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Abstract

Process variability is the pivotal factor impacting theigaf high yield integrated circuits
and systems in deep sub-micron CMOS technologies. Theieladnd physical properties of
transistors and interconnects, the building blocks ofgraged circuits, are prone to significant
variations that directly impact the performance and powesamption of the fabricated devices,
severely impacting the manufacturing yield. However, #drgé number of the transistors on a
single chip adds even more challenges for the analysis ofahation effects, a critical task in
diagnosing the cause of failure and designing for yield. i and efficient statistical analysis
methodologies in various design phases are key to predicyitfld before entering such an
expensive fabrication process.

In this thesis, the impacts of process variations are exadra three different levels: device,
circuit, and micro-architecture. The variation modelsaiavided for each level of abstraction,
and new methodologies are proposed for efficient statistitalysis and design under variation.

At the circuit level, the variability analysis of three cralcsub-blocks of today’s system-
on-chips, namely, digital circuits, memory cells, and agablocks, are targeted. The accurate
and efficient yield analysis of circuits is recognized asx@neenely challenging task within the
electronic design automation community. The large scakbh®fdigital circuits, the extremely
high yield requirement for memory cells, and the time-conislg analog circuit simulation are
major concerns in the development of any statistical amatgghnique. In this thesis, several
sampling-based methods have been proposed for these yipee df circuits to significantly
improve the run-time of the traditional Monte Carlo methodtheut compromising accuracy.
The proposed sampling-based yield analysis methods bérmefitthe very appealing feature
of the MC method, that is, the capability to consider any clexgircuit model. However,
through the use and engineering of advanced variance feduartd sampling methods, ultra-
fast yield estimation solutions are provided for differgges of VLSI circuits. Such methods
include control variate, importance sampling, correlattontrolled Latin Hypercube Sampling,
and Quasi Monte Carlo.

At the device level, a methodology is proposed which intosdua variation-aware design
perspective for designing MOS devices in aggressivelyescgeometries. The method intro-
duces a yield measure at the device level which targets theasian and leakage currents of an
MOS transistor. A statistical method is developed to optarthe advanced doping profiles and
geometry features of a device for achieving a maximum deleieel yield.

Finally, a statistical thermal analysis framework is prega. It accounts for the process and
thermal variations simultaneously, at the micro-architesd level. The analyzer is developed,
based on the fact that the process variations lead to untéstkage power sources, so that the
thermal profile, itself, would have a probabilistic natufEherefore, by a co-process-thermal-
leakage analysis, a more reliable full-chip statisticakbggye power yield is calculated.
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Chapter 1

Introduction

1.1 \Variations: Sources and Impact on Yield

The scaling of the CMOS technology has introduced enormoaltectyes that must be resolved
by the designers. As the silicon industry moves toward natendesigns, one of the most
important design challenges cited is the increasing véit\ain the device characteristics [6]
which threatens the silicon technology, and why CMOS scatrigcing critical yield concerns.

As can be seen in Figure 1.1, the exposure wavelength useddgdithography process to
print layouts of different layers has not been scaled asam$tchnology minimum feature size
[1]. As aresult, the printed features will not be exactly siaene as the desired shapes.

These lithography-driven variations bring lateral layweatiations for gate lengthLg), gate
width (W), and metal interconnect width\f;) which affects delay and subthreshold leakage of
CMOS transistors and the characteristics of interconnects.

Vertical variations due to Chemical Mechanical Polishing @N& another source of process
variations (Figure 1.2) which originates from the diffecenn the removal rates of materials
[7, 8]. The density of a lower layout affects the Inter LayaelBctrics heightsH; p), oxide
thickness Tox), and metal thicknesdiy;) during CMP processes that consequently impacts the
characteristics of interconnects and CMOS gates.

Another source of variation that directly influences thegiold voltage\{,) of MOS tran-
sistors comes from ion implantation, chemical vapor dewys{CVD), and thermal annealing
processes. This type of variation, called Random Dopantdtions (RDF), causes variability
in the number and position of dopant atoms in the channel oS\@vices [9, 10]. Figure 1.3
shows a side and top view of an MOSFET’s channel to depictdhdomness of atoms in a
channel. The shorter the channel, the less dopant atome arehannel making the transistor
more sensitive to RDF in scaled technologies.
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In closing, the physical parameters, experiencing vdriglaind impacting the circuit delay
and total leakage current, are depicted in Figure 1.4.
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Figure 1.4: Physical parameters experiencing variation

It should be noted that as nominal physical dimensions guellsashrunk, more variations
are seen in the various physical parameters [11]. The featrme of layouts reduces faster than
the lithography wavelength, hence, more aggressive suderagth effects are seen. Also, due to
the increase in the contribution of interconnect to totdgdén ultra-DSM CMOS technologies,
the CMP-based variations become more critical in each newnt#dogy [12]. Finally, the RDF-
driven threshold voltage variation increases in each teldgy as the number of dopant atoms
in the shortened channel is rather reduced [3].

The variations on physical parameters cause performarttieakage alteration on a whole
chip. Figure 1.5 shows a measured leakage variation as kigh@>afor a 30% variation in chip
frequency. Consequently, yield of a circuit (probabilitynteet the desired performance or power
specification) is expected to suffer, unless careful stegisdesign followed by reliable statistical
timing and power analysis are performed. In fact, if a cirdaies not pass a maximum desired
power budget or a minimum clock frequency, it may not be fiomatl and hence reduce the
production yield [13, 14]. However, even if a chip could bed# a lower operating frequency
(mostly the general purpose processors using frequeneynigini15]), the profitability will be
reduced as the slower ICs are sold for cheeper.

Besides the mentioned time-invariant variations, therenareer type of physical variation
which impacts the threshold voltage of devices in time. NegaBias Temperature Instability
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(NBTI) increases the absolute value of the MOS transistbrsshold voltage over a period of
months or years, depending on the operating conditionseofiéivice. This phenomenon which
degrades the performance of circuits gradually over tinveoisen with technology scaling [16]
and has brought serious reliability concerns in nanoseakenologies as well.

Another type of yield lost is due to process defects causisbat or open in the circuit
wires. This type of problems can lead to functional failuaed may be addressed by redundancy
in design.

In this thesis, only the performance-driven time-invatieariations are considered. There-
fore, the usage of the tergield is referred to the ratio of the devices/circuits that passaoe
performance metric constraints in presence of procesati@i

1.2 Motivations

The design of Very Large Scale Integrated (VLSI) systemshmadivided into many levels of
abstraction. The design process, at each level, requinegrehensive and accurate models of the
physical phenomena and the appropriate tools to simulate th an efficient manner. The VLSI
system specifications, such as power consumption, speddr{pance), life-time, and thermal
behavior must be considered during the various design phaseach level of abstraction. This
is essential to diagnose the sources of mal-functioningady e@s possible and to reduce the
chance of project failure. To achieve these goals, highopednce and high capacity design
automation and analysis tools are required.

On top of these traditional design challenges, it is the ggewariations, introduced during
the IC manufacturing process which adds even more chaketoythe design process at each
level. For example, circuits undergoing variability nowyrexhibit very high leakage power
consumption, pushing them over the power budget. The bygtaaf this power consumption



shift is the generation of heat leading to a higher operatngperature that, itself, raises relia-
bility, packaging, and increased leakage power concerfisaré factors that can finally impact
the yield. In addition, the performance of a digital circgitaffected by the transistor and in-
terconnect variations, limiting the operating frequentyhe circuit, and the yield of a system
relying on a high-throughput digital processing. The pssceariations can also be very harmful
for analog blocks and memory cores, directly impacting tleédyand the success of a product.

Such an insight has been the motivation to target the progasstion at three levels of
device, circuit, and micro-architecture. In this thedi® process variations are first modeled at
each level. While the device level parameter variation modes designed to consider the details
of channel doping profiles and device geometries, the ¢iteuel models lump them together
as basic transistor-level electrical parameters suchrasttbld voltage variation. Consequently,
the micro-architectural-level models unify the transidevel parameters into a high-level model
of circuit specifications variations, encapsulated in goélequally varying process parameters.
Finally, at each level, a number of computer-aided desighaaralysis solutions are proposed,
each designed to address a gap in design for yield or analfyseriability of nanometer VLSI
systems and circuits due to process variations.

1.3 Contributions

At the device-level, the variations of the drive-in capipidind leakage currents are considered
in order to optimize the geometry and doping profiles of an Mieice. The proposed device
optimization methodology incorporates variability-aemess into the device design process by
maximally satisfying certain bounds on total leakage, rsditon current, and the intrinsic delay of
the device undergoing process variations. This approdaidinces a new strategy for the design
of devices, where traditionally, nominal drive-in and lagk currents have been the objectives
of the process design.

However, at circuit-level, the focus of this thesis is onwate and efficient estimation of
the yield for the different types of VLSI circuits: digitanalog, and SRAM cells. The sta-
tistical estimation of the circuit yield has been one of thajon research areas in electronic
design automation in recent years. Despite the considepbyress in this domain, the Monte-
Carlo method is still the most reliable method as it can acttarrany circuit models and their
secondary effects. However, the MC method suffers greatiy fthe lack of efficiency due to
its slow convergence rate. In this thesis, a number of acddheampling and variance reduction
methods are developed to enhance the convergence ratet@dtimnal-MC method for circuit-
level process variation-driven yield estimation. The skmgpbased yield estimation solutions
have been proposed for digital and analog circuits, and SR&ll.c

Finally, at the micro-architectural level, the effects abgess variations are studied in a
high-level co-thermal-leakage analysis framework. Thecess variations have traditionally
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been studied as a source of full-chip total leakage powdgatan, leading to an estimation
of system-level power consumption yield. However, the geteel heat, due to higher leakage
power consumption, increases the operating temperatdine chip, that itself in a positive feed-
back increases the sub-threshold leakage current. In eanextcase, these phenomena can lead
to a thermal runaway. A statistical analysis methodologyagosed in this thesis to account for
the thermal-leakage loop at micro-architectural-levedi@sence of process variation.

1.4 Structure of this Thesis
The rest of this thesis is organized as follows:

e Part |: Device-Level

— Chapter 2 The MOS device-level models of the various leakage cumestha-
nisms, the saturation current, and the intrinsic delay aesgnted. Then, a device
design methodology is proposed to maximize the yield of M@®@ags for a desir-
able performance and leakage constraints.

e Part ll: Circuit-Level

— Chapter 3: An overview of advanced sampling and variance reductiothots, used
for efficient sampling-based circuit variability analysis presented. These meth-
ods are the core of the proposed techniques in the laterarsapiat perform circuit
yield estimation with a significantly lower number of sangpd®mpared to that of the
traditional-MC.

— Chapter 4 Three methods for efficient MC-based timing yield estimaid digital
circuits are proposed. The methods are based on Quasi-M@lisgnand control
variates.

— Chapter 5. The process variation effects on analog circuit perforceametrics are
studied through the analysis of the response surface of #tegas. The required
number of MC samples for sufficiently accurate yield estiorais calculated. Then,
an enhanced LHS-based is proposed for the yield analysieafrialog blocks.

— Chapter 6. The failure mechanisms of SRAM cells are investigated. Aap#tde
importance sampling-based approach is developed for flogeet yield estimation
of the SRAM cells with rare failure rate.

e Part Ill: Micro Architectural-Level



— Chapter 7: A high-level model of leakage power uncertainty, due tocpss varia-
tions, is adopted to develop a co-thermal-leakage vanatialysis engine. A hotspot
formation analyzer and a full-chip leakage power yield gpat are proposed as two
applications of the engine.

e Part IV: Thesis Closure

— Chapter 8 The conclusion and future works are presented in the lagiteh






Part |

Device-Level

As CMOS technology is scaling down toward the nano-scalemegthe drastically
growing leakage currents and variations in device charatts are becoming two
important design challenges. Traditionally, the devicsigle methodology is based
on finding the device parameters which minimize the leakagesnt while provide
enough saturation current for the performance needs. Téilsodology may change
when variations are accounted for design. In this part othiesis, the process vari-
ations are studied in device-level, and a novel device ap#éition methodology is
presented that incorporates variability awareness irgodetvice design flow such
that the designed devices satisfy certain bounds on theléateage, saturation cur-
rent, and intrinsic delay under parameter variabilities.



Chapter 2

Variability-Aware MOS Device Design

2.1 Introduction

The development of silicon technology has been and willioom,tto be driven by system needs.
These needs have been satisfied by the increase in trardgastsity and performance, as sug-
gested by “Moore’s Law” and guided by CMOS scaling theory. ldeer, the scaling of technol-
ogy brings up enormous challenges that must be resolvedsigrags. As the silicon industry
moves toward nanometer designs, the two most importangulesiallenges cited are the grow-
ing leakage power dissipation [17] and the increasing ity in process dependent device
characteristics [18]. Leakage power has been growing ateaming rate, and constitutes a
larger fraction of the total chip power in current and futteehnology generations. In addition,
the manufacturing process of nanometer transistors andtgtes has introduced several new
sources of variation that has made the control of procesatiar more difficult [19]. Process
variations significantly impact chips’ performance and powissipation [18, 20]. The growing
leakage power and variability in device characteristiesiadeed the two most serious issues that
threaten the life time of silicon technology [21].

The leakage power problem is further compounded by its gtc@pendence on the design
parameters and hence on their variations [20]. As a restdyits experiencing variability, now
may exhibit very high leakage power consumption, pushimgmttover the power budget. In
fact, variations in transistor parameters in the 180 nm CMg28rology node causes up to 20X
variation in the chip’s total leakage and 30% variation gritaximum operating frequency [4]
and are worse when the technology scales [22].

Traditionally the device design methodology is based onimiing theION/IOFF ratio, in
which a device is designed such that its total leakage cuiseminimized while it provides a
minimum saturation current satisfying the applicatioresfprmance needs. Typically, the total
leakage current consists of three major components, nasgyhreshold, gate direct tunneling,
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and reversed biased junction band-to-band-tunneling [HBwever, the analytical models for
mean and standard deviation of leakage current componegtgst different sensitivity mea-
sures to various device parameters [23]. Hence, the variaitte total leakage current depends
not only on device’s parameter variations, but also on tlsive magnitude of the leakage com-
ponents of the device. Therefore, different devices withtreely equal nominal total leakage
current may see considerably different variances on th&f leakage current in the presence of
variability. This reemphasizes the fact that exclusiveipimizing the total leakage may yield
a device with a large sensitivity to process parameters amdehless immunity against leak-
age current variations. Therefore, trading off among thgmitade of leakage components can
produce more robust devices in terms of performance anadgakariability.

Motivated by the above challenges, the design of CMOS dewiest be revisited to include
variability. The objective of this work is to re-design the O8 device to increase its yield by
maximizing its immunity against process variations. Toieeh this goal, a Bulk-MOS design
methodology is proposed which not only deals with total &gk current reduction but also
increases its tolerance to variability, while accountiogthe minimum required drive-in current
(lon) and maximum intrinsic delayt (= CgV /1on) of the device.

With the aid of our proposed methodology, the designer wdelthe a targeted technology
and three bounds dliyy, intrinsic delay, and total leakage current, and can nowoéxihe al-
lowable design space for variability to maximize the de¢iggeld. Physical gate length, oxide
thickness, and channel doping profile (halo and super stgsggrade well) parameters are con-
sidered as the main design variables. These variables foke-dimensional space where each
point represents a device with parameters equal to the ic@ted of the point. Then, based on
the defined bounds, a problem feasible space is formed wkierg point (device) in this space
satisfies the defined constraintslgf and the total leakage current. Finally, the yield maximiz-
ing step places a cube in the feasible space such that theed@s in the center of that cube
has maximum immunity against process variations. It shbaldoted that to assure compliance
of the designed device with the targeted technology, fabido limitations (e.g. minimum gate
length and oxide thickness) and variation parameters ofeitienology should also be given to
the optimizer as technology specific constraints.

The variability has been included into technology optirticaa by the framework proposed
in [24]. The circuit (e.g.Vpp, mean repeater sizing and width) and device level varialeles
gate length, oxide thickness, and peak halo doping) arenggd such that a design shows a
maximum performance-driven yield subject to a maximum agepower consumption. There-
fore, the variability of the power consumption is simply retetl by the average sub-threshold
leakage current based &), variation. This may lead to a design variable set which shaws
satisfying power consumption expected value but high paeesumption (leakage) variance.
Moreover, the tunneling (gate oxide and BTBT) leakage vanatiare ignored. Also, the yield
is only defined based on the performance which means a fédulicacuit is acceptable if it only
pass a minimum performance metric regardless of its leakagent magnitude. Finally, using
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Figure 2.1: Symmetrical Bulk—-MOS structure. Parameterse tgngth (g), oxide thickness
(Tox), sidewall spacer widthXs), gate/SDE overlaply), SDE junction depthXjspg), contact
junction depth Xjcon), Gaussian Halo, and Super Steep Retrograde Well

simplified device models with numerous fitting curves makespproach useful for fast general
technology variable optimization (as listed before). Hegrethere is still a need to make use
of the trade-offs between various leakage components aredfécts on a leakage-performance
based yield and consider them in a detailed device pararoptenization to build variation
immune devices for different technologies.

The rest of this chapter is organized as follows. In Secti@nthe selected device structure
and design parameters are presented, whereas the prolftemusated in Section 2.3. The way
the defined constraints on currents are verified is discugss8dction 2.4, and the implementa-
tion and results with discussions are given in Section 2ibally, conclusions are presented in
Section 2.6.

2.2 Selected Device Structure

As mentioned earlier, the objective of this work is to optina device’s geometry and doping
profiles in order to obtain the highest immunity againstadaitity in the performance and leakage
current of the device.

To achieve this goal, a symmetrical Bulk-NMOS device strigetas shown in Figure 2.1
is selected. The device with various channel doping implé8burce/Drain Extension (SDE),
Gaussian Halo, and vertical Retrograde Well) has been deselto mitigate the short chan-
nel effects and improve the leakage characteristics [2%le farameters of this structure are
discussed in two categoriegeometricalanddopingparameters.
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2.2.1 Geometrical Parameters

The geometrical parameters are physical gate lerigfh ¢xide thicknessTy), sidewall spacer
width (Wsp), and transistor widthw/).

2.2.1.1 Physical Gate Length

The threshold voltage of MOSFET devices decreases witheitiection in gate length. Using
depletion approximation, the threshold voltage of a MOSaeV¥;,, can be defined as [26]:

Vih =Vip+ @+ — (2.1)

whereViy, is the flat-band voltageps is the surface potentiaCox is the capacitance across the
oxide; andQg is the depletion charge in the bulk. In short channel deyities source-drain
distance is comparable to the depletion width in the vdrtio@ction under the oxide. As a
result, the source and drain depletion regions now pewetnare into the channel, resulting in
part of the channel being already depleted. Therefore,delkscharge Qg) is needed for the
device to be inverted by the applied gate voltage. The chantie threshold voltagdj, as a
result of channel length scaling can be approximated as [27]

MVi = — [2 (Vi — @5) + Vg (e—L/Z' + 2e—L/') 2.2)

whereV,; is the potential of the channel/source edgss is the drain-source voltagé, is the
effective channel length, and

(2.3)

whereWyep/n is the average depletion layer width along the channelTgpis oxide thickness.
Considering Eg. (2.2), in a long channel devitex(> ) AV;, is almost zero, while in the short
channel devices, the negati¥}, causes a reduction in threshold voltage. This Short Channel
Effect (SCE) is known a¥;, roll-off [17].

In addition, subthreshold leakadg,, of a MOSFET device can be modeled as [28]..
lsub= UOCoerVV-Zr el-8a(Ves—Vin)/nvr (1_ e*VDS/VT) (2.4)

wherely is carrier mobility,\% is width over length ratio of the devicey is the thermal voltage,
andn is the subthreshold swing coefficient. Considering the egpbal dependency between
subthreshold leakage aNf,, it can be inferred that the gate length as one of the contnibuo
the threshold voltage variation should be taken into actwua variation driven device design.
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It has been shown th&ty, rolling off can be reduced by applying halo(pocket) imp&j29].
However, this improvement may lead t&:a roll-up (Reversed SCE) followed by an abrupt roll-
off which can be troublesome for devices beyond the 100 nime§30, 31]. By increasing the
channel length in the halo implanted device, one can recueedriation in threshold voltage
(d\/th/dLg — zero). However, this leads to a penalty in performance Isxatithe reduction in
saturation current [22].

Besides to the discussed trade-off role of the gate lengtid®est providing enough saturation
current and threshold voltage stability, the physical ¢gtgth is the main parameter in the hand
of device designers to design various devices for diffepmposes from Low Power (LP) to
High Performance (HP) applications [11].

2.2.1.2 Oxide Thickness

The oxide thickness has a considerable effect on thresloldge [26] since any variation in
oxide thickness chang&x = €ox/Tox- Hence, it will affect threshold voltage and subthreshold
leakage current (as per Eq.2.1 and 2.4). Moreover, the SCfeised by oxide thickness as
given in Eg.2.3, therefore, thinner oxide is needed to awee;y, roll-off in scaled technologies.
However, the gate-tunneling leakage cannot be neglectea wWie oxide thickness is less than
3nm [17]. The gate leakage is due to the tunneling of an @edor hole) from the bulk silicon
through the gate-oxide potential barrier into the gatee&litunneling gate leakage densiyy,
is modeled as [32]:

} (2.5)

3

vox) ? Tox ( vox) 2
=A== ) expk -B—|1-(1—-—=
o (Tox P Vox Qox

whereVyy is the drop across the thin oxide agqgj is the barrier height for the tunneling particle
(electron or hole).A andB are physical parameters depended on barrier height andvae g
in [32]. It can be seen from Eq. (2.5) that the tunneling autriecreases exponentially with a
decrease in oxide thickness.

In addition, the saturation current and intrinsic delayals® sensitive to variation ifpx due
to variations in threshold voltage and gate oxide capacéan

2.2.1.3 Other Parameters

The transistor width is chosen by the circuit designers ze siansistors in order to meet the
required specifications for the system. Therefore, it isawtsidered as a device level design
variable in our optimization problem. In addition, sidelgdacers are used to form SDE regions
in the two sides of the channel and their width is determineged on the physical gate length
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[33]. Hence, their values are determined for every traosisased on its gate lengthVg, =
1.1x Lg) [11], soitis not included in the proposed device desigrapuaater list.

2.2.2 Doping Parameters

Various channel profiles have been developed to overconi shannel effects and improve
leakage characteristics [25]. Today’s MOS transistoreltlaree profiles in their channel: Source/Drain
Extension (SDE), Halo, and Super Steep Retrograde Well (SSRW)

2.2.2.1 Source/Drain Extensions

SDE regions which are traditionally known as Lightly Doperhid (LDD) are critical for deep
sub-micron devices since they suppress the buildup of weddres fields in the drain and source
regions, hence reducing Drain Induced Barrier Lowering (DIBhdV;, roll-off known as short
channel effects [34]. The two important aspects assogatith SDE region profiles are junction
depth and lateral abruptness.

SDE junction depthX;spe) plays an important role in deep sub-micron devices. Deeper
junctions result in more severe short channel effects ddwertber spreading potential contours
and hence the depletion region into the channel. Howevalioster junctions can impose higher
series resistance to the transistor’s source/drain tedif86]. This trade-off has pushed designers
to find the optimum SDE junction depth which not only redudesderies resistance and hence
boosts the drive-in current but also improves short chaeffetts [35, 36]. Now, it is well
understood that in the sub 100 nm regimes the extensionigundepth should be scaled more
aggressive than the past [11]. Motivated by the needs whehwgygested in ITRS (International
Technology Roadmap for Semiconductors), the ultra-shgliowtions is now achievable by the
new innovations in fabrication techniques [34, 37, 38, 301this work, the existing guidelines
reported in ITRS are used for the depth of SDE regions [11].

Another important aspect of the SDE profile is its lateralugmess. Detailed studies of
SDE profiles showed that extension resistance which is aadbgo achieve high-performance
devices is strongly linked to lateral abruptness of the SWRile more abrupt profile yields less
resistivity to the extension, DIBL and threshold roll-offimpacted by too abrupt or too gradual
junctions [40]. Based on the above facts, another guidebneptimum lateral abruptness has
been reported in ITRS which is used in this work (lateral abregs innm/decade drop-off in
doping concentration= 0.11 x Lg) [11]. It should be noted that, the length of the gate drain
overlap (oy) is correlated with SDE lateral abruptness [35, 41] and @licitly determined by
the lateral abruptness of the SDE.
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2.2.2.2 S/D Contacts

Due to existence of extensions, S/D contacts are placerbfarthe channel. As a result, the short
channel effects are independent of the contact junctionhd@fcon), and only the saturation
current increases with the increaseXigon [42]. Therefore, theXjcon = 1.1 x Lg is determined
based on physical gate length as given in ITRS [11].

2.2.2.3 Halo and Super Steep Retrograde Well

In short channel devices, additional non-uniform implantghe lateral and vertical directions

are used to improve short channel effects [43, 44]. Halo,rauroform lateral doping, has been
introduced to improve short channel effects and reducensestiold leakage current [45]. Tilt

implanting of halo impurities places the pocket regionsaeept to SDE edge which made the
profile more useful to suppress punch-through and shortneha&ffects [46]. By proper usage of

the profile, a 25 nm CMOS transistor design is feasible witloutinued scaling of the supply

voltage. Therefore, a considerable improvement in deveceopmance is achievable [46, 47].

In addition, to keep acceptable subthreshold leakage ruimescaled devices, the channel
doping should be increased as the gate length is decreasmslevir, increasing the channel
doping leads to increase in threshold voltage, and consélgudegrades device performance.
A nonuniform vertical channel doping known as retrogradd wan overcome the problem by
providing a low surface concentration [17]. Due to supgregsshannel impurity scattering, the
lower concentration keeps surface channel mobility highenieduces subthreshold current. In
fact, Super Steep Retrograde Well (SSRW) is preferred dueetintitease in the linear drive
current which causes performance improvement for logieggt8, 49].

The symmetrical 2-D non-uniform channel dopifgsH (X,Y), composed by halo and retro-
grade which is typically assumed to be Gaussian [50] is gagen

NchH (X,Y) = NHaio (X, Y) + Nrw (Y) + Nsup

where
N _ —(x=ay)? —(x=ay)® —(y-B)°
Halo (%,Y) = P4 {eXp< . >+eXp P exp ooy (2.6)
and
2
Nrw (Y) = PRWeXp<—7(y;£W) >

wherePy andPrw represent the peak halo and retrograde well concentrat@oNs,p is the
constant uniform doping of the bullaiq, andShaie, denote the characteristic decay lengths of
the Gaussian halo profile in the vertical and lateral dicexsj andSgy is the decay length on the
vertical retrograde well. Finally, the positions of thedhahd retrograde peaks are defineahy
02, B, andYrw. 01 anday are lateral positions of the pocket implant peaks wRiEndYgw are
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the vertical position of the halo and retrograde peaks e@sgly. In this work, the halo(pocket)
peaks are placed beside the SDE edge where the extensiomekgtdund concentrations are
equated.

Band To Band Tunneling (BTBT) leakage is strongly linked to tharstel and junction
profiles [43], and hence, is very sensitive to any channeirdppariation [23]. The BTBT
current,lgTgT can be estimated as [43]:

IgTBT = (WXjSDEA/Eg:;L/Z> &Vbp exp(—éES/Z/E>
where (2.7)

E \/ 209NasiddNsdside [VDD 4+ % In (Nasidé\lsdside)i|

&si(NasidetNsdside n;

whereNasige and Nsgsige are the p-side and n-side junction dopingg is the band-gap of the
silicon, andA andB are physical coefficients given in [10]. Variation on chdrpeek dopings
(halos and retrograde well) and vertical position of theogrtade well affectN,sige and hence
BTBT leakage [43].

Furthermore, the variation of the peak values and the positi the retrograde well strongly
affect threshold voltage and hence subthreshold leakagentudue to the impact on the thresh-
old roll-off and Random Dopant Fluctuation (RDF)-driven gtreld voltage variations [10]. In
fact, in scaled technologies, RDF is becoming a dominantcgonifrthreshold voltage variations
as the average number of dopant atoms in the channel is rathered. Finally, any change in
the threshold voltage impacts the drive—in current andnisit delay as well. Moreover, there
are no predefined exact values for halo and retrograde pedksosition in ITRS.

Consequently, the following device parameters will be usgdiming the device optimiza-
tion problem.

Ly: Physical gate length

Tox. Oxide thickness

P4: Halo peak doping concentration

Prw: Retrograde well peak doping concentration

Yrw: Vertical position of the retrograde well peak

As shown earlier, each leakage component is a function ofitineber of five process para-
meters under consideratiofyate, IgTaT, aNdlsyp are exponentially depends dgx, Naside and
Vih, respectively [17], whild4y, is a function of all selected process parameters [23]. Toere
ON drive-in current as well as intrinsic delay is also a fumctof listed parameters. Hence, the
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following representations could be used to show the devheeacteristics and their dependency
to each selected design parameter.

T = f(Lg, Tox; P, Prw, YRW)

lon = f(Lg, Tox, PH, Prw: YRw)

lsub=f(Lg; Tox, P4, Prw, Yrw) (2.8)
IeTBT = f(PH, PrRW; YRW)

|gate: f(Lg>Tox)

2.3 Problem Formulation

2.3.1 General Approach

Considering a five-dimensional space composetpyox, P4, Prw, andYrw, a yield optimiza-
tion problem can be represented as follows:

argmax Yield= R {C(x) = 1} (2.9)
X= ( Lg, Tox,PH PRW,YRW)

whereC(x) denotes a boolean random variable function defined basedsired bounds on the
ON current (pon), intrinsic delay t), and total leakage€l(L) and is formulated by Eq. (2.10).

C(X) = (lon(X) > lon—min) AND(T (X) < Tmax)

AND(TL(X) < T Lyax) (2.10)

where lon_min, TMax, @and T Lyax are desirable bounds for device parameters of interest.
Therefore, P {C(x) = 1} represents the probability that a deviog $atisfies the currents and
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delay constraints in the presence of variations elements. This type of problem formulation
enables developing different devices for high-perforneamiclow-power applications by assign-
ing various values tdon_min, TMax, @and T Lyax. The selection criteria for two performance
metrics (ON current and intrinsic delay) is based on the tfaat the performance improvement
is primarily achieved by reduction of gate capacitance arth reduction of intrinsic delay in

every technology node for sub 100nm regime [11], while lih¢ is almost constant in scaled
technologies and should only meet a minimum to prevent hnegatpact on the device drivabil-

ity, critical for driving parasitic/interconnect capaaiices.

To have a more realistic indication of the total leakabk, in digital circuits, all of the worst
case leakage components are added together as given in ITRS [1

L= (2.11)
lsub(Ves= 0,Vps = Vpp) + 18787 (Vs = 0,Vbs = Vop) + lgate(Vos = Vbp,Vps=0)

Figure 2.2 shows a typical scheme where all three leakag@@oemts contribute in total
leakage power.

2.3.2 Yield Estimation

To solve the optimization problem stated in Eq. (2.9), oneush estimate the probability of
placing a device in the feasible space defined by the desiggtreants in the presence of variation
in device parameters. This means that the probability waidbvice with parameterssatisfies
the desired constraints on intrinsic delay, leakage, aivé-iin current should be estimated. To
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Figure 2.3: Simplified problem in two dimensions
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estimate such probabilit(C = 1), a 5-D cube is formed in the problem space where all points
within the cube satisfy the constraints on th& andT L bounds.

To clarify this point, a problem with two design variablég{P4) is shown in Figure 2.3.
A feasible region is defined based on the problem constrahtectangle is figured where its
area is in the feasible region (all devices lying in the negta have théoy, T, andT L within the
desired bounds). The center of the rectangle is the max pwiltt. Now, considering a device
placed in the center, the probability of the constraintstadtion for such device in the presence
of independent parameter variations can be estimatedlaw/fol

Pi2-p) = PAC(X) = 1} = P{Tox < Tox < T} x P{P}; < P4 < P4} (2.12)

whereT.,, T4, Pl,, andP! are coordinates of the rectangle.

By expanding this 2-D problem to the original 5-D problem give Eg. (2.9), the 5-D yield
probability can be represented as:

X= (Lg, Tox, P, PRWa YRW)
Assuming X X' = (Lg, Tox, Py, Pw: Yaw)
x! = (LS7 Tox Ph» PR YFlQJW)

(2.13)
Yield(xX,x!) =R {C=1} = |§| P{X <x<x}= |§| (CDFx (X') —CDFx (X))
i=1 i=1

wherex; is theit" design parameter of devioe x“ andX represent the coordinates of the
inscribed 5-D cube (instead of rectangle of 2-D problem)us[EDFx is the cumulative dis-
tribution function of the parametes. In this work, the variability of each design parameter is
considered to be independent and the distribution is asstori®e Gaussian [20]. But, Gaussian
distribution does not have a closed form cumulative digtidn function (CDF) which is needed
for yield evaluation, so the Kumaraswamy’s distributiondabis utilized [51, 52]. This double
bounded probability density function (DB-PDF), is apprageifor physically bounded variables
and provide a simple closed form expression for any proltldistribution function [52]. The
probability distribution function (PDFj (z) of this model is in the form of:

f(z2) = abZ2 1(1—A)b1

X—le b b (214)
Z= 5o o XD Sx<xt
wherex"? andx'P represent upper and lower bounds of double-bounded randdablex. De-
pending on the values chosen for parameteasdb, DB-PDF can take various shapes. In this
work, a truncated Gaussian shape with rartfe— XP = 60, has been used by settirgand
b to 3.6 and 8. Thereforg’®> andx® are set ta< + 30, andx¢ — 30y, respectively. However,
other forms of distributions such as uniform, triangularg d0g-normal can also be used. The
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closed-form CDF of this modél (z) which is called DB-CDF is easily available from its integral
[52]:
F(2=1-(1-2A)° (2.15)

Due to the symmetrical nature of design variables, the fipaihzed devicex?, is assumed
to be in the center of the inscribed 5-D cube. Therefore atsdinates can be easily calculated
as:
¢ Xx

2

By using the closed form of the obtained DB-CDF and Eq. (2.1@)yikld function of Eq.
(2.13) can be rewritten as follows:

X% = X

(2.16)

I_\b

Yield(x',x!) = i:|§| (F ()%%LFE) —F (%%45))

5 U_(yC | 5 u_yl | U
X' —(x—30y; ) X — (X —30x; ) - X' =¥ +60x X —X{'+60x
() () - <)+ ()

(2.17)

The gate length and oxide thickness variations are conftarat given technology driven
by the lithographic precision. Therefore, their valuessetas technology specific parameters.
However, the variations of other parameters are definedrasmiage of the center point in every
yield estimation iteration.

2.3.3 Final Optimization Problem

Till now, the probability of finding a device in a 5-D cube idiesated. However, to solve the
optimization problem of Eq. (2.9), a 5-D cube should be it in a feasible region which is
defined based on marginal currents values. This 5-D cubdirsedeas follows:

CubeXx,x") = {xe 05X gxgx”} (2.18)

The cube is inscribed in the feasible regionFgfwhere every poink € F; satisfies thdoy
andT L constraints.
FC:{XE DS\C(X):l} (2.19)

The yield maximization objective is to find the 5-D cube inised in theF. such that the
portion of points lies in the cube be maximized. Thereforeubing Eq. (2.17), (2.18), and
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(2.19), the optimization problem of Eq. (2.9) can be repné=e as follows:

( Constraints :lon—min, TMax, aNd T Lyax
Technology- Specific Variances :

Given:
Ox = [O-Lgv OTox> OPy s OPryy» OYRw]

Technology- Specific Limits xn, xMax
(2.20)

( Maximize Yield(x,x)
X xu
_ X
Cube(X,x) CF = X0 =5
Subjectto ¥ X <xd
XMin < %€ < ymax

\

To effectively solve this constrained nonlinear optimiaatproblem, a Sequential Quadratic
Programming (SQP) optimization engine is used [52, 53]. hfietogy-specific variances and
physical limits are set for to the optimization engine. nhdesired margins on delay, drive—in,
and total leakage currents are also defined. The engine fiBel3 aube in the feasible region
while it maximizesYield. The actual device parameters will be the center point of titve which
has the largest constraint satisfaction.

2.4 Constraint Verification Scheme

As can be seen in Eg. (2.20), the optimum 5-D cube should leeilbesl in the feasible region.
Traditionally, the polyhedral approximation was used n@#&rly model the feasible region [52].
This was done based on the assumption that the performaridesidange linearly with design
variables [54]. However, this is not the case for the deviesigh problem where the design
constraints mostly behave exponentially with respect ¢odisign variables. In addition, when
using linear approximation, the polyhedral region needset@pdated in every iteration which
needs expensive MEDICI simulations to find the shortest niegtaf the center point from the
constraints and numerical calculation of the constraid&sivatives over all design variables
[52]. Moreover, the design centering and worst-case distaalysis approaches [54] place the
optimum pointin the center of feasible region which doestaiessarily provide maximum yield
since the variations of process parameters are not equakxample, there might be a design
variable which is far from constraint borders in comparisorther variables but dominantly
impact yield because it has a wide variation. Therefore,imizing the yield function directly
produces better results than centering the design vasiablesing Maxmin approach.
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In this work, the containment conditio€gbgx',x) C F.) is verified by checking the worst
case scenarios where everglement gets its extreme value. These scenarios can beddiyne
2% = 32 combinations of extreme values for every By inspecting Figure 2.3 of the simple
two-dimensional problem, this fact can be observed. It Gasden that locating?2= 4 corners
of the rectangle{ (T3, P) , (Tax: P4) , (Tak PL )+ (T4, P4) } in the feasible region satisfies the
containment condition of the problem. Therefore, the dontant verification process is reduced
to corner cases checking of the design. This condition carelbied bysurface extractioror
direct evaluation

2.4.1 Surface Extraction

In this approach, analytical equations of border curvesuosfases where the constraints are
satisfied are extracted. Considering Figure 2.3, it can be e there are four curves in the
space ofTox andPryw Where the devices placed on one of those curves would s#tisfyy, T,

or TL constraints. Every curve is a border which splits the desface into two regions with
respect to drive—in, intrinsic delay, or total leakage entr The intersection of the generated
regions forms the feasible space. In a three dimensiondllgmosurfaces rather than curves
create the feasible space of the problem [55].

To compute analytical equations for surfaces, at firstoumridevice parameter sets placing
over the border of feasible region should be found. Thene#tected design points should be
fitted to some defined nonlinear-equation formats in ordéonm precise analytical representa-
tion for the surfaces. Thepoints satisfying the constraint borders can be obtaineapipyying
the Gauss-Newton search algorithm [53] to the followingagpns:

lon (X) = loN-Min
T(X) = TMax (2.21)
TL(X) = T Lyax

The core of the search algorithm uses the MEDICI 2-D deviceikitar to calculate the de-
lay, leakage, and drive—in currents of devices [56]. It $thdne noted that the proposed method-
ology is flexible to use 3-D or any TCAD engine for the devicewdations. Finally, by using the
created surfaces, the feasible space is formed and useetb tthie optimization engine in order
to fit the maximum yield cube in it.

However, after any change on the requitefl_min, TMax. OF T Lmax, the surfaces should be
updated to form a new feasible space with respect to the newdso Therefore, any attempt to
design a new device with different constraints needs nunsekEDICI device simulations to
form the new surfaces. Furthermore, due to complexity aragjimation concerns of higher than
three-dimensional problems, surface fitting and extractdl become a very hard task for our
five-dimensional problem. For example, for the three-disi@mal device problem there were 10
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fitting parameters to describleL surfaces with non polynomial terms [55]. As a result, in this
work, the following approach has been designed as an aliezna

2.4.2 Direct Evaluation

Instead of extracting analytical equations for constraimders, the delay, drive—in, and total
leakage current of corner cases can be evaluated diredilygdilhe optimization step. In other
words, the containment constraiftube X, x) C F) is split into 2V triplet constraints using the
combinations ok' andx" elements wherdl is the number of design parameters. As a result, in
our case, the containment constraint can be rewritten as:

CubgXx',x") C Fe
lon (XI1|X$»X|2|X§7---,X!3\X§) > loN-Min

={ 1 (x'lbl(‘j,x'z])l(g,...,x[s])l(g) < TMax (2.22)
TL (XX, %%, .., X5 [XE) < T Lvax
x|} =x ORX!

To verify these constraints the MEDICI 2-D device simulatas been used. However, to im-
prove the speed of this approach, these strategies werefsddndant Constraints Elimination
andReusing Previous Simulation Results

2.4.2.1 Redundant Constraints Elimination

The SQP numerical optimization engine is an iterative-8adgorithm which searches the prob-
lem space to find the optimum design point within the constsaiTherefore, in every iteration
when a set of design cornerg &) is picked, their feasibility should be verified. As elalteg
earlier and shown in Eqg. (2.22), to verify the feasibilitgetcontainment constraint has been
converted to a set of°2= 32 triplets of inequality constraints. This means that y\atempt

in picking a new design corner set requires 32 times sinaratif devices by MEDICI which
produces a long optimization time.

However, by looking through the 32 possible combinationdesfign corners Eq. (2.22), one
can conclude that some of them are redundant and can be aedifrom the list of inequality
constraints. For example, if any combination of the uppergmaof gate length I(g) satisfies
the constraint on delay and drive—in current, others withelomargin of gate Iength_g) will
also satisfy the constraint since their gate capacitaneeaer while their saturation currents
are more. Therefore, there is no need to check any combmptmduced by_g for delay and
drive—in current.
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In fact, among all of the 32 triplets of corner cases just adéthem represents worst case
scenarios with respect to either total leakage or drivediments. Consequently, the list of the
potentially worst case scenarios ffT L, andlpy is given as below:

aTL (Ll?a Téx’Touxa I:)II-I ) Pll?Wv Yll?WlYIl?JW) < Tlmax
b.TL (Lga Tc|)x|Touxv Pl9| ) I:)Igw’ YI|2W|YI3W) < TLlmax
C. lon (Lg, Tox P PSw: Yew! Yiw) = lon-win
dt (LS7 Toux> I:)Il—J| ) PF%W? YI|QW|YIl?JW) = TMax

(2.23)

Eq. (2.23-a) represents the 4 cases where gate tunnelirigrasubthreshold leakage are
dominant. Shorter gate Iength'go increases subthreshold leakage. Furthermore, a lowigtec
channel doping concentration due to using loRgeandPrw bounds cannot effectively overcome
the short channel effects, hence increases subthreslasgdage. On the other hand, Eq. (2.23-b)
represents 4 more cases where the BTBT leakage contribueesiwdfy to the total leakage due
to higher side doping concentratioNaiqe in the channel.

To verify thelpy constraint, the slow devices among possible design costengld be se-
lected. Such devices have the upper gate length and oxiden#ss bound. Furthermore, to
achieve a higher threshold voltage, the channel dopingldhmihigh as well. As a result of
redundant constraint elimination, the number of constsaswreduced to 12 from 323 = 96.

2.4.2.2 Reusing Previous Simulation Results

As mentioned earlier, the optimization procedure is aratten-based algorithm in which every
design variable is repeatedly changed and evaluated ttyfo@iverge to the optimum solution.
In every iteration, when a single variable is changed, thtasoment constraint is verified. Sup-
pose that the case whelr_g is changed, the algorithm can be sped up if simulating thaezor
devices forlpy is ignored because tHgy constraints Eq. (2.23-c) are independenL@fand
we can make use of previously simulated results insteadnofing MEDICI redundantly.

Therefore, to speed up the approach, the simulation rg$glisandT L) of every simulation
could be saved and reused when needed in next iterations.

2.5 Results and Discussion

To verify the optimization methodology, various MEDICI telate files have been developed
to simulate Bulk-Si NMOS devices. The templates are desigueth that, the value of five

design parameters can be changed by the optimization edgrimey its execution. The terminal

voltages of the transistor are set to simulate every worst teakage current condition.
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Table 2.1: Desired bounds and operating supply voltagedsigtied devices in 90nm technology

HP1 HP2 LP1 | LP2 HP65
lon (WA/pum) || >1050| > 1050 > 550| > 550 || > 1150
T(p9 <1 <1 <2 <2 <0.85
TL(MA/pm | <250 | <125 || <5 <25 || <500
Vop (V) 1.2 1.2 1 1 1.1
Table 2.2: Obtained design parameters for each application
HP1| HP2 | LP1 | LP2 || HP65
Lg (nm) 43.2]141.6| 66.5/ 64 | 36.5
Tox (NM) 141139 1.65| 1.7 || 1.21
Py (x10%¥/cm—3) || 2.1 | 3.4 | 3.7 |25 | 3.8
Prw (x108/cm—3) || 6.7 | 5.3 |59 | 6.8 || 4.3
Yrw (NM) 11.3/98 || 59 |69 || 10.7

MEDICI provides a wide range of models for every physical greanon. In this work,
LUCMOB has been used to model carrier mobility [57]. LUCMOB s all-inclusive model
accounting for low, high, transverse, and longitudinakfieffects. Furthermore, Kane’s model
has been used to model band to band tunneling current [58RlI¥;i to model the gate direct
tunneling current a silicon-oxide type insulator has beams@ered. The net tunneling current
across the insulator is numerically calculated using tdependent electron approximation [59].

For each high-performance (HP) and low-power (LP) appboattwo devices have been
designed for 90nm technology. Theg, and 3, are fixed to 4% 1.5nmand 12%x 90nm,
while for doping parameters, 10% of their center value iggaesl to their & in every iteration.
The defined bounds dgy andT L of each device and the corresponding supply voltage are set
based on 90nm technology node specifications [11] shownbiteTal. To have higher drive-in
current and hence better performance, the supply voltatfeedfiP devices are set higher than
the LP ones as suggested by ITRS [11]. The HP2 and LP2 devieésgr performance and low
power devices with tighter constraints (i.e. the HP2 and td®& leakage constraints are lower
than the HP1 and LP1). Moreover, a high-performance 65nnsistor (HP65) is also designed
to see how the results change when different physical liemts variances are used for another
technology with faster while leakier characteristics. N&wvwariations are assigned tg and
Tox as 12%x 65nmand 4%x 1.2nmfor 65nm technology as well as shorter lower limit fqy.
TheLg""is set to 28 and 33 nanometer for 65nm and 90nm technologigsectively whilerp"
is kept 1nm for both cases.
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Table 2.3: Specifications of designed devices

\le HP2 || LP1 | LP2 | HP65
lsub (NA/M) 48.1 225 0.99|0.6 | 158
IgTeT (NA/UM) 6.65 | 21.5 || 0.4 | 8e-3| 16.9
lg (NA/um) 15.4 | 19.3 || 1.07| 0.62| 93.2
Jo (A/cn?) 35.6 | 46.5 | 1.6 | 0.97 | 255
TL(NA/um) 70.2 | 63.4 || 2.46| 1.23| 268.1
lon (HA/pm) 1230| 1204 | 658 | 648 | 1280
T=CyV/lon(p9 || 0.78 | 0.8 | 1.63| 1.55| 0.7
Vin (MV) 200 | 212 || 268 | 305 | 157
DIBL (mV/V) 62 |48 |22 |50 |60
Slope(mV/deq | 81 81 75 |76 79
Lchannel (NM) 24.3 | 24.7 || 40.8| 38.6 | 22.2

Table 2.2 presents the device parameters of five transisbdesned from the methodology.
The HP devices have shorter gate length and thinner oxid&rtéss in comparison to the LP
device. Moreover, to have less impurity scattering and @éenore saturation current in HP
devices the SSRW peak is located more far from the surfacerparison to LP devices. It
should be noted that, in this method, the characteristiayléengths of halo and SSRW are
set based on the fabrication restrictions by the designeweder, the peak and position of the
profiles which can be controlled by the ion dosage and theggroriring ion implanting process
are manipulated as design variables to gain more varialiven toleration.

The specification of the designed devices are given in TaBlelRis evident that the tighter
constraints on total leakage, in HP2 and LP2, causes leddd¢akage for corresponding devices
making their drive-in current lower as well. Furthermokbes subthreshold slope factors are better
for the LP devices, and the threshold voltages of them are tian the HP devices. Moreover,
it can be seen that the device with more BTBT current in each HEPagroup provides more
suppression to the depletion region penetration into tfacll which produces lower DIBL
effects. The |-V characteristic of HP1 and LP1 devices avergin Figure 2.4.

To figure out the effects of process variation on the devickaracteristics, Mont Carlo sim-
ulations were done to obtain the actual yield for all devicased on the initial defined bounds
on currents and delay (see Table 2.1). To have a more realaiation analysis and hence fair
comparison between the designed devices and industrial &mespacer widthNsp) and SDE
junction depth Xjspg) are also varied in Monte Carlo simulations [60]. TWg, andXspg vari-
ances are set to 12%90 AND 65nm and 10% respectively for 90nm and 65nm technekgi
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Figure 2.4: |-V characteristics of the HP1 and LP1

The given yield is equal to the percentage of devices saigfye desired bounds under all pa-
rameter variations. The mean and standard deviation otdgvcharacteristics experimenting
Gaussian process variations are listed in Table 2.4. It easekn that the average speed of the
HP65 device is 10% faster in comparison to 90nm devices vigthen\V/pp. However, this would

be increased to 25% if the saigp = 1.2 was used. Moreover, the average leakage of the 65nm
device is 2.5X times greater than the the 90nm device’s gedeakage. However, the leakage
variance has not been increased with that rate as it is asktinaiethe absolute values of the gate
length and oxide thickness variances are reduced.

Figure 2.5 is depicted to verify the optimization process.fdct, exhaustive search of the
whole design space to find the globally maximum yield pointunning Monte-Carlo simulation
for all feasible design points is not computationally tedote. Therefore, to check if the proposed
optimization approach leads a local maximum vyield, the &ired second derivative test at the
obtained optimum point are performed, in which the gradahe yield function should be

zero: OYield = ("gif'd, N, el "(;Qe'd> ~ 0, and the second derivative of it should
g oX RW
be negative. Figure 2.5 depicts the yield curves, obtaineddvices around the designed HP1
device (Table 2.2) by running Monte-Carlo simulations. Eswab-figure is extracted by varying
one design parameter while keeping others constant andrpeniy Monte Carlo simulations.
For example, Figure 2.5(a) depicts the yield and the averafielevice characteristics when
(Tox = L.41nm, Py = 2.1 x 10'8/cm-3, Prw = 6.7 x 10'8/cm-3, Yrw = 11.3nm) while Lg is
varied from 3Gmto 52orm As can be seen, the yield is maximum at the designed point and
diminishes once a device parameter is moved away from itsxapt value.

Finally, Figure 2.6 represents the Monte-Carlo results efdbsigned devices. It is evident
that having both intrinsic delay arlgy constraints in the performance metric constraint list is
necessary as can be seen inloy figures there are some devices which sattsiyt notloy or
vice versa.
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Table 2.4: The means and standard deviations of devicegcteaisitcs
‘ HP1 | HP2 LP1 LP2 HP65
Isub I 85.7 |48.3 15 1.4 124
(nA/um o 112 | 69.5 2.3 2.1 126
IsTBT I 7.4 30.6 0.4 18e-3 || 34
(nA/um) o 3.6 19.5 0.18 | 21e-3 | 145
IS I 15.7 | 19.5 1.1 0.6 95
(NA/um) o 2.6 3.5 0.18 | 0.9 15
TL U 109 | 98.7 3 2 253
(nA/um) o 111 | 66 2.3 2.1 120
o/u| 102% | 67% | 75% | 103% || 47.5%
lon I 1205 | 1186 | 660 647 1246
(LA/um o 88 96 50 58 78
o/u| 7.3% | 8.1% | 7.6% | 8.9% | 6.25%
T 1 0.8 0.82 1.64 | 1.56 0.73
(ps) o 0.11 |0.13 0.2 0.21 0.085
o/u| 14% | 15.5%]| 12.1%| 13.6% | 11.6%
Yield 86% | 74% | 90.5%/| 75% | 85%

It should be noted that the controllability of the processildanot allow thel g andTox to be
optimized continuously. To resolve the issue, after olimgioptimum device parameters thg
andTox Will be rounded to the nearest achievable values, then ditfeng parameters will be re-
optimized based on the fixed values fgrandTox. However, the second optimization would be
considerably faster as the number of design variables amigting constraints are lesser. Also,
the resulted profile parameters will not greatly change ag#te length and oxide thickness are
also kept very close to the optimized values. To evaluatgitdd penalty of such approach we
applied this approach to the device with more deviatiorisyandTox from assumed achievable
values (e.g. LP1, assuming 1nm and 0.1nmlfgrand Tox levels of granularity). Therefore,
new Lg andTox would be 66nm and 1.6nm respectively. Having these new fiaieg the new
optimized doping profiles slightly changedRg = 3.8e18, Pryw = 6.1€18, andYgryw = 6nm. This
reduces the yield from 90.5% to 85.5%.
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Figure 2.5: Yield, and the average of total leakadgg, andt, obtained by Monte-Carlo simu-
lations for HP1 when the device parameters are shifted fl@robtained optimum ones. Each
figure is extracted from the cases when one device paramseteept while others are kept equal
to the parameters of HP1.

2.6 Conclusions

In this chapter, a new device design approach is propose. ni¢thod tries to find appropri-
ate values for oxide thickness, gate length, and channéhdqpofile characteristics (Halo and
Retrograde Well) for a known MOS device structure such thatekiracted device leads the
transistor which maximally satisfies three desired comggan intrinsic delay, saturation, and
total leakage currents, in the presence of variability. Ghapter presents a theoretical study of
various device parameters and their effects on device ctaistics and shows that variability
can be considered during device design. The algorithm iscbas an optimization technique
which places a maximized yield cube in the problem feasipées. The center of this cube is
considered as the maximum yield design point. This methkestanto account different pos-
sible variances on process parameters and desired perfoert@akage metrics for a particular
application.
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Figure 2.6: Monte Carlo simulations of designed devices
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Part Il

Circuit-Level

The reliable yet efficient statistical analysis of VLSI ciits is a critical task to di-
agnose the yield concerns before entering the expensieediaiphase. The corner-
based verification techniques are prone to over-desigrigmobr lack of efficiency
due to increasing number of corners. Therefore, the prabtitibased (non-Monte
Carlo) methods have been considered by many researcher alith&te solution.
Generally, these methods simplify or ignore some secondraetiects of perfor-
mance metrics or process variations models, in order toigeavactable solutions
for yield estimation of today’s large-scale VLSI circuiss a result, the Monte Carlo
(MC) method is still considered as a reliable alternativewkeler, the major draw-
back of the MC method is its slow rate of convergence. In tlaig pf the thesis,
several solutions are proposed for the efficient sampleged variability analysis
of VLSI circuits through the adoption of advanced samplind s&ariance-reduction
methods. Different solutions are provided for digital andlag circuits, and SRAM
cells.
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Chapter 3

Overview of Advanced Sampling and Variance
Reduction Methods

The traditional Monte Carlo analysis has a very slow convargeaate, so a large number of
samples is required to accurately analyze the varialslilesuch a methodology is adopted.
Therefore, a number of advanced sampling and variance tiedunethods have been adopted
for the statistical analysis of different types of VLSI airts to improve upon the quality of
estimations and reduce the number of simulation cyclesisnchapter, an abstract overview of
these methods are provided to readers. The detail expdasatif the proposed methods for the
variability analysis of digital and analog circuits, and SRA&ells are provided in the subsequent
chapters of this part.

3.1 Introduction to Monte Carlo method

Suppose: = {x x@ ... x(@1 is a set ofi-dimensional process parameters with a known Joint
Probability Density Function (JPDF,(x) : RY — R. Eachx\)) represents a process parameter
of a circuit element, such as a transistor gate length, wilttde thickness, threshold voltage,
or interconnect dimension. = p(x) is the performance metric of the circuit under statistical
analysis, the following integral can be used to formulateeasarre of variability

Ho=Ey[0(p(@))] = [ 9(p(@))¢ () da, (3.0
Rd

whereEy |.] is the expected value, givénas the density function of the random parameters. For
example, ifg(h) is set to the following single-constraint indicator fumetjl.(h):

|T<h>:{2 Ez : (3.2)
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then the integral of Eq. (3.1) will be equal to the yield of tircuit with respect to the per-
formance metrig and the critical value of for the metric,p(x). Consequentlyg(h) = h and
g(h) = h' lead to the mean and tmeth moment of the metric, respectively.

The MC method suggests a numerical technique to estimatetdgzal, byN times sampling
from the ¢(x) distribution, evaluating the circuit's performance metn every iteration, and
finding the yield or the statistical moments using

N

> a(p(xi))

g = .le (3.3)

Since the samples of consequent simulations are indepeadeéndentically distributed, the
traditional MC method leads to an estimate with the folloywariance

varvc (fig) = N~ tvar(g(p(z))) =N+ / (9(p(x)) —pg)* b (z) da. (3.4)

The advanced MC methodologies focus on finding alternaswenators or sampling tech-
niques that reduce the variance of the estimation, hendaceethe required number of samples
for a given accuracy.

The proposed methods are compared with the traditional4#M€rms of the estimation bias
and standard deviation of the estimation, where the esomédrget is mostly the circuit yield
or sometimes the statistical moments (mean, standardtagyiand skewness) of a performance
metric. Suppose finding yield is the objective of an estioratilf the estimated yield using the
proposed iy, following is the bias of the estimation:

bias=E[y] -y (3.5)

wherey is the exact yield. The expected value can be estimated mymgithe proposed method
for several timesrtitimes), recording the list of the estimated yield in each{¥n- - - ,Ym}, and
finding the sample expected value by averaging. Note thah man of the experiment usdé
samples advanced sampling technique.

As most of the applied methods in the consequent chaptetsarased, the bias of a method
is reported only if any is observed. However, the major stisdgonducted by comparing the
standard deviation of the estimation against the tradidlidnC. The standard deviation of an
estimation reveals the level of confidence (accuracy) ofstimation. Such a measure can be
obtained by calculating the sample standard deviatiofyef- - - ,Ym}, the experimented yield
estimations.
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3.2 Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) method [61] partitions edamension (process parameter)
into N disjoint and equi-probable parts, then it draws a sampla feach part according to the
probability density of the random variable in that part. Baenples are then randomly permuted
to form N sets ofd dimensional samples, guaranteeing a uniform coveragecimdianension.

Suppose the function under expected value analysis) = g(p(x)), is decomposed into
the following additive form

: (1)
f(x)=pHg+ fi +r(x), 3.6
( ) le J(X ) r( ) ( )

whereyy is the mean of (or f) as defined in Eq. (3.1); is a function ofx(}) (the j-th process
parameter) representing the main effect of fib process parameter alone, and the residual
due to higher order interaction between process paramétets thatfj can be formed, as

fi (X)) = / (f(z) ~1g)§ (@) ﬁd%”. (37)

i#]

If the LHS samples are used to estimate the expected valesl lmasthe estimator of Eq.
(3.3), the variance of the estimation is [62]

var s (fg) = N~ / ()2 () da+ O(N ). (3.8)

A comparison between equations (3.4) and (3.8) revealsttitet HS method filters out the
main effect parts (or the 1-D ANOVA terms), as a result, tleserl f is to the additive forms or
the smaller the residual part is, the more the Latin hyperaampling will help.

Getting back to the VLSI circuit problem, it is usually therieace (e.g. input referred offset
of a comparator) and the yield of the circuit that are undegstigation. If the variance is needed,
theng(h) = h?, therefore, even ip(x) (or h), the metric, is composed of major 1-D additive
parts, the square of it composes of major 2-D componentsapaitwise multiplication of 1-D
terms. As a result, a decomposition of the form of Eq. (3.6)yield a significant residual term
due to interaction components. This means that the LHS rdetbes not provide much saving
when applied for the the estimation of variance especialhhfgh dimensional cases where the
ratio between the pairwise over additive terms increaggsfaiantly.

The problem could be even worse for the yield analysis. THeator function of Eq. (3.2)
consists of many higher than one degree terms, especiaéiy wield is close to two extremes.
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This can be verified by following approximation. Supposedtrer function, a sigmoid function,
is used to approximate the indicator function. If a Taylgpaxsion is used, then

g(h) = le(h) = TG0 _ 34 L (g - SO0 OG0y (39)

As a result, the closer yield is to 1 or 0 the more fgrc) (or h) is from 1, hence, the higher
order terms will appear more in the residual portion. Thdiapfion of LHS for analog circuits
yield analysis has been proposed earlier in [63]. Howeklieratithors faced this issue and showed
through extensive simulations that the efficiency of thepraach significantly drops when the
yield reaches the extremes (e.g. over 90% or below 10%).i3 hisritical issue since the domain
of attraction in a VLSI circuit yield analysis problem is aatly around the extremes.

In Chapter 5, an advanced LHS-based method for the efficieiatbity analysis of analog
circuits is proposed.

3.3 Quasi Monte Carlo Sampling

An important property of the estimation errpg,— Ly, is that it is related to the equi-distribution

(uniformity) of the samples rather than their randomnessis Tdea strongly suggests that by
using a well-spread sequence, which is more uniform thareadmsrandom sequence, a more
precise estimation can be achieved [64]. The LHS methodyat) fries to achieve this goal by

increasing uniformity in 1-D projections. However, theatepancy of the LHS samples is not
noticeably better than that of the traditional pseudo ramdldC samples in projections higher

than 1-D, since the permutation of the samples are perforarabmly.

The QMC method utilizes low-discrepancy sequences to geouniformity in 1-D and
higher dimensions projections. However, the convergeate of the QMC method is depen-
dent to the problem dimension, and it is found to be only aggtigally superior to MC [64],
unless the problem is effectively low dimensional in supsitfion sense [65, 66]. The effective
dimension is determined using ANalysis Of VAriance (ANOwWgcomposition of the function
f, similar to what has been done in Eg. (3.6) but by continuiregdecomposition of the residual
term into functions of higher dimensional components, Hsvis

fx)= 3 fulx)= pg+_§1 fi (x(‘>) +35 fij (x(i),x(j)) oo frog (x(l),--- ,x(d>) ,
i= <]

ucy
(3.10)
where/={1,2,---,d}.
The ANOVA terms are orthogonal under the process paramei@F $pace
/ fu(z) fy(2)§ (z)dz =0 when u£ v. (3.11)
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Therefore, the variance of the integrand functibncan be expressed as the sum of the variances
of all of the orthogonal functions, as follows

o’ (f) = o?(fu). (3.12)

uc/y

If the significant portion of the integrand function’s varee is due to ANOVA terms with
small dimensions then the problem has low effective dinw@nsi superposition sense [65]. For
example, if 90% of the variance dfis due to the functions of single variables (main effects)
and the functions of pairs of variables, the effective digien in the superposition sense is
two. This means that the interactions of more than two randamables have negligible effects
(10%) on the function. The superiority of the QMC versus peetandom MC method for some
of the high-dimensional problems arises from the low-éffeadimensionality of such problems
and the fact that QMC sequences produce high uniformity w doder projections [67, 66].
However, even for moderate size problems (20 dimension oe)nthe finite and moderate size
(100s) QMC samples can not perfectly cover the high dimersiorojections due to the need of
exponential number of samples with respect to dimensidsis [6

In Chapter 4 the effective dimension and the application®QMC for digital circuit timing
yield analysis are studied, and a solution is proposed toawgothe uniformity of the generated
samples in high dimensional projections for that applarati

3.4 Control Variate Method

Control variate is a promising variance reduction techniueexpected value estimation only

when a highly correlated auxiliary model (control varighteavailable [69]. The amount of the

variance reduction is dependent to the magnitude of theledion between the control variable
and the variable of interest, under expected value estimaflhe exact expected value of the
control variable must also be known.

Supposef is the random parameter under expected value estimatioms the control vari-
able with known expected value pf, thenf can be substituted bf/* in computation oE|f]

= f—B(C— ko). (3.13)
wheref is a constant. The original estimator of Eq. (3.3) can beaegd by

N N
So(p@) [ 3 cla)
fg= " B[ k| (3.14)
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which leads to an estimation variance of

var(f*) = var(f) — 2Bcov(f,c) + pvar(c). (3.15)

Therefore, a significant variance reduction can be achibyguroper setting of if f andc
are highly correlated. The optimum valuethat minimizes the estimation variance is

_cov(f,c) pog
P= var(c)  o¢’ (3.16)

wherep, o, ando. are the correlation coefficient and the standard deviatbrisandc, respec-
tively. By using the optimunfs, the variance of the new estimator, is reduced to

valcy (ﬂg) = (1 — p2) valvic (ﬂg) . (3.17)

However, this classical formulation is not efficient for igestimation, if it is used directly
for the yield indicator function of Eq. (3.2). This is becaus obtain a highly correlated control
variable with the yield variable formulated as (3.2), anibary model of performance metric,
p(x), should be found that is not only highly correlated with it biso has the same range and
scale. This problem is even worse if the yield approachesxtremes since the scale and range
of the model can hardly follow the actual metric in tails. Jlissue has been observed in the
early applications of control variate for circuit yield dysis [70].

To overcome this issue, two different approaches may bentalkeThe first few statistical
moments can be found efficiently by using the control vama&thod, then the yield is modeled
by fitting a generic distribution (such as Gaussian) to thé&rimeii) Using an order statistics-
base control variate quantile estimator [71]. This techeigeeds a large number of samples,
especially for extreme yield values to eliminate an inleeriias (e.g. more than 230 samples for
a 99% vyield).

However, it should be noted that in contrast to the LHS and QM(Eare black-box sampling
methods, the control variate method requires good modeats the circuit and the performance
metrics. Constructing such models may require circuit aiglgnd simulations using response
surface method after every circuit manipulation, that isssomobstacle toward a practical appli-
cation of the method for some type of VLSI circuits such agdascale analog circuits. More-
over, the promised variance reduction of Eq. (3.17) can belhachieved if the optimurf is
used which itself requires additional simulations for te&raation of coV f,c) in Eq. (3.16).

In Chapter 4, the challenge of the timing yield estimation igitel circuits is studied and
two control-variate based solutions are provided for efficstatistical static timing analysis.
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Figure 3.1: An example of importance sampling: capturingeailure cases by using a multi-
variate correlated-scaled-drifted Gaussian alternalistibution.

3.5 Importance Sampling

Important sampling is another gray-box variance redudgahnique that has been adopted for
the efficient MC-based yield estimation of circuits with réagure rate [70, 72].

The problem of the traditional-MC method especially foryiedd estimation of circuits with
extremely high yield is that most of the generated samplebd®y () distribution reside in the
acceptable region. Since these samples do not contribube tealculation of the failure rate,
their simulation is only a waste of runtime. As a result, ifaternative distributiony(x), is
chosen to simulate the random parameters such that manesfaéises are observed (Fig. 3.1),
the variance of the estimation error is reduced. In othedsdf the integral in (3.1) is rewritten

as
a(p@)o@) . [a(p)6()
gm Y @ a[ V@) ]’ (3:18)

then, by simulating the samples from tiger) distribution, the following can be used as an
unbiased estimator instead of the original estimator of(BcR)

- 12 g(p(=i) 9 (=)
TN i; y(zi) (3.19)
Therefore, the variance of the new estimator is
2 2
varis (fig) = N~ [/ 2 (p(;?w))q’ @) e 2] (3.20)
This variance can ideally reach zero, if
ww=g”ﬁ2“”- (3.21)



However, finding such an alternative distribution is nota an easy task singg and
g(p(x)) are unknown prior to analysis.

In summary, the importance sampling technique is mostljuliga the analysis of very rare
failure rates. Also, its performance degrades very fastnaag even does worse than traditional-
MC for even moderate dimension problendsX 10) due to possible missing or less emphasize
on some parts of the important regions.

In Chapter 6, the importance sampling for the applicationfAB! cell rare failure rate esti-
mation is studied, and an adaptive sampling technique pgsed which updates the alternative
distribution toward minimizing the estimation variance.

3.6 Stratified Sampling

In this technique, the problem space is divided intdisjoint partitions and the statistics of
interest is estimated in each stratum separately [73]. &g is thei-th stratum andy =
Jo ¢ (z) dz is the probability of having a sample in that stratum. Thenekpected value of the
statistics of interest in that stratum can be found using

N;
3 9(p()
o == (3.22)
by samplinge from following distribution
i (x) = { 3(w)/pi 2 ; 8: (3.23)

Then the alternative estimator to Eq. (3.3) will be
r
flg = 21 Piflg;, (3.24)
1=
and the variance of this estimator is

varst (flg) = Z pi vaie (91Q1)

N (3.25)

Therefore, a variance reduction can be achieved if more lesnape used for stratum with high
variance ofg.

Stratified sampling has been adopted for the yield analyis@igital and analog circuits
[74, 75]. However, this technique has a limited performanggrovement in high dimensional
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problems. This is because of the limited number of stratatduienited number of simulation
cycles. Note that at least one sample is needed in eachrstraence in high dimensional
problems each stratum covers a very large super-cube. Memea order to gain a variance
reduction, the number of samples in each stratum shouldteexi@ed according to the variance
of the statistics under analysis which itself requires kieolge of the circuit response surface and
consequently additional characterization step simuiatior his issue originates from the gray-
box nature of the solution, similar to the control variatel anportance sampling methods.
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Chapter 4

Digital Circuits: Advanced Monte Carlo-Based
Statistical Timing Analysis Methodologies

4.1 Introduction

The reliable yet efficient Statistical Static Timing Anal/§SSTA) is a central task in predicting
the yield of a high-performance digital VLSI circuit. Theroer-based timing verification tech-
niques are prone to over-design issue and may not lead tdieiemf design for a tight power
consumption budget. Therefore, several probabilistsedgnon-Monte Carlo) SSTA methods
have been proposed to address the challenge of statistiéagtanalysis for high performance
digital circuits. In the probabilistic-based SSTA methathe signal arrival-times are treated as
random variables, and the Probability Distribution Fumiet{PDF) of the circuit’s critical delay
is extracted by proper statistical analysis. Blaauw et ab] pfovides a recent survey on the
state-of-the-art SSTA methods.

Despite the considerable improvement of the recent SSTAwdest there are still concerns
on their applications for a reliable and large-scale timsign-off. The major challenge and
drawback of the current probabilistic-SSTA approachegiate from the presence of complex
timing and the process variation effects that are partlyigd or simplified in each solution.
Such effects include, the nonlinearity of gate delays asation of the process parameters and
capacitive loads, the nonlinearity of the MAX operation daehe arrival time merging, and
the resultant non-zero skew signal arrival time PDFs. Therdependency among input/output
rise/fall signal transition times and gate delays, intarexrt delay models, non-Gaussian process
parameters, or the spatial/structural correlations, @nmgesof the other complex issues that have
been partially overlooked in the proposed probabilisasdd methods.

Therefore, the Monte-Carlo (MC) method, as a traditionalraéiBve to probabilistic tech-
niques, has recently attracted attentions for a reliabdeasmeurate digital circuit timing sign-off
[77, 78, 74, 79]. The major advantage of the MC method is itmbdity to account for any
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timing and process model. Moreover, the development aedtation costs of MC-based SSTA
tools are minimal, since the available deterministic-STAjiees can maximally be reused in
developing a new MC-based yield analysis tool. These areditiad to the benefits of break-
ing of an MC-based timing analyzer into parallel processab gain from running them on
multi-processor systems [74]. However, the most threatedisadvantage of the traditional
traditional-MC statistical analysis method is its slow e@rgence rate. That means to achieve a
reasonably precise estimation of the yield, thousandsnafilsitions (samples) might be needed
by using the traditional-MC analysis. The precision of th€fased methods is defined in terms
of the statistical confidence interval of the estimatione Tiaditional-MC'’s rate of convergence
is independent of the problem’s dimension, but it decay& wie slow rate ofd(N~/2) with
respect to the number of samplés

In order to improve upon the convergence rate of the tratilidC sampling, hybrid sam-
pling methods composed of the Latin Hypercube Sampling (L&l a Quasi-MC (QMC) se-
guence have been proposed recently [74, 79]. LHS methodlearegery dimension by strati-
fying its domain into equi-probable subranges, hence irawgs the uniformity of the samples
in one-dimensional projections. Whereas, the QMC utilipesdiscrepancy sequences for 1-D
and higher projections. It is proved that, the estimatiooras mitigated by the equi-distribution
(uniformity) of the samples rather than their randomneds [6herefore, the upper bound of the
convergence rate of the QMC methcﬂ(long/N), is found to beasymptoticallysuperior to
MC, whered is the problem dimension (e.g. the number of process paeaset the number of
principal components). This asymptotic advantage seethe tmly achievable iN >> € that
is absolutely impractical for even moderate size probladwsvever, the QMC method exhibited
a significant advantage over the traditional-MC for the wgsialof the high-dimensional compu-
tational finance problems during 1990s [80]. This surpgddehavior is later justified through
the analysis of the variance (ANOVA) of the high-dimensigmablems and quantified with the
notion of effective dimension [65, 66, 67].

In Section 4.3, this phenomenon is reviewed to provide aiglm®n how a QMC sampling
method can be effectively adjusted for the SSTA problem. &ffextive dimension of the digital
circuit’s yield estimation problem is therefore investgg Inspired by the observations, an
algorithm is then proposed to improve the uniformity of the&b8l's [81, 82] QMC samples
in high-order projections. By using the proposed optimi&adhol and LHS method, an SSTA
engine is developed to target a high-performance timingdyémalysis that requires a fewer
number of iterations to estimate the yield with certain aderfice than that of a non-optimized
QMC sampler.

As will be discussed later, the proposed QMC-based SSTA engies not significantly
outperform the traditional-MC method for moderate numbiesamples (e.g.<2000). As a
result, a control variate-based technique is proposed atid®e4.4 to address the concern by
providing a mechanism which significantly improves the aderfice interval-range when using
only a few hundreds of samples. The proposed techniqueagesrthe high accuracy of an
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Figure 4.1: The approximate range preferred for each pexposethod.

analytically extracted timing model of the nominally-@&l path as an auxiliary variable in an
order-statistics-based variance-reduced estimator.

However, the drawback of using that estimator is the needlimost a hundred or more
samples to avoid an unwanted bias. As a result, another ohéshdeveloped in Section 4.5,
for the cases when only a few (e.g., an order of tens) numbsinuflations is needed. This is
the case for very large circuits or very early design phadesrevre-design/analysis iterations
are run very frequently. The method uses the same auxilarglam variable and applies the
classical control variate technique for the estimationhef ¢ritical delay’s mean and variance.
The Gaussian distribution is then used to form a PDF of thecalidelay and approximate the
yield.

Figure 4.1 illustrates the relative range of the effectegsfor the three proposed method with
respect to the number of samples. The scale of the numbenygdflea might vary based on the
circuit and its yield, which will be covered in the Sectio®Awhere a mechanism is developed
to integrate the proposed methods into a single highly efitdViC-based SSTA engine.

4.2 Delay and Process Variation Models, and Simulation Setup

In order to study the performance of the proposed MC-baseladst extensive MC-based tim-
ing analysis of digital circuits are performed in this resba The result part of each section that
will discuss the advantages and drawback causes of eacbanisttonducted through analysis of
number of circuit benchmarks varying in size and logic deptbo critical factors in performance
evaluation of an SSTA engine. In addition to examining défe types of circuits, e.g. circuits
with many short critical paths vs. circuits with a few but ¢ppaths, different assumptions are
also made for the process variation decompositions intiead)@patial, and random components.

Therefore, before actually introducing the MC-based methadSection 4.3-4.6, in order
to avoid presenting repeated simulation setup informati@very sections, this section is fully
dedicated to provide information on the benchmark cir¢uitaing, and process models that
have been used in analysis throughout this work.
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Table 4.1: Benchmark Circuits
Circuit || Cells Depth| Percentage of critical gates (Slack/D)

0 001 0.02 0.05 01
C432 157 25 15.3 20.3 22.2 50.3 71.3
C499 514 30 15.7 212 473 69.2 811
C880 342 28 85 120 146 16.9 19.0
C1355 | 483 29 15.1 209 46.1 70.6 80.5
C1908 | 359 37 10.3 10.3 17.5 31.7 46.5
C2670 || 666 28 53 53 74 10.7 145
C3540 | 733 44 57 9.0 10.0 145 304
C5315 || 1541 43 30 38 45 51 75
C6288 | 2397 121 | 4.8 10.3 15.7 415 654
C7552 | 1924 58 2 32 34 45 57
S9234 | 820 27 45 6.1 6.2 7.1 106
S13207| 1935 29 14 14 20 26 3.8
S15850| 2735 47 23 30 35 42 6.7
S35932| 7872 14 43 43 138 283 314
S38417| 8291 37 0.58 0.59 0.63 0.63 0.64
S38584| 8249 34 0.47 047 065 0.67 1.4

ISCAS85 and 89 benchmark circuits [83, 84] are used. Theitireme synthesized using
an industrial 65nm CMOS library cell with only inverters, ad@nd 3-inputs NAND and NOR
gates. The timing response surfaces of each logic cell iactexized quadratically to deliver a
high quality of approximation in terms of process parangetdihe output rise/fall and the the
propagation delay of each library cell are modeled as fonstiof input rise/fall time, output
load, gate length, and threshold voltage of that cell. Theratterized response surface models
are composed of constant, linear, quadratic, and lineagfi and linear-quadratic interaction
terms. Table 4.1 shows the number of cells and synthesizgctdepth (the depth of the longest
path) of each circuit. The registers’ input/outputs of teguential benchmarks are treated as
pseudo outputs/inputs during the timing analysis.

The last five columns of the table show the percentage of thie kells that have timing
slack equal or less than zero, 1%, 2%, 5%, or 10% of the drifiekay. These values are used
in later discussions in order to provide insight on the typei@uits that manifest high or low
improvement of yield estimation accuracy using differer@{ased methods.

In this work, two types of process parameters are consigarpdrely random (the threshold
voltageVr) and a spatially correlation one (the gate lengih The gate length variation itself
is decomposed into three distinct components: inter-diglobal (ALg), spatially correlated
intra-die variation £Ls), and a random residual pafl({). The spatially correlated behavior of
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the gate length variation is originated from the lithograpmperfection that affects the close
devices more similarly. This issue has been extensivebsitigated and modeled in [85, 86, 87].
The area of the conceptual die is divided into rectangulasgrand the gate length variation
of transistors sharing a grid are assumed to have equaébkpatrelation component, while the
random part varies for each transistor separately. Theagloimponent is equally added up
to all transistors of the circuit. As a result for a circuittivin cells placed in a mesh aoh
grids,d = m+ 2n random variables are used where timevariables are due to purely random
parameters and the residual portion of the correlated peteas) while them variables are the
correlated random variables representing the global aatiadgomponents of the gate length
variation in different grids.

The model represented in [85] is used to ensure the posiéfiaittness of the covariance
matrix of them grid gate length values, as:

0% +p (Vij) 05

COFI’(ALi,ALj) = Oé—l—Oé—l—O'zR

(4.1)
wherey; j is the euclidean distance between the gadd |, while the variance of each of the three
components arsé, 0%, ando%. The normalizeg (Vij) ratio is computed using the following

function:

s—1
p(v) =2 (%V) Ks 1 (bY)F (5— 1) (4.2)

whereK is the modified Bessel function of the second kihds the gamma function, argland
s are two real parameter numbers that adjust the shape of tlotidn [85]. Throughout this
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chapter various portions of global, spatial, and randoratians as well as the shape parameters
are used to investigate the effect of the correlated prquassmeters in the performance of the
proposed method.

Throughout this chapter, unless a different setup is meatipthe magnitude of the global,
spatial, and random components of the gate length variat®set to 25%, 55%, and 20% of the
total gate length variatioro{. = 0.12L) [85]. The grid size is set such that almost every 20 cells
are placed in one square-shape grid. As a result, the mesfust varies from & 3 to 20x 20
for different circuits. The parametelpsands are set to 1lgig and 6, wherdyiq is the length of
the square grid. Figure 4.2 depicts the resultant spatratieion.

Finally, it should be noted that the Capo [88] placer is usquldoe the logic cells in order to
determine the distance and hence the correlation coefficodithe spatial parameters.

4.3 Efficient QMC/LHS -base SSTA

In this section, the notion of the effective dimension,adiiced to explain the unexpectedly high
performance of the QMC methods, is reviewed. The effectiweedsion of the digital circuits’
timing yield problem is investigated. Inspired by the efiez dimension analysis, an algorithm
is developed to minimize the discrepancies of Sobol's QM@das following the need for low-
discrepancy samples in high-dimensional projections foeficient yield analysis. Finally, a
QMC/LHS -base SSTA engine is proposed for the efficient timjiredd estimation of digital
circuits.

4.3.1 QMC, Effective Dimension and Timing Yield

Suppose = { p, p@, ..., p(d)} is a set ofl-dimensional random variables with a known Joint

Probability Distribution Function (JPDF} (p) : RY — R. Eachp() represents either a purely
random process parameter such as the RDF-driven threshibédjeovariation or the residual
random component of a spatially correlated parameter ssitheegate length variation. I (p)

is the critical delay of a circuit, then the following indioca function, I, divides the problem
space p € RY) into unacceptabld (= 0) and acceptablé & 1) regions, represented as:

i ={ 9 BPZT. (4.9

wheret is the maximum acceptable critical delay. Therefore, thiewiong integral represents
the timing yield:

y=Pi=1=E [ (p)] = [ ()0 (p)dp. (4.4
Rd
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The MC method suggests a numerical technique to solve tegraitin (4.4) byN times
sampling from thep(p) distribution, evaluating the circuit’s critical delay, duextracting the
mean ofl¢(p) by using the following estimator:

#{i|D; < 1}

N ) (4.5)

y=

where #.} is the number of elements in a set axds the total number simulation iterations.

The problem of the traditional-MC is its slow convergende i@y, = O(N—l/z)), that is the
standard deviation of the estimation’s error declines \thin inverse of the square root of the
number of samples [73]. The following formulation can thenused to determine the number
of samples withu-confidence half-range (1 —y) for a yield ofy:

(@-1(05+a/2)* vy
B? -y’

where®~1(.) is the inverse of the normal Cumulative Distribution Funct{€DF). It is evident
that to reduce the interval rang®) by €, the number of samples must be increasetimes.

N =

(4.6)

However, an important feature of the estimation emet,y—y, is that it is related to the equi-
distribution (uniformity) of the samples rather than th@indomness. This idea strongly suggests
that by using a well-spread sequence, which is more unifosptead than a pseudo-random
sequence, a more precise estimation can be achieved [64% [€H is a sampling technique
which increases the convergence rate by providing moreunisamples in 1-D. This is achieved
by partitioning the domain of each random variable into éguabable subranges and generating
the same number of samples in each subrange, randomly. Amapdrmutation of the LHS
samples are finally adopted to generate the random sampt@aseklowever, the discrepancy of
the LHS samples is not noticeably better than that of thetioaal pseudo random-MC samples
in projections higher than 1-D, since the permutation ofgamples are performed randomly.
Figure 4.3(b) shows a 2-D projection of the LHS-based samplean be seen that the samples
are not much more uniform than the traditional MC-based sasn(flig. 4.3(a)).

Instead of the generating random samples by a pseudo-randotber generator, or strati-
fying each dimension separately as it is done in LHS, the Q&&technique to produce deter-
ministic low-discrepancy sequences that are more unifpdisitributed over the d-Dimensional
problem space compare to the former methods. Higher tharubh#drmity is achievable by
using such sequences, that leads to a faster convergerdbaatthat of the MC or LHS tech-
nique. Figure 4.3(c) depicts the 2-D projection of the QM@ pkes, generated by the Sobol
algorithm [82]. Other examples of low discrepancy sequernieelude Halton [89], Faur [90],
and Niederreiter [91]. The error of the QMC technique is gig the Koksma-Hlawka bound,
O (logdN/N), which promises an asymptotically faster than the MC pentorce [64]. How-
ever, this superiority seems to be unachievable uriesse?, which is absolutely impractical
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Figure 4.3: 2-D projections of different sampling appraashThe gray squares represent areas
with high or low concentration of samples.

for even moderate size problents ¥ 10). Surprisingly, the practical applications of QMC on
some high-dimensional computational finance problemsgB6jved significant advantages over

MC'’s performance. The convergence rate for such problenmighty O (n—l), independent of
the problem dimension.

Several researches have been conducted to explain thisssugly good performance [92,
93]. A qualitative explanation is then developed under th&ation of effective dimension [65,
67]. Suppose the QMC is used to estimate the following iatiegr

/ f (@) da, 4.7)
0.1

if the integrand functionf (x), is decomposed into a sum of orthogonal functions of theessbs
of the problem variables, and a large portion of the totagrand variance comes from a few
random variable or orthogonal functions with small dimensi then the effective dimension is

significantly lower than the nominal problem dimensiondieg to a high performance QMC
estimation.

Consequently, by using the ANalysis Of VAriance (ANOVA) repentation, thé(x) can be
decomposed into a sum of orthogonal functions of all the etislaf«, as follows:

f@)= 3 ful(@)= fo+_§1fi () +35 6 (XOXD) o g (X, XY

ucy 1<]
(4.8)
where/={1,2,---,d}. The ANOVA terms are orthogonal, therefore, the variancéhefinte-

grand function can be expressed as the sum of the varianadkaffthe orthogonal ANOVA
functions, as follows:

0% (f) = ZOZ(fu). (4.9)

uc/y
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Caflisch, et. al. [65] introduced the notion of the effectivmensions as follows:
1. The effective dimension df in the superposition senseds, if Z|u|§d502(fu) > Po?(f).

2. The effective dimension dfin the truncation senseds, if 3 yc(12.....dr} 02 (fy) > Pao?(f)

whereP is a proportion chosen to be less than, but close to 1. For gbeainP = 99% of
the variance off is due to the functions of single variables, the effective dimension in the
superposition sensdg, is 1. This means the interactions among the parametersnealigible
effects on the function. On the other hand, the truncatiossef effective dimension is related
to the list of important variables. Thereforgy = m means that the firan variables creates
the highest portion of the integrand variance. It should biea that the variance of any MC-
based estimations is directly related to the variance (eafothe integrand function. Therfore,
the superiority of the QMC compared to the pseudo-random Mghod for some of the high-
dimensional problems arises from the low-effective dinn@melity of such problems and the fact
that QMC sequences produce high uniformity in the first femehsions € 12) and low order
projections € 3) [67, 66].

As a result, first the effectiveness of the QMC method is itigated for the analysis of the
timing yield, through the analysis of the effective dimemsof the yield function); (p). For
this purpose, a numerical technique [94] is used to estithateariance of the different ANOVA
terms of the indicator-type yield function. This techniquéizes the quasi-regression method
[95] which uses shifted Legendre polynomial functions aes ltlases for orthogonal ANOVA
terms.

Table 4.2 lists the relative importance of the 1-D and 2-D ARQerms when yield is 0.5
and 0.99. The relative importances are computed using

1-D: 100x Eoz(fi)/oz(f)
i=1

Fulll—D: 100x %oz(fi)/cz(f) (4.10)
i=1

2-D: 100x il E o?(fi, fj) /0% (f)
i=1 j=i+1

wheremis the number of the grids of the mesh structure, wiliie the total number of variables
including the grids and purely random. The resultant amalgisows a reduction on 1-D terms
as the yield increases, meaning that the LHS technique givesy small improvement over the
traditional-MC for a typical yield analysis close to therexhe of the critical delay distribution
tail. It also suggests that to benefit more from a QMC samptimg sampling technique should
be carefully optimized to maximize the high-dimensionalfermity. These are important ob-
servations, suggesting that the excellent performandeecMC method seen in computational
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Table 4.2: The relative importance of ANOVA terms for of thelgt function.

Circuit Yield =0.5 Yield = 0.99
1-D Fulll1-D 2-D| 1-D Full1-D 2-D

C432 65 69 7 19.4 20.1 18.5
C499 64 67 741|152 15.8 19.6
C880 65 70 7 19.6 20.2 18.8
C1355 || 63 66 6.7 | 14.8 14.9 24.4
C1908 || 67 71 8 18.6 19 18.3
C2670 || 60 64 44|11 11.6 21.5
C3540 || 61 64 4119 9.2 18.6
C5315 || 61 64 71|12 12.3 25.3
C6288 || 63 64 3.3/9.1 93 22.5
C7552 || 61 64 34192 96 21.2
S9234 || 60 64 34|82 84 19.4
S13207| 59 63 1.2(75 7.9 17.9
S15850| 61 65 1.2|/6.8 75 17.0
S35932| 45 59 13 [ 5.4 10.7 36.5
S38417(| 59 67 25 |52 7.9 -5.6
S38584| 56 64 29 |6.1 5 23.5

finance problems may not be easily achieved for digital dirgield analysis problem. That

is due to the fact that, while the aforementioned computatifinance problems are found to
be effectively very low dimensional, i.e. at most 2-D witlyrsificant 1-D portions [94], the

yield estimation function is not. Therefore, investiggtend possibly improving the high-order
discrepancies of QMC samples should be seriously consldeseich a method is adopted for
SSTA, patrticularly the yield analysis.

It should be noted that, our analysis reveals strong 1-D AN@fms for the mean and
strong 2-D terms for the standard deviation of the criticglagl as opposed to the yield which
also has strong higher order terms. Therefore, both the LiiISCAMC are good candidates for
the mean estimation [74]. While, for the standard deviatstimeation still a carefully designed
QMC sampler that produces highly uniform 2-D projectionswdtl be considered. Justifying
the 1-D and 2-D behavior of the mean and variance of critiedyd is not hard. In fact, a
promising probabilistic-based SSTA techniques, propasgb], approximates the critical delay
with a linear additive function of the principal componewisthe process parameters. This
approximation suggests that the critical delay functioeffectively 1-D, so the first moment
(mean) remains 1-D, while the second moment (variancedded a significant set of 2-D terms
due to the pairwise multiplication of the principal compobtfactors when powering the additive
circuit’s delay function to two. It is now easier to realizéaythe yield function is composed
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of one, two, and higher dimensional terms. That is becaus@nthicator function of Eq. (4.3)
consists of many higher than one degree terms, especiadly yikld is close to the two extremes.
This can be verified by following approximation. Supposegasiid function, the error function,
is used to approximate the indicator function. If a Taylgpa@xsion is used, then

I (h) ~ Lrefaleh) 1, 1 (a (t—hy— 2’ | o ) _ (4.11)

As aresult, the closer the yield is to 1 or 0 the morehfarD (p)) is from T, hence, the higher
order terms will be stronger. In fact, one application of Lfé® analog circuits yield analysis
that has been proposed in [63] showed a significant efficienog when the yield reaches the
extremes (e.g. over 90% or below 10%) which can be well jestithrough the existance of
high-dimensional ANOVA terms in those yield ranges. Thia isritical issue since the domain
of attraction in a digital circuit yield analysis problemastually close to the high extreme.

It is now easier to predict that the application of LHS alomesl not provide significant
improvement on the yield estimation accuracy, and the QM@psiag should be efficiently
optimized to obtain the lowest discrepancy in high dimenaig@rojections.

4.3.2 Proposed QMC/LHS -base Yield Analyzer

In this section, the discrepancy of the Sobol's QMC sequeniceestigated and a method is pro-
posed which produces low-discrepancy Sobol samples. Témoped method generates Sobol
samples such that for a given number of samples, a projeatidormity increases as the di-
mension indices creating that projection become closeneadfitst dimension. Therefore, the
generated samples can be finally applied to the process pterand their principal compo-
nents with an ordering procedure sorted based on the imuartriticality) of them to reduce
the estimation error.

4.3.2.1 The Sobol's Sequence Generation and Discrepancy

The Sobol [82] is a low-discrepancy QMC sequence which isepred over many other QMC
sequences [89, 90, 91], especially for high-dimensiortahesions, due to its higher uniformity
for both 1-D and 2-D projections as a result of it prime basenaf [68]. However, due to the
finite number of samples, all QMC samples including the Sekgluence, show low uniformity
in many high dimensional projections, which is undesirdbtean efficient digital circuit yield
analysis. Note that the yield problem is found to be compas$ethny high dimensional ANOVA
terms, so the non-uniformity of samples in each projectimmgases the variance of the error of
that corresponding term in the ANOVA decomposition.
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Figure 4.4: Some bad pairing (high-discrepancy) of Sols@isples.

The Sobol sequence can be represented ag,thg)¢net and {,s)-sequence in base 2. The
(t,m,s)-net in base 2 is a set of"2oints in[0, 1)° such that the number of points in every ele-
mentary subinterval of volumé 2" is exactly 2, 0 <t < m[97]. Based on the upper bound

proposed in [97] for the discrepancy of a genetahf)-net in base, following can be derived
as an upper bound of the Sobol’s discrepancy:

1
(s—1)!

Figure 4.4 illustrates some of the bad 2-D projection pgsifor 1024 Sobol samples. Each
of the projections depicted in the figure can be considereal sequence front,[10,2)-nets of
base 2, where is 9, 8, and 7 respectively from fig. 4.4(a) to 4.4(c). Therefdhe lower
thet is, the lower is the discrepancy, so the proposed Sobol sequehould target as an
intermediate objective function. Before discussing themigsancy optimization approach, the

general algorithm which generates Sobol samples [82] alatigan approach to determine the
discrepancy of Sobol samples are reviewed.

D ((t,m,s)-net in base < 2'+0(m*?) (4.12)

To generaté\ = 2™ samples of a-dimensional Sobol sequenoéj,), wherei=0,--- N—1
andj=1,---,d, eachxi(” can be generated from the following equation:

XV =av) wapv) @ @ amuid, (4.13)

where® denotes a bitwise XOR operatiorif) are binary direction numbers, and the= {0,1}
coefficients are extracted from the binary representatidgheoGray code of. The Gray code of
i is defined a6 (i) = i @int [5], where inf{x] represents the largest integer inferior or equad to
For example, to finck(zjs), the following steps are taken:

i =25— G(i) = 1100145 01100= 10101

| D ) U 4.14
and hence x(215) = V(ll) eré” @vé” ; (4.14)
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where each direction numbe/ﬁ,j), is a binary fraction that is written as

W=l /2, (4.15)
Wherevl((j) Is an odd integer, & vi((j) < 2fork=1,---,m. For each dimensioj, a sequence of
integerwl((') is defined by aj-term recurrence relation as
v = 2000, @226, @020 v w2 avl . (4.16)

Wherebl((j) €{0,1},k=1,---,g—1 are the coefficients of g@degree primitive polynomial [98]
specified for each dimensign Jaeckel [99] offers a collection of more than 8 million pitike
polynomials up to degreg= 27 to be used for the Sobol generation. Itis evident in Efg)that

in each dimension, there is a great deal of flexibility in csing the initial valueS\(lj), e ,v(j)),
whereas the remaining'&zl, e ,VEA)) is generated through theedegree recurrence relation of

EqQ. (4.16). The constraints on the initial direction valuggfor k=1,---,q")) are that they must
be odd integers and less thdf therefore, for a dimension withgadegree primitive polynomial,
there are %9-1/2 possible choices in selecting the initial direction valu&onsequently, a

random technique is traditionally used to choose the In'rﬁja)t terms for each dimension in [99].

By referring back to Fig. 4.4, it can be seen that to fill the gmrpgions and increase the
uniformity of the samples, either more samples are needd#keanitial direction values of the
corresponding dimension should be changed. This is whereithposed technique enters to
picture. As a result, the objective of this part of the workaspick a set of initial direction
values which reduces the bad pairings as much as possibleovar, this objective should be
achieved such that the more uniform projections are geseiffar the first dimensions and the
uniformity becomes worse as the dimension index increaldas.is helpful for the fact that not
all the process parameters and hence the principal comsoaenhighly critical, so a sorting of
them can be considered to boost the efficiency of the method.

Sobol, himself, has realized the importance of the initied¢ction values on the quality of
the generated sequences, and proposed two propertiesréasecthe uniformity of the sam-
ples [100]. However, to satisfy Sobol’s proposed propsrt# samples are needed that is not
practical for even moderate size problems. Cheng and Druhdze defined a measure of 2-D
uniformity and proposed a search algorithm to find a set ¢ibindirection values with a defined
uniformity [101]. The drawback to their technique is thag thumber of samples and dimen-
sions must be known in advance. Moreover, their techniqy@aduces Sobol sequences and
re-evaluates their defined discrepancy measure in eaclidger(after an initial direction value
update), substantially increasing the runtime for largeber of samples and dimensions. This
was due to the assumption that poor dimension pairings ¢doenfmund prior to the generation
of sequences [68].
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Algorithm 1 Optimize Initial Direction Valuegm)

Generate random Initial Direction Values (IDV) fot™ 1 dimensions;
Generate upten DVs by using the recursions for each dimension;
{Find pairwise discrepancies and initialize priorities}
for k=m-—1 downto 1do
for d2=1to 2" K do
for dl1=2"k111t0 2" Xdo
t(d1,d2) =t of the 2D-projection ofi1 andd?2;
if t(d1,d2) > m—k—1then
priority (d1)+ = 2!(d1,d2)—(m-k-1)—1.
end if
end for
end for
Initialize Temperature
while There is a bad pairing (artyd1,d2) > 0) do
while inner-loop criteriordo
Randomly select a dimension, directed by priorities;
Randomly select an IDV, in that dimension;
Randomly change that IDV up toth bit;
Compute the newmatrix and thepriority vector;
if accept(new- old priority, Temperaturgthen
Apply the changes to the selected IDV;
Updatet and priority;
Generate upten DVs by using the recursion;
end if
end while
UpdateTemperaturg
end while
end for

However, there is no need to actually generate a Sobol seqtenletect the poor pairings or
to measure the Thet value, as a measure of the uniformity, can be found for a paiineension
by using the definitions given in [102].

Suppose/i(.jg is theb-th most-significant bit of the binary representation/i%%, thei-th direc-
tion value of thej-th dimension. If for any integet, andd; in the range of0, m| andd; +dz =1,
the binary system ad; + d, vectors of lengthm composed o{vi(q'bll)\l <i<m1<bl<d;}and
{vi({)22)|1 <i<m1<b2<dy}is full-rank, then the 2-D projection of dimension$ and j2
creates dm— |, m, 2)-net point set.
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Figure 4.5: Distribution of, the measure of discrepancy, for 1024 Sobol samples usipy (t
random initial direction values and (bottom) optimizedialidirection values.

For example, iffi =1,---,m \{jll) = vi(jjlz), thenl = 1, sot = m— 1. This means that up to
the (2")-th sample, the projection of thel-th andj2-th dimensions is similar to that of the Fig.
4.4(a). In other words, for all samples0s < 2™ — 1, thext/? < 0.5 & x? < 0.5 inspired by

the Eq.(4.13), as the MSB of tmafirst direction values of the dimensigd andj2 are equal.

4.3.2.2 Optimization of the Sobol's Sequence Discrepancy

The timing yield analysis problem is found to be composedightdimensional terms. There-
fore, the discrepancy of high-dimensional projections@t the estimation error. The discrep-
ancy of a multi-dimensional Sobol sequence can be improyechhkeful selection of the initial
direction values.

However, it is also known that all the random variables ofttieeyield function are inequally
important. For example, thm variables representing the principal components (PC) oftlie
random variables in the PCA decomposition contribute thet neothe ANOVA decomposition,
please refer to Table 4.2. That is due to the fact that a siPGlaffects to the propagation delay
of many gates, hence, affecting the critical delay morengfiso Moreover, the gates with closer
to zero timing slack have more chance of becoming criticadlileg to this conclusion that the
PCs with greater contributions to those type of gates have eftects on the circuit timing than

the rest.
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As aresult, if the direction value of the Sobol generatoeisssich that the lower discrepancy
dimensions are obtained first and the higher discrepancy come later, the generated Sobol
samples can be used in an ordering scheme according to thetanpe to the PCs for an efficient
estimation.

In this part, a simulation annealing optimization algamtfAlgorithm 1) is proposed which
produces such direction values. Note that, this is a relgtiengthy process, and can take a day,
but it is only an one-time process. The extracted initiagdiion values are saved and used for
future Sobol generation.

For a giverm, the objective of the optimizer is to set the initial valuaslsthat the maximum
t for the pairs of dimensions dfl, - - - ,Zm*k} ism—k—1,wherek=1,---,m—1. This means,
t = 0 (perfectly uniform) for the first two dimension< 1 for pair of dimensions of one to four,
t < 2 for pair of dimensions of one to eight, and etc. Therefong,@airing of dimensiondl =
{2m-k=14 1 ... 2Kl with dimensionsd2 = {1,---,2™ X1 should only be verified to satisfy
t < m—k—1 condition, hence, speeding up the optimization procesd€lp the optimizer to
even converge faster, it is only the fiksits of the initial values in the dimensions ™1+
1,---,2™ K1y which are included in the search during the optimizatiohatTis because in that
range the maximurnism—| = m—k— 1, hence| = k+ 1, meaning that, at most, up to tkeh
bit of these dimensions form the system of independent pwvectors. Moreover, the simulation
annealing engine is directed by an initial value selecti@eigon, giving a high priority to those
dimensions that have the worst discrepancies.

Figure 4.5 compares the distribution tpfthe measure of discrepancy, before and after the
optimization form = 10 (1024 samples). As depicted in Fig. 4.5(d), even for thst faw
dimensions(1,---,64), and before the optimization, some pairs of dimensions kawve high
discrepancie$t = m— 1 = 9) and many others have discrepancies higher than the maxirhum o
the optimized version for that dimension range- 5). However, as shown in Fig. 4.5(e)-4.5(h)
for the optimized version, the maximum discrepancy redf@ices 8 to 5 as moving down from
the dimension 512 toward 64.

4.3.2.3 The Yield Analyzer

The proposed SSTA framework is constructed by combiningtitained low discrepancy Sobol

sequence and the Latin Hypercube samples. A similar hylppdoach is also suggested in [74]
to leverage from high uniformity of few QMC dimensions forportant parameters and use of
LHS for the rest.

In this research, for a given numbert= 2™ samples, ?~! dimensions use Sobol samples,
whereas the reminder dimensions use LHS samples. The optimtial direction values of the
Sobol generator for a givenis pre-computed and stored by using the algorithm proposeiee
Since the Sobol samples provide a higher than 1-D uniforriiigy are prioritized to be assigned
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for the most important PCs of the process parameters. Assdisdwearlier, the PCs contribute
the most to the variance of critical delay, therefore, theemmiform dimensions are assigned for
them. However, the LHS samples can be used to provide safoplé® non-spatially correlated
process parameters (e.g., RDF) or any less important PCsréhaioa assigned to the Sobol
samples.

The number of Sobol dimensions is limited t§2 for a given number of samples to limit
t < m— 2. However, approaching the first dimension, the unifoesiincrease. Therefore, it is
beneficial to order the PCs, so that the most important comysnehich contribute more to the
circuit’s critical delay, use the lower discrepancy dimens. Consequently, a weight is assigned
for each PC as a measure of its criticality. The followingsedito derive the criticality of each

PC:
P N Slack « 2}
CG= ) Yij ) exp a-(—’) , (4.17)
,Zl ]k; { Dnom

wheregc; is the measure of the criticality of theh principal componentf is the number of PCs,
i j is the coefficient of thg-th PC in thei-th grid variable (obtained from the PC analysis [96]),
N; is the number of logic cells in thgth grid, Slack \ is the slack of thé-th cell in the j-th
grid, Dnomis the nominal critical delay of the circuit, amd< O is a constant factor.

As a result, if a grid has many close-to-zero slack cells @nit$ neighboring grids have
many close-to-zero slack cells, the corresponding PC ofottid has a high criticality.

The PCs are then ordered, based on their criticalities and dksigned to the Sobol di-
mensions, sequentially. If there are more Sobol dimengiwas PCs, the remaining Sobol di-
mensions are assigned to some of the non-correlated prpaemseters, according to a simple
criticality measure for them, equal tel x slacke). Thus, the smaller the slack of a cell is, the
higher the probability that the non-correlated parametéthat cell are assigned to the Sobol
samples.

4.3.3 Results

The standard deviations of the estimation errors are iigagsd for the benchmarck circuits. The
values reported in Table 4.3 are the improvement percemi@ag@are to the traditional-MC us-
ing the proposed method with and without using the optimiieection values. The maximum
acceptable delay is set such that circuits have 95% yield.stéandard deviation of the estimated
yield is obtained by repeating the MC or LHS/QMC analysis fif@s using a constant number
of samples (32, 128, 512, 2048) recording the yield in eanhand finally calculating the stan-
dard deviation of the 100 estimated yields. Note that, ifQMC-based sampling, rerunning the
original Sobol generator does not generate different sempse Therefore, the scrambled Sobol

59



Table 4.3: Standard deviation reduction (percentage) efetimated yield compared to the

traditional-MC analysis. The proposed technique (QMC/LKSgsted with and without apply-

ing the optimized direction values.
Samples 32 128 512 2048
Opt-DV | w/io w/ |wio w/ |[wo w/ |wo w/
C432 11.7 18.6| 26.7 34.1| 35.8 38.7/ 42.6 34.0
C499 129 28.3] 134 35.6| 21.6 39.8 27.5 47.0
C880 25.6 16.8/ 254 27.5/28.1 42.1/ 346 47.3
C1355 | 16.3 20.5/ 21.9 23.3/18.0 34.2| 17.7 40.9
C1908 | 19.0 34.3/30.2 37.013.9 37.1] 324 529
C2670 | 16.8 13.5/19.6 25.8 3.7 29.1|17.4 354
C3540 | 16.0 14.2| 16.6 13.7) 11.7 35.7| 22.2 43.2
C5315 | 16.2 13.0/ 23.6 10.1] 17.6 27.0| 10.8 32.9
C6288 | 17.1 155 7.7 19.6| 13.2 224/ 8.7 37.9
C7552 | 18.4 18.4/ 12.3 29.5/15.2 228/ 99 253
S9234 | 180 7.4 |26 30.6/11.2 19.8/ 158 38.5
S13207 | 13.1 12.0/12.8 8.8 | 0.5 36.8/ 10.1 31.5
S15850 | 8.4 18.3/16.9 10.5 20.8 20.2| 11.9 43.1
S35932 | 59 20.3/3.0 149 11.2 20.8/6.8 27.6
S38417 | 139 9.3 |54 126/8.0 20.6/04 201
S38584 | 13.8 18.3| 23.2 27.6| 12.6 20.7| 5.4 234
Average | 15.2 17.4| 16.3 22.5] 15.3 29.2|17.1 36.3

technique [103] is used in order to generate randomized-Q&iGples, so that the generated
samples in each run are different and can be used to estin@tetiance of the estimation’s
error. Scrambling adds a degree of randomization into thgkss but maintains the structure of
samples in terms of discrepancies. Figure 4.6 depicts #melatd deviation of the error for the
yield of C6288, as an example.

As listed in the table, the non-optimized direction valuesi@ shows in average an almost
constant 16% improvement for different number of sampléss & because of the fact that the
high-dimensional discrepency of very few random variabgésbe low by the non optimized
technique, therefore, mostly it is the 1-D ANOVA terms thahtributes to the estimation vari-
ance reduction. However, the average improvement of timelatd deviation reaches up to 36%
as the more low-discrepency random variables are genebgtélae optimized direction value
Sobol sampler. Given th®(N~%%) convergence rate of the traditional-MC, to obtain an estima-
tion of the yield with the same confidence interval as the psed method, if the improvement of
standard deviation i%, then(1—r)~2x samples are needed using the traditional-MC method,
which translates the 36% improvement td£x 2048 samples to get the same accuracy by the
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Figure 4.6: Standard deviation of the error of the estimgiettl for C6288: comparison of
traditional-MC, QMC/LHS method with non-optimized IDV, andoposed QMC/LHS method
with optimized IDV.

traditional-MC method.

4.4 Order Statistics-based Control Variate for Yield Estima-
tion

In this section, a timing yield estimation technique isaaduced which has higher efficiency than
the QMC/LHS-base method for moderate number of samples (tewlred to few thousands).
The problem of QMC/LHS method is its negligible variance &thn when small number of
samples is used. Moreover, due to the strong high-dimealsAHOVA terms in the yield func-
tion, the QMC/LHS is generally not very effective. The classicontrol variate, a variance
reduction technique, is first reviewed in this section. Tiefficiency of the direct application
of the classical approach for yield function is also invgestied through the analysis of the cor-
relation between the actual and control variables of thidyi€inally, an order statistics-base
technique is applied for the timing yield estimation usimgaaixiliary control-variable.

4.4.1 Control Variate and Yield Estimation Problem
Control variate is known as a promising variance reductichrigjue for expected value estima-

tion when an auxiliary model (control variable) is avaiabT'here are two necessary conditions
for the control variable: (i) it has to be highly correlateittwthe parameter under expected
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value estimation and (ii) its exact expected value shoulkinmsvn. A rigorous exposition of the
classical control variable technique is presented in [69].

As mentioned earlier, in contrast to the advanced sampdicigniques (e.g. QMC and LHS),
the control variate has shown promising results generalyahy type of problems (even high
dimensions) and for any range of samples as long as a cedeatantrol variable with a known
expected value is available. Following is a quick overvidihe classical control variate method:
supposeX is the random variable under expected value estimatidd,isfthe control variable
with known expected value @i thenX can be substituted by¥* in computingE [X]:

X*=X-B(C—e), (4.18)
wheref is a constant. This leads to an estimation variance of:

var(X*) = var(X) — 2Bcov(C, X) + B?var(C). (4.19)

Therefore, a significant variance reduction can be achibyautoper setting op if X andC
are highly correlated.

However, this classical formulation is not effective foelg estimation, ifitis applied directly
to the yield function of Eq. (4.3). This is because the randanmble of yield probleml{) is a
crisp function, so no matter how much correlated is a commdbble withD, the critical delay,
if there is a slight shift (bias or scale) between the randamebleD and the control variable
model, thel; of D will not be highly correlated witH; of the control variable. For example,
assumeX =N(0, 1) is arandom variable under yield estimation & 0.75(X — 1) +0.2N(0, 1)
is a highly correlated control variable whecerr(X,C) = 0.966. If the threshold value for
yield estimation is set to 1.5, the correlation between tieddyof X andC will be very low,
corr(ly5(X),115(C)) = 0.095, due to the shift and scaling of the controlling variatienpared
to the original one. In other word®(X < 1.5) can not be well approximated (modeled) with
P(C < 1.5); therefore, no improvement is gained by direct applicatibthe classical approach
for the yield problem.

4.4.2 The Proposed Order Statistics-base Control Variate Method

The control variate method has been used for quantile estimaarlier in [71], and a median
unbiased order statistics-base [104] estimator has beameddor it. A similar approach is used
in this work but to derive the median unbiased estimator feldy

Suppose an auxiliary control variablg, is available which is highly correlated with the
circuit’s critical delay,D. Now suppose that the CDF @fis ®(c) and exactly known. Such a
control variable will be introduced later. The problem issn@duced to find a quantile poin
such that the hypothesis test®fD < 1) = P(C < ¢q) is satisfied, then simply=P(D < 1) =
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®(cq) will be an estimation of yield based on the knowledge of thetiad variable and not the
simulation ofD alone. Such a pointg, is located where the following condition is satisfied:

#{i|G < cq} =#{i|Di < 1}. (4.20)

This estimator can be used instead of the natural one fotedila Eq.(4.5). For example,
suppose 95 out of 100 simulations yield to a critical delaydothan the maximum acceptable
delay. If using the natural estimator, Eq. (4.5), 0.95 wdlreported for the yield. However, the
actual yield might be greater, e.g. 0.97, but due to the namndature of selecting the simulation
points, only 95 points have been placed in the the acceptagien (two points less than what
it should be). However, becau€ds correlated withD, it is also most likely that only 95 points
(two points less) reside in the acceptable region formeddy €q). Therefore, to form such
an acceptable region based on the control variables;tisbould be determined such that the
number of points wher€ < cg become equal to 95. Obtaining suchgaesults in an estimation
of y = ®(cq) which is more accurate than the natural estimator baséiaone, since the CDF
of C, @ (cq), is exactly known and the control variable is highly cortetawith the critical delay.

In practice, suppose tig@andD values are ordered a€; < Cy < --- < Cy andD1 < Dy <
--- < Dn. If kis the largest integer such thaj < T, thency can be set to any value between
Cy andCy, 1 in order to satisfy Eq. (4.20). However,aj is set to eitheCy or Cy 1 extremes,
the estimationy(= ®(cq)) will be biased. Therefore, a linear interpolation is usedhsthat the
closer thet is to theDy the closer will becq to Cy. Note that ifk = N, no simulation with delay
higher than threshold) is observed, thenq is set toCy. Following expression represents the
calculation of exacty:

if(DN<T):>Cq:DN -
if(Dk<T<Dk+l):>cq:(T—%<k)+(f—E+le—Ck)+Ck. (4.21)

As will be seen later in the results part, the first conditike=(N) is a source of bias which
becomes problematic as the number of samples shrinks.

The derivation of such an estimator is similar to that of thedran unbiased quantile point
estimator as reported in [71]. The hypothesisP(D < 1) = P(C < ¢g) is equivalent tcH : P(D <
T,C<¢q) +P(D <1,C>¢cq) =P(D < T1,C < ¢q) +P(D > 1,C < ¢q) Which is equal taH: P(D < 1,C > ¢g) =
P(D >1,C < ¢cq). The test of this hypothesis is achieved by an uniformly nposterful unbiased
(UMPU) test and the application of the McNemar’s test [71].

Up to this point, it is assumed that an auxiliary varial@decorrelated with critical delayD,
and with known CDF is available. Such a control variable caddtermined by extracting the
nominal critical path of a digital circuit and deriving adiar expression for its delay with respect
to process parameters.
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The nominal critical path is defined as the path with the hsgltelay when all process
random variables are set to their nominal value. Linear nioglef the path delay versus process
parameters leads to a Gaussian path delay. Therefore, swcttral variable has a known CDF.
The expression of this control variable is extracted agvedl

SupposeéE(p), the control variable, is the delay of the nominal criticatlpwhich is a func-
tion of process parameteps therefore:

#gates

C(p) = i; 7O (pm,gifl)), (4.22)

whereT® (p(i),s“‘l)) is the delay of thé-th gate in the critical path as a linear function of
process parameters of that ggid), and the signal transition time of the fan-in ga&; %, as
follows:
. . . o #pl) .
T0) <p('),S('_1)> —al) +alsi-v 4 _zl all,p”, (4.23)
J:

Whereag) is the nominal delay ofth gate, when the process variation parameters are athset t
zero and input transition is zero (step function), and

. . . . o #pl) .
s (p<'>,s<'*1>) = by +b's Y+ 5 b} p!, (4.24)
=1

Wherebg) is the nominal transition time of theth gate. TheS? is set to the constant primary

input transition time.

Finally, to model spatially correlated process parametiws PCA technique adopted for

SSTA in [96] is used. Thg-th process variable of thieth gate,pg'), is decomposed into a
weighted linear sum of a set of independent normal randomas. As a resulC, the delay

of the nominally critical path can be formed as a linear fiorcof a set of independent Gaussian
random variables. Hence, the PDF®is Gaussian with a known mean and variance leading to

a known CDF.

Some importantissues should be considered here: Firgtstemption of linearity is only for
the control variable, not for the actually estimated caitidelay,D. Second, although accounting
for only the nominally critical path leads to an underestedavalue, there is no problem as long
as the control variable remains correlated withthe actual delay. In fact, the andC are
highly correlated mostly because the underlaying procassnpeters are globally and spatially
correlated. However, even if the process parameters wardyprandom, there would have
been considerable correlation due to sharing criticalggayedifferent paths. Table 4.4 lists the
correlation factor between the control variable and thealatritical delays. The first column
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Table 4.4: Correlation between the defined control variaitethe actual critical delay, with and

without considering gate length spatial correlations.
Circuits || Correlated] Random
C432 0.9966 0.9502
C499 0.9806 0.7364
C880 0.9936 0.9175
C1355 || 0.9707 0.6976
C1908 || 0.9997 0.9977
C2670 || 0.9958 0.9709
C3540 || 0.9984 0.9679
C5315 || 0.9934 0.8927
C6288 || 0.9989 0.9777
C7552 || 0.9996 0.9969
S9234 || 0.9878 0.8491
S13207| 0.9996 0.9960
S15850|| 0.9964 0.9304
S35932| 0.9071 0.8301
S38417| 0.9922 0.9068
S38584 || 0.9895 0.9296

is obtained when the gate length variations are globally spatially correlated, as modeled
in Section 4.2, while the second set of correlation numkebtained for purely random gate
length variations. As can be seen, the C499 and C1355 cirduits the lowest correlation
factors in the purely random case. This is due to the straafithese two circuits where many
paths have delays that are equal or very close to the deldyeafdminally critical path. In fact,
both C499 and C1355 circuits are 32-Bit Single-Error-Corrgetincuits in which most of their
paths are critical and there are very few gates with non-gkrck (Please refer to Table 4.1).
A similar situation is seen for S35932 where the number oégatith low slack is very high
compared to other circuits in a same range of gate count.efdrer, using only one nominally
critical path to generate the control variable leads to ealb# with a low correlation to the actual
critical delay, since it is always possible that anothehicomes critical and the model almost
certainly underestimates the delay.

Finally, it is also recommended to detect different potntritical paths from different
process corner analysis. Two approaches are suggestedetade this information. Firstly,
a control variable can be set to weighted sum (or averagdjeottitical delay of the potential
critical paths obtained from limited numbers of corner gs@l. This way the control variable
will be kept Gaussian but may represent a larger set of atipaths. Secondly, a control vari-
able can be set to the maximum of the limited potential @itmaths. This technique models

65



Table 4.5: Standard deviation reduction (percentage) efetimated yield compared to the
traditional-MC analysis. The order statistics-based mdmnariate technique is tested with and
without considering spatially correlated random variable

Variations Correlated Random

Samples | 128 512 2048 128 512 2048
C432 724 65.5 68.3/42.7 423 34.7
C499 48,6 47.7 416/19 98 -35
C880 65.1 59.4 58.9|28.7 14.7 27.0

C1355 50.2 345 42839 -45 -06
C1908 86.9 80.3 76.6| 78.1 69.8 62.0
C2670 704 654 669|446 432 424
C3540 80.0 76.0 71.8/53.2 482 551
C5315 62.3 58.1 56.8/29.3 244 16.2
C6288 825 73.3 74.6|411 422 37.8
C7552 87.9 81.7 77.5|74.3 652 63.2
S9234 45.7 478 51.2/16 -1.7 -4.7
S13207 | 86.7 79.2 75.1 771 64.8 64.2
S15850 | 62.3 65.2 66.0/ 37.4 21.6 22.7
S35932 161 7.2 10.1/78 -50 41
S38417 || 535 53.0 515/ 7.7 158 3.9
S38584 | 53.3 50.6 54.7/ 48.4 40.0 45.7

the actual critical delay more accurately than the weigkted method, but the control variable
will not be Gaussian anymore. As a result, finding its quantilthe order-statistics estimator
requires numerical integration.

4.4.3 Results

Table 4.5 shows the percentage of the standard deviatiarctied using the proposed order
statistics-based method compared to the traditional-MQpdiag. Similar to earlier analysis, the
yield of each circuit set to 0.95. As discussed earlier, ffieiency of this approach is highly

dependent to the magnitude of the correlation between ilieatrdelay and control variable.

Since such a correlation is reduced by assuming less dpattatelated process variations, the
efficiency of the method is also reported in an extreme casaah process variations are purely
random.

Compared to the QMC/LHS method, the advantage of this methibéhithe standard devi-
ation reduction is considerable even from moderate numibsairaples. However, due to faster
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Figure 4.7: Histogram of 100 estimated yields each obtdireed 512 samples of (a) traditional-
MC and (b) order statistics-based control variate, for C488iit. The proposed method’s esti-
mation is unbiased with E[y]=0.95 but shows 48% standardadiewn reduction.

convergence rate of the QMC/LHS method, it can outperforsiethod for some benchmark
circuits (e.g. S35932) even with low number of samples.

Figure 4.7 shows 100 yield estimations each obtained fra2sainples using the traditional-
MC and the order statistics base control variate for the C#@8it The average of both method
is 0.95, but the standard deviation of the proposed methowsK8% reduction.

Finally, as discussed for Eq. (4.21), there is always a pdggiwith probability of yN to
detect no failure circuit out oN timing simulation. This means no linear interpolation can b
used to extracty and its value should be set to the largéstntry, as formulated in Eq. (4.21).
This is a source of biasness which increasel ate number of samples, reduces. The bias of
an estimation is the deviation of the expected value of thi@ination,y; from the actual yieldy.
Ideally a bias of zeroE[y] —y = 0) is desired, but as seen in Fig. 4.8 this is not the case éor th
proposed method when number of samples reduces. As canrhesemgative bias is introduced
as the number of samples is reduced, due to the possibleastidested approximation af, by
Cn in Eqg. (4.21). Moreover, for a fi, the bias is higher for a 99% yield than that of the 95%
yield since the probability of no failurg®) is higher.

4.5 Classical Control-Variate and Gaussian Modeling for Yield
Estimation

As reported in the previous section, the order statistasebcontrol variate technique outper-
forms the optimal QMC/LHS method especially for moderate benof samples; however, it
is observed that the method is prone to underestimationeoyidld. This leads to a negatively

67



y=95% —8—

Bias of estimated yield (%)

I y=99% —o—| |
5t ]
10 I - I(I)O

Number of Samples

Figure 4.8: Bias of the estimated yield for C6288: comparid®¥86 and 95% vyield.

biased estimation, when the yield analysis is performet {eitv number of samples. The mag-
nitude of the bias increases rapidly as the number of samgpiiees beyond a threshold.

In this section, the Gaussian PDF is used to approximatetjehtbe probability distribution
function of the critical delay. Assuming a Gaussian disttidn, the mean and variance of the
critical delay can be estimated by MC simulations and be fsiedield estimation. This tech-
nique is suitable for large circuits and early stages ofgfephases when a quick estimation of
yield is required with small number of samples. The hybrid QWHS and the order statistics-
base control variate have been shown to be inefficient fdr sases due to a large error variance
or unwanted negative bias.

However, there are two problems associated with such aitpodnFirst, the variance of the
error can still be very large since the low number of samm@ad$ to less confident estimation of
critical delay’s mean and variance. To address this issigeclassical control variate technique
will be applied to provide a highly accurate estimation olamand variance.

The second problem of this method arises due to the erromateg from the Gaussian
model approximation. The Gaussian assumption may lead &ranthat can not be fixed by
increasing the number of samples or improving the confidémeeval using a control variate
technique, simply because the actual PDF of the criticaydel not exactly normal. However,

a designer may live with this level of inaccuracy, and giveditrrto the traditional approach of
yield analysis in terms gii+ k& quantiles as long as the estimated mean and variance afg high
accurate. This is especially the case for early stages afrighases where other previously
reviewed MC techniques are inefficient. Other solutions levdoe to employ PDF models that
capture the higher number of moments such as skew-norntabdison [105] or the asymptotic
probability extraction method [106].

Inspired by the classical control variate equation (4.18@, following formula is used to
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derive a variance reduced estimation of the critical delagamip-:

™M z

. 1(Di —BuGi)

for = =+ Burc. (4.25)

whereD; is the critical delay at thé-th iteration,C; is the control variable value at theth
iteration, 3, is a constant, angk is the exact expected value of the control variaGlelt should
be noted that, the control variable is the same as what has umsl for the order-statistics
method, which is the delay of the nominally critical path egsed in terms of linear gate delay
equations in (4.22-4.24). Using the Eq. (4.19) and its @¢ise overf, the optimumpB, which
minimizes the estimated mean variance is:

B, — cov(D,C) )
W™ var(C) ~ oc’

(4.26)

wherep, op, andoc are the correlation coefficients and the standard devstd®® andC,
respectively.

If similar regression is used for the variance estimatibr,following expression is derived
for the variance reduced estimation of the critical delayarace,63. .

5 (01— o) ~ o (G~ )?)

b = N1 +Bo0bd, (4.27)

N N
wherepp = 5 Di/N andiic = 5 Ci/N.
i=1 i=1
The term, N — 1), in the denominator eliminates the bias of the variantienasion as the
E[(x— fw)?] = Ngto? for N samples.

In order to achieve a variance reduction for the introduaédtal delay variance estimator,
the two variablesi(D — fip)? and (C — fic)?> must be correlated. The covariance between them
are obtained as:

A ] N—1)2
cov((D fo)?, (€ - fe)?) =2(“* ) pPotod, (4.28)
if the critical delay is approximated with a Gaussian PDFaAssult, the optimurfs is:
252
Bo=" 20, (4.29)
Oc

since va((C —fic)?) = 2 (NT—1)204C
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The problem of Eq. (4.26 and 4.29) is that they are functids andop that are unknown
themselves. One option is to use the MC simulation data tmattp andop and use them to
calculate the optimurfd factors. However, this causes a bias in the estimation ofnta@n and
variance. Another option would be to use a portion of the dasw estimate andop and
to obtain an approximate optimuf)-while use the rest of the samples to actually estimate the
variance reduced mean and variance using Eq. (4.25 and &£@iunately, this is an unbiased
method, but the variance reduction would not be as big as ishaported in Eq. (4.19) since
the B itself would be a varying parameter. The variance of thevedtdf3 increases when the
number of samples reduces, which impacts the variance tieduaf the estimation for very
small number of samples (e.g. 10).

Looking back to the Eq. (4.19), it is evident that the estioravariance follows a quadratic
function with respect t@, hence it can be concluded that by setfig a value not too far from
the optimum point, there would not be a huge estimation waggenalty. In fact, as long as
B < 2 x Boptimumstill some variance reduction is achievable (please reféigt (4.26 and 4.19)).
Therefore one may intuitively assume tlmaj is very close tooc since former is the standard
deviation of the circuit’'s delay and the latter is that ofntaminal critical path. Alsop can be
assumed to be very close to one given the highly correlateaver of the two random variables.
Therefore B, andfs can be roughly set to one.

Figure 4.9 compares the standard deviation of the estinystlby using Gaussian approxi-
mation for the traditional-MC and classical control vagiatethod. Here, by the traditional-MC,
the author means the extraction of mean and variance bytitnaal-MC and calculating yield
using a Gaussian fit. This is different from the traditioMd- method previously noted which
was based on finding the expected value of the yield funct®a 8ernouli distribution (Eq.
4.5). Two options are considered for tBealculation in the control variable technique. In one
approach, the optimurfd is determined using the 1/3rd of the sample populations tlaadest
(2/3rd) are used for the critical delay’s mean and variarstienation. In another approach, both
By andBy are setto 1, as discussed earlier. As can be seen, the nigoftuariance reduction
is lower for C1355 than that of the C6288, same as the ordeststatbase method. That is due
to the lower correlation between control variable and daweuit delay in the C1355 circuit. As
it was also expected, the variance reduction is higher fotemf8 = 1 than that of the estimated
optimum 3, but the difference gradually vanishes as the number of kanipcreases until the
optimumbetaoutperforms the fixed value.

Please note that the reported standard deviation does i@ttréhe intrinsic error (bias)
due to the Gaussian approximation. That error is affectethéyactors which are involved in
producing higher than second order moments (non-Normaldeof the critical delay PDF (e.g.
circuit graph and topology, and technology parameters).

Table 4.6 lists the standard deviation reduction using thpgsed technique for fixegl= 1.
The number of samples are 16. As listed the standard devistgignificantly higher compared
to the two earlier methods; however, the estimation is biake to the intrinsic error of model-
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Figure 4.9: Standard deviation of the error of the estimgiettl using Gaussian approxima-
tion: comparison of the traditional-MC and the proposedsilzal control variate method using
optimum{3 and constang (= 1).

ing the critical delay with a Gaussian PDF. Compared to theresthtistics-based method, two
conclusions can be made. Firstly, due to the fact that a geR&®F is used in the classical

method, the method has generally a lower estimation vagianmpared to the yield estimation

by the Bernouli-based estimator. Secondly, the orderssizgitbased method requires high cor-
relation between the control variable and critical delayuad the critical delay threshold value,
that seems to be harder to achieve with a single nominal path.

4.6 Putting Them All Together

In this section, the proposed timing yield analysis techegare integrated together to form
a unified engine. So far, three MC-base timing analysis mettaod reviewed:i- The low-
discrepancy QMC/LHS engine: this method is not efficient foal number of samples (e.g.
< 500). However the magnitude of the variance reduction &ekidy this method is almost
constant for different types of circuits, as it is only degent to the relative importance of yield
function ANOVA terms which is pretty close for various ciitsu(please refer to Table 4.2i-
The order-statistics control variate engine: this metrodighly biased for small number of
samples, the number of samples required to disappear byasldsdependent (please refer to
Fig. 4.8). Moreover, the magnitude of variance reductiohnighly circuit topology dependent.
iii- The classical control variate engine: this method modedsctiitical delay with a generic
distribution, so it is inherently biased but the bias nearishes.

Since the QMC/LHS method is a robust method (circuit-indeleat) but not very effi-
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Table 4.6: Standard deviation reduction (percentage) #sl (OE [y] — 95) of the estimated
yield compared to the traditional-MC analysis. The classiontrol variate technique is tested
with and without considering spatially correlated randamables.

Variations| Correlated| Random
Bias Std.| Bias Std.

C432 -0.19 91.0/0 66.9
C499 -0.22 78.6/ 0.19 33.8
C880 0.05 90.4|-0.04 65.1

C1355 -0.16 75.9/ -0.33 21.8
C1908 -0.12 96.2/ 0.19 93.6
C2670 -0.11 89.8/ 0.20 78.9
C3540 -0.07 93.4/0.02 779
C5315 -0.04 88.7/ 0 61.5
C6288 -0.11 94.8/0.04 814
C7552 -0.21 96.3] 0.11 91.6
S9234 -0.07 84.7/ -0.33 50.5
S13207 | -0.18 96.5/ 0.15 93.3
S15850 | -0.24 88.6| -0.36 57.5
S35932 | -0.32 55.4| -0.43 43.5
S38417 | -0.27 84.9/ 0.10 59.1
S38584 | -0.45 68.7/0.27 77.9

cient for low number of samples, one may combine it with théeosstatistics control variate
method. That means the samples should be generated usi@MBA_.HS method, while the
order-statistics-base control variable estimator shbeldtilized for the yield estimation. Con-
sequently, the combined engine still works fine even if theuit’'s topology does not produce a
highly correlated control variable. The simulation reswirifies the benefit of such a combina-
tion. The standard deviation of the error has been found wigbktly better than the maximum
of variance reductions achieved by applying each methodealddiowever, the bias issue for
small samples will be inherited to this engine.

In order to fix that issue, the classical control variateneator can be first used to provide
an estimate of yield. However, the sampling technique ghbel kept QMC/LHS so that the
simulation results can later be used for the combined QMC/IAA8 order-statistics control
variate estimator. Therefore, suppgses found to be the estimated yield using the Gaussian
approximation. The bias of the order-statistics methodrigirmated from the cases when no
failure circuit is observed usiny simulations (please refer to Eq.(4.21)). Intuitively, lifet
number of samples be large enough that the probability céreirsg no failure is less than 0.1,
one may assume that the bias is negligible. As a result, stirkshold would b& > —1/log(y).
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Such a threshold is 230 and 45 for 99% and 95% yields. Theiyabflthese numbers can be
verified from the Fig. 4.8. In conclusion, given an approxienestimation of using the classical
control variate, if simulating with more samples than thigshold is timely affordable, one may
continue sampling and simualting but use the combined QM&/lwHth order statistics-base
control variate estimator.

4.7 Conclusions

In this chapter, three MC-based timing yield estimation teghes for digital circuits are intro-
duced. The major drawback of Monte-Carlo techniques is the sbnvergence rate. Advanced
sampling techniques and the control variate method areeaptal reduce the number of simula-
tions. Following three methods are investigatedin optimized-discrepancy QMC/LHS engine:
this method provides greater variance reduction than theoptimized QMC/LHS method. The
quality of the results are almost circuit-independent bus inot significantly better than the
traditional-MC especially for low number of samples (e<g500). ii- An order-statistics based
control variate engine: the number of samples reductioreset by this method can reach to an
order of magnitude, however, in circuits where there areynpaths with zero slack, the saving
could drop significantly. Moreover, this method is highlp&ed when using low number of sam-
ples, the number of samples required to disappear biasdsymkl-dependentiii- A classical
control variate engine: this method models the criticahgeith a generic distribution, so it is
inherently biased, and the bias never vanishes. Howewusraigood candidate for early stage
timing yield estimation when the first two techniques arbeitnefficient or highly biased.
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Chapter 5

Analog Circuits: Correlation Controlled Sampling
for Efficient Variability Analysis

5.1 Introduction

Variability analysis is an important step toward designaifust analog circuits in scaled CMOS
technologies. The MOS transistors are susceptible torelakdnd physical parameter variations,
due to ionization, chemical-mechanical polishing, arftigraphy variations leading to threshold
voltage, oxide thickness, effective width and length mishaof identically sized transistors.
The worst-case (guard-banding) design approach doesawtdean optimum design for a tight
power and area budget, therefore, statistical analysisessential step toward designing a robust
VLSI circuit and trading-off among performance, power,s&iand accuracy [107]. Examples of
analog and mixed-signal circuits, extremely vulnerableaasistor mismatches are flash ADCs
[108], current steering digital-to-analog convertersqil(BRAM sense amplifiers [110], ring
oscillators [111], and bandgaps [112].

Mismatch analysis can be performed by either sensitivityenl [113, 114] or Monte-Carlo
(MC) based methods. In the sensitivity-based methods, &rbhear model is derived for the
performance metric under variability analysis, then thaéavece of the metric is calculated. Even
though this method is fast, it requires human supervisiehcrcuit analysis. Moreover, its ac-
curacy is simply compromised by neglecting high-order (imear) effects of the analog circuit’s
performance metrics. In contrast to the sensitivity-basethods, the MC simulation method is
straightforward; it is easy to be employed for differentait topologies and produces reliable
results for the mismatch analysis of analog circuits. Ther&Ehod can be utilized for any form
of circuit analysis, such as dc, ac, and transient with anpb@r of process parameters as the
convergence rate of the MC technique is independent of thiglgm dimension (number of the
process and mismatch parameters). However, the negapeetas that the MC analysis requires
a large number of samples/simulations, typically thousatoproduce a reasonably accurate sta-
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tistical estimation. The convergence rate of the MC sargpiirethod isO(N~1/2) meaning that
to achieve an estimation withtimes higher accuracy, the number of samples should beasede
by €2 times [73]. The accuracy of an estimation is defined in terfrte@statistical confidence
interval of an estimation.

In order to tackle the poor performance of the MC-based vdit\alanalysis method, a
number of sampling and variance reduction techniques hantly been developed for vari-
ous VLSI circuits, such as digital circuits, as seen in thevigus chapter, and SRAM cells,
as will be presented in next chapter, where they utilizerLBitypercube Sampling (LHS) [61],
low-discrepancy Quasi-MC sequences [64], control vamaéthod [69, 71], importance [115]
and adaptive sampling. Early studies of the variance résluahd sampling techniques for yield
analysis of analog circuits can be found in [70, 63, 75]. Hmvethese techniques either have a
limited performance improvement or face practical conselue to the curse of dimensionality,
if they are used for the variability analysis of large-scab@log integrated circuits.

Analytical expressions are derived in Section 5.2 to exarthe performance of the traditional-
MC technique and answer the question ‘bipw many samples are needed for a precise MC-
based circuit variability analysis?’The analysis provide estimations of the number of samples
needed for performance metric’'s standard deviation and g&timations for given accuracies.

It is a common practice in yield analysis to model a perforogametric with a generic probabil-
ity density function, e.g. Gaussian, after estimating ismmand standard deviation rather than
actually estimating the yield by finding the ratio of the éailcases over the total of simulations.
Equations are derived to compare the accuracy of these tiwoahein terms of their confidence
interval. Finally, the error introduced by neglecting tlkewness in a Gaussian fit is studied.

A sampling method is proposed in Section 5.3 that signiflgareiduces the yield estima-
tion error (confidence interval) by minimizing the error bbetmean and variance estimations
in analog circuits. The sampling method generates samptesontrolled linear and quadratic
cross correlations that are suitable for an efficient vagaand mean estimation of functions with
significant linear and quadratic terms. This is a major immproent compared to the traditional-
LHS and QMC methods where the estimation of variance is mefft due to the poor uniformity
of samples in two-dimensional projections. The motivafagfor in the development of such a
method originates from the strong presence of first and skcater terms in the decomposition
of the performance metric functions into functions of citsuprocess parameters. In fact, the
method answers the following questidif:the performance metric functions are linear enough
(or quadratic) to be analyzed by sensitivity-based methbdw can this fact be employed for
generating samples that are highly efficient for mean andbvae estimation?”

Finally, the proposed method is verified by the yield analg$ian Operational Transconduc-
tance Amplifier (OTA). The developed engine is shown to beegopto the traditional-LHS in
terms of the mean square error of the yield estimation.

75



5.2 Traditional Monte Carlo Analysis and the Required Num-
ber of Samples

In this section, the performance of the traditional MC-bas®gn, variance, and yield estima-
tions are investigated. The required numbers of sampletharecalculated for a certain level

of estimation confidence. For the yield analysis, two tyfgesstimators are considered: the ex-
pected value estimator based on the indicator function o{Eg) and the yield estimator based
on modeling performance metric with a Gaussian distrilbut®aussian modeling of the process
parameter is a common practice in yield analysis. This nusth® shown to be superior to the

former method in terms of the estimation variance; howeteyffers from estimation bias due

to neglecting higher order moments, especially in skewstitoution cases.

5.2.1 Estimation of the Mean

As formulated earlier in Chapter 3, Eqg. (3.3), the traditieM& method can be used to estimate
the mean of the performance metrig, in presence of process parametersif N sets ofd-
dimensional samples are simulated from ¢i{ec) JPDF and the following estimator is used for
the mean estimation N
2 p(xi)
A =

IJ - N I
then the estimator is unbiased[fl] = 1), and its variance (the variance of the estimation error)
is var(fl—p) = var(ft) = var(f) /N [73]. ForN > 30, the following equation can be derived
based on the z-test to determine the required number of sanmplachieve a half confidence
interval-range ot with (a x 100)% confidence

(@ 1(05+9))°0?
whereg is the standard deviation @ and®~1(.) is the inverse of the standard normal cumula-
tive distribution function. It is evident that to reduce th&erval ranged) by € times, the number
of samples must be increasedtimes. For example, 664 simulation iterations are needed+o
timate the open loop dc-gain of an OTA with 99% half confideimterval range of 0.2db, if the
standard deviation of the dc-gain is 2db. In other word$iefrhean dc-gain is exactly 70db, after
using 664 simulations, in 99% of times, the estimated mesides within the [69.8db,70.2db]
bound.

(5.1)

However, it should be noted that sinpatself is under inspection, most likely, there is not
enough prior knowledge about its standard deviation tordetes the required number of sam-
ples in advance. Therefore, an estimation of the standasdtd®n should be updated while the
simulation iterations are proceed in order to obtain an@pprate number of required iterations.
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5.2.2 Estimation of the Standard Deviation

The standard deviation of a performance metric may be netedeel used in modeling the per-

formance metric’s PDF to estimate the yield or it can be diyatsed as a design specification
(e.g. the standard deviation of the input-referred offsétige of a comparator in a flash analog-
to-digital converter). The unbiased estimator of standisdation is

N o2
_Zl(p(wi)—li)
o=1\l= N1 (5.3)

In order to find the confidence interval of an estimator, isrdution is needed first. In
contrast to the mean estimator that converges to Gaussmmodiie central limit theory, the
distribution of the standard deviation estimator is a detribution for a Gaussiap [116], as

) <N—1> (%_1)
_(N—l)ﬁ 262
PDF(&) = \/§6N_2e 202 ZO-T,

(%)

whereo is the actual standard deviation pf andl" is the gamma function [117]. Therefore,
following is thea-confidence interval of the standard deviation estimator,

(5.4)

2 1 (%) [ Pepd)
A= S [ v (5.5)

whereP, ! (a) is the solution X) of o = P(K,x), andP is the regularized gamma function.

It is apparent that finding a closed-form expression whictemeines the requiretll for
the standard deviation estimation with arconfidence is not an easy task. Therefore, a sim-
pler closed-form expression is derived as follows. Let&tsivith the distribution of the vari-
ance rather than the standard deviation. The exact digtibof the sample variance of a
Gaussian random variable follows a chi-square distrilbufid8]. However, the sample vari-
ance is formed by sum dfl independent and identically distributed random varigbhesce
it can be approximated with a Gaussian distributioi ifs large enough. Please note that the
“independent” condition is not exactly valid since the mstior of the variance also contains the
sample mean, hence there will be a small correlation betwgery two random variables of
(p(z;) — 1) and (p(xj) — ﬁ)z that are about to be added. Fortunately, such a source of erro
vanishes adl increases. The variance of the Gaussian approximatioreadmple variance is
var(6?) = 20%/(N—1) [116, 118].

Now supposes* is a zero-mean Gaussian random variable definex’as: (62 — 02)/a0?,
then the standard deviation gf is /2/(N—1). The sample standard deviation can now be
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written asGé = ov/1+x*. SinceN is large (e.g.>100) and the mean of* is zero, it can be
assumed thgk*| << 1, therefore, using only the first Taylor series tefim; a(1+ 0.5x*). As
aresult, the standard deviation can also be approximatidataussian distribution with mean
and standard deviation of ando/+/2(N — 1), respectively. Therefore, the following equation
can be derived based on the z-test to determine the requiratier of samples to achieve a half
confidence interval-range ofwith (a x 100)% confidence for the standard deviation estimation

®1(0.5+9))%02
Noz( ( 52 2)) +1. (5.6)

For example, 2065 simulations are needed to estimate thdasth deviation of the input-
referred offset voltage of a comparator with 99% half confakeinterval of 1mV, if the actual
standard deviation is 25mV. In other words, after using 26iftulations, in 99% of times, the
obtained estimation of the stanadrd deviation residesinvitie [24mV,26mV] bound. Same
as the previous results, in this case also the standardtideviat p, o, in unknown perior to
simulations, therefore, its estimation should be used poagpmate the number of iterations and
finally to triger the MC analysis stop criteria condition.

5.2.3 Estimation of the Yield

The yield estimation can be either performed by the expeeshae estimation of a Bernoulli
distribution formed by the identifying function of Eq. (3.@r calculated by approximating the
performance with a Gaussian distribution. In this secttbe, required number of samples of
each method is extracted and a comparison between the tivtigees in terms of the estimation
variance and bias are given.

An unbiased estimator of yield can be formed using the estinad Eq. (3.3) and setting
equal to the identifying function of Eq. (3.2). Thereforee tfollowing formula can be used to
determine the number of samples witkiconfidence half-range @(1—y), for a yield ofy

(®105+9))" y
= : ) v
For example, to estimate a circuit yieldyf 95% with 99% confidence interval in the range of
[93.71%,96.29%], which means= 0.99 andp = 0.1, 12606 samples are needed.

Although modeling the yield as a Bernoulli distribution arglimating it directly using the
ratio of the number of acceptable cases over the total numbsimulations is an unbiased
technique, the example shows that it is a very inefficienho@iand requires very high number
of samples for even a non-extreme quantile point (e.g. 95%).
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Therefore, the efficiency of an alternative method is exachiwhere the performance metric
is modeled with a Gaussian distribution using the estimatedn and variance of the metric. To
derive the required number of samples using the Gaussiaelmgdpproach, it is assumed that
p, the performance metric, can be well approximated with anabdistribution, with unknown
mean and standard deviationodndo. Now suppose the mean and standard deviatiopisf
estimated usingl simulations of the MC method asahdG. As derived earlier in this section,
these two estimations can be modeled with a normal distoibats follows

F’lN N (ua 0r2n>
&~ (0,02) (5.8)
where o
Gm —_ 0=
oe N (5.9)
2(N-1)

Suppose& = T—g—“ is a random variable that produces a quantile factor at tteshiold value of
based on the Gaussian assumptiongor he yield will then be equal t®(Z) = %(1+ erf(\%))
using the standard normal cumulative distribution functio

The mean and standard deviatiorZatan be derived as follows. Lets defioe= M, then

)
o* ~ (0, %%), andZ = % However|o*| << 1, therefore, by using the first order Taylor

approximationZ ~ - (1—o*).

As aresultyy = E[Z] ~ ZF, and

0z = E[Z?]-E[ZP~ VEI-p° -0’ -El-p(a-o*)
: ’ (5.10)
\/93(0%+02)+02(1—1)
0'2 .

~
~

Substitutingo, andos with Eq. (5.9) results in

\/OZ(Nf%)+%(T7u)2
~ 511
0z VN(N-1)0 ’ ( )
and sinceN >> 1,
12
oy ~ 1+N7Z. (5.12)

These values can then be used to form the Gaussian metled$00)% confidence interval
range, Ct

Clg = ® iz +boz) — ® (1 — boy) = % (erf (&\gﬂ —erf (“Z_—\/;OZ)) . (5.13)
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Figure 5.1: Required number of samples to obtain 99% confelarerval range witls = 0.1.
Comparison between the Bernoulli and Gaussian assumptions.

where o
_ o1 et
b= (o.5+ 2) . (5.14)
An explicit formula for the required number of samples camtbe derived by using the first
. . . d 2 2
derivative of the error functiong, erf(x) = N X, atx = % as follows
(@-1(05+9))%e ¥ <1+ “—5)
Nye = > , (5.15)
2Bz (1-y)
so that an estimation of yield with-confidence half-range @¥(1—vy) is obtained. In a same
scenario as the example of the Bernoulli-based estimatign(E7), where a yield of 95% is to
be estimated witf = 0.1, only 6642 simulations are needed, which is almost hali@humber
of samples needed for the unbiased Bernoulli-based methate. tNat to evaluate Eq. (5.1%)k
should be substituted lsp—1 (y).

Figure 5.1 depicts the required numbers of samples withectdp yield for two methods
with 99% confidence interval anél= 0.1. It shows that the ratio of the samples needed for
the Bernoulli estimation over that of the Gaussian approtonamethod increases as the yield
approaches one. This is a good inspiration to use such amxapyation method for rare events
analysis, e.g. the SRAM cell yield analysis. However, in casttto the unbiased Bernoulli
method, the Gaussian approximation is prone to &gl ¢ y) especially when the actual dis-
tribution is skewed.

In summary, it can be concluded that to significantly redbeeyield estimation’s confidence
interval range, one may fit a generic density function to ttdggmance metric using the esti-
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mated statistical moments. However, the density functimukl be selected carefully to avoid
an unwanted bias due to possible asymmetry of the distobditinction.

5.3 The Proposed Method

The most promising non-MC based variability analysis méthis based on analyzing the lin-
ear sensitivity of performance metrics with respect to naissh parameters and calculating the
total metric variance as the sum of the square of linear coeffis. However, performing ex-
tensive circuit simulations is inevitable considering toenplex secondary effects in the scaled
MOS transistor characteristics to obtain accurate estmatf such sensitivity measures. More-
over, the linear models may not capture the whole variatfteces of the process variations on
performance metrics.

In this section, an LHS-based sampling method is proposechwimproves the confidence
interval of the estimation compared to the traditional LH®is is achieved by a supervised
permutation step in LHS generation. The traditional-LH®p#tes the samples from disjoint
intervals randomly and has no control over the permutatimtgess. Whereas, the proposed
permutation minimizes the linear and quadratic cross @iroms between pairs of the random
process variables. This is inspired by the presence of deratle linear and quadratic com-
ponents in the decomposition of the performance metriasttions with respect to mismatch
parameters.

5.3.1 Assessing the Performance Metrics’ Response Surface

If a metric can be well modeled by an additive-form functiarrontrolled permutation sampling
method can improve the estimated yield accuracy. In this ftxmulations and circuit examples
are provided to justify the strong presence of linear andirptec additive terms in the response
surface of analog circuit's performance metrics.

Suppose(x) is the performance metric under statistical analysis.slasume a least square
second-degree response surface model is constructedafor

d .
ps() = po+ Za,-xm +bix’ (5.16)
i=

that minimizes the error ofga (p(x) — ps(a:))2(|) (x)dx for the process parameters with the
given probability density of (). The following measure represents the ratio of the totatioiet
variance that has been captured by the model. In other wibgigntifies how welp is modeled

by ps.
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Figure 5.2: Assessing the quality of a quadratic responsgehior the drain current with respect
to gate length variation.

_ var(ps)

<g< .
var(p)’ 0<qg<1 (5.17)

By considering the fact that the standard deviation of eacbgss parameter is around or less
than 10% of its nominal value [119], one may consider the sg@cwder taylor approximation of
the performance metric around the nominal design pointfecgritly accurate approximation of
the metric, leading to g~ 1. For illustrative purposes, the drain current of an indak®0nm-
technology NMOS is depicted with respect to its gate lengthation in Fig. 5.2. Regression
models are obtained for two gate length variances 0= 10nm and o, = 5nm While the
regression model foo,. = 10nm models a wider region around the nominal polnt= 0.1um,
fairly accurately, the fitting folo, = 5nm has a more accurate prediction of the drain current
in a shorter distance from the center point. The calculgt@deasures are 0.822 and 0.992,
respectively.

It should be noted that when dealing with real-world largals circuits with several process
parameters, there exists terms due to the interaction aepsoparameters that has not been
included in this modeling scheme. Therefogemay be practically lower than this example.
However, one of the important source of variation in analioguits is due to the mismatches
of the identically-sized transistors, that imbalancesRikedrain-source currents or gate-source
voltages of two symmetrical transistors as depicted in 5i§. This type of current and voltage
mismatches are, in fact, traditionally formulated using tinst order Taylor approximation, as
follows [107, 120]:

Vosin = g—j—Bzgﬁl — (VTH, — VTHy) (5.18)
los = Ips25P — g (Vri, —Vrhy)
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Figure 5.3: Transistor pairing arrangements and the affgictnismatches on the DC operating
points: (a) current biasing: the mismatches cause¥#kdo vary and (b) voltage biasing: the
mismatches causes thss to vary.

Table 5.1 lists th@-measures of the performance metrics of three differentits designed
in a 180 nm industrial technologies. The gate length, withhgeshold voltage, and the oxide
thickness of all transistors are varying, and their stashdi@viation are set as suggested by the
technology. As can be seen, the last two circuits have aigtitlitive performance metric.
The offset voltage of a comparator follows a close-to-lmesdation with respect to transistor
mismatches, similar to that of the Eqg. (5.18), while the @erof the oscillations of the ring
oscillator is just the sum of inverter's propagation delayke propagation delay of an inverter
is itself nothing but the average (weighted sum) of the lovaiggh and high to low delays that
each can be fairly well modeled with quadratic functions ofi-pp and pull-down transistors
drive-in mismatches. However, the OTA circuit is the casd fhows loweq especially for gain
bandwidth product and phase margin metrics where a produatcoperformance metrics are
present.

5.3.2 Permutation Controlled LHS

As discussed in Section 3.2, Latin hypercube sampling doepnmovide a variance reduction
when the function under analysis has major interaction $eriinerefore, it does not provide a
considerable variance reduction for high order statibtimament estimations. For example, the
second central moment, variance, consists of major parimieractions of underlying process
parameters. However, as seen earlier in this section,itst@erformance metrics consist of
major linear and quadratic 1-D ANOVA terms. Therefore, byngsthe decomposition form
of Eq. (3.6) for second momerft(x) = p(x)?, the variance of the residual termz) will
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Table 5.1: Sample circuits and thegmeasures

Circuit Metric g-measure
Two Stage Folded Cascade OTA|| DC Gain 0.980
24 Transistors Bandwidth 0.984

GBW-Product| 0.954
Phase Margin| 0.948

Power 0.999
Regenerative Comparator Offset Woltage| 0.998
9 Transistors
Seven-stage inverter ring oscillatprPeriod 0.999

14 Transistors

mainly be due to terms in the following formsx(), x\’x(1), andx)’x)*, Therefore, the
new decomposition replacing Eqg. (3.6) is

f(z)=pg+ 5 f (xm) + 3 x4 s byx x4+ 5 axOxD) 11 (x) (5.19)
=1 i<] ] <]

<] 1<]

The added terms are essentially the sample covariancesdrepd’),x(1)), (x0°,x(1)), and
2

(X(i)z,x(j) )
In the traditional-LHSd-dimensional vectors of uniform samples are generatedrimjoraly

permuting the order of samples in each dimension. That ési-th sample of thg-th process

parameters? is

N
wherei = {1,--- N}, j ={1,---,d}, Ujj ~ ¢ (0,1) is a uniform sample, and; (1) --- 11 (N) is
a random permutation of integers from 1No The random permutation means that there is no
control ond permutations that create teeh vector samplery (s) - - - 4 (S), leading to unwanted

correlation betweer(!) andx().

In this section, a permutation algorithm is proposed thatimizes the linear and quadratic
covariance between pairs of process parameters. As a,rdmikstimation oE[f] using the
controlled permutation samples filters out not only the nedfact parts (1-D ANOVA terms),
but also the 2-D terms due to linear and quadratic interasti®he idea of removing (reducing)
the correlations of Latin hypercube samples has been pelyistudied in [121], which only
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minimizes the linear covariances, hence, may not provideatgaving in case of performance
metrics that could behave quadratically.

Our proposed method is a simulation annealing-based métiabdandomly permutes; (i)
values (1---,N) in each column (1 - - ,d) and minimizes the following cost function:

cost=a1 3 corr (Kj,Kg) +0az2 3 corr <KJ-2,KK) +(1-a;—0az) 3 corP (KJ-Z,Kﬁ) (5.21)
i<k j#k j<k
where 0< a3,02 < 1 are the coefficients determining the relative importarfceach type of
covariance, and foy=1,---.d,

= [0t (MH70%) ot (M08! 5.22)

The resultanty; (i) permutations are then used in Eq. (5.20) to create unifondaim sam-
ples. The inverse of the normal cumulative distributidn,!, can then be used to transform
the uniform samples into Gaussian. Algorithm 2 shows theigggeode of the method. The
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Figure 5.4: Standard deviation (STD) of the estimationshefinean, standard deviation, and
skewness with respect to the number of samples (x-axish®IQATAs performance metrics.

Square: Monte Carlo, Circle: traditional LHS, X-mark: the poeed permutation controlled-

LHS.
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Algorithm 2 ControlledPermutationNormalLHE(d)
1: Generate a permutation matfiky g

2: Find costusing Eq. (5.21 and 5.22)

3: avgCost= cost

4: T = Tinit

5. while ((T > Tfina;) OR (Nocostimprovement))3o
6: sumCost=0

7. for cnt=1toinnerlterdo

8: Selecta column X j <d

o: Selecttworows Kil<Nand 1<i2<N
10: Swaprr;(i1) andr(i2)
11: Find change of the coshcost
12: if (exp(—ﬁ%%) < (u~u (0, 1))) then
13: Swapr;(i1) andr(i2)
14: else
15: cost= cost+ Acost
16: end if
17: sumCost= sumCost cost
18: end for
19:  avgCost= sumCostinnerlter

20. T =T xcoolingRate
21: end while

22: returnqb‘l(”—(UN’t,l\led(Ql)))

technique is a simulation annealing-based routine, thezeb improve its runtime, several im-
plementation considerations should be followed. For exantpe selection of a column, at line
8, must give higher priority to columns that contribute mtwré¢he cost. Also, the evaluation of
the cost in each iteration should be limited to finding thengeaof the cost due to the swap of
the two rows only in the corresponding column.

The single-threaded C implementation of the algorithm oméel Xeon 3GHz PC takes 17
seconds to produce 300 samples of 100-dimension with immeeoater loop count of 20000 and
500, respectively. This runtime overhead is much lower tih@mactual time taking to simulate
a circuit of 100 process parameter-size, for 300 times onsé#mee machine. Moreover, the
simulation does not need to use these extremely large numhberer and outer iteration counts,
as a significant reduction of the cost function (from 35 teslgchieved within the very first outer
iterations (the fist 50), while the rest of the cost minimizat(1 to 0.1) is achieved later.

An OTA is designed in an industrial 180 nm CMOS technology. Wraditional MC, LHS,
and the proposed permutation controlled LHS methods ar@ tasestimate the first three mo-
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Figure 5.5: Fitting shifted-lognormal distributions tetagram of 60000 samples of Monte Carlo
simulation of the OTA. X-mark: MC histogram and cumulativstdbution, Solid line: the fitted
shifted lognormal PDF and CDF.

ments of its various performance metrics. The estimatiacguature is repeated for 100 times,
and the standard deviation of the 100 estimations are eaéxlifor each method and compared
in Figure 5.4 with respect to the number of samples.

Many important issues can be observed in the figure. It caede that the traditional-LHS
performs significantly better than MC only for the mean eation. That is due to the more
than 1-D effective dimensionality of the standard deviattmd skewness functions. It is also
noticeable that the proposed method performs better thditibnal-LHS even for the mean es-
timation, which is due to filtering out the linear and quaitratteraction terms as well as the
1-D main effect terms. It is also seen for the power conswnpnalysis, that the difference of
the traditional and proposed LHS is not significant for themestimation. This is because the
power consumption model has few interaction terms in itdBderefer Table 1). That is why there
is a significant improvement of the standard deviation esimn of the power consumption when
using the proposed method compared to the traditional Lii&omtrast, a lower gain is achieved
by using the proposed method for the standard deviatiomastin of the gain-bandwidth and
phase margin compared to the rest of the metrics due to Igweeasure. However, the mag-
nitude of improvement is still large enough, e.g. 4X less@asare required to estimate the
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standard deviation of the phase margin with the same agcofabe traditional-LHS. Finally,

it can be seen that since the ANOVA decomposition of the ske&icomposes of major 3-D as
well as 2-D terms, the proposed method managed to reducestingadon variance, hence the
number of needed samples reduces up to 50% in some cases.

5.3.3 Finding Yield from the Statistical Moments

Inspired by the analysis in Section 5.2.3, finding the yiélcbtigh modeling the performance
metric with a generic distribution can lead to a lower estioravariance compared to that of
the yield estimation and using the natural estimator of £8)( However, the distribution of the
underlying performance metric is not known, instead theythe statistical moments that can
be estimated from the Monte-Carlo (or the controlled pertrarialHS) analysis. Method of
moments is an estimation technique to construct a probabistribution function by matching
its first few moments with the estimations.

Although it is easy to work with, considering only the firsttwioments (mean and variance)
and using the Gaussian distribution introduces a significes in skewed distributions. In fact,
for skewed data, if the higher is the yield (the lower is th&ufa rate), the more would be the
error due to ignoring the skewness. That is the reason beéhedthaccuracy of modeling the
SRAM failure mechanisms with Gaussian distribution as in®gtremely rare-event.

An asymptotic probability extraction methodology is prepd in [106] to construct a PDF
given a number of moments. The technique is not trivial tolengent and requires high number
of moments (e.g. around 8 order) to produce a stable CDF famctHowever, the accuracy
of the moment estimations decline with the order of the mdnfi@na MC-based technique,
suggesting that the estimated moments used for the mataiétigod might be very off from
its actual value, for high order moments. In addition, it @& olear how this technique can be
adopted for a multivariate PDF formation, for the purposenatfti-parameter yield estimation.

In this work, a generalization of the lognormal PDF, nameiftesitlognormal distribution,
is used to fit the first three moments, mean, variance, andressanto this generic PDF [122].
This a simple technique to implement, yet it can efficientlgdal variety of the performance
metrics from highly skewed to almost-symmetrical casesggé refer to Figure 5.5). The mul-
tivariate extension of this distribution can be used to wale the yield with respect to several
performance metrics.

A single variate shifted-lognormal distribution is a thig&rameter distribution, which can
be generated from a normal distribution as follows:

Y ~ £ (01,02,03) = A1 +exp{X ~ A (a2,05) } (5.23)

Given the MC estimations of the mean, standard deviationskedness of a design per-
formance metric, agl, G, andA, respectively, the three parameters of the shifted-lagabr
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distribution are

az=In 6 _ %
? 2 . 2 (5.24)

wheret is the real root of A
34+32-4-A>=0; (t>1). (5.25)

The resultant PDF of the process parameter will then be

- _ 2
. exp{_('”(y gé% ay) } 526
y)= :
V2moz (y—oq)
and the CDF, the yield for a given maximum valueta$
1 In(T—cxl)—cxz))
PY<tT) =< (1+erf : 5.27
( )=2 ( ( V2as3 520
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Figure 5.7: Histograms of 100 estimated gain-bandwidtidgieising the MC and proposed
methods for 600 samples.

Please note that this CDF model only captures a positive sé&symowever, to model the nega-
tive skewness one should simply consider the negative gie¢n®rmance metric, and reformu-

late Eq. (5.27) as
PY <1)= % (1—erf<|n (_T}Z(;‘(l) _0‘2» . (5.28)
3

Figure 5.6 shows the standard deviation of the error obdafreem 100 runs of yield esti-
mation using the MC, traditional and proposed LHS. The sthifbtginormal model is used to fit
the first three moments obtained from each method in eachTrioe.yield with respect to each
performance metric is set to 97.5%. Therefore, the standewdhtion of 0.5% means that the
estimated yield is within 95%+ 2.57 x 0.5% in 99% of times.

Figure 5.7 shows histograms of the 100 estimated gain-bitiyields using the MC and
proposed method for 600 samples. The histogram confirmthection of estimation standard
deviation, as also reported in Fig. 5.6. The standard demsitof the MC method and the
proposed permutation sampling method are 0.53% and 0.2/E$pectively, meaning that to
gain an estimation with the same accuracy as the proposéuchatmost(0.53/0.275)% ~ 3.7
times samples are needed using the MC method.

Finally, for the case of multi-performance metric yield bsées, the following multivariate
lognormal JPDF is suggested:

exp{(m — az)T S(x— az)}
f(y) = . , (5.29)
(22 |[°° 1 X0
i=1
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. . 1
wherey = [y, ... y®]is the row vector ok performance metrics; = [In(y® —a'), .-, In(y® —

a(lk))] Is the transform to normal a@f, andZ is thek x k covariance matrix ok such that;; = a%
and

Co\,<y<i>,y<j>>

o= (), o), a9 ol
expq Oy +0y + =2—7-3—

+1, (5.30)

where co»(y(i),y(j)), the covariance between théh andj-th performance metrics is estimated
through the sampling based analysis.

The multi-performance metric yield can then be calculattténsforming the performance
metrics into normal variables then using a numerical mefi@8] to evaluate the multivariate
normal distribution CDF. The estimated yield is

P (Y(l) <T1q,--,Y® < rk> =Dy, 5) (In (Tl — a(11)> oo n (rk— a(lk)» . (5.31)

5.4 Conclusions

In this chapter, the variability (mean, standard devigtaord yield) analysis of analog circuits by
the means of sampling-based methods is investigated. Timeifations, derived for the required
number of samples, quantify the reduction of number of sammlue to modeling yield with a
generic distribution such as Gaussian. They also show hoghreamples are needed for suffi-
ciently accurate standard deviation estimation. The LH& ot a more practical solution com-
pared to other variance reduction and sampling methodbpisrsto be not efficient enough for
the standard deviation and yield estimations due to presehiigh order terms in the ANOVA
decomposition. However, because of the strong one-dimeakiinear and quadratic correla-
tions between the performance metrics of analog circuits@ocess parameters, a proposed
permutation-controlled LHS sampling which minimizes thess-linear and quadratic correla-
tions is shown to be highly efficient for both the standardia#n and yield analysis of analog
circuits. Finally, a multi-variate shifted log-normal tfibution is used to fit simulation data with
a generic JPDF that reduces the bias originated from naglesitewness in a Gaussian fit.
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Chapter 6

SRAM Cells: Adaptive Sampling for Failure
Probability Estimation

6.1 Introduction

Manufacturing variability has become an issue in the desigsub-100 nm VLSI circuits and

memory cells [19]. SRAM cells are designed under a very tightaonstraint. Therefore,
due to their scaled transistor channel area, they undeggdfisant random variations [124, 10,
125]. Also, in a memory block of millions of cells, the faikuof only one (or few) cells may
lead to chip failure. This is the most challenging elemenaiy SRAM cell yield analysis

method undermining either its accuracy or efficiency. Haveto preserve sufficient variability
margin yet prevent over-design, it is critical to follow atimedology which efficiently provides

an accurate yield estimation during the design cycles.

The SRAM cell yield analysis has been widely studied by armeytechniques [126, 127,
128]. However, in order to analytically calculate the yjaldrious modeling simplifications are
involved, such as, the first-order Taylor approximatiorhefinodels, trivial current-voltage mod-
eling of MOS transistors, and finally, determining the yigdcbugh statistical Gaussian fitting of
the performance metrics. Since the statistical domaintcd@ton in SRAM cell failure analysis
is extremely far (5-6 sigma) from the mean, any minor linegtiton and Gaussian assumption
error can introduce a significant error in the extreme qieatid yield estimations. Therefore,
to perform a reliable, yet non-pessimistic stability smfhi-of an SRAM cell, Spice-accurate
mismatch simulations are still inevitable, despite thesigant improvement of the analytical
approaches.

Recently, the variance reduction Monte-Carlo (MC)-based austhas alternatives to analyt-
ical methods, have attracted attention by addressing thitcgimings of the statistical analysis
of VLSI circuits for digital and analog circuits as seen ie firevious chapters. The yield estima-
tion of SRAM cell has not been an exception in this trend [72]e &dvantages of the MC-based
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methods are their capability to perform Spice-accurateukitions and cut development, inte-
gration, and modeling costs. However, the most threatetisadvantage, inherent in the crude
traditional MC method, is the slow convergence r@g\—°°). Therefore, the Importance Sam-
pling (IS), a variance reduction method for rare-eventsiaal estimation problems, has been
adopted to reduce upon the required number of iterationSRAM cell analysis [72]. This is
achieved by determining an alternative but fixed Joint Podity Distribution Function (JPDF)
to simulate mismatch samples, such that faulty (importegify are simulated more frequently
than that of the crude-MC. Therefore, the mean square errtireoéstimation can be reduced
leading to possibly more accurate results even with fewarbar of simulations. However, it is
not a trivial task to determine such a JPDF even for a low dsioeral problem [70]. In fact, the
cost of a poor selection of a JPDF can be huge and lead to dicagriincrease in the estimation
error even worse than that of the crude-MC [129]. This risloaxists in the mixture IS (MixIS)
method [72]. Its development was based on the early resedddrsterberg [130] whose pro-
posal (MixIS) introduced an insurance against performingimworse than crude-MC by using
a mixture of several PDFs. However, the cost of using a maxtisra much worse performance
improvement than that of the non-mixed IS with a good choicarpalternative JPDF [129].
Moreover, no systematic way of calculating the mixture oesal PDFs is reported to guarantee
a reasonable performance [72].

In Section 6.2, the SRAM yield estimation is formulated andaekground on the adaptive
sampling techniques are given. Thé¢a) the behavior of SRAM cell failure mechanisms (read
stability, write failure, and read access failure) is stadwith respect to threshold voltages’
mismatches in Section 6.3. By using the results, a genenal &drthe multivariate Gaussian
JPDF is chosen as the alternative sampling JPDF forifigtinstead of fixing a multivariate
Gaussian JPDF from the beginning of the simulations, antagapethod is proposed in Section
6.4. The adaptive method manipulates (improves) the JP@F edich MC iteration by learning
from the previous simulation results. The JPDF evolutiatinscted toward further minimization
of the estimation variance by using a high-order Househislaeethod [131] to provide a faster
convergence rate than that of the Newton’s method. Thisga®eliminates the risk associated
with the IS method while provide a high performance engife). Finally in Section 6.5, to
achieve an even faster convergence, a method is proposethltieally calculate an initial
JPDF that is very close to the optimum one, instead of staftam an arbitrary one.

6.2 Background

6.2.1 Problem Formulation

As also formulated earlier in Chapter 3 and 5, suppeds a vector ofd process/mismatch
parameters, anl(x) is a performance metric of interest. The following indigdianction, I,
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divides the problem space: (€ RY) into acceptablel(= 0) and unacceptablé & 1) regions,

represented as:
[0 f(z)>T1
@={ 3 {521 6.1

wheret is the threshold value of the performance metricd (%) is the JPDF oftr, then the
following integral represents the failure probability:

Pl = 1) = Ey [l (2)] = [ 1i(2) (x) da. 6.2
Rd

The crude-MC method suggests a numerical technique to sodviategral in (6.2) by sam-
pling from the¢ () distribution and extracting the meanlefx). Therefore, the required num-
ber of simulation iterations to estimate a failure ratéafith a-confidence for a half-length of
BPis
(@-1(05+a/2)* 1-P

B2 P
whered®1(.) is the inverse of the normal Cumulative Distribution Funet{@DF). It is evident
that for a rare event, wheRapproaches to zerd\ increases inversely witR.

The problem with the crude-MC method is that most of the geteersamples by thig(x)
distribution reside in the acceptable region because thadgorobability is low. Since these
samples do not contribute to the calculation of the failate rtheir simulation is only a waste
of runtime. As a result, if an alternative distributidm), is chosen to simulate the random
parameters such that more failure cases are observed, fia@oe of the estimation error is
reduced, i.e, if the integral in (6.2) is rewritten as

/Mh(w)dﬂg = Ep [M] ’ (6.4)

N =

(6.3)

then, by simulating the samples from théx) distribution, the following can be used as an
unbiased estimator for the failure probability:

PENE

A 1
H1 =N 9
N h(a®)

wherez ¥ is thek-th set of the mismatch samples. Therefore, the variandeeafiéw estimator

IS
Var () :% L/ %dm—ﬁ] | (6.6)

d
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If the alternative distribution is determined carefullyetgiven variance should be lower than
the crude-MC estimator varianc@® — P?) /N. This method is called the Importance Sampling
(IS). Given (6.6), a zero-variance estimator is theor#ficechieved, ifh(x) is set to:

(6.7)

This fact establishes that the IS is a very promising vagamcluction method. Many re-
searchers continue to improve and adapt it for their apjpdioa [132]. By inspecting the Eq.
(6.7), it is evident that () andP are inexplicit or unknown a priori. As a result, such a “per-
fect” alternative distribution is not available for a prebi. However, two conclusions can be
drawn here(a) As seen in (6.7), to reasonably gain from any IS method, tieereltive distribu-
tion should produce more samples in the spaces wherd laottip are high. In SRAM analysis,
this means simulating the samples that fail the cell and baedatively high probability in sili-
con realization(b) It can be concluded from (6.6) that there is no guaranteethiealS always
leads to a better performance, especially for multivaatees, where a careless choicé @fix
alternative distribution) can easily leadtitr) << | (x)d(x) in some regions aRY. Missing or
less emphasized important regions [129] can be catastrophi

Several recent studies have been conducted to improve timetl¥d. The Large Deviation
Theory (LDT) is used to improve the IS for rare events [133{]1Bowever, the necessity of the
computationally expensive condition checking and the gutgtit efficiency of the method limit
LTD’s empirical applications. Another approach is to useadaptive method to improve the
alternative distribution during the simulations. Thisfatt, eliminates the burden of selecting
a good and fixed JPDF from the beginning, and provides a mesthan avoid poor behavior
by directly focusing on the estimation variance minimiaati In the next section, a review of
the history of this idea is provided to create a backgroumdte adaptive sampling method
developed for the application of the SRAM yield estimation.

6.2.2 Adaptive Sampling Method

In an adaptive sampling approach, the previous simulatidputs are used to iteratively adjust
the alternative distribution in order to generate more damim the domains of interest, which
is the ultimate goal of the IS. The adaptive sampling is noéwa approach and its history dates
back to the early 1990s where it was first introduced for stmat¢ safety analysis [135]. Lately,
much has done to improve the method. In [136], two (parameind non-parametric) adap-
tive techniques are proposed. The simulation runs are elividto smaller groups. Then, the
alternative distribution is tuned by extracting statiatibehavior of the last group’s results. The
problem with these methods is that if the event is extremelg an the initial distribution does
not set properly, there might be no detection of the failiené during the relatively few runs
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Figure 6.2: Mismatch simulation of Read Noise Margin Low (RN, zero write time (Ty),
and R zero read time (&). Process parameters are normalized over their standaiatida.

in each group, leading to no improvement of the distributidioreover, the performance gain is
limited due to the need of, at least, hundreds of runs in eashpg In [137], another adaptive
method is proposed that partitions thedimensional problem space inM® hypercubes and
performsN simulations in each of them in iteratively. Then, based andktimated variance
in each hypercube, the method continues with refining andrtiépning each partition. This
approach is very expensive for even a moderate dimensidrigmnod > 4). Moreover, in a
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Figure 6.3: PDF of mismatch parameters for following faluronditions (RNMl<2mV,
Tw >30pS, and k >50pS).

yield estimation problem, where the estimated functionnisdeentity function, the variance in
most of the partitions is estimated to be zero, unless mamples are used for each partition
which contradicts with the reason behind using the IS. lina overcome the problem of so
many runs in each group or each partition, a stochastic appation-centric [138] method is
proposed in [139]. Here, the Robbins-Monro algorithm [140lised to direct the drift vector
of a multivariate normal IS to minimize the estimation vada. However, no systematic way
of selecting the coefficients of the Robbins-Monro algoritlsnproposed, a definite obstacle
for achieving a robust method. Moreover, this solution atee same problem as the others
for a rare-event identity-type function. This is due to thechastic approximation of variance,
typically zero, after each iteration. Consequently, no tgadé the drift or improvement of the
sampling distribution in each iteration.

In this work, firstly, a method is proposed that updates tlifesdvased on a direct estimation
of the variance derivatives, unlike the Robbins-Monro athan. This not only removes the need
of Robbins-Monro’s sequence coefficients settings, but atits a degree of freedom to apply
the high-order Householder’'s method by computing higreod#rivatives, which eventually in-
crease the convergence rate. In addition, a mechanism poged to address the commonly
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mentioned problem of the zero estimation of the varianceua-event identity-type functions.
Secondly, an analytical framework is developed to caleutaé initial close-to-optimal multi-
variate Gaussian distribution parameters (drifts and mawees) so that the estimations con-
verges effectively faster.

6.3 SRAM Failure Mechanisms

Before introducing the yield estimation method, varioutufai types of the popular 6T-CMOS
SRAM cell in Fig. 6.1 are explored. This study is conducted xigesive mismatch simulations
with a 65nm industrial CMOS technology. The objective is taraine the behavior of the failure
mechanisms with respect to each transistor’s threshotdg®lvariation.

There are three sources of cell failure.

1. Read Failure: flipping of the cell state during the read access. This is edferred to the
Read Static Noise Margin (RNM)-based failure [126].

2. Write Failure : inability to change the state of a cell during writing in &ey time frame
[124].

3. Access Time Failure inability to provide enough differential voltage to satte the sense
amplifier in a given time frame during the read access [125].

A recent analytical study of these failure mechanisms sstggestrong linearity of the per-
formance metrics with respect to the threshold variatid®8]. The RNM is found to have a
highly linear relation with the mismatch factors. Also, Ibdhe inverse of write time (f) and
read time (R) exhibit a strong linearity. These are circuit facts that atso be verified qualita-
tively. For example, in the case of reading a zero-state traright side of a cell, the saturated
access transistor has a close to linggtin relation to its threshold voltage. This leads to a linear
relation between ATr andAVAR, sinceTr = CLAV /IAR.

However, due to the simplifications that inevitably bringécuraciesno linear relation is
assumed to perform the statistical analysis. In contrast,ekisting linearity is exploited to
establish a Spice-accurate adaptive MC method which wovks a drifted (non-zero mean)
multivariate normal distribution with a non-identity caiance matrix.

In this section, the reason for choosing a general driftethabdistribution for the alternative
and adaptive distribution is demonstrated. In fact, thees of this section provide only visual
and quantitative justifications, while the correspondirgglmematical analysis is given in Section
6.5.
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Figure 6.2 depicts the actual mismatch simulation of thregopmance metrics, RNML,
Tw, and Tg, to illustrate their behavior in relation to some of the sigtors’ threshold vari-
ations. Since the remaining mismatch parameters have amosffect on the corresponding
performance metric, they have not been plotted. It is evitleat, positive and negative linear
cross-correlations, among pairs of performance metridsw@smatch parameters, exist.

Now, refer to the conclusion derived from Eq. (6.7). It istaeththat in order to reduce the
estimation variance by using the IS, the alternative distion should generate more samples
in the failure region. As a result, by examining Fig. 6.2(@),0bserve more RNML failure
cases (e.g. RNMk2mV) the alternative distribution should simuIaXVT'\'RWith high negative
values. This is also the case W/ R, but opposite foAVN which are in agreement with circuit
analysis. Similar observations can be made for the>IT\y™ and Tr >TF?* failure regions.

Therefore, if a properly set alternative non-zero mearritigion is used to generate mis-
match samples, there is a higher chance of capturing mavedaamples. However, it is critical
to remember that not each overly-drifted distribution, efhcreates many failure samples, is nec-
essarily a good candidate. By looking at Eq. (6.7), the caodior gaining from an alternative
distribution is that the generated samples should haveatively high probability in reality (or
large¢ (x)). The trade-off in drifting the distribution is to reach appwhere not only are many
failure cases observed, but also they have the highestpitidypan the actual silicon realization.

Figure 6.3 depicts the empirical distribution, obtainedoeyforming extensive (tens of mil-
lions) MC simulations, and extracting only the failure asEigures 6.3(a) and 6.3(b) demon-
strate that the distributions alvNR andAV£R are negatively drifted for the RNML failure cases,
that is in agreement with the positive correlation, ploitethe Monte Carlo graphs in Fig. 6.2(a)
and 6.2(b) suggesting the need for negative delta-misreatithorder to obtain a low RNML.
However, to reduce the RNML, ti&/]Nt should be increased which is confirmed in Fig. 6.3(c).
Note that the drift magnitude seems to be proportional tethmeelation. For example‘.\,VTAL and
AVTAR show very high drifts in the simulations ofgTand Tr (Fig. 6.3(d),6.3(e)) because they
are highly correlated to the two mismatch parameters (FR(d$,6.2(e)).

Besides the drifts, the variance of the normalized deltarratshes of the failure cases slightly
deviates from 1, according to Fig. 6.3. It is also evident tha higher the correlation between
the performance metric and the mismatch parameter, the tvdailure distribution’s variance.

Moreover, the correlation between the failed mismatchipatars are also portrayed in Fig.
6.4. As seen in Fig. 6.4(aAV]NRandAVAR are negatively correlated, adVNR and AVt are
positively correlated. Due to the fact that, if in a ca&eNR is largely negative, there is a good
chance that the RNML failure occurs even with a large postivgR or a large negativAVNR,
Note that Fig. 6.4(a) does not depict the correlation betmvibe actual mismatch parameters,
since they can have a very small or no correlation, whichesctise for Random Dopant Fluc-
tuations. Figure 6.4(a) shows the correlation between étia dnismatches that produce failed
SRAM cells. For analysis related to these observations tefSection 6.5.
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Figure 6.4: Positive and negative cross-correlation antbadailure (RNML<2mV) mismatch
parameters.

It is finally implied that a drifted multivariate normal digiution with a non-identity covari-
ance matrix results in a fairly good choice for an alterratiNstribution to mimic the SRAM
failure region. However, no prior knowledge of the magnéuwaf the drift and the covariance
matrix is available up to this point. Note that over-dri§inr a poor covariance formation can
lead to a performance worse than that of the crude-MC methbd.next two sections provide
establish the foundation to adaptively and analyticallyi@e the optimum distribution parame-
ters to build an efficient MC method.

6.4 Adaptive Multivariate Normal Sampling

6.4.1 The Algorithm

In this section, an adaptive method is developed to itegtivpdate the drifts of a multi-variate
normal distribution with any arbitrary covariance matribhe drift-updating process is directed
toward minimizing the estimation variance. In contrastite Robbins-Monro-based method,
reported in [139], the derivatives of the estimation’s &ade are estimated directly, so that no
risk is associated with a poor selection of the Robbins-Marsequences. This also adds the
flexibility to apply high-order Householder's method tother increase the convergence rate.
Lastly, a mechanism is proposed to address the challengariaince estimation for rare event
identity-type functions, in dealing with SRAM vyield estinat (refer to Section 6.2).

The interest is in estimating the following probability:

P=P(l, = 1) = Eg [l ()] = En [%} . (6.8)
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The variance of the estimation determines the confidenesviat for a given number of
iterations, but the focus is on finding an alternative disttion functionh(x), which provides a
lower estimation variance. Therefore, the problem is fdatad as

i l(z)¢(®) ) _ i (z)¢%(x)] _ i le(2)¢(z)
arghmlnvarh< h(z) >_arghm|nEh[ (o) ]_arghmlnEq,[ h(x) ] (6.9)

Suppose the drifted and correlated multivariate normaldidigion is chosen as the alternative
distribution for the following vector of six normalized misitch parameters: = [AVER AVNR AVAR AVPL

S0 6 6

2, 2Ci (xj=hy ) (4—1)

— € 2] (6.10)
3 511/2 )

(2m° |z

wherez is the arbitrary covariance matrig;j are the covariance matrix's cofactors, gmd=

(M1, M2, - - - , M) represents the drift vector.

h(x,u,2) =

6 6
2 Elcij<xj—llj)(xi—“i) 6

9E, lr(:)‘b(w) =1 —yx [ 6
ik B(HM)} =En | "5le : - <i§1<cil +Gi) (W _Xi))
6.11
.g ,g Gij (xj—1j) (5-1) ¢ 6 2 ( )
crfizte] w3  (Ferm)

Now, supposg: ¥ is the drift used to generate the samples akttteiteration, and is updated
after each iteration. Even though the sampling is no londentically distributed, due to the
independent sampling property, Eqg.(3.19) is still valigohroducing an unbiased estimator, as

follows:
N | m(k) (I) m(k)
p:lzT< ) ( ) (6.12)

N & h(a;(k),u(k),z)

Without the loss of generality, assume a zero-drift andtitheoovariance JPDF for the orig-
inal mismatch parameters. Therefore, the following equiatian be derived for the weight func-

tion: -
g R [ (K 6
¢ (x) 215 (i) (54 2
—:|Z|1/2e 23] - (6.13)
h(a:,p,(@)i)
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To numerically solve Eq.(6.9) and find the optimum driftse@hmould find a solution for:

6E¢ ['T(w)‘b(ﬂﬁ)} .

h(z,p,2)
= 14
o , (6.14)
and, by using Newton’s method,
0 l(2)¢(z)
al.t(k) E¢ [h ;1;711,('()72 :|
k) — 0 ) (6.15)

0 I(z)o(z) |’
PR = [h@:#(k) ) ]

where, forl = {1,2,--- 6}, the first and second derivatives are derived in term&pf as
Eq.(6.11).

Since the covariance matrix is positive definite, the diag@ements of the cofactor matrix
(Cy) are all positive; therefore, the second derivative is fpasdefinite. This implies that the
root of the first derivative resides on the global minimumha &stimation’s variance.

At first look, by the naive substitution of the derivativesknq.(6.15), it can be seen that to
updaten ¥, two expected values need to be estimated such that eactroféyuires several cir-
cuit simulations (notice the presencdofx) in both derivatives). However, a solution is adopted
here from the concepts, introduced in the stochastic ajpedion field [138], i.e., instead of an
accurate estimate for the expected value in the first darev@tumerator) by performing several
simulation, only the last simulation is used to provide agtoestimate. The progress of this
process generates the same effect as the averaging nedldedirst point for the expected value
estimation of the numerator.

Moreover, to estimate the denominator, a set of (e.g., Jd¥)dircuit simulation results are
used. This approach leads to a biased estimation of thedéeoate, since each of the previous
simulations is performed by using a different drit)( However, the unbiasness of the coefficient
is not a requirement in Newton’s method and might impact ¢iméyeffective convergence rate.
Note that since the second derivative is positive definite,first derivate is a non-decreasing
function. Therefore, if the first derivate of Eq.(6.11) is eeted by a non-decreasing function
g(n®,3), the Newton’s method of Eq.(6.15) can be substituted witimgler but less efficient
one as follows;uktD = uK —gg (mk),z), wheree > 0 has a fixed (biased), but sufficiently
small value [138]. In fact, the proposed method replacedieel € with an approximation
to 1/%9 (p,“‘),z . This is accomplished by averaging the last few simulat&suits, and

hence, is more efficient than the fixedorm.

Since the estimates of the derivatives are used directlytenldigh-order derivatives exist, the
Householder’'s method [131] is used as an alternative to dl&s/tnethod to further improve the
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convergence rate. For example, the third order Houselislsh®thod increases the convergence
rate from the second order to the fourth order, unlike the tdet® method. In this case, the
following equation should be used instead of the denominatiq.(6.15):

69/3_69gg// +gzg/// ®)
(artag ) (u2). (610

whereg (p,("),z> is the first derivative, reported in Eq.(6.11). Therefafas equal to the second

derivate derived in Eq.(6.11). It should be emphasizedttisame strategy is adopted again in
estimating this alternative denominator by using the lest$imulation results.

Up to this point, the problem, associated with the rare aedtity-type functions, has not
been addressed. The problem occurs with an arbiwé®: It is very likely that most of the
samples reside in the acceptable regie(w) = 0. That is due to the rare nature of the failure
event. As a result, the rough estimate of the first derivdwe iflumerator in Eq.(6.15)), which is
calculated according to the last simulation result, is Zenmost cases. This causes no change
in the drift, i, as the simulations proceed. It is even more problematieitienominator equals
zero or become very small due to the low possibilit@fc) = 1. To overcome these issues,
instead of the actual threshold valug, (@ secondary fake on&, is used for the purpose of the
derivative estimation only. The value ®fis determined by the mean and standard deviation of
the last few, (e.g., 100) performance metrics such that aiderable portion (e.g., 20%) of the
simulations are considered as failures. However, to egtite yield itself by using Eq.(6.12),
the originalt is used, so no error exists in the estimation itself. It sidnd noted that is only
an intermediary parameter in the calculations to form aofaahd to determine the amgnitute of
drift after each iteration.

Algorithm 3 presents the pseudo code of the proposed methiod.method starts with an
initial drift, . and a covariance matri%,. FCntis the number of the last performance metrics
that are used to estimate the fake threshdld,DenCntis the number of simulation results,
required to estimate the expected value of the denominateqi(6.16). Lines 9-20 establish the
value of the fake threshold,. The factor of -0.5 in line 17 affects the fraction of the slations
that resides in the fake-failure region. Line 27 constracssmple form of the weight function,
Eq.(6.13), that is used in the derivative and yield cal¢ofet. Lines 28-30 compute the yield,
based on Eq.(6.12) and (6.13). The first four derivatives,@f are calculated in lines 32-35 and
used to form the denominator in line 36, according to EqGPB.FEinally, the average of the last
DenCntestimations of the denominator is used to find the new dritbteNhat, in computing
the first derivative, the last estimation results are usembtoputew x g, instead of the expected
value. However, by accounting for only the last sample to firedlexpected value, a very noisy
estimation of the expected value is produced. This cantresal large drift change, casing a
convergence problem. Therefore, the experimental fadtorGi is used in lines 38 and 40 to
avoid large changes of the drift. Observe that increasirgféittor improves the convergence
speed but mitigates the robustness. The choice of 0.01 i8 sn@ugh that the robustness is
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Algorithm 3 Yield = EstimateYieldt,u,Z,IterCntFCntDenCnj)

Require: X is positive definite.

1: C=Matrix cofactor ofz
2: lastF = Vector allocation to save laBCnt performance metrics
3: lastDen= Matrix allocation to save lagenCntdenominators (6 cols)
4: Denldx=0

5: FailureProb=0
6: for iter=0to IterCnt-1 do

7.  x=Generate a vector of 6 Gaussian samples fropa, X

8 f = Simulate circuit withx and return the performance metric
9.  lastF(iter mod FCnt) = f

10: if iter<FCntthen

11: meanLastF= Average of {astF(0), - - -, lastF(iter)}

12: stdLastF= Standard deviation ofi§stF(0), - - -, lastF(iter)}
13: else

14: meanLastF= Average of {astF(0), - - -, lastF(FCnt-1)}

15: stdLastF= Standard deviation ofi§stF(0), - - -, lastF(FCnt-1)}
16: endif

17: T =meanLastF0.5xstdLastF
18: if T<tthen

19: T=1

20: endif

21: iff <Tthen
22: =1

23. else

24: =0

25 endif

26: ifl ==1then
27: w=exp(yP g 38 1 Cij (% — W) (% — )/[Z] - 5P ¢)

28: if f < 1then
29: FailureProb= FailureProb+ \/w x |Z|/IterCnt
30: end if
31: for I=1to 6 do
32: g=05x 5% (G +GCi) (1 —x)
33: g =g%/|Z]+2C
34: 9’ =¢%/|2%+39Gi /|2
35: 9" =g*/|5]*+6¢%Cy /||* +3CF /|3
36: lastDer(Denldxmod DenCnt, 1) = w x %
37: if Denldx< DenCntthen voL
. 3 XOgXW
38: nmy =p — Average {astDer(0]), g , lastDer{Denldx[)}
39: else oot
. . XOgXW
40: nmy =p — Average {astDer(0]), g lastDer{DenCntl1])}
41: end if
42: end for
43: ©=nmu
44. Denldx= Denldx+ 1
45:  endif
46: end for

47: return 1 - FailureProb

found to be not an issue in the extensive tests describedsmtirk. Other methods, such as
ignoring the large change drifts, can also be applied toieéie the sudden drift changes.
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Figure 6.6: Performance metrics and the fake-thresholds.

6.4.2 Results

By naively applying the zero-drift as the initial and using the identity covariance matrix, the al-
gorithm is run for the following three specifications (RNMEmV, Ty, >30pS, and & >50pS).
Figure 6.5 shows how the drifts are altered, when the algoris run for 10,000 simulations.
us are drifted along the direction that is expected by theuti@nalysis and simulations. For
example, for {y and T, the Havar and HavAL increase as the simulations proceed. The magni-
tudes of the final drifts match the mean points of the PDFsictighin Fig. 6.3. These drifts
increase the chance of failure, reducing the estimatioravee. That is verified in Fig. 6.6,
where the performance metric values are moving towardriaiegions by changes of the drifts.
It is evident that as the adaptive engine runs, the failuegct increases. In addition, the figures
show the fake-threshold that is used in the algorithm. Edur portrays a comparison of the
convergence rate of the Householder's method and that délag¢on’s method.

6.4.3 Determining the Number of Iterations, the Stop Criteria

Algorithm 3 runs with a fixed number of iterations, however,achieve an estimation with
a certain confidence-range, the number of iterations shioelldet accordingly. In the crude-
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MC method, this goal can be obtained easily by using Eq. (6wBjle continuing with the
simulations. In contrast to the crude-MC method, the adeptiethod does not work with a
fixed number of iterations for a certain confidence-rangee filimber of samples can vary in
each run of the engine. This occurs because of the randomyayaanic nature of the algorithm
which dictates an uncertain effective convergence rate.

However, the good news is that the variance of the estimatrbich leads to the confidence
interval, can be estimated during the process. If, at angtpthie confidence interval reaches a
certain threshold, the algorithm can be stopped. Such alible is determined in the form of a
ratio over the estimated failure probability. For examjienight be tempting to stop once the
99% confidence interval becomes smaller than the 1/10 okihed probability itself.

To find the variance of the estimated failure at th iteration, the following is derived,
based on Eq. (6.12):

o1 (Rk(e)eE)
Var (P) = =5 2 W@ w3 —NP?|. (6.17)

Therefore, th@% confidence interval at théth iteration is

P+ (¢—1(o.5+ a/2) x Var(l3)> . (6.18)

However, a number of supervision techniques should be deresi to control the stop cri-
teria, including, selecting a minimui, ignoring the estimated confidence-interval wheis
zero, and restarting the engine whenises to a very high number without obtaining the required
confidence accuracy.

106



6.5 The Analytical Framework for Optimum Drift and Co-
variance Matrix Extraction

6.5.1 The Analysis

Based on the statistical simulations, reported earlierag been shown that the drift can be
manipulated to achieve a reduced-variance estimatioro, Atlfias been discussed that the co-
variance matrix can be considered as a factor to increasehtirece of failure (Fig. 6.4). In this
section, the problem is approached analytically. As a bypecbof the analysis, an approxima-
tion of the optimum drift and covariance matrix are derivétiese approximations are fed into
the adaptive engine as the initial guesses. So insteadrthgtérom naively chosen initial drifts
and an arbitrary covariance matrix, the simulation staith @& closer to optimum guess, and
consequently, converges faster.

Suppose a performance metric (e.g., RNNMy,Tand TR) is expressed with the following
linear function with respect to the normalized mismatcrapaatersy;:

fl@)=ao+ Y a%+e. (6.19)

whereg is an independent zero-mean Gaussian error. Since it mtuelson-linear portion
of the performance metric with an independent Gaussiarenthiss is not an accurate model.
However, given the close-to-linear behavior of the probkemd the fact that an approximate
optimization of the drift and covariance matrix is targetidd model is a fairly good one for the
proposed method. Note that the approximate results usettias guess is eventually modified
in the adaptive engine anyways.

The objective of this section is to derive the optimal drétsl the covariance matrix. How-
ever, the derived equations are only given without the esttenalgebraic steps. As shown in
Eq(3.21), an ideal alternative distribution should sinellanly the failure cases and follow the
original distribution in that region. In other words, therfget and ideal alternative distribution
is nothing but PDFx; |f < 1) = PDF(x;, f <T)/Prob(f <1). By using the bivariate Gaussian
distribution,

2
2, (f-ag)”  24px(f-ag)
XI+( O.2) —= IO’f

f

[oexp %) df

210ty /1—pg

PDF(x, f <1) = (6.20)
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Hence, the following is the alternative distribution:

erf T*aO*Xinpxi + 1
o11/2(1-p%)
PDF(x |f <1) = -

MBS

e

-8
21 (erf <ofﬁ) + 1)
where erfx) =23 e‘tzdt/\/ﬁ and

{ Ot = \/SPa80 + 0 (6.22)

Px = ai/0f

(6.21)

As it can be seen in Eq.(6.21), the resultant ideal alteraalistribution is not an exact
Gaussian. However, as suggested by Fig. 6.3(e) |t can bexdapmated by a Gaussian, given

the existence of the bell-shape tail-decaying teerm , in Eq. (6.21). Therefore, a normal
distribution is fitted by matching the mean and the varian@®e first two moments of the
alternative distribution are derived as follows:

_(t-ag)
N
T () )
T
o2 ) (6.23)
)
202f

V20§ (1-a0)e
VTO (erf(é;j%)u) '

A significant observation is that the drif[x | f < t], is proportionally related tpy.. This
is justifiable by noting that if the mismatch parameser,and the performance metri€, have
a high positive correlation, the alternative distributr@quires a high negative drift to cover the
failure region. Moreover, the optimum variance reducedetically with correlation. These
facts have been already verified through the extensive SRAMIations in Section 6.3.

EIf<t]=1-

The last step in forming the Gaussian alternative JPDF istopdete the covariance matrix
by computing the covariance coefficients. The followinghis tlerived JPDF of the alternative
distribution:

T—a0—Of (pxiXiJpr]- Xj)

of \/2(1—p§i -3,

2+x]2
2n(erf( f\[)+1)
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JPDF(x,Xj |f <T) = (6.24)




Therefore, the cross-correlation is

2

(—ag)
_ - 207
E [xixj | f < 1] _ Y2y (1-20)e . (6.25)
V/TIO (erf(éf\‘j%) + 1)
6.5.2 Results by Integrating the Analytical Framework with the Adaptive

Engine

To integrate the provided analysis into the simulationteemdaptive yield analysis engine de-
veloped based on the method of Section 6.4, an initial ingistep is needed to characterize the
approximate model of Eqg.(6.19). In the experiments desdrih this chapter, only a few (e.g.,
50) SRAM simulations are conducted. Eq.(6.23) and (6.25)se€ to compute the near-optimal
drift and covariance matrix. After, the data are fed to thepdide engine, and the rest of the yield
estimation process is performed.

Figure 6.8 and 6.9 convey the simulation results, startiity e calculated initial drifts
and covariance matrix by using a model trained by 50 sintati By comparing these figures
with Fig. 6.5 and 6.6, it is evident that the performance rogtreach the failure region much
faster. One observation in comparing Fig. 6.6 and 6.9 is #émewer spread of the performance
metric due to the use of a non-identity covariance matrixhim latter case. This suggests that
the border of the failure region is sampled more frequettintthat of the identity covariance
matrix case eventually improving the estimation errorhtiidd be reminded that the simulation
of the non-failure regions is a waste of runtime, also, itasworthy to simulate the deep of the
failure region since their silicon appearance probabistgxtremely low. Therefore, observing
more samples around the threshold (the narrower spread)dedisign in terms of the method
performance.

Lastly, Fig. 6.10 depicts the histogram of 1,000 estimatettly by applying the adaptive
technique and the initial computations and using the stipri@. The stop criteria is set such
that the ratio of 99% confidence interval over the failureniatless than 0.2. The average of
the required number of samples are 3444, 7343, and 6862 forlRNINM and Ty, respectively.
To achieve the same confidence interval with the crude-MChaaktmillions of simulations
would be needed, several orders of magnitude runtime ingpnewit. It should be also noted
that, in contrast to the crude-MC, the number of samples doegrow if the failure probability
decreases because of the adaptive nature of the engineamitiddization phase. In fact, it is
more the linearity of the problem that determines the qualitthis technique, rather than the
failure probability itself. That is why RNML, the most lineperformance metric according to
analysis in Section 6.3, requires fewer iterations thamekeeven though it has the lowest failure
probability.
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6.6 Conclusions

An adaptive sampling method is proposed for the yield amalgs SRAM cells. The multi-

dimensional, rare-event and identity format of the SRAMgia@halysis problem make it a chal-
lenging problem. We have employed thknostlinear relation of SRAM cells’ performance
metrics with process parameters to establish an adaptimplsey method. The drift vector of
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an alternative distribution is updated after each SRAM satioih in order to concentrate the
samples into the failure region of the problem space. The-ogmal drift vector and covari-
ance matrix are also computed and integrated into the agagdaimpler in order to improve the
efficiency of the method. The range of a few thousand (3,0@)a00) samples is found to be
enough, in average, to confidently estimate the failuresratg@erformance metrics around 1e-7
to 1le-6, leading to several orders of magnitude runtimengavunlike crude-MC, the required
number of samples does not grow with the failure probabdggline, instead it is related to the
magnitude of the linearity of the performance metric undsin@ation.
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Part |l

Micro-Architectural-Level

The nonuniform substrate thermal profile and process vanstare two major
concerns in todays ultra-deep sub micron designs. To dbyrpecedict perfor-
mance/leakage/reliability measures and address any lpedes during early stages
of design phases, it is desirable to have a reliable estmatf the thermal pro-
file. However, the leakage power sources vary greatly duedogss variations and
temperature which results in significant variations in tbespot and thermal profile
formation. Traditionally, no leakage variations have beensidered during full-
chip thermal analysis. In this part of the thesis, the depeog among the process
variability, leakage power consumption, and thermal peodite considered at the
micro-architectural-level to effectively extract a rélia statistical thermal profile of
a working large-scale chip. Knowledge of this is key for promlentification of the
hotspot locations and determining a leakage/thermaleogiséd.
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Chapter 7

Statistical Thermal Profile under Process
Variations: Analysis and Applications

7.1 Introduction

As CMOS technology scales down toward sub-90nm regimes,jiablkeltemperature analysis
has become inevitable in early stages of the design prodéssincrease in the power density
has elevated the junction temperature of chips and broegiois reliability concerns into future
designs. Moreover, the uneven power consumption profil@arsbtropic heat conduction of the
die’s sidewalls generate local hotspots. The non-unifagh temperature profile over a substrate
causes a range of design challenges, as it affects the gatetanconnect delays [141, 142],
introduces new timing faults [143], increases the leakagyeep [144], and accelerates the chip
failure due to electro-migration and thermal runaway [1¥8]. Therefore, to achieve a robust
design which guarantees satisfaction of system constrgpetformance, power, and reliability),
knowing the average temperature of a system is not sufficard the reliable thermal data
should be fed into design automation tools during desigiseha

In response to this need, various efforts have been madetraceihe temperature profile
of silicon substrate [5, 147, 148, 149]. Finite Differencethibd is the most popular approach
for thermal analysis in which the chip and its packaging malte are discretized to rectangu-
lar cubes, and hence, the thermal extraction problem is ethfpa linear circuit simulation.
Hotspot [5], a publicly available micro-architectural &JVC temperature modeling tool [150],
uses the fix meshing technique to extract the thermal prafilelADS-T [147] is an electro-
thermal timing simulator in which a developed FDM-basedrnia simulator is connected to a
circuit simulator, so the thermal-aware timing behavioadfircuit can be performed to detect
new thermal-driven timing faults. The meshing process isedadaptively to reduce the size
of the problem while providing acceptable accuracy. Anotgréhanced FDM-based IC thermal
analyzer is proposed in [148] based on the multigrid teammigr large sparse system of linear
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equations which is suitable for large number of meshes iaildetthermal analysis. Finally, as
an alternative to the FDM method, green functions are useshadytically extract the thermal
profile [149].

All of the current thermal analysis approaches considegrd@histic power sources. How-
ever, the power dissipation of a circuit (composed of theaslyic and leakage parts) can no
longer be deterministically defined in presence of procasations. This is because the leakage
power, a key contributor to the total power consumption mlesd technologies [151], has expo-
nential relations to physical parameters, and hence, gslsiignificant variations due to process
variations. The leakage power has been shown to have a loghdrstribution as it is exponen-
tially dependent to the variation parameters [152, 153]Jalgsis over some circuit benchmarks
showed that in presence of gate length variations the metredfubthreshold leakage current
is 30% more than its nominal value [152]. Empirical measwet® of fabricated chips also
showed a 20X total leakage variation in Quirtechnology [4]. This effect becomes even more
critical when considering the exponential increase in ttalteakage power over each CMOS

technology generation [154] and its dominancy in high-perfance circuits for recent CMOS
technologies [151].

The earlier works on statistical power analysis (e.g. [1%3]) assume that the temperatures
are kept at nominal values. However, the temperature akddeeof circuits are coupled together
which brings a need for an integrated and self-consistatisgtal thermal/power analyzer. In
fact, the subthreshold leakage power increases nonlineéHh temperature which consequently
generates more heat and boosts the temperature in a lobphengenerated power is equated
with the removed power from the die. Throughout this chagiterterm: leakage-thermal locgp
is used to refer to this phenomenon. A recent study showeddmae parts of a POWER-4 like
microprocessor at 130 nm technology will have up to 7 dedreenal difference if the leakage-
thermal loop is considered during thermal analysis [15%]e €xisting thermal extraction tools
simply leave this dependency unaddressed, so the desigeedsto iteratively run the thermal
analyzer to account for leakage-thermal loop which is ndindely a runtime efficient way, as
many same time-consuming initializations and mathemiatigigulations should be performed
redundantly in each run.

The probabilistic nature of leakage power consumptionseauy process-driven physical
parameter fluctuations directly generates uncertainigstatl) thermal profiles since the value
of temperature over any location of a die is a function of poe@sumptions over the whole
substrate. However, the subthreshold leakage portion wepoonsumption increases nonlin-
early with temperature, so the resulted variations on taépmofile will be intensified as a wider
statistical thermal distribution generates a wider leakdigtribution. Therefore, the statistical
leakage power analysis results based on nominal tempesatay lead to underestimations in
power variations when the leakage-thermal loop is ignotekas been recently concluded that
a circuit which is designed to meet its thermal requiremeittjout taking into account process
variation aware thermal analysis, may fail after fabriwatj156]. It has been also shown, by
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Figure 7.1: Dependency among parameters and models invké&ged framework

applying three random sample scenarios for blocks’ leakagsumptions, that the locations of
hotspots significantly vary in a sample die [157] which matkeshotspot locations indetermin-
istic, as well. Finally, any power estimation by ignoringppess and temperature variations can
lead to significant error in estimated yield which is expddtedegrade further with technology
scaling [158]. Therefore, by using reliable statisticarthal information rather than determinis-
tic ones, one can perform more robust system analysis irstefipower/performance/reliability
requirements.

In this chapter, a statistical temperature profile analyzeonstructed to estimate the prob-
ability density functions (PDF) of the temperatures overhelacation of a die. It is also shown
how the expected value and variance of temperature varyaose@mple die. In addition, a method
which quantifies the relocations of thermal hotspots is libgexl which provides a study of how
hotspots form while considering variabilities. Finallfju#l chip statistical total power estimation
technique is proposed by using the statistical informatiotained from the analyzer to report a
reliable power-constraint yield. Figure 7.1 depicts thegdam of the developed framework and
the dependency of the models and parameters.

To have a comprehensive scheme from the sources of vatiedilihe gate length and ox-
ide thickness variations are considered in modeling thiealga variation. To realistically model
the process variabilities, both inter and intra-die sosi@evariations are considered. It is as-
sumed that the parameter variations are spatially coeeldte to the lithography and chemical
mechanical polishing imperfections, so closer gates are fik@ly to have similar physical char-
acteristics.

The contributions of this work are summarized as followsSthtistical modeling of the tem-
perature, in presence of major process variation parameteConsidering leakage-thermal loop
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during the statistical thermal analysis and studying thgartance of considering it for full-chip
power-constraint yield analysis. 3- Quantifying and analy the temperature profiles forma-
tions and hotspots relocations. 4- Providing a robuststiedil full-chip total power estimation
using the obtained statistical thermal analysis data.

The chapter is organized as follows: In Section 7.2, tharpie&ries for deterministic ther-
mal profile extraction method, physical parameter vanetiand leakage power models are pre-
sented. The statistical thermal profile analyzer is propas&ection 7.3, while two applications
of the analyzer in hotspot’s relocation evaluation andltptaver estimation along with prior
work studies are presented in Section 7.4. By using the deedlanalyzer, the profile of tem-
perature statistical moments will be derived for a sampeathid verified by Mont-Carlo simula-
tions in Section 7.5 where the extracted power consumptiobgbility density function and the
result of a sample hotspot location analysis are also verifieally, the chapter is concluded in
Section 7.6.

7.2 Preliminaries

7.2.1 Deterministic Thermal Profile Extraction

The steady state thermal profile over a die is governed bgviitig heat conduction equation
[159]:

k(X,y,Z>'|:|2T (X,y,Z)-I— p(X7y7Z) =0 (71)
wherek is the thermal conductivity of the materiM/(/mOC), T is the temperatureC), andp is
the power density of the heat sources/(n?).

As mentioned in the introduction, the numerical approactobfing the Poisson equation of
(7.1) is by using the Finite Difference Method (FDM), in whithe area of the die is discretized
and modeled as a lumped circuit network [5]. Using the waltwn duality between thermal
and electrical models, each node in the equivalent elettnodel corresponds to a grid on a
die. The node voltage is the temperature of the grid and tinepdissipation of that grid is
modeled by a current source flowing into that node. The thkecorauction paths between each
grid and its neighboring grids or surrounding packagingdtires are modeled by electrical
resistances. Therefore, a Kirchhoff's Current Law (KCL)dxhadmittance matrix is formed for
the equivalent electrical model. Solving such linear systé equations for the node voltages
produces the temperature profile of the die [160]. To sole¢ $parse linear problem, either an
iterative or direct (LU factorization) [161] method can bgphed that is used to construct the
inverse of the admittance matrix. It should be noted thahasnicro-architectural level designs
are targeted for early stage thermal analysis, coarse ngestia die area will be sufficient
[5]. Therefore, having at most few thousands grids allowtusse matrix inversion efficiency.
Hence, the temperature of grids can be obtained by the foipmatrix multiplication:
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tm><1:Am><m>< Pmx 1 (7-2)

wheret and p are the vectors of node temperatures and power consumptespectively, and
A'is the inverse of the equivalent admittance matrix. It stidaé noted thain = n+ 11 where

n is the number of die grids, and 11 extra nodes represent gagkaomponents and ambient
nodes [5]. In which, the heat spreader and sink layer, eagfiveanodes: one corresponds to the
area over the underlaying layer and four trapezoids cooraspo periphery that is not covered
by the lower layer. Thereforépy,-- -, pn] are power consumptions afgrids, [Pn+1, - , Pn+10]
are all zero since no power is generated in packaging nodeallyi- pn, is a current source used
to model chip to ambient removing power which can be detezohioy the Norton equivalent
(Pm = Tamb/Reon) Of the ambient temperature voltage sour€gy, and its serially connected
convective heat resistance from the heat sink to theRag. For illustrative purposes, a chip
composed of six numbered cores is depicted in Figure 7.2.gfide’ borders are defined by
dashed lines. 10 extra nodes (EN1..10) are used to modektitecbhnduction paths from the
heat spreader and heat sink.

7.2.2 Physical Parameter Variation Model

The typical scheme in modeling process variations is byitmaring the surface of a die into
rectangular grids [87]. The gates placed in the same gridssemed to have perfect correlation
on their physical parameters since adjacent devices are hkaly to have similar physical
characteristics after fabrication. Therefore, it is assdrthat in a single grid, the variations
of any process parameter is constant. In this work, the gatgtt (g) and oxide thicknessT{y)
are considered as the sources of physical variabilitiesXLige the physical parameter of interest

118



in gridi, so:

Xi = Xo+D0% (7.3)
where Xy is the nominal value of th& physical parameter, anflX; is its variation from the
nominal value in grid. The Gaussian zero-mean random distributions is assumetiXfe-
{AL,ATox} with the standard deviations given for a particular tecbgglaso; , andor,, .

Due to spatial imperfection of CMP and lithography procesbesgate length and oxide
thickness variations are spatially correlated [85, 86,162]. As a result, their variations are
modeled as a random variableX, decomposed into three distinct components: the inter-die
variation AXinter, Spatially correlated intra-die variatiadhXeor , and a residual pathX.es that
models the purely independent random variation that is xyola@able by other variation com-
ponents. Hencé&\X can be expressed as [85]:

AX = AMXinter + AXcor + AXres (7.4)

whereAXinter, AXcor, aNdAXes are zero-mean independent Gaussian random variablesgpe6, 8
The inter-die variation models the variation that is shdoeall devices within a die, so it will be
the same for all devices in a same chip while the intra-ditians may be different for different
grids within the same chip. In fact, the intra-die variai@re composed of spatially correlated
(AXcor) and purely random(Xes) components.

To model the spatial correlation, the two< n covariance matrixx = {W.,Wr.,}) which
represent the covariance between gate lengths and oxakaésises are used. The diagonal ele-
mentsPyx (i,i) of such matrices are the variancesgbarameters in the grigand the covariances
betweenX parameters of gridand j are determined ix (i, j). By applying mathematical ran-
dom field techniques which assure the positive semi-defiege of\Vyx, the necessary condition
of any covariance matrix, such matrices can be formed a®#sl[85]:

i) — A2 — 2 2 2
Lle(l 5 |) = GX — GAxinter + GAXCOI‘ + GAXres

Wx (i, J) = CoMAX;, AX)) = 0y +P (Vij) - O,
(7.5)
where
vjj : Euclidean distance between griend |
0 < p(ujj) < 1: Decreasing function afij (e.g. p (vij) = €™ii;b < 0)

where the shape @f (vjj) and the values o, AL, 2NA0OAL ., are defined from statistical
measurement data of the technology of interest [85, 86, 87].

In this work, it is assumed that there is no inter-correlati@tween gate length and oxide
thickness variations, as each source of variation is aaigithfrom different fabrication process.
However, the formulations given in Section 7.3 is flexibl@egh to consider such correlations
as well.
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Figure 7.3: A sample inverter used for demonstrating thkdga model

7.2.3 Leakage Power Model

Once the area of a die is discretized into rectangular gtigstotal leakage power of each grid
has to be modeled in order to provide sufficient flexibilityinglude thermal and variability
awareness into the analysis. The following architectenallleakage power model is used:

Pleak-i = Ai - <1+ai (TI —Tref) +Bi (TI —Tref)z) ) I’]eakfi (7.6)

whereBPeak_i denotes a random variable used to represent leakage powedafin presence
of physical variations, andlj is the nominal total leakage power of giict the reference tem-
peratureTe;. The nominal power consumption of grids which share more th@e core are
calculated based on the weighted sum of sharing cores pawsitd components. Throughout
this chapter, the terrmbminal is used to indicate the situation when no process varidt@s
been taken into account, and all parameters have their omrmabXy value. A; is determined
by the grid’s circuit topology and accounts for effects liggic style, transistor sizing, transistor
stacking, ratio and number of NMOS and PMOS transistorsergtid, and the technology used
for the circuit implementation. This value can be obtaingdiing circuit level leakage simula-
tions or given by the core provider &k, when no process variation is taken into account. For
example, in 90nm technologyip = 1.2, Le ¢ = 35nm), the Spice simulation of the sample cir-
cuit depicted in Figure 7.3 using PTM BSIM4 models [163] shaws- 114.4nW total average
leakage power akes = 100°C.

The total leakage power in CMOS circuits composed of threegpomants namely subthresh-
old, gate direct tunneling, and reversed biased band+td-lbanneling currents [17]. How-
ever, the subthreshold leakage currents which contriibgekargest portion of the total leakage
power in high performance chips due to low threshold voliage high operating temperature is
strongly temperature sensitive, as below:
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Vih(T)

lsup D (T)VEe ™ (7.7)

wherevr = kT/q is the thermal voltagey(T) O T—1° is the charge mobility, antl is the
temperature-dependent threshold voltage which drops wieetemperature increases.

Therefore, the total leakage power is modeled by a quadrppicoximation around the nom-
inal value [144]. In fact, the second order leakage-tentpezanodel fits better to the measured

points than a first order exponential modsl; e“‘(T‘*Tref), as it has one more fitting parameter
which provides less fitting error. For example, the comparisetween the first order exponential
model and the quadratic model are depicted in Figure 7.4{dgviitted to BSIM measurements

of the sample two inverters circuit. The first order expor@mhodel has up to 5% absoulute
fitting error while the quadratic model has less than 0.0684rer

Finally, lleak_i is the normalized (dimensionless) total leakage currergriof i including
process dependent effects. In contrast to the wide temyerdistribution, the magnitude of
process variations is observed to be less than 15% in peabti'mceﬂeakq can be well-approximated
by using an exponential of a first-order Taylor expansiorhatrtominal values of process pa-
rameters. Therefore, the normalized leakage current camritten as an exponent of linear
weighed sum of process parameters around the nominal vi@8e453]. This is because the
subthreshold leakage current is exponentially relatetiedhreshold voltage which varies with
gate length and oxide thickness, also the gate direct tungnehries with oxide thickness expo-
nentially. Therefore, the normalized leakage current Garepresented as:

IAleak—i — gPti BLiFProg Aoy (7.8)
whereAX; is the variation of the paramet¥rfrom its nominal value in grid, andPy; is the first
order derivative of the grid'sleakage current logarithm:

B 0 (|I”l IAleakfi)

X = o (7.9)

X=Xo

It should be noted that the correlatg¥g, variation has been considered through spatially
correlated models of gate length and oxide thickness whoth &ffectV;,. However, if there are
any other sources of correlated variations/ig the proposed methodology is flexible enough
to account for them through adding extra terms on the pow#netxponent in Eq. (7.8) and
updating the consequent equatiorf3 factors can be calculated either analytically [158] or
numerically by fitting the total leakage simulation reswitshe circuit around the nominal point
with Eq. (7.6). Figures 7.4(b) and 7.4(c) show the fittedltlgtakage currents of the sample
circuit (Figure 7.3) with the actual BSIM measurements wiendxide thickness and effective
gate length are varied around the nominal poins, and Brox are set to—7.35/Lett, and
—5.02/Toyx,, respectively.
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Figure 7.4: Comparison between Spice measured total leakagent of the circuit depicted
in Figure 7.3 and the fitting models when process parametetrdeamperature vary around the
nominal value

Consequently, by using Eqg. (7.6 and 7.8) following total begk power model will be ob-
tained for gridi:
Reak—i = N (1+ 0T + B T;2) ePri-AbitProy Aoy (7.10)

whereXi, di, andBi can be simply obtained from, a;, B, andTes.

7.3 Statistical Thermal Analysis

In this section, the statistical thermal analyzer is pregoshere the probability density functions
(PDF) of grids’ temperatures are estimated. The problem $olve Eq. (7.1) whep(X,y,z) is
a function ofT (X,y,z) while it has spatially statistical behavior. To formulale toroblem, the
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leakage power uncertainties have to be integrated intchémental extraction. Hence, instead of
using deterministic power consumption elemeptsn vectorp of Eq. (7.2), correlated random
variable power sourceB, are usedPR, the random variable of the power consumption in grid
is defined as:

1<i<n: B =pdyni+Peaki (7.11)

wherePeak_i IS the random variable representing the leakage power dfigitefined in Eq.
(7.10), andpgyn-i is the dynamic power consumption of the gridt should be noted that since
the switching power consumption is not as sensitive as tpakawer to variations [164], it is
assumed to be a constant variable for a grid.

Having a statistical form for power consumptions of gridea@dom variable can be assigned
for the temperature of nodéased on Eq. (7.2), &%:

n
Ti=> aj-Pj+am: Pm (7.12)
=i

whereag;j; coefficients angn, have been defined in Section 7.2.1.

However, the estimation &ks’ PDFs is not straightforward since there is a relation leetw
leakage power and temperature of each grid (Eq. 7.10), whildeakage power consumption
sources over a die are all spatially correlated due to djyatiarrelated gate length variations
(Eq. 7.5 and 7.8). Therefore, to estimate PDF3;sf the problem is broken into the following
steps:

Step 1 In the first step, deterministic nominal thermal extractis performed iteratively.
The iterations are done to take into account the leakageatildoop effect during temperature
extraction. The following set of equations are evaluateihtively until no significant change on
thermal profile could be seen in the new iteration:

2
pfe;k_ =N (1+a T +B )
L _ (7.13)

n
Z (pdymj + pfe;k,j> =+ @imPm

The extracted thermal profile is named nominal temperatuwélg (T,"°™ = Ti(')), where
| is the number of iterations until the thermal profile conesrges. Typically = 4 iterations
are enough to extract the nominal thermal profile if the ahitemperature is set to the ambient
temperature [155] and can be reduced down to 2, if a more measminitial temperature is used
[144].

Step 2 After nominal thermal profile extraction, the parameteiai#ons are added into the
calculations. In this step, the expected value vector amdr@nce matrix of the grids’ temper-
atures are calculated considering correlated power ssulee to correlated physical parameter
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variations. As can be seen in Eq.(7.1R)is defined by the summation of a set of finite random
variables P;js). Therefore, to calculate the momentsi, the following property of the sum of
random variables is needed.

Property 1: Given a vector of random variabléﬁxl = [Z1,2,- -+ ,Zy] with a known ex-
pected value vector and covariance matriXif, ,, Sz,.,), if there is another vector of random

n
variablesYnTXl = [Y1,Y2,---,Yn] such thaty; = 3 ¢jj -Zj, wherecijs are constant coefficients,
j=1
then [165]:
n
EY)= 3 cj-E[Z]
1= n n (7.14)

COV(Yi,Yj) = lezlcik-C“ -cov(Z,Zy)

If matrix multiplication is used, the given linear equatsoran be represented as follows:

MYnxl = Cn><n X Mznxl

7.15
S{nxn = Cn><n X SZn><n X CIIXFI ( )

Where(Mynxl,S(nxn) are expected value vector and covariance matrix of randarablasy;s,
andC is the matrix representation form of the constant coeffisiens. In fact, the matrix
multiplication scheme reduces the computational complexii the Y’s covariance extraction
from O(n*) to O(n®) naive matrix multiplication. This computational compligxieduction is
achieved by storing the intermediate calculation resulisC x Sz and reusing them in future
multiplication withCT. Also, by one matrix multiplication, both variances and aance are
extracted, which both are necessary in the future stepseofitfalysis. In fact, most of the
computations are mapped to the form of matrix multiplicatiehich significantly increases the
efficiency of the approach. The implementation of the naiarix multiplication has been
intensely optimized for various processor architectueas (AMD, Apple, IBM, Intel, Sun) using
Basic Linear Algebra Subprogram (BLAS) libraries which po®/orders of magnitude speed-up
over naively coded routines [166]. In addition, the runticoenplexity may be further reduced
down toO(n%378) if the Coppersmith-Winograd fast square matrix multipiimatechnique is
used [167].

E [HeaAkfiHeQKfj] = )\i/)\,j X ) ) .
E [leak-illeak ;] + Q{E [Tilieak-ilieakj] + 0 E [Tjlieak-ilieak—j] +
BiE [szlleak—illeak—j] + {0 E [TiTjlieak-illeakj] +{B}E [Tiszlleak—illeak—j} +
a/jBi,E [Tj-rizrleakfiﬂeakfj] + B:B/]E [TiszzlAleakfilAleakfj] + B:E [Tizﬂeakfirleakfj}
(7.16)
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By using Property 1 and the matrix-based representatiohgiekpected value vector and
covariance matrix of grid’s power are given, the expectdderaector and covariance matrix of
temperature$Mr, ,,Sr,.,) can be extracted, as:

MT1..1 = Anxn X Mp, . + Pm- @nx1 (7.17)
STnxn = An><n X S:)n><n X AIXI’] .

whereA, .\, is the first left/uppen x n square matrix portion of the inverse admittance matrix
defined in Eq. (7.2) andnx1 = [aim,"-- ,anm]T is the vector of ambient temperature coeffi-
cients &m). Therefore, the expected values and covariances of tetyses ard=[Ti| = Mt (i),
cov(T;, Tj) = Sr(i, j). However to estimate the first power consumption’s statistinean and

covarianceiMpnxl, Ssnxn), the following property needs to be defined:

Property 2:Given a normal random variab¥ewith mean and variance cﬁﬁ, 02), if Y =ePX,
then the expected value ¥fcan be calculated as [165]:

2~2
E[Y] = exp{Bu+To} (7.18)

By using this property, leakage power model (Eq. (7.10), #rd (covariance matrices of
process parameters), the expected value vector and cosemaatrix of grid’s power consump-
tions (Mp,.., Sp,.,) are extracted as follows:

Mp (1) = E [P} = Payn-j +E [N} (L1+0{T/O™4 BT ) figy |

— Pdyn_j +)‘j (1—1—0 Tnom+ B/Tnomz> n;

and

Sp(i,j) =cov(R,P)) =E[R-P;| —E[R]-E [P}] (7.19)
_ )\I)\/nlr] (eBL [3|_ WL (i,])+Brox BToxJ- Wrox(i,j) 1) .

n? n?
(1+ai/-|-inom_|_ Bi/'l'ino ) (1+a Tnom+ B/TI‘IO >
B|_ L+BTox '2r0x
wheren; = [lleak |] =€
However, in this step, the calculation of the given statetmoments of grid’'s leakage con-
sumptions was performed based on the nominal temperatluresvabtained from Step 1, as no

statistical information is available for temperatures ltoig point.

Step 3 In this step, the new expected value vector and covariarateéxyare extracted for
temperatures by considering the statistical informatibthe temperatures from the previous
step as well as the process variability data at the same fiimerefore, first the expected value
of power consumptions is re-evaluated as follows:

E[P] = payn-j +] (m +aE [Tilieax-j] +BjE [T,-zﬂeak_,} ) (7.20)
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in which, E [Tjlieakj] andE [szﬂeak_j} are needed. First, we firll [Tilieax]:

. n S
E [Tileakj] = kzlaik)\/k (1+ o T+ B'kanO”?) E [lieak-jlieakk]

n . .
+kzlaik Payn-kE [lieak—j] + @imPmE [lieak- ;]
= Anxn X (Lnxn X Mnxn 4 Nnxn X Onxn) + Paxn

where

if i) 1j=0 (7.21)
L) else 1 = A <1+ o T;"om+ anom’—)

ifi#j n;=0
Nnxn : 71

else  ni = Payn k .
M : mj = ninjeBLiBLjllJL(l,J)+I3T0>qBTOXJ Wrox(iy])
Onxn : 0jj =N

Pnxn : Pij = @imPmN;j

The sparsity ol andN are used during matrix multiplication to speed up this stdpw,
E [szﬂeak_j} should also be calculated. Therefore, we need to definewfwifp property of
multiplication of lognormal random variables.

Property 3: Given a set of lognormal correlated random variall&s, - - - , X,}. If my, and
sx, are the expected value and standard deviatioX 'sflogarithm, andpxx; is the correlation

coefficient betwee;'s andX;’s logarithms, the random variabe= [1¥_; X" is lognormal with
the expected value of:

k
k k=1 Kk izln?S%i

M + NiN; Sx; Sx: Px: X; +=
e'gl 1 S X PXX| 2 (7.22)

E[Y] =

The expected value and standard deviation$;dbgarithm’s can be extracted from the last
step, and to find the correlation coefficients between Itigas of random variablesT( and
lieak—j) WhenE [Tjlieak-j] is known, the following property should be defined:

Property 4: Assume two correlated lognormal random variai{es= € andX, = e? with
givenE [X1Xz], whereZ; andZ; have the mean and standard deviationaf 61) and {1, 02),
respectively, then:

2 2
In (E [XaXe]) — (ba+Ho+ 5%

Pz,z, = 0102 (7.23)
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By using these propertieg; [szﬂeak_j} can be calculated and used to fiEc{Pj} in Eq.
(7.20). Next, the covariances of power sources can be ¢sttas follows:

COV(PH Pj) =E [Heak—iHeak—j] —E[Reaki] E [Heak—j] (7.24)

where theE [Reak-i] = E[R] — payn-i has already been extracted from Eq. (7.20), so only
E [Reak-i - Reak_j] is needed to be found from Eq. (7.16).

As can be seen in Eq. (7.16), the expected values of more ocatidms ofT;, Tj, leakeis
andﬂeakfj are needed which all can be extracted using the propertynall§iby using the new
statistical moments for power consumptions, the updateeard value vector and covariance
matrix of temperature can be re-extracted by re-evalu&ong7.17).

Step 4 In this step, the moments of power consumptions and terypesaare updated
iteratively. In every iteration, new moments are derivedgower consumptions using Eq.(7.20,
7.24, 7.16), and the temperatures’ moments are re-evdluateg Eq. (7.17). However, in this
step, thee [Ti ﬂeakfj} are derived using the following equation, rather than mresiEq. (7.21).

R n A
E [Tileacj| = kzlaik)\f(E [(1+ 0T+ BiT) lieak-jlieak-k|

n ~ ~
- kzlaik Payn—kE [lleak—j] -+ @imPmE [leak-]

= (Anxn X (Lnxn X Mpxn 4+ Nnxn X Onxn)) + Paxn
(7.25)
where
ifi#] lij=0
else li = A{
Mnxn:mj=E [lAIeakfilAleakfj] —1—(Xi’E [TilAIeakfiIAIeakfj} + B;E [Tizrleakfirleakfj}
N, O, andP are the same as E(j7.21)

Lhxn:

It should be noted that Uleak—irleak—j], E [Tl IAleak—ilAIeak—jL andE [Tizrleak—iﬂeak—ﬂ have
been already extracted when Eq. (7.16) was evaluated.

Step 5 In the last step, after extracting the temperatures’ ebgoeealue(E[Ti| = M+(i))
and variancgvar(Ti) = Sr(i,i)), a probability density functionfr, is formed for the random
variableT;.

As suggested by the Eq. (7.12), the temperature of a grid eawritten as a linear weighed
sum of grids’ power consumptions, and since the multipleogihbrmal random variables is
still lognormal, integrating the polynomial leakage vsmpeerature relation into the problem
keeps the leakage probability distribution lognormal. sTis because the sum of lognormal
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distributions can be modeled as another lognormal randoiabta [168]. The lognormal density
function is estimated using Wilkinson’s method [169] basadnatching the first two moments.
Hence, the lognormal probability density function of temgtere at grid, fr,, has the following
general 3-parameter format:

exp{— (In(t—tmizr;%)—mﬁ)z}
fTi (TI - t) B (t —tmin—i) \/E[S-ri

wheremy, andsr, are the mean and standard deviation of Th& logarithm, and can be deter-
mined by matching with the obtained values from step 3, as:

_ var(Ti)
% - In <1+ (E[Ti]*tmin—i)2>
my, = IN(E[Ti] — tmin-i) —

wheretmin_i is the mathematically minimum possible temperature of gidpresence of vari-
ability. This minimum point can be found by deterministietimal extraction when all process
parameters/X;) are set to their worst case values(d which provide the minimum leakage.

(7.26)

2 (7.27)
2

7.4 Applications

In this section, two applications of the developed analyerproposed in which the extracted
moments of temperatures are used in power and hotspotstfomamalysis.

7.4.1 Early Stage Statistical Thermal and Process Aware Full-Chip Power
Estimation

Due to the nonlinear dependency between leakage power anpetature, higher than average
temperature spots contribute over-proportionally to tieltpower dissipation of a chip. There-
fore, predicting the leakage power and thus the total syg@ner require detailed and accurate
knowledge of the temperature distribution and its statbehavior. Hence, ignoring them
might lead to an inaccuracy in power consumption estimatand yield analysis [156, 158].

Su et al. [144] estimated the full chip leakage consideringven voltage and temperature
profile. They have used the heat conduction relation (Eq) t@.Accurately model the thermal
profile while using the polynomial leakage-thermal modebwdver, they have not taken into
account the variability of process parameters, so theiraggh only provides a crisp value of
nominal leakage and cannot be used for estimating yieldcd®sovariations are accounted dur-
ing leakage estimation in [158], but it uses a simple avetaggerature model for die-to-die
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Figure 7.5: Flowchart of the proposed statistical thermalyzer

temperature variation. They have also considered an anpind constant value for temperature
variance over a die which is not the case in practice. Monedivey have ignored the correlation
between temperatures of different locations and tempergirocess parameters covariances. In
fact, ignoring these two types of correlations leads to ateoestimation in the magnitude of
leakage uncertainty and hence the estimated yield.

If the estimated means and covariances of temperatureseadeta find the probability den-
sity function of the full chip total power consumption, a reoeliable power-driven yield analysis
can also be performed. This is because the thermal statistioments have been obtained by
considering all the placement-driven power consumptidorimation, process variabilities, and
leakage-thermal loop.

However, the obtained temperature statistical momentsaldhme utilized carefully in the
estimation of the total power to avoid any intense comporteti Since both the process variations
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and leakage-thermal loop have been addressed once beforg the statistical thermal analysis,
a following fast approach is developed to estimate the POibtaf power consumption based on
the extracted thermal moments.

The average temperature of a chip when it reaches the themuodlbrium — the state of
which the removed heat is equal to the total generated hgaalcic + thermal-dependent leak-
age) — can be derived from the following equation [170]:

Towg=Tart Ry 12 (7.28)
r
whereT,yg is the average chip temperatuflg,is the ambient temperaturBet (W) is the total
power consumptionAr (cn¥) is the chip area, an (cn?°C/W) is the equivalent thermal

resistance of the substrate layer plus the packaging arcina

As can be seen in Eq. (7.28), if the probability density florcof the average temperature
is known, the probability density function of the total powehich ended up with such average
temperature can be determined. As a result, the mean andbasthdeviation ofT,,q are cal-
culated by using the statistical information from the depeld statistical thermal analyzer, as
follows:

M (i)
n

E [Tavg = =

(7.29)

n n

Y 3 Sr(isd)

i=1j=1

var(Tayg) = ~

By using the obtaineda,g moments and Eq. (7.28), the mean and varianc&gpfcan be

calculated as follows: A
E [Ptot] — (E [Tavg] - Ta) : ﬁg

, (7.30)
var(Pot) = var(Tayg) - <%>

Finally, the probability density function of total powef,, can be determined from the
general 3-parameters lognormal PDF as below:

exp{  (n(p-Payn 10t) Rt }

h

ot

fHOt (PtOt - p) - (p* pdymtot)ﬁTBHot
where (7.31)

. =In (1+ var(Rot)
0 (E[

2
Pot] - pdyrHot)

MR, = In (E [Prot] — pdyn—tot) - %zm
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wherepgyn-tot = 311 Pdyn-i iS the total dynamic power consumption.

By having the PDF o, one can construct a power-constrained yi#}g,by integrating
over the PDF and solve it numerically:

Pmax

Yo = P(Rot < Pma) = / frec (D) dp (7.32)

Pdyn-tot

7.4.2 Evaluation of Hotspots Relocations

In this section, another application of the developed am®lis presented in which the extracted
moments of temperatures are used in the analysis of hotispotation. In fact, the probabilistic
nature of the temperature, driven by the variable proceggident circuit leakages, may cause
some areas of a chip to show peak temperature while they leaveern the hottest part of the
die when no variability has been taken into account duringugations. This phenomenon brings
uncertainty to the hotspot formation.

By applying three arbitrary random leakage scenarios, Lirdd.e[157] showed that the lo-
cation of hotspots vary significantly from die to die due togass variation. Therefore, even
in the presence of highly accurate predictive determmigtermal modeling, process variation
will prevent accurate localized modeling of power disttibn. However, the authors have not
quantitatively analyzed the relocation problem, so thegihes does not have a measure of how
probable is a location to show a higher temperature thamdlké@ibnal hotspot. This information
is key in considering a location as hotspot and guiding theegther in applying further thermal
management solutions, such as: more precise on-die tetupesansors placement for adaptive
hotspot avoiding mechanisms and efficient design of adwhnoeling systems which requires
placement of localized cooling solutions (e.g. local spragling, thin-film thermoelectric cool-
ers) to eliminate the hot-spots [171].

To evaluate the hotspots relocations, consider the geds j, such thatT;"°™ > T;"°Mwhen
no variation is accounted. In the presence of process w@rgand hence thermal variations, it is
possible that grid experiences higher temperature thafhis might happen when the variation
in leakage distribution causes considerably more tempesralevation in locationthan j which
may produce a relocation of the hotspot from where it is oally expected to be seen. This
effect can be troublesome if it has not been addressed asiteoed during design processes.

In this section, the probability that the temperature ofl gexceeds the temperature of grid
j, P(Ti > Tj), is estimated. Generally, having two dependent randorabts ofT; andTj, such
a probability is:

—+o00 +00
P(T>T,) :/_ /y fij (T =T, = y) dyd, (7.33)

where fj; (Ti,Tj) is the joint probability density function (JPDF) @f and T;. However, one
needs an analytical JPDF fdy (Ti,Tj) to estimate the desired probability. As shown in Section
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7.3, the PDFs ofj andT; can be approximated as lognormal distributions. Therefobavariate
lognormal distribution [172] can be assumed for theT;, Tj):

exp{—?gpjz}
i (T=xT,=y) = |
i (T=xTj=y) 2(X~tmin-i) (¥ ~tmin- )51, [ 1-0F
where
2
Gt )= \2 (I (y—tmin ) - (nOtmin )= (I (y—tin-)
- () (g (g (g

(7.34)
where {mr, sy, my;, sr;} are the mean and standard deviationrgT; ) andIn(T;), obtained from
Eq. (7.27), after the calculation of the expected value arthace ofT; andT;. Also, pjj is the
correlation coefficient between the random variatht€d;) andIn(T;) which can be obtained
using property 4, as:

1 cov(T;, T
pij = In |1+ (T J)STi+ST_ (7.35)
T ST exp{mrierTjJr 5 '}

where coVTi, Tj) = Sr(i, j) has been previously obtained from the statistical thermalysis
part. Finally, The desired probabilify(T; > T;) can be numerically estimated from the given
integral of Eq. (7.33).

7.5 Implementation, Results, and Discussions

To validate the analyzer, a power model based on the Alph&2d8croprocessor is used [173].
The power consumption parameters of the processor’s bioeke set based on the average
power consumptions in 9Mntechnology when running MCF application [150, 157]. The nomi
nal total leakage power is 33% of the total power consumptighis sample. It should be noted
that the constant time of changes on temperature is orderaghitude slower than the input
vector transition rate (millisecond vs. nanosecond). Assalt, the average power consumption
of each block during a moderately long time can be used wittwourying about the temporarily
short transitions on instantaneous power. The generaloparplpha processor benchmark is
only used as a sample in which the power consumptions of @skblare given when running
an application (a long run of an instruction set). If anotapplication is being used for such
processor the new values of power consumptions should betedhe model to generate the
new statistical thermal and power information.

The ev6-like floorplan provided by the publicly availabletBpot tool [150] was considered.
The packaging structure shown in Figure 7.2(b) was usedhmtimsists of a 50m thermal

132



interface material over the 306 die thickness. The aluminum heat spreader and heat sink
have the dimensions (heighwvidthxdepth) of 30<30x1 and 60<60x6.9 millimeters. 35C

was assigned to the ambient air temperature of the case wigechip is supposed to work. The
3oL and 1, are set to 12% and 5%, respectively, of which the inter-gratially correlated
intra-die, and residual variations consitute 25%, 55%, 20@b of total variations [85]. The
elements of the covariance matri¥y) are defined such that the correlation between igaidd

j parameters follows the diminishing rate of e —bvi;) [85].

The analysis was done for the sample structure by meshingré@of the microprocessor
into n =50 x 50= 2500 grids. The runtime of the method developed in Matlabexaduted on
a Pentium IV, 3.4GHz, 2GB RAM PC was 158 seconds including #dnge matrix inversion
and all initialization steps for five iterations. Adding oetra iteration increases the runtime
33 seconds out of which 22.5 seconds are for evaluating HJ.@nd 7.25) where the matrix
multiplications are performed. The naive matrix multiplion approacl®(n®) was used as the
standard Matlab multiplication method. However, if the hoet had been developed in C with
application of any of the fast matrix multiplication memtexd earlier, the runtime could have
been improved more since the Eq.(7.17, 7.21, and 7.25) aneitime bottleneck. The runtime
complexity of the method fom > 1 iterations isO((3m— 1)n%) based on the number of non-
sparse matrix multiplications. The memory usag®{8n?) to load ¥, Wr,,, A matrices and
updateSr, S, E [lieak-illeak-j], E [Tilleak-illeak-j], andE [Tileak-illeak-j| matrices in each
iteration.

To verify the technique, Monte-Carlo iterative simulati@momsidering leakage-thermal cou-
pling have been done with 10000 samples over the HotSpgtbath took almost 4 days using
the same computer for the 2500 nodes case. Therefore, itbese admittance matrix is reused
for the sequence of the Monte-Carlo simulations to avoid mddutly reconstruction of the in-
verse admittance matrix for each new sample, which reduee®onte-Carlo runtime down to
almost 42 minutes. However, the Monte-Carlo simulationiraets still too high in comparison
to our developed approach. We also performed the Monte-Gamrlolations with lower number
of samples, to investigate how much it affects the accurédtigeoresults. It has been observed
that a lower number (e.g., 1000) produces more than 14% ierstandard deviation.

Figure 7.6 shows the results obtained from the analyzerhfersample core. The nomi-
nal thermal profile of the chip (considering leakage-thérlmap) is shown in Figure 7.6(a).
This profile is obtained without considering any parameterations (nominal). However, af-
ter considering process variability, the deviation probfehe expected value from the nominal
temperatures, obtained from our method, is depicted inrEigw6(b) after five iterations. It can
be seen that the level of increase in the expected value B 257C, while, as shown in Figure
7.6(c), the standard deviations of the grids’ temperattgenadely varied from 1 to 9.6C. This
indicates how much the temperature of each location in aahevary from chip to chip after
fabrication due to process-induced leakage variations.

It should be noted that, increasing the number of grids ples/slight change in results only
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Figure 7.6: Statistical thermal profile of Alpha 21364 CPUecor

if the power density of the grids are given based on the gme-sesolution. Otherwise, for
the case of the early stage analysis in which the power copisommof blocks is the highest
information resolution in hand, increasing the number afigdoes not lead to a significant
difference. In this case, first the experiments with ax4D and then 56 50 grid structure are
performed which ended up with up to 3% contrast in the stahdaviation profile over blocks’
borders, but not showing considerable benefit from goingte 60 structure. However, another
option for performing simulations with higher effectivescdution while keeping the runtime
tractable is to disctritize the die area non-uniformly ie thiock level. Since there is no need
to discritize the large blocks (Caches) into many grids,dfwee, different blocks would have
the same number of grids and can provide the reasonableaagounith lower number of grids.
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Figure 7.7: The obtained PDF from our method compared wihMbnte-Carlo simulations

This idea was called hybrid-sized grid cells in the literat{b]. The proposed methodology
can simply account for such structure by using the apprtgppgeocess covaraince maticéidy)
based on the new structure.

It can be inferred, by investigating Eq. (7.19, 7.20, an@Y,.that the variance of temperature
in grid i is a function of the nominal temperaturg"®™ and nominal leakage\() at that node.
Therefore, both nominally high temperature die parts gaith more activity) and high leakage
die parts (usually high-performance parts) show more teatpes variance. This fact can be
seen by comparing the PDF of nodes A, B, and C. The estimated PBdmple nodes A, the
nominally hottest point, B, the highest thermal variablenpavhich is over one of the high
performance blocks, and C, the nominally very cold cache epécted in Figure 7.7 along with
the Monte-Carlo simulation results. Figure 7.7(b) showsgperature range of 65-140 for a
node, which can bring a source of huge uncertainty in the pgwe noise, circuit reliability, and
timing/power characteristic of the designed circuit. Eiere, a design which shows satisfactory
behavior during traditional (nominal) thermal analysisyrfel after fabrication, considering the
wide variation in the die temperature due to process vanatrinally, in terms of the accuracy,
the error of the estimated expected values in comparisoroim®ACarlo simulations is less than
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Figure 7.9: Corner based thermal extraction of node B.Ml and ATy Vvariations are from
(—1.80.,—1.807,,) to (1.80,1.807,,) simultaneously.

0.03% over the die. Also, the error of the estimated standaxdation is less than 2%. It
should be noted that, at first, the random dopant fluctuatias also considered during thermal
analysis. However, the results were the same as the casatidigmored due to its uncorrelated
nature. Thisis because adding large numher () of uncorrelated random variables, each with
standard devation over mean@fu = k, leads to a random variable with zero standard devation
over mearo/pu=k/y/n— 0.

Figure 7.8 shows the standard deviation and deviation oéxpected value from nominal
temperature of point B for each iteration. Results shown @fitst iteration are the output of
step 2, and the outputs of the step 3 are shown as the secoattite The rests are the thermal
statistical moments obtained from the step 4, iterativitlgan be seen that the results converge
after almost five iterations with an acceptable accuracy.

Corner based thermal extraction was also performed to avaégilple pessimism in sta-
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with the Monte-Carlo simulations.

tistical estimations. The process parameters of all gridsevget from {1.80,,—1.807,,) to
(1.80.,1.807,,) with (0.10.,0.107,,) steps, simultaneously, and the thermal profile was exdact
for each case. As can be seen in Figure 7.9, the temperatooslefB varies from 67-15C. In
fact, if all process parameters be less tifgr- 1.90x the design will be too leaky and will expe-
rience thermal runawayfi(— o) [146]. However, the probability in which all 2500=5000)
process parameters experience the worst case scenaridtasi@ously is very low. The Monte-
Carlo simulations showed 21 samples out of 10000 experigrtbgrmal runaway.

The power consumption uncertainty caused by the wide rahgeeomal variability due to
process variations are quantified by using the analyticptagrh proposed in Section 7.4.1.
The probability density function of the extracted full-ptibtal power is obtained in less than a
second (after extraction of temperature moments) and anpaed with the Monte-Carlo results
in Figure 7.10. The total power consumption’s expectedevalnd standard deviation are 52.3
and 4.83 Watts. Moreover, based on a power consumption buaiye can find a probabilistic
yield using Eg. (7.32) and the obtained total power PDF. Vieailsl is also depicted and compared
with the Monte-Carlo simulations in the figure.

In addition, for the hotspot movement evaluation, two gatld and B are considered. It can
be seen that the nominal temperature in grid A is 16.@igher than grid B when no variabil-
ity is taken into account. However, to show the effect of #skbhge variation on the hotspots
formations, theP(Tg > Ta) is calculated using the approach presented in Section I&.afaly-
sis showd(Tg > Ta) = 4.28% (Monte-Carlo result = 4.15%) which means 4.28% of faleida
dies experience higher temperature on grid B (FPAdd) rattzer grid A (IntReg). This indicates
that we should not only rely on the nominal location of a hotsput also examine other parts
of a chip which has a high thermal variability. Thereforeantative guidance can be provided
to micro-architects regarding the hotspot locations tg likem in devising thermal manage-
ment solutions. The runtime of such evaluation was a fraatioa second given the previously
estimated moments and covariances of temperatures.
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Figure 7.11: The total power consumption std and node B’s éeatpre moments with respect
to leakage/total power consumption ratio.

The behavior of temperature’s moments and total power ¢opsan are studied by varying
the relative portion of the leakage/total power consunmptithe nominal total power consump-
tion was kept constant while the ratio of the leakage/tata@hianged from 15% to 50%. Figure
7.11 shows the standard deviation and deviation of the ¢ézge@lue of node B’s temperature,
the highest thermal variable point. It also shows the stahdaviation of total power con-
sumption when the ratio is varied. All values are obtaingdrahe convergence of the step
4 calculations. It can be seen that, as expected, icredsenfpakage portion exacerbates the
thermal uncertainty, and hence the total power consumpiimmertainty, which emphasizes the
importance of considering an statistical thermal analfggiscaled and leakier technologies.

Moreover, to investigate how the relative magnitude of titeri correlated intra die, and
residual parts of variations affect the statistical bebawaf temperature and total power con-
sumption, the ratio of the inter-die variation is variednfr©% to 80% while the residual part is
kept 20%. This means the correlated intra-die is varied 8@% to 0% (Fig. 7.12(a)). Also,
in the second case the inter-die variation is kept consta@6% while the correlated intra-die
portion is varied from 0% to 75% which means the residual igararied from 75% to 0% (Fig.
7.12(b)). Finally, in the last case the correlated intrahrt is kept constant 55% while the inter-
die and residual parts are varied from 0% to 45% and 45% to @8pectively (Fig. 7.12(c)). The
figures are obtained based on the leakage/total power 1231806, after the iterations converged
in step 4. As can be seen in figure 7.12(a) and 7.12(b), in anhstsidual part, more inter-die
variation produces more thermal and power uncertainty. é¥&w when the inter-die portion is
constant more correlated intra-die variation brings mareeutainty. These are due to the fact
that, in both cases, the physical parameters’ covarianetgelen grids were increased (please
refer to Eq. (7.5)) which in fact increases the total ungetyahrough the analysis. This is the
same as the circuit delay uncertainty, in which the interahd spatial correlation (systematic
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intra-die) increase the overall variability [174, 175].

In closing, it can be concluded from the results that comsigeghermal uncertainty is a must
for future VLSI design flow and should be considered in défgrapplications. As shown in the
plotted profiles, the magnitude of the temperature vamasaot constant over a die suggesting
to wisely investigate new placement techniques which nét target the minimization of the
peak nominal temperature [160], but also optimize its veméa The leakage power reduction
techniques (e.g., body biasing and supply gating) shosla la¢ more carefully utilized consid-
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ering the bi-directional relation between leakage and traipre. In addition, the power rail
analysis techniques have to be also modified in order to purate the thermal+leakage uncer-
tainty information provided by the analyzer, to produce en@liable grid verification. Moreover,
the electrothermal simulation techniques [156, 147] anerotritical issues which have to be re-
visited since process-induced thermal uncertainty reveake variations on delay and reliability
(MTTF) than the past when process-independent tempesatgre assumed. As a result, strong
couplings between process variability, temperature, aakldge currents make the co-analyzing
for (process variations/ leakage/ temperature) criticafdture robust circuit designs.

7.6 Conclusions

In this chapter, a statistical temperature profile analigzproposed that estimates the probability
density functions and covariances of temperatures ovez.althe statistical behavior of temper-
ature arises from the variable nature of leakage currentap@ysical parameter variabilities.
The inter-die and spatially correlated intra-die gate thragnd oxide thickness variations are con-
sidered in this micro-architectural level analysis apploarlhe thermal dependence of leakage
is also taken into account during estimations. Finallywasapplications of the extracted statis-
tical moments, the migration of hotspots which appears vdogisidering the variations, and the
full chip total power consumption estimation are develop&aialysis done over the sample lay-
out (Alpha 21364) showed that the temperature varianceslywigry (1-9.6C) over the blocks
which can produce a temperature range of (652C3®@n a location of the die and hence impact
power/performance/reliability metrics.
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Chapter 8

Conclusions

In this thesis, computer-aided design methodologies anegsed to address some of the process
variation concerns at the device, circuit, and micro-dedtural levels.

At the device-level, it is shown that a methodology, enfogorariability minimization during
the MOS device design process results in devices that are monune to physical variations
than traditionally designed devices. A theoretical stutlyasious device parameters and their
impacts on device characteristics are presented. An MOBaeesign approach is developed
which finds appropriate values for oxide thickness, gatgtlerand channel doping profile char-
acteristics (Halo and Retrograde Well) for a given MOS dewitacture and technology such
that the extracted device parameters leads to a transikiohwmaximally satisfies three desired
constraints on intrinsic delay, saturation, and total épgekcurrents, in the presence of variability.
The algorithm is based on an optimization technique whielegd a maximized yield cube in the
problem feasible space. The center of this cube is conglderéhe maximum yield design point.
This method takes into account different possible variaraeprocess parameters and desired
performance-leakage metrics for a particular applicatibne designed devices are verified by
comparing against some industrial devices and the the sachictor roundmap. It is, therefore,
concluded that the variability can be effectively consadefrom the device design.

At the circuit-level, advanced sampling and variance rédoebased methods (e.g., QMC,
LHS, Control Variate, and Importance Sampling) are develdpe the efficient yield estima-
tion of digital, analog, and SRAM cells. The yield estimatmfnintegrated circuits through the
Monte-Carlo technique is inefficient. However, it is showrthis thesis that by proper engineer-
ing of the problems, the proposed MC-based methods are eapiptoviding an accurate yield
estimation by using a low number of simulations, comparetiat of the traditional-MC. Three
types of VLSI circuits, the digital, analog, and SRAM celle abnsidered and different solutions
are proposed for each. For the digital circuits statistiicaing analysis problem, the fact that
the timing yield problem contains some considerable highat 1-D terms in its ANOVA de-
composition is used toward improving the discrepancy of3bbol's Quasi-MC sampling. This
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problem is also shown to be a very suitable candidate forgpéaation of the control variate by
the extraction of the nominally critical path. However, foe analog circuits using a control vari-
able requires extra overhead for the CV model training, lesatbuwse sampling-based methods
such LHS for yield analysis. The linearity of the analog gits are then used toward minimizing
the inter-linear and quadratic correlation of the LHS saapfor a reduced variance estimation
of the analog circuit yield. While the digital and analog aitg/ield estimation problems suffer
from the curse of dimensionality, the MC-based SRAM cell yi@dblem is challenging due to
high variance of estimation as the failure rate is extren@ly As a result, an adaptive impor-
tance sampling is developed to provide an immune and aecorathod of yield estimation with
just a few thousand simulations.

Finally, a co-thermal-leakage analysis engine is develadethe micro-architectural level
that accounts for an uncertain thermal profile due to preceisced leakage variations. The
analysis is based on iterative calculation of the statibticermal and leakage moments, and
matching them into a shifted log-normal distribution. lsisown how this information can be
used for the full-chip leakage power yield estimation, amgstigation of the formation of the
thermal hotspots.

Following is the list of related publications:

J1. J. Jaffari and M. Anis, “On Efficient LHS-Based Yield AnalysiE Analog Circuits ”,Ac-
cepted by IEEE Transactions on Computer-Aided Design oflated Circuits and Sys-
tems

J2. J. Jaffariand M. Anis, “Advanced Variance Reduction and Samgdechniques for Efficient
Statistical Timing Analysis”Accepted by IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems

J3. J. Jaffari and M. Anis, “Statistical Thermal Profile ConsidgrProcess Variations: Analysis
and Applications” JEEE Transactions on Computer-Aided Design of Integrated@is
and Systemwol. 27, pp. 1027-1040, June 2008.

J4. J. Jaffari and M. Anis, “Variability-Aware Bulk-MOS Deviced3ign”, [IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systemls 27, pp. 205-216,
February 2008.

C1. J. Jaffari and M. Anis, “Correlation Controlled Sampling fdfi&ent Variability Analysis
of Analog Circuits”,Proc. of IEEE/ACM Design Automation and Test in Eur¢paTE),
pp. 1305-1308, 2010.

C2. J. Jaffari and M. Anis, “Practical Monte-Carlo Based Timingeldi Estimation of Digital
Circuits”, Proc. of IEEE/ACM Design Automation and Test in EurgpATE), pp. 807-
812, 2010.
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C3. J. Jaffari and M. Anis, “Adaptive Sampling for Efficient Raié Probability Analysis of
SRAM Cells”, Proc. of IEEE/ACM International Conference on Computer-Aidesign
(ICCAD), pp. 623-630, 20009.

C4. J. Jaffari and M. Anis, “Timing Yield Estimation of Digital @iuits using a Control Vari-
ate Technique”Proc. of IEEE International Symposium on Quality Electmoiiesign
(ISQED), pp. 382-387, 20009.

C5. J. Jaffari and M. Anis, “On Efficient Monte Carlo-Based Statat Static Timing Analysis
of Digital Circuits”, Proc. of IEEE/ACM International Conference on Computer-Aided
Design(ICCAD), pp. 196-203, 2008.

C6. J. Jaffari and M. Anis, “Variability-Aware Device Optimian under oy and Leakage Cur-
rent Constraints™Proc. of IEEE/ACM International Symposium on Low Power Etaatrs
and DesignISLPED), pp. 119-122,2006.

8.1 Future Works

Suggestions to extend the research of this thesis at diffexeels are listed as follows:

At the device-level, a methodology is developed to caleullaé optimum doping and geom-
etry parameters from the device yield point of view. Howet@achieve certain physical charac-
teristics at the device-level, the fabrication processighbe tuned accordingly. A methodology
that optimizes the fabrication process parameters (ergealimg, ionization, patterning and etch-
ing parameters) and targets the yield of the device, as dkifrthis thesis, is very helpful.

At the circuit-level, considering the promising advancesfficient MC-based vyield esti-
mation methods, an approach for future research should lbeodesign for maximizing the
yield by using sampling-based methods as the core of thd wiealysis. For example, in the
6T-SRAM cell design problem, a methodology that can progrebsoptimize the dimensions
of the six transistors, during the progresses of the adaptiportance sampling yield estimation
is very valuable. Such methods combine the design and thesiaf the yield in a unified flow
rather than a very time-consuming iterative design-ardect cyclic approach. A progressive
update of the response surfaces during the sampling-baséyses, and a resultant design for
the yield of analog and digital circuits should also be cdesed in the future.

Finally, at the micro-architectural-level, bringing thedwledge of the co-thermal-leakage
statistics to the power grid verification, and statisticatiodeling the IR-drop profile might be a
suitable direction to follow. The leakage and thermal \&ies introduce current and resistivity
variations that are the two major contributors to total IRgvariability on the power distribution
network.
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