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Abstract

Courant’s Nodal Line Theorem (CNLT) relates to the Dirichlet /Neumann eigen-
functions u(x) of elliptic equations, the simplest and most important of which is
the Helmholtz equation Au+ Apu = 0 for D C R™. CNLT states that if the eigen-
values are ordered increasingly, the nodal set of the nth eigenfunction u,, divide D
into no more than n nodal domains in which u, has a fixed sign. We investigate
whether the numerical solutions approximated by finite element method (FEM)
retain this sign characteristic stated in CNLT. We derive various properties of the
FEM solutions. then formulate and prove discrete analogues of CNLT for piecewise
linear FEM solutions on a triangular/tetrahedral mesh.

For linear combinations of eigenfunctions, CNLT is replaced by Courant-Herrmann
conjecture (CHC). CHC states that the nodal set of a combination v = 37 qu;
also divides D into at most n nodal domains. We exhibit numerical counterexam-
ples. We find that even linear combinations of the first two eigenfunctions can have
three, four or more nodal domains. Also, we show that the discrete version of CHC
is faise in general. A restricted theorem is proved, which holds for both continuous
and discrete cases. Although CHC is false in general, We conjecture that CHC is

true for some convex domains, particularly for rectangles.
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Chapter 1

Introduction

1.1 Motivation

There are two different views on discretization methods for the numerical solutions
of boundary value problems: one focuses on the convergence analysis of the methods
used, the other investigates how the numerical solutions reflect basic properties
of the continuous solutions. Here, using the second point of view, we study the
numerical solutions, approximated by finite element method (FEM), of second-
order elliptic equations with Dirichlet boundary conditions. Such a problem is
often related to a vibrating string, a vibrating membrane, etc.

For vibrating systems, one can uncover crucial information about a system from
the places where nothing happens. (Hald and McLaughlin [16], Gladwell [13]). We
call them “nodal places”. Because of their importance, the characteristics of nodal
places have been studied for centuries. A number of interesting and important prop-

erties of the continuous solutions have been discovered. They include the unique
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continuation property, the regularity of nodal places, the equiangular property and
the sign property stated by Courant’s Nodal Line Theorem (CNLT). It is of interest
to investigate whether the FEM solutions also retain those properties of eigenfunc-
tions.

More specifically, let us consider the Dirichlet eigenfunctions u(x) of the Helmholtz

cquation

Au+Apu=0, xeQ, (1.1)

the simplest and most important case of the self-adjoint second order elliptic equa-
tion. Here. A is the Laplacian operator, p(x), the mass density, is positive and
bounded. and Q is a bounded connected domain in R™. In equation (1.1), the
values of the parameter A are the eigenvalues, and a nontrivial solution u(x) is
called an cigenfunction associated with the eigenvalue A. The eigenfunctions are
the spatial eigenmodes of a vibrating system in R? and acoustic standing waves in
R3.

The nodal places or nodes of an eigenfunction u are those points in the domain
2 at which u vanishes. The nodal set of u is denoted as A (u). It is well known

that the nodes of the eigenfunctions of (1.1) satisfy the following properties:
A. The unique continuation property (Jerison and Kenig [18], Miiller [20]);

B.If @ C R™ and p € C™(R), the nodal set N(u) is locally an (m — 1)-
dimensional manifold except for a closed set of dimensions less than m — 1

(Cheng [6]). In particular, the nodal places of an eigenfunction in two-
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dimensions are curves; the nodal places of an eigenfunction in three-dimensions
consist of surfaces; the nodal places of an eigenfunction in m-dimensions
(m > 4) are a set of hypersurfaces;

Property B is stated for background information only, and is not going to be
used in the analysis of Chapter 3 and 4. Also, p need not be analytic in our

analysis.

C. Equiangular property (in two-dimensional case): Suppose that p is analytic.
If several nodal lines of u intersect at an interior point in 2, then they form

an equiangular system of rays (Cheng [6]).

Also. if §2 is a convex domain, p is analytic and the nodal lines intersects
the boundary at a point, they also have the equiangular property (Alessan-
drini [1]);

D. Courant’s Nodal Line Theorem (CNLT): If the eigenvalues are ordered
increasingly, then the nodu.’ places of the n-th eigenfunction divide the domain
into at most n subdomains. We call those subdomains nodal domains, i.e., a
nodal domain of u is a connected subdomains G of Q such that « has a fixed

sign in G and vanishes on the boundary of G. (Courant and Hilbert [7])

As it is often difficult to get the exact solutions of a PDE, approximated solu-
tions are often computed by FEM. In the FEM, the simplest implementation is to
subdivide the region Q into triangles in R? or tetrahedra in R®, and to use piece-

wise continuous linear basis functions. FEM reduces equation (1.1) to a generalized
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eigenvalue problem of the form

(K — AM)u = 0. (1.2)

where K is the stiffness matrix, M the mass matrix, A an eigenvalue of (K, M)
and u # 0 an eigenvector corresponding to A. The matrices K and M are both
symmetric and positive definite. It is easy to show that M is nonnegative, i.e.,
mi; 2 0 for all 2,5 = 1,... ,n; its diagonal entries are positive. K has positive
diagonal entries, but the signs of its off-diagonal entries depend on the characteristic
of the FEM mesh.

One of our aims in this thesis is to investigate if the approximated FEM solu-
tions, corresponding to some refined or crude mesh in two or higher dimensions,
have properties analogous to those of the continuous solutions. Especially. we are
interested in whether FEM solutions have the discrete analogue of CNLT. This
is motivated by existing results in one dimension for a spring-mass vibrating sys-
tem with either fixed or free ends. The eigenmodes of such a system have the
following property: the k-th eigenmode divides the system into ezactly k parts by
its nodes (Gantmakher [11]). This property provides the essential condition for
the reconstruction of a spring-mass system given one or more eigenmodes (Glad-
well [13]). The study of the nodes of eigenvectors, the discretized eigenfunctions,
can be thus of great relevance in inverse eigenproblems. Our main results extend the
one-dimensional results of Gantmakher’s to higher dimensional discretized eigen-
problems.

In a footnote on page 454, Courant and Hilbert (7] states that Herrmann proved
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the following in his 1932 Gottingen dissertation:

Courant-Herrmann Conjecture (CHC): Any linear combination of the first n
eigenfunctions of (1.1) has at most n nodal domains.

However there is no such proof in his dissertation nor in his later publications.
In fact. Arnol'd [2] was the first to notice that CHC is false, although he did
not present a counterexample. We exhibit interesting numerical counterexamples.
computed by MATLAB PDE Toolbox. We find that even linear combinations of the
first two eigenfunctions can have three, four or five nodal domains. We conjecture
that combinations of the first two eigenfunctions can have arbitrarily many nodal
domains for some non-convex domains. Also, we show that the discrete version of
CHC is false in general.

We conjecture that CHC may be true for some simple domains. especially rect-
angular domains. We examine CHC for a square and establish it for combinations
w = Y " cu; for n < 14. In addition, for certain types of linear combinations.
we prove that CHC holds for square domain. We conjecture that CHC is true for
rectangular domains.

The thesis is organized as follows. In § 1.2, we survey various results on CNLT
and CHC. Proofs and connections between property A-D of the nodal places in
equation (1.1) are explored in Chapter 2. In Chapter 3, qualitative properties
of FEM solutions of (1.2) are studied. Among them. we show that a straight
forward analogue of the unique continuation property for an FEM solution does
not hold, in the sense that an FEM solution can be zero in one or more complete

clements without vanishing identically. We then formulate and prove a discrete



CHAPTER 1. INTRODUCTION 6

CNLT for piecewise linear finite element discretization on a triangular /tetrahedral
mesh. The discussion of CHC and discrete CHC is provided in Chapter 4. The
investigation reveals that a linear combination of the eigenfunctions behaves quite
differently from a single eigenfunction. The unique continuation property still holds
for combinations of eigenfunctions while other properties do not. In Chapter 5, we

summarize our results and state some possible extensions to our current research.

1.2 Survey on the CNLT and CHC

For one-dimensional systems, the Helmholtz equation is known as the Sturm-
Liouville equation. The CNLT is now replaced by a stronger result. see Courant

and Hilbert ( [7], p.454)

Theorem 1.1 (Sturm) The zeros of the n-th eigenfuntion divide the domain into

exactly n nodal intervals.

In the one-dimensional case, the CHC is replaced by

Theorem 1.2 The number S of nodal intervals of a linear combination of the
eigenfunctions up, Upyy, - -+, u, satisfies

p<S<q

This theorem was conjectured by Sturm, but proved by Liouville and Rayleigh.
The CHC is a weak analogue of Theorem 1.2 for the special case p=1. See also
Gantmakher and Krein {12] and Gladwell [13].
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The matrix analogues of CNLT and CHC in one dimension are based on the
theory of oscillatory matrices. Following Berman and Plemmons [3], we say that
A € RMN ot necessarily symmetric, is oscillatory if A is nonsingular, all the
minors of A are nonnegative and a;;4; > 0, a;4,; >0fori =1,2,....N —1.

Two of the fundamental theorems of matrix algebra, used here, are named after

Perron and Frobenius, and Binet and Cauchy.

Theorem 1.3 (Perron-Frobenius) (see Berman and Plemmons [3]) Let Anxn
be a non-negative matriz and p(A) be the greatest eigenvalue of A. Then there is
a non-negative eigenvector u, corresponding to p(A). AT also has a nonnegative
etgenvector corresponding to p(A).

Furthermore, if A is irreducible, then p(A) is simple and u, is the unique positive

etgenvector of A apart from scalar multiples.

A matrix A is reducible if for some permutation matrix P such that

B 0
PTAP = :
C D
where B and D are square matrices. (When N = 1, A is reducible iff A = 0.)
Otherwise, A is irreducible (Berman and Plemmons [3]).
The Binet-Cauchy theorem relates to compound matrices. Suppose A € RM*N_
p<min(M,N), S = (M), T = (}), then A, € R5*7 is the matrix composed of the

p-th order minors of A arranged in lexical order.
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Theorem 1.4 (Binet-Cauchy) (see Gantmakher [11]) If A € RM*N B ¢ RVxq,
p < min(M,N,q) and AB = C, then

A consequence of this theorem is

Theorem 1.5 If A € RY*N has eigenvalues (X;)Y and eigenvectors (x)N, X =

[x(l)yx(z)’ ”.’x(N)]’ A = diag(/\l’Az, ...,/\N) and Ax = X/\, then

AX, = X A,.
This means that the eigenvalues of A, are the products of p eigenvalues of A .
From these theorems Gantmakher [11] proved
Theorem 1.6 Let A = (a;j)nxn be an oscillatory matriz. A has distinct eigen-
values, which we order so that:

AL > A2 > > A > 0.

The k-th eigenvector ug = (1, U2, ..., ukn) has exactly k — 1 sign changes in the
sequence of its coordinates.
Moreover, let u be any linear combination of the eigenvector u,. Upyy, ---, Ug, then

the number of sign changes in the sequence of the coordinates of u is

P—1<8; <SF<q—1.
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Note that since we can give arbitrary signs to the zero coordinates of u, S; and
S4 denote the minimum and mazimum numbers of sign changes in the sequence of
the coordinates of u.

With this result, we can study the behavior of the discrete eigenmodes of a
vibrating string. In the FEM discretization with a linear interpolation, the eigen-
vector u should satisfy equation (1.2) for some eigenvalue A\. K and M are positive
definite tridiagonal matrices; K has negative quasi-diagonal and M has positive

quasi-diagonal. Equation (1.2) may be reduced to the standard form

(A—pDHu=0 (1.3)

where

A=K'M, u==.

> | =

It can be shown that K~' and M are oscillatory. A product of two oscillatory
matrices is oscillatory; thus A is oscillatory. Theorem 1.6 holds for the eigenvectors
of A. Thus the matrix analogues of CNLT and CHC hold for the FEM model in
the one-dimensional case.

Gantmakher’s theorem on oscillatory matrices cannot be applied to FEM eigen-
vectors in higher dimensions. In such cases the matrices are no longer tridiagonal
and the eigenvalues are not necessarily distinct; so K~!M is not oscillatory. How-
ever, we can show that the eigenvectors do obey a discrete counterpart of CNLT if

K is an M-matrix. A matrix A is called a (non-singular) M-matriz if it is positive
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definite with a; > 0 and a;; < 0 for i # j. (Berman and Plemmons [3]). If there
are some positive off-diagonal entries of K, then the discrete CNLT may not be
true. To formulate discrete counterparts of CNLT, the concept of nodal domains,
which appears in the continuous case, is replaced by that of sign graphs or strict
sign graphs ( see §3.3 ).

The inverse of a nonsingular M-matrix is nonnegative. Thus, A = KM is
non-negative. When a FEM mesh is connected, K and M are irreducible; so is
A. The Perron-Frobenius Theorem states that the highest eigenvalue of A, and
hence the lowest eigenvalue of (K — AM)u = 0 is simple, and the corresponding
eigenvector is positive. Hence, u; has one sign graph and any eigenvector of (K,
M) corresponding to higher eigenvalue must have more than one sign graph.

Fiedler [10]. Duval and Reiner (8] studied CNLT for eigenvectors of a real sym-
metric matrix with non-positive off-diagonal elements. We can generalize their
results to eigenvectors of matrix pair (K. M). Fiedler [10] proved that the nth
eigenvector has no more than n — 1 non-negative sign graphs. Non-negative or non-
positive sign graphs are termed as loose sign graphs. The only certain conclusion
we can draw from that statement is that the nth eigenvector has no more than
2n — 2 loose sign graphs, which is loose compared to the upper bound n in CNLT.
Gladwell [14] recently reduced the upper bound 2n — 2 to n. He proved that the n-
th cigenvector has at most n loose sign graphs. Regarding the global upper bound
for the number of strict sign graphs. Duval and Reiner proved a much stronger
result than Fiedler: when A, is distinct. the nth eigenvector has no more than »

sign graphs. But their result does not hold for multiple eigenvalues. For multiple
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eigenvalues, there is a difference between the continuous case and the discrete case.

Let A, be a r-fold eigenvalue such that

Anc1 < A, = ’\n-{»-l == ’\n+r-—l < /\n+r7

CNLT implies that any eigenfunction corresponding to ), has no more than n
nodal domains, the least upper bound. However, counterexamples in Chapter 3
show that an eigenvector corresponding to A, may have more than n sign graphs.
This fundamental difference makes the multiple eigenvalue case complicated.

We will make further comparison with the results of Fiedler., and Duval and

Reiner in Chapter 3.



Chapter 2

Qualitative Properties of

Eigenfunctions

In Chapter 1, we listed four basic properties that describe the behavior of the
nodal places of the eigenfunctions. In this chapter, we examine these properties and
discuss their relations. We will indicate in later chapters how these properties differ

from those of discrete solutions and finite linear combinations of eigenfunctions.

2.1 The first three properties

Jerison and Kenig [18] proved that

A. The unique continuation property: Suppose that @ C R™ is open and
connected, ¢ € L;:_(z(Q) and q = 2m[(m + 2). If any solution v € HZI(Q) of
Au + c(x)u = 0 vanishes on a non-empty open subset of Q. then u = 0 in Q.

Since p(x) is bounded, the unique continuation property holds for the solutions of

12
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(1.1) in H2%(Q). In particular, if u is a classical solution of (1.1), i.e., u € C?*(9),
then u has the unique continuation property (see also Miiller [20]). f p =1 or p is
analytic in €2, then a solution to (1.1) is analytic so that the unique continuation
property follows from the following result for analytic functions.

Proposition If u is analytic in Q and u vanishes on an open subset of Q then
v =0 onQ.

The proof follows the basic idea of John [19].

Proof: Let M denote the interior of the set {x € Q : u(x) = 0}. By hypothesis.
M # 0. Then M is an open subset of 2. All the derivatives of u vanish identically on
M. This implies that M is closed in Q: Let a Cauchy sequence {x;} in M converge
to x™ as £ — oco. By the continuity of the derivatives, all derivatives of u vanish at
x". That is, the power series of u at x" is identically zero: hence x* € M. Since M
is non-empty, M = Q, i.e., u is identically zero in (2, a contradiction to u being an

eigenfunction. .

The unique continuation property says that an eigenfunction cannot vanish on
any non-empty open subset of 2. Hence, the nodal set A of an eigenfunction must
belong to a lower dimensional space.

B. IfQ CR™ and p € C=(R2), the nodal set N (u) is locally an (m — 1)-dimensional
manifold ezcept for a closed set of dimensions less than m — 1 (Cheng [6]).

This follows from the maximum principle and the unique continuation property.

Theorem 2.1 (Maximum Principle) Let Au > 0 (or Au < 0) in a domain
D. If u attains @ mazimum (or a minimum) at an interior point of D, then w is

constant in D.
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Proof: [Protter and Weinberger [22]] Suppose that u attains its maximum M at
some interior point p; € D and u is not identically equal to M in D, say u(p;) < M
where p; € D. Connect p; and p; by a curve in D. Let p be the first point along
the curve such that u(p;) = M. u is not identically equal to M on any sufficiently
small circle centered at p. Let B(r) be a neighborhood of p in D with radius r.
Denote the boundary of B(r) by C(r).

C(r)

Applying the divergence theorem to Awu gives

Audx = / div(Vu)dx = a—udS,
B(r) B(r) c(r) On

where Gu/0n is the normal derivative taken on the boundary C(r). Transforming
the coordinates into polar coordinates, we have dS = r™ 'sin™~20,sin™ 36, - - - sinb,,_,dl
and

: [ Ou

Audx =™~ —sin™ 20, - - - $inb,,_,d0,
B(r) 31‘
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in which 8 = (8,,--- ,8,—2). It follows from Az > 0 in D that

FU ™2, - . sinf,_2d® > 0. (2.1)
or

Fix a radius R sufficiently small so that B(R) C D and u is not identically equal
to M on C(R). Integrating (2.1) from 0 to R and interchanging the order of

integration, we obtain

R
/ / OU (in™2, - sinb,,_,drd®
) 31‘

= /u(R,O)sin'"'201 - - sty _2d@ — wu(p) 2 0,

where w,, is a positive constant, depending on m only. (Note that w; = 27 and
w3 = 4w). That is,

u(p) < /u(R, 6)R™ 'sin™"26, - - - sinb,,_,d0

1
wy, Rm-1
1 f ds
= — udS.
(anm_l C(R)

Since u < M and is not identically equal to M on C(R), the average of u over C(R)
is less than M. We have

1
M =u(p) < ———f udS < M,
(p (an'"_l C(R)'
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which is a contradiction. If u attains a minimum in 2, we can apply the same

argument to —u. e

We are not going to go through the proof of property B, but will state and prove
property B’ which is closely related to property B.
B'. For every point p € N and every € > 0 then there ezist at least two points p,,

P2 € B(p.€) so that u(p,) end u(p2) have opposite signs.

Proof: Suppose that this is not true, i.e., there exists a nodal point p and an
open ball B(p) in Q such that u has a fixed sign in B(p). Without loss of generality,
let © be non-positive in B(p). Hence Au = —Apu > 0 in B(p) and u attains its
maximum. 0, in B(p). By the maximum principle, v = 0 in B(p). The unique
continuation property then shows that v = 0 in §2, which contradicts the statement

that « is an eigenfunction. s

Thus. those (m — 1)-dimensional hypersurfaces are either closed, or begin and end
at the boundary.

For m = 2, an eigenfunction cannot have an isolated nodal point; its nodal set
consists of continuous nodal lines, which are either closed, or begin and end at the
boundary. It is then of interest to know what happens when several nodal lines
intersect at a point? Property C answers this question.

C. Equiangular property (in two dimensional case): Let p be analytic. If
several nodal lines of u intersect at an interior point in Q, then they form an
equiangular system of rays.

Also, if Q is a convez domain, p is analytic and the intercept of the nodal lines

is on the boundary, they also have the equiangular property.
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Property C states that the nodes of an eigenfunction behave locally as the nodes of
a harmonic function. We call this the equiangle behaviour of nodal lines. We first

prove it when the intercept of the nodal lines is an interior point.

Proof: Suppose that there are m nodal lines of an eigenfunction u intersecting

at a point p = (0,0). Expand u in a power series at some neighborhood of p

oo
u = E vj,

=0

where

1, 0 0 ;
v = 5(z 5, +v5-) (u(p))

By assumption, vo = vy = --+ = v,,_; = 0 in Bp. That is,

u = Z v;- (22)
j=m
Substituting (2.2) into equation (1.1) gives
ZA‘UJ'-{-/\Z'UJ' =0,

j=m j=m

where the degree of the polynomial v; is j and the degree of Av;is j — 2. It then

gives

Av,, = -Av,_2 =0
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in B(p), t.e., v,, behaves like a harmonic function near p. Thus we have

Um = %[ARe(z'")-*—BIm(z"‘)]

= %[Ar"‘cos(mO) + Br™sin(mé)]

= %r"‘msin(mw - B)).

for some constants A, B and 8. This leads to
u = Ar™sin(m(0 — B)) + o(r™). (2.3)
Equating (2.3) to zero gives
sin(m(6 — B)) =0,

the solutions of which are

kn

b =B+ —, k=1,2....2m.

m
Intuitively, the tangents of the nodal lines of u at p form an equiangular system of

rays. For further details, see Cheng [6]. .

We can prove the boundary equiangle behaviour of eigenfunctions in a similar
fashion, sece Alessandrini [1]. The basic idea is to use conformal mappings to trans-
form the sector I'(p) = 2 N B, into a half disk, and perform an odd reflection of

the cigenfunction across the boundary: then taking the advantage of the conformal
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invariance of elliptic equations in divergence form, we transform the problem of
boundary equiangle behaviour into interior equiangle behaviour.
Property C is a local property of nodal set of an eigenfunction. In the next

section, we will focus on a global property, namely, Courant’s Nodal Line Theorem.

2.2 Courant’s Nodal Line Theorem

The nodal hypersurfaces of an eigenfunction divide the domain into a number of
subdomains, called nodal domains. CNLT gives a global upper bound for the num-
ber of nodal domains of an eigenfunction.

D. ( CNLT ) If the eigenvalues are ordered increasingly. then the n-th eigenfunc-
tion has at most n nodal domains.

Proofs of CNLT can be found in Courant and Hilbert [7]. Herrmann [17] or Plei-
jel [21]. etc. Among them, Herrmann or Pleijel’s proof is simpler, and will be given
here. The proof is essentially based on two tools: the variational characterization
of eigenvalues. and the unique continuation property.

It is well known (Evans [9]) that (1.1) has infinitely many positive eigenvalues
O<A1</\2</\3<-

The corresponding eigenfunctions {u;};°, where the u; are orthonormal, form a

complete set of L?(2). Hence for any function f € H}(S2). we can write

f = Zciu.'.
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which converges in L?(Q2). We say that u € H}(Q) is a weak solution of (1.1) if
/ —~Vu - Vv + Apuvdx = 0, (2.4)
Q

for all v € H}(Q).

The eigenvalues can be characterized recursively.

Theorem 2.2 (Minimax principle) Suppose the eigenvalues of (1.1) are ordered
increasinly. Then

Vu - Vud
A = max  min Jo Vu - Vudx

= m = 2.5
dim(S)=k—-1 u€SL uzo fnpuzdx (2:5)

where S s any (k — 1)-dimensional subspace of H}(Q) and S* is the orthogonal
space of S.

The ratio of the quadratic form on the right hand side of (2.5) is called the Rayleigh
quotient of function u. denoted as R(u). Define (u,v) = fQ puvdx. u and v are

orthogonal iff (u.v) = 0.
Proof: We shall first prove that for an arbitrarly (k — 1)-dimensional subspace S

of H} ().

min R(u) < Ak.
u€SL ufto

Let {v;}{™! be an orthonormal basis for §. We can find a function u = Ef___l citti,
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where the ¢; can be determined so that

(u,v;) =0, forz=1,... k-1

(ww)=Sh =1

Hence, u € S*. Since the u; satisfy (2.4),

k
Vu-Vudx = c; / Vu; - Vudx

k
= Zc,-,\,-/pu,-udx
i=1 2

N
>
*

That is. R(u) < Ax which implies that

i < A 2.6
ue.ISIB.?:;éo R(u) * ( )

On the other hand, take S; to be the (k — 1)-dimensional space spanned by

cigenfunctions {u;}*"!. For any u € SL. u can be written as u = . Cill;.
1 Yy 1 i=k

Calculate the Rayleigh quotient similarly as before

Dok Aic}
R(u) = 235 2 Ak
Zi=k C?
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With (2.6), this shows that

min R(u) = /\k,
u€SL ,u£0

which proves the result. .

In particular, the equality holds iff u is an eigenfunction of A;.

Proof: [CNLT]: Assume that the n-th eigenfunction u, divides Q into m regions.

say {4} (UZ, Q% = Q). Define a sequence of functions {v;}7 such that

u,(x), x€Q;
vi(x) =
0, otherwise .

We note that each v; satisfies the equation (2.4) with A = A, in ©; and (v;.v;) =0
for z # j.

If the eigenvalue )\, is simple, take a function
u(x) = Y cvi(x).
i=1
Choose the ¢; so that (u,u;) = 0 for 7 =1, 2, ..., m-1. Calculate

Vu-Vudx = c? / Vv; - Vuidx
ch / Anpvidx
i=1 2;

= z\,,/puzdx.
Q
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Thus, R(u) = A,. By the recursive characterization, we have A,, < R(u) = A,.
Since A, < An41, we have A\, < Anqy, t.e., m < n+ 1 or m < n. This proves the
assertion.

However, when A,, is a r-fold eigenvalue, so that
’\n-l <A = ’\n+l =ccc = An~{>-1'-l. < /\n-f-ra (2-7)

the above analysis gives that A,, < A\, < Ay, sothat m<n+rorm<n+r—1.
Hence any eigenfunctions corresponding to A, has at most n+r — 1 nodal domains:

a different treatment is required in order to reduce this to n. We take a function

m—1

u(x) = Y cvi(x).

=1

It 1s zero on nodal domain Q,,. Choose the coefficients ¢; so that (u,u;) = 0 for
J=1.2,...,m — 2. Again, we can conclude that A,,_; < R(u) = A,.. If Aoy = A,
by the variational characterization, u € H}(2) must be a weak solution of the
differential equation. By interior H*-regularity (Evans [9]), v € H2?(Q) C HL(Q)
where ¢ = 2m/(m + 2) < 2. In addition, p is bounded which implies that p €
L;:ZZ(Q). Therefore, u has the unique continuation property. Since © =0 in Q,,,, u

vanishes identically in Q. This contradiction implies that \,._; < A\,,i.e. m<n. @

Notice that the unique continuation property is used in the proof. However,
we will show later that the analogue of the unique continuation property does not
hold for the eigenvectors in the discrete case. Therefore, we cannot simply apply

the same argument to derive a matrix analogue of CNLT.
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Another remarkable difference between continuous and discrete versions of CNLT
appears when A, is an eigenfunction of multiplicity r as in (2.7), CNLT states that
any eigenfunction associated with A, has no more than n nodal domains. Examples
shown later indicate that this is false in the discrete case. Duval and Reiner (8]

failed to notice this difference.



Chapter 3

Qualitative Properties of FEM

Solutions

Applying the FEM procedure to the eigenvalue problem (1.1) gives the matrix

cigenvalue problem
(K-=AM)u=0

where both K and M are symmetric and positive definite. The off-diagonal entries
of M are non-negative, i.e., m;; 2 0 for i # j. The sign of the off-diagonal elements
of K depend on the mesh.

For a triangular mesh in R? or a tetrahedral mesh in R3, we find conditions
on the finite elements so that K has non-positive off-diagonal entries, i.e., K is an
M-matrix. In this case, we show that a discrete counterpart of CNLT holds for the

FEM solutions. Otherwise, it is easy to construct a counterexample of a mesh with

25
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some obtuse angled triangles, for which the discrete CNLT fails.

Then we explore the behaviour of the eigenvectors of such a pair of matrices
(K., M), which helps us to formulate the discrete CNLT properly. The definitions
of sign graphs are then formally introduced. As in the continuous case, there are
two parts of the discrete CNLT: when eigenvalues are simple, and when some are
multiple. The latter case requires different treatment due to the differences between
continuous and discrete solutions. A discussion and a comparison with Fiedler’s

and Duval and Reiner’s results are given in § 3.6.

3.1 Finite element counterpart

3.1.1 The constraints on finite element mesh

The FEM method in our discussion is a Rayleigh-Ritz method with piecewise linear
basis functions. In the FEM procedure, we first subdivide Q into regular shaped
elements. The simplest case is a triangular mesh in R? or a tetrahedral mesh in
R3. The collection of the finite elements is denoted by D, and the mesh points of
these elements are called vertices. There are three kinds of vertices. The ones on
the boundary are called boundary vertices. Vertices adjacent to boundary vertices
are called near-boundary vertices. The rest are defined as interior vertices. The
interior vertices belong only to the elements totally in the interior of D. With each
vertex @, we associate a basis function f;(x), which is non-zero and linear in the

elements that contain vertex z; f; is one at  and zero at other vertices. The FEM
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method seeks an approximation u; with the form

M

wr(x) =Y wifi(x).

=1

The solution u; takes the value u; at vertex z; in particular, u; = 0 forz = N +
-+ . M. because of the boundary condition.
Recall that the eigenvalues of the Helmholtz Equation are also the stationary

points of the Rayleigh quotient R(u)

fn Vu - Vudf

SR

(3.1)

Applying the FEM procedure to (1.1) gives the generalized eigenvalue problem

(K — AM)u =0, (3.2)
where
/n Vu - VudQ =~ /D Vur - VurdQ = uTKu (3.3)
and
/pude ~/ puldQ = u” (3.4)

The global matrices K and M are generated by assembling the entries of the element

matrices K. and M, on each finite element. Note that indices of u include all the
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vertices except the boundary ones.
Next we derive the sufficient conditions on the finite element mesh so that K,

has non-positive off-diagonals.

Theorem 3.1 In the triangulation of the domain, if every triangle is acute angled,

then the local stiffness matriz K. has non-positive off-diagonal entries.

Proof: In an arbitrary triangle A P, P2 P; as shown in Figure 3.1, the FEM solution

u takes the linear form

u=a+ bz + cy.

This leads to

Vu-Vu = b + 2. (3.5)

u takes the values u; at the vertex P; for 1 = 1,2.3, i.e.,

u; = a + bzx; + cy;, 1=1,2,3.

Solving the above linear system. we have

bA = uy(y2 — y3) + v2(ys — 1) + us(y1 — y2) (3.6)
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and

cA = uy(z2 — z3) + u2(z3 — z1) + us(z) — 1) (3.7)

where A is the determinant of

1 =z y»
1 z2 vy
1 z3 ys

Notice that |A| = 2 * Area(P, P, P3). Substituting (3.6) and (3.7) to (3.5), we find

that the coefficient of w;us in
/ / Vu - Vudzrdy = uTK_u
AP Py Py
1S
—{(z3 — z1)(z3 — z2) + (y3 — 1 )(ys — y2)}/|A| = —|P,P3|| P P3|cosvy/|A| < 0,

as v is acute. Similarly, because the angles a and 3 are acute, the coefficients of
usu3 and uwyuz are negative as well. Therefore, the signs of the element stiffness

matrix K, are
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Ps(zs,ys)

Pz(zz,yz)
Pl(zlyyl)

Figure 3.1: An arbitrary element in a triangular mesh.

Theorem 3.1 can be generalized to right-angled triangular elements. In this case.
the coefficient corresponding to the right-angle is zero. K. still has non-positive
off-diagonals.

In the finite element P, P, P; as shown in Figure 3.1, u also can be written as

u(z,y) = wd1(z,y) + w2d2(z.y) + usds(z,y),

where the ¢; are the areal coordinates of the triangle (Carey and Oden [5], Vol. 2).
For instance, let p = (z,y) be any point in the triangle, then

_ ATCG(PPzps)

= = 0.
Area(PlePs)

éi

The ¢; are positive inside P; P, P; so that if

// puldzdy = uTM_.u,
AP PPy
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then the element mass matrix M, has the form

+ + +
Mc=] + + +
+ + +

There is a similar pattern for tetrahedral elements in three-dimensions. We first
introduce some notation about the tetrahedron.

Consider an arbitrary tetrahedron P, P, P; P4 shown in Figure 3.2. The coordi-
nates of vertex P; are (z;,¥:,z), for 1 < i < 4. The outward normal to triangle
P, P; Py (may not be unit vector) is ﬁ X Iﬁ = i), to triangle P, P3P, is
P—IFZ X m = n®, to triangle P,P,P; is PI_P; X m = n®, and to triangle
P,P,Py is PP, x PP, = i),

P,

Figure 3.2: A tetrahedral finite element.



CHAPTER 3. QUALITATIVE PROPERTIES OF FEM SOLUTIONS 32

Let T be the coordinate matrix of tetrahedron P, P, P3P, i.c.,

(1 T n 21\

1 z2 y2 2
1 z3 ys =z

\1 Iy UYa 24)

Define A = |T| where |A| = 6xVolume(P, P, P; Py). For eachi = 1,2, 3,4, we define
X:, Y; and Z;: X; is the determinant of the submatrix of T obtained by deleting

the z-column and i-th row; Y; and Z; are defined in a similar fashion. Notice that

1 y2 2z
Xi=|1 ys z3|=(ys—v2)(za — 22) — (23 — 22)(ws — y2) = V.

1 ys 2z,
Following the similar computations, we can establish the relation between X;, Y:.
Z; and the outward normals:

X = (~1)*'2P, ¥ = (=1)'n. and Z = (=1)"*'n{).

With these notation, we can easily prove that

Theorem 3.2 Let @ C R3. If Q is divided into tetrahedra whose angles between
ecterior normals are obtuse, then the local stiffness matriz K. has negative off-

diagonal.
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Proof: Assume that u takes the linear form
u=a+bz+cy+dz
in each tetrahedron element. Then
Vu-Vu = b+ + &%
Since u takes the value u; at vertex P;, i = 1,2, 3,4, we have

—bA = ‘lLle et ‘U.zXz + ‘II.3X3 - u4X4

= uln(ll) + uzngz) + u;;ngs) + u4n

(4).
1
—cA = —u1Y] +uY2 —u3Ys +usYs

= ulngl) + uzngz) + usngs) — u4n.(;);

—dA = w2y, —usZs +uzZs — usZ,
= ulnz(,l) - uzngz) + uan:(,s) - u4n§,4).

Substituting the above equations into Vu-Vu, we find that the sign of the coefficient
of u;u; (i # j) is fixed by &) - AU). That is, the signs of the off-diagonal entries in
K. are determined by the inner products of the outward normals.

Consider i® - i®. Both of i®) and &* are orthogonal to PP, and can thus
be placed in the plane orthogonal to Iﬁ Assume this plane cuts Iﬁ, ﬁ, and
ﬁ at A, B, C as shown in Figure 3.3. Since ZABC is acute, the angle between

1(?) and i is obtuse. Thus A® - A¥) < 0. Applying the same reasoning to other
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P,
y n?
e C i B
N)
B B
P
1 \Aié @ A
P,

Figure 3.3: The angles between the outward normals are abused.

inner products, we know that K. has negative off-diagonal entries. ]

Again. this theorem is applicable to right-angled tetrahedral finite elements.
The off-diagonal entries in K. associated with the right-angles are zero, the others
are negative, and thus the off-diagonals of K. are non-positive.

In each tetrahedron Py P, P3Py, u can be expressed as

u(z,y,2z) = w10 + v + usds + usds

where the ¢;’s are the volume coordinates for the tetrahedron. For example,

_ Volume(PP, P> P;)

$e = Volume(P, P, P; P;)

2= 0.

Therefore, M, is positive.
To summarize, if the finite element mesh satisfies the required constraints, then

the global matrices K and M possess the following properties.
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- K, M are symmetric and positive definite;
- K has non-positive off-diagonals, i.e., K is an M-matrix;

- M has non-negative off-diagonals, where m;; > 0 iff there is a mesh line

connecting vertices ¢ and j.

In this thesis, we will always assume that K and M have these properties unless

specified otherwise.

3.1.2 The necessity of K having the right signs

The constraint that K has non-positive off-diagonal entries is essential. If not, the
discrete counterpart of CNLT may not hold. We present an example where CNLT
fails when K has some positive off-diagonal entries.

Example 3.1: Consider a simple case of (1.1) where p = 1 and Q = [-3,3] x
(—4.4]. The domain Q is divided into triangles where obtuse-angled triangles ap-
pear. as shown in Figure 3.4.

The stiffness matrix K and the mass matrix M obtained by FEM have the same
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/

Figure 3.4: The triangulation
appear.
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The nonzero entries of M are positive. K has positive diagonal; however, among

the off-diagonal elements of K, a4 > 0 due to the contributions from the obtuse
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angles while a3z < 0.
The third eigenvalue of (K , M ) is multiple where A; = A; = X;. The eigen-

modes corresponding to A; have the form
)T

u=(z,y,z,w,—w, —z. —y, -z

(K — AM)u = 0 can be reduced to an equivalent four by four linear system:

(ky — Amey)z — (kg — Amy)z + (ks — Ama)w = 0 (3.8)
(ky — Amy )y — (ks — Amy)y =0 (3.9)

(ky — Amy)z — (kg — Amyg)z = 0 (3.10)

(k2 — Ama)w = 0 (3.11)

Taking A = A3 = 51=81  we have w = 0 and z.y and : satisfy the same equation

my —my ’

(kl - z\ml)z et (k4 _ /\m4)z = 0. i.e., 0-z=0.

Therefore. the eigenvectors corresponding to A3 = Ay = A; can have the form

u = (1:, Yy, =z, 07 Or —-Zz,Yy, —Z)Tw
in which z., y and z are any real numbers as long as not all of them are zero.
Hence. we can choose the eigenmode {—1,+1,—1,0,0,+1, -1, +1}. It divides the

rectangle into siz regions as shown in Figure 3.5. The FEM solutions fail to have
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discrete CNLT property.

Figure 3.5: The nodal lines of an approximated eigenfunction corresponding to As,
divide the domain into six nodal domains. But A; = Ay = A; < A;. Thus. discrete
CNLT fails.

Therefore. if K does not have non-positive off-diagonal, i.c.. K is not an M-

matrix, then the FEM solutions do not necessarily have the CNLT property.

3.2 Graph theory notation and properties of FEM

eigenvectors

3.2.1 Graph theory notation

To obtain the discrete counterparts of CNLT, we first introduce some basic termi-
nologies in graph theory.

A graph G = (V, E) consists of a finite set of vertices V together with a set E of
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edges, which are unordered pairs of vertices. Such a graph is useful in representing
the structure of symmetric matrices. Let A be an N x N symmetric matrix. The
associated/underlying graph of A, denoted by G(A) = (V(A), E(A)), is one for
which the N vertices of G(A) are numbered from 1 to N, and (z.j) € E(A) iff
aij =a;; #0(1#7).

As G(M) reflects exactly the structure and connectivity of the FEM mesh (
triangular or tetrahedral mesh ), we consider G(M) as the associated graph of the
symmetric matrix pair ( K,M ). For example, in an acnte-angled triangular mesh,
K and M will have the same non-zero structure, i.e., k;; < 0 and m;; > 0iff i and j
are adjacent. i.e., z and j are the end-vertices of the same mesh line. (If an element
1s right angled, the element stiffness matrix K. has a zero off-diagonal entry. Thus
k;; may be zero even though there is a mesh line connecting i and j. Hence, G(K)
is a subgraph of G(M): G(K) may not be exactly the same as the mesh.)

For distinct vertices z and j in G, a path from 7 to j is an ordered set of vertices
(21522, -+ ,2py1) such that (ig,ik41) € E(G), k =1,2,...,p with i, = ¢ and 7,4, = j.
A graph is connected if every pair of distinct vertices is linked by at least one path.
It is well known that G(A) is a connected graph if and only if A is irreducible
(see Busacker and Saaty [4], p.111). If Q is connected, then the FEM mesh is a
connected graph and hence K and M are irreducible. It is easy to see that M is
irreducible because G(M) is exactly the mesh. But it is not so obvious for K when
G(K) is only a subgraph of the mesh, such as in the case that there are right-angled
triangular elements. If an element is right angled, K, has a zero on the off-diagonal;

G(K.) is not a triangle, but a chain connecting all three vertices. Hence G(K.) is
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still connected and K. is irreducible. In general, to prove that K is irreducible, it
is sufficient to show that any two vertices ¢ and j are connected by a path in G(K).
If the mesh is connected, then z and j are connected by a path in the FEM mesh,
say (t1,%2,+ ,%p41) where i, = 7 and i,4; = j. Suppose that some edge in the
path. say (ix,Zk41), is not in G(K). Then i, and i,y lie in a right-angled triangle,
say Oigieyit. In the triangle, both (ix,t) and (¢,ix4,) are edges in G(K). So we
can replace (iz,ik4+1) by a path (ik,¢,%k41) in G(K). Repeating this procedure for
the other edges not in G(K), we can find a new path connecting i and j that is
contained in G(K), which implies that G(K) is connected. Hence K is irreducible.

A subgraph G' = (V', E’) of G is a graph for which V' C V and E' C E. We also
call G’ the induced subgraph on the vertex subset V'. Note that (3,7) € E' implies
that both ¢ and j belong to V'. The concept of subgraphs is related to submatrices.
In matrix terms, the subgraph G(V') of G(A) is the graph of the matrix obtained by
deleting the rows and columns from A that correspond to V'\ V'. This is illustrated
in Figure 3.6.

An eigenvector u of A € RV*¥ specifies a sequence of real numbers {u;}¥. We
can associate u with the graph G(A) by assigning signs to the vertices: the i-th
vertex is positive if u; > 0. negative if u; < 0, or, zeroif u; =0 (1 <i < N ). See
the example in Figure 3.6. By doing so, we then can compare the characteristics of

eigenvectors with those of eigenfunctions.
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TDXXX |
X@®x X
A= XX@®XxX
X X@Xx
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Figure 3.6: Basic concepts in graph theory and matrix correspondences.
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3.2.2 Properties of FEM eigenvectors

Recall that one of the main theorems about the solution of (1.1) is the unique
continuation property: u(x) cannot vanish in any non-empty open subset of Q.
However, a discrete analogue of the result does not hold for FEM models, in the
sense that a FEM solution may have one or more elements that are completely zero,
as illustrated in Example 3.2.

Example 3.2: In the triangulation of a square shown in Figure 3.7, the fifth

eigenvector of the discretized system is zero in four complete triangles.

N\

N

Figure 3.7: A FEM solution can have zero (shaded) polygons.

Because of the sign structures of K and M, the FEM eigenvectors do inherit
some characteristics of eigenfunctions, such as the maximum principle: u(x) cannot
have an interior negative maximum or interior positive minimum. In the matrix
eigenvalue problem of (1.1), the indices of the coordinates in u are composed of
mterior vertices and near-boundary vertices. If z is an interior vertex, all the el-
ements to which ¢ belongs, are interior elements. Since the Helmholtz equation
with Neumann boundary conditions has the first eigenfunction », = 1, the FEM

approximation would have the first eigenvector u; = {1, ...,1}. Hence, the stiffness
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matrix K. of an interior element admits a rigid body mode {1, ..., 1}, i.e.,
K.{1,...,1} = 0.

This can be also seen from the calculation in § 3.1.1. For instance, in the triangular
element as shown Figure 3.1. the sum of the off-diagonal terms in the first row of

K. is
ker2 + kerz = —~(|P1 P3| cosy + | P P| cos B)| P Ps|/|A| = —| P Ps|*/|A| = —kens.

It is also true for the sums of the rest rows. Thus, K.{1,1,1} = 0.

P3(1!3. y;;)
O

N

PZ(z27 y2)
Px(zuyl)

This means that if z is an interior vertex, after assembling K, we have

Y kij=o0.

i=1

If z is a near-boundary vertex, it is adjacent to boundary vertices. Thus, after
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assembling K, we have

E k,'j > 0.
7=1

We then have the modified maximum principle for the eigenvectors.

Theorem 3.3 The eigenvectors of (K,M) cannot attain a negative mazimum or

a positive minimum at an intertor vertez.

Proof: A contradiction can be derived directly from the i-th equation of Ku =

AMu

D kijuy =AY miu;, (3.12)
3 i

D kaslus = w) + (kg = A misu,. (3.13)

Suppose that there is a local positive minimum at an interior vertex i, such that
u; > 0 and u; — u; > 0 for (¢.7) € E(M). On the left hand side of (3.13), the
first sum is non-positive and the second is zero due to zj k:; = 0. Hence. the
left hand side is non-positive. But the sum on the right hand side is positive as
AY miu; > myu; > 0. This is a contradiction. Therefore, there is no interior

positive minimum. Similarly, there is no interior negative maximum. s

A particular case of (3.13) is when 7 is a node, i.e., v; = 0. We conclude that 2

cannot be adjacent only to vertices j for which the values of u; are all non-negative,
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or all non-positive, unless they are all zero. Otherwise, suppose that u; is adjacent
to all positive vertices. The left hand side of (3.13) satisfies 3. ; kiju; < 0 while
the right hand side A} .., miju; > 0. This is impossible. Thus, a zero of any
eigenvector of (K, M), no matter whether it is an interior vertex or near-boundary

vertex, 1s either

(a) connected only to zeros; or

(b) connected to both positive and negative vertices.

For example, consider an acute-angled triangular mesh in D € R? with « = 0 on the
boundary. Let u;(z,y) be a FEM solution constructed from an eigenvector of (3.2).
The second case implies that a node on a nodal line of u;(z.y) must have positive
and negative neighbours. The first case gives us a zero polygon. A zero polygon,
unless all its vertices are on the boundary (namely boundary zero polygon). must
have both positive and negative neighbours. see Figure 3.7. Therefore, u;(z,y)
cannot have isolated interior nodal point nor isolated interior zero polygon. The
nodal set of u/(z,y) consists of nodal lines and nodal polygons. Inside each triangle,
ur(z,y) is given by linear interpolation. Thus, nodal lines are straight lines inside
any one triangle. They are either closed or begin and end at the boundary.

Hence, the nodal set of u;(z.y) will divide D into polygonal sign domains. Inside
of each sign domain, u;(z.y) will be either positive or negative. There may be also
some nodal polygons.

This argument can be extended to tetrahedral meshes in R? which satisfies the
condition of Theorem 3.2. A FEM solution u;(x) cannot have isolated interior

nodal points or lines going through interior points or interior nodal volumes. The
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nodal set of ur(x) will consist of piecewise nodal surfaces or nodal volumes. The
nodal surfaces will be either closed or begin and end at the boundary. The nodal

set of ur(x) will divide D into a number of sign domains.

3.3 Sign Graphs

In order to formulate the discrete counterpart of CNLT formally, we need to in-
troduce the discrete analogue of a nodal domain. We name it a sign graph while
Duval and Reiner [8] continue to call it a nodal domain. The term nodal domain
can potentially create unnecessary confusions in the discrete case. This can be seen
through the two dimensional case. Since nodal lines refer to lines formed by zero
points, one may be tempted to term nodal domains as subregions formed by zero
points. In fact, a nodal domain ( from CNLT ) refers to a subregion encircled by
nodal lines or boundaries. Since in the continuous setting, by the unique contin-
uation property of eigenfunctions, there cannot exist any open subset of positive
measure formed by zero points, the CNLT style definition of nodal domain can-
not cause confusion. However, in the discrete setting, there do exist subregions
of positive measure formed by zero points, nodal polygons. in the FEM solutions
and thus there is potential confusion of terminology. Since CNLT describes a sign
characteristic of eigenfunctions/eigenvectors, using the notation of sign graph is
preferable.

The nodal set of a FEM solution u/(x) subdivides 2 into positive, negative sign
domains and nodes. This subdivision of 2 defines a subdivision of the vertices and

the edges of the mesh. In general, let G be the associated graph of a symmetric
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matrix pair (K, M) of order N. Given a vector u € RV¥*!, the sign graphs of u are

the connected components in the graph obtained from G by

(1) deleting all the nodes : where u; = 0 and their incident edges:
(2) deleting all the edges (z, 7) for which u;u; < 0.

In each of these connected components, u takes a fixed sign: if u is positive (nega-
tive), we call such a connected component a positive ( negative ) sign graph. The
definition of sign graphs implies that two adjacent vertices in G, having the same
sign, lie in the same sign graph. Thus, a positive sign graph is adjacent to either
zeros or negative sign graphs. We say that two sign graphs G; and G- are adjacent if
there is an edge (2, 7) in G such that : € V(G,) and 5 € V(G.). Figure 3.8 illustrates

the concept of sign graphs with respect to a vector u.

7 A

i ®/+ ST
TLE v++ ¢+ 0
0 £y g Ay O
- - 7 ',:-: +
) 0]??.

Figure 3.8: The graph G is associated with a pair of symmetric matrices (K, M).
The subgraphs that are indicated with thick lines or vertices are sign graphs. There
are three negative sign graphs and two positive sign graphs. Sign graph 2 is adjacent
to sign graphs 1 and 3, but is disconnected from sign graphs 4 and 5.

Let u;(x) be the FEM continuous solution constructed from the vector u. In
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an arbitrary element of a triangular or tetrahedral mesh, u;(x) takes a linear form.
Hence, inside of any element where there are at least two vertices having opposite
signs, a nodal line or surface appears and is linear. In addition, since zeros of u
cannot be surrounded by all positive vertices or all negative vertices, the nodal
lines or surfaces separate positive and negative sign domains of u;(x). We then
can conclude that the number of the sign graphs of u is equal to that of the sign
domains of u;(x). First of all, since each positive sign graph is adjacent to either
negative sign graphs or zeros, a nodal line of the FEM approximation will be formed
in the elements that are adjacent to this positive sign graph; hence, each positive
(negative) sign graph of u is embedded in one positive (negative) sign domain of
©r(x). On the other hand, inside each positive (negative) sign domain, there will
be only one positive (negative) sign graph; otherwise, suppose that a positive sign
domain % of u;(x) includes several sign graphs of u. Those sign graphs have to be
positive; otherwise, u;(x) changes sign in Q*, which implies that Q% is not a positive
sign domain. Thus, Q% is composed of several positive sign graphs and zeros (the
appearance of zeros is due to the fact that positive sign graphs are disjoint). In
this case, there exists at least one zero that connects to all positive vertices, which
contradicts the property of zeros. Therefore, there is a one-to-one correspondence
between sign domains of FEM solutions and sign graphs of eigenvectors. Because
of the consistency, we will connect the nodal places of u; to separate positive and
negative sign graphs of u, see Figure 3.9.

Note that the rectangular mesh may not provide such consistency. Inside each
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Figure 3.9: The sign domains of the FEM continuous solution ur(x) constructed
from vector u in the example shown in Figure 3.8.

rectangle. u;(z,y) takes the bilinear form

u(z.y) = a + bz + cy + dxy.

Its nodal lines may be hyperbolic inside one element. But all the vertices of the
rectangle are adjacent to one another. A paradox may happen in this case. The
example in Figure 3.10 shows that vertex A and B belong to different sign domains
of u;(z.y). but are in the same sign graph of u as they are adjacent.

We are also interested in studying another kind of sign graph which was studied
by Fiedler [10]. We term them weak sign graphs , i.e., sign graphs of vertices i
where u; 2 0 (u; < 0). Strictly speaking, the non-negative (non-positive) sign
graphs of u are the connected components in the graph obtained from G(A) by
deleting all the vertices 7 for which u; < 0 (u; > 0) and their incident edges. Each

non-negative (non-positive) sign graph contains at least one positive (negative) sign
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Figure 3.10: Inconsistency of sign domains of u(z,y) and the sign graphs of u occurs
in rectangular mesh.

graph. Clearly, given a graph G(A) and a vector u. the number of weak sign graphs
cannot exceed the number of strict sign graphs. In the example in Figure 3.8, there
are three weak sign graphs: a non-negative sign graph consisting of positive sign
graphs 2 and 5 connected by zeros. a non-positive sign graph consisting of negative
sign graphs 1 and 4 connected by zeros and a non-positive sign graph consisting of
only a negative sign graph 3. Two weak sign graphs G, and G, are defined to be
adjacent if there is one strict sign graph in G, adjacent to a strict sign graph in G».

We next state and prove the discrete versions of CNLT.

3.4 Discrete CNLT: simple eigenvalues

With the definitions we are able to state and prove discrete analogues of CNLT for
the cigenvectors of (K, M) derived from Dirichlet boundary condition and satisfying

the conditions mentioned in § 3.1.1. We first consider the case that the eigenvalues
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of (3.2) are distinct. Assume that K, M € R¥*¥.

Theorem 3.4 If the eigenvalues of (K, M) are distinct and are ordered increas-

ingly, then the n-th eigenvector u,, has at most n strict sign graphs.
The proof of Theorem 3.4 is based on two lemmas.

Lemma 3.5 (Minimax Principle) Let B and C be symmetric matrices with C

positive definite. If the eigenvalues of (B, C) are labeled increasingly, then

. xTBx
Axr = min max TOx'
dim(S)=k x€S X >. ¢

x#0

where S is a k-dimensional subspace of RY (see Stewart [23]).

The proof of the minimax principle is similar to that of Theorem 2.2. In the context
of matrix pair (B, C), x L w; means that x is C-orthogonal to w;, i.e., xTCw = 0.
When C = 1. we just say that x is orthogonal to w;. For simplicity, we sometimes
define (x.w;)c = xTCw;.

Let A > 0, i.e.,, A is a non-negative matrix. By the Perron-Frobenius theo-
rem, an eigenvector corresponding to the spectral radius, the greatest eigenvalue,
of an irreducible non-negative matrix is strictly positive. We next show that a
strictly positive eigenvector of a non-negative matrix, not necessarily irreducible,

must correspond to the spectral radius of the matrix (Berman and Plemmons {3]).

Lemma 3.6 Let A > 0. If u is a positive vector, such that Au = Au, then
A =p(A).
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Proof: Let y be an eigenvector of AT corresponding to p(A). By the Perron-

Frobenius theorem, y is nonnegative. We then have
AyTu = yTAu = (uTATy)T = p(A)(uTy)T = p(A)yTu.

But u > 0 and y > 0, thus yTu > 0. Therefore, A = p(A). a
With the two lemmas, we are ready to prove Theorem 3.4.

Proof: Suppose that u, has m sign graphs, say {Gi}7*, where m < N. Without
loss of generality, the vertex z runs consecutively through G,, G, ... ,G.. and then

through any vertices for which u; = 0. Thus
ul = {vI vI .. vT 0T}, (3.14)

where the terms in v; are labeled v; .. Now construct the m vectors w; = w;(N x1)

so that
WJT-' = {OTy OT-,--- 7VJ?7OT"" ?OT}' (3.15)

As there are no overlaps among the vertex sets of {Gi}T*. {w;}* have non-overlapping
entries.
With {w;}1*, we can consider the eigenvalue problem (3.2) on the m-dimensional

space spanned by {w;}*. Consider

u=>Y aw;=Wa, (3.16)

i=1
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where W = W(N x m) = [w;,w,,... ,w,,] and a = {a;,a2,... ,a,,}. In this

notation
u, = We, (3.17)

where e = {1,1.... ,1}. The Rayleigh Quotient of u is

uTKun ITWTKWa aTBa
Ar(u) = uTMu oTWTMWa aTCa’ (3.18)

Since K and M are symmetric and positive-definite, B and C are also symmetric

and positive-definite. The terms in B and C are

bi; = wl Kwj, cij = wi Mw;. (3-19)

So the associated graph of (B, C) describes the connections of the sign graphs of
u,. Any two sign graphs G;, G; (i # j). are adjacent only if they have opposite
signs. This implies that w; and w; have opposite signs. In addition the off-diagonal

terms of K are non-positive and of M are non-negative. Thus

b;jZO and c,-_,-éO

for ¢ # j. This means that B is positive definite and non-negative; B > 0. Ma-
trix C, being a positive definite matrix with non-positive off-diagonal terms, is a
nonsingular M-matrix; the inverse of such a matrix is non-negative (Berman and

Plemmons, p.13 (N98)), i.e., C™! > 0.
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In the space spanned by {w;}7, the eigenvalue problem is

(B — uC)a = 0. (3.20)

We know one eigenvalue of (3.20), namely A,; the corresponding eigenvector is
e = {1,1....,1}, which gives u, in the original space. Multiplying C~! on both
sides of the equation (3.20) yields

(C™'B — ul)a = 0.

(A - pl)a =0. (3.21)

Since C is an M-matrix, C~! > 0. This implies C™'B > 0, i.e., A is a non-negative
matrix. Hence, by Lemma 3.6, the eigenvector e corresponds to the greatest eigen-
value of (3.21), namely g,,. Then A, = u,,. On the other hand, p,, is the mth
eigenvalue of (3.2) on the space spanned by {w;}7 which is a subspace of RY. The
mth cigenvalue on a subspace is not less than the rnth eigenvalue on the whole space,
1€, Bm > An. We deduce that A,, < A,. Since, by hypothesis, the eigenvalues are

distinct. A,, < A,, implies m < n. ]
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3.5 Discrete CNLT: multiple eigenvalues

Recall that in the continuous version of CNLT, the proof of multiple eigenvalue is
based on the unique continuation theorem. Assume that A, is a multiple eigenvalue
and u, has more than n nodal domains. A new eigenfunction u corresponding to
An can be constructed from u,, where u is defined on n nodal domains of u,
and identically zero on the rest. Hence, by the unique continuation theorem. u
has to be identically zero in 2. This contradiction shows that any eigenfunction
corresponding to A, has at most n nodal domains.

In § 3.2.2., we showed that there is not a discrete analogue of the unique con-
tinuation theorem. That is, an eigenvector can be zero in one or more complete
elements without being identically zero. Thus. a direct translation of the proof of
CNLT does not hold for the matrix eigenvalue problem.

In fact, when A, is a multiple eigenvalue, it is not always true that any eigen-
vector corresponding to A, has at most n sign graphs. As the counterexamples in
Figure 3.11, the eigenspace of the multiple eigenvalue A3 = Ay = A5 = \g consists

of those vectors u satisfying the equations

ug = ug = 0;

uy + ug = uz + usg = —(uz2 + uq).

With these conditions, we can find a set of M-orthogonal eigenvectors corresponding
to the multiple eigenvalue, each of which has six sign graphs, see Figure 3.11. This
shows that Theorem 6 of Duval and Reiner [8] is false, in which it implies that any

eigenvector corresponding to A,, no matter whether A, is simple or multiple, has at
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most n sign graphs. This is a major difference between the continuous and discrete

CNLT.
= 1 + 1 + - 1 - | +
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Figure 3.11: There exist four M-orthogonal eigenvectors associated with the mul-
tiple eigenvalue A3, each of which has 6 sign graphs.

Hence, when A, is a r-fold eigenvalue, i.e.,

’\n—l < ’\n = An~{—l == An«{-r—l. < /\n+r7 (322)

some of its eigenvectors can have more than n sign graphs. A direct conclusion
from Theorem 3.4 tells that that any eigenvector corresponding to the multiple

eigenvalue A, has at most n + r — 1 sign graphs. The question now is if these
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eigenvectors can have a stronger property. For the multiple eigenvalue \; in Figure
3.11, we exhibit four M-orthogonal eigenvectors {u;}$, so that u; has at most j sign
graphs for j = 3,4,5,6, see Figure 3.12; we also exhibit four linearly independent
ergenvectors, all of which have at most three sign graphs, see Figure 3.13. In fact,

these are generally true. To prove them, we first state two lemmas.

= = = X0
= ‘I’O 0 ""'0"" U
@ Xaor Xo @ Xor Xo
+ - + + - +
u, u,
‘;‘:-:f @ ® (DE @E ©)
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CD: Ol @ @: ®, ®
us I.l6

Figure 3.12: There exist four M-orthogonal eigenvectors {u;}$ associated with the
multiple eigenvalue A; such that SG(u;) < j.

Corollary 3.7 Suppose u, is an eigenvector corresponding to A, and the {w;}7

are defined as in equation (3.15). In the space spanned by {w;}?, no eigenvalue

exceeds A,.

Proof: In the space spanned by {w;}T*, A, is the largest eigenvalue of (B, C) in

the equation (3.20) as in the argument of Theorem 3.4. -
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Figure 3.13: There also exist four linearly independent eigenvectors {u;}§ associated
with the multiple eigenvalue A3, each of which has 3 sign graphs.

For simplicity, we now introduce the notation
SG(u) = number of sign graphs of u.

Given an eigenvector u corresponding to \,, with SG(u) > n, we can also construct

another eigenvector v from u as in the continuous case, so that SG(v) < n.

Corollary 3.8 If u is an eigenvector corresponding to A, and SG(u) = m > n.

then, in the notation of equation (3.15), we can find

n
v = E ;W ;

i=1

such that v is an eigenvector corresponding to A, and SG(v) < n.
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Proof: Choose {a;}T not all zero, such that v is M-orthogonal to {u;}?~!. By
the minimax theorem, Agr > A,, and by Corollary 3.7, Ag < A,. Thus Ag = A,.. By

its construction SG(v) < n. =

In fact, there will be many such v which may be formed from a given u. For
simplicity, we call any such M-orthogonal one v = T(u,{u;}?7!). In general,

v = T(u, {u;}7™!) implies that
(a) SG(u) > n;

(b) v # 0 is constructed from n of the w;, where the w; are defined from u as in

(3.15). By the construction, SG(v) < n.
(c} v is M-orthogonal to u; for 7 =1,2,..n — 1.
We now state and prove a discrete version of CNLT for multiple eigenvalues.

Theorem 3.9 If A, is a r-fold eigenvalue of (K, M) as in (8.22), then we may

find v M -orthogonal eigenvectors {u;}2* ! such that SG(u;) < j.

Proof: Take an M-orthonormal basis {v;}7*"~! in the r-dimensional eigenspace
V of A,. If SG(v,) < n, take u, = v,; otherwise, take u, = T'(v..{u;}?"!) and
construct a new M-orthogonal basis u,, {v(});}7+71~! for V. If .S'G’(\.r,(,l_(zl <n+1,
take u,4; = vf}}l; otherwise, take u,4; = T(Vfgl,{u,-}'l‘) and construct a new
orthogonal basis {u;}2+! {v(®);}»+1-! Repeat the process until we find a new M-

orthogonal basis {u;}2+"~! for V. As a result, SG(u;) < jforj=n.n+1,...n+

r—1. n

We can also prove a stronger result.
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Theorem 3.10 If A, is a r-fold eigenvalue of (K, M) as in (3.22), then we may
find r linearly independent eigenvectors {v;}2*"~! corresponding to A, such that

SG(vij)<nforj=nn+1l... ,n+7r—1.

Proof: = We start with an M-orthogonal basis {u;}2*"~! of the eigenspace V
corresponding to A,. {u;}2*7"! are labeled so that SG(u;) < SG(u,) for k < €.
Let u, be the first eigenvector in {u;}2*"~! such that SG(u,) = n + t > n. Take
vi=ujforj=nn+1,....5—1

Consider the nonzero function y = Z;':: a;w;, where {w;}7?** is constructed
from u, as (3.15). Choose the a; so that

(0. Y)m =0, forz=1,2..n-1

?

nzﬂ(u,-.wj)maj =0, 1=1,2,...,n—~1 (3.23)

j=1
These are n — 1 homogeneous linear equations in n 4 ¢ unknown variables, which
has m > t + 1 independent variables. A basis of the solution space of (3.23) can
be obtained by taking only one of the independent variables nonzero at a time. It
then gives a basis {y;}T* for the A, eigenspace V' spanned by {w;}7+*. Note that
SG(y;)<n+t—m+1<nforj=1,2,..., m. Asu, is linearly independent of
{v;}i'. there exists at least one of the y; that is linearly independent of {v;}37?,
ntr—1

say y1. Take v, = y; (SG(v,) < n). Construct a new basis {v;}2, {ul®;}7#

for V where {u®;}7}7~" are labeled so that SG(u{") < SG(u!") for £ < £. We



CHAPTER 3. QUALITATIVE PROPERTIES OF FEM SOLUTIONS 61

continue this process and thus construct a linearly independent basis {v;}?* ! for

V with SG(v;) < n for all 5. [

The above argument can be extended to the eigenvectors of (K, M) derived
from Neumann boundary conditions. In the FEM procedure, the element stiffness

matrix K. of an element admits a rigid body mode e = {1,--- ,1}, i.e.,

K.e = 0.

With Neumann boundary conditions, the values of boundary vertices in the mesh
need to be computed as well. while those for Dirichlet boundary condition are
known. Thus. with Neumann boundary condition, the indices of the assembled
global stiffness and mass matrices (K, M) include all the mesh vertices. In this

case, K is singular and satisfies

Ke = 0;

hence, zero is the first cigenvalue of (K. M) and e is the first eigenvector. If the
mesh satisfies the conditions stated in § 3.1.1 (no right angles in the mesh are

allowed), K and M satisfy

- M are symmetric, positive definite and has non-negative off-diagonals (the

same as in the Dirichlet boundary conditions);

- K are symmetric, semi-positive definite and has non-positive off-diagonals: K

is a singular M-matrix. In addition, Ke = 0; K is also a Laplacian matrix as
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in Fiedler [10];
— K and M have the same non-zero structure.

However, the proofs of Theorem 3.4, 3.9 and 3.10 require that K is positive definite.
In order to apply the same argument for Neumann boundary condition. we add a
reasonable positive amount to K to avoid the singularity but still keep the off-

diagonal entries non-positive. To do so, we choose a positive number s such that

0<s< mn {—K;-,-/m,-,-}.
L]

mi; #0

Instead of considering Ku = AMu. we consider
(K + sM)u = (A + s)Mu.
Denote K = K + sM and p = A+ s. We then have
Ku = gMu.

Now M is positive definite, by the choice of s, K is also positive definite with non-
positive off-diagonal terms. Thus. the analysis for Dirichlet boundary conditions is
also applicable to the case of Neumann boundary conditions.

Also note that irreducibility of K and M is not required in the theorems on
discrete CNLT. The discrete analogues of CNLT need not to be restricted to FEM

eigenvectors, but can be also applied to the eigenvectors of a single symmetric M-
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matrix. Hence, the results of discrete CNLT can be regarded as a matrix theory,
which gives a sign characteristic of the eigenvectors of matrix pair (K, M) or matrix

K satisfying the properties mentioned.

3.6 More on discrete analogues of CNLT

As mentioned in Chapter 1, Fiedler {10], Duval and Reiner [8] also have studied
the matrix analogue of CNLT. They dealt with a single matrix K, where K is real
symmetric with non-positive off-diagonal entries. Note that there is no requirement
for the diagonal entries of K. This is because K + sI will be positive definite for
sufficiently large s > 0, ¢.e., K + sI can be an M-matrix. Although they dealt with
a single matrix, their results can be generalized to matrix pair (K, M), as we will

show in this section. We also prove more theorems on discrete CNLT.

3.6.1 Discussion of Fiedler’s result

Let K be a real symmetric matrix with non-positive off-diagonal entries. Fielder [10]
proved that the n-th eigenvector of K has no more than n — 1 non-negative sign

graphs. His proof is based on the minimax principle and the following lemma.

Lemma 3.11 ((Fiedler [10], Theorem 1.2)) Any principal submatriz of a sym-

metric matriz A — A I has no more than n — 1 negative eigenvalues.

Proof: Let the eigenvalues of A be

A <A <o < AN
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Then the eigenvalues of A — A, I are \; — A, for ¢ = 1,2,...,N; among them,
there are n — 1 negative eigenvalues. By the minimax principle of eigenvalues, the
i-th eigenvalue u; of any principal submatrix is no less than the i-th eigenvalue of

A -1 ie, u; > A; — A.. Thus, the statement holds. a

This lemma is also applicable to the eigenvalues of (K, M) as the generalized
cigenvalue problem can be transformed to the standard one by using the Cholesky

factorization of M [23] :

(K- AM)u=0
lM:LLT
(L'K(L )T —AI)LTu =0
lA:L"K(L")T. v=LTu

(A-A)v=0.

With Lemma 3.11, we can generalize Fiedler’s result ([10], Theorem 2.1) to the
eigenvectors of (K, M).
Theorem 3.12 Let K and M be irreducible. If Ku, = A\.Mu,,, then u, has at

most n — 1 non-negative sign graphs.

Proof: Suppose that u, has at least n non-negative sign graphs., say r > n.

Without loss of generality, we can assume that u, can be partitioned into
ul = {vf, v.f’... ,vf,vz;,l . (3.24)

where v; > 0, for ¢ = 1,2,... ,7 and v,,; < 0. K and M are partitioned confor-

mally. in which each K;; and M;; are irreducible.



CHAPTER 3. QUALITATIVE PROPERTIES OF FEM SOLUTIONS 65

As Ku,, = A\,Mu,,, we have

(Ki — AaM)vi = —(Kirs1 — MM )Vega, (3.25)
for i =1,2,...,r. Now consider a principal submatrix of K — AM

(K - AMy, \
K22 - AﬂMZZ

\ K. - \M,, )

From Lemma 3.11, there is at least one of the matrices K;; — A\,M;; whose eigen-
values are non-negative, say K;; — \,Mj,.

Suppose that K;; —A,Mj; is nonsingular. Then K,, — ), My, is positive definite
and has non-positive off-diagonal. Thus K;, — A,Mj; is a nonsingular M-matrix.

This gives (K1, — A,Mj;)~! > 0. From the equation (3.25) for i = 1, we have
(Ki = AsMun)vi = —(Kirp1 — AaMi ) vey,
t.e.,
vi = —(Ki — AaMy) "N (Kire1 — AaMyop1)ven <0,
as Kir4+1 — AnMj .41 <0 and v,,; < 0. But v, > 0, so that v; = 0. and hence

(Kirs1 — AnMyr41)Vepy = 0.
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Since v,;; <0, K41 <0 and —AM,,;; <0, we get

Kl,r+l = Ml,r+1 = 07

a contradiction to K and M being irreducible.
Hence K;; — A\,M;; must be singular. K;; — A\,M,; is a singular irreducible
M-matrix, and there is a positive vector x; corresponding to the zero eigenvalue,

so that

xT(Ki, - AMy,) =0.

This leads to

x{(Ku - /\anl)vl = ‘XT(Kl.rH - AaMy 1)V =0.

Since (K .41 — AnMj,41)Vrs1 = 0 and xf > 0, then

(Kirs1 =AMy 1) Ve = 0.

Again, because of v,,; < 0, we have

(Kl.r+l - AnNIl,r.;-l) =0.

Hence K, ,4; = M, .41 = 0. K and M are reducible, a contradiction. [ ]
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Theorem 3.12 holds for the non-positive sign graphs as well. Although we do
not expect that u, has at most n sign graphs in general due to the discussion in
§ 3.5, a question is raised - whether u, has at most n weak sign graphs. The
upper bound we could get from Theorem 3.12 is 2(n — 1), which is far larger than
n. However, Gladwell [14] recently extended Theorem 3.12 and has proved that
u, has at most n weak sign graphs; that is the closest interpretation of CNLT in
discrete case. The proof of Gladwell [14] is very interesting but rather technical; so
we will not go through it here.

However. the results of weak sign graphs cannot produce an upper bound for
positive (negative) sign graphs of u,, because a non-negative (non-positive) sign
graph may contain more than one positive (negative) sign graphs. Thus, it is also
of interest to give an upper bound for the number of positive (negative) sign graphs
in u,.

When A, (n > 2) is simple, it is a direct consequence of the discrete CNLT for
distinct eigenvalue that u, has at most n — 1 positive sign graphs.

However, when A, is multiple, u,, may have more than n—1 positive sign graphs.
The simplest example is a star with N vertices. Matrix K is the adjacency matrix

of the star, z.e.,

1 if i # j and (i. ) € E:
k; =< 0, if1#jand (4,7) € E;
—Z¢¢ik‘¢’ if ¢ =j.
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M = I in this case. The second eigenvalue of K is an eigenvalue with multiplicity
N — 2. The eigenvectors corresponding to A, are zero at the center vertex of the
star. and the sum of the values on the remainder of the vertices is zero. Hence,
we can construct a second eigenvector with N — 2 positive sign graphs and one
negative sign graph. It has more than one positive sign graph if N > 3, see Figure

3.14. Figure 3.15 shows a counterexample for a matrix pair (K, M), generated by

+ + -
+ + - + + +
0 0 0
- + +

Figure 3.14: A star with five vertices. There exists a set of linearly independent
eigenvectors of K corresponding to A;, each of which has three positive sign graphs.
FEM method for a square with Dirichlet boundary conditions. In this example,
the underlying graph of (K, M) is a star with 4 vertices. Similarly, the second
eigenvaluc is 3-fold, and its corresponding eigenvectors satisfy the same property
as the cigenvectors for a single matrix K. u, can have more than one positive sign
graph.

However. under the condition that there is at least an edge connecting a positive
and a negative vertex, i.e., a positive sign graph is adjacent to a negative sign graph,

then u, has no more than n — 1 positive sign graphs.

Theorem 3.13 Let Ku, = A\,Mu, where K and M need not be irreducible. If

there ezists a positive sign graph adjacent to a negative sign graph, then u,, has at
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@ + @ 1+ @ - 1t
-1® NE )% OV

Figure 3.15: For matrix pair (K, M) generated by FEM, there also exists a set
of linearly independent eigenvectors corresponding to A, , each of which has three
positive sign graphs.

most n — 1 positive sign graphs.

Proof: Suppose that u, has r positive sign graphs where r > n. Partition u,, in
the same way as (3.24), where v; > 0,71 =1.2.... .7 and v,4; < 0. K and M are
partitioned accordingly.

Construct a vector u = Y 7_, ¢;vi. The coefficients ¢; are chosen so that u is

M-orthogonal to the first n — 1 eigenvectors. By the minimax principle,

R(u) > A,.

On the other hand, since Ku,, = A\,Mu,,. we can have

Kivi + Kir1Ves1 = An(Miv; + M, 0vey),
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fort=1,2,...,r. Since K;,4; <O, M 41 >0and v,;; <0, thenK;, v, ; >0
and M;,41V,41 £ 0. So,for: =1,2,... ,r, we get
Kiiv: < AMyvs. (3.26)

In addition, there is a positive sign graph adjacent to a negative sign graph. Let the
positive sign graph be G,. As G, is connected to a negative sign graph, K; ;41 v, 41 >

0 and M, ,4,1V,4; < 0. Hence, for ¢ = 1, the inequality holds strictly
Kiv, < AuMpvy. (3.27)

Since any two positive sign graphs are not adjacent, we have

.
u’Ku = E EvIK v
i=1
r

u’Mu = E EvIMv;

i=1
Asv;>0fori=1,2,...,r, from equations (3.26) and (3.27), we get
llTKll = Z C?V.-TK,';V; < /\,, Z C?VI-TM,';V,' = AnuTMu.
=1

i=1

Hence uKu < A\,u”Mu, i.e., R(u) < A,, a contradiction to R(u) > A,. -
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3.6.2 Discussion of Duval and Reiner’s result

If A, is simple, Duval and Reiner [8] proved that the n-th eigenvector of K has
at most n sign graphs, where K is real symmetric with non-positive off-diagonal
entries. Their approach is different from ours and is based on the minimax principle

and the following key calculation lemma.

Lemma 3.14 ( [8],Lemma 5) Letu € RV*!. Suppose that u has the sign graphs

Gi,... . Gm. Define v = Z,"_:.l c;W; in the notation of (3.15). Then
vIKv —AvTv = ) " dwl (Ku — du) — ) (¢ — ¢;)*w] Kw;. (3.28)
i i<j

When u is an eigenvector corresponding to A, i.e., Ku — Au = O and (3.28) can be

simplified to

vIKv —AvTv = — Z(c,- —¢;)*wliKw;. (3.29)

i<y
Since the off-diagonal entries of K are non-positive and two adjacent sign graphs
have opposite signs, wTKw; > 0. So (3.29) implies that R(v) < A. When v is
an eigenvector corresponding to A, R(v) = A, i.e., the summation in (3.29) must
vanish. Since all the terms w,—T Kw; are non-negative, each term in the sum must
be zero. i.e., if wIKw; > 0, then ¢; = ¢;. This implies that whenever two sign

graphs are adjacent, v either does not vanish on both sign graphs or vanishes on

both.
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However, their result on multiple eigenvalues:
Theorem 6 ({8], p. 264) Let K be a real symmetric irreducible matriz with non-
positive off-diagonal entries. If Ku, = Aju,, then u, has at most n sign graphs.
1s not correct. Their theorem implies that even when A, is multiple, any eigenvector
corresponding to A, has at most n sign graphs. But the star example in Figure
3.14 shows that Theorem 6 of Duval and Reiner’s is false in general; an eigenvector
corresponding to a multiple eigenvalue A, can have more than n sign graphs.

We first quote their proof and then show where the proof breaks down. In the
end, we extend Lemma 3.14 to matrix pair (K, M), which sheds more light on the
discrete CNLT.

Proof: [[8]] Suppose that u, has n + t sign graphs, say {G;}7** (¢ > 1). A new
eigenvector v = ?:x ciw; corresponding to A, can be constructed by eliminating
remaining ¢ sign graphs. Then Duval and Reiner claimed that

A. “ there must exist some pair of vertices i and j (i # j) so that k;;u;u; > 0. That
is. there must exist a positive sign graph adjacent to a negative sign graph (where
u; presents the i-th coordinate of u, ).”

If not. there does not exist a pair of adjacent sign graphs. It means that every sign
graph connects to zeros only. Hence, each non-zero vertex connects to either zeros

or vertices with the same sign. For ¢ such that u; # 0, we have

kiiu; + Z kiju; = Anu.
J#
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Multiplying u; on both sides of the equation, we get

kiu? + E kijjuu; = Aqul.
JE

Because u;u; > 0 for any j adjacent to i, we get -

ful (Rl + 3 Rislaugl) = Anlusl} =o0.
J#i

This implies that |w;|T(Klu| — Aju|) =0 for i = 1,2,... ,m. Hence, after substi-
tuting |v| = Y| |a||w;| into (3.28), the first sum on the right vanishes. Since
all the sign graphs of u, connect to zeros only, |w;|TK|w;| = 0; thus, the second
sum also vanishes. Therefore, from Lemma 3.14, |v|TK|v| — A, |v|T|v| = 0. i.e.,
R(|v]) = An. Then Duval and Reiner (8] claimed that
B. " K|v| = A, v]. 7
Note that |v| has all non-negative coordinates. Since K is irreducible, the Perron-
Frobenius theorem says that A, = A; and |v| must be strictly positive, contradicting
the vanishing of |v| on G,y;.

Hence we may assume that G, and G,,, are adjacent. There exists at least one
edge (i, j,) in G(K) such that ¢ € V(G,,), jo € V(G.). Since the eigenvector v

vanishes on G,41, then v; = 0. The i-th equation of Kv = A,v is

0 = A\y; = kjiv; + Z kijv; = Z kijv;. (3.30)

Ji{s.3)eE J(iJIEE



CHAPTER 3. QUALITATIVE PROPERTIES OF FEM SOLUTIONS 74

Duval and Reiner [8] claimed that
C. “the terms v; in (3.30), which belongs to sign graphs G,, ... ,G,, do not vanish
and all have the same sign as v;,.” If so, let v;, < 0 without loss of generality. From

equation (3.30), we have

0= kyv;>0. (3.31)

J{i.7)EE
a contradiction. (]

However. there are flaws in the proof which lie in statements A, B and C. First
of all. statement B is not true; R(|v|) = A, does not imply that K|v| = A,|v|.
The reason is as follows: since u?|v| > 0, |v| is not orthogonal to u,; hence |v]| is
not orthogonal to the first n — 1 eigenvectors. Thus |v| is not an eigenvector of A,
even though R(|v|) = A,,. The false statement B implies that statement A is false.
Figure 3.16 illustrates a case where statement A fails. In this example, matrix K is
the adjacency matrix of the graph shown in Figure 3.16. K has a 2-fold eigenvalue,
Az = As. An eigenvector ugz corresponding to A3 has four strict sign graphs, but all
the sign graphs are adjacent to zero vertices only. This shows that when u, has
more than n sign graphs, it is not necessarily to have a positive sign graph adjacent
to a negative sign graph.

Even in the situation that statement A is true, the conclusion in Theorem 6
1s still false. This is because statement C is wrong. Since v vanishes on G,,;, by
Lemma 3.14, v vanishes on G, as well, i.e., ¢, = coy; = 0 which implies v, = 0.

The same reasoning can be applied to other terms v; in (3.30). Thus, all the terms
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+ 0 -

Figure 3.16: A3 is a 2-fold eigenvalue. An eigenvector uz corresponding to Az has
four strict sign graphs. but all of them are adjacent to zero vertices only.

v; in (3.30) are zcro; statement C is wrong. The contradiction (3.31) does not
occur. The cigenvector whose signs are shown in Figure 3.17 is a counterexample
to statement C. This eigenvector corresponds to the fourth eigenvalue of the matrix

A

(3 0 0 -1 0-1 0 0)
0 3 0 -1 -1 0 -1 0
6 0 3 0 -1 0 0 -1

1 -1 0 4 0 -1 -1 0
0 -1 -1 0 4

1 0 0 -1 0

0
3

0 -1 0 -1 -1 0 3 0

\ 0 0 -1 0 -1 0

Note that A is a symmetric, irreducible matrix with non-positive off-diagonal en-

tries. which satisfies the condition in Theorem 6 of [8]. A has a 3-fold eigenvalue.
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As = As = A¢ = 4. The eigenspace of A4 consists of those vectors u satisfying the

equations

us =0=wus, u;+us=0=1u;+ur=us+ us.

Figure 3.17 shows that an eigenvector uy of A has siz sign graphs. each of which
is adjacent to another sign graph. This shows that even if there is a positive sign

graph adjacent to a negative sign graph, u,, can still have more than n sign graphs.

Figure 3.17: A4 is an eigenvalue with multiplicity 3. There is an eigenvector ug
corresponding to A4 such that every sign graph of u4 is adjacent to another sign
graph. But uy has six sign graphs.

Therefore. due to the flaws in their argnment, the statement of Theorem 6 in
Duval and Reiner [8] does not hold.
Although Duval and Reiner [8] made a false conclusion concerning the discrete

CNLT for multiple eigenvalues, We can extend Lemma 3.14 to matrix pair (K, M).
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Lemma 3.15 Let u € R¥*!. Suppose that u has the sign graphs Gy,... ,Gm.
Define v = 3.7 c;w; in the notation of (5.15). Then

vIKv — AvTMv = Z cwl(Ku — AMu) — Z(q ~¢;)*(wIKw; — AwI Mw;)

R i<j
(3.32)
Proof: We compute vIKv first.
VTKV = VT Z c_.,'KWJ'
J
= Z c,'CJ'WiTKWj
i.j
= Z EwlIKw; + Z cic;w! Kw;.
1 i#j

Since Ku = 3 . Kw;. Kw; = Ku — }___. Kw;. Then we have

vIKv = Z cwl(Ku — Z Kw;) + Z cic;w! Kw;.

: fo i#i
= Z wlIKu — E cw’l Z Kw; + Z cic;w! Kw;
i i J# i#j
= Z wlKu — E ciwlKw; + Z cic;wI Kw;
: i i
= Z cwlKu — E (ci — ¢;)*wiKw;.
: i<j

Similarly. vIMv has the same form as vTKv. Thus, the lemma follows by sub-

tracting AvIMv from vTKv. [ ]
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Particularly, when Ku = AMu, the first sum in (3.32) is zero. We have a simpler
formula of (3.32)

vIKv — AvTMv = =) (& — ¢;)2(wi Kw; — Awf Mw;). (3.33)
i<j
Recall that when SG(u,) = m > n, we can construct a new eigenvector v of A,
from n of those sign graphs and v vanishes on the remaining sign graphs. Since
Kv—-),Mv =0, the sum in (3.33) is zero. Since wJKw; > 0 and —AwIMw; > 0.
each term in the sum is zero. That is, if two sign graphs of u,, are adjacent. Lemma
3.15 says that either both remain sign graphs of v or both become zero.

With Lemma 3.15. we are able to deduce more on sign graphs of the eigenvectors.
We define connected sets of sign graphs of u,, to be the connected components in
the new graph obtained from G by removing zero vertices and their incident edges.
and denote those connected sets as C;.C,,.... A connected set is a set of sign
graphs, in which any two sign graphs are connected by a path consisting of nonzero
vertices. Thus if v vanishes on one sign graph in a connected set C, v must vanish

identically on C. We can immediately conclude the following.

Corollary 3.16 If the sign graphs of u,, form only one connected set, then u,, has

at most n sign graphs.

Proof: If not, SG(u,) = m > n. By Corollary 3.8, a new eigenvector v =
71 CGW; can be constructed. v vanishes on sign graphs {G;}™,,; but all the
sign graphs of u,, are in one connected set, Lemma 3.14 implies that v = 0. a

contradiction. L
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Corollary 3.17 Ifu, hasn +i (i > 1) sign graphs, then u,, must have at least
1+ 1 connected sets of sign graphs, and each connected set contains at most n sign

graphs.

Proof: If not, we can construct a new eigenvector v which vanishes on at least
one sign graph in each connected set. Since there are at most z connected sets.
from Lemma 3.14, v is identically zero in G, a contradiction. The second statement

comes directly from Corollary 3.16. (]

If u, has more than n sign graphs, then Corollary 3.17 implics that u, has at
least two connected sets of sign graphs. If G(K, M) is connected, there exist some
zeros that connect those connected sets. Suppose that u,, has two connected sets C,
and C, and one of them consists of n sign graphs, say C;. By Corollary 3.8, a new
eigenvector v with at most n sign graphs can be constructed by climinating v on
some sign graphs of C;. Lemma 3.14 says that v has to be zero in C;; v is non-zero
on C,. There must exist a zero in v that is adjacent to at least one positive vertex
and one negative vertex in C,. Thus, C; must contain at least 2 sign graphs, which
imphies SG(u,) > n + 2.

As we can see, when A, is multiple, the sign property of the eigenvectors becomes
more complicated as not all of the eigenvectors corresponding to A, have at most n
sign graphs. When SG(u,) > =, there is also certain pattern for the structures of
the sign graphs in u,. Thus, certainties and uncertainties make the case of multiple

eigenvalue more interesting to study.



Chapter 4

Qualitative Properties of the
Linear Combinations of

Eigenfunctions/FEM solution

In this chapter, we will discuss the qualitative properties of finite linear combi-
nations of eigenfunctions of the Helmholtz equation. The linear combinations of
eigenfunctions inherit some basic properties of eigenfunctions such as the unique
continuation property; however, they are quite different from the eigenfunctions.
We will show the similarities and differences between a linear combination and a
single eigenfunction in Section 4.1.

Note that for the linear combinations, the study of CNLT property is replaced
by that of CHC property. We present some interesting counterexamples showing
that CHC is generally false for linear combinations of the eigenfunctions and also

for those of the FEM solutions. A restricted theorem is proved, which holds for

80
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both continuous and discrete cases.

Even though CHC is not true in general, we conjecture that CHC is true for
certain convex domains, such as rectangles and circles. We study CHC on square
domains. Without loss of generality, we consider the square membrane Ry, =
[0, 7] x [0, 7] with mass density p = 1. It is well known that the eigenvalues of (1.1)

on Rjgx with Dirichlet boundary conditions are
Anm = n® +m?

for n.m = 1,2,...; the associated ( not normalized ) eigenfunctions are the prod-

ucts
Unm = sin(nz)sin(my).

We are able to prove that CHC is true for linear combinations of the first fourteen

eigenfunctions and also for certain linear combinations of the eigenfunctions.

4.1 Nodal sets of the linear combinations

Let w denote an arbitrary linear combination of the first n eigenfunctions {u;}?,

i.e.

n
w= E ciu;,
i=1

where the ¢;’s are arbitrary real numbers.
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Since each eigenfunction u; is analytic, w is analytic in  also. The proof of the
unique continuation property for the finite combinations is then identical to that
for the eigenfunctions.

Suppose @ C R™. The nodal set of a combination of eigenfunctions exhibits
greater variety than that of a single eigenfunction. The following example shows
that in R? the nodal set of a combination can contain isolated nodal points.
Example 4.1 Consider linear combinations of the eigenfunctions on Rpo x). Take a

function as w = au;; + bu;s + cuz;. That is,

w = asinzsiny + bsinzsindy + csinysin3z

= sinzsiny{a + b(4cos’y — 1) + c(4cos’z — 1)}

Choose @ = 2. b =1 and ¢ = 1. Then w = 4sinzsiny(cos’z + cos’y) is zero only

at (w/2 , m/2), which is an isolated nodal point. In R2, the nodal set of w can

Figure 4.1: The digram shows the contours of the combination 2 * sinzsiny +
sin z sin 3y + sin y sin 3z, where point (7/2, 7/2) is an isolated nodal point.

have isolated nodal points in addition to nodal lines. In R3, the nodal set may
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contain isolated nodal points and nodal lines in addition to nodal surfaces. In R™,
the nodal set of a combination may consist of hypersurfaces of various dimensions,
i = 1.2,... ,m — 1. Thus, the property B’ of the eigenfunctions does not always
hold for the linear combinations.

In R2 If p is analytic and an eigenfunction » has m nodal lines (m > 2)
meeting at an interior point p, then the first m terms in power series of u at p
are zero. t.e.. vop = 0 = vy = ... = vp_; in a small neighborhood B(p) of p.
Av(z.y) = —ApUm_2(z.y) = 0 in B(p), i.e., u behaves like a harmonic function
ncar p. This forced us to conclude that the nodal lines meeting at an interior point
form an equiangular system. But this may not be true for a linear combination of
cigenfunctions. When m nodal lines of a combination w = Y ._, c;u; meet at an
interior point p, then the first m terms in power series of w at p are zero. z.e.. wg =
0 = w, = ... = wm_,. in a small neighborhood B(p) of p. But this does not imply
that Awn,(z.y) = —p Y_7_; Micittim—2(z,y) is zero in some neighborhood of p. where
Uim-2(Z.y) is the (m — 2)th term in the power series of the i-th eigenfunction wu;.
Hence the nodal lines may not have normal crossings as those of an cigenfunction.
For instance. when two nodal lines of an eigenfunction meet at an interior point,
they mect at right angles; however, when two nodal lines of a combination meet at
an interior point, the nodal lines can have various types of crossings.

Example 4.2 Take the Dirichlet eigenfunctions on the square Rjg . as an ex-

ample. First. consider the following combination

w = 4sinzsin(3y) — sin(dz)siny — 3sin(3z)siny + 2sinzsiny. (4.1)



CHAPTER 4. LINEAR COMBINATIONS OF EIGENFUNCTIONS 84

Expanding the sine in terms of cosines multiplied by sinz or siny, we have

w = sinzsiny{4(4cos’y — 1) — (16cos*z — 12cos*z + 1) — 3(4cos’z — 1) + 2}

= 16stnzsiny(cos’y — cosz).

The nodal lines of w are cosy = tcos’z, which meet at the point p = (7/2, x/2).
Note that w, its first derivatives, w., and w,, vanish at p, but w,,(p) = 32. Hence

Aw(p) # 0. These two nodal lines do not meet at right angles, see Figure 4.2.

Figure 4.2: The two nodal lines of the linear combination w in (4.1) do not meet
at right angles.

Apart from that, nodal lines of a combination can even have cusps. Take a linear

combination

w = sinzsin(4y) — 2sin(3z)siny + 2sin(z)sin(2y) — 2sinzsiny  (4.2)
= sinzsiny{(8cos’y — 4cosy) — 2(4cos’z — 1) + 4cosy — 2}

= 8sinzsiny(cos’y — cos®z).

We can see that the nodal set of w is determined by cos®y = cos?z. In this case,

w, its first derivatives, wy, and w., vanish at p, but w_.(p) = —16. which has a
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cusp at (7/2,7/2). Thus, in some neighborhood of p,
T2 2
w(z,y) = ~8(z = 2)° + o(|(z, )  BI?).

So the nodal line cos®y = cos’z does not cross itself at p but instead it bends in
such a fashion that it is tangent to itself. see Figure 4.3. Thus, the nodal line has

a cusp.

Figure 4.3: Nodal lines of a lincar combination of eigenfunctions can have cusps.

However, there is one case that nodal lines meeting at a point do form an
equiangular system. We classify the intercepts of nodal lines of a combination
into two kinds: the intercept at which every u; is zero is called a common nodal
point; otherwise, it is a uncommon nodal point. In Example 4.2, point (x/2. w/2)
1s a uncommon nodal point of the linear combination in (4.1), and the nodal lines
meeting at (7/2, 7/2) do not meet at right angles. Thus, nodal lines meeting at a
uncommon point may not form an equiangular system. However, when two nodal

lines of w meet at a common nodal point, the nodal lines do meet at right angles.

Theorem 4.1 Let p(x) in (1.1) be analytic. If two nodal lines of a combination

w =Y, ciu; meet at a common nodal point, they must meet at right angles.
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Proof: Without loss of generality, let p = (0,0) € Q. Each u; has a Taylor
expansion in a small neighborhood of p, say B,,(p). Then w = Y., ciu; also has

a Taylor expansion around p
w=w=3 Ll Lyup),
= = ]' 3 9y

for (z,y) € B,(p) = N, B.,(p)- By assumption, p is a double singular point, i.e.,

w, =0 =w, in B,(p)- As Au; + Aipu; =0 in Q, w satisfies
Aw+p Z Aiciu; = 0.
=1

Expanding w and the u; in power series in B,(p), we have a polynomial in z and

y on the left hand side. The constant term of the polynomial is

Aw: +p(p) Y hcui(p) =0

=1

in B,(p). Since p is a common nodal point of the u;, Z
Bf(p)’

Aicui(p) = 0. Thus. in

=1

Aws; =0, t.e, we(p)+ wy(p)=0. (4.3)

Again, w; is a harmonic function in B,(p); the nodal lines of w behave like the
nodal lines of a harmonic function around p. Thus, two nodal lines of w passing

through p must meet at right angles. [
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Furthermore, when three or more nodal lines meet at a point, the behaviour
becomes even more irregular. The following example illustrates that even when
three nodal lines meet at a common nodal point, they do not necessarily form an
equiangular system.

Example 4.3 Again, in the square domain Ry . take the linear combination

w = (sin(3z)sin(y) — sin(z)sin(3y)) + (sin(3z)sin(2y) — sin(2z)sin(3y))
+2(sin(4z)sin(3y) — sin(3z)sin(4y))
= 2sin(z)sin(y)(2cos(z) — 1)(2cos(y) — 1)(cos(y) — cos(z))

(8cos(z)cos(y) + 4cos(y) + 4cos(z) + 3).

Equating w to 0, we see that there are three nodal lines passing through the point
(3,3)- They are

T
= —, andz=y.
y 3 Yy

However, these nodal lines do not form an equiangular system even though (3.3)
is a common nodal point of these eigenfunctions, see Figure 4.4.

If 2 is a convex domain, Theorem 4.1 can be generalized to the case when a
nodal line intersects the boundary at a point. For any p € 9Q, we denote by ['(p)

the smallest open infinite sector contained in Q with vertex at p.

Corollary 4.2 Let @ C R? be convezr and p be analytic. If a nodal line of w =
=) Ui intersects the boundary at point p, then the tangent line of the nodal line

diwvide T'(p) into 2 sectors of equal amplitude.
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(] os [} 15 7 3 3

Figure 4.4: The nodal lines of the linear combination w = (u3; —u;3) + (w32 —uq2a)+
2(u3s — u43) meet at a common nodal point of the eigenfunctions, but do not form
an equiangular system.

Proof: We use the same technique as in Alessandrini [1]. Again, let p = (0,0) €
Q. Define Dp = I'(p)N Br(p). where R > 0 is sufficiently small so that dDgNQ #
@. Perform the conformal mapping so that Dpg is transformed to a half disk centered
at the origin and contained in the upper half plane. By reflecting w oddly across

the real axes, the result follows immediately from Theorem 4.1. ]

As a conclusion, linear combinations of the eigenfunctions cannot vanish on any
non-empty open subset of @ C R™. The nodal set of a combination has more
varieties than that of an eigenfunction. It may consist of hypersurfaces of various
dimensions, i = 1,2,... ,m —1. In R? nodal set of a combination can have isolated
nodal points or cusps while nodal set of an eigenfunction cannot. For a combination.
when two nodal lines meet at a common nodal point or one nodal line meets at
the boundary of a convex domain, an equiangular system is formed; in other cases,
the nodal lines do not necessarily form an equiangular system when they meet at

a point. Therefore, as we see, the behaviour of finite linear combinations is quite
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different from that of eigenfunctions.

4.2 CHC is false in general

It is also of interest to study CHC property of linear combinations of the eigen-
functions. As mentioned in Chapter 1, Arnol’d [2] first noticed that CHC is false,
but no counterexample was provided. We here present a few interesting numerical
counterexamples, computed by MATLAB PDE Toolbox, which shows that tu; + u,
(t = 0,7, > 0) can have three, four or five nodal domains.

Let us first start with a vibrating membrane with fixed boundary. It consists of
two similar rectangles with the ratio 2 : 1 as shown in Figure 4.5. Using MATLAB.
we observe that when ¢ = 0, the nodal line of the combination tu; + u, is that
of the second eigenfunction, which divides the domain into two nodal domains; as
t increases, the nodal line of tu; + u, goes upwards and still divides the domain
into two subdomains; however, when ¢ = 0.96, the nodal lines breaks into two
and fu; + u, has now three nodal domains; as ¢ keeps increasing, both nodal lines
move towards the boundary as in Figure 4.5 and the combination has three nodal
domains; eventually, when ¢ is sufficiently large. tu; + u, behaves more like u; and
the nodal lines vanish at the boundary leaving tu; + u, with one nodal domain.
Hence, linear combinations of the first two eigenfunctions can have more than two
nodal domains.

The domains in Figure 4.6 and 4.7 are similar to that in Figure 4.5, but consist of
more rectangles. The smaller rectangles are attached to the bigger ones clockwise.

With three rectangles, we found a linear combination of the first two eigenfunctions
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5k t=1.2 ;‘-jj/)

st t=0.96 -
t=0.96 t=12

N e

t=0

3t

21 +

1k

0 L 2 2 s X N s

0 1 2 3 4 S 6 7 8

Figure 4.5: The nodal lines of the linear combinations ¢ * u; + u, for ¢ = 0,0.96
and 1.2. Linear combination of the first two eigenfunctions may have more than 2
nodal domains
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which has four nodal domains: one positive, three negative. With four rectangles,
the linear combination 1.46u; + u, has five nodal domains: one positive and four
negative. Those examples show that CHC is false. In fact, if more rectangles are
added in similar fashion, we conjecture that a linear combination of the first two
eigenfunctions may have arbitrarily many nodal domains.

A counterexample can also be found for Neumann boundary conditions. Figure
4.8 shows that there is a linear combination of the first two Neumann eigenfunctions
that has more than two nodal domains.

Notice that the domains in the counterexarnples are all non-convex, as are all the
known counterexamples to Mark Kac's question: can one hear the shape of a drum?
As we have not found a counterexample with a convex domain, we conjecture that
CHC may be true for convex domains, particularly circles or rectangular domains.

The discrete analogue of CHC does not hold neither. A simple counterexample
is the Dirichlet eigenvectors on the FEM mesh with four interior vertices, illustrated

in Figure 4.9. The linear combination 0.7u; + u, has three sign graphs.

4.3 A revised CHC

However, there is a restricted theorem for the particular linear combination tu; +u,,
(t 2 0, vy > 0). We consider the theorem as a substitute of CHC, which hold in
both continuous and discrete cases. Without loss of generality, we can always
assume that the first eigenfunction u; in continuous case and the first eigenvector

u, in discrete case are strictly positive.
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[} 1 2 3 4 5 6 7 8

Figure 4.6: The nodal lines of the linear combination 1.35 * u; + u, divide the
domain into four nodal domains: one positive and three negative.
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Zﬁ =

0 1 2 3 4 S 6 7 8

Figure 4.7: The nodal lines of the linear combination 1.46 * u; + u, divide the
domain into five nodal domains: one positive and four negative.
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7L
5F +
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t=0
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t=05
3k
t=1 t=1
2r T — |
t=13 t=13
1}
0 s - . N L —
-2 -1 (o] 1 2 3 4 5 6

Figure 4.8: The nodal lines of the linear combinations ¢ *u; +u, for ¢ = 0,0.5,1 and
1.3. Linecar combination of the first two Neumann eigenfunctions can have more
than 2 nodal domains.
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Figure 4.9: The linear combination 0.7u; + u, of the first eigenvectors has three
sign graphs. CHC does not hold in discrete case either.

Theorem 4.3 Suppose that Q is connected. The linear combination w = tu; + u,,

(t >20.n > 2) cannot have more than n — 1 positive nodal domains.

Proof: Without loss of generality, let ¢ > 0 (when ¢ = 0, it follows directly from

CNLT). Suppose that w has r positive nodal domains, say {Q;}] (r > n). Define

w(zv y)* (z~y) € Qi
v;(:c, y) =
0, otherwise

for : =1.2,...,r. Note that the v; satisfy

/ =V - Vu; + p(tu, + un)(thu; + Aju,)dx = 0,
Q;
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for i = 1,...,7. Consider a linear combination of {v;}}

n
u = E a;v;,

=1

where the coefficients a; are chosen so that u is orthogonal to the first n — 1 eigen-

functions. By the minimax principle for the eigenvalues,
R(u) > An. (4.4)

On the other hand. we compute

Vu-Vudx = a? / Vv, - Vvidx
Ji >atf

i=1

= Za,?/ p(tuy + w,) (A uy + Anu, )dx
i=1 &

= Z a?/ p(PA1u? + t(A) + An)uju, + Aaul)dx,
i=1 &

and calculate

2 2 2
pudx = a; / pvidx
/ 29

=1

= 2 a?/ p(t?*u? + 2tuyu, + ul)dx.
i=1 &
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Then we compute

(An —R(u))/puzdx = An/puzdx—/Vu-Vudx
Q o Q
= t(,\n—z\l)Za?/ p(tu? + uju,)dx
i=1 Q;
= t(An—2A af/ wi{tu; + u,)dx
1); . ° 1(tu; )

= t(z\n—/\l)Za?/ puudx
i=1 @

By the definition of the v;, we get
(An — R(u))/ puldx = t(A, — \y) Z af/ puv;dx. (4.5)
2 =1 &

For convenience, we define

b" = / pulv,-dx >0

Q;
for 2 =1,... ,n. Rewrite (4.5) as
(An — R(u)) / puldx = t(A = N) D aZb; > 0,
2 =1

This leads to R(u) < An, a contradiction to (4.4). e

This theorem cannot be generalized to linear combinations of the first n (n > 2)
eigenfunctions. In other words, Y7, ciu; (¢; > 0, u; > 0) may have more than

n — 1 positive nodal domains. Figure 4.10 and 4.11 show that linear combinations
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of the first three eigenfunctions with ¢; > 0 and u; > 0 can have three or four
positive nodal domains.

10

-1

8t

*
7+
6

o

2
o 5

Figure 4.10: cos(&m)u; + us + sin( 27 )us has three positive nodal domains.

There is also a matrix analogue of Theorem 4.3 for FEM models.

Theorem 4.4 Let K and M in Theorem 3.4 be irreducible. For any t > 0 and
n 2 2, the combination tu, + u, has at most n — 1 positive sign graphs, where

U1>0.

Proof: The idea of the proof is similar to that of Theorem 3.13. Suppose that
u = tu; + u, has r positive sign graphs where r > n. Partition u in the same way
as in Theorem 3.13, where v; > 0,7 = 1,2,... ,7 and v,,; > 0. Take the linear

combination

r
v = E a;Vv;.
=1
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Figure 4.11: cos(3m)u, + 0.525u, + sin( %w)u;, has four positive nodal domains.

Choose the coefficients a; such that v is M-orthogonal to the first n—1 eigenvectors.

Thus
R(v) = An. (4.6)
However, we compute

K(tu; + u,) = tKu; + Ku,
= t/\lMlll + /\nMun

< z\,.M(tul + lln).
In the same notation as in Theorem 3.13, the above inequality gives us

Kivi + Kiri1Vesr < An(Mivi + Miraveg)-
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Since K;;41Vr41 2 0 and M; .4V, 41 <0, we have
. T T
Kiivi < AnMiivi, e, viKiv; < A, v Miv;,
forz =1.2....,r. Now consider

T

r
vIKv = E aivIKiv;
=1

i

,
< An E azv? M;v; = A,vIMv.
=1

This implies that R(v) < A,. which contradicts (4.6). [

Note that Duval and Reiner [8] proved a similar result to Theorem 4.4. [8] states
that if K is irreducible. then tu, + u, (¢t > 0) has at most » — 1 non-negative sign
graphs. It was considered as a corollary of Fiedler’s result. When ¢ > 0. we can get

a stronger result: tu, + u, has at most n — 1 positive sign graphs.

4.4 CHC on square domains

Although CHC does not hold in general, we conjecture that CHC may be true for
some convex domains, especially rectangular or circular domains. In this section,
we study CHC on square domains since the eigenvalues and the eigenfunctions have
explicit and simple forms, and the ordering of the eigenvalues is clearer, compared
with that of general rectangles of arbitrary dimensions a, b. Without loss of gen-

erality. we choose the square to be Ry« = [0,7] x [0,7]. For Rjo.x), we will show
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that CHC is true for at least the first few eigenfunctions and also for some special
combinations.

Note that sin(nz) = sinzU,_,(cosz) where U,_, is Chebyshev polynomial of
second kind with degree n — 1. Thus each eigenfunction u,,, = sin (nz)sin (my)

can be regarded as a polynomial in cos z and cosy multiplied by sin zsiny, i.e.,
Unm = sin zsin yU,,_;(cos z)U,, . (cos y).

From this point of view. any linear combination of the first ¢ cigenfunctions can be
written as
t

Z cisin(n;z)sin(m;y) = sin z sin y Py, 4n,—2(cos . cos y).

i=1

The nodal set of the linear combination is then determined by that of P, +me—2(cOST. cosy).

For simplicity, we make a transformation

X =coszx, 0Kz

N

T

Y =cosy, 0<y<n
so that Rjon} is transformed to Rj_; ;) = [-1,1] x [~1,1]. As this transformation
is one to one. it does not change the number of nodal domains of P, ., _o(X,Y).

Hence, we study the nodal set of the new polynomial P(X.Y) on the square Ri_y 4

instead.
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4.4.1 The first fourteen eigenfunctions

With knowledge of polynomials with lower order, we can actually verify that CHC
is true for the first fourteen eigenfunctions on the square.
In the following discussion, we use (1, X,Y’) to represent an arbitrary polynomial

consisting of the terms 1, X and Y'; the notation

P =(1,X)(1,Y)

means that the polynomial P has two factors ¢; + ¢ X and d; + d.Y for some
numbers ¢;, c;. d; and d>. By analyzing all the possible forms of P(X,Y’). we can
find the maximum number of nodal domains of P(X,Y); so we can verify CHC for
linear combinations of the first N eigenfunctions up to N = 14.

Certainly the first eigenfunction has one nodal domain. This follows immedi-
ately from CNLT or from the fact that P(X.Y) just has a constant term.

As X; = Ag, linear combinations of the first two eigenfunctions are associated
with polynomials consisting of 1, X and Y. In this case, the maximum number of
nodal domains occurs when there is a nodal line which cuts the square into two
pairts. Thus, any linear combination of the first two/three eigenfunctions has at

most fwo nodal domains.



CHAPTER 4. LINEAR COMBINATIONS OF EIGENFUNCTIONS 103

When N = 4, \; = 22 + 22, Thus, the polynomial P(X,Y) associated with the

combinations of the first four eigenfunctions is

P, = (1. X.Y.XY),

which is either a hyperbola or can be factorized as

P = (1, X)(1,Y).

Thus, we can see that the maximum nodal domains of combinations of the first

four eigenfunctions is four.

As As = )Xg, the polynomial P(X,Y) of combinations of the first five/six eigen-
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functions have the form
P(X,Y)= (l.X,Y,XY,Xz,Yz).

The nodal lines of this quadratic are either two straight lines, an ellipse, a hyperbola
or a parabola. The maximum number of nodal domains occurs when the quadratic
is an ellipse, the center of the ellipse is inside the square, and the ellipse cuts each
side of the square twice or touches each side of the square; this gives five nodal

domains shown in Figure 4.12. CHC is true in this case.

T

YO /2N

2

N S N

Figure 4.12: An ellipse can divide a square into 5 subregions.

Again, since A; is an eigenvalue with multiplicity two, we look at linear combi-
nations of the first seven/eight eigenfunctions. The associated polynomial consists

of the terms

P, =(1,X,Y, XY, X2, Y? X?Y, XY?).

It can have the following different factorizations.
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1) A product of three line equations. That is

P3 = (l,X)(l, Y)(17X7Y)7

the nodal lines of which can divide the square into at most seven subdomains.

1

/4
6 | 1

i1) A product of a line and an irreducible quadratic. In this case, P; can have the

following forms only

P; = (1, X)(1,X,Y,.XY,Y?),

or

Py = (1,Y)(1,X,Y, XY, X?).

Figure 4.13 shows all the possible cases of the nodal curves of such a Ps, which cuts

the square into at most six subregions.

iii) An irreducible cubic equation. Weinberg [24] topologically classified the plane

cubic curves into 21 equivalence classes; the irreducible cubics fall into 15 of them.
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2
)7

‘.
h

("
: :
(1, X)(1,X,Y,Y?) (1, X)(1,X,Y,XY,Y?)

Figure 4.13: The diagram shows the situation in which the most number of nodal
domains can occur for each possible factorization.

The maximum number, six, of nodal domains can occur in a situation below.

4

b A

Overall, we can conclude that linear combinations of the first seven/eight eigen-
functions have no more than seven nodal domains.

As Ag = Ayo = 4* + 12, the terms X and Y2 are appeared in the polynomial as-
sociated with the combination of the first nine/ten eigenfunctions. This polynomial
now can be a complete cubic polynomial, which can be a product of three line equa-
tions, an irreducible cubic, or a product of a line and an irreducible quadratic. The
analysis of the first two cases is the same as that of the first seven/eight eigenfunc-

tions, in which the maximum number of nodal domains is seven. Let us consider
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the last case, i.e.,
P=(LX,Y)(1,X,Y.XY, X% Y?).

With this form, the maximum number of nodal domains is eight. For example,
Figure 4.14 shows a case where an ellipse with a line can divide a square into eight
subdomains. As a result, the linear combination of the first nine/ten eigenfunctions

have no more than eight nodal domains.

6 5 > 6 >
7 7 A

8 8

Figure 4.14: An ellipse with a line can divide a square into 8 subdomains.

For combinations of the first eleven eigenfunctions. the associated polynomial
has a term of order four, X2Y 2. The possibilities for the factorization of P, are as
follows:

(1) A product of four line equations. Due to the high order term X2Y?2, we can

have

Py = (1, X)*(1.Y)2.

the nodal lines of which divide the square into nine pieces.
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1 23
4 5 6
7 8 9

i1} A product of two line equations and an irreducible quadratic equation. In this

case. the polynomial can be factorized into the form

P,=(1.X)(1,Y)1.X,Y, XY),

which has at most eight nodal domains.

1] 2 i3]
4/
6
5
(18

1) A product of a line and an irreducible cubic. P; can be factorized into

(LX)(1. X.Y. XY, X% Y? XY?)
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or

(1,Y)(1, X,Y, XY, X2.Y?, X?Y).

The maximum number of nodal domains in this case is ten.

iv) An irreducible quartic equation. Gudkov, Utkin and Tai [15] classified the
irreducible quartic plane curves into 99 types. According to the classification, it
has no more than ten nodal domains.
As a result, linear combinations of the first 11 eigenfunctions have at most ten nodal
domains.

For combinations of the first twelve/thirteen eigenfunctions, the associated poly-
nomial has new fourth order terms, X3Y and XY3. which can have the following
factorizations.

1) A product of four line equations, i.e.,

Py = (1. X)(1,Y)(1.X.Y)?,

which has 11 nodal domains.
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N

/8 &\11

ii) A product of two line equations and an irreducible quadratic. In this case, P,

has the form

Py = (1, X)(LY)L.X.Y,XY. X2 Y?).

which has at most 12 nodal domains.

N I
©

iii) The cases that the polynomial is a product of a line and an irreducible cubic
or an irreducible quartic, are the same as those for the first eleven eigenfunctions.

The maximum nodal domain is 10.

Thus. linear combinations of the first twelve/thirteen eigenfunctions has at most

twelve nodal domains.
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For linear combinations of the first fourteen eigenfunctions, the only case differ-
ent from that of the first twelve/thirteen is that Py is a product of two irreducible
quadratics. Actually, the maximum number of nodal domains can occur when two
ellipses cross each other at four different points and each ellipse either intersects
each side of the square twice or touches each side. It cuts the square into 13 nodal
domains. Thus, combinations of the first fourteen eigenfunctions have at most

thirteen nodal domains.

Figure 4.15: Two ellipses can divide a square into 13 subdomains.

As a conclusion, CHC is true for combinations w = Zix ciu; up to N = 14.

4.4.2 Special linear combinations

We are also able to prove that CHC is true for certain types of linear combinations
of the eigenfunctions on a square, such as when the associated polynomial P(X,Y)
can be factorized into a product of linear equations or a product of ellipses or with
a hne.

Let P(X,Y) be a polynomial generated by a linear combination of the first
N cigenfunctions. The appearance of each X'Y7 term in P(X.,Y) implies that
cigenfunction u;4y j11(Z,y) or ujt1i41(Z,y) . corresponding to eigenvalue A;yg 41,

has appeared, and that eigenfunctions ui(z.y), for k. € such that 1 < k <z + 1,
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Maximum No. of

N New Hign Coder Terms Nodal domains
1 1 |
2.3 X Y 2 ]
4 XY 4

N
5.6 X2 y? 5

N

4
7.8 xy xv? 7 A
9,10 x3 y?3 8
1 x2%y? 10 é)
3 3 D

12,13 XYy XY 12 |
14 x? V' 13

Figure 4.16: This table illustrates that CHC is true for the first N eigenfunctions
on the square, N = 1,2,... ,14. The second column gives all the new high order
terms involved in the polynomial P(X.Y) for each N, and the figures in the last
column provides a linear combination that can produce the maximum number of
nodal domains.
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1 < £ < j+ 1, have appeared (this is because k2 + £2 < (1 + 1) + (j + 1), i.e,
eigenvalues A, appear before Aiy; iy for 1l <A <i+1,1<L<j+1) FP(X)Y)
is a complete polynomial with order m, then P(X.Y) has N, = i(m + 1)(m + 2)
terms. It implies that there are N, eigenvalues involved (some may be equal).
Among them, the highest eigenvalue is A4, ;, which appears twice as both X™ and
Y™ correspond to the highest eigenvalue. Since some eigenvalues, corresponding
to higher order terms than X™ and Y™, may be less than A,.,,1, they will come
before the eigenvalue Apmi1;. Thus, the eigenvalue A,;;, is labeled as at least
(Ny — 1)-th cigenvalue, i.e., N > N; — 1. So if we can prove that the number of
nodal domains of P(X,Y) is no greater than NV, — 1 which is no greater than N,

then these linear combinations of the first N eigenfunctions have no more than N

nodal domains; CHC holds in this case.
I. Products of lines

Assume that the polynomial P(X,Y), associated with linear combinations of the
first N eigenfunctions, is a product of n linear equations. Generally, the nodal set
of such a P(X,Y) consists of n; vertical lines, n, horizontal lines and n; slanting
lines, in which n; + n; + n3 = n. If there is no slanting line, i.e., n3 = 0, the
square is divided into N2 = (n, + 1)(n; + 1) subregions by n, vertical lines and n,
horizontal lines. The number of X'Y7 terms in P(X,Y) is N, = (n; + 1)(n; + 1).
In this case, the maximum eigenvalue involved is An, +1,n;+1. Which corresponds to
X™Y"™  and appears only once; hence, N > N;. Therefore, we have N, = N; < N.
CHC is true in this case.

When there is at least one slanting line, i.e., n3 > 1, then it is easy to see that
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the number of terms involved in P(X,Y) = (1,X)™(1,Y)™2(1, X, Y)™ is

1
Ny = (ni+1)(n2+1)+n3(n1 +n2+1) + Ens(ng +1)

1
= NNz +nanag + nynz + 7y + n, + 1 + -2-n3(n3 “+ 3).
The term corresponding to the highest eigenvalue is either X™ ™y ™ or X™myna+ns
depending on whether n, > n; or n; < n,. In either case, N > N; — 1.

Theorem 4.5 The nodal lines of the polynomial
P(X,Y)=(1,X)"(1,Y) (1, X,Y)™
can divide the square R|_, ;) into no more than N, nodal domains, where
N, = N; —nj.

Proof:  Clearly, n, vertical lines and n, horizontal lines can divide the square
into (7, + 1)(n; + 1) subregions. Add one slanting line on top of the n; vertical
lines and n; horizontal lines. The maximum number of subregions, which the lines
cut the square into, occurs only when the slanting line intercepts the other n; + n.
lines at different points. Since two lines can intercept only once, the slanting line

is divided into n, + n; + 1 line segments.
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The new subregions appearing would be the ones having one of such line segments
as boundaries. There are 2(n, + n, + 1) such regions. Hence, the number of regions

is now increased by n, + n, + 1. So, the number of nodal domains in this case is
(1 +1)(n2+1) + (ny + 2+ 1).

The same reasoning is applicable to the rest of the slanting lines. Therefore,

after adding ns slanting lines, we compute the maximum number of nodal domains

ns
Ny = (ny + 1)(nz + 1) +Z(n1 +mn2+1) =N, —n;.

=1

Notice that N, < Ny — 1 < N, i.e., the number of nodal domains is no greater

than N. CHC holds in this case.
IL. Product of ellipses or with one line

Let the degree of P(X.Y) be n. Suppose that P(X,Y) is a product of ellipses when

n is even; P(X.Y) is a product of 23! ellipses and a line equation when = is odd.
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Again, we first count the number of terms involved in P(X,Y). When = is even,
the number of terms involved in (1, X, Y )" is %(n-{- 1)(n+2). When n is odd, we can

n-1

have 23~ ellipses with a horizontal/vertical line or a slanting line. As long as this

line meets every ellipse twice and at different points, the numbers of nodal domains
of P(X.Y) with either a horizontal/vertical line or a slanting line will be the same.
But if the nodal set of P consists of "—;—1— ellipses and a vertical or horizontal line, the
number of terms involved is less than that for ellipses with a slanting line. Thus,
the number of terms in (1. X')(1, X,Y )" ! is in(n + 3). In total, the number of X

and Y terms in P(X,Y) is at least

%(n + 1)(n +2), ifniseven;
Nl =

3n(n +3), if n is odd

Next. we examine the maximum number of nodal domains that the nodal lines

of such a P(X.Y) can divide the square into.

Theorem 4.6 Let P(X,Y) be a polynomial as in the above. Then the nodal lines
of P divide the square into no more than N, nodal domains, where
("—Hz-)ﬁ if n is even;

0+ ifnds odd

2 Y

Proof: Observe that with one ellipse, the maximum number of nodal domains is

obtained when the ellipse either cuts each side of the square twice or touches each

side. It produces %

= 5 nodal domains, see Figure 4.12. With two ellipses,

the maximum number of nodal domains occurs when both of them intersect each
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side of the square twice (or touch each side), and they meet each other at four

different points. In this case, the number of nodal domains is 13, see Figure 4.15.

Suppose that it is true for n — 2, i.e., 2;—2 ellipses divide a square into at most

(—"_lz)ﬁ subdomains. We will show that it is true for n/2 ellipses. In this case,

the maximum number of nodal domains can occur when the 3-th ellipse, with the
diagonals of the square as its axes,

(a) intercepts every other ellipse at four different points (in total, it meets the 2=2

>
-

ellipses at 2(n — 1) different points),

(b) and intercepts each side of square twice or touches each side.

With condition (a). it creates 2(2232 + 1) = 2n — 2 new regions: with condition
(b). two new regions are created. which are bounded by the 2-th ellipse and two
corners of the square. In total. there are 2n more subregions created. Thus. the

maximum number of nodal domains is

—1)2+1 1)2 + 1
Mzﬁj%L+h=ﬁi%iﬁ

When 7 is odd, we add a line so that it is cut by "2—11- ellipses into n line segments,

see Figure 4.14. This way, we get the maximum number of nodal domains. which

1S

n? +1 (n+ 1)
N-)= = —
2 ) +n 5

Therefore. by comparison, we have N, < N; —1 < N. CHC is true in the second
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case as well.

Using the properties of polynomials, we are able to prove that CHC is true on
a square membrane for certain linear combinations of eigenfunctions and for any
linear combination of the first fourteen eigenfunctions. This approach appears to be
efficient when N is small, as the classification of polynomials of lower order is known
and simple. However, due to the lack of the knowledge of higher order polynomials.
as N becomes larger, it is increasingly more difficult to verify CHC: even when the
classification of the plane curves is known, it may still be painful to go through the
large number of equivalent classes. Thus. to prove CHC for general N, this is not
a preferable way.

There is another possible approach that is used to prove CHC in one-dimensional

case, see Gladwell ({13]. chapter 8). Let {u;} denote the eigenfunctions of

v (z) + Au(z) =0. z € (0.7):
u(0) = u(x) = 0.

In fact, A\; = ¢* and u; = sin(iz). i = 1,2,.... It is well known that the sequence

of functions

ui, (1) ug (z2) -+ ui(za)

ry T2 -+ In
i (z1) ui(Z2) -+ wi,(Zn)
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are the eigenfunctions for

A,,u + Au = 07 in Gn
u =0, on 0G,

where G, is a subdomain of [0, #]" such that z; < z, < --- < z,. Particularly,

1 2 --- n
U, =U is the first eigenfunction in G,, i.e.. it is strictly

Ty Ty -+ ZTp
positive for all (z;)} such that z, < z, < --- < z,. For instance, when n = 2,

1 2

&

U maintains strictly fixed sign and is the first eigenfunction on the
1 I»

half of the square where z; < z,, as shown in Figure 4.17(a). When n = 3. U, is
the first eigenfunction on one-sixth of a cube where z, < z, < z; shown in Figure

4.17(b). and is strictly positive in Gj.

Figure 4.17: The shapes of G, for n = 2 and n = 3.

Now suppose that a linear combination w = 3", ¢;u;(z) has more than n nodal
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intervals. Then w has at least n different zeros in (0,7), say y; < y» < -+ < ¥Yn,

such that

n
Zciui(yj):'ov j=112s---7n'
i=1
Since not all ¢;’s are zero,

1 2 --- n
Ulyr, ... .yn) =U =0

Y1 Y2 - Yn
which contradicts the statement that U, is strictly positive in G,,. Therefore. CHC
holds in the one-dimensional case. This proof is elegant.
In two dimensions, let {u;(p)} be the eigenfunctions of the Helmholtz equation

on the square R[g r. where p = (z,y) € Ro.»}- The products of the eigenfunctions

1 2 -.- =n
{ui, (P1)ui,(P2) - - - i, (Pn)} form a complete set on R qisoU=U
Pr P2 -+ Pn
is still an eigenfunction on Rﬁ,'”]. However, unlike the U’s defined in one-dimensional
. 1 2 - n
case, it becomes hard to tell in which subregion of RG . U
Pt P2 °-- Pn

would be the first eigenfunction. This is because the region that p; = p; is a
(2n — 2}-dimensional nodal hypersurface (not a (2n — 1)-dimensional nodal hyper-
surface) of Rﬁ)',], which does not separate positive and negative nodal domains.
Thus, we cannot follow the exact approach used in one-dimensional case to prove
CHC in two dimensional case. But, since the U’s are the eigenfunctions on R -

the U’s have CNLT property. If we can prove the following
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“Suppose that a combination w = Y. c;u;(p) have more than n nodal domains.
P =1

1 2 --- n
Then the eigenfunction U will not obey CNLT.",

Pr P2 - Pn
then we will get a contradiction and CHC will hold for the eigenfunctions on squares.

The difficulty, though, is to have a clear visualization of objects in four or higher
dimensions.

Whether CHC is true for square domains is left unsolved in this thesis.



Chapter 5

Conclusions and Further Research

The main contributions of the thesis are contained in Chapter 3 and 4, where the
sign property of the FEM solutions. of finite linear combinations of the eigenfunc-
tions and of finite linear combinations of the FEM eigenvectors are studied.

In Chapter 3, we found that when the stiffness matrix K has non-positive off-
diagonal entries, there are discrete versions of CNLT holding for the FEM eigen-
vectors, which extends Gantmakher’s one-dimensional result to higher dimensions.
Restraints on triangular finite elements in R? or tetrahedral elements in R?® are

found so that the nonzero off-diagonals of K are negative. We proved that
(i) when A, is distinct, then u,, has at most n sign graphs;

(ii) when A, is an eigenvalue with multiplicity r, there exists a set of M-orthogonal

eigenvectors {u;}5*"~! corresponding to A, such that

SG(u;) < 7. J=nn+l,... n+r—-1;

122
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(iii) when A, is an eigenvalue of multiplicity r, there also exists a set of linearly

independent eigenvectors {v;}2*"~! such that

SG(v;) € n, J=nn+1l.... n+r—1.

Regarding the applications, the findings in this thesis provide a necessary condition
for a mode to be the n-th eigenmode of a vibration system. But what are the
necessary and sufficient conditions for the inverse eigenmode problem would be of
interest for further research.

Chapter 4 mostly discussed the CHC property in continuous and discrete cases.
We provided a few interesting numerical counterexamples showing that CHC is
generally false in both continuous and discrete cases. However, we formulated and
proved a restricted CHC which holds in both continuous and discrete cases. As
all the counterexamples of CHC are with non-convex domains, we conjectured that
CHC is true for certain convex domains, such as rectangles or circle. We verified
that for square domains, CHC is true for any combinations of the first fourteen
cigenfunctions and for certain special linear combinations of any eigenfunctions.
However, whether CHC is true in general for the eigenfunctions on rectangular
domains is left as a remaining problem. Also. another question is raised - if there
exists a convex counterexample to CHC. It is the author’s opinion that the answer
may be ‘No’. If the answer is ‘No’, why does the convexity play such an important
role in CHC?

Many potential research topics remain on this interesting subject.
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