
Statistical Yield Analysis and Design for Nanometer VLSI

by

Javid Jaffari

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2010

c© Javid Jaffari 2010



I hereby declare that I am the sole author of this thesis. Thisis a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Process variability is the pivotal factor impacting the design of high yield integrated circuits
and systems in deep sub-micron CMOS technologies. The electrical and physical properties of
transistors and interconnects, the building blocks of integrated circuits, are prone to significant
variations that directly impact the performance and power consumption of the fabricated devices,
severely impacting the manufacturing yield. However, the large number of the transistors on a
single chip adds even more challenges for the analysis of thevariation effects, a critical task in
diagnosing the cause of failure and designing for yield. Reliable and efficient statistical analysis
methodologies in various design phases are key to predict the yield before entering such an
expensive fabrication process.

In this thesis, the impacts of process variations are examined at three different levels: device,
circuit, and micro-architecture. The variation models areprovided for each level of abstraction,
and new methodologies are proposed for efficient statistical analysis and design under variation.

At the circuit level, the variability analysis of three crucial sub-blocks of today’s system-
on-chips, namely, digital circuits, memory cells, and analog blocks, are targeted. The accurate
and efficient yield analysis of circuits is recognized as an extremely challenging task within the
electronic design automation community. The large scale ofthe digital circuits, the extremely
high yield requirement for memory cells, and the time-consuming analog circuit simulation are
major concerns in the development of any statistical analysis technique. In this thesis, several
sampling-based methods have been proposed for these three types of circuits to significantly
improve the run-time of the traditional Monte Carlo method, without compromising accuracy.
The proposed sampling-based yield analysis methods benefitfrom the very appealing feature
of the MC method, that is, the capability to consider any complex circuit model. However,
through the use and engineering of advanced variance reduction and sampling methods, ultra-
fast yield estimation solutions are provided for differenttypes of VLSI circuits. Such methods
include control variate, importance sampling, correlation-controlled Latin Hypercube Sampling,
and Quasi Monte Carlo.

At the device level, a methodology is proposed which introduces a variation-aware design
perspective for designing MOS devices in aggressively scaled geometries. The method intro-
duces a yield measure at the device level which targets the saturation and leakage currents of an
MOS transistor. A statistical method is developed to optimize the advanced doping profiles and
geometry features of a device for achieving a maximum device-level yield.

Finally, a statistical thermal analysis framework is proposed. It accounts for the process and
thermal variations simultaneously, at the micro-architectural level. The analyzer is developed,
based on the fact that the process variations lead to uncertain leakage power sources, so that the
thermal profile, itself, would have a probabilistic nature.Therefore, by a co-process-thermal-
leakage analysis, a more reliable full-chip statistical leakage power yield is calculated.
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Chapter 1

Introduction

1.1 Variations: Sources and Impact on Yield

The scaling of the CMOS technology has introduced enormous challenges that must be resolved
by the designers. As the silicon industry moves toward nanometer designs, one of the most
important design challenges cited is the increasing variability in the device characteristics [6]
which threatens the silicon technology, and why CMOS scalingis facing critical yield concerns.

As can be seen in Figure 1.1, the exposure wavelength used forthe lithography process to
print layouts of different layers has not been scaled as fastas technology minimum feature size
[1]. As a result, the printed features will not be exactly thesame as the desired shapes.

These lithography-driven variations bring lateral layoutvariations for gate length (Lg), gate
width (Wg), and metal interconnect width (WM) which affects delay and subthreshold leakage of
CMOS transistors and the characteristics of interconnects.

Vertical variations due to Chemical Mechanical Polishing (CMP) is another source of process
variations (Figure 1.2) which originates from the difference in the removal rates of materials
[7, 8]. The density of a lower layout affects the Inter Layer Dielectrics heights (HILD), oxide
thickness (Tox), and metal thickness (TM) during CMP processes that consequently impacts the
characteristics of interconnects and CMOS gates.

Another source of variation that directly influences the threshold voltage (Vth) of MOS tran-
sistors comes from ion implantation, chemical vapor deposition (CVD), and thermal annealing
processes. This type of variation, called Random Dopant Fluctuations (RDF), causes variability
in the number and position of dopant atoms in the channel of MOS devices [9, 10]. Figure 1.3
shows a side and top view of an MOSFET’s channel to depict the randomness of atoms in a
channel. The shorter the channel, the less dopant atoms are in a channel making the transistor
more sensitive to RDF in scaled technologies.
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Figure 1.3: Atom fluctuations in a MOSFET’s channel[3].
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In closing, the physical parameters, experiencing variability and impacting the circuit delay
and total leakage current, are depicted in Figure 1.4.
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Figure 1.4: Physical parameters experiencing variation

It should be noted that as nominal physical dimensions are rapidly shrunk, more variations
are seen in the various physical parameters [11]. The feature size of layouts reduces faster than
the lithography wavelength, hence, more aggressive subwavelength effects are seen. Also, due to
the increase in the contribution of interconnect to total delay in ultra-DSM CMOS technologies,
the CMP-based variations become more critical in each new technology [12]. Finally, the RDF-
driven threshold voltage variation increases in each technology as the number of dopant atoms
in the shortened channel is rather reduced [3].

The variations on physical parameters cause performance and leakage alteration on a whole
chip. Figure 1.5 shows a measured leakage variation as high as 20X for a 30% variation in chip
frequency. Consequently, yield of a circuit (probability tomeet the desired performance or power
specification) is expected to suffer, unless careful statistical design followed by reliable statistical
timing and power analysis are performed. In fact, if a circuit does not pass a maximum desired
power budget or a minimum clock frequency, it may not be functional and hence reduce the
production yield [13, 14]. However, even if a chip could be used in a lower operating frequency
(mostly the general purpose processors using frequency binning [15]), the profitability will be
reduced as the slower ICs are sold for cheeper.

Besides the mentioned time-invariant variations, there is another type of physical variation
which impacts the threshold voltage of devices in time. Negative Bias Temperature Instability
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Figure 1.5: Frequency and standby leakage current distribution (0.18µm technology) [4].

(NBTI) increases the absolute value of the MOS transistor’s threshold voltage over a period of
months or years, depending on the operating conditions of the device. This phenomenon which
degrades the performance of circuits gradually over time isworsen with technology scaling [16]
and has brought serious reliability concerns in nanoscale technologies as well.

Another type of yield lost is due to process defects causing ashort or open in the circuit
wires. This type of problems can lead to functional failuresand may be addressed by redundancy
in design.

In this thesis, only the performance-driven time-invariant variations are considered. There-
fore, the usage of the termyield is referred to the ratio of the devices/circuits that pass certain
performance metric constraints in presence of process variation.

1.2 Motivations

The design of Very Large Scale Integrated (VLSI) systems canbe divided into many levels of
abstraction. The design process, at each level, requires comprehensive and accurate models of the
physical phenomena and the appropriate tools to simulate them in an efficient manner. The VLSI
system specifications, such as power consumption, speed (performance), life-time, and thermal
behavior must be considered during the various design phases, at each level of abstraction. This
is essential to diagnose the sources of mal-functioning as early as possible and to reduce the
chance of project failure. To achieve these goals, high performance and high capacity design
automation and analysis tools are required.

On top of these traditional design challenges, it is the process variations, introduced during
the IC manufacturing process which adds even more challenges to the design process at each
level. For example, circuits undergoing variability now may exhibit very high leakage power
consumption, pushing them over the power budget. The byproduct of this power consumption
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shift is the generation of heat leading to a higher operatingtemperature that, itself, raises relia-
bility, packaging, and increased leakage power concerns. All are factors that can finally impact
the yield. In addition, the performance of a digital circuitis affected by the transistor and in-
terconnect variations, limiting the operating frequency of the circuit, and the yield of a system
relying on a high-throughput digital processing. The process variations can also be very harmful
for analog blocks and memory cores, directly impacting the yield and the success of a product.

Such an insight has been the motivation to target the processvariation at three levels of
device, circuit, and micro-architecture. In this thesis, the process variations are first modeled at
each level. While the device level parameter variation models are designed to consider the details
of channel doping profiles and device geometries, the circuit-level models lump them together
as basic transistor-level electrical parameters such as threshold voltage variation. Consequently,
the micro-architectural-level models unify the transistor-level parameters into a high-level model
of circuit specifications variations, encapsulated in grids of equally varying process parameters.
Finally, at each level, a number of computer-aided design and analysis solutions are proposed,
each designed to address a gap in design for yield or analysisof variability of nanometer VLSI
systems and circuits due to process variations.

1.3 Contributions

At the device-level, the variations of the drive-in capability and leakage currents are considered
in order to optimize the geometry and doping profiles of an MOSdevice. The proposed device
optimization methodology incorporates variability-awareness into the device design process by
maximally satisfying certain bounds on total leakage, saturation current, and the intrinsic delay of
the device undergoing process variations. This approach introduces a new strategy for the design
of devices, where traditionally, nominal drive-in and leakage currents have been the objectives
of the process design.

However, at circuit-level, the focus of this thesis is on accurate and efficient estimation of
the yield for the different types of VLSI circuits: digital,analog, and SRAM cells. The sta-
tistical estimation of the circuit yield has been one of the major research areas in electronic
design automation in recent years. Despite the considerable progress in this domain, the Monte-
Carlo method is still the most reliable method as it can account for any circuit models and their
secondary effects. However, the MC method suffers greatly from the lack of efficiency due to
its slow convergence rate. In this thesis, a number of advanced sampling and variance reduction
methods are developed to enhance the convergence rate of thetraditional-MC method for circuit-
level process variation-driven yield estimation. The sampling-based yield estimation solutions
have been proposed for digital and analog circuits, and SRAM cells.

Finally, at the micro-architectural level, the effects of process variations are studied in a
high-level co-thermal-leakage analysis framework. The process variations have traditionally
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been studied as a source of full-chip total leakage power variation, leading to an estimation
of system-level power consumption yield. However, the generated heat, due to higher leakage
power consumption, increases the operating temperature ofthe chip, that itself in a positive feed-
back increases the sub-threshold leakage current. In an extreme case, these phenomena can lead
to a thermal runaway. A statistical analysis methodology isproposed in this thesis to account for
the thermal-leakage loop at micro-architectural-level inpresence of process variation.

1.4 Structure of this Thesis

The rest of this thesis is organized as follows:

• Part I: Device-Level

– Chapter 2: The MOS device-level models of the various leakage currentmecha-
nisms, the saturation current, and the intrinsic delay are presented. Then, a device
design methodology is proposed to maximize the yield of MOS devices for a desir-
able performance and leakage constraints.

• Part II: Circuit-Level

– Chapter 3: An overview of advanced sampling and variance reduction methods, used
for efficient sampling-based circuit variability analysis, is presented. These meth-
ods are the core of the proposed techniques in the later chapters that perform circuit
yield estimation with a significantly lower number of samples compared to that of the
traditional-MC.

– Chapter 4: Three methods for efficient MC-based timing yield estimation of digital
circuits are proposed. The methods are based on Quasi-MC sampling and control
variates.

– Chapter 5: The process variation effects on analog circuit performance metrics are
studied through the analysis of the response surface of the metrics. The required
number of MC samples for sufficiently accurate yield estimation is calculated. Then,
an enhanced LHS-based is proposed for the yield analysis of the analog blocks.

– Chapter 6: The failure mechanisms of SRAM cells are investigated. An adaptive
importance sampling-based approach is developed for the efficient yield estimation
of the SRAM cells with rare failure rate.

• Part III: Micro Architectural-Level
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– Chapter 7: A high-level model of leakage power uncertainty, due to process varia-
tions, is adopted to develop a co-thermal-leakage variation analysis engine. A hotspot
formation analyzer and a full-chip leakage power yield analyzer are proposed as two
applications of the engine.

• Part IV: Thesis Closure

– Chapter 8: The conclusion and future works are presented in the last chapter.
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Part I

Device-Level

As CMOS technology is scaling down toward the nano-scale regime, the drastically
growing leakage currents and variations in device characteristics are becoming two
important design challenges. Traditionally, the device design methodology is based
on finding the device parameters which minimize the leakage current while provide
enough saturation current for the performance needs. This methodology may change
when variations are accounted for design. In this part of thethesis, the process vari-
ations are studied in device-level, and a novel device optimization methodology is
presented that incorporates variability awareness into the device design flow such
that the designed devices satisfy certain bounds on the total leakage, saturation cur-
rent, and intrinsic delay under parameter variabilities.
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Chapter 2

Variability-Aware MOS Device Design

2.1 Introduction

The development of silicon technology has been and will continue to be driven by system needs.
These needs have been satisfied by the increase in transistordensity and performance, as sug-
gested by “Moore’s Law” and guided by CMOS scaling theory. However, the scaling of technol-
ogy brings up enormous challenges that must be resolved by designers. As the silicon industry
moves toward nanometer designs, the two most important design challenges cited are the grow-
ing leakage power dissipation [17] and the increasing variability in process dependent device
characteristics [18]. Leakage power has been growing at an alarming rate, and constitutes a
larger fraction of the total chip power in current and futuretechnology generations. In addition,
the manufacturing process of nanometer transistors and structures has introduced several new
sources of variation that has made the control of process variation more difficult [19]. Process
variations significantly impact chips’ performance and power dissipation [18, 20]. The growing
leakage power and variability in device characteristics are indeed the two most serious issues that
threaten the life time of silicon technology [21].

The leakage power problem is further compounded by its strong dependence on the design
parameters and hence on their variations [20]. As a result, circuits experiencing variability, now
may exhibit very high leakage power consumption, pushing them over the power budget. In
fact, variations in transistor parameters in the 180 nm CMOS technology node causes up to 20X
variation in the chip’s total leakage and 30% variation in its maximum operating frequency [4]
and are worse when the technology scales [22].

Traditionally the device design methodology is based on maximizing theION
/

IOFF ratio, in
which a device is designed such that its total leakage current is minimized while it provides a
minimum saturation current satisfying the application’s performance needs. Typically, the total
leakage current consists of three major components, namely: subthreshold, gate direct tunneling,
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and reversed biased junction band-to-band-tunneling [17]. However, the analytical models for
mean and standard deviation of leakage current components suggest different sensitivity mea-
sures to various device parameters [23]. Hence, the variance of the total leakage current depends
not only on device’s parameter variations, but also on the relative magnitude of the leakage com-
ponents of the device. Therefore, different devices with relatively equal nominal total leakage
current may see considerably different variances on their total leakage current in the presence of
variability. This reemphasizes the fact that exclusively minimizing the total leakage may yield
a device with a large sensitivity to process parameters and hence less immunity against leak-
age current variations. Therefore, trading off among the magnitude of leakage components can
produce more robust devices in terms of performance and leakage variability.

Motivated by the above challenges, the design of CMOS devicesmust be revisited to include
variability. The objective of this work is to re-design the CMOS device to increase its yield by
maximizing its immunity against process variations. To achieve this goal, a Bulk-MOS design
methodology is proposed which not only deals with total leakage current reduction but also
increases its tolerance to variability, while accounting for the minimum required drive-in current
(ION) and maximum intrinsic delay (τ = CgV

/

ION) of the device.

With the aid of our proposed methodology, the designer woulddefine a targeted technology
and three bounds onION, intrinsic delay, and total leakage current, and can now exploit the al-
lowable design space for variability to maximize the device’s yield. Physical gate length, oxide
thickness, and channel doping profile (halo and super steep retrograde well) parameters are con-
sidered as the main design variables. These variables form afive-dimensional space where each
point represents a device with parameters equal to the coordinates of the point. Then, based on
the defined bounds, a problem feasible space is formed where every point (device) in this space
satisfies the defined constraints ofION and the total leakage current. Finally, the yield maximiz-
ing step places a cube in the feasible space such that the device lies in the center of that cube
has maximum immunity against process variations. It shouldbe noted that to assure compliance
of the designed device with the targeted technology, fabrication limitations (e.g. minimum gate
length and oxide thickness) and variation parameters of thetechnology should also be given to
the optimizer as technology specific constraints.

The variability has been included into technology optimization by the framework proposed
in [24]. The circuit (e.g.VDD, mean repeater sizing and width) and device level variables(e.g.
gate length, oxide thickness, and peak halo doping) are optimized such that a design shows a
maximum performance-driven yield subject to a maximum average power consumption. There-
fore, the variability of the power consumption is simply modeled by the average sub-threshold
leakage current based onVth variation. This may lead to a design variable set which showsa
satisfying power consumption expected value but high powerconsumption (leakage) variance.
Moreover, the tunneling (gate oxide and BTBT) leakage variations are ignored. Also, the yield
is only defined based on the performance which means a fabricated circuit is acceptable if it only
pass a minimum performance metric regardless of its leakagecurrent magnitude. Finally, using
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Figure 2.1: Symmetrical Bulk–MOS structure. Parameters: gate length (Lg), oxide thickness
(Tox), sidewall spacer width (Wsp), gate/SDE overlap (Lov), SDE junction depth (XjSDE), contact
junction depth (XjCon), Gaussian Halo, and Super Steep Retrograde Well

simplified device models with numerous fitting curves makes the approach useful for fast general
technology variable optimization (as listed before). However, there is still a need to make use
of the trade-offs between various leakage components and its effects on a leakage-performance
based yield and consider them in a detailed device parameteroptimization to build variation
immune devices for different technologies.

The rest of this chapter is organized as follows. In Section 2.2, the selected device structure
and design parameters are presented, whereas the problem isformulated in Section 2.3. The way
the defined constraints on currents are verified is discussedin Section 2.4, and the implementa-
tion and results with discussions are given in Section 2.5. Finally, conclusions are presented in
Section 2.6.

2.2 Selected Device Structure

As mentioned earlier, the objective of this work is to optimize a device’s geometry and doping
profiles in order to obtain the highest immunity against variability in the performance and leakage
current of the device.

To achieve this goal, a symmetrical Bulk-NMOS device structure as shown in Figure 2.1
is selected. The device with various channel doping implants (Source/Drain Extension (SDE),
Gaussian Halo, and vertical Retrograde Well) has been developed to mitigate the short chan-
nel effects and improve the leakage characteristics [25]. The parameters of this structure are
discussed in two categories:geometricalanddopingparameters.
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2.2.1 Geometrical Parameters

The geometrical parameters are physical gate length (Lg), oxide thickness (Tox), sidewall spacer
width (Wsp), and transistor width (W).

2.2.1.1 Physical Gate Length

The threshold voltage of MOSFET devices decreases with the reduction in gate length. Using
depletion approximation, the threshold voltage of a MOS device,Vth, can be defined as [26]:

Vth = Vf b +φs+
QB

Cox
(2.1)

whereVf b is the flat-band voltage;φs is the surface potential;Cox is the capacitance across the
oxide; andQB is the depletion charge in the bulk. In short channel devices, the source-drain
distance is comparable to the depletion width in the vertical direction under the oxide. As a
result, the source and drain depletion regions now penetrate more into the channel, resulting in
part of the channel being already depleted. Therefore, lessbulk charge (QB) is needed for the
device to be inverted by the applied gate voltage. The changein the threshold voltage,Vth, as a
result of channel length scaling can be approximated as [27]:

∆Vth = − [2(Vbi −φs)+VDS]
(

e−L/2l +2e−L/l
)

(2.2)

whereVbi is the potential of the channel/source edge,VDS is the drain-source voltage,L is the
effective channel length, and

l =

√

εsiTox

εox
×Wdep

η
(2.3)

whereWdep/η is the average depletion layer width along the channel, andTox is oxide thickness.
Considering Eq. (2.2), in a long channel device (L >> l ) ∆Vth is almost zero, while in the short
channel devices, the negative∆Vth causes a reduction in threshold voltage. This Short Channel
Effect (SCE) is known asVth roll-off [17].

In addition, subthreshold leakage,Isub of a MOSFET device can be modeled as [28]:.

Isub= µ0Cox
W
L

v2
Te1.8e(VGS−Vth)/nvT

(

1−e−vDS/vT

)

(2.4)

whereµ0 is carrier mobility,WL is width over length ratio of the device,vT is the thermal voltage,
andn is the subthreshold swing coefficient. Considering the exponential dependency between
subthreshold leakage andVth, it can be inferred that the gate length as one of the contributors to
the threshold voltage variation should be taken into account in a variation driven device design.
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It has been shown thatVth rolling off can be reduced by applying halo(pocket) implants [29].
However, this improvement may lead to aVth roll-up (Reversed SCE) followed by an abrupt roll-
off which can be troublesome for devices beyond the 100 nm regime [30, 31]. By increasing the
channel length in the halo implanted device, one can reduce the variation in threshold voltage
(dVth

/

dLg → zero). However, this leads to a penalty in performance because of the reduction in
saturation current [22].

Besides to the discussed trade-off role of the gate length between providing enough saturation
current and threshold voltage stability, the physical gatelength is the main parameter in the hand
of device designers to design various devices for differentpurposes from Low Power (LP) to
High Performance (HP) applications [11].

2.2.1.2 Oxide Thickness

The oxide thickness has a considerable effect on threshold voltage [26] since any variation in
oxide thickness changesCox = εox/Tox. Hence, it will affect threshold voltage and subthreshold
leakage current (as per Eq.2.1 and 2.4). Moreover, the SCE is affected by oxide thickness as
given in Eg.2.3, therefore, thinner oxide is needed to overcomeVth roll-off in scaled technologies.
However, the gate-tunneling leakage cannot be neglected when the oxide thickness is less than
3nm [17]. The gate leakage is due to the tunneling of an electron (or hole) from the bulk silicon
through the gate-oxide potential barrier into the gate. Direct tunneling gate leakage density,JDT ,
is modeled as [32]:

JDT = A

(

Vox

Tox

)2

exp

{

−B
Tox

Vox

[

1−
(

1−Vox

φox

) 3
2
]}

(2.5)

whereVox is the drop across the thin oxide andφox is the barrier height for the tunneling particle
(electron or hole).A andB are physical parameters depended on barrier height and are given
in [32]. It can be seen from Eq. (2.5) that the tunneling current increases exponentially with a
decrease in oxide thickness.

In addition, the saturation current and intrinsic delay arealso sensitive to variation inTox due
to variations in threshold voltage and gate oxide capacitance.

2.2.1.3 Other Parameters

The transistor width is chosen by the circuit designers to size transistors in order to meet the
required specifications for the system. Therefore, it is notconsidered as a device level design
variable in our optimization problem. In addition, sidewall spacers are used to form SDE regions
in the two sides of the channel and their width is determined based on the physical gate length
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[33]. Hence, their values are determined for every transistor based on its gate length (Wsp =
1.1×Lg) [11], so it is not included in the proposed device design parameter list.

2.2.2 Doping Parameters

Various channel profiles have been developed to overcome short channel effects and improve
leakage characteristics [25]. Today’s MOS transistors have three profiles in their channel: Source/Drain
Extension (SDE), Halo, and Super Steep Retrograde Well (SSRW).

2.2.2.1 Source/Drain Extensions

SDE regions which are traditionally known as Lightly Doped Drain (LDD) are critical for deep
sub-micron devices since they suppress the buildup of wide electric fields in the drain and source
regions, hence reducing Drain Induced Barrier Lowering (DIBL) andVth roll-off known as short
channel effects [34]. The two important aspects associating with SDE region profiles are junction
depth and lateral abruptness.

SDE junction depth (XjSDE) plays an important role in deep sub-micron devices. Deeper
junctions result in more severe short channel effects due tofurther spreading potential contours
and hence the depletion region into the channel. However, shallower junctions can impose higher
series resistance to the transistor’s source/drain terminal [35]. This trade-off has pushed designers
to find the optimum SDE junction depth which not only reduces the series resistance and hence
boosts the drive-in current but also improves short channeleffects [35, 36]. Now, it is well
understood that in the sub 100 nm regimes the extension junction depth should be scaled more
aggressive than the past [11]. Motivated by the needs which are suggested in ITRS (International
Technology Roadmap for Semiconductors), the ultra-shallowjunctions is now achievable by the
new innovations in fabrication techniques [34, 37, 38, 39].In this work, the existing guidelines
reported in ITRS are used for the depth of SDE regions [11].

Another important aspect of the SDE profile is its lateral abruptness. Detailed studies of
SDE profiles showed that extension resistance which is an obstacle to achieve high-performance
devices is strongly linked to lateral abruptness of the SDE.While more abrupt profile yields less
resistivity to the extension, DIBL and threshold roll-off isimpacted by too abrupt or too gradual
junctions [40]. Based on the above facts, another guideline for optimum lateral abruptness has
been reported in ITRS which is used in this work (lateral abruptness innm/decade drop-off in
doping concentration= 0.11× Lg) [11]. It should be noted that, the length of the gate drain
overlap (Lov) is correlated with SDE lateral abruptness [35, 41] and is implicitly determined by
the lateral abruptness of the SDE.
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2.2.2.2 S/D Contacts

Due to existence of extensions, S/D contacts are placed far from the channel. As a result, the short
channel effects are independent of the contact junction depth (XjCon), and only the saturation
current increases with the increase inXjCon [42]. Therefore, theXjCon = 1.1×Lg is determined
based on physical gate length as given in ITRS [11].

2.2.2.3 Halo and Super Steep Retrograde Well

In short channel devices, additional non-uniform implantsin the lateral and vertical directions
are used to improve short channel effects [43, 44]. Halo, a non-uniform lateral doping, has been
introduced to improve short channel effects and reduce subthreshold leakage current [45]. Tilt
implanting of halo impurities places the pocket regions adjacent to SDE edge which made the
profile more useful to suppress punch-through and short channel effects [46]. By proper usage of
the profile, a 25 nm CMOS transistor design is feasible withoutcontinued scaling of the supply
voltage. Therefore, a considerable improvement in device performance is achievable [46, 47].

In addition, to keep acceptable subthreshold leakage current in scaled devices, the channel
doping should be increased as the gate length is decreased. However, increasing the channel
doping leads to increase in threshold voltage, and consequently degrades device performance.
A nonuniform vertical channel doping known as retrograde well can overcome the problem by
providing a low surface concentration [17]. Due to suppressing channel impurity scattering, the
lower concentration keeps surface channel mobility high while reduces subthreshold current. In
fact, Super Steep Retrograde Well (SSRW) is preferred due to the increase in the linear drive
current which causes performance improvement for logic gates [48, 49].

The symmetrical 2-D non-uniform channel doping,NCH(x,y), composed by halo and retro-
grade which is typically assumed to be Gaussian [50] is givenas:

NCH (x,y) = NHalo(x,y)+NRW(y)+NSub

where

NHalo(x,y) = PH

[

exp
(

−(x−α1)
2

S2
halox

)

+exp

(

−(x−α2)
2

S2
halox

)]

exp

(

−(y−β)2

S2
haloy

)

and

NRW(y) = PRWexp
(

−(y−YRW)2

S2
RW

)

(2.6)

wherePH andPRW represent the peak halo and retrograde well concentrations, andNSub is the
constant uniform doping of the bulk.Shaloy andShalox denote the characteristic decay lengths of
the Gaussian halo profile in the vertical and lateral directions, andSRW is the decay length on the
vertical retrograde well. Finally, the positions of the halo and retrograde peaks are defined byα1,
α2, β, andYRW. α1 andα2 are lateral positions of the pocket implant peaks whileβ andYRW are
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the vertical position of the halo and retrograde peaks, respectively. In this work, the halo(pocket)
peaks are placed beside the SDE edge where the extension and background concentrations are
equated.

Band To Band Tunneling (BTBT) leakage is strongly linked to the channel and junction
profiles [43], and hence, is very sensitive to any channel doping variation [23]. The BTBT
current,IBTBT can be estimated as [43]:

IBTBT =
(

WXjSDEÂ
/

E1/2
g

)

ξVDD exp
(

−B̂E3/2
g

/

ξ
)

where

ξ =

√

2qNasideNsdside
εsi(Naside+Nsdside)

[

VDD + KT
q ln

(

NasideNsdside
n2

i

)]

(2.7)

whereNaside andNsdsideare the p-side and n-side junction doping.Eg is the band-gap of the
silicon, andÂ andB̂ are physical coefficients given in [10]. Variation on channel peek dopings
(halos and retrograde well) and vertical position of the retrograde well affectNaside and hence
BTBT leakage [43].

Furthermore, the variation of the peak values and the position of the retrograde well strongly
affect threshold voltage and hence subthreshold leakage current, due to the impact on the thresh-
old roll-off and Random Dopant Fluctuation (RDF)-driven threshold voltage variations [10]. In
fact, in scaled technologies, RDF is becoming a dominant source of threshold voltage variations
as the average number of dopant atoms in the channel is ratherreduced. Finally, any change in
the threshold voltage impacts the drive–in current and intrinsic delay as well. Moreover, there
are no predefined exact values for halo and retrograde peaks and position in ITRS.

Consequently, the following device parameters will be used in forming the device optimiza-
tion problem.

• Lg: Physical gate length

• Tox: Oxide thickness

• PH : Halo peak doping concentration

• PRW: Retrograde well peak doping concentration

• YRW: Vertical position of the retrograde well peak

As shown earlier, each leakage component is a function of thenumber of five process para-
meters under consideration.Igate, IBTBT, andIsub are exponentially depends onTox, Naside, and
Vth, respectively [17], whileVth is a function of all selected process parameters [23]. Therefore,
ON drive-in current as well as intrinsic delay is also a function of listed parameters. Hence, the
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Figure 2.2: Total Leakage (TL) estimation scheme

following representations could be used to show the device characteristics and their dependency
to each selected design parameter.

τ = f (Lg,Tox,PH ,PRW,YRW)
ION = f (Lg,Tox,PH ,PRW,YRW)
Isub= f (Lg,Tox,PH ,PRW,YRW)
IBTBT = f (PH ,PRW,YRW)
Igate= f (Lg,Tox)

(2.8)

2.3 Problem Formulation

2.3.1 General Approach

Considering a five-dimensional space composed byLg, Tox, PH , PRW, andYRW, a yield optimiza-
tion problem can be represented as follows:

argmax
x=(Lg,Tox,PH ,PRW,YRW)

Yield= Px{C(x) = 1} (2.9)

whereC(x) denotes a boolean random variable function defined based on desired bounds on the
ON current (ION), intrinsic delay (τ), and total leakage (TL) and is formulated by Eq. (2.10).

C(x) = (ION(x) ≥ ION−Min)AND(τ(x) ≤ τMax)
AND(TL(x) ≤ TLMax)

(2.10)

where ION−Min, τMax, and TLMax are desirable bounds for device parameters of interest.
Therefore,Px{C(x) = 1} represents the probability that a device (x) satisfies the currents and
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delay constraints in the presence of variations inx elements. This type of problem formulation
enables developing different devices for high-performance or low-power applications by assign-
ing various values toION−Min, τMax, andTLMax. The selection criteria for two performance
metrics (ON current and intrinsic delay) is based on the factthat the performance improvement
is primarily achieved by reduction of gate capacitance and hence reduction of intrinsic delay in
every technology node for sub 100nm regime [11], while theION is almost constant in scaled
technologies and should only meet a minimum to prevent negative impact on the device drivabil-
ity, critical for driving parasitic/interconnect capacitances.

To have a more realistic indication of the total leakage,TL, in digital circuits, all of the worst
case leakage components are added together as given in ITRS [11].

TL =
Isub(VGS= 0,VDS = VDD)+ IBTBT(VGS= 0,VDS = VDD)+ Igate(VGS= VDD,VDS = 0)

(2.11)

Figure 2.2 shows a typical scheme where all three leakage components contribute in total
leakage power.

2.3.2 Yield Estimation

To solve the optimization problem stated in Eq. (2.9), one should estimate the probability of
placing a device in the feasible space defined by the design constraints in the presence of variation
in device parameters. This means that the probability whicha device with parametersx satisfies
the desired constraints on intrinsic delay, leakage, and drive-in current should be estimated. To
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Figure 2.3: Simplified problem in two dimensions
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estimate such probability,Px(C = 1), a 5-D cube is formed in the problem space where all points
within the cube satisfy the constraints on theION andTL bounds.

To clarify this point, a problem with two design variables (Tox,PH) is shown in Figure 2.3.
A feasible region is defined based on the problem constraints. A rectangle is figured where its
area is in the feasible region (all devices lying in the rectangle have theION, τ, andTL within the
desired bounds). The center of the rectangle is the max yieldpoint. Now, considering a device
placed in the center, the probability of the constraints satisfaction for such device in the presence
of independent parameter variations can be estimated as follows:

Px(2−D) = Px{C(x) = 1} = P{T l
ox ≤ Tox ≤ Tu

ox}×P{Pl
H ≤ PH ≤ Pu

H} (2.12)

whereT l
ox, Tu

ox, Pl
H , andPu

H are coordinates of the rectangle.

By expanding this 2-D problem to the original 5-D problem given in Eq. (2.9), the 5-D yield
probability can be represented as:

Assuming :







x = (Lg,Tox,PH ,PRW,YRW)
xl =

(

Ll
g,T

l
ox,P

l
H ,Pl

RW,Yl
RW

)

xu =
(
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g,T

u
ox,P

u
H ,Pu

RW,Yu
RW

)

Yield
(

xl ,xu
)

= Px{C = 1} =
5
∏
i=1

P
{

xl
i ≤ xi ≤ xu

i

}

=
5
∏
i=1

(

CDFXi (x
u
i )−CDFXi

(

xl
i

))

(2.13)

wherexi is the ith design parameter of devicex. xu and xl represent the coordinates of the
inscribed 5-D cube (instead of rectangle of 2-D problem). Thus,CDFXi is the cumulative dis-
tribution function of the parameterxi. In this work, the variability of each design parameter is
considered to be independent and the distribution is assumed to be Gaussian [20]. But, Gaussian
distribution does not have a closed form cumulative distribution function (CDF) which is needed
for yield evaluation, so the Kumaraswamy’s distribution model is utilized [51, 52]. This double
bounded probability density function (DB-PDF), is appropriate for physically bounded variables
and provide a simple closed form expression for any probability distribution function [52]. The
probability distribution function (PDF)f (z) of this model is in the form of:

f (z) = abza−1(1−za)b−1

z= x−xlb

xub−xlb , xlb ≤ x≤ xub (2.14)

wherexub andxlb represent upper and lower bounds of double-bounded random variablex. De-
pending on the values chosen for parametersa andb, DB-PDF can take various shapes. In this
work, a truncated Gaussian shape with rangexub− xlb = 6σx has been used by settinga and
b to 3.6 and 8. Thereforexub andxlb are set toxc + 3σx andxc−3σx, respectively. However,
other forms of distributions such as uniform, triangular, and log-normal can also be used. The
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closed-form CDF of this modelF(z) which is called DB-CDF is easily available from its integral
[52]:

F(z) = 1− (1−za)b (2.15)

Due to the symmetrical nature of design variables, the final optimized device,xo, is assumed
to be in the center of the inscribed 5-D cube. Therefore, its coordinates can be easily calculated
as:

xo = xc =
xl +xu

2
(2.16)

By using the closed form of the obtained DB-CDF and Eq. (2.16), the yield function of Eq.
(2.13) can be rewritten as follows:

Yield
(

xl ,xu
)

=
5
∏
i=1

(

F
(

xu
i −xlb

i
xub

i −xlb
i

)

−F
(

xl
i−xlb

i
xub

i −xlb
i

))

=
5
∏
i=1

(

F
(

xu
i −(xc

i −3σxi )

6σxi

)

−F

(

xl
i−(xc

i −3σxi )

6σxi

))

=
5
∏
i=1

(

F

(

xu
i −xl

i +6σxi
12σxi

)

−F

(

xl
i−xu

i +6σxi
12σxi

))

(2.17)

The gate length and oxide thickness variations are constantfor a given technology driven
by the lithographic precision. Therefore, their values areset as technology specific parameters.
However, the variations of other parameters are defined as percentage of the center point in every
yield estimation iteration.

2.3.3 Final Optimization Problem

Till now, the probability of finding a device in a 5-D cube is estimated. However, to solve the
optimization problem of Eq. (2.9), a 5-D cube should be inscribed in a feasible region which is
defined based on marginal currents values. This 5-D cube is defined as follows:

Cube(xl ,xu) =
{

x∈ ℜ5|xl ≤ x≤ xu
}

(2.18)

The cube is inscribed in the feasible region ofFc where every pointx ∈ Fc satisfies theION

andTL constraints.
Fc =

{

x∈ ℜ5 |C(x) = 1
}

(2.19)

The yield maximization objective is to find the 5-D cube inscribed in theFc such that the
portion of points lies in the cube be maximized. Therefore, by using Eq. (2.17), (2.18), and
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(2.19), the optimization problem of Eq. (2.9) can be represented as follows:
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xl ≤ xu

xmin ≤ xc ≤ xmax

⇒ xo = xl +xu

2

(2.20)

To effectively solve this constrained nonlinear optimization problem, a Sequential Quadratic
Programming (SQP) optimization engine is used [52, 53]. Technology-specific variances and
physical limits are set for to the optimization engine. Three desired margins on delay, drive–in,
and total leakage currents are also defined. The engine finds a5-D cube in the feasible region
while it maximizesYield. The actual device parameters will be the center point of thecube which
has the largest constraint satisfaction.

2.4 Constraint Verification Scheme

As can be seen in Eq. (2.20), the optimum 5-D cube should be inscribed in the feasible region.
Traditionally, the polyhedral approximation was used to linearly model the feasible region [52].
This was done based on the assumption that the performance metrics change linearly with design
variables [54]. However, this is not the case for the device design problem where the design
constraints mostly behave exponentially with respect to the design variables. In addition, when
using linear approximation, the polyhedral region needs tobe updated in every iteration which
needs expensive MEDICI simulations to find the shortest distance of the center point from the
constraints and numerical calculation of the constraints’derivatives over all design variables
[52]. Moreover, the design centering and worst-case distant analysis approaches [54] place the
optimum point in the center of feasible region which does notnecessarily provide maximum yield
since the variations of process parameters are not equal. For example, there might be a design
variable which is far from constraint borders in comparisonto other variables but dominantly
impact yield because it has a wide variation. Therefore, maximizing the yield function directly
produces better results than centering the design variables or using Maxmin approach.
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In this work, the containment condition (Cube(xl ,xu) ⊆ Fc) is verified by checking the worst
case scenarios where everyx element gets its extreme value. These scenarios can be formed by
25 = 32 combinations of extreme values for everyxi. By inspecting Figure 2.3 of the simple
two-dimensional problem, this fact can be observed. It can be seen that locating 22 = 4 corners
of the rectangle

{(

T l
ox,P

l
H

)

,
(

T l
ox,P

u
H

)

,
(

Tu
ox,P

l
H

)

,(Tu
ox,P

u
H)

}

in the feasible region satisfies the
containment condition of the problem. Therefore, the containment verification process is reduced
to corner cases checking of the design. This condition can beverified bysurface extractionor
direct evaluation.

2.4.1 Surface Extraction

In this approach, analytical equations of border curves or surfaces where the constraints are
satisfied are extracted. Considering Figure 2.3, it can be seen that there are four curves in the
space ofTox andPRW where the devices placed on one of those curves would satisfythe ION, τ,
or TL constraints. Every curve is a border which splits the designspace into two regions with
respect to drive–in, intrinsic delay, or total leakage current. The intersection of the generated
regions forms the feasible space. In a three dimensional problem surfaces rather than curves
create the feasible space of the problem [55].

To compute analytical equations for surfaces, at first, various device parameter sets placing
over the border of feasible region should be found. Then, theextracted design points should be
fitted to some defined nonlinear-equation formats in order toform precise analytical representa-
tion for the surfaces. Thex points satisfying the constraint borders can be obtained byapplying
the Gauss-Newton search algorithm [53] to the following equations:

ION(x) = ION−Min

τ(x) = τMax

TL(x) = TLMax

(2.21)

The core of the search algorithm uses the MEDICI 2-D device simulator to calculate the de-
lay, leakage, and drive–in currents of devices [56]. It should be noted that the proposed method-
ology is flexible to use 3-D or any TCAD engine for the device simulations. Finally, by using the
created surfaces, the feasible space is formed and used to direct the optimization engine in order
to fit the maximum yield cube in it.

However, after any change on the requiredION−Min, τMax, or TLMax, the surfaces should be
updated to form a new feasible space with respect to the new bounds. Therefore, any attempt to
design a new device with different constraints needs numerous MEDICI device simulations to
form the new surfaces. Furthermore, due to complexity and imagination concerns of higher than
three-dimensional problems, surface fitting and extraction will become a very hard task for our
five-dimensional problem. For example, for the three-dimensional device problem there were 10
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fitting parameters to describeTL surfaces with non polynomial terms [55]. As a result, in this
work, the following approach has been designed as an alternative.

2.4.2 Direct Evaluation

Instead of extracting analytical equations for constraintborders, the delay, drive–in, and total
leakage current of corner cases can be evaluated directly during the optimization step. In other
words, the containment constraint (Cube(xl ,xu) ⊆ Fc) is split into 2N triplet constraints using the
combinations ofxl andxu elements whereN is the number of design parameters. As a result, in
our case, the containment constraint can be rewritten as:

Cube(xl ,xu) ⊆ Fc

≡






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l
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2, ...,x
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5
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i |xu

i ≡ xl
i OR xu

i

(2.22)

To verify these constraints the MEDICI 2-D device simulator has been used. However, to im-
prove the speed of this approach, these strategies were used: Redundant Constraints Elimination
andReusing Previous Simulation Results

2.4.2.1 Redundant Constraints Elimination

The SQP numerical optimization engine is an iterative-based algorithm which searches the prob-
lem space to find the optimum design point within the constraints. Therefore, in every iteration
when a set of design corners (xl ,xu) is picked, their feasibility should be verified. As elaborated
earlier and shown in Eq. (2.22), to verify the feasibility, the containment constraint has been
converted to a set of 25 = 32 triplets of inequality constraints. This means that every attempt
in picking a new design corner set requires 32 times simulation of devices by MEDICI which
produces a long optimization time.

However, by looking through the 32 possible combinations ofdesign corners Eq. (2.22), one
can conclude that some of them are redundant and can be eliminated from the list of inequality
constraints. For example, if any combination of the upper margin of gate length (Lu

g) satisfies
the constraint on delay and drive–in current, others with lower margin of gate length (Ll

g) will
also satisfy the constraint since their gate capacitances are lower while their saturation currents
are more. Therefore, there is no need to check any combination produced byLl

g for delay and
drive–in current.
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In fact, among all of the 32 triplets of corner cases just a fewof them represents worst case
scenarios with respect to either total leakage or drive-in currents. Consequently, the list of the
potentially worst case scenarios forτ, TL, andION is given as below:
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l
ox|Tu

ox,P
l
H ,Pl

RW,Yl
RW|Yu
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u
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(
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u
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u
H ,Pu

RW,Yl
RW|Yu

RW

)

≥ τMax

(2.23)

Eq. (2.23-a) represents the 4 cases where gate tunneling and/or subthreshold leakage are
dominant. Shorter gate length (Ll

g) increases subthreshold leakage. Furthermore, a low effective
channel doping concentration due to using lowerPH andPRW bounds cannot effectively overcome
the short channel effects, hence increases subthreshold leakage. On the other hand, Eq. (2.23-b)
represents 4 more cases where the BTBT leakage contributes effectively to the total leakage due
to higher side doping concentration (Naside) in the channel.

To verify theION constraint, the slow devices among possible design cornersshould be se-
lected. Such devices have the upper gate length and oxide thickness bound. Furthermore, to
achieve a higher threshold voltage, the channel doping should be high as well. As a result of
redundant constraint elimination, the number of constraints is reduced to 12 from 32×3 = 96.

2.4.2.2 Reusing Previous Simulation Results

As mentioned earlier, the optimization procedure is an iteration-based algorithm in which every
design variable is repeatedly changed and evaluated to finally converge to the optimum solution.
In every iteration, when a single variable is changed, the containment constraint is verified. Sup-
pose that the case whereLl

g is changed, the algorithm can be sped up if simulating the corner
devices forION is ignored because theION constraints Eq. (2.23-c) are independent ofLl

g, and
we can make use of previously simulated results instead of running MEDICI redundantly.

Therefore, to speed up the approach, the simulation results(ION andTL) of every simulation
could be saved and reused when needed in next iterations.

2.5 Results and Discussion

To verify the optimization methodology, various MEDICI template files have been developed
to simulate Bulk-Si NMOS devices. The templates are designedsuch that, the value of five
design parameters can be changed by the optimization engineduring its execution. The terminal
voltages of the transistor are set to simulate every worst case leakage current condition.

25



Table 2.1: Desired bounds and operating supply voltage for designed devices in 90nm technology

HP1 HP2 LP1 LP2 HP65

ION (µA/µm) ≥ 1050 ≥ 1050 ≥ 550 ≥ 550 ≥ 1150

τ (ps) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 0.85

TL (nA/µm) ≤ 250 ≤ 125 ≤ 5 ≤ 2.5 ≤ 500

VDD (V) 1.2 1.2 1 1 1.1

Table 2.2: Obtained design parameters for each application

HP1 HP2 LP1 LP2 HP65

Lg (nm) 43.2 41.6 66.5 64 36.5

Tox (nm) 1.41 1.39 1.65 1.7 1.21

PH (×1018/cm−3) 2.1 3.4 3.7 2.5 3.8

PRW (×1018/cm−3) 6.7 5.3 5.9 6.8 4.3

YRW (nm) 11.3 9.8 5.9 6.9 10.7

MEDICI provides a wide range of models for every physical phenomenon. In this work,
LUCMOB has been used to model carrier mobility [57]. LUCMOB is an all-inclusive model
accounting for low, high, transverse, and longitudinal field effects. Furthermore, Kane’s model
has been used to model band to band tunneling current [58]. Finally, to model the gate direct
tunneling current a silicon-oxide type insulator has been considered. The net tunneling current
across the insulator is numerically calculated using the independent electron approximation [59].

For each high-performance (HP) and low-power (LP) application, two devices have been
designed for 90nm technology. The 3σTox and 3σLg are fixed to 4%×1.5nmand 12%×90nm,
while for doping parameters, 10% of their center value is assigned to their 3σ in every iteration.
The defined bounds onION andTL of each device and the corresponding supply voltage are set
based on 90nm technology node specifications [11] shown in Table 2.1. To have higher drive-in
current and hence better performance, the supply voltage ofthe HP devices are set higher than
the LP ones as suggested by ITRS [11]. The HP2 and LP2 devices are high performance and low
power devices with tighter constraints (i.e. the HP2 and LP2total leakage constraints are lower
than the HP1 and LP1). Moreover, a high-performance 65nm transistor (HP65) is also designed
to see how the results change when different physical limitsand variances are used for another
technology with faster while leakier characteristics. New3σ variations are assigned toLg and
Tox as 12%×65nmand 4%×1.2nm for 65nm technology as well as shorter lower limit forLg.
TheLmin

g is set to 28 and 33 nanometer for 65nm and 90nm technologies, respectively whileTmin
ox

is kept 1nm for both cases.
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Table 2.3: Specifications of designed devices

HP1 HP2 LP1 LP2 HP65

ISub(nA/µm) 48.1 22.5 0.99 0.6 158

IBTBT (nA/µm) 6.65 21.5 0.4 8e-3 16.9

IG (nA/µm) 15.4 19.3 1.07 0.62 93.2

JG (A/cm2) 35.6 46.5 1.6 0.97 255

TL (nA/µm) 70.2 63.4 2.46 1.23 268.1

ION (µA/µm) 1230 1204 658 648 1280

τ = CgV/ION (ps) 0.78 0.8 1.63 1.55 0.7

Vth (mV) 200 212 268 305 157

DIBL (mV/V) 62 48 22 50 60

Slope(mV/dec) 81 81 75 76 79

LChannel(nm) 24.3 24.7 40.8 38.6 22.2

Table 2.2 presents the device parameters of five transistorsobtained from the methodology.
The HP devices have shorter gate length and thinner oxide thickness in comparison to the LP
device. Moreover, to have less impurity scattering and hence more saturation current in HP
devices the SSRW peak is located more far from the surface in comparison to LP devices. It
should be noted that, in this method, the characteristic decay lengths of halo and SSRW are
set based on the fabrication restrictions by the designer. However, the peak and position of the
profiles which can be controlled by the ion dosage and the energy during ion implanting process
are manipulated as design variables to gain more variation-driven toleration.

The specification of the designed devices are given in Table 2.3. It is evident that the tighter
constraints on total leakage, in HP2 and LP2, causes less total leakage for corresponding devices
making their drive-in current lower as well. Furthermore, the subthreshold slope factors are better
for the LP devices, and the threshold voltages of them are more than the HP devices. Moreover,
it can be seen that the device with more BTBT current in each HP orLP group provides more
suppression to the depletion region penetration into the channel which produces lower DIBL
effects. The I-V characteristic of HP1 and LP1 devices are given in Figure 2.4.

To figure out the effects of process variation on the devices’characteristics, Mont Carlo sim-
ulations were done to obtain the actual yield for all devicesbased on the initial defined bounds
on currents and delay (see Table 2.1). To have a more realistic variation analysis and hence fair
comparison between the designed devices and industrial ones, the spacer width (Wsp) and SDE
junction depth (XjSDE) are also varied in Monte Carlo simulations [60]. TheWsp andXjSDE vari-
ances are set to 12%×90 AND 65nm and 10% respectively for 90nm and 65nm technologies.
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Figure 2.4: I-V characteristics of the HP1 and LP1

The given yield is equal to the percentage of devices satisfying the desired bounds under all pa-
rameter variations. The mean and standard deviation of devices’ characteristics experimenting
Gaussian process variations are listed in Table 2.4. It can be seen that the average speed of the
HP65 device is 10% faster in comparison to 90nm devices with higherVDD. However, this would
be increased to 25% if the sameVDD = 1.2 was used. Moreover, the average leakage of the 65nm
device is 2.5X times greater than the the 90nm device’s average leakage. However, the leakage
variance has not been increased with that rate as it is assumed that the absolute values of the gate
length and oxide thickness variances are reduced.

Figure 2.5 is depicted to verify the optimization process. In fact, exhaustive search of the
whole design space to find the globally maximum yield point byrunning Monte-Carlo simulation
for all feasible design points is not computationally tractable. Therefore, to check if the proposed
optimization approach leads a local maximum yield, the firstand second derivative test at the
obtained optimum point are performed, in which the gradientof the yield function should be

zero: ∇Yield =
(

∂Yield
∂Lg

, ∂Yield
∂Tox

, ∂Yield
∂PH

, ∂Yield
∂PRW, ∂Yield

∂YRW

)

≈~0, and the second derivative of it should

be negative. Figure 2.5 depicts the yield curves, obtained for devices around the designed HP1
device (Table 2.2) by running Monte-Carlo simulations. Eachsub-figure is extracted by varying
one design parameter while keeping others constant and performing Monte Carlo simulations.
For example, Figure 2.5(a) depicts the yield and the averages of device characteristics when
(Tox = 1.41nm, PH = 2.1×1018/cm−3, PRW = 6.7×1018/cm−3, YRW = 11.3nm) while Lg is
varied from 36nm to 52nm. As can be seen, the yield is maximum at the designed point and
diminishes once a device parameter is moved away from its optimum value.

Finally, Figure 2.6 represents the Monte-Carlo results of the designed devices. It is evident
that having both intrinsic delay andION constraints in the performance metric constraint list is
necessary as can be seen inτ− ION figures there are some devices which satisfyτ but notION or
vice versa.
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Table 2.4: The means and standard deviations of devices’ characterisitcs
HP1 HP2 LP1 LP2 HP65

ISub µ 85.7 48.3 1.5 1.4 124

(nA/µm) σ 112 69.5 2.3 2.1 126

IBTBT µ 7.4 30.6 0.4 18e-3 34

(nA/µm) σ 3.6 19.5 0.18 21e-3 14.5

IG µ 15.7 19.5 1.1 0.6 95

(nA/µm) σ 2.6 3.5 0.18 0.9 15

TL µ 109 98.7 3 2 253

(nA/µm) σ 111 66 2.3 2.1 120

σ/µ 102% 67% 75% 103% 47.5%

ION µ 1205 1186 660 647 1246

(µA/µm) σ 88 96 50 58 78

σ/µ 7.3% 8.1% 7.6% 8.9% 6.25%

τ µ 0.8 0.82 1.64 1.56 0.73

(ps) σ 0.11 0.13 0.2 0.21 0.085

σ/µ 14% 15.5% 12.1% 13.6% 11.6%

Yield 86% 74% 90.5% 75% 85%

It should be noted that the controllability of the process would not allow theLg andTox to be
optimized continuously. To resolve the issue, after obtaining optimum device parameters theLg

andTox will be rounded to the nearest achievable values, then otherdoping parameters will be re-
optimized based on the fixed values forLg andTox. However, the second optimization would be
considerably faster as the number of design variables and verifying constraints are lesser. Also,
the resulted profile parameters will not greatly change as the gate length and oxide thickness are
also kept very close to the optimized values. To evaluate theyield penalty of such approach we
applied this approach to the device with more deviations ofLg andTox from assumed achievable
values (e.g. LP1, assuming 1nm and 0.1nm forLg andTox levels of granularity). Therefore,
newLg andTox would be 66nm and 1.6nm respectively. Having these new fixed values the new
optimized doping profiles slightly changed toPH = 3.8e18,PRW = 6.1e18, andYRW = 6nm. This
reduces the yield from 90.5% to 85.5%.
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Figure 2.5: Yield, and the average of total leakages,ION, andτ, obtained by Monte-Carlo simu-
lations for HP1 when the device parameters are shifted from the obtained optimum ones. Each
figure is extracted from the cases when one device parameter is swept while others are kept equal
to the parameters of HP1.

2.6 Conclusions

In this chapter, a new device design approach is proposed. This method tries to find appropri-
ate values for oxide thickness, gate length, and channel doping profile characteristics (Halo and
Retrograde Well) for a known MOS device structure such that the extracted device leads the
transistor which maximally satisfies three desired constraints on intrinsic delay, saturation, and
total leakage currents, in the presence of variability. Thechapter presents a theoretical study of
various device parameters and their effects on device characteristics and shows that variability
can be considered during device design. The algorithm is based on an optimization technique
which places a maximized yield cube in the problem feasible space. The center of this cube is
considered as the maximum yield design point. This method takes into account different pos-
sible variances on process parameters and desired performance-leakage metrics for a particular
application.
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Figure 2.6: Monte Carlo simulations of designed devices
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Part II

Circuit-Level

The reliable yet efficient statistical analysis of VLSI circuits is a critical task to di-
agnose the yield concerns before entering the expensive tape-out phase. The corner-
based verification techniques are prone to over-design problem or lack of efficiency
due to increasing number of corners. Therefore, the probabilistic-based (non-Monte
Carlo) methods have been considered by many researcher as theultimate solution.
Generally, these methods simplify or ignore some second order effects of perfor-
mance metrics or process variations models, in order to provide tractable solutions
for yield estimation of today’s large-scale VLSI circuits.As a result, the Monte Carlo
(MC) method is still considered as a reliable alternative. However, the major draw-
back of the MC method is its slow rate of convergence. In this part of the thesis,
several solutions are proposed for the efficient sampling-based variability analysis
of VLSI circuits through the adoption of advanced sampling and variance-reduction
methods. Different solutions are provided for digital and analog circuits, and SRAM
cells.
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Chapter 3

Overview of Advanced Sampling and Variance
Reduction Methods

The traditional Monte Carlo analysis has a very slow convergence rate, so a large number of
samples is required to accurately analyze the variabilities, if such a methodology is adopted.
Therefore, a number of advanced sampling and variance reduction methods have been adopted
for the statistical analysis of different types of VLSI circuits to improve upon the quality of
estimations and reduce the number of simulation cycles. In this chapter, an abstract overview of
these methods are provided to readers. The detail explanations of the proposed methods for the
variability analysis of digital and analog circuits, and SRAM cells are provided in the subsequent
chapters of this part.

3.1 Introduction to Monte Carlo method

Supposex = {x(1),x(2), . . . ,x(d)} is a set ofd-dimensional process parameters with a known Joint
Probability Density Function (JPDF),ϕ(x) : R

d → R. Eachx( j) represents a process parameter
of a circuit element, such as a transistor gate length, width, oxide thickness, threshold voltage,
or interconnect dimension. Ifh = p(x) is the performance metric of the circuit under statistical
analysis, the following integral can be used to formulate a measure of variability

µg = Eϕ [g(p(x))] =
∫

Rd

g(p(x))ϕ(x)dx, (3.1)

whereEϕ [.] is the expected value, givenϕ as the density function of the random parameters. For
example, ifg(h) is set to the following single-constraint indicator function, Iτ(h):

Iτ (h) =

{

0 h > τ
1 h≤ τ , (3.2)
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then the integral of Eq. (3.1) will be equal to the yield of thecircuit with respect to the per-
formance metricp and the critical value ofτ for the metric,p(x). Consequently,g(h) = h and
g(h) = hr lead to the mean and ther-th moment of the metric, respectively.

The MC method suggests a numerical technique to estimate theintegral, byN times sampling
from theϕ(x) distribution, evaluating the circuit’s performance metric in every iteration, and
finding the yield or the statistical moments using

µ̂g =

N
∑

i=1
g(p(xi))

N
. (3.3)

Since the samples of consequent simulations are independent and identically distributed, the
traditional MC method leads to an estimate with the following variance

varMC (µ̂g) = N−1var(g(p(x))) = N−1
∫

(g(p(x))−µg)
2ϕ(x)dx. (3.4)

The advanced MC methodologies focus on finding alternative estimators or sampling tech-
niques that reduce the variance of the estimation, hence, reduce the required number of samples
for a given accuracy.

The proposed methods are compared with the traditional-MC in terms of the estimation bias
and standard deviation of the estimation, where the estimation target is mostly the circuit yield
or sometimes the statistical moments (mean, standard deviation, and skewness) of a performance
metric. Suppose finding yield is the objective of an estimation. If the estimated yield using the
proposed is ˆy, following is the bias of the estimation:

bias= E [ŷ]−y (3.5)

wherey is the exact yield. The expected value can be estimated by running the proposed method
for several times (m times), recording the list of the estimated yield in each run{ŷ1, · · · , ŷm}, and
finding the sample expected value by averaging. Note that, each run of the experiment usesN
samples advanced sampling technique.

As most of the applied methods in the consequent chapters areunbiased, the bias of a method
is reported only if any is observed. However, the major studyis conducted by comparing the
standard deviation of the estimation against the traditional MC. The standard deviation of an
estimation reveals the level of confidence (accuracy) of an estimation. Such a measure can be
obtained by calculating the sample standard deviation of{ŷ1, · · · , ŷm}, the experimented yield
estimations.
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3.2 Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) method [61] partitions eachdimension (process parameter)
into N disjoint and equi-probable parts, then it draws a sample from each part according to the
probability density of the random variable in that part. Thesamples are then randomly permuted
to formN sets ofd dimensional samples, guaranteeing a uniform coverage in each dimension.

Suppose the function under expected value analysis,f (x) = g(p(x)), is decomposed into
the following additive form

f (x) = µg +
d

∑
j=1

f j

(

x( j)
)

+ r (x) , (3.6)

whereµg is the mean ofg (or f ) as defined in Eq. (3.1),f j is a function ofx( j) (the j-th process
parameter) representing the main effect of thej-th process parameter alone, andr is the residual
due to higher order interaction between process parameters. Note thatf j can be formed, as

f j

(

x( j)
)

=
∫

( f (x)−µg)ϕ(x)
d

∏
i=1
i 6= j

dx(i). (3.7)

If the LHS samples are used to estimate the expected value based on the estimator of Eq.
(3.3), the variance of the estimation is [62]

varLHS(µ̂g) = N−1
∫

r (x)2ϕ(x)dx+O(N−1). (3.8)

A comparison between equations (3.4) and (3.8) reveals that, the LHS method filters out the
main effect parts (or the 1-D ANOVA terms), as a result, the closer f is to the additive forms or
the smaller the residual part is, the more the Latin hypercube sampling will help.

Getting back to the VLSI circuit problem, it is usually the variance (e.g. input referred offset
of a comparator) and the yield of the circuit that are under investigation. If the variance is needed,
theng(h) = h2, therefore, even ifp(x) (or h), the metric, is composed of major 1-D additive
parts, the square of it composes of major 2-D components due to pairwise multiplication of 1-D
terms. As a result, a decomposition of the form of Eq. (3.6) will yield a significant residual term
due to interaction components. This means that the LHS method does not provide much saving
when applied for the the estimation of variance especially for high dimensional cases where the
ratio between the pairwise over additive terms increases significantly.

The problem could be even worse for the yield analysis. The indicator function of Eq. (3.2)
consists of many higher than one degree terms, especially when yield is close to two extremes.
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This can be verified by following approximation. Suppose theerror function, a sigmoid function,
is used to approximate the indicator function. If a Taylor expansion is used, then

g(h) = Iτ (h) ≈ 1+erf(α(τ−h))
2 = 1

2 + 1√
π

(

α(τ−h)− α3(τ−h)3

3 + α5(τ−h)5

10 −·· ·
)

. (3.9)

As a result, the closer yield is to 1 or 0 the more farp(x) (or h) is from τ, hence, the higher
order terms will appear more in the residual portion. The application of LHS for analog circuits
yield analysis has been proposed earlier in [63]. However, the authors faced this issue and showed
through extensive simulations that the efficiency of their approach significantly drops when the
yield reaches the extremes (e.g. over 90% or below 10%). Thisis a critical issue since the domain
of attraction in a VLSI circuit yield analysis problem is actually around the extremes.

In Chapter 5, an advanced LHS-based method for the efficient variability analysis of analog
circuits is proposed.

3.3 Quasi Monte Carlo Sampling

An important property of the estimation error, ˆµg−µg, is that it is related to the equi-distribution
(uniformity) of the samples rather than their randomness. This idea strongly suggests that by
using a well-spread sequence, which is more uniform than a pseudo-random sequence, a more
precise estimation can be achieved [64]. The LHS method, in fact, tries to achieve this goal by
increasing uniformity in 1-D projections. However, the discrepancy of the LHS samples is not
noticeably better than that of the traditional pseudo random-MC samples in projections higher
than 1-D, since the permutation of the samples are performedrandomly.

The QMC method utilizes low-discrepancy sequences to provide uniformity in 1-D and
higher dimensions projections. However, the convergence rate of the QMC method is depen-
dent to the problem dimension, and it is found to be only asymptotically superior to MC [64],
unless the problem is effectively low dimensional in superposition sense [65, 66]. The effective
dimension is determined using ANalysis Of VAriance (ANOVA)decomposition of the function
f , similar to what has been done in Eq. (3.6) but by continuing the decomposition of the residual
term into functions of higher dimensional components, as follows

f (x) = ∑
u⊆ℓ

fu(x) = µg +
d
∑

i=1
fi
(

x(i)
)

+∑∑
i< j

fi j
(

x(i),x( j)
)

+ · · ·+ f1···d
(

x(1), · · · ,x(d)
)

,

(3.10)
whereℓ={1,2, · · · ,d}.

The ANOVA terms are orthogonal under the process parameter JPDF space
∫

fu(x) fv(x)ϕ(x)dx = 0 when u6= v. (3.11)
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Therefore, the variance of the integrand function,f , can be expressed as the sum of the variances
of all of the orthogonal functions, as follows

σ2( f ) = ∑
u⊆ℓ

σ2( fu). (3.12)

If the significant portion of the integrand function’s variance is due to ANOVA terms with
small dimensions then the problem has low effective dimension in superposition sense [65]. For
example, if 90% of the variance off is due to the functions of singlex variables (main effects)
and the functions of pairs of variables, the effective dimension in the superposition sense is
two. This means that the interactions of more than two randomvariables have negligible effects
(10%) on the function. The superiority of the QMC versus pseudo-random MC method for some
of the high-dimensional problems arises from the low-effective dimensionality of such problems
and the fact that QMC sequences produce high uniformity in low order projections [67, 66].
However, even for moderate size problems (20 dimension or more), the finite and moderate size
(100s) QMC samples can not perfectly cover the high dimensional projections due to the need of
exponential number of samples with respect to dimensions [68].

In Chapter 4 the effective dimension and the application of the QMC for digital circuit timing
yield analysis are studied, and a solution is proposed to improve the uniformity of the generated
samples in high dimensional projections for that application.

3.4 Control Variate Method

Control variate is a promising variance reduction techniquefor expected value estimation only
when a highly correlated auxiliary model (control variable) is available [69]. The amount of the
variance reduction is dependent to the magnitude of the correlation between the control variable
and the variable of interest, under expected value estimation. The exact expected value of the
control variable must also be known.

Supposef is the random parameter under expected value estimation, ifc is the control vari-
able with known expected value ofµc, then f can be substituted byf ∗ in computation ofE[ f ]

f ∗ = f −β(c−µc) , (3.13)

whereβ is a constant. The original estimator of Eq. (3.3) can be replaced by

µ̂g =

N
∑

i=1
g(p(xi))

N
−β









N
∑

i=1
c(xi)

N
−µc









, (3.14)
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which leads to an estimation variance of

var( f ∗) = var( f )−2βcov( f ,c)+β2var(c) . (3.15)

Therefore, a significant variance reduction can be achievedby proper setting ofβ if f andc
are highly correlated. The optimum value ofβ that minimizes the estimation variance is

β =
cov( f ,c)

var(c)
=

ρσ f

σc
, (3.16)

whereρ, σ f , andσc are the correlation coefficient and the standard deviationsof f andc, respec-
tively. By using the optimumβ, the variance of the new estimator, is reduced to

varCV (µ̂g) =
(

1−ρ2)varMC (µ̂g) . (3.17)

However, this classical formulation is not efficient for yield estimation, if it is used directly
for the yield indicator function of Eq. (3.2). This is because to obtain a highly correlated control
variable with the yield variable formulated as (3.2), an auxiliary model of performance metric,
p(x), should be found that is not only highly correlated with it but also has the same range and
scale. This problem is even worse if the yield approaches theextremes since the scale and range
of the model can hardly follow the actual metric in tails. This issue has been observed in the
early applications of control variate for circuit yield analysis [70].

To overcome this issue, two different approaches may be taken. i) The first few statistical
moments can be found efficiently by using the control variatemethod, then the yield is modeled
by fitting a generic distribution (such as Gaussian) to the metric. ii) Using an order statistics-
base control variate quantile estimator [71]. This technique needs a large number of samples,
especially for extreme yield values to eliminate an inherited bias (e.g. more than 230 samples for
a 99% yield).

However, it should be noted that in contrast to the LHS and QMCthat are black-box sampling
methods, the control variate method requires good models from the circuit and the performance
metrics. Constructing such models may require circuit analysis and simulations using response
surface method after every circuit manipulation, that is a major obstacle toward a practical appli-
cation of the method for some type of VLSI circuits such as large-scale analog circuits. More-
over, the promised variance reduction of Eq. (3.17) can onlybe achieved if the optimumβ is
used which itself requires additional simulations for the estimation of cov( f ,c) in Eq. (3.16).

In Chapter 4, the challenge of the timing yield estimation of digital circuits is studied and
two control-variate based solutions are provided for efficient statistical static timing analysis.
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Figure 3.1: An example of importance sampling: capturing more failure cases by using a multi-
variate correlated-scaled-drifted Gaussian alternativedistribution.

3.5 Importance Sampling

Important sampling is another gray-box variance reductiontechnique that has been adopted for
the efficient MC-based yield estimation of circuits with rarefailure rate [70, 72].

The problem of the traditional-MC method especially for theyield estimation of circuits with
extremely high yield is that most of the generated samples bytheϕ(x) distribution reside in the
acceptable region. Since these samples do not contribute tothe calculation of the failure rate,
their simulation is only a waste of runtime. As a result, if analternative distribution,γ(x), is
chosen to simulate the random parameters such that more failure cases are observed (Fig. 3.1),
the variance of the estimation error is reduced. In other words, if the integral in (3.1) is rewritten
as

∫

Rd

g(p(x))ϕ(x)

γ(x)
γ(x)dx = Eγ

[

g(p(x))ϕ(x)

γ(x)

]

, (3.18)

then, by simulating the samples from theγ(x) distribution, the following can be used as an
unbiased estimator instead of the original estimator of Eq.(3.3)

µ̂g =
1
N

N

∑
i=1

g(p(xi))ϕ(xi)

γ(xi)
. (3.19)

Therefore, the variance of the new estimator is

varIS(µ̂g) = N−1
[

∫

g2(p(x))ϕ2(x)

γ(x)
dx−µ2

g

]

. (3.20)

This variance can ideally reach zero, if

γ(x) =
g(p(x))ϕ(x)

µg
. (3.21)

40



However, finding such an alternative distribution is not always an easy task sinceµg and
g(p(x)) are unknown prior to analysis.

In summary, the importance sampling technique is mostly useful for the analysis of very rare
failure rates. Also, its performance degrades very fast andmay even does worse than traditional-
MC for even moderate dimension problems (d > 10) due to possible missing or less emphasize
on some parts of the important regions.

In Chapter 6, the importance sampling for the application of SRAM cell rare failure rate esti-
mation is studied, and an adaptive sampling technique is proposed which updates the alternative
distribution toward minimizing the estimation variance.

3.6 Stratified Sampling

In this technique, the problem space is divided intor disjoint partitions and the statistics of
interest is estimated in each stratum separately [73]. SupposeQi is the i-th stratum andpi =
∫

Qi
ϕ(x)dx is the probability of having a sample in that stratum. Then the expected value of the

statistics of interest in that stratum can be found using

µ̂gi =

Ni

∑
i=1

g(p(xi))

Ni
, (3.22)

by samplingx from following distribution

ϕi (x) =

{

ϕ(x)
/

pi x ∈ Qi

0 x /∈ Qi
(3.23)

Then the alternative estimator to Eq. (3.3) will be

µ̂g =
r

∑
i=1

piµ̂gi , (3.24)

and the variance of this estimator is

varST(µ̂g) =
r

∑
i=1

p2
i
varMC (g|Qi)

Ni
. (3.25)

Therefore, a variance reduction can be achieved if more samples are used for stratum with high
variance ofg.

Stratified sampling has been adopted for the yield analysis of digital and analog circuits
[74, 75]. However, this technique has a limited performanceimprovement in high dimensional

41



problems. This is because of the limited number of strata dueto limited number of simulation
cycles. Note that at least one sample is needed in each stratum, hence in high dimensional
problems each stratum covers a very large super-cube. Moreover, in order to gain a variance
reduction, the number of samples in each stratum should be determined according to the variance
of the statistics under analysis which itself requires knowledge of the circuit response surface and
consequently additional characterization step simulations. This issue originates from the gray-
box nature of the solution, similar to the control variate and importance sampling methods.
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Chapter 4

Digital Circuits: Advanced Monte Carlo-Based
Statistical Timing Analysis Methodologies

4.1 Introduction

The reliable yet efficient Statistical Static Timing Analysis (SSTA) is a central task in predicting
the yield of a high-performance digital VLSI circuit. The corner-based timing verification tech-
niques are prone to over-design issue and may not lead to an efficient design for a tight power
consumption budget. Therefore, several probabilistic-based (non-Monte Carlo) SSTA methods
have been proposed to address the challenge of statistical timing analysis for high performance
digital circuits. In the probabilistic-based SSTA methods, the signal arrival-times are treated as
random variables, and the Probability Distribution Function (PDF) of the circuit’s critical delay
is extracted by proper statistical analysis. Blaauw et al. [76] provides a recent survey on the
state-of-the-art SSTA methods.

Despite the considerable improvement of the recent SSTA methods, there are still concerns
on their applications for a reliable and large-scale timingsign-off. The major challenge and
drawback of the current probabilistic-SSTA approaches originate from the presence of complex
timing and the process variation effects that are partly ignored or simplified in each solution.
Such effects include, the nonlinearity of gate delays as a function of the process parameters and
capacitive loads, the nonlinearity of the MAX operation dueto the arrival time merging, and
the resultant non-zero skew signal arrival time PDFs. The interdependency among input/output
rise/fall signal transition times and gate delays, interconnect delay models, non-Gaussian process
parameters, or the spatial/structural correlations, are some of the other complex issues that have
been partially overlooked in the proposed probabilistic-based methods.

Therefore, the Monte-Carlo (MC) method, as a traditional alternative to probabilistic tech-
niques, has recently attracted attentions for a reliable and accurate digital circuit timing sign-off
[77, 78, 74, 79]. The major advantage of the MC method is its capability to account for any
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timing and process model. Moreover, the development and integration costs of MC-based SSTA
tools are minimal, since the available deterministic-STA engines can maximally be reused in
developing a new MC-based yield analysis tool. These are in addition to the benefits of break-
ing of an MC-based timing analyzer into parallel processes and gain from running them on
multi-processor systems [74]. However, the most threatening disadvantage of the traditional
traditional-MC statistical analysis method is its slow convergence rate. That means to achieve a
reasonably precise estimation of the yield, thousands of simulations (samples) might be needed
by using the traditional-MC analysis. The precision of the MC-based methods is defined in terms
of the statistical confidence interval of the estimation. The traditional-MC’s rate of convergence
is independent of the problem’s dimension, but it decays with the slow rate ofO(N−1/2) with
respect to the number of samplesN.

In order to improve upon the convergence rate of the traditional-MC sampling, hybrid sam-
pling methods composed of the Latin Hypercube Sampling (LHS) and a Quasi-MC (QMC) se-
quence have been proposed recently [74, 79]. LHS method samples every dimension by strati-
fying its domain into equi-probable subranges, hence it improves the uniformity of the samples
in one-dimensional projections. Whereas, the QMC utilizes low-discrepancy sequences for 1-D
and higher projections. It is proved that, the estimation error is mitigated by the equi-distribution
(uniformity) of the samples rather than their randomness [64]. Therefore, the upper bound of the
convergence rate of the QMC method,O(logdN/N), is found to beasymptoticallysuperior to
MC, whered is the problem dimension (e.g. the number of process parameters or the number of
principal components). This asymptotic advantage seems tobe only achievable ifN >> ed that
is absolutely impractical for even moderate size problems.However, the QMC method exhibited
a significant advantage over the traditional-MC for the analysis of the high-dimensional compu-
tational finance problems during 1990s [80]. This surprising behavior is later justified through
the analysis of the variance (ANOVA) of the high-dimensional problems and quantified with the
notion of effective dimension [65, 66, 67].

In Section 4.3, this phenomenon is reviewed to provide an insight on how a QMC sampling
method can be effectively adjusted for the SSTA problem. Theeffective dimension of the digital
circuit’s yield estimation problem is therefore investigated. Inspired by the observations, an
algorithm is then proposed to improve the uniformity of the Sobol’s [81, 82] QMC samples
in high-order projections. By using the proposed optimized-Sobol and LHS method, an SSTA
engine is developed to target a high-performance timing yield analysis that requires a fewer
number of iterations to estimate the yield with certain confidence than that of a non-optimized
QMC sampler.

As will be discussed later, the proposed QMC-based SSTA engine does not significantly
outperform the traditional-MC method for moderate number of samples (e.g.,<2000). As a
result, a control variate-based technique is proposed in Section 4.4 to address the concern by
providing a mechanism which significantly improves the confidence interval-range when using
only a few hundreds of samples. The proposed technique leverages the high accuracy of an
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Figure 4.1: The approximate range preferred for each proposed method.

analytically extracted timing model of the nominally-critical path as an auxiliary variable in an
order-statistics-based variance-reduced estimator.

However, the drawback of using that estimator is the need foralmost a hundred or more
samples to avoid an unwanted bias. As a result, another method is developed in Section 4.5,
for the cases when only a few (e.g., an order of tens) number ofsimulations is needed. This is
the case for very large circuits or very early design phases where re-design/analysis iterations
are run very frequently. The method uses the same auxiliary random variable and applies the
classical control variate technique for the estimation of the critical delay’s mean and variance.
The Gaussian distribution is then used to form a PDF of the critical delay and approximate the
yield.

Figure 4.1 illustrates the relative range of the effectiveness for the three proposed method with
respect to the number of samples. The scale of the number of samples might vary based on the
circuit and its yield, which will be covered in the Section 4.6, where a mechanism is developed
to integrate the proposed methods into a single highly efficient MC-based SSTA engine.

4.2 Delay and Process Variation Models, and Simulation Setup

In order to study the performance of the proposed MC-based methods, extensive MC-based tim-
ing analysis of digital circuits are performed in this research. The result part of each section that
will discuss the advantages and drawback causes of each method is conducted through analysis of
number of circuit benchmarks varying in size and logic depth, two critical factors in performance
evaluation of an SSTA engine. In addition to examining different types of circuits, e.g. circuits
with many short critical paths vs. circuits with a few but long paths, different assumptions are
also made for the process variation decompositions into global, spatial, and random components.

Therefore, before actually introducing the MC-based methods in Section 4.3-4.6, in order
to avoid presenting repeated simulation setup informationin every sections, this section is fully
dedicated to provide information on the benchmark circuits, timing, and process models that
have been used in analysis throughout this work.
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Table 4.1: Benchmark Circuits
Circuit Cells Depth Percentage of critical gates (Slack/D)

0 0.01 0.02 0.05 0.1
C432 157 25 15.3 20.3 22.2 50.3 71.3
C499 514 30 15.7 21.2 47.3 69.2 81.1
C880 342 28 8.5 12.0 14.6 16.9 19.0
C1355 483 29 15.1 20.9 46.1 70.6 80.5
C1908 359 37 10.3 10.3 17.5 31.7 46.5
C2670 666 28 5.3 5.3 7.4 10.7 14.5
C3540 733 44 5.7 9.0 10.0 14.5 30.4
C5315 1541 43 3.0 3.8 4.5 5.1 7.5
C6288 2397 121 4.8 10.3 15.7 41.5 65.4
C7552 1924 58 2 3.2 3.4 4.5 5.7
S9234 820 27 4.5 6.1 6.2 7.1 10.6
S13207 1935 29 1.4 1.4 2.0 2.6 3.8
S15850 2735 47 2.3 3.0 3.5 4.2 6.7
S35932 7872 14 4.3 4.3 13.8 28.3 31.4
S38417 8291 37 0.58 0.59 0.63 0.63 0.64
S38584 8249 34 0.47 0.47 0.65 0.67 1.4

ISCAS85 and 89 benchmark circuits [83, 84] are used. The circuits are synthesized using
an industrial 65nm CMOS library cell with only inverters, and2 and 3-inputs NAND and NOR
gates. The timing response surfaces of each logic cell is characterized quadratically to deliver a
high quality of approximation in terms of process parameters. The output rise/fall and the the
propagation delay of each library cell are modeled as functions of input rise/fall time, output
load, gate length, and threshold voltage of that cell. The characterized response surface models
are composed of constant, linear, quadratic, and linear-linear and linear-quadratic interaction
terms. Table 4.1 shows the number of cells and synthesized logic-depth (the depth of the longest
path) of each circuit. The registers’ input/outputs of the sequential benchmarks are treated as
pseudo outputs/inputs during the timing analysis.

The last five columns of the table show the percentage of the logic cells that have timing
slack equal or less than zero, 1%, 2%, 5%, or 10% of the critical delay. These values are used
in later discussions in order to provide insight on the type of circuits that manifest high or low
improvement of yield estimation accuracy using different MC-based methods.

In this work, two types of process parameters are considered, a purely random (the threshold
voltageVT) and a spatially correlation one (the gate lengthL). The gate length variation itself
is decomposed into three distinct components: inter-die orglobal (∆Lg), spatially correlated
intra-die variation (∆Ls), and a random residual part (∆Lr ). The spatially correlated behavior of
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the gate length variation is originated from the lithography imperfection that affects the close
devices more similarly. This issue has been extensively investigated and modeled in [85, 86, 87].
The area of the conceptual die is divided into rectangular grids, and the gate length variation
of transistors sharing a grid are assumed to have equal spatial correlation component, while the
random part varies for each transistor separately. The global component is equally added up
to all transistors of the circuit. As a result for a circuit with n cells placed in a mesh ofm
grids, d = m+ 2n random variables are used where the 2n variables are due to purely random
parameters and the residual portion of the correlated parameters, while them variables are the
correlated random variables representing the global and spatial components of the gate length
variation in different grids.

The model represented in [85] is used to ensure the positive definiteness of the covariance
matrix of themgrid gate length values, as:

corr
(

∆Li,∆L j
)

=
σ2

G +ρ
(

vi j
)

σ2
S

σ2
G +σ2

S+σ2
R

(4.1)

wherevi j is the euclidean distance between the gridi and j, while the variance of each of the three
components areσ2

G, σ2
S, andσ2

R. The normalizedρ
(

vi j
)

ratio is computed using the following
function:

ρ(v) = 2

(

bv
2

)s−1

Ks−1(bv)Γ(s−1)−1 (4.2)

whereK is the modified Bessel function of the second kind,Γ is the gamma function, andb and
s are two real parameter numbers that adjust the shape of the function [85]. Throughout this
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chapter various portions of global, spatial, and random variations as well as the shape parameters
are used to investigate the effect of the correlated processparameters in the performance of the
proposed method.

Throughout this chapter, unless a different setup is mentioned, the magnitude of the global,
spatial, and random components of the gate length variationare set to 25%, 55%, and 20% of the
total gate length variation (σL = 0.12L) [85]. The grid size is set such that almost every 20 cells
are placed in one square-shape grid. As a result, the mesh structure varies from 3×3 to 20×20
for different circuits. The parametersb ands are set to 1/lgrid and 6, wherelgrid is the length of
the square grid. Figure 4.2 depicts the resultant spatial correlation.

Finally, it should be noted that the Capo [88] placer is used toplace the logic cells in order to
determine the distance and hence the correlation coefficients of the spatial parameters.

4.3 Efficient QMC/LHS -base SSTA

In this section, the notion of the effective dimension, introduced to explain the unexpectedly high
performance of the QMC methods, is reviewed. The effective dimension of the digital circuits’
timing yield problem is investigated. Inspired by the effective dimension analysis, an algorithm
is developed to minimize the discrepancies of Sobol’s QMC samples following the need for low-
discrepancy samples in high-dimensional projections for an efficient yield analysis. Finally, a
QMC/LHS -base SSTA engine is proposed for the efficient timingyield estimation of digital
circuits.

4.3.1 QMC, Effective Dimension and Timing Yield

Supposep =
{

p(1), p(2), . . . , p(d)
}

is a set ofd-dimensional random variables with a known Joint

Probability Distribution Function (JPDF),ϕ(p) : R
d → R. Eachp(i) represents either a purely

random process parameter such as the RDF-driven threshold voltage variation or the residual
random component of a spatially correlated parameter such as the gate length variation. IfD(p)
is the critical delay of a circuit, then the following indicator function, I , divides the problem
space (p ∈ R

d) into unacceptable (I = 0) and acceptable (I = 1) regions, represented as:

Iτ (p) =

{

0 D(p) > τ
1 D(p) ≤ τ , (4.3)

whereτ is the maximum acceptable critical delay. Therefore, the following integral represents
the timing yield:

y = P(Iτ = 1) = Eϕ [Iτ (p)] =
∫

Rd

Iτ (p)ϕ(p)dp. (4.4)
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The MC method suggests a numerical technique to solve the integral in (4.4) byN times
sampling from theϕ(p) distribution, evaluating the circuit’s critical delay, and extracting the
mean ofIτ(p) by using the following estimator:

ŷ =
#{i|Di < τ}

N
, (4.5)

where #{.} is the number of elements in a set andN is the total number simulation iterations.

The problem of the traditional-MC is its slow convergence rate (σŷτ = O(N−1/2)), that is the
standard deviation of the estimation’s error declines withthe inverse of the square root of the
number of samples [73]. The following formulation can then be used to determine the number
of samples withα-confidence half-range ofβ(1−y) for a yield ofy:

N =

(

Φ−1(0.5+α/2)
)2

β2 · y
1−y

, (4.6)

whereΦ−1(.) is the inverse of the normal Cumulative Distribution Function (CDF). It is evident
that to reduce the interval range (β) by ε, the number of samples must be increasedε2 times.

However, an important feature of the estimation error,e= ŷ−y, is that it is related to the equi-
distribution (uniformity) of the samples rather than theirrandomness. This idea strongly suggests
that by using a well-spread sequence, which is more uniformly spread than a pseudo-random
sequence, a more precise estimation can be achieved [64]. LHS [61] is a sampling technique
which increases the convergence rate by providing more uniform samples in 1-D. This is achieved
by partitioning the domain of each random variable into equal-probable subranges and generating
the same number of samples in each subrange, randomly. A random permutation of the LHS
samples are finally adopted to generate the random sample vectors. However, the discrepancy of
the LHS samples is not noticeably better than that of the traditional pseudo random-MC samples
in projections higher than 1-D, since the permutation of thesamples are performed randomly.
Figure 4.3(b) shows a 2-D projection of the LHS-based samples. It can be seen that the samples
are not much more uniform than the traditional MC-based samples (Fig. 4.3(a)).

Instead of the generating random samples by a pseudo-randomnumber generator, or strati-
fying each dimension separately as it is done in LHS, the QMC is a technique to produce deter-
ministic low-discrepancy sequences that are more uniformly distributed over the d-Dimensional
problem space compare to the former methods. Higher than 1-Duniformity is achievable by
using such sequences, that leads to a faster convergence rate than that of the MC or LHS tech-
nique. Figure 4.3(c) depicts the 2-D projection of the QMC samples, generated by the Sobol
algorithm [82]. Other examples of low discrepancy sequences include Halton [89], Faur [90],
and Niederreiter [91]. The error of the QMC technique is given by the Koksma-Hlawka bound,
O

(

logdN/N
)

, which promises an asymptotically faster than the MC performance [64]. How-
ever, this superiority seems to be unachievable unlessN > ed, which is absolutely impractical
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(a) Traditional-MC (b) LHS (c) QMC (Sobol)

Figure 4.3: 2-D projections of different sampling approaches. The gray squares represent areas
with high or low concentration of samples.

for even moderate size problems (d > 10). Surprisingly, the practical applications of QMC on
some high-dimensional computational finance problems [80]showed significant advantages over
MC’s performance. The convergence rate for such problems is roughlyO

(

n−1
)

, independent of
the problem dimension.

Several researches have been conducted to explain this surprisingly good performance [92,
93]. A qualitative explanation is then developed under the notation of effective dimension [65,
67]. Suppose the QMC is used to estimate the following integral:

∫

[0,1]d
f (x)dx, (4.7)

if the integrand function,f (x), is decomposed into a sum of orthogonal functions of the subsets
of the problem variables, and a large portion of the total integrand variance comes from a few
random variable or orthogonal functions with small dimensions, then the effective dimension is
significantly lower than the nominal problem dimension, leading to a high performance QMC
estimation.

Consequently, by using the ANalysis Of VAriance (ANOVA) representation, thef (x) can be
decomposed into a sum of orthogonal functions of all the subsets ofx, as follows:

f (x) = ∑
u⊆ℓ

fu(x) = f0 +
d
∑

i=1
fi
(

x(i)
)

+∑∑
i< j

fi j
(

x(i),x( j)
)

+ · · ·+ f1···d
(

x(1), · · · ,x(d)
)

,

(4.8)
whereℓ={1,2, · · · ,d}. The ANOVA terms are orthogonal, therefore, the variance ofthe inte-
grand function can be expressed as the sum of the variances ofall of the orthogonal ANOVA
functions, as follows:

σ2( f ) = ∑
u⊆ℓ

σ2( fu). (4.9)
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Caflisch, et. al. [65] introduced the notion of the effective dimensions as follows:

1. The effective dimension off in the superposition sense isdS, if ∑|u|≤dS
σ2( fu) ≥ Pσ2( f ) .

2. The effective dimension off in the truncation sense isdT , if ∑u⊆{1,2,···,dT}σ2( fu)≥Pσ2( f )
.

whereP is a proportion chosen to be less than, but close to 1. For example if P = 99% of
the variance off is due to the functions of singlex variables, the effective dimension in the
superposition sense,dS, is 1. This means the interactions among the parameters havenegligible
effects on the function. On the other hand, the truncation sense of effective dimension is related
to the list of important variables. Therefore,dT = m means that the firstm variables creates
the highest portion of the integrand variance. It should be noted that the variance of any MC-
based estimations is directly related to the variance (error) of the integrand function. Therfore,
the superiority of the QMC compared to the pseudo-random MC method for some of the high-
dimensional problems arises from the low-effective dimensionality of such problems and the fact
that QMC sequences produce high uniformity in the first few dimensions (≤ 12) and low order
projections (≤ 3) [67, 66].

As a result, first the effectiveness of the QMC method is investigated for the analysis of the
timing yield, through the analysis of the effective dimension of the yield function,Iτ (p). For
this purpose, a numerical technique [94] is used to estimatethe variance of the different ANOVA
terms of the indicator-type yield function. This techniqueutilizes the quasi-regression method
[95] which uses shifted Legendre polynomial functions as the bases for orthogonal ANOVA
terms.

Table 4.2 lists the relative importance of the 1-D and 2-D ANOVA terms when yield is 0.5
and 0.99. The relative importances are computed using

1−D : 100×
m
∑

i=1
σ2( fi)/σ2( f )

Full1−D : 100×
d
∑

i=1
σ2( fi)/σ2( f )

2−D : 100×
m−1
∑

i=1

m
∑

j=i+1
σ2

(

fi , f j
)

/σ2( f )

(4.10)

wherem is the number of the grids of the mesh structure, whiled is the total number of variables
including the grids and purely random. The resultant analysis shows a reduction on 1-D terms
as the yield increases, meaning that the LHS technique givesa very small improvement over the
traditional-MC for a typical yield analysis close to the extreme of the critical delay distribution
tail. It also suggests that to benefit more from a QMC sampling, the sampling technique should
be carefully optimized to maximize the high-dimensional uniformity. These are important ob-
servations, suggesting that the excellent performance of the QMC method seen in computational
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Table 4.2: The relative importance of ANOVA terms for of the yield function.
Circuit Yield = 0.5 Yield = 0.99

1-D Full 1-D 2-D 1-D Full 1-D 2-D
C432 65 69 7 19.4 20.1 18.5
C499 64 67 7.4 15.2 15.8 19.6
C880 65 70 7 19.6 20.2 18.8
C1355 63 66 6.7 14.8 14.9 24.4
C1908 67 71 8 18.6 19 18.3
C2670 60 64 4.4 11 11.6 21.5
C3540 61 64 4.1 9 9.2 18.6
C5315 61 64 7.1 12 12.3 25.3
C6288 63 64 3.3 9.1 9.3 22.5
C7552 61 64 3.4 9.2 9.6 21.2
S9234 60 64 3.4 8.2 8.4 19.4
S13207 59 63 1.2 7.5 7.9 17.9
S15850 61 65 1.2 6.8 7.5 17.0
S35932 45 59 13 5.4 10.7 36.5
S38417 59 67 25 5.2 7.9 -5.6
S38584 56 64 29 6.1 5 23.5

finance problems may not be easily achieved for digital circuit yield analysis problem. That
is due to the fact that, while the aforementioned computational finance problems are found to
be effectively very low dimensional, i.e. at most 2-D with significant 1-D portions [94], the
yield estimation function is not. Therefore, investigating and possibly improving the high-order
discrepancies of QMC samples should be seriously considered if such a method is adopted for
SSTA, particularly the yield analysis.

It should be noted that, our analysis reveals strong 1-D ANOVA terms for the mean and
strong 2-D terms for the standard deviation of the critical delay as opposed to the yield which
also has strong higher order terms. Therefore, both the LHS and QMC are good candidates for
the mean estimation [74]. While, for the standard deviation estimation still a carefully designed
QMC sampler that produces highly uniform 2-D projections should be considered. Justifying
the 1-D and 2-D behavior of the mean and variance of critical delay is not hard. In fact, a
promising probabilistic-based SSTA techniques, proposedin [96], approximates the critical delay
with a linear additive function of the principal componentsof the process parameters. This
approximation suggests that the critical delay function iseffectively 1-D, so the first moment
(mean) remains 1-D, while the second moment (variance) includes a significant set of 2-D terms
due to the pairwise multiplication of the principal component factors when powering the additive
circuit’s delay function to two. It is now easier to realize why the yield function is composed
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of one, two, and higher dimensional terms. That is because the indicator function of Eq. (4.3)
consists of many higher than one degree terms, especially when yield is close to the two extremes.
This can be verified by following approximation. Suppose a sigmoid function, the error function,
is used to approximate the indicator function. If a Taylor expansion is used, then

Iτ (h) ≈ 1+erf(α(τ−h))
2 = 1

2 + 1√
π

(

α(τ−h)− α3(τ−h)3

3 + α5(τ−h)5

10 −·· ·
)

. (4.11)

As a result, the closer the yield is to 1 or 0 the more farh= D(p)) is fromτ, hence, the higher
order terms will be stronger. In fact, one application of LHSfor analog circuits yield analysis
that has been proposed in [63] showed a significant efficiencydrop when the yield reaches the
extremes (e.g. over 90% or below 10%) which can be well justified through the existance of
high-dimensional ANOVA terms in those yield ranges. This isa critical issue since the domain
of attraction in a digital circuit yield analysis problem isactually close to the high extreme.

It is now easier to predict that the application of LHS alone does not provide significant
improvement on the yield estimation accuracy, and the QMC sampling should be efficiently
optimized to obtain the lowest discrepancy in high dimensional projections.

4.3.2 Proposed QMC/LHS -base Yield Analyzer

In this section, the discrepancy of the Sobol’s QMC sequenceis investigated and a method is pro-
posed which produces low-discrepancy Sobol samples. The proposed method generates Sobol
samples such that for a given number of samples, a projectionuniformity increases as the di-
mension indices creating that projection become closer to the first dimension. Therefore, the
generated samples can be finally applied to the process parameters and their principal compo-
nents with an ordering procedure sorted based on the importance (criticality) of them to reduce
the estimation error.

4.3.2.1 The Sobol’s Sequence Generation and Discrepancy

The Sobol [82] is a low-discrepancy QMC sequence which is preferred over many other QMC
sequences [89, 90, 91], especially for high-dimensional estimations, due to its higher uniformity
for both 1-D and 2-D projections as a result of it prime base oftwo [68]. However, due to the
finite number of samples, all QMC samples including the Sobolsequence, show low uniformity
in many high dimensional projections, which is undesirablefor an efficient digital circuit yield
analysis. Note that the yield problem is found to be composedof many high dimensional ANOVA
terms, so the non-uniformity of samples in each projection increases the variance of the error of
that corresponding term in the ANOVA decomposition.
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(a) (9,10,2)-net (b) (8,10,2)-net (c) (7,10,2)-net

Figure 4.4: Some bad pairing (high-discrepancy) of Sobol’ssamples.

The Sobol sequence can be represented as the (t,m,s)-net and (t,s)-sequence in base 2. The
(t,m,s)-net in base 2 is a set of 2m points in [0,1]s such that the number of points in every ele-
mentary subinterval of volume 2t−m is exactly 2t , 0≤ t ≤ m [97]. Based on the upper bound
proposed in [97] for the discrepancy of a general (t,m,s)-net in baseb, following can be derived
as an upper bound of the Sobol’s discrepancy:

D((t,m,s) -net in base 2) ≤ ms−1

(s−1)!
2t +O

(

ms−2) (4.12)

Figure 4.4 illustrates some of the bad 2-D projection pairings for 1024 Sobol samples. Each
of the projections depicted in the figure can be considered asa sequence from (t,10,2)-nets of
base 2, wheret is 9, 8, and 7 respectively from fig. 4.4(a) to 4.4(c). Therefore, the lower
the t is, the lower is the discrepancy, so the proposed Sobol sequence should targett as an
intermediate objective function. Before discussing the discrepancy optimization approach, the
general algorithm which generates Sobol samples [82] alongwith an approach to determine the
discrepancy of Sobol samples are reviewed.

To generateN = 2m samples of ad-dimensional Sobol sequence,x( j)
i , wherei = 0, · · · ,N−1

and j = 1, · · · ,d, eachx( j)
i can be generated from the following equation:

x( j)
i = a1v( j)

1 ⊕a2v( j)
2 ⊕·· ·⊕amv( j)

m , (4.13)

where⊕ denotes a bitwise XOR operation,v( j)
k are binary direction numbers, and theai ∈ {0,1}

coefficients are extracted from the binary representation of the Gray code ofi. The Gray code of
i is defined asG(i) = i⊕ int

[

i
2

]

, where int[x] represents the largest integer inferior or equal tox.

For example, to findx( j)
25 , the following steps are taken:

i = 25→ G(i) = 11001⊕01100= 10101

and hence, x( j)
25 = v( j)

1 ⊕v( j)
3 ⊕v( j)

5
, (4.14)
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where each direction number,v( j)
k , is a binary fraction that is written as

v( j)
k = ν( j)

k

/

2k, (4.15)

whereν( j)
k is an odd integer, 0< ν( j)

k < 2k for k = 1, · · · ,m. For each dimensionj, a sequence of

integersν( j)
k is defined by aq-term recurrence relation as

ν( j)
i = 2b( j)

1 ν( j)
i−1⊕22b( j)

2 ν( j)
i−2⊕·· ·⊕2q−1b( j)

q−1ν( j)
i−q+1⊕2qν( j)

i−q⊕ν( j)
i−q , (4.16)

whereb( j)
k ∈ {0,1}, k = 1, · · · ,q−1 are the coefficients of aq-degree primitive polynomial [98]

specified for each dimensionj. Jaeckel [99] offers a collection of more than 8 million primitive
polynomials up to degreeq= 27 to be used for the Sobol generation. It is evident in Eq.(4.16) that

in each dimension, there is a great deal of flexibility in choosing the initial values (ν( j)
1 , · · · ,ν( j)

q ),

whereas the remaining (ν( j)
q+1, · · · ,ν

( j)
m ) is generated through theq-degree recurrence relation of

Eq. (4.16). The constraints on the initial direction valuesν( j)
k for k= 1, · · · ,q( j) are that they must

be odd integers and less than 2k; therefore, for a dimension with aq-degree primitive polynomial,
there are 2q(q−1)/2 possible choices in selecting the initial direction values. Consequently, a

random technique is traditionally used to choose the initial ν( j)
k terms for each dimension in [99].

By referring back to Fig. 4.4, it can be seen that to fill the empty regions and increase the
uniformity of the samples, either more samples are needed orthe initial direction values of the
corresponding dimension should be changed. This is where the proposed technique enters to
picture. As a result, the objective of this part of the work isto pick a set of initial direction
values which reduces the bad pairings as much as possible. Moreover, this objective should be
achieved such that the more uniform projections are generated for the first dimensions and the
uniformity becomes worse as the dimension index increases.This is helpful for the fact that not
all the process parameters and hence the principal components are highly critical, so a sorting of
them can be considered to boost the efficiency of the method.

Sobol, himself, has realized the importance of the initial direction values on the quality of
the generated sequences, and proposed two properties to increase the uniformity of the sam-
ples [100]. However, to satisfy Sobol’s proposed properties, 22d samples are needed that is not
practical for even moderate size problems. Cheng and Druzdzel have defined a measure of 2-D
uniformity and proposed a search algorithm to find a set of initial direction values with a defined
uniformity [101]. The drawback to their technique is that the number of samples and dimen-
sions must be known in advance. Moreover, their technique re-produces Sobol sequences and
re-evaluates their defined discrepancy measure in each iteration (after an initial direction value
update), substantially increasing the runtime for large number of samples and dimensions. This
was due to the assumption that poor dimension pairings cannot be found prior to the generation
of sequences [68].
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Algorithm 1 Optimize Initial Direction Values(m)

Generate random Initial Direction Values (IDV) for 2(m−1) dimensions;
Generate uptomDVs by using the recursions for each dimension;
{Find pairwise discrepancies and initialize priorities}
for k = m−1 downto 1do

for d2 = 1 to 2m−k do
for d1 = 2m−k−1 +1 to 2m−k do

t(d1,d2) = t of the 2D-projection ofd1 andd2;
if t(d1,d2) > m−k−1 then

priority(d1)+ = 2t(d1,d2)−(m−k−1)−1;
end if

end for
end for
Initialize Temperature;
while There is a bad pairing (anyt(d1,d2) > 0) do

while inner-loop criteriondo
Randomly select a dimension, directed by priorities;
Randomly select an IDV, in that dimension;
Randomly change that IDV up tok-th bit;
Compute the newt matrix and thepriority vector;
if accept(new− old priority, Temperature) then

Apply the changes to the selected IDV;
Updatet andpriority;
Generate uptomDVs by using the recursion;

end if
end while
UpdateTemperature;

end while
end for

However, there is no need to actually generate a Sobol sequence to detect the poor pairings or
to measure thet. Thet value, as a measure of the uniformity, can be found for a pair of dimension
by using the definitions given in [102].

Supposev( j)
i,b is theb-th most-significant bit of the binary representation ofv( j)

i , thei-th direc-
tion value of thej-th dimension. If for any integerd1 andd2 in the range of[0,m] andd1+d2 = l ,

the binary system ofd1+d2 vectors of lengthmcomposed of{v( j1)
i,b1 |1≤ i ≤ m,1≤ b1≤ d1} and

{v( j2)
i,b2 |1 ≤ i ≤ m,1 ≤ b2 ≤ d2} is full-rank, then the 2-D projection of dimensionsj1 and j2

creates a(m− l ,m,2)-net point set.
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Figure 4.5: Distribution oft, the measure of discrepancy, for 1024 Sobol samples using (top)
random initial direction values and (bottom) optimized initial direction values.

For example, if∀i = 1, · · · ,m v( j1)
i,1 = v( j2)

i,1 , thenl = 1, sot = m−1. This means that up to
the (2m)-th sample, the projection of thej1-th and j2-th dimensions is similar to that of the Fig.

4.4(a). In other words, for all samples 0≤ s≤ 2m−1, thex( j1)
s < 0.5⇔ x( j2)

s < 0.5 inspired by
the Eq.(4.13), as the MSB of themfirst direction values of the dimensionj1 and j2 are equal.

4.3.2.2 Optimization of the Sobol’s Sequence Discrepancy

The timing yield analysis problem is found to be composed of high-dimensional terms. There-
fore, the discrepancy of high-dimensional projections affects the estimation error. The discrep-
ancy of a multi-dimensional Sobol sequence can be improved by careful selection of the initial
direction values.

However, it is also known that all the random variables of thethe yield function are inequally
important. For example, them variables representing the principal components (PC) of thegrid
random variables in the PCA decomposition contribute the most to the ANOVA decomposition,
please refer to Table 4.2. That is due to the fact that a singlePC affects to the propagation delay
of many gates, hence, affecting the critical delay more strongly. Moreover, the gates with closer
to zero timing slack have more chance of becoming critical leading to this conclusion that the
PCs with greater contributions to those type of gates have more effects on the circuit timing than
the rest.
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As a result, if the direction value of the Sobol generator is set such that the lower discrepancy
dimensions are obtained first and the higher discrepancy ones come later, the generated Sobol
samples can be used in an ordering scheme according to the importance to the PCs for an efficient
estimation.

In this part, a simulation annealing optimization algorithm (Algorithm 1) is proposed which
produces such direction values. Note that, this is a relatively lengthy process, and can take a day,
but it is only an one-time process. The extracted initial direction values are saved and used for
future Sobol generation.

For a givenm, the objective of the optimizer is to set the initial values such that the maximum
t for the pairs of dimensions of{1, · · · ,2m−k} is m−k−1, wherek = 1, · · · ,m−1. This means,
t = 0 (perfectly uniform) for the first two dimension,t ≤ 1 for pair of dimensions of one to four,
t ≤ 2 for pair of dimensions of one to eight, and etc. Therefore, any pairing of dimensionsd1 =
{2m−k−1 + 1, · · · ,2m−k} with dimensionsd2 = {1, · · · ,2m−k} should only be verified to satisfy
t ≤ m− k−1 condition, hence, speeding up the optimization process. To help the optimizer to
even converge faster, it is only the firstk bits of the initial values in the dimensions of ({2m−k−1+
1, · · · ,2m−k}) which are included in the search during the optimization. That is because in that
range the maximumt is m− l = m−k−1, hence,l = k+1, meaning that, at most, up to thek-th
bit of these dimensions form the system of independent binary vectors. Moreover, the simulation
annealing engine is directed by an initial value selection criterion, giving a high priority to those
dimensions that have the worst discrepancies.

Figure 4.5 compares the distribution oft, the measure of discrepancy, before and after the
optimization form = 10 (1024 samples). As depicted in Fig. 4.5(d), even for the first few
dimensions,(1, · · · ,64), and before the optimization, some pairs of dimensions havevery high
discrepancies(t = m−1 = 9) and many others have discrepancies higher than the maximum of
the optimized version for that dimension range(t > 5). However, as shown in Fig. 4.5(e)-4.5(h)
for the optimized version, the maximum discrepancy reducesfrom 8 to 5 as moving down from
the dimension 512 toward 64.

4.3.2.3 The Yield Analyzer

The proposed SSTA framework is constructed by combining theobtained low discrepancy Sobol
sequence and the Latin Hypercube samples. A similar hybrid approach is also suggested in [74]
to leverage from high uniformity of few QMC dimensions for important parameters and use of
LHS for the rest.

In this research, for a given number ofN = 2m samples, 2m−1 dimensions use Sobol samples,
whereas the reminder dimensions use LHS samples. The optimum initial direction values of the
Sobol generator for a givenm is pre-computed and stored by using the algorithm proposed earlier.
Since the Sobol samples provide a higher than 1-D uniformity, they are prioritized to be assigned
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for the most important PCs of the process parameters. As discussed earlier, the PCs contribute
the most to the variance of critical delay, therefore, the more uniform dimensions are assigned for
them. However, the LHS samples can be used to provide samplesfor the non-spatially correlated
process parameters (e.g., RDF) or any less important PCs that are not assigned to the Sobol
samples.

The number of Sobol dimensions is limited to 2m−1 for a given number of samples to limit
t ≤ m−2. However, approaching the first dimension, the uniformities increase. Therefore, it is
beneficial to order the PCs, so that the most important components, which contribute more to the
circuit’s critical delay, use the lower discrepancy dimensions. Consequently, a weight is assigned
for each PC as a measure of its criticality. The following is used to derive the criticality of each
PC:

ci =
p

∑
j=1

ψi, j

Nj

∑
k=1

exp

{

α ·
(

Slackj,k

Dnom

)2
}

, (4.17)

whereci is the measure of the criticality of thei-th principal component,p is the number of PCs,
ψi, j is the coefficient of thej-th PC in thei-th grid variable (obtained from the PC analysis [96]),
Nj is the number of logic cells in thej-th grid, Slackj,k is the slack of thek-th cell in the j-th
grid, Dnom is the nominal critical delay of the circuit, andα < 0 is a constant factor.

As a result, if a grid has many close-to-zero slack cells and/or its neighboring grids have
many close-to-zero slack cells, the corresponding PC of that grid has a high criticality.

The PCs are then ordered, based on their criticalities and then assigned to the Sobol di-
mensions, sequentially. If there are more Sobol dimensionsthan PCs, the remaining Sobol di-
mensions are assigned to some of the non-correlated processparameters, according to a simple
criticality measure for them, equal to−1×slackcell. Thus, the smaller the slack of a cell is, the
higher the probability that the non-correlated parametersof that cell are assigned to the Sobol
samples.

4.3.3 Results

The standard deviations of the estimation errors are investigated for the benchmarck circuits. The
values reported in Table 4.3 are the improvement percentagecompare to the traditional-MC us-
ing the proposed method with and without using the optimizeddirection values. The maximum
acceptable delay is set such that circuits have 95% yield. The standard deviation of the estimated
yield is obtained by repeating the MC or LHS/QMC analysis 100times using a constant number
of samples (32, 128, 512, 2048) recording the yield in each run and finally calculating the stan-
dard deviation of the 100 estimated yields. Note that, in theQMC-based sampling, rerunning the
original Sobol generator does not generate different sequences. Therefore, the scrambled Sobol
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Table 4.3: Standard deviation reduction (percentage) of the estimated yield compared to the
traditional-MC analysis. The proposed technique (QMC/LHS)is tested with and without apply-
ing the optimized direction values.

Samples 32 128 512 2048
Opt-DV w/o w/ w/o w/ w/o w/ w/o w/
C432 11.7 18.6 26.7 34.1 35.8 38.7 42.6 34.0
C499 12.9 28.3 13.4 35.6 21.6 39.8 27.5 47.0
C880 25.6 16.8 25.4 27.5 28.1 42.1 34.6 47.3
C1355 16.3 20.5 21.9 23.3 18.0 34.2 17.7 40.9
C1908 19.0 34.3 30.2 37.0 13.9 37.1 32.4 52.9
C2670 16.8 13.5 19.6 25.8 3.7 29.1 17.4 35.4
C3540 16.0 14.2 16.6 13.7 11.7 35.7 22.2 43.2
C5315 16.2 13.0 23.6 10.1 17.6 27.0 10.8 32.9
C6288 17.1 15.5 7.7 19.6 13.2 22.4 8.7 37.9
C7552 18.4 18.4 12.3 29.5 15.2 22.8 9.9 25.3
S9234 18.0 7.4 2.6 30.6 11.2 19.8 15.8 38.5
S13207 13.1 12.0 12.8 8.8 0.5 36.8 10.1 31.5
S15850 8.4 18.3 16.9 10.5 20.8 20.2 11.9 43.1
S35932 5.9 20.3 3.0 14.9 11.2 20.8 6.8 27.6
S38417 13.9 9.3 5.4 12.6 8.0 20.6 0.4 20.1
S38584 13.8 18.3 23.2 27.6 12.6 20.7 5.4 23.4
Average 15.2 17.4 16.3 22.5 15.3 29.2 17.1 36.3

technique [103] is used in order to generate randomized-QMCsamples, so that the generated
samples in each run are different and can be used to estimate the variance of the estimation’s
error. Scrambling adds a degree of randomization into the samples but maintains the structure of
samples in terms of discrepancies. Figure 4.6 depicts the standard deviation of the error for the
yield of C6288, as an example.

As listed in the table, the non-optimized direction value version shows in average an almost
constant 16% improvement for different number of samples. This is because of the fact that the
high-dimensional discrepency of very few random variableswill be low by the non optimized
technique, therefore, mostly it is the 1-D ANOVA terms that contributes to the estimation vari-
ance reduction. However, the average improvement of the standard deviation reaches up to 36%
as the more low-discrepency random variables are generatedby the optimized direction value
Sobol sampler. Given theO(N−0.5) convergence rate of the traditional-MC, to obtain an estima-
tion of the yield with the same confidence interval as the proposed method, if the improvement of
standard deviation isr%, then(1− r)−2× samples are needed using the traditional-MC method,
which translates the 36% improvement to 2.44×2048 samples to get the same accuracy by the
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Figure 4.6: Standard deviation of the error of the estimatedyield for C6288: comparison of
traditional-MC, QMC/LHS method with non-optimized IDV, and proposed QMC/LHS method
with optimized IDV.

traditional-MC method.

4.4 Order Statistics-based Control Variate for Yield Estima-
tion

In this section, a timing yield estimation technique is introduced which has higher efficiency than
the QMC/LHS-base method for moderate number of samples (few hundred to few thousands).
The problem of QMC/LHS method is its negligible variance reduction when small number of
samples is used. Moreover, due to the strong high-dimensional ANOVA terms in the yield func-
tion, the QMC/LHS is generally not very effective. The classical control variate, a variance
reduction technique, is first reviewed in this section. The inefficiency of the direct application
of the classical approach for yield function is also investigated through the analysis of the cor-
relation between the actual and control variables of the yield. Finally, an order statistics-base
technique is applied for the timing yield estimation using an auxiliary control-variable.

4.4.1 Control Variate and Yield Estimation Problem

Control variate is known as a promising variance reduction technique for expected value estima-
tion when an auxiliary model (control variable) is available. There are two necessary conditions
for the control variable: (i) it has to be highly correlated with the parameter under expected
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value estimation and (ii) its exact expected value should beknown. A rigorous exposition of the
classical control variable technique is presented in [69].

As mentioned earlier, in contrast to the advanced sampling techniques (e.g. QMC and LHS),
the control variate has shown promising results generally for any type of problems (even high
dimensions) and for any range of samples as long as a correlated control variable with a known
expected value is available. Following is a quick overview of the classical control variate method:
supposeX is the random variable under expected value estimation, ifC is the control variable
with known expected value ofµC thenX can be substituted byX∗ in computingE[X]:

X∗ = X−β(C−µC) , (4.18)

whereβ is a constant. This leads to an estimation variance of:

var(X∗) = var(X)−2βcov(C,X)+β2var(C) . (4.19)

Therefore, a significant variance reduction can be achievedby proper setting ofβ if X andC
are highly correlated.

However, this classical formulation is not effective for yield estimation, if it is applied directly
to the yield function of Eq. (4.3). This is because the randomvariable of yield problem (Iτ) is a
crisp function, so no matter how much correlated is a controlvariable withD, the critical delay,
if there is a slight shift (bias or scale) between the random variableD and the control variable
model, theIτ of D will not be highly correlated withIτ of the control variable. For example,
assumeX ≡N(0,1) is a random variable under yield estimation andC= 0.75(X−1)+0.2N(0,1)
is a highly correlated control variable wherecorr(X,C) = 0.966. If the threshold value for
yield estimation is set to 1.5, the correlation between the yield of X andC will be very low,
corr(I1.5(X), I1.5(C)) = 0.095, due to the shift and scaling of the controlling variablecompared
to the original one. In other words,P(X < 1.5) can not be well approximated (modeled) with
P(C < 1.5); therefore, no improvement is gained by direct applicationof the classical approach
for the yield problem.

4.4.2 The Proposed Order Statistics-base Control Variate Method

The control variate method has been used for quantile estimation earlier in [71], and a median
unbiased order statistics-base [104] estimator has been derived for it. A similar approach is used
in this work but to derive the median unbiased estimator for yield.

Suppose an auxiliary control variable,C, is available which is highly correlated with the
circuit’s critical delay,D. Now suppose that the CDF ofC is Φ(c) and exactly known. Such a
control variable will be introduced later. The problem is now reduced to find a quantile pointcq

such that the hypothesis test ofP(D < τ) = P(C < cq) is satisfied, then simplyy = P(D < τ) =
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Φ(cq) will be an estimation of yield based on the knowledge of the control variable and not the
simulation ofD alone. Such a point,cq, is located where the following condition is satisfied:

#
{

i|Ci < cq
}

= #{i|Di < τ} . (4.20)

This estimator can be used instead of the natural one formulated in Eq.(4.5). For example,
suppose 95 out of 100 simulations yield to a critical delay lower than the maximum acceptable
delay. If using the natural estimator, Eq. (4.5), 0.95 will be reported for the yield. However, the
actual yield might be greater, e.g. 0.97, but due to the random nature of selecting the simulation
points, only 95 points have been placed in the the acceptableregion (two points less than what
it should be). However, becauseC is correlated withD, it is also most likely that only 95 points
(two points less) reside in the acceptable region formed by (C < cq). Therefore, to form such
an acceptable region based on the control variables, thecq should be determined such that the
number of points whereC < cq become equal to 95. Obtaining such acq results in an estimation
of ŷ = Φ(cq) which is more accurate than the natural estimator based onD alone, since the CDF
of C, Φ

(

cq
)

, is exactly known and the control variable is highly correlated with the critical delay.

In practice, suppose theC andD values are ordered as:C1 < C2 < · · · < CN andD1 < D2 <
· · · < DN. If k is the largest integer such thatDk < τ, thencq can be set to any value between
Ck andCk+1 in order to satisfy Eq. (4.20). However, ifcq is set to eitherCk or Ck+1 extremes,
the estimation ( ˆy = Φ(cq)) will be biased. Therefore, a linear interpolation is used such that the
closer theτ is to theDk the closer will becq to Ck. Note that ifk = N, no simulation with delay
higher than threshold (τ) is observed, thencq is set toCN. Following expression represents the
calculation of exactcq:

if (DN < τ) ⇒ cq = DN

if (Dk < τ < Dk+1) ⇒ cq = (τ−Dk)(Ck+1−Ck)
Dk+1−Dk

+Ck
. (4.21)

As will be seen later in the results part, the first condition (k = N) is a source of bias which
becomes problematic as the number of samples shrinks.

The derivation of such an estimator is similar to that of the median unbiased quantile point
estimator as reported in [71]. The hypothesisH : P(D < τ) = P(C < cq) is equivalent toH : P(D <

τ,C < cq)+P(D < τ,C > cq) = P(D < τ,C < cq)+P(D > τ,C < cq) which is equal toH : P(D < τ,C > cq) =

P(D > τ,C < cq). The test of this hypothesis is achieved by an uniformly mostpowerful unbiased
(UMPU) test and the application of the McNemar’s test [71].

Up to this point, it is assumed that an auxiliary variable,C, correlated with critical delay,D,
and with known CDF is available. Such a control variable can bedetermined by extracting the
nominal critical path of a digital circuit and deriving a linear expression for its delay with respect
to process parameters.
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The nominal critical path is defined as the path with the highest delay when all process
random variables are set to their nominal value. Linear modeling of the path delay versus process
parameters leads to a Gaussian path delay. Therefore, such acontrol variable has a known CDF.
The expression of this control variable is extracted as follows.

SupposeC(p), the control variable, is the delay of the nominal critical path which is a func-
tion of process parametersp, therefore:

C(p) =
#gates

∑
i=1

T(i)
(

p
(i),S(i−1)

)

, (4.22)

whereT(i)
(

p
(i),S(i−1)

)

is the delay of thei-th gate in the critical path as a linear function of

process parameters of that gate,p
(i), and the signal transition time of the fan-in gate,S(i−1), as

follows:

T(i)
(

p
(i),S(i−1)

)

= a(i)
0 +a(i)

1 S(i−1) +
#p

(i)

∑
j=1

a(i)
j+1p(i)

j , (4.23)

wherea(i)
0 is the nominal delay ofi-th gate, when the process variation parameters are all set to

zero and input transition is zero (step function), and

S(i)
(

p
(i),S(i−1)

)

= b(i)
0 +b(i)

1 S(i−1) +
#p

(i)

∑
j=1

b(i)
j+1p(i)

j , (4.24)

whereb(i)
0 is the nominal transition time of thei-th gate. TheS(0) is set to the constant primary

input transition time.

Finally, to model spatially correlated process parameters, the PCA technique adopted for

SSTA in [96] is used. Thej-th process variable of thei-th gate,p(i)
j , is decomposed into a

weighted linear sum of a set of independent normal random variables. As a result,C, the delay
of the nominally critical path can be formed as a linear function of a set of independent Gaussian
random variables. Hence, the PDF ofC is Gaussian with a known mean and variance leading to
a known CDF.

Some important issues should be considered here: First, theassumption of linearity is only for
the control variable, not for the actually estimated critical delay,D. Second, although accounting
for only the nominally critical path leads to an underestimated value, there is no problem as long
as the control variable remains correlated withD, the actual delay. In fact, theD andC are
highly correlated mostly because the underlaying process parameters are globally and spatially
correlated. However, even if the process parameters were purely random, there would have
been considerable correlation due to sharing critical gates by different paths. Table 4.4 lists the
correlation factor between the control variable and the actual critical delays. The first column
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Table 4.4: Correlation between the defined control variable and the actual critical delay, with and
without considering gate length spatial correlations.

Circuits Correlated Random
C432 0.9966 0.9502
C499 0.9806 0.7364
C880 0.9936 0.9175
C1355 0.9707 0.6976
C1908 0.9997 0.9977
C2670 0.9958 0.9709
C3540 0.9984 0.9679
C5315 0.9934 0.8927
C6288 0.9989 0.9777
C7552 0.9996 0.9969
S9234 0.9878 0.8491
S13207 0.9996 0.9960
S15850 0.9964 0.9304
S35932 0.9071 0.8301
S38417 0.9922 0.9068
S38584 0.9895 0.9296

is obtained when the gate length variations are globally andspatially correlated, as modeled
in Section 4.2, while the second set of correlation numbers is obtained for purely random gate
length variations. As can be seen, the C499 and C1355 circuits show the lowest correlation
factors in the purely random case. This is due to the structure of these two circuits where many
paths have delays that are equal or very close to the delay of the nominally critical path. In fact,
both C499 and C1355 circuits are 32-Bit Single-Error-Correcting circuits in which most of their
paths are critical and there are very few gates with non-zeroslack (Please refer to Table 4.1).
A similar situation is seen for S35932 where the number of gates with low slack is very high
compared to other circuits in a same range of gate count. Therefore, using only one nominally
critical path to generate the control variable leads to a variable with a low correlation to the actual
critical delay, since it is always possible that another path becomes critical and the model almost
certainly underestimates the delay.

Finally, it is also recommended to detect different potential critical paths from different
process corner analysis. Two approaches are suggested to leverage this information. Firstly,
a control variable can be set to weighted sum (or average) of the critical delay of the potential
critical paths obtained from limited numbers of corner analysis. This way the control variable
will be kept Gaussian but may represent a larger set of critical paths. Secondly, a control vari-
able can be set to the maximum of the limited potential critical paths. This technique models
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Table 4.5: Standard deviation reduction (percentage) of the estimated yield compared to the
traditional-MC analysis. The order statistics-based control variate technique is tested with and
without considering spatially correlated random variables.

Variations Correlated Random
Samples 128 512 2048 128 512 2048
C432 72.4 65.5 68.3 42.7 42.3 34.7
C499 48.6 47.7 41.6 1.9 9.8 -3.5
C880 65.1 59.4 58.9 28.7 14.7 27.0
C1355 50.2 34.5 42.8 3.9 -4.5 -0.6
C1908 86.9 80.3 76.6 78.1 69.8 62.0
C2670 70.4 65.4 66.9 44.6 43.2 42.4
C3540 80.0 76.0 71.8 53.2 48.2 55.1
C5315 62.3 58.1 56.8 29.3 24.4 16.2
C6288 82.5 73.3 74.6 41.1 42.2 37.8
C7552 87.9 81.7 77.5 74.3 65.2 63.2
S9234 45.7 47.8 51.2 1.6 -1.7 -4.7
S13207 86.7 79.2 75.1 77.1 64.8 64.2
S15850 62.3 65.2 66.0 37.4 21.6 22.7
S35932 16.1 7.2 10.1 7.8 -5.0 4.1
S38417 53.5 53.0 51.5 7.7 15.8 3.9
S38584 53.3 50.6 54.7 48.4 40.0 45.7

the actual critical delay more accurately than the weightedsum method, but the control variable
will not be Gaussian anymore. As a result, finding its quantile in the order-statistics estimator
requires numerical integration.

4.4.3 Results

Table 4.5 shows the percentage of the standard deviation reduction using the proposed order
statistics-based method compared to the traditional-MC sampling. Similar to earlier analysis, the
yield of each circuit set to 0.95. As discussed earlier, the efficiency of this approach is highly
dependent to the magnitude of the correlation between the critical delay and control variable.
Since such a correlation is reduced by assuming less spatially correlated process variations, the
efficiency of the method is also reported in an extreme case when all process variations are purely
random.

Compared to the QMC/LHS method, the advantage of this method isthat the standard devi-
ation reduction is considerable even from moderate number of samples. However, due to faster
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Figure 4.7: Histogram of 100 estimated yields each obtainedfrom 512 samples of (a) traditional-
MC and (b) order statistics-based control variate, for C499 circuit. The proposed method’s esti-
mation is unbiased with E[y]=0.95 but shows 48% standard deviation reduction.

convergence rate of the QMC/LHS method, it can outperform this method for some benchmark
circuits (e.g. S35932) even with low number of samples.

Figure 4.7 shows 100 yield estimations each obtained from 512 samples using the traditional-
MC and the order statistics base control variate for the C499 circuit. The average of both method
is 0.95, but the standard deviation of the proposed method shows 48% reduction.

Finally, as discussed for Eq. (4.21), there is always a possibility with probability of yN to
detect no failure circuit out ofN timing simulation. This means no linear interpolation can be
used to extractcq and its value should be set to the largestC entry, as formulated in Eq. (4.21).
This is a source of biasness which increases asN, the number of samples, reduces. The bias of
an estimation is the deviation of the expected value of that estimation, ˆy, from the actual yield,y.
Ideally a bias of zero (E[ŷ]−y = 0) is desired, but as seen in Fig. 4.8 this is not the case for the
proposed method when number of samples reduces. As can be seen, a negative bias is introduced
as the number of samples is reduced, due to the possible underestimated approximation ofcq by
CN in Eq. (4.21). Moreover, for a fixN, the bias is higher for a 99% yield than that of the 95%
yield since the probability of no failure (yN) is higher.

4.5 Classical Control-Variate and Gaussian Modeling for Yield
Estimation

As reported in the previous section, the order statistics-base control variate technique outper-
forms the optimal QMC/LHS method especially for moderate number of samples; however, it
is observed that the method is prone to underestimation of the yield. This leads to a negatively
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Figure 4.8: Bias of the estimated yield for C6288: comparison of 99% and 95% yield.

biased estimation, when the yield analysis is performed with low number of samples. The mag-
nitude of the bias increases rapidly as the number of samplesreduces beyond a threshold.

In this section, the Gaussian PDF is used to approximately model the probability distribution
function of the critical delay. Assuming a Gaussian distribution, the mean and variance of the
critical delay can be estimated by MC simulations and be usedfor yield estimation. This tech-
nique is suitable for large circuits and early stages of design phases when a quick estimation of
yield is required with small number of samples. The hybrid QMC/LHS and the order statistics-
base control variate have been shown to be inefficient for such cases due to a large error variance
or unwanted negative bias.

However, there are two problems associated with such a technique. First, the variance of the
error can still be very large since the low number of samples leads to less confident estimation of
critical delay’s mean and variance. To address this issue, the classical control variate technique
will be applied to provide a highly accurate estimation of mean and variance.

The second problem of this method arises due to the error originated from the Gaussian
model approximation. The Gaussian assumption may lead to anerror that can not be fixed by
increasing the number of samples or improving the confidenceinterval using a control variate
technique, simply because the actual PDF of the critical delay is not exactly normal. However,
a designer may live with this level of inaccuracy, and give credit to the traditional approach of
yield analysis in terms of ˆµ+kσ̂ quantiles as long as the estimated mean and variance are highly
accurate. This is especially the case for early stages of design phases where other previously
reviewed MC techniques are inefficient. Other solutions would be to employ PDF models that
capture the higher number of moments such as skew-normal distribution [105] or the asymptotic
probability extraction method [106].

Inspired by the classical control variate equation (4.18),the following formula is used to
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derive a variance reduced estimation of the critical delay mean,µ̂D∗ :

µ̂D∗ =

N
∑

i=1

(

Di −βµCi
)

N
+βµµC, (4.25)

whereDi is the critical delay at thei-th iteration,Ci is the control variable value at thei-th
iteration,βµ is a constant, andµC is the exact expected value of the control variable,C. It should
be noted that, the control variable is the same as what has been used for the order-statistics
method, which is the delay of the nominally critical path expressed in terms of linear gate delay
equations in (4.22-4.24). Using the Eq. (4.19) and its derivative overβ, the optimumβµ which
minimizes the estimated mean variance is:

βµ =
cov(D,C)

var(C)
=

ρσD

σC
, (4.26)

whereρ, σD, andσC are the correlation coefficients and the standard deviations of D andC,
respectively.

If similar regression is used for the variance estimation, the following expression is derived
for the variance reduced estimation of the critical delay variance,σ̂2

D∗.

σ̂2
D∗ =

N
∑

i=1

(

(Di − µ̂D)2−βσ (Ci − µ̂C)2
)

N−1
+βσσ2

D, (4.27)

whereµ̂D =
N
∑

i=1
Di

/

N andµ̂C =
N
∑

i=1
Ci

/

N.

The term, (N−1), in the denominator eliminates the bias of the variance estimation as the
E[(x− µ̂x)

2] = N−1
N σ2

x for N samples.

In order to achieve a variance reduction for the introduced critical delay variance estimator,
the two variables:(D− µ̂D)2 and(C− µ̂C)2 must be correlated. The covariance between them
are obtained as:

cov
(

(D− µ̂D)2,(C− µ̂C)2) = 2

(

N−1
N

)2

ρ2σ2
Cσ2

D, (4.28)

if the critical delay is approximated with a Gaussian PDF. Asa result, the optimumβσ is:

βσ =
ρ2σ2

D

σ2
C

, (4.29)

since var
(

(C− µ̂C)2
)

= 2
(

N−1
N

)2σ4
C.
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The problem of Eq. (4.26 and 4.29) is that they are functions of ρ andσD that are unknown
themselves. One option is to use the MC simulation data to estimateρ andσD and use them to
calculate the optimumβ factors. However, this causes a bias in the estimation of themean and
variance. Another option would be to use a portion of the samples to estimateρ andσD and
to obtain an approximate optimum-β, while use the rest of the samples to actually estimate the
variance reduced mean and variance using Eq. (4.25 and 4.27). Fortunately, this is an unbiased
method, but the variance reduction would not be as big as whatis reported in Eq. (4.19) since
the β itself would be a varying parameter. The variance of the estimatedβ increases when the
number of samples reduces, which impacts the variance reduction of the estimation for very
small number of samples (e.g. 10).

Looking back to the Eq. (4.19), it is evident that the estimation variance follows a quadratic
function with respect toβ, hence it can be concluded that by settingβ to a value not too far from
the optimum point, there would not be a huge estimation variance penalty. In fact, as long as
β < 2×βoptimumstill some variance reduction is achievable (please refer to Eq. (4.26 and 4.19)).
Therefore one may intuitively assume thatσD is very close toσC since former is the standard
deviation of the circuit’s delay and the latter is that of itsnominal critical path. Also,ρ can be
assumed to be very close to one given the highly correlated behavior of the two random variables.
Therefore,βµ andβσ can be roughly set to one.

Figure 4.9 compares the standard deviation of the estimatedyield by using Gaussian approxi-
mation for the traditional-MC and classical control variate method. Here, by the traditional-MC,
the author means the extraction of mean and variance by traditional-MC and calculating yield
using a Gaussian fit. This is different from the traditional-MC method previously noted which
was based on finding the expected value of the yield function as a Bernouli distribution (Eq.
4.5). Two options are considered for theβ calculation in the control variable technique. In one
approach, the optimumβ is determined using the 1/3rd of the sample populations, andthe rest
(2/3rd) are used for the critical delay’s mean and variance estimation. In another approach, both
βµ andβσ are set to 1, as discussed earlier. As can be seen, the magnitude of variance reduction
is lower for C1355 than that of the C6288, same as the order-statistics base method. That is due
to the lower correlation between control variable and actual circuit delay in the C1355 circuit. As
it was also expected, the variance reduction is higher for a fixedβ = 1 than that of the estimated
optimumβ, but the difference gradually vanishes as the number of samples increases until the
optimumbetaoutperforms the fixed value.

Please note that the reported standard deviation does not reflect the intrinsic error (bias)
due to the Gaussian approximation. That error is affected bythe factors which are involved in
producing higher than second order moments (non-Normal terms) of the critical delay PDF (e.g.
circuit graph and topology, and technology parameters).

Table 4.6 lists the standard deviation reduction using the proposed technique for fixedβ = 1.
The number of samples are 16. As listed the standard deviation is significantly higher compared
to the two earlier methods; however, the estimation is biased due to the intrinsic error of model-
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Figure 4.9: Standard deviation of the error of the estimatedyield using Gaussian approxima-
tion: comparison of the traditional-MC and the proposed classical control variate method using
optimum-β and constant-β (= 1).

ing the critical delay with a Gaussian PDF. Compared to the order-statistics-based method, two
conclusions can be made. Firstly, due to the fact that a generic PDF is used in the classical
method, the method has generally a lower estimation variance compared to the yield estimation
by the Bernouli-based estimator. Secondly, the order-statistics-based method requires high cor-
relation between the control variable and critical delay around the critical delay threshold value,
that seems to be harder to achieve with a single nominal path.

4.6 Putting Them All Together

In this section, the proposed timing yield analysis techniques are integrated together to form
a unified engine. So far, three MC-base timing analysis methods are reviewed:i- The low-
discrepancy QMC/LHS engine: this method is not efficient for small number of samples (e.g.
< 500). However the magnitude of the variance reduction achieved by this method is almost
constant for different types of circuits, as it is only dependent to the relative importance of yield
function ANOVA terms which is pretty close for various circuits (please refer to Table 4.2).ii-
The order-statistics control variate engine: this method is highly biased for small number of
samples, the number of samples required to disappear bias isyield-dependent (please refer to
Fig. 4.8). Moreover, the magnitude of variance reduction ishighly circuit topology dependent.
iii- The classical control variate engine: this method models the critical delay with a generic
distribution, so it is inherently biased but the bias never vanishes.

Since the QMC/LHS method is a robust method (circuit-independent) but not very effi-
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Table 4.6: Standard deviation reduction (percentage) and bias (100E[ŷ]− 95) of the estimated
yield compared to the traditional-MC analysis. The classical control variate technique is tested
with and without considering spatially correlated random variables.

Variations Correlated Random
Bias Std. Bias Std.

C432 -0.19 91.0 0 66.9
C499 -0.22 78.6 0.19 33.8
C880 0.05 90.4 -0.04 65.1
C1355 -0.16 75.9 -0.33 21.8
C1908 -0.12 96.2 0.19 93.6
C2670 -0.11 89.8 0.20 78.9
C3540 -0.07 93.4 0.02 77.9
C5315 -0.04 88.7 0 61.5
C6288 -0.11 94.8 0.04 81.4
C7552 -0.21 96.3 0.11 91.6
S9234 -0.07 84.7 -0.33 50.5
S13207 -0.18 96.5 0.15 93.3
S15850 -0.24 88.6 -0.36 57.5
S35932 -0.32 55.4 -0.43 43.5
S38417 -0.27 84.9 0.10 59.1
S38584 -0.45 68.7 0.27 77.9

cient for low number of samples, one may combine it with the order-statistics control variate
method. That means the samples should be generated using theQMC/LHS method, while the
order-statistics-base control variable estimator shouldbe utilized for the yield estimation. Con-
sequently, the combined engine still works fine even if the circuit’s topology does not produce a
highly correlated control variable. The simulation results verifies the benefit of such a combina-
tion. The standard deviation of the error has been found to beslightly better than the maximum
of variance reductions achieved by applying each method alone. However, the bias issue for
small samples will be inherited to this engine.

In order to fix that issue, the classical control variate estimator can be first used to provide
an estimate of yield. However, the sampling technique should be kept QMC/LHS so that the
simulation results can later be used for the combined QMC/LHSand order-statistics control
variate estimator. Therefore, supposey is found to be the estimated yield using the Gaussian
approximation. The bias of the order-statistics method is originated from the cases when no
failure circuit is observed usingN simulations (please refer to Eq.(4.21)). Intuitively, if the
number of samples be large enough that the probability of observing no failure is less than 0.1,
one may assume that the bias is negligible. As a result, such athreshold would beN >−1/log(y).

72



Such a threshold is 230 and 45 for 99% and 95% yields. The validity of these numbers can be
verified from the Fig. 4.8. In conclusion, given an approximate estimation ofy using the classical
control variate, if simulating with more samples than this threshold is timely affordable, one may
continue sampling and simualting but use the combined QMC/LHS with order statistics-base
control variate estimator.

4.7 Conclusions

In this chapter, three MC-based timing yield estimation techniques for digital circuits are intro-
duced. The major drawback of Monte-Carlo techniques is the slow convergence rate. Advanced
sampling techniques and the control variate method are applied to reduce the number of simula-
tions. Following three methods are investigated:i- An optimized-discrepancy QMC/LHS engine:
this method provides greater variance reduction than the non-optimized QMC/LHS method. The
quality of the results are almost circuit-independent but it is not significantly better than the
traditional-MC especially for low number of samples (e.g.< 500). ii- An order-statistics based
control variate engine: the number of samples reduction achieved by this method can reach to an
order of magnitude, however, in circuits where there are many paths with zero slack, the saving
could drop significantly. Moreover, this method is highly biased when using low number of sam-
ples, the number of samples required to disappear bias is also yield-dependent.iii- A classical
control variate engine: this method models the critical delay with a generic distribution, so it is
inherently biased, and the bias never vanishes. However, itis a good candidate for early stage
timing yield estimation when the first two techniques are either inefficient or highly biased.
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Chapter 5

Analog Circuits: Correlation Controlled Sampling
for Efficient Variability Analysis

5.1 Introduction

Variability analysis is an important step toward design of robust analog circuits in scaled CMOS
technologies. The MOS transistors are susceptible to electrical and physical parameter variations,
due to ionization, chemical-mechanical polishing, and lithography variations leading to threshold
voltage, oxide thickness, effective width and length mismatch of identically sized transistors.
The worst-case (guard-banding) design approach does not lead to an optimum design for a tight
power and area budget, therefore, statistical analysis is an essential step toward designing a robust
VLSI circuit and trading-off among performance, power, noise, and accuracy [107]. Examples of
analog and mixed-signal circuits, extremely vulnerable totransistor mismatches are flash ADCs
[108], current steering digital-to-analog converters [109], SRAM sense amplifiers [110], ring
oscillators [111], and bandgaps [112].

Mismatch analysis can be performed by either sensitivity-based [113, 114] or Monte-Carlo
(MC) based methods. In the sensitivity-based methods, first,a linear model is derived for the
performance metric under variability analysis, then the variance of the metric is calculated. Even
though this method is fast, it requires human supervision and circuit analysis. Moreover, its ac-
curacy is simply compromised by neglecting high-order (nonlinear) effects of the analog circuit’s
performance metrics. In contrast to the sensitivity-basedmethods, the MC simulation method is
straightforward; it is easy to be employed for different circuit topologies and produces reliable
results for the mismatch analysis of analog circuits. The MCmethod can be utilized for any form
of circuit analysis, such as dc, ac, and transient with any number of process parameters as the
convergence rate of the MC technique is independent of the problem dimension (number of the
process and mismatch parameters). However, the negative aspect is that the MC analysis requires
a large number of samples/simulations, typically thousands, to produce a reasonably accurate sta-
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tistical estimation. The convergence rate of the MC sampling method isO(N−1/2) meaning that
to achieve an estimation withε times higher accuracy, the number of samples should be increased
by ε2 times [73]. The accuracy of an estimation is defined in terms of the statistical confidence
interval of an estimation.

In order to tackle the poor performance of the MC-based variability analysis method, a
number of sampling and variance reduction techniques has recently been developed for vari-
ous VLSI circuits, such as digital circuits, as seen in the previous chapter, and SRAM cells,
as will be presented in next chapter, where they utilize Latin Hypercube Sampling (LHS) [61],
low-discrepancy Quasi-MC sequences [64], control variatemethod [69, 71], importance [115]
and adaptive sampling. Early studies of the variance reduction and sampling techniques for yield
analysis of analog circuits can be found in [70, 63, 75]. However, these techniques either have a
limited performance improvement or face practical concerns due to the curse of dimensionality,
if they are used for the variability analysis of large-scaleanalog integrated circuits.

Analytical expressions are derived in Section 5.2 to examine the performance of the traditional-
MC technique and answer the question of,“how many samples are needed for a precise MC-
based circuit variability analysis?”. The analysis provide estimations of the number of samples
needed for performance metric’s standard deviation and yield estimations for given accuracies.
It is a common practice in yield analysis to model a performance metric with a generic probabil-
ity density function, e.g. Gaussian, after estimating its mean and standard deviation rather than
actually estimating the yield by finding the ratio of the failed cases over the total of simulations.
Equations are derived to compare the accuracy of these two methods in terms of their confidence
interval. Finally, the error introduced by neglecting the skewness in a Gaussian fit is studied.

A sampling method is proposed in Section 5.3 that significantly reduces the yield estima-
tion error (confidence interval) by minimizing the error of the mean and variance estimations
in analog circuits. The sampling method generates samples with controlled linear and quadratic
cross correlations that are suitable for an efficient variance and mean estimation of functions with
significant linear and quadratic terms. This is a major improvement compared to the traditional-
LHS and QMC methods where the estimation of variance is inefficient due to the poor uniformity
of samples in two-dimensional projections. The motivatingfactor in the development of such a
method originates from the strong presence of first and second order terms in the decomposition
of the performance metric functions into functions of circuit’s process parameters. In fact, the
method answers the following question:“if the performance metric functions are linear enough
(or quadratic) to be analyzed by sensitivity-based methods, how can this fact be employed for
generating samples that are highly efficient for mean and variance estimation?”

Finally, the proposed method is verified by the yield analysis of an Operational Transconduc-
tance Amplifier (OTA). The developed engine is shown to be superior to the traditional-LHS in
terms of the mean square error of the yield estimation.
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5.2 Traditional Monte Carlo Analysis and the Required Num-
ber of Samples

In this section, the performance of the traditional MC-basedmean, variance, and yield estima-
tions are investigated. The required numbers of samples arethen calculated for a certain level
of estimation confidence. For the yield analysis, two types of estimators are considered: the ex-
pected value estimator based on the indicator function of Eq. (3.2) and the yield estimator based
on modeling performance metric with a Gaussian distribution. Gaussian modeling of the process
parameter is a common practice in yield analysis. This methods is shown to be superior to the
former method in terms of the estimation variance; however,it suffers from estimation bias due
to neglecting higher order moments, especially in skewed-distribution cases.

5.2.1 Estimation of the Mean

As formulated earlier in Chapter 3, Eq. (3.3), the traditional-MC method can be used to estimate
the mean of the performance metric,p, in presence of process parametersx. If N sets ofd-
dimensional samples are simulated from theϕ(x) JPDF and the following estimator is used for
the mean estimation

µ̂=

N
∑

i=1
p(xi)

N
, (5.1)

then the estimator is unbiased (E[µ̂] = µ), and its variance (the variance of the estimation error)
is var(µ̂−µ) = var(µ̂) = var( f )/N [73]. For N > 30, the following equation can be derived
based on the z-test to determine the required number of samples to achieve a half confidence
interval-range ofc with (α×100)% confidence

Nµ =

(

Φ−1
(

0.5+ α
2

))2σ2

c2 , (5.2)

whereσ is the standard deviation ofp, andΦ−1(.) is the inverse of the standard normal cumula-
tive distribution function. It is evident that to reduce theinterval range (c) by ε times, the number
of samples must be increasedε2 times. For example, 664 simulation iterations are needed toes-
timate the open loop dc-gain of an OTA with 99% half confidenceinterval range of 0.2db, if the
standard deviation of the dc-gain is 2db. In other words, if the mean dc-gain is exactly 70db, after
using 664 simulations, in 99% of times, the estimated mean resides within the [69.8db,70.2db]
bound.

However, it should be noted that sincep itself is under inspection, most likely, there is not
enough prior knowledge about its standard deviation to determine the required number of sam-
ples in advance. Therefore, an estimation of the standard deviation should be updated while the
simulation iterations are proceed in order to obtain an approximate number of required iterations.
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5.2.2 Estimation of the Standard Deviation

The standard deviation of a performance metric may be neededto be used in modeling the per-
formance metric’s PDF to estimate the yield or it can be directly used as a design specification
(e.g. the standard deviation of the input-referred offset voltage of a comparator in a flash analog-
to-digital converter). The unbiased estimator of standarddeviation is

σ̂ =

√

√

√

√

√

N
∑

i=1
(p(xi)− µ̂)2

N−1
. (5.3)

In order to find the confidence interval of an estimator, its distribution is needed first. In
contrast to the mean estimator that converges to Gaussian due to the central limit theory, the
distribution of the standard deviation estimator is a chi-distribution for a Gaussianp [116], as

PDF(σ̂) =
√

2σ̂N−2e−
(N−1)σ̂2

2σ2

(

N−1
2σ2

)(N
2−1)

Γ
(N−1

2

) , (5.4)

whereσ is the actual standard deviation ofp, andΓ is the gamma function [117]. Therefore,
following is theα-confidence interval of the standard deviation estimator,

√

2
N−1

Γ
(

N
2

)

Γ
(

N−1
2

)σ±

√

2P−1
(N−1)/2

(α
2

)

N−1
σ, (5.5)

whereP−1
K (α) is the solution (x) of α = P(K,x), andP is the regularized gamma function.

It is apparent that finding a closed-form expression which determines the requiredN for
the standard deviation estimation with anα-confidence is not an easy task. Therefore, a sim-
pler closed-form expression is derived as follows. Let’s start with the distribution of the vari-
ance rather than the standard deviation. The exact distribution of the sample variance of a
Gaussian random variable follows a chi-square distribution [118]. However, the sample vari-
ance is formed by sum ofN independent and identically distributed random variables, hence
it can be approximated with a Gaussian distribution ifN is large enough. Please note that the
“independent” condition is not exactly valid since the estimator of the variance also contains the
sample mean, hence there will be a small correlation betweenevery two random variables of
(p(xi)− µ̂)2 and

(

p
(

x j
)

− µ̂
)2

that are about to be added. Fortunately, such a source of error
vanishes asN increases. The variance of the Gaussian approximation of the sample variance is
var(σ̂2) = 2σ4/(N−1) [116, 118].

Now supposex∗ is a zero-mean Gaussian random variable defined as:x∗ = (σ̂2−σ2)/σ2,
then the standard deviation ofx∗ is

√

2/(N−1). The sample standard deviation can now be
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written asσ̂ = σ
√

1+x∗. SinceN is large (e.g.>100) and the mean ofx∗ is zero, it can be
assumed that|x∗| << 1, therefore, using only the first Taylor series term,σ̂ = σ(1+0.5x∗). As
a result, the standard deviation can also be approximated with a Gaussian distribution with mean
and standard deviation ofσ andσ/

√

2(N−1), respectively. Therefore, the following equation
can be derived based on the z-test to determine the required number of samples to achieve a half
confidence interval-range ofc with (α×100)% confidence for the standard deviation estimation

Nσ =

(

Φ−1
(

0.5+ α
2

))2σ2

2c2 +1. (5.6)

For example, 2065 simulations are needed to estimate the standard deviation of the input-
referred offset voltage of a comparator with 99% half confidence interval of 1mV, if the actual
standard deviation is 25mV. In other words, after using 2065simulations, in 99% of times, the
obtained estimation of the stanadrd deviation resides within the [24mV,26mV] bound. Same
as the previous results, in this case also the standard deviation of p, σ, in unknown perior to
simulations, therefore, its estimation should be used to approximate the number of iterations and
finally to triger the MC analysis stop criteria condition.

5.2.3 Estimation of the Yield

The yield estimation can be either performed by the expectedvalue estimation of a Bernoulli
distribution formed by the identifying function of Eq. (3.2) or calculated by approximating the
performance with a Gaussian distribution. In this section,the required number of samples of
each method is extracted and a comparison between the two techniques in terms of the estimation
variance and bias are given.

An unbiased estimator of yield can be formed using the estimator of Eq. (3.3) and settingg
equal to the identifying function of Eq. (3.2). Therefore, the following formula can be used to
determine the number of samples withα-confidence half-range ofβ(1−y), for a yield ofy

NYB =

(

Φ−1(0.5+ α
2)

)2

β2 · y
1−y

. (5.7)

For example, to estimate a circuit yield ofy = 95% with 99% confidence interval in the range of
[93.71%,96.29%], which meansα = 0.99 andβ = 0.1, 12606 samples are needed.

Although modeling the yield as a Bernoulli distribution and estimating it directly using the
ratio of the number of acceptable cases over the total numberof simulations is an unbiased
technique, the example shows that it is a very inefficient method and requires very high number
of samples for even a non-extreme quantile point (e.g. 95%).
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Therefore, the efficiency of an alternative method is examined where the performance metric
is modeled with a Gaussian distribution using the estimatedmean and variance of the metric. To
derive the required number of samples using the Gaussian modeling approach, it is assumed that
p, the performance metric, can be well approximated with a normal distribution, with unknown
mean and standard deviation ofµ andσ. Now suppose the mean and standard deviation ofp is
estimated usingN simulations of the MC method as ˆµ andσ̂. As derived earlier in this section,
these two estimations can be modeled with a normal distribution as follows

µ̂∼ N
(

µ,σ2
m

)

σ̂ ∼ N
(

σ,σ2
s

) , (5.8)

where
σm = σ√

N
σs = σ√

2(N−1)

. (5.9)

SupposeZ = τ−µ̂
σ̂ is a random variable that produces a quantile factor at the threshold value ofτ

based on the Gaussian assumption forp. The yield will then be equal toΦ(Z) = 1
2(1+erf( Z√

2
))

using the standard normal cumulative distribution function.

The mean and standard deviation ofZ can be derived as follows. Lets defineσ∗ = (σ̂−σ)
σ , then

σ∗ ∼ N (0,
σ2

s
σ2), andZ = τ−µ̂

σ(1+σ∗) . However|σ∗| << 1, therefore, by using the first order Taylor

approximation,Z ≈ τ−µ̂
σ (1−σ∗).

As a result,µZ = E[Z] ≈ τ−µ
σ , and

σZ =
√

E[Z2]−E[Z]2 ≈
√

E[(τ−µ̂)2(1−σ∗)2]−E[(τ−µ̂)(1−σ∗)]2

σ

≈
√

σ2
m(σ2+σ2

s)+σ2
s(τ−µ)2

σ2 .

(5.10)

Substitutingσm andσs with Eq. (5.9) results in

σZ ≈
√

σ2(N− 1
2)+

N
2 (τ−µ)2

√
N(N−1)σ

, (5.11)

and sinceN >> 1,

σZ ≈
√

1+
µ2
Z
2

N . (5.12)

These values can then be used to form the Gaussian method’s(α×100)% confidence interval
range, CIG

CIG = Φ(µZ +bσZ)−Φ(µZ−bσZ) =
1
2

(

erf

(

µZ +bσZ√
2

)

−erf

(

µZ −bσZ√
2

))

, (5.13)
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Figure 5.1: Required number of samples to obtain 99% confidence inerval range withβ = 0.1.
Comparison between the Bernoulli and Gaussian assumptions.

where
b = Φ−1

(

0.5+
α
2

)

. (5.14)

An explicit formula for the required number of samples can then be derived by using the first
derivative of the error function,ddx erf(x) = 2√

π e−x2
, atx = µZ√

2
, as follows

NYG =

(

Φ−1
(

0.5+ α
2

))2
e−µ2

Z

(

1+
µ2

Z
2

)

2πβ2(1−y)2 , (5.15)

so that an estimation of yield withα-confidence half-range ofβ(1− y) is obtained. In a same
scenario as the example of the Bernoulli-based estimation, Eq. (5.7), where a yield of 95% is to
be estimated withβ = 0.1, only 6642 simulations are needed, which is almost half of the number
of samples needed for the unbiased Bernoulli-based method. Note that to evaluate Eq. (5.15),µZ

should be substituted byΦ−1(y).

Figure 5.1 depicts the required numbers of samples with respect to yield for two methods
with 99% confidence interval andβ = 0.1. It shows that the ratio of the samples needed for
the Bernoulli estimation over that of the Gaussian approximation method increases as the yield
approaches one. This is a good inspiration to use such an approximation method for rare events
analysis, e.g. the SRAM cell yield analysis. However, in contrast to the unbiased Bernoulli
method, the Gaussian approximation is prone to bias (E[ŷ] 6= y) especially when the actual dis-
tribution is skewed.

In summary, it can be concluded that to significantly reduce the yield estimation’s confidence
interval range, one may fit a generic density function to the performance metric using the esti-
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mated statistical moments. However, the density function should be selected carefully to avoid
an unwanted bias due to possible asymmetry of the distribution function.

5.3 The Proposed Method

The most promising non-MC based variability analysis methods is based on analyzing the lin-
ear sensitivity of performance metrics with respect to mismatch parameters and calculating the
total metric variance as the sum of the square of linear coefficients. However, performing ex-
tensive circuit simulations is inevitable considering thecomplex secondary effects in the scaled
MOS transistor characteristics to obtain accurate estimation of such sensitivity measures. More-
over, the linear models may not capture the whole variation effects of the process variations on
performance metrics.

In this section, an LHS-based sampling method is proposed which improves the confidence
interval of the estimation compared to the traditional LHS.This is achieved by a supervised
permutation step in LHS generation. The traditional-LHS permutes the samples from disjoint
intervals randomly and has no control over the permutation process. Whereas, the proposed
permutation minimizes the linear and quadratic cross correlations between pairs of the random
process variables. This is inspired by the presence of considerable linear and quadratic com-
ponents in the decomposition of the performance metrics’ functions with respect to mismatch
parameters.

5.3.1 Assessing the Performance Metrics’ Response Surface

If a metric can be well modeled by an additive-form function,a controlled permutation sampling
method can improve the estimated yield accuracy. In this part, formulations and circuit examples
are provided to justify the strong presence of linear and quadratic additive terms in the response
surface of analog circuit’s performance metrics.

Supposep(x) is the performance metric under statistical analysis. Let’s assume a least square
second-degree response surface model is constructed forp as

pS(x) = p0 +
d

∑
i=1

aix
(i) +bix

(i)2
, (5.16)

that minimizes the error of
∫

Rd (p(x)− pS(x))2ϕ(x)dx for the process parameters with the
given probability density ofϕ(x). The following measure represents the ratio of the total metric’s
variance that has been captured by the model. In other words,it quantifies how wellp is modeled
by pS.
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Figure 5.2: Assessing the quality of a quadratic response model for the drain current with respect
to gate length variation.

q =
var(pS)

var(p)
, 0≤ q≤ 1 (5.17)

By considering the fact that the standard deviation of each process parameter is around or less
than 10% of its nominal value [119], one may consider the second order taylor approximation of
the performance metric around the nominal design point a sufficiently accurate approximation of
the metric, leading to aq≈ 1. For illustrative purposes, the drain current of an industrial 90nm-
technology NMOS is depicted with respect to its gate length variation in Fig. 5.2. Regression
models are obtained for two gate length variances ofσL = 10nm and σL = 5nm. While the
regression model forσL = 10nm models a wider region around the nominal point,L = 0.1µm,
fairly accurately, the fitting forσL = 5nm has a more accurate prediction of the drain current
in a shorter distance from the center point. The calculatedq measures are 0.822 and 0.992,
respectively.

It should be noted that when dealing with real-world large-scale circuits with several process
parameters, there exists terms due to the interaction of process parameters that has not been
included in this modeling scheme. Therefore,q may be practically lower than this example.
However, one of the important source of variation in analog circuits is due to the mismatches
of the identically-sized transistors, that imbalances theDC drain-source currents or gate-source
voltages of two symmetrical transistors as depicted in Fig.5.3. This type of current and voltage
mismatches are, in fact, traditionally formulated using the first order Taylor approximation, as
follows [107, 120]:

VOS,in = IDS
gm

β2−β1
β − (VTH2 −VTH1)

IOS= IDS
β2−β1

β −gm(VTH2 −VTH1)
. (5.18)
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Figure 5.3: Transistor pairing arrangements and the effects of mismatches on the DC operating
points: (a) current biasing: the mismatches causes theVGS to vary and (b) voltage biasing: the
mismatches causes theIDS to vary.

Table 5.1 lists theq-measures of the performance metrics of three different circuits designed
in a 180 nm industrial technologies. The gate length, width,threshold voltage, and the oxide
thickness of all transistors are varying, and their standard deviation are set as suggested by the
technology. As can be seen, the last two circuits have a highly additive performance metric.
The offset voltage of a comparator follows a close-to-linear relation with respect to transistor
mismatches, similar to that of the Eq. (5.18), while the period of the oscillations of the ring
oscillator is just the sum of inverter’s propagation delays. The propagation delay of an inverter
is itself nothing but the average (weighted sum) of the low tohigh and high to low delays that
each can be fairly well modeled with quadratic functions of pull-up and pull-down transistors
drive-in mismatches. However, the OTA circuit is the case that shows lowerq especially for gain
bandwidth product and phase margin metrics where a product of two performance metrics are
present.

5.3.2 Permutation Controlled LHS

As discussed in Section 3.2, Latin hypercube sampling does not provide a variance reduction
when the function under analysis has major interaction terms. Therefore, it does not provide a
considerable variance reduction for high order statistical moment estimations. For example, the
second central moment, variance, consists of major pairwise interactions of underlying process
parameters. However, as seen earlier in this section, circuits’ performance metrics consist of
major linear and quadratic 1-D ANOVA terms. Therefore, by using the decomposition form
of Eq. (3.6) for second momentf (x) = p(x)2, the variance of the residual term,r(x) will
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Table 5.1: Sample circuits and theirq-measures
Circuit Metric q-measure
Two Stage Folded Cascade OTA DC Gain 0.980
24 Transistors Bandwidth 0.984

GBW-Product 0.954
Phase Margin 0.948
Power 0.999

Regenerative Comparator Offset Voltage 0.998
9 Transistors

Seven-stage inverter ring oscillatorPeriod 0.999
14 Transistors

mainly be due to terms in the following forms:x(i)x( j), x(i)2
x( j), andx(i)2

x( j)2
. Therefore, the

new decomposition replacing Eq. (3.6) is

f (x) = µg +
d
∑
j=1

f j

(

x( j)
)

+ ∑
i< j

ci j x(i)2
x( j)2

+ ∑
i 6= j

bi j x(i)2
x( j) + ∑

i< j
ai j x(i)x( j) + r ′ (x) (5.19)

The added terms are essentially the sample covariances between(x(i),x( j)), (x(i)2
,x( j)), and

(x(i)2
,x( j)2

).

In the traditional-LHS,d-dimensional vectors of uniform samples are generated by randomly
permuting the order of samples in each dimension. That is, the i-th sample of thej-th process

parameter,x( j)
i is

x( j)
i =

π j (i)−Ui j

N
(5.20)

wherei = {1, · · · ,N}, j = {1, · · · ,d}, Ui j ∼ U (0,1) is a uniform sample, andπ j (1) · · ·π j (N) is
a random permutation of integers from 1 toN. The random permutation means that there is no
control ond permutations that create thes-th vector sample,π1(s) · · ·πd (s), leading to unwanted
correlation betweenx(i) andx( j).

In this section, a permutation algorithm is proposed that minimizes the linear and quadratic
covariance between pairs of process parameters. As a result, the estimation ofE[ f ] using the
controlled permutation samples filters out not only the maineffect parts (1-D ANOVA terms),
but also the 2-D terms due to linear and quadratic interactions. The idea of removing (reducing)
the correlations of Latin hypercube samples has been previously studied in [121], which only
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minimizes the linear covariances, hence, may not provide a great saving in case of performance
metrics that could behave quadratically.

Our proposed method is a simulation annealing-based methodthat randomly permutesπ j(i)
values (1, · · · ,N) in each column (1, · · · ,d) and minimizes the following cost function:

cost= α1 ∑
j<k

corr2
(

κ j ,κk
)

+α2 ∑
j 6=k

corr2
(

κ2
j ,κk

)

+(1−α1−α2) ∑
j<k

corr2
(

κ2
j ,κ2

k

)

(5.21)

where 0< α1,α2 < 1 are the coefficients determining the relative importance of each type of
covariance, and forj = 1, · · · ,d,

κ j =

[

Φ−1
(

π j (1)−0.5
N

)

, · · · ,Φ−1
(

π j (N)−0.5
N

)]T

(5.22)

The resultantπ j (i) permutations are then used in Eq. (5.20) to create uniform random sam-
ples. The inverse of the normal cumulative distribution,Φ−1, can then be used to transform
the uniform samples into Gaussian. Algorithm 2 shows the pseudo-code of the method. The
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Figure 5.4: Standard deviation (STD) of the estimations of the mean, standard deviation, and
skewness with respect to the number of samples (x-axis) for the OTA’s performance metrics.
Square: Monte Carlo, Circle: traditional LHS, X-mark: the proposed permutation controlled-
LHS.
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Algorithm 2 ControlledPermutationNormalLHS(N,d)
1: Generate a permutation matrixΠN×d

2: Findcostusing Eq. (5.21 and 5.22)
3: avgCost= cost
4: T = Tinit

5: while ((T > Tf inal) OR (Nocost improvement))do
6: sumCost= 0
7: for cnt = 1 to innerIter do
8: Select a column 1≤ j ≤ d
9: Select two rows 1≤ i1≤ N and 1≤ i2≤ N

10: Swapπ j(i1) andπ j(i2)
11: Find change of the cost,∆cost

12: if
(

exp
(

− ∆cost
avgCost×T

)

< (u∼ U (0,1))
)

then

13: Swapπ j(i1) andπ j(i2)
14: else
15: cost= cost+∆cost
16: end if
17: sumCost= sumCost+cost
18: end for
19: avgCost= sumCost/innerIter
20: T = T ×coolingRate
21: end while
22: returnΦ−1(Π−(U∼UN×d(0,1))

N )

technique is a simulation annealing-based routine, therefore to improve its runtime, several im-
plementation considerations should be followed. For example, the selection of a column, at line
8, must give higher priority to columns that contribute moreto the cost. Also, the evaluation of
the cost in each iteration should be limited to finding the change of the cost due to the swap of
the two rows only in the corresponding column.

The single-threaded C implementation of the algorithm on anIntel Xeon 3GHz PC takes 17
seconds to produce 300 samples of 100-dimension with inner and outer loop count of 10000 and
500, respectively. This runtime overhead is much lower thanthe actual time taking to simulate
a circuit of 100 process parameter-size, for 300 times on thesame machine. Moreover, the
simulation does not need to use these extremely large numberof inner and outer iteration counts,
as a significant reduction of the cost function (from 35 to 1) is achieved within the very first outer
iterations (the fist 50), while the rest of the cost minimization (1 to 0.1) is achieved later.

An OTA is designed in an industrial 180 nm CMOS technology. Thetraditional MC, LHS,
and the proposed permutation controlled LHS methods are used to estimate the first three mo-
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(a) µ=3.73,σ=0.0935,λ=0.0824 (b) µ=69.5,σ=1.77,λ=-0.342

-5

(c) µ=146,σ=23.3,λ=0.542

-8

(d) µ=432,σ=33.9,λ=-0.85 (e) µ=61.9,σ=2.07,λ=0.806

Figure 5.5: Fitting shifted-lognormal distributions to histogram of 60000 samples of Monte Carlo
simulation of the OTA. X-mark: MC histogram and cumulative distribution, Solid line: the fitted
shifted lognormal PDF and CDF.

ments of its various performance metrics. The estimation procedure is repeated for 100 times,
and the standard deviation of the 100 estimations are calculated for each method and compared
in Figure 5.4 with respect to the number of samples.

Many important issues can be observed in the figure. It can be seen that the traditional-LHS
performs significantly better than MC only for the mean estimation. That is due to the more
than 1-D effective dimensionality of the standard deviation and skewness functions. It is also
noticeable that the proposed method performs better than traditional-LHS even for the mean es-
timation, which is due to filtering out the linear and quadratic interaction terms as well as the
1-D main effect terms. It is also seen for the power consumption analysis, that the difference of
the traditional and proposed LHS is not significant for the mean estimation. This is because the
power consumption model has few interaction terms in it (Please refer Table I). That is why there
is a significant improvement of the standard deviation estimation of the power consumption when
using the proposed method compared to the traditional LHS. In contrast, a lower gain is achieved
by using the proposed method for the standard deviation estimation of the gain-bandwidth and
phase margin compared to the rest of the metrics due to lowerq-measure. However, the mag-
nitude of improvement is still large enough, e.g. 4X less samples are required to estimate the
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standard deviation of the phase margin with the same accuracy of the traditional-LHS. Finally,
it can be seen that since the ANOVA decomposition of the skewness composes of major 3-D as
well as 2-D terms, the proposed method managed to reduce the estimation variance, hence the
number of needed samples reduces up to 50% in some cases.

5.3.3 Finding Yield from the Statistical Moments

Inspired by the analysis in Section 5.2.3, finding the yield through modeling the performance
metric with a generic distribution can lead to a lower estimation variance compared to that of
the yield estimation and using the natural estimator of Eq.(3.3). However, the distribution of the
underlying performance metric is not known, instead they are the statistical moments that can
be estimated from the Monte-Carlo (or the controlled permutation LHS) analysis. Method of
moments is an estimation technique to construct a probability distribution function by matching
its first few moments with the estimations.

Although it is easy to work with, considering only the first two moments (mean and variance)
and using the Gaussian distribution introduces a significant bias in skewed distributions. In fact,
for skewed data, if the higher is the yield (the lower is the failure rate), the more would be the
error due to ignoring the skewness. That is the reason behindthe inaccuracy of modeling the
SRAM failure mechanisms with Gaussian distribution as it is an extremely rare-event.

An asymptotic probability extraction methodology is proposed in [106] to construct a PDF
given a number of moments. The technique is not trivial to implement and requires high number
of moments (e.g. around 8 order) to produce a stable CDF function. However, the accuracy
of the moment estimations decline with the order of the moment for a MC-based technique,
suggesting that the estimated moments used for the matchingmethod might be very off from
its actual value, for high order moments. In addition, it is not clear how this technique can be
adopted for a multivariate PDF formation, for the purpose ofmulti-parameter yield estimation.

In this work, a generalization of the lognormal PDF, named shifted-lognormal distribution,
is used to fit the first three moments, mean, variance, and skewness into this generic PDF [122].
This a simple technique to implement, yet it can efficiently model variety of the performance
metrics from highly skewed to almost-symmetrical cases (please refer to Figure 5.5). The mul-
tivariate extension of this distribution can be used to calculate the yield with respect to several
performance metrics.

A single variate shifted-lognormal distribution is a three-parameter distribution, which can
be generated from a normal distribution as follows:

Y ∼ L N (α1,α2,α3) = α1 +exp
{

X ∼ N
(

α2,α2
3

)}

(5.23)

Given the MC estimations of the mean, standard deviation andskewness of a design per-
formance metric, as ˆµ, σ̂, and λ̂, respectively, the three parameters of the shifted-lognormal
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Figure 5.6: Standard deviation of 100 runs of yield estimation using the lognormal fitting model
with respect to number of samples. P(power<3.92mW) = P(gain>65.7dB) = P(BW>106.5KHz)
= P(GBW>353.4MHz) = P(PM>58.65) = 0.975. Square: Monte Carlo, Circle: traditional LHS,
X-mark: the proposed permutation controlled-LHS.

distribution are
α3 =

√

ln(t)

α2 = ln

(

σ̂
√

eα2
3−1

)

− α2
3

2

α1 = sign
(

λ̂
)

µ̂−eα2+
α2

3
2 ,

(5.24)

wheret is the real root of
t3 +3t2−4− λ̂2 = 0; (t > 1). (5.25)

The resultant PDF of the process parameter will then be

f (y) =
exp

{

− (ln(y−α1)−α2)
2

2α2
3

}

√
2πα3(y−α1)

, (5.26)

and the CDF, the yield for a given maximum value ofτ is

P(Y < τ) =
1
2

(

1+erf

(

ln(τ−α1)−α2√
2α3

))

. (5.27)
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(a) MC (b) Permutation Controlled LHS

Figure 5.7: Histograms of 100 estimated gain-bandwidth yields using the MC and proposed
methods for 600 samples.

Please note that this CDF model only captures a positive skewness, however, to model the nega-
tive skewness one should simply consider the negative of theperformance metric, and reformu-
late Eq. (5.27) as

P(Y < τ) =
1
2

(

1−erf

(

ln(−τ−α1)−α2√
2α3

))

. (5.28)

Figure 5.6 shows the standard deviation of the error obtained from 100 runs of yield esti-
mation using the MC, traditional and proposed LHS. The shifted-lognormal model is used to fit
the first three moments obtained from each method in each run.The yield with respect to each
performance metric is set to 97.5%. Therefore, the standarddeviation of 0.5% means that the
estimated yield is within 97.5%±2.57×0.5% in 99% of times.

Figure 5.7 shows histograms of the 100 estimated gain-bandwidth yields using the MC and
proposed method for 600 samples. The histogram confirms the reduction of estimation standard
deviation, as also reported in Fig. 5.6. The standard deviations of the MC method and the
proposed permutation sampling method are 0.53% and 0.275%,respectively, meaning that to
gain an estimation with the same accuracy as the proposed method almost(0.53/0.275)2 ≈ 3.7
times samples are needed using the MC method.

Finally, for the case of multi-performance metric yield analysis, the following multivariate
lognormal JPDF is suggested:

f (y) =
exp

{

(x−α2)
T Σ(x−α2)

}

(2π)k/2 |Σ|0.5
k
∏
i=1

x(i)

, (5.29)
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wherey = [y(1), · · · ,y(k)] is the row vector ofk performance metrics,x= [ln(y(1)−α(1)
1 ), · · · , ln(y(k)−

α(k)
1 )] is the transform to normal ofy, andΣ is thek×k covariance matrix ofx such thatσii = α2

3
and

σi j = ln











cov
(

y(i),y( j)
)

exp

{

α(i)
2 +α( j)

2 +
α(i)

3

2
+α( j)

3

2

2

}
+1











, (5.30)

where cov
(

y(i),y( j)
)

, the covariance between thei-th and j-th performance metrics is estimated

through the sampling based analysis.

The multi-performance metric yield can then be calculated by transforming the performance
metrics into normal variables then using a numerical method[123] to evaluate the multivariate
normal distribution CDF. The estimated yield is

P
(

Y(1) < τ1, · · · ,Y(k) < τk

)

= Φ(α2,Σ)

(

ln
(

τ1−α(1)
1

)

, · · · , ln
(

τk−α(k)
1

))

. (5.31)

5.4 Conclusions

In this chapter, the variability (mean, standard deviation, and yield) analysis of analog circuits by
the means of sampling-based methods is investigated. The formulations, derived for the required
number of samples, quantify the reduction of number of samples, due to modeling yield with a
generic distribution such as Gaussian. They also show how much samples are needed for suffi-
ciently accurate standard deviation estimation. The LHS method, a more practical solution com-
pared to other variance reduction and sampling methods, is shown to be not efficient enough for
the standard deviation and yield estimations due to presence of high order terms in the ANOVA
decomposition. However, because of the strong one-dimensional linear and quadratic correla-
tions between the performance metrics of analog circuits and process parameters, a proposed
permutation-controlled LHS sampling which minimizes the cross-linear and quadratic correla-
tions is shown to be highly efficient for both the standard deviation and yield analysis of analog
circuits. Finally, a multi-variate shifted log-normal distribution is used to fit simulation data with
a generic JPDF that reduces the bias originated from neglecting skewness in a Gaussian fit.
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Chapter 6

SRAM Cells: Adaptive Sampling for Failure
Probability Estimation

6.1 Introduction

Manufacturing variability has become an issue in the designof sub-100 nm VLSI circuits and
memory cells [19]. SRAM cells are designed under a very tight area constraint. Therefore,
due to their scaled transistor channel area, they undergo significant random variations [124, 10,
125]. Also, in a memory block of millions of cells, the failure of only one (or few) cells may
lead to chip failure. This is the most challenging element ofany SRAM cell yield analysis
method undermining either its accuracy or efficiency. However, to preserve sufficient variability
margin yet prevent over-design, it is critical to follow a methodology which efficiently provides
an accurate yield estimation during the design cycles.

The SRAM cell yield analysis has been widely studied by analytical techniques [126, 127,
128]. However, in order to analytically calculate the yield, various modeling simplifications are
involved, such as, the first-order Taylor approximation of the models, trivial current-voltage mod-
eling of MOS transistors, and finally, determining the yieldthrough statistical Gaussian fitting of
the performance metrics. Since the statistical domain of attraction in SRAM cell failure analysis
is extremely far (5-6 sigma) from the mean, any minor linearization and Gaussian assumption
error can introduce a significant error in the extreme quantile and yield estimations. Therefore,
to perform a reliable, yet non-pessimistic stability sign-off of an SRAM cell, Spice-accurate
mismatch simulations are still inevitable, despite the significant improvement of the analytical
approaches.

Recently, the variance reduction Monte-Carlo (MC)-based methods, as alternatives to analyt-
ical methods, have attracted attention by addressing the shortcomings of the statistical analysis
of VLSI circuits for digital and analog circuits as seen in the previous chapters. The yield estima-
tion of SRAM cell has not been an exception in this trend [72]. The advantages of the MC-based
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methods are their capability to perform Spice-accurate simulations and cut development, inte-
gration, and modeling costs. However, the most threateningdisadvantage, inherent in the crude
traditional MC method, is the slow convergence rate,O(N−0.5). Therefore, the Importance Sam-
pling (IS), a variance reduction method for rare-event statistical estimation problems, has been
adopted to reduce upon the required number of iterations forSRAM cell analysis [72]. This is
achieved by determining an alternative but fixed Joint Probability Distribution Function (JPDF)
to simulate mismatch samples, such that faulty (important)cells are simulated more frequently
than that of the crude-MC. Therefore, the mean square error ofthe estimation can be reduced
leading to possibly more accurate results even with fewer number of simulations. However, it is
not a trivial task to determine such a JPDF even for a low dimensional problem [70]. In fact, the
cost of a poor selection of a JPDF can be huge and lead to a significant increase in the estimation
error even worse than that of the crude-MC [129]. This risk also exists in the mixture IS (MixIS)
method [72]. Its development was based on the early researchof Hesterberg [130] whose pro-
posal (MixIS) introduced an insurance against performing much worse than crude-MC by using
a mixture of several PDFs. However, the cost of using a mixture, is a much worse performance
improvement than that of the non-mixed IS with a good choice of an alternative JPDF [129].
Moreover, no systematic way of calculating the mixture of several PDFs is reported to guarantee
a reasonable performance [72].

In Section 6.2, the SRAM yield estimation is formulated and a background on the adaptive
sampling techniques are given. Then,(a) the behavior of SRAM cell failure mechanisms (read
stability, write failure, and read access failure) is studied with respect to threshold voltages’
mismatches in Section 6.3. By using the results, a general form of the multivariate Gaussian
JPDF is chosen as the alternative sampling JPDF format.(b) Instead of fixing a multivariate
Gaussian JPDF from the beginning of the simulations, an adaptive method is proposed in Section
6.4. The adaptive method manipulates (improves) the JPDF after each MC iteration by learning
from the previous simulation results. The JPDF evolution isdirected toward further minimization
of the estimation variance by using a high-order Householder’s method [131] to provide a faster
convergence rate than that of the Newton’s method. This process eliminates the risk associated
with the IS method while provide a high performance engine.(c) Finally in Section 6.5, to
achieve an even faster convergence, a method is proposed to analytically calculate an initial
JPDF that is very close to the optimum one, instead of starting from an arbitrary one.

6.2 Background

6.2.1 Problem Formulation

As also formulated earlier in Chapter 3 and 5, supposex is a vector ofd process/mismatch
parameters, andf (x) is a performance metric of interest. The following indicator function, I ,
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divides the problem space (x ∈ R
d) into acceptable (I = 0) and unacceptable (I = 1) regions,

represented as:

Iτ (x) =

{

0 f (x) > τ
1 f (x) ≤ τ , (6.1)

whereτ is the threshold value of the performance metric. Ifϕ(x) is the JPDF ofx, then the
following integral represents the failure probability:

P(Iτ = 1) = Eϕ [Iτ (x)] =
∫

Rd

Iτ (x)ϕ(x)dx. (6.2)

The crude-MC method suggests a numerical technique to solvethe integral in (6.2) by sam-
pling from theϕ(x) distribution and extracting the mean ofIτ(x). Therefore, the required num-
ber of simulation iterations to estimate a failure rate ofP with α-confidence for a half-length of
βP is

N =

(

Φ−1(0.5+α/2)
)2

β2 · 1−P
P

, (6.3)

whereΦ−1(.) is the inverse of the normal Cumulative Distribution Function (CDF). It is evident
that for a rare event, whereP approaches to zero,N increases inversely withP.

The problem with the crude-MC method is that most of the generated samples by theϕ(x)
distribution reside in the acceptable region because the failure probability is low. Since these
samples do not contribute to the calculation of the failure rate, their simulation is only a waste
of runtime. As a result, if an alternative distribution,h(x), is chosen to simulate the random
parameters such that more failure cases are observed, the variance of the estimation error is
reduced, i.e, if the integral in (6.2) is rewritten as

∫

Rd

Iτ (x)ϕ(x)

h(x)
h(x)dx = Eh

[

Iτ (x)ϕ(x)

h(x)

]

, (6.4)

then, by simulating the samples from theh(x) distribution, the following can be used as an
unbiased estimator for the failure probability:

P̂h =
1
N

N

∑
k=1

Iτ

(

x
(k)

)

ϕ
(

x
(k)

)

h
(

x(k)
) , (6.5)

wherex
(k) is thek-th set of the mismatch samples. Therefore, the variance of the new estimator

is

Var
(

P̂h
)

=
1
N





∫

Rd

I2
τ (x)ϕ2(x)

h(x)
dx−P2



 . (6.6)
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If the alternative distribution is determined carefully, the given variance should be lower than
the crude-MC estimator variance,(P−P2)/N. This method is called the Importance Sampling
(IS). Given (6.6), a zero-variance estimator is theoretically achieved, ifh(x) is set to:

h(x) =
I (x)ϕ(x)

P
. (6.7)

This fact establishes that the IS is a very promising variance reduction method. Many re-
searchers continue to improve and adapt it for their applications [132]. By inspecting the Eq.
(6.7), it is evident thatI (x) andP are inexplicit or unknown a priori. As a result, such a “per-
fect” alternative distribution is not available for a problem. However, two conclusions can be
drawn here:(a) As seen in (6.7), to reasonably gain from any IS method, the alternative distribu-
tion should produce more samples in the spaces where bothI andϕ are high. In SRAM analysis,
this means simulating the samples that fail the cell and havea relatively high probability in sili-
con realization.(b) It can be concluded from (6.6) that there is no guarantee thatthe IS always
leads to a better performance, especially for multivariatecases, where a careless choice ofh (fix
alternative distribution) can easily lead toh(x) << I(x)ϕ(x) in some regions ofRd. Missing or
less emphasized important regions [129] can be catastrophic.

Several recent studies have been conducted to improve the ISmethod. The Large Deviation
Theory (LDT) is used to improve the IS for rare events [133, 134]; however, the necessity of the
computationally expensive condition checking and the asymptotic efficiency of the method limit
LTD’s empirical applications. Another approach is to use anadaptive method to improve the
alternative distribution during the simulations. This, infact, eliminates the burden of selecting
a good and fixed JPDF from the beginning, and provides a mechanism to avoid poor behavior
by directly focusing on the estimation variance minimization. In the next section, a review of
the history of this idea is provided to create a background for the adaptive sampling method
developed for the application of the SRAM yield estimation.

6.2.2 Adaptive Sampling Method

In an adaptive sampling approach, the previous simulation outputs are used to iteratively adjust
the alternative distribution in order to generate more samples in the domains of interest, which
is the ultimate goal of the IS. The adaptive sampling is not a new approach and its history dates
back to the early 1990s where it was first introduced for structural safety analysis [135]. Lately,
much has done to improve the method. In [136], two (parametric and non-parametric) adap-
tive techniques are proposed. The simulation runs are divided into smaller groups. Then, the
alternative distribution is tuned by extracting statistical behavior of the last group’s results. The
problem with these methods is that if the event is extremely rare an the initial distribution does
not set properly, there might be no detection of the failure event during the relatively few runs
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Figure 6.1: A 6T SRAM cell
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Figure 6.2: Mismatch simulation of Read Noise Margin Low (RNML), VL zero write time (TW),
and VR zero read time (TR). Process parameters are normalized over their standard deviation.

in each group, leading to no improvement of the distribution. Moreover, the performance gain is
limited due to the need of, at least, hundreds of runs in each group. In [137], another adaptive
method is proposed that partitions thed-dimensional problem space intoMd hypercubes and
performsN simulations in each of them in iteratively. Then, based on the estimated variance
in each hypercube, the method continues with refining and repartitioning each partition. This
approach is very expensive for even a moderate dimension problem (d > 4). Moreover, in a
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Figure 6.3: PDF of mismatch parameters for following failure conditions (RNML<2mV,
TW >30pS, and TR >50pS).

yield estimation problem, where the estimated function is an identity function, the variance in
most of the partitions is estimated to be zero, unless many samples are used for each partition
which contradicts with the reason behind using the IS. Finally, to overcome the problem of so
many runs in each group or each partition, a stochastic approximation-centric [138] method is
proposed in [139]. Here, the Robbins-Monro algorithm [140] is used to direct the drift vector
of a multivariate normal IS to minimize the estimation variance. However, no systematic way
of selecting the coefficients of the Robbins-Monro algorithmis proposed, a definite obstacle
for achieving a robust method. Moreover, this solution faces the same problem as the others
for a rare-event identity-type function. This is due to the stochastic approximation of variance,
typically zero, after each iteration. Consequently, no update of the drift or improvement of the
sampling distribution in each iteration.

In this work, firstly, a method is proposed that updates the drifts based on a direct estimation
of the variance derivatives, unlike the Robbins-Monro algorithm. This not only removes the need
of Robbins-Monro’s sequence coefficients settings, but alsoadds a degree of freedom to apply
the high-order Householder’s method by computing high-order derivatives, which eventually in-
crease the convergence rate. In addition, a mechanism is proposed to address the commonly
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mentioned problem of the zero estimation of the variance in rare-event identity-type functions.
Secondly, an analytical framework is developed to calculate the initial close-to-optimal multi-
variate Gaussian distribution parameters (drifts and covariances) so that the estimations con-
verges effectively faster.

6.3 SRAM Failure Mechanisms

Before introducing the yield estimation method, various failure types of the popular 6T-CMOS
SRAM cell in Fig. 6.1 are explored. This study is conducted by extensive mismatch simulations
with a 65nm industrial CMOS technology. The objective is to examine the behavior of the failure
mechanisms with respect to each transistor’s threshold voltage variation.

There are three sources of cell failure.

1. Read Failure: flipping of the cell state during the read access. This is also referred to the
Read Static Noise Margin (RNM)-based failure [126].

2. Write Failure : inability to change the state of a cell during writing in a given time frame
[124].

3. Access Time Failure: inability to provide enough differential voltage to saturate the sense
amplifier in a given time frame during the read access [125].

A recent analytical study of these failure mechanisms suggests a strong linearity of the per-
formance metrics with respect to the threshold variations [128]. The RNM is found to have a
highly linear relation with the mismatch factors. Also, both the inverse of write time (TW) and
read time (TR) exhibit a strong linearity. These are circuit facts that can also be verified qualita-
tively. For example, in the case of reading a zero-state fromthe right side of a cell, the saturated
access transistor has a close to linearIDS in relation to its threshold voltage. This leads to a linear
relation between 1/TR and∆VAR

T , sinceTR = CL∆V/IAR
DS.

However, due to the simplifications that inevitably bring inaccuracies,no linear relation is
assumed to perform the statistical analysis. In contrast, the existing linearity is exploited to
establish a Spice-accurate adaptive MC method which works over a drifted (non-zero mean)
multivariate normal distribution with a non-identity covariance matrix.

In this section, the reason for choosing a general drifted normal distribution for the alternative
and adaptive distribution is demonstrated. In fact, the contents of this section provide only visual
and quantitative justifications, while the corresponding mathematical analysis is given in Section
6.5.
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Figure 6.2 depicts the actual mismatch simulation of three performance metrics, RNML,
TW, and TR, to illustrate their behavior in relation to some of the transistors’ threshold vari-
ations. Since the remaining mismatch parameters have almost no effect on the corresponding
performance metric, they have not been plotted. It is evident that, positive and negative linear
cross-correlations, among pairs of performance metrics and mismatch parameters, exist.

Now, refer to the conclusion derived from Eq. (6.7). It is stated that in order to reduce the
estimation variance by using the IS, the alternative distribution should generate more samples
in the failure region. As a result, by examining Fig. 6.2(a),to observe more RNML failure
cases (e.g. RNML<2mV) the alternative distribution should simulate∆VNR

T with high negative
values. This is also the case for∆VAR

T , but opposite for∆VNL
T which are in agreement with circuit

analysis. Similar observations can be made for the TW >Tmax
W and TR >Tmax

R failure regions.

Therefore, if a properly set alternative non-zero mean distribution is used to generate mis-
match samples, there is a higher chance of capturing more failure samples. However, it is critical
to remember that not each overly-drifted distribution, which creates many failure samples, is nec-
essarily a good candidate. By looking at Eq. (6.7), the condition for gaining from an alternative
distribution is that the generated samples should have a relatively high probability in reality (or
largeϕ(x)). The trade-off in drifting the distribution is to reach a point, where not only are many
failure cases observed, but also they have the highest probability in the actual silicon realization.

Figure 6.3 depicts the empirical distribution, obtained byperforming extensive (tens of mil-
lions) MC simulations, and extracting only the failure cases. Figures 6.3(a) and 6.3(b) demon-
strate that the distributions of∆VNR

T and∆VAR
T are negatively drifted for the RNML failure cases,

that is in agreement with the positive correlation, plottedin the Monte Carlo graphs in Fig. 6.2(a)
and 6.2(b) suggesting the need for negative delta-mismatches in order to obtain a low RNML.
However, to reduce the RNML, the∆VNL

T should be increased which is confirmed in Fig. 6.3(c).
Note that the drift magnitude seems to be proportional to thecorrelation. For example,∆VAL

T and
∆VAR

T show very high drifts in the simulations of TW and TR (Fig. 6.3(d),6.3(e)) because they
are highly correlated to the two mismatch parameters (Fig. 6.2(d),6.2(e)).

Besides the drifts, the variance of the normalized delta-mismatches of the failure cases slightly
deviates from 1, according to Fig. 6.3. It is also evident that the higher the correlation between
the performance metric and the mismatch parameter, the lower the failure distribution’s variance.

Moreover, the correlation between the failed mismatch parameters are also portrayed in Fig.
6.4. As seen in Fig. 6.4(a),∆VNR

T and∆VAR
T are negatively correlated, and∆VNR

T and∆VNL
T are

positively correlated. Due to the fact that, if in a case,∆VNR
T is largely negative, there is a good

chance that the RNML failure occurs even with a large positive∆VAR
T or a large negative∆VNR

T .
Note that Fig. 6.4(a) does not depict the correlation between the actual mismatch parameters,
since they can have a very small or no correlation, which is the case for Random Dopant Fluc-
tuations. Figure 6.4(a) shows the correlation between the delta mismatches that produce failed
SRAM cells. For analysis related to these observations referto Section 6.5.
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Figure 6.4: Positive and negative cross-correlation amongthe failure (RNML<2mV) mismatch
parameters.

It is finally implied that a drifted multivariate normal distribution with a non-identity covari-
ance matrix results in a fairly good choice for an alternative distribution to mimic the SRAM
failure region. However, no prior knowledge of the magnitude of the drift and the covariance
matrix is available up to this point. Note that over-drifting or a poor covariance formation can
lead to a performance worse than that of the crude-MC method.The next two sections provide
establish the foundation to adaptively and analytically achieve the optimum distribution parame-
ters to build an efficient MC method.

6.4 Adaptive Multivariate Normal Sampling

6.4.1 The Algorithm

In this section, an adaptive method is developed to iteratively update the drifts of a multi-variate
normal distribution with any arbitrary covariance matrix.The drift-updating process is directed
toward minimizing the estimation variance. In contrast to the Robbins-Monro-based method,
reported in [139], the derivatives of the estimation’s variance are estimated directly, so that no
risk is associated with a poor selection of the Robbins-Monro’s sequences. This also adds the
flexibility to apply high-order Householder’s method to further increase the convergence rate.
Lastly, a mechanism is proposed to address the challenge of variance estimation for rare event
identity-type functions, in dealing with SRAM yield estimation (refer to Section 6.2).

The interest is in estimating the following probability:

P = P(Iτ = 1) = Eϕ [Iτ (x)] = Eh

[

Iτ (x)ϕ(x)

h(x)

]

. (6.8)
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The variance of the estimation determines the confidence interval for a given number of
iterations, but the focus is on finding an alternative distribution function,h(x), which provides a
lower estimation variance. Therefore, the problem is formulated as

argmin
h

varh
(

Iτ(x)ϕ(x)
h(x)

)

= argmin
h

Eh

[

Iτ(x)ϕ2(x)
h2(x)

]

= argmin
h

Eϕ

[

Iτ(x)ϕ(x)
h(x)

]

. (6.9)

Suppose the drifted and correlated multivariate normal distribution is chosen as the alternative
distribution for the following vector of six normalized mismatch parameters:x=

[

∆VPR
T ,∆VNR

T ,∆VAR
T ,∆VPL

T ,
so

h(x,µ,Σ) =
1

(2π)3 |Σ|1/2
e

6
∑

i=1

6
∑

j=1
Ci j (xj−µj)(xi−µi)

−2|Σ| , (6.10)

whereΣ is the arbitrary covariance matrix,Ci j are the covariance matrix’s cofactors, andµ =
[µ1,µ2, · · · ,µ6] represents the drift vector.

∂Eϕ
[

Iτ(x)ϕ(x)
h(x,µ,Σ)

]

∂µl
= Eh









Iτ(x)
2 e

6
∑

i=1

6
∑

j=1
Ci j (xj−µj)(xi−µi)

|Σ| −
6
∑

i=1
x2

i
(

6
∑

i=1
(Cil +Cli )(µi −xi)

)









∂2Eϕ
[

Iτ(x)ϕ(x)
h(x,µ,Σ)

]

∂µ2
l

= Eh









Iτ(x)
2 e

6
∑

i=1

6
∑

j=1
Ci j (xj−µj)(xi−µi)

|Σ| −
6
∑

i=1
x2

i







(

6
∑

i=1
(Cil +Cli )(µi−xi)

)2

2|Σ| +2Cll















(6.11)

Now, supposeµ(k) is the drift used to generate the samples at thek-th iteration, and is updated
after each iteration. Even though the sampling is no longer identically distributed, due to the
independent sampling property, Eq.(3.19) is still valid inproducing an unbiased estimator, as
follows:

P̂ =
1
N

N

∑
k=1

Iτ

(

x
(k)

)

ϕ
(

x
(k)

)

h
(

x(k),µ(k),Σ
) . (6.12)

Without the loss of generality, assume a zero-drift and identity covariance JPDF for the orig-
inal mismatch parameters. Therefore, the following equation can be derived for the weight func-
tion:

ϕ(x)

h
(

x,µ(k),Σ
) = |Σ|1/2e

6
∑

i=1

6
∑

j=1
Ci j

(

xj−µ
(k)
j

)(

xi−µ
(k)
i

)

2|Σ| −
6
∑

i=1
x2
i

2 . (6.13)
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To numerically solve Eq.(6.9) and find the optimum drifts, one should find a solution for:

∂Eϕ

[

Iτ(x)ϕ(x)
h(x,µ,Σ)

]

∂µ
= 0, (6.14)

and, by using Newton’s method,

µ
(k+1) = µ

(k)−
∂

∂µ(k) Eϕ

[

Iτ(x)ϕ(x)

h(x,µ(k),Σ)

]

∂2

∂µ(k)2Eϕ

[

Iτ(x)ϕ(x)

h(x,µ(k),Σ)

] , (6.15)

where, for l = {1,2, · · · ,6}, the first and second derivatives are derived in terms ofEh[.] as
Eq.(6.11).

Since the covariance matrix is positive definite, the diagonal elements of the cofactor matrix
(Cll ) are all positive; therefore, the second derivative is positive definite. This implies that the
root of the first derivative resides on the global minimum of the estimation’s variance.

At first look, by the naive substitution of the derivatives inEq.(6.15), it can be seen that to
updateµ(k), two expected values need to be estimated such that each of them requires several cir-
cuit simulations (notice the presence ofIτ (x) in both derivatives). However, a solution is adopted
here from the concepts, introduced in the stochastic approximation field [138], i.e., instead of an
accurate estimate for the expected value in the first derivative (numerator) by performing several
simulation, only the last simulation is used to provide a rough estimate. The progress of this
process generates the same effect as the averaging needed atthe first point for the expected value
estimation of the numerator.

Moreover, to estimate the denominator, a set of (e.g., 100) last circuit simulation results are
used. This approach leads to a biased estimation of the second derivate, since each of the previous
simulations is performed by using a different drift (µ). However, the unbiasness of the coefficient
is not a requirement in Newton’s method and might impact onlythe effective convergence rate.
Note that since the second derivative is positive definite, the first derivate is a non-decreasing
function. Therefore, if the first derivate of Eq.(6.11) is modeled by a non-decreasing function
g(µ(k),Σ), the Newton’s method of Eq.(6.15) can be substituted with a simpler but less efficient

one as follows:µ(k+1) = µ
(k) − εg

(

µ
(k),Σ

)

, whereε > 0 has a fixed (biased), but sufficiently

small value [138]. In fact, the proposed method replaces thefixed ε with an approximation

to 1
/

∂
∂µ(k) g

(

µ
(k),Σ

)

. This is accomplished by averaging the last few simulation results, and

hence, is more efficient than the fixedε form.

Since the estimates of the derivatives are used directly andthe high-order derivatives exist, the
Householder’s method [131] is used as an alternative to Newton’s method to further improve the
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convergence rate. For example, the third order Householder’s method increases the convergence
rate from the second order to the fourth order, unlike the Newton’s method. In this case, the
following equation should be used instead of the denominator in Eq.(6.15):

(

6g′3−6gg′g′′ +g2g′′′

6g′2−3gg′′

)

(

µ
(k),Σ

)

, (6.16)

whereg
(

µ
(k),Σ

)

is the first derivative, reported in Eq.(6.11). Therefore,g′ is equal to the second

derivate derived in Eq.(6.11). It should be emphasized thatthe same strategy is adopted again in
estimating this alternative denominator by using the last few simulation results.

Up to this point, the problem, associated with the rare and identity-type functions, has not
been addressed. The problem occurs with an arbitraryµ

(0). It is very likely that most of the
samples reside in the acceptable region,Iτ(x) = 0. That is due to the rare nature of the failure
event. As a result, the rough estimate of the first derivate (the numerator in Eq.(6.15)), which is
calculated according to the last simulation result, is zeroin most cases. This causes no change
in the drift,µ, as the simulations proceed. It is even more problematic if the denominator equals
zero or become very small due to the low possibility ofIτ(x) = 1. To overcome these issues,
instead of the actual threshold value (τ), a secondary fake one,T, is used for the purpose of the
derivative estimation only. The value ofT is determined by the mean and standard deviation of
the last few, (e.g., 100) performance metrics such that a considerable portion (e.g., 20%) of the
simulations are considered as failures. However, to estimate the yield itself by using Eq.(6.12),
the originalτ is used, so no error exists in the estimation itself. It should be noted thatT is only
an intermediary parameter in the calculations to form a factor and to determine the amgnitute of
drift after each iteration.

Algorithm 3 presents the pseudo code of the proposed method.The method starts with an
initial drift, µ and a covariance matrix,Σ. FCnt is the number of the last performance metrics
that are used to estimate the fake threshold,T. DenCnt is the number of simulation results,
required to estimate the expected value of the denominator in Eq.(6.16). Lines 9-20 establish the
value of the fake threshold,T. The factor of -0.5 in line 17 affects the fraction of the simulations
that resides in the fake-failure region. Line 27 constructsa simple form of the weight function,
Eq.(6.13), that is used in the derivative and yield calculations. Lines 28-30 compute the yield,
based on Eq.(6.12) and (6.13). The first four derivatives ofEh[.] are calculated in lines 32-35 and
used to form the denominator in line 36, according to Eq.(6.16). Finally, the average of the last
DenCntestimations of the denominator is used to find the new drift. Note that, in computing
the first derivative, the last estimation results are used tocomputew×g, instead of the expected
value. However, by accounting for only the last sample to findthe expected value, a very noisy
estimation of the expected value is produced. This can result in a large drift change, casing a
convergence problem. Therefore, the experimental factor of 0.01 is used in lines 38 and 40 to
avoid large changes of the drift. Observe that increasing this factor improves the convergence
speed but mitigates the robustness. The choice of 0.01 is small enough that the robustness is
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Algorithm 3 Yield = EstimateYield(τ,µ,Σ,IterCnt,FCnt,DenCnt)
Require: Σ is positive definite.

1: C = Matrix cofactor ofΣ
2: lastF = Vector allocation to save lastFCnt performance metrics
3: lastDen= Matrix allocation to save lastDenCntdenominators (6 cols)
4: DenIdx= 0
5: FailureProb= 0
6: for iter=0 to IterCnt-1 do
7: x = Generate a vector of 6 Gaussian samples from N(µ,Σ)
8: f = Simulate circuit withx and return the performance metric
9: lastF(iter mod FCnt) = f

10: if iter<FCnt then
11: meanLastF= Average of {lastF(0), · · · , lastF(iter)}
12: stdLastF= Standard deviation of {lastF(0), · · · , lastF(iter)}
13: else
14: meanLastF= Average of {lastF(0), · · · , lastF(FCnt-1)}
15: stdLastF= Standard deviation of {lastF(0), · · · , lastF(FCnt-1)}
16: end if
17: T = meanLastF−0.5×stdLastF
18: if T < τ then
19: T = τ
20: end if
21: if f < T then
22: I = 1
23: else
24: I = 0
25: end if
26: if I == 1 then
27: w = exp(∑6

i=1 ∑6
j=1Ci j (xi −µi)(x j −µj )/|Σ|−∑6

i=1 x2
i )

28: if f < τ then
29: FailureProb= FailureProb+

√

w×|Σ|/IterCnt
30: end if
31: for l=1 to 6 do
32: g = 0.5×∑6

i=1(Cil +Cli )(µi −xi)
33: g′ = g2/|Σ|+2Cll

34: g′′ = g3/|Σ|2 +3gCll /|Σ|
35: g′′′ = g4/|Σ|3 +6g2Cll /|Σ|2 +3C2

ll /|Σ|
36: lastDen(DenIdxmod DenCnt, l) = w× (6g′3−6gg′g′′+g2g′′′)

(6g′2−3gg′′)
37: if DenIdx< DenCntthen
38: nmul = µl − 0.01×g×w

Average {lastDen(0,l), · · · , lastDen(DenIdx,l)}
39: else
40: nmul = µl − 0.01×g×w

Average {lastDen(0,l), · · · , lastDen(DenCnt-1,l)}
41: end if
42: end for
43: µ = nmu
44: DenIdx= DenIdx+ 1
45: end if
46: end for
47: return 1 - FailureProb

found to be not an issue in the extensive tests described in this work. Other methods, such as
ignoring the large change drifts, can also be applied to eliminate the sudden drift changes.
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Figure 6.5: Adaptive updates of the alternative distribution’s drifts.
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Figure 6.6: Performance metrics and the fake-thresholds.

6.4.2 Results

By naively applying the zero-drift as the initialµ, and using the identity covariance matrix, the al-
gorithm is run for the following three specifications (RNML<2mV, TW >30pS, and TR >50pS).
Figure 6.5 shows how the drifts are altered, when the algorithm is run for 10,000 simulations.
µs are drifted along the direction that is expected by the circuit analysis and simulations. For
example, for TW and TR, theµ∆VAR

T
andµ∆VAL

T
increase as the simulations proceed. The magni-

tudes of the final drifts match the mean points of the PDFs, depicted in Fig. 6.3. These drifts
increase the chance of failure, reducing the estimation variance. That is verified in Fig. 6.6,
where the performance metric values are moving toward failure regions by changes of the drifts.
It is evident that as the adaptive engine runs, the failure chance increases. In addition, the figures
show the fake-threshold that is used in the algorithm. Figure 6.7 portrays a comparison of the
convergence rate of the Householder’s method and that of theNewton’s method.

6.4.3 Determining the Number of Iterations, the Stop Criteria

Algorithm 3 runs with a fixed number of iterations, however, to achieve an estimation with
a certain confidence-range, the number of iterations shouldbe set accordingly. In the crude-
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MC method, this goal can be obtained easily by using Eq. (6.3), while continuing with the
simulations. In contrast to the crude-MC method, the adaptive method does not work with a
fixed number of iterations for a certain confidence-range. The number of samples can vary in
each run of the engine. This occurs because of the random and dynamic nature of the algorithm
which dictates an uncertain effective convergence rate.

However, the good news is that the variance of the estimation, which leads to the confidence
interval, can be estimated during the process. If, at any point, the confidence interval reaches a
certain threshold, the algorithm can be stopped. Such a threshold is determined in the form of a
ratio over the estimated failure probability. For example,it might be tempting to stop once the
99% confidence interval becomes smaller than the 1/10 of the failure probability itself.

To find the variance of the estimated failure at theNth iteration, the following is derived,
based on Eq. (6.12):

Var
(

P̂
)

=
1

N2





N

∑
k=1

Iτ

(

x
(k)

)

ϕ2
(

x
(k)

)

h2
(

x(k),µ(k),Σ
) −NP̂2



 . (6.17)

Therefore, theα% confidence interval at theNth iteration is

P̂±
(

Φ−1(0.5+α/2)×
√

Var
(

P̂
)

)

. (6.18)

However, a number of supervision techniques should be considered to control the stop cri-
teria, including, selecting a minimumN, ignoring the estimated confidence-interval whenP̂ is
zero, and restarting the engine whenN rises to a very high number without obtaining the required
confidence accuracy.
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6.5 The Analytical Framework for Optimum Drift and Co-
variance Matrix Extraction

6.5.1 The Analysis

Based on the statistical simulations, reported earlier, it has been shown that the drift can be
manipulated to achieve a reduced-variance estimation. Also, it has been discussed that the co-
variance matrix can be considered as a factor to increase thechance of failure (Fig. 6.4). In this
section, the problem is approached analytically. As a byproduct of the analysis, an approxima-
tion of the optimum drift and covariance matrix are derived.These approximations are fed into
the adaptive engine as the initial guesses. So instead of starting from naively chosen initial drifts
and an arbitrary covariance matrix, the simulation starts with a closer to optimum guess, and
consequently, converges faster.

Suppose a performance metric (e.g., RNM, TW, and TR) is expressed with the following
linear function with respect to the normalized mismatch parameters,xi:

f (x) = a0 +∑6
i=1aixi + ε, (6.19)

whereε is an independent zero-mean Gaussian error. Since it modelsthe non-linear portion
of the performance metric with an independent Gaussian noise, this is not an accurate model.
However, given the close-to-linear behavior of the problemand the fact that an approximate
optimization of the drift and covariance matrix is targeted, the model is a fairly good one for the
proposed method. Note that the approximate results used as initial guess is eventually modified
in the adaptive engine anyways.

The objective of this section is to derive the optimal driftsand the covariance matrix. How-
ever, the derived equations are only given without the extensive algebraic steps. As shown in
Eq(3.21), an ideal alternative distribution should simulate only the failure cases and follow the
original distribution in that region. In other words, the perfect and ideal alternative distribution
is nothing but PDF(xi | f < τ) = PDF(xi, f < τ)

/

Prob( f < τ). By using the bivariate Gaussian
distribution,

PDF(xi, f < τ) =

∫ τ
−∞ exp











x2
i +

( f−a0)
2

σ2
f

− 2xiρxi ( f−a0)
σ f

−2(1−ρ2
xi)











d f

2πσ f

√

1−ρ2
xi

. (6.20)
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Hence, the following is the alternative distribution:

PDF(xi | f < τ) =

erf

(

τ−a0−xiσ f ρxi

σ f

√

2(1−ρ2
xi)

)

+1

2π
(

erf

(

τ−a0

σ f
√

2

)

+1

) e−
x2
i
2 , (6.21)

where erf(x) = 2
∫ x

0 e−t2
dt

/√
π and

{

σ f =
√

∑6
i=1a2

i +σ2
ε

ρxi = ai
/

σ f

(6.22)

As it can be seen in Eq.(6.21), the resultant ideal alternative distribution is not an exact
Gaussian. However, as suggested by Fig. 6.3(e) it can be approximated by a Gaussian, given

the existence of the bell-shape tail-decaying term,e−
x2
i
2 , in Eq. (6.21). Therefore, a normal

distribution is fitted by matching the mean and the variance.The first two moments of the
alternative distribution are derived as follows:
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(6.23)

A significant observation is that the drift,E [xi | f < τ ], is proportionally related toρxi . This
is justifiable by noting that if the mismatch parameter,xi, and the performance metric,f , have
a high positive correlation, the alternative distributionrequires a high negative drift to cover the
failure region. Moreover, the optimum variance reduces quadratically with correlation. These
facts have been already verified through the extensive SRAM simulations in Section 6.3.

The last step in forming the Gaussian alternative JPDF is to complete the covariance matrix
by computing the covariance coefficients. The following is the derived JPDF of the alternative
distribution:

JPDF
(

xi,x j | f < τ
)

=

erf


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Therefore, the cross-correlation is

E
[

xix j | f < τ
]

= −
√
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2
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f
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πσ f

(
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(

τ−a0

σ f
√

2

)

+1

) . (6.25)

6.5.2 Results by Integrating the Analytical Framework with the Adaptive
Engine

To integrate the provided analysis into the simulation-centric adaptive yield analysis engine de-
veloped based on the method of Section 6.4, an initial training step is needed to characterize the
approximate model of Eq.(6.19). In the experiments described in this chapter, only a few (e.g.,
50) SRAM simulations are conducted. Eq.(6.23) and (6.25) areused to compute the near-optimal
drift and covariance matrix. After, the data are fed to the adaptive engine, and the rest of the yield
estimation process is performed.

Figure 6.8 and 6.9 convey the simulation results, starting with the calculated initial drifts
and covariance matrix by using a model trained by 50 simulations. By comparing these figures
with Fig. 6.5 and 6.6, it is evident that the performance metrics reach the failure region much
faster. One observation in comparing Fig. 6.6 and 6.9 is the narrower spread of the performance
metric due to the use of a non-identity covariance matrix in the latter case. This suggests that
the border of the failure region is sampled more frequently than that of the identity covariance
matrix case eventually improving the estimation error. It should be reminded that the simulation
of the non-failure regions is a waste of runtime, also, it is not worthy to simulate the deep of the
failure region since their silicon appearance probabilityis extremely low. Therefore, observing
more samples around the threshold (the narrower spread) is agood sign in terms of the method
performance.

Lastly, Fig. 6.10 depicts the histogram of 1,000 estimated yields by applying the adaptive
technique and the initial computations and using the stop criteria. The stop criteria is set such
that the ratio of 99% confidence interval over the failure rate is less than 0.2. The average of
the required number of samples are 3444, 7343, and 6862 for RNML, TR, and TW, respectively.
To achieve the same confidence interval with the crude-MC method, millions of simulations
would be needed, several orders of magnitude runtime improvement. It should be also noted
that, in contrast to the crude-MC, the number of samples does not grow if the failure probability
decreases because of the adaptive nature of the engine and the initialization phase. In fact, it is
more the linearity of the problem that determines the quality of this technique, rather than the
failure probability itself. That is why RNML, the most linearperformance metric according to
analysis in Section 6.3, requires fewer iterations than therest even though it has the lowest failure
probability.
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Figure 6.8: Drifts started from analytically calculated initial values.
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lations.

6.6 Conclusions

An adaptive sampling method is proposed for the yield analysis of SRAM cells. The multi-
dimensional, rare-event and identity format of the SRAM yield analysis problem make it a chal-
lenging problem. We have employed thealmost-linear relation of SRAM cells’ performance
metrics with process parameters to establish an adaptive sampling method. The drift vector of
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an alternative distribution is updated after each SRAM simulation in order to concentrate the
samples into the failure region of the problem space. The near-optimal drift vector and covari-
ance matrix are also computed and integrated into the adaptive sampler in order to improve the
efficiency of the method. The range of a few thousand (3,000 to8,000) samples is found to be
enough, in average, to confidently estimate the failure rates of performance metrics around 1e-7
to 1e-6, leading to several orders of magnitude runtime saving. Unlike crude-MC, the required
number of samples does not grow with the failure probabilitydecline, instead it is related to the
magnitude of the linearity of the performance metric under estimation.
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Part III

Micro-Architectural-Level

The nonuniform substrate thermal profile and process variations are two major
concerns in todays ultra-deep sub micron designs. To correctly predict perfor-
mance/leakage/reliability measures and address any yieldlosses during early stages
of design phases, it is desirable to have a reliable estimation of the thermal pro-
file. However, the leakage power sources vary greatly due to process variations and
temperature which results in significant variations in the hotspot and thermal profile
formation. Traditionally, no leakage variations have beenconsidered during full-
chip thermal analysis. In this part of the thesis, the dependency among the process
variability, leakage power consumption, and thermal profile are considered at the
micro-architectural-level to effectively extract a reliable statistical thermal profile of
a working large-scale chip. Knowledge of this is key for proper identification of the
hotspot locations and determining a leakage/thermal-based yield.
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Chapter 7

Statistical Thermal Profile under Process
Variations: Analysis and Applications

7.1 Introduction

As CMOS technology scales down toward sub-90nm regimes, a reliable temperature analysis
has become inevitable in early stages of the design process.The increase in the power density
has elevated the junction temperature of chips and brought serious reliability concerns into future
designs. Moreover, the uneven power consumption profile andanisotropic heat conduction of the
die’s sidewalls generate local hotspots. The non-uniform high temperature profile over a substrate
causes a range of design challenges, as it affects the gate and interconnect delays [141, 142],
introduces new timing faults [143], increases the leakage power [144], and accelerates the chip
failure due to electro-migration and thermal runaway [145,146]. Therefore, to achieve a robust
design which guarantees satisfaction of system constraints (performance, power, and reliability),
knowing the average temperature of a system is not sufficient, and the reliable thermal data
should be fed into design automation tools during design phases.

In response to this need, various efforts have been made to extract the temperature profile
of silicon substrate [5, 147, 148, 149]. Finite Difference Method is the most popular approach
for thermal analysis in which the chip and its packaging materials are discretized to rectangu-
lar cubes, and hence, the thermal extraction problem is mapped to a linear circuit simulation.
Hotspot [5], a publicly available micro-architectural level IC temperature modeling tool [150],
uses the fix meshing technique to extract the thermal profile.ILLIADS-T [147] is an electro-
thermal timing simulator in which a developed FDM-based thermal simulator is connected to a
circuit simulator, so the thermal-aware timing behavior ofa circuit can be performed to detect
new thermal-driven timing faults. The meshing process is done adaptively to reduce the size
of the problem while providing acceptable accuracy. Another enhanced FDM-based IC thermal
analyzer is proposed in [148] based on the multigrid technique for large sparse system of linear
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equations which is suitable for large number of meshes in detailed thermal analysis. Finally, as
an alternative to the FDM method, green functions are used toanalytically extract the thermal
profile [149].

All of the current thermal analysis approaches consider deterministic power sources. How-
ever, the power dissipation of a circuit (composed of the dynamic and leakage parts) can no
longer be deterministically defined in presence of process variations. This is because the leakage
power, a key contributor to the total power consumption in scaled technologies [151], has expo-
nential relations to physical parameters, and hence, exhibits significant variations due to process
variations. The leakage power has been shown to have a lognormal distribution as it is exponen-
tially dependent to the variation parameters [152, 153]. Analysis over some circuit benchmarks
showed that in presence of gate length variations the mean ofthe subthreshold leakage current
is 30% more than its nominal value [152]. Empirical measurements of fabricated chips also
showed a 20X total leakage variation in 0.18µm technology [4]. This effect becomes even more
critical when considering the exponential increase in the total leakage power over each CMOS
technology generation [154] and its dominancy in high-performance circuits for recent CMOS
technologies [151].

The earlier works on statistical power analysis (e.g. [152,153]) assume that the temperatures
are kept at nominal values. However, the temperature and leakage of circuits are coupled together
which brings a need for an integrated and self-consistent statistical thermal/power analyzer. In
fact, the subthreshold leakage power increases nonlinearly with temperature which consequently
generates more heat and boosts the temperature in a loop until the generated power is equated
with the removed power from the die. Throughout this chapterthe term: ‘leakage-thermal loop’
is used to refer to this phenomenon. A recent study showed that some parts of a POWER-4 like
microprocessor at 130 nm technology will have up to 7 degree thermal difference if the leakage-
thermal loop is considered during thermal analysis [155]. The existing thermal extraction tools
simply leave this dependency unaddressed, so the designersneed to iteratively run the thermal
analyzer to account for leakage-thermal loop which is not definitely a runtime efficient way, as
many same time-consuming initializations and mathematical calculations should be performed
redundantly in each run.

The probabilistic nature of leakage power consumptions caused by process-driven physical
parameter fluctuations directly generates uncertain (statistical) thermal profiles since the value
of temperature over any location of a die is a function of power consumptions over the whole
substrate. However, the subthreshold leakage portion of power consumption increases nonlin-
early with temperature, so the resulted variations on thermal profile will be intensified as a wider
statistical thermal distribution generates a wider leakage distribution. Therefore, the statistical
leakage power analysis results based on nominal temperatures may lead to underestimations in
power variations when the leakage-thermal loop is ignored.It has been recently concluded that
a circuit which is designed to meet its thermal requirement,without taking into account process
variation aware thermal analysis, may fail after fabrication [156]. It has been also shown, by
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applying three random sample scenarios for blocks’ leakageconsumptions, that the locations of
hotspots significantly vary in a sample die [157] which makesthe hotspot locations indetermin-
istic, as well. Finally, any power estimation by ignoring process and temperature variations can
lead to significant error in estimated yield which is expected to degrade further with technology
scaling [158]. Therefore, by using reliable statistical thermal information rather than determinis-
tic ones, one can perform more robust system analysis in terms of power/performance/reliability
requirements.

In this chapter, a statistical temperature profile analyzeris constructed to estimate the prob-
ability density functions (PDF) of the temperatures over each location of a die. It is also shown
how the expected value and variance of temperature vary overa sample die. In addition, a method
which quantifies the relocations of thermal hotspots is developed which provides a study of how
hotspots form while considering variabilities. Finally, afull chip statistical total power estimation
technique is proposed by using the statistical informationobtained from the analyzer to report a
reliable power-constraint yield. Figure 7.1 depicts the diagram of the developed framework and
the dependency of the models and parameters.

To have a comprehensive scheme from the sources of variabilities, the gate length and ox-
ide thickness variations are considered in modeling the leakage variation. To realistically model
the process variabilities, both inter and intra-die sources of variations are considered. It is as-
sumed that the parameter variations are spatially correlated due to the lithography and chemical
mechanical polishing imperfections, so closer gates are more likely to have similar physical char-
acteristics.

The contributions of this work are summarized as follows: 1-Statistical modeling of the tem-
perature, in presence of major process variation parameters. 2- Considering leakage-thermal loop
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during the statistical thermal analysis and studying the importance of considering it for full-chip
power-constraint yield analysis. 3- Quantifying and analyzing the temperature profiles forma-
tions and hotspots relocations. 4- Providing a robust statistical full-chip total power estimation
using the obtained statistical thermal analysis data.

The chapter is organized as follows: In Section 7.2, the preliminaries for deterministic ther-
mal profile extraction method, physical parameter variations and leakage power models are pre-
sented. The statistical thermal profile analyzer is proposed in Section 7.3, while two applications
of the analyzer in hotspot’s relocation evaluation and total power estimation along with prior
work studies are presented in Section 7.4. By using the developed analyzer, the profile of tem-
perature statistical moments will be derived for a sample die and verified by Mont-Carlo simula-
tions in Section 7.5 where the extracted power consumption probability density function and the
result of a sample hotspot location analysis are also verified. Finally, the chapter is concluded in
Section 7.6.

7.2 Preliminaries

7.2.1 Deterministic Thermal Profile Extraction

The steady state thermal profile over a die is governed by following heat conduction equation
[159]:

k(x,y,z) ·∇2T (x,y,z)+ p(x,y,z) = 0 (7.1)

wherek is the thermal conductivity of the material (W
/

m◦C), T is the temperature (◦C), andp is
the power density of the heat sources (W

/

m2).

As mentioned in the introduction, the numerical approach ofsolving the Poisson equation of
(7.1) is by using the Finite Difference Method (FDM), in which the area of the die is discretized
and modeled as a lumped circuit network [5]. Using the well-known duality between thermal
and electrical models, each node in the equivalent electrical model corresponds to a grid on a
die. The node voltage is the temperature of the grid and the power dissipation of that grid is
modeled by a current source flowing into that node. The thermal conduction paths between each
grid and its neighboring grids or surrounding packaging structures are modeled by electrical
resistances. Therefore, a Kirchhoff’s Current Law (KCL)-based admittance matrix is formed for
the equivalent electrical model. Solving such linear system of equations for the node voltages
produces the temperature profile of the die [160]. To solve that sparse linear problem, either an
iterative or direct (LU factorization) [161] method can be applied that is used to construct the
inverse of the admittance matrix. It should be noted that as the micro-architectural level designs
are targeted for early stage thermal analysis, coarse meshing of a die area will be sufficient
[5]. Therefore, having at most few thousands grids allows usto use matrix inversion efficiency.
Hence, the temperature of grids can be obtained by the following matrix multiplication:
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Figure 7.2: The views of a 6-core sample die with its packaging structure (dimensions are not
scaled) [5]

tm×1 = Am×m× pm×1 (7.2)

wheret and p are the vectors of node temperatures and power consumptions, respectively, and
A is the inverse of the equivalent admittance matrix. It should be noted thatm= n+ 11 where
n is the number of die grids, and 11 extra nodes represent packaging components and ambient
nodes [5]. In which, the heat spreader and sink layer, each has five nodes: one corresponds to the
area over the underlaying layer and four trapezoids correspond to periphery that is not covered
by the lower layer. Therefore,[p1, · · · , pn] are power consumptions ofn grids,[pn+1, · · · , pn+10]
are all zero since no power is generated in packaging nodes. Finally, pm is a current source used
to model chip to ambient removing power which can be determined by the Norton equivalent
(pm = Tamb/Rcon) of the ambient temperature voltage source,Tamb, and its serially connected
convective heat resistance from the heat sink to the air,Rcon. For illustrative purposes, a chip
composed of six numbered cores is depicted in Figure 7.2. Thegrids’ borders are defined by
dashed lines. 10 extra nodes (EN1..10) are used to model the heat conduction paths from the
heat spreader and heat sink.

7.2.2 Physical Parameter Variation Model

The typical scheme in modeling process variations is by partitioning the surface of a die into
rectangular grids [87]. The gates placed in the same grid areassumed to have perfect correlation
on their physical parameters since adjacent devices are more likely to have similar physical
characteristics after fabrication. Therefore, it is assumed that in a single grid, the variations
of any process parameter is constant. In this work, the gate length (Lg) and oxide thickness (Tox)
are considered as the sources of physical variabilities. Let Xi be the physical parameter of interest
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in grid i, so:
Xi = X0 +∆Xi (7.3)

whereX0 is the nominal value of theX physical parameter, and∆Xi is its variation from the
nominal value in gridi. The Gaussian zero-mean random distributions is assumed for ∆X =
{∆L,∆Tox} with the standard deviations given for a particular technology asσL, andσTox.

Due to spatial imperfection of CMP and lithography processesthe gate length and oxide
thickness variations are spatially correlated [85, 86, 87,162]. As a result, their variations are
modeled as a random variable,∆X, decomposed into three distinct components: the inter-die
variation ∆Xinter, spatially correlated intra-die variation∆Xcor , and a residual part∆Xres that
models the purely independent random variation that is not explainable by other variation com-
ponents. Hence,∆X can be expressed as [85]:

∆X = ∆Xinter +∆Xcor +∆Xres (7.4)

where∆Xinter, ∆Xcor, and∆Xres are zero-mean independent Gaussian random variables [96, 85].
The inter-die variation models the variation that is sharedfor all devices within a die, so it will be
the same for all devices in a same chip while the intra-die variations may be different for different
grids within the same chip. In fact, the intra-die variations are composed of spatially correlated
(∆Xcor) and purely random (∆Xres) components.

To model the spatial correlation, the twon×n covariance matrix (ΨX = {ΨL,ΨTox}) which
represent the covariance between gate lengths and oxide thicknesses are used. The diagonal ele-
mentsψX(i, i) of such matrices are the variances ofX parameters in the gridi, and the covariances
betweenX parameters of gridi and j are determined inψX(i, j). By applying mathematical ran-
dom field techniques which assure the positive semi-definiteness ofΨX, the necessary condition
of any covariance matrix, such matrices can be formed as follows [85]:







ψX(i, i) = σ2
X = σ2

∆Xinter
+σ2

∆Xcor
+σ2

∆Xres

ψX(i, j) = cov(∆Xi,∆Xj) = σ2
∆Xinter

+ρ
(

υi j
)

·σ2
∆Xcor

where
υi j : Euclidean distance between gridi and j
0≤ ρ

(

υi j
)

≤ 1 : Decreasing function ofυi j (e.g. ρ
(

υi j
)

= ebυi j ;b < 0)

(7.5)

where the shape ofρ
(

υi j
)

and the values ofσ∆Linter, σ∆Lcor, andσ∆Lres are defined from statistical
measurement data of the technology of interest [85, 86, 87].

In this work, it is assumed that there is no inter-correlation between gate length and oxide
thickness variations, as each source of variation is originated from different fabrication process.
However, the formulations given in Section 7.3 is flexible enough to consider such correlations
as well.
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Figure 7.3: A sample inverter used for demonstrating the leakage model

7.2.3 Leakage Power Model

Once the area of a die is discretized into rectangular grids,the total leakage power of each grid
has to be modeled in order to provide sufficient flexibility toinclude thermal and variability
awareness into the analysis. The following architectural level leakage power model is used:

Pleak−i = λi ·
(

1+αi
(

Ti −Tre f
)

+βi
(

Ti −Tre f
)2

)

· Îleak−i (7.6)

wherePleak−i denotes a random variable used to represent leakage power ofgrid i in presence
of physical variations, andλi is the nominal total leakage power of gridi at the reference tem-
peratureTre f . The nominal power consumption of grids which share more than one core are
calculated based on the weighted sum of sharing cores power density components. Throughout
this chapter, the term ‘nominal’ is used to indicate the situation when no process variationhas
been taken into account, and all parameters have their own nominal X0 value. λi is determined
by the grid’s circuit topology and accounts for effects likelogic style, transistor sizing, transistor
stacking, ratio and number of NMOS and PMOS transistors in the grid, and the technology used
for the circuit implementation. This value can be obtained by using circuit level leakage simula-
tions or given by the core provider atTre f , when no process variation is taken into account. For
example, in 90nm technology (VDD = 1.2,Le f f = 35nm), the Spice simulation of the sample cir-
cuit depicted in Figure 7.3 using PTM BSIM4 models [163] showsλi = 114.4nW total average
leakage power atTre f = 100◦C.

The total leakage power in CMOS circuits composed of three components namely subthresh-
old, gate direct tunneling, and reversed biased band-to-band tunneling currents [17]. How-
ever, the subthreshold leakage currents which contributesthe largest portion of the total leakage
power in high performance chips due to low threshold voltageand high operating temperature is
strongly temperature sensitive, as below:
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Isub∝ µ(T)v2
Te−

Vth(T)
mvT (7.7)

wherevT = kT
/

q is the thermal voltage,µ(T) ∝ T−1.5 is the charge mobility, andVth is the
temperature-dependent threshold voltage which drops whenthe temperature increases.

Therefore, the total leakage power is modeled by a quadraticapproximation around the nom-
inal value [144]. In fact, the second order leakage-temperature model fits better to the measured

points than a first order exponential model,λi ·eαi(Ti−Tre f), as it has one more fitting parameter
which provides less fitting error. For example, the comparison between the first order exponential
model and the quadratic model are depicted in Figure 7.4(a) while fitted to BSIM measurements
of the sample two inverters circuit. The first order exponential model has up to 5% absoulute
fitting error while the quadratic model has less than 0.06% error.

Finally, Îleak−i is the normalized (dimensionless) total leakage current ofgrid i including
process dependent effects. In contrast to the wide temperature distribution, the magnitude of
process variations is observed to be less than 15% in practice, hencêIleak−i can be well-approximated
by using an exponential of a first-order Taylor expansion at the nominal values of process pa-
rameters. Therefore, the normalized leakage current can bewritten as an exponent of linear
weighed sum of process parameters around the nominal values[23, 153]. This is because the
subthreshold leakage current is exponentially related to the threshold voltage which varies with
gate length and oxide thickness, also the gate direct tunneling varies with oxide thickness expo-
nentially. Therefore, the normalized leakage current can be represented as:

Îleak−i = eβLi ·∆Li+βToxi ·∆Toxi (7.8)

where∆Xi is the variation of the parameterX from its nominal value in gridi, andβXi is the first
order derivative of the grid’si leakage current logarithm:

βXi =
∂
(

ln Îleak−i
)

∂X

∣

∣

∣

∣

∣

X=X0

(7.9)

It should be noted that the correlatedVth variation has been considered through spatially
correlated models of gate length and oxide thickness which both affectVth. However, if there are
any other sources of correlated variations inVth, the proposed methodology is flexible enough
to account for them through adding extra terms on the power ofthe exponent in Eq. (7.8) and
updating the consequent equations.βXi factors can be calculated either analytically [158] or
numerically by fitting the total leakage simulation resultsof the circuit around the nominal point
with Eq. (7.6). Figures 7.4(b) and 7.4(c) show the fitted total leakage currents of the sample
circuit (Figure 7.3) with the actual BSIM measurements when the oxide thickness and effective
gate length are varied around the nominal points.βLi and βToxi are set to−7.35/Le f f0 and
−5.02/Tox0, respectively.
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Figure 7.4: Comparison between Spice measured total leakagecurrent of the circuit depicted
in Figure 7.3 and the fitting models when process parameters and temperature vary around the
nominal value

Consequently, by using Eq. (7.6 and 7.8) following total leakage power model will be ob-
tained for gridi:

Pleak−i = λ′
i

(

1+α′
iTi +β′

iT
2
i

)

eβLi ·∆Li+βToxi ·∆Toxi (7.10)

whereλ́i , άi, andβ́i can be simply obtained fromλi, αi, βi , andTre f .

7.3 Statistical Thermal Analysis

In this section, the statistical thermal analyzer is proposed where the probability density functions
(PDF) of grids’ temperatures are estimated. The problem is to solve Eq. (7.1) whenp(x,y,z) is
a function ofT (x,y,z) while it has spatially statistical behavior. To formulate the problem, the
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leakage power uncertainties have to be integrated into the thermal extraction. Hence, instead of
using deterministic power consumption elements,pi in vectorp of Eq. (7.2), correlated random
variable power sources,Pi, are used.Pi, the random variable of the power consumption in gridi,
is defined as:

1≤ i ≤ n : Pi = pdyn−i +Pleak−i (7.11)

wherePleak−i is the random variable representing the leakage power of grid i defined in Eq.
(7.10), andpdyn−i is the dynamic power consumption of the gridi. It should be noted that since
the switching power consumption is not as sensitive as leakage power to variations [164], it is
assumed to be a constant variable for a grid.

Having a statistical form for power consumptions of grids, arandom variable can be assigned
for the temperature of nodei based on Eq. (7.2), asTi:

Ti =
n

∑
j=1

ai j ·Pj +aim · pm (7.12)

whereai j coefficients andpm have been defined in Section 7.2.1.

However, the estimation ofTis’ PDFs is not straightforward since there is a relation between
leakage power and temperature of each grid (Eq. 7.10), whilethe leakage power consumption
sources over a die are all spatially correlated due to spatially correlated gate length variations
(Eq. 7.5 and 7.8). Therefore, to estimate PDFs ofTis, the problem is broken into the following
steps:

Step 1: In the first step, deterministic nominal thermal extraction is performed iteratively.
The iterations are done to take into account the leakage-thermal loop effect during temperature
extraction. The following set of equations are evaluated iteratively until no significant change on
thermal profile could be seen in the new iteration:

p(k)
leak− j = λ′

j ·
(

1+α′
jT

(k)
j +β′

jT
(k)2

j

)

T(k+1)
i =

n
∑
j=1

ai j

(

pdyn− j + p(k)
leak− j

)

+aimpm

(7.13)

The extracted thermal profile is named nominal temperature profile (Tnom
i = T(l)

i ), where
l is the number of iterations until the thermal profile convergences. Typicallyl = 4 iterations
are enough to extract the nominal thermal profile if the initial temperature is set to the ambient
temperature [155] and can be reduced down to 2, if a more reasonable initial temperature is used
[144].

Step 2: After nominal thermal profile extraction, the parameter variations are added into the
calculations. In this step, the expected value vector and covariance matrix of the grids’ temper-
atures are calculated considering correlated power sources due to correlated physical parameter
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variations. As can be seen in Eq.(7.12),Ti is defined by the summation of a set of finite random
variables (Pjs). Therefore, to calculate the moments ofTis, the following property of the sum of
random variables is needed.

Property 1: Given a vector of random variablesZT
n×1 = [Z1,Z2, · · · ,Zn] with a known ex-

pected value vector and covariance matrix of
(

MZn×1,SZn×n

)

, if there is another vector of random

variablesYT
n×1 = [Y1,Y2, · · · ,Yn] such that:Yi =

n
∑
j=1

ci j ·Z j , whereci j s are constant coefficients,

then [165]:

E [Yi] =
n
∑
j=1

ci j ·E
[

Z j
]

cov
(

Yi,Yj
)

=
n
∑

k=1

n
∑

l=1
cik ·c jl ·cov(Zk,Zl )

(7.14)

If matrix multiplication is used, the given linear equations can be represented as follows:

MYn×1 = Cn×n×MZn×1

SYn×n = Cn×n×SZn×n ×CT
n×n

(7.15)

where
(

MYn×1,SYn×n

)

are expected value vector and covariance matrix of random variablesYis,
andC is the matrix representation form of the constant coefficients ci j s. In fact, the matrix
multiplication scheme reduces the computational complexity of the Y’s covariance extraction
from O(n4) to O(n3) naive matrix multiplication. This computational complexity reduction is
achieved by storing the intermediate calculation results into C×SZ and reusing them in future
multiplication withCT . Also, by one matrix multiplication, both variances and covariance are
extracted, which both are necessary in the future steps of the analysis. In fact, most of the
computations are mapped to the form of matrix multiplication which significantly increases the
efficiency of the approach. The implementation of the naive matrix multiplication has been
intensely optimized for various processor architectures (e.g. AMD, Apple, IBM, Intel, Sun) using
Basic Linear Algebra Subprogram (BLAS) libraries which provide orders of magnitude speed-up
over naively coded routines [166]. In addition, the runtimecomplexity may be further reduced
down toO(n2.376) if the Coppersmith–Winograd fast square matrix multiplication technique is
used [167].

E
[

Pleak−iPleak− j
]

= λ′
iλ′

j×








E
[

Îleak−i Îleak− j
]

+α′
iE

[

Ti Îleak−i Îleak− j
]

+α′
jE

[

Tj Îleak−i Îleak− j
]

+

β′
jE

[

T2
j Îleak−i Îleak− j

]

+α′
iα′

jE
[

TiTj Îleak−i Îleak− j
]

+α′
iβ′

jE
[

TiT2
j Îleak−i Îleak− j

]

+

α′
jβ′

iE
[

TjT2
i Îleak−i Îleak− j

]

+β′
iβ′

jE
[

T2
i T2

j Îleak−i Îleak− j

]

+β′
iE

[

T2
i Îleak−i Îleak− j

]









(7.16)
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By using Property 1 and the matrix-based representation, if the expected value vector and
covariance matrix of grid’s power are given, the expected value vector and covariance matrix of
temperatures

(

MTn×1,STn×n

)

can be extracted, as:

MTn×1 = An×n×MPn×1 + pm ·an×1

STn×n = An×n×SPn×n ×AT
n×n

(7.17)

whereAn×n is the first left/uppern×n square matrix portion of the inverse admittance matrix
defined in Eq. (7.2) andan×1 = [a1m, · · · ,anm]T is the vector of ambient temperature coeffi-
cients (aim). Therefore, the expected values and covariances of temperatures areE[Ti] = MT(i),
cov(Ti ,Tj) = ST(i, j). However to estimate the first power consumption’s statistical mean and
covariances

(

MPn×1,SPn×n

)

, the following property needs to be defined:

Property 2:Given a normal random variableX with mean and variance of
(

µ,σ2
)

, if Y = eβ·X,
then the expected value ofY can be calculated as [165]:

E [Y] = exp

{

βµ+
β2σ2

2

}

(7.18)

By using this property, leakage power model (Eq. (7.10), andΨXs (covariance matrices of
process parameters), the expected value vector and covariance matrix of grid’s power consump-
tions

(

MPn×1,SPn×n

)

are extracted as follows:

MP( j) = E
[

Pj
]

= pdyn− j +E
[

λ′
j

(

1+α′
jT

nom
j +β′

jT
nom2

j

)

Îleak− j

]

= pdyn− j +λ′
j

(

1+α′
jT

nom
j +β′

jT
nom2

j

)

η j

and
SP(i, j) = cov

(

Pi,Pj
)

= E
[

Pi ·Pj
]

−E [Pi] ·E
[

Pj
]

= λ′
iλ′

jηiη j

(

eβLi βL j ψL(i, j)+βToxi βToxj ψTox(i, j)−1
)

·
(

1+α′
iT

nom
i +β′

iT
nom2

i

)(

1+α′
jT

nom
j +β′

jT
nom2

j

)

whereηi = E
[

Î leak−i
]

= e
β2
Li

σ2
L+β2

Toxi
σ2

Tox
2

(7.19)

However, in this step, the calculation of the given statistical moments of grid’s leakage con-
sumptions was performed based on the nominal temperature values obtained from Step 1, as no
statistical information is available for temperatures by this point.

Step 3: In this step, the new expected value vector and covariance matrix are extracted for
temperatures by considering the statistical information of the temperatures from the previous
step as well as the process variability data at the same time.Therefore, first the expected value
of power consumptions is re-evaluated as follows:

E
[

Pj
]

= pdyn− j +λ′
j

(

η j +α′
jE

[

Tj Îleak− j
]

+β′
jE

[

T2
j Îleak− j

])

(7.20)
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in which,E
[

Tj Îleak− j
]

andE
[

T2
j Îleak− j

]

are needed. First, we findE
[

Ti Îleak− j
]

:

E
[

Ti Îleak− j
]

=
n
∑

k=1
aikλ′

k

(

1+α′
kT

nom
k +β′

kT
nom2

k

)

E
[

Îleak− j Îleak−k
]

+
n
∑

k=1
aik pdyn−kE

[

Îleak− j
]

+aimpmE
[

Îleak− j
]

= An×n× (Ln×n×Mn×n +Nn×n×On×n)+Pn×n

where

Ln×n :

{

if i 6= j l i j = 0

else l ii = λ′
i

(

1+α′
iT

nom
i +β′

iT
nom2

i

)

Nn×n :

{

if i 6= j ni j = 0
else nii = pdyn−k

Mn×n : mi j = ηiη je
βLi βL j ψL(i, j)+βToxi βToxj ψTox(i, j)

On×n : oi j = η j

Pn×n : pi j = aimpmη j

(7.21)

The sparsity ofL andN are used during matrix multiplication to speed up this step.Now,

E
[

T2
j Îleak− j

]

should also be calculated. Therefore, we need to define following property of

multiplication of lognormal random variables.

Property 3: Given a set of lognormal correlated random variables{X1, · · · ,Xk}. If mXi and
sXi are the expected value and standard deviation ofXi ’s logarithm, andρXiXj is the correlation
coefficient betweenXi ’s andXj ’s logarithms, the random variableY = ∏k

i=1Xni
i is lognormal with

the expected value of:

E [Y] = e

k
∑

i=1
nimXi +

k−1
∑

i=1

k
∑

j=i+1
nin jsXi sXj ρXiXj +

k
∑

i=1
n2
i s2Xi

2
(7.22)

The expected value and standard deviations ofTj logarithm’s can be extracted from the last
step, and to find the correlation coefficients between logarithms of random variables (Tj and
Îleak− j ) whenE

[

Tj Îleak− j
]

is known, the following property should be defined:

Property 4:Assume two correlated lognormal random variablesX1 = eZ1 andX2 = eZ2 with
givenE [X1X2], whereZ1 andZ2 have the mean and standard deviation of (µ1, σ1) and (µ2, σ2),
respectively, then:

ρZ1Z2 =
ln(E [X1X2])−

(

µ1 +µ2 +
σ2

1+σ2
2

2

)

σ1σ2
(7.23)
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By using these properties,E
[

T2
j Îleak− j

]

can be calculated and used to findE
[

Pj
]

in Eq.

(7.20). Next, the covariances of power sources can be extracted as follows:

cov
(

Pi,Pj
)

= E
[

Pleak−iPleak− j
]

−E [Pleak−i ]E
[

Pleak− j
]

(7.24)

where theE [Pleak−i ] = E [Pi]− pdyn−i has already been extracted from Eq. (7.20), so only
E

[

Pleak−i ·Pleak− j
]

is needed to be found from Eq. (7.16).

As can be seen in Eq. (7.16), the expected values of more combinations ofTi, Tj , Îleak−i ,
andÎleak− j are needed which all can be extracted using the property 3. Finally, by using the new
statistical moments for power consumptions, the updated expected value vector and covariance
matrix of temperature can be re-extracted by re-evaluatingEq. (7.17).

Step 4: In this step, the moments of power consumptions and temperatures are updated
iteratively. In every iteration, new moments are derived for power consumptions using Eq.(7.20,
7.24, 7.16), and the temperatures’ moments are re-evaluated using Eq. (7.17). However, in this
step, theE

[

Ti Îleak− j
]

are derived using the following equation, rather than previous Eq. (7.21).

E
[

Ti Îleak− j
]

=
n
∑

k=1
aikλ′

kE
[(

1+α′
kTk +β′

kT
2
k

)

Îleak− j Îleak−k
]

+
n
∑

k=1
aik pdyn−kE

[

Îleak− j
]

+aimpmE
[

Îleak− j
]

= (An×n× (Ln×n×Mn×n +Nn×n×On×n))+Pn×n

where

Ln×n :

{

if i 6= j l i j = 0
else l ii = λ′

i
Mn×n : mi j = E

[

Îleak−i Îleak− j
]

+α′
iE

[

Ti Îleak−i Îleak− j
]

+β′
iE

[

T2
i Îleak−i Îleak− j

]

N, O, andP are the same as Eq. (7.21)

(7.25)

It should be noted thatE
[

Îleak−i Îleak− j
]

, E
[

Ti Îleak−i Îleak− j
]

, andE
[

T2
i Îleak−i Îleak− j

]

have
been already extracted when Eq. (7.16) was evaluated.

Step 5: In the last step, after extracting the temperatures’ expected value(E[Ti] = MT(i))
and variance(var(Ti) = ST(i, i)), a probability density function,fTi , is formed for the random
variableTi .

As suggested by the Eq. (7.12), the temperature of a grid can be written as a linear weighed
sum of grids’ power consumptions, and since the multiple of lognormal random variables is
still lognormal, integrating the polynomial leakage vs. temperature relation into the problem
keeps the leakage probability distribution lognormal. This is because the sum of lognormal
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distributions can be modeled as another lognormal random variable [168]. The lognormal density
function is estimated using Wilkinson’s method [169] basedon matching the first two moments.
Hence, the lognormal probability density function of temperature at gridi, fTi , has the following
general 3-parameter format:

fTi (Ti = t) =

exp

{

−(ln(t−tmin−i)−mTi)
2

2s2
Ti

}

(t − tmin−i)
√

2πsTi

(7.26)

wheremTi andsTi are the mean and standard deviation of theTi ’s logarithm, and can be deter-
mined by matching with the obtained values from step 3, as:

s2
Ti

= ln
(

1+ var(Ti)

(E[Ti ]−tmin−i)
2

)

mTi = ln(E [Ti]− tmin−i)−
s2
Ti
2

(7.27)

wheretmin−i is the mathematically minimum possible temperature of gridi in presence of vari-
ability. This minimum point can be found by deterministic thermal extraction when all process
parameters (∆Xi) are set to their worst case value (3σX) which provide the minimum leakage.

7.4 Applications

In this section, two applications of the developed analyzerare proposed in which the extracted
moments of temperatures are used in power and hotspots formation analysis.

7.4.1 Early Stage Statistical Thermal and Process Aware Full-Chip Power
Estimation

Due to the nonlinear dependency between leakage power and temperature, higher than average
temperature spots contribute over-proportionally to the total power dissipation of a chip. There-
fore, predicting the leakage power and thus the total systempower require detailed and accurate
knowledge of the temperature distribution and its statistical behavior. Hence, ignoring them
might lead to an inaccuracy in power consumption estimations and yield analysis [156, 158].

Su et al. [144] estimated the full chip leakage considering uneven voltage and temperature
profile. They have used the heat conduction relation (Eq. 7.1) to accurately model the thermal
profile while using the polynomial leakage-thermal model. However, they have not taken into
account the variability of process parameters, so their approach only provides a crisp value of
nominal leakage and cannot be used for estimating yield. Process variations are accounted dur-
ing leakage estimation in [158], but it uses a simple averagetemperature model for die-to-die
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Figure 7.5: Flowchart of the proposed statistical thermal analyzer

temperature variation. They have also considered an arbitrary and constant value for temperature
variance over a die which is not the case in practice. Moreover, they have ignored the correlation
between temperatures of different locations and temperature-process parameters covariances. In
fact, ignoring these two types of correlations leads to an underestimation in the magnitude of
leakage uncertainty and hence the estimated yield.

If the estimated means and covariances of temperatures are used to find the probability den-
sity function of the full chip total power consumption, a more reliable power-driven yield analysis
can also be performed. This is because the thermal statistical moments have been obtained by
considering all the placement-driven power consumption information, process variabilities, and
leakage-thermal loop.

However, the obtained temperature statistical moments should be utilized carefully in the
estimation of the total power to avoid any intense computations. Since both the process variations
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and leakage-thermal loop have been addressed once before during the statistical thermal analysis,
a following fast approach is developed to estimate the PDF oftotal power consumption based on
the extracted thermal moments.

The average temperature of a chip when it reaches the thermalequilibrium – the state of
which the removed heat is equal to the total generated heat (dynamic + thermal-dependent leak-
age) – can be derived from the following equation [170]:

Tavg = Ta +Rθ ·
Ptot

Ar
(7.28)

whereTavg is the average chip temperature,Ta is the ambient temperature,Ptot (W) is the total
power consumption,Ar (cm2) is the chip area, andRθ (cm2◦C/W) is the equivalent thermal
resistance of the substrate layer plus the packaging and heat sink.

As can be seen in Eq. (7.28), if the probability density function of the average temperature
is known, the probability density function of the total power which ended up with such average
temperature can be determined. As a result, the mean and standard deviation ofTavg are cal-
culated by using the statistical information from the developed statistical thermal analyzer, as
follows:

E [Tavg] =

n
∑

i=1
MT(i)

n

var(Tavg) =

n
∑

i=1

n
∑
j=1

ST(i, j)

n2

(7.29)

By using the obtainedTavg moments and Eq. (7.28), the mean and variance ofPtot can be
calculated as follows:

E [Ptot] = (E [Tavg]−Ta) · Ar
Rθ

var(Ptot) = var(Tavg) ·
(

Ar
Rθ

)2
(7.30)

Finally, the probability density function of total power,fPtot , can be determined from the
general 3-parameters lognormal PDF as below:

fPtot (Ptot = p) =
exp

{

−(ln(p−pdyn−tot)−mPtot)
2

2s2Ptot

}

(p−pdyn−tot)
√

2πsPtot

where

s2
Ptot

= ln

(

1+ var(Ptot)

(E[Ptot]−pdyn−tot)
2

)

mPtot = ln
(

E [Ptot]− pdyn−tot
)

− s2
Ptot
2

(7.31)
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wherepdyn−tot = ∑n
i=1 pdyn−i is the total dynamic power consumption.

By having the PDF ofPtot, one can construct a power-constrained yield,YP, by integrating
over the PDF and solve it numerically:

YP = P(Ptot ≤ pmax) =
∫ pmax

pdyn−tot

fPtot (p)dp (7.32)

7.4.2 Evaluation of Hotspots Relocations

In this section, another application of the developed analyzer is presented in which the extracted
moments of temperatures are used in the analysis of hotspotsformation. In fact, the probabilistic
nature of the temperature, driven by the variable process-dependent circuit leakages, may cause
some areas of a chip to show peak temperature while they have not been the hottest part of the
die when no variability has been taken into account during simulations. This phenomenon brings
uncertainty to the hotspot formation.

By applying three arbitrary random leakage scenarios, Link et al. [157] showed that the lo-
cation of hotspots vary significantly from die to die due to process variation. Therefore, even
in the presence of highly accurate predictive deterministic thermal modeling, process variation
will prevent accurate localized modeling of power distribution. However, the authors have not
quantitatively analyzed the relocation problem, so the designer does not have a measure of how
probable is a location to show a higher temperature than the traditional hotspot. This information
is key in considering a location as hotspot and guiding the designer in applying further thermal
management solutions, such as: more precise on-die temperature sensors placement for adaptive
hotspot avoiding mechanisms and efficient design of advanced cooling systems which requires
placement of localized cooling solutions (e.g. local spraycooling, thin-film thermoelectric cool-
ers) to eliminate the hot-spots [171].

To evaluate the hotspots relocations, consider the gridsi and j, such that:Tnom
j > Tnom

i when
no variation is accounted. In the presence of process variations and hence thermal variations, it is
possible that gridi experiences higher temperature thanj. This might happen when the variation
in leakage distribution causes considerably more temperature elevation in locationi than j which
may produce a relocation of the hotspot from where it is originally expected to be seen. This
effect can be troublesome if it has not been addressed and considered during design processes.

In this section, the probability that the temperature of grid i exceeds the temperature of grid
j, P(Ti > Tj), is estimated. Generally, having two dependent random variables ofTi andTj , such
a probability is:

P
(

Ti > Tj
)

=
∫ +∞

−∞

∫ +∞

y
fi j

(

Ti = x,Tj = y
)

dxdy (7.33)

where fi j
(

Ti,Tj
)

is the joint probability density function (JPDF) ofTi andTj . However, one
needs an analytical JPDF forfi j

(

Ti ,Tj
)

to estimate the desired probability. As shown in Section
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7.3, the PDFs ofTi andTj can be approximated as lognormal distributions. Therefore, a bivariate
lognormal distribution [172] can be assumed for thefi j

(

Ti,Tj
)

:

fi j
(

Ti = x,Tj = y
)

=
exp

{

− q

2−2ρ2
i j

}

2π(x−tmin−i)(y−tmin− j )sTi sTj

√

1−ρ2
i j

where

q =
(

ln(x−tmin−i)−mTi
sTi

)2
+

(

ln(y−tmin− j)−mTj
sTj

)2

−2ρi j

(

ln(x−tmin−i)−mTi
sTi

)

(

ln(y−tmin− j)−mTj
sTj

)

(7.34)
where {mTi , sTi , mTj , sTj } are the mean and standard deviation ofln(Ti) andln(Tj), obtained from
Eq. (7.27), after the calculation of the expected value and variance ofTi andTj . Also, ρi j is the
correlation coefficient between the random variablesln(Ti) and ln(Tj) which can be obtained
using property 4, as:

ρi j =
1

sTi sTj

ln



1+
cov

(

Ti,Tj
)

exp
{

mTi +mTj +
sTi +sTj

2

}



 (7.35)

where cov(Ti ,Tj) = ST(i, j) has been previously obtained from the statistical thermal analysis
part. Finally, The desired probabilityP(Ti > Tj) can be numerically estimated from the given
integral of Eq. (7.33).

7.5 Implementation, Results, and Discussions

To validate the analyzer, a power model based on the Alpha 21364 microprocessor is used [173].
The power consumption parameters of the processor’s blockswere set based on the average
power consumptions in 90nmtechnology when running MCF application [150, 157]. The nomi-
nal total leakage power is 33% of the total power consumptionin this sample. It should be noted
that the constant time of changes on temperature is orders ofmagnitude slower than the input
vector transition rate (millisecond vs. nanosecond). As a result, the average power consumption
of each block during a moderately long time can be used without worrying about the temporarily
short transitions on instantaneous power. The general purpose Alpha processor benchmark is
only used as a sample in which the power consumptions of its blocks are given when running
an application (a long run of an instruction set). If anotherapplication is being used for such
processor the new values of power consumptions should be fedinto the model to generate the
new statistical thermal and power information.

The ev6-like floorplan provided by the publicly available HotSpot tool [150] was considered.
The packaging structure shown in Figure 7.2(b) was used which consists of a 50µm thermal
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interface material over the 300µm die thickness. The aluminum heat spreader and heat sink
have the dimensions (height×width×depth) of 30×30×1 and 60×60×6.9 millimeters. 35◦C
was assigned to the ambient air temperature of the case wherethe chip is supposed to work. The
3σL and 3σTox are set to 12% and 5%, respectively, of which the inter-die, spatially correlated
intra-die, and residual variations consitute 25%, 55%, and20% of total variations [85]. The
elements of the covariance matrix (ΨX) are defined such that the correlation between gridi and
j parameters follows the diminishing rate of theexp(−bvi j ) [85].

The analysis was done for the sample structure by meshing thearea of the microprocessor
into n = 50×50= 2500 grids. The runtime of the method developed in Matlab andexecuted on
a Pentium IV, 3.4GHz, 2GB RAM PC was 158 seconds including admittance matrix inversion
and all initialization steps for five iterations. Adding oneextra iteration increases the runtime
33 seconds out of which 22.5 seconds are for evaluating Eq.(7.17 and 7.25) where the matrix
multiplications are performed. The naive matrix multiplication approachO(n3) was used as the
standard Matlab multiplication method. However, if the method had been developed in C with
application of any of the fast matrix multiplication mentioned earlier, the runtime could have
been improved more since the Eq.(7.17, 7.21, and 7.25) are the runtime bottleneck. The runtime
complexity of the method form> 1 iterations isO((3m−1)n3) based on the number of non-
sparse matrix multiplications. The memory usage isO(8n2) to loadΨL, ΨTox, A matrices and
updateST , SP, E

[

Îleak−i Îleak− j
]

, E
[

Ti Îleak−i Îleak− j
]

, andE
[

T2
i Îleak−i Îleak− j

]

matrices in each
iteration.

To verify the technique, Monte-Carlo iterative simulationsconsidering leakage-thermal cou-
pling have been done with 10000 samples over the HotSpot tool, which took almost 4 days using
the same computer for the 2500 nodes case. Therefore, if the inverse admittance matrix is reused
for the sequence of the Monte-Carlo simulations to avoid redundantly reconstruction of the in-
verse admittance matrix for each new sample, which reduced the Monte-Carlo runtime down to
almost 42 minutes. However, the Monte-Carlo simulation runtime is still too high in comparison
to our developed approach. We also performed the Monte-Carlosimulations with lower number
of samples, to investigate how much it affects the accuracy of the results. It has been observed
that a lower number (e.g., 1000) produces more than 14% errorin standard deviation.

Figure 7.6 shows the results obtained from the analyzer for the sample core. The nomi-
nal thermal profile of the chip (considering leakage-thermal loop) is shown in Figure 7.6(a).
This profile is obtained without considering any parameter variations (nominal). However, af-
ter considering process variability, the deviation profileof the expected value from the nominal
temperatures, obtained from our method, is depicted in Figure 7.6(b) after five iterations. It can
be seen that the level of increase in the expected value is up to 2.7◦C, while, as shown in Figure
7.6(c), the standard deviations of the grids’ temperature are widely varied from 1 to 9.6◦C. This
indicates how much the temperature of each location in a die can vary from chip to chip after
fabrication due to process-induced leakage variations.

It should be noted that, increasing the number of grids provides slight change in results only
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Figure 7.6: Statistical thermal profile of Alpha 21364 CPU core

if the power density of the grids are given based on the grid-size resolution. Otherwise, for
the case of the early stage analysis in which the power consumption of blocks is the highest
information resolution in hand, increasing the number of grids does not lead to a significant
difference. In this case, first the experiments with a 40×40 and then 50×50 grid structure are
performed which ended up with up to 3% contrast in the standard deviation profile over blocks’
borders, but not showing considerable benefit from going to 60×60 structure. However, another
option for performing simulations with higher effective resolution while keeping the runtime
tractable is to disctritize the die area non-uniformly in the block level. Since there is no need
to discritize the large blocks (Caches) into many grids, therefore, different blocks would have
the same number of grids and can provide the reasonable accuracy with lower number of grids.
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Figure 7.7: The obtained PDF from our method compared with the Monte-Carlo simulations

This idea was called hybrid-sized grid cells in the literature [5]. The proposed methodology
can simply account for such structure by using the appropriate process covaraince matices (ΨX)
based on the new structure.

It can be inferred, by investigating Eq. (7.19, 7.20, and 7.16), that the variance of temperature
in grid i is a function of the nominal temperature (Tnom

i ) and nominal leakage (λ′
i) at that node.

Therefore, both nominally high temperature die parts (parts with more activity) and high leakage
die parts (usually high-performance parts) show more temperature variance. This fact can be
seen by comparing the PDF of nodes A, B, and C. The estimated PDF of sample nodes A, the
nominally hottest point, B, the highest thermal variable point which is over one of the high
performance blocks, and C, the nominally very cold cache are depicted in Figure 7.7 along with
the Monte-Carlo simulation results. Figure 7.7(b) shows a temperature range of 65-140◦C for a
node, which can bring a source of huge uncertainty in the power grid noise, circuit reliability, and
timing/power characteristic of the designed circuit. Therefore, a design which shows satisfactory
behavior during traditional (nominal) thermal analysis may fail after fabrication, considering the
wide variation in the die temperature due to process variation. Finally, in terms of the accuracy,
the error of the estimated expected values in comparison to Monte-Carlo simulations is less than
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Figure 7.8: The standard deviation and expected value of node B’s temperature in each iteration.
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Figure 7.9: Corner based thermal extraction of node B. All∆Li and∆Toxi variations are from
(−1.8σL,−1.8σTox) to (1.8σL,1.8σTox) simultaneously.

0.03% over the die. Also, the error of the estimated standarddeviation is less than 2%. It
should be noted that, at first, the random dopant fluctuation was also considered during thermal
analysis. However, the results were the same as the case whenit is ignored due to its uncorrelated
nature. This is because adding large number (n→∞) of uncorrelated random variables, each with
standard devation over mean ofσ/µ= k, leads to a random variable with zero standard devation
over meanσ/µ= k/

√
n→ 0.

Figure 7.8 shows the standard deviation and deviation of theexpected value from nominal
temperature of point B for each iteration. Results shown in the first iteration are the output of
step 2, and the outputs of the step 3 are shown as the second iteration. The rests are the thermal
statistical moments obtained from the step 4, iteratively.It can be seen that the results converge
after almost five iterations with an acceptable accuracy.

Corner based thermal extraction was also performed to avoid possible pessimism in sta-
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Figure 7.10: The obtained full-chip total power consumption PDF from our method compared
with the Monte-Carlo simulations.

tistical estimations. The process parameters of all grids were set from (−1.8σL,−1.8σTox) to
(1.8σL,1.8σTox) with (0.1σL,0.1σTox) steps, simultaneously, and the thermal profile was extracted
for each case. As can be seen in Figure 7.9, the temperature ofnode B varies from 67-151◦C. In
fact, if all process parameters be less thanX0−1.9σX the design will be too leaky and will expe-
rience thermal runaway (Ti → ∞) [146]. However, the probability in which all (2×2500=5000)
process parameters experience the worst case scenarios simultaneously is very low. The Monte-
Carlo simulations showed 21 samples out of 10000 experiencing thermal runaway.

The power consumption uncertainty caused by the wide range of thermal variability due to
process variations are quantified by using the analytical approach proposed in Section 7.4.1.
The probability density function of the extracted full-chip total power is obtained in less than a
second (after extraction of temperature moments) and are compared with the Monte-Carlo results
in Figure 7.10. The total power consumption’s expected value and standard deviation are 52.3
and 4.83 Watts. Moreover, based on a power consumption budget, one can find a probabilistic
yield using Eq. (7.32) and the obtained total power PDF. Thisyield is also depicted and compared
with the Monte-Carlo simulations in the figure.

In addition, for the hotspot movement evaluation, two gridsof A and B are considered. It can
be seen that the nominal temperature in grid A is 16.7◦C higher than grid B when no variabil-
ity is taken into account. However, to show the effect of the leakage variation on the hotspots
formations, theP(TB > TA) is calculated using the approach presented in Section IV. The analy-
sis showsP(TB > TA) = 4.28% (Monte-Carlo result = 4.15%) which means 4.28% of fabricated
dies experience higher temperature on grid B (FPAdd) ratherthan grid A (IntReg). This indicates
that we should not only rely on the nominal location of a hotspot, but also examine other parts
of a chip which has a high thermal variability. Therefore, quantative guidance can be provided
to micro-architects regarding the hotspot locations to help them in devising thermal manage-
ment solutions. The runtime of such evaluation was a fraction of a second given the previously
estimated moments and covariances of temperatures.
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Figure 7.11: The total power consumption std and node B’s temperature moments with respect
to leakage/total power consumption ratio.

The behavior of temperature’s moments and total power consumption are studied by varying
the relative portion of the leakage/total power consumption. The nominal total power consump-
tion was kept constant while the ratio of the leakage/total is changed from 15% to 50%. Figure
7.11 shows the standard deviation and deviation of the expected value of node B’s temperature,
the highest thermal variable point. It also shows the standard deviation of total power con-
sumption when the ratio is varied. All values are obtained after the convergence of the step
4 calculations. It can be seen that, as expected, icreasing the leakage portion exacerbates the
thermal uncertainty, and hence the total power consumptionuncertainty, which emphasizes the
importance of considering an statistical thermal analysisfor scaled and leakier technologies.

Moreover, to investigate how the relative magnitude of the inter, correlated intra die, and
residual parts of variations affect the statistical behavior of temperature and total power con-
sumption, the ratio of the inter-die variation is varied from 0% to 80% while the residual part is
kept 20%. This means the correlated intra-die is varied from80% to 0% (Fig. 7.12(a)). Also,
in the second case the inter-die variation is kept constant to 25% while the correlated intra-die
portion is varied from 0% to 75% which means the residual partis varied from 75% to 0% (Fig.
7.12(b)). Finally, in the last case the correlated intra-die part is kept constant 55% while the inter-
die and residual parts are varied from 0% to 45% and 45% to 0%, respectively (Fig. 7.12(c)). The
figures are obtained based on the leakage/total power ratio of 33%, after the iterations converged
in step 4. As can be seen in figure 7.12(a) and 7.12(b), in constant residual part, more inter-die
variation produces more thermal and power uncertainty. However, when the inter-die portion is
constant more correlated intra-die variation brings more uncertainty. These are due to the fact
that, in both cases, the physical parameters’ covariances between grids were increased (please
refer to Eq. (7.5)) which in fact increases the total uncertainty through the analysis. This is the
same as the circuit delay uncertainty, in which the inter-die and spatial correlation (systematic
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(a) Constant residual part (20%)
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Figure 7.12: The total power consumption standard deviation and node B’s temperature moments
with respect to relative portions of inter-die, correlatedintra-die, and residual part variations.

intra-die) increase the overall variability [174, 175].

In closing, it can be concluded from the results that considering thermal uncertainty is a must
for future VLSI design flow and should be considered in different applications. As shown in the
plotted profiles, the magnitude of the temperature variation is not constant over a die suggesting
to wisely investigate new placement techniques which not only target the minimization of the
peak nominal temperature [160], but also optimize its variance. The leakage power reduction
techniques (e.g., body biasing and supply gating) should also be more carefully utilized consid-
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ering the bi-directional relation between leakage and temperature. In addition, the power rail
analysis techniques have to be also modified in order to incorporate the thermal+leakage uncer-
tainty information provided by the analyzer, to produce more reliable grid verification. Moreover,
the electrothermal simulation techniques [156, 147] are other critical issues which have to be re-
visited since process-induced thermal uncertainty reveals more variations on delay and reliability
(MTTF) than the past when process-independent temperatures were assumed. As a result, strong
couplings between process variability, temperature, and leakage currents make the co-analyzing
for (process variations/ leakage/ temperature) critical for future robust circuit designs.

7.6 Conclusions

In this chapter, a statistical temperature profile analyzeris proposed that estimates the probability
density functions and covariances of temperatures over a die. The statistical behavior of temper-
ature arises from the variable nature of leakage current dueto physical parameter variabilities.
The inter-die and spatially correlated intra-die gate length and oxide thickness variations are con-
sidered in this micro-architectural level analysis approach. The thermal dependence of leakage
is also taken into account during estimations. Finally, as two applications of the extracted statis-
tical moments, the migration of hotspots which appears whenconsidering the variations, and the
full chip total power consumption estimation are developed. Analysis done over the sample lay-
out (Alpha 21364) showed that the temperature variances widely vary (1-9.6◦C) over the blocks
which can produce a temperature range of (65-140◦C) on a location of the die and hence impact
power/performance/reliability metrics.
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Thesis Closure
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Chapter 8

Conclusions

In this thesis, computer-aided design methodologies are proposed to address some of the process
variation concerns at the device, circuit, and micro-architectural levels.

At the device-level, it is shown that a methodology, enforcing variability minimization during
the MOS device design process results in devices that are more immune to physical variations
than traditionally designed devices. A theoretical study of various device parameters and their
impacts on device characteristics are presented. An MOS device design approach is developed
which finds appropriate values for oxide thickness, gate length, and channel doping profile char-
acteristics (Halo and Retrograde Well) for a given MOS devicestructure and technology such
that the extracted device parameters leads to a transistor which maximally satisfies three desired
constraints on intrinsic delay, saturation, and total leakage currents, in the presence of variability.
The algorithm is based on an optimization technique which places a maximized yield cube in the
problem feasible space. The center of this cube is considered as the maximum yield design point.
This method takes into account different possible variances on process parameters and desired
performance-leakage metrics for a particular application. The designed devices are verified by
comparing against some industrial devices and the the semiconductor roundmap. It is, therefore,
concluded that the variability can be effectively considered from the device design.

At the circuit-level, advanced sampling and variance reduction-based methods (e.g., QMC,
LHS, Control Variate, and Importance Sampling) are developed for the efficient yield estima-
tion of digital, analog, and SRAM cells. The yield estimationof integrated circuits through the
Monte-Carlo technique is inefficient. However, it is shown inthis thesis that by proper engineer-
ing of the problems, the proposed MC-based methods are capable of providing an accurate yield
estimation by using a low number of simulations, compared tothat of the traditional-MC. Three
types of VLSI circuits, the digital, analog, and SRAM cells are considered and different solutions
are proposed for each. For the digital circuits statisticaltiming analysis problem, the fact that
the timing yield problem contains some considerable higherthat 1-D terms in its ANOVA de-
composition is used toward improving the discrepancy of theSobol’s Quasi-MC sampling. This
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problem is also shown to be a very suitable candidate for the application of the control variate by
the extraction of the nominally critical path. However, forthe analog circuits using a control vari-
able requires extra overhead for the CV model training, lead us to use sampling-based methods
such LHS for yield analysis. The linearity of the analog circuits are then used toward minimizing
the inter-linear and quadratic correlation of the LHS samples, for a reduced variance estimation
of the analog circuit yield. While the digital and analog circuit yield estimation problems suffer
from the curse of dimensionality, the MC-based SRAM cell yieldproblem is challenging due to
high variance of estimation as the failure rate is extremelylow. As a result, an adaptive impor-
tance sampling is developed to provide an immune and accurate method of yield estimation with
just a few thousand simulations.

Finally, a co-thermal-leakage analysis engine is developed at the micro-architectural level
that accounts for an uncertain thermal profile due to process-induced leakage variations. The
analysis is based on iterative calculation of the statistical thermal and leakage moments, and
matching them into a shifted log-normal distribution. It isshown how this information can be
used for the full-chip leakage power yield estimation, and investigation of the formation of the
thermal hotspots.

Following is the list of related publications:

J1. J. Jaffari and M. Anis, “On Efficient LHS-Based Yield Analysisof Analog Circuits ”,Ac-
cepted by IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems.

J2. J. Jaffari and M. Anis, “Advanced Variance Reduction and Sampling Techniques for Efficient
Statistical Timing Analysis”,Accepted by IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems.

J3. J. Jaffari and M. Anis, “Statistical Thermal Profile Considering Process Variations: Analysis
and Applications”,IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, pp. 1027-1040, June 2008.

J4. J. Jaffari and M. Anis, “Variability-Aware Bulk-MOS Device Design”, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, pp. 205-216,
February 2008.

C1. J. Jaffari and M. Anis, “Correlation Controlled Sampling for Efficient Variability Analysis
of Analog Circuits”,Proc. of IEEE/ACM Design Automation and Test in Europe(DATE),
pp. 1305-1308, 2010.

C2. J. Jaffari and M. Anis, “Practical Monte-Carlo Based Timing Yield Estimation of Digital
Circuits”, Proc. of IEEE/ACM Design Automation and Test in Europe(DATE), pp. 807-
812, 2010.
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C3. J. Jaffari and M. Anis, “Adaptive Sampling for Efficient Failure Probability Analysis of
SRAM Cells”, Proc. of IEEE/ACM International Conference on Computer-AidedDesign
(ICCAD), pp. 623-630, 2009.

C4. J. Jaffari and M. Anis, “Timing Yield Estimation of Digital Circuits using a Control Vari-
ate Technique”,Proc. of IEEE International Symposium on Quality Electronic Design
(ISQED), pp. 382-387, 2009.

C5. J. Jaffari and M. Anis, “On Efficient Monte Carlo-Based Statistical Static Timing Analysis
of Digital Circuits”, Proc. of IEEE/ACM International Conference on Computer-Aided
Design(ICCAD), pp. 196-203, 2008.

C6. J. Jaffari and M. Anis, “Variability-Aware Device Optimization underION and Leakage Cur-
rent Constraints”,Proc. of IEEE/ACM International Symposium on Low Power Electronics
and Design(ISLPED), pp. 119-122,2006.

8.1 Future Works

Suggestions to extend the research of this thesis at different levels are listed as follows:

At the device-level, a methodology is developed to calculate the optimum doping and geom-
etry parameters from the device yield point of view. However, to achieve certain physical charac-
teristics at the device-level, the fabrication process should be tuned accordingly. A methodology
that optimizes the fabrication process parameters (e.g. annealing, ionization, patterning and etch-
ing parameters) and targets the yield of the device, as defined in this thesis, is very helpful.

At the circuit-level, considering the promising advances in efficient MC-based yield esti-
mation methods, an approach for future research should be onthe design for maximizing the
yield by using sampling-based methods as the core of the yield analysis. For example, in the
6T-SRAM cell design problem, a methodology that can progressively optimize the dimensions
of the six transistors, during the progresses of the adaptive importance sampling yield estimation
is very valuable. Such methods combine the design and the analysis of the yield in a unified flow
rather than a very time-consuming iterative design-and-correct cyclic approach. A progressive
update of the response surfaces during the sampling-based analysis, and a resultant design for
the yield of analog and digital circuits should also be considered in the future.

Finally, at the micro-architectural-level, bringing the knowledge of the co-thermal-leakage
statistics to the power grid verification, and statistically modeling the IR-drop profile might be a
suitable direction to follow. The leakage and thermal variations introduce current and resistivity
variations that are the two major contributors to total IR-drop variability on the power distribution
network.
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