) is associatedh witessure-oriented control of
production distribution for light-heavy productsofin oil vapor. Its governing attribute
PLC-k is a very important parameter in the CokerDrof the delay coking system. The
heated residual flow is filled into the drums ahavill mainly be divided into two parts,
one is petro-coke and the other is oil vapor. Altguthe Cluster Group 4 represents a local
pressure-oriented control group for a coking systgmwvhich the setting of the temperature

will determine the coke production ratio or distiiion. Thus, the MODE attribute PLC-k
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in this cluster will locally influence the coke-vapdistribution of the drums.

Table 4.5.6  Cluster 4: Pressure-Oriented Control of Production Distribution for

Light-Heavy Products from Qil Vapor.

Attribute Characteristics
* PLC-k Discrete
FIQ-21 Continuous
PRC-8 Continuous

* The attribute PLC-k marked with “*” is the modé the attribute group. A mode is with

the highest normalized mutual information in theilatite group.

Table 4.5.7 Cluster 5: Temperature-Oriented Control of Emergency Response Action

(Safety Release).

Attribute Characteristics

*PLC-g Discrete

TR-15A-18 Continuous

* The attribute PLC-g marked with “*” is the modé tbe attribute group. A mode is with

the highest normalized mutual information in thiladite group.

The Cluster Group 5 (Table 4.5.7) is associated wétmperature-oriented control for
emergency response actions. Its governing attriBute-g is acted as an emergency control
unit which responds to the overheated conditiomhef heating unit (furnace). It helps to
ensure that the entire delay coking system wouldkwmder a safety situation. Its major

function is to control the heating unit.

Summary: Based on the five clusters from our developed otfbr the patterns, the most
important relationships with the sensors and cdlet® of the coking facilities have been

found: including the temperature-oriented groupsessgure-oriented groups and
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flow-oriented groups. The attribute number andritistion of the largest group indicates
that its mode acts as a control factor for therenprocessing system and has globally

influenced almost all of the process parametershirfacility.

From the parameter grouping, the discovered resmtticate that the other two groups
control the output distributions of the two intermaits like coke drum and fractionators.
They are very important groups for the local perfances of the processing usually

referred to as performance factor.

The last group discovered is exactly associatel thig critical safety mechanism designed
for this pressure-temperature-mixed processinditiacits mode is actually controls the
temperature condition as a trigging factor to attévthe emergency release response.

All of the five cluster groups with the patternsdamode attributes discovered provided us

the stronger analysis evidence for the whole ingiusistem’s control principal.
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Chapter 5

Conclusion and Future Research

The research presented in this dissertation wasvatetl by the challenges we are
confronting today: (1) an increasingly huge amooftraw mixed-mode data today
require effective pattern discovery methods to iriméerent subtle information for better
understanding; (2) the pressing need to develoglliggnt systems which are able to
support knowledge discovery and decision suppooimfroverwhelming volume of
discovered patterns; (3) the increasing demandopfiGations of discovered patterns in
scientific, business and industry; and (4) the igppibn limitation of most existing systems
which are not general enough to solve problems xedrmode databases with numerous
real-world applications.

The research works presented in this thesis hawadad an integrated, flexible and
generic framework for pattern discovery and analysdilarge mixed-mode databases. Its
applications cover databases with continuous, caitea and mixed- mode data. Based on
the well defined problems and research objectitated in Chapter 1, the developed
research methods presented in Chapter 3, and taal lapplications on real world and
industrial problems presented in Chapter 4, thetrimriion of the thesis research in
theoretical and methodological perspectives as agelh real world applications have been
conveyed. The validity and the effectiveness ofptt@posed methods has been backed by a
number of successful experimental results. Thesfulsess in real world applications has
been demonstrated by the intriguing and reveal@sylts obtained when applying to two
large mixed-mode databases --- one consists ofge Iset of meteorological data taken
from a geographic area in Southern China and andtree set of massive multi-senor data

taken from a delay coking plant.
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5.1 Summary of Contributions

5.1.1 Theoretical Contributions

With the defined research work and proposed metluadspleted, the theoretical
contribution can be outlined as below.

1) Development of a theoretical framework for pattdiscovery for mixed-mode data
at event level.

A theoretical framework has been developed foraliscy of high order patterns for
mixed-mode data (which include continuous dataegaical data and a combination of the
two) at event level. By converting continuous dati interval events under a general
problem setting, it shifts the basic data repregent units into events. It thus provides a
unified framework to define association patterne@asnt associations. It thus generalizes
the pattern discovery and data mining methodolotpesover the important mixed-mode
data under a unified event based framework. Allgwiorobabilistic variations and
statistical justification, it brings forth a uniflesystem for pattern discovery, data mining
and machine learning. The experimental resultsimddashow that once the patterns are
organized at the event level, they can be integpreind understood much more easily. A
unique characteristic of this theoretical framew@kits natural accommodation of local
organization of event associations in various esebspaces of lower dimension.

2) Demonstration of the necessity of attributesstgting in large databases and the
provision of an attribute clustering algorithm foixed-mode data.

From the experimental results on certain UCI d&ts sis well as on the two large
databases of the real world problems, the thesissties significant evidences that strong
correlation attribute groups exist in large datasasnd their discovery might shed light to
the how features are associated within the databasé how the discovered association
patterns may impact class definition and the attebgroup interactive activities. The
contribution of this thesis is not only stating theoblem but providing an algorithmic
solution to partition the databases accordinglal$b reveals the feature relationship and

association characteristics of each of the cludtgreups.
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5.1.2 Methodological Contributions

1)

2)

3)

The provision of algorithmic procedure to obtain normalized mutual information
between mixed-mode attributes.

For mixed-mode data, one of the major hurdle inessisag interdependence
between heterogeneous attributes (i.e. betweenetis@and discrete, discrete and
continuous and between continuous and continuotriowges) is the lack of a
implementable measure to account for the interddgece between attributes of mixed
types. In this dissertation, the normalized mutofdrmation between these three pair
of attribute types have been defined, implementetl tasted over large sets of data.
They have been used in the finding of the modegthearning attributes, the intrinsic
class attributes and in the k-mode attribute ctusgealgorithm.

Discovery of mode and governing attributes for a mixed-mode data set.

With the normalized mutual information computedwesn all attribute pairs for
an attribute set, the mode can be obtained as tthbuge with the highest sum of
normalized statistical significant mutual infornati with all other attributes in a
mixed-mode data set. The identified mode has besad un the k-mode attribute
clustering algorithm as well as in driving the detezation of continuous data in the
data set.

Discretization of continuous data in a mixed-mode data set.

One of the major impediments blocking the applaatof pattern discovery for
mixed-mode data is that there has been no easypnay to this dissertation for
discretizing the continuous data in a databaséngetthen class information is absent
or unavailable. The contribution of this thesisthat normalized mutual information
measures between different types of attributes baem implemented for two separate
stages of the pattern analysis --- the attribusteling phase and the continuous data
discretization phase.

In solving the discretization problems, two issues/e been raised and later
justified by enormous experimental evidences. Ting is the idea of the possible
existence of a governing or most representativebates. One may refer it as an
intrinsic class attribute or a governing attribdtg a correlated data set. Such an
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attribute, if found and justified, can be used tivelthe discretization of the continuous
attributes. However, how strong this attribute deseon the strength of its summed
interdependencies with others in the attribute gr@nce a reasonable one is identified
it could be used to drive the discretization of tie@tinuous data in the group just like
the class attribute does. The second is relatéfietoecessity of attribute clustering. For
a very large database, unless a class label is givassumed, with the absence of class
information, there is no reason to believe that ¢énéire database is governed by a
single attribute. There could be several correlatéribute groups existing inherently in
the data set. Each may share more correlated iatfaymamong themselves than with
other groups. Thus it is not meaningful to userttae of a large data set to drive the
discretization. A more reasonable approach isweashould first find out whether the
database could be optimally partitioned into sdveaherent attribute groups before
discretization be applied to each group like weehaliserved in the application on the
colon cancer data. Once found, we could apply eisation of continuous data to each
attribute group. A contribution of thesis is thiabhas provided evidences to demonstrate

this happened and the proposed solutions work.

5.1.3 Application Contributions
1) Automatic grouping, repooling and discretization of gene expressions for
analyzing and classifying genes without relying on class information.

That the proposed methods are able to show thdt thet gene clustering and the
re-pooling process work for continuous gene expoesdata as effectively as in the
cases when class information is provided represanisige advancement of gene
expression analysis. This capability not only sgeepl the diagnostic process but also
reveal the gene interactive patterns for variousesy of gene tissues at various
histological or pathological stages objectively.aThhe use of the discretized gene
expression intervals to achieve high classificatrate of cancer and normal cells
equivalent to systems using class labels implias ot only the concept of governing
attribute works for discretization but also coukel used to reveal the interactive role of
the governing genes with others. .
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2) Discovery and grouping of meteorological patterns from surface stations over a
large area rendering subtle information for regional weather monitoring.
The discovery and grouping of meteorological measient patterns from data taken
from various surface stations in a wide area réfldee regional and global
characteristics of the correlated meteorologicahpeters. The consistency and the
representative characteristics of each of the meliegical modes discovered suggest
that certain modes could serve as reference pagasnas they renders much more
precise assessment of the weather monitoring sysiéher subtle patterns may reveal
the impact of land use and land coverage. Its Bogmce requires further analysis.
3) The discovery and grouping of parameter patterns in delay coking process
revealing system function and operational characteristics.
The pattern discovery and grouping experiment @mge set of sensed and control data
set taken from a delay coking plant yields mostansmt relationships among sensors
and controllers of the coking facilities. From thribute number and distribution of
the largest correlated group, the most significeamtrol factor which has global
influence over almost all of the process parameierthe facility is located and its
interactive patterns with others have been dis@aldfrom the parameter grouping, the
discovered results indicate that the other two gsotontrol the output distributions of
the two internal units like coke drum and fractitmma. It is surprising to find that a two
parameter group discovered is associated exactly the critical safety mechanism
designed for this pressure-temperature-mixed psitgdacility. Its mode is actually
controls the temperature condition and serves ddgging factor to activate the
emergency release response. Such findings shoustfalness and effectiveness of the
proposed method in revealing subtle operation pettéor system monitoring, control

and optimization.

In summary, the results of the dissertation reseamen the door for more precise
system behavior analysis and modeling. It is fliniy the vision that: “ through pattern
discovery on large mixed-mode databases, we aresteye closer to meeting the
challenge: ‘from data to model to knowledget the petabyte age”.
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5.2 Suggested Future Research

This dissertation has developed a basic framewaork discovering patterns for
mixed-mode data. It is expected that there wiltbasiderable refinement of the system to
arrive at an integrated prototype for researchedsgeneral users. Here we will list some of
the suggested future research.

1) Refining the pattern discovery framework for large mixed-mode databases will be

continued.

2) Special attention will be devoted to explore the characteristics of the governing
attributes including exploring of its patterns and pattern clusters with other
attributes.

3) With the class labels removed and discretization problem solved, the technology
developed for pattern clustering on categorical data only can now be applied to
continuous and mixed-mode data. Thus, a natural extension of this research is to
integrate the system with pattern clustering, summarization and visualization for
mixed-mode data.

4) Since the proposed system is able to produce insightful patterns and solutions to
two of the difficult real world problems with large databases, extensive effort to
apply this new technology to other large mixed-mode data is planned. By relating
both the subgroup and the entire group patterns to the application domain,
means to generate models and knowledge will be explored.

5) Development of an integrated system for pattern discovery, pattern clustering,
summarization and visualization system for mixed-mode data with or without

class information --- a worth achieving goal of pattern discovery.
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